
Legal Information
Microsoft® Win32® Programmer's Reference
Information in this online help system is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software and/or files described in this online
help system are furnished under a license agreement or nondisclosure agreement. The software
and/or files may be used or copied only in accordance with the terms of the agreement. The
purchaser may make one copy of the software for backup purposes. No part of this online help
system may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information and retrieval systems, for any purpose other
than the purchaser's personal use, without the written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property rights except as expressly provided in any written license agreement from
Microsoft.

Copyright © 1992 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Visual C++, Win32, Win32s, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Portions of this documentation are provided under license from Digital Equipment Corporation.
Copyright © 1990, 1992 Digital Equipment Corporation. All rights reserved.

DEC, DECnet and PATHWORKS are trademarks of Digital Equipment Corporation.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Using the Microsoft Win32 Programmer'sReferenceThe Microsoft® Win32® Programmer's Reference contains the application programming interface
(API) set needed to write applications for Windows® 95 and Windows NT®. This introduction is
provided to help you find your way in the Win32 Programmer's Reference portion of the Microsoft
Win32 Software Development Kit (SDK). It is divided into the following sections:

· Organization of the Win32 Programmer's Reference
· Finding What You Need

· Document Conventions

Organization of the Win32 Programmer's Reference
The Microsoft Win32 Programmer's Reference fully describes the elements of the Win32 API set,
including functions and related data types, macros, structures, and messages. The Win32
Programmer's Reference is the primary source for specific information about writing Win32-based
applications.

As you can see from the Contents pane, the Win32 Programmer's Reference is organized as
follows:

· Overviews
· Reference
· Appendix
· GlossaryOverviewsThe overviews describe the purpose of the elements of the Win32 API, and explain the concepts

and principles behind the functions. These overviews are intended for programmers who are new
to Win32 programming or who are learning parts of it for the first time. The overviews provide the
basic information needed for an understanding of 32-bit Windows programming.

An overview generally consists of three parts: a brief description (About), a task-oriented section
that provides examples and describes how to use the element (Using), and a reference section
that lists related programming elements. For example, the Clipboard overview consists of the
following sections:

· About the Clipboard
· Using the Clipboard
· Clipboard ReferenceReferenceThe reference portion of this guide consists of an alphabetic listing of the Win32 programming

elements, grouped by components such as functions, messages, or structures. The reference
pages provide the details of the syntax, parameters, and return values for each programming
element.

Finding What You Need
The Win32 core set of documentation is organized by component. Several navigational options
are provided to help you easily find the reference topic that interests you:

· In the Contents pane, open the Reference section and browse the alphabetic list.
· In the Contents pane, open the reference section at the end of any overview to see a list

of related functions, structures, and messages.
· On the toolbar, click the ewc msdncd, EWGraphic, bsd23455 0 /a "SDKKEY.BMP" button.

In the list box that appears, type the name of the programming element you want to see, or
scroll through the list and select a keyword. As you type, the list automatically scrolls to the
word that most closely matches the text you are typing.

For more complete information on using the features of the Win32 SDK, see About the Microsoft
Win32 Software Development Kit and the Help.

In the the Win32 Programmer's Reference, the following features provide additional navigational
assistance:

· Finding Header, Library, and Compatibility Information (thebutton)
· Finding Related Functions (thebutton)
· Finding Conceptual Information (thebutton)

Finding Header, Library, and Compatibility Information
In the Win32 Programmer's Reference, the QuickInfo button provides a convenient way to get the
following information:

· Platform support for Windows NT, Windows 95, Win32s
· Import library
· Header file
· Unicode support
· Platform notes

Detailed information on platform differences is included in the documentation, but the QuickInfo
button provides the only means to get information about headers, libraries, and Unicode support.

To open the QuickInfo box
· Click thebutton at the top of the reference topic displayed on the screen. The QuickInfo box appears.

Finding Related Functions
To find reference topics that are related to the one displayed, you can use the Group button. This
button is active for selected reference topics in the Win32 SDK documentation.

To find listings of API elements related by functionality
· Click thebutton at the top of the reference topic displayed on the screen. A list of associated programming

elements appears.

Finding Conceptual Information
To find overview topics related to the displayed reference topic, you can use the Overview button.
This button is active for selected reference topics in the Win32 SDK documentation.

To see an overview relating to the displayed reference topic
· Click thebutton at the top of the reference topic displayed on screen. The beginning of the relevant

overview appears.

Document Conventions
The Win32 Programmer's Reference uses the following document conventions.

Convention Description

monospace Indicates source code, structure syntax,
examples, user input, and program output.
For example: ptbl->SortTable(pSort,
TBL_BATCH);

Bold Indicates a function, structure, macro,
interface, method, data type, or other
keyword in Win32, the OLE application
programming interface, C, or C++.

Italic Indicates placeholders, most often function
or method parameters; these placeholders
stand for information that must be supplied
by the implementation or the user. In
addition, italics are used to highlight the
first use of terms and to emphasize
meaning.

UPPERCASE Indicates flags, return values, and
properties. In addition addition to standard
C-language conventions, uppercase letters
indicate filenames, segment names,
registers, and terms used at the operating-
system command level.

[] Indicates optional syntax items. Type only
the syntax within the brackets, not the
brackets themselves.

Note The interface syntax in this book follows the variable-naming convention known as
Hungarian notation, invented by the programmer Charles Simonyi. Variables are prefixed with
lowercase letters that indicate their data type. For example, lpszProfileName is a long pointer to a
zero-terminated string name ProfileName. For more information about Hungarian notation, see
Programming Windows 95 by Charles Petzold.

WindowsA window in an application written for the Microsoft® Windows® operating system is a rectangular
area of the screen where the application displays output and receives input from the user. A
window shares the screen with other windows, including those from other applications. Only one
window at a time can receive input from the user. The user can use the mouse, keyboard, or other
input device to interact with this window and the application that owns it.

About Windows
Windows are the primary means a graphical Win32-based application has to interact with the user
and accomplish tasks, so one of the first tasks of a graphical Win32-based application is to create
a window. This overview describes the elements of the Microsoft® Win32® application
programming interface (API) that applications use to create and use windows; manage
relationships between windows; and size, move, and display windows.

Desktop Window
When Windows starts, it automatically creates the desktop window. The desktop window is a
system-defined window that paints the background of the screen and serves as the base for all
windows displayed by all applications.

The desktop window uses a bitmap to paint the background of the screen. The pattern created by
the bitmap is called the desktop wallpaper. By default, the desktop window uses the bitmap from a
.BMP file specified in the registry as the desktop wallpaper.

The GetDesktopWindow function returns the handle of the desktop window.

A system configuration application, such as a Control Panel applet, changes the desktop
wallpaper by using the SystemParametersInfo function with the wAction parameter set to
SPI_SETDESKWALLPAPER and the lpvParam parameter specifying a bitmap filename.
SystemParametersInfo then loads the bitmap from the specified file, uses the bitmap to paint the
background of the screen, and enters the new filename in the registry.

Application Windows
Every graphical Win32-based application creates at least one window, called the main window,
that serves as the main window for the application. This window serves as the primary interface
between the user and the application. Most applications also create other windows, either directly
or indirectly, to perform tasks related to the main window. Each window plays a part in displaying
output and receiving input from the user.

When you start an application, the system also associates a taskbar button with the application.
The taskbar button contains the program icon and title. When the application is active, its taskbar
button is displayed in the pushed state.

Components of an Application Window
An application window includes elements such as a title bar, a menu bar, the window menu
(formerly known as the system menu), the minimize button, the maximize button, the restore
button, the close button, a sizing border, a client area, a horizontal scroll bar, and a vertical scroll
bar. An application's main window typically includes all of these components. The following
illustration shows these components in a typical main window.

ewc msdncd, EWGraphic, bsd23460 0 /a "SDK_02.BMP"

The title bar displays an application-defined icon and line of text; typically, the text specifies the
name of the application or indicates the purpose of the window. An application specifies the icon
and text when creating the window. The title bar also makes it possible for the user to move the
window by using a mouse or other pointing device.

Most applications include a menu bar that lists the commands supported by the application. Items
in the menu bar represent the main categories of commands. Choosing an item from the menu
bar typically opens a pop-up menu whose items correspond to the tasks within a given category.
By selecting a command, the user directs the application to carry out a task.

The window menu is created and managed by Windows. It contains a standard set of menu items
that, when chosen by the user, set a window's size or position, close the application, or perform
tasks. For more information about menus and the window menu, see Menus.

When you click the maximize or minimize button, this affects the size and position of the window.
When the user clicks the maximize button, Windows enlarges the window to the size of the screen
and positions the window, so it covers the entire desktop, minus the taskbar. At the same time,
Windows replaces the maximize button with the restore button. The restore button is a bitmap
that, when clicked, restores the window to its previous size and position.

When the user clicks the minimize button, Windows reduces the window to the size of its taskbar
button, positions the window over the taskbar button, and displays the taskbar button in its normal
state. To restore the application to its previous size and position, click its taskbar button.

The sizing border is an area around the perimeter of the window that enables the user to size the
window by using a mouse or other pointing device.

The client area is the part of a window where the application displays output, such as text or
graphics. For example, a desktop publishing application displays the current page of a document
in the client area. The application must provide a function, called a window procedure, to process
input to the window and display output in the client area. For more information about window
procedures, see Window Procedures.

The horizontal scroll bar and vertical scroll bar convert mouse or keyboard input into values that
an application uses to shift the contents of the client area either horizontally or vertically. For
example, a word-processing application that displays a lengthy document typically provides a
vertical scroll bar to enable the user to page up and down through the document.

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border, and scroll
bars are referred to collectively as the window's nonclient area. Windows manages most aspects
of the nonclient area; the application manages everything else about the window. In particular, the
application manages the appearance and behavior of the client area.

Controls, Dialog Boxes, and Message Boxes
An application uses several types of windows in addition to its main window, including controls,
dialog boxes, and message boxes.

A control is a window that an application uses to obtain a specific piece of information from the
user, such as the name of a file to open or the desired point size of a text selection. Applications
also use controls to obtain information needed to control a particular feature of an application. For
example, a word-processing application typically provides a control to let the user turn
wordwrapping on and off. For more information about controls, see Controls.

Controls are always used in conjunction with another window ¾ typically, a dialog box. A dialog
box is a window that contains one or more controls. An application uses a dialog box to prompt
the user for input needed to complete a command. For example, an application that includes a
command to open a file would display a dialog box that includes controls in which the user
specifies a path and filename.

A message box is a window that displays a note, caution, or warning to the user. For example, a
message box can inform the user of a problem the application has encountered while performing
a task.

Dialog boxes and message boxes do not typically use the same set of window components as
does a main window. Most have a title bar, a window menu, a border (nonsizing), and a client
area, but they typically do not have a menu bar, minimize and maximize buttons, or scroll bars.
For more information about dialog boxes and message boxes, see Dialog Boxes.

Z Order
The Z order of a window indicates the window's position in a stack of overlapping windows. This
window stack is oriented along an imaginary axis, the z-axis, extending outward from the screen.
The window at the top of the Z order overlaps all other windows. The window at the bottom of the
Z order is overlapped by all other windows.

Windows maintains the Z order in a single list. Windows are added to the Z order based on
whether they are topmost windows, top-level windows, or child windows. A topmost window
overlaps all other non-topmost windows, regardless of whether it is the active or foreground
window. A topmost window has the WS_EX_TOPMOST style. All topmost windows appear in the
Z order before any non-topmost windows. A child window is grouped with its parent in Z order.

When an application creates a window, Windows puts it at the top of the Z order for windows of
the same type. You can use the BringWindowToTop function to bring a window to the top of the
Z order for windows of the same type. You can rearrange the Z order by using the
SetWindowPos and DeferWindowPos functions.

The user changes the Z order by activating a different window. Windows positions the active
window at the top of the Z order for windows of the same type. When a window comes to the top
of Z order, so do its child windows. You can use the GetTopWindow function to search all child
windows of a parent window and return the handle of the child window that is highest in Z order.
The GetNextWindow function retrieves the handle of the next or previous window in Z order.

Window Creation
An application creates its windows (including the main window) by using the CreateWindow or
CreateWindowEx function and providing the information Windows requires to define the
attributes of the window. CreateWindowEx has a parameter, dwExStyle, that CreateWindow
does not have; otherwise, the functions are identical. In fact, CreateWindow simply calls
CreateWindowEx, setting the dwExStyle parameter to zero. For this reason, the remainder of this
overview refers only to CreateWindowEx.

The Win32 API provides additional functions ¾ including DialogBox, CreateDialog, and
MessageBox ¾ for creating special-purpose windows such as dialog boxes and message boxes.
For more information about these functions, see Dialog Boxes.

Window Attributes
An application must provide the following information when creating a window:

· Window class
· Window name
· Window style
· Parent or owner window
· Size
· Location
· Position
· Child-window identifier or menu handle
· Instance handle
· Creation data

These attributes are described in the following sections.Window ClassEvery window belongs to a window class. An application must register a window class before
creating any windows of that class. The window class defines most aspects of a window's
appearance and behavior. The chief component of a window class is the window procedure, a
function that receives and processes all input and requests sent to the window. Windows provides
the input and requests in the form of messages. For more information about window classes,
window procedures, or messages, see Window Classes, Window Procedures, or Messages and
Message Queues.Window NameA window can have a name. A window name (also called window text) is a text string that
identifies a window for the user. A main window, dialog box, or message box typically displays its
window name in its title bar, if present. For a control, the appearance of the window name
depends on the control's class. A button, edit control, or static control displays its window name
within the rectangle occupied by the control. A list box, combo box, or static control does not
display its window name.

An application uses the SetWindowText function to change the window name after creating the
window. It uses the GetWindowTextLength and GetWindowText functions to retrieve the
current window-name text from a window.Window StyleEvery window has one or more window styles. A window style is a named constant that defines an
aspect of the window's appearance and behavior that is not specified by the window's class. For
example, the SCROLLBAR class creates a scroll bar control, but the SBS_HORZ and SBS_VERT
styles determine whether a horizontal or vertical scroll bar control is created. A few window styles
apply to all windows, but most apply to windows of specific window classes. Windows and, to
some extent, the window procedure for the class, interpret the styles.Parent or Owner WindowA window can have a parent window. A window that has a parent is called a child window. The
parent window provides the coordinate system used for positioning a child window. Having a
parent window affects aspects of a window's appearance; for example, a child window is clipped
so that no part of the child window can appear outside the borders of its parent window. A window
that has no parent, or whose parent is the desktop window, is called a top-level window. An
application uses the EnumWindows function to obtain the handle of each of its top-level
windows. EnumWindows passes the handle of each top-level window, in turn, to an application-
defined callback function, EnumWindowsProc.

A window can own, or be owned by, another window. An owned window always appears in front
of its owner window, is hidden when its owner window is minimized, and is destroyed when its
owner window is destroyed.Location, Size, and Position in the Z OrderEvery window has a location, size, and position in the Z order. The location is the coordinates of
the window's upper left corner, relative to the upper left corner of the screen or, in the case of a
child window, the upper left corner of the parent's client area. A window's size is its width and
height measured in pixels. A window's position in the Z order is the position of the window in a
stack of overlapping windows. For more information, see Z Order.Child-Window Identifier or Menu HandleA child window can have a child-window identifier, a unique, application-defined value associated
with the child window. Child-window identifiers are especially useful in applications that create
multiple child windows. When creating a child window, an application specifies the identifier of the
child window. After creating the window, the application can change the window's identifier by
using the SetWindowLong function, or it can retrieve the identifier by using the GetWindowLong
function.

Every window, except a child window, can have a menu. An application can include a menu by
providing a menu handle either when registering the window's class or when creating the window.Instance HandleEvery Win32-based application has an instance handle associated with it. Windows provides the
instance handle to an application when the application starts. Because it can run multiple copies
of the same application, Windows uses instance handles internally to distinguish one instance of
an application from another. The application must specify the instance handle in many different
windows, including those that create windows.

Creation DataEvery window can have application-defined creation data associated with it. When the window is
first created, Windows passes a pointer to the data on to the window procedure of the window
being created. The window procedure uses the data to initialize application-defined variables.

Window Handles
After creating a window, the creation function returns a window handle that uniquely identifies the
window. An application uses this handle in other functions to direct their actions to the window. A
window handle has the HWND data type; an application must use this type when declaring a
variable that holds a window handle.

The Win32 API includes several special constants that can replace a window handle in certain
functions. For example, an application can use HWND_TOPMOST in the SendMessageTimeout
function, HWND_BROADCAST in the SendMessage function, or HWND_DESKTOP in the
MapWindowPoints function.

Although the NULL constant is not a window handle, you can use it in some functions to specify
that no window is affected. For example, specifying NULL for the CreateWindowEx function's
hwndParent parameter creates a window that has no parent or owner. Some functions may return
NULL instead of a handle, indicating that the given action applies to no window.

An application can use the FindWindow function to discover whether a window with the specified
class name or window name exists in the system. If such a window exists, FindWindow returns
the handle of the window. To limit the search to the child windows of a particular application, use
the FindWindowEx function. The IsWindow function determines whether a window handle
identifies a valid, existing window.

Main Window Creation
Every Win32-based application must have a WinMain function as its entry point. WinMain
performs a number of tasks, including registering the window class for the main window and
creating the main window. WinMain registers the main window class by calling the RegisterClass
function, and it creates the main window by calling the CreateWindowEx function.

Portability Issue The entry point need not be named WinMain.
Your WinMain function can also limit your application to a single instance. Create a named mutex
using CreateMutex. If GetLastError returns ERROR_ALREADY_EXISTS, another instance of
your application exists (it created the mutex) and you should exit your WinMain.

Windows does not automatically display the main window after creating it; instead, an application
must use the ShowWindow function to display the main window. After creating the main window,
the application's WinMain function calls ShowWindow, passing it two parameters: the handle of
the main window and a flag specifying whether the main window should be minimized or
maximized when it is first displayed. Normally, the flag can be set to any of the constants
beginning with the SW_ prefix. However, when ShowWindow is called to display the application's
main window, the flag must be set to SW_SHOWDEFAULT. This flag tells Windows to display the
window as directed by the program that started the application.

If a window is created as a Unicode window, it receives only Unicode messages. To determine if a
window is a Unicode window, call IsWindowUnicode.

Window-Creation Messages
When creating any window, Windows sends messages to the window procedure for the window.
Windows sends the WM_NCCREATE message after creating the window's nonclient area and the
WM_CREATE message after creating the client area. The window procedure receives both
messages before Windows displays the window. Both messages include a pointer to a
CREATESTRUCT structure that contains all the information specified in the CreateWindowEx
function. Typically, the window procedure performs initialization tasks upon receiving these
messages.

When creating a child window, Windows sends the WM_PARENTNOTIFY message to the parent
window after sending the WM_NCCREATE and WM_CREATE messages. It also sends other
messages while creating a window. The number and order of these messages depend on the
window class and style and on the function used to create the window. These messages are
described in other topics in this help file.

Multithread Applications
A Win32-based application can have multiple threads of execution, and each thread can create
windows. The thread that creates a window must contain the code for its window procedure.

An application can use the EnumThreadWindows function to enumerate the windows created by
a particular thread. This function passes the handle of each thread window, in turn, to an
application-defined callback function, EnumThreadWndProc.

The GetWindowThreadProcessId function returns the identifier of the thread that created a
particular window.

To set the show state of a window created by another thread, use the ShowWindowAsync
function.

General Window Styles
The Win32 API provides general window styles and class-specific window styles. The general
windows styles are represented by constants that begin with the WS_ prefix; they can be
combined with the OR operator to form different types of windows, including main windows, dialog
boxes, and child windows. The class-specific window styles define the appearance and behavior
of windows belonging to the predefined control classes such as edit controls and list boxes. This
overview describes the general window styles.

An application usually sets window styles when creating windows. It can also set the styles after
creating a window by using the SetWindowLong function.

Overlapped Window
An overlapped window is a top-level window that has a title bar, border, and client area; it is
meant to serve as an application's main window. It can also have a window menu, minimize and
maximize buttons, and scroll bars. An overlapped window used as a main window typically
includes all of these components.

By specifying the WS_OVERLAPPED or WS_OVERLAPPEDWINDOW style in the
CreateWindowEx function, an application creates an overlapped window. If you use the
WS_OVERLAPPED style, the window has a title bar and border. If you use the
WS_OVERLAPPEDWINDOW style, the window has a title bar, sizing border, window menu, and
minimize and maximize buttons.

Pop-up Window
A pop-up window is a special type of overlapped window used for dialog boxes, message boxes,
and other temporary windows that appear outside an application's main window. Title bars are
optional for pop-up windows; otherwise, pop-up windows are the same as overlapped windows of
the WS_OVERLAPPED style.

You create a pop-up window by specifying the WS_POPUP style in CreateWindowEx. To include
a title bar, specify the WS_CAPTION style. Use the WS_POPUPWINDOW style to create a pop-
up window that has a border and a window menu. The WS_CAPTION style must be combined
with the WS_POPUPWINDOW style to make the window menu visible.

Child Window
A child window has the WS_CHILD style and is confined to the client area of its parent window.
An application typically uses child windows to divide the client area of a parent window into
functional areas. You create a child window by specifying the WS_CHILD style in the
CreateWindowEx function.

A child window must have a parent window. The parent window can be an overlapped window, a
pop-up window, or even another child window. You specify the parent window when you call
CreateWindowEx. If you specify the WS_CHILD style in CreateWindowEx but do not specify a
parent window, Windows does not create the window.

A child window has a client area but no other features, unless they are explicitly requested. An
application can request a title bar, a window menu, minimize and maximize buttons, a border, and
scroll bars for a child window, but a child window cannot have a menu. If the application specifies
a menu handle, either when it registers the child's window class or creates the child window, the
menu handle is ignored.PositioningWindows always positions the child window relative to the upper left corner of the parent window's
client area. No part of a child window ever appears outside the borders of its parent window. If an
application creates a child window that is larger than the parent window or positions a child
window so that some or all of the child window extends beyond the borders of the parent,
Windows clips the child window; that is, the portion outside the parent window's client area is not
displayed. Actions that affect the parent window can also affect the child window, as follows.

Parent window Child window

Destroyed Destroyed before the parent window is destroyed.
Hidden Hidden before the parent window is hidden. A child

window is visible only when the parent window is
visible.

Moved Moved with the parent window's client area. The
child window is responsible for painting its client area
after the move.

Shown Shown after the parent window is shown.
ClippingWindows does not automatically clip a child window from the parent window's client area. This
means the parent window draws over the child window if it carries out any drawing in the same
location as the child window. Windows does, however, clip the child window from the parent
window's client area if the parent window has the WS_CLIPCHILDREN style. If the child window
is clipped, the parent window cannot draw over it.

A child window can overlap other child windows in the same client area. A child window that
shares the same parent window as one or more other child windows is called a sibling window.
Sibling windows can draw in each other's client area, unless one of the child windows has the
WS_CLIPSIBLINGS style. If a child window does have this style, any portion of its sibling window
that lies within the child window is clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style, a slight loss in
performance occurs. Each window takes up system resources, so an application should not use
child windows indiscriminately. For best performance, an application that needs to logically divide
its main window should do so in the window procedure of the main window rather than by using
child windows.Relationship to Parent WindowAn application can change the parent window of an existing child window by calling the SetParent
function. In this case, Windows removes the child window from the client area of the old parent
window and moves it to the client area of the new parent window. If SetParent specifies a NULL
handle, the desktop window becomes the new parent window. In this case, the child window is
drawn on the desktop, outside the borders of any other window. The GetParent function retrieves
the handle of a child window's parent window.

The parent window relinquishes a portion of its client area to a child window, and the child window
receives all input from this area. The window class need not be the same for each of the child
windows of the parent window. This means that an application can fill a parent window with child
windows that look different and carry out different tasks. For example, a dialog box can contain
many types of controls, each one a child window that accepts different types of data from the
user.

A child window has only one parent window, but a parent can have any number of child windows.
Each child window, in turn, can have child windows. In this chain of windows, each child window is
called a descendant window of the original parent window. An application uses the IsChild

function to discover whether a given window is a child window or a descendant window of a given
parent window.

The EnumChildWindows function enumerates the child windows of a parent window. Then,
EnumChildWindows passes the handle of each child window to an application-defined callback
function. Descendant windows of the given parent window are also enumerated.MessagesWindows passes a child window's input messages directly to the child window; the messages are
not passed through the parent window. The only exception is if the child window has been
disabled by the EnableWindow function. In this case, Windows passes any input messages that
would have gone to the child window to the parent window instead. This permits the parent
window to examine the input messages and enable the child window, if necessary.

A child window can have a unique integer identifier. Child window identifiers are important when
working with control windows. An application directs a control's activity by sending it messages.
The application uses the control's child window identifier to direct the messages to the control. In
addition, a control sends notification messages to its parent window. A notification message
includes the control's child window identifier, which the parent uses to identify which control sent
the message. An application specifies the child-window identifier for other types of child windows
by setting the hmenu parameter of the CreateWindowEx function to a value rather than a menu
handle.

Window Border
The Win32 API provides the following border styles.

Style Description

WS_BORDER Creates a window with a thin-line
border.

WS_DLGFRAME Creates a window with a double border,
a style typically used with dialog boxes.
A window with this style cannot have a
title bar.

WS_EX_DLGMODALFRAME Creates a window with a double border.
Unlike the WS_DLGFRAME style, an
application can also specify the
WS_CAPTION style to create a title bar
for the window.

WS_EX_STATICEDGE Creates a window with a three-
dimensional border style intended to be
used for items that do not accept user
input.

WS_THICKFRAME Creates a window with a sizing border.

A window with the WS_OVERLAPPED or WS_POPUPWINDOW style has the WS_BORDER
style by default. One of the other border styles must be combined with the
WS_OVERLAPPED or WS_POPUPWINDOW style to give an overlapped window a different
border style.

If no border style is specified for a window with the WS_POPUP or WS_CHILD style, the
system creates a borderless window. An application can use borderless child windows to
divide the parent window's client area while keeping the divisions invisible to the user.

Nonclient-Area Components
The nonclient area of a window can include a title bar, window menu, minimize and maximize
buttons, sizing border, and horizontal and vertical scroll bars. An application can create a window
with one or more of these components by specifying the following styles in the CreateWindowEx
function.

Style Description

WS_CAPTION Creates a window that has a title bar (includes
the WS_BORDER style).

WS_HSCROLL Creates a window that has a horizontal scroll
bar.

WS_MAXIMIZEBOX Creates a window that has a maximize button.
Cannot be combined with the
WS_EX_CONTEXTHELP style.

WS_MINIMIZEBOX Creates a window that has a minimize button.
Cannot be combined with the
WS_EX_CONTEXTHELP style.

WS_SYSMENU Creates a window that has a window-menu in
its title bar. The WS_CAPTION style must also
be specified.

WS_VSCROLL Creates a window that has a vertical scroll bar.

Initial State
The following styles determine whether a window is enabled or disabled, visible or invisible, and
minimized or maximized.

Style Description

WS_DISABLED Creates a window that is initially disabled. A
disabled window cannot receive input from the
user.

WS_MAXIMIZE Creates a window that is initially maximized.
WS_MINIMIZE Creates a window that is initially minimized.
WS_VISIBLE Creates a window that is initially visible.

Parent and Child Styles
The following styles affect the clipping relationship between a parent window and its child
windows, and between a child window and its sibling windows.

Style Description

WS_CLIPCHILDREN Excludes the area occupied by child windows
when drawing within the parent window. Use
this style when creating the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that
is, when a particular child window receives a
WM_PAINT message, the WS_CLIPSIBLINGS
style clips all other overlapping child windows
out of the region of the child window to be
updated. If WS_CLIPSIBLINGS is not specified
and child windows overlap, it is possible, when
drawing within the client area of one child
window, to draw within the client area of
another neighboring child window.

Extended Styles
The following styles can be specified in the dwExStyle parameter of the CreateWindowEx
function.

Style Description

WS_EX_ACCEPTFILES Specifies that a window created with this
style accepts drag-drop files.

WS_EX_CONTEXTHELP Includes a question mark in the title bar
of the window. When the user clicks the
question mark, the cursor changes to a
question mark with a pointer. If the user
then clicks a child window, the child
receives a WM_HELP message. The
child window should pass the message
to the parent window procedure, which
should call the WinHelp function using
the HELP_WM_HELP command. The
Help application displays a pop-up
window that typically contains help for
the child window.
WS_EX_CONTEXTHELP cannot be
used with the WS_MAXIMIZEBOX or
WS_MINIMIZEBOX styles.

WS_EX_CONTROLPARENT Allows the user to navigate among the
child windows of the window by using
the TAB key.

WS_EX_DLGMODALFRAME Creates a window with a double border.
Unlike the WS_DLGFRAME style, an
application can also specify the
WS_CAPTION style to create a title bar
for the window.

WS_EX_NOPARENTNOTIFY Specifies that a child window created
with this style will not send the
WM_PARENTNOTIFY message to its
parent window when either created or
destroyed.

WS_EX_TOPMOST Specifies that a window created with this
style should be placed above all non-
topmost windows and stay above them
even when the window is deactivated.

WS_EX_TOOLWINDOW Creates a tool window; that is, a window
intended to be used as a floating
toolbar. A tool window has a title bar
that is shorter than a normal title bar,
and the window title is drawn using a
smaller font. A tool window does not
appear in the task bar or in the window
that appears when the user presses
ALT+TAB.

Window Relationships
A window may be an owned window, disabled window, foreground window, or background
window. These are some of the different ways that a window can relate to the user or another
window.

Owned Windows
An overlapped or pop-up window can be owned by another overlapped or pop-up window. Being
owned places several constraints on a window.

· An owned window is always above its owner in the Z order.
· Windows automatically destroys an owned window when its owner is destroyed.
· An owned window is hidden when its owner is minimized.

Only an overlapped or pop-up window can be an owner window; a child window cannot be one.
An application creates an owned window by specifying the owner's window handle as the
hwndParent parameter of CreateWindowEx when it creates a window with the
WS_OVERLAPPED or WS_POPUP style. The hwndParent parameter must identify an
overlapped or pop-up window. If hwndParent identifies a child window, Windows assigns
ownership to the top-level parent window of the child window. After creating an owned window, an
application cannot transfer ownership of the window to another window.

Dialog boxes and message boxes are owned windows by default. An application specifies the
owner window when calling a function that creates a dialog box or message box.

An application can use the GetWindow function with the GW_OWNER flag to retrieve the handle
of a window's owner.

Disabled Windows
A window can be disabled. A disabled window receives no keyboard or mouse input from the
user, but it can receive messages from other windows, from other applications, and from
Windows. An application typically disables a window to prevent the user from using the window.
For example, an application may disable a push button in a dialog box to prevent the user from
choosing it. An application can enable a disabled window at any time; enabling a window restores
normal input.

By default, a window is enabled when created. An application can specify the WS_DISABLED
style, however, to disable a new window. An application enables or disables an existing window
by using the EnableWindow function. Windows sends a WM_ENABLE message to a window
when its enabled state is about to change. An application can determine whether a window is
enabled by using the IsWindowEnabled function.

When a child window is disabled, Windows passes the child's mouse input messages to the
parent window. The parent uses the messages to determine whether to enable the child window.
For more information about mouse input, see Mouse Input.

Only one window at a time can receive keyboard input; that window is said to have the keyboard
focus. If an application uses the EnableWindow function to disable a keyboard-focus window, the
window loses the keyboard focus in addition to being disabled. EnableWindow then sets the
keyboard focus to NULL, meaning no window has the focus. If a child window, or other
descendant window, has the keyboard focus, the descendant window loses the focus when the
parent window is disabled. For more information about the keyboard focus, see Keyboard Input.

Foreground and Background Windows
Each process can have multiple threads of execution, and each thread can create windows. The
thread that created the window with which the user is currently working is called the foreground
thread, and the window is called the foreground window. All other threads are background
threads, and the windows created by background threads are called background windows.

Each thread has a priority level that determines the amount of CPU time the thread receives.
Although an application can set the priority level of its threads, normally the foreground thread has
a slightly higher priority level than the background threads. Because it has a higher priority, the
foreground thread receives more CPU time than the background threads. The foreground thread
has a normal base priority of 9; a background thread has a normal base priority of 7.

The user sets the foreground window by clicking a window, or by using the ALT+TAB or ALT+ESC
key combination. An application sets the foreground window by using the
SetForegroundWindow function. If the new foreground window is a top-level window, Windows
activates it; otherwise, it activates the associated top-level window. An application retrieves the
handle of the foreground window by using the GetForegroundWindow function. To check if your
application window is active, compare the handle returned by GetForegroundWindow to that of
your application window.

Show State
At any one given time, a window may be active or inactive; hidden or visible; and minimized,
maximized, or restored. These qualities are referred to collectively as the window's show state.

Active Window
An active window is the top-level window of the application with which the user is currently
working. To allow the user to easily identify the active window, Windows places it at the top of the
Z order and changes the color of its title bar and border to the system-defined active window
colors. Only a top-level window can be an active window. When the user is working with a child
window, Windows activates the top-level parent window associated with the child window.

Only one top-level window in the system is active at a time. The user activates a top-level window
by clicking it (or one of its child windows), or by using the ALT+ESC or ALT+TAB key combination.
An application activates a top-level window by calling the SetActiveWindow function. A number
of other functions can cause Windows to activate a different top-level window, including
SetWindowPos, DeferWindowPos, SetWindowPlacement, and DestroyWindow. Although an
application can activate a different top-level window at any time, to avoid confusing the user, it
should do so only in response to a user action. An application uses the GetActiveWindow
function to retrieve the handle of the active window.

When the activation changes from a top-level window of one application to the top-level window of
another, Windows sends a WM_ACTIVATEAPP message to both applications, notifying them of
the change. When the activation changes to a different top-level window in the same application,
Windows sends both windows a WM_ACTIVATE message.

Visibility
A window can be either visible or hidden. Windows displays a visible window on the screen. It
hides a hidden window by not drawing it. If a window is visible, the user can supply input to the
window and view the window's output. If a window is hidden, it is effectively disabled. A hidden
window can process messages from Windows or from other windows, but it cannot process input
from the user or display output. An application sets a window's visibility state when creating the
window. Later, the application can change the visibility state.

A window is visible when the WS_VISIBLE style is set for the window. By default, the
CreateWindowEx function creates a hidden window unless the application specifies the
WS_VISIBLE style. Typically, an application sets the WS_VISIBLE style after it has created a
window to keep details of the creation process hidden from the user. For example, an application
may keep a new window hidden while it customizes the window's appearance. If the WS_VISIBLE
style is specified in CreateWindowEx, Windows sends the WM_SHOWWINDOW message to the
window after creating the window, but before displaying it.

An application can determine whether a window is visible by using the IsWindowVisible function.
An application can show (make visible) or hide a window by using the ShowWindow,
SetWindowPos, DeferWindowPos, or SetWindowPlacement function. These functions show or
hide a window by setting or removing the WS_VISIBLE style for the window. They also send the
WM_SHOWWINDOW message to the window before showing or hiding it.

When an owner window is minimized, Windows automatically hides the associated owned
windows. Similarly, when an owner window is restored, Windows automatically shows the
associated owned windows. In both cases, Windows sends the WM_SHOWWINDOW message to
the owned windows before hiding or showing them. Occasionally, an application may need to hide
the owned windows without having to minimize or hide the owner. In this case, the application
uses the ShowOwnedPopups function. This function sets or removes the WS_VISIBLE style for
all owned windows and sends the WM_SHOWWINDOW message to the owned windows before
hiding or showing them. Hiding an owner window has no effect on the visibility state of the owned
windows.

When a parent window is visible, its associated child windows are also visible. Similarly, when the
parent window is hidden, its child windows are also hidden. Minimizing the parent window has no
effect on the visibility state of the child windows; that is, the child windows are minimized along
with the parent, but the WS_VISIBLE style is not changed.

Even if a window has the WS_VISIBLE style, the user may not be able to see the window on the
screen; other windows may completely overlap it or it may have been moved beyond the edge of
the screen. Also, a visible child window is subject to the clipping rules established by its parent-
child relationship. If the window's parent window is not visible, it will also not be visible. If the
parent window moves beyond the edge of the screen, the child window also moves because a
child window is drawn relative to the parent's upper left corner. For example, a user may move the
parent window containing the child window far enough off the edge of the screen that the user
may not be able to see the child window, even though the child window and its parent window
both have the WS_VISIBLE style.

Minimized, Maximized, and Restored Windows
A maximized window is a window that has the WS_MAXIMIZE style. By default, Windows
enlarges a maximized window so that it fills the screen or, in the case of a child window, the
parent window's client area. Although a window's size can be set to the same size of a maximized
window, a maximized window is slightly different. Windows automatically moves the window's title
bar to the top of the screen or to the top of the parent window's client area. Also, Windows
disables the window's sizing border and the window-positioning capability of the title bar (so that
the user cannot move the window by dragging the title bar).

A minimized window is a window that has the WS_MINIMIZE style. By default, Windows reduces
a minimized window to the size of its taskbar button and moves the minimized window to the
taskbar. A restored window is a window that has been returned to its preminimized or
premaximized size and position.

If an application specifies the WS_MAXIMIZE or WS_MINIMIZE style in the CreateWindowEx
function, the window is initially maximized or minimized. After creating a window, an application
can use the CloseWindow function to minimize the window. The ArrangeIconicWindows
function arranges the icons on the desktop, or it arranges a parent window's minimized child
windows in the parent window. The OpenIcon function restores a minimized window to its
previous size and position.

The ShowWindow function can minimize, maximize, or restore a window. It can also set the
window's visibility and activation states. The SetWindowPlacement function includes the same
functionality as ShowWindow, but it can override the window's default minimized, maximized,
and restored positions.

The IsZoomed and IsIconic functions determine whether a given window is maximized or
minimized, respectively. The GetWindowPlacement function retrieves the minimized, maximized,
and restored positions for the window, and also determines the window's show state.

When Windows receives a command to maximize or restore a minimized window, Windows sends
the window a WM_QUERYOPEN message. If the window procedure returns FALSE, Windows
ignores the Maximize or Restore command.

Windows automatically sets the size and position of a maximized window to the system-defined
defaults for a maximized window. To override these defaults, an application can either call the
SetWindowPlacement function or process the WM_GETMINMAXINFO message that is received
by a window when Windows is about to maximize the window. WM_GETMINMAXINFO includes a
pointer to a MINMAXINFO structure containing values Windows uses to set the maximized size
and position. Replacing these values overrides the defaults.

Window Size and Position
A window's size and position are expressed as a bounding rectangle, given in coordinates relative
to the screen or the parent window. The coordinates of a top-level window are relative to the
upper left corner of the screen; the coordinates of a child window are relative to the upper left
corner of the parent window. An application specifies a window's initial size and position when it
creates the window, but it can change the window's size and position at any time. For more
information about bounding rectangles, see Filled Shapes.

Window Size
A window's size (width and height) is given in pixels. A window can have zero width or height. If
an application sets a window's width and height to zero, Windows sets the size to the default
minimum window size. To discover the default minimum window size, an application uses the
GetSystemMetrics function with the SM_CXMIN and SM_CYMIN flags.

An application may need to create a window with a client area of a particular size. The
AdjustWindowRect and AdjustWindowRectEx functions calculate the required size of a window
based on the desired size of the client area. The application can pass the resulting size values to
the CreateWindowEx function.

An application can size a window so that it is extremely large; however, it should not size a
window so that it is larger than the screen. Before setting a window's size, the application should
check the width and height of the screen by using GetSystemMetrics with the SM_CXSCREEN
and SM_CYSCREEN flags.

Window Position
A window's position is defined as the coordinates of its upper left corner. These coordinates,
sometimes called window coordinates, are always relative to the upper left corner of the screen
or, for a child window, the upper left corner of the parent window's client area. For example, a top-
level window having the coordinates (10,10) is placed 10 pixels to the right of the upper left corner
of the screen and 10 pixels down from it. A child window having the coordinates (10,10) is placed
10 pixels to the right of the upper left corner of its parent window's client area and 10 pixels down
from it.

The WindowFromPoint function retrieves the handle of the window occupying a particular point
on the screen. Similarly, the ChildWindowFromPoint and ChildWindowFromPointEx functions
retrieve the handle of the child window occupying a particular point in the parent window's client
area. Although ChildWindowFromPointEx can ignore invisible, disabled, and transparent child
windows, ChildWindowFromPoint cannot.

Default Size and Position
An application can allow Windows to calculate the initial size or position of a top-level window by
specifying CW_USEDEFAULT in CreateWindowEx. If the application sets the window's
coordinates to CW_USEDEFAULT and has created no other top-level windows, Windows sets the
new window's position relative to the upper left corner of the screen; otherwise, it sets the position
relative to the position of the top-level window that the application created most recently. If the
width and height parameters are set to CW_USEDEFAULT, Windows calculates the size of the
new window. If the application has created other top-level windows, Windows bases the size of
the new window on the size of the application's most recently created top-level window. Specifying
CW_USEDEFAULT when creating a child or pop-up window causes Windows to set the window's
size to the default minimum window size.

Tracking Size
Windows maintains a minimum and maximum tracking size for a window of the
WS_THICKFRAME style; a window with this style has a sizing border. The minimum tracking size
is the smallest window size the user can produce by dragging the window's sizing border.
Similarly, the maximum tracking size is the largest window size the user can produce by dragging
the sizing border.

A window's minimum and maximum tracking sizes are set to system-defined default values when
Windows creates the window. An application can discover the defaults and override them by
processing the WM_GETMINMAXINFO message. For more information about this message, see
Size and Position Messages.

System Commands
An application that has a window menu can change the size and position of that window by
sending system commands. System commands are generated when the user chooses commands
from the window menu. An application can emulate the user action by sending a
WM_SYSCOMMAND message to the window. The following system commands affect the size
and position of a window.

Command Description

SC_CLOSE Closes the window. This command sends a
WM_CLOSE message to the window. The window
carries out any steps needed to clean up and
destroy itself.

SC_MAXIMIZE Maximizes the window.
SC_MINIMIZE Minimizes the window.
SC_RESTORE Restores a minimized or maximized window to its

previous size and position.
SC_SIZE Starts a Size command. The user can change the

size of the window by using the mouse or keyboard.

Size and Position Functions
After creating a window, an application can set the window's size or position by calling one of
several different functions, including SetWindowPlacement, MoveWindow, SetWindowPos,
and DeferWindowPos. SetWindowPlacement sets a window's minimized position, maximized
position, restored size and position, and show state. The MoveWindow and SetWindowPos
functions are similar; both set the size or position of a single application window. The
SetWindowPos function includes a set of flags that affect the window's show state;
MoveWindow does not include these flags. Use the BeginDeferWindowPos, DeferWindowPos,
and EndDeferWindowPos functions to simultaneously set the position of a number of windows,
including the size, position, position in the Z order, and show state.

An application can retrieve the coordinates of a window's bounding rectangle by using the
GetWindowRect function. GetWindowRect fills a RECT structure with the coordinates of the
window's upper left and lower right corners. The coordinates are relative to the upper left corner of
the screen, even for a child window. The ScreenToClient or MapWindowPoints function maps
the screen coordinates of a child window's bounding rectangle to coordinates relative to the parent
window's client area.

The GetClientRect function retrieves the coordinates of a window's client area. GetClientRect
fills a RECT structure with the coordinates of the upper left and lower right corners of the client
area, but the coordinates are relative to the client area itself. This means the coordinates of a
client area's upper left corner are always (0,0), and the coordinates of the lower right corner are
the width and height of the client area.

The CascadeWindows function cascades the windows on the desktop or cascades the child
windows of the specified parent window. The TileWindows function tiles the windows on the
desktop or tiles the child windows of the specified parent window.

Size and Position Messages
Windows sends the WM_GETMINMAXINFO message to a window whose size or position is
about to change. For example, the message is sent when the user chooses the Move or Size
command from the window menu or clicks the sizing border or title bar; the message is also sent
when an application calls SetWindowPos to move or size the window. WM_GETMINMAXINFO
includes a pointer to a MINMAXINFO structure containing the default maximized size and position
for the window, as well as the default minimum and maximum tracking sizes. An application can
override the defaults by processing WM_GETMINMAXINFO and setting the appropriate members
of MINMAXINFO. A window must have the WS_THICKFRAME or WS_CAPTION style to receive
WM_GETMINMAXINFO. A window with the WS_THICKFRAME style receives this message
during the window-creation process, as well as when it is being moved or sized.

Windows sends the WM_WINDOWPOSCHANGING message to a window whose size, position,
position in the Z order, or show state is about to change. This message includes a pointer to a
WINDOWPOS structure that specifies the window's new size, position, position in the Z order, and
show state. By setting the members of WINDOWPOS, an application can affect the window's new
size, position, and appearance.

After changing a window's size, position, position in the Z order, or show state, Windows sends
the WM_WINDOWPOSCHANGED message to the window. This message includes a pointer to
WINDOWPOS that informs the window of its new size, position, position in the Z order, and show
state. Setting the members of the WINDOWPOS structure that is passed with
WM_WINDOWPOSCHANGED has no effect on the window. A window that must process
WM_SIZE and WM_MOVE messages must pass WM_WINDOWPOSCHANGED to the
DefWindowProc function; otherwise, Windows does not send WM_SIZE and WM_MOVE
messages to the window.

Windows sends the WM_NCCALCSIZE message to a window when the window is created or
sized. Windows uses the message to calculate the size of a window's client area and the position
of the client area relative to the upper left corner of the window. A window typically passes this
message to the default window procedure; however, this message can be useful in applications
that customize a window's nonclient area or preserve portions of the client area when the window
is sized. For more information about window size, see Painting and Drawing.

Window Destruction
In general, an application must destroy all the windows it creates. It does this by using the
DestroyWindow function. When a window is destroyed, the system hides the window, if it is
visible, and then removes any internal data associated with the window. This invalidates the
window handle, which can no longer be used by the application.

An application destroys many of the windows it creates soon after creating them. For example, an
application usually destroys a dialog box window as soon as the application has sufficient input
from the user to continue its task. An application eventually destroys the main window of the
application (before terminating).

Before destroying a window, an application should save or remove any data associated with the
window, and it should release any system resources allocated for the window. If the application
does not release the resources, Windows will free any resources not freed by the application.

Destroying a window does not affect the window class from which the window is created. New
windows can still be created using that class, and any existing windows of that class continue to
operate. Destroying a window also destroys the window's descendant windows. The
DestroyWindow function sends a WM_DESTROY message first to the window, then to its child
windows and descendant windows. In this way, all descendant windows of the window being
destroyed are also destroyed.

A window with a window menu receives a WM_CLOSE message when the user chooses the
Close command. By processing this message, an application can prompt the user for confirmation
before destroying the window. If the user confirms that the window should be destroyed, the
application can call the DestroyWindow function to destroy the window.

If the window being destroyed is the active window, both the active and focus states are
transferred to another window. The window that becomes the active window is the next window,
as determined by the ALT+ESC key combination. The new active window then determines which
window receives the keyboard focus.

Using Windows
The examples in this section describe how to perform the following tasks:

· Creating a main window.
· Creating, enumerating, and sizing child windows.
· Destroying a window.

Creating a Main Window
The first window an application creates is typically the main window. You create the main window
by using the CreateWindowEx function, specifying the window class, window name, window
styles, size, position, menu handle, instance handle, and creation data. A main window belongs to
an application-defined window class, so you must register the window class and provide a window
procedure for the class before creating the main window.

Most applications typically use the WS_OVERLAPPEDWINDOW style to create the main window.
This style gives the window a title bar, a window menu, a sizing border, and minimize and
maximize buttons. The CreateWindowEx function returns a handle that uniquely identifies the
window.

The following example creates a main window belonging to an application-defined window class.
The window name, "Main Window", will appear in the window's title bar. By combining the
WS_VSCROLL and WS_HSCROLL styles with the WS_OVERLAPPEDWINDOW style, the
application creates a main window with horizontal and vertical scroll bars in addition to the
components provided by the WS_OVERLAPPEDWINDOW style. The four occurrences of the
CW_USEDEFAULT constant set the initial size and position of the window to the system-defined
default values. By specifying NULL instead of a menu handle, the window will have the menu
defined for the window class.HINSTANCE hinst;
HWND hwndMain;
// Create the main window.
hwndMain = CreateWindowEx(

0, // no extended styles
"MainWClass", // class name
"Main Window",// window name
WS_OVERLAPPEDWINDOW | // overlapped window
WS_HSCROLL | // horizontal scroll bar
WS_VSCROLL, // vertical scroll bar
CW_USEDEFAULT,// default horizontal position
CW_USEDEFAULT,// default vertical position
CW_USEDEFAULT,// default width
CW_USEDEFAULT,// default height
(HWND) NULL, // no parent or owner window
(HMENU) NULL, // class menu used
hinstance, // instance handle
NULL); // no window creation data

if (!hwndMain)
return FALSE;

// Show the window using the flag specified by the program
// that started the application, and send the application
// a WM_PAINT message.
ShowWindow(hwndMain, SW_SHOWDEFAULT);
UpdateWindow(hwndMain);Notice that the preceding example calls the ShowWindow function after creating the main

window. This is done because Windows does not automatically display the main window after
creating it. By passing the SW_SHOWDEFAULT flag to ShowWindow, the application allows the
program that started the application to set the initial show state of the main window. The
UpdateWindow function sends the window its first WM_PAINT message.

Creating, Enumerating, and Sizing Child Windows
You can divide a window's client area into different functional areas by using child windows.
Creating a child window is like creating a main window ¾ you use the CreateWindowEx function.
To create a window of an application-defined window class, you must register the window class
and provide a window procedure before creating the child window. You must give the child
window the WS_CHILD style and specify a parent window for the child window when you create it.

The following example divides the client area of an application's main window into three functional
areas by creating three child windows of equal size. Each child window is the same height as the
main window's client area, but each is one-third its width. The main window creates the child
windows in response to the WM_CREATE message, which the main window receives during its
own window-creation process. Because each child window has the WS_BORDER style, each has
a thin line border. Also, because the WS_VISIBLE style is not specified, each child window is
initially hidden. Notice also that each child window is assigned a child-window identifier.

The main window sizes and positions the child windows in response to the WM_SIZE message,
which the main window receives when its size changes. In response to WM_SIZE, the main
window retrieves the dimensions of its client area by using the GetWindowRect function and then
passes the dimensions to the EnumChildWindows function. EnumChildWindows passes the
handle of each child window, in turn, to the application-defined EnumChildProc callback function.
This function sizes and positions each child window by calling the MoveWindow function; the size
and position are based on the dimensions of the main window's client area and the identifier of the
child window. Afterward, EnumChildProc calls the ShowWindow function to make the window
visible.#define ID_FIRSTCHILD 100
#define ID_SECONDCHILD 101
#define ID_THIRDCHILD 102
LONG APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
UINT wParam;
LONG lParam;
{

RECT rcClient;
int i;
switch(uMsg) {
case WM_CREATE: // creating main window
// Create three invisible child windows.
for (i = 0; i < 3; i++)
CreateWindowEx(
0,
"ChildWClass",
(LPCTSTR) NULL,
WS_CHILD | WS_BORDER,
0,0,0,0,
hwnd,
(HMENU) (int) (ID_FIRSTCHILD + i),
hinst,
NULL);
return 0;
case WM_SIZE: // main window changed size
// Get the dimensions of the main window's client
// area, and enumerate the child windows. Pass the
// dimensions to the child windows during enumeration.
GetClientRect(hwnd, &rcClient);
EnumChildWindows(hwnd, EnumChildProc,
(LPARAM) &rcClient);
return 0;
.
. // Process other messages.
.
}
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}
BOOL CALLBACK EnumChildProc(hwndChild, lParam)
HWND hwndChild;
LPARAM lParam;
{

LPRECT rcParent;
int i, idChild;
// Retrieve the child-window identifier. Use it to set the
// position of the child window.
idChild = GetWindowLong(hwndChild, GWL_ID);
if (idChild == ID_FIRSTCHILD)
i = 0;
else if (idChild == ID_SECONDCHILD)
i = 1;
else
i = 2;
// Size and position the child window.
rcParent = (LPRECT) lParam;
MoveWindow(hwndChild,
(rcParent->right / 3) * i,
0,
rcParent->right / 3,
rcParent->bottom,
TRUE);
// Make sure the child window is visible.
ShowWindow(hwndChild, SW_SHOW);
return TRUE;

}

Destroying a Window
You can use the DestroyWindow function to destroy a window. Typically, an application sends
the WM_CLOSE message before destroying a window, giving the window the opportunity to
prompt the user for confirmation before the window is destroyed. A window that includes a window
menu automatically receives the WM_CLOSE message when the user chooses the Close
command from the menu. If the user confirms that the window should be destroyed, the
application calls DestroyWindow. Windows sends the WM_DESTROY message to the window
after removing it from the screen. In response to WM_DESTROY, the window saves its data and
frees any resources it allocated. A main window concludes its processing of WM_DESTROY by
calling the PostQuitMessage function to quit the application.

The following example shows how to prompt for user confirmation before destroying a window. In
response to WM_CLOSE, the example displays a dialog box that contains Yes, OK, and Cancel
buttons. If the user clicks the Yes button, DestroyWindow is called; otherwise, the window is not
destroyed. Because the window being destroyed is a main window, the example calls
PostQuitMessage in response to WM_DESTROY.case WM_CLOSE:

// Create the message box. If the user clicks
// the Yes button, destroy the main window.
if (MessageBox(hwnd, szConfirm, szAppName,

MB_YESNOCANCEL) == IDYES)
DestroyWindow(hwndMain);
else
return 0;

case WM_DESTROY:
// Post the WM_QUIT message to
// quit the application terminate.
PostQuitMessage(0);
return 0;

Window Reference
The following functions, structures, and messages are associated with windows.

Window Functions
The following functions are used to create and manage windows.
AdjustWindowRect
AdjustWindowRectEx
ArrangeIconicWindows
BeginDeferWindowPos
BringWindowToTop
CascadeWindows
ChildWindowFromPoint
ChildWindowFromPointEx
CloseWindow
CreateWindow
CreateWindowEx
DeferWindowPos
DestroyWindow
EnableWindow
EndDeferWindowPos
EnumChildProc
EnumChildWindows
EnumThreadWindows
EnumThreadWndProc
EnumWindows
EnumWindowsProc
FindWindow
FindWindowEx
GetClientRect
GetDesktopWindow
GetForegroundWindow
GetLastActivePopup
GetNextWindow
GetParent
GetTopWindow
GetWindow
GetWindowPlacement
GetWindowRect
GetWindowText
GetWindowTextLength
GetWindowThreadProcessId
IsChild
IsIconic
IsWindow
IsWindowUnicode
IsWindowVisible
IsZoomed
MoveWindow
OpenIcon
SetForegroundWindow
SetParent
SetWindowLong
SetWindowPlacement
SetWindowPos
SetWindowText
ShowOwnedPopups
ShowWindow
ShowWindowAsync
TileWindows
WindowFromPoint

WinMainObsolete FunctionsAnyPopup
EnumTaskWindows
GetSysModalWindow
GetWindowTask

SetSysModalWindow

Window Structures
The following structures are used to create and manage windows.
CLIENTCREATESTRUCT
COPYDATASTRUCT
CREATESTRUCT
MDICREATESTRUCT
MINMAXINFO
NCCALCSIZE_PARAMS
STYLESTRUCT
WINDOWPLACEMENT

WINDOWPOS

Window Messages
The following messages are used to create and manage windows.
WM_ACTIVATE
WM_ACTIVATEAPP
WM_CANCELMODE
WM_CHILDACTIVATE
WM_CLOSE
WM_COMPACTING
WM_COPYDATA
WM_CREATE
WM_DESTROY
WM_ENABLE
WM_ENTERSIZEMOVE
WM_EXITSIZEMOVE
WM_GETICON
WM_GETMINMAXINFO
WM_GETTEXT
WM_GETTEXTLENGTH
WM_INPUTLANGCHANGE
WM_INPUTLANGCHANGEREQUEST
WM_MOVE
WM_MOVING
WM_NCACTIVATE
WM_NCCALCSIZE
WM_NCCREATE
WM_NCDESTROY
WM_PARENTNOTIFY
WM_POWER
WM_QUERYDRAGICON
WM_QUERYOPEN
WM_QUIT
WM_SETICON
WM_SETTEXT
WM_SETTINGCHANGE
WM_SHOWWINDOW
WM_SIZE
WM_SIZING
WM_STYLECHANGED
WM_STYLECHANGING
WM_USERCHANGED
WM_WINDOWPOSCHANGED
WM_WINDOWPOSCHANGING

WM_WININICHANGE

CaretsA caret is a flashing line, block, or bitmap in the client area of a window. The caret typically
indicates the place at which text or graphics will be inserted. The following illustration shows some
common variations in the appearance of the caret.

ewc msdncd, EWGraphic, bsd23461 0 /a "SDK_01.BMP"

Because only one window at a time can have the keyboard focus or be active, there is only one
caret in the system. Generally, each window that accepts keyboard input must create the caret
when it receives the keyboard focus and destroy the caret when it loses the keyboard focus. For
more information on keyboard input, see Keyboard Input.

An application written for Microsoft® Windows® can create a caret, display or hide it, relocate the
caret, and change its blink time.

About Carets
An application uses the CreateCaret function to specify the parameters for a caret. Windows
forms a caret by inverting the pixel color within the rectangle specified by the caret's position,
width, and height. The width and height are specified in logical units; therefore, the appearance of
a caret is subject to the window's mapping mode.

After the caret is defined, an application uses the ShowCaret function to make the caret visible.
When the caret appears, it automatically begins flashing. To display a solid caret, Windows inverts
every pixel in the rectangle; to display a gray caret, Windows inverts every other pixel; to display a
bitmap caret, Windows inverts only the white bits of the bitmap.

The elapsed time, in milliseconds, required to invert the caret is called the blink time. The user can
set the blink time of the caret using the Control Panel and applications should respect the settings
that the user has chosen. An application can determine the caret's blink time by using the
GetCaretBlinkTime function. If you are writing an application that allows the user to adjust the
blink time, such as a Control Panel applet, use the SetCaretBlinkTime function to set the rate of
the blink time to a specified number of milliseconds. The flash time is the elapsed time, in
milliseconds, required to display, invert, and restore the caret's display. The flash time of a caret is
twice as much as the blink time.

An application can determine the caret's position by using the GetCaretPos function. The
position, in client coordinates, is copied to a POINT structure specified by a parameter in
GetCaretPos. An application can move a caret in a window by using the SetCaretPos function. A
window can move a caret only if it already owns the caret. SetCaretPos can move the caret
whether it is visible or not.

Removing a Caret
An application can use the HideCaret function to remove the caret from the screen. This is useful
when your application must redraw the screen while processing a message, but must keep the
caret out of the way. When the application finishes drawing, it can display the caret again by using
the ShowCaret function. Hiding the caret does not destroy its shape or invalidate the insertion
point. Hiding the caret is cumulative; that is, if the application calls HideCaret five times, it must
also call ShowCaret five times before the caret will reappear.

An application can remove the caret from the screen and destroy its shape by using the
DestroyCaret function. DestroyCaret destroys the caret only if the window involved in the current
task owns the caret.

Using Carets
· Creating and displaying a caret
· Hiding a caret
· Destroying a caret
· Adjusting the blink time
· Processing keyboard input

Creating and Displaying a Caret
Upon receiving the keyboard focus, the window should create and display the caret. Use the
CreateCaret function to create a caret in the given window. You can then call SetCaretPos to set
the current position of the caret and ShowCaret to make the caret visible.

The system sends the WM_SETFOCUS message to the window receiving keyboard focus;
therefore, an application should create and display the caret while processing this message.HWND hwnd, // window handle
int x; // horizontal coordinate of cursor
int y; // vertical coordinate of cursor
int nWidth; // width of cursor
int nHeight;// height of cursor
char *lpszChar; // pointer to character

case WM_SETFOCUS:
// Create a solid black caret.
CreateCaret(hwnd, (HBITMAP) NULL, nWidth, nHeight);
// Adjust the caret position, in client coordinates.
SetCaretPos(x, y);
// Display the caret.
ShowCaret(hwnd);
break;To create a caret based on a bitmap, you must specify a bitmap handle when using CreateCaret.

You can use a graphics application to create the bitmap and a resource compiler to add the
bitmap to your application's resources. Your application can then use the LoadBitmap function to
load the bitmap handle. For example, you could replace the CreateCaret line in the preceding
example with the following lines to create a bitmap caret.// Load the application-defined caret resource.

hCaret = LoadBitmap(hinst, MAKEINTRESOURCE(120));
// Create a bitmap caret.

CreateCaret(hwnd, hCaret, 0, 0);Alternatively, you can use the CreateBitmap or CreateDIBitmap function to retrieve the handle of
the caret bitmap. For more information about bitmaps, see Bitmaps.

If your application specifies a bitmap handle, CreateCaret ignores the width and height
parameters. The bitmap defines the size of the caret.

Hiding a Caret
Whenever your application redraws a screen while processing a message other than WM_PAINT,
it must make the caret invisible by using the HideCaret function. When your application is finished
drawing, redisplay the caret by using the ShowCaret function. If your application processes the
WM_PAINT message, it is not necessary to hide and redisplay the caret, because this function
does this automatically.

The following code sample shows how to have your application hide the caret while drawing a
character on the screen and while processing the WM_CHAR message.HWND hwnd, // window handle
HDC hdc;// device context

case WM_CHAR:
switch (wParam)
{
case 0x08:
.
. // Process a backspace.
.

break;
case 0x09:
.
. // Process a tab.
.

break;
case 0x0D:
.
. // Process a carriage return.
.

break;
case 0x1B:
.
. // Process an escape.
.

break;
case 0x0A:
.
. // Process a linefeed.
.

break;
default:
// Hide the caret.
HideCaret(hwnd);
// Draw the character on the screen.
hdc = GetDC(hwnd);
SelectObject(hdc,
GetStockObject(SYSTEM_FIXED_FONT));
TextOut(hdc, x, y, lpszChar, 1);
ReleaseDC(hwnd, hdc);
// Display the caret.
ShowCaret(hwnd);
}If your application calls the HideCaret function several times without calling ShowCaret, the caret

will not be displayed until the application also calls ShowCaret the same number of times.

Destroying a Caret
When a window loses the keyboard focus, the system sends the WM_KILLFOCUS message to
the window. Your application should destroy the caret while processing this message by using the
DestroyCaret function. The following code shows how to destroy a caret in a window that no
longer has the keyboard focus.case WM_KILLFOCUS:
// The window is losing the keyboard focus, so destroy the caret.

DestroyCaret();
break;

Adjusting the Blink Time
In Windows 3.x, a 16-bit Windows-based application could call the GetCaretBlinkTime function to
save the current blink time, then call the SetCaretBlinkTime function to adjust the blink time
during its processing of the WM_SETFOCUS message. The application would restore the saved
blink time for the use of other applications by calling SetCaretBlinkTime during its processing of
the WM_KILLFOCUS message. However, this technique does not work on Windows NT and
Windows 95, because they are robust, multithreaded environments. Specifically, the deactivation
of one application is not synchronized with the activation of another application, so that if one
application hangs, another application can still be activated.

Win32-based applications should respect the blink time chosen by the user. The
SetCaretBlinkTime function should only be called by an application that allows the user to set the
blink time.

Processing Keyboard Input
The following example demonstrates how to use a caret in a simple text editor. The example
updates the caret position as the user types printable characters and uses various keys to move
through the client area.#define TEXTMATRIX(x, y) *(pTextMatrix + (y * nWindowCharsX) + x)
// Global variables.
HINSTANCE hinst; // current instance
HBITMAP hCaret; // caret bitmap
HDC hdc; // device context
PAINTSTRUCT ps; // client area paint info
static char *pTextMatrix = NULL; // points to text matrix
static int nCharX, // width of char. in logical units
nCharY, // height of char. in logical units
nWindowX, // width of client area
nWindowY, // height of client area
nWindowCharsX, // width of client area
nWindowCharsY, // height of client area
nCaretPosX, // x-position of caret
nCaretPosY; // y-position of caret

static UINT uOldBlink;// previous blink rate
int x, y; // x and y coordinates to use in text matrix
TEXTMETRIC tm; // font information
LONG APIENTRY MainWndProc(

HWND hwnd, // window handle
UINT message, // type of message
UINT wParam,// additional information
LONG lParam)// additional information

{
switch (message)
{
case WM_CREATE:
// Select a fixed-width system font, and get its text metrics.
hdc = GetDC(hwnd);
SelectObject(hdc,
GetStockObject(SYSTEM_FIXED_FONT));
GetTextMetrics(hdc, &tm);
ReleaseDC(hwnd, hdc);
// Save the avg. width and height of characters.
nCharX = tm.tmAveCharWidth;
nCharY = tm.tmHeight;
return 0;
case WM_SIZE:
// Determine the width of the client area, in pixels
// and in number of characters.
nWindowX = LOWORD(lParam);
nWindowCharsX = max(1, nWindowX/nCharX);
// Determine the height of the client area, in
// pixels and in number of characters.
nWindowY = HIWORD(lParam);
nWindowCharsY = max(1, nWindowY/nCharY);
// Clear the buffer that holds the text input.
if (pTextMatrix != NULL)
free(pTextMatrix);
// If there is enough memory, allocate space for the
// text input buffer.
pTextMatrix = malloc(nWindowCharsX * nWindowCharsY);
if (pTextMatrix == NULL)
ErrorHandler("Not enough memory.");
else
for (y = 0; y < nWindowCharsY; y++)
for (x = 0; x < nWindowCharsX; x++)

TEXTMATRIX(x, y) = ' ';
// Move the caret to the origin.
SetCaretPos(0, 0);
return 0;
case WM_KEYDOWN:
switch (wParam)
{
case VK_HOME: // Home
nCaretPosX = 0;
break;
case VK_END: // End
nCaretPosX = nWindowCharsX - 1;
break;
case VK_PRIOR: // Page Up
nCaretPosY = 0;
break;
case VK_NEXT: // Page Down
nCaretPosY = nWindowCharsY -1;
break;
case VK_LEFT: // Left arrow
nCaretPosX = max(nCaretPosX - 1, 0);
break;
case VK_RIGHT: // Right arrow
nCaretPosX = min(nCaretPosX + 1,

nWindowCharsX - 1);
break;
case VK_UP: // Up arrow
nCaretPosY = max(nCaretPosY - 1, 0);
break;
case VK_DOWN: // Down arrow
nCaretPosY = min(nCaretPosY + 1,

nWindowCharsY - 1);
break;
case VK_DELETE:// Delete
// Move all the characters that followed the
// deleted character (on the same line) one
// space back (to the left) in the matrix.
for (x = nCaretPosX; x < nWindowCharsX; x++)

TEXTMATRIX(x, nCaretPosY) =
TEXTMATRIX(x + 1, nCaretPosY);

// Replace the last character on the
// line with a space.
TEXTMATRIX(nWindowCharsX - 1,

nCaretPosY) = ' ';
// The application will draw outside the
// WM_PAINT message processing, so hide the caret.
HideCaret(hwnd);
// Redraw the line, adjusted for the
// deleted character.
hdc = GetDC(hwnd);
SelectObject(hdc,

GetStockObject(SYSTEM_FIXED_FONT));
TextOut(hdc, nCaretPosX * nCharX,

nCaretPosY * nCharY,
&TEXTMATRIX(nCaretPosX, nCaretPosY),
nWindowCharsX - nCaretPosX);

ReleaseDC(hwnd, hdc);
// Display the caret.
ShowCaret(hwnd);
break;
}
// Adjust the caret position based on the
// virtual-key processing.
SetCaretPos(nCaretPosX * nCharX,
nCaretPosY * nCharY);
return 0;
case WM_CHAR:
switch (wParam)
{
case 0x08:// Backspace
// Move the caret back one space, and then
// process this like the DEL key.
if (nCaretPosX > 0)
{

nCaretPosX--;
SendMessage(hwnd, WM_KEYDOWN,
VK_DELETE, 1L);

}
break;
case 0x09:// Tab
// Tab stops exist every four spaces, so add
// spaces until the user hits the next tab.
do
{

SendMessage(hwnd, WM_CHAR, ' ', 1L);
} while (nCaretPosX % 4 != 0);
break;
case 0x0D:// Carriage return
// Go to the beginning of the next line.
// The bottom line wraps around to the top.
nCaretPosX = 0;
if (++nCaretPosY == nWindowCharsY)

nCaretPosY = 0;
break;
case 0x1B: // Escape
case 0x0A: // Linefeed
MessageBeep((UINT) -1);
break;
default:
// Add the character to the text buffer.
TEXTMATRIX(nCaretPosX, nCaretPosY) =

(char) wParam;
// The application will draw outside the
// WM_PAINT message processing, so hide the caret.
HideCaret(hwnd);
// Draw the character on the screen.
hdc = GetDC(hwnd);
SelectObject(hdc,

GetStockObject(SYSTEM_FIXED_FONT));
TextOut(hdc, nCaretPosX * nCharX,

nCaretPosY * nCharY,
&TEXTMATRIX(nCaretPosX, nCaretPosY), 1);

ReleaseDC(hwnd, hdc);
// Display the caret.
ShowCaret(hwnd);
// Prepare to wrap around if you reached the
// end of the line.
if (++nCaretPosX == nWindowCharsX)
{

nCaretPosX = 0;
if (++nCaretPosY == nWindowCharsY)
nCaretPosY = 0;

}
break;
}
// Adjust the caret position based on the
// character processing.
SetCaretPos(nCaretPosX * nCharX,
nCaretPosY * nCharY);
return 0;
case WM_PAINT:
// Draw all the characters in the buffer, line by line.
hdc = BeginPaint(hwnd, &ps);
SelectObject(hdc,
GetStockObject(SYSTEM_FIXED_FONT));
for (y = 0; y < nWindowCharsY; y++)
TextOut(hdc, 0, y * nCharY, &TEXTMATRIX(0, y),
nWindowCharsX);
EndPaint(hwnd, &ps);
case WM_SETFOCUS:
// The window has the input focus. Load the
// application-defined caret resource.
hCaret = LoadBitmap(hinst, MAKEINTRESOURCE(120));
// Create the caret.
CreateCaret(hwnd, hCaret, 0, 0);
// Adjust the caret position.
SetCaretPos(nCaretPosX * nCharX,
nCaretPosY * nCharY);
// Display the caret.
ShowCaret(hwnd);
break;
case WM_KILLFOCUS:
// The window is losing the input focus,
// so destroy the caret.
DestroyCaret();
break;
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
return NULL;

}

Caret Functions
The following functions are used with carets.
CreateCaret
DestroyCaret
GetCaretBlinkTime
GetCaretPos
HideCaret
SetCaretBlinkTime
SetCaretPos

ShowCaret

ClipboardThe clipboard is a set of functions and messages that enable applications designed for the
Microsoft® Win32® application programming interface (API) to transfer data. Because all
applications have access to the clipboard, data can be easily transferred between applications or
within an application.

This overview does not describe how to copy and paste linked or embedded objects. For
information on these subjects, see the OLE Programmer's Reference.

About the Clipboard
A memory object on the clipboard can be in any data format, called a clipboard format. Each
format is identified by an unsigned integer value. For standard (predefined) clipboard formats, this
value is a constant defined by the Win32 API; for registered clipboard formats, it is the return
value of the RegisterClipboardFormat function.

Except for registering clipboard formats, individual windows perform most clipboard operations.
Typically, a window procedure transfers information to or from the clipboard in response to the
WM_COMMAND message.

The clipboard is user-driven. A window should transfer data to or from the clipboard only in
response to a command from the user. A window must not use the clipboard to transfer data
without the user's knowledge.

Clipboard Formats
A window can place more than one object on the clipboard, each representing the same
information in a different clipboard format. Users need not be aware of the clipboard formats used
for an object on the clipboard.

Registered Clipboard Formats
Many applications work with data that cannot be translated into a standard clipboard format
without loss of information. These applications can create their own clipboard formats. A clipboard
format that is used by an application, as opposed to a standard clipboard format, is called a
registered clipboard format. For example, if a word-processing application copied formatted text to
the clipboard using a standard text format, the formatting information would be lost. The solution
would be to register a new clipboard format, such as Rich Text Format (RTF).

To register a new clipboard format, use the RegisterClipboardFormat function. This function
takes the name of the format and returns and unsigned integer value that represents the
registered clipboard format. To retrieve the name of the registered clipboard format, pass the
unsigned integer value to the GetClipboardFormatName function.

If more than one application registers a clipboard format with exactly the same name, the
clipboard format is registered only once. Both calls to the RegisterClipboardFormat function
return the same value. In this way, two different applications can share data by using a registered
clipboard format.

For a list of standard clipboard formats, see the SetClipboardData function.

Private Clipboard Formats
An application can identify a private clipboard format by defining a value in the range
CF_PRIVATEFIRST through CF_PRIVATELAST. An application can use a private clipboard
format for an application-defined data format that does not need to be registered with the system.

Data handles associated with private clipboard formats are automatically freed by the system.
Windows that use private clipboard formats can use the WM_DESTROYCLIPBOARD message to
free any related resources that are no longer needed.

For more information about the WM_DESTROYCLIPBOARD message, see Clipboard Ownership.

An application can place data handles on the clipboard by defining a private format in the range
CF_GDIOBJFIRST through CF_GDIOBJLAST. When using values in this range, the data handle
is not a handle to a GDI object, but is a handle allocated by the GlobalAlloc function with the
GMEM_DDESHARE and GMEM_MOVEABLE flags. When the clipboard is emptied the system
automatically deletes the object using the GlobalFree function

Multiple Clipboard Formats
A window can place more than one clipboard object on the clipboard, each representing the same
information in a different clipboard format. When placing information on the clipboard, the window
should provide data in as many formats as possible. To find out how many formats are currently
used on the clipboard, call the CountClipboardFormats function.

Clipboard formats that contain the most information should be placed on the clipboard first,
followed by less descriptive formats. A window pasting information from the clipboard typically
retrieves a clipboard object in the first format it recognizes. Because clipboard formats are
enumerated in the order they are placed on the clipboard, the first recognized format is also the
most descriptive.

For example, suppose a user copies styled text from a word-processing document. The window
containing the document might first place data on the clipboard in a registered format, such as
RTF. Subsequently, the window would place data on the clipboard in a less descriptive format,
such as text (CF_TEXT).

When the content of the clipboard is pasted into another window, the window retrieves data in the
most descriptive format it recognizes. If the window recognizes RTF, the corresponding data is
pasted into the document. Otherwise, the text data is pasted into the document and the formatting
information is lost.

Synthesized Clipboard Formats
The system implicitly converts data between certain clipboard formats: if a window requests data
in a format that is not on the clipboard, the system converts an available format to the requested
format. The system can convert data as indicated in the following table.

Clipboard FormatConversion FormatPlatform Support

CF_BITMAP CF_DIB Windows NT, Windows 95
CF_DIB CF_BITMAP Windows NT, Windows 95
CF_DIB CF_PALETTE Windows NT, Windows 95
CF_ENHMETAFILECF_METAFILEPICTWindows NT, Windows 95
CF_METAFILEPICTCF_ENHMETAFILE Windows NT, Windows 95
CF_OEMTEXT CF_TEXT Windows NT, Windows 95
CF_OEMTEXT CF_UNICODETEXTWindows NT
CF_TEXT CF_OEMTEXT Windows NT, Windows 95
CF_TEXT CF_UNICODETEXTWindows NT
CF_UNICODETEXTCF_OEMTEXT Windows NT
CF_UNICODETEXTCF_TEXT Windows NT

If the system provides a conversion between multiple formats, there is no advantage to
placing multiple formats on the clipboard. When copying bitmaps, it is best to place only
the CF_DIB format on the clipboard. This is because the colors in a device-dependent
bitmap (CF_BITMAP) are relative to the system palette, which may change before the
bitmap is pasted. If only the CF_DIB format is on the clipboard and a window requests the
CF_BITMAP format, the system renders the device-dependent bitmap (DIB) using the
current palette at that time.

If you place the CF_BITMAP format on the clipboard (and not CF_DIB), the system renders
the CF_DIB clipboard format as soon as the clipboard is closed. This ensures that the
correct palette is used to generate the DIB. Conversions between other clipboard formats
occur upon demand.

Clipboard Operations
A window should use the clipboard when cutting, copying, or pasting data. A window places data
on the clipboard for cut and copy operations and retrieves data from the clipboard for paste
operations. The following sections describe these operations and related issues.

To place data on or retrieve data from the clipboard, a window must first open the clipboard by
using the OpenClipboard function. Only one window can have the clipboard open at a time. To
find out which window has the clipboard open, call the GetOpenClipboardWindow function.
When it has finished, the window must close the clipboard by calling the CloseClipboard
function.

Cut and Copy Operations
To place information on the clipboard, a window first clears any previous clipboard content by
using the EmptyClipboard function. This function sends the WM_DESTROYCLIPBOARD
message to the previous clipboard owner, frees resources associated with data on the clipboard,
and assigns clipboard ownership to the window that has the clipboard open. To find out which
window owns the clipboard, call the GetClipboardOwner function.

After emptying the clipboard, the window places data on the clipboard in as many clipboard
formats as possible, ordered from the most descriptive clipboard format to the least descriptive.
For each format, the window calls the SetClipboardData function, specifying the format identifier
and a global memory handle. The memory handle can be NULL, indicating that the window
renders the data on request. For more information, see Delayed Rendering.

Paste Operations
To retrieve paste information from the clipboard, a window first determines the clipboard format to
retrieve. Typically, a window enumerates the available clipboard formats by using the
EnumClipboardFormats function and uses the first format it recognizes. This method selects the
best available format according to the priority set when the data was placed on the clipboard.

Alternatively, a window can use the GetPriorityClipboardFormat function. This function identifies
the best available clipboard format according to a specified priority. A window that recognizes only
one clipboard format can simply determine whether that format is available by using the
IsClipboardFormatAvailable function.

After determining the clipboard format to use, a window calls the GetClipboardData function. This
function returns the handle of a global memory object containing data in the specified format. A
window can briefly lock the memory object in order to examine or copy the data. However, a
window should not free the object or leave it locked for a long period of time.

Clipboard Ownership
The clipboard owner is the window associated with the information on the clipboard. A window
becomes the clipboard owner when it places data on the clipboard ¾ specifically, when it calls the
EmptyClipboard function. The window remains the clipboard owner until it is closed or another
window empties the clipboard.

When the clipboard is emptied, the clipboard owner receives a WM_DESTROYCLIPBOARD
message. Following are some reasons why a window might process this message:

· The window delayed rendering of one or more clipboard formats. In response to the
WM_DESTROYCLIPBOARD message, the window might free resources it had allocated in
order to render data on request. For more information about the rendering of data, see
Delayed Rendering.

· The window placed data on the clipboard in a private clipboard format. The data for
private clipboard formats is not freed by the system when the clipboard is emptied. Therefore,
the clipboard owner should free the data upon receiving the WM_DESTROYCLIPBOARD
message. For more information about private clipboard formats, see Clipboard Formats.

· The window placed data on the clipboard using the CF_OWNERDISPLAY clipboard
format. In response to the WM_DESTROYCLIPBOARD message, the window might free
resources it had used to display information in the clipboard viewer window. For more
information about this alternative format, see Owner-Display Format.

Delayed Rendering
When placing a clipboard format on the clipboard, a window can delay rendering the data in that
format until the data is needed. To do so, an application can specify NULL for the hData
parameter of the SetClipboardData function. This is useful if the application supports several
clipboard formats, some or all of which are time-consuming to render. By passing a NULL handle,
a window renders complex clipboard formats only when and if they are needed.

If a window delays rendering a clipboard format, it must be prepared to render the format upon
request for as long as it is the clipboard owner. The system sends the clipboard owner a
WM_RENDERFORMAT message when a request is received for a specific format that has not
been rendered. Upon receiving this message, the window should call the SetClipboardData
function to place a global memory handle on the clipboard in the requested format.

If the clipboard owner is destroyed and has delayed rendering some or all clipboard formats, it
receives the WM_RENDERALLFORMATS message. Upon receiving this message, the window
should place valid memory handles on the clipboard for all clipboard formats that it provides. This
ensures that these formats remain available after the clipboard owner is destroyed.

An application should not open the clipboard before calling SetClipboardData in response to the
WM_RENDERFORMAT or WM_RENDERALLFORMATS message.

Any clipboard formats that are not rendered in response to the WM_RENDERALLFORMATS
message cease to be available to other applications and are no longer enumerated by the
clipboard functions.

Memory and the Clipboard
A memory object that is to be placed on the clipboard should be allocated by using the
GlobalAlloc function with the GMEM_DDESHARE and GMEM_MOVEABLE flags.

Once a memory object is placed on the clipboard, ownership of that memory handle is transferred
to the system. When the clipboard is emptied and the memory object has one of the following
clipboard formats, the system frees the memory object by calling the indicated Win32 function:

Function called to free
object

Clipboard format

DeleteMetaFile CF_DSPENHMETAFILE
CF_DSPMETAFILEPICT
CF_ENHMETAFILE
CF_METAFILEPICT

DeleteObject CF_BITMAP
CF_DSPBITMAP
CF_PALETTE

GlobalFree CF_DIB
CF_DSPTEXT
CF_OEMTEXT
CF_TEXT
CF_UNICODETEXT

When the clipboard is emptied of a memory object whose clipboard format is not shown in
the preceding list, the application itself must free the memory object.

Clipboard Viewers
A clipboard viewer is a window that displays the current content of the clipboard. The clipboard
viewer window is a convenience for the user and does not affect the data-transaction functions of
the clipboard.

Typically, a clipboard viewer window can display at least the three most common formats:
CF_TEXT, CF_BITMAP, and CF_METAFILEPICT. If a window does not make data available in
any of these three formats, it should provide data in a display format or use the owner-display
format.

A clipboard viewer chain is the linking together of two or more entities so that they are dependent
upon one another for operation. This interdependency (chain) allows all running clipboard viewer
applications to receive the messages sent to the current clipboard.

Clipboard Viewer Windows
A window adds itself to the clipboard viewer chain by calling the SetClipboardViewer function.
The return value is the handle of the next window in the chain. To retrieve the handle of the first
window in the chain, call the GetClipboardViewer function.

Each clipboard viewer window must keep track of the next window in the clipboard viewer chain.
When the content of the clipboard changes, the system sends a WM_DRAWCLIPBOARD
message to the first window in the chain. After updating its display, each clipboard viewer window
must pass this message on to the next window in the chain.

Before closing, a clipboard viewer window must remove itself from the clipboard viewer chain by
calling the ChangeClipboardChain function. The system then sends a WM_CHANGECBCHAIN
message to the first window in the chain.

For more information about processing the WM_DRAWCLIPBOARD and
WM_CHANGECBCHAIN messages, see Creating a Clipboard Viewer Window.

Display Formats
A display format is a clipboard format used to display information in a clipboard viewer window. A
clipboard owner that uses a private or registered clipboard format, and none of the most common
standard formats, must provide data in a display format for viewing in a clipboard viewer window.
The display formats are intended for viewing only and must not be pasted into a document.

The four display formats are: CF_DSPBITMAP, CF_DSPMETAFILEPICT, CF_DSPTEXT, and
CF_DSPENHMETAFILE. These display formats are rendered in the same way as the standard
formats, which are: CF_BITMAP, CF_TEXT, CF_METAFILEPICT, and CF_ENHMETAFILE.

Owner-Display Format
For a clipboard owner that does not use any of the common standard clipboard formats, an
alternative to providing a display format is to use the owner-display (CF_OWNERDISPLAY)
clipboard format.

By using the owner-display format, a clipboard owner can avoid the overhead of rendering data in
an additional format by taking direct control over painting the clipboard viewer window. The
clipboard viewer window sends messages to the clipboard owner whenever a portion of the
window must be repainted or when the window is scrolled or resized.

Clipboard Commands
A user typically carries out clipboard operations by choosing commands from an application's Edit
menu. Following is a brief description of the standard clipboard commands.

Command Description

Cut Places a copy of the current selection on the clipboard
and deletes the selection from the document. The
previous content of the clipboard is destroyed.

Copy Places a copy of the current selection on the clipboard.
The document remains unchanged. The previous
content of the clipboard is destroyed.

Paste Replaces the current selection with the content of the
clipboard. The content of the clipboard is not changed.

Delete Deletes the current selection from the document. The
content of the clipboard is not changed. This command
does not involve the clipboard, but it should appear with
the clipboard commands on the Edit menu.

Using the Clipboard
· Implementing the Cut, Copy, and Paste commands
· Creating a clipboard viewer window

Implementing the Cut, Copy, and Paste Commands
This section describes how standard Cut, Copy, and Paste commands are implemented in an
application. The example in this section uses these methods to place data on the clipboard using
a registered clipboard format, the CF_OWNERDISPLAY format, and the CF_TEXT format. The
registered format is used to represent rectangular or elliptical text windows, called labels.

Selecting Data
Before information can be copied to the clipboard, the user must select specific information to be
copied or cut. An application should provide a means for the user to select information within a
document and some kind of visual feedback to indicate selected data.

Creating an Edit Menu
An application should load an accelerator table containing the standard keyboard accelerators for
the Edit menu commands. The TranslateAccelerator function must be added to the application's
message loop for the accelerators to take effect. For more information about keyboard
accelerators, see Keyboard Accelerators.

Processing the WM_INITMENUPOPUP Message
Not all clipboard commands are available to the user at any given time. An application should
process the WM_INITMENUPOPUP message to enable the menu items for available commands
and disable unavailable commands.

Following is the WM_INITMENUPOPUP case for an application named Label.case WM_INITMENUPOPUP:
InitMenu((HMENU) wParam);
break;The InitMenu function is defined as follows.void WINAPI InitMenu(HMENU hmenu)

{
int cMenuItems = GetMenuItemCount(hmenu);
int nPos;
UINT id;
UINT fuFlags;
PLABELBOX pbox = (hwndSelected == NULL) ? NULL :
(PLABELBOX) GetWindowLong(hwndSelected, 0);
for (nPos = 0; nPos < cMenuItems; nPos++)
{
id = GetMenuItemID(hmenu, nPos);
switch (id)
{
case IDM_CUT:
case IDM_COPY:
case IDM_DELETE:
if (pbox == NULL || !pbox->fSelected)
fuFlags = MF_BYCOMMAND | MF_GRAYED;
else if (pbox->fEdit)
fuFlags = (id != IDM_DELETE && pbox->ichSel

== pbox->ichCaret) ?
MF_BYCOMMAND | MF_GRAYED :
MF_BYCOMMAND | MF_ENABLED;

else
fuFlags = MF_BYCOMMAND | MF_ENABLED;
EnableMenuItem(hmenu, id, fuFlags);
break;
case IDM_PASTE:
if (pbox != NULL && pbox->fEdit)
EnableMenuItem(hmenu, id,

IsClipboardFormatAvailable(CF_TEXT) ?
MF_BYCOMMAND | MF_ENABLED :
MF_BYCOMMAND | MF_GRAYED

);
else
EnableMenuItem(hmenu, id,

IsClipboardFormatAvailable(
uLabelFormat) ?
MF_BYCOMMAND | MF_ENABLED :
MF_BYCOMMAND | MF_GRAYED

);
}
}

}

Processing the WM_COMMAND Message
To process menu commands, add the WM_COMMAND case to your application's main window
procedure. Following is the WM_COMMAND case for the Label application's window procedure.case WM_COMMAND:

switch (LOWORD(wParam))
{
case IDM_CUT:
if (EditCopy())
EditDelete();
break;
case IDM_COPY:
EditCopy();
break;
case IDM_PASTE:
EditPaste();
break;
case IDM_DELETE:
EditDelete();
break;
case IDM_EXIT:
DestroyWindow(hwnd);
}
break;To carry out the Copy and Cut commands, the window procedure calls the application-defined

EditCopy function. For more information, see Copying Information to the Clipboard. To carry out
the Paste command, the window procedure calls the application-defined EditPaste function. For
more information about the EditPaste function, see Pasting Information from the Clipboard.

Copying Information to the Clipboard
In the Label application, the application-defined EditCopy function copies the current selection to
the clipboard. This function does the following:

1. Opens the clipboard by calling the OpenClipboard function.
2. Empties the clipboard by calling the EmptyClipboard function.
3. Calls the SetClipboardData function once for each clipboard format the application

provides.
4. Closes the clipboard by calling the CloseClipboard function.

Depending on the current selection, the EditCopy function either copies a range of text or copies
an application-defined structure representing an entire label. The structure, called LABELBOX, is
defined as follows.#define BOX_ELLIPSE 0
#define BOX_RECT1
#define CCH_MAXLABEL 80
#define CX_MARGIN 12
typedef struct tagLABELBOX { // box

RECT rcText; // coordinates of rectangle containing text
BOOL fSelected; // TRUE if the label is selected
BOOL fEdit;// TRUE if text is selected
int nType; // rectangular or elliptical
int ichCaret; // caret position
int ichSel;// with ichCaret, delimits selection
int nXCaret; // window position corresponding to ichCaret
int nXSel; // window position corresponding to ichSel
int cchLabel; // length of text in atchLabel
TCHAR atchLabel[CCH_MAXLABEL];

} LABELBOX, *PLABELBOX;Following is the EditCopy function.BOOL WINAPI EditCopy(VOID)
{

PLABELBOX pbox;
LPTSTR lptstrCopy;
HGLOBAL hglbCopy;
int ich1, ich2, cch;
if (hwndSelected == NULL)
return FALSE;
// Open the clipboard, and empty it.
if (!OpenClipboard(hwndMain))
return FALSE;
EmptyClipboard();
// Get a pointer to the structure for the selected label.
pbox = (PLABELBOX) GetWindowLong(hwndSelected, 0);
// If text is selected, copy it using the CF_TEXT format.
if (pbox->fEdit)
{
if (pbox->ichSel == pbox->ichCaret)// zero length
{
CloseClipboard(); // selection
return FALSE;
}
if (pbox->ichSel < pbox->ichCaret)
{
ich1 = pbox->ichSel;
ich2 = pbox->ichCaret;
}
else
{
ich1 = pbox->ichCaret;
ich2 = pbox->ichSel;
}
cch = ich2 - ich1;
// Allocate a global memory object for the text.
hglbCopy = GlobalAlloc(GMEM_DDESHARE,
(cch + 1) * sizeof(TCHAR));
if (hglbCopy == NULL)
{
CloseClipboard();
return FALSE;
}
// Lock the handle and copy the text to the buffer.
lptstrCopy = GlobalLock(hglbCopy);
memcpy(lptstrCopy, &pbox->atchLabel[ich1],
cch * sizeof(TCHAR));
lptstrCopy[cch] = (TCHAR) 0; // null character
GlobalUnlock(hglbCopy);
// Place the handle on the clipboard.
SetClipboardData(CF_TEXT, hglbCopy);
}
// If no text is selected, the label as a whole is copied.
else
{
// Save a copy of the selected label as a local memory
// object. This copy is used to render data on request.
// It is freed in response to the WM_DESTROYCLIPBOARD
// message.
pboxLocalClip = (PLABELBOX) LocalAlloc(
LMEM_FIXED,
sizeof(LABELBOX)
);
if (pboxLocalClip == NULL)
{
CloseClipboard();
return FALSE;
}
memcpy(pboxLocalClip, pbox, sizeof(LABELBOX));
pboxLocalClip->fSelected = FALSE;
pboxLocalClip->fEdit = FALSE;
// Place a registered clipboard format, the owner-display
// format, and the CF_TEXT format on the clipboard using
// delayed rendering.
SetClipboardData(uLabelFormat, NULL);
SetClipboardData(CF_OWNERDISPLAY, NULL);
SetClipboardData(CF_TEXT, NULL);
}
// Close the clipboard.
CloseClipboard();
return TRUE;

}

Pasting Information from the Clipboard
In the Label application, the application-defined EditPaste function pastes the content of the
clipboard. This function does the following:

1. Opens the clipboard by calling the OpenClipboard function.
2. Determines which of the available clipboard formats to retrieve.
3. Retrieves the handle of the data in the selected format by calling the GetClipboardData

function.
4. Inserts a copy of the data into the document.

The handle returned by GetClipboardData is still owned by the clipboard, so an application
must not free it or leave it locked.

5. Closes the clipboard by calling the CloseClipboard function.
If a label is selected and contains an insertion point, the EditPaste function inserts the text from
the clipboard at the insertion point. If there is no selection or if a label is selected, the function
creates a new label, using the application-defined LABELBOX structure on the clipboard. The
LABELBOX structure is placed on the clipboard by using a registered clipboard format.

Following is the EditPaste function.VOID WINAPI EditPaste(VOID)
{

PLABELBOX pbox;
HGLOBAL hglb;
LPTSTR lptstr;
PLABELBOX pboxCopy;
int cx, cy;
HWND hwnd;
pbox = hwndSelected == NULL ? NULL :
(PLABELBOX) GetWindowLong(hwndSelected, 0);
// If the application is in edit mode,
// get the clipboard text.
if (pbox != NULL && pbox->fEdit)
{
if (!IsClipboardFormatAvailable(CF_TEXT))
return;
if (!OpenClipboard(hwndMain))
return;
hglb = GetClipboardData(CF_TEXT);
if (hglb != NULL)
{
lptstr = GlobalLock(hglb);
if (lptstr != NULL)
{
// Call the application-defined ReplaceSelection
// function to insert the text and repaint the
// window.
ReplaceSelection(hwndSelected, pbox, lptstr);
GlobalUnlock(hglb);
}
}
CloseClipboard();
return;
}
// If the application is not in edit mode,
// create a label window.
if (!IsClipboardFormatAvailable(uLabelFormat))
return;
if (!OpenClipboard(hwndMain))
return;
hglb = GetClipboardData(uLabelFormat);
if (hglb != NULL)
{
pboxCopy = GlobalLock(hglb);
if (pboxCopy != NULL)
{
cx = pboxCopy->rcText.right + CX_MARGIN;
cy = pboxCopy->rcText.top * 2 + cyText;
hwnd = CreateWindowEx(
WS_EX_NOPARENTNOTIFY | WS_EX_TRANSPARENT,
atchClassChild, NULL, WS_CHILD, 0, 0, cx, cy,
hwndMain, NULL, hinst, NULL
);
if (hwnd != NULL)
{
pbox = (PLABELBOX) GetWindowLong(hwnd, 0);
memcpy(pbox, pboxCopy, sizeof(LABELBOX));
ShowWindow(hwnd, SW_SHOWNORMAL);
SetFocus(hwnd);
}
GlobalUnlock(hglb);
}
}
CloseClipboard();

}

Registering a Clipboard Format
To register a clipboard format, add a call to the RegisterClipboardFormat function to your
application's instance initialization function, as follows.// Register a clipboard format.
LoadString(hinstCurrent, IDS_FORMATNAME, atchTemp,

sizeof(atchTemp));
uLabelFormat = RegisterClipboardFormat(atchTemp);
if (uLabelFormat == 0)

return FALSE;

Processing the WM_RENDERFORMAT and
WM_RENDERALLFORMATS Messages
If a window passes a NULL handle to the SetClipboardData function, it must process the
WM_RENDERFORMAT and WM_RENDERALLFORMATS messages to render data upon
request.

If the WM_RENDERFORMAT message delayed rendering a specific format and an application
requested data in that format, the message is sent to the clipboard owner. If the
WM_RENDERFORMAT message has delayed rendering one or more formats, the message is
sent to the clipboard owner before it is destroyed.

To render a clipboard format, the window procedure must place a data handle on the clipboard by
using the SetClipboardData function. It must not open the clipboard before calling
SetClipboardData.

The Label application processes the WM_RENDERFORMAT and WM_RENDERALLFORMATS
messages as follows.case WM_RENDERFORMAT:

RenderFormat((UINT) wParam);
break;

case WM_RENDERALLFORMATS:
RenderFormat(uLabelFormat);
RenderFormat(CF_TEXT);
break;In both cases, the window procedure calls the application-defined RenderFormat function, defined

as follows.void WINAPI RenderFormat(UINT uFormat)
{

HGLOBAL hglb;
PLABELBOX pbox;
LPTSTR lptstr;
int cch;
if (pboxLocalClip == NULL)
return;
if (uFormat == CF_TEXT)
{
// Allocate a buffer for the text.
cch = pboxLocalClip->cchLabel;
hglb = GlobalAlloc(GMEM_DDESHARE,
(cch + 1) * sizeof(TCHAR));
if (hglb == NULL)
return;
// Copy the text from pboxLocalClip.
lptstr = GlobalLock(hglb);
memcpy(lptstr, pboxLocalClip->atchLabel,
cch * sizeof(TCHAR));
lptstr[cch] = (TCHAR) 0;
GlobalUnlock(hglb);
// Place the handle on the clipboard.
SetClipboardData(CF_TEXT, hglb);
}
else if (uFormat == uLabelFormat)
{
hglb = GlobalAlloc(GMEM_DDESHARE, sizeof(LABELBOX));
if (hglb == NULL)
return;
pbox = GlobalLock(hglb);
memcpy(pbox, pboxLocalClip, sizeof(LABELBOX));
GlobalUnlock(hglb);
SetClipboardData(uLabelFormat, hglb);
}

}

Processing the WM_DESTROYCLIPBOARD Message
A window can process the WM_DESTROYCLIPBOARD message in order to free any resources
that it set aside to support delayed rendering. For example the Label application, when copying a
label to the clipboard, allocates a local memory object. It then frees this object in response to the
WM_DESTROYCLIPBOARD message, as follows.case WM_DESTROYCLIPBOARD:

if (pboxLocalClip != NULL)
{
LocalFree(pboxLocalClip);
pboxLocalClip = NULL;
}
break;

Using the Owner-Display Clipboard Format
If a window places information on the clipboard by using the CF_OWNERDISPLAY clipboard
format, it must do the following:

· Process the WM_PAINTCLIPBOARD message. This message is sent to the clipboard
owner when a portion of the clipboard viewer window must be repainted.

· Process the WM_SIZECLIPBOARD message. This message is sent to the clipboard
owner when the clipboard viewer window has been resized or its content has changed.
Typically, a window responds to this message by setting the scroll positions and ranges for
the clipboard viewer window. In response to this message, the Label application also updates
a SIZE structure for the clipboard viewer window.

· Process the WM_HSCROLLCLIPBOARD and WM_VSCROLLCLIPBOARD messages.
These messages are sent to the clipboard owner when a scroll bar event occurs in the
clipboard viewer window.

· Process the WM_ASKCBFORMATNAME message. The clipboard viewer window sends
this message to an application to retrieve the name of the owner-display format.

The window procedure for the Label application processes these messages, as follows.LRESULT CALLBACK MainWindowProc(hwnd, msg, wParam, lParam)
HWND hwnd;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

static RECT rcViewer;
RECT rc;
LPRECT lprc;
LPPAINTSTRUCT lpps;
switch (msg)
{
//
// Handle other messages.
//
case WM_PAINTCLIPBOARD:
// Determine the dimensions of the label.
SetRect(&rc, 0, 0,
pboxLocalClip->rcText.right + CX_MARGIN,
pboxLocalClip->rcText.top * 2 + cyText
);
// Center the image in the clipboard viewer window.
if (rc.right < rcViewer.right)
{
rc.left = (rcViewer.right - rc.right) / 2;
rc.right += rc.left;
}
if (rc.bottom < rcViewer.bottom)
{
rc.top = (rcViewer.bottom - rc.bottom) / 2;
rc.bottom += rc.top;
}
// Paint the image, using the specified PAINTSTRUCT
// structure, by calling the application-defined
// PaintLabel function.
lpps = (LPPAINTSTRUCT) GlobalLock((HGLOBAL) lParam);
PaintLabel(lpps, pboxLocalClip, &rc);
GlobalUnlock((HGLOBAL) lParam);
break;
case WM_SIZECLIPBOARD:
// Save the dimensions of the window in a static
// RECT structure.
lprc = (LPRECT) GlobalLock((HGLOBAL) lParam);
memcpy(&rcViewer, lprc, sizeof(RECT));
GlobalUnlock((HGLOBAL) lParam);
// Set the scroll ranges to zero (thus eliminating
// the need to process the WM_HSCROLLCLIPBOARD and
// WM_VSCROLLCLIPBOARD messages).
SetScrollRange((HWND) wParam, SB_HORZ, 0, 0, TRUE);
SetScrollRange((HWND) wParam, SB_VERT, 0, 0, TRUE);
break;
case WM_ASKCBFORMATNAME:
LoadString(hinst, IDS_OWNERDISPLAY,
(LPSTR) lParam, wParam);
break;
default:
return DefWindowProc(hwnd, msg, wParam, lParam);
}
return 0;

}

Creating a Clipboard Viewer Window
A clipboard viewer window displays the current content of the clipboard, and receives messages
when the clipboard content changes. To create a clipboard viewer window, your application must
do the following:

· Add the window to the clipboard viewer chain.
· Process the WM_CHANGECBCHAIN message.
· Process the WM_DRAWCLIPBOARD message.
· Remove the window from the clipboard viewer chain before it is destroyed.

Adding a Window to the Clipboard Viewer Chain
A window adds itself to the clipboard viewer chain by calling the SetClipboardViewer function.
The return value is the handle of the next window in the chain. A window must keep track of this
value ¾ for example, by saving it in a static variable named hwndNextViewer.

The following example adds a window to the clipboard viewer chain in response to the
WM_CREATE message.case WM_CREATE:

// Add the window to the clipboard viewer chain.
hwndNextViewer = SetClipboardViewer(hwnd);
break;

Processing the WM_CHANGECBCHAIN Message
A clipboard viewer window receives the WM_CHANGECBCHAIN message when another window
is removing itself from the clipboard viewer chain. If the window being removed is the next window
in the chain, the window receiving the message must unlink the next window from the chain.
Otherwise, this message should be passed to the next window in the chain.

The following example shows the processing of the WM_CHANGECBCHAIN message.case WM_CHANGECBCHAIN:
// If the next window is closing, repair the chain.
if ((HWND) wParam == hwndNextViewer)
hwndNextViewer = (HWND) lParam;
// Otherwise, pass the message to the next link.
else if (hwndNextViewer != NULL)
SendMessage(hwndNextViewer, uMsg, wParam, lParam);
break;

Removing a Window from the Clipboard Viewer Chain
To remove itself from the clipboard viewer chain, a window calls the ChangeClipboardChain
function. The following example removes a window from the clipboard viewer chain in response to
the WM_DESTROY message.case WM_DESTROY:

ChangeClipboardChain(hwnd, hwndNextViewer);
PostQuitMessage(0);
break;

Processing the WM_DRAWCLIPBOARD Message
The WM_DRAWCLIPBOARD message notifies a clipboard viewer window that the content of the
clipboard has changed. A window should do the following when processing the
WM_DRAWCLIPBOARD message:

1. Determine which of the available clipboard formats to display.
2. Retrieve the clipboard data and display it in the window. Or if the clipboard format is

CF_OWNERDISPLAY, send a WM_PAINTCLIPBOARD message to the clipboard owner.
3. Send the message to the next window in the clipboard viewer chain.

For an example of processing the WM_DRAWCLIPBOARD message, see the example listing in
Example of a Clipboard Viewer.

Example of a Clipboard Viewer
The following example shows a simple clipboard viewer application.HINSTANCE hinst;
UINT uFormat = (UINT)(-1);
BOOL fAuto = TRUE;
LRESULT APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

static HWND hwndNextViewer;
HDC hdc;
HDC hdcMem;
PAINTSTRUCT ps;
LPPAINTSTRUCT lpps;
RECT rc;
LPRECT lprc;
HGLOBAL hglb;
LPSTR lpstr;
HBITMAP hbm;
HENHMETAFILE hemf;
HWND hwndOwner;
switch (uMsg)
{
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
// Branch depending on the clipboard format.
switch (uFormat)
{
case CF_OWNERDISPLAY:
hwndOwner = GetClipboardOwner();
hglb = GlobalAlloc(GMEM_DDESHARE,

sizeof(PAINTSTRUCT));
lpps = GlobalLock(hglb);
memcpy(lpps, &ps, sizeof(PAINTSTRUCT));
GlobalUnlock(hglb);
SendMessage(hwndOwner, WM_PAINTCLIPBOARD,

(WPARAM) hwnd, (LPARAM) hglb);
GlobalFree(hglb);
break;
case CF_BITMAP:
hdcMem = CreateCompatibleDC(hdc);
if (hdcMem != NULL)
{

if (OpenClipboard(hwnd))
{
hbm = (HBITMAP)
GetClipboardData(uFormat);
SelectObject(hdcMem, hbm);
GetClientRect(hwnd, &rc);
BitBlt(hdc, 0, 0, rc.right, rc.bottom,
hdcMem, 0, 0, SRCCOPY);
CloseClipboard();
}
DeleteDC(hdcMem);

}
break;
case CF_TEXT:
if (OpenClipboard(hwnd))
{

hglb = GetClipboardData(uFormat);
lpstr = GlobalLock(hglb);
GetClientRect(hwnd, &rc);
DrawText(hdc, lpstr, -1, &rc, DT_LEFT);
GlobalUnlock(hglb);
CloseClipboard();

}
break;
case CF_ENHMETAFILE:
if (OpenClipboard(hwnd))
{

hemf = GetClipboardData(uFormat);
GetClientRect(hwnd, &rc);
PlayEnhMetaFile(hdc, hemf, &rc);
CloseClipboard();

}
break;
case 0:
GetClientRect(hwnd, &rc);
DrawText(hdc, "The clipboard is empty.", -1,

&rc, DT_CENTER | DT_SINGLELINE |
DT_VCENTER);

break;
default:
GetClientRect(hwnd, &rc);
DrawText(hdc, "Unable to display format.", -1,

&rc, DT_CENTER | DT_SINGLELINE |
DT_VCENTER);

}
EndPaint(hwnd, &ps);
break;
case WM_SIZE:
if (uFormat == CF_OWNERDISPLAY)
{
hwndOwner = GetClipboardOwner();
hglb = GlobalAlloc(GMEM_DDESHARE, sizeof(RECT));
lprc = GlobalLock(hglb);
GetClientRect(hwnd, lprc);
GlobalUnlock(hglb);
SendMessage(hwndOwner, WM_SIZECLIPBOARD,
(WPARAM) hwnd, (LPARAM) hglb);
GlobalFree(hglb);
}
break;
case WM_CREATE:
// Add the window to the clipboard viewer chain.
hwndNextViewer = SetClipboardViewer(hwnd);
break;
case WM_CHANGECBCHAIN:
// If the next window is closing, repair the chain.
if ((HWND) wParam == hwndNextViewer)
hwndNextViewer = (HWND) lParam;
// Otherwise, pass the message to the next link.
else if (hwndNextViewer != NULL)
SendMessage(hwndNextViewer, uMsg, wParam, lParam);
break;
case WM_DESTROY:
ChangeClipboardChain(hwnd, hwndNextViewer);
PostQuitMessage(0);
break;
case WM_DRAWCLIPBOARD: // clipboard contents changed.
// Update the window by using Auto clipboard format.
SetAutoView(hwnd);
// Pass the message to the next window in clipboard
// viewer chain.
SendMessage(hwndNextViewer, uMsg, wParam, lParam);
break;
case WM_INITMENUPOPUP:
if (!HIWORD(lParam))
InitMenu(hwnd, (HMENU) wParam);
break;
case WM_COMMAND:
switch (LOWORD(wParam))
{
case IDM_EXIT:
DestroyWindow(hwnd);
break;
case IDM_AUTO:
SetAutoView(hwnd);
break;
default:
fAuto = FALSE;
uFormat = LOWORD(wParam);
InvalidateRect(hwnd, NULL, TRUE);
}
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return (LRESULT) NULL;

}
void WINAPI SetAutoView(HWND hwnd)
{

static UINT auPriorityList[] = {
CF_OWNERDISPLAY,
CF_TEXT,
CF_ENHMETAFILE,
CF_BITMAP
};
uFormat = GetPriorityClipboardFormat(auPriorityList, 4);
fAuto = TRUE;
InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

}
void WINAPI InitMenu(HWND hwnd, HMENU hmenu)
{

UINT uFormat;
char szFormatName[80];
LPCSTR lpFormatName;
UINT fuFlags;
UINT idMenuItem;
// If a menu is not the display menu, no initialization is

necessary.
if (GetMenuItemID(hmenu, 0) != IDM_AUTO)
return;
// Delete all menu items except the first.
while (GetMenuItemCount(hmenu) > 1)
DeleteMenu(hmenu, 1, MF_BYPOSITION);
// Check or uncheck the Auto menu item.
fuFlags = fAuto ? MF_BYCOMMAND | MF_CHECKED :
MF_BYCOMMAND | MF_UNCHECKED;
CheckMenuItem(hmenu, IDM_AUTO, fuFlags);
// If there are no clipboard formats, return.
if (CountClipboardFormats() == 0)
return;
// Open the clipboard.
if (!OpenClipboard(hwnd))
return;
// Add a separator and then a menu item for each format.
AppendMenu(hmenu, MF_SEPARATOR, 0, NULL);
uFormat = EnumClipboardFormats(0);
while (uFormat)
{
// Call an application-defined function to get the name
// of the clipboard format.
lpFormatName = GetPredefinedClipboardFormatName(uFormat);
// For registered formats, get the registered name.
if (lpFormatName == NULL)
{
if (GetClipboardFormatName(uFormat, szFormatName,

sizeof(szFormatName)))
lpFormatName = szFormatName;
else
lpFormatName = "(unknown)";
}
// Add a menu item for the format. For displayable
// formats, use the format ID for the menu ID.
if (IsDisplayableFormat(uFormat))
{
fuFlags = MF_STRING;
idMenuItem = uFormat;
}
else
{
fuFlags = MF_STRING | MF_GRAYED;
idMenuItem = 0;
}
AppendMenu(hmenu, fuFlags, idMenuItem, lpFormatName);
uFormat = EnumClipboardFormats(uFormat);
}
CloseClipboard();

}
BOOL WINAPI IsDisplayableFormat(UINT uFormat)
{

switch (uFormat)
{
case CF_OWNERDISPLAY:
case CF_TEXT:
case CF_ENHMETAFILE:
case CF_BITMAP:
return TRUE;
}
return FALSE;

}

Clipboard Reference
The following functions, structures and messages are associated with the clipboard.

Clipboard Functions
Following are the functions used with the clipboard.
ChangeClipboardChain
CloseClipboard
CountClipboardFormats
EmptyClipboard
EnumClipboardFormats
GetClipboardData
GetClipboardFormatName
GetClipboardOwner
GetClipboardViewer
GetOpenClipboardWindow
GetPriorityClipboardFormat
IsClipboardFormatAvailable
OpenClipboard
RegisterClipboardFormat
SetClipboardData

SetClipboardViewer

Clipboard Structures
The following structure is used with the clipboard.

METAFILEPICT

Clipboard Messages
Following are the messages used with the clipboard.
WM_ASKCBFORMATNAME
WM_CHANGECBCHAIN
WM_CLEAR
WM_COPY
WM_CUT
WM_DESTROYCLIPBOARD
WM_DRAWCLIPBOARD
WM_HSCROLLCLIPBOARD
WM_PAINTCLIPBOARD
WM_PASTE
WM_RENDERALLFORMATS
WM_RENDERFORMAT
WM_SIZECLIPBOARD

WM_VSCROLLCLIPBOARD

Common Dialog Box LibraryThe Common Dialog Box Library contains a set of dialog boxes for performing common tasks,
such as opening files and printing documents. The common dialog boxes provide a uniform user
interface that lets users carry out these common tasks without being forced to learn new
techniques with each application.

About Common Dialog Boxes
This overview describes the common dialog boxes and explains how to use them in applications
designed for the Microsoft® Win32® application programming interface (API). The common dialog
boxes include the Open and Save As file dialogs, the Find and Replace editing dialogs, the Print,
Print Setup, and Page Setup printing dialogs, and the Color and Font dialogs.

You can create common dialog boxes for your applications by using the common dialog box
functions. These functions supply the dialog box procedures and templates for the common dialog
boxes. You supply the initial values for the dialog boxes and the addresses of the variables and
buffers that receive the input from the dialog boxes.

Beginning with Microsoft Windows NT® version 4.0, the support for common dialog boxes is the
same on Windows NT and Microsoft Windows® 95.

Dialog Box Types
The Common Dialog Box Library provides a creation function and a structure for each type of
common dialog box. To use a common dialog box in its simplest form, you call its creation
function and specify a pointer to a structure containing initial values and option flags. After
initializing the dialog box, the dialog box procedure uses the structure to return information about
the user's input. You can also customize a common dialog box to suit the needs of your
application.

The following table provides a brief description of the different types of common dialog boxes, and
shows the function and structure used with each type.

Color Displays available colors and optionally lets the user
create custom colors. The user can select a basic or
custom color. Use the ChooseColor function and
CHOOSECOLOR structure.

Find Displays a dialog box in which the user can type the
string to find. The user can also specify search options,
such as the search direction and whether the search is
case sensitive. Use the FindText function and
FINDREPLACE structure.

Font Displays lists of available fonts, point sizes, and other
font attributes that the user can select. Use the
ChooseFont function and CHOOSEFONT structure.

Open Displays lists of drives, directories, and filename
extensions from which the user can select to display a
list of filenames. The user can type a filename or select
one from the list to identify the file to be opened. Use
the GetOpenFileName function and OPENFILENAME
structure.

Print Displays information about the installed printer and its
configuration. The user can select print job options,
such as the range of pages to print and the number of
copies, and start the printing process. Use the PrintDlg
function and PRINTDLG structure.

Page Setup Displays the current page configuration. The user can
select page configuration options, such as paper
orientation, size, source, and margins. Use the
PageSetupDlg function and PAGESETUPDLG
structure.

Replace Displays a dialog box in which the user can type the
string to find and the replacement string. The user can
specify search options, such as whether the search is
case sensitive, and replacement options, such as the
scope of replacement. Use the ReplaceText function
and FINDREPLACE structure.

Save As Displays lists of drives, directories, and filename
extensions from which the user can select to display a
list of filenames. The user can type a filename or select
one from the list to specify the name with which to save
the file. Use the GetSaveFileName function and
OPENFILENAME structure.

Note Although a Print Setup dialog box is also available, it has been superseded by the Page
Setup dialog box. New applications written for Windows 95 or for Windows NT versions 3.51 or
later should use the Page Setup dialog box rather than the Print Setup dialog box.
All common dialog boxes are modal, except the Find and Replace dialog boxes. Modal dialog
boxes must be closed by the user before the function used to create the dialog box can return.
The Find and Replace dialog boxes are modeless; the function returns before the dialog box
closes. If you use the Find and Replace dialog boxes, you must also use the IsDialogMessage
function in the main message loop of your application to ensure that these dialog boxes correctly
process keyboard input, such as the TAB and ESC keys.

Common Dialog Box Initialization Flags
You can use initialization flags to modify the behavior and appearance of a common dialog box.
Initialization flags are the values that you set in the Flags member of the structure used to create
the dialog box. You use the flags to specify which controls in a dialog box receive initial values, to
disable selected controls, and to modify the range of values the user can set with the controls.
You also use the flags to enable hook procedures and custom templates for the dialog boxes.

For example, you set the CF_EFFECTS value in the Flags member of the CHOOSEFONT
structure to direct the Font dialog box to display a set of controls. These controls let the user
choose the color of the logical font as well as whether to use strikethrough and underline effects.

The initialization flag values are unique to each common dialog box and are described in detail
with the structures that correspond to them.

Customizing Common Dialog Boxes
You can use the common dialog boxes in their standard form, or you can customize them. From
the user's perspective, the chief benefit of the common dialog box is its consistent appearance
and functionality from application to application. Therefore, it is important that you customize a
common dialog box only when it is absolutely necessary for an application. Otherwise, the
consistent appearance and simple coding interface are lost. Appropriate customizations leave
intact as many of the original controls as possible. Increasing the size of the dialog box or adding
new controls in the space already available in the dialog box is an appropriate customization.
Hiding original controls or otherwise changing the intended functionality of the original controls is a
less appropriate customization.

This section discusses the following methods for customizing a common dialog box:

· Providing a custom dialog template that defines additional controls or modifies the
standard controls

· Creating a hook procedure to monitor and filter messages sent to the dialog box
procedure

· Using registered messages to receive or send information to the dialog box
· Providing help support for a common dialog box

Custom Templates
Common dialog boxes have default templates that define the number, type, and position of the
standard controls in the dialog box. You can define a custom template to give users access to
additional controls that are unique to your application.

For all common dialog boxes except the Explorer-style Open and Save As dialog boxes, you
modify the default template to create a custom template that replaces the default template. The
custom template defines the type and position of the standard controls as well as any additional
controls.

When you create a custom dialog box template by modifying the default dialog box template,
make sure the identifiers for any added controls are unique and do not conflict with the identifiers
of the standard controls. The following table lists the name of the default template file and include
file for each of the common dialog box types.

Dialog box type Template file Include file

Color COLOR.DLG COLORDLG.H
Find FINDTEXT.DLG DLGS.H
Font FONT.DLG DLGS.H
Open (multiple
selection)

FILEOPEN.DLG DLGS.H

Open (single selection) FILEOPEN.DLG DLGS.H
Page Setup PRNSETUP.DLG DLGS.H
Print PRNSETUP.DLG DLGS.H
Print Setup (obsolete) PRNSETUP.DLG DLGS.H
Replace FINDTEXT.DLG DLGS.H

To enable a custom template, you must set a flag in the Flags member of the corresponding
structure for the dialog box. If the template is a resource in an application or dynamic-link library,
set an ENABLETEMPLATE flag in the Flags member, and use the hInstance and
lpTemplateName members of the structure to identify the module and resource name. If the
template is already in memory, set an ENABLETEMPLATEHANDLE flag in the Flags member,
and use the hInstance member to identify the memory object that contains the template.

In most cases, you must also enable a hook procedure for the dialog box to support and process
input for the additional controls in your custom template.

For the Explorer-style Open and Save As dialog boxes, the default templates are not available for
modification. Instead, your custom template defines a child dialog box that includes only the items
to be added to the standard dialog box. The custom template can also define a static control that
specifies the location of the cluster of standard controls in the child dialog box. For more
information, see Explorer-Style Custom Templates.

Hook Procedures for Common Dialog Boxes
For each of the common dialog boxes, you can enable a hook procedure to process messages
from the default dialog box procedure. There are two general types of common dialog hook
procedures:

· The standard hook procedure used with most common dialog boxes
· The Explorer-style hook procedure supported by the Open and Save As dialog boxes

When you provide a standard hook procedure for one of the common dialog boxes, the default
dialog box procedure handles its messages as follows.

Message Handling

WM_INITDIALOG The default dialog box procedure processes
the message before passing it to the hook
procedure. The message's lParam parameter
is a pointer to the initialization structure
specified when the dialog was created.

All other messages The hook procedure receives the message
first. Then, the return value of the hook
procedure determines whether the default
dialog procedure processes the message or
ignores it.

For the Explorer-style Open and Save As dialog boxes, the hook procedure does not
receive messages intended for the standard controls in the common dialog box. Instead, it
receives notification messages from the dialog box and messages for any additional
controls that you defined in a custom template. For more information, see Explorer-Style
Hook Procedures.

To enable a hook procedure, set an ENABLEHOOK value in the Flags member of the
corresponding structure for the dialog box. If an ENABLEHOOK flag is set, an lpfnHook member
of the structure must specify the address of the hook procedure.

The following table shows the type of hook procedure to provide for each of the common dialog
boxes.

Common dialog box
type

Hook procedure

Color CCHookProc
Find or Replace FRHookProc
Font CFHookProc
Open or Save As
(Explorer- style)

OFNHookProc

Open or Save As
(Old-style)

OFNHookProcOldStyle

Print PrintHookProc
Page Setup PageSetupHook

For the Page Setup dialog box, you can also specify a PagePaintHook hook procedure. This
is a special hook procedure that you can use to customize the appearance of the sample page
displayed by the Page Setup dialog box.
Note The Print Setup dialog box has been superseded by the Page Setup dialog box, which
should be used by new applications written for Windows 95 or for Windows NT versions 3.51 or
later. However, for compatibility with earlier versions of Windows, the PrintDlg function continues
to support display of the Print Setup dialog box. You can provide a SetupHookProc hook
procedure for the Print Setup dialog box.

Common Dialog Messages
Common dialog boxes use messages to notify your window procedure or hook procedure when
certain events occur. In addition, there are messages that you can send to a common dialog box
to retrieve information or to control the behavior or appearance of the dialog box. This section
describes the common dialog messages registered by the RegisterWindowMessage function,
messages used by the Font dialog box and Page Setup dialog box, and messages used by the
Explorer-style Open and Save As dialog boxes.

The Common Dialog Box Library defines a set of message strings. You can pass a constant
associated with one of these message strings to RegisterWindowMessage to get a message
identifier. You can then use the identifier to detect and process messages sent from a common
dialog box, or to send messages to a common dialog box. The following table shows the message
constants and describes their use.

COLOROKSTRING A Color dialog box sends this message to the
hook procedure when the user selects a color
and clicks the OK button. The hook procedure
can accept the color, or reject it and force the
dialog box to remain open.

FILEOKSTRING An Open or Save As dialog box sends this
message to the hook procedure when the user
selects a filename and clicks the OK button. The
hook procedure can accept the filename, or
reject it and force the dialog box to remain open.
For Explorer-style Open and Save As dialog
boxes, this message has been superseded by
the CDN_FILEOK notification message.

FINDMSGSTRING A Find or Replace dialog box sends this
message to the window procedure of its parent
window when the user clicks the Find Next,
Replace, or Replace All button, or closes the
dialog box. The message's lParam parameter
points to a FINDREPLACE structure containing
the user's input.

HELPMSGSTRING All common dialog boxes send this message to
the window procedure of their parent window
when the user clicks the Help button.
For Explorer-style Open and Save As dialog
boxes, this message has been superseded by
the CDN_HELP notification message.

LBSELCHSTRING An Open or Save As dialog box sends this
message to the hook procedure when the user
changes the selection in the Filename list box.
For Explorer-style Open and Save As dialog
boxes, this message has been superseded by
the CDN_SELCHANGE notification message.

SETRGBSTRING A hook procedure can send this message to a
Color dialog box to set the current color
selection.

SHAREVISTRING An Open or Save As dialog box sends this
message to the hook procedure if a sharing
violation occurs for the selected file when the
user clicks the OK button.
For Explorer-style Open and Save As dialog
boxes, this message has been superseded by
the CDN_SHAREVIOLATION notification
message.

Some common dialog boxes send and receive other window messages. The hook procedure for a
Font dialog box can send any of the WM_CHOOSEFONT_* messages to the Font dialog box. For
more information, see Font Dialog Box. The Page Setup dialog box sends the WM_PSD_*

messages if you have enabled a PagePaintHook hook procedure. For more information, see
Page Setup Dialog Box.

The Explorer-style Open and Save As dialog boxes support a set of predefined messages. These
include notification messages sent in the form of a WM_NOTIFY message to your hook
procedure, and messages that your hook procedure can send to the dialog box. For a complete
list of these messages, see Explorer-Style Hook Procedures.

Help Support
Common dialog boxes provide context-sensitive Help for the standard controls of the dialog box.
To provide additional help for a common dialog box, you can display a Help button and process
messages generated when the user clicks the button. The Help button is a supplement to the
default context-sensitive Help. The Help button is useful for describing the general purpose of the
dialog box as it applies to your application.

Context-Sensitive Help
All common dialog boxes provide context-sensitive Help for the standard controls of the dialog
box. The user can display Help for individual controls by any of the following methods:

· Selecting the control and pressing the F1 key
· Clicking the ? button in the title bar and subsequently clicking on a control
· Clicking the right mouse button over a control

If you customize a dialog box by adding new controls, you must also extend help support for these
controls by processing requests for help in the hook procedure. The hook procedure receives the
following messages when the user requests help.

User Action Message

The user clicked the right mouse button
over a control.

WM_CONTEXTMENU

The user pressed the F1 key. WM_HELP
The user clicked the ? button in the title bar
and then clicked on a control.

WM_HELP

You should process these messages for the controls you have added, but let the default
dialog box procedure process the messages for the standard controls. For more
information about how to process these messages, see the Help overview.

The Help Button
You can display a Help button in any of the common dialog boxes by setting a SHOWHELP value
in the Flags member of the initialization structure for the dialog box. If you display the Help button,
you must process the user's request for help. The processing can be done either in one of your
application's window procedures or in a hook procedure for the dialog box. Typically, you would
process the request for help by calling the WinHelp function.

To process help messages in one of your window procedures, you must get a message identifier
for the string defined by the HELPMSGSTRING value and identify the window to receive
messages. To get the message identifier, specify HELPMSGSTRING as the parameter in a call to
the RegisterWindowMessage function. When you create the common dialog box, use the
hwndOwner member of the dialog box initialization structure to identify the window that is to
receive the messages. The dialog box procedure sends the message to the window procedure
whenever the user chooses the Help button.

To process help messages in a hook procedure, you should process the WM_COMMAND
message. The hook procedure provides help if the wParam parameter of this message indicates
that the user pressed the Help button. The identifier of the Help button is the pshHelp constant
defined in the DLGS.H file.

Hook procedures for the Explorer-style Open and Save As common dialog boxes do not receive
WM_COMMAND messages for the Help button. Instead, the dialog box sends a CDN_HELP
notification message to the hook procedure when the Help button is clicked.

Color Dialog Box
The Color dialog box returns the RGB value of a color selected by the user. The user can select
from a set of basic colors determined by the display driver or from a set of custom colors. You
must specify the initial set of custom colors, but you can allow users to create their own custom
colors.

You create and display a Color dialog box by initializing a CHOOSECOLOR structure and passing
the structure to the ChooseColor function.

You can partially open the Color dialog box to display the basic and custom colors from which the
user can select, or you can completely open the dialog box to display additional controls that allow
the user to create custom colors. The following illustration shows the fully opened Color dialog
box.

ewc msdncd, EWGraphic, bsd23462 0 /a "SDK_06.BMP"

If the user clicks the OK button, ChooseColor returns TRUE. The rgbResult member of the
CHOOSECOLOR structure contains the RGB color value of the color selected by the user. The
RGB color value specifies the intensities of the individual red, green, and blue colors that make up
the selected color. The individual values range from 0 through 255. Use the GetRValue,
GetBValue, and GetGValue macros to extract individual colors from an RGB color value.

If the user cancels the Color dialog box or an error occurs, ChooseColor returns FALSE and the
rgbResult member is not defined. To determine the cause of the error, call the
CommDlgExtendedError function to retrieve the extended error value.

Basic and Extended Color Dialog Boxes
The Color dialog box has a basic version and an extended version. The basic version has controls
that display the basic and custom colors from which the user can select. The extended version
includes the basic controls and has additional controls that allow the user to create custom colors.

The basic version of the Color dialog box includes a Define Custom Colors button. The user can
click this button to display the extended version. You can direct the Color dialog box to always
display this extension by setting the CC_FULLOPEN flag in the Flags member of the
CHOOSECOLOR structure. To prevent the user from creating custom colors, you can set the
CC_PREVENTFULLOPEN flag to disable the Define Custom Colors button.

The basic colors represent a selection of the colors available on the given device. The actual
number of colors displayed is determined by the display driver. For example, a VGA driver
displays 48 colors, and a monochrome display driver displays only 16.

The custom colors are those that you specify or that the user creates. When you create a color
dialog box, you must use the lpCustColors member of the CHOOSECOLOR structure to specify
the initial values for the 16 custom colors. If the extended version of the Color dialog box is open,
the user can create a custom color by one the following methods:

· Moving the cursor in the color spectrum control and the luminosity slide control
· Typing red, green, and blue (RGB) values in the Red, Green, and Blue edit controls
· Typing hue, saturation, and luminosity (HSL) values in the Hue, Sat, and Lum edit

controls
To add a new custom color to the custom colors display, the user can click the Add to Custom
Colors button. This also causes the dialog box to copy the RGB value of the new color to the
corresponding element in the array pointed to by the lpCustColors member. To preserve new
custom colors between calls to ChooseColor, you should allocate static memory for the array.
For more information about the RGB and HSL color models, see Color Models Used by the Color
Dialog Box.

Customizing the Color Dialog Box
To customize a Color dialog box, you can use any of the following methods:

· Specify values in the CHOOSECOLOR structure when you create the dialog box.
· Provide a custom template.
· Provide a hook procedure.

You can modify the appearance and behavior of the Color dialog box by setting flags in the Flags
member of the CHOOSECOLOR structure. For example, you can set the CC_SOLIDCOLOR flag
to direct the dialog box to display only solid colors. To cause the dialog box to initially select a
color other than black, set the CC_RGBINIT flag and specify a color in the rgbResult member.

You can provide a custom template for the Color dialog box, for example, if you want to include
additional controls that are unique to your application. The ChooseColor function uses your
custom template in place of the default template.

To provide a custom template for the Color dialog box
1. Create the custom template by modifying the default template specified in the COLOR.

DLG file. The control identifiers used in the default Color dialog template are defined in the
COLORDLG.H file.

2. Use the CHOOSECOLOR structure to enable the template as follows:
· If your custom template is a resource in an application or dynamic-link library, set the

CC_ENABLETEMPLATE flag in the Flags member. Use the hInstance and
lpTemplateName members of the structure to identify the module and resource name.
-Or-

· If your custom template is already in memory, set the CC_ENABLETEMPLATEHANDLE
flag. Use the hInstance member to identify the memory object that contains the template.

You can provide a CCHookProc hook procedure for the Color dialog box. The hook procedure
can process messages sent to the dialog box. It can also use registered messages to control the
behavior of the dialog box. If you use a custom template to define additional controls, you must
provide a hook procedure to process input for your controls.

To enable a hook procedure for the Color dialog box
1. Set the CC_ENABLEHOOK flag in the Flags member of the CHOOSECOLOR structure.
2. Specify the address of the hook procedure in the lpfnHook member.

After processing its WM_INITDIALOG message, the dialog box procedure sends a
WM_INITDIALOG message to the hook procedure. The lParam parameter of this message is a
pointer to the CHOOSECOLOR structure used to initialize the dialog box.

The dialog box sends the COLOROKSTRING registered message to the hook procedure when
the user clicks the OK button. The hook procedure can reject the selected color and force the
dialog box to remain open by returning zero when it receives this message. The hook procedure
can force the dialog box to select a particular color by sending the SETRGBSTRING registered
message to the dialog box. To use these registered messages, you must pass the
COLOROKSTRING and SETRGBSTRING constants to the RegisterWindowMessage function to
get a message identifier. You can then use the identifier to detect and process messages sent
from the dialog box, or to send messages to the dialog box.

Color Models Used by the Color Dialog Box
The custom colors extension of the Color dialog box allows the user to specify a color using RGB
or HSL values. However, the CHOOSECOLOR structure uses only RGB values to report the
colors created or selected by the user.RGB Color ModelThe RGB model is used to designate colors for displays and other devices that emit light. Valid
red, green, and blue values range from 0 through 255, with 0 indicating minimum intensity and
255 indicating maximum intensity. The following illustration shows how the primary colors red,
green, and blue can be combined to produce four additional colors. (For display devices, the color
black results when the red, green, and blue values are set to 0. In display technology, black is the
absence of all colors.)

ewc msdncd, EWGraphic, bsd23462 1 /a "SDK_02.BMP"

Following are eight colors and their associated RGB values.

Color RGB values

Red 255, 0, 0
Green 0, 255, 0
Blue 0, 0, 255
Cyan 0, 255, 255
Magenta 255, 0, 255
Yellow 255, 255, 0
White 255, 255, 255
Black 0, 0, 0

Windows stores internal colors as 32-bit RGB values that have the following hexadecimal
form: 0x00bbggrrThe low-order byte contains a value for the relative intensity of red; the second byte contains a
value for green; and the third byte contains a value for blue. The high-order byte must be zero.

You can use the RGB macro to get an RGB value based on specified intensities for the red,
green, and blue components. Use the GetRValue, GetBValue, and GetGValue macros to extract
individual colors from an RGB color value.HSL Color ModelThe Color dialog box provides controls for specifying HSL values. The following illustration shows
the color spectrum control and the luminosity slide control that appear in the Color dialog box. The
illustration also shows the ranges of values the user can specify with these controls.

ewc msdncd, EWGraphic, bsd23462 2 /a "SDK_03.BMP"

In the Color dialog box, the saturation and luminosity values must be in the range 0 through 240,
and the hue value must be in the range 0 through 239.Converting HSL Values to RGB ValuesThe dialog box procedure provided in COMDLG32.DLL for the Color dialog box contains code that
converts HSL values to the corresponding RGB values. Following are several colors and their
associated HSL and RGB values.

Color HSL values RGB values

Red (0, 240, 120) (255, 0, 0)
Yellow (40, 240, 120) (255, 255, 0)
Green (80, 240, 120) (0, 255, 0)
Cyan (120, 240, 120) (0, 255, 255)
Blue (160, 240, 120) (0, 0, 255)
Magenta (200, 240, 120) (255, 0, 255)
White (0, 0, 240) (255, 255, 255)
Black (0, 0, 0) (0, 0, 0)

Font Dialog Box
The Font dialog box lets the user choose attributes for a logical font, such as typeface name, style
(bold, italic, or regular), point size, effects (underline, strikeout, and text color), and a script (or
character set).

You create and display a Font dialog box by initializing a CHOOSEFONT structure and passing
the structure to the ChooseFont function.

The following illustration shows a typical Font dialog box.

ewc msdncd, EWGraphic, bsd23462 3 /a "SDK_07.BMP"

If the user clicks the OK button, ChooseFont returns TRUE and sets the members of the
LOGFONT structure pointed to by the lpLogFont member of the CHOOSEFONT structure. You
can use the LOGFONT structure with the CreateFontIndirect function to create a logical font.
ChooseFont also sets other CHOOSEFONT members to indicate the user's selections.

If the user cancels the Font dialog box or an error occurs, ChooseFont returns FALSE and the
contents of the LOGFONT structure are not defined. You can determine the cause of an error by
using the CommDlgExtendedError function to retrieve the extended error value.

Font Dialog Initialization Flags
Before calling ChooseFont, the Flags member of the CHOOSEFONT structure must specify
CF_SCREENFONTS, CF_PRINTERFONTS, or CF_BOTH, to indicate whether the dialog box
should list screen fonts, printer fonts, or both. If you specify CF_PRINTERFONTS or CF_BOTH,
the hDC member of the CHOOSEFONT structure must specify a handle to a device context for
the printer.

You can use the Flags member to enable or disable some of the dialog box controls, and you can
use the Flags member in conjunction with other CHOOSEFONT members to control the initial
values of some controls.

To display the controls that allow the user to select strikeout, underline, and color
options

· Set the CF_EFFECTS flag. You can use the rgbColors member of the CHOOSEFONT
structure to specify an initial font color.

To specify the initial values of the Font, Font Style, Size, Strikeout, and Underline
dialog box controls

· Set the CF_INITTOLOGFONTSTRUCT flag to use members of the LOGFONT structure
to specify the initial values.

· You can also use the CF_NOFACESEL, CF_NOSTYLESEL, and CF_NOSIZESEL flags
to selectively prevent the dialog box from displaying initial values for the corresponding
controls. This is useful when working with a selection of text that has more than one
typeface, style, or point size. These values will also be set in Flags when ChooseFont
returns if the user did not select a corresponding value.

To initialize the Font Style control to a specified style name
· Set the CF_USESTYLE flag and use the lpszStyle member to specify the style name.

To display the Apply button
· Set the CF_APPLY flag and provide a hook procedure to process WM_COMMAND

messages for the Apply button. The hook procedure can send the
WM_CHOOSEFONT_GETLOGFONT message to the dialog box to retrieve the address of
the LOGFONT structure that contains the current selections for the font.

To display the Help button
· Set the CF_SHOWHELP flag. The hwndOwner member must identify the window to

receive the HELPMSGSTRING registered message when the user clicks the Help button.
To restrict the fonts the dialog box displays

· Set any combination of the CF_TTONLY, CF_FIXEDPITCHONLY,
CF_NOVECTORFONTS, CF_NOVERTFONTS, CF_SCALABLEONLY, and
CF_WYSIWYG flags. You can also restrict the available styles, point sizes, and effects the
dialog box displays for some fonts by using the CF_NOSIMULATIONS value.

To restrict the typeface names, styles, and point sizes that the user can specify
· Set the CF_FORCEFONTEXIST flag to restrict the user to specifying only valid typeface

names, styles, and point sizes.
· Set the CF_LIMITSIZE flag to restrict the user to specifying point sizes in the range

specified by the nSizeMin and nSizeMax members.
To restrict or disable the Scripts combo box

· Set the CF_NOSCRIPTSEL flag to disable the Scripts combo box, or set the
CF_SELECTSCRIPT flag to restrict selections in the Scripts combo box to a specified
character set.

Customizing the Font Dialog Box
You can provide a custom template for the Font dialog box, for example, if you want to include
additional controls that are unique to your application. The ChooseFont function uses your
custom template in place of the default template.

To provide a custom template for the Font dialog box
1. Create the custom template by modifying the default template specified in the FONT.DLG

file. The control identifiers used in the default Font dialog template are defined in the DLGS.H
file.

2. Use the CHOOSEFONT structure to enable the template as follows:
· If your custom template is a resource in an application or dynamic-link library, set the

CF_ENABLETEMPLATE flag in the Flags member. Use the hInstance and
lpTemplateName members of the structure to identify the module and resource name.
-Or-

· If your custom template is already in memory, set the CF_ENABLETEMPLATEHANDLE
flag. Use the hInstance member to identify the memory object that contains the template.

You can provide a CFHookProc hook procedure for the Font dialog box. The hook procedure can
process messages sent to the dialog box. It can also send messages to the dialog box. If you use
a custom template to define additional controls, you must provide a hook procedure to process
input for your controls.

To enable a hook procedure for the Font dialog box
1. Set the CF_ENABLEHOOK flag in the Flags member of the CHOOSEFONT structure.
2. Specify the address of the hook procedure in the lpfnHook member.

After processing its WM_INITDIALOG message, the dialog box procedure sends a
WM_INITDIALOG message to the hook procedure. The lParam parameter of this message is a
pointer to the CHOOSEFONT structure used to initialize the dialog box.

The hook procedure can send the WM_CHOOSEFONT_GETLOGFONT,
WM_CHOOSEFONT_SETLOGFONT, and WM_CHOOSEFONT_SETFLAGS messages to the
dialog box to get and set the current values and flags of the dialog box.

Open and Save As Dialog Boxes
The Open dialog box lets the user specify the drive, directory, and the name of a file or set of files
to open. You create and display an Open dialog box by initializing an OPENFILENAME structure
and passing the structure to the GetOpenFileName function.

The Save As dialog box lets the user specify the drive, directory, and name of a file to save. You
create and display a Save As dialog box by initializing an OPENFILENAME structure and passing
the structure to the GetSaveFileName function.

Beginning with Windows 95 and Windows NT version 4.0, there is a new version of the Open and
Save As dialog boxes that provides user-interface features that are similar to the Windows
Explorer. However, Win32 continues to support the old-style Open and Save As dialog boxes for
applications that must maintain a user interface consistent with earlier versions of Windows.

In addition to the difference in appearance, the Explorer-style and old-style dialog boxes differ in
their use of custom templates and hook procedures for customizing the dialog boxes. However,
the Explorer-style and old-style dialog boxes have the same behavior for most basic operations,
such as specifying a filename filter, validating the user's input, and getting the filename specified
by the user. For more information about the Explorer-style and old-style dialog boxes, see Open
and Save As Customization.The following illustration shows a typical Explorer-style Open dialog
box.

ewc msdncd, EWGraphic, bsd23462 4 /a "SDK_03.BMP"

The following illustration shows a typical Explorer-style Save As dialog box.

ewc msdncd, EWGraphic, bsd23462 5 /a "SDK_12.BMP"

If the user specifies a filename and clicks the OK button, GetOpenFileName or
GetSaveFileName returns TRUE. The buffer pointed to by the lpstrFile member of the
OPENFILENAME structure contains the full path and filename specified by the user.

If the user cancels the Open or Save As dialog box or an error occurs, the function returns
FALSE. To determine the cause of the error, call the CommDlgExtendedError function to
retrieve the extended error value. If the lpstrFile buffer is too small to receive the full name,
CommDlgExtendedError returns FNERR_BUFFERTOOSMALL and the first 2 bytes of the buffer
pointed to by the lpstrFile member are set to an integer value specifying the size required to
receive the full name.

Explorer style dialog boxes are only available to 32-bit applications. 16-bit applications cannot use
thunking to display an Explorer-style dialog box.

Windows 95: 32-bit applications that use the old-style dialog boxes do so using a thunk. This
means that any pointer passed to your hook procedure is a non-persistent copy of the data. For
example, the OPENFILENAME pointer passed in the WM_INITDIALOG message is not a pointer
to the buffer that you originally specified. If you need to pass private data to your hook procedure,
bundle it in a structure and store a pointer to the structure in the lCustData member of the
OPENFILENAME structure.

Filenames and Directories
The information in this section applies to both Explorer-style and old-style Open and Save As
dialog boxes.

Before calling the GetOpenFileName or GetSaveFileName functions, the lpstrFile member of
the OPENFILENAME structure must point to the buffer to receive the filename. The nMaxFile
member must specify the size, in bytes (ANSI version) or characters (Unicode version), of the
lpstrFile buffer.

If the user specifies a filename and clicks the OK button, the dialog box copies the selected drive,
directory, and filename to the lpstrFile buffer. The function also sets the nFileOffset and
nFileExtension members to the offsets, in bytes or characters, from the start of the buffer to the
filename and to the filename extension, respectively.

To retrieve just the filename and extension, set the lpstrFileTitle member to point to a buffer and
set the nMaxFileTitle member to the size, in bytes (ANSI version) or characters (Unicode version)
, of the buffer. Alternatively, you can pass the lpstrFile buffer in a call to the GetFileTitle function
to get the display name of the selected file. Note, however, that the filename that GetFileTitle
returns includes an extension only if that is the user's preference for displaying filenames.

The dialog box uses the current directory for the calling process as the initial directory from which
to display files and directories. Use the GetCurrentDirectory or SetCurrentDirectory functions
to get or change your current directory. To specify a different initial directory without changing
your current directory, use the lpstrInitialDir member to specify the name of a directory. The
dialog box automatically changes your current directory when the user selects a different drive or
directory. To prevent the dialog box from changing your current directory, set the
OFN_NOCHANGEDIR flag. This flag does not prevent the user from changing directories to find a
file.

To specify a default filename extension, use the lpstrDefExt member. If the user specifies a
filename that does not have an extension, the dialog box adds your default extension. If you
specify a default extension and the user specifies a filename with a different extension, the dialog
box sets the OFN_EXTENSIONDIFFERENT flag.

To let the user select more than one file from a directory, set the OFN_ALLOWMULTISELECT
flag. For compatibility with older applications, the default multiple selection dialog box uses the
old-style user interface. To display an Explorer-style multiple selection dialog box, you must also
set the OFN_EXPLORER flag.

If the user selects more than one file, the buffer pointed to by the lpstrFile member returns the
path to the current directory followed by the filenames of the selected files. The nFileOffset
member is the offset to the first filename, and the nFileExtension member is not used. The
following table describes the difference between Explorer-style and old-style dialog boxes in
returning multiple filenames.

Dialog box style Description

Explorer-style
dialog boxes

The directory and filename strings are NULL
separated, with an extra NULL character after the
last filename. This format enables the Explorer-
style dialogs to return long filenames that include
spaces.

Old-style dialog
boxes

The directory and filename strings are separated
by spaces. For filenames with spaces, the
function uses short filenames.

You can use the FindFirstFile function to convert between long and short filenames.

Filters
The information in this section applies to both Explorer-style and old style Open and Save As
dialog boxes.

You can provide filename filters to assist the user in limiting the filenames that the dialog box
displays. A filename filter consists of a pair of null-terminated strings, a description and a pattern,
one concatenated to the other. The dialog box displays the description to let the user pick which
filter to use; and it uses the pattern to select the files to display.

To specify the filters, set the lpstrFilter member of the OPENFILENAME structure to point to a
buffer that contains an array of filter string pairs. The last string in the array must be followed by
an extra null character.

A pattern string can be a combination of valid filename characters and the asterisk (*). The
asterisk is a wildcard that represents any combination of valid filename characters. The dialog box
displays only those files that match the pattern. To specify multiple patterns for the same
description, you must use a semicolon (;) to separate the patterns. Note that space characters in
the pattern string can produce unexpected results.

The following code fragment specifies two filters. The filter with the "Source" description has two
patterns. If the user selects this filter, the dialog box displays only files that have the .C and .CXX
extensions.OPENFILENAME ofn; // common dialog box structure
ofn.lpstrFilter = "Source\0*.C;*.CXX\0All\0*.*\0"
ofn.nFilterIndex = 1;The nFilterIndex member of the OPENFILENAME structure specifies an index that indicates

which filter the dialog box initially uses. The first filter in the buffer has index 1, the second 2, and
so on. If the user changes the filter while using the dialog box, the nFilterIndex member is set to
the index of the selected filter on return.

You can create a custom filter by setting the lpstrCustomFilter member to the address of a buffer
that contains a single filter, and by setting the nMaxCustFilter member to the size of the buffer, in
characters or bytes. The dialog box always places the custom filter at the beginning of the list of
filters and, on return, always updates the pattern part of the filter with the pattern from the filter
selected by the user.

For Explorer-style dialog boxes, the default extension may change if the user selects a different
filter. If the user selects a filter whose first pattern is of the form *.xxx (that is, the extension does
not include a wildcard character), the dialog box uses xxx as the default extension. This occurs
only if you specified a default extension in the lpstrDefExt member of the OPENFILENAME
structure. For example, if the user selects the "Source\0*.C;*.CXX\0" filter, the default extension
changes to "C". However, if you had defined the filter as "Source\0*.C*\0", the default extension
would not change because the extension includes a wildcard.

File and Directory Validation
Except as noted, the information in this section applies to both Explorer-style and old-style Open
and Save As dialog boxes.

The dialog box automatically validates filenames typed by the user to ensure that the names
contain only valid characters. To override the filename character validation, set the
OFN_NOVALIDATE flag.

To force the dialog box to verify that the user specified the name of an existing file, set the
OFN_FILEMUSTEXIST flag. To force verification that the specified path exists, set the
OFN_PATHMUSTEXIST flag. If you set the OFN_CREATEPROMPT flag, the dialog box prompts
the user for permission to create a nonexistent file. If this flag is set and the user chooses to
create a new file, the dialog box closes, and the function returns the specified name. Otherwise,
the dialog box remains open.

When using the Save As dialog box, you can direct the dialog box to prompt the user for
permission to overwrite an existing file by setting the OFN_OVERWRITEPROMPT flag.

By default, the dialog box creates a zero-length test file to determine whether a new file can be
created in the selected directory. To prevent the creation of this test file, set the
OFN_NOTESTFILECREATE flag.

If you enable a hook procedure, the dialog box notifies your hook procedure when a network
sharing violation occurs for the filename specified by the user. If you set the OFN_EXPLORER
flag, the dialog box sends the CDN_SHAREVIOLATION message to the hook procedure. If you
do not set OFN_EXPLORER, the dialog box sends the SHAREVISTRING registered message to
the hook procedure. To prevent the dialog box from sending any notifications for sharing
violations, set the OFN_SHAREAWARE flag.

If the user selects the read-only check box, the dialog box sets the OFN_READONLY flag on
return. To hide the Open As Read Only check box, set the OFN_HIDEREADONLY flag. To
prevent the dialog box from returning names of existing files that have the read-only attribute, set
the OFN_NOREADONLYRETURN flag.

To prevent the dialog box from dereferencing link files, set the OFN_NODEREFERENCELINKS
value. In this case, the dialog box returns the name of the link file rather than the name of the file
referenced by the link file.

Open and Save As Dialog Box Customization
You can customize an Open or Save As dialog box by providing a hook procedure, a custom
template, or both. However, the Explorer-style and old-style versions of the dialog boxes differ in
their use of custom templates and hook procedures.

For information about customizing an Explorer-style dialog box, see Explorer-Style Hook
Procedures, Explorer-Style Custom Templates, and Explorer-Style Control Identifiers. For
information about customizing an old-style dialog box, see Customizing Old-Style Dialog Boxes.

The following table summarizes the differences between the two styles.

Customization Description
Explorer-style
Hook procedure

The hook procedure receives notification messages
sent from the common dialog box and messages
for any additional controls that you defined by
specifying a child dialog template. The hook
procedure does not receive messages for the
standard controls of the default dialog box.

Explorer-style
Custom template

The system uses the custom template to create a
child dialog box. The template can define additional
controls, and can specify the location of the cluster
of standard controls. The custom template does not
replace the default template.

Old-style
Hook procedure

The hook procedure receives all messages sent to
the dialog box, including messages for the standard
controls and any custom controls. The hook
procedure also receives registered messages sent
from the common dialog box.

Old-style
Custom template

The custom template replaces the default template.
Create the custom template by modifying the
default template specified in the FILEOPEN.DLG
file.

The default title for both Explorer-style and old-style dialog boxes is either "Open" or
"Save As." To change the title, specify the new title in the lpstrTitle member of the
OPENFILENAME structure.

Explorer-Style Hook Procedures
You can customize an Explorer-style Open or Save As dialog box by providing a hook procedure,
a custom template, or both. If you provide a hook procedure for an Explorer-style dialog box, the
system creates a dialog box that is a child of the default dialog box. The hook procedure acts as
the dialog procedure for the child dialog box. This child dialog box is based on the custom
template, or on a default template if none is provided. For more information, see Explorer-Style
Custom Templates.To enable a hook procedure for an Explorer-style Open or Save As dialog box,
use the OPENFILENAME structure when you create the dialog box. Set the OFN_ENABLEHOOK
and OFN_EXPLORER flags in the Flags member and specify the address of an OFNHookProc
hook procedure in the lpfnHook member. If you provide a hook procedure and omit the
OFN_EXPLORER flag, you must use an OFNHookProcOldStyle hook procedure and you will get
the old-style user-interface. For more information, see Customizing Old-Style Dialog Boxes.

An Explorer-style hook procedure receives a variety of messages while the dialog box is open.
These include the following:

· The WM_INITDIALOG message and other standard dialog box messages such as the
WM_CTLCOLORDLG control color message.

· A set of WM_NOTIFY notification messages indicating actions taken by the user or other
dialog box events.

· Messages for any additional controls that you defined by specifying a child dialog
template.

In addition, there is a set of messages that you can send to an Explorer-style dialog box to get
information or to control the behavior and appearance of the dialog box.

If you provide a hook procedure for an Explorer-style dialog box, the default dialog box procedure
creates a child dialog box when the default dialog procedure is processing its WM_INITDIALOG
message. The hook procedure acts as the dialog procedure for the child dialog box. At this time,
the hook procedure receives its own WM_INITDIALOG message with the lParam parameter set to
the address of the OPENFILENAME structure used to initialize the dialog box. After the child
dialog finishes processing its own WM_INITDIALOG message, the default dialog procedure
moves the standard controls, if necessary, to make room for any additional controls of the child
dialog box. The default dialog procedure then sends the CDN_INITDONE notification message to
the hook procedure.

The hook procedure receives WM_NOTIFY notification messages indicating actions taken by the
user in the dialog box. You can use some of these messages to control the behavior of the dialog
box. For example, the hook procedure receives the CDN_FILEOK message when the user
chooses a filename and clicks the OK button. In response to this message, the hook procedure
can use the SetWindowLong function to reject the selected name and force the dialog box to
remain open.

The lParam parameter for each WM_NOTIFY message is a pointer to an OFNOTIFY structure
that defines the action. The code member in the header for the OFNOTIFY structure contains one
of the following notification codes.

CDN_FILEOK The user clicked the OK button; the dialog box
is about to close.

CDN_FOLDERCHANGEThe user opened a new folder or directory.
CDN_HELP The user clicked the Help button.
CDN_INITDONE The system has finished initializing the dialog

box, and the dialog box has finished
processing the WM_INITDIALOG message.
Also, the system has finished arranging
controls in the common dialog box to make
room for the controls of the child dialog box (if
any).

CDN_SELCHANGE The user selected a new file or folder from the
file list.

CDN_SHAREVIOLATIONThe common dialog box encountered a
sharing violation on the file about to be
returned.

CDN_TYPECHANGE The user selected a new file type from the list
of file types.

These WM_NOTIFY messages supersede the FILEOKSTRING, LBSELCHSTRING,
SHAREVISTRING, and HELPMSGSTRING registered messages used by previous versions of
the Open and Save As dialog boxes. However, the hook procedure also receives the superseded
message after the WM_NOTIFY message if the WM_NOTIFY processing does not use
SetWindowLong to set a nonzero DWL_MSGRESULT value.

To retrieve information about the status of the dialog box or to control the behavior and
appearance of the dialog box, the hook procedure can send the following messages to the dialog
box.

CDM_GETFILEPATH Retrieves the path and filename of the
selected file.

CDM_GETFOLDERIDLISTRetrieves the item identifier list corresponding
to the current folder that the dialog box has
open. For more information about item
identifier lists, see Item Identifiers and
Identifier Lists.

CDM_GETFOLDERPATHRetrieves the path of the current folder or
directory for the dialog box.

CDM_GETSPEC Retrieves the filename (not including the
path) of the file currently selected in the
dialog box.

CDM_HIDECONTROL Hides the specified control.
CDM_SETCONTROLTEXTSets the text in the specified control.
CDM_SETDEFEXT Sets the default filename extension for the

dialog box.

Explorer-Style Custom Templates
To define additional controls for an Explorer-style Open or Save As dialog box, use the
OPENFILENAME structure to specify a template for a child dialog box that contains the additional
controls. If your child dialog template is a resource in an application or dynamic-link library, set the
OFN_ENABLETEMPLATE flag in the Flags member and use the hInstance and
lpTemplateName members of the structure to identify the module and resource name. If the
template is already in memory, set the OFN_ENABLETEMPLATEHANDLE flag and use the
hInstance member to identify the memory object that contains the template. When providing a
child dialog template for an Explorer-style dialog box, you must also set the OFN_EXPLORER
flag; otherwise, the system assumes you are providing a replacement template for an old-style
dialog box. Typically, if you provide additional controls, you must also provide an Explorer-style
hook procedure to process messages for the new controls.

You can create your child dialog box template as you do any other template, except that you must
specify the WS_CHILD and WS_CLIPSIBLINGS styles and should specify the DS_3DLOOK and
DS_CONTROL styles. The system requires the WS_CHILD style because your template defines a
child dialog of the default Open or Save As dialog box. The WS_CLIPSIBLINGS style ensures
that the child dialog box does not paint over any of the controls in the default dialog box. The
DS_3DLOOK style makes sure that the appearance of the controls in the child dialog box is
consistent with the controls in the default dialog box. The DS_CONTROL style makes sure that
the user can use the TAB and other navigation keys to move between all controls, default or
custom, in the customized dialog box.

To make room for the new controls, the system expands the default dialog box by the width and
height of the custom dialog box. By default, all controls from the custom dialog box are positioned
below the controls in the default dialog box. However, you can override this default positioning by
including a static text control in your custom dialog box template and assigning it the control
identifier value of stc32. (This value is defined in the DLG.H header file.) In this case, the system
uses the control as the point of reference for determining where to position the new controls. All
new controls above and to the left of the stc32 control are positioned the same amount above and
to the left of the controls in the default dialog box. New controls below and to the right of the stc32
control are positioned below and to the right of the default controls. In general, each new control is
positioned so that it has the same position relative to the default controls as it had to the stc32
control. To make room for these new controls, the system adds space to the left, right, bottom,
and top of the default dialog box as needed.

The system requires the hook procedure to process all messages intended for the custom dialog
box and therefore sends the same window messages to the hook procedure as to any other
dialog box procedure. For example, the hook procedure receives WM_COMMAND messages
when the user clicks on button controls in the custom dialog box. The hook procedure is
responsible for initializing these controls and retrieving values from the controls when the dialog
box is closed. Note that when the hook procedure receives the WM_INITDIALOG message, the
system has not yet moved the controls to their final positions.

The default dialog box procedure handles messages for all the controls in the default dialog box,
but the hook procedure receives the WM_NOTIFY notification messages for user actions on these
controls as described in Explorer-Style Hook Procedures.

Explorer-Style Control Identifiers
The Win32 SDK provides the default dialog box template for the old-style dialog boxes, but does
not include the default template for the Explorer-style dialog boxes. This is because the Explorer-
style dialogs allow you to add your own controls but do not support modifying the template for the
standard controls. However, in some cases, you may need to know the control identifiers used in
the default templates. For example, the CDM_HIDECONTROL and CDM_SETCONTROLTEXT
messages require a control identifier.

The following table shows the identifiers of the standard controls in the Explorer-style Open and
Save As dialog boxes. The identifiers are constants defined in DLGS.H and WINUSER.H.

Control identifier Control Description

cmb2 Drop-down combo box that displays the
current drive or folder, and that allows the user
to select a drive or folder to open

stc4 Label for the cmb2 combo box
lst1 List box that displays the contents of the

current drive or folder
stc1 Label for the lst1 list box
edt1 Edit control that displays the name of the

current file, or in which the user can type the
name of the file to open

stc3 Label for the edt1 edit control
cmb1 Drop-down combo box that displays the list of

file type filters
stc2 Label for the cmb1 combo box
chx1 The read-only check box
IDOK The OK command button (push button)
IDCANCEL The Cancel command button (push button)
pshHelp The Help command button (push button)

Customizing Old-Style Dialog Boxes
You can customize an old-style Open or Save As dialog box by providing an
OFNHookProcOldStyle hook procedure that receives messages or notifications intended for the
default dialog box procedure. You can also provide a custom template to use in place of the
default template. The hook procedures and templates used with the old-style dialog boxes are
similar to those used with the other common dialog boxes. For more information, see Hook
Procedures for Common Dialog Boxes and Custom Templates.

To enable a hook procedure for an old-style Open or Save As dialog box, use the
OPENFILENAME structure when you create the dialog box. Set the OFN_ENABLEHOOK flag in
the Flags member and specify the address of an OFNHookProcOldStyle hook procedure in the
lpfnHook member. The dialog box procedure sends a WM_INITDIALOG message to the hook
procedure with the lParam parameter set to the address of the OPENFILENAME structure used
to initialize the dialog box.

You can use the OPENFILENAME structure to specify a custom template for the Open or Save
As dialog box to use in place of the default template. If your custom template is a resource in an
application or dynamic-link library, set the OFN_ENABLETEMPLATE flag in the Flags member
and use the hInstance and lpTemplateName members of the structure to identify the module
and resource name. If your custom template is already in memory, set the
OFN_ENABLETEMPLATEHANDLE flag and use the hInstance member to identify the memory
object that contains the template. Create the custom template by modifying the default template
specified in the FILEOPEN.DLG file. The control identifiers used in the default Find and Replace
dialog templates are defined in the DLGS.H file.

By default, the GetOpenFileName and GetSaveFileName functions display the Explorer-style
dialog boxes. If you want to display an old-style dialog box, you must provide an
OFNHookProcOldStyle hook procedure and ensure that the OFN_EXPLORER flag is not set in
the Flags member of the OPENFILENAME structure.

If you set the OFN_EXPLORER flag, the system treats a hook procedure or custom template as
an Explorer-style customization. For information about customizing an Explorer-style dialog box,
see Explorer-Style Custom Templates.

Print Dialog Box
The Print dialog box lets the user select options for a particular print job. For example, the user
can specify the printer to use, the range of pages to print, and the number of copies.

You create and display a Print dialog box by initializing a PRINTDLG structure and passing the
structure to the PrintDlg function.

The following illustration shows a typical Print dialog box.

ewc msdncd, EWGraphic, bsd23462 6 /a "SDK_08.BMP"

If the user clicks the OK button, PrintDlg returns TRUE and uses the PRINTDLG structure to
return information about the user's selections. For example, the hDevMode and hDevNames
members typically return global memory handles for DEVMODE and DEVNAMES structures. You
can use the information in these structures to create a device context or an information context for
the selected printer.

If the user cancels the Print dialog box or an error occurs, PrintDlg returns FALSE. You can
determine the cause of an error by using the CommDlgExtendedError function to retrieve the
extended error value.

The Print dialog box includes a Print Range group of radio buttons that indicate whether the user
wants to print all pages, a range of pages, or only the selected text. Before calling PrintDlg, you
can set one of the PD_ALLPAGES, PD_SELECTION, or PD_PAGENUMS flags to indicate which
button is initially selected. When PrintDlg returns TRUE, the function sets one of these flags to
indicate the user's selections. If PD_PAGENUMS is set, the nFromPage and nToPage members
of the PRINTDLG structure contain the starting and ending pages specified by the user. To
disable the Pages radio button and its associated "From:" and "To:" edit controls, set the
PD_NOPAGENUMS flag. To disable the Selection radio button, set the PD_NOSELECTION flag.

The dialog box includes an edit control in which the user can type the number of copies to print. If
the hDevMode member of the PRINTDLG structure is non-NULL, the dmCopies member of the
DEVMODE structure specifies the initial value for this edit control. If hDevMode is NULL, the
nCopies member of the PRINTDLG structure specifies the initial value. When PrintDlg returns,
nCopies typically indicates the number of copies specified by the user. However, if you set the
PD_USEDEVMODECOPIESANDCOLLATE flag when you create the dialog box, nCopies is
always set to 1 on return and the dmCopies member of DEVMODE indicates the number of
copies to print.

The Collate check box indicates whether the user wants to collate the pages if multiple copies are
being printed. The PD_COLLATE flag is set if the Collate check box is checked. If your application
does not support multiple copies or simulated collation, set the
PD_USEDEVMODECOPIESANDCOLLATE flag in the Flags member of the PRINTDLG
structure. This disables the Collate check box and the "Number of Copies:" edit control unless the
printer driver supports multiple copies and collation.

The Print To File check box indicates whether the user wants to send output to a file rather than to
a printer. You can set the PD_PRINTTOFILE flag so the check box is initially checked. To hide the
check box, set the PD_HIDEPRINTTOFILE flag. To disable it, set the
PD_DISABLEPRINTTOFILE flag. If the user selects the Print To File option, PrintDlg sets the
PD_PRINTTOFILE flag and returns "FILE:" at the offset indicated by the wOutputOffset member
of the DEVNAMES structure. When you call the StartDoc function to start the printing operation,
specify this "FILE:" string in the lpszOutput member of the DOCINFO structure. Specifying this
string causes the print subsystem to query the user for the name of the output file.

By default, the Print dialog box initially displays information about the current default printer. You
can direct it to display information for another installed printer by initializing a DEVMODE or
DEVNAMES structure and assigning the global memory handle for the structure to the
hDevMode or hDevNames member. The device name you specify in the dmDeviceName
member of the DEVMODE structure or in the wDriverOffset member of the DEVNAMES
structure must identify a printer device that is also listed in the [Devices] section of the WIN.INI
file. If the device is not listed, PrintDlg returns an error.

You can direct PrintDlg to create a device context or information context for the printer by setting
the PD_RETURNDC or PD_RETURNIC flag in the Flags member of the PRINTDLG structure.

The function returns the handle of the device context or information context in the hDC member. If
you use the PD_RETURNDC flag, you can use the device context to generate output for the
printer.

To retrieve information about the default printer without displaying the Print dialog box, set the
PD_RETURNDEFAULT flag. In this case, PrintDlg returns immediately after setting the
hDevMode and hDevNames members to handles for structures containing the information.

By default, PrintDlg displays message boxes when errors occur. For example, the function
displays an error message if no printers are installed. To prevent the function from displaying
these warning messages, set the PD_NOWARNING flag.

Customizing the Print Dialog Box
You can provide a custom template for the Print dialog box, for example, if you want to include
additional controls that are unique to your application. The PrintDlg function uses your custom
template in place of the default template.

To provide a custom template for the Print dialog box
1. Create the custom template by modifying the default template specified in the

PRNSETUP.DLG file. The control identifiers used in the default Print dialog template are
defined in the DLGS.H file.

2. Use the PRINTDLG structure to enable the template as follows:
· If your custom template is a resource in an application or dynamic-link library, set the

PD_ENABLEPRINTTEMPLATE flag in the Flags member. Use the hInstance and
lpPrintTemplateName members of the structure to identify the module and resource
name.
-Or-

· If your custom template is already in memory, set the
PD_ENABLEPRINTTEMPLATEHANDLE flag. Use the hPrintTemplate member to identify
the memory object that contains the template.

You can provide a PrintHookProc hook procedure for the Print dialog box. The hook procedure
can process messages sent to the dialog box. It can also send messages to the dialog box. If you
use a custom template to define additional controls, you must provide a hook procedure to
process input for your controls.

To enable a hook procedure for the Print dialog box
1. Set the PD_ENABLEPRINTHOOK flag in the Flags member of the PRINTDLG structure.
2. Specify the address of the hook procedure in the lpfnPrintHook member.

After processing its WM_INITDIALOG message, the dialog box procedure sends a
WM_INITDIALOG message to the hook procedure. The lParam parameter of this message is a
pointer to the PRINTDLG structure used to initialize the dialog box.

Print Setup Dialog Box
You can create and display a Print Setup dialog box by setting the PD_PRINTSETUP flag in a call
to the PrintDlg function. However, the Print Setup dialog box has been superseded by the Page
Setup dialog box and should not be used in new applications.

The following flags apply only to the Print Setup dialog box:

· PD_ENABLESETUPHOOK
· PD_ENABLESETUPTEMPLATE
· PD_ENABLESETUPTEMPLATEHANDLE

Page Setup Dialog Box
The Page Setup dialog box lets the user set the following attributes of the printed page:

· The paper type (envelope, legal, letter, and so on)
· The paper source (manual feed, tractor feed, sheet feeder, and so on)
· The page orientation (portrait or landscape)
· The width of the page margins

The attributes presented in the dialog box vary, depending on the capabilities of the printer.

You create and display a Page Setup dialog box by initializing a PAGESETUPDLG structure and
passing the structure to the PageSetupDlg function.

The following illustration shows a typical Page Setup dialog box.

ewc msdncd, EWGraphic, bsd23462 7 /a "SDK_09.BMP"

If the user clicks the OK button, PageSetupDlg returns TRUE after setting various members in
the PAGESETUPDLG structure to specify the user's selections. The ptPaperSize and rtMargin
members contain the values specified by the user. The hDevMode and hDevNames members
contain global memory handles for the DEVMODE and DEVNAMES structures. These structures
contain additional page information as well as information about the printer. You can use this
information to prepare the output to be sent to the selected printer.

If the user cancels the Page Setup dialog box or an error occurs, PageSetupDlg returns FALSE.
To determine the cause of the error, call the CommDlgExtendedError function to retrieve the
extended error value.

Initializing the Page Setup Dialog Box
By default, the Page Setup dialog box displays information about the current default printer. To
direct the dialog box to display information about a specific printer, set the members of a
DEVMODE or DEVNAMES structure and assign the global memory handles of these structures to
the corresponding member in PAGESETUPDLG. If you specify the name of a printer that is not
currently installed, the dialog box displays an error message. To prevent the dialog box from
displaying error messages, use the PSD_NOWARNING value. To retrieve information about the
default printer without displaying the Page Setup dialog box, use the PSD_RETURNDEFAULT
value.

If the default measurement system is inches, the dialog box uses thousandths of inches as the
default unit of measurement. If the default measurement system is metric, the dialog box uses
hundredths of millimeters as the default unit of measurement. To override the default unit of
measurement, set the PSD_INHUNDREDTHSOFMILLIMETERS or
PSD_INTHOUSANDTHSOFINCHES flag in the Flags member of the PAGESETUPDLG
structure.

The initial values for the margins are one inch, by default. If you set the PSD_MARGINS flag, the
dialog box displays the initial margin values specified in the rtMargin member. The default
minimum values that the user can specify for the margins are the minimum margins allowed by
the printer. If you set the PSD_MINMARGINS flag, the dialog box enforces the minimum margins
specified in the rtMinMargin member.

To prevent users from selecting certain options, set any combination of the following flags to
disable the corresponding controls.

Flag Meaning

PSD_DISABLEMARGINS Disables the edit controls in which the
user types the margins.

PSD_DISABLEORIENTATIONDisables the Portrait and Landscape
radio buttons.

PSD_DISABLEPAPER Disables the controls for selecting the
paper size and paper source.

PSD_DISABLEPRINTER Disables the Printer push button.

Customizing the Page Setup Dialog Box
You can provide a custom template for the Page Setup dialog box, for example, if you want to
include additional controls that are unique to your application. The PageSetupDlg function uses
your custom template in place of the default template.

To provide a custom template for the Page Setup dialog box
1. Create the custom template by modifying the default template specified in the

PRNSETUP.DLG file. The control identifiers used in the default Page Setup dialog template
are defined in the DLGS.H file.

2. Use the PAGESETUPDLG structure to enable the template as follows:
· If your custom template is a resource in an application or dynamic-link library, set the

PSD_ENABLEPAGESETUPTEMPLATE flag in the Flags member. Use the hInstance and
lpPageSetupTemplateName members of the structure to identify the module and resource
name.
-Or-

· If your custom template is already in memory, set the
PSD_ENABLEPAGESETUPTEMPLATEHANDLE flag. Use the hPageSetupTemplate
member to identify the memory object that contains the template.

To filter messages sent to the dialog box procedure, you can provide a PageSetupHook hook
procedure. If you use a custom template to define additional controls, you must provide a
PageSetupHook hook procedure to process input for your controls. In addition, you can provide a
PagePaintHook hook procedure to customize the contents of the sample page displayed by the
Page Setup dialog box. For more information about the PagePaintHook hook procedure, see
Customizing the Sample Page.

To enable a PageSetupHook hook procedure
1. Set the PSD_ENABLEPAGESETUPHOOK flag in the Flags member of the

PAGESETUPDLG structure.
2. Specify the address of the hook procedure in the lpfnPageSetupHook member.

After processing its WM_INITDIALOG message, the dialog box procedure sends a
WM_INITDIALOG message to the PageSetupHook hook procedure. The lParam parameter of
this message is a pointer to the PAGESETUPDLG structure used to initialize the dialog box.

Customizing the Sample Page
The Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. The image consists of a rectangle that
represents the selected paper or envelope type, with a dotted-line rectangle representing the
current margins, and partial (greek text) characters to show how text looks on the printed page.

When you call the PageSetupDlg function, you can provide a PagePaintHook hook procedure to
customize the appearance of the sample page.

To enable a PagePaintHook hook procedure
1. Set the PSD_ENABLEPAGEPAINTHOOK flag in the Flags member of the

PAGESETUPDLG structure.
2. Specify the address of the hook procedure in the lpfnPagePaintHook member.

Whenever the dialog box is about to draw the contents of the sample page, the hook procedure
receives the following messages in the order in which they are listed.

Message Meaning

WM_PSD_PAGESETUPDLG The dialog box is about to draw the
sample page. The hook procedure
can use this message to prepare to
draw the contents of the sample
page.

WM_PSD_FULLPAGERECT The dialog box is about to draw the
sample page. This message
specifies the bounding rectangle of
the sample page.

WM_PSD_MINMARGINRECT The dialog box is about to draw the
sample page. This message
specifies the margin rectangle.

WM_PSD_MARGINRECT The dialog box is about to draw the
margin rectangle.

WM_PSD_GREEKTEXTRECT The dialog box is about to draw the
greek text inside the margin
rectangle.

WM_PSD_ENVSTAMPRECT The dialog box is about to draw in
the envelope-stamp rectangle of an
envelope sample page. This
message is sent for envelopes only.

WM_PSD_YAFULLPAGERECT The dialog box is about to draw the
return address portion of an
envelope sample page. This
message is sent for envelopes and
other paper sizes.

If the hook procedure returns TRUE for any of the first three messages of a drawing
sequence (WM_PSD_PAGESETUPDLG, WM_PSD_FULLPAGERECT, or
WM_PSD_MINMARGINRECT) the dialog box sends no more messages and does not draw in the
sample page until the next time the system needs to redraw the sample page. If the hook
procedure returns FALSE for all three messages, the dialog box sends the remaining messages
of the drawing sequence.

If the hook procedure returns TRUE for any of the remaining messages in a drawing sequence,
the dialog box does not draw the corresponding portion of the sample page. If the hook procedure
returns FALSE for any of these messages, the dialog box draws that portion of the sample page.

To prevent the dialog box from drawing the contents of the sample page, you can set the
PSD_DISABLEPAGEPAINTING flag. This flag does not affect your PagePaintHook hook
procedure, which still receives all the WM_PSD_* messages and can draw the sample page
contents.

Find and Replace Dialog Boxes
The Find dialog box lets the user specify a string to search for, as well as options to use when
searching for text in a document. The Replace dialog box lets the user specify a string to search
for and a replacement string, as well as options to control the operation.

You create and display a Find dialog box by initializing a FINDREPLACE structure and passing
the structure to the FindText function. You create and display a Replace dialog box by initializing
a FINDREPLACE structure and passing the structure to the ReplaceText function.

The following illustration shows a typical Find dialog box.

ewc msdncd, EWGraphic, bsd23462 8 /a "SDK_10.BMP"

The following illustration shows a typical Replace dialog box.

ewc msdncd, EWGraphic, bsd23462 9 /a "SDK_11.BMP"

Unlike other common dialog boxes, the Find and Replace dialog boxes are modeless. A modeless
dialog box allows the user to switch between the dialog box and the window that created it. This is
useful for letting the user search for a string, switch to the application window to work on the
string, and switch back to the dialog box to search for another string without repeating the
command needed to open the dialog box.

If the FindText or ReplaceText function successfully creates the dialog box, it returns the handle
of the dialog box. You can use this handle to move and communicate with the dialog box. If the
function cannot create the dialog box, it returns NULL. You can determine the cause of an error by
calling the CommDlgExtendedError function to retrieve the extended error value.

The FINDMSGSTRING Registered Message
Before creating a Find or Replace dialog box, you must call the RegisterWindowMessage
function to get a message identifier for the FINDMSGSTRING registered message. You can then
use the identifier to detect and process messages sent from the dialog box. When the user clicks
the Find Next, Replace, or Replace All button in a dialog box, the dialog box procedure sends a
FINDMSGSTRING message to the window procedure of the owner window. When you create the
dialog box, the hwndOwner member of the FINDREPLACE structure identifies the owner
window.

The lParam parameter of a FINDMSGSTRING message is a pointer to the FINDREPLACE
structure that you specified when you created the dialog box. Before sending the message, the
dialog box sets the members of this structure with the latest user input, including the string to
search for, the replacement string (if any), and options for the find-and-replace operation.

In a FINDMSGSTRING message, the Flags member of the FINDREPLACE structure includes
one of the following flags to indicate the event that caused the message.

Flag Meaning

FR_DIALOGTERM The dialog box is closing. After the owner
window processes this message, the handle of
the dialog box is no longer valid.

FR_FINDNEXT The user clicked the Find Next button in a Find
or Replace dialog box. The lpstrFindWhat
member specifies the string to search for.

FR_REPLACE The user clicked the Replace button in a
Replace dialog box. The lpstrFindWhat
member specifies the string to replace and the
lpstrReplaceWith member specifies the
replacement string.

FR_REPLACEALL The user clicked the Replace All button in a
Replace dialog box. The lpstrFindWhat
member specifies the string to replace and the
lpstrReplaceWith member specifies the
replacement string.

For a Find Next or Replace All message, the Flags member can include any combination of the
following flags to indicate the search options.

Flag Meaning

FR_DOWN If set, the Down button of the direction radio buttons is
selected, indicating that user wants to search from the
current location to the end of the document. If FR_DOWN
is not set, the Up button is selected so the user wants to
search to the beginning of the document.

FR_MATCHCASEIf set, the Match Case check box is checked, indicating
that the user wants the search to be case sensitive. If
FR_MATCHCASE is not set, the check box is unchecked
so the search should be case insensitive.

FR_WHOLEWORDIf set, the Match Whole Word Only check box is checked,
indicating that the user wants to search only for whole
words that match the search string. If FR_WHOLEWORD
is not set, the check box is unchecked so you should also
search for word fragments that match the search string.

Customizing the Find or Replace Dialog Box
To customize a Find or Replace dialog box, you can use any of the following methods:

· Specify values in the FINDREPLACE structure when you create the dialog box
· Provide a custom template
· Provide a hook procedure

When you create a Find or Replace dialog box, you can set flags in the Flags member of the
FINDREPLACE structure to hide or disable any of the search option controls. For example, you
can set the FR_NOMATCHCASE flag to disable the Match Case check box or set the
FR_HIDEMATCHCASE flag to hide it.

You can provide a custom template for a Find or Replace dialog box, for example, if you want to
include additional controls that are unique to your application. The FindText and ReplaceText
functions use your custom template in place of the default template.

To provide a custom template for a Find or Replace dialog box
1. Create the custom template by modifying the default template specified in the FINDTEXT.

DLG file. The control identifiers used in the default Find or Replace dialog template are
defined in the DLGS.H file.

2. Use the FINDREPLACE structure to enable the template as follows:
· If your custom template is a resource in an application or dynamic-link library, set the

FR_ENABLETEMPLATE flag in the Flags member. Use the hInstance and
lpTemplateName members of the structure to identify the module and resource name.
-Or-

· If your custom template is already in memory, set the FR_ENABLETEMPLATEHANDLE
flag. Use the hInstance member to identify the memory object that contains the template.

You can provide an FRHookProc hook procedure for a Find or Replace dialog box. The hook
procedure can process messages sent to the dialog box. If you use a custom template to define
additional controls, you must provide a hook procedure to process input for your controls.

To enable a hook procedure for a Find or Replace dialog box
1. Set the FR_ENABLEHOOK flag in the Flags member of the FINDREPLACE structure.
2. Specify the address of the hook procedure in the lpfnHook member.

After processing its WM_INITDIALOG message, the dialog box procedure sends a
WM_INITDIALOG message to the hook procedure. The lParam parameter of this message is a
pointer to the FINDREPLACE structure used to initialize the dialog box.

If the hook procedure returns FALSE in response to the WM_INITDIALOG message, the dialog
box will not be shown unless the hook procedure displays it. To do this, first perform any other
paint operations, and then call the ShowWindow and UpdateWindow functions. The following
code provides an example:

// We've returned FALSE in response to WM_INITDIALOG.
// We've performed any other paint operations.
// Now we display the dialog box.
ShowWindow(hDlg, SW_SHOWNORMAL);
UpdateWindow(hDlg);

Using Common Dialog Boxes
· Choosing a color
· Choosing a font
· Opening a file
· Displaying the Print dialog box
· Setting up the printed page
· Finding text

Choosing a Color
This topic describes sample code that displays a Color dialog box so a user can select a color.
The sample code first initializes a CHOOSECOLOR structure, and then calls the ChooseColor
function to display the dialog box. If the function returns TRUE, indicating that the user selected a
color, the sample code uses the selected color to create a new solid brush.

This example uses the CHOOSECOLOR structure to initialize the dialog box as follows:

· Initializes the lpCustColors member with a pointer to a static COLORREF array. The
colors in the array are initially black, but the static array preserves custom colors created by
the user for subsequent ChooseColor calls.

· Sets the CC_RGBINIT flag and initializes the rgbResult member to specify the color that
is initially selected when the dialog box opens. If not specified, the initial selection is black.
The example uses the rgbCurrent static variable to preserve the selected value between calls
to ChooseColor.

· Sets the CC_FULLOPEN flag so the custom colors extension of the dialog box is always
displayed.CHOOSECOLOR cc; // common dialog box structure

static COLORREF acrCustClr[16]; // array of custom colors
HWND hwnd; // owner window
HBRUSH hbrush; // brush handle
static DWORD rgbCurrent; // initial color selection
// Initialize CHOOSECOLOR
ZeroMemory(&cc, sizeof(CHOOSECOLOR));
cc.lStructSize = sizeof(CHOOSECOLOR);
cc.hwndOwner = hwnd;
cc.lpCustColors = (LPDWORD) acrCustClr;
cc.rgbResult = rgbCurrent;
cc.Flags = CC_FULLOPEN | CC_RGBINIT;
if (ChooseColor(&cc)==TRUE) {

hbrush = CreateSolidBrush(cc.rgbResult);
rgbCurrent = cc.rgbResult;

}

Choosing a Font
This topic describes sample code that displays a Font dialog box so a user can choose the
attributes of a font. The sample code first initializes a CHOOSEFONT structure, and then calls the
ChooseFont function to display the dialog box.

This example sets the CF_SCREENFONTS flag to specify that the dialog box should display only
screen fonts. It sets the CF_EFFECTS flag to display controls that allow the user to select
strikeout, underline, and color options.

If ChooseFont returns TRUE, indicating that the user clicked the OK button, the LOGFONT
structure pointed to by the lpLogFont member of the CHOOSEFONT structure contains
information that describes the font and font attributes selected by the user. The rgbColors
member contains the selected text color. The sample code uses this information to set the font
and text color for the device context associated with the owner window.HWND hwnd; // owner window
HDC hdc; // display device context of owner window
CHOOSEFONT cf; // common dialog box structure
static LOGFONT lf; // logical font structure
static DWORD rgbCurrent; // current text color
HFONT hfont, hfontPrev;
DWORD rgbPrev;
// Initialize CHOOSEFONT
ZeroMemory(&cf, sizeof(CHOOSEFONT));
cf.lStructSize = sizeof (CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.lpLogFont = &lf;
cf.rgbColors = rgbCurrent;
cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
if (ChooseFont(&cf)==TRUE) {

hfont = CreateFontIndirect(cf.lpLogFont);
hfontPrev = SelectObject(hdc, hfont);
rgbCurrent= cf.rgbColors;
rgbPrev = SetTextColor(hdc, rgbCurrent);

.

.

.
}

Opening a File
This topic describes sample code that displays an Open dialog box so a user can specify the
drive, directory, and name of a file to open. The sample code first initializes an OPENFILENAME
structure, and then calls the GetOpenFileName function to display the dialog box.

In this example, the lpstrFilter member points to a buffer that specifies two filename filters that
the user can select to limit the filenames that are displayed. The buffer contains a double-null
terminated array of strings in which each pair of strings specifies a filter. The nFilterIndex
member specifies that the first pattern is used when the dialog box is created.

This example sets the OFN_PATHMUSTEXIST and OFN_FILEMUSTEXIST flags in the Flags
member. These flags cause the dialog box to verify, before returning, that the path and filename
specified by the user actually exist.

The GetOpenFileName function returns TRUE if the user clicks the OK button and the specified
path and filename exist. In this case, the buffer pointed to by the lpstrFile member contains the
path and filename. The sample code uses this information in a call to the CreateFile function to
open the file.

Although this example does not set the OFN_EXPLORER flag, it still displays the default
Explorer-style Open dialog box. However, if you want to provide a hook procedure or a custom
template and you want the Explorer user interface, you must set the OFN_EXPLORER flag.OPENFILENAME ofn; // common dialog box structure
char szFile[260]; // buffer for filename
HWND hwnd; // owner window
HANDLE hf; // file handle
// Initialize OPENFILENAME
ZeroMemory(&ofn, sizeof(OPENFILENAME));
ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hwnd;
ofn.lpstrFile = szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFilter = "All\0*.*\0Text\0*.TXT\0";
ofn.nFilterIndex = 1;
ofn.lpstrFileTitle = NULL;
ofn.nMaxFileTitle = 0;
ofn.lpstrInitialDir = NULL;
ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
// Display the Open dialog box.
if (GetOpenFileName(&ofn)==TRUE)

hf = CreateFile(ofn.lpstrFile, GENERIC_READ,
0, (LPSECURITY_ATTRIBUTES) NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
(HANDLE) NULL);

Displaying the Print Dialog Box
This topic describes sample code that displays a Print dialog box so a user can select options for
printing a document. The sample code first initializes a PRINTDLG structure, and then calls the
PrintDlg function to display the dialog box.

This example sets the PD_RETURNDC flag in the Flags member of the PRINTDLG structure.
This causes PrintDlg to return a device context handle for the selected printer in the hDC
member. You can use the handle to render output on the printer.

On input, the sample code sets the hDevMode and hDevNames members to NULL. If the
function returns TRUE, these members return handles to DEVMODE and DEVNAMES structures
containing the user's input and information about the printer. You can use this information to
prepare the output to be sent to the selected printer.PRINTDLG pd;
HWND hwnd;
// Initialize PRINTDLG
ZeroMemory(&pd, sizeof(PRINTDLG));
pd.lStructSize = sizeof(PRINTDLG);
pd.hwndOwner = hwnd;
pd.hDevMode = NULL; // Don't forget to free or store hDevMode.
pd.hDevNames = NULL; // Don't forget to free or store hDevNames.
pd.Flags = PD_USEDEVMODECOPIESANDCOLLATE | PD_RETURNDC;
pd.nCopies= 1;
pd.nFromPage = 0xFFFF;
pd.nToPage= 0xFFFF;
pd.nMinPage = 1;
pd.nMaxPage = 0xFFFF;
if (PrintDlg(&pd)==TRUE) {

// GDI calls to render output.
// Delete DC when done.
DeleteDC(pd.hDC);

}

Setting Up the Printed Page
This topic describes sample code that displays a Page Setup dialog box so a user can select the
attributes of the printed page, such as the paper type, paper source, page orientation, and page
margins. The sample code first initializes a PAGESETUPDLG structure, and then calls the
PageSetupDlg function to display the dialog box.

This example sets the PSD_MARGINS flag in the Flags member and uses the rtMargin member
to specify the initial margin values. It sets the PSD_INTHOUSANDTHSOFINCHES flag to ensure
that the dialog box expresses margin dimensions in thousandths of an inch.

On input, the sample code sets the hDevMode and hDevNames members to NULL. If the
function returns TRUE, the function uses these members to return handles to DEVMODE and
DEVNAMES structures containing the user's input and information about the printer. You can use
this information to prepare the output to be sent to the selected printer.

The example also enables a PagePaintHook hook procedure to customize drawing of the
contents of the sample page.PAGESETUPDLG psd; // common dialog box structure
HWND hwnd; // owner window
// Initialize PAGESETUPDLG
ZeroMemory(&psd, sizeof(PAGESETUPDLG));
psd.lStructSize = sizeof(PAGESETUPDLG);
psd.hwndOwner = hwnd;
psd.hDevMode = NULL; // Don't forget to free or store hDevMode.
psd.hDevNames = NULL; // Don't forget to free or store

hDevNames.
psd.Flags = PSD_INTHOUSANDTHSOFINCHES | PSD_MARGINS |

PSD_ENABLEPAGEPAINTHOOK;
psd.rtMargin.top = 1000;
psd.rtMargin.left = 1250;
psd.rtMargin.right = 1250;
psd.rtMargin.bottom = 1000;
psd.lpfnPagePaintHook = PaintHook;
if (PageSetupDlg(&psd)==TRUE) {

// check paper size and margin values here
}The following example shows a sample PagePaintHook hook procedure that draws the margin

rectangle in the sample page area:BOOL CALLBACK PaintHook(HWND hwndDlg, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
LPRECT lprc;
COLORREF crMargRect;
HDC hdc, hdcOld;
switch (uMsg) {
// Drawing the margin rectangle.
case WM_PSD_MARGINRECT:
hdc = (HDC) wParam;
lprc = (LPRECT) lParam;
// Get the system highlight color.
crMargRect = GetSysColor(COLOR_HIGHLIGHT);
// Create a dash-dot pen of the system highlight color and
// select it into the DC of the sample page.
hdcOld = SelectObject(hdc, CreatePen(PS_DASHDOT, .5,
crMargRect));
// Draw the margin rectangle.
Rectangle(hdc, lprc->left, lprc->top, lprc->right,
lprc->bottom);
// Restore the previous pen to the DC.
SelectObject(hdc, hdcOld);
return TRUE;
default:
return FALSE;
}
return TRUE;

}

Finding Text
This topic describes sample code that displays and manages a Find dialog box so the user can
specify the parameters of a search operation. The dialog box sends messages to your window
procedure so you can perform the search operation.

The code for displaying and managing a Replace dialog box is similar, except that it uses the
ReplaceText function to display the dialog box. The Replace dialog box also sends messages in
response to user clicks on the Replace and Replace All buttons.

To use the Find or Replace dialog box, you must perform three separate tasks:

1. Get a message identifier for the FINDMSGSTRING registered message.
2. Display the dialog box.
3. Process FINDMSGSTRING messages when the dialog box is open.

When you initialize your application, call the RegisterWindowMessage function to get a message
identifier for the FINDMSGSTRING registered message.UINT uFindReplaceMsg; // message identifier for FINDMSGSTRING
uFindReplaceMsg = RegisterWindowMessage(FINDMSGSTRING);To display a Find dialog box, first initialize a FINDREPLACE structure and then call the FindText

function. Note that the FINDREPLACE structure and the buffer for the search string should be a
global or static variable so it does not go out of scope before the dialog box closes. You must set
the hwndOwner member to specify the window that receives the registered messages. After you
create the dialog box, you can move or manipulate it by using the returned handle.FINDREPLACE fr; // common dialog box structure
HWND hwnd; // owner window
CHAR szFindWhat[80]; // buffer receiving string
HWND hdlg = NULL;// handle of Find dialog box
// Initialize FINDREPLACE
ZeroMemory(&fr, sizeof(FINDREPLACE));
fr.lStructSize = sizeof(FINDREPLACE);
fr.hwndOwner = hwnd;
fr.lpstrFindWhat = szFindWhat;
fr.wFindWhatLen = 80;
fr.Flags = 0;
hdlg = FindText(&fr);When the dialog box is open, your main message loop must include a call to the

IsDialogMessage function. Pass the window handle of the dialog box as a parameter in the
IsDialogMessage call. This ensures that the dialog box correctly processes keyboard messages.

To monitor messages sent from the dialog box, your window procedure must check for the
FINDMSGSTRING registered message and process the values passed in the FINDREPLACE
structure as in the following example:LPFINDREPLACE lpfr;
if (message == uFindReplaceMsg){

// Get pointer to FINDREPLACE structure from lParam.
lpfr = (LPFINDREPLACE)lParam;
// If the FR_DIALOGTERM flag is set,
// invalidate the handle identifying the dialog box.
if (lpfr->Flags & FR_DIALOGTERM){
hdlg = NULL;
return 0;
}
// If the FR_FINDNEXT flag is set,
// call the application-defined search routine
// to search for the requested string.
if (lpfr->Flags & FR_FINDNEXT)
SearchFile(lpfr->lpstrFindWhat,
(BOOL) (lpfr->Flags & FR_DOWN),
(BOOL) (lpfr->Flags & FR_MATCHCASE));
return 0;

}

Common Dialog Box Reference
The following functions, structures, and messages are associated with common dialog boxes.

Common Dialog Box Functions
The following functions are used with common dialog boxes.
ChooseColor
ChooseFont
CommDlgExtendedError
FindText
GetFileTitle
GetOpenFileName
GetSaveFileName
PageSetupDlg
PrintDlg

ReplaceText

The following application- defined hook procedures are used with common dialog boxes.
CCHookProc
CFHookProc
FRHookProc
OFNHookProc
OFNHookProcOldStyle
PagePaintHook
PageSetupHook
PrintHookProc

SetupHookProc

Common Dialog Box Structures
The following structures are used with common dialog boxes.
CHOOSECOLOR
CHOOSEFONT
DEVNAMES
FINDREPLACE
OPENFILENAME
PAGESETUPDLG
PRINTDLG

OFNOTIFY

Common Dialog Box Messages
The following constants identify strings that you can use with the RegisterWindowMessage
function to get a message identifier. You can use these message identifiers to send messages to
or receive messages from common dialog boxes.
COLOROKSTRING
FILEOKSTRING
FINDMSGSTRING
HELPMSGSTRING
LBSELCHSTRING
SETRGBSTRING

SHAREVISTRING

The following are messages you can send to a Font dialog box.
WM_CHOOSEFONT_GETLOGFONT
WM_CHOOSEFONT_SETFLAGS

WM_CHOOSEFONT_SETLOGFONT

The following are messages that a Page Setup dialog box sends to an application-defined
PagePaintHook hook procedure.
WM_PSD_ENVSTAMPRECT
WM_PSD_FULLPAGERECT
WM_PSD_GREEKTEXTRECT
WM_PSD_MARGINRECT
WM_PSD_MINMARGINRECT
WM_PSD_PAGESETUPDLG

WM_PSD_YAFULLPAGERECT

The following are messages that a hook procedure can send to an Explorer-style Open or Save
As dialog box.
CDM_GETFILEPATH
CDM_GETFOLDERIDLIST
CDM_GETFOLDERPATH
CDM_GETSPEC
CDM_HIDECONTROL
CDM_SETCONTROLTEXT

CDM_SETDEFEXT

The following are notification messages that an Explorer-style Open or Save As dialog box can
send to a hook procedure.
CDN_FILEOK
CDN_FOLDERCHANGE
CDN_HELP
CDN_INITDONE
CDN_SELCHANGE
CDN_SHAREVIOLATION

CDN_TYPECHANGE

CursorsA cursor is a small picture whose location on the screen is controlled by a pointing device, such as
a mouse, pen, or trackball. In the remainder of this overview, the term mouse refers to any
pointing device.

When the user moves the mouse, Microsoft® Windows® moves the cursor accordingly. Microsoft
Win32® cursor functions enable applications to create, load, display, move, confine, and destroy
cursors.

About Cursors
Windows provides a set of standard cursors that are available for any application to use at any
time. The Windows header files contain identifiers for the standard cursors ¾ the identifiers begin
with the "IDC_" prefix.

Each standard cursor has a corresponding default image associated with it. The user or an
application can replace the default image associated with any standard cursor at any time. An
application replaces a default image by using the SetSystemCursor function.

An application can use the GetIconInfo function to retrieve the current image for a cursor, and
can draw the cursor by using the DrawIconEx function. To draw the default image for a standard
cursor, specify the DI_COMPAT flag in the call to DrawIconEx. If you do not specify the
DI_COMPAT flag, DrawIconEx draws the standard cursor using the image that the user
specified.

Custom cursors are designed for use in a specific application and can be any design the
developer defines. The following illustration shows several custom cursors.

ewc msdncd, EWGraphic, bsd23463 0 /a "SDK_02.BMP"

Cursors can be either monochrome or color, and either static or animated. The type of cursor
used on a particular computer system depends on the system's display. Old displays such as
VGA do not support color or animated cursors, but new displays (whose display drivers use the
DIB engine) do support them.

Cursors and icons are similar and can be used interchangeably in many situations. The only
difference between them is that an image specified as a cursor must be in the format that the
display can support. For example, a cursor must be monochrome for a VGA display.

The Hot Spot
In the cursor, a pixel called the hot spot marks the exact screen location that is affected by a
mouse event, such as clicking a mouse button. Typically, the hot spot is the focal point of the
cursor. The system tracks and recognizes this point as the position of the cursor. For example,
typical hot spots are the pixel at the tip of an arrow-shaped cursor and the pixel in the middle of a
crosshair-shaped cursor.

When a mouse input event occurs, the Windows mouse driver translates the event into an
appropriate mouse message that includes the coordinates of the hot spot. Windows sends the
mouse message to the window that contains the hot spot or to the window that is capturing mouse
input. For more information, see Mouse Input.

The Mouse and the Cursor
Windows reflects the movement of the mouse by moving the cursor on the screen accordingly. As
the cursor moves over different parts of windows or into different windows, Windows (or an
application) changes the appearance of the cursor. For example, when the cursor crosses a
window border, Windows changes the cursor into a two-headed arrow.

If the system does not have a mouse, Windows displays and moves the cursor only when the user
chooses certain system commands, such as those used to size or move a window. To provide the
user with a method of displaying and moving the cursor when a mouse isn't available, an
application can use the cursor functions to simulate mouse movement. Given this simulation
capability, the user can use the arrow keys to move the cursor.

Cursor Creation
Because standard cursors are predefined, it is not necessary to create them. To use a standard
cursor, an application retrieves a cursor handle by using the LoadCursor or LoadImage function.
A cursor handle is a unique value of the HCURSOR type that identifies a standard or custom
cursor.

To create a custom cursor for an application, you would typically use a graphics application and
include the cursor as a resource in the application's resource-definition file. At run time, call
LoadCursor to retrieve the cursor handle. Cursor resources contain data for several different
display devices. The LoadCursor function automatically selects the most appropriate data for the
current display device. To load a cursor directly from a .CUR or .ANI file, use the
LoadCursorFromFile function.

You can also create a custom cursor at run time by using the CreateIconIndirect function, which
creates a cursor based on the content of an ICONINFO structure. The GetIconInfo function fills
this structure with hot spot coordinates and information concerning the associated bitmask and
color.

Applications should implement custom cursors as resources and use LoadCursor,
LoadCursorFromFile, or LoadImage rather than create the cursor at run time. Using cursor
resources avoids device dependence, simplifies localization, and enables applications to share
cursor designs.

The CreateIconFromResourceEx function enables an application to create icons and cursors
based on resource data. CreateIconFromResourceEx creates a cursor based on binary
resource data from other executable (.EXE) files or dynamic-link libraries (DLLs). It must be
preceded by calls to the LookupIconIdFromDirectoryEx function, as well as several resource
functions. LookupIconIdFromDirectoryEx identifies the most appropriate cursor data for the
current display device. For more information about resource functions, see Resources.

Cursor Location and Appearance
Windows automatically displays a cursor for the mouse and updates its position on the screen.
You can obtain current screen coordinates of the cursor and move the cursor to any location on
the screen by using the GetCursorPos and SetCursorPos functions, respectively.

You can also retrieve the handle of the current cursor by using the GetCursor function and you
can set the cursor by using the SetCursor function. After you call SetCursor, the appearance of
the cursor does not change until either the mouse moves, the cursor is explicitly set to a different
cursor, or a system command is executed.

When the user moves the mouse, the system redraws the cursor at the new location. The system
automatically redraws the cursor design associated with the window to which the cursor is
pointing.

You can hide and redisplay the cursor, without changing the cursor design, by using the
ShowCursor function. This function uses an internal counter to determine when to hide or display
the cursor. An attempt to show the cursor increments the counter; an attempt to hide the cursor
decrements the counter. The cursor is visible only if this counter is greater than or equal to zero.

The Window Class Cursor
When you register a window class, using the RegisterClass function, you can assign it a default
cursor, known as the class cursor. After the application registers the window class, each window
of that class will have the specified class cursor.

To override the class cursor, process the WM_SETCURSOR message. You can also replace a
class cursor by using the SetClassLong function. This function changes the default window
settings for all windows of a given class. For more information, see Window Classes.

Cursor Confinement
You can confine the cursor to a rectangular area on the screen by using the ClipCursor function.
This is useful for when the user must respond to a certain event within the confined area of the
rectangle. For example, you might use ClipCursor to confine the cursor to a modal dialog box,
preventing the user from interacting with other windows until the dialog box is closed.

The GetClipCursor function retrieves the screen coordinates of the rectangular area to which the
cursor is temporarily confined. When it is necessary to confine the cursor, you can also use this
function to save the coordinates of the original area in which the cursor can move. Then, you can
restore the cursor to the original area when the new confinement is no longer necessary.

Cursor Destruction
When you no longer need a cursor you created by using the CreateIconIndirect function, you
should destroy the cursor. The DestroyCursor function destroys the cursor handle and frees any
memory that it used. Use this function only on cursors that were created with CreateIconIndirect;
it is not necessary to destroy other cursors.

The DestroyCursor function has no effect on a shared cursor; that is, a cursor that was loaded by
using the LR_SHARED flag with the LoadImage function. A shared cursor is valid as long as the
module from which it was loaded remains in memory.

Cursor Duplication
The CopyCursor function copies a cursor handle. This enables application or DLL code to
retrieve the handle of a cursor owned by another module. Then, if the other module is freed, the
module that copied the cursor will still be able to use the cursor design.

For information on how to add, remove, or replace cursor resources in executable files, see
Resources.

Using Cursors
· Creating a cursor
· Displaying a cursor
· Confining a cursor
· Using cursor functions to create a mousetrap
· Using the keyboard to move the cursor

Creating a Cursor
The following example creates two cursor handles: one for the standard hourglass cursor and one
for a custom cursor included as a resource in the application's resource-definition file.HINSTANCE hinst; // handle of current instance
HCURSOR hCurs1, hCurs2;// cursor handles
// Create a standard hourglass cursor.
hCurs1 = LoadCursor(NULL, IDC_WAIT);
// Create a custom cursor based on a resource.
hCurs2 = LoadCursor(hinst, MAKEINTRESOURCE(240));You should implement custom cursors as resources. Rather than create the cursors at run time,

use the LoadCursor, LoadCursorFromFile, or LoadImage function to avoid device dependence,
to simplify localization, and to enable applications to share cursor designs.

The following example uses the CreateCursor function to create a custom cursor at run time. The
example is included here to illustrate how the system interprets cursor bitmasks.HINSTANCE hinst; // handle of current instance
HCURSOR hCurs1, hCurs2;// cursor handles
HCURSOR hCurs3; // cursor handle
// Yin cursor AND bitmask
BYTE ANDmaskCursor[] =
{

0xFF, 0xFC, 0x3F, 0xFF, // line 1
0xFF, 0xC0, 0x1F, 0xFF, // line 2
0xFF, 0x00, 0x3F, 0xFF, // line 3
0xFE, 0x00, 0xFF, 0xFF, // line 4
0xF7, 0x01, 0xFF, 0xFF, // line 5
0xF0, 0x03, 0xFF, 0xFF, // line 6
0xF0, 0x03, 0xFF, 0xFF, // line 7
0xE0, 0x07, 0xFF, 0xFF, // line 8
0xC0, 0x07, 0xFF, 0xFF, // line 9
0xC0, 0x0F, 0xFF, 0xFF, // line 10
0x80, 0x0F, 0xFF, 0xFF, // line 11
0x80, 0x0F, 0xFF, 0xFF, // line 12
0x80, 0x07, 0xFF, 0xFF, // line 13
0x00, 0x07, 0xFF, 0xFF, // line 14
0x00, 0x03, 0xFF, 0xFF, // line 15
0x00, 0x00, 0xFF, 0xFF, // line 16
0x00, 0x00, 0x7F, 0xFF, // line 17
0x00, 0x00, 0x1F, 0xFF, // line 18
0x00, 0x00, 0x0F, 0xFF, // line 19
0x80, 0x00, 0x0F, 0xFF, // line 20
0x80, 0x00, 0x07, 0xFF, // line 21
0x80, 0x00, 0x07, 0xFF, // line 22
0xC0, 0x00, 0x07, 0xFF, // line 23
0xC0, 0x00, 0x0F, 0xFF, // line 24
0xE0, 0x00, 0x0F, 0xFF, // line 25
0xF0, 0x00, 0x1F, 0xFF, // line 26
0xF0, 0x00, 0x1F, 0xFF, // line 27
0xF8, 0x00, 0x3F, 0xFF, // line 28
0xFE, 0x00, 0x7F, 0xFF, // line 29
0xFF, 0x00, 0xFF, 0xFF, // line 30
0xFF, 0xC3, 0xFF, 0xFF, // line 31
0xFF, 0xFF, 0xFF, 0xFF // line 32

};
// Yin cursor XOR bitmask
BYTE XORmaskCursor[] =
{

0x00, 0x00, 0x00, 0x00, // line 1
0x00, 0x03, 0xC0, 0x00, // line 2
0x00, 0x3F, 0x00, 0x00, // line 3
0x00, 0xFE, 0x00, 0x00, // line 4
0x0E, 0xFC, 0x00, 0x00, // line 5
0x07, 0xF8, 0x00, 0x00, // line 6
0x07, 0xF8, 0x00, 0x00, // line 7
0x0F, 0xF0, 0x00, 0x00, // line 8
0x1F, 0xF0, 0x00, 0x00, // line 9
0x1F, 0xE0, 0x00, 0x00, // line 10
0x3F, 0xE0, 0x00, 0x00, // line 11
0x3F, 0xE0, 0x00, 0x00, // line 12
0x3F, 0xF0, 0x00, 0x00, // line 13
0x7F, 0xF0, 0x00, 0x00, // line 14
0x7F, 0xF8, 0x00, 0x00, // line 15
0x7F, 0xFC, 0x00, 0x00, // line 16
0x7F, 0xFF, 0x00, 0x00, // line 17
0x7F, 0xFF, 0x80, 0x00, // line 18
0x7F, 0xFF, 0xE0, 0x00, // line 19
0x3F, 0xFF, 0xE0, 0x00, // line 20
0x3F, 0xC7, 0xF0, 0x00, // line 21
0x3F, 0x83, 0xF0, 0x00, // line 22
0x1F, 0x83, 0xF0, 0x00, // line 23
0x1F, 0x83, 0xE0, 0x00, // line 24
0x0F, 0xC7, 0xE0, 0x00, // line 25
0x07, 0xFF, 0xC0, 0x00, // line 26
0x07, 0xFF, 0xC0, 0x00, // line 27
0x01, 0xFF, 0x80, 0x00, // line 28
0x00, 0xFF, 0x00, 0x00, // line 29
0x00, 0x3C, 0x00, 0x00, // line 30
0x00, 0x00, 0x00, 0x00, // line 31
0x00, 0x00, 0x00, 0x00 // line 32

};
// Create a custom cursor at run time.
hCurs3 = CreateCursor(hinst, // app instance

19,// horizontal position of hot spot
2, // vertical position of hot spot
32,// cursor width
32,// cursor height
ANDmaskCursor,// AND bitmask
XORmaskCursor); // XOR bitmaskTo create the cursor, CreateCursor applies the following truth table to the AND and XOR

bitmasks.

AND
bitmask

XOR bitmaskDisplay

0 0 Black
0 1 White
1 0 Screen
1 1 Reverse screen

For more information, see Bitmaps.

Before closing, you must use the DestroyCursor function to destroy any cursors you created with
CreateCursor. It is not necessary to destroy cursors created by other functions.

Displaying a Cursor
Windows automatically displays the class cursor (the cursor associated with the window to which
the cursor is pointing). You can assign a class cursor while registering a window class. The
following example illustrates this by assigning a cursor handle to the hCursor member of the
WNDCLASS structure identified by the wc parameter.WNDCLASS wc;
// Fill the window class structure with parameters that
// describe the main window.
wc.style = NULL; // class style(s)
wc.lpfnWndProc = (WNDPROC) MainWndProc; // window procedure
wc.cbClsExtra = 0; // no per-class extra data
wc.cbWndExtra = 0; // no per-window extra data
wc.hInstance = hinst; // app that owns the class
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);// class icon
wc.hCursor = LoadCursor(hinst, MAKEINTRESOURCE(230)); // class cursor
wc.hbrBackground = GetStockObject(WHITE_BRUSH); // class background
wc.lpszMenuName = "GenericMenu";// class menu
wc.lpszClassName = "GenericWClass" // class name
// Register the window class.
return RegisterClass(&wc);When the window class is registered, the cursor identified by 230 in the application's resource-

definition file will be the default cursor for all windows based on the class.

Your application can change the design of the cursor by using the SetCursor function and
specifying a different cursor handle. However, when the cursor moves, Windows redraws the
class cursor at the new location. To prevent the class cursor from being redrawn, you must
process the WM_SETCURSOR message. Each time the cursor moves and mouse input is not
captured, Windows sends this message to the window in which the cursor is moving.

You can specify different cursors for different conditions while processing WM_SETCURSOR. For
example, the following example shows how to display the hCurs3 cursor whenever the cursor
moves over the icon of a minimized application.case WM_SETCURSOR:

// If the window is minimized, draw the hCurs3 cursor.
// If the window is not minimized, draw the default
// cursor (class cursor).
if (IsIconic(hwnd))
{
SetCursor(hCurs3);
break;
}When the window is not minimized, Windows displays the class cursor.

You can replace a class cursor by using the SetClassLong function. This function changes the
default window settings for all windows of a given class. The following example replaces the
existing class cursor with the hCurs2 cursor.// Change the cursor for window class represented by hwnd.
SetClassLong(hwnd, // window handle

GCL_HCURSOR, // change cursor
(LONG) hCurs2); // new cursorFor more information, see Window Classes and Mouse Input.

Confining a Cursor
The following example confines the cursor to the application's window and then restores the
cursor to its previous window. The example uses the GetClipCursor function to record the area in
which the cursor can move and the ClipCursor function to confine and restore the cursor.RECT rcClip; // new area for ClipCursor
RECT rcOldClip; // previous area for ClipCursor
// Record the area in which the cursor can move.
GetClipCursor(&rcOldClip);
// Get the dimensions of the application's window.
GetWindowRect(hwnd, &rcClip);
// Confine the cursor to the application's window.
ClipCursor(&rcClip);

//
// Process input from the confined cursor.
//

// Restore the cursor to its previous area.
ClipCursor(&rcOldClip);Because there is only one cursor at a time available in the system, an application that confines the

cursor must restore the cursor before relinquishing control to another window.

Using Cursor Functions to Create a Mousetrap
The following example uses the SetCursorPos, GetCursorPos, CreateCursor, LoadCursor,
and SetCursor functions to create a simple mousetrap. It also uses cursor and timer functions to
monitor the cursor's position every 10 seconds. If the cursor position has not changed in the last
10 seconds and the application's main window is minimized, the application changes the cursor
and moves it to the mousetrap icon.

An example for a similar mousetrap is included in Icons. It uses the LoadCursor and LoadIcon
functions instead of the more device-dependent CreateCursor and CreateIcon functions.HICON hIcon1;// icon handles
POINT ptOld; // previous cursor location
HCURSOR hCurs1; // cursor handle

// The following cursor bitmasks are defined in a code
// example that appears earlier in this topic.
// Yin cursor AND and XOR bitmasks
BYTE ANDmaskCursor[] = ...
BYTE XORmaskCursor[] = ...
// Yang icon AND bitmask
BYTE ANDmaskIcon[] = {0xFF, 0xFF, 0xFF, 0xFF, // line 1
0xFF, 0xFF, 0xC3, 0xFF, // line 2
0xFF, 0xFF, 0x00, 0xFF, // line 3
0xFF, 0xFE, 0x00, 0x7F, // line 4
0xFF, 0xFC, 0x00, 0x1F, // line 5
0xFF, 0xF8, 0x00, 0x0F, // line 6
0xFF, 0xF8, 0x00, 0x0F, // line 7
0xFF, 0xF0, 0x00, 0x07, // line 8
0xFF, 0xF0, 0x00, 0x03, // line 9
0xFF, 0xE0, 0x00, 0x03, // line 10
0xFF, 0xE0, 0x00, 0x01, // line 11
0xFF, 0xE0, 0x00, 0x01, // line 12
0xFF, 0xF0, 0x00, 0x01, // line 13
0xFF, 0xF0, 0x00, 0x00, // line 14
0xFF, 0xF8, 0x00, 0x00, // line 15
0xFF, 0xFC, 0x00, 0x00, // line 16
0xFF, 0xFF, 0x00, 0x00, // line 17
0xFF, 0xFF, 0x80, 0x00, // line 18
0xFF, 0xFF, 0xE0, 0x00, // line 19
0xFF, 0xFF, 0xE0, 0x01, // line 20
0xFF, 0xFF, 0xF0, 0x01, // line 21
0xFF, 0xFF, 0xF0, 0x01, // line 22
0xFF, 0xFF, 0xF0, 0x03, // line 23
0xFF, 0xFF, 0xE0, 0x03, // line 24
0xFF, 0xFF, 0xE0, 0x07, // line 25
0xFF, 0xFF, 0xC0, 0x0F, // line 26
0xFF, 0xFF, 0xC0, 0x0F, // line 27
0xFF, 0xFF, 0x80, 0x1F, // line 28
0xFF, 0xFF, 0x00, 0x7F, // line 29
0xFF, 0xFC, 0x00, 0xFF, // line 30
0xFF, 0xF8, 0x03, 0xFF, // line 31
0xFF, 0xFC, 0x3F, 0xFF}; // line 32

// Yang icon XOR bitmask
BYTE XORmaskIcon[] = {0x00, 0x00, 0x00, 0x00, // line 1
0x00, 0x00, 0x00, 0x00, // line 2
0x00, 0x00, 0x00, 0x00, // line 3
0x00, 0x00, 0x00, 0x00, // line 4
0x00, 0x00, 0x00, 0x00, // line 5
0x00, 0x00, 0x00, 0x00, // line 6
0x00, 0x00, 0x00, 0x00, // line 7
0x00, 0x00, 0x38, 0x00, // line 8
0x00, 0x00, 0x7C, 0x00, // line 9
0x00, 0x00, 0x7C, 0x00, // line 10
0x00, 0x00, 0x7C, 0x00, // line 11
0x00, 0x00, 0x38, 0x00, // line 12
0x00, 0x00, 0x00, 0x00, // line 13
0x00, 0x00, 0x00, 0x00, // line 14
0x00, 0x00, 0x00, 0x00, // line 15
0x00, 0x00, 0x00, 0x00, // line 16
0x00, 0x00, 0x00, 0x00, // line 17
0x00, 0x00, 0x00, 0x00, // line 18
0x00, 0x00, 0x00, 0x00, // line 19
0x00, 0x00, 0x00, 0x00, // line 20
0x00, 0x00, 0x00, 0x00, // line 21
0x00, 0x00, 0x00, 0x00, // line 22
0x00, 0x00, 0x00, 0x00, // line 23
0x00, 0x00, 0x00, 0x00, // line 24
0x00, 0x00, 0x00, 0x00, // line 25
0x00, 0x00, 0x00, 0x00, // line 26
0x00, 0x00, 0x00, 0x00, // line 27
0x00, 0x00, 0x00, 0x00, // line 28
0x00, 0x00, 0x00, 0x00, // line 29
0x00, 0x00, 0x00, 0x00, // line 30
0x00, 0x00, 0x00, 0x00, // line 31
0x00, 0x00, 0x00, 0x00}; // line 32

hIcon1 = CreateIcon(hinst, // handle of app instance
32, // icon width
32, // icon height
1, // number of XOR planes
1, // number of bits per pixel
ANDmaskIcon, // AND bitmask
XORmaskIcon); // XOR bitmask

hCurs1 = CreateCursor(hinst, // handle of app instance
19, // horizontal position of hot spot
2,// vertical position of hot spot
32, // cursor width
32, // cursor height
ANDmaskCursor, // AND bitmask
XORmaskCursor); // XOR bitmask

// Fill in the window class structure.
WNDCLASS wc;
wc.hIcon = hIcon1; // class icon
wc.hCursor = LoadCursor(NULL, IDC_ARROW); // class cursor
//
// Register the window class and perform
// other application initialization.
//
// Set a timer for the mousetrap.
GetCursorPos(&ptOld);
SetTimer(hwnd, IDT_CURSOR, 10000, (TIMERPROC) NULL);
LONG APIENTRY MainWndProc(

HWND hwnd,// window handle
UINT message, // type of message
UINT wParam, // additional information
LONG lParam) // additional information

{
HDC hdc; // handle of device context
POINT pt; // current cursor location
RECT rc; // iconized window location
switch (message)
{
//
// Process other messages.
//
case WM_TIMER:
// If the window is minimized, compare the
// current cursor position with the one 10
// seconds before. If the cursor position has
// not changed, move the cursor to the icon.
if (IsIconic(hwnd))
{
GetCursorPos(&pt);
if ((pt.x == ptOld.x) && (pt.y == ptOld.y))
{
GetWindowRect(hwnd, &rc);
SetCursorPos(rc.left + 20, rc.top + 4);
// Note that the additional constants
// (20 and 4) are application-specific
// values to align the yin-shaped cursor
// and the yang-shaped icon.
}
else
{
ptOld.x = pt.x;
ptOld.y = pt.y;
}
}
return 0;
case WM_SETCURSOR:
// If the window is minimized, draw hCurs1.
// If the window is not minimized, draw the
// default cursor (class cursor).
if (IsIconic(hwnd))
{
SetCursor(hCurs1);
break;
}
case WM_DESTROY:
// Destroy timer.
KillTimer(hwnd, IDT_CURSOR);
PostQuitMessage(0);
break;
}

}

Using the Keyboard to Move the Cursor
Because Windows does not require a mouse, an application should be able to simulate mouse
actions with the keyboard. The following example shows how to achieve this, by using the
GetCursorPos and SetCursorPos functions, and by processing input from the arrow keys.HCURSOR hCurs1, hCurs2; // cursor handles
POINT pt; // cursor location
RECT rc; // client area coordinates
static int repeat = 1;// repeat key counter
//
// Other declarations and initialization.
//
switch (message)
{
//
// Process other messages.
//

case WM_KEYDOWN:
if (wParam != VK_LEFT && wParam != VK_RIGHT &&
wParam != VK_UP && wParam != VK_DOWN)
{
break;
}
GetCursorPos(&pt);
// Convert screen coordinates to client coordinates.
ScreenToClient(hwnd, &pt);
switch (wParam)
{
// Move the cursor to reflect which
// arrow keys are pressed.
case VK_LEFT:// left arrow
pt.x -= repeat;
break;
case VK_RIGHT: // right arrow
pt.x += repeat;
break;
case VK_UP: // up arrow
pt.y -= repeat;
break;
case VK_DOWN:// down arrow
pt.y += repeat;
break;
default:
return NULL;
}
repeat++; // increment repeat count
// Keep the cursor in the client area.
GetClientRect(hwnd, &rc);
if (pt.x >= rc.right)
{
pt.x = rc.right - 1;
}
else
{
if (pt.x < rc.left)
{
pt.x = rc.left;
}
}
if (pt.y >= rc.bottom)
pt.y = rc.bottom - 1;
else
if (pt.y < rc.top)
pt.y = rc.top;
// Convert client coordinates to screen coordinates.
ClientToScreen(hwnd, &pt);
SetCursorPos(pt.x, pt.y);
break;
case WM_KEYUP:
repeat = 1; // clear repeat count
break;

}

Cursor Reference
The following functions and messages are associated with cursors.

Cursor Functions
Following are the functions used with cursors.
ClipCursor
CopyCursor
CreateCursor
DestroyCursor
GetClipCursor
GetCursor
GetCursorPos
LoadCursor
LoadCursorFromFile
SetCursor
SetCursorPos
SetSystemCursor

ShowCursor

Cursor Messages
The following message is used with cursors.

WM_SETCURSOR

Dialog BoxesIn Microsoft® Windows®, a dialog box is a temporary window an application creates to retrieve
user input. An application typically uses dialog boxes to prompt the user for additional information
for commands. A dialog box usually contains one or more controls (child windows) with which the
user enters text, chooses options, or directs the action of the command.

About Dialog Boxes
Windows provides many functions, messages, and predefined controls to help create and manage
dialog boxes, thus making it easier to develop the user interface for an application. This overview
describes the dialog box functions and messages and explains how to use them to create and use
dialog boxes.

Windows also provides many predefined, or "common," dialog boxes that support commands,
such as File Open and File Print. Applications that use these commands should use the common
dialog boxes to prompt for the same user input, regardless of the type of application carrying out
the commands. For more information about using common dialog boxes in your applications, see
Common Dialog Box Library.

When to Use a Dialog Box
Most applications use dialog boxes to prompt for additional information for commands that require
user input. Using a dialog box is the only recommended way for an application to retrieve the
input. For example, the File Open command requires the name of a file to open, so an application
should use a dialog box to prompt the user for the name. In such cases, the application creates
the dialog box when the user chooses the command and destroys the dialog box immediately
after the user supplies the information.

Many applications also use dialog boxes to display information or options while the user works in
another window. For example, word processing applications often use a dialog box with a text-
search command. While the application searches for the text, the dialog box remains on the
screen. The user can then return to the dialog box and search for the same word again; or the
user can change the entry in the dialog box and search for a new word. Applications that use
dialog boxes in this way typically create one when the user chooses a command and continue to
display it for as long as the application runs or until the user explicitly closes the dialog box.

To support the different ways applications use dialog boxes, Windows provides two types of
dialog box: modal and modeless. A modal dialog box requires the user to supply information or
cancel the dialog box before allowing the application to continue. Applications use modal dialog
boxes in conjunction with commands that require additional information before they can proceed.
A modeless dialog box allows the user to supply information and return to the previous task
without closing the dialog box. Modal dialog boxes are simpler to manage than modeless dialog
boxes because they are created, perform their task, and are destroyed by calling a single function.

To create either a modal or modeless dialog box, an application must supply a dialog box
template to describe the dialog box style and content; the application must also supply a dialog
box procedure to carry out tasks. The dialog box template is a binary description of the dialog box
and the controls it contains. The developer can create this template as a resource to be loaded
from the application's executable file, or created in memory while the application runs. The dialog
box procedure is an application-defined callback function that Windows calls when it has input for
the dialog box or tasks for the dialog box to carry out. Although a dialog box procedure is similar
to a window procedure, it does not have the same responsibilities.

An application typically creates a dialog box by using either the DialogBox or CreateDialog
function. DialogBox creates a modal dialog box; CreateDialog creates a modeless dialog box.
These two functions load a dialog box template from the application's executable file and create a
pop-up window that matches the template's specifications. There are other functions that create a
dialog box by using templates in memory; they pass additional information to the dialog box
procedure as the dialog box is created.

Dialog boxes usually belong to a predefined, exclusive window class. Windows uses this window
class and its corresponding window procedure for both modal and modeless dialog boxes. When
the function is called, it creates the window for the dialog box, as well as the windows for the
controls in the dialog box, then sends selected messages to the dialog box procedure. While the
dialog box is visible, the predefined window procedure manages all messages, processing some
messages and passing others to the dialog box procedure so that the procedure can carry out
tasks. Applications do not have direct access to the predefined window class or window
procedure, but they can use the dialog box template and dialog box procedure to modify the style
and behavior of a dialog box.

Owner Window
Most dialog boxes have an owner window (or more simply, an owner). When creating the dialog
box, the application sets the owner by specifying the owner's window handle. Windows uses the
owner to determine the position of the dialog box in the Z order so that the dialog box is always
positioned above its owner. Also, Windows can send messages to the window procedure of the
owner, notifying it of events in the dialog box.

Windows automatically hides or destroys the dialog box whenever its owner is hidden or
destroyed. This means the dialog box procedure requires no special processing to detect changes
to the state of the owner window.

Because the typical dialog box is used in conjunction with a command in a menu, the owner
window is usually the window containing the menu. Although it is possible to create a dialog box
that has no owner, it is not recommended. For example, when a modal dialog box has no owner,
Windows does not disable any of the application's other windows and allows the user to continue
to carry out work in the other windows, defeating the purpose of the modal dialog box.

When a modeless dialog box has no owner, Windows neither hides nor destroys the dialog box
when other windows in the application are hidden or destroyed. Although this does not defeat the
purpose of the modeless dialog box, it requires that the application carry out special processing to
ensure the dialog box is hidden and destroyed at appropriate times.

Message Boxes
A message box is a special dialog box that an application can use to display messages and
prompt for simple input. A message box typically contains a text message and one or more
buttons. An application creates the message box by using the MessageBox or MessageBoxEx
function, specifying the text and the number and types of buttons to display. The MessageBoxEx
function also allows you to specify the language to use for the text of any predefined push buttons
in the message box.

Although the message box is a dialog box, Windows takes complete control of the creation and
management of the message box. This means the application does not provide a dialog box
template and dialog box procedure. Windows creates its own template based on the text and
buttons specified for the message box and supplies its own dialog box procedure.

A message box is a modal dialog box and Windows creates it by using the same internal functions
that DialogBox uses. If the application specifies an owner window when calling MessageBox or
MessageBoxEx, Windows disables the owner. An application can also direct Windows to disable
all top-level windows belonging to the current task by specifying the MB_TASKMODAL value
when creating the dialog box.

Windows can send messages to the owner, such as WM_CANCELMODE and WM_ENABLE, just
as it does when creating a modal dialog box. The owner window should carry out any actions
requested by these messages.

Modal Dialog Boxes
A modal dialog box should be a pop-up window having a System menu, a title bar, and a thick
border; that is, the dialog box template should specify the WS_POPUP, WS_SYSMENU,
WS_CAPTION, and DS_MODALFRAME styles. Although an application can designate the
WS_VISIBLE style, Windows always displays a modal dialog box regardless of whether the dialog
box template specifies the WS_VISIBLE style. An application must not create a modal dialog box
having the WS_CHILD style. A modal dialog box with this style disables itself, preventing any
subsequent input from reaching the application.

An application creates a modal dialog box by using either the DialogBox or DialogBoxIndirect
function. DialogBox requires the name or identifier of a resource containing a dialog box
template; DialogBoxIndirect requires the handle of a memory object containing a dialog box
template. The DialogBoxParam and DialogBoxIndirectParam functions also create modal
dialog boxes; they are identical to the previously mentioned functions but pass a specified
parameter to the dialog box procedure when the dialog box is created.

When creating the modal dialog box, Windows makes it the active window. The dialog box
remains active until the dialog box procedure calls the EndDialog function or Windows activates a
window in another application. Neither the user nor the application can make the owner window
active until the modal dialog box is destroyed.

When the owner window is not already disabled, Windows automatically disables the window and
any child windows belonging to it when it creates the modal dialog box. The owner window
remains disabled until the dialog box is destroyed. Although a dialog box procedure could
potentially enable the owner window at any time, enabling the owner defeats the purpose of the
modal dialog box and is not recommended. When the dialog box procedure is destroyed,
Windows enables the owner window again, but only if the modal dialog box caused the owner to
be disabled.

As Windows creates the modal dialog box, it sends the WM_CANCELMODE message to the
window (if any) currently capturing mouse input. An application that receives this message should
release the mouse capture so that the user can move the mouse in the modal dialog box.
Because Windows disables the owner window, all mouse input is lost if the owner fails to release
the mouse upon receiving this message.

To process messages for the modal dialog box, Windows starts its own message loop, taking
temporary control of the message queue for the entire application. When Windows retrieves a
message that is not explicitly for the dialog box, it dispatches the message to the appropriate
window. If it retrieves a WM_QUIT message, it posts the message back to the application
message queue so that the application's main message loop can eventually retrieve the message.

Windows sends the WM_ENTERIDLE message to the owner window whenever the application
message queue is empty. The application can use this message to carry out a background task
while the dialog box remains on the screen. When an application uses the message in this way,
the application must frequently yield control (for example, by using the PeekMessage function) so
that the modal dialog box can receive any user input. To prevent the modal dialog box from
sending the WM_ENTERIDLE messages, the application can specify the DS_NOIDLEMSG style
when creating the dialog box.

An application destroys a modal dialog box by using the EndDialog function. In most cases, the
dialog box procedure calls EndDialog when the user chooses the Close command from the
dialog box's System menu or chooses the OK or Cancel button in the dialog box. The dialog box
can return a value through the DialogBox function (or other creation functions) by specifying a
value when calling the EndDialog function. Windows returns this value after destroying the dialog
box. Most applications use this return value to determine whether the dialog box completed its
task successfully or was canceled by the user. Windows does not return control from the function
that creates the dialog box until the dialog box procedure has called the EndDialog function.

Modeless Dialog Boxes
A modeless dialog box should be a pop-up window having a System menu, a title bar, and a thin
border; that is, the dialog box template should specify the WS_POPUP, WS_CAPTION,
WS_BORDER, and WS_SYSMENU styles. Windows does not automatically display the dialog
box unless the template specifies the WS_VISIBLE style.

An application creates a modeless dialog box by using the CreateDialog or CreateDialogIndirect
function. CreateDialog requires the name or identifier of a resource containing a dialog box
template; CreateDialogIndirect requires the handle of a memory object containing a dialog box
template. Two other functions, CreateDialogParam and CreateDialogIndirectParam, also create
modeless dialog boxes; they pass a specified parameter to the dialog box procedure when the
dialog box is created.

CreateDialog and other creation functions return a window handle for the dialog box. The
application and the dialog box procedure can use this handle to manage the dialog box. For
example, if WS_VISIBLE is not specified in the dialog box template, the application can display
the dialog box by passing the window handle to the ShowWindow function.

A modeless dialog box neither disables the owner window nor sends messages to it. When
creating the dialog box, Windows makes it the active window, but the user or the application can
change the active window at any time. If the dialog box does become inactive, it remains above
the owner window in the Z order, even if the owner window is active.

The application is responsible for retrieving and dispatching input messages to the dialog box.
Most applications use the main message loop for this. To permit the user to move to and select
controls by using the keyboard, however, the application must call the IsDialogMessage function.
For more information about this function, see Dialog Box Keyboard Interface.

A modeless dialog box cannot return a value to the application as a modal dialog box does, but
the dialog box procedure can send information to the owner window by using the SendMessage
function.

An application must destroy all modeless dialog boxes before terminating. It can destroy a
modeless dialog box by using the DestroyWindow function. In most cases, the dialog box
procedure calls DestroyWindow in response to user input, such as choosing the Cancel button. If
the user never closes the dialog box in this way, the application must call DestroyWindow.

DestroyWindow invalidates the window handle for the dialog box, so any subsequent calls to
functions that use the handle return error values. To prevent errors, the dialog box procedure
should notify the owner that the dialog box has been destroyed. Many applications maintain a
global variable containing the handle for the dialog box. When the dialog box procedure destroys
the dialog box, it also sets the global variable to NULL, indicating that the dialog box is no longer
valid.

The dialog box procedure must not call the EndDialog function to destroy a modeless dialog box.

Dialog Box Template
A dialog box template is binary data that describes the dialog box, defining its height, width, style,
and the controls it contains. To create a dialog box, Windows either loads a dialog box template
from the resources in the application's executable file or uses the template passed to it in global
memory by the application. In either case, the application must supply a template when creating a
dialog box.

A developer creates template resources by using a resource compiler or a dialog box editor. A
resource compiler converts a text description into a binary resource, and a dialog box editor saves
an interactively constructed dialog box as a binary resource.
Note An explanation of how to create template resources and add them to the application's
executable file is beyond the scope of this overview. For more information about creating template
resources and adding them to an executable file, see the documentation provided with your
application development tools.
To create a dialog box without using template resources, you must create a template in memory
and pass it to the CreateDialogIndirectParam or DialogBoxIndirectParam function, or to the
CreateDialogIndirect or DialogBoxIndirect macro.

A dialog box template in memory consists of a header that describes the dialog box, followed by
one or more additional blocks of data that describe each of the controls in the dialog box. The
template can use either the standard format or the extended format. In a standard template, the
header is a DLGTEMPLATE structure followed by additional variable-length arrays; and the data
for each control consists of a DLGITEMTEMPLATE structure followed by additional variable-
length arrays. In an extended dialog box template, the header uses the DLGTEMPLATEEX
format and the control definitions use the DLGITEMTEMPLATEEX format.

You can create a memory template by allocating a global memory object and filling it with the
standard or extended header and control definitions. A memory template is identical in form and
content to a template resource. Many applications that use memory templates first use the
LoadResource function to load a template resource into memory, then modify the loaded
resource to create a new memory template. For more information about creating a dialog box
template in memory, see Templates in Memory.

The following sections describe the styles, measurements, and other values used in a dialog box
template.

Dialog Box Template Styles
Every dialog box template specifies a combination of style values that define the appearance and
features of the dialog box. The style values can be window styles, such as WS_POPUP and
WS_SYSMENU, and dialog box styles, such as DS_MODALFRAME. The number and type of
styles for a template depends on the type and purpose of the dialog box.

Windows passes all window styles given in the template to the CreateWindowEx function when
creating the dialog box. Windows may pass one or more extended styles depending on the given
dialog box styles. For example, when the template specifies DS_MODALFRAME, Windows uses
WS_EX_DLGMODALFRAME when creating the dialog box. When the template specifies
DS_SYSMODAL, Windows uses WS_EX_TOPMOST. All other dialog box styles affect how
Windows manages the dialog box.

Most dialog boxes are pop-up windows that have a System menu and a title bar. Therefore, the
typical template specifies the WS_POPUP, WS_SYSMENU, and WS_CAPTION styles. The
template also specifies a border style: WS_BORDER for modeless dialog boxes, and
DS_MODALFRAME for modal dialog boxes. A template may specify a window type other than
pop-up (such as WS_OVERLAPPED) if it creates a customized window instead of a dialog box.

Windows always displays a modal dialog box regardless of whether the WS_VISIBLE style is
given. When the template for a modeless dialog box specifies the WS_VISIBLE style, Windows
automatically displays the dialog box when it is created. Otherwise, the application is responsible
for displaying the dialog box by using the ShowWindow function.

The template can specify the DS_SETFOREGROUND style to force Windows to bring the dialog
box to the foreground. This is especially useful for modal dialog boxes that require immediate
attention from the user regardless of whether the owner window is the foreground window.

Using the DS_ABSALIGN style, Windows interprets dialog box measurements as screen
coordinates; using the DS_SETFONT style, Windows uses a given font, instead of the system
font, to draw text in the dialog box client area and in the controls in the dialog box; the
DS_NOIDLEMSG style prevents a modal dialog box from sending WM_ENTERIDLE messages to
the owner window. These styles are described in more detail in later topics.

The DS_LOCALEDIT style does not apply to Win32-based applications.

Dialog boxes with the DS_SYSMODAL style receive the WS_EX_TOPMOST window style but no
other special properties or styles; this means the user still has access to other windows on the
desktop even though a DS_SYSMODAL dialog box may be displayed.

Dialog Box Measurements
Every dialog box template contains measurements that specify the position, width, and height of
the dialog box and the controls it contains. These measurements are device independent, so an
application can use a single template to create the same dialog box for all types of display
devices. This ensures that a dialog box will have the same proportions and appearance on all
screens despite differing resolutions and aspect ratios between screens.

Dialog box measurements are given in dialog base units. One horizontal unit is equal to one-
fourth of the average character width for the system font. One vertical unit is equal to one-eighth
of the average character height for the system font. An application can retrieve the number of
pixels per base unit for the current display by using the GetDialogBaseUnits function. An
application can convert measurements from dialog base units to pixels by using the
MapDialogRect function.

The template must specify the initial coordinates of the upper left corner of the dialog box. Usually
the coordinates are relative to the upper left corner of the owner window's client area. When the
template specifies the DS_ABSALIGN style or the dialog box has no owner, the position is relative
to the upper left corner of the screen. Windows sets this initial position when creating the dialog
box, but permits an application to adjust the position before displaying the dialog box. For
example, an application can retrieve the dimensions of the owner window, calculate a new
position that centers the dialog box in the owner window, and then set the position by using the
SetWindowPos function.

The template should specify a dialog box width and height that does not exceed the width and
height of the screen and ensures that all controls are within the client area of the dialog box.
Although Windows permits a dialog box to be any size, creating one that is too small or too large
can prevent the user from providing input, defeating the purpose of the dialog box. Many
applications use more than one dialog box when there are a large number of controls. In such
cases, the initial dialog box usually contains one or more buttons that the user can choose to
display the next dialog box.

Dialog Box Controls
The template specifies the position, width, height, style, identifier, and window class for each
control in the dialog box. Windows creates each control by passing this data to the
CreateWindowEx function. Controls are created in the order they are given in the template. The
template should specify the appropriate number, type, and order of controls to ensure that the
user can enter the input needed to complete the command associated with the dialog box.

For each control, the template specifies style values that define the appearance and operation of
the control. Every control is a child window and therefore must have the WS_CHILD style. To
ensure that the control is visible when the dialog box is displayed, each control must also have the
WS_VISIBLE style. Other commonly used window styles are WS_BORDER for controls that have
optional borders, WS_DISABLED for controls that should be disabled when the dialog box is
initially created, and WS_TABSTOP and WS_GROUP for controls that can be accessed using the
keyboard. The WS_TABSTOP and WS_GROUP styles are used in conjunction with the dialog
keyboard interface described later in this topic.

The template may also specify control styles specific to the control's window class. For example, a
template that specifies a button control must give a button control style such as
BS_PUSHBUTTON or BS_CHECKBOX. Windows passes the control styles to the control window
procedure through the WM_CREATE message, allowing the procedure to adapt the appearance
and operation of the control.

Windows converts the position coordinates and the width and height measurements from dialog
base units to pixels, before passing these to CreateWindowEx. When Windows creates a control,
it specifies the dialog box as the parent window. This means Windows always interprets the
position coordinates of the control as client coordinates, relative to the upper left corner of the
dialog box's client area.

The template specifies the window class for each control. A typical dialog box contains controls
belonging to the predefined control window classes, such as the button and edit control window
classes. In this case, the template specifies window classes by supplying the corresponding
predefined atom values for the classes. When a dialog box contains a control belonging to a
custom control window class, the template gives the name of that registered window class or the
atom value currently associated with the name.

Each control in a dialog box must have a unique identifier to distinguish it from other controls.
Controls send information to the dialog box procedure through WM_COMMAND messages, so
the control identifiers are essential for the procedure to determine which control sent a given
message. The only exception to this rule are control identifiers for static controls. Static controls
do not require unique identifiers because they send no WM_COMMAND messages.

To permit the user to close the dialog box, the template should specify at least one push button
and give it the control identifier IDCANCEL. To permit the user to choose between completing or
canceling the command associated with the dialog box, the template should specify two push
buttons, labeled OK and Cancel, with control identifiers of IDOK and IDCANCEL, respectively.

A template also specifies optional text and creation data for a control. The text typically provides
labels for button controls or specifies the initial content of a static text control. The creation data is
one or more bytes of data that Windows passes to the control window procedure when creating
the control. Creation data is useful for controls that require more information about their initial
content or style than is given by other data. For example, an application can use creation data to
set the initial setting and range for a scroll bar control.

System Menu
Windows gives a dialog box a System menu when the template specifies the WS_SYSMENU
style. To prevent inappropriate command input, Windows automatically disables all commands in
the menu except the Move and Close commands. The user can use the Move command to move
the dialog box. When the user chooses the Close command, Windows sends a WM_COMMAND
message to the dialog box procedure with the wParam parameter set to IDCANCEL. This is
identical to the message sent by the Cancel button when the user chooses it. The recommended
action for this message is to close the dialog box and cancel the requested command or task.

Although other menus in dialog boxes are not recommended, a dialog box template can specify a
menu by supplying the identifier or the name of a menu resource. In this case, Windows loads the
resource and creates the menu for the dialog box. Applications typically use menu identifiers or
names in templates when using the templates to create custom windows rather than dialog boxes.

Dialog Box Fonts
Windows draws all text in a dialog box using the system font by default. An application can direct
Windows to use another font by setting the DS_SETFONT style for the dialog box and specifying
a point size and typeface name. Although a dialog box template can specify a font, Windows
always uses the system font for the title and menus of the dialog box; the DS_SETFONT style
does not change this.

When the DS_SETFONT style is specified, the system sends a WM_SETFONT message to the
dialog box procedure and to each control as it creates the control. The dialog box procedure is
responsible for saving the font handle passed with the WM_SETFONT message and selecting the
handle into the display device context whenever it writes text to the window. Predefined controls
do this by default.

When the DS_SETFONT style is given, Windows uses the average character width of the font to
calculate the position and dimensions of the dialog box. Otherwise, it uses the average character
width of the system font.

Templates in Memory
A dialog box template in memory consists of a header that describes the dialog box, followed by
one or more additional blocks of data that describe each of the controls in the dialog box. The
template can use either the standard format or the extended format. In a standard template, the
header is a DLGTEMPLATE structure followed by additional variable-length arrays. The data for
each control consists of a DLGITEMTEMPLATE structure followed by additional variable-length
arrays. In an extended dialog box template, the header uses the DLGTEMPLATEEX format and
the control definitions use the DLGITEMTEMPLATEEX format.

To distinguish between a standard template and an extended template, check the first 16-bits of a
dialog box template. In an extended template, the first WORD is 0xFFFF; any other value
indicates a standard template.

If you create a dialog template in memory, you must ensure that the each of the
DLGITEMTEMPLATE or DLGITEMTEMPLATEEX control definitions are aligned on DWORD
boundaries. In addition, any creation data that follows a control definition must be aligned on a
DWORD boundary. All of the other variable-length arrays in a dialog box template must be aligned
on WORD boundaries.The Template HeaderIn both the standard and extended templates for dialog boxes, the header includes the following
general information:

· The location and dimensions of the dialog box
· The window and dialog box styles for the dialog box
· The number of controls in the dialog box. This value determines the number of

DLGITEMTEMPLATE or DLGITEMTEMPLATEEX control definitions in the template.
· An optional menu resource for the dialog box. The template can indicate that the dialog

box does not have a menu, or it can specify an ordinal value or null-terminated Unicode string
that identifies a menu resource in an executable file.

· The window class of the dialog box. This can be either the predefined dialog box class, or
an ordinal value or null-terminated Unicode string that identifies a registered window class.

· A null-terminated Unicode string that specifies the title for the dialog box window. If the
string is empty, the title bar of the dialog box is blank. If the dialog box does not have the
WS_CAPTION style, the system sets the title to the specified string but does not display it.

· If the dialog box has the DS_SETFONT style, the header specifies the point size and
typeface name of the font to use for the text in the client area and controls of the dialog box.

In an extended template, the DLGTEMPLATEEX header also specifies the following additional
information:

· The help context identifier that identifies the dialog box window when the system sends a
WM_HELP message.

· If the dialog box has the DS_SETFONT style, the header specifies the font weight and
indicates whether the font is italic.

The Control DefinitionsFollowing the template header is one or more control definitions that describe the controls of the
dialog box. In both the standard and extended templates, the dialog box header has a member
that indicates the number of control definitions in the template. In a standard template, each
control definition consists of a DLGITEMTEMPLATE structure followed by additional variable-
length arrays. In an extended template, the control definitions use the DLGITEMTEMPLATEEX
format.

In both the standard and extended templates, the control definition includes the following
information:

· The location and dimensions of the control.
· The window and control styles for the control.
· The control identifier.
· The window class of the control. This can be either the ordinal value of a predefined

system class or a null-terminated Unicode string that specifies the name of a registered
window class.

· A null-terminated Unicode string that specifies the initial text of the control, or an ordinal
value that identifies a resource, such as an icon, in an executable file.

· An optional variable-length block of creation data. When the system creates the control, it
passes a pointer to this data in the lParam parameter of the WM_CREATE message that it
sends to the control.

In an extended template, the control definition also specifies a help context identifier that identifies
the control when the system sends a WM_HELP message.

Dialog Box Procedure
A dialog box procedure is similar to a window procedure in that Windows sends messages to the
procedure when it has information to give or tasks to carry out. Unlike a window procedure, a
dialog box procedure never calls the DefWindowProc function. Instead, it returns the Boolean
value TRUE if it processes a message or FALSE if it does not.

Every dialog box procedure has the following form:BOOL APIENTRY DlgProc(hwndDlg, message, wParam, lParam)
HWND hwndDlg;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

switch (message) {
// Place message cases here.
default:
return FALSE;
}

}The procedure parameters serve the same purpose as in a window procedure, with the hwndDlg
parameter receiving the window handle of the dialog box.

Most dialog box procedures process the WM_INITDIALOG message and the WM_COMMAND
messages sent by the controls, but process few if any other messages. If a dialog box procedure
does not process a message, it must return FALSE to direct Windows to process the messages
internally. The only exception to this rule is the WM_INITDIALOG message. The dialog box
procedure must return TRUE to direct Windows to further process the WM_INITDIALOG
message. In any case, the procedure must not call DefWindowProc.

The WM_INITDIALOG Message
Windows does not send a WM_CREATE message to the dialog box procedure. Instead, it sends
a WM_INITDIALOG message when it creates the dialog box and all its controls but before it
displays the dialog box. The procedure should carry out any initialization required to ensure that
the dialog box displays the current settings associated with the command or task. For example,
when a dialog box contains a control to show the current drive and directory, the procedure must
determine the current drive and directory and set the control to that value.

The procedure can initialize controls by using functions such as SetDlgItemText and
CheckDlgButton. Because controls are windows, the procedure can also manipulate them by
using window-management functions such as EnableWindow and SetFocus. The procedure can
retrieve the window handle for a control by using the GetDlgItem function.

The dialog box procedure can change the contents, state, and position of any control as needed.
For example, in a dialog box that contains a list box of filenames and an Open button, the
procedure can disable the Open button until the user selects a file from the list. In this example,
the dialog box template specifies the WS_DISABLED style for the Open button and Windows
automatically disables the button when creating it. When the dialog box procedure receives a
notification message from the list box indicating that the user has selected a file, the procedure
calls the EnableWindow function to enable the Open button.

If the application creates the dialog box by using one of the functions DialogBoxParam,
DialogBoxIndirectParam, CreateDialogParam, or CreateDialogIndirectParam, the lParam
parameter for the WM_INITDIALOG message contains the extra parameter passed to the
function. Applications typically use this extra parameter to pass the address of additional
initialization information to the dialog box procedure, but the dialog box procedure must determine
the meaning of the parameter. If the application uses another function to create the dialog box,
Windows sets the lParam parameter to NULL.

Before returning from the WM_INITDIALOG message, the procedure should determine whether it
should set the input focus to a given control. If the dialog box procedure returns TRUE, Windows
automatically sets the input focus to the control whose window handle is in the wParam
parameter. If the control receiving the default focus is not appropriate, it can set the focus to the
appropriate control by using the SetFocus function. If the procedure sets the input focus, it must
return FALSE to prevent Windows from setting the default focus. The control receiving the default
input focus is always the first control given in the template that is visible, not disabled, and has the
WS_TABSTOP style. If no such control exists, Windows sets the default input focus to the first
control in the template.

The WM_COMMAND Message
A control can send a WM_COMMAND message to the dialog box procedure when the user
carries out an action in the control. These messages, called notification messages, inform the
procedure of user input and permit it to carry out appropriate responses.

All predefined controls, except static controls, send notification messages for selected user
actions. For example, a push button sends the BN_CLICKED notification message whenever the
user chooses the button. In all cases, the low-order word of the wParam parameter contains the
control identifier, the high-order word of wParam contains the notification code, and the lParam
parameter contains the control window handle.

The dialog box procedure should monitor and process notification messages. In particular, the
procedure must process messages having the IDOK or IDCANCEL identifiers; these messages
represent a request by the user to close the dialog box. The procedure should close the dialog
box by using the EndDialog function for modal dialog boxes and the DestroyWindow function for
modeless dialog boxes.

Windows also sends WM_COMMAND messages to the dialog box procedure if the dialog box has
a menu, such as the System menu, and the user chooses a command. In particular, Windows
sends a WM_COMMAND message with the wParam parameter set to IDCANCEL whenever the
user chooses the Close command in the dialog box's System menu. The message is nearly
identical to the notification message sent by the Cancel button and should be processed in exactly
the same way.

The WM_PARENTNOTIFY Message
A control sends a WM_PARENTNOTIFY message whenever the user presses a mouse button
while pointing to the control. Some applications interpret this message as a signal to carry out an
action related to the control, such as displaying a line of text describing the purpose of the control.

Windows also sends WM_PARENTNOTIFY messages when it creates and destroys a window,
but not for controls created from a dialog box template. Windows prevents these messages by
specifying the WS_EX_NOPARENTNOTIFY style when creating the controls. An application
cannot override this default behavior unless it creates its own controls for the dialog box.

Control-Color Messages
Controls and Windows can send control-color messages when they want the dialog box
procedure to paint the background of a control or other window by using a specific brush and
colors. This can be useful when applications override the default colors used in dialog boxes and
their controls. Following are the control-color messages, which have replaced the
WM_CTLCOLOR message.
WM_CTLCOLORBTN
WM_CTLCOLORDLG
WM_CTLCOLOREDIT
WM_CTLCOLORLISTBOX
WM_CTLCOLORMSGBOX
WM_CTLCOLORSCROLLBAR

WM_CTLCOLORSTATIC

A control sends a control-color message to the dialog box procedure just before it paints its own
background. The message allows the procedure to specify which brush to use and to set the
background and foreground colors. The procedure specifies a brush by returning the brush
handle. To set the background and foreground colors, the procedure uses the SetBkColor and
SetTextColor functions with the control's display device context. The control-color message
passes a handle of the display device context to the procedure in the message's wParam
parameter.

Windows sends a WM_CTLCOLORDLG message to the dialog box procedure if the procedure
does not process the WM_ERASEBKGND message. The predefined dialog box class does not
have a class background brush, so this message lets the procedure define its own background
without having to include the code to carry out the work.

In any case, when a dialog box procedure does not process a control-color message, Windows
uses a brush with the default window color to paint the background for all controls and windows
except scroll bars. An application can retrieve the default window color by passing the
COLOR_WINDOW value to the GetSysColor function. While the background is painted, the
foreground color for the display device context is set to the default text color
(COLOR_WINDOWTEXT). For scroll bars, Windows uses a brush having the default scroll bar
color (COLOR_SCROLLBAR). In this case, the background and foreground colors for the display
device context are set to white and black, respectively.

Dialog Box Default Message Processing
The window procedure for the predefined dialog box class carries out default processing for all
messages that the dialog box procedure does not process. When the dialog box procedure
returns FALSE for any message, the predefined window procedure checks the messages and
carries out the following default actions:

Message Default action

DM_GETDEFID You can send this message to a dialog
box. The dialog box returns the control
identifier of the default push button, if the
dialog box has one; otherwise, it returns
zero.

DM_REPOSITION You can send this message to a top-level
dialog box. The dialog box repositions
itself so it fits within the desktop area.

DM_SETDEFID You can send this message to a dialog
box. The dialog box sets the default push
button to the control specified by the
control identifier in the wParam parameter.

WM_ACTIVATE Restores the input focus to the control
identified by the previously saved handle if
the dialog box is activated. Otherwise, the
procedure saves the handle of the control
having the input focus.

WM_CHARTOITEM Returns zero.
WM_CLOSE Posts the BN_CLICKED notification

message to the dialog box, specifying
IDCANCEL as the control identifier. If the
dialog box has an IDCANCEL control
identifier and the control is currently
disabled, the procedure sounds a warning
and does not post the message.

WM_COMPAREITEM Returns zero.
WM_ERASEBKGND Fills the dialog box client area by using

either the brush returned from the
WM_CTLCOLORDLG message or with the
default window color.

WM_GETFONT Returns the handle of the application-
defined dialog box font.

WM_INITDIALOG Returns zero.
WM_LBUTTONDOWN Sends a CB_SHOWDROPDOWN

message to the combo box having the
input focus, directing the control to hide its
drop-down list box. The procedure calls
DefWindowProc to complete the default
action.

WM_NCDESTROY Releases global memory allocated for edit
controls in the dialog box (applies to dialog
boxes in Windows-based applications that
specify the DS_LOCALEDIT style) and
frees any application-defined font (applies
to dialog boxes that specify the
DS_SETFONT style). The procedure calls
the DefWindowProc function to complete
the default action.

WM_NCLBUTTONDOWN Sends a CB_SHOWDROPDOWN
message to the combo box having the
input focus, directing the control to hide its
drop-down list box. The procedure calls
DefWindowProc to complete the default
action.

WM_NEXTDLGCTL Sets the input focus to the next or previous
control in the dialog box, to the control

identified by the handle in the wParam
parameter, or to the first control in the
dialog box that is visible, not disabled, and
has the WS_TABSTOP style. The
procedure ignores this message if the
current window with the input focus is not a
control.

WM_SETFOCUS Sets the input focus to the control
identified by a previously saved control
window handle. If no such handle exists,
the procedure sets the input focus to the
first control in the dialog box template that
is visible, not disabled, and has the
WS_TABSTOP style. If no such control
exists, the procedure sets the input focus
to the first control in the template.

WM_SHOWWINDOW Saves the handle of the control having the
input focus if the dialog box is being
hidden, then calls DefWindowProc to
complete the default action.

WM_SYSCOMMAND Saves the handle of the control having the
input focus if the dialog box is being
minimized, then calls DefWindowProc to
complete the default action.

WM_VKEYTOITEM Returns zero.

The predefined window procedure passes all other messages to DefWindowProc for default
processing.

Dialog Box Keyboard Interface
Windows provides a special keyboard interface for dialog boxes that carries out special
processing for several keys. The interface generates messages that correspond to certain buttons
in the dialog box or changes the input focus from one control to another. Following are the keys
used in this interface and their respective actions.

Key Action

ALT+mnemonic Moves the input focus to the first control (having the
WS_TABSTOP style) after the static control
containing the given mnemonic.

DOWN Moves the input focus to the next control in the
group.

ENTER Sends a WM_COMMAND message to the dialog
box procedure. The wParam parameter is set to
IDOK or control identifier of the default push button.

ESC Sends a WM_COMMAND message to the dialog
box procedure. The wParam parameter is set to
IDCANCEL.

LEFT Moves the input focus to the previous control in the
group.

mnemonic Moves the input focus to the first control (having the
WS_TABSTOP style) after the static control
containing the given mnemonic.

RIGHT Moves the input focus to the next control in the
group.

SHIFT+TAB Moves the input focus to the previous control that
has the WS_TABSTOP style.

TAB Moves the input focus to the next control that has the
WS_TABSTOP style.

UP Moves the input focus to the previous control in the
group.

The Win32 API automatically provides the keyboard interface for all modal dialog boxes. It
does not provide the interface for modeless dialog boxes unless the application calls the
IsDialogMessage function to filter messages in its main message loop. This means that the
application must pass the message to IsDialogMessage immediately after retrieving the message
from the message queue. The function processes the messages if it is for the dialog box and
returns a nonzero value to indicate that the message has been processed and must not be
passed to the TranslateMessage or DispatchMessage function.

Because the dialog box keyboard interface uses direction keys to move between controls in a
dialog box, an application cannot use these keys to scroll the contents of any modal dialog box or
any modeless dialog box for which IsDialogMessage is called. When a dialog box has scroll bars,
the application must provide an alternate keyboard interface for the scroll bars. Note that the
mouse interface for scrolling is available when the system includes a mouse.

The WS_TABSTOP Style
The TAB key and SHIFT+TAB keys have no effect when the controls in the dialog box do not have
the WS_TABSTOP style. Windows looks for this style as it searches for the next control in the
dialog box to receive the input focus.

When the user presses TAB or SHIFT+TAB, Windows first determines whether the control having
the input focus processes these keys. It sends the control a WM_GETDLGCODE message, and if
the control returns DLGC_WANTTAB, Windows passes the keys to the control. Otherwise,
Windows uses the GetNextDlgTabItem function to locate the next control that is visible, not
disabled, and that has the WS_TABSTOP style. The search starts with the control currently
having the input focus and proceeds in the order in which the controls were created ¾ that is, the
order in which they are defined in the dialog box template. When the system locates a control
having the required characteristics, Windows moves the input focus to it.

An application can also use GetNextDlgTabItem to locate controls having the WS_TABSTOP
style. The function retrieves the window handle of the next or previous control having the
WS_TABSTOP style without moving the input focus.

The WS_GROUP Style
By default, Windows moves the input focus to the next or previous control whenever the user
presses a direction key. As long as the current control with the input focus does not process these
keys and the next or previous control is not a static control, Windows continues to move the input
focus through all controls in the dialog box as the user continues to press the direction keys.

An application can use the WS_GROUP style to modify this default behavior. The style marks the
beginning of a group of controls. If a control in the group has the input focus when the user begins
pressing direction keys, the focus remains in the group. In general, the first control in a group
must have the WS_GROUP style and all other controls in the group must not have this style. All
controls in the group must be contiguous ¾ that is, they must have been created consecutively
with no intervening controls.

When the user presses a direction key, Windows first determines whether the current control
having the input focus processes the direction keys. Windows sends a WM_GETDLGCODE
message to the control and if the control returns the DLGC_WANTARROWS value, passes the
key to the control. Otherwise, Windows uses the GetNextDlgGroupItem function to determine the
next control in the group.

GetNextDlgGroupItem searches controls in the order (or reverse order) they were created. If the
user presses the RIGHT or DOWN key, GetNextDlgGroupItem returns the next control if that
control does not have WS_GROUP style. Otherwise, the function reverses the order of the search
and returns the first control that has the WS_GROUP style. If the user presses the LEFT or UP key,
the function returns the previous control unless the current control already has the WS_GROUP
style. If the current control has this style, the function reverses the order of the search, locates the
first control having the WS_GROUP style, and returns the control that immediately precedes the
located control.

Once Windows has the next or previous control, it sends a WM_GETDLGCODE message to the
control to determine the control type. Windows then moves the input focus to control if it is not a
static control. If the control is an automatic radio button, Windows sends a BM_CLICK message to
it. An application can also use GetNextDlgGroupItem to locate controls in a group.

Generally, the first control in the group combines the WS_GROUP and WS_TABSTOP styles so
that the user can move from group to group by using the TAB key. If the group contains radio
buttons, the application should apply the WS_TABSTOP style only to the first control in the group.
Windows automatically moves the style when the user moves between controls in the group. This
ensures that the input focus will always be on the most recently selected control when the user
moves to the group using the TAB key.

Mnemonics
A mnemonic is a selected letter or digit in the label of a button or in the text of a static control.
Windows moves the input focus to the control associated with the mnemonic whenever the user
either presses the key that corresponds to the mnemonic or presses this key and the ALT key in
combination. Mnemonics provide a quick way for the user to move to a given control by using the
keyboard.

An application creates a mnemonic for a control by inserting the ampersand (&) immediately
before the selected letter or digit in the label or text for the control. In most cases, the null-
terminated string provided with the control in the dialog box template contains the ampersand.
However, an application can create a mnemonic at any time by replacing a control's existing label
or text by using the SetDlgItemText function. Only one mnemonic can be given for each control.
Although it is recommended, mnemonics in a dialog box need not be unique.

When the user presses a letter or digit key, Windows first determines whether the current control
having the input focus processes the key. Windows sends a WM_GETDLGCODE message to the
control, and if the control returns the DLGC_WANTALLKEYS or DLG_WANTMESSAGE value,
Windows passes the key to the control. Otherwise, it searches for a control whose mnemonic
matches the given letter or digit. It continues to search until it locates a control or has examined all
controls. During the search, it skips any static controls that have the SS_NOPREFIX style.

If Windows locates a static control and the control is not disabled, Windows moves the input focus
to the first control after the static control that is visible, not disabled, and that has the
WS_TABSTOP style. If Windows locates some other control that has a matching mnemonic, it
moves the input focus to that control. If the control is a default push button, Windows sends a
BN_CLICKED notification message to the dialog box procedure. If the control is another style of
button and there is no other control in the dialog box having the same mnemonic, Windows sends
the BM_CLICK message to the control.

Dialog Box Settings
The dialog box settings are the current selections and values for the controls in the dialog box.
The dialog box procedure is responsible for initializing the controls to these settings when creating
the dialog box. It is also responsible for retrieving the current settings from the controls before
destroying the dialog box. The methods used to initialize and retrieve settings depend on the type
of control.

Radio Buttons and Check Boxes
Dialog boxes use radio buttons and check boxes to let the user choose from a list of options.
Radio buttons let the user choose from mutually exclusive options; check boxes let the user pick a
combination of options.

The dialog box procedure can set the initial state of a check box by using the CheckDlgButton
function, which sets or clears the check box. For radio buttons in a group of mutually exclusive
radio buttons, the dialog box procedure can use the CheckRadioButton function to set the
appropriate radio button and automatically clear any other radio button.

Before a dialog box terminates, the dialog box procedure can check the state of each radio button
and check box by using the IsDlgButtonChecked function, which returns the current state of the
button. A dialog box typically saves this information to initialize the buttons the next time it creates
the dialog box.

Dialog Box Edit Controls
Many dialog boxes have edit controls that let the user supply text as input. Most dialog box
procedures initialize an edit control when the dialog box first starts. For example, the dialog box
procedure may place a proposed filename in the control that the user can then select, modify, or
replace. The dialog box procedure can set the text in an edit control by using the SetDlgItemText
function, which copies text from a given buffer to the edit control. When the edit control receives
the input focus, it automatically selects the complete text for editing.

Because edit controls do not automatically return their text to the dialog box, the dialog box
procedure must retrieve the text before it terminates. It can retrieve the text by using the
GetDlgItemText function, which copies the edit control text to a buffer. The dialog box procedure
typically saves this text to initialize the edit control later or passes it on to the parent window for
processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog box procedure
can retrieve a number from an edit control by using the GetDlgItemInt function, which retrieves
the text from the edit control and converts the text to a decimal value. The user types the number
in decimal digits. It can be either signed or unsigned. The dialog box procedure can display an
integer by using the SetDlgItemInt function. SetDlgItemInt converts a signed or unsigned integer
to a string of decimal digits.

List Boxes, Combo Boxes, and Directory Listings
Some dialog boxes display lists of names from which the user can select one or more names. To
display a list of filenames, for example, a dialog box typically uses a list box and the DlgDirList
and DlgDirSelectEx functions. The DlgDirList function automatically fills a list box with the
filenames in the current directory. The DlgDirSelect function retrieves the selected filename from
the list box. Together, these two functions provide a convenient way for a dialog box to display a
directory listing so the user can select a file without having to type its name and location.

A dialog box can also use a combo box to display a list of filenames. The DlgDirListComboBox
function automatically fills a list box portion of the combo box with the filenames in the current
directory. The DlgDirSelectComboBoxEx function retrieves a selected filename from the list box
portion.

Dialog Box Control Messages
Many controls recognize predefined messages that, when received by controls, cause them to
carry out some action. For example, the BM_SETCHECK message sets the check in a check box
and the EM_GETSEL message retrieves the portion of the control's text that is currently selected.
The control messages give a dialog procedure greater and more flexible access to the controls
than the standard functions, so they are often used when the dialog box requires complex
interactions with the user.

A dialog box procedure can send a message to a control by supplying the control identifier and
using the SendDlgItemMessage function, which is identical to the SendMessage function,
except that it uses a control identifier instead of a window handle to identify the control that is to
receive the message. A given message may require that the dialog procedure send parameters
with the message, and the message may have corresponding return values. The operation and
requirements of each control message depends on the purpose of the message and the control
that processes it.

For more information about the control messages, see Controls.

Custom Dialog Boxes
An application can create custom dialog boxes by using an application-defined window class for
the dialog boxes instead of using the predefined dialog box class. Applications typically use this
method when a dialog box is their main window, but it is also useful for creating modal and
modeless dialog boxes for applications that have standard overlapping windows.

The application-defined window class allows the application to define a window procedure for the
dialog box and process messages before sending them to the dialog box procedure. It also lets
the application define a class icon, a class background brush, and a class menu for the dialog
box. The application must register the window class before attempting to create a dialog box and
must provide the dialog box template with the atom value or name of the window class.

Many applications create a new dialog box class by first retrieving the class information for the
predefined dialog box class, and passing it to the GetClassInfo function, which fills a
WNDCLASS structure with the information. The application modifies individual members of the
structure, such as the class name, brush, and icon, then registers the new class by using the
RegisterClass function. If an application fills the WNDCLASS structure on its own, it must set the
cbWndExtra member to the DLGWINDOWEXTRA, which is the number of extra bytes Windows
requires for each dialog box. If an application also uses extra bytes for each dialog box, they must
be beyond the extra bytes required by Windows.

The window procedure for the custom dialog box has the same parameters and requirements as
any other window procedure. Unlike other window procedures, however, the window procedure
for this dialog box should call the DefDlgProc function instead of the DefWindowProc function for
any messages it does not process. DefDlgProc carries out the same default message processing
as the window procedure for the predefined dialog box, which includes calling the dialog box
procedure.

An application can also create custom dialog boxes by subclassing the window procedure of the
predefined dialog box. The SetWindowLong function lets an application set the address of the
window procedure for a given window. The application may also attempt to subclass by using the
SetClassLong function, but doing so affects all dialog boxes in the system, not just those
belonging to the application.

Applications that create custom dialog boxes sometimes provide an alternate keyboard interface
for the dialog boxes. For modeless dialog boxes, this may mean the application does not call the
IsDialogMessage function and instead processes all keyboard input in the custom window
procedure. In such cases, the application can use the WM_NEXTDLGCTL message to minimize
the code needed to move the input focus from one control to another. This message, when
passed to DefDlgProc, moves the input focus to a specified control and updates the appearance
of the controls, such as moving the default push button border or setting an automatic radio
button.

Using Dialog Boxes
You use dialog boxes to display information and prompt for input from the user. Your application
loads and initializes the dialog box, processes user input, and destroys the dialog box when the
user finishes the task. The process for handling dialog boxes varies, depending on whether the
dialog box is modal or modeless. A modal dialog box requires the user to close the dialog box
before activating another window in the application. However, the user can activate windows in
different applications. A modeless dialog box does not require an immediate response from the
user. It is similar to a main window containing controls. The following sections discuss how to use
both types of dialog boxes.

· Displaying a message box
· Creating a modal dialog box
· Creating a modeless dialog box
· Initializing a dialog box
· Creating a template in memory

Displaying a Message Box
The simplest form of modal dialog box is the message box. Most applications use message boxes
to warn the user of errors and to prompt for directions on how to proceed after an error has
occurred. You create a message box by using the MessageBox or MessageBoxEx function,
specifying the message and the number and type of buttons to display. Windows creates a modal
dialog box, providing its own dialog box template and procedure. After the user closes the
message box, MessageBox or MessageBoxEx returns a value identifying the button chosen by
the user to close the message box.

In the following example, the application displays a message box if the fError variable is TRUE.
The message box displays the message describing the error. The MB_OKCANCEL style directs
MessageBox to provide two buttons with which the user can choose how to proceed:if (fError) {

if (MessageBox(hwndDlg, SZNOTFOUND, SZDELETEITEM,
MB_OKCANCEL)==IDOK)
.
. // Prompt for a new item name and repeat the command.
.
else
.
. // Cancel the command.
.

}In this example, SZNOTFOUND and SZDELETEITEM are application-defined, null-terminated
strings that represent the message text and the title for the message box.

Creating a Modal Dialog Box
You create a modal dialog box by using the DialogBox function. You must specify the identifier or
name of a dialog box template resource and the address of the dialog box procedure. The
DialogBox function loads the template, displays the dialog box, and processes all user input until
the user closes the dialog box.

In the following example, the application displays a modal dialog box when the user chooses a
Delete Item command from an application menu. The dialog box contains an edit control (in which
the user enters the name of an item) and OK and Cancel buttons. The control identifiers for these
controls are ID_ITEMNAME, IDOK, and IDCANCEL, respectively.

The first part of the example consists of the statements that create the modal dialog box. These
statements, in the window procedure for the application's main window, create the dialog box
when the system receives a WM_COMMAND message having the IDM_DELETEITEM command
identifier. The second part of the example is the dialog box procedure, which retrieves the
contents of the edit control and closes the dialog box upon receiving a WM_COMMAND message.

The following statements create the modal dialog box. The dialog box template is a resource in
the application's executable file and has the resource identifier DLG_DELETEITEM:case WM_COMMAND:

switch (LOWORD(wParam)) {
case IDM_DELETEITEM:
if (DialogBox(hinst,
MAKEINTRESOURCE(DLG_DELETEITEM),
hwnd, (DLGPROC)DeleteItemProc)==IDOK)

.

. // Complete the command; szItemName

. // contains the name of the item to

. // delete.

.
else

.

. // Cancel the command.

.
break;
}
return 0L;In this example, the application identifies its main window as the owner window for the dialog box.

When Windows initially displays the dialog box, its position is relative to the upper left corner of
the owner window's client area. The application uses the return value from DialogBox to
determine whether to proceed with the command or cancel it. The following statements define the
dialog box procedure.char szItemName[80]; // receives name of item to delete.
BOOL CALLBACK DeleteItemProc(hwndDlg, message, wParam, lParam)
HWND hwndDlg;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

switch (message) {
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDOK:
if (!GetDlgItemText(hwndDlg, ID_ITEMNAME,

szItemName, 80))
*szItemName=0;
// Fall through.
case IDCANCEL:
EndDialog(hwndDlg, wParam);
return TRUE;
}
}
return FALSE;

}In this example, the procedure uses GetDlgItemText to retrieve the current text from the edit
control identified by ID_ITEMNAME. The procedure then calls the EndDialog function to set the
dialog box's return value to either IDOK or IDCANCEL, depending on the message received, and
to begin the process of closing the dialog box. The IDOK and IDCANCEL identifiers correspond to
the OK and Cancel buttons. After the procedure calls EndDialog, Windows sends additional
messages to the procedure to destroy the dialog box and returns the dialog box's return value
back to the function that created the dialog box.

Creating a Modeless Dialog Box
You create a modeless dialog box by using the CreateDialog function, specifying the identifier or
name of a dialog box template resource and the address of the dialog box procedure.
CreateDialog loads the template, creates the dialog box, and optionally displays it. Your
application is responsible for retrieving and dispatching user input messages to the dialog box
procedure.

In the following example, the application displays a modeless dialog box ¾ if it is not already
displayed ¾ when the user chooses a Go To command from an application menu. The dialog box
contains an edit control, a check box, and OK and Cancel buttons. The dialog box template is a
resource in the application's executable file and has the resource identifier DLG_GOTO. The user
enters a line number in the edit control and checks the check box to specify that the line number is
relative to the current line. The control identifiers are ID_LINE, ID_ABSREL, IDOK, and
IDCANCEL.

The statements in the first part of the example create the modeless dialog box. These statements,
in the window procedure for the application's main window, create the dialog box when the
window procedure receives a WM_COMMAND message having the IDM_GOTO command
identifier, but only if the global variable hwndGoto does not already contain a valid handle. The
second part of the example is the application's main message loop. The loop includes the
IsDialogMessage function to ensure that the user can use the dialog box keyboard interface in
this modeless dialog box. The third part of the example is the dialog box procedure. The
procedure retrieves the contents of the edit control and check box when the user chooses the OK
button. The procedure destroys the dialog box when the user chooses the Cancel button.HWND hwndGoto = NULL; // window handle of dialog box

.

.

.
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDM_GOTO:
if (!IsWindow(hwndGoto)) {
hwndGoto = CreateDialog(hinst,
MAKEINTRESOURCE(DLG_GOTO),
hwnd, (DLGPROC) GoToProc);
ShowWindow(hwndGoto, SW_SHOW);
}
break;
}
return 0L;In the preceding statements, CreateDialog is called only if hwndGoto does not contain a valid

window handle. This ensures that the application does not display two dialog boxes at the same
time. To support this method of checking, the dialog procedure must set hwndGoto to NULL when
it destroys the dialog box.

The message loop for an application consists of the following statements:while (GetMessage(&msg, NULL, NULL, NULL)) {
if (!IsWindow(hwndGoto) || !IsDialogMessage(hwndGoto, &msg)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}The loop checks the validity of the window handle for the dialog box and only calls the
IsDialogMessage function if the handle is valid. IsDialogMessage only processes the message if
it belongs to the dialog box. Otherwise, it returns FALSE and the loop dispatches the message to
the appropriate window.

The following statements define the dialog box procedure:int iLine; // receives line number
BOOL fRelative; // receives check box status

.

.

.
BOOL CALLBACK GoToProc(hwndDlg, message, wParam, lParam)
HWND hwndDlg;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

BOOL fError;
switch (message) {
case WM_INITDIALOG:
CheckDlgButton(hwndDlg, ID_ABSREL, fRelative);
return TRUE;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDOK:
fRelative = IsDlgButtonChecked(hwndDlg,

ID_ABSREL);
iLine = GetDlgItemInt(hwndDlg, ID_LINE,

&fError, fRelative);
if (fError) {

MessageBox(hwndDlg, SZINVALIDNUMBER,
SZGOTOERR, MB_OK);
SendDlgItemMessage(hwndDlg, ID_LINE,
EM_SETSEL, 0, -1L);

} else
.
. // Notify the owner window to carry
. // out the command.
.

return TRUE;
case IDCANCEL:
DestroyWindow(hwndDlg);
hwndGoto = NULL;
return TRUE;
}
}
return FALSE;

}In the preceding statements, the procedure processes the WM_INITDIALOG and
WM_COMMAND messages. During WM_INITDIALOG processing, the procedure initializes the
check box by passing the current value of the global variable fRelative to CheckDlgButton. The
procedure then returns TRUE to direct Windows to set the default input focus.

During WM_COMMAND processing, the procedure closes the dialog box only if the user chooses
the Cancel button ¾ that is, the button having the IDCANCEL identifier. The procedure must call
DestroyWindow to close a modeless dialog box. Notice that the procedure also sets the
hwndGoto variable to NULL to ensure that other statements that depend on this variable operate
correctly.

If the user chooses the OK button, the procedure retrieves the current state of the check box and
assigns it to the fRelative variable. It then uses the variable to retrieve the line number from the
edit control. GetDlgItemInt translates the text in the edit control into an integer. The value of
fRelative determines whether the function interprets the number as a signed or unsigned value. If
the edit control text is not a valid number, GetDlgItemInt sets the value of the fError variable to
nonzero. The procedure checks this value to determine whether to display an error message or
carry out the command. In the event of an error, the dialog box procedure sends a message to the
edit control, directing it to select the text in the control so that the user can easily replace it. If
GetDlgItemInt does not return an error, the procedure can either carry out the requested
command itself or send a message to the owner window, directing it to carry out the command.

Initializing a Dialog Box
You initialize the dialog box and its contents while processing the WM_INITDIALOG message.
The most common task is to initialize the controls to reflect the current dialog box settings.
Another common task is to center a dialog box on the screen or within its owner window. A useful
task for some dialog boxes is to set the input focus to a given control rather than accept the
default input focus.

In the following example, the dialog box procedure centers the dialog box and sets the input focus
while processing the WM_INITDIALOG message. To center the dialog box, the procedure
retrieves the window rectangles for the dialog box and the owner window and calculates a new
position for the dialog box. To set the input focus, the procedure checks the wParam parameter to
determine the identifier of the default input focus:HWND hwndOwner;
RECT rc, rcDlg, rcOwner;

case WM_INITDIALOG:
// Get the owner window and dialog box rectangles.
if ((hwndOwner = GetParent(hwndDlg)) == NULL)
hwndOwner = GetDesktopWindow();
GetWindowRect(hwndOwner, &rcOwner);
GetWindowRect(hwndDlg, &rcDlg);
CopyRect(&rc, &rcOwner);
// Offset the owner and dialog box rectangles so that
// right and bottom values represent the width and
// height, and then offset the owner again to discard
// space taken up by the dialog box.
OffsetRect(&rcDlg, -rcDlg.left, -rcDlg.top);
OffsetRect(&rc, -rc.left, -rc.top);
OffsetRect(&rc, -rcDlg.right, -rcDlg.bottom);
// The new position is the sum of half the remaining
// space and the owner's original position.
SetWindowPos(hwndDlg,
HWND_TOP,
rcOwner.left + (rc.right / 2),
rcOwner.top + (rc.bottom / 2),
0, 0,// ignores size arguments
SWP_NOSIZE);
if (GetDlgCtrlID((HWND) wParam) != ID_ITEMNAME) {
SetFocus(GetDlgItem(hwndDlg, ID_ITEMNAME));
return FALSE;
}
return TRUE;In the preceding statements, the procedure uses the GetParent function to retrieve the owner

window handle for a dialog box. The function returns the owner window handle for dialog boxes,
and the parent window handle for child windows. Because an application can create a dialog box
that has no owner, the procedure checks the returned handle and uses the GetDesktopWindow
function to retrieve the desktop window handle, if necessary. After calculating the new position,
the procedure uses the SetWindowPos function to move the dialog box, specifying the
HWND_TOP value to ensure that the dialog box remains on top of the owner window.

Before setting the input focus, the procedure checks the control identifier of the default input
focus. Windows passes the window handle of the default input focus in the wParam parameter.
The GetDlgCtrlID function returns the identifier for the control identified by the window handle. If
the identifier does not match the correct identifier, the procedure uses the SetFocus function to
set the input focus. The GetDlgItem function is required to retrieve the window handle of the
desired control.

Creating a Template in Memory
Applications sometimes adapt or modify the content of dialog boxes depending on the current
state of the data being processed. In such cases, it is not practical to provide all possible dialog
box templates as resources in the application's executable file. But creating templates in memory
gives the application more flexibility to adapt to any circumstances.

In the following example, the application creates a template in memory for a modal dialog box that
contains a message and OK and Help buttons.

In a dialog template, all character strings, such as the dialog box and button titles, must be
Unicode strings. This example uses the MultiByteToWideChar function to generate these
Unicode strings, because both Windows NT and Windows 95 support MultiByteToWideChar

The DLGITEMTEMPLATE structures in a dialog template must be aligned on DWORD
boundaries. To align these structures, this example uses a helper routine that takes an input
pointer and returns the closest pointer that is aligned on a DWORD (4 byte) boundary.#define ID_HELP 150
#define ID_TEXT 200
LPWORD lpwAlign (LPWORD lpIn)
{

ULONG ul;
ul = (ULONG) lpIn;
ul +=3;
ul >>=2;
ul <<=2;
return (LPWORD) ul;

}
LRESULT DisplayMyMessage(HINSTANCE hinst, HWND hwndOwner,

LPSTR lpszMessage)
{

HGLOBAL hgbl;
LPDLGTEMPLATE lpdt;
LPDLGITEMTEMPLATE lpdit;
LPWORD lpw;
LPWSTR lpwsz;
LRESULT ret;
int nchar;
hgbl = GlobalAlloc(GMEM_ZEROINIT, 1024);
if (!hgbl)
return -1;
lpdt = (LPDLGTEMPLATE)GlobalLock(hgbl);
// Define a dialog box.
lpdt->style = WS_POPUP | WS_BORDER | WS_SYSMENU
| DS_MODALFRAME | WS_CAPTION;
lpdt->cdit = 3; // number of controls
lpdt->x = 10; lpdt->y = 10;
lpdt->cx = 100; lpdt->cy = 100;
lpw = (LPWORD) (lpdt + 1);
*lpw++ = 0; // no menu
*lpw++ = 0; // predefined dialog box class (by default)
lpwsz = (LPWSTR) lpw;
nchar = 1+ MultiByteToWideChar (CP_ACP, 0, "My Dialog",

-1, lpwsz, 50);
lpw += nchar;
//-----------------------
// Define an OK button.
//-----------------------
lpw = lpwAlign (lpw); // align DLGITEMTEMPLATE on DWORD boundary
lpdit = (LPDLGITEMTEMPLATE) lpw;
lpdit->x = 10; lpdit->y = 70;
lpdit->cx = 80; lpdit->cy = 20;
lpdit->id = IDOK; // OK button identifier
lpdit->style = WS_CHILD | WS_VISIBLE | BS_DEFPUSHBUTTON;
lpw = (LPWORD) (lpdit + 1);
*lpw++ = 0xFFFF;
*lpw++ = 0x0080; // button class
lpwsz = (LPWSTR) lpw;
nchar = 1+MultiByteToWideChar (CP_ACP, 0, "OK", -1, lpwsz, 50);
lpw += nchar;
lpw = lpwAlign (lpw); // align creation data on DWORD boundary
*lpw++ = 0; // no creation data
//-----------------------
// Define a Help button.
//-----------------------
lpw = lpwAlign (lpw); // align DLGITEMTEMPLATE on DWORD boundary
lpdit = (LPDLGITEMTEMPLATE) lpw;
lpdit->x = 55; lpdit->y = 10;
lpdit->cx = 40; lpdit->cy = 20;
lpdit->id = ID_HELP; // Help button identifier
lpdit->style = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;
lpw = (LPWORD) (lpdit + 1);
*lpw++ = 0xFFFF;
*lpw++ = 0x0080; // button class atom
lpwsz = (LPWSTR) lpw;
nchar = 1+MultiByteToWideChar (CP_ACP, 0, "Help", -1, lpwsz, 50);
lpw += nchar;
lpw = lpwAlign (lpw); // align creation data on DWORD boundary
*lpw++ = 0; // no creation data
//-----------------------
// Define a static text control.
//-----------------------
lpw = lpwAlign (lpw); // align DLGITEMTEMPLATE on DWORD boundary
lpdit = (LPDLGITEMTEMPLATE) lpw;
lpdit->x = 10; lpdit->y = 10;
lpdit->cx = 40; lpdit->cy = 20;
lpdit->id = ID_TEXT; // text identifier
lpdit->style = WS_CHILD | WS_VISIBLE | SS_LEFT;
lpw = (LPWORD) (lpdit + 1);
*lpw++ = 0xFFFF;
*lpw++ = 0x0082;// static class
for (lpwsz = (LPWSTR)lpw;
*lpwsz++ = (WCHAR) *lpszMessage++;
);
lpw = (LPWORD)lpwsz;
lpw = lpwAlign (lpw); // align creation data on DWORD boundary
*lpw++ = 0; // no creation data
GlobalUnlock(hgbl);
ret = DialogBoxIndirect(hinst, (LPDLGTEMPLATE) hgbl,
hwndOwner, (DLGPROC) DialogProc);
GlobalFree(hgbl);
return ret;

}

Dialog Box Reference
The following functions, structures, and messages are associated with dialog boxes.

Dialog Box Functions
Following are the functions used to create and manage dialog boxes and controls within dialog
boxes.
CreateDialog
CreateDialogIndirect
CreateDialogIndirectParam
CreateDialogParam
DefDlgProc
DialogBox
DialogBoxIndirect
DialogBoxIndirectParam
DialogBoxParam
DialogProc
EndDialog
GetDialogBaseUnits
GetDlgCtrlID
GetDlgItem
GetDlgItemInt
GetDlgItemText
GetNextDlgGroupItem
GetNextDlgTabItem
IsDialogMessage
MapDialogRect
MessageBox
MessageBoxEx
SendDlgItemMessage
SetDlgItemInt
SetDlgItemText

MessageBoxIndirect

Dialog Box Structures
Following are the structures used to create and manage dialog boxes and controls within dialog
boxes.
DLGITEMTEMPLATE
DLGTEMPLATE

MSGBOXPARAMS

The following topics describe pseudo- structures that are not defined in any standard
header file. These topics are provided to explain the format of an extended template for a
dialog box.
DLGITEMTEMPLATEEX

DLGTEMPLATEEX

Dialog Box Messages
Following are the messages used to create and manage dialog boxes and controls within dialog
boxes.
DM_GETDEFID
DM_REPOSITION
DM_SETDEFID
WM_CTLCOLORDLG
WM_CTLCOLORMSGBOX
WM_ENTERIDLE
WM_GETDLGCODE
WM_INITDIALOG

WM_NEXTDLGCTL

HooksA hook is a point in the Microsoft® Windows® message-handling mechanism where an application
can install a subroutine to monitor the message traffic in the system and process certain types of
messages before they reach the target window procedure.

This overview describes Windows hooks and explains how to use them in a Win32-based
application.

About Hooks
Hooks tend to slow down the system because they increase the amount of processing the system
must perform for each message. You should install a hook only when necessary, and remove it as
soon as possible.

Hook Chains
Windows contains many different types of hooks; each type provides access to a different aspect
of the Windows message-handling mechanism. For example, an application can use the
WH_MOUSE hook to monitor the message traffic for mouse messages.

Windows maintains a separate hook chain for each type of hook. A hook chain is a list of pointers
to special, application-defined callback functions called hook procedures. When a message
occurs that is associated with a particular type of hook, Windows passes the message to each
hook procedure referenced in the hook chain, one after the other. The action a hook procedure
can take depends on the type of hook involved. The hook procedures for some types of hooks can
only monitor messages; others can modify messages or stop their progress though the chain,
preventing them from reaching the next hook procedure or the destination window.

Hook Procedures
To take advantage of a particular type of hook, the developer provides a hook procedure and uses
the SetWindowsHookEx function to install it into the chain associated with the hook. A hook
procedure must have the following syntax:

LRESULT CALLBACK HookProc(
int nCode,
WPARAM wParam,
LPARAM lParam)

HookProc is a placeholder for an application-defined name.

The nCode parameter is a hook code that the hook procedure uses to determine the action to
perform. The value of the hook code depends on the type of the hook; each type has its own
characteristic set of hook codes. The values of the wParam and lParam parameters depend on
the hook code, but they typically contain information about a message that was sent or posted.

The SetWindowsHookEx function always installs a hook procedure at the beginning of a hook
chain. When an event occurs that is monitored by a particular type of hook, Windows calls the
procedure at the beginning of the hook chain associated with the hook. Each hook procedure in
the chain determines whether to pass the event to the next procedure. A hook procedure passes
an event to the next procedure by calling the CallNextHookEx function.

Note that the hook procedures for some types of hooks can only monitor messages. Windows
passes messages to each hook procedure, regardless of whether a particular procedure calls
CallNextHookEx.

A hook procedure can be global, monitoring messages for all threads in the system, or it can be
thread specific, monitoring messages for only an individual thread. A global hook procedure can
be called in the context of any application, so the procedure must be in a separate dynamic-link
library (DLL) module. A thread specific hook procedure is called only in the context of the
associated thread. If an application installs a hook procedure for one of its own threads, the hook
procedure can be in either the same module as the rest of the application's code or in a DLL. If the
application installs a hook procedure for a thread of a different application, the procedure must be
in a DLL. For information, see Dynamic-Link Libraries.
Note You should use global hooks only for debugging purposes; otherwise, you should avoid
them. Global hooks hurt system performance and cause conflicts with other applications that
implement the same type of global hook.

Hook Types
Each type of hook enables an application to monitor a different aspect of the Windows message-
handling mechanism. The following sections describe the types of hooks available in Windows.

· WH_CALLWNDPROC and WH_CALLWNDPROCRET Hooks
· WH_CBT Hook
· WH_DEBUG Hook
· WH_FOREGROUNDIDLE Hook
· WH_GETMESSAGE Hook
· WH_JOURNALPLAYBACK Hook
· WH_JOURNALRECORD Hook
· WH_KEYBOARD Hook
· WH_MOUSE Hook
· WH_MSGFILTER and WH_SYSMSGFILTER Hooks
· WH_SHELL Hook

WH_CALLWNDPROC and WH_CALLWNDPROCRET Hooks
The WH_CALLWNDPROC and WH_CALLWNDPROCRET hooks enable you to monitor
messages sent to window procedures by the SendMessage function. Windows calls a
WH_CALLWNDPROC hook procedure before passing the message to the receiving window
procedure, and calls the WH_CALLWNDPROCRET hook procedure after the window procedure
has processed the message.

The WH_CALLWNDPROCRET hook passes the address of a CWPRETSTRUCT structure to the
hook procedure. The structure contains the return value from the window procedure that
processed the message, as well as the message parameters associated with the message.
Subclassing the window does not work for messages set between processes.

For more information, see the CallWndProc and CallWndRetProc functions.

WH_CBT Hook
Windows calls a WH_CBT hook procedure before activating, creating, destroying, minimizing,
maximizing, moving, or sizing a window; before completing a system command; before removing
a mouse or keyboard event from the system message queue; before setting the input focus; or
before synchronizing with the system message queue. The value the hook procedure returns
determines whether Windows allows or prevents one of these operations. The WH_CBT hook is
intended primarily for computer-based training (CBT) applications.

For more information, see the CBTProc function.

WH_DEBUG Hook
Windows calls a WH_DEBUG hook procedure before calling hook procedures associated with any
other hook in the system. You can use this hook to determine whether to allow the system to call
hook procedures associated with other types of hooks.

For more information, see the DebugProc function.

WH_FOREGROUNDIDLE Hook
The WH_FOREGROUNDIDLE hook enables you to perform low priority tasks during times when
its foreground thread is idle. Windows calls a WH_FOREGROUNDIDLE hook procedure when the
application's foreground thread is about to become idle.

For more information, see the ForegroundIdleProc function.

WH_GETMESSAGE Hook
The WH_GETMESSAGE hook enables an application to monitor messages about to be returned
by the GetMessage or PeekMessage function. You can use the WH_GETMESSAGE hook to
monitor mouse and keyboard input and other messages posted to the message queue.

For more information, see the GetMsgProc function.

WH_JOURNALPLAYBACK Hook
The WH_JOURNALPLAYBACK hook enables an application to insert messages into the system
message queue. You can use this hook to play back a series of mouse and keyboard events
recorded earlier by using the WH_JOURNALRECORD hook. Regular mouse and keyboard input
is disabled as long as a WH_JOURNALPLAYBACK hook is installed. A
WH_JOURNALPLAYBACK hook is a global hook ¾ it cannot be used as a thread-specific hook.

The WH_JOURNALPLAYBACK hook returns a time-out value. This value tells the system how
many milliseconds to wait before processing the current message from the playback hook. This
enables the hook to control the timing of the events it plays back.

For more information, see the JournalPlaybackProc function.

WH_JOURNALRECORD Hook
The WH_JOURNALRECORD hook enables you to monitor and record input events. Typically, you
use this hook to record a sequence of mouse and keyboard events to play back later by using the
WH_JOURNALPLAYBACK hook. The WH_JOURNALRECORD hook is a global hook ¾ it cannot
be used as a thread-specific hook.

For more information, see the JournalRecordProc function.

WH_KEYBOARD Hook
The WH_KEYBOARD hook enables an application to monitor message traffic for WM_KEYDOWN
and WM_KEYUP messages about to be returned by the GetMessage or PeekMessage function.
You can use the WH_KEYBOARD hook to monitor keyboard input posted to a message queue.

For more information, see the KeyboardProc function.

WH_MOUSE Hook
The WH_MOUSE hook enables you to monitor mouse messages about to be returned by the
GetMessage or PeekMessage function. You can use the WH_MOUSE hook to monitor mouse
input posted to a message queue.

For more information, see the MouseProc function.

WH_MSGFILTER and WH_SYSMSGFILTER Hooks
The WH_MSGFILTER and WH_SYSMSGFILTER hooks enable you to monitor messages about
to be processed by a menu, scroll bar, message box, or dialog box, and to detect when a different
window is about to be activated as a result of the user's pressing the ALT+TAB or ALT+ESC key
combination. The WH_MSGFILTER hook can only monitor messages passed to a menu, scroll
bar, message box, or dialog box created by the application that installed the hook procedure. The
WH_SYSMSGFILTER hook monitors such messages for all applications.

The WH_MSGFILTER and WH_SYSMSGFILTER hooks enable you to perform message filtering
during modal loops that is equivalent to the filtering done in the main message loop. For example,
an application often examines a new message in the main loop between the time it retrieves the
message from the queue and the time it dispatches the message, performing special processing
as appropriate. However, during a modal loop, the system retrieves and dispatches messages
without allowing an application the chance to filter the messages in its main message loop. If an
application installs a WH_MSGFILTER or WH_SYSMSGFILTER hook procedure, the system calls
the procedure during the modal loop.

An application can call the WH_MSGFILTER hook directly by calling the CallMsgFilter function.
By using this function, the application can use the same code to filter messages during modal
loops as it uses in the main message loop. To do so, encapsulate the filtering operations in a
WH_MSGFILTER hook procedure and call CallMsgFilter between the calls to the GetMessage
and DispatchMessage functions.while (GetMessage(&msg, (HWND) NULL, 0, 0))
{

if (!CallMsgFilter(&qmsg, 0))
DispatchMessage(&qmsg);

}The last argument of CallMsgFilter is simply passed to the hook procedure; you can enter any
value. The hook procedure, by defining a constant such as MSGF_MAINLOOP, can use this
value to determine where the procedure was called from.

For more information, see the MessageProc and SysMsgProc functions.

WH_SHELL Hook
A shell application can use the WH_SHELL hook to receive important notifications. Windows calls
a WH_SHELL hook procedure when the shell application is about to be activated and when a top-
level window is created or destroyed.

For more information, see the ShellProc function.

Using Hooks
· Installing and Releasing Hook Procedures
· Monitoring System Events

Installing and Releasing Hook Procedures
You can install a hook procedure by calling the SetWindowsHookEx function and specifying the
type of hook calling the procedure, whether the procedure should be associated with all threads or
with a particular thread, and a pointer to a procedure entry point.

You must place a global hook procedure in a DLL separate from the application installing the hook
procedure. The installing application must have the handle of the DLL module before it can install
the hook procedure. The LoadLibrary function, when given the name of the DLL, returns the
handle of the DLL module. After you have the handle, you can call the GetProcAddress function
to retrieve the address of the hook procedure. Finally, you use SetWindowsHookEx to install the
hook procedure address in the appropriate hook chain. SetWindowsHookEx passes the module
handle, a pointer to the hook-procedure entry point, and 0 for the thread identifier, indicating that
the hook procedure should be associated with all threads in the system. This sequence is shown
in the following example.HOOKPROC hkprcSysMsg;
static HINSTANCE hinstDLL;
static HHOOK hhookSysMsg;
hinstDLL = LoadLibrary((LPCTSTR) "c:\\windows\\sysmsg.dll");
hkprcSysMsg = (HOOKPROC)GetProcAddress(hinstDLL, "SysMessageProc");
hhookSysMsg = SetWindowsHookEx(WH_SYSMSGFILTER,

hkprcSysMsg, hinstDLL, 0);You can release a thread-specific hook procedure (remove its address from the hook chain) by
calling the UnhookWindowsHookEx function, specifying the handle of the hook procedure to
release. Release a hook procedure as soon as your application no longer needs it.

You can release a global hook procedure by using UnhookWindowsHookEx, but this function
does not free the DLL containing the hook procedure. This is because global hook procedures are
called in the process context of every application in the system, causing an implicit call to the
LoadLibrary function for all of those processes. Because a call to the FreeLibrary function
cannot be made for another process, there is then no way to free the DLL. Windows eventually
frees the DLL after all processes explicitly linked to the DLL have either terminated or called
FreeLibrary and all processes that called the hook procedure have resumed processing outside
the DLL.

An alternative method for installing a global hook procedure is to provide an installation function in
the DLL, along with the hook procedure. With this method, the installing application does not need
the handle of the DLL module. By linking with the DLL, the application gains access to the
installation function. The installation function can supply the DLL module handle and other details
in the call to SetWindowsHookEx. The DLL can also contain a function that releases the global
hook procedure; the application can call this hook-releasing function when terminating.

Monitoring System Events
The following example uses a variety of thread-specific hook procedures to monitor the system for
events affecting a thread. It demonstrates how to process events for the following types of hook
procedures:
WH_CALLWNDPROC
WH_CBT
WH_DEBUG
WH_GETMESSAGE
WH_KEYBOARD
WH_MOUSE

WH_MSGFILTER

The user can install and remove a hook procedure by using the menu. When a hook procedure is
installed and an event that is monitored by the procedure occurs, the procedure writes information
about the event to the client area of the application's main window.#define NUMHOOKS 7
// Global variables
typedef struct _MYHOOKDATA
{

int nType;
HOOKPROC hkprc;
HHOOK hhook;

} MYHOOKDATA;
MYHOOKDATA myhookdata[NUMHOOKS];
LRESULT WINAPI MainWndProc(HWND hwndMain, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

static BOOL afHooks[NUMHOOKS];
int index;
static HMENU hmenu;
switch (uMsg)
{
case WM_CREATE:
// Save the menu handle.
hmenu = GetMenu(hwndMain);
// Initialize structures with hook data. The menu-item
// identifiers are defined as 0 through 6 in the
// header file. They can be used to identify array
// elements both here and during the WM_COMMAND
// message.
myhookdata[IDM_CALLWNDPROC].nType = WH_CALLWNDPROC;
myhookdata[IDM_CALLWNDPROC].hkprc = CallWndProc;
myhookdata[IDM_CBT].nType = WH_CBT;
myhookdata[IDM_CBT].hkprc = CBTProc;
myhookdata[IDM_DEBUG].nType = WH_DEBUG;
myhookdata[IDM_DEBUG].hkprc = DebugProc;
myhookdata[IDM_GETMESSAGE].nType = WH_GETMESSAGE;
myhookdata[IDM_GETMESSAGE].hkprc = GetMsgProc;
myhookdata[IDM_KEYBOARD].nType = WH_KEYBOARD;
myhookdata[IDM_KEYBOARD].hkprc = KeyboardProc;
myhookdata[IDM_MOUSE].nType = WH_MOUSE;
myhookdata[IDM_MOUSE].hkprc = MouseProc;
myhookdata[IDM_MSGFILTER].nType = WH_MSGFILTER;
myhookdata[IDM_MSGFILTER].hkprc = MessageProc;
// Initialize all flags in the array to FALSE.
memset(afHooks, FALSE, sizeof(afHooks));
return 0;
case WM_COMMAND:
switch (LOWORD(wParam))
{
// The user selected a hook command from the menu.
case IDM_CALLWNDPROC:
case IDM_CBT:
case IDM_DEBUG:
case IDM_GETMESSAGE:
case IDM_KEYBOARD:
case IDM_MOUSE:
case IDM_MSGFILTER:
// Use the menu-item identifier as an index
// into the array of structures with hook data.
index = LOWORD(wParam);
// If the selected type of hook procedure isn't
// installed yet, install it and check the
// associated menu item.
if (!afHooks[index])
{

myhookdata[index].hhook = SetWindowsHookEx(
myhookdata[index].nType,
myhookdata[index].hkprc,
(HINSTANCE) NULL, GetCurrentThreadId());
CheckMenuItem(hmenu, index,
MF_BYCOMMAND | MF_CHECKED);
afHooks[index] = TRUE;

}
// If the selected type of hook procedure is
// already installed, remove it and remove the
// check mark from the associated menu item.
else
{

UnhookWindowsHookEx(myhookdata[index].hhook);
CheckMenuItem(hmenu, index,
MF_BYCOMMAND | MF_UNCHECKED);
afHooks[index] = FALSE;

}
default:
return (DefWindowProc(hwndMain, uMsg, wParam,

lParam));
}
break;
//
// Process other messages.
//
default:
return DefWindowProc(hwndMain, uMsg, wParam, lParam);
}
return NULL;

}
/**
WH_CALLWNDPROC hook procedure
**/
LRESULT WINAPI CallWndProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szCWPBuf[256];
CHAR szMsg[16];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[CALLWNDPROC].hhook, nCode,

wParam, lParam);
// Call an application-defined function that converts a message
// constant to a string and copies it to a buffer.
LookUpTheMessage((PMSG) lParam, szMsg);
hdc = GetDC(hwndMain);
switch (nCode)
{
case HC_ACTION:
cch = wsprintf(szCWPBuf,

"CALLWNDPROC - tsk: %ld, msg: %s, %d times ",
wParam, szMsg, c++);
TextOut(hdc, 2, 15, szCWPBuf, cch);
break;
default:
break;
}
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[CALLWNDPROC].hhook, nCode,
wParam, lParam);

}
/**
WH_GETMESSAGE hook procedure
**/
LRESULT CALLBACK GetMsgProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szMSGBuf[256];
CHAR szRem[16];
CHAR szMsg[16];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[GETMESSAGE].hhook, nCode,
wParam, lParam);
switch (nCode)
{
case HC_ACTION:
switch (wParam)
{
case PM_REMOVE:
lstrcpy(szRem, "PM_REMOVE");
break;
case PM_NOREMOVE:
lstrcpy(szRem, "PM_NOREMOVE");
break;
default:
lstrcpy(szRem, "Unknown");
break;
}
// Call an application-defined function that converts a
// message constant to a string and copies it to a
// buffer.
LookUpTheMessage((PMSG) lParam, szMsg);
hdc = GetDC(hwndMain);
cch = wsprintf(szMSGBuf,
"GETMESSAGE - wParam: %s, msg: %s, %d times ",
szRem, szMsg, c++);
TextOut(hdc, 2, 35, szMSGBuf, cch);
break;
default:
break;
}
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[GETMESSAGE].hhook, nCode,
wParam, lParam);

}
/**
WH_DEBUG hook procedure
**/
LRESULT CALLBACK DebugProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szBuf[128];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[DEBUG].hhook, nCode,
wParam, lParam);
hdc = GetDC(hwndMain);
switch (nCode)
{
case HC_ACTION:
cch = wsprintf(szBuf,
"DEBUG - nCode: %d, tsk: %ld, %d times ",
nCode,wParam, c++);
TextOut(hdc, 2, 55, szBuf, cch);
break;
default:
break;
}
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[DEBUG].hhook, nCode, wParam,
lParam);

}
/**
WH_CBT hook procedure
**/
LRESULT CALLBACK CBTProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szBuf[128];
CHAR szCode[128];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[CBT].hhook, nCode, wParam,
lParam);
hdc = GetDC(hwndMain);
switch (nCode)
{
case HCBT_ACTIVATE:
lstrcpy(szCode, "HCBT_ACTIVATE");
break;
case HCBT_CLICKSKIPPED:
lstrcpy(szCode, "HCBT_CLICKSKIPPED");
break;
case HCBT_CREATEWND:
lstrcpy(szCode, "HCBT_CREATEWND");
break;
case HCBT_DESTROYWND:
lstrcpy(szCode, "HCBT_DESTROYWND");
break;
case HCBT_KEYSKIPPED:
lstrcpy(szCode, "HCBT_KEYSKIPPED");
break;
case HCBT_MINMAX:
lstrcpy(szCode, "HCBT_MINMAX");
break;
case HCBT_MOVESIZE:
lstrcpy(szCode, "HCBT_MOVESIZE");
break;
case HCBT_QS:
lstrcpy(szCode, "HCBT_QS");
break;
case HCBT_SETFOCUS:
lstrcpy(szCode, "HCBT_SETFOCUS");
break;
case HCBT_SYSCOMMAND:
lstrcpy(szCode, "HCBT_SYSCOMMAND");
break;
default:
lstrcpy(szCode, "Unknown");
break;
}
cch = wsprintf(szBuf, "CBT - nCode: %s, tsk: %ld, %d times ",
szCode, wParam, c++);
TextOut(hdc, 2, 75, szBuf, cch);
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[CBT].hhook, nCode, wParam,
lParam);

}
/**
WH_MOUSE hook procedure
**/
LRESULT CALLBACK MouseProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szBuf[128];
CHAR szMsg[16];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process the message
return CallNextHookEx(myhookdata[MOUSE].hhook, nCode,
wParam, lParam);
// Call an application-defined function that converts a message
// constant to a string and copies it to a buffer.
LookUpTheMessage((PMSG) lParam, szMsg);
hdc = GetDC(hwndMain);
cch = wsprintf(szBuf,
"MOUSE - nCode: %d, msg: %s, x: %d, y: %d, %d times ",
nCode, szMsg, LOWORD(lParam), HIWORD(lParam), c++);
TextOut(hdc, 2, 95, szBuf, cch);
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[MOUSE].hhook, nCode, wParam,
lParam);

}
/**
WH_KEYBOARD hook procedure
**/
LRESULT CALLBACK KeyboardProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szBuf[128];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[KEYBOARD].hhook, nCode,
wParam, lParam);
hdc = GetDC(hwndMain);
cch = wsprintf(szBuf, "KEYBOARD - nCode: %d, vk: %d, %d times ",
nCode, wParam, c++);
TextOut(hdc, 2, 115, szBuf, cch);
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[KEYBOARD].hhook, nCode, wParam,
lParam);

}
/**
WH_MSGFILTER hook procedure
**/
LRESULT CALLBACK MessageProc(int nCode, WPARAM wParam, LPARAM lParam)
{

CHAR szBuf[128];
CHAR szMsg[16];
CHAR szCode[32];
HDC hdc;
static int c = 0;
int cch;
if (nCode < 0) // do not process message
return CallNextHookEx(myhookdata[MSGFILTER].hhook, nCode,
wParam, lParam);
switch (nCode)
{
case MSGF_DIALOGBOX:
lstrcpy(szCode, "MSGF_DIALOGBOX");
break;
case MSGF_MENU:
lstrcpy(szCode, "MSGF_MENU");
break;
case MSGF_SCROLLBAR:
lstrcpy(szCode, "MSGF_SCROLLBAR");
break;
case MSGF_NEXTWINDOW:
lstrcpy(szCode, "MSGF_NEXTWINDOW");
break;
default:
wsprintf(szCode, "Unknown: %d", nCode);
break;
}
// Call an application-defined function that converts a message
// constant to a string and copies it to a buffer.
LookUpTheMessage((PMSG) lParam, szMsg);
hdc = GetDC(hwndMain);
cch = wsprintf(szBuf,
"MSGFILTER nCode: %s, msg: %s, %d times ",
szCode, szMsg, c++);
TextOut(hdc, 2, 135, szBuf, cch);
ReleaseDC(hwndMain, hdc);
return CallNextHookEx(myhookdata[MSGFILTER].hhook, nCode,
wParam, lParam);

}

Hook Reference
The following functions, structures and messages are associated with hooks.

Hook Functions
The following functions are used with hooks.
CallMsgFilter
CallNextHookEx
CallWndProc
CallWndRetProc
CBTProc
DebugProc
ForegroundIdleProc
GetMsgProc
JournalPlaybackProc
JournalRecordProc
KeyboardProc
MessageProc
MouseProc
SetWindowsHookEx
ShellProc
SysMsgProc

UnhookWindowsHookExObsolete FunctionsDefHookProc
SetWindowsHook

UnhookWindowsHook

Hook Structures
The following structures are used with hooks.
CBT_CREATEWND
CBTACTIVATESTRUCT
CWPRETSTRUCT
CWPSTRUCT
DEBUGHOOKINFO
EVENTMSG

MOUSEHOOKSTRUCT

Hook Messages
The following messages are used with hooks.
WM_CANCELJOURNAL

WM_QUEUESYNC

IconsAn icon is a picture that consists of a bitmapped image combined with a mask to create
transparent areas in the picture. This overview describes creating, displaying, destroying, and
duplicating icons.

About Icons
Windows uses icons throughout the user interface to represent objects such as files, folders,
shortcuts, applications, and documents. The icon functions in the Microsoft® Win32® application
programming interface (API) enable applications to create, load, display, arrange, and destroy
icons.

For information on specifying icons for file types, see Icon Handlers.

Icon Hot Spot
One of the pixels in an icon is designated as the hot spot, which is the point the system tracks and
recognizes as the position of the icon. An icon's hot spot is typically the pixel located at the center
of the icon. If you use the CreateIconIndirect function to create an icon, you can specify any pixel
to be the hot spot.

Icon Types
The operating system provides a set of standard icons that are available for any application to use
at any time. The Windows header files contain identifiers for the standard icons ¾ the identifiers
begin with the "IDI_" prefix.

Each standard icon has a corresponding default image associated with it. The user can replace
the default image associated with any standard cursor at any time.

Custom icons are designed for use in a particular application and can be any design. Following
are several custom icons.

ewc msdncd, EWGraphic, bsd23464 0 /a "SDK_02.BMP"

Icon Sizes
Windows uses four icon sizes: system small, system large, shell small, and shell large.

The system small icon is displayed in the window caption. To change the size of the system small
icon, start the Display control panel applet, click the Appearance tab, select Caption Buttons
from the Item list, then set the Size field. To retrieve the size of the system small icon, call the
GetSystemMetrics function with SM_CXSMICON and SM_CYSMICON.

The system large icon is mainly used by applications, but it is also displayed in the Alt+Tab dialog.
The CreateIconFromResource, DrawIcon, ExtractIcon, and LoadIcon functions all use system
large icons. The size of the system large icon is defined by the video driver, therefore it cannot be
changed. You can retrieve the size of the system large icon by calling GetSystemMetrics with
SM_CXICON and SM_CYICON.

The CreateIcon, CreateIconFromResourceEx, and CreateIconIndirect functions can be used
to work with icons in sizes other than system large.

The shell small icon is used in the Windows Explorer and the common dialogs. Currently, this
defaults to the system small size. To retrieve the size of the shell small icon, use the
SHGetFileInfo function with SHGFI_SHELLICONSIZE | SHGFI_SMALLICON to retrieve the
handle of the system image list, then the ImageList_GetIconSize function to get the icon size.

The shell large icon is used on the desktop. To change the size of the large icon, start the Display
control panel applet, click the Appearance tab, select Icon from the Item list, then set the Size
field (this size is stored in the registry, under HKEY_CURRENT_USER\Control Panel, Desktop\
WindowMetrics\Shell Icon Size). You must also click the Plus! tab and select the Use large icons
check box. To retrieve the size of the shell large icon, use the SHGetFileInfo function with
SHGFI_SHELLICONSIZE to retrieve the handle of the system image list, then the
ImageList_GetIconSize function to get the icon size.

The Start menu uses either shell small icons or shell large icons, depending on whether the Use
large icons check box is selected.

Your application should supply icon resources in the following sizes:

· 48x48, 256 color
· 32x32, 16 color
· 16x16 pixels, 16 color

When filling in the WNDCLASSEX structure to be used in registering your window class, set the
hIcon member to the 32x32 icon and the hIconSm member to the 16x16 icon. For more
information about class icons, see Class Icons.

Icon Creation
Standard icons are predefined, so it is not necessary to create them. To use a standard icon, an
application can obtain its handle by using the LoadImage function. An icon handle is a unique
value of the HICON type that identifies a standard or custom icon.

To create a custom icon for an application, developers typically use a graphics application and
include the ICON resource in the application's resource-definition file. At run time, an application
can call LoadIcon or LoadImage to retrieve the handle of the icon. An icon resource contains
data for several different display devices. LoadIcon and LoadImage automatically select the
most appropriate data for the current display device.

An application can also create a custom icon at run time by using the CreateIconIndirect
function, which creates an icon based on the contents of an ICONINFO structure. The
GetIconInfo function fills the structure with the hot spot coordinates and information about the
bitmask bitmap and color bitmap for the icon.

Applications should implement custom icons as resources and should use LoadIcon or
LoadImage, rather than create the icon at run time. Using icon resources avoids device
dependence, simplifies localization, and enables applications to share icon shapes.

The CreateIconFromResourceEx function enables an application to browse through the
system's resources and create icons and cursors based on resource data.
CreateIconFromResourceEx creates an icon based on binary resource data from other
executable files or dynamic-link libraries (DLLs). An application must precede this function with
calls to the LookupIconIdFromDirectoryEx function and several of the resource functions.
LookupIconIdFromDirectoryEx returns the identifier of the most appropriate icon data for the
current display device. For more information about the resource functions, see Resource
Functions.

Icon Display
An application can retrieve the image for an icon by using the GetIconInfo function, and can draw
it by using the DrawIconEx function. To draw the default image for a icon, specify the
DI_COMPAT flag in the call to DrawIconEx. If you do not specify the DI_COMPAT flag,
DrawIconEx draws the icon using the image that the user specified.

Icon Destruction
When an application no longer needs an icon it created by using the CreateIconIndirect function,
it should destroy the icon. The DestroyIcon function destroys the icon handle and frees any
memory used by the icon. Applications should use this function only for icons created with
CreateIconIndirect; it is not necessary to destroy other icons.

Icon Duplication
The CopyIcon function copies an icon handle. This enables an application or DLL to get its own
handle for an icon owned by another module. Then, if the other module is freed, the application
that copied the icon will still be able to use the icon.

The CopyImage function creates a new icon based on the specified source icon. The new icon
can be larger or smaller than the source icon.

For information about adding, removing, or replacing icon resources in executable (.EXE) files,
see Resources.

Using Icons
This following topics describe how to perform certain tasks related to icons:

· Creating an icon
· Displaying an icon
· Sharing icon resources

Creating an Icon
To use an icon, your application must get the handle of the icon. The following example shows
how to create two different icon handles: one for the standard exclamation icon and one for a
custom icon included as a resource in the application's resource-definition file.HICON hIcon1; // icon handle
HICON hIcon2; // icon handle
// Create a standard question icon.
hIcon1 = LoadIcon(NULL, IDI_QUESTION);
// Create a custom icon based on a resource.
hIcon2 = LoadIcon(hinst, MAKEINTRESOURCE(460));
// Create a custom icon at run time.An application should implement custom icons as resources and should use the LoadIcon or

LoadImage function, rather than create the icons at run time. This approach avoids device
dependence, simplifies localization, and enables applications to share icon bitmaps. However, the
following example uses CreateIcon to create a custom icon at run time, based on bitmap
bitmasks; it is included to illustrate how the system interprets icon bitmap bitmasks.HICON hIcon3; // icon handle
// Yang icon AND bitmask
BYTE ANDmaskIcon[] = {0xFF, 0xFF, 0xFF, 0xFF, // line 1
0xFF, 0xFF, 0xC3, 0xFF, // line 2
0xFF, 0xFF, 0x00, 0xFF, // line 3
0xFF, 0xFE, 0x00, 0x7F, // line 4
0xFF, 0xFC, 0x00, 0x1F, // line 5
0xFF, 0xF8, 0x00, 0x0F, // line 6
0xFF, 0xF8, 0x00, 0x0F, // line 7
0xFF, 0xF0, 0x00, 0x07, // line 8
0xFF, 0xF0, 0x00, 0x03, // line 9
0xFF, 0xE0, 0x00, 0x03, // line 10
0xFF, 0xE0, 0x00, 0x01, // line 11
0xFF, 0xE0, 0x00, 0x01, // line 12
0xFF, 0xF0, 0x00, 0x01, // line 13
0xFF, 0xF0, 0x00, 0x00, // line 14
0xFF, 0xF8, 0x00, 0x00, // line 15
0xFF, 0xFC, 0x00, 0x00, // line 16
0xFF, 0xFF, 0x00, 0x00, // line 17
0xFF, 0xFF, 0x80, 0x00, // line 18
0xFF, 0xFF, 0xE0, 0x00, // line 19
0xFF, 0xFF, 0xE0, 0x01, // line 20
0xFF, 0xFF, 0xF0, 0x01, // line 21
0xFF, 0xFF, 0xF0, 0x01, // line 22
0xFF, 0xFF, 0xF0, 0x03, // line 23
0xFF, 0xFF, 0xE0, 0x03, // line 24
0xFF, 0xFF, 0xE0, 0x07, // line 25
0xFF, 0xFF, 0xC0, 0x0F, // line 26
0xFF, 0xFF, 0xC0, 0x0F, // line 27
0xFF, 0xFF, 0x80, 0x1F, // line 28
0xFF, 0xFF, 0x00, 0x7F, // line 29
0xFF, 0xFC, 0x00, 0xFF, // line 30
0xFF, 0xF8, 0x03, 0xFF, // line 31
0xFF, 0xFC, 0x3F, 0xFF}; // line 32

// Yang icon XOR bitmask
BYTE XORmaskIcon[] = {0x00, 0x00, 0x00, 0x00, // line 1
0x00, 0x00, 0x00, 0x00, // line 2
0x00, 0x00, 0x00, 0x00, // line 3
0x00, 0x00, 0x00, 0x00, // line 4
0x00, 0x00, 0x00, 0x00, // line 5
0x00, 0x00, 0x00, 0x00, // line 6
0x00, 0x00, 0x00, 0x00, // line 7
0x00, 0x00, 0x38, 0x00, // line 8
0x00, 0x00, 0x7C, 0x00, // line 9
0x00, 0x00, 0x7C, 0x00, // line 10
0x00, 0x00, 0x7C, 0x00, // line 11
0x00, 0x00, 0x38, 0x00, // line 12
0x00, 0x00, 0x00, 0x00, // line 13
0x00, 0x00, 0x00, 0x00, // line 14
0x00, 0x00, 0x00, 0x00, // line 15
0x00, 0x00, 0x00, 0x00, // line 16
0x00, 0x00, 0x00, 0x00, // line 17
0x00, 0x00, 0x00, 0x00, // line 18
0x00, 0x00, 0x00, 0x00, // line 19
0x00, 0x00, 0x00, 0x00, // line 20
0x00, 0x00, 0x00, 0x00, // line 21
0x00, 0x00, 0x00, 0x00, // line 22
0x00, 0x00, 0x00, 0x00, // line 23
0x00, 0x00, 0x00, 0x00, // line 24
0x00, 0x00, 0x00, 0x00, // line 25
0x00, 0x00, 0x00, 0x00, // line 26
0x00, 0x00, 0x00, 0x00, // line 27
0x00, 0x00, 0x00, 0x00, // line 28
0x00, 0x00, 0x00, 0x00, // line 29
0x00, 0x00, 0x00, 0x00, // line 30
0x00, 0x00, 0x00, 0x00, // line 31
0x00, 0x00, 0x00, 0x00}; // line 32

hIcon3 = CreateIcon(hinst, // application instance
32, // icon width
32, // icon height
1,// number of XOR planes
1,// number of bits per pixel
ANDmaskIcon,// AND bitmask
XORmaskIcon); // XOR bitmaskTo create the icon, CreateIcon applies the following truth table to the AND and XOR bitmasks.

AND bitmask XOR bitmask Display

0 0 Black
0 1 White
1 0 Screen
1 1 Reverse screen

Before closing, your application must use DestroyIcon to destroy any icon it created by using
CreateIconIndirect. It is not necessary to destroy icons created by other functions.

Displaying an Icon
Your application can load and create icons to display in the application's client area or child
windows. The following example demonstrates how to draw an icon in the client area of the
window whose display context (DC) is identified by the hdc parameter.HICON hIcon1; // icon handle
HDC hdc; // handle of display context
DrawIcon(hdc, 10, 20, hIcon1);Windows automatically displays the class icon(s) for a window. Your application can assign class

icons while registering a window class. Your application can replace a class icon by using the
SetClassLong function. This function changes the default window settings for all windows of a
given class. The following example replaces a class icon with the icon whose resource identifier is
480.HINSTANCE hinst; // handle of current instance
HWND hwnd; // main window handle
// Change the icon for hwnd's window class.
SetClassLong(hwnd,// window handle

GCL_HICON, // changes icon
(LONG) LoadIcon(hinst, MAKEINTRESOURCE(480))
);For more information about window classes, see Window Classes.

Sharing Icon Resources
The following code uses the functions CreateIconFromResourceEx, DrawIcon, and
LookupIconIdFromDirectoryEx, and several of the resource functions, to create an icon handle
based on icon data from another executable file. Then, it displays the icon in a window.HICON hIcon1; // icon handle
HINSTANCE hExe;// handle to loaded .EXE file
HRSRC hResource; // handle for FindResource
HRSRC hMem; // handle for LoadResource
BYTE *lpResource; // address of resource data
int nID; // ID of resource that best fits current screen
HDC hdc; // handle of display context
// Load the file from which to copy the icon.
hExe = LoadLibrary("myapp.exe");
// Find the icon directory whose identifier is 440.
hResource = FindResource(hExe,

MAKEINTRESOURCE(440),
RT_GROUP_ICON);

// Load and lock the icon directory.
hMem = LoadResource(hExe, hResource);
lpResource = LockResource(hMem);
// Get the identifier of the icon that is most appropriate
// for the video display.
nID = LookupIconIdFromDirectoryEx((PBYTE) lpResource, TRUE,

CXICON, CYICON, LR_DEFAULTCOLOR);
// Find the bits for the nID icon.
hResource = FindResource(hExe,

MAKEINTRESOURCE(nID),
MAKEINTRESOURCE(RT_ICON));

// Load and lock the icon.
hMem = LoadResource(hExe, hResource);
lpResource = LockResource(hMem);
// Create a handle to the icon.
hIcon1 = CreateIconFromResourceEx((PBYTE) lpResource,

SizeofResource(hExe, hResource), TRUE, 0x00030000,
CXICON, CYICON, LR_DEFAULTCOLOR);

// Draw the icon in the client area.
DrawIcon(hdc, 10, 20, hIcon1);

Icon Reference
The following functions, structures and messages are used with icons.

Icon Functions
The following functions are used with icons.
CopyIcon
CreateIcon
CreateIconFromResource
CreateIconFromResourceEx
CreateIconIndirect
DestroyIcon
DrawIcon
DrawIconEx
GetIconInfo
LoadIcon
LookupIconIdFromDirectory

LookupIconIdFromDirectoryEx

Icon Structures
The following structures are used with icons.
ICONINFO

ICONMETRICS

Icon Messages
The following messages are used with icons.
WM_ERASEBKGND
WM_ICONERASEBKGND

WM_PAINTICON

Keyboard AcceleratorsIn Microsoft® Windows®, a keyboard accelerator (or, simply, accelerator) is a keystroke or
combination of keystrokes that generates a WM_COMMAND or WM_SYSCOMMAND message
for an application.

About Keyboard Accelerators
Accelerators are closely related to menus ¾ both provide the user with access to an application's
command set. Typically, users rely on an application's menus to learn the command set and then
switch over to using accelerators as they become more proficient with the application.
Accelerators provide faster, more direct access to commands than menus do. At a minimum, an
application should provide accelerators for the more commonly used commands. Although
accelerators typically generate commands that exist as menu items, they can also generate
commands that have no equivalent menu items.

Accelerator Tables
An accelerator table consists of an array of ACCEL structures, each defining an individual
accelerator. Each ACCEL structure includes the following information:

· The accelerator's keystroke combination.
· The accelerator's identifier.
· Various flags. This includes one that specifies whether Windows is to provide visual

feedback by highlighting the corresponding menu item, if any, when the accelerator is used
To process accelerator keystrokes for a given thread, the developer must call the
TranslateAccelerator function in the message loop associated with the thread's message queue.
The TranslateAccelerator function monitors keyboard input to the message queue, checking for
key combinations that match an entry in the accelerator table. When TranslateAccelerator finds
a match, it translates the keyboard input (that is, the WM_KEYUP and WM_KEYDOWN
messages) into a WM_COMMAND or WM_SYSCOMMAND message and then sends the
message to the window procedure of the specified window. The following illustration shows how
accelerators are processed.

ewc msdncd, EWGraphic, bsd23465 0 /a "SDK_01.BMP"

The WM_COMMAND message includes the identifier of the accelerator that caused
TranslateAccelerator to generate the message. The window procedure examines the identifier to
determine the source of the message and then processes the message accordingly.

Accelerator tables exist at two different levels in Windows. Windows maintains a single, system-
wide accelerator table that applies to all applications. An application cannot modify the system
accelerator table. For a description of the accelerators provided by the system accelerator table,
see Accelerator Keystroke Assignments.

Windows also maintains accelerator tables for each application. An application can define any
number of accelerator tables for use with its own windows. A unique 32-bit handle (HACCEL)
identifies each table. However, only one accelerator table can be active at a time for a given
thread. The handle of the accelerator table passed to the TranslateAccelerator function
determines which accelerator table is active for a thread. The active accelerator table can be
changed at any time by passing a different accelerator-table handle to TranslateAccelerator.

Accelerator-Table Creation
Several steps are required to create an accelerator table for an application. First, a resource
compiler is used to create accelerator-table resources and to add them to the application's
executable file. At run time, the LoadAccelerators function is used to load the accelerator table
into memory and retrieve the handle of the accelerator table. This handle is passed to the
TranslateAccelerator function to activate the accelerator table.

An accelerator table can also be created for an application at run time by passing an array of
ACCEL structures to the CreateAcceleratorTable function. This method supports user-defined
accelerators in the application. Like the LoadAccelerators function, CreateAcceleratorTable
returns an accelerator-table handle that can be passed to TranslateAccelerator to activate the
accelerator table.

Windows automatically destroys accelerator tables loaded by LoadAccelerators. An accelerator
table created by CreateAcceleratorTable must be destroyed before an application closes;
otherwise, the table continues to exist in memory after the application has closed. An accelerator
table is destroyed by calling the DestroyAcceleratorTable function.

An existing accelerator table can be copied and modified. The existing accelerator table is copied
by using the CopyAcceleratorTable function. After the copy is modified, a handle of the new
accelerator table is retrieved by calling CreateAcceleratorTable. Finally, the handle is passed to
TranslateAccelerator to activate the new table.

Accelerator Keystroke Assignments
An ASCII character code or a virtual-key code can be used to define the accelerator. An ASCII
character code makes the accelerator case sensitive. The ASCII "C" character can define the
accelerator as ALT+c rather than ALT+C. Case-sensitive accelerators can, however, be confusing
to use. For example, the ALT+C accelerator will be generated if the CAPS LOCK key is down or if the
SHIFT key is down, but not if both are down.

Typically, accelerators don't need to be case sensitive, so most applications use virtual-key codes
for accelerators rather than ASCII character codes.

Avoid accelerators that conflict with an application's menu mnemonics, because the accelerator
overrides the mnemonic, which can confuse the user. For more information about menu
mnemonics, see Menus.

If an application defines an accelerator that is also defined in the system accelerator table, the
application-defined accelerator overrides the system accelerator, but only within the context of the
application. Avoid this practice, however, because it prevents the system accelerator from
performing its standard role in the Windows user interface. The system-wide accelerators are
described in the following list:

Accelerator Description
ALT+ESC Switches to the next application.
ALT+F4 Closes an application or a window.
ALT+HYPHEN Opens the System menu for a

document window.
ALT+PRINT SCREEN Copies an image in the active

window onto the clipboard.
ALT+SPACEBAR Opens the System menu for an

application window.
ALT+TAB Switches to the next application.
CTRL+ESC Switches to Windows Task List.
CTRL+F4 Closes the active group or document

window.
F1 Starts Help if the application has

Help.
PRINT SCREEN Copies an image on the screen onto

the clipboard.
SHIFT+ALT+TAB Switches to the previous application.

The user must press and hold down
ALT+SHIFT while pressing TAB.

Accelerators and Menus
Using an accelerator is the same as choosing a menu item: Both actions cause Windows to send
a WM_COMMAND or WM_SYSCOMMAND message to the corresponding window procedure.
The WM_COMMAND message includes an identifier that the window procedure examines to
determine the source of the message. If an accelerator generated the WM_COMMAND message,
the identifier is that of the accelerator. Similarly, if a menu item generated the WM_COMMAND
message, the identifier is that of the menu item. Because an accelerator provides a shortcut for
choosing a command from a menu, an application usually assigns the same identifier to the
accelerator and the corresponding menu item.

An application processes an accelerator WM_COMMAND message in exactly the same way as
the corresponding menu item WM_COMMAND message. However, the WM_COMMAND
message contains a flag that specifies whether the message originated from an accelerator or a
menu item, in case accelerators must be processed differently from their corresponding menu
items. The WM_SYSCOMMAND message does not contain this flag.

The identifier determines whether an accelerator generates a WM_COMMAND or
WM_SYSCOMMAND message. If the identifier has the same value as a menu item in the System
menu, the accelerator generates a WM_SYSCOMMAND message. Otherwise, the accelerator
generates a WM_COMMAND message.

If an accelerator has the same identifier as a menu item and the menu item is grayed or disabled,
the accelerator is disabled and does not generate a WM_COMMAND or WM_SYSCOMMAND
message. Also, an accelerator does not generate a command message if the corresponding
window is minimized.

When the user uses an accelerator that corresponds to a menu item, the window procedure
receives the WM_INITMENU and WM_INITMENUPOPUP messages as though the user had
selected the menu item. For information about how to process these messages, see Menus.

An accelerator that corresponds to a menu item should be included in the text of the menu item.

Using Keyboard Accelerators
· Using an accelerator-table resource
· Using an accelerator table created at run time

Using an Accelerator-Table Resource
The most common way to add accelerator support to a Windows-based application is to include
an accelerator-table resource with the application's executable file and then load the resource at
run time. The steps involved in using an accelerator-table resource are as follows:

· Create an accelerator table in a resource-definition file. Compile it and add the resulting
resource to your application's executable file.

· Include a call to the LoadAccelerators function to load the accelerator-table resource
and receive a handle of the accelerator table.

· Add the TranslateAccelerator function to the message loop associated with the
accelerator table.

· Process the WM_COMMAND messages generated when the user uses the accelerator.

Creating the Accelerator-Table Resource
You create an accelerator-table resource by using the ACCELERATORS statement in your
application's resource-definition file. You must assign a name or resource identifier to the
accelerator table, preferably unlike that of any other resource. Windows uses this identifier to load
the resource at run time.

Each accelerator you define requires a separate entry in the accelerator table. In each entry, you
define the keystroke (either an ASCII character code or virtual-key code) that generates the
accelerator and the accelerator's identifier. You must also specify whether the keystroke must be
used in some combination with the ALT, SHIFT, or CTRL keys. For more information about virtual
keys, see Keyboard Input.

An ASCII keystroke is specified either by enclosing the ASCII character in double quotation marks
or by using the integer value of the character in combination with the ASCII flag. The following
examples show how to define ASCII accelerators."A", ID_ACCEL1 ; SHIFT+A
65, ID_ACCEL2, ASCII ; SHIFT+AA virtual-key code keystroke is specified differently depending on whether the keystroke is an

alphanumeric key or a non-alphanumeric key. For an alphanumeric key, the key's letter or
number, enclosed in double quotation marks, is combined with the VIRTKEY flag. For a non-
alphanumeric key, the Windows virtual-key code for the specific key is combined with the
VIRTKEY flag. The following examples show how to define virtual-key code accelerators."a", ID_ACCEL3, VIRTKEY ; A (caps-lock on) or a
VK_INSERT, ID_ACCEL4, VIRTKEY ; INSERT keyThe following example shows an accelerator-table resource that defines accelerators for file

operations. The name of the resource is FileAccel.FileAccel ACCELERATORS
BEGIN

VK_F12, IDM_OPEN, CONTROL, VIRTKEY ; CTRL+F12
VK_F4, IDM_CLOSE, ALT, VIRTKEY; ALT+F4
VK_F12, IDM_SAVE, SHIFT, VIRTKEY ; SHIFT+F12
VK_F12, IDM_SAVEAS, VIRTKEY ; F12

ENDIf you want the user to press the ALT, SHIFT, or CTRL keys in some combination with the
accelerator keystroke, specify the ALT, SHIFT, and CONTROL flags in the accelerator's definition.
Following are some examples."B", ID_ACCEL5, ALT ; ALT_SHIFT+B
"I", ID_ACCEL6, CONTROL, VIRTKEY ; CTRL+I
VK_F5, ID_ACCEL7, CONTROL, ALT, VIRTKEY ; CTRL+ALT+F5By default, when an accelerator key corresponds to a menu item, Windows highlights the menu

item. You can use the NOINVERT flag to prevent highlighting for an individual accelerator. The
following example shows how to use the NOINVERT flag.VK_DELETE, ID_ACCEL8, VIRTKEY, SHIFT, NOINVERT ; SHIFT+DELETETo define accelerators that correspond to menu items in your application, include the accelerators
in the text of the menu items. The following example shows how to include accelerators in menu-
item text in a resource-definition file.FilePopup MENU
BEGIN

POPUP "&File"
BEGIN
MENUITEM "&New..", IDM_NEW
MENUITEM "&Open\tCtrl+F12", IDM_OPEN
MENUITEM "&Close\tAlt+F4" IDM_CLOSE
MENUITEM "&Save\tShift+F12", IDM_SAVE
MENUITEM "Save &As...\tF12", IDM_SAVEAS
END

END

Loading the Accelerator-Table Resource
An application loads an accelerator-table resource by calling the LoadAccelerators function and
specifying the instance handle of the application whose executable file contains the resource and
the name or identifier of the resource. LoadAccelerators loads the specified accelerator table
into memory and returns the handle of the accelerator table.

An application can load an accelerator-table resource at any time. Usually, a single-threaded
application loads its accelerator table before entering its main message loop. An application that
uses multiple threads typically loads the accelerator-table resource for a thread before entering
the message loop for the thread. An application or thread might also use multiple accelerator
tables, each associated with a particular window in the application. Such an application would
load the accelerator table for the window each time the user activated the window. For more
information about threads, see Processes and Threads.

Calling the TranslateAccelerator Function
To process accelerators, an application's (or thread's) message loop must contain a call to the
TranslateAccelerator function. TranslateAccelerator compares keystrokes to an accelerator
table and, if it finds a match, translates the keystrokes into a WM_COMMAND (or
WM_SYSCOMMAND) message. The function then sends the message to a window procedure.
The parameters of the TranslateAccelerator function include the handle of the window that is to
receive the WM_COMMAND messages, the handle of the accelerator table used to translate
accelerators, and a pointer to an MSG structure containing a message from the queue. The
following example shows how to call TranslateAccelerator from within a message loop.while (GetMessage(&msg, (HWND) NULL, 0, 0)) {

/* Check for accelerator keystrokes. */
if (!TranslateAccelerator(

hwndMain, /* handle of receiving window */
haccel, /* handle of active accel. table */
&msg)) { /* address of message data */
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}

Processing WM_COMMAND Messages
When an accelerator is used, the window specified in the TranslateAccelerator function receives
a WM_COMMAND or WM_SYSCOMMAND message. The low-order word of the wParam
parameter contains the identifier of the accelerator. The window procedure examines the identifier
to determine the source of the WM_COMMAND message and process the message accordingly.

Typically, if an accelerator corresponds to a menu item in the application, the accelerator and
menu item are assigned the same identifier. If you need to know whether a given
WM_COMMAND message was generated by an accelerator or by a menu item, you can examine
the high-order word of the wParam parameter. If an accelerator generated the message, the high-
order word is 1; if a menu item generated the message, the high-order word is 0.

Destroying the Accelerator-Table Resource
Windows automatically destroys accelerator-table resources loaded by the LoadAccelerators
function, removing the resource from memory after the application closes.

Creating Accelerators for Font Attributes
The example in this section shows how to perform the following tasks:

· Create an accelerator-table resource.
· Load the accelerator table at run time.
· Translate accelerators in a message loop.
· Process WM_COMMAND messages generated by the accelerators.

These tasks are demonstrated in the context of an application that includes a Character menu and
corresponding accelerators that allow the user to select attributes of the current font.

The following portion of a resource-definition file defines the Character menu and the associated
accelerator table. Note that the menu items show the accelerator keystrokes and that each
accelerator has the same identifier as its associated menu item.#include <windows.h>
#include "acc.h"
MainMenu MENU
BEGIN

POPUP "&Character"
BEGIN
MENUITEM "&Regular\tF5", IDM_REGULAR
MENUITEM "&Bold\tCtrl+B", IDM_BOLD
MENUITEM "&Italic\tCtrl+I", IDM_ITALIC
MENUITEM "&Underline\tCtrl+U", IDM_ULINE
END

END
FontAccel ACCELERATORS
BEGIN

VK_F5, IDM_REGULAR, VIRTKEY
"B", IDM_BOLD, CONTROL, VIRTKEY
"I", IDM_ITALIC,CONTROL, VIRTKEY
"U", IDM_ULINE, CONTROL, VIRTKEY

ENDThe following sections from the application's source file show how to implement the accelerators.HWND hwndMain; /* handle of main window*/
HANDLE hinstAcc; /* handle of application instance */
int WINAPI WinMain(hinst, hinstPrev, lpCmdLine, nCmdShow)
HINSTANCE hinst;
HINSTANCE hinstPrev;
LPSTR lpCmdLine;
int nCmdShow;
{

MSG msg; /* application messages */
HACCEL haccel; /* handle of accelerator table */
.
. /* Perform the initialization procedure. */
.
/* Create a main window for this application instance. */
hwndMain = CreateWindowEx(0L, "MainWindowClass",
"Sample Application", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hinst, NULL);
/* If a window cannot be created, return "failure." */
if (!hwndMain)
return FALSE;
/* Make the window visible and update its client area. */
ShowWindow(hwndMain, nCmdShow);
UpdateWindow(hwndMain);
/* Load the accelerator table. */
haccel = LoadAccelerators(hinstAcc, "FontAccel");
if (haccel == NULL)
HandleAccelErr(ERR_LOADING);/* application defined */
/*

* Get and dispatch messages until a WM_QUIT message is
* received.
*/

while (GetMessage(&msg, NULL, NULL, NULL)) {
/* Check for accelerator keystrokes. */
if (!TranslateAccelerator(

hwndMain, /* handle of receiving window */
haccel, /* handle of active accel. table */
&msg)) { /* address of message data */
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
return msg.wParam;

}
LRESULT APIENTRY MainWndProc(hwndMain, uMsg, wParam, lParam)
HWND hwndMain;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

BYTE fbFontAttrib; /* array of font-attribute flags */
static HMENU hmenu; /* handle of main menu */
switch (uMsg) {
case WM_CREATE:
/*
* Add a check mark to the Regular menu item to
* indicate that it is the default.
*/
hmenu = GetMenu(hwndMain);
CheckMenuItem(hmenu, IDM_REGULAR, MF_BYCOMMAND |
MF_CHECKED);
return 0;
case WM_COMMAND:
switch (LOWORD(wParam)) {
/* Process the accelerator and menu commands. */
case IDM_REGULAR:
case IDM_BOLD:
case IDM_ITALIC:
case IDM_ULINE:
/*
* GetFontAttributes is an application-defined
* function that sets the menu-item check marks
* and returns the user-selected font attributes.
*/
fbFontAttrib = GetFontAttributes(

(BYTE) LOWORD(wParam), hmenu);
/*
* SetFontAttributes is an application-defined
* function that creates a font with the
* user-specified attributes the font with
* the main window's device context.
*/
SetFontAttributes(fbFontAttrib);
break;
default:
break;
}
break;
.
. /* Process other messages. */
.
default:
return DefWindowProc(hwndMain, uMsg, wParam, lParam);
}
return NULL;

}

Using an Accelerator Table Created at Run Time
The Win32 application programming interface (API) allows you to create accelerator tables at run
time. The steps involved in creating and using an accelerator table at run time are as follows:

· Define the accelerators by filling an array of ACCEL structures, and then create an
accelerator table by passing the array to the CreateAcceleratorTable function.

· Activate the accelerator table and process WM_COMMAND messages generated by the
accelerators.

· Destroy the accelerator table before the application closes.

Creating the Accelerator Table
The first step in creating an accelerator table at run time is filling an array of ACCEL structures.
Each structure in the array defines an accelerator in the table. An accelerator's definition includes
its flags, its key, and its identifier. The ACCEL structure has the following form.typedef struct tagACCEL { // accl

BYTE fVirt;
WORD key;
WORD cmd;

} ACCEL;You define an accelerator's keystroke by specifying an ASCII character code or a virtual-key code
in the key member of the ACCEL structure. If you specify a virtual-key code, you must first
include the FVIRTKEY flag in the fVirt member; otherwise, Windows interprets the code as an
ASCII character code. You can include the FCONTROL, FALT, or FSHIFT flag, or all three, to
combine the CTRL, ALT, or SHIFT key with the keystroke.

To create the accelerator table, pass the address of the array of ACCEL structures to the
CreateAcceleratorTable function. CreateAcceleratorTable creates the accelerator table and
returns the handle of the table.

Processing Accelerators
The process of loading and calling accelerators provided by an accelerator table created at run
time is the same as processing those provided by an accelerator-table resource. For more
information, see Loading the Accelerator-Table Resource through Processing WM_COMMAND
Messages.

Destroying the Accelerator Table
Before an application closes, it must destroy accelerator tables created at run time. You can
destroy an accelerator table and remove it from memory by passing the table's handle to the
DestroyAcceleratorTable function.

Creating User-Editable Accelerators
This example shows how to construct a dialog box that allows the user to change the accelerator
associated with a menu item. The dialog box consists of a combo box containing menu items, a
combo box containing the names of keys, and check boxes for selecting the CTRL, ALT, and SHIFT
keys. The following illustration shows the dialog box.

ewc msdncd, EWGraphic, bsd23465 1 /a "SDK_02.BMP"

The following example shows how the dialog box is defined in the resource-definition file.EdAccelBox DIALOG 5, 17, 193, 114
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Edit Accelerators"
BEGIN

COMBOBOX IDD_MENUITEMS, 10, 22, 52, 53,
CBS_SIMPLE | CBS_SORT | WS_VSCROLL |
WS_TABSTOP
CONTROL "Control", IDD_CNTRL, "Button",
BS_AUTOCHECKBOX | WS_TABSTOP,
76, 35, 40, 10
CONTROL "Alt", IDD_ALT, "Button",
BS_AUTOCHECKBOX | WS_TABSTOP,
76, 48, 40, 10
CONTROL "Shift", IDD_SHIFT, "Button",
BS_AUTOCHECKBOX | WS_TABSTOP,
76, 61, 40, 10
COMBOBOX IDD_KEYSTROKES, 124, 22, 58, 58,
CBS_SIMPLE | CBS_SORT | WS_VSCROLL |
WS_TABSTOP
PUSHBUTTON "Ok", IDOK, 43, 92, 40, 14
PUSHBUTTON "Cancel", IDCANCEL, 103, 92, 40, 14
LTEXT "Select Item:", 101, 10, 12, 43, 8
LTEXT "Select Keystroke:", 102, 123, 12, 60, 8

ENDThe dialog box uses an array of application-defined VKEY structures, each containing a
keystroke-text string and an accelerator-text string. When the dialog box is created, it parses the
array and adds each keystroke-text string to the Select Keystroke combo box. When the user
clicks the Ok button, the dialog box looks up the selected keystroke-text string and retrieves the
corresponding accelerator-text string. The dialog box appends the accelerator-text string to the
text of the menu item that the user selected. The following example shows the array of VKEY
structures:/* VKey Lookup Support */
#define MAXKEYS 26
typedef struct _VKEYS {

char *pKeyName;
char *pKeyString;

} VKEYS;
VKEYS vkeys[MAXKEYS] = {

"BkSp","Back Space",
"PgUp","Page Up",
"PgDn","Page Down",
"End", "End",
"Home","Home",
"Lft", "Left",
"Up", "Up",
"Rgt", "Right",
"Dn", "Down",
"Ins", "Insert",
"Del", "Delete",
"Mult","Multiply",
"Add", "Add",
"Sub", "Subtract",
"DecPt", "Decimal Point",
"Div", "Divide",
"F2", "F2",
"F3", "F3",
"F5", "F5",
"F6", "F6",
"F7", "F7",
"F8", "F8",
"F9", "F9",
"F11", "F11",
"F12", "F12"

};The dialog box's initialization procedure fills the Select Item and Select Keystroke combo boxes.
After the user selects a menu item and associated accelerator, the dialog box examines the
controls in the dialog box to get the user's selection, updates the text of the menu item, and then
creates a new accelerator table that contains the user-defined new accelerator. The following
example shows the dialog-box procedure./* Global variables */
HWND hwndMain; /* handle of main window*/
HANDLE hinstAcc; /* handle of application instance */
HACCEL haccel; /* handle of accelerator table */
.
.
.
/* Dialog-box procedure */
LRESULT CALLBACK EdAccelProc(hwndDlg, uMsg, wParam, lParam)
HWND hwndDlg;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

int nCurSel; /* index of list box item*/
UINT idItem; /* menu-item identifier */
UINT uItemPos;/* menu-item position */
UINT i, j = 0;/* loop counters */
static UINT cItems;/* count of items in menu*/
char szTemp[32]; /* temporary buffer */
char szAccelText[32]; /* buffer for accelerator text*/
char szKeyStroke[16]; /* buffer for keystroke text */
static char szItem[32]; /* buffer for menu-item text */
HWND hwndCtl; /* handle of control window */
static HMENU hmenu;/* handle of "Character" menu */
PCHAR pch, pch2; /* pointers for string copying*/
WORD wVKCode; /* accelerator virtual-key code */
BYTE fAccelFlags; /* fVirt flags for ACCEL structure */
LPACCEL lpaccelNew;/* address of new accel. table*/
HACCEL haccelOld; /* handle of old accel. table */
int cAccelerators; /* number of accelerators in table */
static BOOL fItemSelected = FALSE; /* item selection flag */
static BOOL fKeySelected = FALSE; /* key selection flag */
switch (uMsg) {
case WM_INITDIALOG:
/* Get the handle of the menu-item combo box. */
hwndCtl = GetDlgItem(hwndDlg, IDD_MENUITEMS);
/*
* The application's menu bar contains a "Character"
* submenu whose items have accelerators associated
* with them. Get the handle of the "Character"
* submenu (its position within the main menu is 2),
* and count the number of items it has.
*/
hmenu = GetSubMenu(GetMenu(hwndMain), 2);
cItems = GetMenuItemCount(hmenu);
/*
* Get the text of each item, strip out the '&' and
* the accelerator text, and add the text to the
* menu-item combo box.
*/
for (i = 0; i < cItems; i++) {
if (!(GetMenuString(hmenu, i, szTemp,

sizeof(szTemp), MF_BYPOSITION)))
continue;
for (pch = szTemp, pch2 = szItem;
*pch != '\0';) {

if (*pch != '&') {
if (*pch == '\t') {
*pch = '\0';
*pch2 = '\0';
}
else
*pch2++ = *pch++;

}
else

pch++;
}
SendMessage(hwndCtl, CB_ADDSTRING, 0,
(LONG) (LPSTR) szItem);
}
/*
* Now fill the keystroke combo box with the list of
* keystrokes that will be allowed for accelerators.
* The list of keystrokes is in the application-defined
* structure called "vkeys".
*/
hwndCtl = GetDlgItem(hwndDlg, IDD_KEYSTROKES);
for (i = 0; i < MAXKEYS; i++)
SendMessage(hwndCtl, CB_ADDSTRING, 0,
(LONG) (LPSTR) vkeys[i].pKeyString);
return TRUE;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDD_MENUITEMS:
/*
* The user must select an item from the menu-
* item combo box. This flag is checked during
* IDOK processing to be sure a selection was made.
*/
fItemSelected = TRUE;
return 0;
case IDD_KEYSTROKES:
/*
* The user must select an item from the menu-
* item combo box. This flag is checked during
* IDOK processing to be sure a selection was made.
*/
fKeySelected = TRUE;
return 0;
case IDOK:
/*
* If the user has not selected a menu item
* and a keystroke, display a reminder in a
* message box.
*/
if (!fItemSelected || !fKeySelected) {

MessageBox(hwndDlg,
"Item or key not selected.", NULL,
MB_OK);
return 0;

}
/*
* Determine whether the CTRL, ALT, and SHIFT
* keys are selected. Concatenate the
* appropriate strings to the accelerator-
* text buffer, and set the appropriate
* accelerator flags.
*/
szAccelText[0] = '\0';
hwndCtl = GetDlgItem(hwndDlg, IDD_CNTRL);
if (SendMessage(hwndCtl, BM_GETCHECK, 0, 0)

== 1) {
lstrcat(szAccelText, "Ctl+");
fAccelFlags |= FCONTROL;

}
hwndCtl = GetDlgItem(hwndDlg, IDD_ALT);
if (SendMessage(hwndCtl, BM_GETCHECK, 0, 0)

== 1) {
lstrcat(szAccelText, "Alt+");
fAccelFlags |= FALT;

}
hwndCtl = GetDlgItem(hwndDlg, IDD_SHIFT);
if (SendMessage(hwndCtl, BM_GETCHECK, 0, 0)

== 1) {
lstrcat(szAccelText, "Shft+");
fAccelFlags |= FSHIFT;

}
/*
* Get the selected keystroke, and look up the
* accelerator text and the virtual-key code
* for the keystroke in the vkeys structure.
*/
hwndCtl = GetDlgItem(hwndDlg, IDD_KEYSTROKES);
nCurSel = (int) SendMessage(hwndCtl,

CB_GETCURSEL, 0, 0);
SendMessage(hwndCtl, CB_GETLBTEXT,

nCurSel, (LONG) (LPSTR) szKeyStroke);
for (i = 0; i < MAXKEYS; i++) {

if(lstrcmp(vkeys[i].pKeyString,
szKeyStroke) == 0) {
lstrcpy(szKeyStroke,
vkeys[i].pKeyName);
break;
}

}
/*
* Concatenate the keystroke text to the
* "Ctl+","Alt+", or "Shft+" string.
*/
lstrcat(szAccelText, szKeyStroke);
/*
* Determine the position in the menu of the
* selected menu item. Menu items in the
* "Character" menu have positions 0,2,3, and 4.
*/
if (lstrcmp(szItem, "Regular") == 0)

uItemPos = 0;
else if (lstrcmp(szItem, "Bold") == 0)

uItemPos = 2;
else if (lstrcmp(szItem, "Italic") == 0)

uItemPos = 3;
else if (lstrcmp(szItem, "Underline") == 0)

uItemPos = 4;
/*
* Get the string that corresponds to the
* selected item.
*/
GetMenuString(hmenu, uItemPos, szItem,

sizeof(szItem), MF_BYPOSITION);
/*
* Append the new accelerator text to the
* menu-item text.
*/
for (pch = szItem; *pch != '\t'; pch++);
++pch;
for (pch2 = szAccelText; *pch2 != '\0';

pch2++)
*pch++ = *pch2;

*pch = '\0';
/*
* Modify the menu item to reflect the new
* accelerator text.
*/
idItem = GetMenuItemID(hmenu, uItemPos);
ModifyMenu(hmenu, idItem, MF_BYCOMMAND |

MF_STRING, idItem, szItem);
/* Reset the selection flags. */
fItemSelected = FALSE;
fKeySelected = FALSE;
/* Save the current accelerator table. */
haccelOld = haccel;
/*
* Count the number of entries in the current
* table, allocate a buffer for the table, and
* then copy the table into the buffer.
*/
cAccelerators = CopyAcceleratorTable(

haccelOld, NULL, 0);
lpaccelNew = (LPACCEL) LocalAlloc(LPTR,

cAccelerators * sizeof(ACCEL));
if (lpaccelNew != NULL)

CopyAcceleratorTable(haccel, lpaccelNew,
cAccelerators);

/*
* Find the accelerator that the user modified
* and change its flags and virtual-key code
* as appropriate.
*/
for (i = 0; (lpaccelNew[i].cmd ==
(WORD) idItem)
&& (i < (UINT) cAccelerators); i++) {
lpaccelNew[i].fVirt = fAccelFlags;
lpaccelNew[i].key = wVKCode;

}
/*
* Create the new accelerator table, and
* destroy the old one.
*/
DestroyAcceleratorTable(haccelOld);
haccel = CreateAcceleratorTable(lpaccelNew,

cAccelerators);
/* Destroy the dialog box. */
EndDialog(hwndDlg, TRUE);
return 0;
case IDCANCEL:
EndDialog(hwndDlg, TRUE);
return TRUE;
default:
break;
}
default:
break;
}
return FALSE;

}

Keyboard Accelerator Reference
The following functions, structures and messages are associated with keyboard accelerators.

Keyboard Accelerator Functions
Following are the functions used with accelerators.
CopyAcceleratorTable
CreateAcceleratorTable
DestroyAcceleratorTable
LoadAccelerators

TranslateAccelerator

Keyboard Accelerator Structures
The following structure is used with accelerators.

ACCEL

Keyboard Accelerator Messages
Following are the messages used with accelerators.
WM_COMMAND
WM_INITMENU
WM_INITMENUPOPUP
WM_MENUCHAR
WM_MENUSELECT
WM_SYSCHAR

WM_SYSCOMMAND

Keyboard InputThis overview describes how Windows generates keyboard input and how an application receives
and processes that input.

About Keyboard Input
All applications written for Microsoft® Windows® should accept user input from the keyboard as
well as from the mouse. A Windows-based application receives keyboard input in the form of
messages posted to its windows.

Keyboard Input Model
Windows provides device-independent keyboard support for applications by installing a keyboard
device driver appropriate for the current keyboard. Windows provides language-independent
keyboard support by using the language-specific keyboard layout currently selected by the user or
the application. The keyboard device driver receives scan codes from the keyboard, which are
sent to the keyboard layout where they are translated into messages and posted to the
appropriate windows in your application.

Assigned to each key on a keyboard is a unique value called a scan code, a device-dependent
identifier for the key on the keyboard. A keyboard generates two scan codes when the user types
a key ¾ one when the user presses the key and another when the user releases the key.

The keyboard device driver interprets a scan code and translates (maps) it to a virtual-key code, a
device-independent value defined by Windows that identifies the purpose of a key. After
translating a scan code, the keyboard layout creates a message that includes the scan code, the
virtual-key code, and other information about the keystroke, and then places the message in the
system message queue. Windows removes the message from the system message queue and
posts it to the message queue of the appropriate thread. Eventually, the thread's message loop
removes the message and passes it to the appropriate window procedure for processing. The
following figure illustrates the keyboard input model for Windows.

ewc msdncd, EWGraphic, bsd23466 0 /a "SDK_01.BMP"

Keyboard Focus and Activation
Windows posts keyboard messages to the message queue of the foreground thread that created
the window with the keyboard focus. The keyboard focus is a temporary property of a window.
Windows shares the keyboard among all windows on the display by shifting the keyboard focus,
at the user's direction, from one window to another. The window that has the keyboard focus
receives (from the message queue of the thread that created it) all keyboard messages until the
focus changes to a different window.

A thread can call the GetFocus function to determine which of its windows (if any) currently has
the keyboard focus. A thread can give the keyboard focus to one of its windows by calling the
SetFocus function. When the keyboard focus changes from one window to another, the system
sends a WM_KILLFOCUS message to the window that has lost the focus, and then sends a
WM_SETFOCUS message to the window that has gained the focus.

The concept of keyboard focus is related to that of the active window. The active window is the
top-level window the user is currently working with. The window with the keyboard focus is either
the active window, or a child window of the active window. So the user can easily identify the
active window, the system places it at the top of the Z order and makes its title bar (if it has one)
and border highlighted.

The user can activate a top-level window by clicking it, selecting it using the ALT+TAB or ALT+ESC
key combination, or selecting if from Task List. A thread can activate a top-level window by using
the SetActiveWindow function. It can determine whether a top-level window it created is active
by using the GetActiveWindow function.

When one window is deactivated and another activated, Windows sends the WM_ACTIVATE
message first to the window being deactivated, then to the window being activated. The low-order
word of the wParam parameter is zero if the window is being deactivated and nonzero if it is being
activated. When the default window procedure receives the WM_ACTIVATE message, it sets the
keyboard focus to the active window.

Keystroke Messages
Pressing a key results in a WM_KEYDOWN or WM_SYSKEYDOWN message being placed in the
thread message queue associated with the window that has the keyboard focus. Releasing a key
results in a WM_KEYUP or WM_SYSKEYUP message being placed in the queue.

Key-up and key-down messages typically occur in pairs, but if the user holds down a key long
enough to start the keyboard's automatic repeat feature, the system generates a number of
WM_KEYDOWN or WM_SYSKEYDOWN messages in a row. It then generates a single
WM_KEYUP or WM_SYSKEYUP message when the user releases the key.

System and Nonsystem Keystrokes
Windows makes a distinction between system keystrokes and nonsystem keystrokes. System
keystrokes produce system keystroke messages, WM_SYSKEYDOWN and WM_SYSKEYUP.
Nonsystem keystrokes produce nonsystem keystroke messages, WM_KEYDOWN and
WM_KEYUP.

If your window procedure must process a system keystroke message, make sure that after
processing the message the procedure passes it to the DefWindowProc function. Otherwise, all
system operations involving the ALT key will be disabled whenever the window has the keyboard
focus. That is, the user won't be able to access the window's menus or System menu, or use the
ALT+ESC or ALT+TAB key combination to activate a different window.

System keystroke messages are primarily for use by Windows rather than by an application.
Windows uses them to provide its built-in keyboard interface to menus and to allow the user to
control which window is active. System keystroke messages are generated when the user types a
key in combination with the ALT key, or when the user types and no window has the keyboard
focus (for example, when the active application is minimized). In this case, the messages are
posted to the message queue associated with the active window.

Nonsystem keystroke messages are for use by application windows; the DefWindowProc
function does nothing with them. A window procedure can discard any nonsystem keystroke
messages that it does not need.

Virtual-Key Codes Described
The wParam parameter of a keystroke message contains the virtual-key code of the key that was
pressed or released. A window procedure processes or ignores a keystroke message, depending
on the value of the virtual-key code.

A typical window procedure processes only a small subset of the keystroke messages that it
receives and ignores the rest. For example, a window procedure might process only
WM_KEYDOWN keystroke messages, and only those that contain virtual-key codes for the cursor
movement keys, shift keys (also called control keys), and function keys. A typical window
procedure does not process keystroke messages from character keys. Instead, it uses the
TranslateMessage function to convert the message into character messages. For more
information about TranslateMessage and character messages, see Character Messages.

Keystroke Message Flags
The lParam parameter of a keystroke message contains additional information about the
keystroke that generated the message. This information includes the repeat count, the scan code,
the extended-key flag, the context code, the previous key-state flag, and the transition-state flag.
The following illustration shows the locations of these flags and values in the lParam parameter:

ewc msdncd, EWGraphic, bsd23466 1 /a "SDK_02.BMP"

An application can use the following values to manipulate the keystroke flags:

Value Meaning

KF_ALTDOWN Manipulates the ALT key flag, which indicated if
the ALT key is pressed.

KF_DLGMODE Manipulates the dialog mode flag, which indicates
whether a dialog box is active.

KF_EXTENDED Manipulates the extended key flag.
KF_MENUMODE Manipulates the menu mode flag, which indicates

whether a menu is active.
KF_REPEAT Manipulates the repeat count.
KF_UP Manipulates the transition state flag.
Repeat CountYou can check the repeat count to determine whether a keystroke message represents more than
one keystroke. The system increments the count when the keyboard generates WM_KEYDOWN
or WM_SYSKEYDOWN messages faster than an application can process them. This often occurs
when the user holds down a key long enough to start the keyboard's automatic repeat feature.
Instead of filling the system message queue with the resulting key-down messages, the system
combines the messages into a single key down message and increments the repeat count.
Releasing a key cannot start the automatic repeat feature, so the repeat count for WM_KEYUP
and WM_SYSKEYUP messages is always set to 1.Scan CodeThe scan code is the value that the keyboard hardware generates when the user presses a key. It
is a device-dependent value that identifies the key pressed, as opposed to the character
represented by the key. An application typically ignores scan codes. Instead, it uses the device-
independent virtual-key codes to interpret keystroke messages.Extended-Key FlagThe extended-key flag indicates whether the keystroke message originated from one of the
additional keys on the enhanced keyboard. The extended keys consist of the ALT and CTRL keys
on the right-hand side of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow
keys in the clusters to the left of the numeric keypad; the NUM LOCK key; the BREAK (CTRL+PAUSE)
key; the PRINT SCRN key; and the divide (/) and ENTER keys in the numeric keypad. The extended-
key flag is set if the key is an extended key.Context CodeThe context code indicates whether the ALT key was down when the keystroke message was
generated. The code is 1 if the ALT key was down and 0 if it was up.Previous Key-State FlagThe previous key-state flag indicates whether the key that generated the keystroke message was
previously up or down. It is 1 if the key was previously down and 0 if the key was previously up.
You can use this flag to identify keystroke messages generated by the keyboard's automatic
repeat feature. This flag is set to 1 for WM_KEYDOWN and WM_SYSKEYDOWN keystroke
messages generated by the automatic repeat feature. It is always set to 0 for WM_KEYUP and
WM_SYSKEYUP messages.Transition-State FlagThe transition-state flag indicates whether pressing a key or releasing a key generated the
keystroke message. This flag is always set to 0 for WM_KEYDOWN and WM_SYSKEYDOWN
messages; it is always set to 1 for WM_KEYUP and WM_SYSKEYUP messages.

Character Messages
Keystroke messages provide a lot of information about keystrokes, but they don't provide
character codes for character keystrokes. To retrieve character codes, an application must include
the TranslateMessage function in its thread message loop. TranslateMessage passes a
WM_KEYDOWN or WM_SYSKEYDOWN message to the keyboard layout. The layout examines
the message's virtual-key code and, if it corresponds to a character key, provides the character
code equivalent (taking into account the state of the SHIFT and CAPS LOCK keys). It then generates
a character message that includes the character code and places the message at the top of the
message queue. The next iteration of the message loop removes the character message from the
queue and dispatches the message to the appropriate window procedure.

Nonsystem Character Messages
A window procedure can receive four different character messages, including WM_CHAR,
WM_DEADCHAR, WM_SYSCHAR, and WM_SYSDEADCHAR. The TranslateMessage function
generates a WM_CHAR or WM_DEADCHAR message when it processes a WM_KEYDOWN
message. Similarly, it generates a WM_SYSCHAR or WM_SYSDEADCHAR message when it
processes a WM_SYSKEYDOWN message.

An application that processes keyboard input typically ignores all but the WM_CHAR message,
passing any other messages to the DefWindowProc function. Windows uses the WM_SYSCHAR
and WM_SYSDEADCHAR messages to implement menu mnemonics.

The wParam parameter of all character messages contains the character code of the character
key that was pressed. The value of the character code depends on the window class of the
window receiving the message. If the Unicode version of the RegisterClass function was used to
register the window class, the system provides Unicode characters to all windows of that class.
Otherwise, the system provides ASCII character codes from the Windows character set. For more
information about Unicode, see Unicode and Character Sets.

The contents of the lParam parameter of a character message are identical to the contents of the
lParam parameter of the key-down message that was translated to produce the character
message. For information about the contents of the lParam parameter, see Keystroke Message
Flags.

Dead-Character Messages
Some non-English keyboards contain character keys that are not expected to produce characters
by themselves. Instead, they are used to add a diacritic to the character produced by the
subsequent keystroke. These keys are called dead keys. The circumflex key on a German
keyboard is an example of a dead key. To enter the character consisting of an "o" with a
circumflex, a German user would type the circumflex key followed by the "o" key. The window with
the keyboard focus would receive the following sequence of messages:
WM_KEYDOWN
WM_DEADCHAR
WM_KEYUP
WM_KEYDOWN
WM_CHAR

WM_KEYUP

TranslateMessage generates the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a dead key. Although the wParam parameter of the
WM_DEADCHAR message contains the character code of the diacritic for the dead key, an
application typically ignores the message. Instead, it processes the WM_CHAR message
generated by the subsequent keystroke. The wParam parameter of the WM_CHAR message
contains the character code of the letter with the diacritic. If the subsequent keystroke generates a
character that cannot be combined with a diacritic, Windows generates two WM_CHAR
messages. The wParam parameter of the first contains the character code of the diacritic; the
wParam parameter of the second contains the character code of the subsequent character key.

The TranslateMessage function generates the WM_SYSDEADCHAR message when it
processes the WM_SYSKEYDOWN message from a system dead key (a dead key that is
pressed in combination with the ALT key). An application typically ignores the
WM_SYSDEADCHAR message.

Key Status
While processing a keyboard message, an application may need to determine the status of
another key besides the one that generated the current message. For example, a word-
processing application that allows the user to press SHIFT+END to select a block of text must check
the status of the SHIFT key whenever it receives a keystroke message from the END key. The
application can use the GetKeyState function to determine the status of a virtual key at the time
the current message was generated; it can use the GetAsyncKeyState function to retrieve the
current status of a virtual key.

The keyboard layout maintains a list of names. The name of a key that produces a single
character is the same as the character produced by the key. The name of a noncharacter key
such as TAB and ENTER is stored as a character string. An application can retrieve the name of
any key from the device driver by calling the GetKeyNameText function.

Keystroke and Character Translations
Windows includes several special purpose functions that translate scan codes, character codes,
and virtual-key codes provided by various keystroke messages. These functions include
MapVirtualKey, ToAscii, ToUnicode, and VkKeyScan.

Hot-Key Support
Windows provides a set of functions that applications can use to define hot keys. A hot key is a
key combination that generates a WM_HOTKEY message, a message the system places at the
top of a thread's message queue, bypassing any existing messages in the queue. Applications
use hot keys to obtain high-priority keyboard input from the user. For example, by defining a hot
key consisting of the CTRL+C key combination, an application can allow the user to cancel a
lengthy operation.

To define a hot key, an application calls the RegisterHotKey function, specifying the combination
of keys that generates the WM_HOTKEY message, the handle of the window to receive the
message, and the identifier of the hot key. When the user presses the hot key, a WM_HOTKEY
message is placed in the message queue of the thread that created the given window. The
wParam parameter of the message contains the identifier of the hot key. The application can
define multiple hot keys for a thread, but each hot key in the thread must have a unique identifier.
Before the application terminates, it should use the UnregisterHotKey function to destroy the hot
key.

Applications can use a hot key control to make it easy for the user to choose a hot key. Hot key
controls are typically used to define a hot key that activates a window; they do not use the
RegisterHotKey and UnregisterHotKey functions. Instead, an application that uses a hot key
control typically sends the WM_SETHOTKEY message to set the hot key. Whenever the user
presses the hot key, the system sends a WM_SYSCOMMAND message specifying SC_HOTKEY.
For more information about hot key controls, see Hot-Key Controls.

Languages, Locales, and Keyboard Layouts
A language is a natural language, such as English, French, and Japanese. A sublanguange is a
variant of a natural language that is spoken in a specific geographical region, such as the English
sublanguages spoken in Great Britain and the United States. Win32-based applications use
values, called locales, to uniquely identify languages and sublanguages. Applications typically use
locales to set the language in which input and output is processed. Setting the locale for the
keyboard, for example, affects the character values generated by the keyboard. Setting the locale
for the display or printer affects the glyphs displayed or printed. Applications set the locale for a
keyboard by loading and using keyboard layouts. They set the locale for a display or printer by
selecting a font that supports the given locale.

A keyboard layout not only specifies the physical position of the keys on the keyboard but also
determines the character values generated by pressing those keys. Each layout has an
associated locale which identifies the current input language and determines which character
values are generated by which keys and key combinations.

Every keyboard layout has a corresponding handle that identifies the layout and language. The
low word of the handle is a language identifier. The high word is a device handle, specifying the
physical layout, or is zero, indicating a default physical layout. The user can associate any input
language with a given physical layout. For example, an English-speaking user who very
occasionally works in French can set the input language of the keyboard to French without
changing the physical layout of the keyboard. This means the user can enter text in French using
the familiar English layout.

Applications are generally not expected to manipulate input languages directly. Instead, the user
sets up language and layout combinations, then switches among them. When the user clicks into
text marked with a different language, the application calls the ActivateKeyboardLayout function
to activate the user's default layout for that language. If the user edits text in a language which is
not in the active list, the application can call the LoadKeyboardLayout function with the language
to get a layout based on that language.

The ActivateKeyboardLayout function sets the input language for the current task. The hkl
parameter can be either the handle of the keyboard layout or a zero-extended language identifier.
Keyboard layout handles can be obtained from the LoadKeyboardLayout or
GetKeyboardLayoutList function. The HKL_NEXT and HKL_PREV values can also be used to
select the next or previous keyboard. For some operating systems, the KLF_UNLOADPREVIOUS
value has no meaning and is ignored.

The GetKeyboardLayoutName function retrieves the name of the active keyboard layout for the
calling thread. If an application creates the active layout using the LoadKeyboardLayout
function, GetKeyboardLayoutName retrieves the same string used to create the layout.
Otherwise, the string is the primary language identifier corresponding to the locale of the active
layout. This means the function may not necessarily differentiate among different layouts with the
same primary language, so cannot return specific information about the input language. The
GetKeyboardLayout function, however, can be used to determine the input language.

The LoadKeyboardLayout function loads a keyboard layout and makes the layout available to
the user. Applications can make the layout immediately active for the current thread by using the
KLF_ACTIVATE value. An application can use the KLF_REORDER value to reorder the layouts
without also specifying the KLF_ACTIVATE value. Applications should always use the
KLF_SUBSTITUTE_OK value when loading keyboard layouts to ensure that the user's
preference, if any, is selected. For some operating systems, the KLF_UNLOADPREVIOUS value
is ignored.

For multilingual support, the LoadKeyboardLayout function provides the KLF_REPLACELANG
and KLF_NOTELLSHELL flags. The KLF_REPLACELANG flag directs the function to replace an
existing keyboard layout without changing the language. Attempting to replace an existing layout
using the same language identifier but without specifying KLF_REPLACELANG is an error. The
KLF_NOTELLSHELL flag prevents the function from notifying the shell when a keyboard layout is
added or replaced. This is useful for applications that add multiple layouts in a consecutive series
of calls. This flag should be used in all but the last call.

The UnloadKeyboardLayout function is restricted in that it cannot unload the system default

input language. This ensures that the user always has one layout available for enter text using the
same character set as used by the shell and file system.

Using Keyboard Input
A window receives keyboard input in the form of keystroke messages and character messages.
The message loop associated with the window must include code to translate keystroke
messages into the corresponding character messages. If the window displays keyboard input in
its client area, it should create and display a caret to indicate the position where the next character
will be entered. The following sections describe the code involved in receiving, processing, and
displaying keyboard input.

· Processing keystroke messages
· Translating character messages
· Processing character messages
· Using the caret
· Displaying keyboard input

Processing Keystroke Messages
The window procedure of the window that has the keyboard focus receives keystroke messages
when the user types at the keyboard. The keystroke messages are WM_KEYDOWN,
WM_KEYUP, WM_SYSKEYDOWN, and WM_SYSKEYUP. A typical window procedure ignores
all keystroke messages except WM_KEYDOWN. Windows posts the WM_KEYDOWN message
when the user presses a key.

When the window procedure receives the WM_KEYDOWN message, it should examine the
virtual-key code that accompanies the message to determine how to process the keystroke. The
virtual-key code is in the message's wParam parameter. Typically, an application processes only
keystrokes generated by noncharacter keys, including the function keys, the cursor movement
keys, and the special-purpose keys such as INS, DEL, HOME and END.

The following example shows the window procedure framework that a typical application uses to
receive and process keystroke messages.case WM_KEYDOWN:

switch (wParam) {
case VK_LEFT:
.
. /* Process the LEFT ARROW key. */
.
break;
case VK_RIGHT:
.
. /* Process the RIGHT ARROW key. */
.
break;
case VK_UP:
.
. /* Process the UP ARROW key. */
.
break;
case VK_DOWN:
.
. /* Process the DOWN ARROW key. */
.
break;
case VK_HOME:
.
. /* Process the HOME key. */
.
break;
case VK_END:
.
. /* Process the END key. */
.
break;
case VK_INSERT:
.
. /* Process the INS key. */
.
break;
case VK_DELETE:
.
. /* Process the DEL key. */
.
break;
case VK_F2:
.
. /* Process the F2 key. */
.
break;
.
. /* Process other noncharacter keystrokes. */
.
default:
break;
}

Translating Character Messages
Any thread that receives character input from the user must include the TranslateMessage
function in its message loop. This function examines the virtual-key code of a keystroke message
and, if the code corresponds to a character, places a character message into the message queue.
The character message is removed and dispatched on the next iteration of the message loop; the
wParam parameter of the message contains the character code.

In general, a thread's message loop should use the TranslateMessage function to translate every
message, not just virtual-key messages. Although TranslateMessage has no effect on other
types of messages, it guarantees that keyboard input is translated correctly. The following
example shows how to include the TranslateMessage function in a typical thread message loop.while (GetMessage(&msg, (HWND) NULL, 0, 0)) {

if (TranslateAccelerator(hwndMain, haccl, &msg) == 0) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}

Processing Character Messages
A window procedure receives a character message when the TranslateMessage function
translates a virtual-key code corresponding to a character key. The character messages are
WM_CHAR, WM_DEADCHAR, WM_SYSCHAR, and WM_SYSDEADCHAR. A typical window
procedure ignores all character messages except WM_CHAR. The TranslateMessage function
generates a WM_CHAR message when the user presses any of the following keys.

· Any character key
· BACKSPACE
· ENTER (carriage return)
· ESC
· SHIFT+ENTER (linefeed)
· TAB

When a window procedure receives the WM_CHAR message, it should examine the character
code that accompanies the message to determine how to process the character. The character
code is in the message's wParam parameter.

The following example shows the window procedure framework that a typical application uses to
receive and process character messages.case WM_CHAR:

switch (wParam) {
case 0x08:
.
. /* Process a backspace. */
.
break;
case 0x0A:
.
. /* Process a linefeed. */
.
break;
case 0x1B:
.
. /* Process an escape. */
.
break;
case 0x09:
.
. /* Process a tab. */
.
break;
case 0x0D:
.
. /* Process a carriage return. */
.
break;
default:
.
. /* Process displayable characters. */
.
break;
}

Using the Caret
A window that receives keyboard input typically displays the characters the user types in the
window's client area. A window should use a caret to indicate the position in the client area where
the next character will appear. The window should also create and display the caret when it
receives the keyboard focus, and hide and destroy the caret when it loses the focus. A window
can perform these operations in the processing of the WM_SETFOCUS and WM_KILLFOCUS
messages. For more information about carets, see Carets.

Displaying Keyboard Input
The example in this section shows how an application can receive characters from the keyboard,
display them in the client area of a window, and update the position of the caret with each
character typed. It also demonstrates how to move the caret in response to the LEFT ARROW,
RIGHT ARROW, HOME and END keystrokes, and shows how to highlight selected text in response to
the SHIFT+RIGHT ARROW key combination.

During processing of the WM_CREATE message, the window procedure shown in the example
allocates a 64K buffer for storing keyboard input. It also retrieves the metrics of the currently
loaded font, saving the height and average width of characters in the font. The height and width
are used in processing the WM_SIZE message to calculate the line length and maximum number
of lines, based on the size of the client area.

The window procedure creates and displays the caret when processing the WM_SETFOCUS
message. It hides and deletes the caret when processing the WM_KILLFOCUS message.

When processing the WM_CHAR message, the window procedure displays characters, stores
them in the input buffer, and updates the caret position. The window procedure also converts tab
characters to four consecutive space characters. Backspace, linefeed, and escape characters
generate a beep, but are not otherwise processed.

The window procedure performs the left, right, end, and home caret movements when processing
the WM_KEYDOWN message. While processing the action of the RIGHT ARROW key, the window
procedure checks the state of the SHIFT key and, if it is down, selects the character to the right of
the caret as the caret is moved.

Note that the following code is written so that it can be compiled either as Unicode™ or as ANSI. If
the source code defines Unicode, strings are handled as Unicode characters; otherwise, they are
handled as ANSI characters.#define BUFSIZE 65535
#define SHIFTED 0x8000
LONG APIENTRY MainWndProc(hwndMain, uMsg, wParam, lParam)
HWND hwndMain;
UINT uMsg;
UINT wParam;
LONG lParam;
{

HDC hdc; /* handle of device context */
TEXTMETRIC tm; /* structure for text metrics */
static DWORD dwCharX; /* average width of characters */
static DWORD dwCharY; /* height of characters*/
static DWORD dwClientX; /* width of client area*/
static DWORD dwClientY; /* height of client area */
static DWORD dwLineLen; /* line length */
static DWORD dwLines; /* text lines in client area*/
static int nCaretPosX = 0; /* horizontal position of caret */
static int nCaretPosY = 0; /* vertical position of caret */
static int nCharWidth = 0; /* width of a character*/
static int cch = 0; /* characters in buffer*/
static int nCurChar = 0; /* index of current character */
static PTCHAR pchInputBuf; /* address of input buffer */
int i, j; /* loop counters */
int cCR = 0;/* count of carriage returns*/
int nCRIndex = 0;/* index of last carriage return */
int nVirtKey; /* virtual-key code */
TCHAR szBuf[128];/* temporary buffer */
TCHAR ch; /* current character */
PAINTSTRUCT ps; /* required by BeginPaint */
RECT rc; /* output rectangle for DrawText */
SIZE sz; /* string dimensions */
COLORREF crPrevText; /* previous text color */
COLORREF crPrevBk; /* previous background color*/
switch (uMsg) {
case WM_CREATE:
/* Get the metrics of the current font. */
hdc = GetDC(hwndMain);
GetTextMetrics(hdc, &tm);
ReleaseDC(hwndMain, hdc);
/* Save the average character width and height. */
dwCharX = tm.tmAveCharWidth;
dwCharY = tm.tmHeight;
/* Allocate a buffer to store keyboard input. */
pchInputBuf = (LPTSTR) GlobalAlloc(GPTR,
BUFSIZE * sizeof(TCHAR));
return 0;
case WM_SIZE:
/* Save the new width and height of the client area. */
dwClientX = LOWORD(lParam);
dwClientY = HIWORD(lParam);
/*
* Calculate the maximum width of a line and the
* maximum number of lines in the client area.
*/
dwLineLen = dwClientX - dwCharX;
dwLines = dwClientY / dwCharY;
break;

case WM_SETFOCUS:
/*
* Create, position, and display the caret when the
* window receives the keyboard focus.
*/
CreateCaret(hwndMain, (HBITMAP) 1, 0, dwCharY);
SetCaretPos(nCaretPosX, nCaretPosY * dwCharY);
ShowCaret(hwndMain);
break;
case WM_KILLFOCUS:
/*
* Hide and destroy the caret when the window loses the
* keyboard focus.
*/
HideCaret(hwndMain);
DestroyCaret();
break;
case WM_CHAR:
switch (wParam) {
case 0x08: /* backspace */
case 0x0A: /* linefeed */
case 0x1B: /* escape */
MessageBeep(0xFFFFFFFF);
return 0;
case 0x09: /* tab */
/* Convert tabs to four consecutive spaces. */
for (i = 0; i < 4; i++)

SendMessage(hwndMain, WM_CHAR, 0x20, 0);
return 0;
case 0x0D: /* carriage return */
/*
* Record the carriage return and position the
* caret at the beginning of the new line.
*/
pchInputBuf[cch++] = 0x0D;
nCaretPosX = 0;
nCaretPosY += 1;
break;
default: /* displayable character */
ch = (TCHAR) wParam;
HideCaret(hwndMain);
/*
* Retrieve the character's width and output
* the character.
*/

hdc = GetDC(hwndMain);
GetCharWidth32(hdc, (UINT) wParam, (UINT) wParam,

&nCharWidth);
TextOut(hdc, nCaretPosX, nCaretPosY * dwCharY,

&ch, 1);
ReleaseDC(hwndMain, hdc);
/* Store the character in the buffer. */
pchInputBuf[cch++] = ch;
/*
* Calculate the new horizontal position of the
* caret. If the position exceeds the maximum,
* insert a carriage return and move the caret
* to the beginning of the next line.
*/
nCaretPosX += nCharWidth;
if ((DWORD) nCaretPosX > dwLineLen) {

nCaretPosX = 0;
pchInputBuf[cch++] = 0x0D;
++nCaretPosY;

}
nCurChar = cch;
ShowCaret(hwndMain);
break;
}
SetCaretPos(nCaretPosX, nCaretPosY * dwCharY);
break;
case WM_KEYDOWN:
switch (wParam) {
case VK_LEFT: /* LEFT ARROW */
/*
* The caret can move only to the beginning of
* the current line.
*/
if (nCaretPosX > 0) {

HideCaret(hwndMain);
/*

* Retrieve the character to the left of
* the caret, calculate the character's
* width, then subtract the width from the
* current horizontal position of the caret
* to obtain the new position.
*/

ch = pchInputBuf[--nCurChar];
hdc = GetDC(hwndMain);
GetCharWidth32(hdc, ch, ch, &nCharWidth);
ReleaseDC(hwndMain, hdc);
nCaretPosX = max(nCaretPosX - nCharWidth,
0);
ShowCaret(hwndMain);

}
break;
case VK_RIGHT: /* RIGHT ARROW */
/*
* Caret moves to the right or, when a carriage
* return is encountered, to the beginning of
* the next line.
*/
if (nCurChar < cch) {

HideCaret(hwndMain);
/*

* Retrieve the character to the right of
* the caret. If it's a carriage return,
* position the caret at the beginning of
* the next line.
*/

ch = pchInputBuf[nCurChar];
if (ch == 0x0D) {
nCaretPosX = 0;
nCaretPosY++;
}
/*

* If the character isn't a carriage
* return, check to see whether the SHIFT
* key is down. If it is, invert the text
* colors and output the character.
*/

else {
hdc = GetDC(hwndMain);
nVirtKey = GetKeyState(VK_SHIFT);
if (nVirtKey & SHIFTED) {
crPrevText = SetTextColor(hdc,
RGB(255, 255, 255));
crPrevBk = SetBkColor(hdc,
RGB(0,0,0));
TextOut(hdc, nCaretPosX,
nCaretPosY * dwCharY,
&ch, 1);
SetTextColor(hdc, crPrevText);
SetBkColor(hdc, crPrevBk);
}
/*
* Get the width of the character and
* calculate the new horizontal
* position of the caret.
*/
GetCharWidth32(hdc, ch, ch, &nCharWidth);
ReleaseDC(hwndMain, hdc);
nCaretPosX = nCaretPosX + nCharWidth;
}
nCurChar++;
ShowCaret(hwndMain);
break;

}
break;
case VK_UP:/* UP ARROW */
case VK_DOWN: /* DOWN ARROW */
MessageBeep(0xFFFFFFFF);
return 0;
case VK_HOME: /* HOME */
/*
* Set the caret's position to the upper left
* corner of the client area.
*/
nCaretPosX = nCaretPosY = 0;
nCurChar = 0;
break;
case VK_END: /* END */
/* Move the caret to the end of the text. */
for (i=0; i < cch; i++) {

/*
* Count the carriage returns and save the
* index of the last one.
*/

if (pchInputBuf[i] == 0x0D) {
cCR++;
nCRIndex = i + 1;
}

}
nCaretPosY = cCR;
/*
* Copy all text between the last carriage
* return and the end of the keyboard input
* buffer to a temporary buffer.
*/
for (i = nCRIndex, j = 0; i < cch; i++, j++)

szBuf[j] = pchInputBuf[i];
szBuf[j] = TEXT('\0');
/*
* Retrieve the text extent and use it
* to set the horizontal position of the
* caret.
*/
hdc = GetDC(hwndMain);
GetTextExtentPoint32(hdc, szBuf, lstrlen(szBuf),

&sz);
nCaretPosX = sz.cx;
ReleaseDC(hwndMain, hdc);
nCurChar = cch;
break;
default:
break;
}
SetCaretPos(nCaretPosX, nCaretPosY * dwCharY);
break;
case WM_PAINT:
if (cch == 0) /* nothing in input buffer */
break;
hdc = BeginPaint(hwndMain, &ps);
HideCaret(hwndMain);
/*
* Set the clipping rectangle, and then draw the text
* into it.
*/
SetRect(&rc, 0, 0, dwLineLen, dwClientY);
DrawText(hdc, pchInputBuf, -1, &rc, DT_LEFT);
ShowCaret(hwndMain);
EndPaint(hwndMain, &ps);
break;
.
. /* Process other messages. */
.
case WM_DESTROY:
PostQuitMessage(0);
/* Free the input buffer. */
GlobalFree((HGLOBAL) pchInputBuf);
UnregisterHotKey(hwndMain, 0xAAAA);
break;
default:
return DefWindowProc(hwndMain, uMsg, wParam, lParam);
}
return NULL;

}

Keyboard Input Reference
The following functions and messages are associated with keyboard input.

Keyboard Input Functions
The following functions are used to receive and process keyboard input.
ActivateKeyboardLayout
EnableWindow
GetActiveWindow
GetAsyncKeyState
GetFocus
GetKeyboardLayout
GetKeyboardLayoutList
GetKeyboardLayoutName
GetKeyboardState
GetKeyNameText
GetKeyState
IsWindowEnabled
keybd_event
LoadKeyboardLayout
MapVirtualKey
MapVirtualKeyEx
OemKeyScan
RegisterHotKey
SetActiveWindow
SetFocus
SetKeyboardState
ToAscii
ToAsciiEx
ToUnicode
UnloadKeyboardLayout
UnregisterHotKey
VkKeyScan

VkKeyScanExObsolete FunctionsGetKBCodePage

Keyboard Input Messages
The following messages are used to receive and process keyboard input.
WM_ACTIVATE
WM_CHAR
WM_DEADCHAR
WM_GETHOTKEY
WM_HOTKEY
WM_KEYDOWN
WM_KEYUP
WM_KILLFOCUS
WM_SETFOCUS
WM_SETHOTKEY
WM_SYSCHAR
WM_SYSDEADCHAR
WM_SYSKEYDOWN

WM_SYSKEYUP

MenusA menu is a list of menu items. Choosing a menu item opens a submenu or causes the
application to carry out a command.

About Menus
This overview describes menus and explains how to use them in applications designed for the
Microsoft® Win32® application programming interface (API).

Menu Bars and Menus
A menu is arranged in a hierarchy. At the top level of the hierarchy is the menu bar; menus drop
down from the menu bar, and at the lower levels are submenus. A menu bar is sometimes called
a top-level menu, and the menus and submenus are also known as pop-up menus.

A menu item can either carry out a command or open a submenu. An item that carries out a
command is called a command item or a command.

An item on the menu bar almost always opens a menu. Menu bars rarely contain command items.
A menu opened from the menu bar drops down from the menu bar and is sometimes called a
drop-down menu. When a drop-down menu is displayed, it is attached to the menu bar. A menu
item on the menu bar that opens a drop-down menu is also called a menu name.

The menu names on a menu bar represent the main categories of commands that an application
provides. Selecting a menu name from the menu bar typically opens a menu whose menu items
correspond to the commands in a given category. For example, a menu bar might contain a File
menu name that, when selected by the user, activates a menu with menu items such as New,
Open, and Save.

Only an overlapped or pop-up window can contain a menu bar; a child window cannot contain
one. If the window has a title bar, Windows positions the menu bar just below it. A menu bar is
always visible. A submenu is not visible, however, until the user selects a menu item that activates
it. For more information about overlapped and pop-up windows, see General Window Styles.

Each menu must have an owner window. Windows sends messages to a menu's owner window
when the user selects the menu or chooses an item from the menu. These messages are
described in Messages Used with Menus.

Shortcut Menus
Windows also provides shortcut menus. A shortcut menu is not attached to the menu bar; it can
appear anywhere on the screen. An application typically associates a shortcut menu with a portion
of a window, such as the client area, or with a specific object, such as an icon. For this reason,
these menus are also called "context menus."

A shortcut menu remains hidden until the user activates it, typically by right-clicking a selection, a
toolbar, or a taskbar button, for example. The menu is usually displayed at the position of the
caret or mouse cursor.

The Window Menu
The window menu (also known as the System menu or Control menu) is a pop-up menu defined
and managed almost exclusively by the operating system. The user can open the window menu
by clicking the application icon on the title bar or by right-clicking anywhere on the title bar.

The window menu provides a standard set of menu items that the user can choose to change a
window's size or position, or close the application. Items on the window menu can be added,
deleted, and modified, but most applications just use the standard set of menu items. An
overlapped, pop-up, or child window can have a window menu. It is uncommon for an overlapped
or pop-up window not to include a window menu.

When the user chooses a command from the window menu, Windows sends a
WM_SYSCOMMAND message to the menu's owner window. In most applications, the window
procedure does not process messages from the window menu. Instead, it simply passes the
messages to the DefWindowProc function for system-default processing of the message. If an
application adds a command to the window menu, the window procedure must process the
command.

An application can use the GetSystemMenu function to create a copy of the default window
menu to modify. Any window that does not use the GetSystemMenu function to make its own
copy of the window menu receives the standard window menu.

Help Identifier
Associated with each menu bar, menu, submenu, and shortcut menu is a 32-bit help identifier. If
the user presses the F1 key while the menu is active, this value is sent to the owner window as
part of a WM_HELP message. For more information about help identifiers, see Help.

Menu Handles
The system generates a unique handle for each menu. A menu handle is a value of the HMENU
type. An application must specify a menu handle in many of the Windows menu functions. You
receive the handle of a menu bar when you create the menu or load a menu resource. For more
information about creating and loading menus, see Menu Creation.

To retrieve the handle of the menu bar for a menu that has been created or loaded, use the
GetMenu function. To retrieve the handle of the submenu associated with a menu item, use the
GetSubMenu or GetMenuItemInfo function. To retrieve the handle of a window menu, use the
GetSystemMenu function.

Menu Items
The following sections discuss what Windows does when the user chooses a menu item, and the
ways an application can control an item's appearance and functionality.

Command Items and Items that Open Submenus
When the user chooses a command item, Windows sends a command message to the window
that owns the menu. If the command item is on the window menu, Windows sends the
WM_SYSCOMMAND message. Otherwise, it sends the WM_COMMAND message.

Associated with each menu item that opens a submenu is the handle of the corresponding
submenu. When the user points to such an item, Windows opens the submenu. No command
message is sent to the owner window. However, Windows sends a WM_INITMENUPOPUP
message to the owner window before displaying the submenu. You can get the handle of the
submenu associated with an item by using the GetSubMenu or GetMenuItemInfo function.

A menu bar typically contains menu names, but it can also contain command items. A submenu
typically contains command items, but it can also contain items that open nested submenus. By
adding such items to submenus, you can nest menus to any depth. To provide a visual cue for the
user, Windows automatically displays a small arrow to the right of the text of a menu item that
opens a submenu.

Menu-item Identifier
Associated with each menu item is a unique, application-defined integer, called a menu-item
identifier. When the user chooses a command item from a menu, Windows sends the item's
identifier to the owner window as part of a WM_COMMAND message. The window procedure
examines the identifier to determine the source of the message, and processes the message
accordingly. In addition, you can specify a menu item using its identifier when you call menu
functions; for example, to enable or disable a menu item.

A menu-item identifier must be a value from 0 to 65,535, even though it is a 32-bit integer. This is
because the WM_COMMAND message passes a menu-item identifier as the low-order word of its
wParam parameter.

Menu items that open submenus have identifiers just as command items do. However, Windows
does not send a command message when such an item is selected from a menu. Instead,
Windows opens the submenu associated with the menu item.

To retrieve the identifier of the menu item at a specified position, use the GetMenuItemID or
GetMenuItemInfo function.

Menu-Item Position
In addition to having a unique identifier, each menu item in a menu bar or menu has a unique
position value. The leftmost item in a menu bar, or the top item in a menu, has position zero. The
position value is incremented for subsequent menu items. Windows assigns a position value to all
items in a menu, including separators. The following illustration shows the position values of items
in a menu bar and in a menu.

ewc msdncd, EWGraphic, bsd23467 0 /a "SDK_01.BMP"

When calling a menu function that modifies or retrieves information about a specific menu item,
you can specify the item using either its identifier or its position. For more information about
modifying the contents of a menu, see Menu Modifications.

Default Menu Items
A submenu can contain one default menu item. When the user opens a submenu by double-
clicking, Windows sends a command message to the menu's owner window and closes the menu
as if the default command item had been chosen. If there is no default command item, the
submenu remains open. To retrieve and set the default item for a submenu, use the
GetMenuDefaultItem and SetMenuDefaultItem functions.

Checked and Unchecked Menu Items
A menu item can be either checked or unchecked. Windows displays a bitmap next to checked
menu items to indicate their checked state. Windows does not display a bitmap next to unchecked
items, unless an application-defined "unchecked" bitmap is specified. Only menu items in a menu
can be checked; items in a menu bar cannot be checked.

Applications typically check or uncheck a menu item to indicate whether an option is in effect. For
example, suppose an application has a toolbar that the user can show or hide by using a Toolbar
command on a menu. When the toolbar is hidden, the Toolbar menu item is unchecked. When
the user chooses the command, the application checks the menu item and shows the toolbar.

A check-mark attribute controls whether a menu item is checked. You can set a menu item's
check-mark attribute by using the CheckMenuItem function. You can use the GetMenuState
function to determine whether a menu item is currently checked or unchecked.

Instead of CheckMenuItem and GetMenuState, you can use the GetMenuItemInfo and
SetMenuItemInfo functions to retrieve and set the check state of a menu item.

Sometimes, a group of menu items corresponds to a set of mutually exclusive options. In this
case, you can indicate the selected option by using a checked radio menu item (analogous to a
radio button control). Checked radio items are displayed with a bullet bitmap instead of a check-
mark bitmap. To check a menu item and make it a radio item, use the CheckMenuRadioItem
function.

By default, Windows displays a check-mark or bullet bitmap next to checked menu items and no
bitmap next to unchecked menu items. However, you can use the SetMenuItemBitmaps function
to associate application-defined checked and unchecked bitmaps with a menu item. Windows
then uses the specified bitmaps to indicate the menu item's checked or unchecked state.

Application-defined bitmaps associated with a menu item must be the same size as the default
check-mark bitmap, the dimensions of which may vary depending on screen resolution. To
retrieve the correct dimensions, use the GetMenuCheckMarkDimensions function. You can
create multiple bitmap resources for different screen resolutions; create one bitmap resource and
scale it, if necessary; or create a bitmap at run time and draw an image in it. The bitmaps may be
either monochrome or color. However, because menu items are inverted when highlighted, the
appearance of certain inverted color bitmaps may be undesirable. For more information, see
Bitmaps.

Enabled, Grayed, and Disabled Menu Items
A menu item can be enabled, grayed, or disabled. By default, a menu item is enabled. When the
user chooses an enabled menu item, Windows sends a command message to the owner window
or displays the corresponding submenu, depending on what kind of menu item it is.

When menu items are not available to the user, they should be grayed or disabled. Grayed and
disabled menu items cannot be chosen. A disabled item looks just like an enabled item. When the
user clicks on a disabled item, the item is not selected, and nothing happens. Disabled items can
be useful in, for example, a tutorial that presents a menu that looks active but isn't.

An application grays an unavailable menu item to provide a visual cue to the user that a command
is not available. You can use a grayed item when an action is not appropriate (for example, you
can gray the Print command in the File menu when the system does not have a printer installed).

The EnableMenuItem function enables, grays, or disables a menu item. To determine whether a
menu item is enabled, grayed, or disabled, use the GetMenuItemInfo function.

Instead of GetMenuItemInfo, you can also use the GetMenuState function to determine whether
a menu item is enabled, grayed, or disabled.

Highlighted Menu Items
Windows automatically highlights menu items on menus as the user selects them. However,
highlighting can be explicitly added or removed from a menu name on the menu bar by using the
HiliteMenuItem function. This function has no effect on menu items on menus. When
HiliteMenuItem is used to highlight a menu name, though, the name only appears to be selected.
If the user presses the ENTER key, the highlighted item is not chosen. This feature might be useful
in, for example, a training application that demonstrates the use of menus.

Owner-Drawn Menu Items
An application can completely control the appearance of a menu item by using an owner-drawn
item. Owner-drawn items require an application to take total responsibility for drawing selected
(highlighted), checked, and unchecked states. For example, if an application provided a font
menu, it could draw each menu item by using the corresponding font; the item for Roman would
be drawn with roman, the item for Italic would be drawn in italic, and so on.

For more information, see Creating Owner-Drawn Menu Items.

Menu Item Separators and Line Breaks
Windows provides a special type of menu item, called a separator, that appears as a horizontal
line. You can use a separator to divide a menu into groups of related items. A separator cannot be
used in a menu bar, and the user cannot select a separator.

When a menu bar contains more menu names than will fit on one line, Windows wraps the menu
bar by automatically breaking it into two or more lines. You can cause a line break to occur at a
specific item on a menu bar by assigning the MFT_MENUBREAK type flag to the item. Windows
places that item and all subsequent items on a new line.

When a menu contains more items than will fit in one column, Windows automatically breaks the
menu into two or more columns. You can cause a column break to occur at a specific item in a
menu by assigning the MFT_MENUBREAK type flag to the item. Windows places that item and all
subsequent items in a new column. The MFT_MENUBARBREAK type flag has the same effect,
except that a vertical line appears between the new column and the old.

If you use the AppendMenu, InsertMenu, or ModifyMenu functions to assign line breaks, you
should assign the type flags MF_MENUBREAK or MF_MENUBARBREAK.

Keyboard Access to Menus
Windows provides a standard keyboard interface for menus. You can enhance this interface by
providing mnemonic access keys and shortcut (accelerator) keys for your menu items. The
following topics describe the standard keyboard interface, access keys, and shortcut keys.

Standard Keyboard Interface
Windows is designed to work with or without a mouse or other pointing device. Because Windows
provides a standard keyboard interface, the user can use the keyboard to select menu items. This
keyboard interface does not need special code. An application receives a command message
whether the user selects a menu item through the keyboard or by using a mouse. The standard
keyboard interface processes the following keystrokes.

Keystroke Action

Alphabetic
character

Selects the first menu item with the specified
character as its access key. If the selected item
invokes a menu, the menu is displayed and the
first item is highlighted. Otherwise, the menu item
is chosen.

ALT Toggles in and out of menu bar mode.
ALT+SPACEBAR Displays the window menu.
ENTER Activates a menu and selects the first menu item if

an item has a menu associated with it. Otherwise,
this keystroke chooses the item as if the user
released the mouse button while the item was
selected.

ESC Exits menu mode.
LEFT ARROW Cycles to the previous top-level menu item. Top-

level menu items include menu names and the
window menu. If the selected item is in a menu,
the previous column in the menu is selected or the
previous top-level menu item is selected.

RIGHT ARROW Works like the LEFT ARROW key, except in the
opposite direction. In menus, this keystroke moves
forward one column; when the currently selected
item is in the far-right column, the next menu is
selected.

UP or DOWN
ARROWS

Activates a menu when pressed in a menu name.
When pressed in a menu, the UP ARROW keystroke
selects the previous item; the DOWN ARROW
keystroke selects the next item.

Menu Access Keys
The standard keyboard interface for menus can be enhanced by adding access keys (mnemonics)
to menu items. An access key is an underlined letter in the text of a menu item. When a menu is
active, the user can select a menu item by pressing the key that corresponds to the item's
underlined letter. The user makes the menu bar active by pressing the ALT key to highlight the first
item on the menu bar. A menu is active when it is displayed.

To create an access key for a menu item, precede any character in the item's text string with an
ampersand. For example, the text string "&Move" causes Windows to underline the letter "M".

Menu Shortcut Keys
In addition to having an access key, a menu item can have a shortcut key associated with it. A
shortcut key is different from an access key, because the menu does not have to be active for the
shortcut key to work. Also, an access key is always associated with a menu item, while an
shortcut key is usually (but does not have to be) associated with a menu item.

Text that identifies the shortcut key is added to the menu-item text string. The shortcut text
appears to the right of the menu item name, after a backslash and tab character (\t). For example,
"&Close\tAlt+F4" represents a Close command with the ALT+F4 key combination as its shortcut
key and with the letter "C" as its access key. For more information, see Keyboard Accelerators.

Menu Creation
You can create a menu using either a menu template or menu creation functions. Menu templates
are typically defined as resources. Menu-template resources can be loaded explicitly or assigned
as the default menu for a window class. You can also create menu-template resources
dynamically in memory.

Menu-Template Resources
Most applications create menus using menu-template resources. A menu template defines a
menu, including the items in the menu bar and all menus. For information about creating a menu-
template resource, see the documentation included with your development tools.

After you create a menu-template resource and add it to your application's executable (.EXE) file,
you can use the LoadMenu function to load the resource into memory. This function returns the
handle of the menu, which you can then assign to a window by using the SetMenu function.

Implementing menus as resources makes an application easier to localize for use in multiple
countries. Only the resource-definition file needs to be localized for each language, not the
application's source code.

Menu Template in Memory
A menu can be created from a menu template that is built in memory at run time. For example, an
application that allows a user to customize its menu might create a menu template in memory
based on the user's preferences. The application could then save the template in a file or in the
registry for future use. To create a menu from a template in memory, use the LoadMenuIndirect
function. For descriptions of menu-template formats, see Using a Menu-Template Resource.

A standard menu template consists of a MENUITEMTEMPLATEHEADER structure followed by
one or more MENUITEMTEMPLATE structures.

An extended menu template consists of a MENUEX_TEMPLATE_HEADER structure followed by
one or more MENUEX_TEMPLATE_ITEM structures.

Menu Creation Functions
Using menu creation functions, you can create menus at run time or add menu items to existing
menus. You can use the CreateMenu function to create an empty menu bar and the
CreatePopupMenu function to create an empty menu. To add items to a menu, use the
InsertMenuItem function. The older AppendMenu and InsertMenu functions are still supported,
but InsertMenuItem should be used for new applications.

Menu Display
After a menu has been loaded or created, it must be assigned to a window before Windows can
display it. You can assign a menu by defining a class menu. For more information about class
menus, see Window Class Menus. You can also assign a menu to a window by specifying the
handle of the menu as the hMenu parameter of the CreateWindow or CreateWindowEx function,
or by calling the SetMenu function.

To display a shortcut menu use the TrackPopupMenuEx function. Shortcut menus, also called
floating pop-up menus or context menus, are typically displayed when the WM_CONTEXTMENU
message is processed.

The older TrackPopupMenu function is still supported, but new applications should use the
TrackPopupMenuEx function.

Window Class Menus
You can specify a default menu, called a class menu, when you register a window class. To do
so, you assign the name of the menu-template resource to the lpszMenuName member of the
WNDCLASS structure used to register the class.

By default, every window is assigned the class menu for its window class so you do not need to
explicitly load the menu and assign it to each window. You can override the class menu by
specifying a different menu handle in a call to the CreateWindowEx function. You can also
change a window's menu after it is created by using the SetMenu function. For more information,
see Window Classes.

Menu Destruction
If a menu is assigned to a window and that window is destroyed, Windows automatically destroys
the menu, freeing the menu's handle and the memory occupied by the menu. Windows does not
automatically destroy a menu that is not assigned to a window. An application must destroy the
unassigned menu by calling the DestroyMenu function. Otherwise, the menu continues to exist in
memory even after the application closes.

Messages Used with Menus
Windows reports menu-related activity by sending messages to the window procedure of the
window that owns the menu. Windows sends a series of messages when the user selects items
on the menu bar or clicks the right mouse button to display a shortcut menu.

When the user activates an item on the menu bar, the owner window first receives a
WM_SYSCOMMAND message. This message includes a flag that indicates whether the user
activated the menu by using the keyboard (SC_KEYMENU) or the mouse (SC_MOUSEMENU).
For more information about the keyboard interface for menus, see Keyboard Access to Menus.

Next, before displaying any menus, Windows sends the WM_INITMENU message to the window
procedure so that an application can modify the menus before the user sees them. Windows
sends the WM_INITMENU message only once per menu activation.

When the user points to a menu item that opens a submenu, Windows sends the owner window
the WM_INITMENUPOPUP message before displaying the submenu. This message gives the
application an opportunity to modify the submenu before it is displayed.

Each time the user moves the highlighting from one item to another, Windows sends a
WM_MENUSELECT message to the window procedure of the menu's owner window. This
message identifies the currently selected menu item. Many applications provide an information
area at the bottom of their main windows and use this message to display additional information
about the selected menu item.

When the user chooses a command item from a menu, Windows sends a WM_COMMAND
message to the window procedure. The low-order word of the WM_COMMAND message's
wParam parameter contains the identifier of the chosen item. The window procedure should
examine the identifier and process the message accordingly.

Not all menus are accessible through a window's menu bar. Many applications display shortcut
menus when the user clicks the right mouse button at a specific location. Such applications should
process the WM_CONTEXTMENU message and display a shortcut menu, if appropriate. If an
application does not display a shortcut menu, it should pass the WM_CONTEXTMENU message
to the DefWindowProc function for default processing.

Menu Modifications
Several functions enable you to change a menu after it has been loaded or created. These
changes may include adding or removing menu items and modifying existing menu items.

To add a menu item, use the InsertMenuItem function. You can use the SetMenuItemInfo
function to change the attributes of an existing menu item. The lpmii parameter points to a
MENUITEMINFO structure, which contains the new attributes and specifies which attributes to
change. A menu item's attributes include its type, state, identifier, submenu, bitmaps, item data,
and text.

The older AppendMenu and InsertMenu functions can also be used to add menu items, but new
applications should use InsertMenuItem. The AppendMenu function appends a menu item to the
end of a menu or submenu; the InsertMenu function inserts a menu item at a specified position in
a menu or submenu. Both functions permit the attributes of the menu item to be specified,
including whether the menu item is enabled, disabled, grayed, checked, or unchecked.

To change the appearance or attributes of an existing menu item, use the ModifyMenu function.
For example, the text string or bitmap of a menu item can be enabled, disabled, grayed, checked,
or unchecked. The ModifyMenu function replaces the specified menu item with a new item.

To retrieve information about a menu item, use the GetMenuItemInfo function. The lpmii
parameter points to a MENUITEMINFO structure, which specifies the attributes to retrieve and
receives their current values.

To delete a menu item from a menu, use the DeleteMenu or RemoveMenu function. If the item
being deleted is one that opens a submenu, DeleteMenu deletes the associated submenu,
discarding the menu handle and freeing the memory used by the submenu. The RemoveMenu
function deletes a menu item, but if the item opens a submenu, the function does not destroy the
submenu or its handle, allowing the submenu to be reused.

To redraw the menu bar after a menu bar has been modified, use the DrawMenuBar function.
Otherwise, the modifications will not appear until Windows redraws the owner window.

Using Menus
· Using a menu-template resource
· Creating a shortcut menu
· Using menu-item bitmaps
· Creating owner-drawn menu items
· Using custom check-mark bitmaps

Using a Menu-Template Resource
You typically include a menu in an application by creating a menu-template resource and then
loading the menu at run time. This section describes the format of a menu template, and explains
how to load a menu-template resource and use it in your application. For information about
creating a menu-template resource, see the documentation included with your development tools.

Extended Menu-Template Format
The extended menu-template format supports the menu functionality implemented with Windows
95 and Windows NT version 4.0. Like menu-template resources used with earlier versions of
Windows, extended menu-template resources have the RT_MENU resource type. Windows
distinguishes the two resource formats by the version number, which is the first member of the
resource header.

An extended menu template consists of a MENUEX_TEMPLATE_HEADER structure followed by
one more MENUEX_TEMPLATE_ITEM item definition structures.

Old Menu-Template Format
An old menu template (for versions of Windows earlier than Windows 95 and Windows NT 4.0)
defines a menu, but does not support the new menu functionality. An old menu-template resource
has the RT_MENU resource type.

An old menu template consists of a MENUITEMTEMPLATEHEADER structure followed by one or
more MENUITEMTEMPLATE structures.

Loading a Menu-Template Resource
To load a menu-template resource, use the LoadMenu function, specifying the handle of the
module that contains the resource and the menu template's identifier. The LoadMenu function
returns a menu handle that you can use to assign the menu to a window. This window becomes
the menu's owner window, receiving all the messages generated by the menu.

To create a menu from a menu template that is already in memory, use the LoadMenuIndirect
function. This is useful if your application generates menu templates dynamically.

To assign a menu to a window, use the SetMenu function or specify the menu's handle in the
hMenu parameter of the CreateWindowEx function when creating a window. Another way you
can assign a menu to a window is to specify a menu template when you register a window class;
the template identifies the specified menu as the class menu for that window class.

To have Windows automatically assign a specific menu to a window, specify the menu's template
when you register the window's class. The template identifies the specified menu as the class
menu for that window class. Then, when you create a window of the given class, Windows
automatically assigns the specified menu to the window.

To create a class menu, include the identifier of the menu-template resource as the
lpszMenuName member of a WNDCLASS structure and then pass the address of the structure
to the RegisterClass function.

Creating a Class Menu
The following example shows how to create a class menu for an application, create a window that
uses the class menu, and process menu commands in the window procedure.

Following is the relevant portion of the application's header file:// Menu-template resource identifier
#define IDM_MYMENURESOURCE 3Following are the relevant portions of the application itself:HINSTANCE hinst;
int APIENTRY WinMain(hinstance, hPrevInstance, lpCmdLine, nCmdShow)
HINSTANCE hinstance;
HINSTANCE hPrevInstance;
LPSTR lpCmdLine;
int nCmdShow;
{

MSG msg; // message
WNDCLASS wc; // windowclass data
HWND hwnd; // handle to the main window
// Create the window class for the main window. Specify
// the identifier of the menu-template resource as the
// lpszMenuName member of the WNDCLASS structure to create
// the class menu.
wc.style = 0;
wc.lpfnWndProc = (WNDPROC) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hinstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = MAKEINTRESOURCE(IDM_MYMENURESOURCE);
wc.lpszClassName = "MainWClass";
if (!RegisterClass(&wc))
return FALSE;
hinst = hinstance;
// Create the main window. Set the hmenu parameter to NULL so
// that Windows uses the class menu for the window.
hwnd = CreateWindow("MainWClass", "Sample Application",
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hinstance,
NULL);
if (hwnd == NULL)
return FALSE;
// Make the window visible and send a WM_PAINT message to the
// window procedure.
ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);
// Start the main message loop.
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg.wParam;
UNREFERENCED_PARAMETER(hPrevInstance);

}

LRESULT APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

switch (uMsg) {
.
. // Process other window messages.
.
case WM_COMMAND:
// Test for the identifier of a command item.
switch(LOWORD(wParam)) {
case IDM_FI_OPEN:
DoFileOpen(); // application-defined
break;
case IDM_FI_CLOSE:
DoFileClose(); // application-defined
break;
.
. // Process other menu commands.
.
default:
break;
}
return 0;
.
. // Process other window messages.
.
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return NULL;

}

Creating a Shortcut Menu
To use a shortcut menu in an application, pass its handle to the TrackPopupMenuEx function.
An application typically calls TrackPopupMenuEx in a window procedure in response to a user-
generated message, such as WM_LBUTTONDOWN or WM_KEYDOWN.

In addition to the pop-up menu handle, TrackPopupMenuEx requires that you specify the handle
of the owner window, the position of the shortcut menu (in screen coordinates), and the mouse
button that the user can use to choose an item.

The older TrackPopupMenu function is still supported, but new applications should use the
TrackPopupMenuEx function. The TrackPopupMenuEx function requires the same parameters
as TrackPopupMenu, but also lets you specify a portion of the screen that the menu should not
obscure. An application typically calls these functions in a window procedure when processing the
WM_CONTEXTMENU message.

You can specify the position of a shortcut menu by providing x- and y-coordinates along with the
TPM_CENTERALIGN, TPM_LEFTALIGN, or TPM_RIGHTALIGN flag. The flag specifies the
position of the shortcut menu relative to the x- and y-coordinates.

You should permit the user to choose an item from a shortcut menu by using the same mouse
button used to display the menu. To do this, specify either TPM_LEFTBUTTON or
TPM_RIGHTBUTTON flag to indicate which mouse button the user can use to choose a menu
item.

Processing the WM_CONTEXTMENU Message
The WM_CONTEXTMENU message is generated when an application's window procedure
passes the WM_RBUTTONUP or WM_NCRBUTTONUP message to the DefWindowProc
function. The application can process this message to display a shortcut menu appropriate to a
specific portion of its screen. If the application does not display a shortcut menu, it should pass
the message to DefWindowProc for default handling.

Following is an example of WM_CONTEXTMENU message processing as it might appear in an
application's window procedure. The low-order and high-order words of the lParam parameter
specify the screen coordinates of the mouse when the right mouse button is released. The
application-defined OnContextMenu function returns TRUE if it displays a context menu, or
FALSE if it does not.case WM_CONTEXTMENU:

if (!OnContextMenu(hwnd, LOWORD(lParam), HIWORD(lParam)))
return DefWindowProc(hwnd, uMsg, wParam, lParam);
break;The following application-defined OnContextMenu function displays a shortcut menu if the

specified mouse position is within the window's client area. A more sophisticated function might
display one of several different menus, depending on which portion of the client area is specified.
To actually display the shortcut menu, this example calls an application-defined function called
DisplayContextMenu. For a description of this function, see Displaying a Shortcut Menu.BOOL WINAPI OnContextMenu(HWND hwnd, int x, int y)
{

RECT rc;// client area of window
POINT pt = { x, y }; // location of mouse click
// Get the bounding rectangle of the client area.
GetClientRect(hwnd, &rc);
// Convert the mouse position to client coordinates.
ScreenToClient(hwnd, &pt);
// If the position is in the client area, display a
// shortcut menu.
if (PtInRect(&rc, pt)) {
ClientToScreen(hwnd, &pt);
DisplayContextMenu(hwnd, pt);
return TRUE;
}
// Return FALSE if no menu is displayed.
return FALSE;

}

Creating a Shortcut Font-Attributes Menu
The example in this section contains portions of code from an application that creates and
displays a shortcut menu that enables the user to set fonts and font attributes. The application
displays the menu in the client area of its main window whenever the user clicks the left mouse
button.

Here is the menu template for the shortcut menu that is provided in the application's resource-
definition file.PopupMenu MENU
BEGIN
POPUP "Dummy Popup"
BEGIN

POPUP "Fonts"
BEGIN

MENUITEM "Courier",IDM_FONT_COURIER
MENUITEM "Times Roman", IDM_FONT_TMSRMN
MENUITEM "Swiss", IDM_FONT_SWISS
MENUITEM "Helvetica", IDM_FONT_HELV
MENUITEM "Old English", IDM_FONT_OLDENG

END
POPUP "Sizes"
BEGIN

MENUITEM "7", IDM_SIZE_7
MENUITEM "8", IDM_SIZE_8
MENUITEM "9", IDM_SIZE_9
MENUITEM "10", IDM_SIZE_10
MENUITEM "11", IDM_SIZE_11
MENUITEM "12", IDM_SIZE_12
MENUITEM "14", IDM_SIZE_14

END
POPUP "Styles"
BEGIN

MENUITEM "Bold", IDM_STYLE_BOLD
MENUITEM "Italic", IDM_STYLE_ITALIC
MENUITEM "Strike Out", IDM_STYLE_SO
MENUITEM "Superscript", IDM_STYLE_SUPER
MENUITEM "Subscript", IDM_STYLE_SUB

END
END

ENDThe following example gives the window procedure and supporting functions used to create and
display the shortcut menu.LRESULT APIENTRY MenuWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

RECT rc; // client area
POINT pt; // location of mouse click
switch (uMsg) {
case WM_LBUTTONDOWN:
// Get the bounding rectangle of the client area.
GetClientRect(hwnd, (LPRECT) &rc);
// Get the client coordinates for the mouse click.
pt.x = LOWORD(lParam);
pt.y = HIWORD(lParam);
// If the mouse click took place inside the client
// area, execute the application-defined function
// that displays the shortcut menu.
if (PtInRect((LPRECT) &rc, pt))
HandlePopupMenu(hwnd, pt);
break;
.
. // Process other window messages.
.
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return NULL;

}

VOID APIENTRY HandlePopupMenu(hwnd, pt)
HWND hwnd;
POINT pt;
{

HMENU hmenu; // menu template
HMENU hmenuTrackPopup; // shortcut menu
// Load the menu template containing the shortcut menu from the
// application's resources.
hmenu = LoadMenu(hinst, "PopupMenu");
if (hmenu == NULL)
return;
// Get the first shortcut menu in the menu template. This is the
// menu that TrackPopupMenu displays.
hmenuTrackPopup = GetSubMenu(hmenu, 0);
// TrackPopup uses screen coordinates, so convert the
// coordinates of the mouse click to screen coordinates.
ClientToScreen(hwnd, (LPPOINT) &pt);
// Draw and track the shortcut menu.
TrackPopupMenu(hmenuTrackPopup, TPM_LEFTALIGN | TPM_LEFTBUTTON,
pt.x, pt.y, 0, hwnd, NULL);
// Destroy the menu.
DestroyMenu(hmenu);

}

Displaying a Shortcut Menu
The function shown in the following example displays a shortcut menu.

The application includes a menu resource identified by the string "ShortcutExample." The menu
bar simply contains a menu name. The application uses the TrackPopupMenu function to display
the menu associated with this menu item. (The menu bar itself is not displayed because
TrackPopupMenu requires the handle of a menu, submenu, or shortcut menu.)VOID APIENTRY DisplayContextMenu(HWND hwnd, POINT pt)
{

HMENU hmenu; // top-level menu
HMENU hmenuTrackPopup; // shortcut menu
// Load the menu resource.
if ((hmenu = LoadMenu(hinst, "ShortcutExample")) == NULL)
return;
// TrackPopupMenu cannot display the menu bar so get
// the handle of the first shortcut menu.
hmenuTrackPopup = GetSubMenu(hmenu, 0);
// Display the shortcut menu. Track the right mouse
// button.
TrackPopupMenu(hmenuTrackPopup,

TPM_LEFTALIGN | TPM_RIGHTBUTTON,
pt.x, pt.y, 0, hwnd, NULL);
// Destroy the menu.
DestroyMenu(hmenu);

}

Using Menu-Item Bitmaps
Windows can use a bitmap instead of a text string to display a menu item. To use a bitmap, you
must set the MFT_BITMAP flag for the menu item and specify the handle of the bitmap that
Windows should display for the menu item. This section describes how to set the MFT_BITMAP
flag and retrieve the handle of a bitmap.

Applications written for earlier versions of Windows can set the MF_BITMAP flag with the old
menu functions.

Setting the Bitmap Type Flag
The MFT_BITMAP or MF_BITMAP flag tells Windows to use a bitmap rather than a text string to
display a menu item. A menu item's MFT_BITMAP or MF_BITMAP flag must be set at run time;
you cannot set it in the resource-definition file.

For new applications, you can use the SetMenuItemInfo or InsertMenuItem function to set the
MFT_BITMAP type flag. To change a menu item from a text item to a bitmap item, use
SetMenuItemInfo. To add a new bitmap item to a menu, use the InsertMenuItem function.

Applications written for earlier versions of Windows can continue to use the ModifyMenu,
InsertMenu, or AppendMenu functions to set the MF_BITMAP flag. To change a menu item from
a text string item to a bitmap item, use ModifyMenu. To add a new bitmap item to a menu, use
the MF_BITMAP flag with the InsertMenu or AppendMenu function.

Creating the Bitmap
When you set the MFT_BITMAP or MF_BITMAP type flag for a menu item, you must also specify
the handle of the bitmap that Windows should display for the menu item. You can provide the
bitmap as a bitmap resource or create the bitmap at run time. If you use a bitmap resource, you
can use the LoadBitmap function to load the bitmap and obtain its handle.

To create the bitmap at run time, use graphics device interface (GDI) functions. GDI provides
several ways to create a bitmap at run time, but developers typically use the following method:

1. Use the CreateCompatibleDC function to create a device context compatible with the
device context used by the application's main window.

2. Use the CreateCompatibleBitmap function to create a bitmap compatible with the
application's main window or use the CreateBitmap function to create a monochrome bitmap.

3. Use the SelectObject function to select the bitmap into the compatible device context.
4. Use GDI drawing functions, such as Ellipse and LineTo, to draw an image into the

bitmap.
For more information, see Bitmaps.

Adding Lines and Graphs to a Menu
The following code sample shows how to create a menu that contains menu-item bitmaps. It
creates two menus. The first is a Chart menu that contains three menu-item bitmaps: a pie chart,
a line chart, and a bar chart. The example demonstrates how to load these bitmaps from the
application's resource file, and then use the CreatePopupMenu and AppendMenu functions to
create the menu and menu items.

The second menu is a Lines menu. It contains bitmaps showing the line styles provided by the
predefined pen in Windows. The line-style bitmaps are created at run time by using GDI functions.

Here are the definitions of the bitmap resources in the application's resource-definition file.PIE BITMAP pie.bmp
LINE BITMAP line.bmp
BAR BITMAP bar.bmpHere are the relevant portions of the application's header file.// Menu-item identifiers
#define IDM_SOLID PS_SOLID
#define IDM_DASH PS_DASH
#define IDM_DASHDOTPS_DASHDOT
#define IDM_DASHDOTDOT PS_DASHDOTDOT
#define IDM_PIE 1
#define IDM_LINE 2
#define IDM_BAR 3
// Line-type flags
#define SOLID 0
#define DOT 1
#define DASH 2
#define DASHDOT3
#define DASHDOTDOT 4
//Count of pens
#define CPENS 5
// Chart-type flags
#define PIE 1
#define LINE 2
#define BAR 3
// Function prototypes
LRESULT APIENTRY MainWndProc(HWND, UINT, WPARAM, LPARAM);
VOID MakeChartMenu(HWND);
VOID MakeLineMenu(HWND, HPEN, HBITMAP);The following example shows how menus and menu-item bitmaps are created in an application.LRESULT APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

static HPEN hpen[CPENS];
static HBITMAP hbmp[CPENS];
int i;
switch (uMsg) {
case WM_CREATE:
// Create the Chart and Line menus.
MakeChartMenu(hwnd);
MakeLineMenu(hwnd, hpen, hbmp);
return 0;
.
. // Process other window messages.
.
case WM_DESTROY:
for (i = 0; i < CPENS; i++) {
DeleteObject(hbmp[i]);
DeleteObject(hpen[i]);
}
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return NULL;

}
VOID MakeChartMenu(hwnd)
HWND hwnd; // handle of owner window
{

HBITMAP hbmpPie; // handle of pie chart bitmap
HBITMAP hbmpLine; // handle of line chart bitmap
HBITMAP hbmpBar; // handle of bar chart bitmap
HMENU hmenuMain; // handle of main menu
HMENU hmenuChart; // handle of Chart menu
// Load the pie, line, and bar chart bitmaps from the
// resource-definition file.
hbmpPie = LoadBitmap(hinst, MAKEINTRESOURCE(PIE));
hbmpLine = LoadBitmap(hinst, MAKEINTRESOURCE(LINE));
hbmpBar = LoadBitmap(hinst, MAKEINTRESOURCE(BAR));
// Create the Chart menu and add it to the menu bar.
// Append the Pie, Line, and Bar menu items to the Chart
// menu.
hmenuMain = GetMenu(hwnd);
hmenuChart = CreatePopupMenu();
AppendMenu(hmenuMain, MF_STRING | MF_POPUP, (UINT) hmenuChart,
"Chart");
AppendMenu(hmenuChart, MF_BITMAP, IDM_PIE, (LPCTSTR) hbmpPie);
AppendMenu(hmenuChart, MF_BITMAP, IDM_LINE,
(LPCTSTR) hbmpLine);
AppendMenu(hmenuChart, MF_BITMAP, IDM_BAR, (LPCTSTR) hbmpBar);
return;

}
VOID MakeLineMenu(hwnd, phpen, phbmp)
HWND hwnd;
HPEN *phpen;
HBITMAP *phbmp;
{

HMENU hmenuLines; // handle of Lines menu
HMENU hmenu; // handle of main menu
COLORREF crMenuClr;// menu-item background color
HBRUSH hbrBackground; // handle of background brush
HBRUSH hbrOld;// handle of previous brush
LONG lCheckXY;// dimensions of check-mark bitmap
WORD wLineX; // width of line bitmaps
WORD wLineY; // height of line bitmaps
HDC hdcMain; // handle of main window's DC
HDC hdcLines; // handle of compatible DC
HBITMAP hbmpOld; // handle of previous bitmap
int i; // loop counter
// Create the Lines menu. Add it to the menu bar.
hmenu = GetMenu(hwnd);
hmenuLines = CreatePopupMenu();
AppendMenu(hmenu, MF_STRING | MF_POPUP,
(UINT) hmenuLines, "&Lines");
// Create a brush for the menu-item background color.
crMenuClr = GetSysColor(COLOR_MENU);
hbrBackground = CreateSolidBrush(crMenuClr);
// Create a compatible device context for the line bitmaps,
// and then select the background brush into it.
hdcMain = GetDC(hwnd);
hdcLines = CreateCompatibleDC(hdcMain);
hbrOld = SelectObject(hdcLines, hbrBackground);
// Get the dimensions of the check-mark bitmap. The width of
// the line bitmaps will be five times the width of the
// check-mark bitmap.
lCheckXY = GetMenuCheckMarkDimensions();
wLineX = LOWORD(lCheckXY) * (WORD) 5;
wLineY = HIWORD(lCheckXY);
// Create the bitmaps and select them, one at a time, into the
// compatible device context. Initialize each bitmap by
// filling it with the menu-item background color.
for (i = 0; i < CPENS; i++) {
phbmp[i] = CreateCompatibleBitmap(hdcMain, wLineX, wLineY);
if (i == 0)
hbmpOld = SelectObject(hdcLines, phbmp[i]);
else
SelectObject(hdcLines, phbmp[i]);
ExtFloodFill(hdcLines, 0, 0, crMenuClr, FLOODFILLBORDER);
}
// Create the pens.
phpen[0] = CreatePen(PS_SOLID, 1, RGB(0, 0, 0));
phpen[1] = CreatePen(PS_DOT, 1, RGB(0, 0, 0));
phpen[2] = CreatePen(PS_DASH, 1, RGB(0, 0, 0));
phpen[3] = CreatePen(PS_DASHDOT, 1, RGB(0, 0, 0));
phpen[4] = CreatePen(PS_DASHDOTDOT, 1, RGB(0, 0, 0));
// Select a pen and a bitmap into the compatible device
// context, draw a line into the bitmap, and then append
// the bitmap as an item in the Lines menu.
for (i = 0; i < CPENS; i++) {
SelectObject(hdcLines, phbmp[i]);
SelectObject(hdcLines, phpen[i]);
MoveToEx(hdcLines, 0, wLineY / 2, NULL);
LineTo(hdcLines, wLineX, wLineY / 2);
AppendMenu(hmenuLines, MF_BITMAP, i + 1,
(LPCTSTR) phbmp[i]);
}
// Release the main window's device context and destroy the
// compatible device context. Also, destroy the background
// brush.
ReleaseDC(hwnd, hdcMain);
SelectObject(hdcLines, hbrOld);
DeleteObject(hbrBackground);
SelectObject(hdcLines, hbmpOld);
DeleteDC(hdcLines);
return;

}

Example of Menu-item Bitmaps
The example in this topic creates two menus, each containing several bitmap menu items. For
each menu, the application adds a corresponding menu name to the main window's menu bar.

The first menu contains menu items showing each of three chart types: pie, line, and bar. The
bitmaps for these menu items are defined as resources and are loaded by using the LoadBitmap
function. Associated with this menu is a "Chart" menu name on the menu bar.

The second menu contains menu items showing each of the five line styles used with the
CreatePen function: PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, and PS_DASHDOTDOT.
The application creates the bitmaps for these menu items at run time using GDI drawing
functions. Associated with this menu is a "Lines" menu name on the menu bar.

Defined in the application's window procedure are two static arrays of bitmap handles. One array
contains the handles of the three bitmaps used for the Chart menu. The other contains the
handles of the five bitmaps used for the Lines menu. When processing the WM_CREATE
message, the window procedure loads the chart bitmaps, creates the line bitmaps, and then adds
the corresponding menu items. When processing the WM_DESTROY message, the window
procedure deletes all of the bitmaps.

Following are the relevant portions of the application's header file.// Menu-item identifiers
#define IDM_PIE 1
#define IDM_LINE 2
#define IDM_BAR 3
#define IDM_SOLID 4
#define IDM_DASH 5
#define IDM_DASHDOT6
#define IDM_DASHDOTDOT 7
// Number of items on the Chart and Lines menus
#define C_LINES 5
#define C_CHARTS 3
// Bitmap resource identifiers
#define IDB_PIE 1
#define IDB_LINE 2
#define IDB_BAR 3
// Dimensions of the line bitmaps
#define CX_LINEBMP 40
#define CY_LINEBMP 10Following are the relevant portions of the window procedure. The window procedure performs

most of its initialization by calling the application-defined LoadChartBitmaps, CreateLineBitmaps,
and AddBitmapMenu functions, described later in this topic.LRESULT CALLBACK MainWindowProc(

HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam
)

{
static HBITMAP aHbmLines[C_LINES];
static HBITMAP aHbmChart[C_CHARTS];
int i;
switch (uMsg) {
case WM_CREATE:
// Call application-defined functions to load the
// bitmaps for the Chart menu and create those for
// the Lines menu.
LoadChartBitmaps(aHbmChart);
CreateLineBitmaps(aHbmLines);
// Call an application-defined function to create
// menus containing the bitmap menu items. The function
// also adds a menu name to the window's menu bar.
AddBitmapMenu(

hwnd, // menu bar's owner window
"&Chart", // text of menu name on menu bar
IDM_PIE, // ID of first item on menu
aHbmChart, // array of bitmap handles
C_CHARTS // number of items on menu
);
AddBitmapMenu(hwnd, "&Lines", IDM_SOLID,

aHbmLines, C_LINES);
break;
case WM_DESTROY:
for (i = 0; i < C_LINES; i++)
DeleteObject(aHbmLines[i]);
for (i = 0; i < C_CHARTS; i++)
DeleteObject(aHbmChart[i]);
PostQuitMessage(0);
break;
.
. // Process additional messages here.
.
default:
return (DefWindowProc(hwnd, uMsg, wParam, lParam));
}
return 0;

}The application-defined LoadChartBitmaps function loads the bitmap resources for the chart menu
by calling the LoadBitmap function, as follows.VOID WINAPI LoadChartBitmaps(HBITMAP *paHbm)
{

paHbm[0] = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_PIE));
paHbm[1] = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_LINE));
paHbm[2] = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_BAR));

}The application-defined CreateLineBitmaps function creates the bitmaps for the Lines menu by
using GDI drawing functions. The function creates a memory device context (DC) with the same
properties as the desktop window's DC. For each line style, the function creates a bitmap, selects
it into the memory DC, and draws in it.VOID WINAPI CreateLineBitmaps(HBITMAP *paHbm)
{

HWND hwndDesktop = GetDesktopWindow();
HDC hdcDesktop = GetDC(hwndDesktop);
HDC hdcMem = CreateCompatibleDC(hdcDesktop);
COLORREF clrMenu = GetSysColor(COLOR_MENU);
HBRUSH hbrOld;
HPEN hpenOld;
HBITMAP hbmOld;
int fnDrawMode;
int i;

// Create a brush using the menu background color,
// and select it into the memory DC.

hbrOld = SelectObject(hdcMem, CreateSolidBrush(clrMenu));
// Create the bitmaps. Select each one into the memory
// DC that was created and draw in it.

for (i = 0; i < C_LINES; i++) {
// Create the bitmap and select it into the DC.
paHbm[i] = CreateCompatibleBitmap(hdcDesktop,

CX_LINEBMP, CY_LINEBMP);
hbmOld = SelectObject(hdcMem, paHbm[i]);
// Fill the background using the brush.
PatBlt(hdcMem, 0, 0, CX_LINEBMP, CY_LINEBMP, PATCOPY);
// Create the pen and select it into the DC.
hpenOld = SelectObject(hdcMem,

CreatePen(PS_SOLID + i, 1, RGB(0, 0, 0)));
// Draw the line. To preserve the background color where
// the pen is white, use the R2_MASKPEN drawing mode.
fnDrawMode = SetROP2(hdcMem, R2_MASKPEN);
MoveToEx(hdcMem, 0, CY_LINEBMP / 2, NULL);
LineTo(hdcMem, CX_LINEBMP, CY_LINEBMP / 2);
SetROP2(hdcMem, fnDrawMode);
// Delete the pen, and select the old pen and bitmap.
DeleteObject(SelectObject(hdcMem, hpenOld));
SelectObject(hdcMem, hbmOld);
}
// Delete the brush and select the original brush.
DeleteObject(SelectObject(hdcMem, hbrOld));
// Delete the memory DC and release the desktop DC.
DeleteDC(hdcMem);
ReleaseDC(hwndDesktop, hdcDesktop);

}The application-defined AddBitmapMenu function creates a menu and adds the specified number
of bitmap menu items to it. Then it adds a corresponding menu name to the specified window's
menu bar.VOID WINAPI AddBitmapMenu(

HWND hwnd,// window that owned the menu bar
LPSTR lpszText,// text of menu name on menu bar
UINT uID, // ID of first bitmap menu item
HBITMAP *paHbm,// bitmaps for the menu items
int cItems) // number bitmap menu items

{
HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup = CreatePopupMenu();
MENUITEMINFO mii;
int i;
// Add the bitmap menu items to the menu.
for (i = 0; i < cItems; i++) {
mii.fMask = MIIM_ID | MIIM_TYPE | MIIM_DATA;
mii.fType = MFT_BITMAP;
mii.wID = uID + i;
mii.dwTypeData = (LPSTR) (paHbm[i]);
InsertMenuItem(hmenuPopup, i, TRUE, &mii);
}
// Add a menu name to the menu bar.
mii.fMask = MIIM_TYPE | MIIM_DATA | MIIM_SUBMENU;
mii.fType = MFT_STRING;
mii.hSubMenu = hmenuPopup;
mii.dwTypeData = lpszText;
InsertMenuItem(hmenuBar,
GetMenuItemCount(hmenuBar), TRUE, &mii);

}

Creating Owner-Drawn Menu Items
If you need complete control over the appearance of a menu item, you can use an owner-drawn
menu item in your application. This section describes the steps involved in creating and using an
owner-drawn menu item.

Setting the Owner-Drawn Flag
You cannot define an owner-drawn menu item in your application's resource-definition file.
Instead, you must create a new menu item or modify an existing one by using the
MFT_OWNERDRAW menu flag.

You can use the InsertMenuItem or SetMenuItemInfo function to specify an owner-drawn menu
item. Use InsertMenuItem to insert a new menu item at the specified position in a menu bar or
menu. Use SetMenuItemInfo to change the contents of a menu.

When calling these two functions, you must specify the address of a MENUITEMINFO structure,
giving the properties of the new menu item or the properties you want to change for an existing
menu item. To make an item an owner-drawn item, specify the MIIM_TYPE value for the fMask
member and the MFT_OWNERDRAW value for the fType member.

By setting the appropriate members of the MENUITEMINFO structure, you can associate an
application-defined value, which is called item data, with each menu item. To do so, specify the
MIIM_DATA value for the fMask member and the application-defined value for the dwItemData
member.

You can use item data with any type of menu item, but it is particularly useful for owner-drawn
items. For example, suppose a structure contains information used to draw a menu item. An
application might use the item data for a menu item to store a pointer to the structure. The item
data is sent to the menu's owner window with the WM_MEASUREITEM and WM_DRAWITEM
messages. To retrieve the item data for a menu at any time, use the GetMenuItemInfo function.

Applications written for earlier versions of Windows can continue to call AppendMenu,
InsertMenu, or ModifyMenu to assign the MF_OWNERDRAW flag to an owner-drawn menu
item.

When you call any of these three functions, you can pass a 32-bit value as the lpNewItem
parameter. This value can represent any information that is meaningful to your application, and
that will be available to your application when the item is to be displayed. For example, the value
could contain a pointer to a structure; the structure, in turn, might contain a text string and the
handle of a logical font that your application will use to draw the string.

Owner-Drawn Menus and the WM_MEASUREITEM Message
Before Windows displays an owner-drawn menu item for the first time, it sends the
WM_MEASUREITEM message to the window procedure of the window that owns the item's
menu. This message contains a pointer to a MEASUREITEMSTRUCT structure that identifies the
item and contains the item data that an application may have assigned to it. The window
procedure must fill the itemWidth and itemHeight members of the structure before returning from
processing the message. Windows uses the information in these members when creating the
bounding rectangle in which an application draws the menu item. It also uses the information to
detect when the user chooses the item.

Owner-Drawn Menus and the WM_DRAWITEM Message
Whenever the item must be drawn (for example, when it is first displayed or when the user selects
it), Windows sends the WM_DRAWITEM message to the window procedure of the menu's owner
window. This message contains a pointer to a DRAWITEMSTRUCT structure, which contains
information about the item, including the item data that an application may have assigned to it. In
addition, DRAWITEMSTRUCT contains flags that indicate the state of the item (such as whether it
is grayed or checked) as well as a bounding rectangle and a device context that the application
uses to draw the item.

An application must do the following while processing the WM_DRAWITEM message:

1. Determine the type of drawing that is necessary. To do so, check the itemAction member
of the DRAWITEMSTRUCT structure.

2. Draw the menu item appropriately, using the bounding rectangle and device context
obtained from the DRAWITEMSTRUCT structure. The application must draw only within the
bounding rectangle. For performance reasons, Windows does not clip portions of the image
that are drawn outside the rectangle.

3. Restore all GDI objects selected for the menu item's device context.
If the user selects the menu item, Windows sets the itemAction member of the
DRAWITEMSTRUCT structure to the ODA_SELECT value and sets the ODS_SELECTED value
in the itemState member. This is an application's cue to redraw the menu item to indicate that it is
selected.

Setting Fonts for Menu-Item Text Strings
This topic contains an example from an application that uses owner-drawn menu items in a menu.
The menu contains items that set the attributes of the current font, and the items are displayed
using the appropriate font attribute.

Here is how the menu is defined in the resource-definition file. Note that the strings for the
Regular, Bold, Italic, and Underline menu items are assigned at run time, so their strings are
empty in the resource-definition file.MainMenu MENU
BEGIN

POPUP "&Character"
BEGIN
MENUITEM "", IDM_REGULAR
MENUITEM SEPARATOR
MENUITEM "", IDM_BOLD
MENUITEM "", IDM_ITALIC
MENUITEM "", IDM_ULINE
END

ENDThe application's window procedure processes the messages involved in using owner-drawn
menu items. The application uses the WM_CREATE message to do the following:

· Set the MF_OWNERDRAW flag for the menu items.
· Set the text strings for the menu items.
· Obtain handles of the fonts used to draw the items.
· Obtain the text and background color values for selected menu items.

The text strings and font handles are stored in an array of application-defined MYITEM structures.
The application-defined GetAFont function creates a font that corresponds to the given font
attribute and returns the handle of the font. The handles are destroyed during the processing of
the WM_DESTROY message.

During the processing of the WM_MEASUREITEM message, the example gets the width and
height of a menu-item string and copies these values into the MEASUREITEMSTRUCT structure.
Windows uses the width and height values to calculate the size of the menu.

During the processing of the WM_DRAWITEM message, the menu item's string is drawn with
room left next to the string for the check-mark bitmap. If the user selects the item, the selected
text and background colors are used to draw the item.LRESULT APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

typedef struct _MYITEM {
HFONT hfont;
LPSTR psz;
} MYITEM; // structure for item font and string
MYITEM *pmyitem; // pointer to item's font and string
static MYITEM myitem[CITEMS]; // array of MYITEMS
static HMENU hmenu; // handle of main menu
static COLORREF crSelText; // text color of selected item
static COLORREF crSelBkgnd; // background color of selected item
COLORREF crText; // text color of unselected item
COLORREF crBkgnd; // background color unselected item
LPMEASUREITEMSTRUCT lpmis; // points to item of data
LPDRAWITEMSTRUCT lpdis;// points to item drawing data
HDC hdc;// handle of screen DC
SIZE size; // menu-item text extents
DWORD dwCheckXY; // check-mark dimensions
WORD wCheckX;// check-mark width
int nTextX; // width of menu item
int nTextY; // height of menu item
int i; // loop counter
HFONT hfontOld; // handle of old font
BOOL fSelected = FALSE;// menu-item selection flag
switch (uMsg) {
case WM_CREATE:
// Modify the Regular, Bold, Italic, and Underline
// menu items to make them owner-drawn items. Associate
// a MYITEM structure with each item to contain the
// string and font handle for each item.
hmenu = GetMenu(hwnd);
ModifyMenu(hmenu, IDM_REGULAR, MF_BYCOMMAND |
MF_CHECKED | MF_OWNERDRAW, IDM_REGULAR,
(LPTSTR) &myitem[REGULAR]);
ModifyMenu(hmenu, IDM_BOLD, MF_BYCOMMAND |
MF_OWNERDRAW, IDM_BOLD, (LPTSTR) &myitem[BOLD]);
ModifyMenu(hmenu, IDM_ITALIC, MF_BYCOMMAND |
MF_OWNERDRAW, IDM_ITALIC,
(LPTSTR) &myitem[ITALIC]);
ModifyMenu(hmenu, IDM_ULINE, MF_BYCOMMAND |
MF_OWNERDRAW, IDM_ULINE, (LPTSTR) &myitem[ULINE]);
// Retrieve each item's font handle and copy it into
// the hfont member of each item's MYITEM structure.
// Also, copy each item's string into the structures.
myitem[REGULAR].hfont = GetAFont(REGULAR);
myitem[REGULAR].psz = "Regular";
myitem[BOLD].hfont = GetAFont(BOLD);
myitem[BOLD].psz = "Bold";
myitem[ITALIC].hfont = GetAFont(ITALIC);
myitem[ITALIC].psz = "Italic";
myitem[ULINE].hfont = GetAFont(ULINE);
myitem[ULINE].psz = "Underline";
// Retrieve the text and background colors of the
// selected menu text.
crSelText = GetSysColor(COLOR_HIGHLIGHTTEXT);
crSelBkgnd = GetSysColor(COLOR_HIGHLIGHT);
return 0;
case WM_MEASUREITEM:
// Retrieve a device context for the main window.
hdc = GetDC(hwnd);
// Retrieve pointers to the menu item's
// MEASUREITEMSTRUCT structure and MYITEM structure.
lpmis = (LPMEASUREITEMSTRUCT) lParam;
pmyitem = (MYITEM *) lpmis->itemData;
// Select the font associated with the item into
// the main window's device context.
hfontOld = SelectObject(hdc, pmyitem->hfont);
// Retrieve the width and height of the item's string,
// and then copy the width and height into the
// MEASUREITEMSTRUCT structure's itemWidth and
// itemHeight members.
GetTextExtentPoint32(hdc, pmyitem->psz,
lstrlen(pmyitem->psz), &size);
lpmis->itemWidth = size.cx;
lpmis->itemHeight = size.cy;
// Select the old font back into the device context,
// and then release the device context.
SelectObject(hdc, hfontOld);
ReleaseDC(hwnd, hdc);
return TRUE;
break;
case WM_DRAWITEM:
// Get pointers to the menu item's DRAWITEMSTRUCT
// structure and MYITEM structure.
lpdis = (LPDRAWITEMSTRUCT) lParam;
pmyitem = (MYITEM *) lpdis->itemData;
// If the user has selected the item, use the selected
// text and background colors to display the item.
if (lpdis->itemState & ODS_SELECTED) {
crText = SetTextColor(lpdis->hDC, crSelText);
crBkgnd = SetBkColor(lpdis->hDC, crSelBkgnd);
fSelected = TRUE;
}
// Remember to leave space in the menu item for the
// check-mark bitmap. Retrieve the width of the bitmap
// and add it to the width of the menu item.
dwCheckXY = GetMenuCheckMarkDimensions();
wCheckX = LOWORD(dwCheckXY);
nTextX = wCheckX + lpdis->rcItem.left;
nTextY = lpdis->rcItem.top;
// Select the font associated with the item into the
// item's device context, and then draw the string.
hfontOld = SelectObject(lpdis->hDC, pmyitem->hfont);
ExtTextOut(lpdis->hDC, nTextX, nTextY, ETO_OPAQUE,
&lpdis->rcItem, pmyitem->psz,
lstrlen(pmyitem->psz), NULL);
// Select the previous font back into the device
// context.
SelectObject(lpdis->hDC, hfontOld);
// Return the text and background colors to their
// normal state (not selected).
if (fSelected) {
SetTextColor(lpdis->hDC, crText);
SetBkColor(lpdis->hDC, crBkgnd);
}
return TRUE;
.
. // Process other messages.
.
case WM_DESTROY:
// Destroy the menu items' font handles.
for (i = 0; i < CITEMS; i++)
DeleteObject(myitem[i].hfont);
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return NULL;

}
HFONT GetAFont(fnFont)
int fnFont; // font-attribute flag
{

static LOGFONT lf; // structure for font information
// Get a handle to the ANSI fixed-pitch font, and copy
// information about the font to a LOGFONT structure.
GetObject(GetStockObject(ANSI_FIXED_FONT), sizeof(LOGFONT),
&lf);
// Set the font attributes, as appropriate.
if (fnFont == BOLD)
lf.lfWeight = FW_BOLD;
else
lf.lfWeight = FW_NORMAL;
lf.lfItalic = (fnFont == ITALIC);
lf.lfItalic = (fnFont == ULINE);
// Create the font, and then return its handle.
return CreateFont(lf.lfHeight, lf.lfWidth,
lf.lfEscapement, lf.lfOrientation, lf.lfWeight,
lf.lfItalic, lf.lfUnderline, lf.lfStrikeOut, lf.lfCharSet,
lf.lfOutPrecision, lf.lfClipPrecision, lf.lfQuality,
lf.lfPitchAndFamily, lf.lfFaceName);

}

Example of Owner-Drawn Menu Items
The example in this topic uses owner-drawn menu items in a menu. The menu items select
specific font attributes, and the application displays each menu item using a font that has the
corresponding attribute. For example, the Italic menu item is displayed in an italic font. The
Character menu name on the menu bar opens the menu.

The menu bar and drop-down menu are defined initially by an extended menu-template resource.
Because a menu template cannot specify owner-drawn items, the menu initially contains four text
menu items with the following strings: "Regular," "Bold," "Italic," and "Underline." The application's
window procedure changes these to owner-drawn items when it processes the WM_CREATE
message. When it receives the WM_CREATE message, the window procedure calls the
application-defined OnCreate function, which performs the following steps for each menu item:

1. Allocates an application-defined MYITEM structure.
2. Gets the text of the menu item and saves it in the application-defined MYITEM structure.
3. Creates the font used to display the menu item and saves its handle in the application-

defined MYITEM structure.
4. Changes the menu item type to MFT_OWNERDRAW and saves a pointer to the

application-defined MYITEM structure as item data.
Because a pointer to each application-defined MYITEM structure is saved as item data, it is
passed to the window procedure in conjunction with the WM_MEASUREITEM and
WM_DRAWITEM messages for the corresponding menu item. The pointer is contained in the
itemData member of both the MEASUREITEMSTRUCT and DRAWITEMSTRUCT structures.

A WM_MEASUREITEM message is sent for each owner-drawn menu item the first time it is
displayed. The application processes this message by selecting the font for the menu item into a
device context and then determining the space required to display the menu item text in that font.
The font and menu item text are both specified by the menu item's MYITEM structure (the
structure defined by the application). The application determines the size of the text by using the
GetTextExtentPoint32 function.

The window procedure processes the WM_DRAWITEM message by displaying the menu item
text in the appropriate font. The font and menu item text are both specified by the menu item's
MYITEM structure. The application selects text and background colors appropriate to the menu
item's state.

The window procedure processes the WM_DESTROY message to destroy fonts and free
memory. The application deletes the font and frees the application-defined MYITEM structure for
each menu item.

Following are the relevant portions of the application's header file.// Menu-item identifiers for the Character menu
#define IDM_CHARACTER 10
#define IDM_REGULAR 11
#define IDM_BOLD 12
#define IDM_ITALIC 13
#define IDM_UNDERLINE 14
// Structure associated with menu items
typedef struct tagMYITEM {

HFONT hfont;
int cchItemText;
char szItemText[1];

} MYITEM;
#define CCH_MAXITEMTEXT 256Following are the relevant portions of the application's window procedure and its associated

functions.LRESULT CALLBACK MainWindowProc(
HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam
)

{
switch (uMsg) {
case WM_CREATE:
if (!OnCreate(hwnd))
return -1;
break;
case WM_DESTROY:
OnDestroy(hwnd);
PostQuitMessage(0);
break;
case WM_MEASUREITEM:
OnMeasureItem(hwnd, (LPMEASUREITEMSTRUCT) lParam);
return TRUE;
case WM_DRAWITEM:
OnDrawItem(hwnd, (LPDRAWITEMSTRUCT) lParam);
return TRUE;
.
. // Additional message processing goes here.
.
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}

BOOL WINAPI OnCreate(HWND hwnd)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
UINT uID;
MYITEM *pMyItem;
// Get the handle of the pop-up menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_CHARACTER, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Modify each menu item. Assume that the IDs IDM_REGULAR
// through IDM_UNDERLINE are consecutive numbers.
for (uID = IDM_REGULAR; uID <= IDM_UNDERLINE; uID++) {
// Allocate an item structure, leaving space for a
// string of up to CCH_MAXITEMTEXT characters.
pMyItem = (MYITEM *) LocalAlloc(LMEM_FIXED,

sizeof(MYITEM) + CCH_MAXITEMTEXT);
// Save the item text in the item structure.
mii.fMask = MIIM_TYPE;
mii.dwTypeData = pMyItem->szItemText;
mii.cch = CCH_MAXITEMTEXT;
GetMenuItemInfo(hmenuPopup, uID, FALSE, &mii);
pMyItem->cchItemText = mii.cch;
// Reallocate the structure to the minimum required size.
pMyItem = (MYITEM *) LocalReAlloc(pMyItem,

sizeof(MYITEM) + mii.cch, LMEM_MOVEABLE);
// Create the font used to draw the item.
pMyItem->hfont = CreateMenuItemFont(uID);
// Change the item to an owner-drawn item, and save
// the address of the item structure as item data.
mii.fMask = MIIM_TYPE | MIIM_DATA;
mii.fType = MFT_OWNERDRAW;
mii.dwItemData = (DWORD) pMyItem;
SetMenuItemInfo(hmenuPopup, uID, FALSE, &mii);
}
return TRUE;

}
HFONT CreateMenuItemFont(UINT uID)
{

LOGFONT lf;
ZeroMemory(&lf, sizeof(lf));
lf.lfHeight = 20;
lstrcpy(lf.lfFaceName, "Times New Roman");
switch (uID) {
case IDM_BOLD:
lf.lfWeight = FW_HEAVY;
break;
case IDM_ITALIC:
lf.lfItalic = TRUE;
break;
case IDM_UNDERLINE:
lf.lfUnderline = TRUE;
break;
}
return CreateFontIndirect(&lf);

}
VOID WINAPI OnDestroy(HWND hwnd)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
UINT uID;
MYITEM *pMyItem;
// Get the handle of the menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_CHARACTER, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Free resources associated with each menu item.
for (uID = IDM_REGULAR; uID <= IDM_UNDERLINE; uID++) {
// Get the item data.
mii.fMask = MIIM_DATA;
GetMenuItemInfo(hmenuPopup, uID, FALSE, &mii);
pMyItem = (MYITEM *) mii.dwItemData;
// Destroy the font and free the item structure.
DeleteObject(pMyItem->hfont);
LocalFree(pMyItem);
}

}
VOID WINAPI OnMeasureItem(HWND hwnd, LPMEASUREITEMSTRUCT lpmis)
{

MYITEM *pMyItem = (MYITEM *) lpmis->itemData;
HDC hdc = GetDC(hwnd);
HFONT hfntOld = SelectObject(hdc, pMyItem->hfont);
SIZE size;
GetTextExtentPoint32(hdc, pMyItem->szItemText,

pMyItem->cchItemText, &size);
lpmis->itemWidth = size.cx;
lpmis->itemHeight = size.cy;
SelectObject(hdc, hfntOld);
ReleaseDC(hwnd, hdc);

}
VOID WINAPI OnDrawItem(HWND hwnd, LPDRAWITEMSTRUCT lpdis)
{

MYITEM *pMyItem = (MYITEM *) lpdis->itemData;
COLORREF clrPrevText, clrPrevBkgnd;
HFONT hfntPrev;
int x, y;
// Set the appropriate foreground and background colors.
if (lpdis->itemState & ODS_SELECTED) {
clrPrevText = SetTextColor(lpdis->hDC,

GetSysColor(COLOR_HIGHLIGHTTEXT));
clrPrevBkgnd = SetBkColor(lpdis->hDC,

GetSysColor(COLOR_HIGHLIGHT));
}
else {
clrPrevText = SetTextColor(lpdis->hDC,

GetSysColor(COLOR_MENUTEXT));
clrPrevBkgnd = SetBkColor(lpdis->hDC,

GetSysColor(COLOR_MENU));
}
// Determine where to draw and leave space for a check-mark.
x = lpdis->rcItem.left;
y = lpdis->rcItem.top;
x += LOWORD(GetMenuCheckMarkDimensions());
// Select the font and draw the text.
hfntPrev = SelectObject(lpdis->hDC, pMyItem->hfont);
ExtTextOut(lpdis->hDC, x, y, ETO_OPAQUE,

&lpdis->rcItem, pMyItem->szItemText,
pMyItem->cchItemText, NULL);
// Restore the original font and colors.
SelectObject(lpdis->hDC, hfntPrev);
SetTextColor(lpdis->hDC, clrPrevText);
SetBkColor(lpdis->hDC, clrPrevBkgnd);

}

Using Custom Check-mark Bitmaps
Windows provides a default check-mark bitmap for displaying next to a menu item that is checked.
You can customize an individual menu item by providing a pair of bitmaps to replace the default
check-mark bitmap. Windows displays one bitmap when the item is checked and the other when it
is unchecked. This section describes the steps involved in creating and using custom check-mark
bitmaps.

Creating Custom Check-mark Bitmaps
A custom check-mark bitmap must be the same size as the default check-mark bitmap. You can
retrieve the default check-mark size of the bitmap by calling the
GetMenuCheckMarkDimensions function. The low-order word of this function's return value
specifies the width; the high-order word specifies the height.

You can use bitmap resources to provide check-mark bitmaps. However, because the required
bitmap size varies depending on the display type, you may need to resize the bitmap at run time
by using the StretchBlt function. Depending on the bitmap, the distortion caused by sizing could
produce unacceptable results.

Instead of using a bitmap resource, you can create a bitmap at run time by using GDI functions.

To create a bitmap at run time
1. Use the CreateCompatibleDC function to create a device context compatible with the

one used by the application's main window. The function's hdc parameter can specify either
NULL or the return value from the GetDC function. CreateCompatibleDC returns the handle
of the compatible device context.

2. Use the CreateCompatibleBitmap function to create a bitmap compatible with the
application's main window. This function's nWidth and nHeight parameters set the size of the
bitmap; they should specify the width and height information returned by the
GetMenuCheckMarkDimensions function. You can also use the CreateBitmap function to
create a monochrome bitmap.

3. Use the SelectObject function to select the bitmap into the compatible device context.
4. Use GDI drawing functions, such as Ellipse and LineTo, to draw an image into the

bitmap, or use functions such as BitBlt and StretchBlt to copy an image into the bitmap.
For more information, see Bitmaps.

Associating Bitmaps with a Menu Item
You associate a pair of check-mark bitmaps with a menu item by passing the handles of the
bitmaps to the SetMenuItemBitmaps function. The hBitmapUnchecked parameter identifies the
unchecked bitmap, and the hBitmapChecked parameter identifies the checked bitmap. If you want
to remove one or both check marks from a menu item, you can set the hBitmapUnchecked or
hBitmapChecked parameter, or both, to NULL.

Setting the Check-mark Attribute
The CheckMenuItem function sets a menu item's check-mark attribute to either checked or
unchecked. You can specify the MF_CHECKED value to set the check-mark attribute to checked
and the MF_UNCHECKED value to set it to unchecked.

You can also set the check state of a menu item by using the SetMenuItemInfo function.

Sometimes a group of menu items represents a set of mutually exclusive options. By using the
CheckMenuRadioItem function, you can check one menu item while simultaneously removing
the check mark from all other menu items in the group.

Simulating Check Boxes in a Menu
This topic contains an example that shows how to simulate check boxes in a menu. The example
contains a Character menu whose items allow the user to set the bold, italic, and underline
attributes of the current font. When a font attribute is in effect, a check mark is displayed in the
check box next to the corresponding menu item; otherwise, an empty check box is displayed next
to the item.

The example replaces the default check-mark bitmap with two bitmaps: a bitmap with a checked
box and the bitmap with an empty box. The checked check box bitmap is displayed next to the
Bold, Italic, or Underline menu item when the item's check-mark attribute is set to MF_CHECKED.
The unchecked or empty check box bitmap is displayed when the check-mark attribute is set to
MF_UNCHECKED.

Windows provides a predefined bitmap that contains the images used for check boxes and radio
buttons. The example isolates the checked and empty check boxes, copies them to two separate
bitmaps, and then uses them as the checked and unchecked bitmaps for items in the Character
menu.

To retrieve the handle of the system-defined check box bitmap, the example calls the
LoadBitmap function, specifying NULL as the hInstance parameter and OBM_CHECKBOXES as
the lpBitmapName parameter. Because the images in the bitmap are all the same size, the
example can isolate them by dividing the bitmap's width and height by the number of images in its
rows and columns.

The following portion of a resource-definition file shows how the menu items in the Character
menu are defined. Note that no font attributes are in effect initially, so the check-mark attribute for
the Regular item is set to checked and, by default, the check-mark attribute of the remaining items
is set to unchecked.#include "men3.h"
MainMenu MENU
BEGIN

POPUP "&Character"
BEGIN
MENUITEM "&Regular",IDM_REGULAR, CHECKED
MENUITEM SEPARATOR
MENUITEM "&Bold", IDM_BOLD
MENUITEM "&Italic", IDM_ITALIC
MENUITEM "&Underline", IDM_ULINE
END

ENDHere are the relevant contents of the application's header file.// Menu-item identifiers
#define IDM_REGULAR 0x1
#define IDM_BOLD 0x2
#define IDM_ITALIC 0x4
#define IDM_ULINE 0x8
// Check-mark flags
#define CHECK 1
#define UNCHECK 2
// Font-attribute mask
#define ATTRIBMASK 0xe
// Function prototypes
LRESULT APIENTRY MainWndProc(HWND, UINT, WPARAM, LPARAM);
HBITMAP GetMyCheckBitmaps(UINT);
BYTE CheckOrUncheckMenuItem(BYTE, HMENU);The following example shows the portions of the window procedure that create the check-mark

bitmaps; set the check-mark attribute of the Bold, Italic, and Underline menu items; and destroy
check-mark bitmaps.LRESULT APIENTRY MainWndProc(hwndMain, uMsg, wParam, lParam)
HWND hwndMain;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

static HBITMAP hbmpCheck; // handle of checked bitmap
static HBITMAP hbmpUncheck; // handle of unchecked bitmap
static HMENU hmenu; // handle of main menu
BYTE fbFontAttrib;// font-attribute flags
switch (uMsg) {
case WM_CREATE:
// Call the application-defined GetMyCheckBitmaps
// function to get the predefined checked and
// unchecked check box bitmaps.
hbmpCheck = GetMyCheckBitmaps(CHECK);
hbmpUncheck = GetMyCheckBitmaps(UNCHECK);
// Set the checked and unchecked bitmaps for the menu
// items.
hmenu = GetMenu(hwndMain);
SetMenuItemBitmaps(hmenu, IDM_BOLD, MF_BYCOMMAND,
hbmpUncheck, hbmpCheck);
SetMenuItemBitmaps(hmenu, IDM_ITALIC, MF_BYCOMMAND,
hbmpUncheck, hbmpCheck);
SetMenuItemBitmaps(hmenu, IDM_ULINE, MF_BYCOMMAND,
hbmpUncheck, hbmpCheck);
return 0;
case WM_COMMAND:
switch (LOWORD(wParam)) {
// Process the menu commands.
case IDM_REGULAR:
case IDM_BOLD:
case IDM_ITALIC:
case IDM_ULINE:
// CheckOrUncheckMenuItem is an application-
// defined function that sets the menu item
// check marks and returns the user-selected
// font attributes.
fbFontAttrib = CheckOrUncheckMenuItem(

(BYTE) LOWORD(wParam), hmenu);
.
. // Set the font attributes.
.
return 0;
.
. // Process other command messages.
.
default:
break;
}
break;
.
. // Process other window messages.
.
case WM_DESTROY:
// Destroy the checked and unchecked bitmaps.
DeleteObject(hbmpCheck);
DeleteObject(hbmpUncheck);
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwndMain, uMsg, wParam, lParam);
}
return NULL;

}
HBITMAP GetMyCheckBitmaps(fuCheck)
UINT fuCheck;// CHECK or UNCHECK flag
{

COLORREF crBackground; // background color
HBRUSH hbrBackground; // background brush
HBRUSH hbrTargetOld; // original background brush
HDC hdcSource;// source device context
HDC hdcTarget;// target device context
HBITMAP hbmpCheckboxes; // handle of check-box bitmap
BITMAP bmCheckbox; // structure for bitmap data
HBITMAP hbmpSourceOld; // handle of original source bitmap
HBITMAP hbmpTargetOld; // handle of original target bitmap
HBITMAP hbmpCheck; // handle of check-mark bitmap
RECT rc; // rectangle for check-box bitmap
DWORD dwCheckXY; // dimensions of check-mark bitmap
WORD wBitmapX;// width of check-mark bitmap
WORD wBitmapY;// height of check-mark bitmap
// Get the menu background color and create a solid brush
// with that color.
crBackground = GetSysColor(COLOR_MENU);
hbrBackground = CreateSolidBrush(crBackground);
// Create memory device contexts for the source and
// destination bitmaps.
hdcSource = CreateCompatibleDC((HDC) NULL);
hdcTarget = CreateCompatibleDC(hdcSource);
// Get the size of the Windows default check-mark bitmap and
// create a compatible bitmap of the same size.
dwCheckXY = GetMenuCheckMarkDimensions();
wBitmapX = LOWORD(dwCheckXY);
wBitmapY = LOWORD(dwCheckXY);
hbmpCheck = CreateCompatibleBitmap(hdcSource, wBitmapX,
wBitmapY);
// Select the background brush and bitmap into the target DC.
hbrTargetOld = SelectObject(hdcTarget, hbrBackground);
hbmpTargetOld = SelectObject(hdcTarget, hbmpCheck);
// Use the selected brush to initialize the background color
// of the bitmap in the target device context.
PatBlt(hdcTarget, 0, 0, wBitmapX, wBitmapY, PATCOPY);
// Load the predefined check box bitmaps and select it
// into the source DC.
hbmpCheckboxes = LoadBitmap((HINSTANCE) NULL,
(LPTSTR) OBM_CHECKBOXES);
hbmpSourceOld = SelectObject(hdcSource, hbmpCheckboxes);
// Fill a BITMAP structure with information about the
// check box bitmaps, and then find the upper-left corner of
// the unchecked check box or the checked check box.
GetObject(hbmpCheckboxes, sizeof(BITMAP), &bmCheckbox);
if (fuCheck == UNCHECK) {
rc.left = 0;
rc.right = (bmCheckbox.bmWidth / 4);
}
else {
rc.left = (bmCheckbox.bmWidth / 4);
rc.right = (bmCheckbox.bmWidth / 4) * 2;
}
rc.top = 0;
rc.bottom = (bmCheckbox.bmHeight / 3);
// Copy the appropriate bitmap into the target DC. If the
// check-box bitmap is larger than the default check-mark
// bitmap, use StretchBlt to make it fit; otherwise, just
// copy it.
if (((rc.right - rc.left) > (int) wBitmapX) ||

((rc.bottom - rc.top) > (int) wBitmapY))
StretchBlt(hdcTarget, 0, 0, wBitmapX, wBitmapY,
hdcSource, rc.left, rc.top, rc.right - rc.left,
rc.bottom - rc.top, SRCCOPY);
else
BitBlt(hdcTarget, 0, 0, rc.right - rc.left,
rc.bottom - rc.top,
hdcSource, rc.left, rc.top, SRCCOPY);
// Select the old source and destination bitmaps into the
// source and destination DCs, and then delete the DCs and
// the background brush.
SelectObject(hdcSource, hbmpSourceOld);
SelectObject(hdcTarget, hbrTargetOld);
hbmpCheck = SelectObject(hdcTarget, hbmpTargetOld);
DeleteObject(hbrBackground);
DeleteObject(hdcSource);
DeleteObject(hdcTarget);
// Return the handle of the new check-mark bitmap.
return hbmpCheck;

}

BYTE CheckOrUncheckMenuItem(bMenuItemID, hmenu)
BYTE bMenuItemID;
HMENU hmenu;
{

DWORD fdwMenu;
static BYTE fbAttributes;
switch (bMenuItemID) {
case IDM_REGULAR:
// Whenever the Regular menu item is selected, add a
// check mark to it and then remove check marks from
// any font-attribute menu items.
CheckMenuItem(hmenu, IDM_REGULAR, MF_BYCOMMAND |
MF_CHECKED);
if (fbAttributes & ATTRIBMASK) {
CheckMenuItem(hmenu, IDM_BOLD, MF_BYCOMMAND |
MF_UNCHECKED);
CheckMenuItem(hmenu, IDM_ITALIC, MF_BYCOMMAND |
MF_UNCHECKED);
CheckMenuItem(hmenu, IDM_ULINE, MF_BYCOMMAND |
MF_UNCHECKED);
}
fbAttributes = IDM_REGULAR;
return fbAttributes;
case IDM_BOLD:
case IDM_ITALIC:
case IDM_ULINE:
// Toggle the check mark for the selected menu item and
// set the font attribute flags appropriately.
fdwMenu = GetMenuState(hmenu, (UINT) bMenuItemID,
MF_BYCOMMAND);
if (!(fdwMenu & MF_CHECKED)) {
CheckMenuItem(hmenu, (UINT) bMenuItemID,
MF_BYCOMMAND | MF_CHECKED);
fbAttributes |= bMenuItemID;
} else {
CheckMenuItem(hmenu, (UINT) bMenuItemID,
MF_BYCOMMAND | MF_UNCHECKED);
fbAttributes ^= bMenuItemID;
}
// If any font attributes are currently selected,
// remove the check mark from the Regular menu item;
// if no attributes are selected, add a check mark
// to the Regular menu item.
if (fbAttributes & ATTRIBMASK) {
CheckMenuItem(hmenu, IDM_REGULAR,
MF_BYCOMMAND | MF_UNCHECKED);
fbAttributes &= (BYTE) ~IDM_REGULAR;
} else {
CheckMenuItem(hmenu, IDM_REGULAR,
MF_BYCOMMAND | MF_CHECKED);
fbAttributes = IDM_REGULAR;
}
return fbAttributes;
}

}

Example of Using Custom Check-mark Bitmaps
The example in this topic assigns custom check-mark bitmaps to menu items in two menus. The
menu items in the first menu specify character attributes: bold, italic, and underline. Each menu
item can be either checked or unchecked. For these menu items, the example uses check-mark
bitmaps that resemble the checked and unchecked states of a check box control.

The menu items in the second menu specify paragraph alignment settings: left, centered, and
right. Only one of these menu items is checked at any given time. For these menu items, the
example uses check-mark bitmaps that resemble the checked and unchecked states of a radio
button control.

The window procedure processes the WM_CREATE message by calling the application-defined
OnCreate function. OnCreate creates the four check-mark bitmaps and then assigns them to their
appropriate menu items by using the SetMenuItemBitmaps function.

To create each bitmap, OnCreate calls the application-defined CreateMenuBitmaps function,
specifying a pointer to a bitmap-specific drawing function. CreateMenuBitmaps creates a
monochrome bitmap of the required size, selects it into a memory device context, and erases the
background. Then it calls the specified drawing function to fill in the foreground.

The four application-defined drawing functions are DrawCheck, DrawUncheck, DrawRadioCheck,
and DrawRadioUncheck. They draw a rectangle with an X, an empty rectangle, an ellipse
containing a smaller filled ellipse, and an empty ellipse, respectively.

The window procedure processes the WM_DESTROY message by deleting the check-mark
bitmaps. It retrieves each bitmap handle by using the GetMenuItemInfo function and then passes
the handle to the DeleteObject function.

When the user chooses a menu item, a WM_COMMAND message is sent to the owner window.
For menu items on the Character menu, the window procedure calls the application-defined
CheckCharacterItem function. For items on the Paragraph menu, the window procedure calls the
application-defined CheckParagraphItem function.

Each item on the Character menu can be checked and unchecked independently. Therefore,
CheckCharacterItem simply switches the specified menu item's check state. First, the function
calls the GetMenuItemInfo function to get the current menu item state. Then it switches the
MFS_CHECKED state flag and sets the new state by calling the SetMenuItemInfo function.

Unlike character attributes, only one paragraph alignment can be selected at a time. Therefore,
CheckParagraphItem checks the specified menu item and removes the check mark from all other
items on the menu. To do so, it calls the CheckMenuRadioItem function.

Following are the relevant portions of the application's header file.// Menu-item identifiers for the Character menu
#define IDM_CHARACTER 10
#define IDM_BOLD 11
#define IDM_ITALIC 12
#define IDM_UNDERLINE 13
// Menu-item identifiers for the Paragraph menu
#define IDM_PARAGRAPH 20
#define IDM_LEFT 21
#define IDM_CENTER 22
#define IDM_RIGHT23
// Function-pointer type for drawing functions
typedef VOID (WINAPI * DRAWFUNC)(HDC hdc, SIZE size);Following are the relevant portions of the application's window procedure and related functions.LRESULT CALLBACK MainWindowProc(

HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam
)

{
switch (uMsg) {
case WM_CREATE:
if (!OnCreate(hwnd))
return -1;
break;
case WM_DESTROY:
OnDestroy(hwnd);
PostQuitMessage(0);
break;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDM_BOLD:
case IDM_ITALIC:
case IDM_UNDERLINE:
CheckCharacterItem(hwnd, LOWORD(wParam));
break;
case IDM_LEFT:
case IDM_CENTER:
case IDM_RIGHT:
CheckParagraphItem(hwnd, LOWORD(wParam));
break;
.
. // Process other commands here.
.
}
break;
.
. // Process other messages here.
.
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}
VOID WINAPI CheckCharacterItem(HWND hwnd, UINT uID)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
// Get the handle of the Character menu.
mii.fMask = MIIM_SUBMENU; // information to get
GetMenuItemInfo(hmenuBar, IDM_CHARACTER, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Get the state of the specified menu item.
mii.fMask = MIIM_STATE; // information to get
GetMenuItemInfo(hmenuPopup, uID, FALSE, &mii);
// Toggle the checked state.
mii.fState ^= MFS_CHECKED;
SetMenuItemInfo(hmenuPopup, uID, FALSE, &mii);

}
VOID WINAPI CheckParagraphItem(HWND hwnd, UINT uID)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
// Get the handle of the Paragraph menu.
mii.fMask = MIIM_SUBMENU; // information to get
GetMenuItemInfo(hmenuBar, IDM_PARAGRAPH, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Check the specified item and uncheck all the others.
CheckMenuRadioItem(

hmenuPopup, // handle of menu
IDM_LEFT, // first item in range
IDM_RIGHT,// last item in range
uID, // item to check
MF_BYCOMMAND // IDs, not positions
);

}
BOOL WINAPI OnCreate(HWND hwnd)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
UINT uID;
HBITMAP hbmChecked;
HBITMAP hbmUnchecked;
// Get the handle of the Character menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_CHARACTER, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Create the checked and unchecked bitmaps.
hbmChecked = CreateMenuBitmap(DrawCheck);
hbmUnchecked = CreateMenuBitmap(DrawUncheck);
// Set the checkmark bitmaps for each menu item.
for (uID = IDM_BOLD; uID <= IDM_UNDERLINE; uID++) {
SetMenuItemBitmaps(hmenuPopup, uID, MF_BYCOMMAND,

hbmUnchecked, hbmChecked);
}
// Get the handle of the Paragraph pop-up menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_PARAGRAPH, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Create the checked and unchecked bitmaps.
hbmChecked = CreateMenuBitmap(DrawRadioCheck);
hbmUnchecked = CreateMenuBitmap(DrawRadioUncheck);
// Set the checkmark bitmaps for each menu item.
for (uID = IDM_LEFT; uID <= IDM_RIGHT; uID++) {
SetMenuItemBitmaps(hmenuPopup, uID, MF_BYCOMMAND,

hbmUnchecked, hbmChecked);
}
// Initially check the IDM_LEFT paragraph item.
CheckMenuRadioItem(hmenuPopup, IDM_LEFT, IDM_RIGHT,

IDM_LEFT, MF_BYCOMMAND);
return TRUE;

}
HBITMAP WINAPI CreateMenuBitmap(DRAWFUNC lpfnDraw)
{

// Create a DC compatible with the desktop window's DC.
HWND hwndDesktop = GetDesktopWindow();
HDC hdcDesktop = GetDC(hwndDesktop);
HDC hdcMem = CreateCompatibleDC(hdcDesktop);
// Determine the required bitmap size.
DWORD dwExt = GetMenuCheckMarkDimensions();
SIZE size = { LOWORD(dwExt), HIWORD(dwExt) };
// Create a monochrome bitmap and select it.
HBITMAP hbm = CreateBitmap(size.cx, size.cy, 1, 1, NULL);
HBITMAP hbmOld = SelectObject(hdcMem, hbm);
// Erase the background and call the drawing function.
PatBlt(hdcMem, 0, 0, size.cx, size.cy, WHITENESS);
(*lpfnDraw)(hdcMem, size);
// Clean up.
SelectObject(hdcMem, hbmOld);
DeleteDC(hdcMem);
ReleaseDC(hwndDesktop, hdcDesktop);
return hbm;

}
VOID WINAPI DrawCheck(HDC hdc, SIZE size)
{

HBRUSH hbrOld;
hbrOld = SelectObject(hdc, GetStockObject(NULL_BRUSH));
Rectangle(hdc, 0, 0, size.cx, size.cy);
MoveToEx(hdc, 0, 0, NULL);
LineTo(hdc, size.cx, size.cy);
MoveToEx(hdc, 0, size.cy - 1, NULL);
LineTo(hdc, size.cx - 1, 0);
SelectObject(hdc, hbrOld);

}
VOID WINAPI DrawUncheck(HDC hdc, SIZE size)
{

HBRUSH hbrOld;
hbrOld = SelectObject(hdc, GetStockObject(NULL_BRUSH));
Rectangle(hdc, 0, 0, size.cx, size.cy);
SelectObject(hdc, hbrOld);

}
VOID WINAPI DrawRadioCheck(HDC hdc, SIZE size)
{

HBRUSH hbrOld;
hbrOld = SelectObject(hdc, GetStockObject(NULL_BRUSH));
Ellipse(hdc, 0, 0, size.cx, size.cy);
SelectObject(hdc, GetStockObject(BLACK_BRUSH));
Ellipse(hdc, 2, 2, size.cx - 2, size.cy - 2);
SelectObject(hdc, hbrOld);

}
VOID WINAPI DrawRadioUncheck(HDC hdc, SIZE size)
{

HBRUSH hbrOld;
hbrOld = SelectObject(hdc, GetStockObject(NULL_BRUSH));
Ellipse(hdc, 0, 0, size.cx, size.cy);
SelectObject(hdc, hbrOld);

}
VOID WINAPI OnDestroy(HWND hwnd)
{

HMENU hmenuBar = GetMenu(hwnd);
HMENU hmenuPopup;
MENUITEMINFO mii;
// Get the handle of the Character menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_CHARACTER, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Get the check-mark bitmaps and delete them.
mii.fMask = MIIM_CHECKMARKS;
GetMenuItemInfo(hmenuPopup, IDM_BOLD, FALSE, &mii);
DeleteObject(mii.hbmpChecked);
DeleteObject(mii.hbmpUnchecked);
// Get the handle of the Paragraph menu.
mii.fMask = MIIM_SUBMENU;// information to get
GetMenuItemInfo(hmenuBar, IDM_PARAGRAPH, FALSE, &mii);
hmenuPopup = mii.hSubMenu;
// Get the check-mark bitmaps and delete them.
mii.fMask = MIIM_CHECKMARKS;
GetMenuItemInfo(hmenuPopup, IDM_LEFT, FALSE, &mii);
DeleteObject(mii.hbmpChecked);
DeleteObject(mii.hbmpUnchecked);

}

Menu Reference
The functions, structures, and messages used with menus are grouped in the following manner.Menu HandlesGetMenu
GetSubMenu
GetSystemMenu

IsMenuMenu-Item InformationGetMenuItemCount
GetMenuItemID
GetMenuItemInfo
GetMenuState
GetMenuString
SetMenuItemInfo

MENUITEMINFODefault Menu ItemsGetMenuDefaultItem

SetMenuDefaultItemMenu-Item StatesCheckMenuItem
CheckMenuRadioItem
EnableMenuItem
GetMenuCheckMarkDimensions
HiliteMenuItem

SetMenuItemBitmapsMenu TemplatesLoadMenu
LoadMenuIndirect
MENUITEMTEMPLATE
MENUITEMTEMPLATEHEADER
MENUEX_TEMPLATE_HEADER

MENUEX_TEMPLATE_ITEMMenu Creation and ModificationAppendMenu
CreateMenu
CreatePopupMenu
DeleteMenu
DestroyMenu
DrawMenuBar
InsertMenu
InsertMenuItem
ModifyMenu
RemoveMenu

SetMenuItemInfoMenu DisplaySetMenu
TrackPopupMenu
TrackPopupMenuEx

WM_CONTEXTMENUSuperseded FunctionsThe following older menu functions have been superseded. When writing an application, you
should use the new function instead of the corresponding old function.

Old function New function

AppendMenu InsertMenuItem
ChangeMenu SetMenuItemInfo
CheckMenuItem SetMenuItemInfo
GetMenuState GetMenuItemInfo
InsertMenu InsertMenuItem
ModifyMenu SetMenuItemInfo

Obsolete FunctionsChangeMenuMenu MessagesWM_COMMAND
WM_CONTEXTMENU
WM_DRAWITEM
WM_ENTERMENULOOP
WM_EXITMENULOOP
WM_INITMENU
WM_INITMENUPOPUP

WM_MEASUREITEM
WM_MENUCHAR
WM_MENUSELECT

WM_SYSCOMMANDExtended Menu FunctionsCheckMenuRadioItem
GetMenuDefaultItem
GetMenuItemInfo
GetMenuItemRect
InsertMenuItem
MenuItemFromPoint
SetMenuDefaultItem
SetMenuItemInfo

TrackPopupMenuExExtended Menu MessagesWM_CONTEXTMENUExtended Menu StructuresMENUEX_TEMPLATE_HEADER
MENUEX_TEMPLATE_ITEM
MENUITEMINFO

TPMPARAMS

Menu Functions
The following functions are used with menus.
CheckMenuItem
CheckMenuRadioItem
CreateMenu
CreatePopupMenu
DeleteMenu
DestroyMenu
DrawMenuBar
EnableMenuItem
GetMenu
GetMenuCheckMarkDimensions
GetMenuDefaultItem
GetMenuItemCount
GetMenuItemID
GetMenuItemInfo
GetMenuItemRect
GetMenuState
GetMenuString
GetSubMenu
GetSystemMenu
HiliteMenuItem
InsertMenuItem
IsMenu
LoadMenu
LoadMenuIndirect
MenuItemFromPoint
SetMenu
SetMenuDefaultItem
SetMenuItemBitmaps
SetMenuItemInfo
TrackPopupMenu

TrackPopupMenuEx

Obsolete Functions
AppendMenu
ChangeMenu
InsertMenu
ModifyMenu

RemoveMenu

Menu Messages
The following messages are used with menus.
WM_COMMAND
WM_CONTEXTMENU
WM_DRAWITEM
WM_ENTERMENULOOP
WM_EXITMENULOOP
WM_INITMENU
WM_INITMENUPOPUP
WM_MEASUREITEM
WM_MENUCHAR
WM_MENUSELECT

WM_SYSCOMMAND

Menu Structures
The following structures are used with menus.
MENUEX_TEMPLATE_HEADER
MENUEX_TEMPLATE_ITEM
MENUITEMINFO
MENUITEMTEMPLATE
MENUITEMTEMPLATEHEADER

TPMPARAMS

Multiple Document InterfaceThe multiple document interface (MDI) is a specification that defines a user interface for
applications that enable the user to work with more than one document at the same time.

This overview describes the structure of an MDI application and how to take advantage of the
built-in MDI support found in the Microsoft® Win32® application program interface (API).

MDI is an application-oriented model. Many new and intermediate users find it difficult to learn to
use MDI applications. In the future, applications will use a more document-oriented model.
Therefore, you may want to consider models such as workspaces, or workbooks for your user
interface. However, you can use MDI for applications which do not easily fit into another model
until a more suitable model is introduced. For more information on workspaces and workbooks,
see The Windows Interface Guidelines for Software Design.

About the Multiple Document Interface
Each document in an MDI application is displayed in a separate child window within the client
area of the application's main window. Typical MDI applications include word-processing
applications that allow the user to work with multiple text documents, and spreadsheet
applications that allow the user to work with multiple charts and spreadsheets.

Frame, Client, and Child Windows
An MDI application has three kinds of windows: a frame window, an MDI client window, as well as
a number of child windows. The frame window is like the main window of the application: it has a
sizing border, a title bar, a window menu (formely known as the system menu), a minimize
button, and a maximize button. The application must register a window class for the frame window
and provide a window procedure to support it.

An MDI application does not display output in the client area of the frame window. Instead, it
displays the MDI client window. An MDI client window is a special type of child window belonging
to the preregistered window class MDICLIENT. The client window is a child of the frame window;
it serves as the background for child windows. It also provides support for creating and
manipulating child windows. For example, an MDI application can create, activate, or maximize
child windows by sending messages to the MDI client window.

When the user opens or creates a document, the client window creates a child window for the
document. The client window is the parent window of all MDI child windows in a given application.
Each child window has a sizing border, a title bar, a window menu, a Minimize button, and a
Maximize button. Because a child window is clipped, it is confined to the client window and cannot
appear outside it.

An MDI application can support more than one kind of document. For example, a typical
spreadsheet application enables the user to work with both charts and spreadsheets. For each
type of document that it supports, an MDI application must register a child window class and
provide a window procedure to support the windows belonging to that class. For more information
about window classes, see Window Classes. For more information about window procedures, see
Window Procedures.

Following is a typical MDI application. It is named Multipad.

ewc msdncd, EWGraphic, bsd23468 0 /a "SDK_01.BMP"

Child Window Creation
To create a child window, an MDI application either calls the CreateMDIWindow function or
sends the WM_MDICREATE message to the MDI client window. A more efficient way to create an
MDI child window is to call the CreateWindowEx function, specifying the WS_EX_MDICHILD
extended style. A thread in an MDI application can use CreateMDIWindow or CreateWindowEx
to create a child window in a different thread. The WM_MDICREATE message is used only in the
context of the same thread.

To destroy a child window, an MDI application sends a WM_MDIDESTROY message to the MDI
client window.

Child Window Activation
Any number of child windows can appear in the client window at any one time, but only one can
be active. The active child window is positioned in front of all other child windows, and its border is
highlighted.

The user can activate an inactive child window by clicking it. An MDI application activates a child
window by sending a WM_MDIACTIVATE message to the MDI client window. As the client
window processes this message, it sends a WM_MDIACTIVATE message to the window
procedure of the child window to be activated and to the window procedure of the child window
being deactivated.

To prevent a child window from activating, handle the WM_NCACTIVATE message to the child
window by returning FALSE.

Windows keeps track of each child window's position in the stack of overlapping windows. This
stacking is known as the Z order. The user can activate the next child window in the Z order by
choosing the Next command from the window menu in the active window. An application
activates the next (or previous) child window in the Z order by sending a WM_MDINEXT message
to the client window.

To retrieve the handle of the active child window, the MDI application sends a
WM_MDIGETACTIVE message to the client window.

Multiple Document Menus
The frame window of an MDI application should include a menu bar with a Window menu. The
Window menu should include command items that arrange the child windows within the client
window or that close all child windows. The Window menu of a typical MDI application might
include the items in the following table.

Menu item Purpose

Tile Arranges child windows in a tile format so that each
appears in its entirety in the client window.

Cascade Arranges child windows in a cascade format. The
child windows overlap one another, but the title bar of
each is visible.

Arrange Icons Arranges the icons of minimized child windows along
the bottom of the client window.

Close All Closes all child windows.

Whenever a child window is created, Windows automatically appends a new menu item to
the Window menu. The text of the menu item is the same as the text on the menu bar of the
new child window. By choosing the menu item, the user can activate the corresponding
child window. When a child window is destroyed, Windows automatically removes the
corresponding menu item from the Window menu.

Windows can add up to ten menu items to the Window menu. When the tenth child window
is created, Windows adds the More Windows item to the Window menu. Choosing this item
causes the Select Window dialog box to appear. The dialog box contains a list box with the
titles of all MDI child windows currently available. The user can activate a child window by
choosing its title from the list box.

If your MDI application supports several types of child windows, tailor the menu bar to
reflect the operations associated with the active window. To do this, provide separate
menu resources for each type of child window the application supports. When a new type
of child window is activated, the application should send a WM_MDISETMENU message to
the client window, passing to it the handle of the corresponding menu.

When no child window exists, the menu bar should contain only items used to create or open a
document.

When the user is navigating through an MDI application's menus by using cursor keys, the keys
behave differently than when the user is navigating through a typical application's menus. In an
MDI application, control passes from the application's window menu to the window menu of the
active child window, and then to the first item on the menu bar.

Accelerators
To receive and process accelerator keys for its child windows, an MDI application must include
the TranslateMDISysAccel function in its message loop. The loop must call
TranslateMDISysAccel before calling the TranslateAccelerator or DispatchMessage function.

Accelerator keys on the window menu for an MDI child window are different from those for a non-
MDI child window. In an MDI child window, the ALT+ - (minus) key combination opens the window
menu, the CTRL+F4 key combination closes the active child window, and the CTRL+F6 key
combination activates the next child window.

Child Window Size and Arrangement
An MDI application controls the size and position of its child windows by sending messages to the
MDI client window. To maximize the active child window, the application sends the
WM_MDIMAXIMIZE message to the client window. When a child window is maximized, its client
area completely fills the MDI client window. In addition, Windows automatically hides the child
window's title bar, and adds the child window's window menu icon and Restore button to the MDI
application's menu bar. The application can restore the client window to its original
(premaximized) size and position by sending the client window a WM_MDIRESTORE message.

An MDI application can arrange its child windows in either a cascade or tile format. When the child
windows are cascaded, the windows appear in a stack. The window on the bottom of the stack
occupies the upper left corner of the screen, and the remaining windows are offset vertically and
horizontally so that the left border and title bar of each child window is visible. To arrange child
windows in the cascade format, an MDI application sends the WM_MDICASCADE message.
Typically, the application sends this message when the user chooses the Cascade command from
the Window menu.

When the child windows are tiled, Windows displays each child window in its entirety ¾
overlapping none of the windows. All of the windows are sized, as necessary, to fit within the
client window. To arrange child windows in the tile format, an MDI application sends a
WM_MDITILE message to the client window. Typically, the application sends this message when
the user chooses the Tile command from the Window menu.

An MDI application should provide a different icon for each type of child window it supports. The
application specifies an icon when registering the child window class. Windows automatically
displays a child window's icon in the lower portion of the client window when the child window is
minimized. An MDI application directs Windows to arrange child window icons by sending a
WM_MDIICONARRANGE message to the client window. Typically, the application sends this
message when the user chooses the Arrange Icons command from the Window menu.

Icon Title Windows
Because MDI child windows may be minimized, an MDI application must avoid manipulating icon
title windows as if they were normal MDI child windows. Icon title windows appear when the
application enumerates child windows of the MDI client window. Icon title windows differ from
other child windows, however, in that they are owned by an MDI child window.

To determine whether a child window is an icon title window, use the GetWindow function with
the GW_OWNER index. Nontitle windows return NULL. Note that this test is insufficient for top-
level windows, because menus and dialog boxes are owned windows.

Child Window Data
Because the number of child windows varies depending on how many documents the user opens,
an MDI application must be able to associate data (for example, the name of the current file) with
each child window. There are two ways to do this:

· Store child window data in the window structure.
· Use window properties.

Data in the Window Structure
When an MDI application registers a window class, it may reserve extra space in the window
structure for application data specific to this particular class of windows. To store and retrieve data
in this extra space, the application uses the GetWindowWord, SetWindowWord,
GetWindowLong, and SetWindowLong functions.

To maintain a large amount of data for a child window, an application can allocate memory for a
data structure and then store the handle of the memory containing the structure in the extra space
associated with the child window.

Multiple Document Window Properties
An MDI application can also store per-document data by using window properties. Per-document
data is data specific to the type of document contained in a particular child window. Properties are
different from extra space in the window structure in that you need not allocate extra space when
registering the window class. A window can have any number of properties. Also, where offsets
are used to access the extra space in window structures, properties are referred to by string
names. For more information about window properties, see Window Properties.

Using the Multiple Document Interface
This section explains how to perform the following tasks:

· Registering child and frame window classes
· Creating frame and child windows
· Writing the main message loop
· Writing the frame window procedure
· Writing the child window procedure
· Creating a child window

To illustrate these tasks, this section includes examples from Multipad, a typical MDI application.

Registering Child and Frame Window Classes
A typical MDI application must register two window classes: one for its frame window and one for
its child windows. If an application supports more than one type of document (for example, a
spreadsheet and a chart), it must register a window class for each type.

The class structure for the frame window is similar to the class structure for the main window in
non-MDI applications. The class structure for the MDI child windows differs slightly from the
structure for child windows in non-MDI applications as follows:

· The class structure should have an icon, because the user can minimize an MDI child
window as if it were a normal application window.

· The menu name should be NULL, because an MDI child window cannot have its own
menu.

· The class structure should reserve extra space in the window structure. With this space,
the application can associate data, such as a filename, with a particular child window.

The following example shows how Multipad registers its frame and child window classes.BOOL APIENTRY InitializeApplication()
{

WNDCLASS wc;
// Register the frame window class.
wc.style = 0;
wc.lpfnWndProc = (WNDPROC) MPFrameWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance= hInst;
wc.hIcon = LoadIcon(hInst, IDMULTIPAD);
wc.hCursor = LoadCursor((HANDLE) NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH) (COLOR_APPWORKSPACE + 1);
wc.lpszMenuName = IDMULTIPAD;
wc.lpszClassName = szFrame;
if (!RegisterClass (&wc))
return FALSE;
// Register the MDI child window class.
wc.lpfnWndProc = (WNDPROC) MPMDIChildWndProc;
wc.hIcon = LoadIcon(hInst, IDNOTE);
wc.lpszMenuName = (LPCTSTR) NULL;
wc.cbWndExtra = CBWNDEXTRA;
wc.lpszClassName = szChild;
if (!RegisterClass(&wc))
return FALSE;
return TRUE;

}

Creating Frame and Child Windows
After registering its window classes, an MDI application can create its windows. First, it creates its
frame window by using the CreateWindow or CreateWindowEx function. After creating its frame
window, the application creates its client window, again by using CreateWindow or
CreateWindowEx. The application should specify MDICLIENT as the client window's class name;
MDICLIENT is a preregistered window class defined by Windows. The lpvParam parameter of
CreateWindow or CreateWindowEx should point to a CLIENTCREATESTRUCT structure. This
structure contains the members described in the following table:

Member Description

hWindowMenu Identifies the Window menu used for controlling MDI
child windows. As child windows are created, the
application adds their titles to the Window menu as
menu items. The user can then activate a child
window by choosing its title from the Window menu.

idFirstChild Specifies the identifier of the first MDI child window.
The first MDI child window created is assigned this
identifier. Additional windows are created with
incremented window identifiers. When a child
window is destroyed, Windows immediately
reassigns the window identifiers to keep their range
contiguous.

When a child window's title is added to the Window menu, Windows assigns an identifier
to the child window. When the user chooses a child window's title, the frame window
receives a WM_COMMAND message with the identifier in the wParam parameter. You should
specify a value for the idFirstChild member that does not conflict with menu-item identifiers in the
frame window's menu.

Multipad's frame window procedure creates the MDI client window while processing the
WM_CREATE message. The following example shows how the client window is created.case WM_CREATE:

{
CLIENTCREATESTRUCT ccs;
// Retrieve the handle of the Window menu and assign the
// first child window identifier.
ccs.hWindowMenu = GetSubMenu(GetMenu(hwnd), WINDOWMENU);
ccs.idFirstChild = IDM_WINDOWCHILD;
// Create the MDI client window.
hwndMDIClient = CreateWindow("MDICLIENT", (LPCTSTR) NULL,
WS_CHILD | WS_CLIPCHILDREN | WS_VSCROLL | WS_HSCROLL,
0, 0, 0, 0, hwnd, (HMENU) 0xCAC, hInst, (LPSTR) &ccs);
ShowWindow(hwndMDIClient, SW_SHOW);
}
break;Titles of child windows are added to the bottom of the Window menu. If the application adds

strings to the Window menu by using the AppendMenu function, these strings can be overwritten
by the titles of the child windows when the Window menu is repainted (whenever a child window is
created or destroyed). An MDI application that adds strings to its Window menu should use the
InsertMenu function and verify that the titles of child windows have not overwritten these new
strings.

Use the WS_CLIPCHILDREN style to create the MDI client window to prevent the window from
painting over its child windows.

Writing the Main Message Loop
The main message loop of an MDI application is similar to that of a non-MDI application handling
accelerator keys. The difference is that the MDI message loop calls the TranslateMDISysAccel
function before checking for application-defined accelerator keys or before dispatching the
message.

The following example shows the message loop of a typical MDI application.while (GetMessage(&msg, (HWND) NULL, 0, 0))
{

if (!TranslateMDISysAccel(hwndMDIClient, &msg) &&
!TranslateAccelerator(hwndFrame, hAccel, &msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}The TranslateMDISysAccel function translates WM_KEYDOWN messages into
WM_SYSCOMMAND messages and sends them to the active MDI child window. If the message
is not an MDI accelerator message, the function returns FALSE, in which case the application
uses the TranslateAccelerator function to determine whether any of the application-defined
accelerator keys were pressed. If not, the loop dispatches the message to the appropriate window
procedure.

Writing the Frame Window Procedure
The window procedure for an MDI frame window is similar to that of a non-MDI application's main
window. The difference is that a frame window procedure passes all messages it does not handle
to the DefFrameProc function rather than to the DefWindowProc function. In addition, the frame
window procedure must also pass some messages that it does handle, including those listed in
the following table.

Message Response

WM_COMMAND Activates the MDI child window that the user
chooses. This message is sent when the user
chooses an MDI child window from the Window
menu of the MDI frame window. The window
identifier accompanying this message identifies
the MDI child window to be activated.

WM_MENUCHAR Opens the window menu of the active MDI child
window when the user presses the ALT+ -
(minus) key combination.

WM_SETFOCUS Passes the keyboard focus to the MDI client
window, which in turn passes it to the active MDI
child window.

WM_SIZE Resizes the MDI client window to fit in the new
frame window's client area. If the frame window
procedure sizes the MDI client window to a
different size, it should not pass the message to
the DefWindowProc function.

The frame window procedure in Multipad is called MPFrameWndProc. The handling of
other messages by MPFrameWndProc is similar to that of non-MDI applications.
WM_COMMAND messages in Multipad are handled by the locally defined CommandHandler
function. For command messages Multipad does not handle, CommandHandler calls the
DefFrameProc function. If Multipad doesn't use DefFrameProc by default, the user can't activate
a child window from the Window menu, because the WM_COMMAND message sent by choosing
the window's menu item (command) would be lost.

Writing the Child Window Procedure
Like the frame window procedure, an MDI child window procedure uses a special function for
processing messages by default. All messages that the child window procedure does not handle
must be passed to the DefMDIChildProc function rather than to the DefWindowProc function. In
addition, some window-management messages must be passed to DefMDIChildProc, even if the
application handles the message, in order for MDI to function correctly. Following are the
messages the application must pass to DefMDIChildProc.

Message Response

WM_CHILDACTIVATE Performs activation processing when MDI
child windows are sized, moved, or
displayed. This message must be passed.

WM_GETMINMAXINFO Calculates the size of a maximized MDI
child window, based on the current size of
the MDI client window.

WM_MENUCHAR Passes the message to the MDI frame
window.

WM_MOVE Recalculates MDI client scroll bars, if they
are present.

WM_SETFOCUS Activates the child window, if it is not the
active MDI child window.

WM_SIZE Performs operations necessary for
changing the size of a window, especially
for maximizing or restoring an MDI child
window. Failing to pass this message to the
DefMDIChildProc function produces highly
undesirable results.

WM_SYSCOMMAND Handles window (formerly known as
system) menu commands:
SC_NEXTWINDOW, SC_PREVWINDOW,
SC_MOVE, SC_SIZE, and SC_MAXIMIZE.

Creating a Child Window
To create an MDI child window, an application can either call the CreateMDIWindow function or
send an WM_MDICREATE message to the MDI client window. (The application can use the
CreateWindowEx function with the WS_EX_MDICHILD style to create MDI child windows.) A
single-threaded MDI application can use either method to create a child window. A thread in a
multithreaded MDI application must use the CreateMDIWindow or CreateWindowEx function to
create a child window in a different thread.

The lParam parameter of a WM_MDICREATE message is a far pointer to an
MDICREATESTRUCT structure. The structure includes four dimension members: x and y, which
indicate the horizontal and vertical positions of the window, and cx and cy, which indicate the
horizontal and vertical extents of the window. Any of these members may be assigned explicitly by
the application, or they may be set to CW_USEDEFAULT, in which case Windows selects a
position, size, or both, according to a cascading algorithm. In any case, all four members must be
initialized. Multipad uses CW_USEDEFAULT for all dimensions.

The last member of the MDICREATESTRUCT structure is the style member, which may contain
style bits for the window. To create an MDI child window that can have any combination of window
styles, specify the MDIS_ALLCHILDSTYLES window style. When this style is not specified, an
MDI child window has the WS_MINIMIZE, WS_MAXIMIZE, WS_HSCROLL, and WS_VSCROLL
styles as default settings.

Multipad creates its MDI child windows by using its locally defined AddFile function (located in the
source file MPFILE.C). The AddFile function sets the title of the child window by assigning the
szTitle member of the window's MDICREATESTRUCT structure to either the name of the file
being edited or to "Untitled." The szClass member is set to the name of the MDI child window
class registered in Multipad's InitializeApplication function. The hOwner member is set to the
application's instance handle.

The following example shows the AddFile function in Multipad.HWND APIENTRY AddFile(pName)
CHAR * pName;
{

HWND hwnd;
CHAR sz[160];
MDICREATESTRUCT mcs;
if (!pName) {
// If the pName parameter is NULL, load the "Untitled"
// string from the STRINGTABLE resource and set the szTitle
// member of MDICREATESTRUCT.
LoadString(hInst, IDS_UNTITLED, sz, sizeof(sz));
mcs.szTitle = (LPCTSTR) sz;
}
else
// Title the window with the full path and filename,
// obtained by calling the OpenFile function with the
// OF_PARSE flag, which is called before AddFile().
mcs.szTitle = of.szPathName;
mcs.szClass = szChild;
mcs.hOwner = hInst;
// Use the default size for the child window.
mcs.x = mcs.cx = CW_USEDEFAULT;
mcs.y = mcs.cy = CW_USEDEFAULT;
// Give the child window the default style. The styleDefault
// variable is defined in MULTIPAD.C.
mcs.style = styleDefault;
// Tell the MDI client window to create the child window.
hwnd = (HWND) SendMessage (hwndMDIClient, WM_MDICREATE, 0,
(LONG) (LPMDICREATESTRUCT) &mcs);
// If the file is found, read its contents into the child
// window's client area.
if (pName) {
if (!LoadFile(hwnd, pName)) {
// Cannot load the file; close the window.
SendMessage(hwndMDIClient, WM_MDIDESTROY,
(DWORD) hwnd, 0L);
}
}
return hwnd;

}The pointer passed in the lParam parameter of the WM_MDICREATE message is passed to the
CreateWindow function and appears as the first member in the CREATESTRUCT structure,
passed in the WM_CREATE message. In Multipad, the child window initializes itself during
WM_CREATE message processing by initializing document variables in its extra data and by
creating the edit control's child window.

Multiple Document Interface Reference
The following functions and messages are used in MDI applications.

Multiple Document Interface FunctionsCreateMDIWindow
DefFrameProc
DefMDIChildProc

TranslateMDISysAccel

Multiple Document Interface MessagesWM_MDIACTIVATE
WM_MDICASCADE
WM_MDICREATE
WM_MDIDESTROY
WM_MDIGETACTIVE
WM_MDIICONARRANGE
WM_MDIMAXIMIZE
WM_MDINEXT
WM_MDIREFRESHMENU
WM_MDIRESTORE
WM_MDISETMENU

WM_MDITILE

Messages and Message QueuesThis overview describes messages and message queues and explains how to use them in your
application.

About Messages and Message Queues
Unlike traditional applications, applications written for Microsoft® Windows® are event-driven.
They do not make explicit function calls (such as C run-time library calls) to obtain input. Instead,
they wait for Windows to pass input to them.

Windows passes all input for an application to the various windows in the application. Each
window has a function, called a window procedure, that Windows calls whenever it has input for
the window. The window procedure processes the input and returns control to Windows. For more
information about window procedures, see Window Procedures.

Windows Messages
Windows passes input to a window procedure in the form of messages. Messages are generated
by Windows and by applications. Windows generates a message at each input event ¾ for
example, when the user types, moves the mouse, or clicks a control such as a scroll bar.
Windows also generates messages in response to changes in the system brought about by an
application, such as when an application changes the pool of system font resources or resizes
one of its windows. An application can generate messages to direct its own windows to perform
tasks or to communicate with windows in other applications.

Windows sends a message to a window procedure with a set of four parameters: a window
handle, a message identifier, and two 32-bit values called message parameters. The window
handle identifies the window for which the message is intended. Windows uses it to determine
which window procedure to send the message to.

A message identifier is a named constant that identifies the purpose of a message. When a
window procedure receives a message, it uses a message identifier to determine how to process
the message. For example, the message identifier WM_PAINT tells the window procedure that
the window's client area has changed and must be repainted.

Message parameters specify data or the location of data used by a window procedure when
processing a message. The meaning and value of the message parameters depend on the
message. A message parameter can contain an integer, packed bit flags, a pointer to a structure
containing additional data, and so on. When a message does not use message parameters, they
are typically set to NULL. A window procedure must check the message identifier to determine
how to interpret the message parameters.

Message Routing
Windows uses two methods to route messages to a window procedure: posting messages to a
first-in, first-out queue called a message queue, a system-defined memory object that temporarily
stores messages, and sending messages directly to a window procedure.

Messages posted to a message queue are called queued messages. They are primarily the result
of user input entered through the mouse or keyboard, such as WM_MOUSEMOVE,
WM_LBUTTONDOWN, WM_KEYDOWN, and WM_CHAR messages. Other queued messages
include the timer, paint, and quit messages: WM_TIMER, WM_PAINT, and WM_QUIT. Most other
messages, which are sent directly to a window procedure, are called nonqueued messages.

Queued Messages
Windows can display any number of windows at a time. To route mouse and keyboard input to the
appropriate window, Windows uses message queues.

Windows maintains a single system message queue and any number of thread message queues,
one for each GUI thread. To avoid the overhead of creating a message queue for non-GUI
threads, all threads are created initially without a message queue. The system creates a thread's
message queue only when the thread makes its first call to one of the Win32 API User or GDI
functions.

Whenever the user moves the mouse, clicks the mouse buttons, or types on the keyboard, the
device driver for the mouse or keyboard converts the input into messages and places them in the
system message queue. Windows removes the messages, one at a time, from the system
message queue, examines them to determine the destination window, and then posts them to the
message queue of the thread that created the destination window. A thread's message queue
receives all mouse and keyboard messages for the windows created by the thread. The thread
removes messages from its queue and directs Windows to send them to the appropriate window
procedure for processing.

With the exception of the WM_PAINT message, Windows always posts messages at the end of a
message queue. This ensures that a window receives its input messages in the proper first-in,
first-out (FIFO) sequence. The WM_PAINT message, however, is kept in the queue and is
forwarded to the window procedure only when the queue contains no other messages. Multiple
WM_PAINT messages for the same window are combined into a single WM_PAINT message,
consolidating all invalid parts of the client area into a single area. Combining WM_PAINT
messages reduces the number of times a window must redraw the contents of its client area.

The system posts a message to a thread's message queue by filling an MSG structure and then
copying it to the message queue. Information in MSG includes: the handle of the window for which
the message is intended, the message identifier, the two message parameters, the time the
message was posted, and the mouse cursor position. A thread can post a message to its own
message queue or to the queue of another thread by using the PostMessage or
PostThreadMessage function.

An application can remove a message from its queue by using the GetMessage function. To
examine a message without removing it from its queue, an application can use the PeekMessage
function. This function fills MSG with information about the message.

After removing a message from its queue, an application can use the DispatchMessage function
to direct Windows to send the message to a window procedure for processing. DispatchMessage
takes a pointer to MSG that was filled by a previous call to the GetMessage or PeekMessage
function. DispatchMessage passes the window handle, the message identifier, and the two
message parameters to the window procedure, but it does not pass the time the message was
posted or mouse cursor position. An application can retrieve this information by calling the
GetMessageTime and GetMessagePos functions while processing a message.

A thread can use the WaitMessage function to yield control to other threads when it has no
messages in its message queue. The function suspends the thread and does not return until a
new message is placed in the thread's message queue.

You can call the SetMessageExtraInfo function to associate a 32-bit value with the current
thread's message queue. Then call the GetMessageExtraInfo function to get the value
associated with the last message retrieved by the GetMessage or PeekMessage function.

Nonqueued Messages
Nonqueued messages are sent immediately to the destination window procedure, bypassing the
system message queue and thread message queue. Windows typically sends nonqueued
messages to notify a window of events that affect it. For example, when the user activates a new
application window, Windows sends the window a series of messages, including WM_ACTIVATE,
WM_SETFOCUS, and WM_SETCURSOR. These messages notify the window that it has been
activated, that keyboard input is being directed to the window, and that the mouse cursor has
been moved within the borders of the window. Nonqueued messages can also result when an
application calls certain Windows functions. For example, Windows sends the
WM_WINDOWPOSCHANGED message after an application uses the SetWindowPos function to
move a window.

Message Handling
An application must remove and process messages posted to the message queues of its threads.
A single-threaded application usually uses a message loop in its WinMain function to remove and
send messages to the appropriate window procedures for processing. Applications with multiple
threads can include a message loop in each thread that creates a window. The following sections
describe how a message loop works and explain the role of a window procedure.

Message Loop
A simple message loop consists of one function call to each of these three functions:
GetMessage, TranslateMessage, and DispatchMessage.MSG msg;
while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}The GetMessage function retrieves a message from the queue and copies it to a structure of type
MSG. It returns TRUE unless it encounters the WM_QUIT message, in which case it returns
FALSE and ends the loop. In a single-threaded application, ending the message loop is often the
first step in closing the application. An application can end its own loop by using the
PostQuitMessage function, typically in response to the WM_DESTROY message in the window
procedure of the application's main window.

If you specify a window handle as the second parameter of GetMessage, only messages for the
specified window are retrieved from the queue. GetMessage can also filter messages in the
queue, retrieving only those messages that fall within a specified range. For more information
about filtering messages, see Message Filtering.

A thread's message loop must include TranslateMessage if the thread is to receive character
input from the keyboard. Windows generates virtual-key messages (WM_KEYDOWN and
WM_KEYUP) each time the user presses a key. A virtual-key message contains a virtual-key
code that identifies which key was pressed, but not its character value. To retrieve this value, the
message loop must contain TranslateMessage, which translates the virtual-key message into a
character message (WM_CHAR) and places it back into the application message queue. The
character message can then be removed upon a subsequent iteration of the message loop and
dispatched to a window procedure.

The DispatchMessage function sends a message to the window procedure associated with the
window handle specified in the MSG structure. If the window handle is HWND_TOPMOST,
DispatchMessage sends the message to the window procedures of all top-level windows in the
system. If the window handle is NULL, DispatchMessage does nothing with the message.

An application's main thread starts its message loop after initializing the application and creating
at least one window. Once started, the message loop continues to retrieve messages from the
thread's message queue and to dispatch them to the appropriate windows. The message loop
ends when the GetMessage function removes the WM_QUIT message from the message queue.

Only one message loop is needed for a message queue, even if an application contains many
windows. DispatchMessage always dispatches the message to the proper window; this is
because each message in the queue is an MSG structure that contains the handle of the window
to which the message belongs.

You can modify a message loop in a variety of ways. For example, you can retrieve messages
from the queue without dispatching them to a window. This is useful for applications that post
messages not specifying a window. You can also direct GetMessage to search for specific
messages, leaving other messages in the queue. This is useful if you must temporarily bypass the
usual FIFO order of the message queue.

An application that uses accelerator keys must be able to translate keyboard messages into
command messages. To do this, the application's message loop must include a call to the
TranslateAccelerator function. For more information about accelerator keys, see Keyboard
Accelerators.

If a thread uses a modeless dialog box, the message loop must include the IsDialogMessage
function so that the dialog box can receive keyboard input.

Window Procedure
A window procedure is a function that receives and processes all messages sent to the window.
Every window class has a window procedure, and every window created with that class uses that
same window procedure to respond to messages.

The system sends a message to a window procedure by passing the message data as arguments
to the procedure. The window procedure then performs an appropriate action for the message; it
checks the message identifier and, while processing the message, uses the information specified
by the message parameters.

A window procedure does not usually ignore a message. If it does not process a message, it must
send the message back to the system for default processing. The window procedure does this by
calling the DefWindowProc function, which performs a default action and returns a message
result. The window procedure must then return this value as its own message result. Most window
procedures process just a few messages and pass the others on to the system by calling
DefWindowProc.

Because a window procedure is shared by all windows belonging to the same class, it can
process messages for several different windows. To identify the specific window affected by the
message, a window procedure can examine the window handle passed with a message. For more
information about window procedures, see Window Procedures.

Posting and Sending Messages
Any application can post and send messages. Like the system, an application posts a message
by copying it to a message queue and sends a message by passing the message data as
arguments to a window procedure. To post messages, an application uses the PostMessage
function. An application can send a message by calling the SendMessage,
BroadcastSystemMessage, SendMessageCallback, SendMessageTimeout,
SendNotifyMessage, or SendDlgItemMessage function.

An application typically posts a message to notify a specific window to perform a task.
PostMessage creates an MSG structure for the message and copies the message to the
message queue. The application's message loop eventually retrieves the message and
dispatches it to the appropriate window procedure.

An application typically sends a message to notify a window procedure to perform a task
immediately. The SendMessage function sends the message to the window procedure
corresponding to the given window. The function waits until the window procedure completes
processing and then returns the message result. Parent and child windows often communicate by
sending messages to each other. For example, a parent window that has an edit control as its
child window can set the text of the control by sending a message to it. The control can notify the
parent window of changes to the text that are carried out by the user by sending messages back
to the parent.

The SendMessageCallback function also sends a message to the window procedure
corresponding to the given window. However, this function returns immediately. After the window
procedure processes the message, the system calls the specified callback function. For more
information about the callback function, see the SendAsyncProc function.

Occasionally, you may want to send or post a message to all top-level windows in the system. For
example, if the application changes the system time, it must notify all top-level windows about the
change by sending a WM_TIMECHANGE message. An application can send or post a message
to all top-level windows by calling the SendMessage or PostMessage function and specifying
HWND_TOPMOST in the hwnd parameter. You can also broadcast a message to all applications
by calling the BroadcastSystemMessage function and specifying BSM_APPLICATIONS in the
lpdwRecipients parameter.

An application can post a message without specifying a window. If the application supplies a
NULL window handle when calling PostMessage, the message is posted to the queue associated
with the current thread. Because no window handle is specified, the application must process the
message in the message loop. This is one way to create a message that applies to the entire
application, instead of to a specific window.

By using the InSendMessage function, a window procedure can determine whether it is
processing a message sent by another thread. This capability is useful when message processing
depends on the origin of the message.

A common programming error is to assume that the PostMessage function always posts a
message. This is not true when the message queue is full. An application should check the return
value of the PostMessage function to determine whether the message has been posted and, if it
has not been, repost it.

Message Types
This section describes the two types of Windows messages:

· system-defined messages
· application-defined messages

System-Defined Messages
The system sends or posts a system-defined message when it communicates with an application.
It uses these messages to control the operations of applications and to provide input and other
information for applications to process. An application can also send or post system-defined
messages. Applications generally use these messages to control the operation of control windows
created by using preregistered window classes.

Each system message has a unique message identifier and a corresponding symbolic constant
(defined in the SDK header files) that states the purpose of the message. For example, the
WM_PAINT constant requests that a window paint its contents.

Symbolic constants specify the category to which system-defined messages belong. The prefix of
the constant identifies the type of window that can interpret and process the message. Following
are the prefixes and their related message categories.

Prefix Message category

ABM Application desktop toolbar
BM Button control
CB Combo box control
CDM Common dialog box
DBT Device
DL Drag list box
DM Default push button control
EM Edit control
HDM Header control
LB List box control
LVM List view control
PBM Progress bar
PSM Property sheet
SB Status bar window
SBM Scroll bar control
STM Static control
TB Toolbar
TBM Trackbar
TCM Tab control
TTM Tooltip control
TVM Tree-view control
UDM Up-down control
WM General window

General window messages cover a wide range of information and requests, including
messages for mouse and keyboard input, menu and dialog box input, window creation and
management, and dynamic data exchange (DDE).

Application-Defined Messages
An application can create messages to be used by its own windows or to communicate with
windows in other processes. If an application creates its own messages, the window procedure
that receives them must interpret the messages and provide appropriate processing.

Windows reserves message-identifier values in the range 0x0000 through 0x03FF (the value of
WM_USER - 1) and 0x8000 through 0xBFFF for system-defined messages. Applications cannot
use these values for private messages.

Values in the range 0x0400 (the value of WM_USER) through 0x7FFF are available for message
identifiers defined by an application for its own use. Values in the range 0xC000 through 0xFFFF
are available for message identifiers defined by an application for use in communicating with
windows in other applications.

Windows returns a message identifier in the range 0xC000 through 0xFFFF when an application
calls the RegisterWindowMessage function to register a message. The message identifier
returned by this function is guaranteed to be unique throughout the system. Use of this function
prevents conflicts that can arise if other applications use the same message identifier for different
purposes.

Message Filtering
An application can choose specific messages to retrieve from the message queue (while ignoring
other messages) by using the GetMessage or PeekMessage function to specify a message filter.
The filter is a range of message identifiers (specified by a first and last identifier), a window
handle, or both. GetMessage and PeekMessage use a message filter to select which messages
to retrieve from the queue. Message filtering is useful if an application must search the message
queue for messages that have arrived later in the queue.

Any application that filters messages must ensure that a message satisfying the message filter
can be posted. For example, if an application filters for a WM_CHAR message in a window that
does not receive keyboard input, the GetMessage function does not return. This effectively
"hangs" the application.

To filter for keyboard, mouse, and DDE messages, an application can use the WM_KEYFIRST
and WM_KEYLAST, WM_MOUSEFIRST and WM_MOUSELAST messages, and
WM_DDE_FIRST and WM_DDE_LAST constants.

Message Deadlocks
A thread that calls the SendMessage function to send a message to another thread cannot
continue executing until the window procedure that receives the message returns. If the receiving
thread yields control while processing the message, the sending thread cannot continue
executing, because it is waiting for SendMessage to return. This situation is called a deadlock.
The receiving thread need not yield control explicitly; calling any of the following functions can
cause a thread to yield control.
DialogBox
DialogBoxIndirect
DialogBoxIndirectParam
DialogBoxParam
GetMessage
MessageBox

PeekMessage

A window procedure can determine whether a message it has received was sent by another
thread by calling the InSendMessage function. Before calling any of the functions in the
preceding list while processing a message, the window procedure should first call
InSendMessage. If this function returns TRUE, the window procedure must call the
ReplyMessage function before any function that causes the thread to yield control.

Using Messages and Message Queues
· Creating a message loop
· Examining a message queue
· Posting a message
· Sending a message

Creating a Message Loop
Windows automatically creates a message queue for each thread. If the thread creates one or
more windows, a message loop must be provided; this message loop retrieves messages from the
thread's message queue and dispatches them to the appropriate window procedures.

Because Windows directs messages to individual windows in an application, a thread must create
at least one window before starting its message loop. Most Windows-based applications contain a
single thread that creates windows. A typical application registers the window class for its main
window, creates and shows the main window, and then starts its message loop ¾ all in the
WinMain function.

You create a message loop by using the GetMessage and DispatchMessage functions. If your
application must obtain character input from the user, include the TranslateMessage function in
the loop. TranslateMessage translates virtual-key messages into character messages. The
following example shows the message loop in the WinMain function of a simple Win32-based
application.HINSTANCE hinst;
HWND hwndMain;
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)
{

MSG msg;
WNDCLASS wc;
UNREFERENCED_PARAMETER(lpszCmdLine);
// Register the window class for the main window.
if (!hPrevInstance)
{
wc.style = 0;
wc.lpfnWndProc = (WNDPROC) WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon((HINSTANCE) NULL,
IDI_APPLICATION);
wc.hCursor = LoadCursor((HINSTANCE) NULL,
IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "MainMenu";
wc.lpszClassName = "MainWndClass";
if (!RegisterClass(&wc))
return FALSE;
}
hinst = hInstance; // save instance handle
// Create the main window.
hwndMain = CreateWindow("MainWndClass", "Sample",
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, (HWND) NULL,
(HMENU) NULL, hinst, (LPVOID) NULL);
// If the main window cannot be created, terminate
// the application.
if (!hwndMain)
return FALSE;
// Show the window and paint its contents.
ShowWindow(hwndMain, nCmdShow);
UpdateWindow(hwndMain);
// Start the message loop.
while (GetMessage(&msg, (HWND) NULL, 0, 0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
// Return the exit code to Windows.
return msg.wParam;

}The following example shows a message loop for a thread that uses accelerators and displays a
modeless dialog box. When TranslateAccelerator or IsDialogMessage returns TRUE (indicating
that the message has been processed), TranslateMessage and DispatchMessage are not
called. The reason for this is that TranslateAccelerator and IsDialogMessage perform all
necessary translating and dispatching of messages.HWND hwndMain;
HWND hwndDlgModeless = NULL;
MSG msg;
HACCEL haccel;
//
// Perform initialization and create a main window.
//
while (GetMessage(&msg, (HWND) NULL, 0, 0))
{

if (hwndDlgModeless == (HWND) NULL ||
!IsDialogMessage(hwndDlgModeless, &msg) &&
!TranslateAccelerator(hwndMain, haccel,
&msg))

{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

}

Examining a Message Queue
Occasionally, an application needs to examine the contents of a thread's message queue from
outside the thread's message loop. For example, if an application's window procedure performs a
lengthy drawing operation, you may want the user to be able to interrupt the operation. Unless
your application periodically examines the message queue during the operation for mouse and
keyboard messages, it will not respond to user input until after the operation has completed. The
reason for this is that the DispatchMessage function in the thread's message loop does not
return until the window procedure finishes processing a message.

You can use the PeekMessage function to examine a message queue during a lengthy operation.
PeekMessage is similar to the GetMessage function; both check a message queue for a
message that matches the filter criteria and then copy the message to an MSG structure. The
main difference between the two functions is that GetMessage does not return until a message
matching the filter criteria is placed in the queue, whereas PeekMessage returns immediately
regardless of whether a message is in the queue.

The following example shows how to use PeekMessage to examine a message queue for mouse
clicks and keyboard input during a lengthy operation.HWND hwnd;
BOOL fDone;
MSG msg;
// Begin the operation and continue until it is complete
// or until the user clicks the mouse or presses a key.
fDone = FALSE;
while (!fDone)
{

fDone = DoLengthyOperation(); // application-defined function
// Remove any messages that may be in the queue. If the
// queue contains any mouse or keyboard
// messages, end the operation.
while (PeekMessage(&msg, hwnd, 0, 0, PM_REMOVE))
{
switch(msg.message)
{
case WM_LBUTTONDOWN:
case WM_RBUTTONDOWN:
case WM_KEYDOWN:
//
// Perform any required cleanup.
//
fDone = TRUE;
}
}

}Other functions, including GetQueueStatus and GetInputState, also allow you to examine the
contents of a thread's message queue. GetQueueStatus returns an array of flags that indicates
the types of messages in the queue; using it is the fastest way to discover whether the queue
contains any messages. GetInputState returns TRUE if the queue contains mouse or keyboard
messages. Both of these functions can be used to determine whether the queue contains
messages that need to be processed.

Posting a Message
You can post a message to a message queue by using the PostMessage function. PostMessage
places a message at the end of a thread's message queue and returns immediately, without
waiting for the thread to process the message. The function's parameters include a window
handle, a message identifier, and two message parameters. Windows copies these parameters to
an MSG structure, fills the time and pt members of the structure, and places the structure in the
message queue.

Windows uses the window handle passed with the PostMessage function to determine which
thread message queue should receive the message. If the handle is HWND_TOPMOST,
Windows posts the message to the thread message queues of all top-level windows.

You can use the PostThreadMessage function to post a message to a specific thread message
queue. PostThreadMessage is similar to PostMessage, except the first parameter is a thread
identifier rather than a window handle. You can retrieve the thread identifier by calling the
GetCurrentThreadId function.

Use the PostQuitMessage function to exit a message loop. PostQuitMessage posts the
WM_QUIT message to the currently executing thread. The thread's message loop terminates and
returns control to Windows when it encounters the WM_QUIT message. An application usually
calls PostQuitMessage in response to the WM_DESTROY message, as shown in the following
example.case WM_DESTROY:

//
// Perform cleanup tasks.
//
PostQuitMessage(0);
break;

Sending a Message
The SendMessage function is used to send a message directly to a window procedure.
SendMessage calls a window procedure and waits for that procedure to process the message
and return a result.

A message can be sent to any window in the system; all that is required is a window handle.
Windows uses the handle to determine which window procedure should receive the message.

Before processing a message that may have been sent from another thread, a window procedure
should first call the InSendMessage function. If this function returns TRUE, the window procedure
should call ReplyMessage before any function that causes the thread to yield control, as shown
in the following example.case WM_USER + 5:

if (InSendMessage())
ReplyMessage(TRUE);
DialogBox(hInst, "MyDialogBox", hwndMain, (DLGPROC) MyDlgProc);
break;A number of messages can be sent to controls in a dialog box. These control messages set the

appearance, behavior, and content of controls or retrieve information about controls. For example,
the CB_ADDSTRING message can add a string to a combo box, and the BM_SETCHECK
message can set the check state of a check box or radio button.

Use the SendDlgItemMessage function to send a message to a control, specifying the identifier
of the control and the handle of the dialog box window that contains the control. The following
example, taken from a dialog box procedure, copies a string from a combo box's edit control into
its list box. The example uses SendDlgItemMessage to send a CB_ADDSTRING message to the
combo box.HWND hwndCombo;
int cTxtLen;
PSTR pszMem;
switch (uMsg)
{

case WM_COMMAND:
switch (LOWORD(wParam))
{
case IDD_ADDCBITEM:
// Get the handle of the combo box and the
// length of the string in the edit control
// of the combo box.
hwndCombo = GetDlgItem(hwndDlg, IDD_COMBO);
cTxtLen = GetWindowTextLength(hwndCombo);
// Allocate memory for the string and copy
// the string into the memory.
pszMem = (PSTR) VirtualAlloc((LPVOID) NULL,
(DWORD) (cTxtLen + 1), MEM_COMMIT,
PAGE_READWRITE);
GetWindowText(hwndCombo, pszMem,
cTxtLen + 1);
// Add the string to the list box of the
// combo box and remove the string from the
// edit control of the combo box.
if (*pszMem != NULL)
{
SendDlgItemMessage(hwndDlg, IDD_COMBO,

CB_ADDSTRING, 0,
(DWORD) ((LPSTR) pszMem));

SetWindowText(hwndCombo, (LPSTR) NULL);
}
// Free the memory and return.
VirtualFree(pszMem, 0, MEM_RELEASE);
return TRUE;
//
// Process other dialog box commands.
//
}
//
// Process other dialog box messages.
//

}

Message and Message Queue Reference
The following functions and structures are used with messages and message queues.

Message and Message Queue Functions
The following functions are used with messages and message queues.
BroadcastSystemMessage
DefWindowProc
DispatchMessage
GetInputState
GetMessage
GetMessageExtraInfo
GetMessagePos
GetMessageTime
GetQueueStatus
InSendMessage
PeekMessage
PostMessage
PostQuitMessage
PostThreadMessage
RegisterWindowMessage
ReplyMessage
SendAsyncProc
SendMessage
SendMessageCallback
SendMessageTimeout
SendNotifyMessage
SetMessageExtraInfo
TranslateMessage

WaitMessage

Obsolete Functions
PostAppMessage

SetMessageQueue

Message and Message Queue Messages
The following message is used with messages and message queues.

WM_USER

Message and Message Queue Structures
The following structure is used with messages and message queues.

MSG

Mouse InputThis overview describes how Windows generates mouse input and explains how an application
receives and processes that input.

About Mouse Input
The mouse is an important, but optional, user-input device for applications written for Microsoft®
Windows®. A well-written Windows-based application should include a mouse interface, but it
should not depend on the mouse as the sole means of acquiring user input. The application
should provide full keyboard support as well.

A Windows-based application receives mouse input in the form of messages that are sent or
posted to its windows.

Mouse Cursor
When the user moves the mouse, the system moves a bitmap on the screen called the mouse
cursor. The mouse cursor contains a single-pixel point called the hot spot, a point that the system
tracks and recognizes as the position of the cursor. When a mouse event occurs, the window that
contains the hot spot typically receives the mouse message resulting from the event. The window
need not be active or have the keyboard focus to receive a mouse message.

The system maintains a variable that controls the mouse speed ¾ that is, the distance the cursor
moves when the user moves the mouse. You can use the SystemParametersInfo function with
the SPI_GETMOUSE or SPI_SETMOUSE flag to retrieve or set the mouse speed. For more
information about mouse cursors, see Cursors.

Mouse Capture
The system typically posts a mouse message to the window that contains the cursor hot spot at
the time a mouse event occurs. An application can change this behavior by using the SetCapture
function to route mouse messages to a specific window. The window receives all mouse
messages until the application calls the ReleaseCapture function or specifies another capture
window, or until the user clicks a window created by another thread.

Whenever the mouse capture changes, Windows sends a WM_CAPTURECHANGED message to
the window that is losing the mouse capture. The lParam parameter of the message specifies the
handle of the window that is gaining the mouse capture.

Only the foreground window can capture mouse input. When a background window attempts to
capture mouse input, it receives messages only for mouse events that occur when the cursor hot
spot is within the visible portion of the window.

Capturing mouse input is useful if a window must receive all mouse input, even when the cursor
moves outside the window. For example, an application typically tracks the cursor position after a
mouse "button down" event, following the cursor until a "button up" event occurs. If an application
has not captured mouse input and the user releases the mouse button outside the window, the
window does not receive the button up message.

A thread can use the GetCapture function to determine whether one of its windows has captured
the mouse. If one of the thread's windows has captured the mouse, GetCapture retrieves the
handle of the window.

Mouse Configuration
Although the mouse is an important input device for Windows-based applications, not every user
necessarily has a mouse. An application can determine whether the system includes a mouse by
passing the SM_MOUSEPRESENT value to the GetSystemMetrics function.

Windows supports a mouse having up to three buttons. On a three-button mouse, the buttons are
designated as the left, middle, and right buttons. Windows messages and named constants
related to the mouse buttons use the letters L, M, and R to identify the buttons. The button on a
single-button mouse is considered to be the left button. Although Windows supports a mouse with
multiple buttons, most applications use the left button primarily and use the others little, if at all.

An application can determine the number of buttons on the mouse by passing the
SM_CMOUSEBUTTONS value to the GetSystemMetrics function. To configure the mouse for a
left-handed user, the application can use the SwapMouseButton function to reverse the meaning
of the left and right mouse buttons. Passing the SPI_SETMOUSEBUTTONSWAP value to the
SystemParametersInfo function is another way to reverse the meaning of the buttons. Note,
however, that the mouse is a shared resource, so reversing the meaning of the buttons affects all
applications.

Mouse Messages
The mouse generates an input event whenever the user moves the mouse, or presses or releases
a mouse button. Windows converts mouse input events into messages and posts them to the
appropriate thread's message queue. When mouse messages are posted faster than a thread can
process them, Windows discards all but the most recent mouse message.

A window receives a mouse message when a mouse event occurs while the cursor is within the
borders of the window, or when the window has captured the mouse. Mouse messages are
divided into two groups: client area messages and nonclient area messages. Typically, an
application processes client area messages and ignores nonclient area messages.

Client Area Mouse Messages
A window receives a client area mouse message when a mouse event occurs within the window's
client area. The system posts the WM_MOUSEMOVE message to the window when the user
moves the cursor within the client area. It posts one of the following messages when the user
presses or releases a mouse button while the cursor is within the client area.

Message Meaning

WM_LBUTTONDBLCLK The left mouse button was double-clicked.
WM_LBUTTONDOWN The left mouse button was pressed.
WM_LBUTTONUP The left mouse button was released.
WM_MBUTTONDBLCLK The middle mouse button was double-

clicked.
WM_MBUTTONDOWN The middle mouse button was pressed.
WM_MBUTTONUP The middle mouse button was released.
WM_RBUTTONDBLCLK The right mouse button was double-

clicked.
WM_RBUTTONDOWN The right mouse button was pressed.
WM_RBUTTONUP The right mouse button was released.
Message ParametersThe lParam parameter of a client area mouse message indicates the position of the cursor hot
spot. The low-order word indicates the x-coordinate of the hot spot, and the high-order word
indicates the y-coordinate. The coordinates are given in client coordinates. In the client coordinate
system, all points on the screen are given relative to the coordinates (0,0) of the upper left corner
of the client area.

The wParam parameter contains flags that indicate the status of the other mouse buttons and the
CTRL and SHIFT keys at the time of the mouse event. You can check for these flags when mouse-
message processing depends on the state of another mouse button or of the CTRL or SHIFT key.
The lParam parameter can be a combination of the following values.

Value Meaning

MK_CONTROL The CTRL key is down.
MK_LBUTTON The left mouse button is down.
MK_MBUTTON The middle mouse button is down.
MK_RBUTTON The right mouse button is down.
MK_SHIFT The SHIFT key is down.
Double-Click MessagesThe system generates a double-click message when the user clicks a mouse button twice in quick
succession. When the user clicks a button, the system establishes a rectangle centered around
the cursor hot spot. It also marks the time at which the click occurred. When the user clicks the
same button a second time, the system determines whether the hot spot is still within the
rectangle and calculates the time elapsed since the first click. If the hot spot is still within the
rectangle and the elapsed time does not exceeded the double-click time-out value, the system
generates a double-click message.

An application can get and set double-click time-out values by using the GetDoubleClickTime
and SetDoubleClickTime functions, respectively. Alternatively, the application can set the
double-click time-out value by using the SPI_SETDOUBLECLICKTIME flag with the
SystemParametersInfo function. It can also set the size of the rectangle that Windows uses to
detect double-clicks by passing the SPI_SETDOUBLECLKWIDTH and
SPI_SETDOUBLECLKHEIGHT flags to SystemParametersInfo. Note, however, that setting the
double-click time-out value and rectangle affects all applications.

An application-defined window does not, by default, receive double-click messages. Because of
the system overhead involved in generating double-click messages, these messages are
generated only for windows belonging to classes that have the CS_DBLCLKS class style. Your
application must set this style when registering the window class. For more information about
window classes, see Window Classes.

A double-click message is always the third message in a four-message series. The first two
messages are the button down and button up messages generated by the first click. The second
click generates the double-click message followed by another button up message. For example,
double-clicking the left mouse button generates the following message sequence:
WM_LBUTTONDOWN
WM_LBUTTONUP

WM_LBUTTONDBLCLK

WM_LBUTTONUP

Because a window always receives a button down message before receiving a double-click
message, an application typically uses a double-click message to extend a task it began during a
button down message. For example, when the user clicks a color in the color palette of Windows
Paintbrush™, Paintbrush displays the selected color next to the palette. When the user double-
clicks a color, Paintbrush displays the color and opens the Edit Colors dialog box.

Nonclient Area Mouse Messages
A window receives a nonclient area mouse message when a mouse event occurs in any part of a
window except the client area. A window's nonclient area consists of its border, menu bar, title
bar, scroll bar, System menu (also called the Control menu), Minimize button, and Maximize
button.

Windows generates nonclient area messages primarily for its own use. For example, Windows
uses nonclient area messages to change the cursor to a two-headed arrow when the cursor hot
spot moves into a window's border. A window must pass nonclient area mouse messages to the
DefWindowProc function to take advantage of the built-in mouse interface found in Windows.

There is a corresponding nonclient area mouse message for each client area mouse message.
The names of these messages are similar except that the named constants for the nonclient area
messages include the letters "NC". For example, moving the cursor in the nonclient area
generates a WM_NCMOUSEMOVE message, and pressing the left mouse button while the
cursor is in the nonclient area generates a WM_NCLBUTTONDOWN message.

The lParam parameter of a nonclient area mouse message is a POINTS structure that contains
the x- and y-coordinates of the cursor hot spot. Unlike coordinates of client area mouse
messages, the coordinates are given in screen coordinates rather than client coordinates. In the
screen coordinate system, all points on the screen are relative to the coordinates (0,0) of the
upper left corner of the screen.

The wParam parameter contains a hit-test value, a value that indicates where in the nonclient
area the mouse event occurred. The following section explains the purpose of hit-test values.

The WM_NCHITTEST Message
Whenever a mouse event occurs, the system sends a WM_NCHITTEST message to either the
window that contains the cursor hot spot or the window that has captured the mouse. Windows
uses this message to determine whether to send a client area or nonclient area mouse message.
An application that must receive mouse movement and mouse button messages must pass the
WM_NCHITTEST message to the DefWindowProc function.

The lParam parameter of the WM_NCHITTEST message contains the screen coordinates of the
cursor hot spot. The DefWindowProc function examines the coordinates and returns a hit-test
value that identifies the location of the hot spot. The hit-test value can be one of the following
values.

Value Location of hot spot

HTBORDER In the border of a window that does not have a
sizing border

HTBOTTOM In the lower horizontal border of a window
HTBOTTOMLEFT In the lower left corner of a window border
HTBOTTOMRIGHT In the lower right corner of a window border
HTCAPTION In a title bar
HTCLIENT In a client area
HTCLOSE In close button.
HTERROR On the screen background or on a dividing line

between windows (same as HTNOWHERE,
except that the DefWindowProc function
produces a system beep to indicate an error)

HTGROWBOX In a size box (same as HTSIZE)
HTHELP In Help button.
HTHSCROLL In a horizontal scroll bar
HTLEFT In the left border of a window
HTMENU In a menu
HTMAXBUTTON In Maximize button.
HTMINBUTTON In Minimize button.
HTNOWHERE On the screen background or on a dividing line

between windows
HTREDUCE In a Minimize button
HTRIGHT In the right border of a window
HTSIZE In a size box (same as HTGROWBOX)
HTSYSMENU In a System menu or in a Close button in a child

window
HTTOP In the upper horizontal border of a window
HTTOPLEFT In the upper left corner of a window border
HTTOPRIGHT In the upper right corner of a window border
HTTRANSPARENT In a window currently covered by another

window
HTVSCROLL In the vertical scroll bar
HTZOOM In a Maximize button

If the cursor is in the client area of a window, DefWindowProc returns the HTCLIENT hit-test
value to the window procedure. When the window procedure returns this code to the system,
Windows converts the screen coordinates of the cursor hot spot to client coordinates, and then
posts the appropriate client area mouse message.

The DefWindowProc function returns one of the other hit-test values when the cursor hot spot is
in a window's nonclient area. When the window procedure returns one of these hit-test values,
Windows posts a nonclient area mouse message, placing the hit-test value in the message's
wParam parameter and the cursor coordinates in the lParam parameter.

Window Activation
When the user clicks an inactive top-level window or the child window of a inactive top-level
window, Windows sends the WM_MOUSEACTIVATE message (among others) to the top-level or
child window. Windows sends this message after posting the WM_NCHITTEST message to the
window, but before posting the button down message. When WM_MOUSEACTIVATE is passed
to the DefWindowProc function, Windows activates the top-level window and then posts the
button down message to the top-level or child window.

By processing WM_MOUSEACTIVATE, a window can control whether the top-level window
becomes the active window as a result of a mouse click, and whether the window that was clicked
receives the subsequent button down message. It does so by returning one of the following values
after processing WM_MOUSEACTIVATE.

Value Meaning

MA_ACTIVATE Activates the window and does not
discard the mouse message.

MA_NOACTIVATE Does not activate the window and does
not discard the mouse message.

MA_ACTIVATEANDEAT Activates the window and discards the
mouse message.

MA_NOACTIVATEANDEAT Does not activate the window but
discards the mouse message.

Using Mouse Input
· Tracking the mouse cursor
· Drawing lines with the mouse
· Processing a double-click message
· Selecting a line of text

Tracking the Mouse Cursor
Windows-based applications often perform tasks that involve tracking the position of the mouse
cursor. Most drawing applications, for example, track it during drawing operations, allowing the
user to draw in a window's client area by dragging the mouse. Word-processing applications also
track the cursor, enabling the user to select a word or block of text by clicking and dragging the
mouse.

Tracking the cursor typically involves processing the WM_LBUTTONDOWN, WM_MOUSEMOVE,
and WM_LBUTTONUP messages. A window determines when to begin tracking the cursor by
checking the cursor position provided in the lParam parameter of the WM_LBUTTONDOWN
message. For example, a word-processing application would begin tracking the cursor only if the
WM_LBUTTONDOWN message occurred while the cursor was on a line of text, but not if it was
past the end of the document.

A window tracks the position of the cursor by processing the stream of WM_MOUSEMOVE
messages posted to the window as the mouse moves. Processing the WM_MOUSEMOVE
message typically involves a repetitive painting or drawing operation in the client area. For
example, a drawing application might redraw a line repeatedly as the mouse moves. A window
uses the WM_LBUTTONUP message as a signal to stop tracking the cursor.

Drawing Lines with the Mouse
The example in this section demonstrates how to track the mouse cursor. It contains portions of a
window procedure that enables the user to draw lines in a window's client area by dragging the
mouse.

When the window procedure receives a WM_LBUTTONDOWN message, it captures the mouse
and saves the coordinates of the cursor, using the coordinates as the starting point of the line. It
also uses the ClipCursor function to confine the cursor to the client area during the line drawing
operation.

During the first WM_MOUSEMOVE message, the window procedure draws a line from the
starting point to the current position of the cursor. During subsequent WM_MOUSEMOVE
messages, the window procedure erases the previous line by drawing over it with an inverted pen
color. Then it draws a new line from the starting point to the new position of the cursor.

The WM_LBUTTONUP message signals the end of the drawing operation. The window procedure
releases the mouse capture and frees the mouse from the client area.LRESULT APIENTRY MainWndProc(hwndMain, uMsg, wParam, lParam)
HWND hwndMain;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

HDC hdc; /* handle of device context */
RECT rcClient; /* client area rectangle*/
POINT ptClientUL; /* client upper left corner */
POINT ptClientLR; /* client lower right corner */
static POINTS ptsBegin; /* beginning point */
static POINTS ptsEnd;/* new endpoint */
static POINTS ptsPrevEnd; /* previous endpoint */
static BOOL fPrevLine = FALSE; /* previous line flag */
switch (uMsg) {
case WM_LBUTTONDOWN:
/* Capture mouse input. */
SetCapture(hwndMain);
/*
* Retrieve the screen coordinates of the client area,
* and convert them into client coordinates.
/*
GetClientRect(hwndMain, &rcClient);
ptClientUL.x = rcClient.left;
ptClientUL.y = rcClient.top;
/*
* Add one to the right and bottom sides, because the
* coordinates retrieved by GetClientRect do not
* include the far left and lowermost pixels.
*/
ptClientLR.x = rcClient.right + 1;
ptClientLR.y = rcClient.bottom + 1;
ClientToScreen(hwndMain, &ptClientUL);
ClientToScreen(hwndMain, &ptClientLR);
/*
* Copy the client coordinates of the client area
* to the rcClient structure. Confine the mouse cursor
* to the client area by passing the rcClient structure
* to the ClipCursor function.
*/
SetRect(&rcClient, ptClientUL.x, ptClientUL.y,
ptClientLR.x, ptClientLR.y);
ClipCursor(&rcClient);
/*
* Convert the cursor coordinates into a POINTS
* structure, which defines the beginning point of the
* line drawn during a WM_MOUSEMOVE message.
*/
ptsBegin = MAKEPOINTS(lParam);
return 0;
case WM_MOUSEMOVE:
/*
* When moving the mouse, the user must hold down
* the left mouse button to draw lines.
*/
if (wParam & MK_LBUTTON) {
/*
* Retrieve a device context (DC) for the client
* area.
*/
hdc = GetDC(hwndMain);
/*
* The following function ensures that pixels of
* the previously drawn line are set to white and
* those of the new line are set to black.
*/
SetROP2(hdc, R2_NOTXORPEN);
/*
* If a line was drawn during an earlier
* WM_MOUSEMOVE message, draw over it. This erases
* the line by setting the color of its pixels to
* white.
*/
if (fPrevLine) {
MoveToEx(hdc, ptsBegin.x, ptsBegin.y,

(LPPOINT) NULL);
LineTo(hdc, ptsPrevEnd.x, ptsPrevEnd.y);
}
/*
* Convert the current cursor coordinates to a
* POINTS structure, and then draw a new line.
*/
ptsEnd = MAKEPOINTS(lParam);
MoveToEx(hdc, ptsBegin.x, ptsBegin.y,
(LPPOINT) NULL);
LineTo(hdc, ptsEnd.x, ptsEnd.y);
/*
* Set the previous line flag, save the ending
* point of the new line, and then release the DC.
*/
fPrevLine = TRUE;
ptsPrevEnd = ptsEnd;
ReleaseDC(hwndMain, hdc);
}
break;
case WM_LBUTTONUP:
/*
* The user has finished drawing the line. Reset the
* previous line flag, release the mouse cursor, and
* release the mouse capture.
*/
fPrevLine = FALSE;
ClipCursor(NULL);
ReleaseCapture();
return 0;
case WM_DESTROY:
PostQuitMessage(0);
break;
.
. /* Process other messages. */
.

Processing a Double-Click Message
To receive double-click messages, a window must belong to a window class that has the
CS_DBLCLKS class style. You set this style when registering the window class, as shown in the
following example.BOOL InitApplication(hInstance)
HINSTANCE hInstance;
{

WNDCLASS wc;
wc.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_IBEAM);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "MainMenu";
wc.lpszClassName = "MainWClass";
return RegisterClass(&wc);

}A double-click message is always preceded by a button down message. For this reason,
applications typically use a double-click message to extend a task that it began during a button
down message.

Selecting a Line of Text
The example in this section is taken from a simple word-processing application. It includes code
that enables the user to set the position of the caret by clicking anywhere on a line of text, and to
select (highlight) a line of text by double-clicking anywhere on the line.LRESULT APIENTRY MainWndProc(hwndMain, uMsg, wParam, lParam)
HWND hwndMain;
UINT uMsg;
WPARAM wParam;
LPARAM lParam;
{

HDC hdc; /* handle of device context*/
TEXTMETRIC tm;/* font size data*/
int i, j;/* loop counters */
int cCR = 0; /* count of carriage returns */
char ch; /* character from input buffer */
static int nBegLine; /* beginning of selected line */
static int nCurrentLine = 0; /* currently selected line */
static int nLastLine = 0; /* last text line*/
static int nCaretPosX = 0; /* x-coordinate of caret */
static int cch = 0;/* number of characters entered */
static int nCharWidth = 0; /* exact width of a character */
static char szHilite[128]; /* text string to highlight*/
static DWORD dwCharX; /* average width of characters */
static DWORD dwLineHeight; /* line height */
static POINTS ptsCursor;/* coordinates of mouse cursor */
static COLORREF crPrevText; /* previous text color*/
static COLORREF crPrevBk; /* previous background color */
static PTCHAR pchInputBuf; /* address of input buffer */
static BOOL fTextSelected = FALSE; /* text-selection flag */

switch (uMsg) {
case WM_CREATE:
/* Get the metrics of the current font. */
hdc = GetDC(hwndMain);
GetTextMetrics(hdc, &tm);
ReleaseDC(hwndMain, hdc);
/* Save the average character width and height. */
dwCharX = tm.tmAveCharWidth;
dwLineHeight = tm.tmHeight;
/* Allocate a buffer to store keyboard input. */
pchInputBuf = (LPSTR) GlobalAlloc(GPTR,
BUFSIZE * sizeof(TCHAR));
return 0;
case WM_CHAR:
switch (wParam) {
case 0x08: /* backspace */
case 0x0A: /* linefeed */
case 0x1B: /* escape */
MessageBeep(0xFFFFFFFF);
return 0;
case 0x09: /* tab */
/* Convert tabs to four consecutive spaces. */
for (i = 0; i < 4; i++)

SendMessage(hwndMain, WM_CHAR, 0x20, 0);
return 0;
case 0x0D: /* carriage return */
/*
* Record the carriage return, and position the
* caret at the beginning of the new line.
*/
pchInputBuf[cch++] = 0x0D;
nCaretPosX = 0;
nCurrentLine += 1;
break;
default: /* displayable character */
ch = (char) wParam;
HideCaret(hwndMain);
/*
* Retrieve the character's width, and display the
* character.
*/
hdc = GetDC(hwndMain);
GetCharWidth32(hdc, (UINT) wParam, (UINT) wParam,

&nCharWidth);
TextOut(hdc, nCaretPosX,

nCurrentLine * dwLineHeight, &ch, 1);
ReleaseDC(hwndMain, hdc);
/* Store the character in the buffer. */
pchInputBuf[cch++] = ch;
/*
* Calculate the new horizontal position of
* the caret. If the new position exceeds the
* maximum, insert a carriage return and
* reposition the caret at the beginning of
* the next line.
*/
nCaretPosX += nCharWidth;
if ((DWORD) nCaretPosX > dwMaxCharX) {

nCaretPosX = 0;
pchInputBuf[cch++] = 0x0D;
++nCurrentLine;

}
ShowCaret(hwndMain);
break;
}
SetCaretPos(nCaretPosX, nCurrentLine * dwLineHeight);
nLastLine = max(nLastLine, nCurrentLine);
break;
.
. /* Process other messages. */
.
case WM_LBUTTONDOWN:
/*
* If a line of text is currently highlighted, redraw
* the text to remove the highlighting.
*/
if (fTextSelected) {
hdc = GetDC(hwndMain);
SetTextColor(hdc, crPrevText);
SetBkColor(hdc, crPrevBk);
TextOut(hdc, 0, nCurrentLine * dwLineHeight,
szHilite, lstrlen(szHilite));
ReleaseDC(hwndMain, hdc);
ShowCaret(hwndMain);
fTextSelected = FALSE;
}
/* Save the current mouse-cursor coordinates. */
ptsCursor = MAKEPOINTS(lParam);
/*
* Determine which line the cursor is on, and save
* the line number. Do not allow line numbers greater
* than the number of the last line of text. The
* line number is later multiplied by the average height
* of the current font. The result is used to set the
* y-coordinate of the caret.
*/
nCurrentLine = min((int)(ptsCursor.y / dwLineHeight),
nLastLine);
/*
* Parse the text input buffer to find the first
* character in the selected line of text. Each
* line ends with a carriage return, so it is possible
* to count the carriage returns to find the selected
* line.
*/
cCR = 0;
nBegLine = 0;
if (nCurrentLine != 0) {
for (i = 0; (i < cch) &&

(cCR < nCurrentLine); i++) {
if (pchInputBuf[i] == 0x0D)

++cCR;
}
nBegLine = i;
}
/*
* Starting at the beginning of the selected line,
* measure the width of each character, summing the
* width with each character measured. Stop when the
* sum is greater than the x-coordinate of the cursor.
* The sum is used to set the x-coordinate of the caret.
*/
hdc = GetDC(hwndMain);
nCaretPosX = 0;
for (i = nBegLine;

(pchInputBuf[i] != 0x0D) && (i < cch); i++) {
ch = pchInputBuf[i];
GetCharWidth32(hdc, (int) ch, (int) ch, &nCharWidth);
if ((nCaretPosX + nCharWidth) > ptsCursor.x)
break;
else
nCaretPosX += nCharWidth;
}
ReleaseDC(hwndMain, hdc);
/* Set the caret to the user-selected position. */
SetCaretPos(nCaretPosX, nCurrentLine * dwLineHeight);
break;
case WM_LBUTTONDBLCLK:
/* Copy the selected line of text to a buffer. */
for (i = nBegLine, j = 0; (pchInputBuf[i] != 0x0D) &&

(i < cch); i++)
szHilite[j++] = pchInputBuf[i];
szHilite[j] = '\0';
/*
* Hide the caret, invert the background and foreground
* colors, and then redraw the selected line.
*/
HideCaret(hwndMain);
hdc = GetDC(hwndMain);
crPrevText = SetTextColor(hdc, RGB(255, 255, 255));
crPrevBk = SetBkColor(hdc, RGB(0, 0, 0));
TextOut(hdc, 0, nCurrentLine * dwLineHeight, szHilite,
lstrlen(szHilite));
SetTextColor(hdc, crPrevText);
SetBkColor(hdc, crPrevBk);
ReleaseDC(hwndMain, hdc);
fTextSelected = TRUE;
break;
.
. /* Process other messages. */
.
default:
return DefWindowProc(hwndMain, uMsg, wParam, lParam);
}
return NULL;

}

Mouse Input Reference
The following functions, structures, and messages are associated with mouse input.

Mouse Input Functions
The following functions are used with mouse input.
DragDetect
GetCapture
GetDoubleClickTime
mouse_event
ReleaseCapture
SetCapture
SetDoubleClickTime
SwapMouseButton

TrackMouseEvent

Mouse Input Structures
The following functions are used with mouse input.

TRACKMOUSEEVENT

Mouse Input Messages
The following messages are used with mouse input.
WM_CAPTURECHANGED
WM_LBUTTONDBLCLK
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDBLCLK
WM_MBUTTONDOWN
WM_MBUTTONUP
WM_MOUSEACTIVATE
WM_MOUSEMOVE
WM_MOUSEWHEEL
WM_NCHITTEST
WM_NCLBUTTONDBLCLK
WM_NCLBUTTONDOWN
WM_NCLBUTTONUP
WM_NCMBUTTONDBLCLK
WM_NCMBUTTONDOWN
WM_NCMBUTTONUP
WM_NCMOUSEMOVE
WM_NCRBUTTONDBLCLK
WM_NCRBUTTONDOWN
WM_NCRBUTTONUP
WM_RBUTTONDBLCLK
WM_RBUTTONDOWN

WM_RBUTTONUP

Painting and DrawingThis overview describes how Windows manages output to the screen and explains what
applications must do to draw in a window. In particular, this overview describes display device
contexts (or, more simply, display DCs) and how to prepare and use them. The overview does not
explain how to use graphics device interface (GDI) functions to generate output, nor does it
explain how to print.

About Painting and Drawing
Nearly all applications use the screen to display the data they manipulate. An application paints
images, draws figures, and writes text so that the user can view data as it is created, edited, and
printed. Microsoft® Windows® provides a rich environment for painting and drawing, but, because
Windows is a multitasking operating system, applications must cooperate with one another when
accessing the screen.

To keep all applications functioning smoothly and cooperatively, Windows manages all output to
the screen. Applications use windows as their primary output device rather than the screen itself.
Windows supplies display DCs that uniquely correspond to the windows. Applications use display
DCs to direct their output to the given windows. Drawing in a window (directing output to it)
prevents an application from interfering with the output of other applications and allows
applications to coexist with one another while still taking full advantage of the graphics capabilities
of Windows.

When to Draw in a Window
An application draws in a window at a variety of times: when first creating a window, when
changing the size of the window, when moving the window from behind another window, when
minimizing or maximizing the window, when displaying data from an opened file, and when
scrolling, changing, or selecting a portion of the displayed data.

Windows manages actions such as moving and sizing a window. If an action affects the content of
the window, Windows marks the affected portion of the window as ready for updating and, at the
next opportunity, sends a WM_PAINT message to the window procedure of the window. The
message is a signal to the application to determine what must be updated and to carry out the
necessary drawing.

Some actions are managed by the application, such as displaying open files and selecting
displayed data. For these actions, an application can mark for updating the portion of the window
affected by the action, causing a WM_PAINT message to be sent at the next opportunity. If an
action requires immediate feedback, the application can draw while the action takes place, without
waiting for WM_PAINT. For example, a typical application highlights the area the user selects
rather than waiting for the next WM_PAINT message to update the area.

In all cases, an application can draw in a window as soon as it is created. To draw in the window,
the application must first retrieve a handle of a display DC for the window. Ideally, an application
carries out most of its drawing operations during the processing of WM_PAINT messages. In this
case, the application retrieves a display DC by calling the BeginPaint function. If an application
draws at any other time, such as from within WinMain or during processing of keyboard or mouse
messages, it calls the GetDC or GetDCEx function to retrieve the display DC.

The WM_PAINT Message
Typically, an application draws in a window in response to a WM_PAINT message. Windows
sends this message to a window procedure when changes to the window have altered the content
of the client area. Windows sends the message only if there are no other messages in the
application message queue.

Upon receiving a WM_PAINT message, an application can call BeginPaint to retrieve the display
DC for the client area and use it in calls to GDI functions to carry out whatever drawing operations
are necessary to update the client area. After completing the drawing operations, the application
calls the EndPaint function to release the display DC.

Before BeginPaint returns the display DC, Windows prepares the DC for the given window. It first
sets the clipping region for the DC to be equal to the intersection of the portion of the window that
needs updating and the portion that is visible to the user. Only those portions of the window that
have changed are redrawn. Attempts to draw outside this region are clipped and do not appear on
the screen.

Windows can also send WM_NCPAINT and WM_ERASEBKGND messages to the window
procedure before BeginPaint returns. These messages direct the application to draw the
nonclient area and window background. The nonclient area is the part of a window that is outside
of the client area. The area includes features such as the title bar, window menu (also known as
the System menu), and scroll bars. Most applications rely on the default window function,
DefWindowProc, to draw this area and therefore pass the WM_NCPAINT message to this
function. The window background is the color or pattern a window is filled with before other
drawing operations begin. The background covers any images previously in the window or on the
screen under the window. If a window belongs to a window class having a class background
brush, the DefWindowProc function draws the window background automatically.

BeginPaint fills a PAINTSTRUCT structure with information such as the dimensions of the portion
of the window to be updated and a flag indicating whether the window background has been
drawn. The application can use this information to optimize drawing. For example, it can use the
dimensions of the update region, specified by the rcPaint member, to limit drawing to only those
portions of the window that need updating. If an application has very simple output, it can ignore
the update region and draw in the entire window, relying on Windows to discard (clip) any
unneeded output. Because the system clips drawing that extends outside the clipping region, only
drawing that is in the update region is visible.

BeginPaint sets the update region of a window to NULL. This clears the region, preventing it from
generating subsequent WM_PAINT messages. If an application processes a WM_PAINT
message but does not call BeginPaint or otherwise clear the update region, the application
continues to receive WM_PAINT messages as long as the region is not empty. In all cases, an
application must clear the update region before returning from the WM_PAINT message.

After the application finishes drawing, it should call EndPaint. For most windows, EndPaint
releases the display DC, making it available to other windows. EndPaint also shows the caret, if it
was previously hidden by BeginPaint. BeginPaint hides the caret to prevent drawing operations
from corrupting it.

The Update Region
The update region identifies the portion of a window that is out-of-date or invalid and in need of
redrawing. Windows uses the update region to generate WM_PAINT messages for applications
and to minimize the time applications spend bringing the contents of their windows up to date.
Windows adds only the invalid portion of the window to the update region, requiring only that
portion to be drawn.

When Windows determines that a window needs updating, it sets the dimensions of the update
region to the invalid portion of the window. Setting the update region does not immediately cause
the application to draw. Instead, the application continues retrieving messages from the
application message queue until no messages remain. Windows then checks the update region,
and if the region is not empty (non-NULL), it sends a WM_PAINT message to the window
procedure.

An application can use the update region to generate its WM_PAINT messages. For example, an
application that loads data from open files typically sets the update region while loading so that
new data is drawn during processing of the next WM_PAINT message. In general, an application
should not draw at the time its data changes, but route all drawing operations through the
WM_PAINT message.

Invalidating and Validating the Update Region
An application invalidates a portion of a window and sets the update region by using the
InvalidateRect or InvalidateRgn function. These functions add the specified rectangle or region
(given in client coordinates) to the update region, combining the rectangle or region with anything
Windows or the application may have previously added to the update region.

The InvalidateRect and InvalidateRgn functions do not generate WM_PAINT messages.
Instead, Windows accumulates the changes made by these functions and its own changes while a
window processes other messages in its message queue. By accumulating changes, a window
processes all changes at once instead of updating bits and pieces one step at a time.

The ValidateRect and ValidateRgn functions validate a portion of the window by removing a
specified rectangle or region from the update region. These functions are typically used when the
window has updated a specific part of the screen in the update region before receiving the
WM_PAINT message.

Retrieving the Update Region
The GetUpdateRect and GetUpdateRgn functions retrieve the current update region for the
window. GetUpdateRect retrieves the smallest rectangle (in client coordinates) that encloses the
entire update region. GetUpdateRgn retrieves the update region itself. These functions can be
used to calculate the current size of the update region to determine where to carry out a drawing
operation.

BeginPaint also retrieves the dimensions of the smallest rectangle enclosing the current update
region, copying the dimensions to the rcPaint member in the PAINTSTRUCT structure. Because
BeginPaint validates the update region, any call to GetUpdateRect and GetUpdateRgn
immediately after a call to BeginPaint returns an empty update region.

Excluding the Update Region
The ExcludeUpdateRgn function excludes the update region from the clipping region for the
display DC. This function is useful when drawing in a window other than when a WM_PAINT
message is processing. It prevents drawing in the areas that will be updated during the next
WM_PAINT message.

Synchronous and Asynchronous Drawing
Most drawing carried out during processing of the WM_PAINT message is asynchronous; that is,
there is a delay between the time a portion of the window is invalidated and the time WM_PAINT
is sent. During the delay, the application typically retrieves messages from the queue and carries
out other tasks. The reason for the delay is that Windows generally treats drawing in a window as
a low-priority operation and works as though user-input messages and messages that may affect
the position or size of a window will be processed before WM_PAINT.

In some cases, it is necessary for an application to draw synchronously ¾ that is, draw in the
window immediately after invalidating a portion of the window. A typical application draws its main
window immediately after creating the window to signal the user that the application has started
successfully. Windows draws some control windows synchronously, such as buttons, because
such windows serve as the focus for user input. Although any window with a simple drawing
routine can be drawn synchronously, all such drawing should be done quickly and should not
interfere with the application's ability to respond to user input.

The UpdateWindow and RedrawWindow functions allow for synchronous drawing.
UpdateWindow sends a WM_PAINT message directly to the window if the update region is not
empty. RedrawWindow also sends a WM_PAINT message, but gives the application greater
control over how to draw the window, such as whether to draw the nonclient area and window
background or whether to send the message regardless of whether the update region is empty.
These functions send the WM_PAINT message directly to the window, regardless of the number
of other messages in the application message queue.

Any window requiring time-consuming drawing operations should be drawn asynchronously to
prevent pending messages from being blocked as the window is drawn. Also, any application that
frequently invalidates small portions of a window should allow these invalid portions to consolidate
into a single asynchronous WM_PAINT message, rather than a series of synchronous
WM_PAINT messages.

Drawing Without the WM_PAINT Message
Although applications carry out most drawing operations while the WM_PAINT message is
processing, it is sometimes more efficient for an application to draw directly in a window without
relying on the WM_PAINT message. This can be useful when the user needs immediate
feedback, such as when selecting text and dragging or sizing an object. In such cases, the
application usually draws while processing keyboard or mouse messages.

To draw in a window without using a WM_PAINT message, the application uses the GetDC or
GetDCEx function to retrieve a display DC for the window. With the display DC, the application
can draw in the window and avoid intruding into other windows. When the application has finished
drawing, it calls the ReleaseDC function to release the display DC for use by other applications.

When drawing without using a WM_PAINT message, the application usually does not invalidate
the window. Instead, it draws in such a fashion that it can easily restore the window and remove
the drawing. For example, when the user selects text or an object, the application typically draws
the selection by inverting whatever is already in the window. The application can remove the
selection and restore the original contents of the window by simply inverting again.

The application is responsible for carefully managing any changes it makes to the window. In
particular, if an application draws a selection and an intervening WM_PAINT message occurs, the
application must ensure that any drawing done during the message does not corrupt the selection.
To avoid this, many applications remove the selection, carry out usual drawing operations, and
then restore the selection when drawing is complete.

Window Coordinate System
The coordinate system for a window is based on the coordinate system of the display device. The
basic unit of measure is the device unit (typically, the pixel). Points on the screen are described by
x- and y-coordinate pairs. The x-coordinates increase to the right; y-coordinates increase from top
to bottom. The origin (0,0) for the system depends on the type of coordinates being used.

Windows and applications specify the position of a window on the screen in screen coordinates.
For screen coordinates, the origin is the upper left corner of the screen. The full position of a
window is often described by a RECT structure containing the screen coordinates of two points
that define the upper left and lower right corners of the window.

Windows and applications specify the position of points in a window by using client coordinates.
The origin in this case is the upper left corner of the window or client area. Client coordinates
ensure that an application can use consistent coordinate values while drawing in the window,
regardless of the position of the window on the screen.

The dimensions of the client area are also described by a RECT structure that contains client
coordinates for the area. In all cases, the upper left coordinate of the rectangle is included in the
window or client area, while the lower right coordinate is excluded. Graphics operations in a
window or client area are excluded from the right and lower edges of the enclosing rectangle.

Occasionally, applications may be required to map coordinates in one window to those of another
window. An application can map coordinates by using the MapWindowPoints function. If one of
the windows is the desktop window, the function effectively converts screen coordinates to client
coordinates and vice versa; the desktop window is always specified in screen coordinates.

Window Regions
In addition to the update region, every window has a visible region that defines the window portion
visible to the user. The system changes the visible region for the window whenever the window
changes size or whenever another window is moved such that it obscures or exposes a portion of
the window. Applications cannot change the visible region directly, but Windows automatically
uses the visible region to create the clipping region for any display DC retrieved for the window.

The clipping region determines where the system permits drawing. When the application retrieves
a display DC using the BeginPaint, GetDC, or GetDCEx function, the system sets the clipping
region for the DC to the intersection of the visible region and the update region. Applications can
change the clipping region by using functions such as SetWindowRgn, SelectClipPath and
SelectClipRgn, to further limit drawing to a particular portion of the update area.

The WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles further specify how Windows calculates
the visible region for a window. If a window has one or both of these styles, the visible region
excludes any child window or sibling windows (windows having the same parent window).
Therefore, drawing that would otherwise intrude in these windows will always be clipped.

Window Background
The window background is the color or pattern used to fill the client area before a window begins
drawing. The window background covers whatever was on the screen before the window was
moved there, erasing existing images and preventing the application's new output from being
mixed with unrelated information.

Windows paints the background for a window or gives the window the opportunity to do so by
sending it a WM_ERASEBKGND message when the application calls BeginPaint. If an
application does not process the message but passes it to DefWindowProc, Windows erases the
background by filling it with the pattern in the background brush specified by the window's class. If
the brush is not valid or the class has no background brush, Windows sets the fErase member in
the PAINTSTRUCT structure BeginPaint returns, but carries out no other action. The application
then has a second chance to draw the window background, if necessary.

If it processes WM_ERASEBKGND, the application should use the message's wParam parameter
to draw the background. This parameter contains the handle of the display DC for the window.
After drawing the background, the application should return a nonzero value. This ensures that
BeginPaint does not erroneously set the fErase member of the PAINTSTRUCT structure to a
nonzero value (indicating the background should be erased) when the application processes the
subsequent WM_PAINT message.

An application can define a class background brush by assigning a brush handle or a system
color value to the hbrBackground member of the WNDCLASS structure when registering the
class with the RegisterClass function. The GetStockObject or CreateSolidBrush function can
be used to create a brush handle. A system color value can be one of those defined for the
SetSysColors function. (The value must be increased by one before it is assigned to the
member.)

An application can process the WM_ERASEBKGND message even though a class background
brush is defined. This is typical in applications that enable the user to change the window
background color or pattern for a given window without affecting other windows in the class. In
such cases, the application must not pass the message to DefWindowProc.

It is not necessary for an application to align brushes, because the system draws the brush using
the window origin as the point of reference. Given this, the user can move the window without
affecting the alignment of pattern brushes.

Minimized Windows
Windows reduces an application's main window (overlapping style) to a minimized window when
the user chooses the Minimize command from the window menu or the application calls the
ShowWindow function and specifies a value such as SW_MINIMIZE. Minimizing a window
speeds up system performance by reducing the amount of work an application must do when
updating its main window.

For a typical application, Windows draws an icon, called the class icon, when the window is
minimized, labeling the icon with the name of the window. The class icon, a static image that
represents the application, is specified by the application when it registers the window class. The
application assigns the handle of the class icon to the hIcon member of WNDCLASS before
calling RegisterClass. The application can use the LoadIcon function to retrieve the icon handle.

Before drawing the class icon, Windows sends a WM_ICONERASEBKGND message to the
window procedure, enabling the application to prepare the background for drawing the icon by
setting the best possible background colors for the icon. This is useful for applications that
combine the icon with the current background colors. If the application processes the message, it
should use the display DC provided with the message to draw the background (the wParam
parameter contains the handle of the display DC). If the application does not process the
WM_ICONERASEBKGND message, it should pass the message to DefWindowProc; the
function fills the icon area with the current desktop color and pattern. After sending the
WM_ICONERASEBKGND message, Windows sends the WM_PAINTICON message to the
window procedure. The application should immediately forward this internal message to
DefWindowProc.

Windows does not require that a window class have a class icon. If an application sets the hIcon
member of WNDCLASS to NULL, a class icon is not defined. In this case, Windows sends the
WM_ERASEBKGND message (instead of WM_ICONERASEBKGND) to a window of the class
whenever the window must paint the icon background. Windows then sends a WM_PAINT
message and the application draws an icon or another image representing the minimized window.
In such cases, the application must determine when the window is minimized and draw
accordingly. It can do so by calling the IsIconic function. If the function returns TRUE, the window
is minimized. If an application has no class icon and fails to process WM_ERASEBKGND and
WM_PAINT, the area that Windows reserves for the application's icon will contain whatever was
previously on the screen.

Resized Windows
Windows changes the size of a window when the user chooses window menu commands, such
as Size and Maximize, or when the application calls functions, such as the SetWindowPos
function. When a window changes size, Windows assumes that the contents of the previously
exposed portion of the window are not affected and need not be redrawn. Windows invalidates
only the newly exposed portion of the window, which saves time when the eventual WM_PAINT
message is processed by the application. In this case, WM_PAINT is not generated when the size
of the window is reduced.

For some windows, any change to the size of the window invalidates the contents. For example, a
clock application that adapts the face of the clock to fit neatly within its window must redraw the
clock whenever the window changes size. To force Windows to invalidate the entire client area of
the window when a vertical, horizontal, or both vertical and horizontal change is made, an
application must specify the CS_VREDRAW or CS_HREDRAW style, or both, when registering
the window class. Any window belonging to a window class having these styles is invalidated
each time the user or the application changes the size of the window.

Nonclient Area
Windows sends a WM_NCPAINT message to the window whenever a part of the nonclient area
of the window, such as the title bar, menu bar, or window frame, must be updated. Windows may
also send other messages to direct a window to update a portion of its client area; for example,
when a window becomes active or inactive, it sends the WM_NCACTIVATE message to update
its title bar. In general, processing these messages for standard windows is not recommended,
because the application must be able to draw all the required parts of the nonclient area for the
window. For this reason, most applications pass these messages to DefWindowProc for default
processing.

An application that creates custom nonclient areas for its windows must process these messages.
When doing so, the application must use a window DC to carry out drawing in the window. The
window DC enables the application to draw in all portions of the window, including the nonclient
area. An application retrieves a window DC by using the GetWindowDC or GetDCEx function
and, when drawing is complete, must release the window DC by using the ReleaseDC function.

Windows maintains an update region for the nonclient area. When an application receives a
WM_NCPAINT message, the wParam parameter contains the handle of a region defining the
dimensions of the update region. The application can use the handle to combine the update
region with the clipping region for the window DC. Windows does not automatically combine the
update region when retrieving the window DC unless the application uses GetDCEx and specifies
both the region handle and the DCX_INTERSECTRGN flag. If the application does not combine
the update region, only drawing operations that would otherwise extend outside the window are
clipped. The application is not responsible for clearing the update region, regardless of whether it
uses the region.

If an application processes the WM_NCACTIVATE message, after processing it must return
TRUE to direct Windows to complete the change of active window. If the window is minimized
when the application receives the WM_NCACTIVATE message, it should pass the message to
DefWindowProc. In such cases, the default function redraws the label for the icon.

Child Windows
A child window is a window with the WS_CHILD or WS_CHILDWINDOW style. Like other window
styles, child windows receive WM_PAINT messages to prompt updating. Each child window has
an update region, which either Windows or the application can set to generate eventual
WM_PAINT messages.

A child window's update and visible regions are affected by the child's parent window; this is not
true for windows of other styles. Windows often sets the child window's update region when it sets
the parent window's update region, causing the child window to receive WM_PAINT messages
when the parent window receives them. Windows limits the location of the child window's visible
region to within the client area of the parent window and clips any portion of the child window
moved outside the parent window.

Windows sets the update region for a child window whenever part of the parent window's update
region includes a portion of the child window. In such cases, Windows first sends a WM_PAINT
message to the parent window and then sends a message to the child window, allowing the child
to restore any portions of the window that the parent may have drawn over.

Windows does not set the parent's update region when the child's is set. An application cannot
generate a WM_PAINT message for the parent window by invalidating the child window. Similarly,
an application cannot generate a WM_PAINT message for the child by invalidating a portion of the
parent's client area that lies entirely under the child window. In such cases, neither window
receives a WM_PAINT message.

An application can prevent a child window's update region from being set when the parent
window's is set by specifying the WS_CLIPCHILDREN style when creating the parent window.
When this style is set, Windows excludes the child windows from the parent's visible region and
therefore ignores any portion of the update region that may contain the child windows. When the
application paints in the parent window, any drawing that would cover the child window is clipped,
making a subsequent WM_PAINT message to the child window unnecessary.

The update and visible regions of a child window are also affected by the child window's siblings.
Sibling windows are any windows that have a common parent window. If sibling windows overlap,
then setting the update region for one affects the update region of another, causing WM_PAINT
messages to be sent to both windows. Sibling windows receive WM_PAINT messages in the
reverse order of their position in the Z order. Given this, the window highest in the Z order (on the
top) receives its WM_PAINT message last, and vice versa.

Sibling windows are not automatically clipped. One sibling can draw over another overlapping
sibling even if the window that is drawing has a lower position in the Z order. An application can
prevent this by specifying the WS_CLIPSIBLINGS style when creating the windows. When this
style is set, Windows excludes all portions of an overlapping sibling window from a window's
visible region if the overlapping sibling window has a higher position in the Z order.
Note The update and visible regions for windows that have the WS_POPUP or
WS_POPUPWINDOW style are not affected by their parent windows.

About Display Device Contexts
A display DC is a device context, created by Windows, that an application uses to paint and draw
a window. Windows prepares each display DC for output to a window, setting the drawing objects,
colors, and modes for the window instead of for the display device. When the application supplies
the display DC through calls to GDI functions, GDI uses the information in the context to generate
output in the given window without intruding on other windows or other parts of the screen.

Windows provides five kinds of display DC: common, class, parent, private, and window. The
common, class, and private DCs permit drawing in the client area of a given window. The parent
and window DCs permit drawing anywhere in the window. Although the parent DC also permits
drawing in the parent window, it is not intended to be used in this way.

Windows supplies a common, class, parent, or private DC to a window based on the type of
display DC specified in that window's class style. Windows supplies a window DC only when the
application explicitly requests one ¾ for example, by calling the GetWindowDC or GetDCEx
function. In all cases, an application can use the WindowFromDC function to determine which
window a display DC currently represents.

Display Device Context Cache
Windows maintains a cache of display DCs that it uses for common, parent, and window DCs.
Windows retrieves a DC from the cache whenever an application calls the GetDC or BeginPaint
function; Windows returns the DC to the cache when the application subsequently calls the
ReleaseDC or EndPaint function.

In Windows 3.x, the cache contains five display DCs, but only five DCs from the cache can be
active at a time. To ensure that other applications have access to these DCs, an application must
release a device context immediately after using it. Failure to do so eventually causes the
application to fail.

There is no predetermined limit on the amount of DCs that a cache can hold; Windows creates a
new display DC for the cache if none is available. Given this, a Win32-based application can have
more than five active DCs from the cache at a time. However, the application must continue to
release these DCs after use. Because new display DCs for the cache are allocated in the
application's heap space, failing to release the DCs eventually consumes all available heap
space. Windows indicates this failure by returning an error when it cannot allocate space for the
new DC. Other functions unrelated to the cache may also return errors.
Portability To minimize porting efforts, applications that use common DCs should be limited to no
more than five and ensure that a common DC is released as soon as possible after it is used.

Display Device Context Defaults
Upon first creating a display DC, Windows assigns default values for the attributes (that is,
drawing objects, colors, and modes) that comprise the DC. The following table shows the default
values for the attributes of a display DC.

Attribute Default value

Background color Background color setting from Windows
Control Panel (typically, white).

Background mode OPAQUE.
Bitmap None.
Brush WHITE_BRUSH.
Brush origin (0,0).
Clipping region Entire window or client area with the update

region clipped, as appropriate. Child and pop-
up windows in the client area may also be
clipped.

Palette DEFAULT_PALETTE.
Current pen position (0,0).
Device origin Upper left corner of the window or the client

area.
Drawing mode R2_COPYPEN.
Font SYSTEM_FONT (SYSTEM_FIXED_FONT for

applications written to run with Windows
versions 3.0 and earlier).

Intercharacter spacing0.
Mapping mode MM_TEXT.
Pen BLACK_PEN.
Polygon-fill mode ALTERNATE.
Stretch mode BLACKONWHITE.
Text color Text color setting from Control Panel (typically,

black).
Viewport extent (1,1).
Viewport origin (0,0).
Window extent (1,1).
Window origin (0,0).

An application can modify the values of the display DC attributes by using selection and
attribute functions, such as SelectObject, SetMapMode, and SetTextColor. For example, an
application can modify the default units of measure in the coordinate system by using
SetMapMode to change the mapping mode.

Changes to the attribute values of a common, parent, or window DC are not permanent. When an
application releases these DCs, the current selections, such as mapping mode and clipping
region, are lost as the context is returned to the cache. Changes to a class or private DC persist
indefinitely. To restore them to their original defaults, an application must explicitly set each
attribute.

Common Display Device Contexts
A common DC is used for drawing in the client area of the window. The Win32 API provides a
common DC by default for any window whose window class does not explicitly specify a display
DC style. Common DCs are typically used with windows that can be drawn without extensive
changes to the DC attributes. Common DCs are convenient because they do not require
additional memory or system resources, but they can be inconvenient if the application must set
up many attributes before using them.

Windows retrieves all common DCs from the display DC cache. An application can retrieve a
common DC immediately after the window is created. Because the common DC is from the
cache, the application must always release the DC as soon as possible after drawing. After the
common DC is released, it is no longer valid and the application must not attempt to draw with it.
To draw again, the application must retrieve a new common DC, and continue to retrieve and
release a common DC each time it draws in the window. If the application retrieves the DC handle
by using the GetDC function, it must use the ReleaseDC function to release the handle. Similarly,
for each BeginPaint function, the application must use a corresponding EndPaint function.

When the application retrieves the DC, Windows adjusts the origin so that it aligns with the upper
left corner of the client area. It also sets the clipping region so that output to the DC is clipped to
the client area. Any output that would otherwise appear outside the client area is clipped. If the
application retrieves the common DC by using BeginPaint, Windows also includes the update
region in the clipping region to further restrict the output.

When an application releases a common DC, Windows restores the default values for the
attributes of the DC. An application that modifies attribute values must do so each time it retrieves
a common DC. Releasing the DC releases any drawing objects the application may have selected
into it, so the application need not release these objects before releasing the DC. In all cases, an
application must never assume that the common DC retains nondefault selections after being
released.

Private Display Device Contexts
A private DC enables an application to avoid retrieving and initializing a display DC each time the
application must draw in a window. Private DCs are useful for windows that require many changes
to the values of the attributes of the DC to prepare it for drawing. Private DCs reduce the time
required to prepare the DC and therefore the time needed to carry out drawing in the window.

An application directs Windows to create a private DC for a window by specifying the
CS_OWNDC style in the window class. Windows creates a unique private DC each time it creates
a new window belonging to the class. Initially, the private DC has the same default values for
attributes as a common DC, but the application can modify these at any time. Windows preserves
changes to the DC for the life of the window or until the application makes additional changes.

An application can retrieve the handle of the private DC by using the GetDC function any time
after the window is created. The application must retrieve the handle only once. Thereafter, it can
keep and use the handle any number of times. Because a private DC is not part of the display DC
cache, an application need never release the DC by using the ReleaseDC function.

Windows automatically adjusts the DC to reflect changes to the window, such as moving or sizing.
This ensures that any overlapping windows are always properly clipped; that is, no action is
required by the application to ensure clipping. However, Windows does not revise the DC to
include the update region. Therefore, when processing a WM_PAINT message, the application
must incorporate the update region either by calling BeginPaint or by retrieving the update region
and intersecting it with the current clipping region. If the application does not call BeginPaint, it
must explicitly validate the update region by using the ValidateRect or ValidateRgn function. If
the application does not validate the update region, the window receives an endless series of
WM_PAINT messages.

Because BeginPaint hides the caret if a window is showing it, an application that calls
BeginPaint should also call the EndPaint function to restore the caret. EndPaint has no other
effect on a private DC.

Although a private DC is convenient to use, it is expensive in terms of system resources, requiring
800 or more bytes to store. Private DCs are recommended when performance considerations
outweigh storage costs.

Windows includes the private DC when sending the WM_ERASEBKGND message to the
application. The current selections of the private DC, including mapping mode, are in effect when
the application or Windows processes these messages. To avoid undesirable effects, Windows
uses logical coordinates when erasing the background; for example, it uses the GetClipBox
function to retrieve the logical coordinates of the area to erase and passes these coordinates to
the FillRect function. Applications that process these messages can use similar techniques.
Windows supplies a window DC with the WM_ICONERASEBKGND message regardless of
whether the corresponding window has a private DC.

An application can use the GetDCEx function to force Windows to return a common DC for the
window that has a private DC. This is useful for carrying out quick touch-ups to a window without
changing the current values of the attributes of the private DC.

Class Display Device Contexts
By using a class DC, an application can use a single display DC for every window belonging to a
given class. Class DCs are often used with control windows that are drawn using the same
attribute values. Like private DCs, class DCs minimize the time required to prepare a DC for
drawing.

Windows supplies a class DC for a window if it belongs to a window class having the
CS_CLASSDC style. Windows creates the DC when creating the first window belonging to the
class and then uses the same DC for all subsequently created windows in the class. Initially, the
class DC has the same default values for attributes as a common DC, but the application can
modify these at any time. Windows preserves all changes, except for the clipping region and
device origin, until the last window in the class has been destroyed. A change made for one
window applies to all windows in that class.

An application can retrieve the handle for the class DC by using the GetDC function any time after
the first window has been created. The application can keep and use the handle without releasing
it because the class DC is not part of the display DC cache. If the application creates another
window in the same window class, the application must retrieve the class DC again. Retrieving the
DC sets the correct device origin and clipping region for the new window. After the application
retrieves the class DC for a new window in the class, the DC can no longer be used to draw in the
original window without again retrieving it for that window. In general, each time it must draw in a
window, an application must explicitly retrieve the class DC for the window.

Applications that use class DCs should always call BeginPaint when processing a WM_PAINT
message. The function sets the correct device origin and clipping region for the window, and
incorporates the update region. The application should also call EndPaint to restore the caret if
BeginPaint hid it. EndPaint has no other effect on a class DC.

Windows passes the class DC when sending the WM_ERASEBKGND message to the
application, permitting the current attribute values to affect any drawing carried out by the
application or Windows when processing this message. Windows supplies a window DC with the
WM_ICONERASEBKGND message regardless of whether the corresponding window has a class
DC. As it could with a window having a private DC, an application can use GetDCEx to force
Windows to return a common DC for the window that has a class DC.

Using class DCs is not recommended.

Window Display Device Contexts
A window DC enables an application to draw anywhere in a window, including the nonclient area.
Window DCs are typically used by applications that process the WM_NCPAINT and
WM_NCACTIVATE messages for windows with custom nonclient areas. Using a window DC is
not recommended for any other purpose.

An application can retrieve a window DC by using the GetWindowDC or GetDCEx function with
the DCX_WINDOW option specified. The function retrieves a window DC from the display DC
cache. A window that uses a window DC must release it after drawing by using the ReleaseDC
function as soon as possible. Window DCs are always from the cache; the CS_OWNDC and
CS_CLASSDC class styles do not affect the DC.

When an application retrieves a window DC, Windows sets the device origin to the upper left
corner of the window instead of the upper left corner of the client area. It also sets the clipping
region to include the entire window, not just the client area. Windows sets the current attribute
values of a window DC to the same default values as a common DC. An application can change
the attribute values, but Windows does not preserve any changes when the DC is released.

Parent Display Device Contexts
A parent DC enables an application to minimize the time necessary to set up the clipping region
for a window. An application typically uses parent DCs to speed up drawing for control windows
without requiring a private or class DC. For example, Windows uses parent DCs for push button
and edit controls. Parent DCs are intended for use with child windows only, never with top-level or
pop-up windows.

An application can specify the CS_PARENTDC style to set the clipping region of the child window
to that of the parent window so that the child can draw in the parent. Specifying CS_PARENTDC
enhances an application's performance because Windows doesn't need to keep recalculating the
visible region for each child window.

Attribute values set by the parent window are not preserved for the child window; for example, the
parent window cannot set the brush for its child windows. The only property preserved is the
clipping region. The window must clip its own output to the limits of the window. Because the
clipping region for the parent DC is identical to the parent window, the child window can potentially
draw over the entire parent window, but the parent DC must not be used in this way.

Windows ignores the CS_PARENTDC style if the parent window uses a private or class DC, if the
parent window clips its child windows, or if the child window clips its child windows or sibling
windows.

Window Update Lock
A window update lock is a temporary suspension of drawing in a window. Windows uses the lock
to prevent other windows from drawing over the tracking rectangle whenever the user moves or
sizes a window. Applications can use the lock to prevent drawing if they carry out similar moving
or sizing operations with their own windows.

An application uses the LockWindowUpdate function to set or clear a window update lock,
specifying the window to lock. The lock applies to the given window and all of its child windows.
When the lock is set, the GetDC and BeginPaint functions return a display DC with a visible
region that is empty. Given this, the application can continue to draw in the window, but all output
is clipped. The lock persists until the application clears it by calling LockWindowUpdate,
specifying NULL for the window. Although LockWindowUpdate forces a window's visible region
to be empty, the function does not make the given window invisible and does not clear the
WS_VISIBLE style bit.

After the lock is set, the application can use the GetDCEx function, with the
DCX_LOCKWINDOWUPDATE value, to retrieve a display DC to draw over the locked window.
This allows the application to draw a tracking rectangle when processing keyboard or mouse
messages. Windows uses this method when the user moves and sizes windows. GetDCEx
retrieves the display DC from the display DC cache, so the application must release the DC as
soon as possible after drawing.

While a window update lock is set, the system creates an accumulated bounding rectangle for
each locked window. When the lock is cleared, Windows uses this bounding rectangle to set the
update region for the window and its child windows, forcing an eventual WM_PAINT message. If
the accumulated bounding rectangle is empty (that is, if no drawing has occurred while the lock
was set), the update region is not set.

Accumulated Bounding Rectangle
The accumulated bounding rectangle is the smallest rectangle enclosing the portion of a window
or client area affected by recent drawing operations. An application can use this rectangle to
conveniently determine the extent of changes caused by drawing operations. It is sometimes used
in conjunction with LockWindowUpdate to determine which portion of the client area must be
redrawn after the update lock is cleared.

An application uses the SetBoundsRect function (specifying DCB_ENABLE) to begin
accumulating the bounding rectangle. Windows subsequently accumulates points for the
bounding rectangle as the application uses the specified display DC. The application can retrieve
the current bounding rectangle at any time by using the GetBoundsRect function. The application
stops the accumulation by calling SetBoundsRect again, specifying the DCB_DISABLE value.

Using the WM_PAINT Message
You can use the WM_PAINT message to carry out the drawing necessary for displaying
information. Because Windows sends WM_PAINT messages to your application when your
window must be updated or when you explicitly request an update, you can consolidate the code
for drawing in your application's window procedure. You can then use this code whenever your
application must draw either new or existing information.

The following sections show a variety of ways to use the WM_PAINT message to draw in a
window.

· Drawing in the client area
· Redrawing the entire client area
· Redrawing in the update region
· Invalidating the client area
· Drawing a minimized window
· Drawing a custom window background

Drawing in the Client Area
You use the BeginPaint and EndPaint functions to prepare for and complete the drawing in the
client area. BeginPaint returns a handle of the display DC used for drawing in the client area;
EndPaint ends the paint request and releases the DC.

In the following example, the window procedure writes the message "Hello, Windows!" in the client
area. To make sure the string is visible when the window is first created, the WinMain function
calls UpdateWindow immediately after creating and showing the window. This causes a
WM_PAINT message to be sent immediately to the window procedure.LRESULT APIENTRY WndProc(hwnd, message, wParam, lParam)
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

PAINTSTRUCT ps;
HDC hdc;
switch (message) {
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
TextOut(hdc, 0, 0, "Hello, Windows!", 15);
EndPaint(hwnd, &ps);
return 0L;
.
.
.
}

}

int APIENTRY WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
HINSTANCE hInstance; /* handle of current instance */
HINSTANCE hPrevInstance;/* handle of previous instance */
LPSTR lpCmdLine; /* address of command line */
int nCmdShow; /* show-window type (open/icon) */
{

HWND hwnd;
hwnd = CreateWindowEx(/* parameters */);
ShowWindow(hwnd, SW_SHOW);
UpdateWindow(hwnd);
.
.
.
return msg.wParam;

}

Redrawing the Entire Client Area
You can have your application redraw the entire contents of the client area whenever the window
changes size by setting the CS_HREDRAW and CS_VREDRAW styles for the window class.
Applications that adjust the size of the drawing based on the size of the window use these styles
to ensure that they start with a completely empty client area when drawing.

In the following example, the window procedure draws a five-pointed star that fits neatly in the
client area. It uses a common DC and must set the mapping mode as well as window and
viewport extents each time the WM_PAINT message is processed.LRESULT APIENTRY WndProc(hwnd, message, wParam, lParam)
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

PAINTSTRUCT ps;
HDC hdc;
RECT rc;
POINT aptStar[6] = {50,2, 2,98, 98,33, 2,33, 98,98, 50,2};
.
.
.
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
GetClientRect(hwnd, &rc);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExtEx(hdc, 100, 100, NULL);
SetViewportExtEx(hdc, rc.right, rc.bottom, NULL);
Polyline(hdc, aptStar, 6);
EndPaint(hwnd, &ps);
return 0L;
.
.
.

}

int APIENTRY WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
HINSTANCE hInstance; /* handle of current instance */
HINSTANCE hPrevInstance;/* handle of previous instance */
LPSTR lpCmdLine; /* address of command line */
int nCmdShow; /* show-window type (open/icon) */
{

WNDCLASS wc;
.
.
.
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC) WndProc;
.
.
.
RegisterClass(&wc);
.
.
.
return msg.wParam;

}

Redrawing in the Update Region
You can limit the amount of drawing your application carries out when processing the WM_PAINT
message by determining the size and location of the update region. Because Windows uses the
update region when creating the clipping region for the window's display DC, you can indirectly
determine the update region by examining the clipping region.

In the following example, the window procedure draws a triangle, a rectangle, a pentagon, and a
hexagon, but only if all or a portion of each figure lies within the update region. The window
procedure uses the RectVisible function and a 100-by-100 rectangle to determine whether a
figure is within the clipping region (and therefore the update region) for the common DC retrieved
by BeginPaint.POINT aptTriangle[4] = {50,2, 98,86, 2,86, 50,2},
aptRectangle[5] = { 2,2, 98,2, 98,98, 2,98, 2,2},
aptPentagon[6] = {50,2, 98,35, 79,90, 21,90, 2,35, 50,2},
aptHexagon[7] = {50,2, 93,25, 93,75, 50,98, 7,75, 7,25, 50,2};
.
.
.
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
SetRect(&rc, 0, 0, 100, 100);
if (RectVisible(hdc, &rc))
Polyline(hdc, aptTriangle, 4);
SetViewportOrgEx(hdc, 100, 0, NULL);
if (RectVisible(hdc, &rc))
Polyline(hdc, aptRectangle, 5);
SetViewportOrgEx(hdc, 0, 100, NULL);
if (RectVisible(hdc, &rc))
Polyline(hdc, aptPentagon, 6);
SetViewportOrgEx(hdc, 100, 100, NULL);
if (RectVisible(hdc, &rc))
Polyline(hdc, aptHexagon, 7);
EndPaint(hwnd, &ps);
return 0L;
.
.
.The coordinates of each figure in this example lie within the same 100-by-100 rectangle. Before

drawing a figure, the window procedure sets the viewport origin to a different part of the client
area by using the SetViewportOrgEx function. This prevents figures from being drawn one on top
of the other. Changing the viewport origin does not affect the clipping region, but does affect how
the coordinates of the rectangle passed to RectVisible are interpreted. Changing the origin also
allows you to use a single rectangle to check the update region rather than individual rectangles
for each figure.

Invalidating the Client Area
Windows is not the only source of WM_PAINT messages. The InvalidateRect or InvalidateRgn
function can indirectly generate WM_PAINT messages for your windows. These functions mark all
or part of a client area as invalid (that must be redrawn).

In the following example, the window procedure invalidates the entire client area when processing
WM_CHAR messages. This allows the user to change the figure by typing a number and view the
results; these results are drawn as soon as there are no other messages in the application's
message queue.POINT aptPentagon[6] = {50,2, 98,35, 79,90, 21,90, 2,35, 50,2},
aptHexagon[7] = {50,2, 93,25, 93,75, 50,98, 7,75, 7,25, 50,2};
POINT *ppt = aptPentagon;
int cpt = 6;
.
.
.

case WM_CHAR:
switch (wParam) {
case '5':
ppt = aptPentagon;
cpt = 6;
break;
case '6':
ppt = aptHexagon;
cpt = 7;
break;
}
InvalidateRect(hwnd, NULL, TRUE);
return 0L;

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
GetClientRect(hwnd, &rc);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExtEx(hdc, 100, 100, NULL);
SetViewportExtEx(hdc, rc.right, rc.bottom, NULL);
Polyline(hdc, ppt, cpt);
EndPaint(hwnd, &ps);
return 0L;In this example, the NULL argument used by InvalidateRect specifies the entire client area; the

TRUE argument causes the background to be erased. If you do not want the application to wait
until the application's message queue has no other messages, use the UpdateWindow function
to force the WM_PAINT message to be sent immediately. If there is any invalid part of the client
area, UpdateWindow sends the WM_PAINT message for the given window directly to the
window procedure.

Drawing a Minimized Window
You can draw your own minimized windows rather than having Windows draw them for you. Most
applications define a class icon when registering the window class for the window, and Windows
draws the icon when the window is minimized. If you set the class icon to NULL, however,
Windows sends a WM_PAINT message to your window procedure whenever the window is
minimized, enabling the window procedure to draw in the minimized window.

In the following example, the window procedure draws a star in the minimized window. The
procedure uses the IsIconic function to determine when the window is minimized. This ensures
that the star is drawn only when the window is minimized.POINT aptStar[6] = {50,2, 2,98, 98,33, 2,33, 98,98, 50,2};

.

.

.
case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);
/* Determine whether the window is minimized. */
if (IsIconic(hwnd)) {
GetClientRect(hwnd, &rc);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExtEx(hdc, 100, 100, NULL);
SetViewportExtEx(hdc, rc.right, rc.bottom, NULL);
Polyline(hdc, aptStar, 6);
} else {
TextOut(hdc, 0,0, "Hello, Windows!", 15);
}
EndPaint(hwnd, &ps);
return 0L;You set the class icon to NULL by setting the hIcon member of the WNDCLASS structure to

NULL before calling the RegisterClass function for the window class.

Drawing a Custom Window Background
You can draw your own window background rather than having Windows draw it for you. Most
applications specify a brush handle or system color value for the class background brush when
registering the window class; Windows uses the brush or color to draw the background. If you set
the class background brush to NULL, however, Windows sends a WM_ERASEBKGND message
to your window procedure whenever the window background must be drawn, letting you draw a
custom background.

In the following example, the window procedure draws a large checkerboard pattern that fits
neatly in the window. The procedure fills the client area with a white brush and then draws thirteen
20-by-20 rectangles using a gray brush. The display DC to use when drawing the background is
specified in the wParam parameter for the message.HBRUSH hbrWhite, hbrGray;

.

.

.
case WM_CREATE:

hbrWhite = GetStockObject(WHITE_BRUSH);
hbrGray = GetStockObject(GRAY_BRUSH);
return 0L;

case WM_ERASEBKGND:
hdc = (HDC) wParam;
GetClientRect(hwnd, &rc);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExtEx(hdc, 100, 100, NULL);
SetViewportExtEx(hdc, rc.right, rc.bottom, NULL);
FillRect(hdc, &rc, hbrWhite);
for (i = 0; i < 13; i++) {
x = (i * 40) % 100;
y = ((i * 40) / 100) * 20;
SetRect(&rc, x, y, x + 20, y + 20);
FillRect(hdc, &rc, hbrGray);
}

return 1L;If the application draws its own minimized window, Windows also sends the WM_ERASEBKGND
message to the window procedure to draw the background for the minimized window. You can
use the same technique used by WM_PAINT to determine whether the window is minimized ¾
that is, call the IsIconic function and check for the return value TRUE.

Using the GetDC Function
You use the GetDC function to carry out drawing that must occur instantly rather than when a
WM_PAINT message is processing. Such drawing is usually in response to an action by the user,
such as making a selection or drawing with the mouse. In such cases, the user should receive
instant feedback and must not be forced to stop selecting or drawing in order for the application to
display the result. The following sections show how to use GetDC to draw in a window.

· Drawing with the mouse
· Drawing at timed intervals

Drawing with the Mouse
You can permit the user to draw lines with the mouse by having your window procedure draw
while processing the WM_MOUSEMOVE message. Windows sends the WM_MOUSEMOVE
message to the window procedure whenever the user moves the cursor within the window. To
draw lines, the window procedure can retrieve a display DC and draw a line in the window
between the current and previous cursor positions.

In the following example, the window procedure prepares for drawing when the user presses and
holds the left mouse button (sending the WM_LBUTTONDOWN message). As the user moves the
cursor within the window, the window procedure receives a series of WM_MOUSEMOVE
messages. For each message, the window procedure draws a line connecting the previous
position and the current position. To draw the line, the procedure uses GetDC to retrieve a display
DC; then, as soon as drawing is complete and before returning from the message, the procedure
uses the ReleaseDC function to release the display DC. As soon as the user releases the mouse
button, the window procedure clears the flag, and the drawing stops (which sends the
WM_LBUTTONUP message).BOOL fDraw = FALSE;
POINT ptPrevious;
.
.
.

case WM_LBUTTONDOWN:
fDraw = TRUE;
ptPrevious.x = LOWORD(lParam);
ptPrevious.y = HIWORD(lParam);
return 0L;

case WM_LBUTTONUP:
if (fDraw) {
hdc = GetDC(hwnd);
MoveToEx(hdc, ptPrevious.x, ptPrevious.y, NULL);
LineTo(hdc, LOWORD(lParam), HIWORD(lParam));
ReleaseDC(hwnd, hdc);
}
fDraw = FALSE;
return 0L;

case WM_MOUSEMOVE:
if (fDraw) {
hdc = GetDC(hwnd);
MoveToEx(hdc, ptPrevious.x, ptPrevious.y, NULL);
LineTo(hdc, ptPrevious.x = LOWORD(lParam),

ptPrevious.y = HIWORD(lParam));
ReleaseDC(hwnd, hdc);
}

return 0L;
An application that enables drawing, as in this example, typically records either the points or lines
so that the lines can be redrawn whenever the window is updated. Drawing applications often use
a memory DC and an associated bitmap to store lines that were drawn by using a mouse.

Drawing at Timed Intervals
You can draw at timed intervals by creating a timer with the SetTimer function. By using a timer to
send WM_TIMER messages to the window procedure at regular intervals, an application can
carry out simple animation in the client area while other applications continue running.

In the following example, the application bounces a star from side to side in the client area. Each
time the window procedure receives a WM_TIMER message, the procedure erases the star at the
current position, calculates a new position, and draws the star within the new position. The
procedure starts the timer by calling SetTimer while processing the WM_CREATE message.RECT rcCurrent = {0,0,20,20};
POINT aptStar[6] = {10,1, 1,19, 19,6, 1,6, 19,19, 10,1};
int X = 2, Y = -1, idTimer = -1;
BOOL fVisible = FALSE;
HDC hdc;
LRESULT APIENTRY WndProc(hwnd, message, wParam, lParam)
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
{

PAINTSTRUCT ps;
RECT rc;
switch (message) {
case WM_CREATE:
/* Calculate the starting point. */
GetClientRect(hwnd, &rc);
OffsetRect(&rcCurrent, rc.right / 2, rc.bottom / 2);
/* Initialize the private DC. */
hdc = GetDC(hwnd);
SetViewportOrgEx(hdc, rcCurrent.left,
rcCurrent.top, NULL);
SetROP2(hdc, R2_NOT);
/* Start the timer. */
SetTimer(hwnd, idTimer = 1, 10, NULL);
return 0L;
case WM_DESTROY:
KillTimer(hwnd, 1);
PostQuitMessage(0);
return 0L;
case WM_SIZE:
switch (wParam) {
case SIZE_MINIMIZED:
/* Stop the timer if the window is minimized. */
KillTimer(hwnd, 1);
idTimer = -1;
break;
case SIZE_RESTORED:
/*
* Move the star back into the client area
* if necessary.
*/
if (rcCurrent.right > (int) LOWORD(lParam))

rcCurrent.left =
(rcCurrent.right =
(int) LOWORD(lParam)) - 20;

if (rcCurrent.bottom > (int) HIWORD(lParam))
rcCurrent.top =
(rcCurrent.bottom =
(int) HIWORD(lParam)) - 20;

/* Fall through to the next case. */
case SIZE_MAXIMIZED:
/* Start the timer if it had been stopped. */
if (idTimer == -1)

SetTimer(hwnd, idTimer = 1, 10, NULL);
break;
}
return 0L;
case WM_TIMER:
/* Hide the star if it is visible. */
if (fVisible)
Polyline(hdc, aptStar, 6);
/* Bounce the star off a side if necessary. */
GetClientRect(hwnd, &rc);
if (rcCurrent.left + X < rc.left ||
rcCurrent.right + X > rc.right)
X = -X;
if (rcCurrent.top + Y < rc.top ||
rcCurrent.bottom + Y > rc.bottom)
Y = -Y;
/* Show the star in its new position. */
OffsetRect(&rcCurrent, X, Y);
SetViewportOrgEx(hdc, rcCurrent.left,
rcCurrent.top, NULL);
fVisible = Polyline(hdc, aptStar, 6);
return 0L;
case WM_ERASEBKGND:
/* Erase the star. */
fVisible = FALSE;
return DefWindowProc(hwnd, message, wParam, lParam);
case WM_PAINT:
/*
* Show the star if it is not visible. Use BeginPaint
* to clear the update region.
*/
BeginPaint(hwnd, &ps);
if (!fVisible)
fVisible = Polyline(hdc, aptStar, 6);
EndPaint(hwnd, &ps);
return 0L;
}
return DefWindowProc(hwnd, message, wParam, lParam);

}This application uses a private DC to minimize the time required to prepare the DC for drawing.
The window procedure retrieves and initializes the private DC when processing the WM_CREATE
message, setting the binary raster operation mode to allow the star to be erased and drawn using
the same call to the Polyline function. The window procedure also sets the viewport origin to
allow the star to be drawn using the same set of points regardless of the star's position in the
client area.

The application uses the WM_PAINT message to draw the star whenever the window must be
updated. The window procedure draws the star only if it is not visible; that is, only if it has been
erased by the WM_ERASEBKGND message. The window procedure intercepts the
WM_ERASEBKGND message to set the fVisible variable, but passes the message to
DefWindowProc so that Windows can draw the window background.

The application uses the WM_SIZE message to stop the timer when the window is minimized and
to restart the timer when the minimized window is restored. The window procedure also uses the
message to update the current position of the star if the size of the window has been reduced so
that the star is no longer in the client area. The application keeps track of the star's current
position by using the structure specified by rcCurrent, which defines the bounding rectangle for
the star. Keeping all corners of the rectangle in the client area keeps the star in the area. The
window procedure initially centers the star in the client area when processing the WM_CREATE
message.

Painting and Drawing Reference
The following functions, structures and messages are associated with painting and drawing.

Painting and Drawing Functions
Following are the functions used with painting and drawing.
BeginPaint
DrawAnimatedRects
DrawCaption
DrawEdge
DrawFocusRect
DrawFrameControl
DrawState
DrawStateProc
DrawTextEx
EndPaint
ExcludeUpdateRgn
GdiFlush
GdiGetBatchLimit
GdiSetBatchLimit
GetBkColor
GetBkMode
GetBoundsRect
GetROP2
GetUpdateRect
GetUpdateRgn
GetWindowDC
GetWindowRgn
GrayString
InvalidateRect
InvalidateRgn
LockWindowUpdate
OutputProc
PaintDesktop
RedrawWindow
SetBkColor
SetBkMode
SetBoundsRect
SetRectRgn
SetROP2
SetWindowRgn
UpdateWindow
ValidateRect
ValidateRgn

WindowFromDC

Painting and Drawing Structures
The following structure is used with painting and drawing.

PAINTSTRUCT

Painting and Drawing Messages
Following are the messages used with painting and drawing.
WM_DISPLAYCHANGE
WM_ERASEBKGND
WM_ICONERASEBKGND
WM_NCPAINT
WM_PAINT
WM_PAINTICON
WM_PRINT
WM_PRINTCLIENT

WM_SETREDRAW

RectanglesApplications written for Microsoft® Windows® use rectangles to specify rectangular areas on the
screen or in a window.

About Rectangles
In Windows applications, rectangles are used for the cursor clipping region, the invalid portion of
the client area, an area for displaying formatted text, or the scroll area. Your applications can also
use rectangles to fill, frame, or invert a portion of the client area with a given brush, and to retrieve
the coordinates of a window or a window's client area.

Rectangle Coordinates
An application must use a RECT structure to define a rectangle. The structure specifies the
coordinates of two points: the upper left and lower right corners of the rectangle. The sides of the
rectangle extend from these two points and are parallel to the x- and y-axes.

The coordinate values for a rectangle are expressed as signed integers. The coordinate value of a
rectangle's right side must be greater than that of its left side. Likewise, the coordinate value of the
bottom must be greater than that of the top.

Because applications can use rectangles for many different purposes, the Windows rectangle
functions do not use an explicit unit of measure. Instead, all rectangle coordinates and dimensions
are given in signed, logical values. The mapping mode and the function in which the rectangle is
used determine the units of measure. For more information about coordinates and mapping
modes, see Coordinate Spaces and Transformations.

Rectangle Operations
The Microsoft® Win32® application programming interface (API) provides several functions for
working with rectangles.

The SetRect function creates a rectangle, the CopyRect function makes a copy of a given
rectangle, and the SetRectEmpty function creates an empty rectangle. An empty rectangle is any
rectangle that has zero width, zero height, or both. The IsRectEmpty function determines whether
a given rectangle is empty. The EqualRect function determines whether two rectangles are
identical ¾ that is, whether they have the same coordinates.

The InflateRect function increases or decreases the width or height of a rectangle, or both. It can
add or remove width from both ends of the rectangle; it can add or remove height from both the
top and bottom of the rectangle.

The OffsetRect function moves a rectangle by a given amount. It moves the rectangle by adding
the given x-amount, y-amount, or x- and y-amounts to the corner coordinates.

The PtInRect function determines whether a given point lies within a given rectangle. The point is
in the rectangle if it lies on the left or top side or is completely within the rectangle. The point is not
in the rectangle if it lies on the right or bottom side.

The IntersectRect function creates a new rectangle that is the intersection of two existing
rectangles, as shown in the following figure.

ewc msdncd, EWGraphic, bsd23469 0 /a "SDK_01.BMP"

The UnionRect function creates a new rectangle that is the union of two existing rectangles, as
shown in the following figure.

ewc msdncd, EWGraphic, bsd23469 1 /a "SDK_02.BMP"

For information about functions that draw ellipses and polygons, see Filled Shapes.

Using Rectangles
The example in this section illustrates how to use the rectangle functions. It consists of the main
window procedure from an application that enables the user to move and size a bitmap.

When the application starts, it draws a 32-pixel by 32-pixel bitmap in the upper left corner of the
screen. The user can move the bitmap by dragging it. To size the bitmap, the user creates a
target rectangle by dragging the mouse, then drags the bitmap and "drops" it on the target
rectangle. The application responds by copying the bitmap into the target rectangle.

The window procedure that allows the user to move and size the bitmap is given in the following
example.LRESULT CALLBACK MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of window */
UINT uMsg; /* message */
WPARAM wParam; /* first message parameter */
LPARAM lParam; /* second message parameter */
{

HDC hdc; /* device context (DC) for window */
RECT rcTmp; /* temporary rectangle */
PAINTSTRUCT ps;/* paint data for Begin/EndPaint */
POINT ptClientUL; /* client area upper left corner */
POINT ptClientLR; /* client area lower right corner */
static HDC hdcCompat; /* DC for copying bitmap */
static POINT pt; /* x and y coordinates of cursor */
static RECT rcBmp; /* rectangle that encloses bitmap */
static RECT rcTarget; /* rectangle to receive bitmap */
static RECT rcClient; /* client-area rectangle */
static BOOL fDragRect; /* TRUE if bitmap rect. is dragged */
static HBITMAP hbmp;/* handle of bitmap to display */
static HBRUSH hbrBkgnd; /* handle of background-color brush */
static COLORREF crBkgnd; /* color of client-area background */
static HPEN hpenDot;/* handle of dotted pen */
switch (uMsg) {
case WM_CREATE:
/* Load the bitmap resource. */
hbmp = LoadBitmap(hinst, MAKEINTRESOURCE(1));
/*
* Create a device context (DC) to hold the bitmap.
* The bitmap is copied from this DC to the window's DC
* whenever it must be drawn.
*/
hdc = GetDC(hwnd);
hdcCompat = CreateCompatibleDC(hdc);
SelectObject(hdcCompat, hbmp);
/*
* Create a brush of the same color as the background
* of the client area. The brush is used later to erase
* the old bitmap before copying the bitmap into the
* target rectangle.
*/
crBkgnd = GetBkColor(hdc);
hbrBkgnd = CreateSolidBrush(crBkgnd);
ReleaseDC(hwnd, hdc);
/*
* Create a dotted pen. The pen is used to draw the
* bitmap rectangle as the user drags it.
*/
hpenDot = CreatePen(PS_DOT, 1, RGB(0, 0, 0));
/*
* Set the initial rectangle for the bitmap. Note that
* this application supports only a 32- by 32-pixel
* bitmap. The rectangle is slightly larger than the
* bitmap.
*/
SetRect(&rcBmp, 1, 1, 34, 34);
return 0;
case WM_PAINT:
/*
* Draw the bitmap rectangle and copy the bitmap into
* it. The 32-pixel by 32-pixel bitmap is centered
* in the rectangle by adding 1 to the left and top
* coordinates of the bitmap rectangle, and subtracting
* 2 from the right and bottom coordinates.
*/
BeginPaint(hwnd, &ps);
Rectangle(ps.hdc, rcBmp.left, rcBmp.top,
rcBmp.right, rcBmp.bottom);
StretchBlt(ps.hdc, rcBmp.left + 1, rcBmp.top + 1,
(rcBmp.right - rcBmp.left) - 2,
(rcBmp.bottom - rcBmp.top) - 2, hdcCompat,
0, 0, 32, 32, SRCCOPY);
EndPaint(hwnd, &ps);
break;
case WM_MOVE:
case WM_SIZE:
/*
* Convert the client coordinates of the client-area
* rectangle to screen coordinates and save them in a
* rectangle. The rectangle is passed to the ClipCursor
* function during WM_LBUTTONDOWN processing.
*/
GetClientRect(hwnd, &rcClient);
ptClientUL.x = rcClient.left;
ptClientUL.y = rcClient.top;
ptClientLR.x = rcClient.right;
ptClientLR.y = rcClient.bottom;
ClientToScreen(hwnd, &ptClientUL);
ClientToScreen(hwnd, &ptClientLR);
SetRect(&rcClient, ptClientUL.x, ptClientUL.y,
ptClientLR.x, ptClientLR.y);
return 0;
case WM_LBUTTONDOWN:
/*
* Restrict the mouse cursor to the client area. This
* ensures that the window receives a matching
* WM_LBUTTONUP message.
*/
ClipCursor(&rcClient);
/* Save the coordinates of the mouse cursor. */
pt.x = (LONG) LOWORD(lParam);
pt.y = (LONG) HIWORD(lParam);
/*
* If the user has clicked the bitmap rectangle, redraw
* it using the dotted pen. Set the fDragRect flag to
* indicate that the user is about to drag the
* rectangle.
*/
if (PtInRect(&rcBmp, pt)) {
hdc = GetDC(hwnd);
SelectObject(hdc, hpenDot);
Rectangle(hdc, rcBmp.left, rcBmp.top, rcBmp.right,
rcBmp.bottom);
fDragRect = TRUE;
ReleaseDC(hwnd, hdc);
}
return 0;
case WM_MOUSEMOVE:
/*
* Draw a target rectangle or drag the bitmap
* rectangle, depending on the status of the fDragRect
* flag.
*/
if ((wParam && MK_LBUTTON)

&& !fDragRect) { /* draw a target rectangle */
/*
* Set the mix mode so that the pen color is the
* inverse of the background color. The previous
* rectangle can then be erased by drawing
* another rectangle on top of it.
*/
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOTXORPEN);
/*
* If a previous target rectangle exists, erase
* it by drawing another rectangle on top of it.
*/
if (!IsRectEmpty(&rcTarget))
Rectangle(hdc, rcTarget.left, rcTarget.top,

rcTarget.right, rcTarget.bottom);
/*
* Save the coordinates of the target rectangle.
* Avoid invalid rectangles by ensuring that the
* value of the left coordinate is greater than
* that of the right coordinate, and that the
* value of the bottom coordinate is greater than
* that of the top.
*/
if ((pt.x < (LONG) LOWORD(lParam)) &&

(pt.y > (LONG) HIWORD(lParam)))
SetRect(&rcTarget, pt.x, HIWORD(lParam),

LOWORD(lParam), pt.y);
else if ((pt.x > (LONG) LOWORD(lParam)) &&

(pt.y > (LONG) HIWORD(lParam)))
SetRect(&rcTarget, LOWORD(lParam),

HIWORD(lParam), pt.x, pt.y);
else if ((pt.x > (LONG) LOWORD(lParam)) &&

(pt.y < (LONG) HIWORD(lParam)))
SetRect(&rcTarget, LOWORD(lParam), pt.y,

pt.x, HIWORD(lParam));
else
SetRect(&rcTarget, pt.x, pt.y, LOWORD(lParam),

HIWORD(lParam));
/* Draw the new target rectangle. */
Rectangle(hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
ReleaseDC(hwnd, hdc);
}
else if ((wParam && MK_LBUTTON)

&& fDragRect) { /* drag the bitmap rectangle */
/*
* Set the mix mode so that the pen color is the
* inverse of the background color.
*/
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOTXORPEN);
/*
* Select the dotted pen into the DC and erase
* the previous bitmap rectangle by drawing
* another rectangle on top of it.
*/
SelectObject(hdc, hpenDot);
Rectangle(hdc, rcBmp.left, rcBmp.top,
rcBmp.right, rcBmp.bottom);
/*
* Set the new coordinates of the bitmap
* rectangle, then redraw it.
*/
OffsetRect(&rcBmp, LOWORD(lParam) - pt.x,
HIWORD(lParam) - pt.y);
Rectangle(hdc, rcBmp.left, rcBmp.top,
rcBmp.right, rcBmp.bottom);
ReleaseDC(hwnd, hdc);
/* Save the coordinates of the mouse cursor. */
pt.x = (LONG) LOWORD(lParam);
pt.y = (LONG) HIWORD(lParam);
}
return 0;
case WM_LBUTTONUP:
/*
* If the bitmap rectangle and target rectangle
* intersect, copy the bitmap into the target
* rectangle. Otherwise, copy the bitmap into the
* rectangle bitmap at its new location.
*/
if (IntersectRect(&rcTmp, &rcBmp, &rcTarget)) {
/*
* Erase the bitmap rectangle by filling it with
* the background color.
*/
hdc = GetDC(hwnd);
FillRect(hdc, &rcBmp, hbrBkgnd);
/*
* Redraw the target rectangle because the part
* that intersected with the bitmap rectangle was
* erased by the call to FillRect.
*/
Rectangle(hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
/* Copy the bitmap into the target rectangle. */
StretchBlt(hdc, rcTarget.left + 1, rcTarget.top + 1,
(rcTarget.right - rcTarget.left) - 2,
(rcTarget.bottom - rcTarget.top) - 2, hdcCompat,
0, 0, 32, 32, SRCCOPY);
/*
* Copy the target rectangle to the bitmap
* rectangle, set the coordinates of the target
* rectangle to 0, then reset the fDragRect flag.
*/
CopyRect(&rcBmp, &rcTarget);
SetRectEmpty(&rcTarget);
ReleaseDC(hwnd, hdc);
fDragRect = FALSE;
}
else if (fDragRect) {
/*
* Draw the bitmap rectangle, copy the bitmap into
* it, and reset the fDragRect flag.
*/
hdc = GetDC(hwnd);
Rectangle(hdc, rcBmp.left, rcBmp.top,
rcBmp.right, rcBmp.bottom);
StretchBlt(hdc, rcBmp.left + 1, rcBmp.top + 1,
(rcBmp.right - rcBmp.left) - 2,
(rcBmp.bottom - rcBmp.top) - 2, hdcCompat,
0, 0, 32, 32, SRCCOPY);
ReleaseDC(hwnd, hdc);
fDragRect = FALSE;
}
/* Release the mouse cursor. */
ClipCursor((LPRECT) NULL);
return 0;
case WM_DESTROY:
/*
* Destroy the background brush, compatible bitmap,
* and the bitmap.
*/
DeleteObject(hbrBkgnd);
DeleteDC(hdcCompat);
DeleteObject(hbmp);
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return (LRESULT) NULL;

}

Rectangle Reference
The following functions, structures, and macros are used with rectangles.

Rectangle Functions
The following functions are used with rectangles.
CopyRect
EqualRect
InflateRect
IntersectRect
IsRectEmpty
OffsetRect
PtInRect
SetRect
SetRectEmpty
SubtractRect

UnionRect

Rectangle Structures
The following structures are used with rectangles.
POINT
POINTS

RECT

Rectangle Macros
The following macros are used with rectangles.
MAKEPOINTS
POINTSTOPOINT

POINTTOPOINTS

ResourcesA resource is binary data that a resource compiler or developer adds to an application's
executable file. A resource can be either standard or defined. The data in a standard resource
describes an icon, cursor, menu, dialog box, bitmap, enhanced metafile, font, accelerator table,
message-table entry, string-table entry, or version. An application-defined resource, also called a
custom resource, contains any data required by a specific application.

About Resources
This overview describes the functions that enable applications to find a resource in a module; load
a resource into memory; add, delete or replace a resource in an executable file; and generate a
list of the resources contained in a module. For specific information about the organization of
resource data within executable files, refer to the resource formats documentation.

For information about how to create standard resources, refer to the following table.

Resource Topic

Accelerator table Keyboard Accelerators
Bitmap Bitmaps
Cursor Cursors
Dialog box Dialog Boxes
Enhanced metafile Metafiles
Font Fonts and Text
Icon Icons
Menu Menus
Message-table entry Your message-compiler documentation
String-table entry String Manipulation
Version information File Installation Library

For information about how to include resource data in a Microsoft® Windows® executable
file, refer to the documentation for your resource compiler.

Finding and Loading Resources
Before using a resource, an application must load it into memory. The FindResource and
FindResourceEx functions find a resource in a module and return a handle to the binary resource
data. FindResource locates a resource by type and name. FindResourceEx locates the
resource by type, name, and language. Information about FindResource in this topic also applies
to FindResourceEx.

The LoadResource function uses the resource handle returned by FindResource to load the
resource into memory. After an application loads a resource by using LoadResource, Windows
automatically unloads and reloads the resource as memory conditions and application execution
require. Thus, an application need not explicitly unload a resource it no longer needs.

An application can use FindResource and LoadResource to find and load any type of resource,
but these functions should be used only if the application must access the binary resource data for
subsequent function calls. To use a resource immediately, an application should use one of the
following resource-specific functions to find and load resources in one call.

Function Action

FormatMessage Loads and formats a message-table entry.
LoadAcceleratorsLoads an accelerator table.
LoadBitmap Loads a bitmap resource.
LoadCursor Loads a cursor resource.
LoadIcon Loads an icon resource.
LoadImage Loads an icon, cursor, bitmap, or enhanced

metafile resource.
LoadMenu Loads a menu resource.
LoadString Loads a string-table entry.

Before terminating, an application should release the memory occupied by accelerator
tables, bitmaps, cursors, icons, and menus by using one of the functions in the following
table.

Resource Release function

Accelerator table DestroyAcceleratorTable
Bitmap DeleteObject
Cursor DestroyCursor
Icon DestroyIcon
Menu DestroyMenu

When the application terminates, Windows automatically releases the memory occupied by
the other types of resources.

Adding, Deleting, and Replacing Resources
Applications must frequently add, delete, or replace resources in executable files. Two methods
can be used to accomplish these tasks. The first is to edit the resource-definition file, recompile
the resources, and add the recompiled resources to the application's executable file. The second
method is to copy the resource data directly into the application's executable file.

For example, to localize an English-language application for use in Norway, it may be necessary
to replace the English dialog box with one using Norwegian. A developer creates an appropriate
dialog box by using a dialog box editor or by writing a template in the resource-definition file. The
developer then recompiles the resources and adds the new resources to the application's
executable file.

If an appropriate dialog box exists in binary form, however, the developer can copy the data
directly to the executable file being localized by using three Windows functions. The
BeginUpdateResource function creates an update handle for the executable file whose
resources are to be changed. The UpdateResource function uses this handle to add, delete, or
replace a resource in the executable file. The EndUpdateResource function closes the handle.

After an update handle to an executable file is created by BeginUpdateResource, an application
can use UpdateResource repeatedly to make changes to the resource data. Each call to
UpdateResource contributes to an internal list of additions, deletions, and replacements but does
not actually write the data to the executable file. Immediately before closing the update handle,
EndUpdateResource writes the accumulated changes to the executable file.

Sometimes, an application must copy resources or find resource sizes. The LoadLibrary function
provides a module handle to an executable file whose resources are to be copied, and the
LockResource function provides a pointer to the resource data in the specified module. The
SizeofResource function returns the size, in bytes, of a specified resource.

Enumerating Resources
Three Windows functions enable an application to obtain lists of resource types, names, and
languages in a specified module. The EnumResourceTypes function provides a list of resource
types found in the module, the EnumResourceNames function provides the name of each
resource within a given type, and the EnumResourceLanguages function provides the language
of each resource of a given name and type. These functions and their associated callback
functions enable applications to create a list of all resources in a module. This process is
described in Creating a Resource List.

Win32 Resource File Formats
This section describes the format of the binary resource file that the resource compiler creates
based on the contents of the resource-definition file. This file usually has an .RES extension. The
linker reformats the .RES file into a resource object file and then links it to the executable file of a
Win32-based application.

A binary resource file consists of a number of concatenated resource file entries. Each entry
consists of a resource header and the data for that resource. A resource header is DWORD-
aligned in the file and consists of the following:

· A DWORD that contains the size of the resource header
· A DWORD that contains the size of the resource data
· The resource type
· The resource name
· Additional resource information

The RESOURCEHEADER structure describes the format of this header. The data for the
resource follows the resource header and is specific to each type of resource. Some resources
also employ a resource-specific group header structure to provide information about a group of
resources.

An accelerator table is one resource entry in a resource file. It does not have a group header. An
AccelTableEntry structure describes each entry in the accelerator table. Multiple accelerator
tables are permitted.

A dialog box is also one resource entry in the resource file. It consists of one DLGTEMPLATE
dialog box header structure plus one DLGITEMTEMPLATE structure for each control in the dialog
box. The DLGTEMPLATEEX and the DLGITEMTEMPLATEEX structures describe the format of
extended dialog box resources.

Fonts are stored in the resource file as a group of resources. Individual fonts make up a font
group. A FONT Statement resource definition statement in the .RC file defines each font. Each
individual font in the resource consists of the complete contents of the related .FNT file. A
FontGroupHdr structure follows all the individual font components in the .RES file.

Font resources are not added to the resources of a specific application. Instead, they are normally
added to .EXE files that have a .FON extension. These files are usually resource-only dynamic-
link libraries (DLLs) rather than applications.

Windows handles each icon and cursor as a single file. However, these are stored in .RES files
and in .EXE files as a group of icon resources or a group of cursor resources. The file formats of
icon and cursor resources are similar. In the .RES file a resource group header follows all of the
individual icon or cursor group components.

The format of each icon component closely resembles the format of the .ICO file. Each icon image
is stored in a BITMAPINFO structure followed by the color device-independent bitmap (DIB) bits
of the icon's XOR mask. The monochrome DIB bits of the icon's AND mask follow the color DIB
bits.

The format of each cursor component resembles the format of the .CUR file. Each cursor image
is stored in a BITMAPINFO structure followed by the monochrome device-independent bitmap
(DIB) bits of the cursor's XOR mask, and then by the monochrome DIB bits of the cursor's AND
mask. Note that there is a difference in the bitmaps of the two resources: Unlike icons, cursor
XOR masks do not have color DIB bits. Although the bitmaps of the cursor masks are
monochrome and do not have DIB headers or color tables, the bits are still in DIB format with
respect to alignment and direction. Another significant difference between cursors and icons is
that cursors have a hotspot and icons do not.

The group header for both icon and cursor resources consists of a NEWHEADER structure plus
one or more RESDIR structures. There is one RESDIR structure for each icon or cursor. The
group header contains the information a Windows application needs to select the correct icon or
cursor to display. Both the group header and the data that repeats for each icon or cursor in the
group have a fixed length. This allows the application to randomly access the information.

A menu resource consists of a MenuHeader structure followed by one or more NormalMenuItem
or PopupMenuItem structures, one for each menu item in the menu template. The
MENUEX_TEMPLATE_HEADER and the MENUEX_TEMPLATE_ITEM structures describe the
format of extended menu resources.

A message table is a resource that contains formatted text for display as an error message or in a
message box. The main structure in a message table resource is the
MESSAGE_RESOURCE_DATA structure. The organization of a message table resource is
similar to that of a string table resource.

The main structure in a version resource is the VS_FIXEDFILEINFO structure. Additional
structures include the VarFileInfo structure to store language information data, and
StringFileInfo for user-defined string information. All strings in a version resource are in Unicode
format for Win32-based applications. Each block of information is aligned on a DWORD boundary.

For a group list of the structures that describe the format of resources, see Resource Structures.

Using Resources
· Updating resources
· Creating a resource list

Updating Resources
The following example copies a dialog box resource from one executable file, HAND.EXE, to
another, FOOT.EXE, by following these steps:

1. The LoadLibrary function loads the executable file HAND.EXE.
2. The FindResource and LoadResource functions locate and load the dialog box resource

named If from the file.
3. The LockResource function returns a pointer to the dialog box resource data.
4. The BeginUpdateResource function opens an update handle FOOT.EXE.
5. The UpdateResource function copies the dialog box resource from HAND.EXE to FOOT.

EXE.
6. The EndUpdateResource function completes the update.

The following code implements these steps.HRSRC hResLoad;// handle to loaded resource
HANDLE hExe; // handle to existing .EXE file
HRSRC hRes; // handle/ptr. to res. info. in hExe
HANDLE hUpdateRes; // update resource handle
char *lpResLock; // pointer to resource data
BOOL result;
// Load the .EXE file that contains the dialog box you want to copy.
hExe = LoadLibrary("hand.exe");
if (hExe == NULL) {

ErrorHandler("Could not load exe.");
}
// Locate the dialog box resource in the .EXE file.
hRes = FindResource(hExe, "AboutBox", RT_DIALOG);
if (hRes == NULL) {

ErrorHandler("Could not locate dialog box.");
}
// Load the dialog box into global memory.
hResLoad = LoadResource(hExe, hRes);
if (hResLoad == NULL) {

ErrorHandler("Could not load dialog box.");
}
// Lock the dialog box into global memory.
lpResLock = LockResource(hRes);
if (lpResLock == NULL) {

ErrorHandler("Could not lock dialog box.");
}
// Open the file to which you want to add the dialog box resource.
hUpdateRes = BeginUpdateResource("foot.exe", FALSE);
if (hUpdateRes == NULL) {

ErrorHandler("Could not open file for writing.");
}
// Add the dialog box resource to the update list.
result = UpdateResource(hUpdateRes, // update resource handle

RT_DIALOG, // change dialog box resource
"AboutBox", // dialog box name
MAKELANGID(LANG_NEUTRAL,
SUBLANG_NEUTRAL), // neutral language ID
lpResLock, // ptr to resource info
SizeofResource(hExe, hRes)); // size of resource info.

if (result == FALSE) {
ErrorHandler("Could not add resource.");

}
// Write changes to FOOT.EXE and then close it.
if (!EndUpdateResource(hUpdateRes, FALSE)) {

ErrorHandler("Could not write changes to file.");
}
// Clean up.
if (!FreeLibrary(hExe)) {

ErrorHandler("Could not free executable.");
}

Creating a Resource List
The following example creates a list of every resource in the HAND.EXE file. The list is written to
the RESINFO.TXT file.

The code demonstrates how to load the executable file, create a file in which to write resource
information, and call the EnumResourceTypes function to send each resource type found in the
module to the application-defined callback function EnumTypesFunc. See EnumResTypeProc
for information on callback functions of this type. This callback function uses the
EnumResourceNames function to pass the name of every resource within the specified type to
another application-defined callback function, EnumNamesFunc. See EnumResNameProc for
information on callback functions of this type. EnumNamesFunc uses the
EnumResourceLanguages function to pass the language of every resource of the specified type
and name to a third callback function, EnumLangsFunc. See EnumResLangProc for information
on callback functions of this type. EnumLangsFunc writes information about the resource of the
specified type, name, and language to the RESINFO.TXT file.char szBuffer[80]; // print buffer for EnumResourceTypes
DWORD cbWritten; // number of bytes written to res. info. file
int cbString; // length of string in sprintf
// Declare callback functions.
BOOL EnumTypesFunc(

HANDLE hModule,
LPTSTR lpType,
LONG lParam);

BOOL EnumNamesFunc(
HANDLE hModule,
LPCTSTR lpType,
LPTSTR lpName,
LONG lParam);

BOOL EnumLangsFunc(
HANDLE hModule,
LPCTSTR lpType,
LPCTSTR lpName,
WORD wLang,
LONG lParam);

// Load the .EXE whose resources you want to list.
hExe = LoadLibrary("hand.exe");
if (hExe == NULL) {

ErrorHandler("Could not load .EXE.");
}
// Create a file to contain the resource info.
hFile = CreateFile("resinfo.txt", // name of file

GENERIC_READ | GENERIC_WRITE, // access mode
0, // share mode
(LPSECURITY_ATTRIBUTES) NULL, // no security
CREATE_ALWAYS, // create flags
FILE_ATTRIBUTE_NORMAL, // file attributes
(HANDLE) NULL);// no template

if (hFile == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open file.");

}
// Find all of the loaded file's resources.
cbString = sprintf(szBuffer,

"The file contains the following resources:\n\n");
WriteFile(hFile, // file to hold resource info.

szBuffer, // what to write to the file
(DWORD) cbString, // number of bytes in szBuffer
&cbWritten, // number of bytes written
NULL); // no overlapped I/O

EnumResourceTypes(hExe, // module handle
(ENUMRESTYPEPROC)EnumTypesFunc, // callback function
0);// extra parameter

// Unload the executable file whose resources were
// enumerated and close the file created to contain
// the resource information.
FreeLibrary(hExe);
CloseHandle(hFile);
// FUNCTION: EnumTypesFunc(HANDLE, LPSTR, LONG)
//
// PURPOSE: Resource type callback
BOOL EnumTypesFunc(

HANDLE hModule, // module handle
LPTSTR lpType, // address of resource type
LONG lParam) // extra parameter, could be

// used for error checking
{

int cbString;
// Write the resource type to a resource information file.
// The type may be a string or an unsigned decimal
// integer, so test before printing.
if ((ULONG)lpType & 0xFFFF0000) {
cbString = sprintf(szBuffer, "Type: %s\n", lpType);
}
else {
cbString = sprintf(szBuffer, "Type: %u\n", (USHORT)lpType);
}
WriteFile(hFile, szBuffer, (DWORD) cbString,
&cbWritten, NULL);
// Find the names of all resources of type lpType.
EnumResourceNames(hModule,
lpType,
(ENUMRESNAMEPROC)EnumNamesFunc,
0);
return TRUE;

}
// FUNCTION: EnumNamesFunc(HANDLE, LPSTR, LPSTR, LONG)
//
// PURPOSE: Resource name callback
BOOL EnumNamesFunc(

HANDLE hModule, // module handle
LPCTSTR lpType, // address of resource type
LPTSTR lpName, // address of resource name
LONG lParam) // extra parameter, could be

// used for error checking
{

int cbString;
// Write the resource name to a resource information file.
// The name may be a string or an unsigned decimal
// integer, so test before printing.

if ((ULONG)lpName & 0xFFFF0000) {
cbString = sprintf(szBuffer, "\tName: %s\n", lpName);
}
else {
cbString = sprintf(szBuffer, "\tName: %u\n",
(USHORT)lpName);
}
WriteFile(hFile, szBuffer, (DWORD) cbString,
&cbWritten, NULL);

// Find the languages of all resources of type
// lpType and name lpName.

EnumResourceLanguages(hModule,
lpType,
lpName,
(ENUMRESLANGPROC)EnumLangsFunc,
0);
return TRUE;

}
// FUNCTION: EnumLangsFunc(HANDLE, LPSTR, LPSTR, WORD, LONG)
//
// PURPOSE: Resource language callback
BOOL EnumLangsFunc(

HANDLE hModule, // module handle
LPCTSTR lpType, // address of resource type
LPCTSTR lpName, // address of resource name
WORD wLang, // resource language
LONG lParam)// extra parameter, could be
used for error checking

{
HANDLE hResInfo;
char szBuffer[80];
int cbString = 0;
hResInfo = FindResourceEx(hModule, lpType, lpName, wLang);
// Write the resource language to the resource information file.
cbString = sprintf(szBuffer, "\t\tLanguage: %u\n",
(USHORT)wLang);
WriteFile(hFile, szBuffer, (DWORD) cbString,
&cbWritten, NULL);
// Write the resource handle and size to buffer.
cbString = sprintf(szBuffer,
"\t\thResInfo == %lx, Size == %lu\n\n",
hResInfo,
SizeofResource(hModule, hResInfo));
WriteFile(hFile, szBuffer, (DWORD) cbString,
&cbWritten, NULL);
return TRUE;

}

Resource Reference
The following functions, structures, and macros are used with resources.

Resource Functions
The following functions are used with resources.
BeginUpdateResource
CopyImage
EndUpdateResource
EnumResLangProc
EnumResNameProc
EnumResourceLanguages
EnumResourceNames
EnumResourceTypes
EnumResTypeProc
FindResource
FindResourceEx
LoadImage
LoadResource
LockResource
SizeofResource

UpdateResource

Obsolete Functions
FreeResource

UnlockResource

Resource Structures
The structures that describe the format of resources are grouped in the following manner. An
alphabetic list follows.Resource File HeaderRESOURCEHEADER
Accelerator Table ResourcesAccelTableEntry
Cursor ResourcesCURSORDIR
LOCALHEADER
NEWHEADER

RESDIR
Icon ResourcesICONRESDIR
NEWHEADER

RESDIR
Dialog Box ResourcesDLGTEMPLATE

DLGITEMTEMPLATE
Extended Dialog Box ResourcesDLGTEMPLATEEX

DLGITEMTEMPLATEEX
Font and Font Directory ResourcesDirEntry
FontDirEntry

FontGroupHdr
Menu ResourcesMenuHeader
MENUHELPID
NormalMenuItem

PopupMenuItem
Extended Menu ResourcesMENUEX_TEMPLATE_HEADER

MENUEX_TEMPLATE_ITEM
Message Table ResourcesMESSAGE_RESOURCE_BLOCK
MESSAGE_RESOURCE_DATA

MESSAGE_RESOURCE_ENTRY
Version ResourcesString
StringFileInfo
StringTable
Var
VarFileInfo
VS_FIXEDFILEINFO

VS_VERSION_INFO

The following structures listed here alphabetically are used with resource files.
AccelTableEntry
CURSORDIR
CURSORSHAPE
DirEntry
DLGITEMTEMPLATE
DLGITEMTEMPLATEEX
DLGTEMPLATE
DLGTEMPLATEEX
FontDirEntry
FontGroupHdr
ICONRESDIR
LOCALHEADER
MENUEX_TEMPLATE_HEADER

MENUEX_TEMPLATE_ITEM
MenuHeader
MENUHELPID
MESSAGE_RESOURCE_BLOCK
MESSAGE_RESOURCE_DATA
MESSAGE_RESOURCE_ENTRY
NEWHEADER
NormalMenuItem
PopupMenuItem
RESDIR
RESOURCEHEADER
String
StringFileInfo
StringTable
Var
VarFileInfo
VS_FIXEDFILEINFO

VS_VERSION_INFO

Resource Macros
The following macro is used with resources.

MAKEINTRESOURCE

TimersA timer is an internal routine that repeatedly measures a specified interval, in milliseconds.

About Timers
Each time the specified interval (or time-out value) for a given timer elapses, the system notifies
the window associated with the timer. Because the accuracy of a timer depends on the system
clock rate and how often the application retrieves messages from the message queue, the time-
out value is only approximate.

Creating a Timer
An application written for Microsoft® Windows® creates a timer by using the SetTimer function. If
you specify a window handle in the call to SetTimer, the application associates the timer with that
window. Whenever the time-out value for the timer elapses, the system posts a WM_TIMER
message to the window associated with the timer. If no window handle is given in the call to
SetTimer, the application that created the timer must monitor its message queue for WM_TIMER
messages and dispatch them to the appropriate window.

A new timer starts timing the interval as soon as it is created. An application can change a timer's
time-out value by using SetTimer and can destroy a timer by using the KillTimer function. To use
system resources efficiently, applications should destroy timers that are no longer necessary.

Each timer has a unique identifier. When creating a timer, an application can either specify an
identifier or have the system create a unique value. The first parameter of a WM_TIMER message
contains the identifier of the timer that posted the message.

High-Resolution Timer
A counter is a general term used in programming to refer to an incrementing variable. Some
systems include a high-resolution performance counter that provides high-resolution elapsed
times.

If a high-resolution performance counter exists on the system, the QueryPerformanceFrequency
function can be used to express the frequency, in counts per second. The value of the count is
processor dependent. On some processors, for example, the count might be the cycle rate of the
processor clock.

The QueryPerformanceCounter function retrieves the current value of the high-resolution
performance counter (if one exists on the system). By calling this function at the beginning and
end of a section of code, an application essentially uses the counter as a high-resolution timer.
For example, suppose that QueryPerformanceFrequency indicates that the frequency of the
high-resolution performance counter is 50,000 counts per second. If the application calls
QueryPerformanceCounter immediately before and immediately after the section of code to be
timed, the counter values might be 1500 counts and 3500 counts, respectively. These values
would indicate that .04 seconds (2000 counts) elapsed while the code executed.

Using Timers
· Creating a timer
· Destroying a timer
· Using timer functions to create a mousetrap

Example: Creating a Timer
The following example uses the SetTimer function to create two timers. The first timer is set for
every 10 seconds, the second for every 5 minutes.// Set two timers.
SetTimer(hwnd, // handle of main window

IDT_TIMER1, // timer identifier
10000, // 10-second interval
(TIMERPROC) NULL);// no timer callback

SetTimer(hwnd, // handle of main window
IDT_TIMER2, // timer identifier
300000, // 5-minute interval
(TIMERPROC) NULL);// no timer callbackTo process the WM_TIMER messages generated by these timers, add a WM_TIMER case

statement to the window procedure for the hwnd parameter.case WM_TIMER:
switch (wParam)

{
case IDT_TIMER1:
.
. // Process the 10-second timer.
.
return 0;
case IDT_TIMER2:
.
. // Process the 5-minute timer.
.
return 0;
}An application can also create a timer whose WM_TIMER messages are processed not by the

main window procedure but by an application-defined callback function, as in the following code
sample, which creates a timer and uses the callback function MyTimerProc to process the timer's
WM_TIMER messages.// Set the timer.
SetTimer(hwnd, // handle of main window

IDT_TIMER3,// timer identifier
5000, // 5-second interval
(TIMERPROC) MyTimerProc); // timer callbackThe calling convention for MyTimerProc must be based on the Microsoft® Win32® callback

function, TimerProc.

If your application creates a timer without specifying a window handle, your application must
monitor the message queue for WM_TIMER messages and dispatch them to the appropriate
window.HWND hwndTimer; // handle of window for timer messages
MSG msg;// message structure

while (GetMessage(&msg, // message structure
NULL, // handle of window to receive the message
NULL, // lowest message to examine
NULL))// highest message to examine
{
// Post WM_TIMER messages to the hwndTimer procedure.
if (msg.message == WM_TIMER)
{
msg.hwnd = hwndTimer;
}
TranslateMessage(&msg); // translates virtual-key codes
DispatchMessage(&msg); // dispatches message to window
}

Destroying a Timer
Applications should use the KillTimer function to destroy timers that are no longer necessary. The
following example destroys the timers identified by the constants IDT_TIMER1, IDT_TIMER2, and
IDT_TIMER3.// Destroy the timers.
KillTimer(hwnd, IDT_TIMER1);
KillTimer(hwnd, IDT_TIMER2);
KillTimer(hwnd, IDT_TIMER3);

Using Timer Functions to Create a Mousetrap
Sometimes it is necessary to prevent more input while you have a cursor on the screen. One way
to accomplish this is to create a special routine that traps mouse input until a specific event
occurs. Many developers refer to this routine as "building a mousetrap."

The following example uses the SetTimer and KillTimer functions to create a simple mousetrap.
SetTimer creates a timer that sends a WM_TIMER message every 10 seconds. Each time the
application receives a WM_TIMER message, it records the cursor location. If the current location
is the same as the previous location and the application's main window is minimized, the
application moves the cursor to the icon. When the application closes, KillTimer stops the timer.HICON hIcon1;// icon handle
POINT ptOld; // previous cursor location
UINT uResult;// SetTimer's return value
HINSTANCE hinstance; // handle of current instance
//
// Perform application initialization here.
//
wc.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(400));
wc.hCursor = LoadCursor(hinstance, MAKEINTRESOURCE(200));
// Record the initial cursor position.
GetCursorPos(&ptOld);
// Set the timer for the mousetrap.
uResult = SetTimer(hwnd, // handle of main window

IDT_MOUSETRAP, // timer identifier
10000, // 10-second interval
(TIMERPROC) NULL);// no timer callback

if (uResult == 0)
{

ErrorHandler("No timer is available.");
}
LONG APIENTRY MainWndProc(
HWND hwnd,// handle of main window
UINT message, // type of message
UINT wParam, // additional information
LONG lParam) // additional information
{

HDC hdc; // handle of device context
POINT pt; // current cursor location
RECT rc; // location of minimized window
switch (message)
{
//
// Process other messages.
//
case WM_TIMER:
// If the window is minimized, compare the current
// cursor position with the one from 10 seconds
// earlier. If the cursor position has not changed,
// move the cursor to the icon.
if (IsIconic(hwnd))
{
GetCursorPos(&pt);
if ((pt.x == ptOld.x) && (pt.y == ptOld.y))
{
GetWindowRect(hwnd, &rc);
SetCursorPos(rc.left, rc.top);
}
else
{
ptOld.x = pt.x;
ptOld.y = pt.y;
}
}
return 0;
case WM_DESTROY:
// Destroy the timer.
KillTimer(hwnd, IDT_MOUSETRAP);
PostQuitMessage(0);
break;
//
// Process other messages.
//

}Although the following example also creates a mousetrap, it processes the WM_TIMER message
through the application-defined callback function MyTimerProc, rather than through the
application's message queue.UINT uResult;// SetTimer's return value
HICON hIcon1;// icon handle
POINT ptOld; // previous cursor location
HINSTANCE hinstance; // handle of current instance
//
// Perform application initialization here.
//
wc.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(400));
wc.hCursor = LoadCursor(hinstance, MAKEINTRESOURCE(200));
// Record the current cursor position.
GetCursorPos(&ptOld);
// Set the timer for the mousetrap.
uResult = SetTimer(hwnd, // handle of main window

IDT_MOUSETRAP, // timer identifier
10000,// 10-second interval
(TIMERPROC) MyTimerProc); // timer callback

if (uResult == 0)
{

ErrorHandler("No timer is available.");
}
LONG APIENTRY MainWndProc(
HWND hwnd,// handle of main window
UINT message, // type of message
UINT wParam, // additional information
LONG lParam) // additional information
{

HDC hdc; // handle of device context
switch (message)
{
//
// Process other messages.
//
case WM_DESTROY:
// Destroy the timer.
KillTimer(hwnd, IDT_MOUSETRAP);
PostQuitMessage(0);
break;
//
// Process other messages.
//

}
// MyTimerProc is an application-defined callback function that
// processes WM_TIMER messages.
VOID CALLBACK MyTimerProc(

HWND hwnd, // handle of window for timer messages
UINT message,// WM_TIMER message
UINT idTimer,// timer identifier
DWORD dwTime)// current system time

{
RECT rc;
POINT pt;
// If the window is minimized, compare the current
// cursor position with the one from 10 seconds earlier.
// If the cursor position has not changed, move the
// cursor to the icon.
if (IsIconic(hwnd))
{
GetCursorPos(&pt);
if ((pt.x == ptOld.x) && (pt.y == ptOld.y))
{
GetWindowRect(hwnd, &rc);
SetCursorPos(rc.left, rc.top);
}
else
{
ptOld.x = pt.x;
ptOld.y = pt.y;
}
}

}

Timer Reference
The following functions and messages are used with timers.

Timer Functions
The following functions are used with timers.
KillTimer
QueryPerformanceCounter
QueryPerformanceFrequency
SetTimer

TimerProc

Timer Messages
The following message is used with timers.

WM_TIMER

Window ClassesEvery window is a member of a window class. A window class is a set of attributes that Microsoft®
Windows® uses as a template to create a window in an application. This overview describes the
types of window classes, how Windows locates them, and the elements that define the default
behavior of windows that belong to them.

About Window Classes
Each window class has an associated window procedure shared by all windows of the same
class. The window procedure processes messages for all windows of that class and therefore
controls their behavior and appearance. For more information, see Window Procedures.

An application must register a window class before it can create a window of that class.
Registering a window class associates a window procedure, class styles, and other class
attributes with a class name. When an application specifies a class name in the CreateWindow or
CreateWindowEx function, the operating system creates a window with the window procedure,
styles, and other attributes associated with that class name.

Types of Window Classes
There are three types of window classes:

· System global classes
· Application global classes
· Application local classes

These types differ in scope and in when and how they are registered and destroyed.

System Global Classes
When Windows starts, it registers a set of system global classes for controls, including buttons,
combo boxes, edit controls, list boxes, list view controls, scroll bars, static controls, and tree-view
controls.

Any application can use a system global class at any time. Because Windows registers system
global classes on behalf of all applications, an application cannot destroy any of these classes.

Application Global Classes
An application global class is a window class registered by a dynamic-link library (DLL) and
available to all applications in the system. For example, your DLL can call the RegisterClassEx
function to register a window class that defines a custom control as an application global class so
that all applications can create instances of the custom control.

In Windows, all window classes are process specific. An application can create a global class by
creating the window class in a DLL and listing the name of the DLL in the registry under the
appropriate keys.

Whenever a process starts, the system loads the specified DLL in the context of the newly started
process before calling the main function in that process. The DLL must register the class during
its initialization procedure and must specify the CS_GLOBALCLASS style. (For more information
about class styles, see Class Styles.) After a class has been registered, any application can use it
to create any number of windows belonging to that class.

Windows does not automatically destroy a class when the DLL that registered it is unloaded. For
this reason, the Windows exit procedure of the DLL should call the UnregisterClass function to
remove the class.

Application Local Classes
An application local class is any window class that an application registers for its exclusive use.
Although an application can register any number of local classes, most applications register only
one. This window class supports the window procedure of the application's main window.

Registering a local class is similar to registering an application global class, except that the
CS_GLOBALCLASS style is not specified in the style member of the WNDCLASSEX structure.

Windows destroys a local class when the application that registered it closes. An application can
also use the UnregisterClass function to remove a local class and free the storage associated
with it.

How Windows Locates a Class
Windows maintains a list of structures for each of the three types of window classes. When an
application calls the CreateWindow or CreateWindowEx function to create a window with a
specified class, Windows uses the following procedure to locate the class:

1. Windows searches the list of application local classes for a class with the specified name.
Note that several application instances can use the same name to register local classes.
Windows uses instance handles to differentiate among local classes that have the same
name.

2. If the name is not in the application local class list, Windows searches the list of
application global classes.

3. If the name is not in the application global class list, Windows searches the list of system
global classes.

All windows created by the application use this procedure, including windows created by Windows
on the application's behalf, such as dialog boxes. It is possible to override system global classes
without affecting other applications. That is, an application can register an application local class
having the same name as a system global class. This replaces the system global class in the
context of the application but does not prevent other applications from using the system global
class.

Class Ownership
The owner of a class is the application or DLL that registered the class. Windows determines
class ownership from the hInstance member of the WNDCLASSEX structure passed to the
RegisterClassEx function when the class is registered. For Windows DLLs, the hInstance
member must be the instance handle of the DLL. The class is destroyed when the owner closes
or is unloaded. For this reason, the application must destroy all windows using the class before it
closes or the DLL is unloaded.

Elements of a Window Class
The elements of a window class define the default behavior of windows belonging to the class.
The application that registers a window class assigns elements to the class by setting appropriate
members in a WNDCLASSEX structure and passing the structure to the RegisterClassEx
function. The GetClassInfoEx and GetClassLong functions retrieve information about a given
window class. The SetClassLong function changes elements of a local or global class that the
application has already registered.

Although a complete window class consists of many elements, Windows requires only that an
application supply a class name, the window-procedure address, and an instance handle. Use the
other elements to define default attributes for windows of the class, such as the shape of the
cursor and the content of the menu for the window. You must initialize any unused members of
the WNDCLASSEX structure to zero or NULL. The window class elements are as follows.

Element Purpose

Class name Distinguishes the class from other
registered classes.

Window-procedure addressPoints to the function that processes all
messages sent to windows in the class
and defines the behavior of the window.

Instance handle Identifies the application or DLL that
registered the class.

Class cursor Defines the mouse cursor that Windows
displays for a window of the class.

Class icon Defines the large icon.
Small class icon Defines the small icon (Windows version

4.0 and higher).
Class background brush Defines the color and pattern that fill the

client area when the window is opened or
painted.

Class menu Specifies the default menu for windows
that do not explicitly define a menu.

Class styles Defines how to update the window after
moving or resizing it, how to process
double-clicks of the mouse, how to
allocate space for the device context, and
other aspects of the window.

Extra class memory Specifies the amount of extra memory, in
bytes, that Windows should reserve for the
class. All windows in the class share the
extra memory and can use it for any
application-defined purpose. Windows
initializes this memory to zero.

Extra window memory Specifies the amount of extra memory, in
bytes, that Windows should reserve for
each window belonging to the class. The
extra memory can be used for any
application-defined purpose. Windows
initializes this memory to zero.

Class Name
Every window class needs a class name to distinguish one class from another. Assign a class
name by setting the lpszClassName member of the WNDCLASSEX structure to the address of a
null-terminated string that specifies the name. Because window classes are process specific in
Windows, window class names need to be unique only within the same process. Also, because
class names occupy space in the system's private atom table, you should keep class name strings
as short a possible.

The GetClassName function retrieves the name of the class to which a given window belongs.

Window-Procedure Address
Every class needs a window-procedure address to define the entry point of the window procedure
used to process all messages for windows in the class. Windows passes messages to the
procedure when it requires the window to carry out tasks, such as painting its client area or
responding to input from the user. An application assigns a window procedure to a class by
copying its address to the lpfnWndProc member of the WNDCLASSEX structure. For more
information, see Window Procedures.

Instance Handle
Every window class requires an instance handle to identify the application or DLL that registered
the class. As a multitasking system, Windows lets several applications or DLLs run at the same
time, so it requires instance handles to keep track of all of them. Windows assigns a handle to
each copy of a running application or DLL.

Multiple instances of the same application or DLL all use the same code segment, but each has
its own data segment. Windows uses an instance handle to identify the data segment that
corresponds to a particular instance of an application or DLL.

Windows passes an instance handle to an application or DLL when the application starts. The
application or DLL assigns this instance handle to the class by copying it to the hInstance
member of the WNDCLASSEX structure.

Class Cursor
The class cursor defines the shape of the cursor when it is in the client area of a window in the
class. Windows automatically sets the cursor to the given shape when the cursor enters the
window's client area and ensures it keeps that shape while it remains in the client area. To assign
a cursor shape to a window class, load a predefined cursor shape by using the LoadCursor
function and then assign the returned cursor handle to the hCursor member of the
WNDCLASSEX structure. Alternatively, provide a custom cursor resource and use the
LoadCursor function to load it from the application's resources.

Windows does not require a class cursor. If an application sets the hCursor member of the
WNDCLASSEX structure to NULL, a class cursor is not defined. Windows assumes the window
sets the cursor shape each time the cursor moves into the window. A window can set the cursor
shape by calling the SetCursor function whenever the window receives the WM_MOUSEMOVE
message. For more information about cursors, see Cursors.

Class Icons
A class icon is a picture that the system uses to represent a window of a particular class. An
application can have two class icons ¾ one large and one small. The system displays a window's
large class icon in the task-switch window that appears when the user presses ALT+TAB, and in
the large icon views of the task bar and explorer. The small class icon appears in a window's title
bar and in the small icon views of the task bar and explorer.

To assign a large and small icon to a window class, specify the handles of the icons in the hIcon
and hIconSm members of the WNDCLASSEX structure. The icon dimensions must conform to
required dimensions for large and small class icons. For a large class icon, you can determine the
required dimensions by specifying the SM_CXICON and SM_CYICON values in a call to the
GetSystemMetrics function. For a small class icon, specify the SM_CXSMICON and
SM_CYSMICON values. For information, see Icons.

If an application sets the hIcon and hIconSm members of the WNDCLASSEX structure to NULL,
the system uses the default application icon as the large and small class icons for the window
class. If you specify a large class icon but not a small one, the system creates a small class icon
based on the large one. However, if you specify a small class icon but not a large one, the system
uses the default application icon as the large class icon and the specified icon as the small class
icon.

You can override the large or small class icon for a particular window by using the WM_SETICON
message. You can retrieve the current large or small class icon by using the WM_GETICON
message.

Class Background Brush
A class background brush prepares the client area of a window for subsequent drawing by the
application. Windows uses the brush to fill the client area with a solid color or pattern, thereby
removing all previous images from that location whether they belonged to the window or not.
Windows notifies a window that its background should be painted by sending the
WM_ERASEBKGND message to the window. For more information, see Brushes.

To assign a background brush to a class, create a brush by using the appropriate GDI functions
and assign the returned brush handle to the hbrBackground member of the WNDCLASSEX
structure.

Instead of creating a brush, an application can set the hbrBackground member to one of the
standard system color values. For a list of the standard system color values, see SetSysColors.

To use a standard system color, the application must increase the background-color value by one.
For example, COLOR_BACKGROUND + 1 is the system background color. Alternatively, you can
use the GetSysColorBrush function to retrieve the handle of a brush that corresponds to a
standard system color, and then specify the handle in the hbrBackground member of the
WNDCLASSEX structure.

Windows does not require that a window class have a class background brush. If this parameter is
set to NULL, the window must paint its own background whenever it receives the
WM_ERASEBKGND message.

Class Menu
A class menu defines the default menu to be used by the windows in the class if no explicit menu
is given when the windows are created. A menu is a list of commands from which a user can
choose actions for the application to carry out.

You can assign a menu to a class by setting the lpszMenuName member of the WNDCLASSEX
structure to the address of a null-terminated string that specifies the resource name of the menu.
The menu is assumed to be a resource in the given application. Windows automatically loads the
menu when it is needed. Note that if the menu resource is identified by an integer and not by a
name, the application can set the lpszMenuName member to that integer by applying the
MAKEINTRESOURCE macro before assigning the value.

Windows does not require a class menu. If an application sets the lpszMenuName member of the
WNDCLASSEX structure to NULL, Windows assumes the windows in the class have no menu
bars. Even if no class menu is given, an application can still define a menu bar for a window when
it creates the window.

Windows does not allow menu bars with child windows. If a menu is given for a class and a child
window of that class is created, the menu is ignored. For more information, see Menus.

Class Styles
The class styles define additional elements of the window class. Two or more styles can be
combined by using the bitwise OR (|) operator. To assign a style to a window class, assign the
style to the style member of the WNDCLASSEX structure. The class styles are as follows.

Style Action

CS_BYTEALIGNCLIENT Aligns the window's client area on a byte
boundary (in the x direction) to enhance
performance during drawing operations.
This style affects the width of the window
and its horizontal placement on the
display.

CS_BYTEALIGNWINDOWAligns the window on a byte boundary (in
the x direction) to enhance performance
during operations that involve moving or
sizing the window. This style affects the
width of the window and its horizontal
placement on the display.

CS_CLASSDC Allocates one device context to be shared
by all windows in the class. For more
information about device contexts, see
Class and Private Device Contexts and
Device Contexts.

CS_DBLCLKS Instructs Windows to send a double-click
message to the window procedure when
the user double-clicks the mouse while the
cursor is within a window belonging to the
class. For more information about double-
clicks, see Mouse Input.

CS_GLOBALCLASS Specifies that the window class is an
application global class. For more
information, see Application Global
Classes.

CS_HREDRAW Specifies that the entire window is to be
redrawn if a movement or size adjustment
changes the width of the client area.

CS_NOCLOSE Disables the Close command on the
System menu.

CS_OWNDC Allocates a unique device context for each
window in the class. For more information
about device contexts, see Class and
Private Device Contexts and Device
Contexts.

CS_PARENTDC Sets the clipping rectangle of the child
window to that of the parent window so
that the child can draw on the parent. A
window with the CS_PARENTDC style bit
receives a regular device context from the
system's cache of device contexts. It does
not give the child the parent's device
context or device context settings.
Specifying CS_PARENTDC enhances an
application's performance. For more
information about device contexts, see
Class and Private Device Contexts and
Device Contexts.

CS_SAVEBITS Saves, as a bitmap, the portion of the
screen image obscured by a window.
Windows uses the saved bitmap to re-
create the screen image when the window
is removed. Windows displays the bitmap
at its original location and does not send
WM_PAINT messages to windows
obscured by the window if other screen

actions have not invalidated the stored
image. Use this style for small windows
that are displayed briefly and then
removed before other screen activity takes
place (for example, menus or dialog
boxes). This style increases the time
required to display the window, because
the operating system must first allocate
memory to store the bitmap.

CS_VREDRAW Specifies that the entire window is to be
redrawn if a movement or size adjustment
changes the height of the client area.

Extra Class Memory
Windows maintains a WNDCLASSEX structure internally for each window class in the system.
When an application registers a window class, it can direct Windows to allocate and append a
number of additional bytes of memory to the end of the WNDCLASSEX structure. This memory is
called extra class memory and is shared by all windows belonging to the class. Use the extra
class memory to store any information pertaining to the class.

Because extra memory is allocated from the system's local heap, an application should use extra
class memory sparingly. The RegisterClassEx function fails if the amount of extra class memory
requested is greater than 40 bytes. If an application requires more than 40 bytes, it should
allocate its own memory and store a pointer to the memory in the extra class memory.

The SetClassWord and SetClassLong functions copy a value to the extra class memory. To
retrieve a value from the extra class memory, use the GetClassWord and GetClassLong
functions. The cbClsExtra member of the WNDCLASSEX structure specifies the amount of extra
class memory to allocate. An application that doesn't use extra class memory must initialize the
cbClsExtra member to zero.

Extra Window Memory
Windows maintains an internal data structure for each window. When registering a window class,
an application can specify a number of additional bytes of memory, called extra window memory.
When creating a window of the class, Windows allocates and appends the specified amount of
extra window memory to the end of the window's structure. An application can use this memory to
store window-specific data.

Because extra memory is allocated from the system's local heap, an application should use extra
window memory sparingly. With operating system version 4.0 or later, the RegisterClassEx
function fails if the amount of extra window memory requested is greater than 40 bytes. If an
application requires more than 40 bytes, it should allocate its own memory and store a pointer to
the memory in the extra window memory.

The SetWindowWord and SetWindowLong functions copy a value to the extra memory. The
GetWindowWord and GetWindowLong functions retrieve a value from the extra memory. The
cbWndExtra member of the WNDCLASSEX structure specifies the amount of extra window
memory to allocate. An application that doesn't use the memory must initialize cbWndExtra to
zero.

Class and Private Device Contexts
A device context is a special set of values that applications use for drawing in the client area of
their windows. Windows requires a device context for each window on the display but allows
some flexibility in how the operating system stores and treats that device context.

If no device-context style is explicitly given, Windows assumes each window uses a device
context retrieved from a pool of contexts maintained by Windows. In such cases, each window
must retrieve and initialize the device context before painting and free it after painting.

To avoid retrieving a device context each time it needs to paint inside a window, an application
can specify the CS_OWNDC style for the window class. This class style directs Windows to
create a private device context ¾ that is, to allocate a unique device context for each window in
the class. The application need only retrieve the context once and then use it for all subsequent
painting. Although the CS_OWNDC style is convenient, use it carefully, because each device
context uses a significant portion of system resources.

By specifying the CS_CLASSDC style, an application can create a class device context. A class
device context is a rarely used feature that allows multiple windows created from the same
window class within a process to use exactly the same device context for drawing.

An application can specify the CS_PARENTDC style to set the clipping region of the child window
to that of the parent window so the child can draw in the parent. A window with the
CS_PARENTDC style receives a regular device context from the system's cache of device
contexts. It does not give a child window's device context or device context settings to the parent
window. Specifying CS_PARENTDC enhances an application's performance because Windows
doesn't need to keep recalculating the visible region for each child window.

For more information, see Device Contexts and Painting and Drawing.

Using Window Classes
In Windows, each application must register its own window classes. Your application can register
an application local class at any time by using the RegisterClassEx function. You must define the
window procedure in the application, fill the members of the WNDCLASSEX structure, and then
pass a pointer to the structure to the RegisterClassEx function.

The following example shows how to register a local window class and use it to create your
application's main window.#include <windows.h>
// Global variable
HINSTANCE hinst;
// Function prototypes.
int WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int);
InitApplication(HINSTANCE);
InitInstance(HINSTANCE, int);
LRESULT CALLBACK MainWndProc(HWND, UINT, WPARAM, LPARAM);
// Application entry point.
int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow)
{

MSG msg;
if (!InitApplication(hinstance))
return FALSE;
if (!InitInstance(hinstance, nCmdShow))
return FALSE;
while (GetMessage(&msg, (HWND) NULL, 0, 0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return msg.wParam;
UNREFERENCED_PARAMETER(lpCmdLine);

}
BOOL InitApplication(HINSTANCE hinstance)
{

WNDCLASSEX wcx;
// Fill in the window class structure with parameters
// that describe the main window.
wcx.cbSize = sizeof(wcx);// size of structure
wcx.style = CS_HREDRAW |
CS_VREDRAW;// redraw if size changes
wcx.lpfnWndProc = MainWndProc;// points to window procedure
wcx.cbClsExtra = 0; // no extra class memory
wcx.cbWndExtra = 0; // no extra window memory
wcx.hInstance = hinstance; // handle of instance
wcx.hIcon = LoadIcon(NULL,
IDI_APPLICATION); // predefined app. icon
wcx.hCursor = LoadCursor(NULL,
IDC_ARROW);// predefined arrow
wcx.hbrBackground = GetStockObject(
WHITE_BRUSH); // white background brush
wcx.lpszMenuName = "MainMenu"; // name of menu resource
wcx.lpszClassName = "MainWClass"; // name of window class
wcx.hIconSm = LoadImage(hinstance, // small class icon
MAKEINTRESOURCE(5),
GetSystemMetrics(SM_CXSMICON),
GetSystemMetrics(SM_CYSMICON),
LR_DEFAULTCOLOR);
// Register the window class.
return RegisterClassEx(&wcx);

}
BOOL InitInstance(HINSTANCE hinstance, int nCmdShow)
{

HWND hwnd;
// Save the application-instance handle.
hinst = hinstance;
// Create the main window.
hwnd = CreateWindow(
"MainWClass", // name of window class
"Sample", // title-bar string
WS_OVERLAPPEDWINDOW, // top-level window
CW_USEDEFAULT, // default horizontal position
CW_USEDEFAULT, // default vertical position
CW_USEDEFAULT, // default width
CW_USEDEFAULT, // default height
(HWND) NULL, // no owner window
(HMENU) NULL, // use class menu
hinstance, // handle of application instance
(LPVOID) NULL); // no window-creation data
if (!hwnd)
return FALSE;
// Show the window and send a WM_PAINT message to the window
// procedure.
ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);
return TRUE;

}Registering an application global class is similar to registering an application local class, with the
following exceptions:

· The style parameter of the WNDCLASSEX structure must specify the
CS_GLOBALCLASS style.

· The class can be registered by an application or a DLL. If registered by an application, the
class is global only within the application. If the class is registered by a DLL and listed in the
registry, the system loads the DLL for every application.

· The application or DLL need not check for a previous instance of the application or DLL
before registering the class.

Window Class Reference
The following functions and structures are used with window classes.

Window Class Functions
The following functions are used with window classes.
GetClassInfoEx
GetClassLong
GetClassName
GetClassWord
GetWindowLong
GetWindowWord
RegisterClassEx
SetClassLong
SetClassWord
SetWindowLong
SetWindowWord

UnregisterClass

Obsolete Functions
GetClassInfo

RegisterClass

Window Class Structures
The following structures are used with window classes.
WNDCLASS

WNDCLASSEX

Window ProceduresIn Microsoft® Windows®, every window has an associated window procedure ¾ a function that
processes all messages sent or posted to all windows of the class. All aspects of a window's
appearance and behavior depend on the window procedure's response to these messages.

About Window Procedures
Each window is a member of a particular window class. The window class determines the default
window procedure that an individual window uses to process its messages. All windows belonging
to the same class use the same default window procedure. For example, the system defines a
window procedure for the combo box class (COMBOBOX); all combo boxes then use that window
procedure.

An application typically registers at least one new window class and an associated window
procedure. After registering a class, the application can create many windows of that class, all of
which use the same default window procedure. Because this means several sources could
simultaneously call the same piece of code, the developer must be careful when modifying shared
resources from a window procedure. For more information, see Window Classes.

Window procedures for dialog boxes (called dialog box procedures) have a similar structure and
function as regular window procedures. All points referring to window procedures in this section
also apply to dialog box procedures. For more information, see Dialog Boxes.

Structure of a Window Procedure
A window procedure is a function that has four parameters and returns a 32-bit signed value. The
parameters consist of a window handle, a UINT message identifier, and two message parameters
declared with the WPARAM and LPARAM data types. For more information, see WindowProc.

Message parameters often contain information in both their low-order and high-order words. The
Microsoft® Win32® application programming interface (API) includes several macros an
application can use to extract information from the message parameters. The LOWORD macro,
for example, extracts the low-order word (bits 0 through 15) from a message parameter. Other
macros include HIWORD, LOBYTE, and HIBYTE.

The interpretation of the return value depends on the particular message. Consult the description
of each message to determine the appropriate return value.

Because it is possible to call a window procedure recursively, it is important to minimize the
number of local variables that it uses. When processing individual messages, an application
should call functions outside the window procedure to avoid excessive use of local variables,
possibly causing the stack to overflow during deep recursion.

Default Window Procedure
The default window procedure function, DefWindowProc defines certain fundamental behavior
shared by all windows. The default window procedure provides the minimal functionality for a
window. An application-defined window procedure should pass any messages that it does not
process to the DefWindowProc function for default processing.

Window Procedure Subclassing
When an application creates a window, the operating system allocates a block of memory for
storing information specific to the window, including the address of the window procedure that
processes messages for the window. When Windows needs to pass a message to the window, it
searches the window-specific information for the address of the window procedure and passes the
message to that procedure.

Subclassing is a technique that allows an application to intercept and process messages sent or
posted to a particular window before the window has a chance to process them. By subclassing a
window, an application can augment, modify, or monitor the behavior of the window. Although it is
not recommended, an application can subclass any window, including those belonging to a
system global class, such as an edit control or a list box. For example, an application could
subclass an edit control to prevent the control from accepting certain characters. For an
explanation of the risks involved, see the following section.

An application subclasses a window by replacing the address of the window's original window
procedure with the address of a new window procedure, called the subclass procedure.
Thereafter, the subclass procedure receives any messages sent or posted to the window.

The subclass procedure can take three actions upon receiving a message: it can pass the
message to the original window procedure, modify the message and pass it to the original window
procedure, or process the message and not pass it to the original window procedure. If the
subclass procedure processes a message, it can do so before, after, or both before and after it
passes the message to the original window procedure.

Windows provides two types of subclassing: instance and global. In instance subclassing, an
application replaces the window procedure address of a single instance of a window. An
application must use instance subclassing to subclass an existing window. In global subclassing,
an application replaces the address of the window procedure in the WNDCLASS structure of a
window class. All subsequent windows created with the class have the address of the subclass
procedure, but existing windows of the class are not affected.

Instance Subclassing
An application subclasses an instance of a window by using the SetWindowLong function. The
application passes the GWL_WNDPROC flag, the handle of the window to subclass, and the
address of the subclass procedure to SetWindowLong. The subclass procedure can reside in
either the application's module or a dynamic-link library (DLL). An application must list the name of
the subclass procedure in the EXPORTS statement of the application's or DLL's module-definition
(.DEF) file.

SetWindowLong returns the address of the window's original window procedure. The application
must save the address, using it in subsequent calls to the CallWindowProc function, to pass
intercepted messages to the original window procedure. The application must also have the
original window procedure address to remove the subclass from the window. To remove the
subclass, the application calls SetWindowLong again, passing the address of the original window
procedure with the GWL_WNDPROC flag and the handle of the window.

An application can subclass any window in the system; however, when subclassing a window it
does not own, the application must ensure that the subclass procedure does not destroy the
original behavior of the window. Because the application does not control the window, it must not
depend on information about the window that the owner might change in the future.

An application should not use the extra window bytes or the class bytes for a window without
knowing exactly what the bytes mean and how the original window procedure uses them. Even
so, the application should not use them unless it owns the window. If the application uses the
extra window bytes of a window that another application owns and the owner changes some
aspect of the extra bytes, the subclass procedure may fail. For this reason, an application should
not subclass a window that belongs to a system global control class. Windows owns the system
global classes, and aspects of the controls might change from one version of Windows to the
next. If the application must subclass a window that belongs to a system global class, the
developer may need to update the application when a new version of Windows is released.

Because instance subclassing occurs after a window is created, the application subclassing the
window cannot add any extra bytes to the window. Applications that subclass a window should
use the window's property list to store any data needed for an instance of the subclassed window.
For more information, see Window Properties.

When an application subclasses a subclassed window, it must remove the subclasses in the
reverse order they were performed. If the removal order is not reversed, an unrecoverable system
error may occur.

Global Subclassing
To globally subclass a window class, the application must have a handle to a window of the class.
The application also needs the handle to remove the subclass. To get the handle, an application
typically creates a hidden window of the class to be subclassed. After obtaining the handle, the
application calls the SetClassLong function, specifying the handle, the GCL_WNDPROC flag,
and the address of the subclass procedure. SetClassLong returns the address of the original
window procedure for the class.

The original window procedure address is used in global subclassing in the same way it is used in
instance subclassing. The subclass procedure passes messages to the original window procedure
by calling CallWindowProc. The application removes the subclass from the window class by
calling SetClassLong again, specifying the address of the original window procedure, the
GCL_WNDPROC flag, and the handle to a window of the class being subclassed. An application
that globally subclasses a control class must remove the subclass when the application
terminates; otherwise, an unrecoverable system error may occur.

Global subclassing has the same limitations as instance subclassing, plus some additional
restrictions. An application should not use the extra bytes for either the class or the window
instance without knowing exactly how the original window procedure uses them. If the application
must associate data with a window, it should use window properties.

An application must not globally subclass a system global class. An unrecoverable system error
may occur if more than one application globally subclasses a control class. If the application could
benefit from globally subclassing a control class, use the technique called superclassing.

Window Procedure Superclassing
Superclassing is a technique that allows an application to create a new window class with the
basic functionality of the existing class, plus enhancements provided by the application. A
superclass is based on an existing window class called the base class. Frequently, the base class
is a system global window class such as an edit control, but it can be any window class.

A superclass has its own window procedure, called the superclass procedure. The superclass
procedure can take three actions upon receiving a message: It can pass the message to the
original window procedure, modify the message and pass it to the original window procedure, or
process the message and not pass it to the original window procedure. If the superclass
procedure processes a message, it can do so before, after, or both before and after it passes the
message to the original window procedure.

Unlike a subclass procedure, a superclass procedure can process window creation messages
(WM_NCCREATE, WM_CREATE, and so on), but it must also pass them to the original base-
class window procedure so that the base-class window procedure can perform its initialization
procedure.

To superclass a window class, an application first calls the GetClassInfo function to retrieve
information about the base class. GetClassInfo fills a WNDCLASS structure with the values from
the WNDCLASS structure of the base class. Next, the application copies its own instance handle
into the hInstance member of the WNDCLASS structure and copies the name of the superclass
into the lpszClassName member. If the base class has a menu, the application must provide a
new menu with the same menu identifiers and copy the menu name into the lpszMenuName
member. If the superclass procedure processes the WM_COMMAND message and does not pass
it to the window procedure of the base class, the menu need not have corresponding identifiers.
GetClassInfo does not return the lpszMenuName, lpszClassName, or hInstance member of the
WNDCLASS structure.

An application must also set the lpfnWndProc member of the WNDCLASS structure. The
GetClassInfo function fills this member with the address of the original window procedure for the
class. The application must save this address, to pass messages to the original window
procedure, and then copy the address of the superclass procedure into the lpfnWndProc
member. The application can, if necessary, modify any other members of the WNDCLASS
structure. After it fills the WNDCLASS structure, the application registers the superclass by
passing the address of the structure to the RegisterClass function. The superclass can then be
used to create windows.

Because superclassing registers a new window class, an application can add to both the extra
class bytes and the extra window bytes. The superclass must not use the original extra bytes for
the base class or the window for the same reasons that an instance subclass or a global subclass
should not use them. Also, if the application adds extra bytes for its use to either the class or the
window instance, it must reference the extra bytes relative to the number of extra bytes used by
the original base class. Because the number of bytes used by the base class may vary from one
version of the base class to the next, the starting offset for the superclass's own extra bytes may
also vary from one version of the base class to the next.

Using Window Procedures
· Designing a window procedure
· Associating a window procedure with a window class
· Subclassing a window

Designing a Window Procedure
The following example shows the structure of a typical window procedure. The window procedure
uses the message argument in a switch statement with individual messages handled by separate
case statements. Notice that each case returns a specific value for each message. For messages
that it does not process, the window procedure calls the DefWindowProc function.LRESULT CALLBACK MainWndProc(

HWND hwnd, // handle of window
UINT uMsg, // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam) // second message parameter

{
switch (uMsg)
{
case WM_CREATE:
// Initialize the window.
return 0;
case WM_PAINT:
// Paint the window's client area.
return 0;
case WM_SIZE:
// Set the size and position of the window.
return 0;
case WM_DESTROY:
// Clean up window-specific data objects.
return 0;
//
// Process other messages.
//
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}The WM_NCCREATE messageis sent just after your window is created, but if an application
responds to this message by returning FALSE, CreateWindowEx function fails. The
WM_CREATE message is sent after your window is already created.

The WM_DESTROY message is sent when your window is about to be destroyed. The
DestroyWindow function takes care of destroying any child windows of the window being
destroyed. The WM_NCDESTROY message is sent just before a window is destroyed.

At the very least, a window procedure should process the WM_PAINT message to draw itself.
Typically, it should handle mouse and keyboard messages as well. Consult the descriptions of
individual messages to determine whether your window procedure should handle them.

Your application can call the DefWindowProc function as part of the processing of a message. In
such a case, the application can modify the message parameters before passing the message to
DefWindowProc, or it can continue with the default processing after performing its own
operations.

A dialog box procedure receives a WM_INITDIALOG message instead of a WM_CREATE
message and does not pass unprocessed messages to the DefDlgProc function. Otherwise, a
dialog box procedure is exactly the same as a window procedure.

Associating a Window Procedure with a Window Class
You associate a window procedure with a window class when registering the class. You must fill a
WNDCLASS structure with information about the class, and the lpfnWndProc member must
specify the address of the window procedure. To register the class, pass the address of
WNDCLASS structure to the RegisterClass function. Once the window class is registered, the
window procedure is automatically associated with each new window created with that class.

The following example shows how to associate the window procedure in the previous example
with a window class.int APIENTRY WinMain(

HINSTANCE hinstance, // handle of current instance
HINSTANCE hinstPrev, // handle of previous instance
LPSTR lpCmdLine, // address of command-line string
int nCmdShow) // show-window type

{
WNDCLASS wc;
// Register the main window class.
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = (WNDPROC) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hinstance;
wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "MainMenu";
wc.lpszClassName = "MainWindowClass";
if (!RegisterClass(&wc))

return FALSE;
//
// Process other messages.
//

}

Subclassing a Window
To subclass an instance of a window, call the SetWindowLong function and specify the handle of
the window to subclass the GWL_WNDPROC flag and a pointer to the subclass procedure.
SetWindowLong returns a pointer to the original window procedure; use this pointer to pass
messages to the original procedure. The subclass window procedure must use the
CallWindowProc function to call the original window procedure.

The following example shows how to subclass an instance of an edit control in a dialog box. The
subclass window procedure enables the edit control to receive all keyboard input, including the
ENTER and TAB keys, whenever the control has the input focus.WNDPROC wpOrigEditProc;
LRESULT APIENTRY EditBoxProc(

HWND hwndDlg,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
HWND hwndEdit;
switch(uMsg)
{
case WM_INITDIALOG:
// Retrieve the handle of the edit control.
hwndEdit = GetDlgItem(hwndDlg, ID_EDIT);
// Subclass the edit control.
wpOrigEditProc = (WNDPROC) SetWindowLong(hwndEdit,
GWL_WNDPROC, (LONG) EditSubclassProc);
//
// Continue the initialization procedure.
//
return TRUE;
case WM_DESTROY:
// Remove the subclass from the edit control.
SetWindowLong(hwndEdit, GWL_WNDPROC,
(LONG) wpOrigEditProc);
//
// Continue the cleanup procedure.
//
break;
}
return FALSE;
UNREFERENCED_PARAMETER(lParam);

}
// Subclass procedure
LRESULT APIENTRY EditSubclassProc(

HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
if (uMsg == WM_GETDLGCODE)
return DLGC_WANTALLKEYS;
return CallWindowProc(wpOrigEditProc, hwnd, uMsg,
wParam, lParam);

}

Window Procedure Functions
The following functions are used with window procedures.
CallWindowProc
DefWindowProc

WindowProc

Window PropertiesThe Microsoft® Win32® application programming interface (API) provides several functions that
enable applications to use window properties.

About Window Properties
A window property is any data assigned to a window. A window property is usually a handle of the
window-specific data, but it may be any 32-bit value. Each window property is identified by a string
name.

Advantages of Using Window Properties
Window properties are typically used to associate data with a subclassed window or a window in a
multiple document interface (MDI) application. In either case, it is not convenient to use the extra
bytes specified in the CreateWindow function or class structure for the following two reasons:

· An application might not know how many extra bytes are available or how the space is
being used. By using window properties, the application can associate data with a window
without accessing the extra bytes.

· An application must access the extra bytes by using offsets. Window properties, however,
are accessed by their string identifiers, not by offsets.

For more information about subclassing, see Window Procedure Subclassing. For more
information about MDI windows, see Multiple Document Interface.

Assigning Window Properties
The SetProp function assigns a window property and its string identifier to a window. The
GetProp function retrieves the window property identified by a given string. The RemoveProp
function destroys the association between a window and a window property but does not destroy
the data itself.

Enumerating Window Properties
The EnumProps and EnumPropsEx functions enumerate all of a window's properties by using
an application-defined callback function. For more information about the callback function, see
PropEnumProc.

EnumPropsEx includes an extra parameter for application-defined data used by the callback
function. For more information about the callback function, see PropEnumProcEx.

Using Window Properties
· Adding a window property
· Retrieving a window property
· Listing window properties for a given window
· Deleting a window property

Adding a Window Property
The following example loads an icon and then a cursor and allocates memory for a buffer. The
example then uses the SetProp function to assign the resulting icon, cursor, and memory handles
as window properties for the window identified by the application-defined hwndSubclass variable.
The properties are identified by the strings PROP_ICON, PROP_CURSOR, and PROP_BUFFER.#define BUFFER 4096
HINSTANCE hinst; // handle of current instance
HWND hwndSubclass;// handle of a subclassed window
HANDLE hIcon, hCursor;
HGLOBAL hMem;
char *lpMem;
TCHAR tchPath[] = "c:\\winnt\\samples\\winprop.c";
// Load resources.
hIcon = LoadIcon(hinst, MAKEINTRESOURCE(400));
hCursor = LoadCursor(hinst, MAKEINTRESOURCE(220));
// Allocate and fill a memory buffer.
hMem = GlobalAlloc(GPTR, BUFFER);
lpMem = GlobalLock(hMem);
lstrcpy(lpMem, tchPath);
GlobalUnlock(hMem);
// Set the window properties for hwndSubclass.
SetProp(hwndSubclass, "PROP_ICON", hIcon);
SetProp(hwndSubclass, "PROP_CURSOR", hCursor);
SetProp(hwndSubclass, "PROP_BUFFER", hMem);

Retrieving a Window Property
A window can create handles to its window property data and use the data for any purpose. The
following example uses GetProp to obtain handles to the window properties identified by
PROP_ICON, PROP_CURSOR, and PROP_BUFFER. The example then displays the contents of
the newly obtained memory buffer, cursor, and icon in the window's client area.#define PATHLENGTH 256
HWND hwndSubclass;// handle of a subclassed window
HANDLE hIconProp, hCursProp;
HGLOBAL hMemProp;
char *lpFilename;
TCHAR tchBuffer[PATHLENGTH];
int nSize;
HDC hdc;
// Get the window properties, then use the data.
hIconProp = (HICON) GetProp(hwndSubclass, "PROP_ICON");
TextOut(hdc, 10, 40, "PROP_ICON", 9);
DrawIcon(hdc, 90, 40, hIconProp);
hCursProp = (HCURSOR) GetProp(hwndSubclass, "PROP_CURSOR");
TextOut(hdc, 10, 85, "PROP_CURSOR", 9);
DrawIcon(hdc, 110, 85, hCursProp);
hMemProp = (HGLOBAL) GetProp(hwndSubclass, "PROP_BUFFER");
lpFilename = GlobalLock(hMemProp);
nSize = sprintf(tchBuffer,

"Path to file: %s", lpFilename);
TextOut(hdc, 10, 10, tchBuffer, nSize);

Listing Window Properties for a Given Window
In the following example, the EnumPropsEx function lists the string identifiers of the window
properties for the window identified by the application-defined hwndSubclass variable. This
function relies on the application-defined callback function WinPropProc to display the strings in
the window's client area.EnumPropsEx(hwndSubclass, WinPropProc, NULL);
// WinPropProc is an application-defined callback function
// that lists a window property.
BOOL CALLBACK WinPropProc(

HWND hwndSubclass, // handle of window with property
LPCSTR lpszString, // property string or atom
HANDLE hData) // data handle

{
static int nProp = 1; // property counter
TCHAR tchBuffer[BUFFER]; // expanded-string buffer
int nSize;// size of string in buffer
HDC hdc; // device-context handle
hdc = GetDC(hwndSubclass);
// Display window property string in client area.
nSize = sprintf(tchBuffer, "WinProp %d: %s", nProp++,
lpszString);
TextOut(hdc, 10, nProp * 20, tchBuffer, nSize);
ReleaseDC(hwndSubclass, hdc);
return TRUE;

}

Deleting a Window Property
When a window is destroyed, it must destroy any window properties it set. The following example
uses the EnumPropsEx function and the application-defined callback function DelPropProc to
destroy the properties associated with the window identified by the application-defined
hwndSubclass variable. The callback function, which uses the RemoveProp function, is also
shown.case WM_DESTROY:

EnumPropsEx(hwndSubclass, DelPropProc, NULL);
PostQuitMessage(0);
break;

// DelPropProc is an application-defined callback function
// that deletes a window property.
BOOL CALLBACK DelPropProc(

HWND hwndSubclass, // handle of window with property
LPCSTR lpszString, // property string or atom
HANDLE hData) // data handle

{
RemoveProp(hwndSubclass, lpszString);
return TRUE;

}

Window Property Reference
The following functions are used with window properties.

Window Property Functions
The following functions are used with window properties.
EnumProps
EnumPropsEx
GetProp
PropEnumProc
PropEnumProcEx
RemoveProp

SetProp

Common ControlsCommon controls are a set of windows that are supported by the common control library, which is
a dynamic-link library (DLL) included with the Microsoft® Windows® operating system. Like other
control windows, a common control is a child window that an application uses in conjunction with
another window to perform input and output (I/O) tasks.

About Common Controls
Most common controls belong to a window class defined in the common control DLL. The window
class and the corresponding window procedure define the properties, appearance, and behavior
of the control. To ensure that the common control DLL is loaded, include the
InitCommonControls function in your application. You create a common control by specifying the
name of the window class when calling the CreateWindowEx function or by specifying the
appropriate class name in a dialog box template.

For more detailed information about common controls, see the following topics.

· Animation Controls
· Drag List Boxes
· Header Controls
· Hot-Key Controls
· Image Lists
· List View Controls
· Progress Bars
· Property Sheets
· Rich Edit Controls
· Status Windows
· Tab Controls
· Toolbars
· Tooltip Controls
· Trackbars
· Tree View Controls
· Up-Down Controls

About Common Control Styles
Each type of common control has a set of control styles that you can use to vary the appearance
and behavior of the control. The common control library also includes a set of control styles that
apply to two or more types of common controls. The common control styles are described in the
following topics.

About Common Control Messages
Because common controls are windows, an application can manipulate them by using messages,
such as WM_GETFONT or WM_SETTEXT. In addition, the window class of each common control
supports a set of control-specific messages that an application can use to manipulate the control.
An application can use any of the message sending or posting functions to pass messages to the
control. In addition, some common controls have a set of macros that an application can use
instead of the sending or posting functions. The macros are typically easier to use than the
functions.

When a change is made to the system color settings, Windows sends a
WM_SYSCOLORCHANGE message to all top level windows. Your top level window must forward
the WM_SYSCOLORCHANGE message to its common controls; otherwise, the controls will not
be notified of the color change. This ensures that the colors used by your common controls are
consistent with those used by other user interface objects. For example, a toolbar control uses the
"3D Objects" color to draw its buttons. If the user changes the 3D Objects color but the
WM_SYSCOLORCHANGE message is not forwarded to the toolbar, the toolbar buttons will
remain in their original color while the color of other buttons in the system changes.

About Common Control Notification Messages
Common controls are child windows that send notification messages to the parent window when
events, such as input from the user, occur in the control. The application relies on these
notification messages to determine what action the user wants it to take. Except for trackbars,
which use WM_HSCROLL message, common controls send notification messages as
WM_NOTIFY messages. The lParam parameter of WM_NOTIFY is either the address of an
NMHDR structure or the address of a larger structure that includes NMHDR as its first member.
The structure contains the notification code and identifies the common control that sent the
notification message. The meaning of the remaining structure members, if any, varies depending
on the notification code.

Each type of common control has a corresponding set of notification codes. The common control
library also provides notification codes that can be sent by more than one type of common control.
Values for common notification values are described in the following topics.

Common Control Reference
The following functions, messages, notification messages, macros, and structures apply to all
common controls.Notification ProcessingFORWARD_WM_NOTIFY
HANDLE_WM_NOTIFY

NMHDRMouse Click NotificationsNM_CLICK
NM_DBLCLK
NM_RCLICK

NM_RDBLCLKOperation-Related NotificationsNM_OUTOFMEMORYFocus NotificationsNM_KILLFOCUS
NM_RETURN

NM_SETFOCUSMiscellaneousGetEffectiveClientRect
INDEXTOSTATEIMAGEMASK
InitCommonControls

ShowHideMenuCtl

Common Control Functions
The following functions are used with common controls.
GetEffectiveClientRect
InitCommonControls
ShowHideMenuCtl

Common Control Messages
Common control sends the following messages to notify the parent window of events that affect
the control.
WM_NOTIFY

WM_NOTIFYFORMAT

Common Control Notification Messages
Common controls send notification messages to the parent window to inform it about events. The
following notifications are used with common controls.
NM_CLICK
NM_DBLCLK
NM_KILLFOCUS
NM_OUTOFMEMORY
NM_RCLICK
NM_RDBLCLK
NM_RETURN

NM_SETFOCUS

Common Control Macros
The following macros are used with common controls.
FORWARD_WM_NOTIFY
HANDLE_WM_NOTIFY

INDEXTOSTATEIMAGEMASK

Common Control Structure
The following structure is used with common controls.

NMHDR

Common Control Constants
The following window classes and control styles are used with common controls.

Common Control Window Classes
The following window class names are provided by the common control library.

Class name Description

ANIMATE_CLASS Creates animation controls. These
controls silently display an Audio
Video Interleaved (AVI) clip.

HOTKEY_CLASS Creates hot-key controls. These
controls make it easy for the user to
define hot keys.

PROGRESS_CLASS Creates progress bars. These
controls indicate the progress of a
lengthy operation.

STATUSCLASSNAME Creates status windows. These
controls display status information in
a horizontal window.

TOOLBARCLASSNAME Creates toolbars. These controls
contain buttons that carry out menu
commands.

TOOLTIPS_CLASS Creates tooltip controls. These
controls display a small pop-up
window containing a line of text that
describes the purpose of a tool in an
application.

TRACKBAR_CLASS Creates trackbars. These controls let
the user select from a range of
values by moving a slider.

UPDOWN_CLASS Creates up-down controls. These
controls combine a pair of arrows
with an edit control. Clicking the
arrows increments or decrements the
value in the edit control.

WC_HEADER Creates header controls. These
controls display headings at the top
of columns of information and let the
user sort the information by clicking
the headings.

WC_LISTVIEW Creates list-view controls. These
controls display a collection of items,
each consisting of an icon and a
label, and provide several ways to
arrange the items.

WC_TABCONTROL Creates tab controls. These controls
define multiple pages for the same
area of a window or dialog box. Each
page consists of a set of information
or a group of controls that an
application displays when the user
selects the corresponding tab.

WC_TREEVIEW Creates tree-view controls. These
controls display a hierarchical list of
items. Each item consists of a label
and an optional bitmap.

Common Control Styles
Following are the common control styles. Except where noted, these styles apply to header
controls, toolbar controls, and status windows.

Common control style Description

CCS_ADJUSTABLE Enables a toolbar's built-in customization
features, which allow the user to drag a
button to a new position or to remove a
button by dragging it off the toolbar. In
addition, the user can double-click the
toolbar to display the Customize Toolbar
dialog box, allowing the user to add,
delete, and rearrange toolbar buttons.

CCS_BOTTOM Causes the control to position itself at the
bottom of the parent window's client area
and sets the width to be the same as the
parent window's width. Status windows
have this style by default.

CCS_NODIVIDER Prevents a two-pixel highlight from being
drawn at the top of the control.

CCS_NOHILITE Prevents a one-pixel highlight from being
drawn at the top of the control.

CCS_NOMOVEY Causes the control to resize and move
itself horizontally, but not vertically, in
response to a WM_SIZE message. If
CCS_NORESIZE is used, this style does
not apply. Header windows have this
style by default.

CCS_NOPARENTALIGN Prevents the control from automatically
moving to the top or bottom of the parent
window. Instead, the control keeps its
position within the parent window despite
changes to the size of the parent. If
CCS_TOP or CCS_BOTTOM is also
used, the height is adjusted to the default,
but the position and width remain
unchanged.

CCS_NORESIZE Prevents the control from using the
default width and height when setting its
initial size or a new size. Instead, the
control uses the width and height
specified in the request for creation or
sizing.

CCS_TOP Causes the control to position itself at the
top of the parent window's client area and
sets the width to be the same as the
parent window's width. Toolbars have this
style by default.

Animation ControlsAn animation control is a window that silently displays an Audio Video Interleaved (AVI) clip. An
AVI clip is a series of bitmap frames like a movie. Although AVI clips can have sound, you cannot
use such clips with animation controls. You can use only silent AVI clips.

About Animation Controls
Because the thread continues executing while the AVI clip is displayed, one common use for an
animation control is to indicate system activity during a lengthy operation. For example, the Find
dialog box of the Microsoft® Windows® Explorer displays a moving magnifying glass as the
system searches for a file.

An animation control can display an AVI clip originating from either an uncompressed .AVI file or
from an .AVI file that was compressed using run-length encoding (RLE). You can add the AVI clip
to your application as an AVI resource, or the clip can accompany your application as a separate .
AVI file.

The capabilities of an animation control are severely limited and are subject to change. If you
need a control to provide multimedia playback and recording capabilities for your application, you
can use the MCIWnd control. For more information about the MCIWnd control, see the multimedia
documentation.

Animation Control Creation
An animation control belongs to the ANIMATE_CLASS window class. You create an animation
control by using the CreateWindow function or the Animate_Create macro. The macro positions
the animation control in the upper-left corner of the parent window and, if the ACS_CENTER style
is not specified, sets the width and height of the control based on the dimensions of a frame in the
AVI clip. If ACS_CENTER is specified, Animate_Create sets the width and height of the control to
zero. You can use the SetWindowPos function to set the position and size of the control.

If you create an animation control within a dialog box or from a dialog box resource, the control is
automatically destroyed when the user closes the dialog box. If you create an animation control
within a window, you must explicitly destroy the control.

Animation Control Messages
An application sends messages to an animation control to open, play, stop, and close the
corresponding AVI clip. Each message has one or more macros that you can use instead of
sending the message explicitly.

After creating an animation control, an application sends the ACM_OPEN message to open an
AVI clip and load it into memory. The message specifies either the path of an .AVI file or the name
of an AVI resource. The system loads the AVI resource from the module that created the
animation control.

If the animation control has the ACS_AUTOPLAY style, the control begins playing the AVI clip
immediately after the .AVI file or AVI resource is opened. Otherwise, an application can use the
ACM_PLAY message to start the AVI clip. An application can stop the clip at any time by sending
the ACM_STOP message. The last frame played remains displayed when the control finishes
playing the AVI clip or when ACM_STOP is sent.

An animation control can send two notification messages, ACN_START and ACN_STOP, to its
parent window. Most applications do not handle either notification.

To close the .AVI file or AVI resource and remove it from memory, an application can use the
Animate_Close macro, which sends ACM_OPEN with the filename or resource name set to
NULL.

Default Message Processing
This section describes the window messages handled by the window procedure for the
ANIMATE_CLASS window class.

Message Processing performed

WM_CLOSE Frees the .AVI file or AVI resource
associated with the animation control.

WM_DESTROY Frees the .AVI file or AVI resource, frees
an internal data structure, and then calls
the DefWindowProc function.

WM_ERASEBKGND Erases the window background using the
current background color for static controls.

WM_NCCREATE Allocates and initializes an internal data
structure and then calls DefWindowProc.

WM_NCHITTEST Returns the HTTRANSPARENT hit test
value.

WM_PAINT Draws an AVI frame in the animation
control.

WM_SIZE Checks if the control has the
ACS_CENTER style. If the control does
not, it calls DefWindowProc. Otherwise, it
centers the animation in the control,
invalidates the control, and then calls
DefWindowProc.

Using Animation Controls
· Creating an animation control
· Controlling the AVI clip

Creating an Animation Control
The following function creates an animation control in a dialog box. The animation control is
positioned below the specified control, and the dimensions of the animation control are based on
the dimensions of a frame in the AVI clip.// CreateAnimationCtrl - creates an animation control, positions it
//below the specified control in a dialog box, and opens the AVI
//clip for the animation control.
// Returns the handle to the animation control.
// hwndDlg - handle to the dialog box
// nIDCtl - identifier of the control below which the animation control
//is to be positioned
//
// Constants
//IDC_ANIMATE - identifier of the animation control
//CX_FRAME, CY_FRAME - width and height of the frames
// in the AVI clip
HWND CreateAnimationCtrl(HWND hwndDlg, int nIDCtl)
{

HWND hwndAnim = NULL;
RECT rc;
POINT pt;
// Create the animation control.
hwndAnim = Animate_Create(hwndDlg, IDC_ANIMATE,
WS_BORDER | WS_CHILD, g_hinst);
// Get the screen coordinates of the specified control button.
GetWindowRect(GetDlgItem(hwndDlg, nIDCtl), &rc);
// Convert the coordinates of the lower-left corner to
// client coordinates.
pt.x = rc.left;
pt.y = rc.bottom;
ScreenToClient(hwndDlg, &pt);
// Position the animation control below the Stop button.
SetWindowPos(hwndAnim, 0, pt.x, pt.y + 20,
CX_FRAME, CY_FRAME,
SWP_NOZORDER | SWP_DRAWFRAME);
// Open the AVI clip, and show the animation control.
Animate_Open(hwndAnim, "SEARCH");
ShowWindow(hwndAnim, SW_SHOW);
return hwndAnim;

}

Controlling the AVI Clip
The following function uses the predefined macros to control the display of the AVI clip in an
animation control.// DoAnimation - plays, stops, or closes an animation control's
//AVI clip, depending on the value of an action flag.
// hwndAnim - handle to an animation control
// nAction - flag that determines whether to play, stop, or close
//the AVI clip
void DoAnimation(HWND hwndAnim, int nAction)
{

switch (nAction) {
case PLAYIT:
// Play the clip continuously starting with the
// first frame.
Animate_Play(hwndAnim, 0, -1, -1);
break;
case STOPIT:
Animate_Stop(hwndAnim);
break;
case CLOSEIT:
Animate_Close(hwndAnim);
break;
default:
break;
}
return;

}

Animation Control Reference
The following function messages, macros, and notification messages are associated with
animation controls.

Animation Control Messages and Macros
An application sends messages to control the playing of an AVI clip in an animation control. Each
message has a corresponding macro, which you can use instead of sending the message
explicitly. Some messages have related macros, which are a more specialized form of the
corresponding macro.

Message Macro

ACM_OPEN Animate_Open
Animate_Close

ACM_PLAY Animate_Play
Animate_Seek

ACM_STOP Animate_Stop
Animate_Create

Animation Control Notification Messages
An animation control sends notifications, in the form of WM_COMMAND messages, to its parent
window to notify it about events.
ACN_START

ACN_STOP

Animation Control Styles
The following window styles are used with animation controls.

ACS_AUTOPLAY Starts playing the animation as soon as the
animation clip is opened.

ACS_CENTER Centers the animation in the animation
control's window.

ACS_TRANSPARENTDraws the animation using a transparent
background rather than the background color
specified in the animation clip.

Drag List BoxesA drag list box is a special type of list box that enables the user to drag items from one position to
another. An application can use a drag list box to display strings in a particular sequence and
allow the user to change the sequence.

About Drag List Boxes
To create a drag list box, you first create a standard list box and then call the MakeDragList
function. To convert a list box in a dialog box to a drag list box, you can call MakeDragList when
the WM_INITDIALOG message is processed.

Drag list boxes have the same window styles and process the same messages as standard list
boxes.

About Drag List Box Messages
A drag list box notifies its parent window of drag events by sending it a drag list message. The
parent window must process the drag list message.

The drag list box registers the drag list message when the MakeDragList function is called. To
get the message identifer (numeric value) of the drag list message, you must call the
RegisterWindowMessage function, specifying the DRAGLISTMSGSTRING value.

The wParam parameter of the drag list message is the control identifier for the drag list box. The
lParam parameter is the pointer to a DRAGLISTINFO structure, which contains the notification
code for the drag event and other information. The return value of the message depends on the
notification.

About Drag List Box Notification Messages
A drag list box sends its parent window notification messages in the form of drag list messages.
The specific notification, which is identified by the uNotification member of the specified
DRAGLISTINFO structure, can be DL_BEGINDRAG, DL_DRAGGING, DL_CANCELDRAG, or
DL_DROPPED.

The DL_BEGINDRAG notification message is sent when the user clicks the left mouse button
with the cursor on a list item. The parent window can return TRUE to begin the drag operation or
FALSE to disallow dragging. In this way, the parent window can enable dragging for some list
items and disable it for others. You can determine which list item is at the specified location by
using the LBItemFromPt function.

If dragging is in effect, the DL_DRAGGING notification message is sent whenever the mouse is
moved, or at regular intervals if the mouse is not being moved. The parent window should
determine the list item under the cursor by using LBItemFromPt and then draw the insert icon by
using the DrawInsert function. By specifying TRUE for the bAutoScroll parameter of
LBItemFromPt, you can cause the list box to scroll by one line if the cursor is above or below its
client area. The value you return for this notification specifies the type of mouse cursor that the
drag list box should set.

The DL_CANCELDRAG notification message is sent if the user cancels a drag operation by
clicking the right mouse button or pressing the ESC key. The DL_DROPPED notification message
is sent if the user completes a drag operation by releasing the left mouse button, even if the
cursor is not over a list item. The drag list box releases the mouse capture before sending either
notification. The return value of these two notifications is ignored.

Drag List Box Reference
The following functions, notification messages, and structures are associated with drag list boxes.

Drag List Box Functions
The following functions are used with drag list boxes.
DrawInsert
LBItemFromPt

MakeDragList

Drag List Box Notification Messages
A drag list box sends notification messages to its parent window by using a registered window
message, which is called a drag list message. There are the following drag list notification
messages.
DL_BEGINDRAG
DL_CANCELDRAG
DL_DRAGGING

DL_DROPPED

Drag List Box Structure
The following structure is used with drag list boxes.

DRAGLISTINFO

Header ControlsA header control is a window that is usually positioned above columns of text or numbers. It
contains a title for each column, and it can be divided into parts. The user can drag the dividers
that separate the parts to set the width of each column. The following illustration shows a header
control that has labeled columns giving detailed information about files in a directory.

ewc msdncd, EWGraphic, bsd23470 0 /a "SDK_01.BMP"

About Header Controls
You can create a header control by using the CreateWindowEx function, specifying the
WC_HEADER window class. This window class is registered when the common control dynamic-
link library (DLL) is loaded. To ensure that this DLL is loaded, use the InitCommonControls
function. After you create a header control, you can divide it into parts, set the text in each part,
and control the appearance of the window by using header window messages.

About Header Control Styles
Header controls have a number of styles that determine the control's appearance and behavior.
You set the initial styles when you create the header control. To retrieve and change the styles
after creating the control, use the GetWindowLong and SetWindowLong functions.

A header control can be divided into two or more parts called header items. If a header control
has the HDS_BUTTONS style, each item in the control looks and behaves like a push button. This
style is useful if an application carries out a task when the user clicks an item in the header
control. For example, an application could sort information in the columns differently depending on
which item the user clicks.

The HDS_HORZ style creates a header control with a horizontal orientation.

The HDS_HIDDEN style indicates a header control that is intended to be hidden. This style does
not hide the control. Instead, when you send the HDM_LAYOUT message to a header control with
the HDS_HIDDEN style, the control returns zero in the cy member of the WINDOWPOS structure.
You would then hide the control by setting its height to zero. This can be useful when you want to
use the control as an information container and not as a visual control.

Header Control Size and Position
Typically, you must set the size and position of a header control to fit within the boundaries of a
particular rectangle, such as the client area of a window. By using the HDM_LAYOUT message,
you can retrieve the appropriate size and position values from the header control.

When sending HDM_LAYOUT, you specify the address of an HD_LAYOUT structure that
contains the coordinates of the rectangle that the header control is to occupy and provides a
pointer to a WINDOWPOS structure. The control fills the WINDOWPOS structure with size and
position values appropriate for positioning the control along the top of the specified rectangle. The
height value is the sum of the heights of the control's horizontal borders and the average height of
characters in the font currently selected into the control's device context.

If you want to use HDM_LAYOUT to set the initial size and position of a header control, you
should set the initial visibility state of the control so that it is hidden. After sending HDM_LAYOUT
to retrieve the size and position values, you can use the SetWindowPos function to set the new
size, position, and visibility state.

Items
A header control typically has several header items that define the columns of the control. You
add an item to a header control by sending the HDM_INSERTITEM message to the control. The
message includes the address of an HD_ITEM structure. This structure defines the properties of
the header item, which can include a string, a bitmapped image, an initial size, and an application-
defined 32-bit value.

The fmt member of an item's HD_ITEM structure can include either the HDF_STRING or
HDF_BITMAP flag, to indicate whether the control displays the item's string or bitmap. If you want
to display both a string and a bitmap, create an owner-drawn item by setting the fmt member to
include the HDF_OWNERDRAW flag. The HD_ITEM structure also specifies formatting flags that
tell the control whether to center, left-align, or right-align the string or bitmap in the item's
rectangle.

HDM_INSERTITEM returns the index of the newly added item. You can use the index in other
messages to set properties or retrieve information about the item. You can delete an item by using
the HDM_DELETEITEM message, specifying the index of the item to delete.

You can use the HDM_SETITEM message to set the properties of an existing header item and
the HDM_GETITEM message to retrieve the current properties of an item. To retrieve a count of
the items in a header control, use the HDM_GETITEMCOUNT message.

You can use the HBT_SPRING value to give a header item a "springy" quality. Although an item
has a minimum width, it can grow wider if there is extra room in the owner window. A header
control can have multiple springy items; the extra room in the owner window is distributed among
the springy items.

To make an item springy, send the WM_SETTEXT message to the header control. In the wParam
parameter, use the logical OR operator to combine the index of the header item with the
HBT_SPRING value.

Owner-Drawn Header Controls
You can define individual items of a header control to be owner-drawn items. Using this technique
gives you more control than you would otherwise have over the appearance of a header item.

You can use the HDM_INSERTITEM message to insert a new owner-drawn item into a header
control or the HDM_SETITEM message to change an existing item to an owner-drawn item. Both
messages include the address of an HD_ITEM structure, which should have the fmt member set
to the HDF_OWNERDRAW value.

When a header control must draw an owner-drawn item, it sends the WM_DRAWITEM message
to the parent window. The wParam parameter of the message is the child window identifier of the
header control, and the lParam parameter is a pointer to a DRAWITEMSTRUCT structure. The
parent window uses the information in the structure to draw the item. For an owner-drawn item in
a header control, the DRAWITEMSTRUCT structure contains the following information.

Member Description

CtlType ODT_HEADER owner-drawn control type.
CtlID Child-window identifier of the header control.
itemID Index of the item to be drawn.
itemAction ODA_DRAWENTIRE drawing-action flag.
itemState ODS_SELECTED drawing-action flag if the cursor is on

the item and the mouse button is down. Otherwise, this
member is zero.

hwndItem Handle of the header control.
hDC Handle of the device context of the header control.
rcItem Coordinates of the header item to be drawn. The

coordinates are relative to the upper left corner of the
header control.

itemData Application-defined 32-bit value associated with the item.

About Header Control Notification Messages
A header control sends notification messages to its parent window when the user clicks or double-
clicks an item, when the user drags an item divider, and when the attributes of an item change.
The parent window receives the notifications in the form of WM_NOTIFY messages. The following
notifications are used with header controls.

Notification Description

HDN_BEGINTRACK Signals the start of divider dragging.
HDN_DIVIDERDBLCLICK Indicates that the user double-clicked a

divider.
HDN_ENDTRACK Signals the end of divider dragging.
HDN_ITEMCHANGED Indicates a change in the attributes of an

item.
HDN_ITEMCHANGING Indicates that the attributes of an item are

about to change.
HDN_ITEMCLICK Indicates that the user clicked an item.
HDN_ITEMDBLCLICK Indicates that the user double-clicked an

item.
HDN_TRACK Indicates that the user dragged a divider.

Default Header Control Message Processing
This section describes the window messages handled by the window procedure for the
WC_HEADER window class.

Message Processing performed

WM_CREATE Initializes the header control.
WM_DESTROY Frees resources allocated for the header

control.
WM_ERASEBKGND Erases the background of the header control

using the current background color for the
control.

WM_GETDLGCODE Returns a combination of the
DLGC_WANTTAB and
DLGC_WANTARROWS values.

WM_GETFONT Returns the handle of the current font, which
is used by the header control to draw its text.

WM_LBUTTONDBLCLKCaptures mouse input. If the mouse cursor is
on a divider, the control sends a
HDN_BEGINTRACK notification message
and begins tracking mouse movement. If the
cursor is on a header item, the control
redraws the item in the style that indicates
the item is pressed.

WM_LBUTTONDOWN Same as the WM_LBUTTONDBLCLK
message.

WM_LBUTTONUP Releases the mouse capture. If the control
was tracking mouse movement, it sends the
HDN_ENDTRACK notification message and
redraws the header control. Otherwise, the
control sends the HDN_ITEMCLICK
notification message and redraws the
header item that was clicked.

WM_MOUSEMOVE If a divider is being dragged, the control
sends the HDN_TRACK notification
message and redraws itself. If the left mouse
button is down and the cursor is on an item,
the control redraws the item in the style that
indicates the item is pressed.

WM_NCCREATE Allocates and initializes an internal data
structure.

WM_NCDESTROY Frees resources allocated by the header
control.

WM_PAINT Paints the invalid region of the header
control. If the wParam parameter is non-
NULL, the control assumes that the value is
an HDC and paints using that device
context.

WM_SETCURSOR Sets the cursor shape, depending on
whether the cursor is on a divider or in a
header item.

WM_SETFONT Selects a new font handle into the device
context for the header control.

Using Header Controls
· Creating a header control
· Adding an item to a header control

Creating a Header Control
The following example creates a header control and positions it along the top of the parent
window's client area. The control is initially hidden. The example uses the HDM_LAYOUT
message to determine the appropriate size and position of the control given the bounding
rectangle of the parent window. Then the example sets the size and position of the control and
makes it visible.// DoCreateHeader - creates a header control that is positioned along
//the top of the parent window's client area.
// Returns the handle of the header control.
// hwndParent - handle of the parent window
//
// Global variable
// g_hinst - handle of the application instance
extern HINSTANCE g_hinst;
HWND DoCreateHeader(HWND hwndParent)
{

HWND hwndHeader;
RECT rcParent;
HD_LAYOUT hdl;
WINDOWPOS wp;
// Ensure that the common control DLL is loaded, and then create
// the header control.
InitCommonControls();
if ((hwndHeader = CreateWindowEx(0, WC_HEADER, (LPCTSTR) NULL,

WS_CHILD | WS_BORDER | HDS_BUTTONS | HDS_HORZ,
0, 0, 0, 0, hwndParent, (HMENU) ID_HEADER, g_hinst,
(LPVOID) NULL)) == NULL)
return (HWND) NULL;
// Retrieve the bounding rectangle of the parent window's
// client area, and then request size and position values
// from the header control.
GetClientRect(hwndParent, &rcParent);
hdl.prc = &rcParent;
hdl.pwpos = ℘
if (!SendMessage(hwndHeader, HDM_LAYOUT, 0, (LPARAM) &hdl))
return (HWND) NULL;
// Set the size, position, and visibility of the header control.
SetWindowPos(hwndHeader, wp.hwndInsertAfter, wp.x, wp.y,
wp.cx, wp.cy, wp.flags | SWP_SHOWWINDOW);
return hwndHeader;

}

Adding an Item to a Header Control
The following example demonstrates how to use the HDM_INSERTITEM message and the
HD_ITEM structure to add an item to a header control. The new item consists of a string that is
left-justified within the item rectangle.// DoInsertItem - inserts items into a header control.
// Returns the index of the newly added item.
// hwndHeader - handle of the header control
// iInsertAfter - index of the previous item
// nWidth - width of the new item
// lpsz - address of the item string
int DoInsertItem(HWND hwndHeader, int iInsertAfter,

int nWidth, LPSTR lpsz)
{

HD_ITEM hdi;
int index;
hdi.mask = HDI_TEXT | HDI_FORMAT | HDI_WIDTH;
hdi.pszText = lpsz;
hdi.cxy = nWidth;
hdi.cchTextMax = lstrlen(hdi.pszText);
hdi.fmt = HDF_LEFT | HDF_STRING;
index = SendMessage(hwndHeader, HDM_INSERTITEM,
(WPARAM) iInsertAfter, (LPARAM) &hdi);
return index;

}

Header Control Reference
The following messages, notification messages, and structures are associated with header
controls. These elements can be grouped as follows.Size and PositionHDM_LAYOUT
HD_LAYOUTInserting and Deleting ItemsHDM_DELETEITEM
HDM_INSERTITEMItem AttributesHDM_SETITEM
HDN_ITEMCHANGED
HDN_ITEMCHANGING
HDN_TRACKItem InformationHDM_GETITEM
HDM_GETITEMCOUNT
HDN_ITEMCLICK
HDN_ITEMDBLCLICK
HD_ITEM
HD_NOTIFYDivider TrackingHDN_BEGINTRACK
HDN_DIVIDERDBLCLICK
HDN_ENDTRACKHit TestingHD_HITTESTINFO
HDM_HITTEST

Header Control Messages
An application sends messages to add items, to retrieve item and control properties, and to
control the appearance and behavior of a header control. Most of these messages have a
corresponding macro that you can use instead of sending the message explicitly.

Message Corresponding Macro

HDM_DELETEITEM Header_DeleteItem
HDM_GETITEM Header_GetItem
HDM_GETITEMCOUNT Header_GetItemCount
HDM_HITTEST
HDM_INSERTITEM Header_InsertItem
HDM_LAYOUT Header_Layout
HDM_SETITEM Header_SetItem

Header Control Notification Messages
A header control sends notification messages, in the form of WM_NOTIFY messages, to its
parent window to notify it about events. The following notification messages are used with header
controls.
HDN_BEGINTRACK
HDN_DIVIDERDBLCLICK
HDN_ENDTRACK
HDN_ITEMCHANGED
HDN_ITEMCHANGING
HDN_ITEMCLICK
HDN_ITEMDBLCLICK

HDN_TRACK

Header Control Structures
The following structures are used with header controls.
HD_HITTESTINFO
HD_ITEM
HD_LAYOUT

HD_NOTIFY

Header Control Styles
The following window styles are used with header controls.

HDS_BUTTONS Header items behave like buttons.

HDS_HIDDEN Indicates a header control that is intended to be
hidden. This style does not hide the control;
instead, it causes the header control to return
zero in the cy member of the WINDOWPOS
structure returned by an HDM_LAYOUT
message. You would then hide the control by
setting its height to zero.

HDS_HORZ The header control is horizontal.

Hot-Key ControlsA hot-key control is a window that enables the user to enter a combination of keystrokes to be
used as a hot key. A hot key is a key combination that the user can press to perform an action
quickly. (For example, a user can create a hot key that activates a given window and brings it to
the top of the Z order.) The hot-key control displays the user's choices and ensures that the user
selects a valid key combination.

About Hot-Key Controls
When the user enters a key combination to be used as a hot key, the names of the keys appear in
the hot-key control. A key combination can consist of a modifier key (such as CTRL, ALT, or SHIFT)
and an accompanying key (such as a character key, an arrow key, a function key, and so on).

After the user has chosen a key combination, the application retrieves the key combination from
the hot-key control and uses it to set up a hot key in the system. The information retrieved from
the hot-key control includes a flag indicating the modifier key and the virtual-key code of the
accompanying key.

The application can use the information provided by a hot-key control to set up a global hot key or
a thread-specific hot key. A global hot key is associated with a particular window; it allows the
user to activate the window from any part of the system. An application sets a global hot key by
using the WM_SETHOTKEY message. Whenever the user uses a global hot key, the window
specified in WM_SETHOTKEY receives a WM_SYSCOMMAND message that specifies the
SC_HOTKEY value. This message activates the window that receives it. The hot key remains
valid until the application that called WM_SETHOTKEY exits.

A thread-specific hot key generates a WM_HOTKEY message that is posted to the beginning of a
particular thread so that it is removed by the next iteration of the message loop. An application
sets a thread-specific hot key by using the RegisterHotKey function.

Hot-Key Control Creation
You create a hot-key control by using the CreateWindowEx function, specifying the
HOTKEY_CLASS window class. When the function returns a handle to the hot-key control, an
application typically sets some rules about invalid hot-key combinations and provides perhaps a
default key combination. If an application does not set any rules, the user can choose any key or
key combination as a hot key. Most applications, however, do not allow the user to use a common
key (for example, the letter A) as a hot key.

About Hot-Key Control Messages
After creating a hot-key control, an application interacts with it by using three messages:
HKM_SETRULES, HKM_SETHOTKEY, and HKM_GETHOTKEY.

An application can send the HKM_SETRULES message to specify a set of CTRL, ALT, and SHIFT
key combinations that are considered invalid hot keys. If the application specifies an invalid key
combination, it should also specify a default modifier combination to use when the user selects the
invalid combination. When the user enters the invalid combination, the system performs a logical-
OR operation on the invalid combination entered by the user and the default combination. The
result is considered a valid combination; it is converted to a string and displayed in the control.

The HKM_SETHOTKEY message allows an application to set the hot key combination for a hot-
key control. This message is also typically used when the hot-key control is created.

Applications use the HKM_GETHOTKEY message to retrieve the virtual-key code and modifier
flags of the hot key chosen by the user of a hot-key control.

Default Hot-Key Message Processing
This section describes the window messages handled by the window procedure for the predefined
HOTKEY_CLASS window class used with hot-key controls.

Message Processing performed

WM_CHAR Retrieves the virtual-key code.
WM_CREATE Initializes the hot-key control, sets no hot-

key rules, and uses the system font.
WM_ERASEBKGND Hides the caret, calls the DefWindowProc

function, and shows the caret again.
WM_GETDLGCODE Returns a combination of the

DLGC_WANTCHARS and
DLGC_WANTARROWS values.

WM_GETFONT Retrieves the font.
WM_KEYDOWN Calls the DefWindowProc function if the

key is ENTER, TAB, SPACE BAR, DEL, ESC,
or BACKSPACE. If the key is SHIFT, CTRL, or
ALT, it checks whether the combination is
valid and, if it is, sets the hot key using the
combination. Other keys are set as hot
keys without their validity being checked
first.

WM_KEYUP Retrieves the virtual-key code.
WM_KILLFOCUS Destroys the caret.
WM_LBUTTONDOWN Sets the focus to the window.
WM_NCCREATE Sets the WS_EX_CLIENTEDGE window

style.
WM_PAINT Paints the hot-key control.
WM_SETFOCUS Creates and shows the caret.
WM_SETFONT Sets the font.
WM_SYSCHAR Retrieves the virtual-key code.
WM_SYSKEYDOWN Calls the DefWindowProc function if the

key is ENTER, TAB, SPACE BAR, DEL, ESC,
or BACKSPACE. If the key is SHIFT, CTRL, or
ALT, it checks whether the combination is
valid and, if it is, sets the hot key using the
combination. Other keys are set as hot
keys without their validity being checked
first.

WM_SYSKEYUP Retrieves the virtual-key code.

Using Hot-Key Controls
· Creating a hot-key control
· Retrieving and setting a hot key

Creating a Hot-Key Control
The following function creates a hot-key control, uses the HKM_SETRULES and
HKM_SETHOTKEY messages to initialize it, and returns a handle to the control. This hot-key
control does not allow the user to choose a hot key that is a single unmodified key, nor does it
permit the user to choose only SHIFT and a key. (These rules effectively prevent the user from
choosing a hot key that might be accidentally entered while typing text.)// InitializeHotkey - creates a hot-key control and sets rules
// and default settings for it.
// Returns the handle of the hot-key control.
// hwndDlg - handle of the parent window (dialog box)
//
// Global variable
//g_hinst - handle of the application instance
extern HINSTANCE g_hinst;
HWND WINAPI InitializeHotkey(HWND hwndDlg)
{

// Ensure that the common control DLL is loaded.
InitCommonControls();
hwndHot = CreateWindowEx(
0, // no extended styles
HOTKEY_CLASS, // class name
"", // no title (caption)
WS_CHILD | WS_VISIBLE, // style
10, 10, // position
200, 20, // size
hwndDlg, // parent window
NULL, // uses class menu
g_hinst, // instance
NULL // no WM_CREATE parameter
);
SetFocus(hwndHot);
// Set rules for invalid key combinations. If the user
// does not supply a modifier key, use ALT as a modifier.
// If the user supplies SHIFT as a modifier key, use
// SHIFT + ALT instead.
SendMessage(hwndHot, HKM_SETRULES,
(WPARAM) HKCOMB_NONE | HKCOMB_S, // invalid key combinations
MAKELPARAM(HOTKEYF_ALT, 0));// add ALT to invalid entries
// Set CTRL + ALT + A as the default hot key for this window.
// 0x41 is the virtual-key code for 'A'.
SendMessage(hwndHot, HKM_SETHOTKEY,
MAKEWORD(0x41, HOTKEYF_CONTROL | HOTKEYF_ALT), 0);
return hwndHot;

}

Retrieving and Setting a Hot Key
After the user has chosen a hot key, an application should retrieve the hot key from the hot-key
control by using the HKM_GETHOTKEY message. This message retrieves a 16-bit value that
contains the virtual-key code and modifier keys describing the hot key.

The following function retrieves a key combination from a hot-key control and then uses the
WM_SETHOTKEY message to set a global hot key. Note that you cannot set a global hot key for
a window that has the WS_CHILD window style.// ProcessHotkey - retrieves the hot key from the hot-key control and
//sets it as the hot key for the application's main window.
// Returns TRUE if successful or FALSE otherwise.
// hwndHot - handle of the hot-key control
// hwndMain - handle of the main window
BOOL WINAPI ProcessHotkey(HWND hwndHot, HWND hwndMain)
{

WORD wHotkey;
UINT iSetResult;
// Retrieve the hot key (virtual-key code and modifiers).
wHotkey = SendMessage(hwndHot, HKM_GETHOTKEY, 0, 0);
// Use the result as wParam for WM_SETHOTKEY.
iSetResult = SendMessage(hwndMain, WM_SETHOTKEY, wHotkey, 0);
switch (iSetResult) {
case 2: // WM_SETHOTKEY succeeded
MessageBox(NULL, "Hot key previously assigned",
"Okay", MB_OK);
return TRUE;
case 1: // WM_SETHOTKEY succeeded
return TRUE;
case 0:
MessageBox(NULL, "Invalid window for hot key",
"Error", MB_OK);
return FALSE;
case -1:
MessageBox(NULL, "Invalid hot key",
"Error", MB_OK);
return FALSE;
default:
MessageBox(NULL, "Unknown error", "Error", MB_OK);
return FALSE;
}}

Hot-Key Control Messages
The following messages are associated with hot-key controls.
HKM_GETHOTKEY
HKM_SETHOTKEY

HKM_SETRULES

Image ListsAn image list is a collection of same-sized images, each of which can be referred to by its index.
Image lists are used to efficiently manage large sets of icons or bitmaps. All images in an image
list are contained in a single, wide bitmap in screen device format. An image list may also include
a monochrome bitmap that contains masks used to draw images transparently (icon style).

About Image Lists
The Microsoft® Win32® application programming interface (API) provides image list functions,
which enable you to draw images, create and destroy image lists, add and remove images,
replace images, merge images, and drag images.

To use the image list functions, you must include the common control header file in your source
code files and link with the common control export library. In addition, before calling any image list
function, you must use the InitCommonControls function to ensure that the common control
dynamic-link library (DLL) is loaded.

Types
There are two types of image lists: nonmasked and masked. A nonmasked image list consists of a
color bitmap that contains one or more images. A masked image list consists of two bitmaps of
equal size. The first is a color bitmap that contains the images, and the second is a monochrome
bitmap that contains a series of masks ¾ one for each image in the first bitmap.

When a nonmasked image is drawn, it is simply copied into the target device context; that is, it is
drawn over the existing background color of the device context. When a masked image is drawn,
the bits of the image are combined with the bits of the mask, typically producing transparent areas
in the bitmap where the background color of the target device context shows through. There are
several drawing styles that you can specify when drawing a masked image. For example, you can
specify that the image be dithered to indicate a selected object. For more information about
drawing images, see Drawing Images.

Image List Creation
You create an image list by calling the ImageList_Create function. The parameters include the
type of image list to create, the dimensions of each image, and the number of images you intend
to add to the list. For a nonmasked image list, the function creates a single bitmap large enough to
hold the specified number of images of the given dimensions. Then it creates a screen-
compatible device context and selects the bitmap into it. For a masked image list, the function
creates two bitmaps and two screen-compatible device contexts. It selects the image bitmap into
one device context and the mask bitmap into the other.

The initial size of an image list is determined by the size values you specify in ImageList_Create.
If you attempt to add more images than you initially specified, the image list automatically grows to
accommodate the additional images. In ImageList_Create, you specify the amount of images by
which the image list can grow.

If ImageList_Create succeeds, it returns a handle of the HIMAGELIST type. You use this handle
in other image list functions to access the image list and manage the images. You can add and
remove images, copy images from one image list to another, and merge images from two different
image lists. When you no longer need an image list, you can destroy it by specifying its handle in
a call to the ImageList_Destroy function.

Adding and Removing Images
You can add bitmapped images, icons, or cursors to an image list. You add bitmapped images by
specifying the handles of two bitmaps in a call to the ImageList_Add function. The first bitmap
contains one or more images to add to the image bitmap, and the second bitmap contains the
masks to add to the mask bitmap. For nonmasked image lists, the second bitmap handle is
ignored; it can be set to NULL.

The ImageList_AddMasked function also adds bitmapped images to a masked image list. This
function is similar to ImageList_Add, except that you do not specify a mask bitmap. Instead, you
specify a color that the system combines with the image bitmap to automatically generate the
masks. Each pixel of the specified color in the image bitmap is changed to black, and the
corresponding bit in the mask is set to one. As a result, any pixel in the image that matches the
specified color is transparent when the image is drawn.

The ImageList_AddIcon function adds an icon or cursor to an image list. If the image list is
masked, ImageList_AddIcon adds the mask provided with the icon or cursor to the mask bitmap.
If the image list is nonmasked, the mask for the icon or cursor is not used when drawing the
image.

You can create an icon based on an image and mask in an image list by using the
ImageList_GetIcon function. The function returns the handle of the new icon.

ImageList_Add, ImageList_AddMasked, and ImageList_AddIcon assign an index to each
image as it is added to an image list. The indexes are zero-based; that is, the first image in the list
has an index of zero, the next has an index of one, and so on. After adding a single image, the
functions return the index of the image. When more than one image is added at a time, the
functions return the index of the first image.

The ImageList_Remove function removes an image from an image list.

Replacing and Merging Images
The ImageList_Replace and ImageList_ReplaceIcon functions replace an image in an image
list with a new image. ImageList_Replace replaces an image with a bitmapped image and mask,
and ImageList_ReplaceIcon replaces an image with an icon or cursor.

The ImageList_Merge function merges two images, storing the new image in a new image list.
The new image is created by drawing the second image transparently over the first. The mask for
the new image is the result of performing a logical OR operation on the bits of the masks for the
two existing images.

Drawing Images
To draw an image, you use the ImageList_Draw or ImageList_DrawEx function. You specify the
handle of an image list, the index of the image to draw, the handle of the destination device
context, a location within the device context, and one or more drawing styles.

When you specify the ILD_TRANSPARENT style, ImageList_Draw or ImageList_DrawEx uses
a two-step process to draw a masked image. First, it performs a logical AND operation on the bits
of the image and the bits of the mask. Then it performs a logical XOR operation on the results of
the first operation and the background bits of the destination device context. This process creates
transparent areas in the resulting image; that is, each white bit in the mask causes the
corresponding bit in the resulting image to be transparent.

Before drawing a masked image on a solid color background, you should use the
ImageList_SetBkColor function to set the background color of the image list to the same color as
the destination. Setting the color eliminates the need to create transparent areas in the image and
enables ImageList_Draw or ImageList_DrawEx to simply copy the image to the destination
device context, resulting in a significant increase in performance. To draw the image, specify the
ILD_NORMAL style in a call to ImageList_Draw or ImageList_DrawEx.

You can set the background color for a masked image list at any time so that it draws correctly on
any solid background. Setting the background color to CLR_NONE causes images to be drawn
transparently by default. To retrieve the background color of an image list, use the
ImageList_GetBkColor function.

The ILD_BLEND25 and ILD_BLEND50 styles dither the image with the system highlight color.
These styles are useful if you use a masked image to represent an object that the user can select.
For example, you can use the ILD_BLEND50 style to draw the image when the user selects it.

A nonmasked image is copied to the destination device context using the SRCCOPY raster
operation. The colors in the image appear the same regardless of the background color of the
device context. The drawing styles specified in ImageList_Draw or ImageList_DrawEx also have
no effect on the appearance of a nonmasked image.

Overlay Mask
Every image list includes a list of images to use as overlay masks. An overlay mask is an image
drawn transparently over another image. Any image can be used as an overlay mask. You can
specify up to four overlay masks per image list.

You add the index of an image to the list of overlay masks by using the
ImageList_SetOverlayImage function, specifying the handle of the image list, the index of an
image, and the index of an overlay mask. Note that the indices for the overlay masks are one-
based rather than zero-based.

You draw an overlay mask over an image using a single call to the ImageList_Draw or
ImageList_DrawEx function. The parameters include the index of the image to draw and the
index of an overlay mask. You must use the INDEXTOOVERLAYMASK macro to specify the
index of the overlay mask.

Dragging Images
The Win32 API includes functions for dragging an image on the screen. The dragging functions
move an image smoothly, in color, and without any flashing of the cursor. Both masked and
unmasked images can be dragged.

The ImageList_BeginDrag function begins a drag operation. The parameters include the handle
of the image list, the index of the image to drag, and the location of the hot spot within the image.
The hot spot is a single pixel that the dragging functions recognize as the exact screen location of
the image. Typically, an application sets the hot spot so that it coincides with the hot spot of the
mouse cursor. The ImageList_DragMove function moves the image to a new location.

The ImageList_DragEnter function sets the initial position of the drag image within a window and
draws the image at the position. The parameters include the handle of the window in which to
draw the image and the coordinates of the initial position within the window. The coordinates are
relative to the window's upper-left corner, not the client area. The same is true for all of the image
dragging functions that take coordinates as parameters. This means you must compensate for the
widths of window elements, such as the border, title bar, and menu bar, when specifying the
coordinates. If you specify a NULL window handle when calling ImageList_DragEnter, the
dragging functions draw the image in the device context associated with the desktop window, and
the coordinates are relative to the upper-left corner of the screen.

ImageList_DragEnter locks all other updates to the given window during the drag operation. If
you need to do any drawing during a drag operation, such as highlighting the target of a drag and
drop operation, you can temporarily hide the dragged image by using the ImageList_DragLeave
function. Another method is to use the GetDCEx function with the DCX_LOCKWINDOWUPDATE
value to retrieve a device context that allows you to draw. You must be careful, however, not to
obliterate the dragged image.

The ImageList_SetDragCursorImage creates a new drag image by combining the given image
(typically a mouse cursor image) with the current drag image. Because the dragging functions use
the new image during a drag operation, you should use the ShowCursor function to hide the
actual mouse cursor after calling ImageList_SetDragCursorImage. Otherwise, the system may
appear to have two mouse cursors for the duration of the drag operation.

When an application calls ImageList_BeginDrag, the system creates an temporary, internal
image list can copies the specified drag image to the internal list. You can retrieves the handle of
the temporary drag image list by using the ImageList_GetDragImage function. The function also
retrieves the current drag position, and the offset of the drag image relative to the drag position.

Image Information
The Win32 API includes a number of functions that retrieve information from an image list. The
ImageList_GetImageInfo function fills an IMAGEINFO structure with information about a single
image, including the handles of the image and mask bitmaps, the number of color planes and bits
per pixel, and the bounding rectangle of the image within the image bitmap. You can use this
information to directly manipulate the bitmaps for the image.

The ImageList_GetImageCount function retrieves the number of images in an image list.

Using Image Lists
· Creating an image list
· Dragging an image

Creating an Image List
To create an image list, use the ImageList_Create function, specifying the type of image list to
create (unmasked or masked); the width and height, in pixels, of the images; the number of
images you intend to add to the image list; and the amount of images by which the list can grow
when it is resized to accommodate additional images. The common control DLL contains the
executable code for the image list functions. You must ensure that the library is loaded by using
the InitCommonControls function before making any calls to image list functions.

The following example creates a masked image list and uses the ImageList_AddIcon function to
add two icons to the list.// AddIconsToImageList - creates a masked image list and adds some
//icons to it.
// Returns the handle of the new image list.
// hinst - handle of the application instance
//
// Global variables and constants
//g_nBird and g_nTree - indexes of the images
//CX_ICON and CY_ICON - width and height of the icon
//NUM_ICONS - number of icons to add to the image list
extern int g_nBird, g_nTree;
#define CX_ICON 32
#define CY_ICON 32
#define NUM_ICONS 3
HIMAGELIST AddIconsToImageList(HINSTANCE hinst)
{

HIMAGELIST himlIcons; // handle of new image list
HICON hicon; // handle of icon
// Ensure that the common control DLL is loaded.
InitCommonControls();
// Create a masked image list large enough to hold the icons.
himlIcons = ImageList_Create(CX_ICON, CY_ICON, TRUE, NUM_ICONS, 0)

;
// Load the icon resources, and add the icons to the image list.
hicon = LoadIcon(hinst, MAKEINTRESOURCE(IDI_BIRD));
g_nBird = ImageList_AddIcon(himlIcons, hicon);
hicon = LoadIcon(hinst, MAKEINTRESOURCE(IDI_TREE));
g_nTree = ImageList_AddIcon(himlIcons, hicon);
return himlIcons;

}

Dragging an Image
Dragging an image involves calls to the ImageList_BeginDrag, ImageList_DragMove, and
ImageList_EndDrag functions. ImageList_BeginDrag begins a drag operation by combining an
image with the current mouse cursor, setting a hot spot in the image, and drawing the image in its
initial position. The function also prevents the system from updating any other parts of the display.
ImageList_DragMove drags the image to a new location. ImageList_EndDrag ends a drag
operation, permitting the system to update any part of the display.

The remainder of this section provides an example using four functions that demonstrates how to
drag an image. The first function shows how to draw an image in a window's client area, and
subsequent functions show how to drag the image.

Drawing the Image
The following function draws an image and saves the client coordinates of the image's bounding
rectangle. A subsequent function uses the bounding rectangle to determine whether the user has
clicked the image.// DrawTheImage - draws an image transparently and saves
//the bounding rectangle of the drawn image
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window in which to draw the image
// himl - handle of the image list that contains the image
// cx and cy - client coordinates for the upper-left corner of the
image
//
// Global variables and constants
//g_nImage - index of the image to draw
//g_rcImage - bounding rectangle of the image
//CX_IMAGE and CY_IMAGE - width and height of the image
extern int g_nImage;
extern RECT g_rcImage;
#define CX_IMAGE 32
#define CY_IMAGE 32
BOOL DrawTheImage(HWND hwnd, HIMAGELIST himl, int cx, int cy)
{

HDC hdc;
if ((hdc = GetDC(hwnd)) == NULL)
return FALSE;
if (!ImageList_Draw(himl, g_nImage, hdc, cx, cy, ILD_TRANSPARENT))
return FALSE;
ReleaseDC(hwnd, hdc);
SetRect(&g_rcImage, cx, cy, CX_IMAGE + cx, CY_IMAGE + cy);
return TRUE;

}

Beginning the Drag Operation
The following function is intended to be called in response to a mouse button-down message,
such as WM_LBUTTONDOWN. The function determines whether the user has clicked within the
bounding rectangle of the image. If the user has clicked, the function captures the mouse input,
erases the image from the client area, and calculates the position for the hot spot within the
image. The function sets the hot spot to coincide with the hot spot of the mouse cursor. Then the
function begins the drag operation by calling ImageList_BeginDrag.// StartDragging - begins dragging a bitmap.
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window in which the bitmap is dragged
// ptCur - coordinates of the cursor
// himl - handle of the image list
//
// Global variables
//g_rcImage - bounding rectangle of the image to drag
//g_nImage - index of the image
//g_ptHotSpot - location of the image's hot spot
//g_cxBorder and g_cyBorder - width and height of border
//g_cyCaption and g_cyMenu - height of title bar and menu bar
extern RECT g_rcImage;
extern int g_nImage;
extern POINT g_ptHotSpot;
BOOL StartDragging(HWND hwnd, POINT ptCur, HIMAGELIST himl)
{

// Return if the cursor is not in the bounding rectangle of
// the image.
if (!PtInRect(&g_rcImage, ptCur))
return FALSE;
// Capture the mouse input.
SetCapture(hwnd);
// Erase the image from the client area.
InvalidateRect(hwnd, &g_rcImage, TRUE);
UpdateWindow(hwnd);
// Calculate the location of the hot spot, and save it.
g_ptHotSpot.x = ptCur.x - g_rcImage.left;
g_ptHotSpot.y = ptCur.y - g_rcImage.top;
// Begin the drag operation.
if (!ImageList_BeginDrag(himl, g_nImage,

g_ptHotSpot.x, g_ptHotSpot.y))
return FALSE;
// Set the initial location of the image, and make it visible.
// Because the ImageList_DragEnter function expects coordinates to
// be relative to the upper-left corner of the given window, the
// width of the border, title bar, and menu bar need to be taken
// into account.
ImageList_DragEnter(hwnd, ptCur.x + g_cxBorder,
ptCur.y + g_cyBorder + g_cyCaption + g_cyMenu);
g_fDragging = TRUE;
return TRUE;

}

Moving the Image
The following function, which drags the image to a new location, is intended to be called in
response to the WM_MOUSEMOVE message.// MoveTheImage - drags an image to the specified coordinates.
// Returns TRUE if successful or FALSE otherwise.
// ptCur - new coordinates for the image
BOOL MoveTheImage(POINT ptCur)
{

if (!ImageList_DragMove(ptCur.x, ptCur.y))
return FALSE;
return TRUE;

}

Ending the Drag Operation
The following function ends the drag operation and draws the image in its final location. It also
releases the mouse capture.// StopDragging - ends a drag operation and draws the image
//at its final location.
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window in which the bitmap is dragged
// himl - handle of the image list
// ptCur - coordinates of the cursor
//
// Global variable
//g_ptHotSpot - location of the image's hot spot
extern POINT g_ptHotSpot;
BOOL StopDragging(HWND hwnd, HIMAGELIST himl, POINT ptCur)
{

ImageList_EndDrag();
ImageList_DragLeave(hwnd)
g_fDragging = FALSE;
DrawTheImage(hwnd, himl, ptCur.x - g_ptHotSpot.x,
ptCur.y - g_ptHotSpot.y);
ReleaseCapture();
return TRUE;

}

Image List Reference
The following functions, macros, and structures are associated with image lists. These elements
can be grouped as follows.Creating Image ListsImageList_Create
ImageList_Destroy
ImageList_LoadBitmap
ImageList_LoadImageAdding and Removing ImagesImageList_Add
ImageList_AddIcon
ImageList_AddMasked
ImageList_RemoveReplacing and Merging ImagesImageList_Replace
ImageList_ReplaceIcon
ImageList_MergeDrawing ImagesImageList_Draw
ImageList_DrawEx
ImageList_ExtractIcon
ImageList_GetBkColor
ImageList_GetIcon
ImageList_SetBkColor
INDEXTOOVERLAYMASKDragging ImagesImageList_BeginDrag
ImageList_DragEnter
ImageList_DragLeave
ImageList_DragMove
ImageList_DragShowNolock
ImageList_EndDrag
ImageList_GetDragImage
ImageList_SetDragCursorImage
ImageList_SetOverlayImageImage InformationImageList_GetIconSize
ImageList_GetImageCount
ImageList_GetImageInfo
ImageList_SetIconSize
IMAGEINFOStoring Image ListsImageList_Read
ImageList_Write

Image List Functions
The following functions are used with image lists.
ImageList_Add
ImageList_AddMasked
ImageList_BeginDrag
ImageList_Create
ImageList_Destroy
ImageList_DragEnter
ImageList_DragLeave
ImageList_DragMove
ImageList_DragShowNolock
ImageList_Draw
ImageList_DrawEx
ImageList_EndDrag
ImageList_ExtractIcon
ImageList_GetBkColor
ImageList_GetDragImage
ImageList_GetIcon
ImageList_GetIconSize
ImageList_GetImageCount
ImageList_GetImageInfo
ImageList_LoadBitmap
ImageList_LoadImage
ImageList_Merge
ImageList_Read
ImageList_Remove
ImageList_Replace
ImageList_ReplaceIcon
ImageList_SetBkColor
ImageList_SetDragCursorImage
ImageList_SetIconSize
ImageList_SetOverlayImage

ImageList_Write

Image List Macro
The following macros are used with image lists.
ImageList_AddIcon

INDEXTOOVERLAYMASK

Image List Structure
The following structure is used with image lists.

IMAGEINFO

List View ControlsA list view control is a window that displays a collection of items, each item consisting of an icon
and a label. List view controls provide several ways of arranging items and displaying individual
items. For example, additional information about each item can be displayed in columns to the
right of the icon and label.

About List View Controls
You can create a list view control by calling the CreateWindowEx function, specifying the
WC_LISTVIEW window class. This window class is registered when the common controls
dynamic-link library (DLL) is loaded. To ensure that this DLL is loaded, use the
InitCommonControls function.

An application sends messages to a list view control to add, remove, arrange, and otherwise
manipulate items. Each message has a macro that you can use instead of sending the message
explicitly.

Like most common controls, a list view control sends notification messages to its parent window in
the form of WM_NOTIFY messages. For more information about common controls, see Common
Controls.

Views and Styles
List view controls can display their contents in four different views. The current view is specified by
the control's window style. Additional window styles specify the alignment of items and control-
specific functionality of the list view control. Information about the four views follows.

View Description

Icon view Specified by the LVS_ICON window style.
Each item appears as a full-sized icon with a label
below it. The user can drag the items to any location
in the list view window.

Small icon view Specified by the LVS_SMALLICON window style.
Each item appears as a small icon with the label to
the right of it. The user can drag the items to any
location.

List view Specified by the LVS_LIST window style.
Each item appears as a small icon with a label to the
right of it. Items are arranged in columns and cannot
be dragged to any arbitrary location by the user.

Report view Specified by the LVS_REPORT window style.
Each item appears on its own line with information
arranged in columns. The leftmost column contains
the small icon and label, and subsequent columns
contain subitems as specified by the application.
Unless the LVS_NOCOLUMNHEADER window
style is also specified, each column has a header.

You can change the view type after a list view control is created. To retrieve and change
the window style, use the GetWindowLong and SetWindowLong functions. To determine the
window styles that correspond to the current view, use the LVS_TYPEMASK value.

You can control the way items are arranged in icon or small icon view by specifying either the
LVS_ALIGNTOP (default) or LVS_ALIGNLEFT window style. You can change the alignment after
a list view control is created. To isolate the window styles that specify the alignment of items, use
the LVS_ALIGNMASK value.

Additional window styles control other options ¾ for example, whether a user can edit labels in
place, whether more than one item can be selected at a time, and so on. For a complete list of the
list view window styles, see List View Window Styles.

List View Image Lists
The icons for list view items are contained in image lists, which you create and assign to the list
view control. One image list contains the full-sized icons used in icon view, and a separate image
list contains smaller versions of the same icons for use in other views. You can also specify a third
image list that contains state images, which are displayed next to an item's icon to indicate an
application-defined state.

You assign an image list to a list view control by using the LVM_SETIMAGELIST message,
specifying whether the image list contains full-sized icons, small icons, or state images. You can
use the GetSystemMetrics function to determine appropriate dimensions for the full-sized and
small icons and the ImageList_Create function to create the image lists. For more information
about image lists, see Image Lists.

You can retrieve the handle of an image list currently assigned to a list view control by using the
LVM_GETIMAGELIST message.

The full-sized and small icon image lists typically contain icons for each type of list view item. You
do not need to create both of these image lists if only one is used ¾ for example, if a list view
control is never in icon view. If you create both image lists, they must contain the same images in
the same order because a single value is used to identify a list view item's icon in both image lists.

The full-sized and small icon image lists can also contain overlay images, which are designed to
be superimposed on item icons. A nonzero value in bits 8 through 11 of a list view item's state
specifies the one-based index of an overlay image (zero indicates no overlay image). Because a
4-bit, one-based index is used, overlay images must be among the first 15 images in the image
lists. For more information about list view item states, see Item States.

If a state image list is specified, a list view control reserves space to the left of each item's icon for
a state image. An application can use state images, such as checked and cleared check boxes, to
indicate application-defined item states. A nonzero value in bits 12 through 15 specifies the one-
based index of a state image (zero indicates no state image). State images are typically not used
in icon view.

By default, a list view control destroys the image lists assigned to it when it is destroyed. However,
if a list view control has the LVS_SHAREIMAGELISTS window style, the application is
responsible for destroying the image lists when they are no longer in use. You should specify this
style if you assign the same image lists to multiple list view controls; otherwise, more than one
control might try to destroy the same image list.

Items and Subitems
Each item in a list view control consists of an icon, a label, a current state, and an application-
defined value. One or more subitems can also be associated with each item. A subitem is a string
that, in report view, can be displayed in a column to the right of an item's icon and label. All items
in a list view control have the same number of subitems. By using list view messages, you can
add, modify, retrieve information about, and delete items. You can also find items with specific
attributes.

The LV_ITEM structure defines a list view item or subitem. The iItem member is the zero-based
index of the item. The iSubItem member is the one-based index of a subitem or zero if the
structure contains information about an item. Additional members specify the item's text, icon,
state, and item data. Item data is an application-defined value associated with a list view item.

To add an item to a list view control, use the LVM_INSERTITEM message, specifying the address
of an LV_ITEM structure. Before adding multiple items, you can send the control an
LVM_SETITEMCOUNT message, specifying the number of items the control will ultimately
contain. This message enables the list view control to reallocate its internal data structures only
once rather than every time you add an item. You can determine the number of items in a list view
control by using the LVM_GETITEMCOUNT message.

To change the attributes of a list view item, use the LVM_SETITEM message, specifying the
address of an LV_ITEM structure. The mask member of this structure specifies the item attributes
you want to change. To change only the text of an item or subitem, use the LVM_SETITEMTEXT
message.

To retrieve information about a list view item, use the LVM_GETITEM message, specifying the
address of the LV_ITEM structure to fill in. The mask member of this structure specifies the item
attributes to be retrieved. To retrieve only an item or subitem's text, use the LVM_GETITEMTEXT
message.

To delete a list view item, use the LVM_DELETEITEM message. You can delete all items in a list
view control by using the LVM_DELETEALLITEMS message.

Item States
An item's state is a value that specifies the item's availablility, indicates user actions, or otherwise
reflects the item's status. A list view control changes some state bits, such as when the user
selects an item. An application might change other state bits to disable or hide the item or to
specify an overlay image or state image. For more information about overlay images and state
images, see List View Image Lists.

An item's state is specified by the state member of the LV_ITEM structure. When you specify or
change an item's state, the stateMask member specifies which state bits you want to change.
You can change an item's state by using the LVM_SETITEMSTATE message. You can specify an
item's state when you create it or when you change its attributes by using the LMV_SETITEM
message. To determine an item's current state, use the LVM_GETITEMSTATE or
LVM_GETITEM message.

To set an item's overlay image, the stateMask member of the LV_ITEM structure must include
the LVIS_OVERLAYMASK value, and the state member must include the one-based index of the
overlay image shifted left 8 bits by using the INDEXTOOVERLAYMASK macro. The index can be
zero to specify no overlay image.

To set an item's state image, the stateMask member of the LV_ITEM structure must include the
LVIS_STATEIMAGEMASK value, and the state member must include the one-based index of the
state image shifted left 12 bits by using the INDEXTOSTATEIMAGEMASK macro. The index can
be zero to specify no state image.

Callback Items and the Callback Mask
For each of its items, a list view control typically stores the label text, the image list index of the
item's icons, and a set of bit flags for the item's state. You can define callback items or change the
control's callback mask to indicate that the application ¾ rather than the control ¾ stores some or
all of this information. You may want to use callbacks if your application already stores some of
this information.

A callback item in a list view control is an item for which the application stores the text, icon index,
or both. You can define callback items when you send the LVM_INSERTITEM message to add an
item to the list view control. If the application stores the text for the item or subitem, set the
pszText member of the item's LV_ITEM structure to LPSTR_TEXTCALLBACK. If the application
stores the icon index for an item, set the iImage member of the item's LV_ITEM structure to
I_IMAGECALLBACK.

The callback mask of a list view control is a set of bit flags that specify the item states for which
the application, rather than the control, stores the current data. The callback mask applies to all of
the control's items, unlike the callback item designation, which applies to a specific item. The
callback mask is zero by default, meaning that the list view control stores all item state
information. After creating a list view control and initializing its items, you can send the
LVM_SETCALLBACKMASK message to change the callback mask. To get the current callback
mask, send the LVM_GETCALLBACKMASK message.

When a list view control must display or sort a list view item for which the application stores
callback information, the control sends the LVN_GETDISPINFO notification message to the
control's parent window. This message specifies an LV_DISPINFO structure that specifies the
type of information required and identifies the item or subitem of interest. The parent window must
process LVN_GETDISPINFO to provide the requested data.

If the list view control detects a change in an item's callback information (that is, a change in the
text, icon, or state information being tracked by the application), the control sends an
LVN_SETDISPINFO notification message to notify you of the change.

If you change a callback item's attributes or state bits, you can use the LVM_UPDATE message to
force the control to repaint the item. This message also causes the control to arrange its items if it
has the LVS_AUTOARRANGE style. You can use the LVM_REDRAWITEMS message to redraw
a range of items by invalidating the corresponding portions of the list view control's client area.

By effectively using callback items and the callback mask, you can ensure that each item attribute
is maintained in only one place. Doing this can simplify your application, but the only space saved
is the memory that would otherwise be required to store item labels and subitem text.

Columns
Columns control the way items and their subitems are displayed in report view. Each column has
a title and width and is associated with a specific subitem (subitem zero is the item's icon and
label). The attributes of a column are defined by an LV_COLUMN structure.

To add a column to a list view control, use the LVM_INSERTCOLUMN message. To delete a
column, use the LVM_DELETECOLUMN message. You can retrieve and change the properties of
an existing column by using the LVM_GETCOLUMN and LVM_SETCOLUMN messages.

To retrieve or change a column's width, use the LVM_GETCOLUMNWIDTH and
LVM_SETCOLUMNWIDTH messages.

Unless the LVS_NOCOLUMNHEADER window style is specified, column headers appear in
report view. The user can click a column header, causing an LVN_COLUMNCLICK notification
message to be sent to the parent window. Typically, the parent window sorts the list view control
by the specified column when this clicking occurs. The user can also drag the column guides
between the headers to size the columns.

Arranging, Sorting, and Finding
You can use list view messages to arrange and sort items and to find items based on their
attributes or positions. Arranging repositions items to align on a grid, but the indexes of the items
do not change. Sorting changes the sequence of items (and their corresponding indexes) and
then repositions them accordingly. You can arrange items only in icon and small icon views, but
you can sort items in any view.

To arrange items, use the LVM_ARRANGE message. You can ensure that items are arranged at
all times by specifying the LVS_AUTOARRANGE window style.

To sort items, use the LVM_SORTITEMS message. When you sort using this message, you
specify an application-defined callback function that the list view control calls to compare the
relative order of any two items. The control passes to the comparison function the item data
associated with each of the two items. The item data is the value that was specified in the lParam
member of the item's LV_ITEM structure when it was inserted into the list. By specifying the
appropriate item data and supplying an appropriate comparison function, you can sort items by
their label, by any subitem, or by any other property. Note that sorting items does not reorder the
corresponding subitems. Thus, if any subitems are not callback items, you must regenerate the
subitems after sorting.

You can ensure that a list view control is always sorted by specifying the LVS_SORTASCENDING
or LVS_SORTDESCENDING window style. Controls with these styles use the label text of the
items to sort them in ascending or descending order. You cannot supply a comparison function
when using these window styles. If a list view control has either of these styles, an
LVM_INSERTITEM message will fail if you try to insert an item that has LPSTR_TEXTCALLBACK
as the pszText member of its LV_ITEM structure.

You can find a list view item with specific properties by using the LVM_FINDITEM message. You
can find a list view item that is in a specified state and bears a specified geometrical relationship
to a given item by using the LVM_GETNEXTITEM message. For example, you can retrieve the
next selected item to the right of a specified item.

List View Item Position
Every list view item has a position and size, which you can retrieve and set using messages. You
can also determine which item, if any, is at a specified position. The position of list view items is
specified in view coordinates, which are client coordinates offset by the scroll position.

To retrieve and set an item's position, use the LVM_GETITEMPOSITION and
LVM_SETITEMPOSITION messages. LVM_GETITEMPOSITION works for all views, but
LVM_SETITEMPOSITION works only for icon and small icon views.

You can determine which item, if any, is at a particular location by using the LVM_HITTEST
message.

To get the bounding rectangle for a list item or for only its icon or label, use the
LVM_GETITEMRECT message.

Scroll Position
Unless the LVS_NOSCROLL window style is specified, a list view control can be scrolled to show
more items than can fit in the client area of the control. You can get a list view control's scroll
position and related information, scroll a list view control by a specified amount, or scroll a list view
control such that a specified list item is visible.

In icon view or small icon view, the current scroll position is defined by the view origin. The view
origin is the set of coordinates, relative to the visible area of the list view control, that correspond
to the view coordinates (0, 0). To get the current view origin, use the LVM_GETORIGIN message.
This message should be used only in icon or small icon view; it returns an error in list or report
view.

In list or report view, the current scroll position is defined by the top index. The top index is the
index of the first visible item in the list view control. To get the current top index, use the
LVM_GETTOPINDEX message. This message returns a valid result only in list or report view; it
returns zero in icon or small icon view.

You can use the LVM_GETVIEWRECT message to get the bounding rectangle of all items in a
list view control, relative to the visible area of the control.

The LVM_GETCOUNTPERPAGE message returns the number of items that fit in one page of the
list view control. This message returns a valid result only in list and report views; in icon and small
icon views, it returns the total number of items.

To scroll a list view control by a specific amount, use the LVM_SCROLL message. Using the
LVM_ENSUREVISIBLE message, you can scroll the list view control, if necessary, to ensure that
a specified item is visible.

Label Editing
A list view control that has the LVS_EDITLABELS window style enables a user to edit item labels
in place. The user begins editing by clicking the label of an item that has the focus. An application
can begin editing automatically by using the LVM_EDITLABEL message. The list view control
notifies the parent window when editing begins and when it is canceled or completed. When
editing is completed, the parent window is responsible for updating the item's label, if appropriate.

When label editing begins, a list view control sends its parent window an LVN_BEGINLABELEDIT
notification message. You can process this message to allow selective editing of specific labels;
returning a nonzero value prevents label editing.

When label editing is canceled or completed, a list view control sends its parent window an
LVN_ENDLABELEDIT notification message. The lParam parameter is the address of an
LV_DISPINFO structure. The item member of this structure is an LV_ITEM structure whose iItem
member identifies the item. If editing is canceled, the pszText member of the LV_ITEM structure
is NULL; otherwise, pszText is a pointer to the edited text. The parent window is responsible for
updating the item's label, if appropriate, perhaps after validating the edited string.

During label editing, you can get the handle of the edit control used for label editing by using the
LVM_GETEDITCONTROL message. To limit the amount of text a user can enter, you can send
the edit control an EM_LIMITTEXT message. You can even subclass the edit control to intercept
and discard invalid characters. The edit control is created after the LVN_BEGINLABELEDIT
notification message is sent.

List View Colors
An application can retrieve and set three colors for a list view control. To retrieve and set the text
color, use the LVM_GETTEXTCOLOR and LVM_SETTEXTCOLOR messages. To retrieve and
set the text background color, use the LVM_GETTEXTBKCOLOR and LVM_SETTEXTBKCOLOR
messages. To retrieve and set the window background color, use the LVM_GETBKCOLOR and
LVM_SETBKCOLOR messages.

List View Notification Messages
A list view control sends notification messages to its parent window in the form of WM_NOTIFY
messages. The following notification messages are sent by a list view control.

Notification message Description

LVN_BEGINDRAG Signals the start of a drag and drop
operation.

LVN_BEGINLABELEDIT Signals the start of in-place label
editing.

LVN_BEGINRDRAG Signals the start of a drag and drop
operation, using the right mouse
button.

LVN_COLUMNCLICK Indicates that the user clicked a
column header in report view.

LVN_DELETEALLITEMS Signals the deletion of all list view
items.

LVN_DELETEITEM Signals the deletion of a specific item.
LVN_ENDLABELEDIT Signals the end of label editing.
LVN_GETDISPINFO Requests information that the list view

control requires to display an item.
LVN_INSERTITEM Signals the insertion of a new list view

item.
LVN_ITEMCHANGED Indicates that an item has changed.
LVN_ITEMCHANGING Indicates that an item is in the process

of changing and enables the parent
window to accept or deny the change.

LVN_KEYDOWN Signals a keyboard event.
LVN_SETDISPINFO Notifies a parent window that it must

update the information it maintains for
an item.

Default List View Message Processing
This section describes the window message processing performed by a list view control.
Messages specific to list view controls are discussed elsewhere and are, therefore, not included
here.

Message Processing performed

WM_CHAR Searches for a list view item that
begins with the specified character
and, if the item is found, selects and
sets the focus to the item.
Multiple characters received within a
time-out interval are concatenated,
and the list view control searches for
an item that begins with the resulting
string.

WM_COMMAND Processes the EN_UPDATE and
EN_KILLFOCUS notification
messages and forwards all other edit
control notifications to the parent
window.

WM_CREATE Performs additional initialization. If the
LVS_SHAREIMAGELISTS window
style is not specified, the list view
control creates the icon and small icon
image lists at this point.

WM_DESTROY Frees resources.
WM_ERASEBKGND Erases the window background using

the current background color for the
list view control. If the background
color is the CLR_NONE value, the list
view control forwards the message to
the parent window.

WM_GETDLGCODE Returns a combination of the
DLGC_WANTTAB and
DLGC_WANTARROWS values.

WM_GETFONT Returns the handle of the current label
font.

WM_HSCROLL Scrolls the list view control
horizontally.

WM_KEYDOWN Processes the SPACEBAR, ENTER, and
arrow keys and sends a
LVN_KEYDOWN notification message
to the parent window.

WM_KILLFOCUS Repaints the focused list item, if any,
and sends a NM_KILLFOCUS
notification message to the parent
window.

WM_LBUTTONDBLCLK Sends the parent window an
NM_DBLCLK notification message.

WM_LBUTTONDOWN Processed in different ways depending
on whether a click or drag operation is
being initiated. To determine which
operation is involved, the list view
control enters a modal message loop
until either the button is released or the
mouse is moved.
In the case of a click, the list view
control may change which item has the
focus and which items are selected,
taking into account the cursor position,

the state of the SHIFT and CTRL keys,
and so on. Then the list view control
sends its parent window an
NM_CLICK notification message.
If dragging begins over an item, the list
view control selects and sets the focus
to the item. Then it sends an
LVN_BEGINDRAG notification
message to the parent window. The
parent window is responsible for
actually carrying out the drag
operation.
If dragging begins over the window
background, the list view control enters
another modal message loop, enabling
the user to form a rectangle by
dragging the mouse. Items within the
rectangle are selected.

WM_NCCREATE Allocates and initializes an internal
data structure and then calls the
DefWindowProc function.

WM_NCDESTROY Frees resources allocated by the list
view control. Unless the
LVS_SHAREIMAGELISTS style is
used, this includes deleting the full-
sized and small image lists.

WM_NOTIFY Processes header control notification
messages.

WM_PAINT Displays any items in the update
region. For callback items, the control
first sends an LVN_GETDISPINFO
notification message to the owner
window to request display information.
If the wParam parameter is non-
NULL, the control assumes that the
value is an HDC and paints using that
device context.

WM_RBUTTONDOWN Processed the same way as the
WM_LBUTTONDOWN message,
except that the control sends an
NM_RCLICK notification message
(instead of NM_CLICK) and an
LVN_BEGINRDRAG notification
message (instead of
LVN_BEGINDRAG).

WM_SETFOCUS Repaints the focused list item, if any,
and sends an NM_SETFOCUS
notification message to the parent
window.

WM_SETFONT Saves the specified font handle,
forwards the message to the header
window, if any, and repaints using the
new font.

WM_SETREDRAW Turns redrawing on or off.
WM_TIMER Begins editing of an item label. If the

user clicks the label of the focused
item, the list view control sets a timer
instead of entering edit mode
immediately. The timer makes it
possible for the list view control to not
enter edit mode if the user double-
clicks the label.

WM_VSCROLL Scrolls the list view control vertically.
WM_WINDOWPOSCHANGEDUpdates the window scroll bars. If the

current view is icon or small icon view
and the LVS_AUTOARRANGE style is
specified, the list view control also
arranges the list items.

WM_WININICHANGE Processes changes to system metrics.

Using List View Controls
· Creating a list view control
· Initializing the image lists for a list view control
· Adding columns to a list view control
· Adding items to a list view control
· Processing the WM_NOTIFY message
· Changing list view styles

Creating a List View Control
To create a list view control, use the CreateWindowEx function, specifying the WC_LISTVIEW
window class. The list view window class is registered in the application's address space when the
common controls dynamic-link library (DLL) is loaded. To ensure that the DLL is loaded, call the
InitCommonControls function before creating the control.

When you call CreateWindowEx, you can specify a combination of list view window styles to
control the appearance and attributes of the control. For a complete list of the list view window
styles, see List View Window Styles.

The following example creates a list view control and then calls application-defined functions that
add image lists, columns, and list view items. The window style specifies the list view control's
initial view and other options. This example specifies report view, which enables the user to edit
the labels of list view items.// CreateListView - creates a list view control.
// Returns the handle of the new control if successful or NULL
//otherwise.
// hwndParent - handle of the control's parent window
// pfData - file containing list view items
HWND WINAPI CreateListView(HWND hwndParent, FILE *pfData)
{

HWND hwndLV;
// Force the common controls DLL to be loaded.
InitCommonControls();
// Create the list view window.
hwndLV = CreateWindow(WC_LISTVIEW, "",
WS_CHILD | LVS_REPORT | LVS_EDITLABELS,
0, 0, CW_USEDEFAULT, CW_USEDEFAULT,
hwndParent, NULL, g_hinst, NULL);
if (hwndLV == NULL)
return NULL;
// Call application-defined functions to initialize the
// image lists, add columns, and add some items.
if (!InitListViewImageLists(hwndLV) ||

!InitListViewColumns(hwndLV) ||
!InitListViewItems(hwndLV, pfData)) {
DestroyWindow(hwndLV);
return FALSE;
}
return hwndLV; // return the control's handle

}

Initializing the Image Lists for a List View Control
A list view control can have up to three image lists associated with it: one for item icons in icon
view, one for item icons in other views, and one for application-defined item states. The following
example creates two image lists, adds an icon to each, and assigns them to a list view control by
using the LVM_SETIMAGELIST message.// InitListViewImageList - creates image lists for a list view.
// Returns TRUE if successful or FALSE otherwise.
// hwndLV - handle of the list view control
BOOL WINAPI InitListViewImageLists(HWND hwndLV)
{

HICON hiconItem; // icon for list view items
HIMAGELIST himlLarge; // image list for icon view
HIMAGELIST himlSmall; // image list for other views
// Create the full-sized and small icon image lists.
himlLarge = ImageList_Create(GetSystemMetrics(SM_CXICON),
GetSystemMetrics(SM_CYICON), TRUE, 1, 1);
himlSmall = ImageList_Create(GetSystemMetrics(SM_CXSMICON),
GetSystemMetrics(SM_CYSMICON), TRUE, 1, 1);
// Add an icon to each image list.
hiconItem = LoadIcon(g_hinst, MAKEINTRESOURCE(IDI_ITEM));
ImageList_AddIcon(himlLarge, hiconItem);
ImageList_AddIcon(himlSmall, hiconItem);
DeleteObject(hiconItem);
// Assign the image lists to the list view control.
ListView_SetImageList(hwndLV, himlLarge, LVSIL_NORMAL);
ListView_SetImageList(hwndLV, himlSmall, LVSIL_SMALL);
return TRUE;

}

Adding Columns to a List View Control
Columns appear only in report view, and they enable multiple pieces of information to be
displayed for each list item. You can add columns to a list view control by using the
LVM_INSERTCOLUMN message. Each item in a list view control can have, in addition to its item
text, any number of strings called subitems. When you add a column to a list view control, you
specify which subitem to display in the column.

Unless a list view control has the LVS_NOCOLUMNHEADER window style, each column has a
header showing the column name. The user can click the header and can size the columns using
the header.

The following example adds several columns to a list view control. The column headings are
defined as string resources, which are consecutively numbered starting with IDS_FIRSTCOLUMN
(defined in the application's header file). The number of columns is defined in the application's
header file as C_COLUMNS.// InitListViewColumns - adds columns to a list view control.
// Returns TRUE if successful or FALSE otherwise.
// hwndLV - handle of the list view control
BOOL WINAPI InitListViewColumns(HWND hwndLV)
{

extern char g_achTemp[256];// temporary buffer
LV_COLUMN lvc;
int iCol;
// Initialize the LV_COLUMN structure.
lvc.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
lvc.fmt = LVCFMT_LEFT;
lvc.cx = 100;
lvc.pszText = g_achTemp;
// Add the columns.
for (iCol = 0; iCol < C_COLUMNS; iCol++) {
lvc.iSubItem = iCol;
LoadString(g_hinst, IDS_FIRSTCOLUMN + iCol,

g_achTemp, sizeof(g_achTemp));
if (ListView_InsertColumn(hwndLV, iCol, &lvc) == -1)
return FALSE;
}
return TRUE;

}

Adding Items to a List View Control
An application can add items to a list view control by using the LVM_INSERTITEM message. The
attributes of a list view item that are specified by an LV_ITEM structure include a state, a label, an
icon, and item data. Associated with each item may be one or more subitems, which are strings
that appear to the right of an item in report view.

The example in this section adds a list view item for each line in a text file. Semicolons are
assumed to separate the item label and the subitem strings that follow it. The example saves each
item's label and subitem strings in a structure, which is defined in the application's header file, as
follows.#define C_COLUMNS 6
typedef struct myitem_tag {

LPSTR aCols[C_COLUMNS];
} MYITEM;The application fills in an LV_ITEM structure and adds a list view item by using the

LVM_INSERTITEM message. Because the application saves the item label in its own application-
defined MYITEM structure, it specifies the LPSTR_TEXTCALLBACK value for the pszText
member of the LV_ITEM structure. Specifying this value causes the control to send an
LVN_GETDISPINFO notification message to its owner window whenever it needs to display the
item. The address of the application-defined structure is saved as item data.// InitListViewItems - adds items and subitems to a list view.
// Returns TRUE if successful or FALSE otherwise.
// hwndLV - handle of the list view control
// pfData - text file containing list view items with columns
//separated by semicolons
BOOL WINAPI InitListViewItems(HWND hwndLV, FILE *pfData)
{

extern char g_achTemp[256]; // temporary buffer
PSTR pszStart;
PSTR pszEnd;
int iItem;
int iSubItem;
LV_ITEM lvi;
// Initialize LV_ITEM members that are common to all items.
lvi.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM | LVIF_STATE;
lvi.state = 0;
lvi.stateMask = 0;
lvi.pszText = LPSTR_TEXTCALLBACK; // app. maintains text
lvi.iImage = 0; // image list index
// Read each line in the specified file.
for (iItem = 0;

fgets(g_achTemp, sizeof(g_achTemp), pfData);
iItem++) {
// Allocate an application-defined structure to store the
// item label and the text of each subitem.
MYITEM *pItem = LocalAlloc(LPTR, sizeof(MYITEM));
// Copy the first string (the label).
pszEnd = strchr(g_achTemp, ';');
*pszEnd = '\0';
pItem->aCols[0] = DupString(g_achTemp);
// Copy subsequent strings (subitems).
for (iSubItem = 1;

iSubItem < C_COLUMNS && pszEnd != NULL;
iSubItem++) {
pszStart = pszEnd + 1;
if ((pszEnd = strchr(pszStart, ';')) != NULL)
*pszEnd = '\0';
pItem->aCols[iSubItem] = DupString(pszStart);
}
// Initialize item-specific LV_ITEM members.
lvi.iItem = iItem;
lvi.iSubItem = 0;
lvi.lParam = (LPARAM) pItem; // item data
// Add the item.
ListView_InsertItem(hwndLV, &lvi);
// There is no need to set the text of the subitems. They
// default to LPSTR_TEXTCALLBACK.
}
return TRUE;

}
// DupString - allocates a copy of a string.
// lpsz - address of the null-terminated string to copy
LPSTR DupString(LPSTR lpsz)
{

int cb = lstrlen(lpsz) + 1;
LPSTR lpszNew = LocalAlloc(LMEM_FIXED, cb);
if (lpszNew != NULL)
CopyMemory(lpszNew, lpsz, cb);
return lpszNew;

}

Processing the WM_NOTIFY Message
A list view control notifies its parent window of events by sending a WM_NOTIFY message. The
wParam parameter is the identifier of the list view control, and the lParam parameter is the
address of an NMHDR structure (or to a larger structure that has an NMHDR structure as its first
member). The example in this section processes the LVN_GETDISPINFO,
LVN_ENDLABELEDIT, and LVN_COLUMNCLICK notification messages.

A list view control sends the LVN_GETDISPINFO notification message to retrieve information
about an item or subitem from the parent window. This notification is sent, for example, when an
item with the LPSTR_TEXTCALLBACK value needs to be displayed.

A list view control sends the LVN_ENDLABELEDIT notification message when the user completes
or cancels editing of an item's label. This notification is only sent if the list view control has the
LVS_EDITLABELS window style. If editing is being canceled, the parent window typically does
nothing. If editing is being completed, the parent window should set the item label to the new text,
unless the item label is LPSTR_TEXTCALLBACK. In that case, the parent window should simply
update the application-defined data it maintains for the list item.

If the user clicks a column header in report view, a list view control sends the
LVN_COLUMNCLICK notification message. Typically, an application sorts a list view by the
specified column when this clicking occurs. To sort, use the LVM_SORTITEMS message,
specifying an application-defined comparison function.

The following example shows the portion of the application's window procedure that processes the
WM_NOTIFY message.case WM_NOTIFY:

// Branch depending on the specific notification message.
switch (((LPNMHDR) lParam)->code) {
// Process LVN_GETDISPINFO to supply information about
// callback items.
case LVN_GETDISPINFO:
Main_OnGetDispInfo((LV_DISPINFO *) lParam);
break;
// Process LVN_ENDLABELEDIT to change item labels after
// in-place editing.
case LVN_ENDLABELEDIT:
return Main_OnEndLabelEdit(
(LV_DISPINFO *) lParam
);
// Process LVN_COLUMNCLICK to sort items by column.
case LVN_COLUMNCLICK:
#define pnm ((NM_LISTVIEW *) lParam)
ListView_SortItems(
pnm->hdr.hwndFrom,
ListViewCompareFunc,
(LPARAM) (pnm->iSubItem)
);
#undef pnm
break;
}
break;The following example shows the application-defined functions that the window procedure uses to

process list view notification messages.// Main_OnGetDispInfo - processes the LVN_GETDISPINFO
//notification message.
// pnmv - value of lParam (points to an LV_DISPINFO structure)
VOID WINAPI Main_OnGetDispInfo(LV_DISPINFO *pnmv)
{

// Provide the item or subitem's text, if requested.
if (pnmv->item.mask & LVIF_TEXT) {
MYITEM *pItem = (MYITEM *) (pnmv->item.lParam);
lstrcpy(pnmv->item.pszText,

pItem->aCols[pnmv->item.iSubItem]);
}

}
// Main_OnEndLabelEdit - processes the LVN_ENDLABELEDIT
//notification message.
// Returns TRUE if the label is changed or FALSE otherwise.
// pnmv - value of lParam (points to an LV_DISPINFO structure)
BOOL Main_OnEndLabelEdit(LV_DISPINFO *pnmv)
{

MYITEM *pItem;
// The item is -1 if editing is being canceled.
if (pnmv->item.iItem == -1)
return FALSE;
// Copy the new text to the application-defined structure,
// a pointer to which is saved as item data.
pItem = (MYITEM *) (pnmv->item.lParam);
pItem->aCols[0] = (PSTR) LocalReAlloc(
(HLOCAL) (pItem->aCols[0]),
lstrlen(pnmv->item.pszText) + 1,
LMEM_MOVEABLE
);
lstrcpy(pItem->aCols[0], pnmv->item.pszText);
// No need to set the item text, because it is a callback item.
return TRUE;

}
// ListViewCompareFunc - sorts the list view control. It is a
//comparison function.
// Returns a negative value if the first item should precede the
//second item, a positive value if the first item should
//follow the second item, and zero if the items are equivalent.
// lParam1 and lParam2 - item data for the two items (in this
//case, pointers to application-defined MYITEM structures)
// lParamSort - value specified by the LVM_SORTITEMS message
//(in this case, the index of the column to sort)
int CALLBACK ListViewCompareFunc(

LPARAM lParam1,
LPARAM lParam2,
LPARAM lParamSort)

{
MYITEM *pItem1 = (MYITEM *) lParam1;
MYITEM *pItem2 = (MYITEM *) lParam2;
// Compare the specified column.
int iCmp = lstrcmpi(pItem1->aCols[lParamSort],
pItem2->aCols[lParamSort]);
// Return the result if nonzero, or compare the
// first column otherwise.
return (iCmp != 0) ? iCmp :
lstrcmpi(pItem1->aCols[0], pItem2->aCols[0]);

}

Changing List View Styles
You can change the window style of a list view control after it is created. First, use the
GetWindowLong function to get the current style. Then use the SetWindowLong function to
specify the new style. For a complete list of the list view window styles, see List View Window
Styles.

The following example changes the style bits that govern the view mode.// SetView - sets a list view's window style to change the view.
// hwndLV - handle of the list view control
// dwView - value specifying a view style
VOID WINAPI SetView(HWND hwndLV, DWORD dwView)
{

// Get the current window style.
DWORD dwStyle = GetWindowLong(hwndLV, GWL_STYLE);
// Only set the window style if the view bits have changed.
if ((dwStyle & LVS_TYPEMASK) != dwView)
SetWindowLong(hwndLV, GWL_STYLE,
(dwStyle & ~LVS_TYPEMASK) | dwView);

}

List View Control Reference
The following messages, notification messages, and structures are associated with list view
controls. These elements can be grouped, as follows.Items and SubitemsLV_ITEM
LVM_DELETEALLITEMS
LVM_DELETEITEM
LVM_GETITEM
LVM_GETITEMCOUNT
LVM_GETITEMSPACING
LVM_GETITEMSTATE
LVM_GETITEMTEXT
LVM_GETSELECTEDCOUNT
LVM_INSERTITEM
LVM_SETITEM
LVM_SETITEMCOUNT
LVM_SETITEMSTATE

LVM_SETITEMTEXTCallback ItemsLV_DISPINFO
LVM_GETCALLBACKMASK
LVM_REDRAWITEMS
LVM_SETCALLBACKMASK
LVM_UPDATE
LVN_GETDISPINFO

LVN_SETDISPINFOColumnsLV_COLUMN
LVM_DELETECOLUMN
LVM_GETCOLUMN
LVM_GETCOLUMNWIDTH
LVM_GETSTRINGWIDTH
LVM_INSERTCOLUMN
LVM_SETCOLUMN
LVM_SETCOLUMNWIDTH

LVN_COLUMNCLICKArranging, Sorting, and FindingLV_FINDINFO
LVM_ARRANGE
LVM_FINDITEM
LVM_GETNEXTITEM

LVM_SORTITEMSItem Positions and ScrollingLV_HITTESTINFO
LVM_ENSUREVISIBLE
LVM_GETCOUNTPERPAGE
LVM_GETITEMPOSITION
LVM_GETITEMRECT
LVM_GETORIGIN
LVM_GETTOPINDEX
LVM_GETVIEWRECT
LVM_HITTEST
LVM_SCROLL
LVM_SETITEMPOSITION

LVM_SETITEMPOSITION32ColorsLVM_GETBKCOLOR
LVM_GETTEXTBKCOLOR
LVM_GETTEXTCOLOR
LVM_SETBKCOLOR
LVM_SETTEXTBKCOLOR

LVM_SETTEXTCOLORMiscellaneousLV_KEYDOWN
LVM_CREATEDRAGIMAGE
LVM_EDITLABEL
LVM_GETEDITCONTROL
LVM_GETIMAGELIST

LVM_SETIMAGELIST
LVN_BEGINDRAG
LVN_BEGINLABELEDIT
LVN_BEGINRDRAG
LVN_DELETEALLITEMS
LVN_DELETEITEM
LVN_ENDLABELEDIT
LVN_INSERTITEM
LVN_ITEMCHANGED
LVN_ITEMCHANGING
LVN_KEYDOWN

NM_LISTVIEW

List View Control Messages
An application sends messages to a list view control to alter its appearance, add or change items
and columns, and so on. Each message has a corresponding macro that you can use instead of
sending the message explicitly.

Message Corresponding Macro

LVM_ARRANGE ListView_Arrange
LVM_CREATEDRAGIMAGE ListView_CreateDragImage
LVM_DELETEALLITEMS ListView_DeleteAllItems
LVM_DELETECOLUMN ListView_DeleteColumn
LVM_DELETEITEM ListView_DeleteItem
LVM_EDITLABEL ListView_EditLabel
LVM_ENSUREVISIBLE ListView_EnsureVisible
LVM_FINDITEM ListView_FindItem
LVM_GETBKCOLOR ListView_GetBkColor
LVM_GETCALLBACKMASK ListView_GetCallbackMask
LVM_GETCOLUMN ListView_GetColumn
LVM_GETCOLUMNWIDTH ListView_GetColumnWidth
LVM_GETCOUNTPERPAGE ListView_GetCountPerPage
LVM_GETEDITCONTROL ListView_GetEditControl
LVM_GETIMAGELIST ListView_GetImageList
LVM_GETISEARCHSTRING ListView_GetISearchString
LVM_GETITEM ListView_GetItem
LVM_GETITEMCOUNT ListView_GetItemCount
LVM_GETITEMPOSITION ListView_GetItemPosition
LVM_GETITEMRECT ListView_GetItemRect
LVM_GETITEMSPACING ListView_GetItemSpacing
LVM_GETITEMSTATE ListView_GetItemState
LVM_GETITEMTEXT ListView_GetItemText
LVM_GETNEXTITEM ListView_GetNextItem
LVM_GETORIGIN ListView_GetOrigin
LVM_GETSELECTEDCOUNT ListView_GetSelectedCount
LVM_GETSTRINGWIDTH ListView_GetStringWidth
LVM_GETTEXTBKCOLOR ListView_GetTextBkColor
LVM_GETTEXTCOLOR ListView_GetTextColor
LVM_GETTOPINDEX ListView_GetTopIndex
LVM_GETVIEWRECT ListView_GetViewRect
LVM_HITTEST ListView_HitTest
LVM_INSERTCOLUMN ListView_InsertColumn
LVM_INSERTITEM ListView_InsertItem
LVM_REDRAWITEMS ListView_RedrawItems
LVM_SCROLL ListView_Scroll
LVM_SETBKCOLOR ListView_SetBkColor
LVM_SETCALLBACKMASK ListView_SetCallbackMask
LVM_SETCOLUMN ListView_SetColumn
LVM_SETCOLUMNWIDTH ListView_SetColumnWidth
LVM_SETIMAGELIST ListView_SetImageList
LVM_SETITEM ListView_SetItem
LVM_SETITEMCOUNT ListView_SetItemCount
LVM_SETITEMPOSITION ListView_SetItemPosition
LVM_SETITEMPOSITION32 ListView_SetItemPosition32
LVM_SETITEMSTATE ListView_SetItemState

LVM_SETITEMTEXT ListView_SetItemText
LVM_SETTEXTBKCOLOR ListView_SetTextBkColor
LVM_SETTEXTCOLOR ListView_SetTextColor
LVM_SORTITEMS ListView_SortItems
LVM_UPDATE ListView_Update

List View Control Notification Messages
A list view control sends notification messages to its owner window when events occur in the
control.
LVN_BEGINDRAG
LVN_BEGINLABELEDIT
LVN_BEGINRDRAG
LVN_COLUMNCLICK
LVN_DELETEALLITEMS
LVN_DELETEITEM
LVN_ENDLABELEDIT
LVN_GETDISPINFO
LVN_INSERTITEM
LVN_ITEMCHANGED
LVN_ITEMCHANGING
LVN_KEYDOWN

LVN_SETDISPINFO

List View Control Structures
The following structures are used with list view controls.
LV_COLUMN
LV_DISPINFO
LV_FINDINFO
LV_HITTESTINFO
LV_ITEM
LV_KEYDOWN

NM_LISTVIEW

List View Control Constants
The following sections list window style flags and item state flags are used with list view controls.

List View Window Styles
The following window styles are specific to list view controls.

LVS_ALIGNLEFT Specifies that items are left-aligned in icon
and small icon view.

LVS_ALIGNTOP Specifies that items are aligned with the
top of the list view control in icon and small
icon view.

LVS_AUTOARRANGE Specifies that icons are automatically kept
arranged in icon and small icon view.

LVS_BUTTON Specifies that item icons look like buttons
in icon view.

LVS_EDITLABELS Allows item text to be edited in place. The
parent window must process the
LVN_ENDLABELEDIT notification
message.

LVS_ICON Specifies icon view.
LVS_LIST Specifies list view.
LVS_NOCOLUMNHEADERSpecifies that a column header is not

displayed in report view. By default,
columns have headers in report view.

LVS_NOLABELWRAP Displays item text on a single line in icon
view. By default, item text may wrap in
icon view.

LVS_NOSCROLL Disables scrolling. All items must be within
the client area.

LVS_NOSORTHEADER Specifies that column headers do not work
like buttons. This style is useful if clicking a
column header in report view does not
carry out an action, such as sorting.

LVS_OWNERDRAWFIXEDEnables the owner window to paint items
in report view. The list view control sends
a WM_DRAWITEM message to paint each
item; it does not send separate messages
for each subitem. The itemData member
of the DRAWITEMSTRUCT structure
contains the item data for the specified list
view item.

LVS_REPORT Specifies report view. When using the
LVS_REPORT style with a List View
control, the first column is always left-
aligned. You can not use LVCFMT_RIGHT
to change this alignment.

LVS_SHAREIMAGELISTSSpecifies that the control does not take
ownership of the image lists assigned to it;
that is, it does not destroy the image lists
when it is destroyed. This style enables
the same image lists to be used with
multiple list view controls.

LVS_SHOWSELALWAYS Always show the selection,if any, even if
the control does not have the focus.

LVS_SINGLESEL Allows only one item at a time to be
selected. By default, multiple items may be
selected.

LVS_SMALLICON Specifies small icon view.
LVS_SORTASCENDING Sorts items based on item text in

ascending order.
LVS_SORTDESCENDINGSorts items based on item text in

descending order.

You can use the LVS_TYPEMASK mask to isolate the window styles that correspond to the
current view: LVS_ICON, LVS_SMALLICON, LVS_LIST, and LVS_REPORT.

You can use the LVS_ALIGNMASK mask to isolate the window styles that specify the alignment
of items: LVS_ALIGNLEFT and LVS_ALIGNTOP.

You can use the LVS_TYPESTYLEMASK mask to isolate the window styles that control item
alignment (LVS_ALIGNLEFT and LVS_ALIGNTOP) and those that control header appearance
and behavior (LVS_NOCOLUMNHEADER and LVS_NOSORTHEADER).

List View Item States
An item's state determines its appearance and functionality. The state can be zero, or one or more
of the following values.

LVIS_CUT The item is marked for a cut and paste
operation.

LVIS_DROPHILITED The item is highlighted as a drag-and-
drop target.

LVIS_FOCUSED The item has the focus, so it is
surrounded by a standard focus
rectangle. Although more than one item
may be selected, only one item can have
the focus.

LVIS_SELECTED The item is selected. The appearance of
a selected item depends on whether it
has the focus and on the system colors
used for selection.

You can use the LVIS_OVERLAYMASK mask to isolate the state bits that contain the one-based
index of the overlay image. You can use the LVIS_STATEIMAGEMASK mask to isolate the state
bits that contain the one-based index of the state image.

Progress BarsA progress bar is a window that an application can use to indicate the progress of a lengthy
operation. It consists of a rectangle that is gradually filled, from left to right, with the system
highlight color as an operation progresses. The following illustration shows a progress bar
positioned along the bottom of a window.

ewc msdncd, EWGraphic, bsd23471 0 /a "SDK_01.BMP"

About Progress Bars
You create a progress bar by using the CreateWindowEx function, specifying the
PROGRESS_CLASS window class. This window class is registered when the common control
dynamic-link library (DLL) is loaded. To ensure that this DLL is loaded, use the
InitCommonControls function first.

Range and Current Position
A progress bar has a range and a current position. The range represents the entire duration of the
operation, and the current position represents the progress that the application has made toward
completing the operation. The window procedure uses the range and the current position to
determine the percentage of the progress bar to fill with the highlight color and to determine the
text, if any, to display within the progress bar. Because the range and current position values are
expressed as unsigned integers, the highest possible range or current position value is 65,535.

The minimum value in the range can be from 0 to 65,535. Likewise, the maximum value can be
from 0 to 65,535. If you do not set the range values, the system sets the minimum value to 0 and
the maximum value to 100. You can adjust the range to convenient integers by using the
PBM_SETRANGE message.

A progress bar provides several messages that you can use to set the current position. The
PBM_SETPOS message sets the position to a given value. The PBM_DELTAPOS message
advances the position by adding a specified value to the current position.

The PBM_SETSTEP message allows you to specify a step increment for a progress bar.
Subsequently, whenever you send the PBM_STEPIT message to the progress bar, the current
position advances by the specified increment. By default, the step increment is set to 10.

Default Progress Bar Message Processing
This section describes the window messages handled by the window procedure for the
PROGRESS_CLASS window class.

Message Processing performed

WM_CREATE Allocates and initializes an initial structure.
WM_DESTROY Frees all resources associated with the

progress bar.
WM_ERASEBKGND Draws the background and borders of the

progress bar.
WM_GETFONT Returns the handle of the font that the progress

bar is currently using to draw text.
WM_PAINT Draws the progress bar. If the wParam

parameter is non-NULL, the control assumes
that the value is an HDC and paints using that
device context.

WM_SETFONT Saves the handle of the new font and returns
the handle of the previous font.

Using Progress Bars
The following example shows how to use a progress bar to indicate the progress of a lengthy file-
parsing operation. The example creates a progress bar and positions it along the bottom of the
parent window's client area. The height of the progress bar is based on the height of the arrow
bitmap used in a scroll bar. The range is based on the size of the file divided by 2048, which is the
size of each "chunk" of data read from the file. The example also sets an increment and advances
the current position of the progress bar by the increment after parsing each chunk.// ParseALargeFile - parses a large file and uses a progress bar to
// indicate the progress of the parsing operation.
// Returns TRUE if successful or FALSE otherwise.
// hwndParent - parent window of the progress bar
// lpszFileName - name of the file to parse
//
// Global variable
//g_hinst - instance handle
extern HINSTANCE g_hinst;
BOOL ParseALargeFile(HWND hwndParent, LPSTR lpszFileName)
{

RECT rcClient; // client area of parent window
int cyVScroll; // height of scroll bar arrow
HWND hwndPB; // handle of progress bar
HANDLE hFile; // handle of file
DWORD cb; // size of file and count of bytes read
LPCH pch; // address of data read from file
LPCH pchTmp; // temporary pointer
// Ensure that the common control DLL is loaded and create a
// progress bar along the bottom of the client area of the
// parent window. Base the height of the progress bar on
// the height of a scroll bar arrow.
InitCommonControls();
GetClientRect(hwndParent, &rcClient);
cyVScroll = GetSystemMetrics(SM_CYVSCROLL);
hwndPB = CreateWindowEx(0, PROGRESS_CLASS, (LPSTR) NULL,
WS_CHILD | WS_VISIBLE, rcClient.left,
rcClient.bottom - cyVScroll,
rcClient.right, cyVScroll,
hwndParent, (HMENU) 0, g_hinst, NULL);
// Open the file for reading, and retrieve the size of the file.
hFile = CreateFile(lpszFileName, GENERIC_READ, FILE_SHARE_READ,
(LPSECURITY_ATTRIBUTES) NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, (HANDLE) NULL);
if (hFile == (HANDLE) INVALID_HANDLE_VALUE)
return FALSE;
cb = GetFileSize(hFile, (LPDWORD) NULL);
// Set the range and increment of the progress bar.
SendMessage(hwndPB, PBM_SETRANGE, 0, MAKELPARAM(0, cb / 2048));
SendMessage(hwndPB, PBM_SETSTEP, (WPARAM) 1, 0);
// Parse the file.
pch = (LPCH) LocalAlloc(LPTR, sizeof(char) * 2048);
pchTmp = pch;
do {
ReadFile(hFile, pchTmp, sizeof(char) * 2048, &cb,
(LPOVERLAPPED) NULL);
.
. // Include here any code that parses the file.
.
// Advance the current position of the progress bar
// by the increment.
SendMessage(hwndPB, PBM_STEPIT, 0, 0);
} while (cb);
CloseHandle((HANDLE) hFile);
DestroyWindow(hwndPB);
return TRUE;

}

Progress Bar Messages
The following messages are associated with progress bars.
PBM_DELTAPOS
PBM_SETPOS
PBM_SETRANGE
PBM_SETSTEP

PBM_STEPIT

Property SheetsA property sheet is a window that allows the user to view and edit the properties of an item. For
example, a spreadsheet application can use a property sheet to allow the user to set the font and
border properties of a cell or to view and set the properties of a device, such as a disk drive,
printer, or mouse.

This overview assumes that you have a thorough understanding of dialog box templates and
dialog box procedures. If you do not, you should read Dialog Boxes before continuing with this
overview.

About Property Sheets
A property sheet contains one or more overlapping child windows called pages, each containing
control windows for setting a group of related properties. For example, a page can contain the
controls for setting the font properties of an item, including the type style, point size, color, and so
on. Each page has a tab that the user can select to bring the page to the foreground of the
property sheet. The following illustration shows a property sheet for viewing and setting the
properties of a floppy disk drive.

ewc msdncd, EWGraphic, bsd23472 0 /a "SDK_01.BMP"

Property Sheet Dialog Boxes
A property sheet and the pages it contains are actually dialog boxes. The property sheet is a
system-defined dialog box that manages the pages and provides a common container for them.
The property sheet dialog box can be modal or modeless. It includes a frame, a title bar, and four
buttons: OK, Cancel, Apply Now, and Help. (The Help button may be hidden as in the preceding
illustration.) The dialog box procedures for the pages receive notification messages when the user
selects the buttons.

Each page in a property sheet is an application-defined modeless dialog box that manages the
control windows used to view and edit the properties of an item. You provide the dialog box
template used to create each page as well as the dialog box procedure that manages the controls
and sets the properties of the corresponding item.

A property sheet sends notification messages to the dialog box procedure for a page when the
page is gaining or losing the activation and when the user chooses the OK, Cancel, Apply Now, or
Help button. The notifications are sent in the form of WM_NOTIFY messages. The lParam
parameter points to an NMHDR structure, which includes the window handle of the property sheet
dialog box.

Some notification messages require a page to return either TRUE or FALSE in response to the
WM_NOTIFY message. A page cannot simply return TRUE or FALSE; instead, it must use the
SetWindowLong function to set the DWL_MSGRESULT value for the page dialog box to either
TRUE or FALSE.

Pages
A property sheet must contain at least one page, but cannot contain more than the value of
MAXPROPPAGES as defined in the Win32 header files. Each page has a zero-based index that
the property sheet assigns according to the order in which the page is added to the property
sheet. The indexes are used in messages that you send to the property sheet.

A property page can contain a nested dialog box. If it does, you must include the
WS_EX_CONTROLPARENT style for the top-level dialog box and call the IsDialogMessage
function with the handle of the parent dialog box. This ensures that the user can use mnemonics
and the dialog box navigation keys to move the focus to controls in the nested dialog box.

Each page has a corresponding icon and label. The property sheet creates a tab for each page
and displays the icon and label in the tab. All property sheet pages are expected to use a nonbold
font. To ensure that the font is not bold, specify the DS_3DLOOK style in the dialog box template.

The dialog box procedure for a page must not call the EndDialog function. Doing so will destroy
the entire property sheet, not just the page.

Property Sheet Creation
Before creating a property sheet, you must define one or more pages. This involves filling a
PROPSHEETPAGE structure with information about the page ¾ its icon, label, dialog box
template, dialog box procedure, and so on ¾ and then specifying the address of the structure in a
call to the CreatePropertySheetPage function. The function returns a handle of the
HPROPSHEETPAGE type that uniquely identifies the page.

To create a property sheet, you specify the address of a PROPSHEETHEADER structure in a call
to the PropertySheet function. The structure defines the icon and title for the property sheet and
also includes a pointer to an array of HPROPSHEETPAGE handles. When PropertySheet
creates the property sheet, it includes the pages identified in the array. The order of the array
determines the order of the pages in the property sheet.

Another way to create a property sheet is to specify an array of PROPSHEETPAGE structures
instead of an array of HPROPSHEETPAGE handles. In this case, PropertySheet creates
handles for the pages before adding them to the property sheet.

When a page is created, the dialog box procedure for the page receives a WM_INITDIALOG
message. The message's lParam parameter points to the PROPSHEETPAGE structure used to
create the page. The dialog box can save the information in the structure and use it later to modify
the page.

PropertySheet automatically sets the size and initial position of a property sheet. The position is
based on the position of the owner window, and the size is based on the largest page specified in
the array of pages when the property sheet was created. If you want the pages to match the width
of the four buttons at the bottom of the property sheet, set the width of the widest page to 190
dialog units.

Adding and Removing Pages
After creating a property sheet, an application can add a page by using the PSM_ADDPAGE
message. Note that the size of the property sheet cannot change after it has been created, so the
new page must be no larger than the largest page currently in the property sheet.

An application removes a page by using the PSM_REMOVEPAGE message. When you define a
page, you can specify the address of a PropSheetPageProc callback function that the property
sheet calls when it is creating or removing the page. Using PropSheetPageProc gives you an
opportunity to perform initialization and cleanup operations for individual pages.

When a property sheet is destroyed, it automatically destroys all of the pages that have been
added to it. The pages are destroyed in reverse order from that specified in the array used to
create the pages. To destroy a page that was created by the CreatePropertySheetPage function
but was not added to the property sheet, use the DestroyPropertySheetPage function.

Property Sheet Title and Page Labels
You specify the title of a property sheet in the PROPSHEETHEADER structure used to create the
property sheet. If the dwFlags member includes the PSH_PROPTITLE value, the property sheet
adds the "Properties for" prefix to the specified title string. An application can change the title after
a property sheet is created by using the PSM_SETTITLE message.

By default, a property sheet uses the name string specified in the dialog box template as the label
for a page. You can override the name string by including the PSP_USETITLE value in the
dwFlags member of the PROPSHEETPAGE structure that defines the page. When
PSP_USETITLE is specified, the pszTitle member must contain the address of the label string for
the page.

Page Activation
A property sheet can have only one active page at a time. The page that has the activation is at
the foreground of the overlapping stack of pages. The user activates a page by selecting its tab;
an application activates a page by using the PSM_SETCURSEL message.

The property sheet sends the PSN_KILLACTIVE notification message to the page that is about to
lose the activation. In response, the page should validate any changes that the user has made to
the page. If the page requires additional user input before losing the activation, it should use the
SetWindowLong function to set the DWL_MSGRESULT value of the page to TRUE. Also, the
page should display a message box that describes the problem and provides the recommended
action. The page should set DWL_MSGRESULT to FALSE when it is okay to lose the activation.

Before the page that is gaining the activation is visible, the property sheet sends the
PSN_SETACTIVE notification message to the page. The page should respond by initializing its
control windows.

Help Button
When a page is activated, the property sheet determines whether to enable or disable the Help
button for the page by checking for the PSP_HASHELP style. If the page has this style, it supports
the Help button. If the PSP_HASHELP style is not present, the button is disabled.

When the user chooses the Help button, the active page receives the PSN_HELP notification
message. The page should respond by displaying help information, typically by calling the
WinHelp function.

OK, Cancel, and Apply Now Buttons
The OK and Apply Now buttons are similar; both direct a property sheet's pages to validate and
apply the property changes that the user has made. The only difference is that choosing the OK
button causes the property sheet to be destroyed after the changes are applied, but choosing the
Apply Now button does not.

When the user chooses the OK or Apply Now button, the property sheet sends the
PSN_KILLACTIVE notification message to the active page, giving it an opportunity to validate the
user's changes. If the page determines that the changes are valid, it should call the
SetWindowLong function to set the DWL_MSGRESULT value for the page to FALSE. In this
case, the property sheet sends the PSN_APPLY notification message to each page, directing
them to apply the new properties to the corresponding item. If the page determines that the user's
changes are not valid, it should set DWL_MSGRESULT to TRUE and display a dialog box
informing the user of the problem. The page remains active until it sets DWL_MSGRESULT to
FALSE in response to a PSN_KILLACTIVE message. An application can use the PSM_APPLY
message to simulate the choice of the Apply Now button.

The Apply Now button is initially disabled when a page becomes active, indicating that there are
not yet any property changes to apply. When the page receives user input through one of its
controls indicating that the user has edited a property, the page should send the PSM_CHANGED
message to the property sheet. The message causes the property sheet to enable the Apply Now
button. If the user subsequently chooses the Apply Now or Cancel button, the page should
reinitialize its controls and then send the PSM_UNCHANGED message to disable again the Apply
Now button.

Sometimes the Apply Now button causes a page to make a change to a property sheet, and the
change cannot be undone. When this happens, the page should send the
PSM_CANCELTOCLOSE message to the property sheet. The message causes the property
sheet to change the text of the OK button to "Close," indicating that the applied changes cannot
be canceled.

Sometimes a page makes a change to the system configuration that requires Windows to be to
restarted or the system rebooted before the change can take effect. After making such a change,
a page should send either the PSM_RESTARTWINDOWS or PSM_REBOOTSYSTEM message
to the property sheet. These messages cause the PropertySheet function to return the
ID_PSRESTARTWINDOWS or ID_PSREBOOTSYSTEM value after the property sheet is
destroyed.

The property sheet sends the the PSN_RESET notification message to all pages when the user
chooses the Cancel button, indicating that the property sheet is about to be destroyed. A page
should use the notification to perform cleanup operations.

Wizard Property Sheets
You can create a special type of property sheet called a wizard, which consists of a sequence of
dialog boxes that guide the user through the steps of an operation, such as setting up a device or
creating a birthday card. In a wizard property sheet, the pages do not have tabs, and only one
page is visible at a time. Also, instead of having Ok and Apply Now buttons, a wizard property
sheet has a Back button, a Next or Finish button, and a Cancel button. To tell the property sheet
which buttons to enable, use the PSM_SETWIZBUTTONS message with the PSWIZB_BACK,
PSWIZB_NEXT, PSWIZB_FINISH, and PSWIZB_DISABLEDFINISH values. You create and
initialize a wizard property sheet just as you would a standard property sheet, except that you
must include the PSH_WIZARD value in the dwFlags member of the PROPSHEETHEADER
structure. The system ignores the pszCaption member; instead, it puts the label of the current
page in the title bar of the property sheet. When the user switches from one page to the next, the
system updates the title using the label of the current page.

You should use the following values to set the sizes of the elements in your wizard property sheet.
Using these values ensures that your pages conform to the Window standards.

WIZ_BODYCX Width of the body of a page in a wizard property
sheet. The body does not include the bitmap area.

WIZ_BODYX Horizontal coordinate of the upper left corner of the
body of a page in a wizard property sheet. Use zero
for the vertical coordinate of the body of a page.

WIZ_CXBMP Width of the bitmap area in a page of a wizard
property sheet. Use WIZ_CYDLG for the height of
the bitmap area.

WIZ_CXDLG Width of a page in a wizard property sheet.
WIZ_CYDLG Height of a page in a wizard property sheet.

The dialog box procedure for a page in a wizard property sheet receives all of the same
notification messages as a standard property sheet page. In addition, a wizard property sheet
page receives three notification messages that a standard property sheet page does not receive:
PSN_WIZBACK, PSN_WIZNEXT, and PSN_WIZFINISH. A wizard page receives these
notifications when the user chooses the Back, Next, or Finish button.

When the user chooses the Back or Next button, the property sheet automatically advances to the
previous or next page. An application can prevent the property sheet from advancing by setting
the DWL_MSGRESULT value to - 1 in response to the PSN_WIZBACK or PSN_WIZNEXT
notification. To jump to a page other than the previous or next one, an application should set
DWL_MSGRESULT to the identifier of the dialog box to be displayed.

The system automatically destroys the wizard property sheet when the user clicks the Finish
button. An application can prevent the wizard from being destroyed by setting
DWL_MSGRESULT to a nonzero value in response to the PSN_WIZFINISH notification message.

Property Sheet Extensions
A property sheet extension is a dynamic-link library (DLL) that adds one or more pages to a
property sheet created by another module. The module that creates the property sheet includes
an AddPropSheetPageProc callback function that the extension DLL calls to add a page. The
function receives the handle of a page and an application-defined 32-bit value.

The extension DLL also contains a callback function called ExtensionPropSheetPageProc,
which receives the address of AddPropSheetPageProc from the module that creates the
property sheet. The extension DLL must export ExtensionPropSheetPageProc.

The Windows header files include two prototypes for defining property sheet callback functions.
To define AddPropSheetPageProc, use the following prototype.typedef BOOL (CALLBACK FAR * LPFNADDPROPSHEETPAGE)(HPROPSHEETPAGE,

LPARAM);To define ExtensionPropSheetPageProc, use the following prototype.typedef BOOL (CALLBACK FAR * LPFNADDPROPSHEETPAGES)(LPVOID,
LPFNADDPROPSHEETPAGE, LPARAM);

Using Property Sheets
· Creating a property sheet
· Processing notification messages

Creating a Property Sheet
The example in this section creates a property sheet that contains two pages ¾ one for setting
the font properties of a cell in a spreadsheet and another for setting the border properties of the
cell. The example defines the pages by filling a pair of PROPSHEETPAGE structures and
specifying the address in the PROPSHEETHEADER structure that is passed to the
PropertySheet function. The dialog box templates, icons, and labels for the pages are loaded
from the resources contained in the application's executable file. The icon for the property sheet is
also loaded from the application's resources.// DoPropertySheet - creates a property sheet that contains two pages.
// hwndOwner - handle of the owner window of the property sheet
//
// Global variables
//g_hinst - instance handle
extern HINSTANCE g_hinst;
VOID DoPropertySheet(HWND hwndOwner)
{

PROPSHEETPAGE psp[2];
PROPSHEETHEADER psh;
psp[0].dwSize = sizeof(PROPSHEETPAGE);
psp[0].dwFlags = PSP_USEICONID | PSP_USETITLE;
psp[0].hInstance = g_hinst;
psp[0].pszTemplate = MAKEINTRESOURCE(DLG_FONT);
psp[0].pszIcon = MAKEINTRESOURCE(IDI_FONT);
psp[0].pfnDlgProc = FontDialogProc;
psp[0].pszTitle = MAKEINTRESOURCE(IDS_FONT)
psp[0].lParam = 0;
psp[0].pfnCallback = NULL;
psp[1].dwSize = sizeof(PROPSHEETPAGE);
psp[1].dwFlags = PSP_USEICONID | PSP_USETITLE;
psp[1].hInstance = g_hinst;
psp[1].pszTemplate = MAKEINTRESOURCE(DLG_BORDER);
psp[1].pszIcon = MAKEINTRESOURCE(IDI_BORDER);
psp[1].pfnDlgProc = BorderDialogProc;
psp[1].pszTitle = MAKEINTRESOURCE(IDS_BORDER);
psp[1].lParam = 0;
psp[1].pfnCallback = NULL;
psh.dwSize = sizeof(PROPSHEETHEADER);
psh.dwFlags = PSH_USEICONID | PSH_PROPSHEETPAGE;
psh.hwndParent = hwndOwner;
psh.hInstance = g_hinst;
psh.pszIcon = MAKEINTRESOURCE(IDI_CELL_PROPERTIES);
psh.pszCaption = (LPSTR) "Cell Properties";
psh.nPages = sizeof(psp) / sizeof(PROPSHEETPAGE);
psh.nStartPage = 0;
psh.ppsp = (LPCPROPSHEETPAGE) &psp;
psh.pfnCallback = NULL;
PropertySheet(&psh);
return;

}

Processing Notification Messages
A property sheet sends WM_NOTIFY messages to retrieve information from the pages and to
notify the pages of user actions. The lParam parameter of the message is the address of an
NMHDR structure, which contains the handle of the property sheet dialog box, the handle of the
page dialog box, and a notification code. The page must respond to some notification messages
by setting the DWL_MSGRESULT value of the page to either TRUE or FALSE.

The following example is a code fragment from the dialog box procedure for a page. It shows how
to process the PSN_HELP notification message.case WM_NOTIFY:

switch (((NMHDR FAR *) lParam)->code) {
case PSN_HELP:
{
char szBuf[FILE_LEN]; // buffer for name of help file
// Display help for the font properties page.
LoadString(g_hinst, IDS_HELPFILE, &szBuf, FILE_LEN)
WinHelp(((NMHDR FAR *) lParam)->hwndFrom, &szBuf,
HELP_CONTEXT, IDH_FONT_PROPERTIES);
break;
}
.
. // Process other property sheet notifications here.
.
}

Property Sheet Reference
The following functions, messages, notification messages, and structures are associated with
property sheets. These elements can be grouped as follows.Property Sheet CreationCreatePropertySheetPage
DestroyPropertySheetPage
PropertySheet
PROPSHEETHEADER
PROPSHEETPAGE
PropSheetPageProc
PropSheetProc
PSM_ADDPAGE

PSM_REMOVEPAGEProperty Sheet ExtensionsAddPropSheetPageProc

ExtensionPropSheetPageProcPage ActivationPSM_SETCURSEL
PSM_SETCURSELID
PSN_KILLACTIVE

PSN_SETACTIVEProperty Sheet ButtonsPSM_APPLY
PSM_CANCELTOCLOSE
PSM_CHANGED
PSM_PRESSBUTTON
PSM_REBOOTSYSTEM
PSM_RESTARTWINDOWS
PSM_UNCHANGED
PSN_APPLY
PSN_HELP
PSN_QUERYCANCEL

PSN_RESETWizard Property SheetsPSM_SETFINISHTEXT
PSM_SETWIZBUTTONS
PSN_WIZBACK
PSN_WIZFINISH

PSN_WIZNEXTMiscellaneous MessagesPSM_GETTABCONTROL
PSM_SETTITLE

PSM_QUERYSIBLINGS

Property Sheet Functions
The following functions are used with property sheets.
AddPropSheetPageProc
CreatePropertySheetPage
DestroyPropertySheetPage
ExtensionPropSheetPageProc
PropertySheet
PropSheetPageProc

PropSheetProc

Property Sheet Messages
An application sends messages to direct a property sheet to add and remove pages, enable and
disable buttons, set the return value of the PropertySheet function, and so on. The following are
the property sheet messages and corresponding macros.

Message Corresponding Macro

PSM_ADDPAGE PropSheet_AddPage
PSM_APPLY PropSheet_Apply
PSM_CANCELTOCLOSE PropSheet_CancelToClose
PSM_CHANGED PropSheet_Changed
PSM_GETCURRENTPAGEHWNDPropSheet_GetCurrentPageHwnd
PSM_GETTABCONTROL PropSheet_GetTabControl
PSM_ISDIALOGMESSAGE PropSheet_IsDialogMessage
PSM_PRESSBUTTON PropSheet_PressButton
PSM_QUERYSIBLINGS PropSheet_QuerySiblings
PSM_REBOOTSYSTEM PropSheet_RebootSystem
PSM_REMOVEPAGE PropSheet_RemovePage
PSM_RESTARTWINDOWS PropSheet_RestartWindows
PSM_SETCURSEL PropSheet_SetCurSel
PSM_SETCURSELID PropSheet_SetCurSelByID
PSM_SETFINISHTEXT PropSheet_SetFinishText
PSM_SETTITLE PropSheet_SetTitle
PSM_SETWIZBUTTONS PropSheet_SetWizButtons
PSM_UNCHANGED PropSheet_UnChanged

Property Sheet Notification Messages
A property sheet sends notification messages to the pages to notify them of events. The following
are the property sheet notifications.
PSN_APPLY
PSN_HELP
PSN_KILLACTIVE
PSN_QUERYCANCEL
PSN_RESET
PSN_SETACTIVE
PSN_WIZBACK
PSN_WIZFINISH

PSN_WIZNEXT

Property Sheet Structures
The following structures are used with property sheets.
PSHNOTIFY
PROPSHEETHEADER
PROPSHEETPAGE

Rich Edit ControlsA rich edit control is a window in which the user can enter and edit text. The text can be assigned
character and paragraph formatting, and can include embedded OLE objects. Rich edit controls
provide a programming interface for formatting text. However, an application must implement any
user interface components necessary to make formatting operations available to the user.

About Rich Edit Controls
Rich edit controls support almost all of the messages and notification messages used with
multiline edit controls. Thus, applications that already use edit controls can be easily changed to
use rich edit controls. Additional messages and notifications enable applications to access the
functionality unique to rich edit controls. For information about edit controls, see Edit Controls.

An application can send messages to a rich edit control to perform such operations as formatting
text, printing, and saving. An application can process notification messages to monitor events in a
rich edit control. For example, an application can process notifications to filter keyboard and
mouse input, to permit or deny changes to protected text, or to resize the control as needed to fit
its content.

You create a rich edit control by using the CreateWindowEx function, specifying the "RichEdit"
window class. You must call the LoadLibrary function to ensure that the RICHED32.DLL library is
loaded before the rich edit control is created.

Rich edit controls support most of the window styles used with edit controls as well as additional
styles. You should specify the ES_MULTILINE window style if you want to allow more than one
line of text in the control.

Text Formatting
An application can send messages to a rich edit control to format characters and paragraphs and
to retrieve formatting information. Paragraph formatting attributes include alignment, tabs, indents,
and numbering. For characters, you can specify typeface, size, color, and effects such as bold,
italic, and protected.

You can apply paragraph formatting by using the EM_SETPARAFORMAT message. To
determine the current paragraph formatting for the selected text, use the EM_GETPARAFORMAT
message. The PARAFORMAT structure is used with both messages to specify paragraph
formatting attributes.

You can apply character formatting by using the EM_SETCHARFORMAT message. To determine
the current character formatting for the selected text, you can use the EM_GETCHARFORMAT
message. The CHARFORMAT structure is used with both messages to specify character
attributes.

You can also use EM_SETCHARFORMAT and EM_GETCHARFORMAT messages to set and
retrieve the default character formatting, which is the formatting applied to any subsequently
inserted characters. For example, if an application sets the default character formatting to bold
and the user then types a character, that character is bold.

The default character formatting is applied to newly inserted text only if the current selection is
empty. Otherwise, the new text assumes the character formatting of the text it replaces. If the
selection changes, the default character formatting changes to match the first character in the new
selection.

The protected character effect is unique in that it does not change the appearance of text. If the
user attempts to modify protected text, a rich edit control sends its parent window an
EN_PROTECTED notification message, allowing the parent window to allow or prevent the
change. To receive this notification message, you must enable it by using the
EM_SETEVENTMASK message.

Foreground color is a character attribute, but background color is a property of the rich edit
control. To set the background color, use the EM_SETBKGNDCOLOR message.

Current Selection in a Rich Edit Control
The user can select text in a rich edit control by using the mouse or the keyboard. The current
selection is the range of selected characters, or the position of the insertion point if no characters
are selected. An application can get information about the current selection, set the current
selection, determine when the current selection changes, and show or hide the selection highlight.

To determine the current selection in a rich edit control, use the EM_EXGETSEL message. To set
the current selection, use the EM_EXSETSEL message. The CHARRANGE structure is used with
both messages and specifies a range of characters. To retrieve information about the contents of
the current selection, you can use the EM_SELECTIONTYPE message.

An application can detect when the current selection changes by processing the
EN_SELCHANGE notification message. The notification message specifies a SELCHANGE
structure containing information about the new selection. A rich edit control sends this notification
message only if you enable it by using the EM_SETEVENTMASK message.

By default, a rich edit control shows and hides the selection highlight when it gains and loses the
focus. You can show or hide the selection highlight at any time by using the
EM_HIDESELECTION message. For example, an application might provide a Search dialog box
to find text in a rich edit control. The application might select matching text without closing the
dialog box, in which case it must use the EM_HIDESELECTION message to highlight the
selection.

As with edit controls, you can specify the ES_NOHIDESEL window style to prevent a rich edit
control from hiding the selection highlight when it loses the focus. You can also use the
EM_HIDESELECTION message to change the ES_NOHIDESEL window style after a rich edit
control is created.

Instead of using the EM_EXGETSEL and EM_EXSETSEL messages, you retrieve and set the
current selection by using the EM_GETSEL and EM_SETSEL edit control messages. The
EM_GETSEL message packs two 16-bit character indexes into its 32-bit return value and,
therefore, works only for selections that fall entirely within the first 64K. However, a rich edit
control will never contain more than 32K of text, unless you extend this limit by using the
EM_EXLIMITTEXT message. For selections that extend beyond the first 64K of text, the
EM_GETSEL message returns - 1.

Rich Edit Text Operations
An application can send messages to retrieve or find text in a rich edit control. You can retrieve
either the selected text or a specified range of text.

To get the selected text in a rich edit control, use the EM_GETSELTEXT message. The text is
copied to the specified character array. You must ensure that the array is large enough to hold the
selected text plus a terminating null character.

To retrieve a specified range of text, use the EM_GETTEXTRANGE message. The TEXTRANGE
structure used with this message specifies the text range to retrieve and points to a character
array that receives the text. Here again, the application must ensure that the array is large enough
for the specified text plus a terminating null character.

You can search for a string in a rich edit control by using the EM_FINDTEXT message. The
FINDTEXT structure used with this message specifies the text range to search and the string to
search for. You can also specify such options as whether the search is case-sensitive.

Word and Line Breaks
A rich edit control calls a function called a word break procedure to find breaks between words
and to determine where it can break lines. The control uses this information when performing
word wrap operations and when processing the CTRL+LEFT and CTRL+RIGHT key combinations. An
application can send messages to a rich edit control to replace the default word break procedure,
to retrieve word break information, and to determine what line a given character falls on.

Word break procedures for rich edit controls are similar to those for edit controls, but they have
additional capabilities. Word break procedures for both kinds of controls can determine whether a
character is a delimiter and can find the nearest word break before or after the specified position.
A delimiter is a character that marks the end of a word, such as a space. In an edit control, word
breaks occur only after delimiters.

Word break procedures for rich edit controls also group characters into character classes, each
identified by a value in the range 0x00 through 0x0F. Word breaks occur either after delimiters or
between characters of different classes. Thus, a word break procedure with different classes for
alphanumeric and punctuation characters would find two word breaks in the string "WIN.COM".

A character's class can be combined with zero or more word break flags to form an eight-bit value.
When performing word wrap operations, a rich edit control uses word break flags to determine
where it can break lines. There are the following word break flags.

WBF_BREAKAFTER Lines may be broken after the character.

WBF_BREAKLINE The character is a delimiter. Delimiters mark
the ends of words. Lines may be broken after
delimiters.

WBF_ISWHITE The character is a white space character.
Trailing white space characters are not
included in the length of a line when wrapping.

The WBF_BREAKAFTER value is used to allow wrapping after a character that does not mark the
end of a word, such as a hyphen.

You can replace a rich edit control's default word break procedure with your own by using the
EM_SETWORDBREAKPROC message. For more information about word break procedures, see
the description of the EditWordBreakProc function.

Alternately, you can use the EM_SETWORDBREAKPROCEX message to replace the default
extended word break procedure with an EditWordBreakProcEx function. This function provides
additional information about the text, such as the character set. You can use the
EM_GETWORDBREAKPROCEX message to retrieve the address of the current extended word
break procedure.

You can use the EM_FINDWORDBREAK message to find word breaks or to determine a
character's class and word break flags. In turn, the control calls its word break procedure to get
the requested information.

To determine which line a given character falls on, you can use the EM_EXLINEFROMCHAR
message.

Rich Edit Clipboard Operations
An application can paste the contents of the clipboard into a rich edit control using either the best
available clipboard format or a specific clipboard format. You can also determine whether a rich
edit control is capable of pasting a clipboard format.

As with an edit control, you can copy or cut the contents of the current selection by using the
WM_COPY or WM_CUT message. Similarly, you can paste the contents of the clipboard into a
rich edit control by using the WM_PASTE message. The control pastes the first available format
that it recognizes, which presumably is the most descriptive format.

To paste a specific clipboard format, you can use the EM_PASTESPECIAL message. This
message is useful for applications with a Paste Special command that enables the user to select
the clipboard format. You can use the EM_CANPASTE message to determine whether a given
format is recognized by the control.

You can also use the EM_CANPASTE message to determine whether any available clipboard
format is recognized by a rich edit control. This message is useful when processing the
WM_INITMENUPOPUP message. An application might enable or gray its Paste command
depending on whether the control can paste any available format.

Rich edit controls register two clipboard formats: Rich Text Format (RTF) and a format called
RichEdit Text and Objects. An application can register these formats by using the
RegisterClipboardFormat function, specifying the CF_RTF and CF_RETEXTOBJ values.

Streams
You can use streams to transfer data into or out of a rich edit control. A stream is defined by an
EDITSTREAM structure, which specifies a buffer and an application-defined callback function.

To read data into a rich edit control (that is, stream the data in), use the EM_STREAMIN
message. The control repeatedly calls the application's callback function, which transfers a portion
of the data into the buffer each time.

To save the contents of a rich edit control (that is, stream the data out), you can use the
EM_STREAMOUT message. The control repeatedly writes to the buffer and then calls the
application's callback function. For each call, the callback function saves the contents of the
buffer.

Printing
You can send messages to a rich edit control to render its output for a specified device, such as a
printer. You can also specify the output device for which a rich edit control formats its text.

To format part of a rich edit control's contents for a specific device, you can use the
EM_FORMATRANGE message. The FORMATRANGE structure used with this message
specifies the range of text to format as well as the device context for the target device.

After formatting text for an output device, you can send the output to the device by using the
EM_DISPLAYBAND message. By repeatedly using the EM_FORMATRANGE and
EM_DISPLAYBAND messages, an application that prints the contents of a rich edit control can
implement banding. (Banding is division of output into smaller parts for printing purposes).

You can use the EM_SETTARGETDEVICE message to specify the target device for which a rich
edit control formats its text. This message is useful for WYSIWYG (what you see is what you get)
formatting, in which an application positions text using the default printer's font metrics instead of
the screen's.

Bottomless Rich Edit Controls
An application can resize a rich edit control as needed so that it is always the same size as its
contents. A rich edit control supports this so-called "bottomless" functionality by sending its parent
window an EN_REQUESTRESIZE notification message whenever the size of its contents
changes.

When processing the EN_REQUESTRESIZE notification message, an application should resize
the control to the dimensions in the specified REQRESIZE structure. An application might also
move any information near the control to accommodate the control's change in height. To resize
the control, you can use the SetWindowPos function.

You can force a bottomless rich edit control to send an EN_REQUESTRESIZE notification
message by using the EM_REQUESTRESIZE message. This message can be useful when
processing the WM_SIZE message.

To receive EN_REQUESTRESIZE notification messages, you must enable the notification by
using the EM_SETEVENTMASK message.

Miscellaneous Notification Messages
A rich edit control's parent window can process notification messages to monitor events affecting
the control. Rich edit controls support all of the notification messages used with edit controls as
well as several additional ones. You can determine which notification messages a rich edit control
sends its parent window by setting its event mask.

To set the event mask for a rich edit control, use the EM_SETEVENTMASK message. You can
retrieve the current event mask for a rich edit control by using the EM_GETEVENTMASK
message.

A rich edit control's parent window can filter all keyboard and mouse input to the control by
processing the EN_MSGFILTER notification message. The parent window can prevent the
keyboard or mouse message from being processed or can change the message by modifying the
specified MSGFILTER structure.

An application can process the EN_PROTECTED notification message to detect when the users
attempts to modify protected text. To mark a range of text as protected, you can set the protected
character effect. For more information, see Text Formatting.

You can enable the user to drop files in a rich edit control by processing the EN_DROPFILES
notification message. The specified ENDROPFILES structure contains information about the files
being dropped.

Unsupported Edit Control Functionality
Rich edit controls support most but not all of the functionality of multiline edit controls. This section
lists the edit control messages and window styles that are not supported by rich edit controls.

The following messages are processed by edit controls but not by rich edit controls.

Unsupported message Comments

EM_FMTLINES Not supported.
EM_GETHANDLE Rich edit controls do not store text as

a simple array of characters.
EM_GETMARGINS Not supported.
EM_GETPASSWORDCHAR The ES_PASSWORD style is not

supported.
EM_SETHANDLE Rich edit controls do not store text as

a simple array of characters.
EM_SETMARGINS Not supported.
EM_SETPASSWORDCHAR The ES_PASSWORD style is not

supported.
EM_SETRECTNP Not supported.
EM_SETTABSTOPS The EM_SETPARAFORMAT

message is used instead.
WM_CTLCOLOR The EM_SETBKGNDCOLOR

message is used instead.
WM_GETFONT The EM_GETCHARFORMAT

message is used instead.

The following window styles are used with multiline edit controls but not with rich edit
controls:

ES_LOWERCASE ES_PASSWORD

ES_OEMCONVERT ES_UPPERCASE

Rich Edit Control Reference
The messages, notification messages, and structures associated with rich edit controls are
grouped as follows. Some of these application programming interface (API) elements are also
used with edit controls.FormattingCHARFORMAT
EM_GETCHARFORMAT
EM_GETPARAFORMAT
EM_GETRECT
EM_SETBKGNDCOLOR
EM_SETCHARFORMAT
EM_SETEVENTMASK
EM_SETPARAFORMAT
EM_SETRECT

PARAFORMATSelection and Hit TestingCHARRANGE
EM_CHARFROMPOS
EM_EXGETSEL
EM_EXSETSEL
EM_GETFIRSTVISIBLELINE
EM_GETSEL
EM_HIDESELECTION
EM_POSFROMCHAR
EM_SELECTIONTYPE
EM_SETSEL
EN_SELCHANGE

SELCHANGEText OperationsEM_EXLIMITTEXT
EM_FINDTEXT
EM_GETLIMITTEXT
EM_GETSELTEXT
EM_GETTEXTRANGE
EM_REPLACESEL
EM_SETLIMITTEXT
FINDTEXT

TEXTRANGEWord and Line BreaksEM_EXLINEFROMCHAR
EM_FINDWORDBREAK
EM_GETWORDBREAKPROC
EM_SETWORDBREAKPROC
EM_GETWORDBREAKPROCEX
EM_SETWORDBREAKPROCEX

EditWordBreakProcExLines and ScrollingEM_GETLINE
EM_GETLINECOUNT
EM_GETTHUMB
EM_LINEFROMCHAR
EM_LINEINDEX
EM_LINELENGTH
EM_LINESCROLL
EM_SCROLL

EM_SCROLLCARETEditing OperationsEM_CANPASTE
EM_CANUNDO
EM_EMPTYUNDOBUFFER
EM_PASTESPECIAL

EM_UNDOStreamsEDITSTREAM
EM_STREAMIN

EM_STREAMOUTPrintingEM_DISPLAYBAND
EM_FORMATRANGE

EM_SETTARGETDEVICE

FORMATRANGEBottomless Rich Edit ControlsEM_REQUESTRESIZE
EN_REQUESTRESIZE

REQRESIZEOLE InterfacesIRichEditOle

IRichEditOleCallbackMiscellaneousEM_GETEVENTMASK
EM_GETIMECOLOR
EM_GETIMEOPTIONS
EM_GETMODIFY
EM_GETOPTIONS
EM_GETPUNCTUATION
EM_GETWORDWRAPMODE
EM_SETEVENTMASK
EM_SETIMECOLOR
EM_SETIMEOPTIONS
EM_SETEVENTMASK
EM_SETMODIFY
EM_SETREADONLY
EM_SETOPTIONS
EM_SETPUNCTUATION
EM_SETWORDWRAPMODE
EN_CHANGE
EN_CORRECTTEXT
EN_DROPFILES
EN_ERRSPACE
EN_HSCROLL
EN_IMECHANGE
EN_KILLFOCUS
EN_MAXTEXT
EN_MSGFILTER
EN_OLEOPFAILED
EN_PROTECTED
EN_SAVECLIPBOARD
EN_SETFOCUS
EN_STOPNOUNDO
EN_UPDATE
EN_VSCROLL
WM_CONTEXTMENU
WM_CTLCOLOREDIT
COMPCOLOR
ENCORRECTTEXT
ENDROPFILES
ENOLEOPFAILED
ENPROTECTED
ENSAVECLIPBOARD
PUNCTUATION

MSGFILTER

Rich Edit Callback Functions
The following callback function is unique to rich edit controls:

EditWordBreakProcEx

Rich Edit Messages
The following messages are unique to rich edit controls.
EM_CANPASTE
EM_DISPLAYBAND
EM_EXGETSEL
EM_EXLIMITTEXT
EM_EXLINEFROMCHAR
EM_EXSETSEL
EM_FINDTEXT
EM_FINDTEXTEX
EM_FINDWORDBREAK
EM_FORMATRANGE
EM_GETCHARFORMAT
EM_GETEVENTMASK
EM_GETIMECOLOR
EM_GETIMEOPTIONS
EM_GETOLEINTERFACE
EM_GETOPTIONS
EM_GETPARAFORMAT
EM_GETPUNCTUATION
EM_GETSELTEXT
EM_GETTEXTRANGE
EM_GETWORDBREAKPROCEX
EM_GETWORDWRAPMODE
EM_HIDESELECTION
EM_PASTESPECIAL
EM_REQUESTRESIZE
EM_SELECTIONTYPE
EM_SETBKGNDCOLOR
EM_SETCHARFORMAT
EM_SETEVENTMASK
EM_SETIMECOLOR
EM_SETIMEOPTIONS
EM_SETOLEINTERFACE
EM_SETOPTIONS
EM_SETPARAFORMAT
EM_SETPUNCTUATION
EM_SETTARGETDEVICE
EM_SETWORDBREAKPROCEX
EM_SETWORDWRAPMODE
EM_STREAMIN
EM_STREAMOUT

WM_CONTEXTMENU

Rich Edit Notification Messages
Rich edit controls support most of the notification messages used with edit controls, plus the
following notification messages. A rich edit control sends the following notification messages only
if they have been enabled by using the EM_SETEVENTMASK message.
EN_CORRECTTEXT
EN_DROPFILES
EN_IMECHANGE
EN_MSGFILTER
EN_OLEOPFAILED
EN_PROTECTED
EN_REQUESTRESIZE
EN_SAVECLIPBOARD
EN_SELCHANGE

EN_STOPNOUNDO

Rich Edit Structures
The following structures are used with rich edit controls.
CHARFORMAT
CHARRANGE
COMPCOLOR
EDITSTREAM
ENCORRECTTEXT
ENDROPFILES
ENOLEOPFAILED
ENPROTECTED
ENSAVECLIPBOARD
FINDTEXT
FINDTEXTEX
FORMATRANGE
MSGFILTER
PARAFORMAT
PUNCTUATION
REOBJECT
REPASTESPECIAL
REQRESIZE
SELCHANGE
TEXTRANGE

Rich Edit OLE Interfaces
The rich edit control supports the client functionality defined by OLE. The control provides full
support for most OLE client features. It does not support linking to its contents. The client is
responsible for dialogs and error messages, managing storage for OLE objects, and document
and application window level in-place activation support. The client can use the
EM_GETOLEINTERFACE message to obtain an IRichEditOle interface from the rich edit control
which allows it to manage objects. The client uses the EM_SETOLEINTERFACE message to
register an IRichEditOleCallback interface that the control uses to obtain the required interfaces
and storage.

The following OLE interfaces are used with rich text edit controls:
IRichEditOle

IRichEditOleCallback

Rich Edit Constants
The following sections describe constants used with rich edit controls.

Rich Edit Control Styles
The following window styles are unique to rich edit controls:

Style Description

ES_DISABLENOSCROLL Disables scrollbars instead of hiding them
when they are not needed.

ES_EX_NOCALLOLEINIT Prevents the control from calling the
OleInitialize function when created.
Useful only in dialog templates because
CreateWindowEx does not accept this
style.

ES_NOIME Disables the input method editor (IME)
operation. Available for Asian-languages
only.

ES_SAVESEL Preserves the selection when the control
loses the focus. By default, the entire
contents of the control are selected when
it regains the focus.

ES_SELFIME Directs the rich edit control to allow the
application to handle all IME operations.
Available for Asian-languages only.

ES_SUNKEN Displays the control with a sunken border
style so that the rich edit control appears
recessed into its parent window.
Applications developed for Windows 95
should use WS_EX_CLIENTEDGE
instead of ES_SUNKEN.

ES_VERTICAL Draws text and objects in a vertical
direction. Available for Asian-languages
only.

Rich edit controls also support the following edit control styles. To allow more than one
line of text, you must specify the ES_MULTILINE style.

ES_AUTOHSCROLL ES_NOHIDESEL

ES_AUTOVSCROLL ES_READONLY
ES_CENTER ES_RIGHT
ES_LEFT ES_WANTRETURN
ES_MULTILINE

Rich edit controls do not support the following edit control styles:

ES_LOWERCASE ES_PASSWORD

ES_OEMCONVERT ES_UPPERCASE

Rich Edit Control Event Mask Flags
The event mask specifies which notification messages a rich edit control sends its parent window.
The event mask can be zero or more of these values:

Value Meaning

ENM_CHANGE Sends EN_CHANGE notifications.
ENM_CORRECTTEXT Sends EN_CORRECTTEXT notifications.
ENM_DROPFILES Sends EN_DROPFILES notifications.
ENM_KEYEVENTS Sends EN_MSGFILTER notifications for

keyboard events.
ENM_MOUSEEVENTS Sends EN_MSGFILTER notifications for

mouse events.
ENM_PROTECTED Sends EN_PROTECTED notifications.
ENM_RESIZEREQUEST Sends EN_REQUESTRESIZE

notifications.
ENM_SCROLL Sends EN_HSCROLL notifications.
ENM_SELCHANGE Sends EN_SELCHANGE notifications.
ENM_UPDATE Sends EN_UPDATE notifications.

The default event mask is ENM_NONE in which case no notification messages are sent to
the parent window. You can retrieve and set the event mask for a rich edit control by using
the ENM_GETEVENTMASK and ENM_SETEVENTMASK messages.

Status WindowsA status window is a horizontal window at the bottom of a parent window in which an application
can display various kinds of status information. The status window can be divided into parts to
display more than one type of information. The following illustration shows the status bar in the
Microsoft® Windows® Paint application.

ewc msdncd, EWGraphic, bsd23473 0 /a "SDK_01.BMP"

About Status Windows
You can create a status window by using the CreateStatusWindow function or by using the
CreateWindowEx function and specifying the STATUSCLASSNAME window class. To ensure
that the common control dynamic-link library (DLL) is loaded, use the InitCommonControls
function first. After you create the status window, you can divide it into parts, set the text for each
part, and control the appearance of the window by using status window messages.

Types and Styles
The default position of a status window is along the bottom of the parent window, but you can
specify the CCS_TOP style to have it appear at the top of the parent window's client area.

You can specify the SBARS_SIZEGRIP style to include a sizing grip at the right end of the status
window. A sizing grip is similar to a sizing border; it is a rectangular area that the user can click
and drag to resize the parent window.
Note You can combine the CCS_TOP and SBARS_SIZEGRIP styles. Doing so, however, is not
recommended, because the resulting sizing grip is not functional even though the system draws it
in the status window.

Size and Height
The window procedure for the status window automatically sets the initial size and position of the
window, ignoring the values specified in the CreateWindowEx function. The width is the same as
that of the parent window's client area. The height is based on the metrics of the font that is
currently selected into the status window's device context and on the width of the window's
borders.

The window procedure automatically adjusts the size of the status window whenever it receives a
WM_SIZE message. Typically, when the size of the parent window changes, the parent sends a
WM_SIZE message to the status window.

An application can set the minimum height of a status window's drawing area by sending the
window an SB_SETMINHEIGHT message, specifying the minimum height, in pixels. The drawing
area does not include the window's borders. A minimum height is useful for drawing in an owner-
drawn status window. For more information about owner-drawn status windows, see Owner-
Drawn Status Windows.

You retrieve the widths of the borders of a status window by sending the window an
SB_GETBORDERS message. The message includes the pointer to a three element array that
receives the widths.

Multiple-Part Status Windows
A status window can have many different parts, each displaying a different line of text. You divide
a status window into parts by sending the window an SB_SETPARTS message, specifying the
number of parts to create and the pointer to an integer array. The array contains one element for
each part, and each element specifies the client coordinate of the right edge of a part.

A status window can have a maximum of 255 parts, although applications typically use far fewer
than that. You retrieve a count of the parts in a status window, as well as the coordinate of the
right edge of each part, by sending the window an SB_GETPARTS message.

Status Window Text Operations
You set the text of any part of a status window by sending the SB_SETTEXT message, specifying
the zero-based index of a part, a pointer to the string to draw in the part, and the technique for
drawing the string. The drawing technique determines whether the text has a border and, if it
does, the style of the border. It also determines whether the parent window is responsible for
drawing the text. For more information, see the following topic.

By default, text is left-aligned within the specified part of a status window. You can embed tab
characters (\ t) in the text to center or right-align it. Text to the right of a single tab character is
centered, and text to the right of a second tab character is right-aligned.

To retrieve text from a status window, use the SB_GETTEXTLENGTH and SB_GETTEXT
messages.

If your application uses a status window that has only one part, you can use the WM_SETTEXT,
WM_GETTEXT, and WM_GETTEXTLENGTH messages to perform text operations. These
messages deal only with the part that has an index of zero, allowing you to treat the status
window much like a static text control.

To display a line of status without creating a status window, use the DrawStatusText function.
The function uses the same techniques to draw the status as the window procedure for the status
window, but it does not automatically set the size and position of the status information. When
calling the function, you must specify the size and position of the status information, as well as the
device context of the window in which to draw it.

Owner-Drawn Status Windows
You can define individual parts of a status window to be owner-drawn parts. Using this technique
gives you more control than you would otherwise have over the appearance of the window part.
For example, you can display a bitmap rather than text in a part or draw text using a different font.

To define a window part as owner-drawn, send the SB_SETTEXT message to the status window,
specifying the part and the SBT_OWNERDRAW drawing technique. When SBT_OWNERDRAW
is specified, the lParam parameter is a 32-bit application-defined value that the application can
use when drawing the part. For example, you can specify a font handle, a bitmap handle, a
pointer to a string, and so on.

When a status window needs to draw an owner-drawn part, it sends the WM_DRAWITEM
message to the parent window. The wParam parameter of the message is the child window
identifier of the status window, and the lParam parameter is a pointer to a DRAWITEMSTRUCT
structure. The parent window uses the information in the structure to draw the part. For an owner-
drawn part of a status window, DRAWITEMSTRUCT contains the following information.

Member Description

CtlType Undefined; do not use.
CtlID Child-window identifier of the status window.
itemID Zero-based index of the part to be drawn.
itemAction Undefined; do not use.
itemState Undefined; do not use.
hwndItem Handle to the status window.
hDC Handle to the device context of the status window.
rcItem Coordinates of the window part to be drawn. The

coordinates are relative to the upper left corner of the
status window.

itemData Application-defined 32-bit value specified in the lParam
parameter of the SB_SETTEXT message.

Simple Mode Status Windows
You put a status window into "simple mode" by sending it an SB_SIMPLE message. A simple
mode status window displays only one part. When the text of the window is set, the window is
invalidated, but it is not redrawn until the next WM_PAINT message. Waiting for the message
reduces screen flicker by minimizing the number of times the window is redrawn. A simple mode
status window is useful for displaying help text for menu items while the user is scrolling through a
menu.

The string that a status window displays while in simple mode is maintained separately from the
strings that it displays while not in simple mode. This means that you can put the window in simple
mode, set its text, and switch back to nonsimple mode without the text being used in either mode.

When setting the text of a simple mode status window, you can specify any drawing technique
except SBT_OWNERDRAW. A simple mode status window does not support owner drawing.

Default Status Window Message Processing
This section describes the window messages handled by the window procedure for the predefined
STATUSCLASSNAME window class.

Message Default processing

WM_CREATE Initializes the status window.
WM_DESTROY Frees resources allocated for the status

window.
WM_GETFONT Returns the handle to the current font with

which the status window draws its text.
WM_GETTEXT Copies the text from the first part of a status

window to a buffer. It returns a 32-bit value
that specifies the length, in characters, of the
text and the technique used to draw the text.

WM_GETTEXTLENGTHReturns a 32-bit value that specifies the
length, in characters, of the text in the first part
of a status window and the technique used to
draw the text.

WM_NCHITTEST Returns the HTBOTTOMRIGHT value if the
mouse cursor is in the sizing grip, causing the
system to display the sizing cursor. If the
mouse cursor is not in the sizing grip, the
status window passes this message to the
DefWindowProc function.

WM_PAINT Paints the invalid region of the status window.
If the wParam parameter is non-NULL, the
control assumes that the value is an HDC and
paints using that device context.

WM_SETFONT Selects the font handle into the device context
for the status window.

WM_SETTEXT Copies the specified text into the first part of a
status window, using the default drawing
operation (specified as zero). It returns TRUE
if successful or FALSE otherwise.

WM_SIZE Resizes the status window based on the
current width of the parent window's client
area and the height of the current font of the
status window.

Using Status Windows
The following example creates a status window that has a sizing grip and divides the window into
four equal parts based on the width of the parent window's client area.// DoCreateStatusWindow - creates a status window and divides it into
//the specified number of parts.
// Returns the handle to the status window.
// hwndParent - parent window for the status window
// nStatusID - child window identifier
// hinst - handle to the application instance
// nParts - number of parts into which to divide the status window
HWND DoCreateStatusWindow(HWND hwndParent, int nStatusID,

HINSTANCE hinst, int nParts)
{

HWND hwndStatus;
RECT rcClient;
HLOCAL hloc;
LPINT lpParts;
int i, nWidth;
// Ensure that the common control DLL is loaded.
InitCommonControls();
// Create the status window.
hwndStatus = CreateWindowEx(
0, // no extended styles
STATUSCLASSNAME, // name of status window class
(LPCTSTR) NULL,// no text when first created
SBARS_SIZEGRIP | // includes a sizing grip
WS_CHILD, // creates a child window
0, 0, 0, 0, // ignores size and position
hwndParent, // handle to parent window
(HMENU) nStatusID, // child window identifier
hinst, // handle to application instance
NULL); // no window creation data
// Get the coordinates of the parent window's client area.
GetClientRect(hwndParent, &rcClient);
// Allocate an array for holding the right edge coordinates.
hloc = LocalAlloc(LHND, sizeof(int) * nParts);
lpParts = LocalLock(hloc);
// Calculate the right edge coordinate for each part, and
// copy the coordinates to the array.
nWidth = rcClient.right / nParts;
for (i = 0; i < nParts; i++) {
lpParts[i] = nWidth;
nWidth += nWidth;
}
// Tell the status window to create the window parts.
SendMessage(hwndStatus, SB_SETPARTS, (WPARAM) nParts,
(LPARAM) lpParts);
// Free the array, and return.
LocalUnlock(hloc);
LocalFree(hloc);
return hwndStatus;

}

Status Window Reference
The following functions and messages are associated with status windows. These elements can
be grouped as follows.CreationCreateStatusWindowSize and HeightSB_GETBORDERS
SB_GETRECT

SB_SETMINHEIGHTText OperationsDrawStatusText
MenuHelp
SB_GETTEXT
SB_GETTEXTLENGTH

SB_SETTEXTMultiple Part Status WindowsSB_GETPARTS

SB_SETPARTSSimple Mode Status WindowsSB_SIMPLE

Status Window Functions
The following functions are used with status windows.
CreateStatusWindow
DrawStatusText
MenuHelp

Status Window Messages
The following messages are used with status windows.
SB_GETBORDERS
SB_GETPARTS
SB_GETRECT
SB_GETTEXT
SB_GETTEXTLENGTH
SB_SETMINHEIGHT
SB_SETPARTS
SB_SETTEXT
SB_SIMPLE

Tab ControlsA tab control is analogous to the dividers in a notebook or the labels in a file cabinet. By using a
tab control, an application can define multiple pages for the same area of a window or dialog box.
Each page consists of a set of information or a group of controls that the application displays
when the user selects the corresponding tab. A special type of tab control displays tabs that look
like buttons. Clicking a button should immediately perform a command instead of displaying a
page.

About Tab Controls
You can create a tab control by calling the CreateWindowEx function, specifying the
WC_TABCONTROL window class. This window class is registered when the common controls
dynamic-link library (DLL) is loaded. To ensure that the DLL is loaded, use the
InitCommonControls function.

You send messages to a tab control to add tabs and otherwise affect the control's appearance
and behavior. Each message has a corresponding macro, which you can use instead of sending
the message explicitly. You cannot, however, disable an individual tab in a tab control. However,
you can disable a tab control in a property sheet by disabling the corresponding page.

About Tab Control Styles
You can apply specific characteristics to tab controls by specifying tab control styles (window
styles specific to tab controls). For example, you can specify the alignment and general
appearance of the tabs in a tab control.

You can cause the tabs to look like buttons by specifying the TCS_BUTTONS style. Tabs in this
type of tab control should serve the same function as button controls; that is, clicking a tab should
carry out a command instead of displaying a page. Because the display area in a button tab
control is typically not used, no border is drawn around it.

You can cause a tab to receive the input focus when clicked by specifying the
TCS_FOCUSONBUTTONDOWN style. This style is typically used only with the TCS_BUTTONS
style. You can specify that a tab never receives the input focus by using the TCS_FOCUSNEVER
style.

By default, a tab control displays only one row of tabs. If not all tabs can be shown at once, the
tab control displays an up-down control so that the user can scroll additional tabs into view. For
more information about up-down controls, see Up-Down Controls. You can cause a tab control to
display multiple rows of tabs, if necessary, by specifying the TCS_MULTILINE style. In this way,
all tabs can be displayed at once. The tabs are left-aligned within each row unless you specify the
TCS_RIGHTJUSTIFY style. In this case, the width of each tab is increased so that each row of
tabs fills the entire width of the tab control.

A tab control automatically sizes each tab to fit its icon, if any, and its label. To give all tabs the
same width, you can specify the TCS_FIXEDWIDTH style. The control sizes all the tabs to fit the
widest label, or you can assign a specific width and height by using the TCM_SETITEMSIZE
message. Within each tab, the control centers the icon and label with the icon to the left of the
label. You can force the icon to the left, leaving the label centered, by specifying the
TCS_FORCEICONLEFT style. You can left-align both the icon and label by using the
TCS_FORCELABELLEFT style. You cannot use the TCS_FIXEDWIDTH style with the
TCS_RIGHTJUSTIFY style.

You can specify that the parent window draws the tabs in the control by using the
TCS_OWNERDRAWFIXED style. For more information about owner-drawn tabs, see Owner-
Drawn Tabs.

You can specify that a tab control create a tool tip control by using the TCS_TOOLTIPS style. For
more information about using tool tip controls with a tab control, see Tooltip Controls.

Tabs and Tab Attributes
Each tab in a tab control consists of an icon, a label, and application-defined data. This
information is specified by a TC_ITEM structure. You can add tabs to a tab control, get the
number of tabs, retrieve and set the contents of a tab, and delete tabs. Tabs are identified by their
zero-based index.

To add tabs to a tab control, use the TCM_INSERTITEM message, specifying the position of the
item and the address of a TC_ITEM structure. You can retrieve and set the contents of an existing
tab by using the TCM_GETITEM and TCM_SETITEM messages. For each tab, you can specify
an icon, a label, or both. You can also specify application-defined data to associate with the tab.

You can retrieve the current number of tabs by using the TCM_GETITEMCOUNT message,
delete a tab by using the TCM_DELETEITEM message, and delete all tabs in a tab control by
using the TCM_DELETEALLITEMS message.

You can associate application-defined data with each tab. For example, you might save
information about each page with its corresponding tab. By default, a tab control allocates four
extra bytes per tab for application-defined data. You can change the number of extra bytes per tab
by using the TCM_SETITEMEXTRA message. You can only use this message when the tab
control is empty.

The application-defined data is specified by the lParam member of the TC_ITEM structure. If you
use more than four bytes of application-defined data, you need to define your own structure and
use it instead of TC_ITEM. You can retrieve and set application-defined data the same way you
retrieve and set other information about a tab ¾ by using the TCM_GETITEM and
TCM_SETITEM messages.

The first member of your structure must be a TC_ITEMHEADER structure, and the remaining
members must specify application-defined data. TC_ITEMHEADER is identical to TC_ITEM,
except it does not have the lParam member. The difference between the size of your structure
and the size of TC_ITEMHEADER should equal the number of extra bytes per tab.

Display Area
The display area of a tab control is the area in which an application displays the current page.
Typically, an application creates a child window or dialog box, setting the window size and
position to fit the display area. Given the window rectangle for a tab control, you can calculate the
bounding rectangle of the display area by using the TCM_ADJUSTRECT message.

Sometimes the display area must be a particular size ¾ for example, the size of a modeless child
dialog box. Given the bounding rectangle for the display area, you can use TCM_ADJUSTRECT
to calculate the corresponding window rectangle for the tab control.

Tab Selection
When the user selects a tab, a tab control sends its parent window notification messages in the
form of WM_NOTIFY messages. The TCN_SELCHANGING notification message is sent before
the selection changes, and the TCN_SELCHANGE notification message is sent after the selection
changes.

You can process TCN_SELCHANGING to save the state of the outgoing page. You can return
TRUE to prevent the selection from changing. For example, you might not want to switch away
from a child dialog box in which a control has an invalid setting.

You must process TCN_SELCHANGE to display the incoming page in the display area. This
might simply entail changing the information displayed in a child window. More often, each page
consists of a child window or dialog box. In this case, an application might process this notification
by destroying or hiding the outgoing child window or dialog box and by creating or showing the
incoming child window or dialog box.

You can retrieve and set the current selection by using the TCM_GETCURSEL and
TCM_SETCURSEL messages.

Tab Control Image Lists
Each tab can have an icon associated with it, which is specified by an index into the image list for
the tab control. When a tab control is created, it has no image list associated with it. An
application can create an image list by using the ImageList_Create function and then assign it to
a tab control by using the TCM_SETIMAGELIST message.

You can add images to a tab control's image list just as you would to any other image list.
However, an application should remove images by using the TCM_REMOVEIMAGE message
instead of the ImageList_Remove function. This message ensures that each tab remains
associated with the same image it had been.

Destroying a tab control does not destroy an image list that is associated with it. You must destroy
the image list separately. This is useful if you want to assign the same image list to multiple tab
controls.

To retrieve the handle of the image list currently associated with a tab control, you can use the
TCM_GETIMAGELIST message.

Tab Size and Position
Each tab in a tab control has a size and position. You can set the size of tabs, retrieve the
bounding rectangle of a tab, or determine which tab is at a specified position.

For fixed-width and owner-drawn tab controls, you can set the exact width and height of tabs by
using the TCM_SETITEMSIZE message. In other tab controls, each tab's size is calculated based
on the icon and label for the tab. The tab control includes space for a border and an additional
margin. You can set the thickness of the margin by using the TCM_SETPADDING message.

You can determine the current bounding rectangle for a tab by using the TCM_GETITEMRECT
message. You can determine which tab, if any, is at a specified location by using the
TCM_HITTEST message.

In a tab control with the TCS_MULTILINE style, you can determine the current number of rows of
tabs by using the TCM_GETROWCOUNT message.

Owner-Drawn Tabs
If a tab control has the TCS_OWNERDRAWFIXED style, the parent window must paint tabs by
processing the WM_DRAWITEM message. The tab control sends this message whenever a tab
needs to be painted. The lParam parameter specifies the address of a DRAWITEMSTRUCT
structure, which contains the index of the tab, its bounding rectangle, and the device context (DC)
in which to draw.

By default, the itemData member of DRAWITEMSTRUCT contains the value of the lParam
member of the TC_ITEM structure. However, if you change the amount of application-defined
data per tab, itemData contains a pointer to the data instead. You can change the amount of
application-defined data per tab by using the TCM_SETITEMEXTRA message.

To specify the size of items in a tab control, the parent window must process the
WM_MEASUREITEM message. Because all tabs in an owner-drawn tab control are the same
size, this message is sent only once. There is no tab control style for owner-drawn tabs of varying
size. You can also set the width and height of tabs by using the TCM_SETITEMSIZE message.

Tooltip Controls
You can use a tooltip control to provide a brief description of each tab in a tab control. A tab
control that has the TCS_TOOLTIPS style creates a tooltip control when it is created, and when
the tab control is destroyed, it destroys the tooltip control. You can also create a tooltip control and
assign it to a tab control.

If you use a tooltip control with a tab control, the parent window must process the
TTN_NEEDTEXT notification message to provide a description of each tab on request.

To use the same tooltip control with more than one tab control, create the tooltip control yourself
and assign it to the tab control by using the TCM_SETTOOLTIPS message. You can get the
handle of a tab control's current tooltip control by using the TCM_GETTOOLTIPS message. If you
use this method, you should not use the TCS_TOOLTIPS style. For more information about tooltip
controls, see Tooltip Controls.

Default Tab Control Message Processing
This section describes the message processing performed by a tab control. Messages specific to
tab controls are discussed elsewhere and are, therefore, not included here.

Message Processing performed

WM_CAPTURECHANGEDDoes nothing if the tab control released the
mouse capture itself. If another window
captured the mouse and a button is held
down, the command releases the button.

WM_CREATE Allocates and initializes an internal data
structure. The control creates a tool tip
control if the TCS_TOOLTIPS style is
specified.

WM_DESTROY Frees resources allocated during
WM_CREATE processing.

WM_GETDLGCODE Returns a combination of the
DLGC_WANTARROWS and
DLGC_WANTCHARS values.

WM_GETFONT Returns the handle of the font used for
labels.

WM_KEYDOWN Processes DIRECTION keys and changes the
selection, if appropriate.

WM_KILLFOCUS Invalidates the tab that has the focus, so it
will be repainted to reflect an unfocused
state.

WM_LBUTTONDOWN Forwards the message to the tool tip
control, if any, and changes the selection if
the user is clicking a tab. If the user is
clicking a button, the control redraws the
button to give a sunken appearance and
captures the mouse.
If the user is clicking either a tab or button
and the TCS_FOCUSONBUTTONDOWN
style is specified, the control sets the focus
to itself.

WM_LBUTTONUP Releases the mouse if a button was
pressed. If the cursor is over the button
and is being held down, the control
changes the selection accordingly and
redraws the button.

WM_MOUSEMOVE Forwards the message to the tool tip
control, if any. If the TCS_BUTTONS style
is specified and the mouse button is being
held down after clicking, the control may
also redraw the affected button to give it a
raised or sunken appearance.

WM_NOTIFY Forwards notification messages sent by
the tool tip control.

WM_PAINT Draws a border around the display area
(unless the TCS_BUTTONS style is
specified) and paints any tabs that
intersect the invalid rectangle.
For each tab, it draws the body of each tab
(or sends a WM_DRAWITEM message to
the parent window) and then draws a
border around the tab. If the wParam
parameter is non-NULL, the control
assumes that the value is an HDC and
paints using that device context.

WM_RBUTTONDOWN Sends an NM_RCLICK notification
message to the parent window.

WM_SETFOCUS Invalidates the tab that has the focus so
that it will be repainted to reflect a focused
state.

WM_SETFONT Sets the font used for labels.
WM_SETREDRAW Sets the state of an internal flag that

determines whether the control is
repainted when items are inserted and
deleted, when the font is changed, and so
on.

WM_SIZE Recalculates the positions of tabs and may
invalidate part of the tab control to force
repainting of some or all tabs.

Using Tab Controls
This section provides two examples that use tab controls. The first example uses a tab control to
switch between multiple pages of text in an application's main window. The second example uses
a tab control to switch between multiple pages of controls in a dialog box.

· Creating a tab control
· Creating a tabbed dialog box

Creating a Tab Control
The example in this section creates a tab control and displays it in the client area of the
application's main window. The application displays a third window (a static control) in the display
area of the tab control. The parent window positions and sizes the tab control and static control
when it processes the WM_SIZE message.

There are seven tabs, one for each day of the week. When the user selects a tab, the application
displays the name of the corresponding day in the static control. The following global variables are
used in this example.// Global variables
HINSTANCE g_hinst; // handle of application instance
char g_achTemp[256]; // temporary buffer for strings
HWND g_hwndMain; // main application window
HWND g_hwndTab; // tab control
HWND g_hwndDisplay; // handle of static control in
// tab control's display areaThe following function creates the tab control and adds a tab for each day of the week. The

names of the days are defined as string resources, consecutively numbered starting with
IDS_FIRSTDAY (defined in the application's header file). Both the parent window and the tab
control must have the WS_CLIPSIBLINGS window style. The application's initialization function
calls this function after creating the main window.// DoCreateTabControl - creates a tab control, sized to fit the
//specified parent window's client area, and adds some tabs.
// Returns the handle of the tab control.
// hwndParent - parent window (the application's main window)
HWND WINAPI DoCreateTabControl(HWND hwndParent)
{

RECT rcClient;
HWND hwndTab;
TC_ITEM tie;
int i;
// Get the dimensions of the parent window's client area, and
// create a tab control child window of that size.
GetClientRect(hwndParent, &rcClient);
InitCommonControls();
hwndTab = CreateWindow(
WC_TABCONTROL, "",
WS_CHILD | WS_CLIPSIBLINGS | WS_VISIBLE,
0, 0, rcClient.right, rcClient.bottom,
hwndParent, NULL, g_hinst, NULL
);
if (hwndTab == NULL)
return NULL;
// Add tabs for each day of the week.
tie.mask = TCIF_TEXT | TCIF_IMAGE;
tie.iImage = -1;
tie.pszText = g_achTemp;
for (i = 0; i < 7; i++) {
LoadString(g_hinst, IDS_FIRSTDAY + i,

g_achTemp, sizeof(g_achTemp));
if (TabCtrl_InsertItem(hwndTab, i, &tie) == -1) {
DestroyWindow(hwndTab);
return NULL;
}
}
return hwndTab;

}The following function creates the static control that occupies the tab control's display area. The
application's initialization function calls this function after creating the main window and the tab
control.// DoCreateDisplayWindow - creates a child window (a static
//control) to occupy the tab control's display area.
// Returns the handle of the static control.
// hwndParent - parent window (the application's main window)
HWND WINAPI DoCreateDisplayWindow(HWND hwndParent)
{

HWND hwndStatic = CreateWindow("STATIC", "",
WS_CHILD | WS_VISIBLE | WS_BORDER,
0, 0, CW_USEDEFAULT, CW_USEDEFAULT,
hwndParent, NULL, g_hinst, NULL);
return hwndStatic;

}Following are the relevant portions of the application's window procedure. The application
processes the WM_SIZE message to position and size the tab control and the static control. To
determine the appropriate position and size for the static control, this example sends the tab
control a TCM_ADJUSTRECT message (by using the TabCtrl_AdjustRect macro).

When a tab is selected, the tab control sends a WM_NOTIFY message, specifying the
TCN_SELCHANGE notification message. The application processes this notification message by
setting the text of the static control.// MainWindowProc - processes the message for the main window class.
// The return value depends on the message.
// hwnd - handle of the window
// uMsg - identifier for the message
// wParam - message-specific parameter
// lParam - message-specific parameter
LRESULT CALLBACK MainWindowProc(

HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam
)

{
switch (uMsg) {
case WM_SIZE: {

HDWP hdwp;
RECT rc;
// Calculate the display rectangle, assuming the
// tab control is the size of the client area.
SetRect(&rc, 0, 0,

LOWORD(lParam), HIWORD(lParam));
TabCtrl_AdjustRect(g_hwndTab, FALSE, &rc);
// Size the tab control to fit the client area.
hdwp = BeginDeferWindowPos(2);
DeferWindowPos(hdwp, g_hwndTab, NULL, 0, 0,
LOWORD(lParam), HIWORD(lParam),
SWP_NOMOVE | SWP_NOZORDER
);
// Position and size the static control to fit the
// tab control's display area, and make sure the
// static control is in front of the tab control.
DeferWindowPos(hdwp,
g_hwndDisplay, HWND_TOP, rc.left, rc.top,
rc.right - rc.left, rc.bottom - rc.top, 0
);
EndDeferWindowPos(hdwp);
}
break;
case WM_NOTIFY:
switch (HIWORD(wParam)) {
case 0:
.
. // menu command processing
.
case TCN_SELCHANGE: {

int iPage = TabCtrl_GetCurSel(g_hwndTab);
LoadString(g_hinst, IDS_FIRSTDAY + iPage,
g_achTemp, sizeof(g_achTemp));
SendMessage(g_hwndDisplay, WM_SETTEXT, 0
(LPARAM) g_achTemp);

}
break;
}
break;
.
. // additional message processing
.
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return 0;

}

Creating a Tabbed Dialog Box
The example in this section creates a dialog box that uses tabs to provide multiple pages of
controls. The main dialog box is a modal dialog box. Each page of controls is defined by a dialog
box template that specifies the WS_CHILD style. When a tab is selected, the example creates a
modeless dialog box for the incoming page and destroys the dialog box for the outgoing page.
Note In many cases, you can implement multiple-page dialog boxes more easily by using
property sheets. For more information about property sheets, see Property Sheets.
The template for the main dialog box simply defines two button controls. When processing the
WM_INITDIALOG message, the dialog box procedure creates a tab control and loads the dialog
template resources for each of the child dialog boxes.

The information is saved in an application-defined structure called DLGHDR. A pointer to this
structure is associated with the dialog box window by using the SetWindowLong function. The
structure is defined in the application's header file, as follows.#define C_PAGES 3
typedef struct tag_dlghdr {

HWND hwndTab; // tab control
HWND hwndDisplay; // current child dialog box
RECT rcDisplay;// display rectangle for the tab control
DLGTEMPLATE *apRes[C_PAGES];

} DLGHDR;The following function processes the WM_INITDIALOG message for the main dialog box. The
function allocates the DLGHDR structure, loads the dialog template resources for the child dialog
boxes, and creates the tab control.

The size of each child dialog box is specified by the DLGTEMPLATE structure. The function
examines the size of each dialog box and uses the macro for the TCM_ADJUSTRECT message
to calculate an appropriate size for the tab control. Then it sizes the dialog box and positions the
two buttons accordingly. This example sends TCM_ADJUSTRECT by using the
TabCtrl_AdjustRect macro.VOID WINAPI OnTabbedDialogInit(HWND hwndDlg)
{

DLGHDR *pHdr = (DLGHDR *) LocalAlloc(LPTR, sizeof(DLGHDR));
DWORD dwDlgBase = GetDialogBaseUnits();
int cxMargin = LOWORD(dwDlgBase) / 4;
int cyMargin = HIWORD(dwDlgBase) / 8;
TC_ITEM tie;
RECT rcTab;
HWND hwndButton;
RECT rcButton;
int i;
// Save a pointer to the DLGHDR structure.
SetWindowLong(hwndDlg, GWL_USERDATA, (LONG) pHdr);
// Create the tab control.
InitCommonControls();
pHdr->hwndTab = CreateWindow(
WC_TABCONTROL, "",
WS_CHILD | WS_CLIPSIBLINGS | WS_VISIBLE,
0, 0, 100, 100,
hwndDlg, NULL, g_hinst, NULL
);
if (pHdr->hwndTab == NULL) {
// handle error
}
// Add a tab for each of the three child dialog boxes.
tie.mask = TCIF_TEXT | TCIF_IMAGE;
tie.iImage = -1;
tie.pszText = "First";
TabCtrl_InsertItem(pHdr->hwndTab, 0, &tie);
tie.pszText = "Second";
TabCtrl_InsertItem(pHdr->hwndTab, 1, &tie);
tie.pszText = "Third";
TabCtrl_InsertItem(pHdr->hwndTab, 2, &tie);
// Lock the resources for the three child dialog boxes.
pHdr->apRes[0] = DoLockDlgRes(MAKEINTRESOURCE(DLG_FIRST));
pHdr->apRes[1] = DoLockDlgRes(MAKEINTRESOURCE(DLG_SECOND));
pHdr->apRes[2] = DoLockDlgRes(MAKEINTRESOURCE(DLG_THIRD));
// Determine the bounding rectangle for all child dialog boxes.
SetRectEmpty(&rcTab);
for (i = 0; i < C_PAGES; i++) {
if (pHdr->apRes[i]->cx > rcTab.right)
rcTab.right = pHdr->apRes[i]->cx;
if (pHdr->apRes[i]->cy > rcTab.bottom)
rcTab.bottom = pHdr->apRes[i]->cy;
}
rcTab.right = rcTab.right * LOWORD(dwDlgBase) / 4;
rcTab.bottom = rcTab.bottom * HIWORD(dwDlgBase) / 8;
// Calculate how large to make the tab control, so
// the display area can accomodate all the child dialog boxes.
TabCtrl_AdjustRect(pHdr->hwndTab, TRUE, &rcTab);
OffsetRect(&rcTab, cxMargin - rcTab.left,

cyMargin - rcTab.top);
// Calculate the display rectangle.
CopyRect(&pHdr->rcDisplay, &rcTab);
TabCtrl_AdjustRect(pHdr->hwndTab, FALSE, &pHdr->rcDisplay);
// Set the size and position of the tab control, buttons,
// and dialog box.
SetWindowPos(pHdr->hwndTab, NULL, rcTab.left, rcTab.top,

rcTab.right - rcTab.left, rcTab.bottom - rcTab.top,
SWP_NOZORDER);
// Move the first button below the tab control.
hwndButton = GetDlgItem(hwndDlg, BTN_CLOSE);
SetWindowPos(hwndButton, NULL,

rcTab.left, rcTab.bottom + cyMargin, 0, 0,
SWP_NOSIZE | SWP_NOZORDER);
// Determine the size of the button.
GetWindowRect(hwndButton, &rcButton);
rcButton.right -= rcButton.left;
rcButton.bottom -= rcButton.top;
// Move the second button to the right of the first.
hwndButton = GetDlgItem(hwndDlg, BTN_TEST);
SetWindowPos(hwndButton, NULL,
rcTab.left + rcButton.right + cxMargin,
rcTab.bottom + cyMargin, 0, 0,
SWP_NOSIZE | SWP_NOZORDER);
// Size the dialog box.
SetWindowPos(hwndDlg, NULL, 0, 0,
rcTab.right + cyMargin +
2 * GetSystemMetrics(SM_CXDLGFRAME),
rcTab.bottom + rcButton.bottom + 2 * cyMargin +
2 * GetSystemMetrics(SM_CYDLGFRAME) +
GetSystemMetrics(SM_CYCAPTION),
SWP_NOMOVE | SWP_NOZORDER);
// Simulate selection of the first item.
OnSelChanged(hwndDlg);

}
// DoLockDlgRes - loads and locks a dialog template resource.
// Returns a pointer to the locked resource.
// lpszResName - name of the resource
DLGTEMPLATE * WINAPI DoLockDlgRes(LPCSTR lpszResName)
{

HRSRC hrsrc = FindResource(NULL, lpszResName, RT_DIALOG);
HGLOBAL hglb = LoadResource(g_hinst, hrsrc);
return (DLGTEMPLATE *) LockResource(hglb);

}The following function processes the TCN_SELCHANGE notification message for the main dialog
box. The function destroys the dialog box for the outgoing page, if any. Then it uses the
CreateDialogIndirect function to create a modeless dialog box for the incoming page.// OnSelChanged - processes the TCN_SELCHANGE notification.
// hwndDlg - handle of the parent dialog box
VOID WINAPI OnSelChanged(HWND hwndDlg)
{

DLGHDR *pHdr = (DLGHDR *) GetWindowLong(
hwndDlg, GWL_USERDATA);
int iSel = TabCtrl_GetCurSel(pHdr->hwndTab);
// Destroy the current child dialog box, if any.
if (pHdr->hwndDisplay != NULL)
DestroyWindow(pHdr->hwndDisplay);
// Create the new child dialog box.
pHdr->hwndDisplay = CreateDialogIndirect(g_hinst,
pHdr->apRes[iSel], hwndDlg, ChildDialogProc);

}The following function processes the WM_INITDIALOG message for each of the child dialog
boxes. You cannot specify the position of a dialog box created using the CreateDialogIndirect
function. This function uses the SetWindowPos function to position the child dialog within the tab
control's display area.// OnChildDialogInit - Positions the child dialog box to fall
//within the display area of the tab control.
VOID WINAPI OnChildDialogInit(HWND hwndDlg)
{

HWND hwndParent = GetParent(hwndDlg);
DLGHDR *pHdr = (DLGHDR *) GetWindowLong(
hwndParent, GWL_USERDATA);
SetWindowPos(hwndDlg, HWND_TOP,
pHdr->rcDisplay.left, pHdr->rcDisplay.top,
0, 0, SWP_NOSIZE);

}

Tab Control Reference
The messages, notification messages, and structures are associated with tab controls. These
elements can be grouped as follows.Tabs and Tab AttributesTC_ITEM
TC_ITEMHEADER
TCM_DELETEALLITEMS
TCM_DELETEITEM
TCM_GETITEM
TCM_INSERTITEM
TCM_SETITEM

TCM_SETITEMEXTRATab SelectionTCM_GETCURFOCUS
TCM_GETCURSEL
TCM_SETCURSEL
TCN_SELCHANGE

TCN_SELCHANGINGTab Size and PositionTC_HITTESTINFO
TCM_ADJUSTRECT
TCM_GETITEMRECT
TCM_GETROWCOUNT
TCM_HITTEST
TCM_SETITEMSIZE

TCM_SETPADDINGMiscellaneousTC_KEYDOWN
TCM_GETIMAGELIST
TCM_GETITEMCOUNT
TCM_GETTOOLTIPS
TCM_REMOVEIMAGE
TCM_SETIMAGELIST
TCM_SETTOOLTIPS

TCN_KEYDOWN

Tab Control Messages
An application sends messages to add tabs and otherwise control the appearance and behavior
of a tab control. Each message has a corresponding macro that you can use instead of sending
the message explicitly.

Message Corresponding Macro

TCM_ADJUSTRECT TabCtrl_AdjustRect
TCM_DELETEALLITEMS TabCtrl_DeleteAllItems
TCM_DELETEITEM TabCtrl_DeleteItem
TCM_GETCURFOCUS TabCtrl_GetCurFocus
TCM_GETCURSEL TabCtrl_GetCurSel
TCM_GETIMAGELIST TabCtrl_GetImageList
TCM_GETITEM TabCtrl_GetItem
TCM_GETITEMCOUNT TabCtrl_GetItemCount
TCM_GETITEMRECT TabCtrl_GetItemRect
TCM_GETROWCOUNT TabCtrl_GetRowCount
TCM_GETTOOLTIPS TabCtrl_GetToolTips
TCM_HITTEST TabCtrl_HitTest
TCM_INSERTITEM TabCtrl_InsertItem
TCM_REMOVEIMAGE TabCtrl_RemoveImage
TCM_SETCURFOCUS TabCtrl_SetCurFocus
TCM_SETCURSEL TabCtrl_SetCurSel
TCM_SETIMAGELIST TabCtrl_SetImageList
TCM_SETITEM TabCtrl_SetItem
TCM_SETITEMEXTRA TabCtrl_SetItemExtra
TCM_SETITEMSIZE TabCtrl_SetItemSize
TCM_SETPADDING TabCtrl_SetPadding
TCM_SETTOOLTIPS TabCtrl_SetToolTips

Tab Control Notification Messages
The following notification messages are used with tab controls.
TCN_KEYDOWN
TCN_SELCHANGE
TCN_SELCHANGING

Tab Control Structures
The following structures are used with tab controls.
TC_HITTESTINFO
TC_ITEM
TC_ITEMHEADER
TC_KEYDOWN

Tab Control Styles
The following window styles are specific to tab controls.

TCS_BUTTONS Specifies that tabs appear as
buttons and no border is drawn
around the display area.

TCS_FIXEDWIDTH Specifies that all tabs are the same
width. This style cannot be
combined with the
TCS_RIGHTJUSTIFY style.

TCS_FOCUSNEVER Specifies that the tab control never
receives the input focus.

TCS_FOCUSONBUTTONDOWN Specifies that tabs receive the input
focus when clicked.

TCS_FORCEICONLEFT Aligns icons with the left edge of
each fixed-width tab. This style can
only be used with the
TCS_FIXEDWIDTH style.

TCS_FORCELABELLEFT Aligns labels with the left edge of
each fixed-width tab; that is, it
displays the label immediately to
the right of the icon instead of
centering it.
This style can only be used with the
TCS_FIXEDWIDTH style, and it
implies the
TCS_FORCEICONLEFT style.

TCS_MULTILINE Displays multiple rows of tabs, if
necessary, so all tabs are visible at
once.

TCS_OWNERDRAWFIXED Specifies that the parent window is
responsible for drawing tabs.

TCS_RAGGEDRIGHT Does not stretch each row of tabs
to fill the entire width of the control.
This style is the default.

TCS_RIGHTJUSTIFY Increases the width of each tab, if
necessary, so that each row of tabs
fills the entire width of the tab
control.
This window style is ignored unless
the TCS_MULTILINE style is also
specified.

TCS_SINGLELINE Displays only one row of tabs. The
user can scroll to see more tabs, if
necessary. This style is the default.

TCS_TABS Specifies that tabs appear as tabs
and that a border is drawn around
the display area. This style is the
default.

TCS_TOOLTIPS Specifies that the tab control has a
tooltip control associated with it. For
more information about tooltip
controls, see Tooltip Controls.

ToolbarsA toolbar is a control window that contains one or more buttons. Each button sends a command
message to the parent window when the user chooses it.

About Toolbars
Typically, the buttons in a toolbar correspond to items in the application's menu, providing an
additional and more direct way for the user to access an application's commands. The following
illustration shows a window that has a toolbar positioned below the menu bar.

ewc msdncd, EWGraphic, bsd23474 0 /a "SDK_01.BMP"

A toolbar has built-in customization features, including a system-defined customization dialog box,
that allow the user to insert, delete, or rearrange toolbar buttons. An application determines
whether the customization features are available to the user and controls the extent to which the
user may customize the toolbar.

Toolbar Creation
You can use the CreateToolbarEx function to create a toolbar and add an initial set of buttons to
it. You can also use the CreateWindowEx function, specifying the TOOLBARCLASSNAME
window class, but this second method creates a toolbar that initially contains no buttons. You add
buttons to the toolbar by using the TB_ADDBUTTONS or TB_INSERTBUTTON message.

The TOOLBARCLASSNAME window class is registered when the common control dynamic-link
library (DLL) is loaded. To ensure that this DLL is loaded, use the InitCommonControls function
first.

A toolbar must be created as a child window with the WS_CHILD style. If you use
CreateWindowEx to create a toolbar, you must specify the WS_CHILD window style.
CreateToolbarEx includes the WS_CHILD style by default. You must specify the initial parent
window when creating the toolbar, but you can change the parent window after creation by using
the TB_SETPARENT message.

Toolbar Size and Position
The window procedure for a toolbar automatically sets the size and position of the toolbar window.
The height is based on the height of the buttons in the toolbar. The width is the same as the width
of the parent window's client area. The CCS_TOP and CCS_BOTTOM common control styles
determine whether the toolbar is positioned along the top or bottom of the client area. By default,
a toolbar has the CCS_TOP style.

The toolbar window procedure automatically adjusts the size of the toolbar whenever it receives a
WM_SIZE or TB_AUTOSIZE message. An application should send either of these messages
whenever the size of the parent window changes or after sending a message that requires the
size of the toolbar to be adjusted ¾ for example, the TB_SETBUTTONSIZE message.

Tooltip Style
There is only one class-specific style associated with toolbars: TBSTYLE_TOOLTIPS. When you
specify this style, the toolbar creates and manages a tooltip control. A tooltip control is a small
pop-up window that contains a line of text describing a toolbar button. The tooltip control is hidden
and appears only when the user puts the cursor on a toolbar button, leaving it there for
approximately one second. The tooltip control is displayed near the cursor.

When the toolbar receives a WM_MOUSEMOVE message, it sends a notification message to the
tooltip control. The tooltip control sets a timer, and after approximately one second, checks if the
cursor is still at the same location and is on a toolbar button. If it is, the tooltip control sends the
TTN_NEEDTEXT notification message to the parent window to retrieve the descriptive text for the
button. Then the tooltip control creates a pop-up window and displays the text in the window. The
tooltip control destroys the pop-up window when the user clicks a mouse button or moves the
cursor out of the toolbar.

An application that needs to send messages directly to the tooltip control can retrieve the handle
of the tooltip by using the TB_GETTOOLTIPS message. An application can replace the tooltip
control of a toolbar by using the TB_SETTOOLTIPS message. For more information about tooltip
controls, see Tooltip Controls.

Toolbar Bitmaps
Each button in a toolbar can include a bitmapped image. A toolbar stores the information that it
needs to draw the images in an internal list. When you call the CreateToolbarEx function, you
specify a monochrome or color bitmap that contains the initial images, and the toolbar adds the
information to the internal list of images. You can add additional images later by using the
TB_ADDBITMAP message.

Each image has a zero-based index. The first image added to the internal list has an index of
zero, the second image has an index of one, and so on. TB_ADDBITMAP adds images to the end
of the list and returns the index of the first new image that it added. You use an image's index to
associate the image with a button.

Windows assumes that all of a toolbar's bitmapped images are the same size. You specify the
size when you create the toolbar by using CreateToolbarEx. If you use the CreateWindowEx
function to create a toolbar, the size of the images is set to the default dimensions of 16 by 15
pixels. You can use the TB_SETBITMAPSIZE message to change the dimensions of the
bitmapped images, but you must do so before adding any images to the internal list of images.

Toolbar Strings
Each button can display a string in addition to, or instead of, an image. A toolbar maintains an
internal list that contains all of the strings available to toolbar buttons. You add strings to the
internal list by using the TB_ADDSTRING message, specifying the address of the buffer
containing the strings to add. Each string must be null-terminated, and the last string must be
terminated with two null characters.

Each string has a zero-based index. The first string added to the internal list of strings has an
index of zero, the second string has an index of one, and so on. TB_ADDSTRING adds strings to
the end of the list and returns the index of the first new string. You use a string's index to
associate the string with a button.

Toolbar Buttons
You add buttons to a toolbar by filling an array of TBBUTTON structures and specifying the
address of the array either in the TB_ADDBUTTONS message or in a call to the
CreateToolbarEx function. You can also use the TB_INSERTBUTTON message, which passes
the address of a TBBUTTON structure to the toolbar. Each TBBUTTON structure defines the
attributes of a button, including the indexes of its string and bitmap as well as its style, state,
command identifier, and application-defined 32-bit value.

If you use the CreateWindowEx function to create a toolbar, you must send the
TB_BUTTONSTRUCTSIZE message before adding any buttons. The message passes the size of
the TBBUTTON structure to the toolbar.

Toolbar Button Styles
A button's style determines how the button appears and how it responds to user input. The
TBSTYLE_BUTTON style creates a toolbar button that behaves like a standard push button. A
button that has the TBSTYLE_CHECK style is similar to a standard push button, except it toggles
between the pressed and nonpressed states each time the user clicks it.

You can create groups of toolbar buttons by using the TBSTYLE_GROUP or
TBSTYLE_CHECKGROUP style, causing a button to stay pressed until the user chooses another
button in the group. The TBSTYLE_SEP style creates a small gap between buttons. A button with
this style does not receive user input.

Toolbar Button States
Each button in a toolbar has a current state. The toolbar updates a button's state to reflect user
actions, such as clicking the button. The state indicates whether the button is currently pressed or
not pressed, enabled or disabled, hidden or visible, and so on. Although an application sets a
button's initial state when adding the button to the toolbar, it can change and retrieve the state by
sending messages to the toolbar. For a list of toolbar button states, see Toolbar States.

An application can use the TB_GETSTATE and TB_SETSTATE messages to retrieve and set the
state of a button. In addition, a toolbar includes the following messages that retrieve or set a
particular state.

TB_CHECKBUTTON TB_ISBUTTONCHECKED

TB_ENABLEBUTTON TB_ISBUTTONENABLED
TB_HIDEBUTTON TB_ISBUTTONHIDDEN
TB_INDETERMINATE TB_ISBUTTONINDETERMINATE
TB_PRESSBUTTON TB_ISBUTTONPRESSED

Command Identifier
Each button has a command identifier associated with it. When the user selects a button, the
toolbar sends the parent window a WM_COMMAND message that includes the command
identifier of the button. The parent window examines the command identifier and carries out the
command associated with the button.

Button Size and Position
A toolbar keeps track of its buttons by assigning each button a position index. The index is zero
based; that is, the leftmost button has an index of zero, the next button to the right has an index of
one, and so on. An application must specify the index of a button when sending messages to
retrieve information about the button or set the button's attributes.

A toolbar updates the position indexes as buttons are inserted and removed. An application can
retrieve the current position index of a button by using the TB_COMMANDTOINDEX message.
The message specifies the command identifier of a button, and the toolbar window uses the
identifier to locate the button and return its position index.

All buttons in a toolbar are the same size. The CreateToolbarEx function requires you to set the
initial size of the buttons when you create the toolbar. When you use the CreateWindowEx
function to create a toolbar, the initial size is set to the default dimensions of 24 by 22 pixels. You
can use the TB_SETBUTTONSIZE message to change the button size, but you must do so
before adding any buttons to the toolbar. The TB_GETITEMRECT message retrieves the current
dimensions of the buttons.

A toolbar automatically sets the width of its buttons when you add a string to the toolbar that is
longer than any current toolbar string. The width is set to accommodate the longest string in the
toolbar.

Customization
A toolbar has built in customization features that you can make available to the user by giving the
toolbar the CCS_ADJUSTABLE common control style. The customization features allow the user
to drag a button to a new position or to remove a button by dragging it off the toolbar. In addition,
the user can double-click the toolbar to display the Customize Toolbar dialog box, which allows
the user to add, delete, and rearrange toolbar buttons. An application can display the dialog box
by using the TB_CUSTOMIZE message.

The toolbar sends notification messages (in the form of WM_NOTIFY messages) to the parent
window at each step in the customization process. If the user holds the SHIFT key down and
begins dragging a button, the toolbar automatically handles the drag operation. The toolbar sends
the TBN_QUERYDELETE notification message to the parent window to determine whether the
button may be deleted. The drag operation ends if the parent window returns FALSE. Otherwise,
the toolbar captures mouse input and waits for the user to release the mouse button.

When the user releases the mouse button, the toolbar determines the location of the mouse
cursor. If the cursor is outside the toolbar, the button is deleted. If the cursor is on another toolbar
button, the toolbar sends the TBN_QUERYINSERT notification message to the parent window to
determine if a button may be inserted to the left of the given button. The button is inserted if the
parent window returns TRUE; otherwise, it is not. The toolbar sends the
TBN_TOOLBARCHANGE notification message to signal the end of the drag operation.

If the user begins a drag operation without holding down the SHIFT key, the toolbar sends the
TBN_BEGINDRAG notification message to the parent window. An application that implements its
own button-dragging code can use this message as a signal to begin a drag operation. The
toolbar sends the TBN_ENDDRAG notification message to signal the end of the drag operation.

A toolbar sends notification messages when the user customizes a toolbar by using the
Customize Toolbar dialog box. The toolbar sends the TBN_BEGINADJUST notification message
after the user double-clicks the toolbar, but before the dialog box is created. Next, the toolbar
begins sending a series of TBN_QUERYINSERT notification messages to determine whether the
toolbar allows buttons to be inserted. When the parent window returns TRUE, the toolbar stops
sending TBN_QUERYINSERT notifications. If the parent window does not return TRUE for any
button, the toolbar destroys the dialog box.

Next, the toolbar determines if any buttons may be deleted by sending one TBN_QUERYDELETE
notification message for each button in the toolbar. The parent window returns TRUE to indicate
that a button may be deleted; otherwise, it returns FALSE. The toolbar adds all toolbar buttons to
the dialog box, but it grays those that may not be deleted.

Whenever the toolbar needs information about a button in the Customize Toolbar dialog box, it
sends the TBN_GETBUTTONINFO notification message, specifying the index of the button for
which it needs information and the address of a TBNOTIFY structure. The parent window must fill
the structure with the relevant information.

The Customize Toolbar dialog box includes a Help button and a Reset button. When the user
chooses the Help button, the toolbar sends the TBN_CUSTHELP notification message. The
parent window should respond by displaying help information. The dialog box sends the
TBN_RESET notification message when the user selects the Reset button. This message signals
that the toolbar is about to reinitialize the dialog box.

An application can use the TB_SAVERESTORE message to save the current state of a toolbar in
an initialization file or to restore the state based on information previously stored in an initialization
file. The message saves the state information in the specified initialization file or in the WIN.INI file
if no initialization file is specified. An application typically stores the state before the user begins
customizing the toolbar in case the user later wants to restore the toolbar to its original state.

Default Message Handling
This section describes the window message processing performed by a toolbar. Because
messages specific to toolbars are discussed elsewhere, they are not included here.

Message Default processing

WM_CHARTOITEM Forwards this message to the parent
window.

WM_COMMAND Forwards this message to the parent
window.

WM_CREATE Allocates internal memory and graphics
objects. It also initializes internal
variables and data structures.

WM_DESTROY Frees all memory and graphics objects
previously allocated for the toolbar.

WM_DRAWITEM Forwards this message to the parent
window.

WM_LBUTTONDBLCLK Forwards this message to the
DefWindowProc function and returns
the result.

WM_LBUTTONDOWN Forwards this message to the tooltip
control. If a button was clicked, it sets the
state of the button and redraws it. It
begins a drag operation if the toolbar has
the CCS_ADJUSTABLE style and the
SHIFT key is down (or the ALT key, if the
toolbar has the TBSTYLE_ALTDRAG
style).

WM_LBUTTONUP Forwards this message to the tooltip
control. If a button was clicked, it sets the
state of the button and redraws it. It also
ends the drag operation, if one is
underway, and redraws the toolbar.

WM_MEASUREITEM Forwards this message to the parent
window.

WM_MOUSEMOVE Forwards this message to the tooltip
control. If a button has the mouse
capture and the cursor moves out of the
button rectangle, it redraws the button. It
checks whether the toolbar has lost the
mouse capture and, if it has, ends the
drag operation.

WM_NCACTIVATE,
WM_NCPAINT

Redraws the borders of the toolbar if the
toolbar does not have the
CCS_NODIVIDER style. Otherwise, it
forwards the message to the
DefWindowProc function.

WM_NOTIFY Forwards the TTN_NEEDTEXT
notification message from the tooltip
control to the parent of the toolbar.

WM_PAINT Draws the toolbar. If the wParam
parameter is non-NULL, the control
assumes that the value is an HDC and
paints using that device context.

WM_SIZE Recalculates the size and position of the
toolbar and redraws it.

WM_SYSCOLORCHANGE Updates the colors of the buttons and
toolbar to march the system colors.

WM_VKEYTOITEM Forwards this message to the parent
window.

WM_WININICHANGE Reinitializes internal variables that
depend on system metric values.

Using Toolbars
· Creating a toolbar
· Processing tooltip notification messages

Creating a Toolbar
The following example uses the CreateWindowEx function to create a toolbar that the user can
customize and that has a tooltip control associated with it. The example uses the
TB_ADDBITMAP and TB_ADDSTRING messages to add button images and buttons strings to
the toolbar. The example also adds three buttons by using the TB_ADDBUTTONS message.// CreateAToolBar - creates a toolbar and adds the initial set of
//buttons to it.
// Returns the handle of the toolbar if successful or NULL otherwise.
// hwndParent - handle of the parent window
HWND CreateAToolBar(HWND hwndParent)
{

HWND hwndTB;
TBADDBITMAP tbab;
TBBUTTON tbb[3];
char szBuf[16];
int iCut, iCopy, iPaste;
// Ensure that the common control DLL is loaded.
InitCommonControls();
// Create a toolbar that the user can customize and that has a
// tooltip associated with it.
hwndTB = CreateWindowEx(0, TOOLBARCLASSNAME, (LPSTR) NULL,
WS_CHILD | TBSTYLE_TOOLTIPS | CCS_ADJUSTABLE,
0, 0, 0, 0, hwndParent, (HMENU) ID_TOOLBAR, g_hinst, NULL);
// Send the TB_BUTTONSTRUCTSIZE message, which is required for
// backward compatibility.
SendMessage(hwndTB, TB_BUTTONSTRUCTSIZE,
(WPARAM) sizeof(TBBUTTON), 0);
// Add the bitmap containing button images to the toolbar.
tbab.hInst = g_hinst;
tbab.nID = IDB_BUTTONS;
SendMessage(hwndTB, TB_ADDBITMAP, (WPARAM) NUM_BUTTON_BITMAPS,
(WPARAM) &tbab);
// Add the button strings to the toolbar.
LoadString(g_hinst, IDS_CUT, (LPSTR) &szBuf, MAX_LEN);
iCut = SendMessage(hwndTB, TB_ADDSTRING, 0, (LPARAM) (LPSTR) szBuf)

;
LoadString(g_hinst, IDS_COPY, (LPSTR) &szBuf, MAX_LEN);
iCopy = SendMessage(hwndTB, TB_ADDSTRING, (WPARAM) 0,
(LPARAM) (LPSTR) szBuf);
LoadString(g_hinst, IDS_PASTE, (LPSTR) &szBuf, MAX_LEN);
iPaste = SendMessage(hwndTB, TB_ADDSTRING, (WPARAM) 0,
(LPARAM) (LPSTR) szBuf);
// Fill the TBBUTTON array with button information, and add the
// buttons to the toolbar.
tbb[0].iBitmap = BMP_CUT;
tbb[0].idCommand = IDM_CUT;
tbb[0].fsState = TBSTATE_ENABLED;
tbb[0].fsStyle = TBSTYLE_BUTTON;
tbb[0].dwData = 0;
tbb[0].iString = iCut;
tbb[1].iBitmap = BMP_COPY;
tbb[1].idCommand = IDM_COPY;
tbb[1].fsState = TBSTATE_ENABLED;
tbb[1].fsStyle = TBSTYLE_BUTTON;
tbb[1].dwData = 0;
tbb[1].iString = iCopy;
tbb[2].iBitmap = BMP_PASTE;
tbb[2].idCommand = IDM_PASTE;
tbb[2].fsState = TBSTATE_ENABLED;
tbb[2].fsStyle = TBSTYLE_BUTTON;
tbb[2].dwData = 0;
tbb[2].iString = iPaste;
SendMessage(hwndTB, TB_ADDBUTTONS, (WPARAM) NUM_BUTTONS,
(LPARAM) (LPTBBUTTON) &tbb);
ShowWindow(hwndTB, SW_SHOW);
return hwndTB;

}

Processing Tooltip Notification Messages
A toolbar that has the TBSTYLE_TOOLTIPS style creates a tooltip control, which an application
can use to display help text for toolbar buttons. The parent window receives the TTN_NEEDTEXT
notification message when the toolbar needs the help text for a button. The tooltip sends the
notification in the form of a WM_NOTIFY message. The lParam parameter includes the address
of a TOOLTIPTEXT structure that specifies the command identifier of the button for which help
text is needed. An application can copy the help text to the structure, specify the address of a
string containing the help text, or specify the instance handle and resource identifier of a string
resource.

The following example demonstrates how to process the TTN_NEEDTEXT notification.case WM_NOTIFY:
switch (((LPNMHDR) lParam)->code) {
case TTN_NEEDTEXT:
{
LPTOOLTIPTEXT lpttt;
lpttt = (LPTOOLTIPTEXT) lParam;
lpttt->hinst = g_hinst;
// Specify the resource identifier of the descriptive
// text for the given button.
idButton = lpttt->hdr.idFrom;
switch (idButton) {
case IDM_CUT:
lpttt->lpszText = MAKEINTRESOURCE(IDS_TIPS_CUT);
break;
case IDM_COPY:
lpttt->lpszText = MAKEINTRESOURCE(IDS_TIPS_COPY);
break;
case IDM_PASTE:
lpttt->lpszText = MAKEINTRESOURCE(IDS_TIPS_PASTE);
break;
}
break;
}
.
. // Process other notifications here.
.
default:
break;
}

Toolbar Reference
The functions, messages, notification messages, and structures are associated with toolbars.
These elements can be grouped as follows.Toolbar CreationCreateToolbarEx
TB_BUTTONSTRUCTSIZE

TB_SETPARENTToolbar Size and PositionTB_AUTOSIZE

TB_SETBUTTONSIZETooltip StyleTB_GETTOOLTIPS
TB_SETTOOLTIPS

TTN_NEEDTEXTToolbar BitmapsCOLORMAP
CreateMappedBitmap
TB_ADDBITMAP
TB_CHANGEBITMAP
TB_GETBITMAP
TB_GETBITMAPFLAGS
TB_SETBITMAPSIZE

TBADDBITMAPToolbar StringsTB_ADDSTRING

TB_GETBUTTONTEXTToolbar ButtonsTB_ADDBUTTONS
TB_BUTTONCOUNT
TB_COMMANDTOINDEX
TB_DELETEBUTTON
TB_GETBUTTON
TB_GETITEMRECT
TB_GETROWS
TB_INSERTBUTTON
TB_SETCMDID
TB_SETROWS
TBBUTTON

TBNOTIFYToolbar Button StatesTB_CHECKBUTTON
TB_ENABLEBUTTON
TB_GETSTATE
TB_HIDEBUTTON
TB_INDETERMINATE
TB_ISBUTTONCHECKED
TB_ISBUTTONENABLED
TB_ISBUTTONHIDDEN
TB_ISBUTTONINDETERMINATE
TB_ISBUTTONPRESSED
TB_PRESSBUTTON

TB_SETSTATEToolbar CustomizationTB_CUSTOMIZE
TB_SAVERESTORE
TBN_BEGINADJUST
TBN_BEGINDRAG
TBN_CUSTHELP
TBN_ENDADJUST
TBN_ENDDRAG
TBN_GETBUTTONINFO
TBN_QUERYDELETE
TBN_QUERYINSERT
TBN_RESET
TBN_TOOLBARCHANGE

TBSAVEPARAMS

Toolbar Functions
The following functions are used with toolbars.
CreateMappedBitmap
CreateToolbarEx

Toolbar Messages
The following messages are used with toolbars.
TB_ADDBITMAP
TB_ADDBUTTONS
TB_ADDSTRING
TB_AUTOSIZE
TB_BUTTONCOUNT
TB_BUTTONSTRUCTSIZE
TB_CHANGEBITMAP
TB_CHECKBUTTON
TB_COMMANDTOINDEX
TB_CUSTOMIZE
TB_DELETEBUTTON
TB_ENABLEBUTTON
TB_GETBITMAP
TB_GETBITMAPFLAGS
TB_GETBUTTON
TB_GETBUTTONTEXT
TB_GETITEMRECT
TB_GETROWS
TB_GETSTATE
TB_GETTOOLTIPS
TB_HIDEBUTTON
TB_INDETERMINATE
TB_INSERTBUTTON
TB_ISBUTTONCHECKED
TB_ISBUTTONENABLED
TB_ISBUTTONHIDDEN
TB_ISBUTTONINDETERMINATE
TB_ISBUTTONPRESSED
TB_PRESSBUTTON
TB_SAVERESTORE
TB_SETBITMAPSIZE
TB_SETBUTTONSIZE
TB_SETCMDID
TB_SETPARENT
TB_SETROWS
TB_SETSTATE
TB_SETTOOLTIPS

Toolbar Notification Messages
The parent window receives the following notification messages from a toolbar.
TBN_BEGINADJUST
TBN_BEGINDRAG
TBN_CUSTHELP
TBN_ENDADJUST
TBN_ENDDRAG
TBN_GETBUTTONINFO
TBN_QUERYDELETE
TBN_QUERYINSERT
TBN_RESET
TBN_TOOLBARCHANGE

Toolbar Structures
The following structures are used with toolbars.
COLORMAP
TBADDBITMAP
TBBUTTON
TBNOTIFY
TBSAVEPARAMS

Toolbar Constants
The following style flags and state flags are used with toolbars.

Toolbar Styles
A toolbar can have a combination of the following styles.

TBSTYLE_ALTDRAG Allows the user to change the position of a
toolbar button by dragging it while holding
down the ALT key. If this style is not
specified, the user must hold down the SHIFT
key while dragging a button. Note that the
CCS_ADJUSTABLE style must be specified
to enable toolbar buttons to be dragged.

TBSTYLE_TOOLTIPS Creates a tooltip control that an application
can use to display descriptive text for the
buttons in the toolbar.

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple
lines of buttons. Toolbar buttons can "wrap"
to the next line when the toolbar becomes
too narrow to include all buttons on the
same line. Wrapping occurs on separation
and non-group boundaries.

A button in a toolbar can have a combination of the following styles.

TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that toggles between the
pressed and not pressed states each time
the user clicks it. The button has a different
background color when it is in the pressed
state.

TBSTYLE_CHECKGROUPCreates a check button that stays pressed
until another button in the group is pressed.

TBSTYLE_GROUP Creates a button that stays pressed until
another button in the group is pressed.

TBSTYLE_SEP Creates a separator, providing a small gap
between button groups. A button that has
this style does not receive user input.

Toolbar States
A toolbar button can have a combination of the following states.

TBSTATE_CHECKED The button has the TBSTYLE_CHECKED
style and is being pressed.

TBSTATE_ENABLED The button accepts user input. A button not
having this state does not accept user
input and is grayed.

TBSTATE_HIDDEN The button is not visible and cannot
receive user input.

TBSTATE_INDETERMINATEThe button is grayed.
TBSTATE_PRESSED The button is being pressed.
TBSTATE_WRAP A line break follows the button. The button

must also have the TBSTATE_ENABLED
state.

Tooltip ControlsA tooltip control is a small pop-up window that displays a single line of descriptive text giving the
purpose of tools in an application. A tool is either a window, such as a child window or control, or
an application-defined rectangular area within a window's client area.

About Tooltip Controls
A tooltip control is hidden most of the time, appearing only when the user puts the cursor on a tool
and leaves it there for approximately one-half second. The tooltip control appears near the cursor
and disappears when the user clicks a mouse button or moves the cursor off of the tool. A single
tooltip control can support any number of tools. The following illustration shows a tooltip control
associated with a button in a toolbar control.

ewc msdncd, EWGraphic, bsd23475 0 /a "SDK_01.BMP"

Tooltip Creation
You create a tooltip control by using the CreateWindowEx function, specifying the
TOOLTIPS_CLASS window class. The class is registered when the common control dynamic-link
library (DLL) is loaded. To ensure that this DLL is loaded, include the InitCommonControls
function in your application.

The window procedure for a tooltip control automatically sets the size, position, and visibility of the
tooltip control. The height of the tooltip window is based on the height of the font currently
selected into the device context for the tooltip control. The width varies based on the length of the
string currently in the tooltip window.

Style and Activation
A tooltip control has two class-specific styles: TTS_ALWAYSTIP and TTS_NOPREFIX.

A tooltip control with the TTS_ALWAYSTIP style appears when the cursor is on a tool, regardless
of whether the tooltip control's owner window is active or inactive. Without this style, the tooltip
control appears when the tool's owner window is active, but not when it is inactive.

The TTS_NOPREFIX style prevents the system from stripping the ampersand (&) character from
a string. If a tooltip control does not have the TTS_NOPREFIX style, the system automatically
strips ampersand characters, allowing an application to use the same string as both a menu item
and as text in a tooltip control.

A tooltip control itself can be either active or inactive. When it is active, the tooltip control appears
when the cursor is on a tool. When it is inactive, the tooltip control does not appear, even if the
cursor is on a tool. The TTM_ACTIVATE message activates and deactivates a tooltip control.

A tooltip control has the WS_POPUP and WS_EX_TOOLWINDOW window styles, regardless of
whether you specify them when creating the control.

Types of Tools
A tooltip control can support any number of tools. To support a particular tool, you must register
the tool with the tooltip control by sending the TTM_ADDTOOL message to the tooltip control. The
message includes the address of a TOOLINFO structure, which provides information the tooltip
control needs to display text for the tool. The cbSize member is required and must specify the
size of the structure.

A tooltip control supports tools implemented as windows (such as child windows or control
windows) and as rectangular areas within a window's client area. When you add a tool
implemented as a rectangular area, the hwnd member of TOOLINFO must specify the handle of
the window that contains the area, and the rect member must specify the client coordinates of the
area's bounding rectangle. In addition, the uId member must specify the application-defined
identifier for the tool.

When you add a tool implemented as a window, the uId member of TOOLINFO must contain the
window handle of the tool. Also, the uFlags member must specify the TTF_IDISHWND value,
which tells the tooltip control to interpret the uId member as a window handle.

Tool Text
When you add a tool to a tooltip control, the lpszText member of the TOOLINFO structure must
specify the address of the string to display for the tool. You can change the text any time after
adding the tool by using the TTM_UPDATETIPTEXT message.

If the high-order word of lpszText is zero, the low-order word must be the identifier of a string
resource. When the tooltip control needs the text, the system loads the specified string resource
from the application instance identified by the hinst member of TOOLINFO.

If you specify the LPSTR_TEXTCALLBACK value in the lpszText member, the tooltip control
notifies the window specified in the hwnd member of TOOLINFO whenever the tooltip control
needs to display text for the tool. The tooltip control sends the TTN_NEEDTEXT notification
message to the window. The message includes the address of a TOOLTIPTEXT structure, which
contains the window handle as well as the application-defined identifier for the tool. The window
examines the structure to determine the tool for which text is needed, and it fills the appropriate
structure members with information that the tooltip control needs to display the string.

Many applications create toolbars containing tools that correspond to menu commands. For such
tools, it is convenient for the tooltip control to display the same text as the corresponding menu
item. The system automatically strips the ampersand (&) accelerator characters from all strings
passed to a tooltip control, unless the control has the TTS_NOPREFIX style.

To retrieve the text for a tool, use the TTM_GETTEXT message.

Relaying Mouse Messages to the Tooltip
A tooltip control needs to receive mouse messages to determine when to display the tooltip
window. Because Windows sends mouse messages only to the window that contains the cursor,
you must use the TTM_RELAYEVENT message to relay mouse messages to the tooltip control.

If a tool is implemented as a rectangular area in an application-defined window, the window
procedure receives mouse messages and can relay them to the tooltip control. However, if a tool
is implemented as a system-defined window, the mouse messages are sent to the window and
are not readily available to the application. You must use a message hook to access and relay the
mouse messages, or you must subclass the window.

When a tooltip control receives a relayed WM_MOUSEMOVE message, it determines whether the
cursor is in the bounding rectangle of a tool. If the cursor is there, the tooltip control sets a timer.
At the end of the time-out duration, the tooltip control checks the position of the cursor to see
whether it has moved. If the cursor has not, the tooltip control retrieves the text for the tool, copies
the text into the tooltip window, and shows the window. The tooltip control continues to show the
window until it receives a relayed button-up or button-down message or until a relayed
WM_MOUSEMOVE message indicates that the cursor has moved outside the bounding rectangle
of the tool.

A tooltip control actually has three time-out durations associated with it. The initial duration is the
length of time that the cursor must remain stationary within the bounding rectangle of a tool before
the tooltip window is displayed. The reshow duration is the length of the delay before subsequent
tooltip windows are displayed when the cursor moves from one tool to another. The autopopup
duration is the length of time that the tooltip window remains displayed before it is hidden. That is,
if the cursor remains stationary within the bounding rectangle after the tooltip window is displayed,
the tooltip window is automatically hidden at the end of the autopopup duration. You can adjust all
of the time-out durations by using the TTM_SETDELAYTIME message.

If an application includes a tool implemented as a rectangular area and the size or position of the
control changes, it can use the TTM_NEWTOOLRECT message to report the change to the
tooltip control. An application does not need to report size and position changes for a tool
implemented as a window. Reporting that is not necessary because the tooltip control uses the
window handle of a tool to determine if the cursor is on the tool, not the tool's bounding rectangle.

When it is about to be displayed, a tootip control sends the TTN_SHOW notification to the owner
window. A tooltip control sends the TTN_POP notification when it is about to be hidden. Each
notification is sent in the context of a WM_NOTIFY message.

Tooltip Hit Testing
The TTM_HITTEST message allows you to retrieve information that a tooltip control maintains
about the tool occupying a particular point. The message includes a TTHITTESTINFO structure
that contains a window handle, the coordinates of a point, and the address of a TOOLINFO
structure. The tooltip control determines whether a tool occupies the point and, if it does, fills
TOOLINFO with information about the tool.

Miscellaneous Messages
The TTM_GETCURRENTTOOL and TTM_GETTOOLINFO messages fill a TOOLINFO structure
with information about a tool that has been registered with a tooltip control. The
TTM_SETTOOLINFO message allows you to change the information that a tooltip control
maintains for a particular tool. The TTM_DELTOOL message deletes a tool from a tooltip control.

Default Tooltip Control Message Processing
This section describes the window messages handled by the window procedure for the
TOOLTIPS_CLASS window class.

Message Default processing

WM_CREATE Ensures that the tooltip control has the
WS_EX_TOOLWINDOW and
WS_POPUP window styles. It also
allocates memory and initializes internal
variables.

WM_DESTROY Frees resources allocated for the tooltip
control.

WM_GETFONT Returns the handle of the font currently
selected into the DC for the tooltip
control.

WM_MOUSEMOVE Hides the tooltip window.
WM_PAINT Draws the tooltip window.
WM_SETFONT Selects a new font handle into the DC

for the tooltip control.
WM_TIMER Hides the tooltip window if the tool has

changed position or if the cursor has
moved outside the tool. Otherwise, it
shows the tooltip window.

WM_WININICHANGE Resets internal variables that are based
on system metrics.

Using Tooltip Controls
· Creating a tooltip control
· Using a tooltip control with a dialog box

Creating a Tooltip Control
The following example creates a tooltip control and adds several tools to it. The example creates
a grid of rectangles in the client area of a window and then uses the TTM_ADDTOOL message to
add each rectangle to the tooltip control. Note that the window procedure for the owner of the
tooltip control must handle mouse messages and pass them on to the tooltip control by using the
TTM_RELAYEVENT message.// DoCreateTooltip - creates a tooltip control and adds some tools
//to it.
// Returns the handle of the tooltip control if successful or NULL
//otherwise.
// hwndOwner - handle of the owner window
//
// Global variable
//g_hinst - handle of the application instance
extern HINSTANCE g_hinst;
HWND DoCreateTooltip(HWND hwndOwner)
{

HWND hwndTT; // handle of tooltip
int row, col; // rows and columns
TOOLINFO ti; // tool information
int id = 0;// offset to string identifiers
static char *szTips[NUM_TIPS] = // tip text
{
"Cut", "Copy", "Paste", "Undo", "Open", "Save"
};
// Ensure that the common control DLL is loaded, and create
// a tooltip control.
InitCommonControls();
hwndTT = CreateWindow(TOOLTIPS_CLASS, (LPSTR) NULL, TTS_ALWAYSTIP,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
NULL, (HMENU) NULL, g_hinst, NULL);
if (hwndTT == (HWND) NULL)
return (HWND) NULL;
// Divide the client area into a grid of rectangles, and add each
// rectangle to the tooltip.
for (row = 0; row < MAX_ROWS ; row++)
for (col = 0; col < MAX_COLS; col++) {
ti.cbSize = sizeof(TOOLINFO);
ti.uFlags = 0;
ti.hwnd = hwndOwner;
ti.hinst = g_hinst;
ti.uId = (UINT) id;
ti.lpszText = (LPSTR) szTips[id++];
ti.rect.left = col * CX_COLUMN;
ti.rect.top = row * CY_ROW;
ti.rect.right = ti.rect.left + CX_COLUMN;
ti.rect.bottom = ti.rect.top + CY_ROW;
if (!SendMessage(hwndTT, TTM_ADDTOOL, 0,

(LPARAM) (LPTOOLINFO) &ti))
return NULL;
}
return hwndTT;

}

Using a Tooltip Control with a Dialog Box
The following example includes a set of application-defined functions that implement a tooltip
control for a dialog box. The DoCreateDialogTooltip function creates a tooltip control and uses the
EnumChildWindows function to enumerate the controls in the dialog box. The enumeration
procedure, EnumChildProc, registers each control with the tooltip control. The procedure
specifies the dialog box as the parent window of each tooltip control and includes the
LPSTR_TEXTCALLBACK value for each tooltip control. As a result, the dialog box receives a
WM_NOTIFY message that contains the TTN_NEEDTEXT notification message whenever the
tooltip control needs the text for a control. The dialog box procedure calls the OnWMNotify
function to process the TTN_NEEDTEXT notifications. OnWMNotify provides the appropriate
string based on the identifier of the tooltip control.

The tooltip control needs to receive mouse messages that the system sends to the control
windows. To access the messages, the DoCreateDialogTooltip function installs a hook procedure
of the WH_GETMESSAGE type. The hook procedure, GetMsgProc, monitors the message
stream for mouse messages intended for one of the control windows and relays the messages to
the tooltip control.// DoCreateDialogTooltip - creates a tooltip control for a dialog box,
//enumerates the child control windows, and installs a hook
//procedure to monitor the message stream for mouse messages posted
//to the control windows.
// Returns TRUE if successful or FALSE otherwise.
//
// Global variables
// g_hinst ¾ handle of the application instance
// g_hwndTT ¾ handle of the tooltip control
// g_hwndDlg ¾ handle of the dialog box
// g_hhk ¾ handle of the hook procedure
BOOL DoCreateDialogTooltip(void)
{

// Ensure that the common control DLL is loaded, and create
// a tooltip control.
InitCommonControls();
g_hwndTT = CreateWindowEx(0, TOOLTIPS_CLASS, (LPSTR) NULL,
TTS_ALWAYSTIP, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, g_hwndDlg, (HMENU) NULL, g_hinst, NULL);
if (g_hwndTT == NULL)
return FALSE;
// Enumerate the child windows to register them with the tooltip
// control.
if (!EnumChildWindows(g_hwndDlg, (WNDENUMPROC) EnumChildProc, 0))
return FALSE;
// Install a hook procedure to monitor the message stream for mouse
// messages intended for the controls in the dialog box.
g_hhk = SetWindowsHookEx(WH_GETMESSAGE, GetMsgProc,
(HINSTANCE) NULL, GetCurrentThreadId());
if (g_hhk == (HHOOK) NULL)
return FALSE;
return TRUE;

}
// EmumChildProc - registers control windows with a tooltip control by
//using the TTM_ADDTOOL message to pass the address of a
//TOOLINFO structure.
// Returns TRUE if successful or FALSE otherwise.
// hwndCtrl - handle of a control window
// lParam - application-defined value (not used)
BOOL EnumChildProc(HWND hwndCtrl, LPARAM lParam)
{

TOOLINFO ti;
char szClass[64];
// Skip static controls.
GetClassName(hwndCtrl, szClass, sizeof(szClass));
if (lstrcmp(szClass, "STATIC") {
ti.cbSize = sizeof(TOOLINFO);
ti.uFlags = TTF_IDISHWND;
ti.hwnd = g_hwndDlg;
ti.uId = (UINT) hwndCtrl;
ti.hinst = 0;
ti.lpszText = LPSTR_TEXTCALLBACK;
SendMessage(g_hwndTT, TTM_ADDTOOL, 0,
(LPARAM) (LPTOOLINFO) &ti);
}
return TRUE;

}
// GetMsgProc - monitors the message stream for mouse messages intended
//for a control window in the dialog box.
// Returns a message-dependent value.
// nCode - hook code
// wParam - message flag (not used)
// lParam - address of an MSG structure
LRESULT CALLBACK GetMsgProc(int nCode, WPARAM wParam, LPARAM lParam)
{

MSG *lpmsg;
lpmsg = (MSG *) lParam;
if (nCode < 0 || !(IsChild(g_hwndDlg, lpmsg->hwnd)))
return (CallNextHookEx(g_hhk, nCode, wParam, lParam));
switch (lpmsg->message) {
case WM_MOUSEMOVE:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP:
case WM_RBUTTONDOWN:
case WM_RBUTTONUP:
if (g_hwndTT != NULL) {
MSG msg;
msg.lParam = lpmsg->lParam;
msg.wParam = lpmsg->wParam;
msg.message = lpmsg->message;
msg.hwnd = hwnd;
SendMessage(g_hwndTT, TTM_RELAYEVENT, 0,
(LPARAM) (LPMSG) &msg);
}
break;
default:
break;
}
return (CallNextHookEx(g_hhk, nCode, wParam, lParam));

}
// OnWMNotify - provides the tooltip control with the appropriate text
//to display for a control window. This function is called by
//the dialog box procedure in response to a WM_NOTIFY message.
// lParam - second message parameter of the WM_NOTIFY message
VOID OnWMNotify(LPARAM lParam)
{

LPTOOLTIPTEXT lpttt;
int idCtrl;
if ((((LPNMHDR) lParam)->code) == TTN_NEEDTEXT) {
idCtrl = GetDlgCtrlID((HWND) ((LPNMHDR) lParam)->idFrom);
lpttt = (LPTOOLTIPTEXT) lParam;
switch (idCtrl) {
case ID_HORZSCROLL:
lpttt->lpszText = "A horizontal scroll bar.";
return;
case ID_CHECK:
lpttt->lpszText = "A check box.";
return;
case ID_EDIT:
lpttt->lpszText = "An edit control.";
return;
}
}

return;
}

Tooltip Control Reference
The following messages and structures are associated with tooltip controls. These elements can
be grouped as follows.Tooltip ActivationTTM_ACTIVATEAdding and Deleting ToolsTOOLINFO
TTM_ADDTOOL

TTM_DELTOOLMouse MessagesTTM_NEWTOOLRECT
TTM_RELAYEVENT
TTM_SETDELAYTIME
TTN_POP

TTN_SHOWTool TextTOOLTIPTEXT
TTM_GETTEXT
TTM_UPDATETIPTEXT

TTN_NEEDTEXTTooltip Hit TestingTTHITTESTINFO
TTM_HITTEST

TTM_WINDOWFROMPOINTTool InformationTTM_ENUMTOOLS
TTM_GETCURRENTTOOL
TTM_GETTOOLCOUNT
TTM_GETTOOLINFO

TTM_SETTOOLINFO

Tooltip Control Messages
An application sends messages to activate and deactivate a tooltip control, add and delete tools,
and so on.
TTM_ACTIVATE
TTM_ADDTOOL
TTM_DELTOOL
TTM_ENUMTOOLS
TTM_GETCURRENTTOOL
TTM_GETTEXT
TTM_GETTOOLCOUNT
TTM_GETTOOLINFO
TTM_HITTEST
TTM_NEWTOOLRECT
TTM_RELAYEVENT
TTM_SETDELAYTIME
TTM_SETTOOLINFO
TTM_UPDATETIPTEXT
TTM_WINDOWFROMPOINT

Tooltip Control Notification Messages
The following notification messages are used with tooltip controls.
TTN_NEEDTEXT
TTN_POP
TTN_SHOW

Tooltip Control Structures
The following structures are used with tooltip control messages.
TOOLINFO
TOOLTIPTEXT
TTHITTESTINFO

TrackbarsA trackbar is a window that contains a slider and optional tick marks. When the user moves the
slider, using either the mouse or the direction keys, the trackbar sends notification messages to
indicate the change. The following illustration shows a typical trackbar.

ewc msdncd, EWGraphic, bsd23476 0 /a "SDK_01.BMP"

About Trackbars
Trackbars are useful when you want the user to select a discrete value or a set of consecutive
values in a range. For example, you might use a trackbar to allow the user to set the repeat rate of
the keyboard by moving the slider to a given tick mark.

The slider in a trackbar moves in increments that you specify when you create it. For example, if
you specify that the trackbar should have a range of five, the slider can only occupy six positions:
a position at the left side of the trackbar and one position for each increment in the range.
Typically, each of these positions is identified by a tick mark.

You create a trackbar by using the CreateWindowEx function, specifying the
TRACKBAR_CLASS window class. Once you have created a trackbar, you can use trackbar
messages to change many of its properties. Changes that you can make include setting the
minimum and maximum positions for the slider, drawing tick marks, setting a selection range, and
repositioning the slider.

Trackbar Styles
Trackbars can have either a vertical or horizontal orientation. They can have tick marks on either
side, both sides, or neither. They can also be used to specify a range of consecutive values.
These properties are controlled by using trackbar styles, which you specify when you create the
trackbar.

The TBS_HORZ and TBS_VERT styles determine the orientation of the trackbar. If you do not
specify an orientation, the trackbar is oriented horizontally.

The TBS_AUTOTICKS style creates a trackbar that has a tick mark for each increment in its
range of values. These tick marks are added automatically when an application sends the
TBM_SETRANGE message. If you do not specify TBS_AUTOTICKS, you can use messages,
such as TBM_SETTIC and TBM_SETTICFREQ, to specify the positions of the tick marks. To
create a trackbar that does not display tick marks, you can use the TSM_NOTICKS style.

You can display tick marks on either or both sides of the trackbar. For horizontal trackbars, you
can specify the TBS_BOTTOM or TBS_TOP style. For vertical trackbars, you can specify the
TBS_RIGHT or TBS_LEFT style. (TBS_BOTTOM and TBS_RIGHT are the default settings.) For
tick marks on both sides of the trackbar in any orientation, specify the TBS_BOTH style.

A trackbar can display a selection range only if you specify the TBS_ENABLESELRANGE style
when you create it. When a trackbar has this style, the tick marks at the starting and ending
positions of a selection range are displayed as triangles (instead of vertical dashes) and the
selection range is highlighted. For example, selection ranges might be useful in a simple
scheduling application. The user could select a range of tick marks corresponding to hours in a
day to identify a scheduled meeting time.

By default, the length of a trackbar's slider varies as the selection range changes. If the trackbar
has the TBS_FIXEDLENGTH style, the length of the slider remains the same even if the selection
range changes. A trackbar that has the TBS_NOTHUMB style does not include a slider.

Messages to Trackbars
An application can send messages to the trackbar to retrieve information about the window and to
change its characteristics.

To retrieve the position of the slider (that is, the value the user has chosen), use the
TBM_GETPOS message. To set the position of the slider, use the TBM_SETPOS message.

The range of a trackbar is the set of contiguous values that the trackbar can represent. Most
applications use the TBM_SETRANGE message to set the range of a trackbar when it is first
created. Applications can dynamically alter the range after the trackbar has been created by using
the TBM_SETRANGEMAX and TBM_SETRANGEMIN messages. An application that allows the
range to be changed dynamically typically retrieves the final range settings when the user has
finished working with the trackbar. To retrieve these settings, use the TBM_GETRANGEMAX and
TBM_GETRANGEMIN messages.

An application can use the TBS_AUTOTICKS style to have a trackbar's tick marks displayed
automatically. If an application needs to control the position or frequency of the tick marks,
however, a number of messages can be used. To set the position of a tick mark, an application
can use the TBM_SETTIC message. The TBM_SETTICFREQ message allows an application to
set tick marks that appear at regular intervals in the trackbar's range. For example, the application
can use this message to display only ten tick marks in a range of 1 through 100. To retrieve the
index in the range corresponding to a tick mark, use the TBM_GETTIC message. The
TBM_GETPTICS message retrieves an array of these indices. To retrieve the position of a tick
mark, in client coordinates, use the TBM_GETTICPOS message. An application can retrieve the
number of tick marks by using the TBM_GETNUMTICS message. The TBM_CLEARTICS
message removes all of a trackbar's tick marks.

A trackbar's line size determines how far the slider moves when an application receives a
TB_LINEDOWN or TB_LINEUP notification message. Similarly, the page size determines the
response to the TB_PAGEDOWN and TB_PAGEUP notification messages. Applications can
retrieve and set the line and page size values by using the TBM_GETLINESIZE,
TBM_SETLINESIZE, TBM_GETPAGESIZE, and TBM_SETPAGESIZE messages.

An application can use messages to retrieve the dimensions of a trackbar. The
TBM_GETTHUMBRECT message retrieves the bounding rectangle for the slider. The
TBM_GETCHANNELRECT message retrieves the bounding rectangle for the trackbar's channel.
(The channel is the area over which the slider moves and which contains the highlight when a
range is selected.)

If a trackbar has the TBS_ENABLESELRANGE style, the user can select a range of contiguous
values from it. A number of messages allow the selection range to be adjusted dynamically. The
TBM_SETSEL message sets the starting and ending positions of a selection. To set just the
starting position or just the ending position of a selection, use the TBM_SETSELSTART or
TBM_SETSELEND message. When the user has finished setting a selection range, an application
can retrieve the settings by using the TBM_GETSELSTART and TBM_GETSELEND messages.
To clear a user's selection, use the TBM_CLEARSEL message.

Trackbar Notification Messages
A trackbar notifies its parent window of user actions by sending the parent WM_HSCROLL or
WM_VSCROLL messages. A trackbar with the TBS_HORZ style sends WM_HSCROLL
messages. A trackbar with the TBS_VERT style sends WM_VSCROLL messages. The low-order
word of the wParam parameter of WM_HSCROLL or WM_VSCROLL contains the notification
code, and the high-order word specifies the position of the slider. The lParam parameter is the
handle of the trackbar.

The system sends the TB_BOTTOM, TB_LINEDOWN, TB_LINEUP, and TB_TOP notification
messages only when the user interacts with a trackbar by using the keyboard. The
TB_THUMBPOSITION and TB_THUMBTRACK notification messages are only sent when the
user is using the mouse. The TB_ENDTRACK, TB_PAGEDOWN, and TB_PAGEUP notification
messages are sent in both cases. The following table lists the trackbar notification messages and
the events (virtual-key codes or mouse events) that cause the notifications to be sent.

Notification message Reason sent

TB_BOTTOM VK_END
TB_ENDTRACK WM_KEYUP (the user released a key that

sent a relevant virtual-key code)
TB_LINEDOWN VK_RIGHT or VK_DOWN
TB_LINEUP VK_LEFT or VK_UP
TB_PAGEDOWN VK_NEXT (the user clicked the channel

below or to the right of the slider)
TB_PAGEUP VK_PRIOR (the user clicked the channel

above or to the left of the slider)
TB_THUMBPOSITION WM_LBUTTONUP following a

TB_THUMBTRACK notification message
TB_THUMBTRACK Slider movement (the user dragged the

slider)
TB_TOP VK_HOME

Default Trackbar Message Processing
This section describes the window message processing performed by a trackbar.

Message Processing performed

WM_CAPTURECHANGED Kills the timer if one was set during
WM_LBUTTONDOWN processing
and sends the
TB_THUMBPOSITION notification
message, if necessary. It always
sends the TB_ENDTRACK
notification message.

WM_CREATE Performs additional initialization. It
sets the initial tick frequency to 1, the
line size to 1, and the page size to -
1.

WM_DESTROY Frees resources.
WM_ENABLE Repaints the trackbar window.
WM_ERASEBKGND Erases the window background,

using the current background color
for the trackbar.

WM_GETDLGCODE Returns the DLGC_WANTARROWS
value.

WM_KEYDOWN Processes the direction keys and
sends the TB_TOP, TB_BOTTOM,
TB_PAGEUP, TB_PAGEDOWN,
TB_LINEUP, and TB_LINEDOWN
notification messages, as
appropriate.

WM_KEYUP Sends the TB_ENDTRACK
notification message if the key was
one of the direction keys.

WM_KILLFOCUS Repaints the trackbar window.
WM_LBUTTONDOWN Sets the focus and the mouse

capture to the trackbar. When
necessary, it sets a timer that
determines how quickly the slider
moves toward the mouse cursor
when the user holds down the mouse
button in the window.

WM_LBUTTONUP Releases the mouse capture and
kills the timer if one was set during
WM_LBUTTONDOWN processing. It
sends the TB_THUMBPOSITION
notification message, if necessary. It
always sends the TB_ENDTRACK
notification message.

WM_MOUSEMOVE Moves the slider and sends the
TB_THUMBTRACK notification
message when tracking the mouse
(see WM_TIMER).

WM_PAINT Paints the trackbar. If the wParam
parameter is non-NULL, the control
assumes that the value is an HDC
and paints using that device context.

WM_SETFOCUS Repaints the trackbar window.
WM_SIZE Sets the dimensions of the trackbar,

removing the slider if there is not
enough room to display it.

WM_TIMER Retrieves the mouse position and

updates the position of the slider. (It
is received only when the user is
dragging the slider.)

WM_WININICHANGE Initializes slider dimensions.

Using Trackbars
· Creating a trackbar
· Processing trackbar notification messages

Creating a Trackbar
The following example shows how to create a trackbar with the TBS_AUTOTICKS and
TBS_ENABLESELRANGE styles. When the trackbar is created, both its range and its selection
range are initialized. The page size is also set at this time.// CreateTrackbar - creates and initializes a trackbar.
//
// Global variable
//g_hinst - instance handle
HWND WINAPI CreateTrackbar(

HWND hwndDlg, // handle of dialog box (parent window)
UINT iMin,// minimum value in trackbar range
UINT iMax,// maximum value in trackbar range
UINT iSelMin, // minimum value in trackbar selection
UINT iSelMax) // maximum value in trackbar selection

{
InitCommonControls(); // loads common control's DLL
hwndTrack = CreateWindowEx(
0, // no extended styles
TRACKBAR_CLASS, // class name
"Trackbar Control", // title (caption)
WS_CHILD | WS_VISIBLE |
TBS_AUTOTICKS | TBS_ENABLESELRANGE, // style
10, 10, // position
200, 30, // size
hwndDlg, // parent window
ID_TRACKBAR, // control identifier
g_hinst, // instance
NULL // no WM_CREATE parameter
);
SendMessage(hwndTrack, TBM_SETRANGE,
(WPARAM) TRUE, // redraw flag
(LPARAM) MAKELONG(iMin, iMax)); // min. & max. positions
SendMessage(hwndTrack, TBM_SETPAGESIZE,
0, (LPARAM) 4); // new page size
SendMessage(hwndTrack, TBM_SETSEL,
(WPARAM) FALSE, // redraw flag
(LPARAM) MAKELONG(iSelMin, iSelMax);
SendMessage(hwndTrack, TBM_SETPOS,
(WPARAM) TRUE, // redraw flag
(LPARAM) iSelMin);
SetFocus(hwndTrack);
return hwndTrack;

}

Processing Trackbar Notification Messages
The following example is a function that is called whenever a WM_HSCROLL message is
received by the dialog box containing the trackbar. The trackbar has the
TBS_ENABLESELRANGE style. The position of the slider is compared against the selection
range, and the slider is moved to the starting or ending position of the selection range, when
necessary.

A dialog containing a trackbar with the TBS_VERT style could use this function when it receives a
WM_VSCROLL message.// TBNotifications - handles trackbar notifications received
//in the wParam parameter of WM_HSCROLL. This function simply
//ensures that the slider remains within the selection range.
VOID WINAPI TBNotifications(

WPARAM wParam, // wParam of WM_HSCROLL message
HWND hwndTrack, // handle of trackbar window
UINT iSelMin, // minimum value of trackbar selection
UINT iSelMax) // maximum value of trackbar selection

{
DWORD dwPos; // current position of slider
switch (LOWORD(wParam)) {
case TB_ENDTRACK:
dwPos = SendMessage(hwndTrack, TBM_GETPOS, 0, 0);
if (dwPos > iSelMax)
SendMessage(hwndTrack, TBM_SETPOS,
(WPARAM) TRUE, // redraw flag
(LPARAM) iSelMax);
else if (dwPos < iSelMin)
SendMessage(hwndTrack, TBM_SETPOS,
(WPARAM) TRUE, // redraw flag
(LPARAM) iSelMin);
break;
default:
break;
}}

Trackbar Reference
The following messages are associated with trackbars.Size and PositionTBM_GETCHANNELRECT
TBM_GETTHUMBLENGTH
TBM_GETTHUMBRECT

TBM_SETTHUMBLENGTHSlider PositionTBM_GETPOS

TBM_SETPOSLine and Page SizeTBM_GETLINESIZE
TBM_GETPAGESIZE
TBM_SETLINESIZE

TBM_SETPAGESIZERangeTBM_GETRANGEMAX
TBM_GETRANGEMIN
TBM_SETRANGE
TBM_SETRANGEMAX

TBM_SETRANGEMINSelectionTBM_CLEARSEL
TBM_GETSELEND
TBM_GETSELSTART
TBM_SETSEL
TBM_SETSELEND

TBM_SETSELSTARTTick MarksTBM_CLEARTICS
TBM_GETNUMTICS
TBM_GETPTICS
TBM_GETTIC
TBM_GETTICPOS
TBM_SETTIC

TBM_SETTICFREQ

Trackbar Messages
An application sends messages to the trackbar to retrieve information about the trackbar and to
change its characteristics. The following are the trackbar messages.
TBM_CLEARSEL
TBM_CLEARTICS
TBM_GETCHANNELRECT
TBM_GETLINESIZE
TBM_GETNUMTICS
TBM_GETPAGESIZE
TBM_GETPOS
TBM_GETPTICS
TBM_GETRANGEMAX
TBM_GETRANGEMIN
TBM_GETSELEND
TBM_GETSELSTART
TBM_GETTHUMBLENGTH
TBM_GETTHUMBRECT
TBM_GETTIC
TBM_GETTICPOS
TBM_SETLINESIZE
TBM_SETPAGESIZE
TBM_SETPOS
TBM_SETRANGE
TBM_SETRANGEMAX
TBM_SETRANGEMIN
TBM_SETSEL
TBM_SETSELEND
TBM_SETSELSTART
TBM_SETTHUMBLENGTH
TBM_SETTIC
TBM_SETTICFREQ

Tree-View ControlsA tree-view control is a window that displays a hierarchical list of items, such as the headings in a
document, the entries in an index, or the files and directories on a disk. Each item consists of a
label and an optional bitmapped image, and each item can have a list of subitems associated with
it. By clicking an item, the user can expand and collapse the associated list of subitems. The
following illustration shows a tree-view control that displays a table of contents.

ewc msdncd, EWGraphic, bsd23477 0 /a "SDK_01.BMP"

About Tree-View Controls
You create a tree-view control by using the CreateWindowEx function, specifying the
WC_TREEVIEW window class. The class is registered when the common control dynamic-link
library (DLL) is loaded. To ensure that this DLL is loaded, include the InitCommonControls
function in your application.

After creating a tree-view control, you add, remove, arrange, or otherwise manipulate items by
sending messages to it. Each message has one or more corresponding macros that you can use
instead of sending the message explicitly. The macros are listed with the messages in the
Reference section of this topic.

Tree-View Styles
Tree-view styles govern aspects of a tree-view control's appearance. You set the initial styles
when you create the tree-view control. You can retrieve and change the styles after creating the
tree-view control by using the GetWindowLong and SetWindowLong functions.

The TVS_HASLINES style enhances the graphic representation of a tree-view control's hierarchy
by drawing lines that link child items to their corresponding parent item. This style does not link
items at the root of the hierarchy. To do so, you need to combine the TVS_HASLINES and
TVS_LINESATROOT styles.

The user can expand or collapse a parent item's list of child items by double-clicking the parent
item. A tree-view control that has the TVS_HASBUTTONS style adds a button to the left side of
each parent item. The user can click the button to expand or collapse the child items as an
alternative to double-clicking the parent item. TVS_HASBUTTONS does not add buttons to items
at the root of the hierarchy. To do so, you must combine TVS_HASLINES, TVS_LINESATROOT,
and TVS_HASBUTTONS.

The TVS_EDITLABELS style makes it possible for the user to edit the labels of tree-view items.
For more information about editing labels, see Tree-View Label Editing.

The TVS_SHOWSELALWAYS style causes a selected item to remain selected when the tree-
view control loses focus.

Parent and Child Items
Any item in a tree-view control can have a list of subitems, which are called child items,
associated with it. An item that has one or more child items is called a parent item. A child item is
displayed below its parent item and is indented to indicate it is subordinate to the parent. An item
that has no parent is at the top of the hierarchy and is called a root item.

To add an item to a tree-view control, send the TVM_INSERTITEM message to the tree-view
control. The message returns a handle of the HTREEITEM type, which uniquely identifies the
item. When adding an item, you must specify the handle of the new item's parent item. If you
specify NULL or the TVI_ROOT value instead of a parent item handle in the TV_INSERTSTRUCT
structure, the item is added as a root item.

At any given time, the state of a parent item's list of child items can be either expanded or
collapsed. When the state is expanded, the child items are displayed below the parent item. When
it is collapsed, the child items are not displayed. The list automatically toggles between the
expanded and collapsed states when the user double-clicks the parent item or, if the parent has
the TVS_HASBUTTONS style, when the user clicks the button associated with the parent item.
An application can expand or collapse the child items by using the TVM_EXPAND message.

A tree-view control sends the parent window a TVN_ITEMEXPANDING notification message
when a parent item's list of child items is about to be expanded or collapsed. The notification gives
an application the opportunity to prevent the change or to set any attributes of the parent item that
depend on the state of the list of child items. After changing the state of the list, the tree-view
control sends the parent window a TVN_ITEMEXPANDED notification message.

When a list of child items is expanded, it is indented relative to the parent item. You can set the
amount of indentation by using the TVM_SETINDENT message or retrieve the current amount by
using the TVM_GETINDENT message.

A tree-view control uses memory allocated from the heap of the process that creates the tree-
view control. The maximum number of items in a tree view is based on the amount of memory
available in the heap. Each item takes 64 bytes.

Item Labels
You typically specify the text of an item's label when adding the item to the tree-view control. The
TVM_INSERTITEM message includes a TV_ITEM structure that defines the item's properties,
including a string containing the text of the label.

A tree-view control allocates memory for storing each item; the text of the item labels takes up a
significant portion of this memory. If your application maintains a copy of the strings in the tree-
view control, you can decrease the memory requirements of the control by specifying the
LPSTR_TEXTCALLBACK value in the pszText member of TV_ITEM instead of passing actual
strings to the tree view. Using LPSTR_TEXTCALLBACK causes the tree-view control to retrieve
the text of an item's label from the parent window whenever the item needs to be redrawn. To
retrieve the text, the tree-view control sends a TVN_GETDISPINFO notification message, which
includes the address of a TV_DISPINFO structure. The parent window must fill the appropriate
members of the included structure.

Tree-View Label Editing
The user can directly edit the labels of items in a tree-view control that has the TVS_EDITLABELS
style. The user begins editing by clicking the label of the item that has the focus. An application
begins editing by using the TVM_EDITLABEL message. The tree-view control notifies the parent
window when editing begins and when it is canceled or completed. When editing is completed, the
parent window is responsible for updating the item's label, if appropriate.

When label editing begins, a tree-view control sends its parent window a TVN_BEGINLABELEDIT
notification message. By processing this notification, an application can allow editing of some
labels and prevent editing of others. Returning zero allows editing, and returning nonzero prevents
it.

When label editing is canceled or completed, a tree-view control sends its parent window a
TVN_ENDLABELEDIT notification message. The lParam parameter is the address of a
TV_DISPINFO structure. The item member is a TV_ITEM structure that identifies the item and
includes the edited text. The parent window is responsible for updating the item's label, if
appropriate, perhaps after validating the edited string. The pszText member of TV_ITEM is zero if
editing is canceled.

During label editing, typically in response to the TVN_BEGINLABELEDIT notification message,
you can get the handle of the edit control used for label editing by using the
TVM_GETEDITCONTROL message. You can send the edit control an EM_SETLIMITTEXT
message to limit the amount of text a user can enter or subclass the edit control to intercept and
discard invalid characters. Note, however, that the edit control is displayed only after
TVN_BEGINLABELEDIT is sent.

Tree-View Item Position
An item's initial position is set when the item is added to the tree-view control by using the
TVM_INSERTITEM message. The message includes a TV_INSERTSTRUCT structure that
specifies the handle of the parent item and the handle of the item after which the new item is to be
inserted. The second handle must identify either a child item of the given parent or one of these
values: TVI_FIRST, TVI_LAST, or TVI_SORT.

When TVI_FIRST or TVI_LAST is specified, the tree-view control places the new item at the
beginning or end of the given parent item's list of child items. When TVI_SORT is specified, the
tree-view control inserts the new item into the list of child items in alphabetical order based on the
text of the item labels.

You can put a parent item's list of child items into alphabetical order by using the
TVM_SORTCHILDREN message. The message includes a parameter that specifies whether all
levels of child items descending from the given parent item are also sorted in alphabetical order.

The TVM_SORTCHILDRENCB message allows you to sort child items based on criteria that you
define. When you use this message, you specify an application-defined callback function that the
tree-view control can call whenever the relative order of two child items needs to be decided. The
callback function receives two 32-bit application-defined values for the items being compared and
a third 32-bit value that you specify when sending TVM_SORTCHILDRENCB.

Tree-View Item States Overview
Each item in a tree-view control has a current state. For example, an item can be selected,
disabled, expanded, and so on. For the most part, the tree-view control automatically sets an
item's state to reflect user actions, such as selection of an item. However, you can also set an
item's state by using the TVM_SETITEM message and retrieve the current state of an item by
using the TVM_GETITEM message. For a complete list of item states, see Tree-View Item States.

An item's current state is specified by the state member of the TV_ITEM structure. A tree-view
control might change an item's state to reflect a user action, such as selecting the item or setting
the focus to the item. In addition, an application might change an item's state to disable or hide the
item or to specify an overlay image or state image.

When you specify or change an item's state, the stateMask member of TV_ITEM specifies which
state bits to set, and the state member contains the new values for those bits. To set an item's
overlay image, stateMask must include the TVIS_OVERLAYMASK value, and state must include
the one-based index of the overlay image shifted left eight bits by using the
INDEXTOOVERLAYMASK macro. The index can be zero to specify no overlay image. The
overlay image must have been added to the tree-view control's list of overlay images by a
previous call to the ImageList_SetOverlayImage function. The function specifies the one-based
index of the image to add; this is the index used with the INDEXTOOVERLAYMASK macro. A
tree-view control can have up to four overlay images.

To set an item's state image, stateMask of TV_ITEM must include the TVIS_STATEIMAGEMASK
value, and state must include the one-based index of the state image shifted left twelve bits by
using the INDEXTOSTATEIMAGEMASK macro. The index can be zero to specify no state image.
For more information about overlay and state images, see Tree-View Image Lists.

Item Selection
A tree-view control notifies the parent window when the selection changes from one item to
another by sending the TVN_SELCHANGING and TVN_SELCHANGED notification messages.
Both notifications include a value that specifies whether the change is the result of a mouse click
or a keystroke. The notifications also include information about the item that is gaining the
selection and the item that is losing the selection. You can use this information to set item
attributes that depend on the selection state of the item. Returning TRUE in response to
TVN_SELCHANGING prevents the selection from changing; returning FALSE allows the change.

An application can change the selection by sending the TVM_SELECTITEM message.

Item Information
Tree-view controls support a number of messages that retrieve information about items in the
control.

The TVM_GETITEM message can retrieve an item's handle and attributes. An item's attributes
include its current state, the indexes in the control's image list of the item's selected and non-
selected bitmapped images, a flag that indicates whether the item has child items, a pointer to the
item's label string, and the item's application-defined 32-bit value.

The TVM_GETNEXTITEM message retrieves the tree-view item that bears the specified
relationship to the current item. The message can retrieve an item's parent, the next or previous
visible item, the first child item, and so on.

The TVM_GETITEMRECT message retrieves the bounding rectangle for a tree-view item. The
TVM_GETCOUNT and TVM_GETVISIBLECOUNT messages retrieve a count of the items in a
tree-view control and a count of the items that are currently visible in the tree-view control's
window, respectively. You can ensure that a particular item is visible by using the
TVM_ENSUREVISIBLE message.

Tree-View Image Lists
Each item in a tree-view control can have a pair of bitmapped images associated with it. The
images appear on the left side of an item's label. One image is displayed when the item is
selected, and the other is displayed when the item is not selected. For example, an item might
display an open folder when it is selected and a closed folder when it is not selected.

To use item images, you must create an image list by using the ImageList_Create function, add
the desired bitmaps to the list, and associate the list with the tree-view control by using the
TVM_SETIMAGELIST message. By default, all items display the first image in the image list for
both the selected and nonselected states. You can change the default behavior for a particular
item by specifying the indexes of the selected and nonselected images when adding the item to
the tree view using the TVM_INSERTITEM message. You can change the indexes after adding
an item by using the TVM_SETITEM message.

A tree-view control's image lists can also contain overlay images, which are designed to be
superimposed on item images. A nonzero value in bits 8 through 11 of a tree-view item's state
specifies the one-based index of an overlay image (zero indicates no overlay image). Because a
4-bit, one-based index is used, overlay images must be among the first 15 images in the image
lists. For more information about tree-view item states, see Tree-View Item States Overview.

If a state image list is specified, a tree-view control reserves space to the left of each item's icon
for a state image. An application can use state images, such as checked and cleared check
boxes, to indicate application-defined item states. A nonzero value in bits 12 through 15 specifies
the one-based index of a state image (zero indicates no state image).

By specifying the I_IMAGECALLBACK value instead of the index of an image in the TV_ITEM
structure, you can put off specifying the selected or nonselected image until the item is about to
be redrawn. I_IMAGECALLBACK directs the tree view to query the parent window for the index by
sending the TVN_GETDISPINFO notification message.

The TVM_GETIMAGELIST message retrieves the handle of a tree-view control's image list. This
message is useful if you need to add more images to the list. For more information about image
lists, see Image Lists.

Drag and Drop Operations
A tree-view control notifies the parent window when the user starts to drag an item. The parent
window receives a TVN_BEGINDRAG notification message when the user begins dragging an
item with the left mouse button and a TVN_BEGINRDRAG notification message when the user
begins dragging with the right button. You can prevent a tree-view control from sending these
notifications by giving the tree-view control the TVS_DISABLEDRAGDROP style.

You obtain an image to display during a drag operation by using the TVM_CREATEDRAGIMAGE
message. The tree-view control creates a dragging bitmap based on the label of the item being
dragged. Then the tree-view control creates an image list, adds the bitmap to it, and returns the
handle of the image list.

You must provide the code that actually drags the item. This typically involves using the dragging
capabilities of the image list functions and processing the WM_MOUSEMOVE and
WM_LBUTTONUP (or WM_RBUTTONUP) messages sent to the parent window after the drag
operation has begun. For more information about the image list functions, see Image Lists. For
more information about dragging a tree-view item, see Dragging a Tree-View Item.

If items in a tree-view control are to be the targets of a drag and drop operation, you need to know
when the mouse cursor is on a target item. You can find out by using the TVM_HITTEST
message. You specify the address of a TV_HITTESTINFO structure that contains the current
coordinates of the mouse cursor. When the SendMessage function returns, the structure contains
a flag indicating the location of the mouse cursor relative to the tree-view control. If the cursor is
over an item in the tree-view control, the structure contains the handle of the item as well.

You can indicate that an item is the target of a drag and drop operation by using the
TVM_SETITEM message to set the state to the TVIS_DROPHILITED value. An item that has this
state is drawn in the style used to indicate a drag and drop target.

About Tree-View Control Notification Messages
A tree-view control sends the following notification messages to its parent window in the form of
WM_NOTIFY messages.

Notification Description

TVN_BEGINDRAG Signals the start of a drag and drop
operation.

TVN_BEGINLABELEDIT Signals the start of in-place label
editing.

TVN_BEGINRDRAG Signals the start of a drag and drop
operation, using the right mouse
button.

TVN_DELETEITEM Signals the deletion of a specific item.
TVN_ENDLABELEDIT Signals the end of label editing.
TVN_GETDISPINFO Requests information that the tree-

view control requires to display an
item.

TVN_ITEMEXPANDED Signals that a parent item's list of child
items was expanded or collapsed.

TVN_ITEMEXPANDING Signals that a parent item's list of child
items is about to be expanded or
collapsed.

TVN_KEYDOWN Signals a keyboard event.
TVN_SELCHANGED Signals that the selection has changed

from one item to another.
TVN_SELCHANGING Signals that the selection is about to be

changed from one item to another.
TVN_SETDISPINFO Notifies a parent window that it must

update the information it maintains for
an item.

Default Tree-View Controls Message Processing
This section describes the window message processing performed by a tree-view control.
Because messages specific to tree-view controls are discussed elsewhere, they are not included
here.

Message Processing performed

WM_COMMAND Processes the EN_UPDATE and
EN_KILLFOCUS edit control
notification messages and forwards all
other edit control notifications to the
parent window. There is no return
value.

WM_CREATE Allocates memory and initializes
internal data structures. It returns zero
if successful or - 1 otherwise.

WM_DESTROY Frees all system resources associated
with the control. It returns zero.

WM_ENABLE Enables or disables the control.
WM_ERASEBKGND Erases the window background using

the current background color for the
tree-view control. It returns TRUE.

WM_GETDLGCODE Returns a combination of the
DLGC_WANTARROWS and
DLGC_WANTCHARS values.

WM_GETFONT Returns the handle of the current label
font.

WM_HSCROLL Scrolls the tree-view control. It returns
TRUE if scrolling occurs or FALSE
otherwise.

WM_KEYDOWN Sends the NM_RETURN notification
message when the user presses the
ENTER key. It moves the caret when the
user presses the direction keys or the
PAGE UP, PAGE DOWN, HOME, END, or
BACKSPACE key. It scrolls the tree-view
control when the user presses the CTRL
key in combination with those keys. It
sends the TVN_KEYDOWN
notification message to the parent
window. It returns TRUE if a key is
processed or FALSE otherwise.

WM_KILLFOCUS Repaints the focused item, if any, and
sends an NM_KILLFOCUS notification
message to the parent window.

WM_LBUTTONDBLCLK Cancels label editing and, if an item
was double-clicked, sends the
NM_DBLCLK or NM_RDBLCLK
notification message to the parent
window. If the parent window returns
TRUE, the tree-view control toggles
the expanded state of the item,
sending the parent window the
TVN_ITEMEXPANDING and
TVN_ITEMEXPANDED notification
messages. There is no return value.

WM_LBUTTONDOWN Toggles the expanded state if the user
clicked the button associated with a
parent item. If the user clicked an item
label, the tree-view control selects and
sets the focus to the item. If the user

moves the mouse before releasing the
mouse button, the tree-view control
begins a drag and drop operation.
There is no return value.

WM_PAINT Paints the invalid region of the tree-
view control. It returns zero. If the
wParam parameter is non-NULL, the
control assumes that the value is an
HDC and paints using that device
context.

WM_RBUTTONDOWN Checks to see if an item was clicked
and a drag operation was begun. If the
operation has begun, it sends a
TVN_BEGINRDRAG notification
message to the parent window and
highlights the drop target. Otherwise, it
sends an NM_RCLICK notification
message to the parent window. There
is no return value.

WM_SETFOCUS Repaints the focused item, if any, and
sends an NM_SETFOCUS notification
message to the parent window.

WM_SETFONT Saves the specified font handle and
repaints the tree-view control using the
new font.

WM_SETREDRAW Sets or clears the redraw flag. The
tree-view control is redrawn after the
redraw flag is set. It returns zero.

WM_SIZE Recomputes internal variables that
depend on the size of the tree-view
control's client area. It returns TRUE.

WM_STYLECHANGED Cancels label editing and redraws the
tree-view control using the new styles.
It returns zero.

WM_SYSCOLORCHANGE Redraws the tree-view control using
the new color if the redraw flag is set.
There is no return value.

WM_TIMER Begins editing an item label. If the user
clicks the label of the focused item, the
tree-view control sets a timer instead
of entering edit mode immediately. The
timer makes it possible for the tree
view to avoid entering edit mode if the
user double-clicks the label. It returns
zero.

WM_VSCROLL Scrolls the tree-view control. It returns
TRUE if scrolling occurs or FALSE
otherwise.

Using Tree-View Controls
· Creating a tree-view control
· Initializing the image list
· Adding tree-view items
· Dragging a tree-view item

Creating a Tree-View Control
To create a tree-view control, use the CreateWindowEx function, specifying the WC_TREEVIEW
value for the window class. The tree-view window class is registered in the application's address
space when the common control dynamic-link library (DLL) is loaded. To ensure that the DLL is
loaded, use the InitCommonControls function.

The following example creates a tree-view control that is sized to fit the client area of the parent
window. It also uses application-defined functions to associate an image list with the control and
add items to the control.// CreateATreeView - creates a tree-view control.
// Returns the handle of the new control if successful or NULL
//otherwise.
// hwndParent - handle of the control's parent window
// lpszFileName - name of the file to parse for tree-view items
HWND CreateATreeView(HWND hwndParent, LPSTR lpszFileName)
{

RECT rcClient; // dimensions of client area
HWND hwndTV; // handle of tree-view control
// Ensure that the common control DLL is loaded.
InitCommonControls();
// Get the dimensions of the parent window's client area, and

create
// the tree-view control.
GetClientRect(hwndParent, &rcClient);
hwndTV = CreateWindowEx(0, WC_TREEVIEW, "Tree View",
WS_VISIBLE | WS_CHILD | WS_BORDER | TVS_HASLINES,
0, 0, rcClient.right, rcClient.bottom,
hwndParent, (HMENU) ID_TREEVIEW, g_hinst, NULL);
// Initialize the image list, and add items to the control.
// InitTreeViewImageLists and InitTreeViewItems are application-
// defined functions.
if (!InitTreeViewImageLists(hwndTV) ||

!InitTreeViewItems(hwndTV, lpszFileName)) {
DestroyWindow(hwndTV);
return FALSE;
}
return hwndTV;

}

Initializing the Image List
Every item in a tree-view control can have two images associated with it. An item displays one
image when it is selected and the other when it is not. To include images with tree-view items, you
must use the image list functions to create an image list and add images to it. Then you must
associate the image list with the tree-view control by using the TVM_SETIMAGELIST message.

The following example creates an image list, adds three bitmaps to the list, and associates the
image list with a tree-view control.// InitTreeViewImageLists - creates an image list, adds three bitmaps
to //it, and associates the image list with a tree-view control.
// Returns TRUE if successful or FALSE otherwise.
// hwndTV - handle of the tree-view control
//
// Global variables and constants
//g_nOpen, g_nClosed, and g_nDocument - integer variables for
// indexes of the images
//CX_BITMAP and CY_BITMAP - width and height of an icon
//NUM_BITMAPS - number of bitmaps to add to the image list
BOOL InitTreeViewImageLists(HWND hwndTV)
{

HIMAGELIST himl; // handle of image list
HBITMAP hbmp;// handle of bitmap
// Create the image list.
if ((himl = ImageList_Create(CX_BITMAP, CY_BITMAP,

FALSE, NUM_BITMAPS, 0)) == NULL)
return FALSE;
// Add the open file, closed file, and document bitmaps.
hbmp = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_OPEN_FILE));
g_nOpen = ImageList_Add(himl, hbmp, (HBITMAP) NULL);
DeleteObject(hbmp);
hbmp = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_CLOSED_FILE));
g_nClosed = ImageList_Add(himl, hbmp, (HBITMAP) NULL);
DeleteObject(hbmp);
hbmp = LoadBitmap(g_hinst, MAKEINTRESOURCE(IDB_DOCUMENT));
g_nDocument = ImageList_Add(himl, hbmp, (HBITMAP) NULL);
DeleteObject(hbmp);
// Fail if not all of the images were added.
if (ImageList_GetImageCount(himl) < 3)
return FALSE;
// Associate the image list with the tree-view control.
TreeView_SetImageList(hwndTV, himl, TVSIL_NORMAL);
return TRUE;

}

Adding Tree-View Items
You add an item to a tree-view control by sending the TVM_INSERTITEM message to the control.
The message includes a pointer to a TV_INSERTSTRUCT structure, specifying the parent item,
the item after which the new item is inserted, and a TV_ITEM structure that defines the attributes
of the item. The attributes include the item's label, its selected and nonselected images, and a 32-
bit application-defined value.

The example in this section creates a table of contents based on the information in a text file. The
example includes two functions. The first function searches a file for headings. When it finds one,
it extracts the text of the heading and the value that indicates the level of the heading and then
passes them to the second function. Headings are assumed to be in the following form, .
[heading].n, where heading is the text of the heading and n indicates the heading level. The
example ignores heading levels greater than level four.

The second function adds an item to a tree-view control, using the heading text as the item's label
and the heading level to determine the parent item for the new item. A level one heading is added
to the root of the tree-view control, a level two heading is added as a child item of the previous
level one item, and so on. The function assigns an image to an item based on whether it has any
child items. If an item has child items, it gets an image representing a closed folder. Otherwise, it
gets an image representing a document. An item uses the same image for both the selected and
nonselected states.// InitTreeViewItems - extracts headings from the specified file and
//passes them to a function that adds them to a tree-view control.
// Returns TRUE if successful or FALSE otherwise.
// hwndTV - handle of the tree-view control
// lpszFileName - name of file with headings
BOOL InitTreeViewItems(HWND hwndTV, LPSTR lpszFileName)
{

HANDLE hf; // handle of file
DWORD cbRead; // number of bytes read
char szItemText[128]; // label text of tree-view item
int nLevel; // heading level
LPCH pch; // pointer to data read from file
LPCH pchTmp;// temporary pointer
DWORD i, j; // counters
// Open the file to parse.
if ((hf = CreateFile(lpszFileName, GENERIC_READ,

FILE_SHARE_READ, (LPSECURITY_ATTRIBUTES) NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
(HANDLE) NULL)) == (HANDLE) INVALID_HANDLE_VALUE)
return FALSE;
// Parse the file looking for headings.
pch = (LPCH) LocalAlloc(LPTR, sizeof(char) * 2048);
pchTmp = pch;
do {
// Read a chunk of the file.
ReadFile(hf, pchTmp, sizeof(char) * 2048, &cbRead,
(LPOVERLAPPED) NULL);
// Parse the chunk looking for ".[".
for (i = 0, j = 0; i < cbRead; i++) {
if ((i + 2) > cbRead) // break if end of chunk
break;
// Extract the heading text from between the brackets.
if ((*pchTmp == '.') && (*(pchTmp+1) == '[')) {
pchTmp = pchTmp + 2;
i += 2;
while (*pchTmp != ']' && ((i++) <= cbRead))
szItemText[j++] = *pchTmp++;
szItemText[j] = '\0';
j = 0;
nLevel = atoi(pchTmp + 2);
// Add the item to the tree-view control.
AddItemToTree(hwndTV, (LPSTR) &szItemText, nLevel);
} else
++pchTmp;
}
pchTmp = pch;
} while (cbRead != 0);
CloseHandle((HANDLE) hf);
return TRUE;

}
// AddItemToTree - adds items to a tree-view control.
// Returns the handle of the newly added item.
// hwndTV - handle of the tree-view control
// lpszItem - text of the item to add
// nLevel - level at which to add the item
HTREEITEM AddItemToTree(HWND hwndTV, LPSTR lpszItem, int nLevel)
{

TV_ITEM tvi;
TV_INSERTSTRUCT tvins;
static HTREEITEM hPrev = (HTREEITEM) TVI_FIRST;
static HTREEITEM hPrevRootItem = NULL;
static HTREEITEM hPrevLev2Item = NULL;
HTREEITEM hti;
tvi.mask = TVIF_TEXT | TVIF_IMAGE
| TVIF_SELECTEDIMAGE | TVIF_PARAM;
// Set the text of the item.
tvi.pszText = lpszItem;
tvi.cchTextMax = lstrlen(lpszItem);
// Assume the item is not a parent item, so give it a
// document image.
tvi.iImage = g_nDocument;
tvi.iSelectedImage = g_nDocument;
// Save the heading level in the item's application-defined
// data area.
tvi.lParam = (LPARAM) nLevel;
tvins.item = tvi;
tvins.hInsertAfter = hPrev;
// Set the parent item based on the specified level.
if (nLevel == 1)
tvins.hParent = TVI_ROOT;
else if (nLevel == 2)
tvins.hParent = hPrevRootItem;
else
tvins.hParent = hPrevLev2Item;
// Add the item to the tree-view control.
hPrev = (HTREEITEM) SendMessage(hwndTV, TVM_INSERTITEM, 0,
(LPARAM) (LPTV_INSERTSTRUCT) &tvins);
// Save the handle of the item.
if (nLevel == 1)
hPrevRootItem = hPrev;
else if (nLevel == 2)
hPrevLev2Item = hPrev;
// The new item is a child item. Give the parent item a
// closed folder bitmap to indicate it now has child items.
if (nLevel > 1) {
hti = TreeView_GetParent(hwndTV, hPrev);
tvi.mask = TVIF_IMAGE | TVIF_SELECTEDIMAGE;
tvi.hItem = hti;
tvi.iImage = g_nClosed;
tvi.iSelectedImage = g_nClosed;
TreeView_SetItem(hwndTV, &tvi);
}
return hPrev;

}

Dragging a Tree-View Item
Dragging a tree-view item typically involves processing the TVN_BEGINDRAG (or
TVN_BEGINRDRAG) notification message, the WM_MOUSEMOVE message, and the
WM_LBUTTONUP (or WM_RBUTTONUP) message. It also involves using the image list
functions to draw the item as it is being dragged. For more information about image lists, see
Image Lists.

The remainder of this section provides an example that demonstrates how to drag a tree-view
item. The example consists of three functions. The first function begins the drag operation, the
second drags the image, and the third ends the drag operation.

Beginning the Tree-View Drag Operation
A tree-view control sends the parent window a TVN_BEGINDRAG (or TVN_BEGINRDRAG)
notification message whenever the user starts to drag an item. The parent window receives the
notification in the form of a WM_NOTIFY message whose lParam parameter is the address of an
NM_TREEVIEW structure. The members of this structure include the screen coordinates of the
mouse cursor and a TV_ITEM structure that contains information about the item to be dragged.

The following example shows how to process the WM_NOTIFY message to obtain
TVN_BEGINDRAG.case WM_NOTIFY:

switch (((LPNMHDR) lParam)->code) {
case TVN_BEGINDRAG:
Main_OnBeginDrag(hwndTV, // application-defined function
(NM_TREEVIEW *) lParam);
break;

.

. // Handle other notifications here.

.
}
break;Beginning the drag operation involves using the ImageList_BeginDrag function. The function's

parameters include the handle of the image list containing the image to use during the drag
operation and the index of the image. You can either provide your own image list and image, or
you can have the tree-view control create them for you by using the TVM_CREATEDRAGIMAGE
message.

Because the drag image replaces the mouse cursor for the duration of the drag operation,
ImageList_BeginDrag requires you to specify a hot spot within the image. The coordinates of the
hot spot are relative to the upper left corner of the image. ImageList_BeginDrag also requires
you to specify the initial location of the drag image. An application typically sets the initial location
so that the hot spot of the drag image corresponds to that of the mouse cursor at the time the user
began the drag operation.

The following function demonstrates how to begin dragging a tree-view item. It uses the drag
image provided by the tree-view control and obtains the bounding rectangle of the item to
determine the appropriate point for the hot spot. (The dimensions of the bounding rectangle are
the same as those of the image.) Note that the bounding rectangle does not account for the
indentation of child items. For this reason, the function adds the amount of indentation to the x-
coordinate of the hot spot.

The function captures mouse input, causing mouse messages to be sent to the parent window.
The parent window needs the subsequent WM_MOUSEMOVE messages to determine where to
drag the image and the WM_LBUTTONUP message to determine when to end the drag
operation.// Main_OnBeginDrag - begins dragging an item in a tree-view control.
// hwndTV - handle of the image list
// lpnmtv - address of information about the item being dragged
void Main_OnBeginDrag(HWND hwndTV, NM_TREEVIEW *lpnmtv)
{

HIMAGELIST himl; // handle of image list
RECT rcItem; // bounding rectangle of item
DWORD dwLevel; // heading level of item
DWORD dwIndent;// amount that child items are indented
// Tell the tree-view control to create an image to use
// for dragging.
himl = TreeView_CreateDragImage(hwndTV, lpnmtv->itemNew.hItem);
// Get the bounding rectangle of the item being dragged.
TreeView_GetItemRect(hwndTV, lpnmtv->itemNew.hItem, &rcItem, TRUE)

;
// Get the heading level and the amount that the child items are
// indented.
dwLevel = lpnmtv->itemNew.lParam;
dwIndent = (DWORD) SendMessage(hwndTV, TVM_GETINDENT, 0, 0);
// Start the drag operation.
ImageList_BeginDrag(himl, 0, 0, 0);
// Hide the mouse cursor, and direct mouse input to the
// parent window.
ShowCursor(FALSE);
SetCapture(GetParent(hwndTV));
g_fDragging = TRUE;
return;

}

Dragging the Tree-View Item
You drag a tree-view item by calling the ImageList_DragMove function when the parent window
receives a WM_MOUSEMOVE message, as the following example shows. The example also
performs hit testing during the drag operation to determine whether to highlight other items in the
tree view as targets of a drag and drop operation.// Main_OnMouseMove - drags an item in a tree-view control,
//highlighting the item that is the target.
// hwndParent - handle of the parent window
// hwndTV - handle of the tree-view control
// xCur and yCur - x- and y-coordinates of the mouse cursor
void Main_OnMouseMove(HWND hwndParent, HWND hwndTV, LONG xCur, LONG
yCur)
{

HTREEITEM htiTarget; // handle of target item
TV_HITTESTINFO tvht; // hit test information
if (g_fDragging) {
// Drag the item to the current position of the mouse cursor.
ImageList_DragMove(xCur, yCur);
// Find out if the cursor is on the item. If it is, highlight
// the item as a drop target.
tvht.pt.x = xCur;
tvht.pt.y = yCur;
if ((htiTarget = TreeView_HitTest(hwndTV, &tvht)) != NULL) {
TreeView_SelectDropTarget(hwndTV, htiTarget);
}
}
return;

}

Ending the Tree-View Drag Operation
The follow example ends a drag operation. The ImageList_EndDrag function is called when the
parent window receives a WM_LBUTTONUP message.// Main_OnLButtonUp - stops dragging a tree-view item, releases the
//mouse capture, and shows the mouse cursor.
//
// Global variable
//g_fDragging - indicates whether a drag operation is underway.
void Main_OnLButtonUp(void)
{

if (g_fDragging) {
ImageList_EndDrag();
ReleaseCapture();
ShowCursor(TRUE);
g_fDragging = FALSE;
}
return;

}

Tree-View Control Reference
The following messages, macros, notification messages, and structures are associated with tree-
view controls. These elements can be grouped as follows.Item LabelsTV_ITEM

TVN_GETDISPINFOLabel EditingTVM_EDITLABEL
TVM_ENDEDITLABELNOW
TVM_GETEDITCONTROL
TVN_BEGINLABELEDIT

TVN_ENDLABELEDITItem StatesTVM_GETITEM
TVM_SELECTITEM
TVM_SETITEM
TVN_SELCHANGED

TVN_SELCHANGINGTree-View Image ListsTVM_GETIMAGELIST

TVM_SETIMAGELISTItem PositionTV_INSERTSTRUCT
TVM_INSERTITEM
TVM_SORTCHILDREN

TVM_SORTCHILDRENCBParent and Child ItemsTVM_EXPAND
TVM_GETINDENT
TVM_SETINDENT
TVN_ITEMEXPANDED

TVN_ITEMEXPANDINGItem InformationTV_DISPINFO
TVM_ENSUREVISIBLE
TVM_GETCOUNT
TVM_GETNEXTITEM

TVM_GETVISIBLECOUNTDrag and Drop OperationsTV_HITTESTINFO
TVM_CREATEDRAGIMAGE
TVM_HITTEST
TVN_BEGINDRAG

TVN_BEGINRDRAGMiscellaneousNM_TREEVIEW
TV_KEYDOWN
TV_SORTCB
TVM_DELETEITEM
TVM_GETISEARCHSTRING
TVM_GETITEMRECT
TVN_DELETEITEM
TVN_KEYDOWN

TVN_SETDISPINFO

Tree-View Control Messages
An application sends messages to add items and to alter the appearance and behavior of a tree-
view control. Each message has a corresponding macro that you can use instead of sending the
message explicitly. Some messages may have related macros, which are a more specialized form
of a corresponding macro.

Message Macro

TVM_CREATEDRAGIMAGE TreeView_CreateDragImage
TVM_DELETEITEM TreeView_DeleteAllItems

TreeView_DeleteItem
TVM_EDITLABEL TreeView_EditLabel
TVM_ENDEDITLABELNOW TreeView_EndEditLabelNow
TVM_ENSUREVISIBLE TreeView_EnsureVisible
TVM_EXPAND TreeView_Expand
TVM_GETCOUNT TreeView_GetCount

TVM_GETEDITCONTROL TreeView_GetEditControl

TVM_GETIMAGELIST TreeView_GetImageList

TVM_GETINDENT TreeView_GetIndent
TVM_GETISEARCHSTRING TreeView_GetISearchString
TVM_GETITEM TreeView_GetItem
TVM_GETITEMRECT TreeView_GetItemRect
TVM_GETNEXTITEM TreeView_GetChild

TreeView_GetDropHilite
TreeView_GetFirstVisible
TreeView_GetNextItem
TreeView_GetNextSibling
TreeView_GetNextVisible
TreeView_GetParent
TreeView_GetPrevSibling
TreeView_GetPrevVisible
TreeView_GetRoot
TreeView_GetSelection

TVM_GETVISIBLECOUNT TreeView_GetVisibleCount
TVM_HITTEST TreeView_HitTest
TVM_INSERTITEM TreeView_InsertItem
TVM_SELECTITEM TreeView_Select

TreeView_SelectDropTarget
TreeView_SelectItem
TreeView_SelectSetFirstVisible

TVM_SETIMAGELIST TreeView_SetImageList
TVM_SETINDENT TreeView_SetIndent
TVM_SETITEM TreeView_SetItem
TVM_SORTCHILDREN TreeView_SortChildren
TVM_SORTCHILDRENCB TreeView_SortChildrenCB

Tree-View Control Notification Messages
A tree-view control sends notifications messages to its parent window to notify it about events.
TVN_BEGINDRAG
TVN_BEGINLABELEDIT
TVN_BEGINRDRAG
TVN_DELETEITEM
TVN_ENDLABELEDIT
TVN_GETDISPINFO
TVN_ITEMEXPANDED
TVN_ITEMEXPANDING
TVN_KEYDOWN
TVN_SELCHANGED
TVN_SELCHANGING
TVN_SETDISPINFO

Tree-View Control Structures
The following structures are used with tree-view control messages.
NM_TREEVIEW
TV_DISPINFO
TV_HITTESTINFO
TV_INSERTSTRUCT
TV_ITEM
TV_KEYDOWN
TV_SORTCB

Tree-View Control Constants
The following window style flags and item state flags are used with tree-view controls.

Tree-View Window Styles
A tree view's window style can include one or more of the following values.

TVS_DISABLEDRAGDROP Prevents the tree-view control from
sending TVN_BEGINDRAG
notification messages.

TVS_EDITLABELS Allows the user to edit the labels of
tree-view items.

TVS_HASBUTTONS Displays plus (+) and minus (-)
buttons next to parent items. The user
clicks the buttons to expand or
collapse a parent item's list of child
items. To include buttons with items
at the root of the tree view,
TVS_LINESATROOT must also be
specified.

TVS_HASLINES Uses lines to show the hierarchy of
items.

TVS_LINESATROOT Uses lines to link items at the root of
the tree-view control. This value is
ignored if TVS_HASLINES is not also
specified.

TVS_SHOWSELALWAYS Causes a selected item to remain
selected when the tree-view control
loses focus.

Tree-View Item States
An item's state determines its appearance and functionality. It can be zero, or one or more of the
following values.

TVIS_BOLD The item is bold.

TVIS_CUT The item is selected as part of a cut and
paste operation.

TVIS_DROPHILITED The item is selected as a drag and drop
target.

TVIS_EXPANDED The item's list of child items is currently
expanded; that is, the child items are
visible. This value applies only to parent
items.

TVIS_EXPANDEDONCE The item's list of child items has been
expanded at least once. The
TVN_ITEMEXPANDING and
TVN_ITEMEXPANDED notification
messages are not sent for parent items
that have specified this value. This value
applies only to parent items.

TVIS_OVERLAYMASK The item's overlay image is included
when the item is drawn. The index of the
overlay image must be specified in the
state member of the TV_ITEM structure
by using the INDEXTOOVERLAYMASK
macro. The overlay image must be
added to the tree view's image list by
using the ImageList_SetOverlayImage
function. This value should not be
combined with any other value.

TVIS_SELECTED The item is selected. The appearance of
a selected item depends on whether it
has the focus and on whether the
system colors are used for selection.

TVIS_STATEIMAGEMASK The item's state image is included when
the item is drawn. The index of the state
image must be specified in the state
member of the TV_ITEM structure by
using theINDEXTOSTATEIMAGEMASK
macro. This value should not be
combined with any other value.

TVIS_USERMASK Same as TVIS_STATEIMAGEMASK.

Up-Down ControlsAn up-down control is a pair of arrow buttons that the user can click to increment or decrement a
value, such as a scroll position or a number displayed in a companion control. The value
associated with an up-down control is called its current position. An up-down control is most often
used with a companion control, which is called a buddy window.

About Up-Down Controls
To the user, an up-down control and its buddy window often look like a single control. You can
specify that an up-down control automatically position itself next to its buddy window and that it
automatically set the caption of the buddy window to its current position. For example, you can
use an up-down control with an edit control to prompt the user for numeric input. For more
information about edit controls, see Edit Controls The following illustration shows an up-down
control with an edit control as its buddy window, a combination that is sometimes referred to as a
spinner control.

ewc msdncd, EWGraphic, bsd23478 0 /a "SDK_01.BMP"

An up-down control without a buddy window functions as a sort of simplified scroll bar. For
example, a tab control sometimes displays an up-down control to enable the user to scroll
additional tabs into view. The following illustration shows an up-down control in the upper right
corner of a tab control.

ewc msdncd, EWGraphic, bsd23478 1 /a "SDK_02.BMP"

You can create an up-down control and specify its buddy window in several ways. The
UPDOWN_CLASS value specifies an up-down control's window class. You can specify this
window class in a dialog box template or in a call to the CreateWindowEx function. For more
information about dialog box templates, see Dialog Boxes. Another way is to use the
CreateUpDownControl function to create an up-down control and, at the same time, specify its
buddy window, current position, and minimum and maximum positions.

The UPDOWN_CLASS window class is registered when the common controls dynamic-link library
(DLL) is loaded. If you create an up-down control without using the CreateUpDownControl
function, you must ensure that the DLL is loaded. You can do so by using the
InitCommonControls function. For more information about common controls, see Common
Controls.

CreateUpDownControl enables you to specify a buddy window. If you create an up-down control
without using this function, you can assign a buddy window by specifying the UDS_AUTOBUDDY
window style or by using the UDM_SETBUDDY message. If UDS_AUTOBUDDY is specified, the
up-down control automatically selects the previous window in the Z order as its buddy window.
This window might be the previous control in a dialog box template. You can use
UDM_SETBUDDY to assign a specific buddy window to an up-down control. To determine an up-
down control's current buddy window, use the UDM_GETBUDDY message. An up-down control
and its buddy window must have the same parent window.

An up-down control notifies its parent window when its current position changes by sending it a
UDN_DELTAPOS notification message and a WM_VSCROLL or WM_HSCROLL message. A
vertically oriented up-down control, which does not have the UDS_HORZ style, sends a
WM_VSCROLL message. A horizontally aligned up-down control, which has the UDS_HORZ
style, sends a WM_HSCROLL message.

About Up-Down Control Styles
Using window styles, you can control characteristics of an up-down control, such as how it
positions itself relative to its buddy window, whether it sets the text of its buddy window, and
whether it processes the UP ARROW and DOWN ARROW a keys.

An up-down control with the UDS_ALIGNLEFT or UDS_ALIGNRIGHT style aligns with the left or
right edge of its buddy window. The width of the buddy window is decreased to accommodate the
width of the up-down control.

An up-down control with the UDS_SETBUDDYINT style sets the caption of its buddy window
(using the WM_SETTEXT message) whenever the current position changes. The control inserts a
thousands separator between every three digits of a decimal string unless the
UDS_NOTHOUSANDS style is specified. If the buddy window is a list box, an up-down control
sets its current selection instead of its caption.

You can specify the UDS_ARROWKEYS style to provide a keyboard interface for an up-down
control. If this style is specified, the control processes the UP ARROW and DOWN ARROW keys. The
control also subclasses the buddy window so that it can process these keys when the buddy
window has the focus.

If you use an up-down control for horizontal scrolling, you can specify the UDS_HORZ style. This
style causes the up-down control's arrows to point left and right instead of up and down.

By default, the current position does not change if the user attempts to increment it or decrement
it beyond the maximum or minimum value. You can change this behavior by using the
UDS_WRAP style, so the position "wraps" to the opposite extreme. For example, incrementing
past the upper limit wraps the position back to the lower limit.

Position and Acceleration
After an up-down control is created, you can change the control's current position, minimum
position, and maximum position by sending messages. You can also change the radix base used
to display the current position in the buddy window and the rate at which the current position
changes when the up or down arrow is clicked.

To retrieve the current position of an up-down control, use the UDM_GETPOS message. For an
up-down control with a buddy window, the current position is the number in the buddy window's
caption. Because the caption may have changed (for example, the user may have edited the text
of an edit control), the up-down control retrieves the current caption and updates its current
position accordingly.

The buddy window's caption may be either a decimal or hexadecimal string, depending on the
radix base (that is, either base 10 or 16) of the up-down control. You can set the radix base by
using the UDM_SETBASE message and retrieve the radix base by using the UDM_GETBASE
message.

The UDM_SETPOS message sets the current position of a buddy window. Note that, unlike a
scroll bar, an up-down control automatically changes its current position when the up and down
arrows are clicked. An application, therefore, does not need to set the current position when
processing the WM_VSCROLL or WM_HSCROLL message.

You can change the minimum and maximum positions of an up-down control by using the
UDM_SETRANGE message. The maximum position may be less than the minimum, and in that
case clicking the up arrow decreases the current position. To put it another way, up means
moving towards the maximum position. To retrieve the minimum and maximum positions for an
up-down control, use the UDM_GETRANGE message.

You can control the rate at which the position changes when the user holds down an arrow button
by setting the up-down control's acceleration. The acceleration is defined by an array of
UDACCEL structures. Each structure specifies a time interval and the number of units by which to
increment or decrement at the end of that interval. To set the acceleration, use the
UDM_SETACCEL message. To retrieve acceleration information, use the UDM_GETACCEL
message.

Default Up-Down Controls Message Processing
This section describes the window message processing performed by an up-down control.

Message Processing performed

WM_CREATE Allocates and initializes a private data
structure and saves its address as
window data.

WM_DESTROY Frees data allocated during
WM_CREATE processing.

WM_ENABLE Invalidates the window.
WM_KEYDOWN Changes the current position in the

case of an
UP ARROW or DOWN ARROW key.

WM_KEYUP Ends changing the position.
WM_LBUTTONDOWN Captures the mouse. If the buddy

window is an edit control or list box, it
sets the focus to the buddy window. If
the mouse is over the up or down
button, it begins changing the position
and sets a timer.

WM_LBUTTONUP Ends changing the position and
releases the mouse capture if the up-
down control has captured the mouse. If
the buddy window is an edit control, it
selects all the text in the edit control.

WM_PAINT Paints the up-down control. If the
wParam parameter is non-NULL, the
control assumes that the value is an
HDC and paints using that device
context.

WM_TIMER Changes the current position if the
mouse is being held down over a button
and a sufficient interval has elapsed.

Up-Down Control Reference
The following functions, messages, notification messages, and structures are associated with up-
down controls. These elements can be grouped as follows.Up-Down Control CreationCreateUpDownControl
UDM_GETBUDDY

UDM_SETBUDDYCurrent Position and AccelerationUDACCEL
UDM_GETACCEL
UDM_GETBASE
UDM_GETPOS
UDM_GETRANGE
UDM_SETACCEL
UDM_SETBASE
UDM_SETPOS

UDM_SETRANGENotification MessagesUDN_DELTAPOS
WM_HSCROLL

WM_VSCROLL

Up-Down Control Functions
The following function is used with up-down controls.

CreateUpDownControl

Up-Down Control Messages
The following messages are used with up-down controls.
UDM_GETACCEL
UDM_GETBASE
UDM_GETBUDDY
UDM_GETPOS
UDM_GETRANGE
UDM_SETACCEL
UDM_SETBASE
UDM_SETBUDDY
UDM_SETPOS

UDM_SETRANGE

Up-Down Control Notification Messages
The following notification message is used with up-down controls.

UDN_DELTAPOS

Up-Down Control Structures
The following structures are used with up-down controls.
UDACCEL

NM_UPDOWN

Up-Down Control Styles
The following window styles are used with up-down controls.

UDS_ALIGNLEFT Positions the up-down control next to the left
edge of the buddy window. The buddy
window is moved to the right and its width
decreased to accommodate the width of the
up-down control.

UDS_ALIGNRIGHT Positions the up-down control next to the right
edge of the buddy window. The width of the
buddy window is decreased to accommodate
the width of the up-down control.

UDS_ARROWKEYS Causes the up-down control to increment and
decrement the position when the UP ARROW
and DOWN ARROW keys are pressed.

UDS_AUTOBUDDY Automatically selects the previous window in
the Z order as the up-down control's buddy
window.

UDS_HORZ Causes the up-down control's arrows to point
left and right instead of up and down.

UDS_NOTHOUSANDSDoes not insert a thousands separator
between every three decimal digits.

UDS_SETBUDDYINT Causes the up-down control to set the text of
the buddy window (using the WM_SETTEXT
message) when the position changes. The
text consists of the position formatted as a
decimal or hexadecimal string.

UDS_WRAP Causes the position to "wrap" if it is
incremented or decremented beyond the
ending or beginning of the range.

ControlsIn Microsoft® Windows®, a control is a child window an application uses in conjunction with
another window to perform simple input and output (I/O) tasks. Controls are most often used
within dialog boxes, but they can also be used in other windows. Controls within dialog boxes
provide the user with the means to type text, choose options, and direct a dialog box to complete
its action. Controls in other windows provide a variety of services, such as letting the user choose
commands, view status, and view and edit text.

About Controls
Controls, like other windows, each belong to a window class, either predefined or application
defined. The window class and the corresponding window procedure define the properties of the
control, its appearance, behavior, and purpose. An application can create controls individually by
specifying the name of the window class when calling the CreateWindowEx function. An
application can also direct Windows to create controls for a dialog box by specifying the controls
in the dialog box template.

Controls are child windows. When Windows creates controls for a dialog box, each control is the
child of the dialog box. When an application creates a control, the control is the child of a window
identified by the application. This relationship is important because a control sends messages,
called notification messages, to its parent window when events, such as input from the user, occur
in the control. The application relies on these notification messages to determine what action the
user wants the application to take.

Because controls are windows, an application can manipulate them by using the window-
management functions, such as the ShowWindow and EnableWindow functions. If the window
class for a control supports control messages, an application can also manipulate a control of that
class by using the SendMessage function to send these messages to the control. The purpose
and function of each control message is specific to the window class and is defined by the
control's window procedure.

Predefined Controls
Windows provides several predefined window classes for controls. Controls belonging to these
window classes are called predefined controls. An application creates a predefined control of a
particular type by specifying the appropriate window class name in either the CreateWindowEx
function or the dialog box template. Following are the predefined window classes.

Name Description

BUTTON Creates button controls. These controls typically notify
the parent window when the user chooses the control.

COMBOBOX Creates combo boxes. These controls are a
combination of list boxes and edit controls, letting the
user choose and edit items.

EDIT Creates edit controls. These controls let the user view
and edit text.

LISTBOX Creates list boxes. These controls display a list from
which the user can select one or more items.

SCROLLBAR Creates scroll bar controls. These controls let the user
choose the direction and distance to scroll information
in a related window.

STATIC Creates static controls. These controls often act as
labels for other controls.

Each predefined window class has a corresponding set of control styles that enable an
application to vary the appearance and behavior of the controls it creates. For example, the
BUTTON class supports styles to create push buttons, radio buttons, check boxes, and group
boxes. An application specifies the style when creating the control.

Each predefined window class has a corresponding set of notification and control messages.
Applications rely on the notification messages to determine when the user has provided input to
the controls. For example, a push button sends a BN_CLICKED message to the parent window
when the user clicks the button. Applications use the control messages to retrieve information
from the controls and to manipulate the appearance and behavior of the controls. For example, an
application can send a BM_GETCHECK message to a check box to determine whether it currently
contains a check mark.

Most applications make extensive use of predefined controls in dialog boxes and other windows.
Because predefined controls offer many capabilities, a full discussion of each is beyond the scope
of this topic.

Custom Controls
Applications can create custom controls to perform tasks not supported by predefined controls.
Windows provides the following ways to create custom controls:

· Use owner-drawn buttons, list boxes, and combo boxes.
· Subclass an existing control-window class.
· Register and implement from scratch an application-defined window class.

Buttons, list boxes, and combo boxes have owner-drawn styles available that direct the control to
send a message to the parent window whenever the control must be drawn. This feature permits
an application to alter the appearance of a control. For buttons, the owner-drawn style affects how
the system draws the entire control. For list boxes and combo boxes, the parent window draws
the items within the control, and the control draws its own outline. For example, an application can
customize a list box so that it displays a small bitmap next to each item in the list.

An application can designate list boxes, combo boxes, and buttons as owner-drawn controls by
creating them with the appropriate style. When a control has the owner-drawn style, Windows
handles the user's interaction with the control as usual, performing such tasks as detecting when
a user has chosen a button and notifying the button's owner of the event. However, because the
control is owner drawn, the parent window of the control is responsible for the visual appearance
of the control. For more information about owner-drawn controls, see the individual topics for
buttons, list boxes, and combo boxes.

Subclassing an existing control is another way to create a custom control. The subclass
procedure can alter selected behaviors of the control by processing those messages that affect
the selected behaviors. All other messages pass to the original window procedure for the control.
For example, an application can display a small bitmap next to the text in a read-only, single-line
edit control by subclassing the control and processing the WM_PAINT message. For more
information about subclassing, see Window Classes.

Although an application may subclass a predefined control, it relies on the window procedure of
the control to provide all other aspects of the control's behavior. For more information about a
control's behavior, see the individual topics for the predefined controls.

An application can create custom controls by registering an application-defined window class and
specifying the name of the window class in the CreateWindowEx function or in the dialog box
template. The process for registering an application-defined window class for a custom control is
the same as for registering a class for an ordinary window. Each class must have a unique name,
a corresponding window procedure, and other information.

At a minimum, the window procedure draws the control. If an application uses the control to let the
user type information, the window procedure also processes input messages from the keyboard
and mouse and sends notification messages to the parent window. In addition, if the control
supports control messages, the window procedure processes messages sent to it by the parent
window or other windows. For example, controls often process the WM_GETDLGCODE message
sent by dialog boxes to direct a dialog box to process keyboard input in a given way.

Control Notification Messages
A control should send a notification message to its parent window to notify the parent about user
input or changes to the control. The notification message is a WM_COMMAND message that
includes a control identifier and a notification code identifying the nature of the event. A control
identifier is a unique number the application uses to identify the control sending the message. The
application sets the identifier for a control when it creates the control. The application specifies the
identifier either in the hMenu parameter of the CreateWindowEx function or in the id member of
the dialog box template (the DLGITEMTEMPATE structure).

Because the control does not set the control identifier, the control must retrieve the identifier
before it can send notification messages. A control must use the GetDlgCtrlID function to retrieve
its own control identifier. Although the control identifier is specified as the menu handle when the
control is created, the GetMenu function cannot be used to retrieve the identifier. Alternatively, a
control can retrieve the identifier from the hMenu member in the CREATESTRUCT structure
while processing the WM_CREATE message.

Control Messages
A parent window or other windows send control messages to direct a control to perform specific
tasks. The window procedure processes these messages and carries out the requested action.

Control messages can be predefined or application defined. Windows has several predefined
messages, such as WM_GETTEXT and WM_GETDLGCODE, that it sends to controls. These
messages typically correspond to window-management functions that carry out actions on
windows. In general, the window procedure for an application-defined control should process any
predefined control message in the following table if the message affects the operation of the
control.

Message Recommendation

WM_GETDLGCODE Process if the control uses the ENTER, ESC,
TAB, or arrow keys. The IsDialogMessage
function sends this message to controls in a
dialog box to determine whether to process
the keys or pass them to the control.

WM_GETFONT Process if the WM_SETFONT message is
also processed.

WM_GETTEXT Process if the control text is not the same as
the title specified by the CreateWindowEx
function.

WM_GETTEXTLENGTHProcess if the control text is not the same as
the title specified by the CreateWindowEx
function.

WM_KILLFOCUS Process if the control displays a caret, a
focus rectangle, or another item to indicate
that it has the input focus.

WM_SETFOCUS Process if the control displays a caret, a
focus rectangle, or another item to indicate
that it has the input focus.

WM_SETTEXT Process if the control text is not the same as
the title specified by the CreateWindowEx
function.

WM_SETFONT Process if the control displays text. Windows
sends this message when creating a dialog
box that has the DS_SETFONT style.

Application-defined control messages are specific to the given control and must be
explicitly sent to the control by using a SendMessage or SendDlgItemMessage function. The
numeric value for each message must be unique and must not conflict with the values of other
window messages. To ensure that application-defined message values do not conflict, an
application should create each value by adding a unique number to the WM_USER value.

Control Messages
Following are the messages used with controls.
WM_GETFONT
WM_SETFONT

WM_SETTEXT

ButtonsMicrosoft® Windows® provides dialog boxes and controls to support communication between an
application and the user. A button is a control the user can turn on or off to provide input to an
application.

About Buttons
There are several types of buttons and, within each type, one or more styles to distinguish among
buttons of the same type. The user turns a button on or off by selecting it using the mouse or
keyboard. Selecting a button typically changes its visual appearance and state (from checked to
unchecked, for example). Windows, the button, and the application cooperate in changing the
button's appearance and state. A button can send messages to its parent window, and a parent
window can send messages to a button. Some buttons are painted by Windows, some by the
application. Buttons can be used alone or in groups and can appear with or without application-
defined text (a label). They belong to the BUTTON window class.

Although an application can use buttons in overlapped, pop-up, and child windows, they are
designed for use in dialog boxes, where Windows standardizes their behavior. If an application
uses buttons outside dialog boxes, it increases the risk that the application may behave in a
nonstandard fashion. Applications typically either use buttons in dialog boxes or use window
subclassing to create customized buttons.

For general information about controls, see Controls. For more information about dialog boxes,
see Dialog Boxes. For more information about window subclassing, see Window Procedures.

Button Types and Styles
Windows provides five kinds of buttons: push buttons, check boxes, radio buttons, group boxes,
and owner-drawn buttons. Each type has one or more styles.

Push Buttons
A push button is a rectangle containing application-defined text (label), an icon, or a bitmap that
indicates what the button does when the user selects it. A push button can be one of two styles:
standard or default, as defined by the constants BS_PUSHBUTTON and BS_DEFPUSHBUTTON.
A standard push button is typically used to start an operation. It receives the keyboard focus when
the user selects it. A default push button, on the other hand, is typically used to indicate the most
common or default choice. It is a button that the user can select by simply pressing ENTER when a
dialog box has the input focus.

When the user selects a push button (of either style), it receives the keyboard focus from
Windows, which sends the button's parent window a WM_COMMAND message containing the
BN_CLICKED notification code. In response, the dialog box typically closes and carries out the
operation indicated by the button.

Check Boxes
A check box consists of a square box and application-defined text (label), an icon, or a bitmap that
indicates a choice the user can make by selecting the button. Applications typically display check
boxes in a group box to permit the user to choose from a set of related, but independent options.
For example, an application might present a group of check boxes from which the user can select
error conditions that produce warning beeps.

A check box can be one of four styles: standard, automatic, three-state, and automatic three-
state, as defined by the constants BS_CHECKBOX, BS_AUTOCHECKBOX, BS_3STATE, and
BS_AUTO3STATE, respectively. Each style can assume two check states: checked (an check
mark inside the box) or unchecked (no check mark). In addition, a three-state check box can
assume an indeterminate state (a grayed box inside the check box). Repeatedly selecting a
standard or automatic check box toggles it from checked to unchecked and back again.
Repeatedly selecting a three-state check box toggles it from checked to unchecked to
indeterminate and back again.

When the user selects a check box (of any style), the check box receives the keyboard focus from
Windows, which sends the check box's parent window a WM_COMMAND message containing
the BN_CLICKED notification code. The parent window doesn't acknowledge this message if it
comes from an automatic check box or automatic three-state check box, because Windows
automatically sets the check state for those styles. But the parent window must acknowledge the
message if it comes from a check box or three-state check box because the parent window, not
Windows, is responsible for setting the check state for those styles. Regardless of the check box
style, Windows automatically repaints the check box once its state is changed.

Radio Buttons
A radio button consists of a round button and application-defined text (a label), an icon, or a
bitmap that indicates a choice the user can make by selecting the button. An application typically
uses radio buttons in a group box to permit the user to choose from a set of related, but mutually
exclusive options. For example, the application might present a group of radio buttons from which
the user can select a format preference for text selected in the client area. The user could select a
left-aligned, right-aligned, or centered format by selecting the corresponding radio button.
Typically, the user can select only one option at a time from a set of radio buttons.

A radio button can be one of two styles: standard or automatic, as defined by the constants
BS_RADIOBUTTON and BS_AUTORADIOBUTTON. Each style can assume two check states:
checked (a dot in the button) or unchecked (no dot in the button). Repeatedly selecting a radio
button (standard or automatic) toggles it from checked to unchecked and back again.

When the user selects either state, the radio button receives the keyboard focus from Windows,
which sends the button's parent window a WM_COMMAND message containing the
BN_CLICKED notification code. The parent window doesn't acknowledge this message if it comes
from an automatic radio button because Windows automatically sets the check state for that style.
But the parent window should acknowledge the message if it comes from a radio button because
the parent window, not Windows, is responsible for setting the check state 1for that style.
Regardless of the radio button style, Windows automatically repaints the button as its state
changes.

When the user selects an automatic radio button, Windows automatically sets the check state of
all other radio buttons within the same group to unchecked. The same behavior is available for
standard radio buttons by using the WS_GROUP style, as discussed in Dialog Boxes.

Owner-Drawn Buttons
Unlike radio buttons, an owner-drawn button is painted by the application, not by Windows, and
has no predefined appearance or usage. Its purpose is to provide a button whose appearance
and behavior are defined by the application alone. There is only one owner-drawn button style:
BS_OWNERDRAW.

When the user selects an owner-drawn button, Windows sends the button's parent window a
WM_COMMAND message containing the BN_CLICKED notification code, just as it does for a
button that is not owner-drawn. The application must respond appropriately.

Group Boxes
A group box is a rectangle that surrounds a set of controls, such as check boxes or radio buttons,
with application-defined text (label) in its upper left corner. The sole purpose of a group box is to
organize controls related by a common purpose (usually indicated by the label). The group box
has only one style, defined by the constant BS_GROUPBOX. Because a group box cannot be
selected, it has no check state, focus state, or push state. An application cannot send messages
to a group box.

Button Styles
Many developers create dialog boxes by using standalone tools, not requiring them to specify
button styles. However, if an application creates a button by using the CreateWindow or
CreateWindowEx function, the following table of constants can be used to define the button style.

Style Meaning

BS_3STATE Creates a button that is the same as a
check box, except that the box can be
grayed as well as checked or unchecked.
Use the grayed state to show that the
state of the check box is not determined.

BS_AUTO3STATE Creates a button that is the same as a
three-state check box, except that the box
changes its state when the user selects it.
The state cycles through checked, grayed,
and unchecked.

BS_AUTOCHECKBOX Creates a button that is the same as a
check box, except that the check state
automatically toggles between checked
and unchecked each time the user selects
the check box.

BS_AUTORADIOBUTTONCreates a button that is the same as a
radio button, except that when the user
selects it, Windows automatically sets the
button's check state to checked and
automatically sets the check state for all
other buttons in the same group to
unchecked.

BS_CHECKBOX Creates a small, empty check box with
text. By default, the text is displayed to the
right of the check box. To display the text
to the left of the check box, combine this
flag with the BS_LEFTTEXT style (or with
the equivalent BS_RIGHTBUTTON style).

BS_DEFPUSHBUTTON Creates a push button that behaves like a
BS_PUSHBUTTON style button, but also
has a heavy black border. If the button is
in a dialog box, the user can select the
button by pressing the ENTER key, even
when the button does not have the input
focus. This style is useful for enabling the
user to quickly select the most likely
(default) option.

BS_GROUPBOX Creates a rectangle in which other controls
can be grouped. Any text associated with
this style is displayed in the rectangle's
upper left corner.

BS_LEFTTEXT Places text on the left side of the radio
button or check box when combined with a
radio button or check box style. Same as
the BS_RIGHTBUTTON style.

BS_OWNERDRAW Creates an owner-drawn button. The
owner window receives a
WM_MEASUREITEM message when the
button is created and a WM_DRAWITEM
message when a visual aspect of the
button has changed. Do not combine the
BS_OWNERDRAW style with any other
button styles.

BS_PUSHBUTTON Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.

BS_RADIOBUTTON Creates a small circle with text. By default,
the text is displayed to the right of the

circle. To display the text to the left of the
circle, combine this flag with the
BS_LEFTTEXT style (or with the
equivalent BS_RIGHTBUTTON style). Use
radio buttons for groups of related, but
mutually exclusive choices.

BS_USERBUTTON Obsolete, but provided for compatibility
with 16-bit versions of Windows. Win32-
based applications should use
BS_OWNERDRAW instead.

BS_BITMAP Specifies that the button displays a
bitmap.

BS_BOTTOM Places text at the bottom of the button
rectangle.

BS_CENTER Centers text horizontally in the button
rectangle.

BS_ICON Specifies that the button displays an icon.
BS_LEFT Left-justifies the text in the button

rectangle. However, if the button is a
check box or radio button that does not
have the BS_RIGHTBUTTON style, the
text is left justified on the right side of the
check box or radio button.

BS_MULTILINE Wraps the button text to multiple lines if
the text string is too long to fit on a single
line in the button rectangle.

BS_NOTIFY Enables a button to send BN_DBLCLK,
BN_KILLFOCUS, and BN_SETFOCUS
notification messages to its parent
window. Note that buttons send the
BN_CLICKED notification message
regardless of whether it has this style.

BS_PUSHLIKE Makes a button (such as a check box,
three-state check box, or radio button)
look and act like a push button. The button
looks raised when it isn't pushed or
checked, and sunken when it is pushed or
checked.

BS_RIGHT Right-justifies text in the button rectangle.
However, if the button is a check box or
radio button that does not have the
BS_RIGHTBUTTON style, the text is right
justified on the right side of the check box
or radio button.

BS_RIGHTBUTTON Positions a radio button's circle or a check
box's square on the right side of the button
rectangle. Same as the BS_LEFTTEXT
style.

BS_TEXT Specifies that the button displays text.
BS_TOP Places text at the top of the button

rectangle.
BS_VCENTER Places text in the middle (vertically) of the

button rectangle.

Button States
This section discusses how selecting a button changes its state and how the application should
respond.

Button Selection
The user can select a button in three ways: by clicking it with the mouse, by tabbing to it and then
pressing the ENTER key, or (if the button is part of a group defined by the WS_GROUP style) by
tabbing to the selected button in the group and using the arrow keys to move within that group.
The two tabbing methods are part of the predefined keyboard interface provided by Windows. For
a complete description of this interface, see Dialog Boxes.

Selecting a button typically causes the following events:

· Windows gives the button the keyboard focus.
· The button sends its parent window a message to notify it of the selection.
· The parent window (or Windows) sends the button a message to change its state.
· The parent window (or Windows) repaints the button to reflect its new state.

The following topics discuss these events and button states in greater detail.

Elements of a Button State
A button's state can be characterized by its focus state, push state, and check state. The focus
state applies to a check box, radio button, push button, or owner-drawn button. A button receives
the keyboard focus when the user selects it and loses the focus when the user selects another
control. Only one control can have the keyboard focus at a time.

When a button has the keyboard focus, the system typically highlights the text, icon, or bitmap of
a button by surrounding it with a dotted line. In addition, a push button has a heavy dark border
when it has the focus. Windows automatically changes the highlight for an automatic button, but
the application must change the highlight for a nonautomatic button by sending messages.

The push state applies to a push button, check box, radio button, or three-state check box, but
does not apply to other buttons. The push state of a button can be either pushed or not pushed.
When a push button (or any button with the BS_PUSHLIKE style) is pushed, the button is drawn
as a sunken button. When it is not pushed, it is drawn as a raised button. When a check box,
radio button, or three-state check box is pushed, the background of the button is grayed. When it
is not pushed, the background of the button is not grayed.

The check state applies to a check box, radio button, or three-state check box, but does not apply
to other buttons. The state can be checked, unchecked, or (for three-state check boxes)
indeterminate. A check box is checked when it contains a check mark, and is unchecked when it
does not. A radio button is checked when it contains a black dot; and is unchecked when it does
not. A three-state check box is checked when it contains a check mark, is unchecked when it does
not, and is indeterminate when it contains a grayed box. Windows automatically changes the
check state of an automatic button, but the application must change the check state of a
nonautomatic button.

Changes to a Button State
When the user selects a button, it is generally necessary to change one or more of the button's
state elements. Windows automatically changes the focus state for all button types, the push state
for push buttons or buttons with the BS_PUSHLIKE style, and the check state for all automatic
buttons. The application must make all other state changes, taking into account the button's type,
style, and current state. The following list shows the state elements that must be changed for each
button type:

· A check box must change the check state.
· A radio button must change the check state. It may also be necessary to change the

check state of other radio buttons in the same group to ensure the mutually exclusive nature
of radio buttons.

· Because the state of an owner-drawn button is application dependent, what the
application must change in the button can vary. No elements of a group box must be
changed, because users cannot select group boxes.

An application can determine a button's state by sending it a BM_GETCHECK or BM_GETSTATE
message; the application can set a button's state by sending it a BM_SETCHECK or
BM_SETSTATE message.

Notification Messages from Buttons
When the user selects a button, its state changes, and the button sends notification messages to
its parent window. For example, a push button control sends the BN_CLICKED notification
message whenever the user chooses the button. In all cases, the low-order word of the wParam
parameter contains the control identifier, the high-order word of wParam contains the notification
code, and the lParam parameter contains the control window handle.
Portability Issue The placement of notification message has moved from the lParam parameter to
the wParam parameter. Windows 3.x - based applications that process notification messages
must be modified in this respect when they are ported to Win32-based applications.
Both the message and the parent window's response depend on the type, style, and current state
of the button. Following are the button notification messages an application should monitor and
process.

Message Description

BN_CLICKED The user clicked a button.
BN_DBLCLK The user double-clicked a button.
BN_DISABLE A button is disabled.
BN_PUSHED The user pushed a button.
BN_KILLFOCUS The button lost the keyboard focus.
BN_PAINT The button should be painted.
BN_SETFOCUS The button gained the keyboard focus.
BN_UNPUSHED The button is no longer pushed.

A button sends the BN_DISABLE, BN_PUSHED, BN_KILLFOCUS, BN_PAINT,
BN_SETFOCUS, and BN_UNPUSHED notification messages only if it has the BS_NOTIFY style.
It sends the BN_CLICKED and BN_DBLCLK notification messages regardless of the BS_NOTIFY
style.

For automatic buttons, the operating system performs pushing, unpushing, and painting. In this
case, the application typically processes only the BN_CLICKED and BN_DBLCLK notification
messages. For buttons that are not automatic, the application typically responds to the notification
message by sending a message to change the state of the button. For information about sending
messages to buttons, Messages to Buttons.

When the user selects an owner-drawn button, the button sends its parent window a
WM_DRAWITEM message containing the identifier of the control to be drawn and information
about its dimensions and state. For more information about this message, see Using Owner-
Drawn Buttons.

Messages to Buttons
A parent window can send messages to a button in an overlapped or child window by using the
SendMessage function, or it can send messages to a button in a dialog box by using the
SendDlgItemMessage, CheckDlgButton, CheckRadioButton, and IsDlgButtonChecked
functions.

An application can use the BM_GETCHECK message to retrieve the check state of check box or
radio button. An application can also use the BM_GETSTATE message to retrieve the button's
current states (the check state, push state, and focus state). To get information about a specific
state, use a bitmask on the returned state value.

The BM_SETCHECK message sets the check state of a check box or radio button; the message
returns zero. The BM_SETSTATE message sets the push state of a button; this message also
returns zero. The BM_SETSTYLE message changes the style of a button. It is designed for
changing button styles within a type (for example, changing a check box to an automatic check
box). It is not designed for changing between types (for example, changing a check box to a radio
button). An application should not change a button from one type to another.

A button of the BS_BITMAP or BS_ICON style displays a bitmap or icon instead of text. The
BM_SETIMAGE message associates the handle of a bitmap or icon with a button. The
BM_GETIMAGE message retrieves the handle of the bitmap or icon associated with a button.

An application can also use the DM_GETDEFID message to retrieve the identifier of the default
push button control in a dialog box. An application can use the DM_SETDEFID message to set
the default push button for a dialog box.

Calling the CheckDlgButton or CheckRadioButton function is equivalent to sending a
BM_SETCHECK message. Calling the IsDlgButtonChecked function is equivalent to sending a
BM_GETCHECK message.

Button Color Messages
Windows provides default color values for buttons. The system sends a WM_CTLCOLORBTN
message to a button's parent window before the button is drawn. This message contains a handle
of the button's device context and a handle of the child window. The parent window can use these
handles to change the button's text and background colors. The following table shows the default
button-color values.

Value Element colored

COLOR_BTNFACE Button faces.
COLOR_BTNHIGHLIGHT Highlight area (the top and left edges) of a

button.
COLOR_BTNSHADOW Shadow area (the bottom and right edges)

of a button.
COLOR_BTNTEXT Regular (nongrayed) text in buttons.
COLOR_GRAYTEXT Disabled (gray) text in buttons. This color

is set to 0 if the current display driver does
not support a solid gray color.

COLOR_WINDOW Window backgrounds.
COLOR_WINDOWFRAMEWindow frames.
COLOR_WINDOWTEXT Text in windows.

An application can retrieve the default values for these colors by calling the GetSysColor
function, or set the values by calling the SetSysColors function. For more information about
system colors, see System Information. For more information about how colors are used with
controls, see Controls.
Portability Issue The WM_CTLCOLOR message has been replaced by the set of control-color
messages. When porting your Windows 3.x - based application to the Win32 API, you must
modify any code that processes the WM_CTLCOLOR message.

Button Default Message Processing
The window procedure for the predefined button control window class carries out default
processing for all messages that the button control procedure does not process. When the button
control procedure returns FALSE for any message, the predefined window procedure checks the
messages and performs the default actions listed in the following table.

Message Default action

BM_CLICK Sends the button a WM_LBUTTONDOWN
and a WM_LBUTTONUP message, and
sends the parent window a BN_CLICKED
notification message.

BM_GETCHECK Returns the check state of the button.
BM_GETIMAGE Returns the handle of the bitmap or icon

associated with the button or NULL if the
button has no bitmap or icon.

BM_GETSTATE Returns the current check state, push state,
and focus state of the button.

BM_SETCHECK Sets the check state for all styles of radio
buttons and check boxes. If the wParam
parameter is greater than zero for radio
buttons, the button is given the
WS_TABSTOP style.

BM_SETIMAGE Associates the specified bitmap or icon
handle with the button and returns the
handle of the previous bitmap or icon.

BM_SETSTATE Sets the push state of the button. For
owner-drawn buttons, a WM_DRAWITEM
message is sent to the parent window if the
state of the button has changed.

BM_SETSTYLE Sets the button style. If the low-order word
of the lParam parameter is TRUE, the
button is redrawn.

WM_CHAR Checks a check box or automatic check box
when the user presses the plus (+) or equal
(=) keys. Unchecks a check box or
automatic check box when the user presses
the minus (-) key.

WM_ENABLE Paints the button.
WM_ERASEBKGND Erases the background for owner-drawn

buttons. The backgrounds of other buttons
are erased as part of the WM_PAINT and
WM_ENABLE processing.

WM_GETDLGCODE Returns values indicating the type of input
processed by the default button procedure,
as shown in the following table.

Button style Returns
BS_AUTOCHECKBOX

DLGC_WANTCHARS |
DLGC_BUTTON

BS_AUTORADIOBUTTON
DLGC_RADIOBUTTON

BS_CHECKBOX
DLGC_WANTCHARS |
DLGC_BUTTON

BS_DEFPUSHBUTTON
DLGC_DEFPUSHBUTTON

BS_GROUPBOX

DLGC_STATIC
BS_PUSHBUTTON

DLGC_UNDEFPUSHBUTTON
BS_RADIOBUTTON

DLGC_RADIOBUTTON

WM_GETFONT Returns a handle of the current font.
WM_KEYDOWN Pushes the button if the user presses the

SPACEBAR.
WM_KEYUP Releases the mouse capture for all cases

except the TAB key.
WM_KILLFOCUS Removes the focus rectangle from a button.

For push buttons and default push buttons,
the focus rectangle is invalidated. If the
button has the mouse capture, the capture
is released, the button is not clicked, and
any push state is removed.

WM_LBUTTONDBLCLK Sends a BN_DBLCLK notification message
to the parent window for radio buttons and
owner-drawn buttons. For other buttons, a
double-click is processed as a
WM_LBUTTONDOWN message.

WM_LBUTTONDOWN Highlights the button if the position of the
mouse cursor is within the button's client
rectangle.

WM_LBUTTONUP Releases the mouse capture if the button
had the mouse capture.

WM_MOUSEMOVE Performs the same action as
WM_LBUTTONDOWN, if the button has the
mouse capture. Otherwise, no action is
performed.

WM_NCCREATE Turns any BS_OWNERDRAW button into a
BS_PUSHBUTTON button.

WM_NCHITTEST Returns HTTRANSPARENT, if the button
control is a group box.

WM_PAINT Draws the button according to its style and
current state.

WM_SETFOCUS Draws a focus rectangle on the button
getting the focus. For radio buttons and
automatic radio buttons, the parent window
is sent a BN_CLICKED notification
message.

WM_SETFONT Sets a new font and optionally updates the
window.

WM_SETTEXT Sets the text of the button. In the case of a
group box, the message paints over the
preexisting text before repainting the group
box with the new text.

WM_SYSKEYUP Releases the mouse capture for all cases
except the TAB key.

The predefined window procedure passes all other messages to the DefWindowProc
function for default processing.

Using Buttons
· Creating a button outside a dialog box
· Using buttons that are not owner-drawn
· Using owner-drawn buttons

Creating a Button Outside a Dialog Box
The following example shows how to use the CreateWindow function to create a default push
button.hwndButton = CreateWindow(

"BUTTON", // predefined class
"OK", // button text
WS_VISIBLE | WS_CHILD | BS_DEFPUSHBUTTON, // styles
// Size and position values are given explicitly, because
// the CW_USEDEFAULT constant gives zero values for buttons.
10, // starting x position
10, // starting y position
100, // button width
100, // button height
hwnd, // parent window
NULL, // No menu
(HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE),
NULL); // pointer not needed

Using Buttons that Are Not Owner-Drawn
The example in this section is the window procedure for a dialog box, as shown in the following
illustration.

ewc msdncd, EWGraphic, bsd23479 0 /a "SDK_04.BMP"

The check boxes and radio buttons in the Buttons dialog box are automatic. The check boxes are
three-state. The Clear colors push button is a default push button. The check boxes, radio
buttons, and push buttons are defined in the header file of the application, as follows.#define IDB_BOX1 101 // first check box
#define IDB_BOX2 102 // second check box
#define IDB_BOX3 103 // third check box
#define IDB_REDBACK104 // top radio button
#define IDB_BLUEBACK 105 // bottom radio button
#define IDB_CLEARBOXES 107 // top push button
#define IDB_CLEARBACK 108 // bottom push button
HBRUSH hbrRed, hbrBlue, hbrWhite;
BOOL fRedBack, fBlueBack, fClearColor; // background-state flagsNote that it is not necessary to define IDOK, the identifier for the OK push button.

In the following window procedure, the WM_CTLCOLORDLG message notifies the application
that the dialog box is about to be drawn. If the user presses the Clear colors button (signified by
the fClearColor flag), the procedure uses the SendDlgItemMessage function to uncheck the
check boxes and radio buttons. The BN_CLICKED notification message contains the identifiers of
the buttons.LRESULT APIENTRY ButtonProc(hDlg, message, wParam, lParam)
HWND hDlg; // window handle of dialog box
UINT message; // type of message
UINT wParam; // message-specific information
LONG lParam;
{

LRESULT lState;
switch (message) {
case WM_INITDIALOG:
hbrRed = CreateSolidBrush(RGB(255, 0, 0));
hbrBlue = CreateSolidBrush(RGB(0, 0, 255));
hbrWhite = GetStockObject(WHITE_BRUSH);
return TRUE;
case WM_CTLCOLORDLG:
if (fRedBack) {
fRedBack = FALSE;
return (LRESULT) hbrRed;
}
else if (fBlueBack) {
fBlueBack = FALSE;
return (LRESULT) hbrBlue;
}
else if (fClearColor) {
fClearColor = FALSE;
// Uncheck all check boxes and radio buttons.
SendDlgItemMessage(hDlg, // window handle
IDB_BOX1, // button identifier
BM_SETCHECK,// message
0,// check state unchecked)
0); // must be zero
SendDlgItemMessage(hDlg, IDB_BOX2,
BM_SETCHECK, 0, 0);
SendDlgItemMessage(hDlg, IDB_BOX3,
BM_SETCHECK, 0, 0);
SendDlgItemMessage(hDlg, IDB_REDBACK,
BM_SETCHECK, 0, 0);
SendDlgItemMessage(hDlg, IDB_BLUEBACK,
BM_SETCHECK, 0, 0);
}
return (LRESULT) hbrWhite;
case WM_COMMAND:

if (wParam == IDOK) {
EndDialog(hDlg, TRUE);
return TRUE;
}
if (HIWORD(wParam) == BN_CLICKED) {
switch (LOWORD(wParam)) {

case IDB_BOX1:
// Retrieve the state of the
// check box.
lState = SendDlgItemMessage(
hDlg, IDB_BOX1, BM_GETSTATE,
0, 0);
// The box-painting function is
// application defined.
BoxPainter(
hDlg,// window handle
1, // box to paint
lState); // state of box
break;
case IDB_BOX2:
lState = SendDlgItemMessage(
hDlg, IDB_BOX2, BM_GETSTATE,
0, 0);
BoxPainter(hDlg, 2, lState);
break;
case IDB_BOX3:
lState = SendDlgItemMessage(
hDlg, IDB_BOX3, BM_GETSTATE,
0, 0);
BoxPainter(hDlg, 3, lState);
break;
case IDB_REDBACK:
fRedBack = TRUE;
InvalidateRect(hDlg, NULL,
TRUE);
break;
case IDB_BLUEBACK:
fBlueBack = TRUE;
InvalidateRect(hDlg, NULL,
TRUE);
break;
case IDB_CLEARBACK:
fClearColor = TRUE;
InvalidateRect(hDlg, NULL,
TRUE);
break;
case IDB_CLEARBOXES:
BoxPainter(hDlg, 4,
(LRESULT) 0);
break;

}
}
case WM_DESTROY:
DeleteObject(hbrRed);
DeleteObject(hbrBlue);
// Do not delete hbrWhite, because it is a
// stock object.
break;
}
return FALSE; // did not process a message
UNREFERENCED_PARAMETER(lParam);

}

Using Owner-Drawn Buttons
The parent window of an owner-drawn button typically responds to at least three messages for the
button: WM_INITDIALOG, WM_COMMAND, and WM_DRAWITEM. It is not necessary to process
the WM_MEASUREITEM message for owner-drawn buttons.

When you must paint an owner-drawn button, Windows sends the parent window a
WM_DRAWITEM message whose lParam points to a DRAWITEMSTRUCT structure. Use this
structure with all owner-drawn controls to provide the application with the information it requires to
paint the control. The itemAction and itemState members of the DRAWITEMSTRUCT structure
define how to paint an owner-drawn button.

The following example shows how to process WM_INITDIALOG, WM_DRAWITEM, and
WM_COMMAND messages for owner-drawn buttons. This example demonstrates how to draw
one of two bitmaps for a control, depending on whether the control is selected. You would typically
use the wParam parameter of the WM_DRAWITEM message to identify the control; in this
example, only one control is assumed.LRESULT APIENTRY OwnDrawProc(hDlg, message, wParam, lParam)
HWND hDlg; // window handle of dialog box
UINT message; // type of message
UINT wParam; // message-specific information
LONG lParam;
{

HDC hdcMem;
LPDRAWITEMSTRUCT lpdis;
switch (message) {
case WM_INITDIALOG:
// hinst, hbm1 and hbm2 are defined globally.
hbm1 = LoadBitmap((HANDLE) hinst, "OwnBit1");
hbm2 = LoadBitmap((HANDLE) hinst, "OwnBit2");
return TRUE;
case WM_DRAWITEM:
lpdis = (LPDRAWITEMSTRUCT) lParam;
hdcMem = CreateCompatibleDC(lpdis->hDC);
if (lpdis->itemState & ODS_SELECTED) // if selected
SelectObject(hdcMem, hbm2);
else
SelectObject(hdcMem, hbm1);
// Destination
StretchBlt(
lpdis->hDC, // destination DC
lpdis->rcItem.left, // x upper left
lpdis->rcItem.top, // y upper left
// The next two lines specify the width and
// height.
lpdis->rcItem.right - lpdis->rcItem.left,
lpdis->rcItem.bottom - lpdis->rcItem.top,
hdcMem, // source device context
0, 0, // x and y upper left
32, // source bitmap width
32, // source bitmap height
SRCCOPY); // raster operation
DeleteDC(hdcMem);
return TRUE;
case WM_COMMAND:
if (wParam == IDOK
|| wParam == IDCANCEL) {
EndDialog(hDlg, TRUE);
return TRUE;
}
if (HIWORD(wParam) == BN_CLICKED) {
switch (LOWORD(wParam)) {
case IDB_OWNERDRAW:
.
. // application-defined processing
.
break;
}
}
break;
case WM_DESTROY:
DeleteObject(hbm1); // delete bitmaps
DeleteObject(hbm2);
break;
}
return FALSE;
UNREFERENCED_PARAMETER(lParam);

}

Button Reference
The following functions and messages are associated with buttons.

Button Functions
Following are the functions used with buttons.
CheckDlgButton
CheckRadioButton

IsDlgButtonChecked

Button Messages
Following are the messages used with buttons.
BM_CLICK
BM_GETCHECK
BM_GETIMAGE
BM_GETSTATE
BM_SETCHECK
BM_SETIMAGE
BM_SETSTATE
BM_SETSTYLE
BN_CLICKEDBN_DBLCLK
BN_DISABLE
BN_DOUBLECLICKED
BN_HILITE
BN_KILLFOCUS
BN_PAINT
BN_PUSHED
BN_SETFOCUS
BN_UNHILITE
BN_UNPUSHED
WM_CTLCOLORBTN

Combo BoxesA combo box is a unique type of control, defined by the COMBOBOX class, that combines much
of the functionality of a list box and an edit control.

This overview describes the types and styles of combo box, the parts of a combo box, the use of
an owner-drawn combo box, and how to subclass a combo box. Additional features of combo
boxes are also discussed.

About Combo Boxes
The Microsoft® Win32® application programming interface (API) provides three types of combo
box: simple combo boxes (CBS_SIMPLE), drop-down combo boxes (CBS_DROPDOWN), and
drop-down list boxes (CBS_DROPDOWNLIST).

There are also a number of combo box styles that define specific properties. For example, two
styles enable an application to create an owner-drawn combo box, making the application
responsible for displaying information in the control.

A combo box consists of a list and a selection field. The list presents the options a user can select
and the selection field displays the current selection. Except in drop-down list boxes, the selection
field is an edit control and can be used to enter text not in the list.

Combo Box Types and Styles
Combo boxes can be characterized by type and style. Combo box types determine whether the
combo box list is a drop-down list and whether the selection field is an edit control. A drop-down
list appears only when the user opens it, so it uses less screen space than a list that is always
visible. If the selection field is an edit control, the user can enter information not in the list;
otherwise, the user can only select items in the list.

The following table shows the three combo box types and indicates whether each includes a drop-
down list and an edit control:

Combo box type Drop-down listEdit control

Drop-down combo box Yes Yes
Drop-down list box Yes No
Simple combo box No Yes

Combo box styles define specific properties of a combo box. An application can combine
styles; however some styles only apply to certain combo box types. The following table
describes the combo box styles:

Style Description

CBS_AUTOHSCROLL Automatically scrolls the text in an edit
control to the right when the user
types a character at the end of the
line. If this style is not set, only text
that fits within the rectangular
boundary is allowed.

CBS_DISABLENOSCROLL Shows a disabled vertical scroll bar in
the list box when the box does not
contain enough items to scroll.
Without this style, the scroll bar is
hidden when the list box does not
contain enough items.

CBS_DROPDOWN Specifies a drop-down combo box.
CBS_DROPDOWNLIST Specifies a drop-down list box.
CBS_HASSTRINGS Specifies that an owner-drawn combo

box contains items consisting of
strings. The combo box maintains the
memory and address for the strings so
the application can use the
CB_GETLBTEXT message to retrieve
the text for a particular item.

CBS_LOWERCASE Converts to lowercase all text in both
the selection field and the list.

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo
box is exactly the size specified by the
application when it created the combo
box. Normally, Windows sizes a
combo box so that it does not display
partial items.

CBS_OEMCONVERT Converts text entered in the combo
box edit control from the Windows
character set to the OEM character
set and then back to the Windows set.
This ensures proper character
conversion when the application calls
the CharToOem function to convert a
Windows string in the combo box to
OEM characters. This style is most
useful for combo boxes that contain
filenames and applies only to combo
boxes created with the CBS_SIMPLE

or CBS_DROPDOWN style.
CBS_OWNERDRAWFIXED Specifies that the owner of the list box

is responsible for drawing its contents
and that the items in the list box are all
the same height. The owner window
receives a WM_MEASUREITEM
message when the combo box is
created and a WM_DRAWITEM
message when a visual aspect of the
combo box has changed.

CBS_OWNERDRAWVARIABLESpecifies that the owner of the list box
is responsible for drawing its contents
and that the items in the list box are
variable in height. The owner window
receives a WM_MEASUREITEM
message for each item in the combo
box when you create the combo box
and a WM_DRAWITEM message
when a visual aspect of the combo
box has changed.

CBS_SIMPLE Specifies a simple combo box.
CBS_SORT Automatically sorts strings added to

the list box.
CBS_UPPERCASE Converts to uppercase all text in both

the selection field and the list.

Combo Box List
A list is the portion of a combo box that displays the items a user can select. Typically, an
application initializes the contents of the list when it creates a combo box. Any list item selected by
the user is the current selection. In simple and drop-down combo boxes, the user can type in the
selection field instead of selecting a list item. In these cases, there is no current selection. For
more information, see Current Selection.

List Contents
When an application creates a combo box, it typically initializes the combo box by adding one or
more items to the list. Later, an application may add or delete list items, reinitialize the list, or
retrieve item information from it.

An application adds list items to a combo box by sending the CB_ADDSTRING message to it. The
specified item is added to the end of the list or, in a sorted combo box, in its correct sorted
position based on the item's string. In an unsorted combo box, an application can use the
CB_INSERTSTRING message to insert an item at a specific position. Once added, a list item is
identified by its position.

By using the CB_FINDSTRING or CB_FINDSTRINGEXACT message, an application can
determine the position of a list item. CB_FINDSTRING finds an item whose string begins with the
specified string. CB_FINDSTRINGEXACT finds an item whose string matches the string exactly.
Neither message is case sensitive.

An application can remove a list item by using the CB_DELETESTRING message. If an
application needs to reinitialize the combo box list, it can first clear its entire contents by using the
CB_RESETCONTENT message. When adding multiple items to the list after a combo box has
already been shown, an application can clear the redraw flag to prevent the combo box from
being repainted after each item is added. For more information about redrawing, see the
description of the WM_SETREDRAW message.

To retrieve the string associated with a list item, an application can use the CB_GETLBTEXT
message. The item's string is copied to the buffer specified by the application. To ensure that the
buffer is large enough to receive the string, the application can first use the CB_GETLBTEXTLEN
message to determine the length of the string. To get the number of list items in a combo box, an
application can use the CB_GETCOUNT message.

Current Selection
The current selection is a list item the user has selected; the selected text appears in the selection
field of the combo box. However, in the case of a simple combo box or a drop down combo box,
the current selection is only one form of possible user input in a combo box. The user can also
type text in the selection field.

The current selection is identified by the zero-based index of the selected list item. An application
can set and retrieve it at any time. The parent window or dialog box procedure receives
notifications when user changes the current selection for a combo box. The parent window or
dialog box is not notified when the application changes the selection.

When a combo box is created, there is no current selection. This is also true for a simple or drop-
down combo box, if the user has edited the contents of the selection field. To set the current
selection, an application sends the CB_SETCURSEL message to the combo box. An application
can also use the CB_SELECTSTRING message to set the current selection to a list item whose
string begins with a specified string. To determine the current selection, an application sends the
CB_GETCURSEL message to the combo box. If there is no current selection, this message
returns CB_ERR.

When the user changes the current selection in a combo box, the parent window or dialog-box
procedure receives a WM_COMMAND message with the notification message
CBN_SELCHANGE in the high-order word of the wParam parameter. As a result, the application
can respond to this notification message and execute a specific process each time the user
selects a list item. This notification message is not sent when the current selection is set using the
CB_SETCURSEL message.

In a drop-down combo box or drop-down list box, an application wait for the use to close the list
box before processing a change in the current selection. This can be useful when significant
processing is required. For example, to update a directory list based on the selected drive, an
application can process the CBN_CLOSEUP message instead of CBN_SELCHANGE to update a
directory list after the user selects a drive.

An application could also process the notification messages CBN_SELENDOK and
CBN_SELENDCANCEL. The system sends CBN_SELENDOK when the user selects a list item,
or selects an item and then closes the list. This indicates the user has finished, and the selection
should be processed. CBN_SELENDCANCEL is sent when the user selects an item, but then
selects another control, presses the ESCAPE key while the drop-down list is open, or closes the
dialog box. This indicates the user's selection should be ignored. In a simple combo box,
CBN_SELENDOK is sent before every CBN_SELCHANGE message. If the
WS_EX_NOPARENTNOTIFY window style is specified for the combo box, the system does not
send CBN_SELENDOK and CBN_SELENDCANCEL messages.

In a simple combo box, the system sends the CBN_DBLCLK notification message when the user
double-clicks a list item. In a drop-down combo box or drop-down list, a single click hides the list
so it is not possible to double-click an item.

Drop-Down Lists
Certain notifications and messages apply only to combo boxes containing drop-down lists. When
a drop-down list is open or closed, the parent window of a combo box receives a notification in the
form of a WM_COMMAND message. If the list is being opened, the high-order word of wParam is
CBN_DROPDOWN. If the list is being closed, it is CBN_CLOSEUP.

An application can open the list of a drop-down combo box or drop-down list box by using the
CB_SHOWDROPDOWN message. It can determine whether the list is open by using the
CB_GETDROPPEDSTATE message and can determine the coordinates of a drop-down list by
using the CB_GETDROPPEDCONTROLRECT message. An application can also increase the
width of a drop-down list by using the CB_SETDROPPEDWIDTH message.

Edit Control Selection Fields
The selection field is the portion of a combo box that displays the currently selected list item. In
simple and drop-down combo boxes, the selection field is an edit control and can be used to enter
text that is not in the list.

An application can retrieve or set the contents of the selection field and can determine or set the
edit selection. The application can also limit the amount of text a user can type in the selection
field. When the contents of the selection field change, Windows sends notification messages to
the parent window or dialog box procedure.

To retrieve the content of the selection field, an application can send the WM_GETTEXT message
to the combo box. To set the contents of the selection field of a simple or drop-down combo box,
an application can send the WM_SETTEXT message to the combo box.

The edit selection is the range of selected text, if any, in the selection field of a simple or drop-
down combo box. An application can determine the starting and ending character positions of the
current selection by using the CB_GETEDITSEL message. It can also select characters in the edit
selection by using the CB_SETEDITSEL message.

Initially, the amount of text that the user can type into the selection field is limited by the size of the
selection field. However, if the combobox has the CBS_AUTOHSCROLL style, the text can
continue beyond the size of the selection field. An application can use the CB_LIMITTEXT
message to limit the amount of text a user can type into the selection field, regardless of whether
the control has the CBS_AUTOHSCROLL style.

When the user edits the content of the selection field, the parent window or dialog box procedure
receives notification messages. CBN_EDITUPDATE is sent first, indicating that the text in the
selection field has been edited. After the altered text is displayed, Windows sends
CBN_EDITCHANGE. When the selection field content changes as the result of a list item being
selected, these messages are not sent.

Owner-Drawn Combo Boxes
An application can create an owner-drawn combo box to take responsibility for painting list items.
The parent window or dialog box of an owner-drawn combo box (its owner) receives
WM_DRAWITEM messages when a portion of the combo box needs to be painted. An owner-
drawn combo box can list information other than, or in addition to, text strings. Owner-drawn
combo boxes can be of any type. However, the edit control in a simple or drop-down combo box
can only display text, while the owner paints the selection field in a drop-down list box.

The owner of an owner-drawn combo box must process the WM_DRAWITEM message. This
message is sent whenever a portion of the combo box must be redrawn. The owner may need to
process other messages, depending on the styles specified for the combo box.

An application can create an owner-drawn combo box by specifying the
CBS_OWNERDRAWFIXED or CBS_OWNERDRAWVARIABLE style. If all list items in the combo
box are the same height, such as strings or icons, an application can use the
CBS_OWNERDRAWFIXED style. If list items are of varying height, bitmaps of different size, for
example, an application can use the CBS_OWNERDRAWVARIABLE style.

The owner of an owner-drawn combo box can process a WM_MEASUREITEM message to
specify the dimensions of list items in the combo box. If the application creates the combo box by
using the CBS_OWNERDRAWFIXED style, Windows sends the WM_MEASUREITEM message
only once. The dimensions specified by the owner are used for all list items. If the
CBS_OWNERDRAWVARIABLE style is used, Windows sends a WM_MEASUREITEM message
for each list item added to the combo box. The owner can determine or set the height of a list item
at any time by using the CB_GETITEMHEIGHT and CB_SETITEMHEIGHT messages,
respectively.

If the information displayed in an owner-drawn combo box includes text, an application can keep
track of the text for each list item by specifying the CBS_HASSTRINGS style. Combo boxes with
the CBS_SORT style are sorted based on this text. If a combo box is sorted and not of the
CBS_HASSTRINGS style, the owner must process the WM_COMPAREITEM message.

In an owner-drawn combo box, the owner must keep track of list items containing information
other than or in addition to text. One convenient way to do this is to save the handle of the
information as item data. For more information about item data, see Data Associated with List
Items. To free data objects associated with items in a combo box, the owner can process the
WM_DELETEITEM message.

For an example of an owner-drawn combo box, see Creating an Owner-Drawn Combo Box.

Subclassed Combo Boxes
Subclassing is a procedure that allows an application to intercept and process messages sent or
posted to a window. By using subclassing, an application can substitute its own processing for
certain messages, while leaving most message processing to the class-defined window
procedure.

When the operating system creates a window, it saves information about it in an internal data
structure that includes the address of the window procedure. To subclass a window, an
application calls the SetClassLong function to replace the address of that procedure with the
instance address of an application-defined subclass procedure. Thereafter, all messages to the
window are sent to the subclass procedure. This procedure then uses the CallWindowProc
function to pass unprocessed messages to the original window procedure. For a description of the
message processing performed by the COMBOBOX class window procedure, see Default Combo
Box Behavior.

When the combo box is outside a dialog box, an application cannot process the TAB, ENTER, and
ESCAPE keys unless it uses a subclass procedure. When a simple or drop-down combo box
receives the input focus, it immediately sets the focus to its child edit control. Therefore, an
application must subclass the edit control to intercept keyboard input for a simple or drop-down
combo box. For an example of this, see Subclassing a Combo Box.

If a subclass procedure processes the WM_PAINT message, it must use the BeginPaint function
to prepare for painting. Before calling the EndPaint function, it passes the device-context (DC)
handle as the wParam parameter for the window procedure. If EndPaint is called first, the class
window procedure does no painting because EndPaint validates the entire window.

A technique related to subclassing is superclassing. A superclass resembles any other class
except that its window procedure does not call DefWindowProc to handle unprocessed
messages. Instead, it passes unprocessed messages to the window procedure for the parent
window class. Follow the guidelines in Window Procedures to avoid problems that can occur with
subclassing and superclassing.

Special Combo Box Features
The Win32 API provides special-purpose messages and functions that enable an application to
display a directory listing in a combo box, associate data with list items in a combo box, and
change the keyboard interface for a drop-down combo box or drop-down list box.

Directory Lists
An application can add the names of files or subdirectories to a combo box by sending the
CB_DIR message to it. The wParam parameter for the window procedure specifies the attributes
of the files to add, and the lParam parameter points to the text string that defines the file
specification.

Within a dialog box, an application can also use DlgDirListComboBox. If the specified filename
includes a drive, path, or both, DlgDirListComboBox changes the current drive or directory and
removes the drive and path from the filename string. To show the directory name, the function
updates the specified static control, if any. It then resets the contents of the combo box, and
sends the CB_DIR message to the combo box to add the specified filenames.

To remove the selected filename, directory name, or drive letter from a combo box that has been
filled by using DlgDirListComboBox, an application can use the DlgDirSelectComboBoxEx
function.

The DlgDirListComboBox and DlgDirSelectComboBoxEx functions and the CB_DIR message
are similar to the DlgDirList and DlgDirSelectEx functions and the LB_DIR message used with
list boxes.

Data Associated with List Items
An application can associate data with the list items in a combo box. The CB_SETITEMDATA
message associates a DWORD value with a list item, and the CB_GETITEMDATA retrieves the
value associated with a list item.

The example in Creating an Owner-Drawn Combo Box uses item data to associate a constant
with each item in a drop-down list box. Such a unique value identifies each item independent of its
sorted position.

Other applications might use item data to associate a handle or pointer with a list item. If so, an
application can process a WM_DELETEITEM message to delete or free the specified object when
the list item is deleted.

The Extended User Interface
Drop-down combo boxes and drop-down list boxes support an alternative keyboard interface
called the extended user interface. By default, the F4 key opens or closes the list, and the DOWN
ARROW changes the current selection. In a combo box with the extended user interface, however,
the F4 key is disabled and pressing the DOWN ARROW key opens the drop-down list.

To select the user interface for a combo box, an application can send the CB_SETEXTENDEDUI
message to the combo box. A TRUE value for the wParam parameter enables the extended user
interface; a FALSE value sets the default user interface. To determine whether a combo box uses
the extended user interface, an application can send the CB_GETEXTENDEDUI message to the
combo box.

Combo Box Notifications
Messages from combo boxes are sent as notifications in the form of WM_COMMAND messages.
The notification message is stored in the high word of the wParam parameter, and an application
can process the following combo box notification messages.

Notification message Description

CBN_CLOSEUP Indicates the list in a drop-down combo
box or drop-down list box is about to
close.

CBN_DBLCLK Indicates the user has double-clicked a
list item in a simple combo box.

CBN_DROPDOWN Indicates the list in a drop-down combo
box or drop-down list box is about to
open.

CBN_EDITCHANGE Indicates the user has changed the text
in the edit control of a simple or drop-
down combo box. This notification
message is sent after the altered text is
displayed.

CBN_EDITUPDATE Indicates the user has changed the text
in the edit control of a simple or drop-
down combo box. This notification
message is sent before the altered text
is displayed.

CBN_ERRSPACE Indicates the combo box cannot allocate
enough memory to carry out a request,
such as adding a list item.

CBN_KILLFOCUS Indicates the combo box is about to lose
the input focus.

CBN_SELCHANGE Indicates the current selection has
changed.

CBN_SELENDCANCEL Indicates that the selection made in the
drop down list, while it was dropped
down, should be ignored.

CBN_SELENDOK Indicates that the selection made drop
down list, while it was dropped down,
should be accepted.

CBN_SETFOCUS Indicates the combo box has received
the input focus.

Default Combo Box Behavior
This section contains a table that describes the messages specifically handled by the predefined
COMBOBOX class window procedure.

Message Description

CB_ADDSTRING Sends an LB_ADDSTRING
message to the list window to add
a list item.

CB_DELETESTRING Sends an LB_DELETESTRING
message to the list window to
delete a list item.

CB_DIR Adds the filenames matching the
specified attributes and path to
the list.

CB_FINDSTRING Sends an LB_FINDSTRING
message to the list window. This
message returns the index of the
first list item that begins with the
specified text.

CB_FINDSTRINGEXACT Sends an LB_FINDSTRING
message to the list window. This
message returns the index of the
first list item exactly matching the
specified text.

CB_GETCOUNT Sends an LB_GETCOUNT
message to the list window. It
returns the number of list items.

CB_GETCURSEL Sends an LB_GETCURSEL
message to the list window. It
returns the index of the currently
selected item, if any.

CB_GETDROPPEDCONTROLRECTFills the specified rectangle
structure with the screen
coordinates of a drop-down list.

CB_GETDROPPEDSTATE Returns TRUE if a drop-down list
is open; otherwise, it returns
FALSE.

CB_GETDROPPEDWIDTH Returns the minimum allowable
width, in pixels, of the drop down
list.

CB_GETEDITSEL Sends an EM_GETSEL message
to the edit control, and it returns
the starting and ending position of
the current selection. In drop-
down list boxes, the window
procedure returns CB_ERR.

CB_GETEXTENDEDUI Returns TRUE if the combo box is
a drop-down combo box or drop-
down list box and the extend
user-interface flag is set;
otherwise, it returns FALSE.

CB_GETHORIZONTALEXTENT Sends an
LB_GETHORIZONTALEXTENT
message to the list window. It
returns the scrollable width, in
pixels, of the drop down list.

CB_GETITEMDATA Sends an LB_GETITEMDATA
message to the list window. It
returns the 32-bit value
associated with the specified list

item.
CB_GETITEMHEIGHT Sends an LB_GETITEMHEIGHT

message to the list window. It
returns the height, in pixels, of the
specified owner-drawn list item.

CB_GETLBTEXT Sends an LB_GETTEXT
message to the list window. It
copies the specified list text to the
specified buffer.

CB_GETLBTEXTLEN Sends an LB_GETTEXTLEN
message to the list window. It
returns the length, in bytes, of the
specified list text.

CB_GETLOCALE Sends an LB_GETLOCALE
message to the list window. It
returns the current locale for the
list.

CB_GETTOPINDEX Sends an LB_GETTOPINDEX
message to the list window. It
returns the index of the first
visible item in the drop down list.

CB_INITSTORAGE Sends an LB_INITSTORAGE
message to the list window. It
initializes space for the specified
number of items and the specified
number of bytes for item strings.

CB_INSERTSTRING Sends an LB_INSERTSTRING
message to the list window. It
inserts a list item at the specified
position.

CB_LIMITTEXT Sends an EM_LIMITTEXT
message to the edit control. It
sets the maximum number of
characters a user can enter in the
edit control. In drop-down list
boxes, the window procedure
returns CB_ERR.

CB_RESETCONTENT Sends an LB_RESETCONTENT
message to the list window, and it
removes the contents of the list.

CB_SELECTSTRING Sends an LB_SELECTSTRING
message to the list window. It
selects the first list item, if any,
that begins with the characters in
the specified text.

CB_SETCURSEL Sends an LB_SETCURSEL
message to the list window, and it
sets the current selection.

CB_SETDROPPEDWIDTH Sets the minimum allowable
width, in pixels, of the drop down
list.

CB_SETEDITSEL Sends an EM_SETSEL message
to the edit control. It selects the
specified range of text. In drop-
down list boxes, the window
procedure returns CB_ERR.

CB_SETEXTENDEDUI Sets or clears the extended user-
interface flag. This flag changes
the keys that open and close the
list in a drop-down combo box or
drop-down list box. If the combo

box is a simple combo box, the
window procedure returns
CB_ERR.

CB_SETHORIZONTALEXTENT Sends an
LB_SETHORIZONTALEXTENT
message to the list window. It
sets the scrollable width, in pixels,
of the drop down list.

CB_SETITEMDATA Sends an LB_SETITEMDATA
message to the list window. It
associates the specified 32-bit
value with a list item.

CB_SETITEMHEIGHT Sends an LB_SETITEMHEIGHT
message to the list window. It
sets the height of the specified
owner-drawn list item or the
selection field.

CB_SETLOCALE Sends an LB_SETLOCALE
message to the list window, and it
sets the current locale for the list.
The locale affects how the list is
sorted if it has the CBS_SORT
style and strings are added using
CB_ADDSTRING.

CB_SETTOPINDEX Sends an LB_SETTOPINDEX
message to the list window. It
scrolls the drop down list so the
specified item is at the top of the
visible range.

CB_SHOWDROPDOWN Shows or hides the drop-down
list. This message has no effect
on simple combo boxes.

WM_CHAR Processes character input. In
drop-down list boxes, this
message is passed to the list
window, which moves the
selection to the first item
beginning with the specified
character. In simple and drop-
down combo boxes, this message
is passed to the edit control.

WM_CLEAR Deletes the edit selection. In
simple and drop-down combo
boxes, the edit control processes
this message. In drop-down list
boxes, the window procedure
returns CB_ERR.

WM_COMMAND Processes notification messages
from the edit control and list
window and sends corresponding
combo box notification messages
to the parent window.
For edit control notifications, the
window procedure may update
the list window's current selection,
caret index, and top index. For list
notification messages, the
window procedure may update
the content of the selection field.

WM_COMPAREITEM Passes the message to the
parent window, enabling the
application to specify the relative

sort position of two owner-drawn
list items. The combo box window
receives this message from the
list window.

WM_COPY Copies the edit selection to the
clipboard. In simple and drop-
down combo boxes, the edit
control processes this message.
In drop-down list boxes, the
window procedure returns
CB_ERR.

WM_CREATE Initializes the combo box.
WM_CUT Deletes the edit selection and

places it on the clipboard. In
simple and drop-down combo
boxes, the edit control processes
this message. In drop-down list
boxes, the window procedure
returns CB_ERR.

WM_DELETEITEM Passes the message to the
parent window, notifying the
application that a list item has
been deleted. The combo box
window receives this message
from the list window.

WM_DRAWITEM Passes the message on to the
parent window enabling the
application to paint the specified
list item. The combo box window
receives this message from the
list window. The window
procedure can also originate this
message to have the application
paint the selection field of a drop-
down list box.

WM_ENABLE Sets the state to enable or
prohibit mouse and keyboard
input.

WM_ERASEBKGND Returns 1, indicating that the
background is erased.

WM_GETDLGCODE Returns a combination of the
DLG_WANTCHARS and
DLGC_WANTARROWS values.

WM_GETFONT Returns the handle of the current
font with which the combo box will
draw its text.

WM_GETTEXT Copies the contents of the
selection field to the specified
buffer. In simple and drop-down
combo boxes, the edit control
processes this message.

WM_GETTEXTLENGTH Returns the length, in characters,
of the text in the selection field. In
simple and drop-down combo
boxes, the edit control processes
this message.

WM_KEYDOWN Processes noncharacter
keyboard input. In drop-down list
boxes, this message is sent to the
list window, which may show or
hide itself, or change its current
selection or caret index. In simple

and drop-down combo boxes, this
message is passed to the edit
control. The edit control passes
certain keys to the list window,
such as the UP and DOWN ARROW
keys and the F4 key.

WM_KILLFOCUS Hides the highlight in the
selection field and closes the
drop-down list, if necessary. If the
window receiving the input focus
is part of the combo box (for
example, the edit control), this
message is ignored.

WM_LBUTTONDBLCLK Same as WM_LBUTTONDOWN.
WM_LBUTTONDOWN Sets the focus to the combo box

and, for drop-down combo boxes
and drop-down lists, can open or
close the list. If it opens the list,
the window procedure captures
the mouse to enable selection by
dragging and releasing the mouse
button.

WM_LBUTTONUP Releases the mouse capture if
the mouse opened the list.

WM_MEASUREITEM Posts the message to the parent
window, enabling the application
to modify the contents of the
specified
MEASUREITEMSTRUCT
structure. The combo box window
receives this message from the
list window.

WM_MOUSEMOVE Posts the message to the list
window if the mouse has opened
the list and the mouse button is
still down. This enables a user to
select an item by dragging the
mouse pointer to a list item and
then releasing the button.

WM_NCCREATE Allocates an internal data
structure used by the combo box
window procedure.

WM_NCDESTROY Frees resources allocated in
response to the WM_NCCREATE
message.

WM_PAINT Paints the invalid region of the
combo box. If wParam is not
NULL, it is assumed to be a DC
handle passed from a subclass
function. The window procedure
uses the specified DC instead of
calling BeginPaint and
EndPaint.

WM_PASTE Replaces the edit selection with
the contents of the clipboard. In
simple and drop-down combo
boxes, the edit control processes
this message. In drop-down list
boxes, the window procedure
returns CB_ERR.

WM_SETFOCUS Sets the focus to the edit control
or, in drop-down list boxes,

inverts the selection field and
turns on the caret in the list
window.

WM_SETFONT Saves the specified font handle in
an internal structure, adjusts the
dimensions of the selection field
and list, and invalidates the
combo box window. Text in the
selection field and the list is
displayed in the saved font.

WM_SETREDRAW Sets or clears the redraw flag. If
the redraw flag is cleared, the
combo box is not repainted until
the flag is set again.

WM_SETTEXT Sets the contents of the edit
control. In simple and drop-down
combo boxes, the edit control
processes this message. In drop-
down list boxes, the window
procedure returns CB_ERR.

WM_SIZE Resizes the child windows, if
necessary.

WM_SYSKEYDOWN Opens or closes the drop-down
list depending on which arrow key
the user pressed.

All other messages are passed to the DefWindowProc function for default processing.

Using Combo Boxes
· Creating a simple combo box
· Creating an owner-drawn combo box
· Subclassing a combo box

Creating a Simple Combo Box
This section describes how to use a simple combo box in a dialog box. The example in Creating a
Spell Dialog Box uses a simple combo box in a dialog box for a spelling checker. When it finds a
misspelled word, the spelling checker suggests alternative spellings. The user can ignore the
misspelling, change to one of the suggested spellings, or type a spelling not suggested. A simple
combo box is well suited for receiving this kind of user input.

Creating the Simple Dialog Box
The dialog box template defines the window styles and control identifier for the combo box. In this
example, the combo box uses the CBS_SIMPLE, CBS_SORT, WS_VSCROLL, and
WS_TABSTOP styles.

The dialog box also contains three buttons: Change (IDOK), Ignore (IDSKIP), and Cancel
(IDCANCEL). The IDOK and IDCANCEL constants are defined by the Win32 API. The IDSKIP
constant is defined in the application's header file, as is the control identifier for the combo box,
IDCOMBO.

For more information about dialog boxes, see Dialog Boxes.

Processing the WM_INITDIALOG and WM_DESTROY Messages in a
Simple Dialog Box
When you use a combo box in a dialog box, you usually respond to the WM_INITDIALOG
message by initializing the combo box. The code example in Creating a Spell Dialog Box calls the
application-defined OpenDictionary function to load the dictionary. It then calls the application-
defined SelectNextWord and InitSpellList functions to select the first misspelled word.

SelectNextWord selects the next word in the edit control and copies it to the specified buffer.
InitSpellList determines whether the selected word is in the dictionary. If not, it places the word in
the selection field of the combo box and adds suggested spellings to the list.

The dialog box procedure processes the WM_DESTROY message to free the resources allocated
to the spelling dictionary.

Processing the WM_COMMAND Message in a Simple Dialog Box
When an event occurs in a dialog box control, the control sends a WM_COMMAND message to
the dialog box procedure. The high-order word of the wParam parameter is a notification code,
indicating the type of event that occurred. The low-order word of wParam is a constant identifying
the control. The lParam parameter is the window handle for the control.

When processing the WM_COMMAND message, the spelling checker example examines the
control identifier in the low-order word of wParam to determine the origin of the message. The
constants IDCOMBO, IDOK, IDIGNORE, and IDCANCEL identify the combo box, the Change
button, the Ignore button, and the Cancel button controls, respectively.

A combo box may send a WM_COMMAND message for a number of different reasons. To
determine the type of event, the dialog box procedure examines the notification code in the high-
order word of wParam. The example processes only the CBN_DBLCLK notification message,
which is sent when the user double-clicks a list item. The dialog box procedure processes this
notification message in the same way as a Change button click.

The buttons in this example send WM_COMMAND messages only when they are chosen by the
user. When the user chooses the Change button, the dialog box procedure replaces the current
selection in the application's edit control with the content of the selection field in the combo box.
The selection field may contain either the selected list item or text the user has typed. The dialog
box procedure then selects the next misspelled word in the same way it processes an Ignore
button click.

When the user chooses the Ignore button, the dialog box procedure calls the application-defined
SelectNextWord and InitSpellList functions to select the next misspelled word in the application's
edit control. InitSpellList places the misspelled word in the selection field of the combo box and
adds suggested spellings to the combo box list.

When the user chooses the Cancel button, the dialog box procedure calls the EndDialog function
to close the dialog box.

Creating a Spell Dialog Box
Following are the dialog box procedure and supporting functions for the spelling checker dialog
box.HWND hwndMain;
HWND hwndEdit;
char achTemp[256]; /* temporary buffer */
LPSTR lpstrDict; /* buffer for dictionary file */
LPSTR *paLpDict; /* array of pointers to words */
UINT cWords; /* number of words */
/**

FUNCTION: SpellDlgProc
PURPOSE: Dialog procedure for Spell dialog box.

***/
BOOL CALLBACK SpellDlgProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

switch (msg) {
case WM_INITDIALOG:
if (!OpenDictionary()) {
EndDialog(hwndDlg, 0);
break;
}
SendMessage(hwndEdit, EM_SETSEL, 0, 0);
do
if (!SelectNextWord(hwndEdit, achTemp)) {
GlobalFree((HGLOBAL) lpstrDict);
LocalFree((HLOCAL) paLpDict);
EndDialog(hwndDlg, 0);
break;
}
while (!InitSpellList(
GetDlgItem(hwndDlg, IDCOMBO), achTemp));
break;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDCOMBO:
if (HIWORD(wParam) != CBN_DBLCLK)

break;
/* For a double-click, process the OK case. */
case IDOK:
SendDlgItemMessage(hwndDlg, IDCOMBO,

WM_GETTEXT, sizeof(achTemp),
(LPARAM) achTemp);

SendMessage(hwndEdit, EM_REPLACESEL, 0,
(LPARAM) achTemp);

/* Fall through to get the next word. */
case IDIGNORE:
do

if (!SelectNextWord(hwndEdit, achTemp)) {
EndDialog(hwndDlg, 0);
break;
}

while (!InitSpellList(GetDlgItem(hwndDlg,
IDCOMBO), achTemp));

break;
case IDCANCEL:
EndDialog(hwndDlg, 0);
}
break;
case WM_DESTROY:
GlobalFree((HGLOBAL) lpstrDict);
LocalFree((HLOCAL) paLpDict);
break;
default:
return FALSE;
}
return TRUE;

}

/**
FUNCTION: InitSpellList
PURPOSE: Initializes the selection field and list

of suggestions for the specified word, if
it is not in the dictionary.

RETURNS: If the list is initialized, the return
value is TRUE. If an error occurs or the
word is in the dictionary, the return
value is FALSE.
***/
BOOL PASCAL InitSpellList(HWND hwndCombo, LPSTR lpszWord)
{

int min = 0; /* beginning of search range */
int max = cWords; /* end of search range */
int n; /* index of word */
int cmp; /* result of comparison */
char ch; /* first character in word */
ch = *lpszWord;
CharLowerBuff(&ch, 1);
/*

* Perform a binary search for the word.
*
* The global array paLpDict contains pointers to words
* in the global array lpstrDict. These two variables are
* initialized by the OpenDictionary function.
*/

n = max / 2;
while (min < max) {
cmp = lstrcmpi(lpszWord, paLpDict[n]);
if (cmp == 0)
return FALSE; /* not misspelled */
if (cmp < 0)
max = n;
else
min = n + 1;
n = (min + max) / 2;
}
/* List words beginning with the same letter as lpszWord. */
SendMessage(hwndCombo, CB_RESETCONTENT, 0, 0);
while (n > 0 && *paLpDict[n - 1] == ch)
n--;
while (*paLpDict[n] == ch)
SendMessage(hwndCombo, CB_ADDSTRING,
0, (LPARAM) paLpDict[n++]);
/* Place the word in the selection field. */
SendMessage(hwndCombo, WM_SETTEXT, 0, (LPARAM) lpszWord);
return TRUE;

}

Creating an Owner-Drawn Combo Box
This section describes how to use an owner-drawn combo box. The example in Creating a Square
Meal Dialog Box uses an owner-drawn drop-down list box to display the four food groups, each
represented by a bitmap and a name. Selecting a food group causes the foods in that group to
appear in a list.

Creating the Owner-Drawn Dialog Box
The dialog box template defines the window styles, buttons, and control identifiers for the combo
box. The combo box in this example uses the CBS_DROPDOWNLIST,
CBS_OWNERDRAWFIXED, CBS_SORT, CBS_HASSTRINGS, WS_VSCROLL, and
WS_TABSTOP styles.

ewc msdncd, EWGraphic, bsd23480 0 /a "SDK_01.BMP"

The dialog box also contains a list box (IDLIST) and two buttons: OK (IDOK) and Cancel
(IDCANCEL). The IDOK and IDCANCEL constants are defined by the Win32 API. The constant
IDLIST is defined in the application's header file, as is the control identifier, IDCOMBO.

For more information about dialog boxes, see Dialog Boxes.

Processing the WM_INITDIALOG and WM_DESTROY Messages in
an Owner-Drawn Dialog Box
When you use a combo box in a dialog box, you usually respond to a WM_INITDIALOG message
by initializing the combo box. The example in Creating a Square Meal Dialog Box loads the
bitmaps used for the owner-drawn combo box, then calls the application-defined InitGroupList
function to initialize the combo box. It also selects the first list item in the combo box, then calls
the application-defined InitFoodList function to initialize the list box.

In the example, the owner-drawn combo box is a drop-down list box containing the names of each
of the four food groups. InitGroupList adds the name of each food group, and calls the application-
defined SetItemData function to associate a constant with each list item that identifies a
corresponding food group.

The list box in the example contains the names of foods in the selected food group. InitFoodList
resets the contents of the list box, then adds the names of the current food selection in the current
food group drop-down list box.

The dialog box procedure processes the WM_DESTROY message to delete the bitmaps in the
owner-drawn combo box.

Processing the WM_MEASUREITEM Message
An owner-drawn combo box sends the WM_MEASUREITEM message to its parent window or
dialog box procedure so the application can set the dimensions of each list item. Because the
example combo box has the CBS_OWNERDRAWFIXED style, the system sends the
WM_MEASUREITEM message only once. Combo boxes with the
CBS_OWNERDRAWVARIABLE style send a WM_MEASUREITEM message for each list item.

The lParam parameter points to a MEASUREITEMSTRUCT structure that identifies the control
and list item. It also contains the default dimensions of the list item. The example in Creating a
Square Meal Dialog Box modifies the itemHeight structure member to ensure that the list items
are high enough to accommodate the food-group bitmaps.

Processing the WM_DRAWITEM Message
An owner-drawn combo box sends the WM_DRAWITEM message to its parent window or dialog
box procedure each time the application must repaint a list item. The lParam parameter points to
a DRAWITEMSTRUCT structure that identifies the control and list item. It also contains
information needed to paint the item.

The example in Creating a Square Meal Dialog Box displays the list-item text and the bitmap
associated with the food group. If the item has the focus, it also draws a focus rectangle. Before
displaying the text, the example sets the foreground and background colors, based on the item
selected. Because the combo box has the CBS_HASSTRINGS style, the combo box maintains
the text for each list item that can be retrieved using the CB_GETLBTEXT message.

The bitmaps used for the list item depend on the food group. InitGroupList uses the
CB_SETITEMDATA message to associate a constant with each list item, identifying the
corresponding food group. The window procedure uses this value, contained in the itemData
member of the DRAWITEMSTRUCT structure, to determine which bitmaps to display. The system
uses two bitmaps for each food group symbol: a monochrome bitmap with the SRCAND raster
operation to erase the irregular region behind the image, and a color bitmap with the SRCPAINT
raster operation to paint the image.

Processing the WM_COMMAND Message in an Owner-Drawn Dialog
Box
When an event occurs in a dialog box control, the control notifies the dialog box procedure by
means of a WM_COMMAND message. The example in Creating a Square Meal Dialog Box
processes notification messages from the combo box, the list box, and the OK button. The control
identifier is in the low-order word of wParam, and the notification message is in the high-order
word of wParam.

If the control identifier is IDCOMBO, an event has occurred in the combo box. In response, the
dialog box procedure ignores all other combo box events except CBN_SELENDOK, which
indicates that a selection was made, the drop down was closed up, and the changes made should
be accepted. The dialog box procedure calls InitFoodList to reset the contents of the list box and
to add the names of the current selection in the drop-down list box.

If the control identifier is IDLIST, an event has occurred in the list box. This causes the dialog box
procedure to ignore all list box events except LBN_DBLCLK, which indicates that the user has
double-clicked a list item. This event is processed in the same way as if an OK button has been
chosen.

If the control identifier is IDOK, the user has chosen the OK button. In response, the dialog box
procedure inserts the name of the selected food into the application's multiline edit control, then
calls the EndDialog function to close the dialog box.

If the control identifier is IDCANCEL, the user has clicked the Cancel button. In response, the
dialog box procedure calls EndDialog to close the dialog box.

Creating a Square Meal Dialog Box
Following are the dialog box procedure and supporting functions for the Square Meal dialog box.HWND hwndMain;
HWND hwndEdit;
char achTemp[256]; /* temporary buffer */
HBITMAP hbmBread;
HBITMAP hbmDairy;
HBITMAP hbmFruit;
HBITMAP hbmMeat;
HBITMAP hbmBreadMask;
HBITMAP hbmDairyMask;
HBITMAP hbmFruitMask;
HBITMAP hbmMeatMask;
/**

FUNCTION: FoodDlgProc
PURPOSE: Dialog procedure for Food dialog box.

***/
BOOL CALLBACK FoodDlgProc(hwndDlg, msg, wParam, lParam)
HWND hwndDlg;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

LPMEASUREITEMSTRUCT lpmis;
LPDRAWITEMSTRUCT lpdis;
HBITMAP hbmIcon;
HBITMAP hbmMask;
COLORREF clrBackground;
COLORREF clrForeground;
TEXTMETRIC tm;
HDC hdc;
HWND hwnd;
int x;
int y;
switch (msg) {
case WM_INITDIALOG:
/*
* Call an application-defined function to load
* bitmap resources.
*/
if (!LoadIconBitmaps()) {
EndDialog(hwndDlg, -1);
break;
}
/* Initialize the drop-down list box. */
if (!InitGroupList(hwndDlg)) {
DeleteIconBitmaps();
EndDialog(hwndDlg, -1);
break;
}
/* Select the first food group. */
SendDlgItemMessage(hwndDlg, IDCOMBO, CB_SETCURSEL,
0, 0);
/* List the foods and select the first food. */
InitFoodList(hwndDlg);
SendDlgItemMessage(hwndDlg, IDLIST, LB_SETCURSEL,
0, 0);
break;
case WM_MEASUREITEM:
lpmis = (LPMEASUREITEMSTRUCT) lParam;
if (lpmis->itemHeight < CY_BITMAP + 2)
lpmis->itemHeight = CY_BITMAP + 2;
break;
case WM_DRAWITEM:
lpdis = (LPDRAWITEMSTRUCT) lParam;
if (lpdis->itemID == -1) /* empty item */
break;
/* Determine the bitmaps used to draw the icon. */
switch (lpdis->itemData) {
case ID_BREAD:
hbmIcon = hbmBread;
hbmMask = hbmBreadMask;
break;
case ID_DAIRY:
hbmIcon = hbmDairy;
hbmMask = hbmDairyMask;
break;
case ID_FRUIT:
hbmIcon = hbmFruit;
hbmMask = hbmFruitMask;
break;
default: /* meat */
hbmIcon = hbmMeat;
hbmMask = hbmMeatMask;
break;
}
/*
* The colors depend on whether the item is
* selected.
*/
clrForeground = SetTextColor(lpdis->hDC,
GetSysColor(lpdis->itemState & ODS_SELECTED ?
COLOR_HIGHLIGHTTEXT : COLOR_WINDOWTEXT));
clrBackground = SetBkColor(lpdis->hDC,
GetSysColor(lpdis->itemState & ODS_SELECTED ?
COLOR_HIGHLIGHT : COLOR_WINDOW));
/* Calculate the vertical and horizontal position. */
GetTextMetrics(lpdis->hDC, &tm);
y = (lpdis->rcItem.bottom + lpdis->rcItem.top -
tm.tmHeight) / 2;
x = LOWORD(GetDialogBaseUnits()) / 4;
/* Get and display the text for the list item. */
SendMessage(lpdis->hwndItem, CB_GETLBTEXT,
lpdis->itemID, (LPARAM) (LPCSTR) achTemp);
ExtTextOut(lpdis->hDC, CX_BITMAP + 2 * x, y,
ETO_CLIPPED | ETO_OPAQUE, &lpdis->rcItem,
achTemp, lstrlen(achTemp), NULL);
/* Restore the previous colors. */
SetTextColor(lpdis->hDC, clrForeground);
SetBkColor(lpdis->hDC, clrBackground);
/* Show the icon. */
hdc = CreateCompatibleDC(lpdis->hDC);
if (hdc == NULL)
break;
SelectObject(hdc, hbmMask);
BitBlt(lpdis->hDC, x, lpdis->rcItem.top + 1,
CX_BITMAP, CY_BITMAP, hdc, 0, 0, SRCAND);
SelectObject(hdc, hbmIcon);
BitBlt(lpdis->hDC, x, lpdis->rcItem.top + 1,
CX_BITMAP, CY_BITMAP, hdc, 0, 0, SRCPAINT);
DeleteDC(hdc);
/* If the item has the focus, draw focus rectangle. */
if (lpdis->itemState & ODS_FOCUS)
DrawFocusRect(lpdis->hDC, &lpdis->rcItem);
break;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDCOMBO:
if (HIWORD(wParam) == CBN_SELENDOK) {

InitFoodList(hwndDlg);
SendDlgItemMessage(hwndDlg, IDLIST,
LB_SETCURSEL, 0, 0);

}
break;
case IDLIST:
if (HIWORD(wParam) != LBN_DBLCLK)

break;
/* For a double-click, process the OK case. */
case IDOK:
/* Get the text for the selected list item. */
hwnd = GetDlgItem(hwndDlg, IDLIST);
SendMessage(hwnd, LB_GETTEXT,

SendMessage(hwnd, LB_GETCURSEL, 0, 0),
(LPARAM) achTemp);

/* Insert the text into the edit window. */
SendMessage(hwndEdit, EM_REPLACESEL, 0,

(LPARAM) achTemp);
EndDialog(hwndDlg, 0);
break;
case IDCANCEL:
hwnd = GetDlgItem(hwndDlg, IDCOMBO);
if (SendMessage(hwnd, CB_GETDROPPEDSTATE,

0, 0))
SendMessage(hwnd, CB_SHOWDROPDOWN,
FALSE, 0);

else
EndDialog(hwndDlg, 0);

}
break;
case WM_DESTROY:
/*
* Call the application-defined function to free
* bitmap resources.
*/
DeleteIconBitmaps();
break;
default:
return FALSE;
}
return TRUE;

}

/**
FUNCTION: InitGroupList
PURPOSE: Initializes the "food groups" drop-down

list box.
COMMENTS: The ID of the food group associated with

each list item is saved as item data.
***/
BOOL PASCAL InitGroupList(HWND hwndDlg)
{

HWND hwndCombo = GetDlgItem(hwndDlg, IDCOMBO);
DWORD dwIndex;
/* Add an item for each food group. */
LoadString(hinst, ID_BREAD, achTemp, sizeof(achTemp));
dwIndex = SendMessage(hwndCombo, CB_ADDSTRING, 0,
(LPARAM) (LPCSTR) achTemp);
SendMessage(hwndCombo, CB_SETITEMDATA, dwIndex, ID_BREAD);
LoadString(hinst, ID_DAIRY, achTemp, sizeof(achTemp));
dwIndex = SendMessage(hwndCombo, CB_ADDSTRING, 0,
(LPARAM) (LPCSTR) achTemp);
SendMessage(hwndCombo, CB_SETITEMDATA, dwIndex, ID_DAIRY);
LoadString(hinst, ID_FRUIT, achTemp, sizeof(achTemp));
dwIndex = SendMessage(hwndCombo, CB_ADDSTRING, 0,
(LPARAM) (LPCSTR) achTemp);
SendMessage(hwndCombo, CB_SETITEMDATA, dwIndex, ID_FRUIT);
LoadString(hinst, ID_MEAT, achTemp, sizeof(achTemp));
dwIndex = SendMessage(hwndCombo, CB_ADDSTRING, 0,
(LPARAM) (LPCSTR) achTemp);
SendMessage(hwndCombo, CB_SETITEMDATA, dwIndex, ID_MEAT);
return TRUE;

}

/**
FUNCTION: InitFoodList
PURPOSE: Clears the contents of the food list, and

adds the names of foods for the current
food group.
***/
void PASCAL InitFoodList(HWND hwndDlg)
{

HWND hwndCombo = GetDlgItem(hwndDlg, IDCOMBO);
HWND hwndList = GetDlgItem(hwndDlg, IDLIST);
UINT idFoodGroup;
LPSTR lpsz;
LPSTR lpszEnd;
/* Determine the current food group. */
idFoodGroup = SendMessage(
hwndCombo,
CB_GETITEMDATA,
SendMessage(hwndCombo, CB_GETCURSEL, 0, 0),
0
);
/* Clear the list contents. */
SendMessage(hwndList, LB_RESETCONTENT, 0, 0);
.
. /* Add food names for the current food group. */
.

}

Subclassing a Combo Box
This section demonstrates how to subclass combo boxes so your application can use them
outside a dialog box. The example in Creating a Combo-box Toolbar shows the window
procedure for a toolbar window containing two combo boxes. By subclassing the edit controls
within the combo boxes, the toolbar window intercepts TAB, ENTER, and ESC keys that would
otherwise be ignored.

The following illustration shows the toolbar window.

ewc msdncd, EWGraphic, bsd23480 1 /a "SDK_02.BMP"

Processing the WM_CREATE Message
The example in Creating a Combo-box Toolbar processes the WM_CREATE message to create
two combo box controls as child windows. It then subclasses the edit controls (selection fields) in
each combo box because they receive the character input for simple and drop-down combo box.
The application gets the handle of each edit control by using the ChildWindowFromPoint
function.

To subclass the edit controls, the application calls the SetWindowLong function, replacing the
address of the class window procedure with the address of the application-defined SubClassProc
function. The address of the original window procedure is saved in the global variable
lpfnEditWndProc.

SubClassProc intercepts TAB, ESC, and ENTER keys and notifies the toolbar window by sending
application-defined messages (WM_TAB, WM_ESC, and WM_ENTER). SubClassProc uses the
CallWindowProc function to pass most messages to the original window procedure,
lpfnEditWndProc.

Processing the WM_SETFOCUS Message
When the toolbar window receives the input focus, it immediately sets the focus to the first combo
box in the toolbar. To do so, the example in Creating a Combo-box Toolbar calls the SetFocus
function in response to the WM_SETFOCUS message.

Processing the Application-Defined Messages
In the example in Creating a Combo-box Toolbar, SubClassProc sends application-defined
messages to the toolbar window when the user presses the TAB, ESC, or ENTER key in a combo
box. The WM_TAB message is sent for the TAB key, the WM_ESC message for the ESC key, and
the WM_ENTER message for the ENTER key.

The example processes the WM_TAB message by setting the focus to the next combo box in the
toolbar. It processes the WM_ESC message by setting the focus to the main application window.

In response to the WM_ENTER message, the example ensures that the current selection for the
combo box is valid and then sets the focus to the main application window. If the combo box
contains no current selection, the example uses the CB_FINDSTRINGEXACT message to search
for a list item that matches the contents of the selection field. If there is a match, the example sets
the current selection; otherwise, it adds a new list item.

Creating a Combo-box Toolbar
Following are the window procedure for the toolbar and the subclass procedure for the two combo
boxes.#define WM_TAB (WM_USER)
#define WM_ESC (WM_USER + 1)
#define WM_ENTER (WM_USER + 2)
HWND hwndMain;
HWND hwndEdit;
WNDPROC lpfnEditWndProc; /* original window procedure for */
/* the combo box edit windows */
int cyToolbar; /* toolbar window height */
/**

FUNCTION: ToolbarWindowProc
PURPOSE: Window procedure for the toolbar window

***/
LRESULT CALLBACK ToolbarWindowProc(hwnd, msg, wParam, lParam)
HWND hwnd;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

static HWND hwndEdit1;
static HWND hwndEdit2;
static HWND hwndCombo1;
static HWND hwndCombo2;
.
.
.
POINT pt;
DWORD dwBaseUnits;
HWND hwndCombo;
DWORD dwIndex;
switch (msg) {
case WM_CREATE:
/* Create two combo box child windows. */
dwBaseUnits = GetDialogBaseUnits();
hwndCombo1 = CreateWindow("COMBOBOX", "",
CBS_DROPDOWN | WS_CHILD | WS_VISIBLE,
(6 * LOWORD(dwBaseUnits)) / 4,
(2 * HIWORD(dwBaseUnits)) / 8,
(100 * LOWORD(dwBaseUnits)) / 4,
(50 * HIWORD(dwBaseUnits)) / 8,
hwnd, NULL, hinst, NULL);
hwndCombo2 = CreateWindow("COMBOBOX", "",
CBS_DROPDOWN | WS_CHILD | WS_VISIBLE,
(112 * LOWORD(dwBaseUnits)) / 4,
(2 * HIWORD(dwBaseUnits)) / 8,
(100 * LOWORD(dwBaseUnits)) / 4,
(50 * HIWORD(dwBaseUnits)) / 8,
hwnd, NULL, hinst, NULL);
/* Get the edit window handle for each combo box. */
pt.x = 1;
pt.y = 1;
hwndEdit1 = ChildWindowFromPoint(hwndCombo1, pt);
hwndEdit2 = ChildWindowFromPoint(hwndCombo2, pt);
/*
* Change the window procedure for both edit windows
* to the subclass procedure.
*/

lpfnEditWndProc = (WNDPROC) SetWindowLong(hwndEdit1,
GWL_WNDPROC, (DWORD) SubClassProc);
SetWindowLong(hwndEdit2, GWL_WNDPROC,
(DWORD) SubClassProc);
break;
case WM_SETFOCUS:
SetFocus(hwndCombo1);
break;
case WM_TAB:
if (GetFocus() == hwndEdit1)
SetFocus(hwndCombo2);
else
SetFocus(hwndCombo1);
break;
case WM_ESC:
hwndCombo = GetFocus() == hwndEdit1 ?
hwndCombo1 : hwndCombo2;
/* Clear the current selection. */
SendMessage(hwndCombo, CB_SETCURSEL,
(WPARAM) (-1), 0);
/* Set the focus to the main window. */
SetFocus(hwndMain);
break;
case WM_ENTER:
hwndCombo = GetFocus() == hwndEdit1 ?
hwndCombo1 : hwndCombo2;
SetFocus(hwndMain);
/* If there is no current selection, set one. */
if (SendMessage(hwndCombo, CB_GETCURSEL, 0, 0)

== CB_ERR) {
if (SendMessage(hwndCombo, WM_GETTEXT,

sizeof(achTemp), (LPARAM) achTemp) == 0)
break; /* empty selection field */
dwIndex = SendMessage(hwndCombo,
CB_FINDSTRINGEXACT, (WPARAM) (-1),
(LPARAM) achTemp);
/* Add the string, if necessary, and select it. */
if (dwIndex == CB_ERR)
dwIndex = SendMessage(hwndCombo, CB_ADDSTRING,

0, (LPARAM) achTemp);
if (dwIndex != CB_ERR)
SendMessage(hwndCombo, CB_SETCURSEL,

dwIndex, 0);
}
break;
.
. /* Process additional messages. */
.
default:
return DefWindowProc(hwnd, msg, wParam, lParam);
}
return 0;

}

/**
FUNCTION: SubClassProc
PURPOSE: Process TAB and ESCAPE keys, and pass all

other messages to the class window
procedure.
***/
LRESULT CALLBACK SubClassProc(hwnd, msg, wParam, lParam)
HWND hwnd;
UINT msg;
WPARAM wParam;
LPARAM lParam;
{

switch (msg) {
case WM_KEYDOWN:
switch (wParam) {
case VK_TAB:
SendMessage(hwndToolbar, WM_TAB, 0, 0);
return 0;
case VK_ESCAPE:
SendMessage(hwndToolbar, WM_ESC, 0, 0);
return 0;
case VK_RETURN:
SendMessage(hwndToolbar, WM_ENTER, 0, 0);
return 0;
}
break;
case WM_KEYUP:
case WM_CHAR:
switch (wParam) {
case VK_TAB:
case VK_ESCAPE:
case VK_RETURN:
return 0;
}
}
/*

* Call the original window procedure for default
* processing.
*/

return CallWindowProc(lpfnEditWndProc, hwnd,
msg, wParam, lParam);

}

Combo Box Reference
The following functions, structures and messages are associated with combo boxes.

Combo Box Functions
Following are the functions used with combo boxes.
DlgDirListComboBox
DlgDirSelectEx

DlgDirSelectComboBoxEx

Combo Box Structures
The following structures are used with combo boxes.
COMPAREITEMSTRUCT
DRAWITEMSTRUCT

MEASUREITEMSTRUCT

Combo Box Messages
Following are the messages used with combo boxes.
CB_ADDSTRING
CB_DELETESTRING
CB_DIR
CB_FINDSTRING
CB_FINDSTRINGEXACT
CB_GETCOUNT
CB_GETCURSEL
CB_GETDROPPEDCONTROLRECT
CB_GETDROPPEDSTATE
CB_GETDROPPEDWIDTH
CB_GETEDITSEL
CB_GETEXTENDEDUI
CB_GETHORIZONTALEXTENT
CB_GETITEMDATA
CB_GETITEMHEIGHT
CB_GETLBTEXT
CB_GETLBTEXTLEN
CB_GETLOCALE
CB_GETTOPINDEX
CB_INITSTORAGE
CB_INSERTSTRING
CB_LIMITTEXT
CB_RESETCONTENT
CB_SELECTSTRING
CB_SETCURSEL
CB_SETDROPPEDWIDTH
CB_SETEDITSEL
CB_SETEXTENDEDUI
CB_SETHORIZONTALEXTENT
CB_SETITEMDATA
CB_SETITEMHEIGHT
CB_SETLOCALE
CB_SETTOPINDEX
CB_SHOWDROPDOWN
CBN_CLOSEUP
CBN_DBLCLK
CBN_DROPDOWN
CBN_EDITCHANGE
CBN_EDITUPDATE
CBN_ERRSPACE
CBN_KILLFOCUS
CBN_SELCHANGE
CBN_SELENDCANCEL
CBN_SELENDOK
CBN_SETFOCUS
WM_COMPAREITEM
WM_DRAWITEM

WM_MEASUREITEM

Edit ControlsMicrosoft® Windows® provides dialog boxes and controls to support communication between the
application and the user. An edit control is a rectangular control window typically used in a dialog
box to permit the user to enter and edit text from the keyboard.

About Edit Controls
An edit control is selected and receives the input focus when a user clicks the mouse inside it or
presses the TAB key. After it is selected, the edit control displays its text (if any) and a flashing
caret that indicates the insertion point. The user can then enter text, move the insertion point, or
select text to be moved or deleted by using the keyboard or the mouse. An edit control can send
notification messages to its parent window in the form of WM_COMMAND messages. For more
information about messages from an edit control, see Edit Control Notification Messages. A parent
window can send messages to an edit control in a dialog box by calling the
SendDlgItemMessage function. Each of the messages sent to edit controls are discussed in this
overview.

Windows provides both single line edit controls (sometime called SLEs) and multiline edit controls
(sometimes called MLEs). Edit controls belong to the EDIT window class.

A combo box is a control that combines much of the functionality of an edit control and a list box.
In a combo box, the edit control displays the current selection and the list box presents options a
user can select. For more information about combo boxes, see Combo Boxes.

Many developers use the dialog boxes provided in the common dialog box library (COMDLG32.
DLL) to perform tasks that otherwise might require customized edit controls. For information about
common dialog boxes, see Common Dialog Box Library.

Edit Control Styles
Windows provides several edit control styles. An individual edit control can have several styles at
the same time. Most developers use standalone tools to develop dialog boxes and so may not
need to specify edit control styles explicitly. If an application creates an edit control using the
CreateWindow or CreateWindowEx function, however, it must specify these edit control styles.

Every edit control specifies a combination of style values that define the appearance and features
of the edit control. The style values can establish the appearance of a single-line or multiline edit
control, align the text in the control, and determine how, and even if, text appears in the edit
control. The number and type of styles the application uses depend on the type and purpose of
the edit control.

There are two line styles for edit controls. The default is a single-line edit control that doesn't
require an associated style. An application can create a multiline edit control by using the
ES_MULTILINE style.

There are three styles that cause Windows to align the text in an edit control. The ES_LEFT,
ES_CENTER, and ES_RIGHT styles determine whether text is aligned on the left, center, or right,
respectively. These styles apply only to multiline edit controls.

An application can use a style to determine how Windows displays text that a user enters into an
edit control. The ES_LOWERCASE style converts the text into lowercase characters; the
ES_UPPERCASE style converts the text into uppercase characters. Some applications may need
to convert the text in a Windows string (such as a filename) into a specific character set. The
ES_OEMCONVERT style ensures the proper conversion of characters in these instances. For
more information about character sets, see Consoles and Character-Mode Support.

When the amount of text to be displayed exceeds the size of the edit control, an application can
use two styles to scroll the text through the edit control. The ES_AUTOHSCROLL style
automatically scrolls text horizontally in single-line and multiline edit controls. When the application
has a multiline edit control, it can also use the ES_AUTOVSCROLL style to automatically scroll
text vertically, if necessary.

Other available styles define different aspects of an edit control. The ES_NUMBER style
(available in version 4.0 or later) restricts input to the edit control to digits only. The
ES_NOHIDESEL style specifies that the selected text is not hidden when the edit control loses the
keyboard focus. The ES_READONLY style makes the edit control read-only. The
ES_PASSWORD style displays all characters in the edit control as asterisks. (An application can
define a different character to display by using the EM_SETPASSWORDCHAR message, as
described later in this topic.) In multiline edit controls, an application can specify the
ES_WANTRETURN style to request that Windows insert a carriage return when the user presses
the ENTER key in the edit control.

By default, an edit control has no border. To give it one, an application can use the WS_BORDER
window style.

The Text Buffer
Windows stores edit control text in a buffer and copies it to the control, as necessary. This section
discusses the tools Windows provides to allocate and initialize the buffer and to change its
characteristics.

Allocating a Text Buffer
When Windows creates an edit control, it automatically creates a text buffer, sets its initial size,
and increases the size as necessary. The size can be up to a predefined limit of approximately 32
kilobytes for single-line edit controls. Because this limit can change, it is called a soft limit. An
application can set a hard limit to the buffer size by sending an EM_SETLIMITTEXT message to
the edit control. If the buffer exceeds either limit, Windows sends the application an
EN_ERRSPACE message. An application can retrieve the current text limit by sending an
EM_GETLIMITTEXT message.

Windows typically creates an edit control buffer in a dialog box, using memory outside the
application's data segment. An application can suppress this default allocation behavior and
create the buffer from its local heap by using the DS_LOCALEDIT style when creating the edit
control. An application that uses the DS_LOCALEDIT style is responsible for all buffer allocations.
To make the initial allocation, an application can call the LocalAlloc function and pass the
returned buffer handle to the edit control by sending it an EM_SETHANDLE message. To make
subsequent allocations (in response to an EN_ERRSPACE message, for example), an application
should save the current buffer content (if necessary) and obtain a new buffer as follows:

1. Retrieve the handle of the memory currently allocated for the text in a multiline edit control
by sending the control an EM_GETHANDLE message.

2. Free the buffer by calling the LocalFree function.
3. Obtain a new buffer (and buffer handle) by calling LocalAlloc.
4. Give the buffer handle to Windows by sending the control an EM_SETHANDLE message.

The EM_SETHANDLE and EM_GETHANDLE messages apply only to multiline edit controls.

An application that uses the default allocation behavior (that is, does not use the DS_LOCALEDIT
style) must not send EM_SETHANDLE and EM_GETHANDLE messages to the edit control.

Sending an EM_SETHANDLE message has several side effects: it clears the undo flag (making
the EM_CANUNDO message return zero), it clears the modify flag (making the EM_GETMODIFY
message return zero), and it redraws the edit control window.

Initializing a Text Buffer
An application can initialize or reinitialize an edit control's text buffer by calling the
SetDlgItemText function. An application can retrieve the content of a text buffer by calling the
GetDlgItemText function.

Making a Text Buffer Read-Only
For each edit control, Windows maintains a read-only flag that indicates whether the control's text
is read-write (the default) or read-only. An application can set the read-write or read-only flag for
the text by sending the control an EM_SETREADONLY message. To determine whether an edit
control is read-only, an application can call the GetWindowLong function using the GWL_STYLE
constant. The EM_SETREADONLY message applies to both single-line and multiline edit
controls.

Changing the Formatting Rectangle
The visibility of an edit control's text is governed by the dimensions of its window rectangle and its
formatting rectangle. The window rectangle is the client area of the window containing the edit
control. The formatting rectangle is a construct maintained by Windows for formatting the text
displayed in the window rectangle. When an edit control is first displayed, the two rectangles are
identical on the screen. An application can make the formatting rectangle larger than the window
rectangle (thereby limiting the visibility of the edit control's text) or smaller than the window
rectangle (thereby creating extra white space around the text).

An application can set the coordinates of an edit control's formatting rectangle by sending it an
EM_SETRECT message. The EM_SETRECT message also automatically redraws the edit
control's text. To establish the coordinates of the formatting rectangle without redrawing the
control's text, an application can send the control an EM_SETRECTNP message. To retrieve the
coordinates of the formatting rectangle, an application can send the control an EM_GETRECT
message. These messages apply to multiline edit controls only.

Text Operations
Windows automatically processes all user-initiated text operations and notifies the application
when the operations are completed. This section discusses user-initiated text operations and the
application's response.

Character Sets
Windows (except version 4.0) supports two character sets: Unicode™, a two-byte character set,
and ANSI, a one-byte character set that is a strict subset of Unicode. In ANSI, n characters equals
n bytes, but in Unicode, n characters equals 2n bytes. For more information about Unicode and
character sets, see Unicode and Character Sets.

Fonts
An application can change the font that an edit control uses by sending the WM_SETFONT
message. Most applications do this while processing the WM_INITDIALOG message. Changing
the font does not change the size of the edit control; applications that send the WM_SETFONT
message may have to retrieve the font metrics for the text and recalculate the size of the edit
control. For more information about fonts and font metrics, see Fonts and Text.

Selecting an Edit Control
The user can select an edit control by clicking it with the mouse or by tabbing to it. The "tabbing"
method is part of a predefined keyboard interface that Windows provides. For a complete
description of this interface, see Dialog Boxes.) When the user selects an edit control, Windows
gives the control the keyboard focus and highlights its text by using reverse video.

Selecting Text
After selecting an edit control, the user can select text in the control by using the mouse or the
keyboard. An application can retrieve the starting and ending character positions of the current
selection in an edit control by sending the control an EM_GETSEL message. The return value for
the ending position is one greater than the last character in the selection (that is, the position of
the first character following the last selected character).

An application can also select text in an edit control by sending the control an EM_SETSEL
message with the starting and ending character indices for the selection. For example, the
application can use EM_SETSEL with EM_REPLACESEL to delete text from an edit control.

These three messages apply to both single-line and multiline edit controls.

Replacing Text
An application can replace selected text in an edit control by sending the control an
EM_REPLACESEL message with a pointer to the replacement text. If there is no current
selection, EM_REPLACESEL inserts the replacement text at the insertion point. The application
may receive an EN_ERRSPACE notification message if the replacement text exceeds the
available memory. This message applies to both single-line and multiline edit controls.

An application can use EM_REPLACESEL to replace part of an edit control's text or the
SetDlgItemText function to replace all of it.

Cut, Copy, Paste, and Clear Operations
Windows provides four messages for moving text between an edit control and the clipboard. The
WM_COPY message copies the current selection (if any) from an edit control to the clipboard
without deleting it from the edit control. The WM_CUT message deletes the current selection, if
any, in the edit control and copies the deleted text to the clipboard. The WM_CLEAR message
deletes the current selection (if any) from an edit control, but does not copy it to the clipboard
(unless the user pressed the SHIFT key). The WM_PASTE message copies text from the clipboard
into an edit control at the insertion point. These four messages apply to both single-line and
multiline edit controls.

With version 4.0 or later, an edit control includes a built in context menu that makes it easy for the
user to move text between the edit control and the clipboard. The context menu appears when the
user clicks the control using the right mouse button. The menu items in the context menu include
Undo, Cut, Copy, Paste, Delete, and Select All.

Modifying Text
The user can select, delete, or move text in an edit control. Windows maintains an internal flag for
each edit control indicating whether the content of the control has been modified. Windows clears
this flag when it creates the control and sets the flag whenever the text in the control is modified.
An application can retrieve the modification flag by sending the control an EM_GETMODIFY
message and set or clear the modification flag by sending the control an EM_SETMODIFY
message. These messages apply to both single-line and multiline edit controls.

Limiting User-Entered Text
The default limit to the amount of text a user can enter in an edit control is 32 kilobytes. An
application can change the amount of text the user can enter by sending the control an
EM_SETLIMITTEXT message. This message sets a hard limit to the number of bytes the user
can enter into an edit control, but affects neither text that is already in the control when the
message was sent nor text copied to the control by the SetDlgItemText function or the
WM_SETTEXT message. For example, suppose that the application uses the SetDlgItemText
function to place 500 bytes in an edit control, and the user also enters 500 bytes (1000 bytes total)
. If the application then sends an EM_SETLIMITTEXT message limiting user-entered text to 300
bytes, the 1000 bytes already in the edit control remain there, and the user cannot add any more
text. On the other hand, if the application sends an EM_SETLIMITTEXT message limiting user-
entered text to 1300 bytes, the 1000 bytes remain, but the user can add 300 more bytes.

When the user reaches the character limit of an edit control, Windows sends the application a
WM_COMMAND message containing an EN_MAXTEXT notification message. This notification
message does not mean that memory has been exhausted, but that the limit for user-entered text
has been reached; the user cannot enter any more text. To change this limit, an application must
send the control a new EM_SETLIMITTEXT message with a higher limit.

As an example of the use of EM_SETLIMITTEXT and EN_MAXTEXT, suppose that the
application must limit the user to no more than four characters in an edit control. The application
would use EM_SETLIMITTEXT to specify a four-character limit. If the user tried to enter a fifth
character, Windows would send an EN_MAXTEXT notification message to the application.

Character and Line Operations
The Microsoft® Win32® application programming interface (API) provides several messages that
return information about the characters and lines in an edit control. Most of the messages return
an index, usually a zero-based number, to refer to a character or line. Given this, a single-line edit
control containing n characters, the line index is zero and the characters are indexed from zero to
n - 1. In a multiline edit control containing m lines and n characters, the lines are indexed from
zero to m - 1, and the characters are indexed from zero to n - 1. Note that character indexing
ignores linebreaks.

An application can determine the number of characters in an edit control by sending the
WM_GETTEXTLENGTH message to the edit control. This message returns the length, in
characters (not including the terminating null character), of the text in a single-line or multiline edit
control. The EM_LINELENGTH message returns the length, in characters, of a line specified by
the character index of a character in the line. The returned length does not include any selected
characters. An application can use these messages in a single-line or multiline edit control.

The EM_GETFIRSTVISIBLELINE message returns the zero-based index of the uppermost visible
line in a multiline edit control, or the zero-based index of the first visible character in a single-line
edit control. An application can copy a line from an edit control to a buffer by sending the
EM_GETLINE message to the edit control. The line is specified by its line index and the first word
of the receiving buffer contains the maximum number of bytes to be copied to the buffer. The
return value is the number of bytes copied. This message can also be used in a single-line or
multiline edit control.

There are unique messages available to return the information about a line in a multiline edit
control. The EM_GETLINECOUNT message returns the number of lines in an edit control. An
application can determine the index of a character in a specific line by using the
EM_LINEFROMCHAR and EM_LINEINDEX messages. The EM_LINEFROMCHAR message
returns the index of the line containing a specified character index. This message is the reverse of
the EM_LINEINDEX message, which returns the index of the first character in a specified line.

Scrolling Text in an Edit Control
An application can implement scrolling in an edit control by using the automatic scrolling styles
discussed in Edit Control Styles or by explicitly adding scroll bars to the control. To add a
horizontal scroll bar, use the style WS_HSCROLL; to add a vertical scroll bar, use the style
WS_VSCROLL. An edit control with scroll bars processes its own scroll bar messages. For
detailed information about adding scroll bars to edit controls, see Scroll Bars.

Windows provides three messages that an application can send to an edit control with scroll bars.
The EM_LINESCROLL message can scroll a multiline edit control both vertically and horizontally.
The lParam parameter specifies the number of lines to scroll vertically starting from the current
line and the wParam parameter specifies the number of characters to scroll horizontally, starting
from the current character. The edit control doesn't acknowledge horizontal scrolling messages if
it has the ES_CENTER or ES_RIGHT style. This message applies to multiline edit controls only.

The EM_SCROLL message scrolls a multiline edit control vertically, which is the same effect as
sending a WM_VSCROLL message. The wParam parameter specifies the scrolling action. The
EM_SCROLL message applies to multiline edit controls only.

The EM_SCROLLCARET message scrolls the caret into view in an edit control. This was done in
previous versions of Windows by specifying wParam = FALSE in an EM_SETSEL message. A
Win32-based application should use the EM_SCROLLCARET message for the task.

Tab Stops and Margins
An application can set tab stops in a multiline edit control by using the EM_SETTABSTOPS
message. (The default for a tab stop is eight characters.) When an application adds text to the edit
control, tab characters in the text automatically generate space up to the next tab stop. The
EM_SETTABSTOPS message does not automatically cause Windows to redraw the text. To do
that, an application can call the InvalidateRect function. The EM_SETTABSTOPS message
applies to multiline edit controls only.

An application can set width of the left and right margins for an edit control by using the
EM_SETMARGINS message. After sending this message, Windows redraws the edit control to
reflect the new margin settings. An application can retrieve the width of the left or right margin by
sending the EM_GETMARGINS message. By default, the edit control margins are set to be just
wide enough to accommodate the largest character horizontal overhang (negative ABC widths) for
the font currently in use in the edit control.

Password Characters
An application can use a password character in an edit control to conceal user input. When a
password character is set, it is displayed in place of each character the user types. When a
password character is removed, the control displays the characters the user types. If the
application creates an edit control using the style ES_PASSWORD, the default password
character is an asterisk (*). An application can use the EM_SETPASSWORDCHAR message to
remove or define a different password character and the EM_GETPASSWORDCHAR message to
retrieve the current password character. These messages apply to single-line edit controls only.

Using Integers
Windows provides two integer-conversion functions for edit controls designed to contain numbers
only. The SetDlgItemInt function creates the string representation of a specified integer (signed
or unsigned) and sends the string to an edit control. SetDlgItemInt returns no value. The
GetDlgItemInt function creates an integer (signed or unsigned) from its string representation in an
edit control. GetDlgItemInt returns the integer (or an error value).

Undoing Text Operations
Every edit control maintains an undo flag that indicates whether an application can reverse (undo)
the most recent operation on the edit control (to undo a text deletion, for example). The edit
control sets the undo flag to indicate that the operation can be undone and resets it to indicate
that the operation cannot be undone. An application can determine the setting of the undo flag by
sending the control an EM_CANUNDO message.

An application can undo the most recent operation by sending the control an EM_UNDO
message. An operation can be undone provided no other edit control operation occurs first. For
example, the user can delete text, replace the text (undo the deletion), and then delete the text
again (undo the replacement). The EM_UNDO message applies to both single-line and multiline
edit controls and always works for single-line edit controls.

An application can reset an edit control's undo flag by sending the control an
EM_EMPTYUNDOBUFFER message. Windows automatically resets the undo flag whenever an
edit control receives an EM_SETHANDLE or WM_SETTEXT message. The SetDlgItemText
function sends a WM_SETTEXT message.

Wordwrap Functions
An application can use wordwrap functions with multiline edit controls to locate the word or word
fragment that should be wrapped to the next line. Using the default wordwrap function provided by
Windows, lines always end at the spaces between words. An application can specify its own
wordwrap function by supplying a EditWordBreakProc wordwrap function and sending an edit
control an EM_SETWORDBREAKPROC message. An application can retrieve the address of the
current wordwrap function by sending the control an EM_GETWORDBREAKPROC message.

An application may direct a multiline edit control to add or remove a soft linebreak character (two
carriage returns and a linefeed) automatically at the end of wrapped text lines. An application can
turn this feature on or off by sending the edit control an EM_FMTLINES message. This message
applies only to multiline edit controls and does not affect a line that ends with a hard linebreak
(one carriage return and a linefeed entered by the user).

Retrieving Points and Characters
An application can determine which character is closest to the specified point in an edit control by
sending the EM_CHARFROMPOS message. The message returns the character index and line
index of the character nearest the point. Similarly, an application can determine the client
coordinates of the specified character in an edit control by sending the EM_POSFROMCHAR
message. The application specifies the index of a character and the message returns the x and y
coordinates of the upper left corner of the character.

Edit Control Notification Messages
The user makes editing requests by using the keyboard and mouse. Windows sends each request
to the edit control's parent window in the form of a WM_COMMAND message. The message
includes the edit control identifier in the low-order word of the wParam parameter, the handle of
the edit control in the lParam parameter, and an edit control notification message corresponding
to the user's action in the high-order word of the wParam parameter.
Portability issue In Microsoft Windows NT®, the placement of the notification code in a notification
message has moved from the lParam parameter to the wParam parameter. Windows 3.x - based
applications that process notification messages must modify this code when porting to Windows
NT.
An application should examine each notification message and respond appropriately. The
following table lists each edit control notification message and the action that generates it.

Notification
message

User action

EN_CHANGE The user has modified text in an edit control.
Windows updates the display before sending
this message (unlike EN_UPDATE).

EN_ERRSPACE The edit control cannot allocate enough
memory to meet a specific request.

EN_HSCROLL The user has clicked the edit control's
horizontal scroll bar. Windows sends this
message before updating the screen.

EN_KILLFOCUS The user has selected another control.
EN_MAXTEXT While inserting text, the user has exceeded the

specified number of characters for the edit
control. Insertion has been truncated. This
message is also sent either when an edit
control does not have the ES_AUTOHSCROLL
style and the number of characters to be
inserted exceeds the width of the edit control or
when an edit control does not have the
ES_AUTOVSCROLL style and the total number
of lines to be inserted exceeds the height of the
edit control.

EN_SETFOCUS The user has selected this edit control.
EN_UPDATE The user has altered the text in the edit control

and Windows is about to display the new text.
Windows sends this message after formatting
the text, but before displaying it, so that the
application can resize the edit control window.

EN_VSCROLL The user has clicked the edit control's vertical
scroll bar. Windows sends this message before
updating the screen.

In addition, the system sends a WM_CTLCOLOREDIT message to an edit control's parent
window before the edit control is drawn. This message contains a handle of the edit control's
display context (DC) and a handle of the child window. The parent window can use these handles
to change the edit control's text and background colors.

Edit Control Default Message Processing
The window procedure for the predefined edit control window class carries out default processing
for all messages that the edit control procedure does not process. When the edit control
procedure returns FALSE for any message, the predefined window procedure checks the
messages and carries out the following default actions.

Message Default action

EM_CANUNDO Returns TRUE if the edit control
operation can be undone.

EM_CHARFROMPOS Returns the character index and line
index of the character nearest the
specified point.

EM_EMPTYUNDOBUFFER Empties the undo buffer and sets the
undo flag retrieved by the
EM_CANUNDO message to FALSE.
Windows automatically clears the undo
flag whenever the edit control receives a
WM_SETTEXT or EM_SETHANDLE
message.

EM_FMTLINES Adds or removes soft linebreak
characters (two carriage returns and a
linefeed) to the ends of wrapped lines in
a multiline edit control. It is not
processed by single-line edit controls.

EM_GETFIRSTVISIBLELINEReturns the zero-based index of the first
visible character in a single-line edit
control or the zero-based index of the
uppermost visible line in a multiline edit
control.

EM_GETHANDLE Returns a handle identifying the buffer
containing the multiline edit control's
text. It is not processed by single-line
edit controls.

EM_GETLIMITTEXT Returns the current text limit, in
characters.

EM_GETLINE Copies characters in a single-line edit
control to a buffer and returns the
number of characters copied. In a
multiline edit control, retrieves a line of
text from the control and returns the
number of characters copied.

EM_GETLINECOUNT Returns the number of lines in the edit
control.

EM_GETMARGINS Returns the widths of the left and right
margins.

EM_GETMODIFY Returns a flag indicating whether the
content of an edit control has been
modified.

EM_GETPASSWORDCHARReturns the character that edit controls
use in conjunction with the
ES_PASSWORD style.

EM_GETRECT Returns the coordinates of the formatting
rectangle in an edit control.

EM_GETSEL Returns the starting and ending
character positions of the current
selection in the edit control.

EM_GETTHUMB Returns the position of the scroll box.
EM_GETWORDBREAKPROCReturns the address of the current

wordwrap function in an edit control.

EM_LINEFROMCHAR Returns the zero-based number of the
line in a multiline edit control that
contains a specified character index This
message is the reverse of the
EM_LINEINDEX message. It is not
processed by single-line edit controls.

EM_LINEINDEX Returns the character of a line in a
multiline edit control. This message is
the reverse of the EM_LINEFROMCHAR
message. It is not processed by single-
line edit controls.

EM_LINELENGTH Returns the length, in characters, of a
single-line edit control. In a multiline edit
control, returns the length, in characters,
of a specified line.

EM_LINESCROLL Scrolls the text vertically in a single-line
edit control or horizontally in a multiline
edit control (when the control has the
ES_LEFT style). The lParam parameter
specifies the number of lines to scroll
vertically, starting from the current line.
The wParam parameter specifies the
number of characters to scroll
horizontally, starting from the current
character.

EM_POSFROMCHAR Returns the client coordinates of the
specified character.

EM_REPLACESEL Replaces the current selection with the
text in an application-supplied buffer,
sends the parent window EN_UPDATE
and EN_CHANGE messages, and
updates the undo buffer.

EM_SCROLL Scrolls the text vertically in a multiline
edit control. This message is equivalent
to sending a WM_VSCROLL message to
the edit control. It is not processed by
single-line edit controls.

EM_SCROLLCARET Scrolls the caret into view in an edit
control. In earlier versions of Windows
this was done via EM_SETSEL using
particular parameters. A Win32-based
application should use
EM_SCROLLCARET.

EM_SETFONT Unsupported.
EM_SETHANDLE Sets a handle to the memory used as a

text buffer, empties the undo buffer,
resets the scroll positions to zero, and
redraws the window.

EM_SETLIMITTEXT Sets the maximum number of characters
the user may enter in the edit control.
For single-line edit controls, this value is
either 0x7FFFFFFE (0x7FFE for version
4.0) or the value of the wParam
parameter, whichever is smaller. For
multiline edit controls, this value is either
0xFFFFFFFF (0xFFFF for version 4.0)
or the value of the wParam parameter,
whichever is smaller.

EM_SETMARGINS Sets the widths of the left and right
margins, and redraws the edit control to
reflect the new margins.

EM_SETMODIFY Sets or clears the modification flag to

indicate whether the edit control has
been modified.

EM_SETPASSWORDCHARDefines the character that edit controls
use in conjunction with the
ES_PASSWORD style.

EM_SETREADONLY Sets or removes the read-only style
(ES_READONLY) in an edit control.

EM_SETRECT Sets the formatting rectangle for the
multiline edit control and redraws the
window. It is not processed by single-
line edit controls.

EM_SETRECTNP Sets the formatting rectangle for the
multiline edit control but does not redraw
the window. It is not processed by
single-line edit controls.

EM_SETSEL Selects a range of characters in the edit
control by setting the starting and ending
positions to be selected.

EM_SETTABSTOPS Sets tab-stop positions in the multiline
edit control. It is not processed by single-
line edit controls.

EM_SETWORDBREAKPROCReplaces the default wordwrap function
with an application-defined wordwrap
function.

EM_UNDO Removes any text that was just inserted
or inserts any deleted characters and
sets the selection to the inserted text. If
necessary, sends the EN_UPDATE and
EN_CHANGE notification messages to
the parent window.

WM_CHAR Writes a character to the single-line edit
control and sends the EN_UPDATE and
EN_CHANGE notification messages to
the parent window. Writes a character to
the multiline edit control. Handles the
accelerator keys for standard functions,
such as CTRL+C for copying and CTRL+V
for pasting. In multiline edit controls, also
processes TAB, and CTRL+TAB
keystrokes to move among the controls
in a dialog box and to insert tabs into
multiline edit controls. Uses the
MessageBeep function for illegal
characters.

WM_CLEAR Clears the current selection, if any, in an
edit control. If there is no current
selection, deletes the character to the
right of the caret. If the user presses the
SHIFT key, this cuts the selection to the
clipboard, or deletes the character to the
left of the caret when there is no
selection. If the user presses the CTRL
key, this deletes the selection, or deletes
to the end of the line when there is no
selection.

WM_COPY Copies text to the clipboard unless the
style is ES_PASSWORD, in which case
the message returns zero.

WM_CREATE Creates the edit control and notifies the
parent window with TRUE for success or
- 1 for failure.

WM_CUT Cuts the selection to the clipboard, or
deletes the character to the left of the
cursor if there is no selection.

WM_ENABLE Causes the rectangle to be redrawn in
gray for single-line edit controls. Returns
the enabled state for single-line and
multiline edit controls.

WM_ERASEBKGND Fills the multiline edit control window
with the current color of the edit control.

WM_GETDLGCODE Returns the following values:
DLGC_WANTCHARS,
DLGC_HASSETSEL, and
DLGC_WANTARROWS. In multiline edit
controls, it also returns
DLGC_WANTALLKEYS. If the user
presses ALT+BACKSPACE, it also returns
DLGC_WANTMESSAGE.

WM_GETFONT Returns the handle of the font being
used by the control, or NULL if the
control uses the system font.

WM_GETTEXT Copies the specified number of
characters to a buffer and returns the
number of characters copied.

WM_GETTEXTLENGTH Returns the length, in characters, of the
text in an edit control. The length does
not include the null- terminating
character.

WM_HSCROLL Scrolls the text in a multiline edit control
horizontally and handles scroll box
movement.

WM_KEYDOWN Performs standard processing of the
virtual-key codes.

WM_KILLFOCUS Removes the keyboard focus of an edit
control window, destroys the caret, hides
the current selection, and notifies the
parent window that the edit control has
lost the focus.

WM_LBUTTONDBLCLK Clears the current selection and selects
the word under the cursor. If the SHIFT
key is down, extends the selection to the
word under the cursor.

WM_LBUTTONDOWN Changes the current insertion point. If
the SHIFT key is down, it extends the
selection to the position of the cursor. In
multiline edit controls, also sets the timer
to automatically scroll when the user
holds down the mouse button outside
the multiline edit control window.

WM_LBUTTONUP Releases the mouse capture and sets
the text insertion point in the single-line
edit control. In a multiline edit control, it
also kills the timer set in the
WM_LBUTTONDOWN message.

WM_MOUSEMOVE Changes the current selection in the
single-line edit control, if the mouse
button is down. In a multiline edit
controls, also sets the timer to
automatically scroll if the user holds
down the mouse button outside the
multiline edit control window.

WM_NCCREATE Points to the CREATESTRUCT structure

for the window. This message is sent to
the WM_CREATE message when a
window is first created.

WM_NCDESTROY Frees all memory associated with the
edit control window, including the text
buffer, undo buffer, tab-stop buffer, and
highlight brush.

WM_PAINT Erases the background, fills the window
with the current color of the edit control
window, draws the border (if any), sets
the font and draws any text, and shows
the text-insertion caret.

WM_PASTE Pastes text from the clipboard into the
edit control window at the caret position.

WM_SETFOCUS Sets the keyboard focus of an edit
control window (shows the current
selection, if it was hidden, and creates
the caret).

WM_SETFONT Sets the font and optionally redraws the
edit control.

WM_SETTEXT Copies text to the single-line edit control,
notifies the parent window when there is
insufficient memory, empties the undo
buffer, and sends the EN_UPDATE and
EN_CHANGE notification messages to
the parent window. In multiline edit
controls, also rewraps the lines (if
necessary) and sets the scroll positions.

WM_SIZE Changes the size of the edit control
window and ensures that the minimum
size accommodates the height and width
of a character.

WM_SYSCHAR Returns TRUE if the user presses ALT+
BACKSPACE; otherwise, it takes no
action.

WM_SYSKEYDOWN Undoes the last action if the user
presses ALT+BACKSPACE; otherwise, it
takes no action.

WM_TIMER Scrolls the text in the edit control window
if the user holds down the mouse button
outside the multiline edit control window.

WM_UNDO Removes any text that was just inserted
or inserts any deleted characters and
sets the selection to the inserted text. If
necessary, sends the EN_UPDATE and
EN_CHANGE notification messages to
the parent window.

WM_VSCROLL Scrolls a multiline edit control vertically
and handles scroll box movement. It is
not processed by single-line edit
controls.

The predefined edit control window procedure passes all other messages to the
DefWindowProc function for default processing.

Using Edit Controls
Edit controls are typically used in dialog boxes, but you can use them in the client area of a
standard window as well. Single-line edit controls are useful for retrieving a single string from the
user. Multiline edit controls make it easy for your application to implement most of the features of
a simple word processor.

· Simple word processing with an edit control
· Using single-line edit controls

Simple Word Processing with an Edit Control
The following example implements much of the functionality of a simple word processor by filling
the client area of a window with a multiline edit control. The system automatically performs
wordwrap operations for this edit control and also handles the processing for the vertical scroll bar
(created by specifying ES_AUTOVSCROLL in the call to the CreateWindow function). The
WM_COMMAND message processes menu items; they allow the user to undo the previous
action, cut or copy selections to the clipboard, paste text from the clipboard, and delete the current
selection.LONG APIENTRY MainWndProc(
HWND hwnd, /* window handle */
UINT message, /* type of message */
UINT wParam, /* additional information*/
LONG lParam) /* additional information*/
{

static HWND hwndEdit;
CHAR lpszTrouble[] = "When in the Course of human Events "

"it becomes necessary for one People "
"to dissolve the Political Bands which "
"have connected them with another, and "
"to assume among the Powers of the "
"Earth, the separate and equal Station "
"to which the Laws of Nature and of "
"Nature's God entitle them, a decent "
"Respect to the Opinions of Mankind "
"requires that they should declare the "
"causes which impel them to the "
"Separation. ";

switch (message) {
case WM_CREATE:
hwndEdit = CreateWindow(
"EDIT",/* predefined class */
NULL, /* no window title */
WS_CHILD | WS_VISIBLE | WS_VSCROLL |
ES_LEFT | ES_MULTILINE | ES_AUTOVSCROLL,
0, 0, 0, 0, /* set size in WM_SIZE message */
hwnd, /* parent window */
(HMENU) ID_EDITCHILD, /* edit control ID */
(HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE),
NULL); /* pointer not needed */
/* Add text to the window. */
SendMessage(hwndEdit, WM_SETTEXT, 0,

(LPARAM) lpszTrouble);
return 0;
case WM_COMMAND:
switch (wParam) {
case IDM_EDUNDO:
/*
* Send WM_UNDO only if there is something
* to be undone.
*/
if (SendMessage(hwndEdit, EM_CANUNDO, 0, 0))

SendMessage(hwndEdit, WM_UNDO, 0, 0);
else

MessageBox(hwndEdit,
"Nothing to undo.",
"Undo notification", MB_OK);

break;
case IDM_EDCUT:
SendMessage(hwndEdit, WM_CUT, 0, 0);
break;
case IDM_EDCOPY:
SendMessage(hwndEdit, WM_COPY, 0, 0);
break;
case IDM_EDPASTE:
SendMessage(hwndEdit, WM_PASTE, 0, 0);
break;
case IDM_EDDEL:
SendMessage(hwndEdit, WM_CLEAR, 0, 0);
break;
case IDM_PASSWORD:
DialogBox(hinst, /* current instance */

"PassBox", /* resource to use*/
hwnd, /* parent handle */
(DLGPROC) PassProc);
break;
case IDM_WRAP:
SendMessage(hwndEdit,

EM_SETWORDBREAKPROC,
(WPARAM) 0,
(LPARAM) (EDITWORDBREAKPROC) WordBreakProc);

SendMessage(hwndEdit,
EM_FMTLINES,
(WPARAM) TRUE,
(LPARAM) 0);

SendMessage(hwndEdit,
EM_SETSEL,
0, -1); /* select all text */

SendMessage(hwndEdit, WM_CUT, 0, 0);
SendMessage(hwndEdit, WM_PASTE, 0, 0);
break;
case IDM_ABOUT:
DialogBox(hinst, /* current instance */

"AboutBox", /* resource to use*/
hwnd, /* parent handle */
(DLGPROC) About);
break;
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
break;
case WM_SETFOCUS:
SetFocus(hwndEdit);
return 0;
case WM_SIZE:
/*
* Make the edit control the size of the window's
* client area.
*/
MoveWindow(hwndEdit,
0, 0, /* starting x- and y-coordinates */
LOWORD(lParam), /* width of client area*/
HIWORD(lParam), /* height of client area */
TRUE);/* repaint window */
return 0;
case WM_DESTROY:
PostQuitMessage(0);
return 0;
default:
return DefWindowProc(hwnd, message, wParam, lParam);
}
return NULL;

}

Using Single-Line Edit Controls
The example in this section demonstrates how to use a window procedure to produce a dialog
box that prompts the user to enter a password.

The single-line edit control in the Password dialog box has the ES_PASSWORD style. By default,
edit controls with this style display an asterisk for each character the user types. This example,
however, uses the EM_SETPASSWORDCHAR message to change the default character from an
asterisk to a plus sign (+).

This window procedure changes the default push button from Cancel to OK as soon as the user
enters text in the edit control. If the user presses the OK button, the window procedure uses the
EM_LINELENGTH and EM_GETLINE messages to retrieve the text.LRESULT CALLBACK PassProc(hDlg, message, wParam, lParam)
HWND hDlg; /* window handle of the dialog box */
UINT message; /* type of message */
UINT wParam; /* message-specific information */
LONG lParam;
{

CHAR lpszPassword[16];
WORD cchPassword;
switch (message) {
case WM_INITDIALOG:
/* Set password character to a plus sign (+) */
SendDlgItemMessage(hDlg,
IDE_PASSWORDEDIT,
EM_SETPASSWORDCHAR,
(WPARAM) '+',
(LPARAM) 0);
/* Set the default push button to "Cancel." */
SendMessage(hDlg,
DM_SETDEFID,
(WPARAM) IDCANCEL,
(LPARAM) 0);
return TRUE;
case WM_COMMAND:
/*
* Set the default push button to "OK" when the user
* enters text.
*/
if(HIWORD (wParam) == EN_CHANGE &&

LOWORD(wParam) == IDE_PASSWORDEDIT)
SendMessage(hDlg,
DM_SETDEFID,
(WPARAM) IDOK,
(LPARAM) 0);
switch(wParam) {
case IDOK:
/* Get number of characters. */
cchPassword = (WORD) SendDlgItemMessage(hDlg,

IDE_PASSWORDEDIT,
EM_LINELENGTH,
(WPARAM) 0,
(LPARAM) 0);

if (cchPassword >= 16) {
MessageBox(hDlg,
"Too many characters.",
"Error",
MB_OK);
EndDialog(hDlg, TRUE);
return FALSE;

}
else if (cchPassword == 0) {

MessageBox(hDlg,
"No characters entered.",
"Error",
MB_OK);
EndDialog(hDlg, TRUE);
return FALSE;

}
/*
* Put the number of characters into first word
* of buffer.
*/
*((LPWORD)lpszPassword) = cchPassword;
/* Get the characters. */
SendDlgItemMessage(hDlg,

IDE_PASSWORDEDIT,
EM_GETLINE,
(WPARAM) 0, /* line 0 */
(LPARAM) lpszPassword);

/* Null-terminate the string. */
lpszPassword[cchPassword] = 0;
MessageBox(hDlg,

lpszPassword,
"Did it work?",
MB_OK);

/* Call a local password-parsing function. */
ParsePassword(lpszPassword);
EndDialog(hDlg, TRUE);
return TRUE;
case IDCANCEL:
EndDialog(hDlg, TRUE);
return TRUE;
}
return 0;
}
return FALSE;
UNREFERENCED_PARAMETER(lParam);

}

Edit Control Reference
The following functions and messages are associated with edit controls.

Edit Control Functions
The following function is used with edit controls.

EditWordBreakProc

Edit Control Messages
Following are the messages used with edit controls.
EM_CANUNDO
EM_CHARFROMPOS
EM_EMPTYUNDOBUFFER
EM_FMTLINES
EM_GETFIRSTVISIBLELINE
EM_GETHANDLE
EM_GETLIMITTEXT
EM_GETLINE
EM_GETLINECOUNT
EM_GETMARGINS
EM_GETMODIFY
EM_GETPASSWORDCHAR
EM_GETRECT
EM_GETSEL
EM_GETTHUMB
EM_GETWORDBREAKPROC
EM_LIMITTEXT
EM_LINEFROMCHAR
EM_LINEINDEX
EM_LINELENGTH
EM_LINESCROLL
EM_POSFROMCHAR
EM_REPLACESEL
EM_SCROLL
EM_SCROLLCARET
EM_SETHANDLE
EM_SETLIMITTEXT
EM_SETMARGINS
EM_SETMODIFY
EM_SETPASSWORDCHAR
EM_SETREADONLY
EM_SETRECT
EM_SETRECTNP
EM_SETSEL
EM_SETTABSTOPS
EM_SETWORDBREAK
EM_SETWORDBREAKPROC
EM_UNDO
EN_CHANGE
EN_ERRSPACE
EN_HSCROLL
EN_KILLFOCUS
EN_MAXTEXT
EN_SETFOCUS
EN_UPDATE
EN_VSCROLL
WM_COMMAND
WM_COPY
WM_CTLCOLOREDIT
WM_CUT
WM_PASTE

WM_UNDO

List BoxesThe Microsoft® Win32® application programming interface (API) provides dialog boxes and
controls to support communication between an application and the user. A list box is a control
window that contains a list of items from which the user can choose.

About List Boxes
List box items can be represented by text strings, bitmaps, or both. If the list box is not large
enough to display all the list box items at once, the list box can provide a scroll bar. The user
maneuvers through the list box items, scrolling the list when necessary, and selects or removes
the selection from items. Selecting a list box item changes its visual appearance, usually by
changing the text and background colors to the colors specified by the operating system metrics
for selected items. When the user selects an item or removes the selection from an item, Windows
sends a notification message to the parent window of the list box.

A dialog box procedure is responsible for initializing and monitoring its child windows, including
any list boxes. The dialog box procedure communicates with the list box by sending messages to
it and by processing the notification messages sent by the list box. For more information about
dialog boxes, see Dialog Boxes.

For general information about controls, see Controls.

List Box Styles
The Win32 API provides two general styles of list box: single-selection (the default style) and
multiple-selection. In a single-selection list box, the user can select only one item at a time. In a
multiple-selection list box, the user can select more than one item at a time; an application must
specify either the LBS_MULTIPLESEL or the LBS_EXTENDEDSEL style for a multiple-selection
list box.

The Win32 API provides many other list box and window styles that control the appearance and
operation of a list box. These styles indicate whether list box items are sorted, arranged in multiple
columns, drawn by the application, and so on. The dimensions and styles of a list box are typically
defined in a dialog box template included in an application's resources. For information about how
to create a dialog box template and include it in an application, see the documentation provided
with your development tools.

To create a list box by using the CreateWindow or CreateWindowEx function, use the LISTBOX
class, appropriate window style constants, and the following style constants to define the list box.

List box style Description

LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for
the list box when the box does not
contain enough items to scroll. If you do
not specify this style, the scroll bar is
hidden when the list box does not
contain enough items.

LBS_EXTENDEDSEL Allows multiple items to be selected by
using the SHIFT key and the mouse or
special key combinations.

LBS_HASSTRINGS Specifies that a list box contains items
consisting of strings. The list box
maintains the memory and addresses
for the strings so that the application can
use the LB_GETTEXT message to
retrieve the text for a particular item. By
default, all list boxes except owner-
drawn list boxes have this style. You can
create an owner-drawn list box either
with or without this style.

LBS_MULTICOLUMN Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets
the width of the columns.

LBS_MULTIPLESEL Turns string selection on or off each
time the user clicks or double-clicks a
string in the list box. The user can select
any number of strings.

LBS_NODATA Obsolete.
LBS_NOINTEGRALHEIGHT Specifies that the size of the list box is

exactly the size specified by the
application when it created the list box.
Normally, Windows sizes a list box so
that the list box does not display partial
items.

LBS_NOREDRAW Specifies that the list box's appearance
is not updated when changes are made.
You can change this style by sending a
WM_SETREDRAW message at any
time.

LBS_NOSEL Specifies that the list box contains items
that can be viewed but not selected.

LBS_NOTIFY Notifies the parent window with an input
message whenever the user clicks or

double-clicks a string in the list box.
LBS_OWNERDRAWFIXED Specifies that the owner of the list box is

responsible for drawing its contents and
that the items in the list box are the
same height. The owner window
receives a WM_MEASUREITEM
message when the list box is created
and a WM_DRAWITEM message when
a visual aspect of the list box has
changed.

LBS_OWNERDRAWVARIABLESpecifies that the owner of the list box is
responsible for drawing its contents and
that the items in the list box are variable
in height. The owner window receives a
WM_MEASUREITEM message for each
item in the combo box when the combo
box is created and a WM_DRAWITEM
message when a visual aspect of the
combo box has changed.

LBS_SORT Sorts strings in the list box
alphabetically.

LBS_STANDARD Sorts strings in the list box
alphabetically. The parent window
receives an input message whenever
the user clicks or double-clicks a string.
The list box has borders on all sides.

LBS_USETABSTOPS Enables a list box to recognize and
expand tab characters when drawing its
strings. The default tab positions are 32
dialog box units. A dialog box unit is a
horizontal or vertical distance. One
horizontal dialog box unit is equal to 0.
25 of the current dialog box base-width
unit. Windows calculates these units
based on the height and width of the
current system font. The
GetDialogBaseUnits function returns
the current dialog box base units in
pixels.

LBS_WANTKEYBOARDINPUTSpecifies that the owner of the list box
receives WM_VKEYTOITEM messages
whenever the user presses a key and
the list box has the input focus. This
enables an application to perform
special processing on the keyboard
input.

List Box Functions Overview
The Win32 API provides two functions specific to list boxes. The DlgDirList function fills a list box
with the files and directories in a specified path. The DlgDirSelectEx function retrieves the current
selection in a list box initialized by DlgDirList. These functions make it possible for the user to
select a file from a list box without typing the location and name of the file.

Notification Messages from List Boxes
When an event occurs in a list box, the list box sends a notification message to the dialog box
procedure of the owner window. List box notification messages are sent when a user selects,
double-clicks, or cancels a list box item; when the list box receives or loses the keyboard focus;
and when the system cannot allocate enough memory for a list box request. A notification
message is sent as a WM_COMMAND message in which the low-order word of the wParam
parameter contains the list box identifier, the high-order word of wParam contains the notification
message, and the lParam parameter contains the control window handle.
Portability Issue The placement of notification message has moved from the lParam parameter to
the wParam parameter. Windows 3.x - based applications that process notification messages
must be modified in this respect when they are ported to Win32-based applications.
A dialog box procedure is not required to process these messages; the default window procedure
processes them.

An application should monitor and process the following list box notification messages.

Notification message Description

LBN_DBLCLK The user double-clicks an item in the list
box.

LBN_ERRSPACE The list box cannot allocate enough
memory to fulfill a request.

LBN_KILLFOCUS The list box loses the keyboard focus.
LBN_SELCANCEL The user cancels the selection of an

item in the list box.
LBN_SELCHANGE The selection in a list box is about to

change.
LBN_SETFOCUS The list box receives the keyboard

focus.

Messages to List Boxes
A dialog box procedure can send messages to a list box to add, delete, examine, and change list
box items. For example, a dialog box procedure could send an LB_ADDSTRING message to a list
box to add an item, and an LB_GETSEL message to determine whether the item is selected.
Other messages set and retrieve information about the size, appearance, and behavior of the list
box. For example, the LB_SETHORIZONTALEXTENT message sets the scrollable width of a list
box. A dialog box procedure can send any message to a list box by using the SendMessage or
SendDlgItemMessage function.

A list box item is often referenced by its index, an integer that represents the item's position in the
list box. The index of the first item in a list box is 0, the index of the second item is 1, and so on.

The following table describes how the predefined list box procedure responds to list box
messages.

Message Response

LB_ADDFILE Inserts a file into a directory list box
filled by the DlgDirList function and
retrieves the list box index of the
inserted item.

LB_ADDSTRING Adds a string to a list box and returns
its index.

LB_DELETESTRING Removes a string from a list box and
returns the number of strings
remaining in the list.

LB_DIR Adds a list of filenames to a list box
and returns the index of the last
filename added.

LB_FINDSTRING Returns the index of the first string in
the list box that matches a given prefix.

LB_FINDSTRINGEXACT Returns the index of the string that is
equivalent to or prefixed by a given
prefix.

LB_GETANCHORINDEX Returns the index of the item that the
mouse last selected.

LB_GETCARETINDEX Returns the index of the item that has
the focus rectangle.

LB_GETCOUNT Returns the number of items in the list
box.

LB_GETCURSEL Returns the index of the currently
selected item.

LB_GETHORIZONTALEXTENTReturns the scrollable width, in pixels,
of a list box.

LB_GETITEMDATA Returns the 32-bit value associated
with the given item.

LB_GETITEMHEIGHT Returns the height, in pixels, of an item
in a list box.

LB_GETITEMRECT Retrieves the client coordinates of the
given list box item.

LB_GETLOCALE Retrieves the locale of the list box. The
high-order word contains the country
code and the low-order word contains
the language identifier.

LB_GETSEL Returns the selection state of a list box
item.

LB_GETSELCOUNT Returns the number of selected items
in a multiple-selection list box.

LB_GETSELITEMS Creates an array of the indexes of all
selected items in a multiple-selection

list box and returns the total number of
selected items.

LB_GETTEXT Retrieves the string associated with a
given item and the length of the string.

LB_GETTEXTLEN Returns the length, in characters, of
the string associated with a given item.

LB_GETTOPINDEX Returns the index of the first visible
item in a list box.

LB_INITSTORAGE Allocates memory for the specified
number of items and their associated
strings.

LB_INSERTSTRING Inserts a string at a given index in a list
box.

LB_ITEMFROMPOINT Retrieves the zero-based index of the
item nearest the specified point in a list
box.

LB_RESETCONTENT Removes all items from a list box.
LB_SELECTSTRING Selects the first string it finds that

matches a given prefix.
LB_SELITEMRANGE Selects a given range of items in a list

box.
LB_SELITEMRANGEEX Selects a given range of items if the

index of the first item in the range is
less than the index of the last item in
the range. Cancels the selection in the
range if the index of the first item is
greater than the last.

LB_SETANCHORINDEX Sets the item that the mouse last
selected to a given item.

LB_SETCARETINDEX Sets the focus rectangle to a given list
box item.

LB_SETCOLUMNWIDTH Sets the width, in pixels, of all columns
in a list box.

LB_SETCOUNT Sets the number of items in a list box.
LB_SETCURSEL Selects a given list box item.
LB_SETHORIZONTALEXTENTSets the scrollable width, in pixels, of a

list box.
LB_SETITEMDATA Associates a 32-bit value with a list

box item.
LB_SETITEMHEIGHT Sets the height, in pixels, of an item or

items in a list box.
LB_SETLOCALE Sets the locale of a list box and returns

the previous locale identifier.
LB_SETSEL Selects an item in a multiple-selection

list box.
LB_SETTABSTOPS Sets the tab stops to those specified in

a given array.
LB_SETTOPINDEX Scrolls the list box so the specified

item is at the top of the visible range.

Default Window-Message Processing
The window procedure for the predefined list box window class carries out default processing for
all messages that the list box does not process. When the list box procedure returns FALSE for a
message, the predefined window procedure checks the message and performs default actions, as
shown in the following table.

Message Default action

WM_CHAR Moves the selection to the first item that
begins with the character the user typed. If
the list box has the LBS_OWNERDRAW
style, no action occurs.
Multiple characters typed within a short
interval are treated as a group, and the first
item that begins with that series of
characters is selected.

WM_CREATE Creates an empty list box.
WM_DESTROY Destroys the list box and frees any

resources it uses.
WM_DROPFILES Passes the message to the dialog box

procedure or parent window process.
WM_ENABLE If the control is visible, invalidates the

rectangle so the strings can be painted gray.
WM_ERASEBKGND Erases the background of a list box. If the

list box has the LBS_OWNERDRAW style,
the background is not erased.

WM_GETDLGCODE Returns DLGC_WANTARROWS |
DLGC_WANTCHARS, indicating the default
list box procedure processes the arrow keys
and WM_CHAR messages.

WM_GETFONT Returns a handle of the current font for the
list box.

WM_HSCROLL Scrolls the list box horizontally.
WM_KEYDOWN Processes virtual keys for scrolling. The

virtual key is the index of the item to move
the caret to. The selection is not changed.

WM_KILLFOCUS Turns the caret off and destroys it. Sends an
LBN_KILLFOCUS notification message to
the owner of the list box.

WM_LBUTTONDBLCLK Tracks the mouse in the list box client area.
This enables the user to cancel a selection if
the mouse button is released outside the list
box client area.

WM_LBUTTONDOWN Tracks the mouse in the list box client area.
This enables the user to cancel a selection if
the mouse button is released outside the list
box client area.

WM_LBUTTONUP Tracks the mouse in the list box client area.
This enables the user to cancel a selection if
the mouse button is released outside the list
box client area.

WM_MOUSEMOVE Tracks the mouse in the list box client area.
This enables the user to cancel a selection if
the mouse button is released outside the list
box client area.

WM_PAINT Performs a subclassed paint operation by
using the list box handle of the device
context (DC).

WM_SETFOCUS Turns the caret on and sends an
LBN_SETFOCUS notification message to

the owner of the list box.
WM_SETFONT Sets a new font for the list box.
WM_SETREDRAW Sets or clears the redraw flag based on the

value of wParam.
WM_SIZE Resizes the list box to an integral number of

items.
WM_VSCROLL Scrolls the list box vertically.

The predefined list box procedure passes all other messages to DefWindowProc for default
processing.

Using List Boxes
· Creating a simple list box
· Creating a directory listing in a single-selection list box
· Creating a multiple-selection list box
· Creating an owner-drawn list box

Creating a Simple List Box
The following example demonstrates how a dialog box procedure creates a simple list box and
fills it with the names of people on a softball team. When a name in the list is selected, additional
information about the player is displayed in the dialog box. The following illustration shows the
dialog box.

ewc msdncd, EWGraphic, bsd23481 0 /a "SDK_01.BMP"

The list box has the LBS_STANDARD style, a combination of LBS_SORT, LBS_NOTIFY,
WS_VSCROLL, and WS_BORDER. The code initializes the dialog box while processing the
WM_INITDIALOG message. For each name that appears in the list box, the code sends an
LB_ADDSTRING message to the list box. By processing the LBN_SELCHANGE notification
message, the code also keeps track of when the selection changes.#define BUFFER MAX_PATH
#define NAMELENGTH 15
#define POSITIONLENGTH 20
#define TEAMSIZE 15
typedef struct {

TCHAR tchName[NAMELENGTH];
TCHAR tchPosition[POSITIONLENGTH];
int nGamesPlayed;
int nInningsPlayed;
double xBattingAverage;
TCHAR tchFoodName[NAMELENGTH];

} Player;
Player Roster[] = {

{"Pete", "shortstop", 26, 90, .608, "Rutabaga"},
{"Suzanna", "catcher", 16, 53, .286, "Toast"},
{"Jack", "pitcher", 27, 110, .542, "Animal Crackers"},
{"Karen", "second base", 26, 140, .238, "Pez"},
{"Dave", "first base", 28, 138, .508, "Suds"},
{"Wendy", "third base", 25, 154, .493, "Ham"},
{"Matt", "shortstop", 24, 112, .579, "Oats"},
{"Jenny", "right field", 22, 101, .509, "Mashed Potatoes"},
{"Seth", "left-center field", 20, 76, .407, "Otter Pop"},
{"Kathie", "left field", 26, 127, .353, "Baba Ganouj"},
{"Colin", "pitcher", 26, 96, .456, "Lefse"},
{"Penny", "right field", 24, 112, .393, "Zotz"},
{"Art", "left-center field", 17, 56, .375, "Cannelloni"},
{"Cindy", "second base", 13, 58, .207, "Tequila"},
{"David", "center field", 18, 101, .612, "Bok Choy"}
};

/*
* FUNCTION: DlgTeamProc(HWND, unsigned, UINT, LONG)
*
* PURPOSE: Dialog box for "BFG Softball Statistics"
*/
BOOL APIENTRY DlgTeamProc(

HWND hDlg, /* window handle of dialog box */
UINT message, /* type of message*/
UINT wParam,/* message-specific information */
LONG lParam)/* message-specific information */

{
TCHAR tchBuffer[BUFFER];
int nItem;
int i;
HWND hwndList;
switch (message) {
case WM_INITDIALOG:
{

hwndList = GetDlgItem(hDlg, IDL_SOFTBALL);

/* Initialize the list box (fill it with player names). */
for (i = 0; i < TEAMSIZE; i++) {
SendMessage(hwndList, LB_ADDSTRING, 0,
(LPARAM) Roster[i].tchName);
SendMessage(hwndList, LB_SETITEMDATA, i, (LPARAM) i);
}
SetFocus(hwndList);
return FALSE;
}
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDL_SOFTBALL:
switch (HIWORD(wParam)) {

case LBN_SELCHANGE:
/* Show the selected player's statistics. */
hwndList = GetDlgItem(hDlg, IDL_SOFTBALL);
nItem = SendMessage(hwndList, LB_GETCURSEL,
0, 0);
i = SendMessage(hwndList, LB_GETITEMDATA,
nItem, 0);
SetDlgItemText(hDlg, IDS_POS,
Roster[i].tchPosition);
SetDlgItemText(hDlg, IDS_GAME,
_itoa(Roster[i].nGamesPlayed,
tchBuffer, 10));
SetDlgItemText(hDlg, IDS_INN,
_itoa(Roster[i].nInningsPlayed,
tchBuffer, 10));
SetDlgItemText(hDlg, IDS_BA,
_gcvt(Roster[i].xBattingAverage,
3, tchBuffer));
SetDlgItemText(hDlg, IDS_FOOD,
Roster[i].tchFoodName);
return TRUE;

}
break;
case IDOK:
case IDCANCEL:
/* Destroy the dialog box. */
EndDialog(hDlg, TRUE);
return TRUE;

default:
return FALSE;
}
default:
return FALSE;
}

}

Creating a Directory Listing in a Single-Selection List Box
The following example demonstrates how to display the content of the current directory in a list
box and enable the user to delete one file at a time.

In addition to the standard list box styles, this list box has the LBS_MULTICOLUMN and
LBS_HSCROLL styles. The code initializes the list box by using the DlgDirList function to fill the
list box with the names of all the files in the current directory. When the user chooses the Delete
button, the DlgDirSelectEx function retrieves the name of the selected file. The code deletes the
file by using the DeleteFile function and updates the directory list box by sending the
LB_DELETESTRING message.#define BUFFER MAX_PATH
/*
* FUNCTION: DlgDelFileProc(HWND, unsigned, UINT, LONG)
*
* PURPOSE: "Delete File" dialog box
*/
BOOL APIENTRY DlgDelFileProc(

HWND hDlg, /* window handle of dialog box*/
UINT message, /* type of message */
UINT wParam,/* message-specific information */
LONG lParam)

{
DWORD cchCurDir;
LPTSTR lpszCurDir;
LPTSTR lpszFileToDelete;
int nItem;
int nTotal;
TCHAR tchBuffer[BUFFER];
BOOL fResult;
switch (message) {
case WM_INITDIALOG:
/*
* Initialize the list box by filling it with files from
* the current directory.
*/
lpszCurDir = tchBuffer;
GetCurrentDirectory(cchCurDir, lpszCurDir);
DlgDirList(hDlg, lpszCurDir, IDL_FILES, IDS_PATHTOFILL, 0);
SetFocus(GetDlgItem(hDlg, IDL_FILES));
return FALSE;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDOK:
/*
* When the user presses the DEL (IDOK) button,
* delete the selected file.
*/
lpszFileToDelete = tchBuffer;
DlgDirSelectEx(hDlg, lpszFileToDelete, MAX_PATH,

IDL_FILES);
fResult = DeleteFile(lpszFileToDelete);
if (!fResult) {

MessageBox(hDlg, "Could not delete file.",
NULL, MB_OK);

}
else {

nItem = SendMessage(GetDlgItem(hDlg, IDL_FILES),
LB_GETCURSEL, 0, 0);
nTotal = SendMessage(GetDlgItem(hDlg,
IDL_FILES), LB_DELETESTRING, nItem, 0);
/* Update the list box. */
if (nTotal > nItem) {
SendMessage(GetDlgItem(hDlg, IDL_FILES),
LB_SETCURSEL, nItem, 0);
}
else {
SendMessage(GetDlgItem(hDlg, IDL_FILES),
LB_SETCURSEL, nTotal, 0);
}

}
return TRUE;
case IDCANCEL:
/* Destroy the dialog box. */
EndDialog(hDlg, TRUE);
return TRUE;
default:
return FALSE;
}
default:
return FALSE;
}

}

Creating a Multiple-Selection List Box
The following example displays and initializes the dialog box used in the preceding example.
However, this code uses the LBS_MULTIPLESEL style to enable the user to select more than one
file at a time. When the user chooses the Delete button, the example sends the
LB_GETSELCOUNT message (to retrieve the number of files selected) and the
LB_GETSELITEMS message (to retrieve an array of selected list box items). After deleting a file,
the code removes the corresponding item from the list box by sending the LB_DELETESTRING
message.#define BUFFER MAX_PATH
#define BIGBUFF 8192
/*
* FUNCTION: DlgDelFilesProc(HWND, unsigned, UINT, LONG)
*
* PURPOSE: "Delete files" dialog box
*/
BOOL APIENTRY DlgDelFilesProc(

HWND hDlg, /* window handle of dialog box */
UINT message, /* type of message */
UINT wParam,/* message-specific information */
LONG lParam)

{
DWORD cchCurDir;
LPTSTR lpszCurDir;
LPTSTR lpszFileToDelete;
int nSelItems;
int nSelItemsInBuffer;
TCHAR tchBuffer[BUFFER];
TCHAR tchMsgBuff[BUFFER];
int nBuffer[BIGBUFF];
int i;
BOOL fResult;
HWND hListBox;
switch (message) {
case WM_INITDIALOG:
/*
* Initialize the list box by filling it with files from
* the current directory.
*/
lpszCurDir = tchBuffer;
GetCurrentDirectory(cchCurDir, lpszCurDir);
DlgDirList(hDlg, lpszCurDir, IDL_FILES, IDS_PATHTOFILL, 0);
SetFocus(GetDlgItem(hDlg, IDL_FILES));
return FALSE;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDOK:
/*
* When the user presses the Delete (IDOK)
* button, delete all the selected files.
*/
lpszFileToDelete = tchBuffer;
hListBox = GetDlgItem(hDlg, IDL_FILES);
nSelItems = SendMessage(hListBox,

LB_GETSELCOUNT, 0, 0);
nSelItemsInBuffer = SendMessage(hListBox,

LB_GETSELITEMS, 512, (LPARAM) nBuffer);
if (nSelItems > nSelItemsInBuffer) {

MessageBox(hDlg, "Too many items selected.",
NULL, MB_OK);

}
else {

/*
* Go through the list backwards because after
* deleting an item the indices change for every
* subsequent item. By going backward, the
* indice are never invalidated.
*/

for (i = nSelItemsInBuffer - 1; i >= 0; i--) {
SendMessage(hListBox, LB_GETTEXT,

nBuffer[i],
(LPARAM) lpszFileToDelete);

fResult = DeleteFile(lpszFileToDelete);
if (!fResult) {
sprintf(tchMsgBuff,

"Could not delete file: %s "
"GetLastError = %u",
(LPARAM) lpszFileToDelete);
/* Call app-defined error handler. */
ErrorHandler(tchMsgBuff);
}
else {
SendMessage(hListBox, LB_DELETESTRING,

nBuffer[i], 0);
}
}
SendMessage(hListBox, LB_SETCARETINDEX, 0, 0);

}
return TRUE;
case IDCANCEL:
/* Destroy the dialog box. */
EndDialog(hDlg, TRUE);
return TRUE;
default:
return FALSE;
}
default:

return FALSE;
}

}

Creating an Owner-Drawn List Box
The following example shows how to draw a list box that contains five owner-drawn items: four
drawing implements and a fork. Each list item appears as a bitmap followed by the name of the
object. A button prompts the user to select one item that is not like the others. Choosing the
button with the fork selected displays a "You're right!" message and closes the dialog box.
Choosing the button with any other list item selected displays a "Try again!" message.

The list box has the LBS_OWNERDRAW and LBS_HASSTRINGS styles, in addition to the
standard list box styles. The code initializes the list box by sending the LB_ADDSTRING message
to set the text, and then sends the LB_SETITEMDATA message to associate a bitmap with each
list box item. The code also sets the height of each list box item by processing the
WM_MEASUREITEM message and draws the text and bitmap for each item by processing the
WM_DRAWITEM message.#define XBITMAP 80
#define YBITMAP 20
#define BUFFER MAX_PATH
HBITMAP hbmpPencil, hbmpCrayon, hbmpMarker, hbmpPen, hbmpFork;
HBITMAP hbmpPicture, hbmpOld;
void AddItem(HWND hwnd, LPSTR lpstr, HBITMAP hbmp)
{

int nItem;
nItem = SendMessage(hwndList, LB_ADDSTRING, 0, lpstr);
SendMessage(hwndList, LB_SETITEMDATA, nItem, hbmp);

}
DWORD APIENTRY DlgDrawProc(

HWND hDlg, /* window handle of dialog box*/
UINT message, /* type of message */
UINT wParam,/* message-specific information */
LONG lParam)

{
int nItem;
TCHAR tchBuffer[BUFFER];
HBITMAP hbmp;
HWND hListBox;
TEXTMETRIC tm;
int y;
HDC hdcMem;
LPMEASUREITEMSTRUCT lpmis;
LPDRAWITEMSTRUCT lpdis;
RECT rcBitmap;
switch (message) {
case WM_INITDIALOG:
/* Load bitmaps. */
hbmpPencil = LoadBitmap(hinst, MAKEINTRESOURCE(700));
hbmpCrayon = LoadBitmap(hinst, MAKEINTRESOURCE(701));
hbmpMarker = LoadBitmap(hinst, MAKEINTRESOURCE(702));
hbmpPen = LoadBitmap(hinst, MAKEINTRESOURCE(703));
hbmpFork = LoadBitmap(hinst, MAKEINTRESOURCE(704));
/* Retrieve list box handle. */
hListBox = GetDlgItem(hDlg, IDL_STUFF);
/*
* Initialize the list box text and associate a bitmap
* with each list box item.
*/
AddItem(hListBox, "pencil", hbmpPencil);
AddItem(hListBox, "crayon", hbmpCrayon);
AddItem(hListBox, "marker", hbmpMarker);
AddItem(hListBox, "pen", hbmpPen);
AddItem(hListBox, "fork", hbmpFork);
SetFocus(hListBox);
SendMessage(hListBox, LB_SETCURSEL, 0, 0);
return TRUE;
case WM_MEASUREITEM:
lpmis = (LPMEASUREITEMSTRUCT) lParam;
/* Set the height of the list box items. */
lpmis->itemHeight = 20;
return TRUE;
case WM_DRAWITEM:
lpdis = (LPDRAWITEMSTRUCT) lParam;
/* If there are no list box items, skip this message. */
if (lpdis->itemID == -1) {
break;
}
/*
* Draw the bitmap and text for the list box item. Draw a
* rectangle around the bitmap if it is selected.
*/
switch (lpdis->itemAction) {
case ODA_SELECT:
case ODA_DRAWENTIRE:
/* Display the bitmap associated with the item. */
hbmpPicture = (HBITMAP) SendMessage(lpdis->hwndItem,

LB_GETITEMDATA, lpdis->itemID, (LPARAM) 0);
hdcMem = CreateCompatibleDC(lpdis->hDC);
hbmpOld = SelectObject(hdcMem, hbmpPicture);
BitBlt(lpdis->hDC,

lpdis->rcItem.left, lpdis->rcItem.top,
lpdis->rcItem.right - lpdis->rcItem.left,
lpdis->rcItem.bottom - lpdis->rcItem.top,
hdcMem, 0, 0, SRCCOPY);

/* Display the text associated with the item. */
SendMessage(lpdis->hwndItem, LB_GETTEXT,

lpdis->itemID, (LPARAM) tchBuffer);
GetTextMetrics(lpdis->hDC, &tm);
y = (lpdis->rcItem.bottom + lpdis->rcItem.top -

tm.tmHeight) / 2;
TextOut(lpdis->hDC,

XBITMAP + 6,
y,
tchBuffer,
strlen(tchBuffer));

SelectObject(hdcMem, hbmpOld);
DeleteDC(hdcMem);
/* Is the item selected? */
if (lpdis->itemState & ODS_SELECTED) {

/*
* Set RECT coordinates to surround only the
* bitmap.
*/

rcBitmap.left = lpdis->rcItem.left;
rcBitmap.top = lpdis->rcItem.top;
rcBitmap.right = lpdis->rcItem.left + XBITMAP;
rcBitmap.bottom = lpdis->rcItem.top + YBITMAP;
/*

* Draw a rectangle around bitmap to indicate
* the selection.
*/

DrawFocusRect(lpdis->hDC, &rcBitmap);
}
break;
case ODA_FOCUS:
/*
* Do not process focus changes. The focus caret
* (outline rectangle) indicates the selection.
* The Which one? (IDOK) button indicates the final
* selection.
*/
break;
}
return TRUE;
case WM_COMMAND:
switch (LOWORD(wParam)) {
case IDOK:
/* Get the selected item's text. */
nItem = SendMessage(GetDlgItem(hDlg, IDL_STUFF),

LB_GETCURSEL, 0, (LPARAM) 0);
hbmp = SendMessage(GetDlgItem(hDlg, IDL_STUFF),
LB_GETITEMDATA, nItem, 0);

/*
* If the item is not the correct answer, tell the
* user to try again.
*
* If the item is the correct answer, congratulate
* the user and destroy the dialog box.
*/
if (hbmp != hbmpFork) {

MessageBox(hDlg, "Try again!", "Oops.", MB_OK);
return FALSE;

}
else {

MessageBox(hDlg, "You're right!",
"Congratulations.", MB_OK);
/* Fall through. */

}
case IDCANCEL:
/* Destroy the dialog box. */
EndDialog(hDlg, TRUE);
return TRUE;
default:
return FALSE;
}
case WM_DESTROY:
/* Free any resources used by the bitmaps. */
DeleteObject(hbmpPencil);
DeleteObject(hbmpCrayon);
DeleteObject(hbmpMarker);
DeleteObject(hbmpPen);
DeleteObject(hbmpFork);
return TRUE;
default:
return FALSE;
}
return FALSE;

}

List Box Reference
The following functions, structures and messages are associated with list boxes.

List Box Functions
Following are the functions used with list boxes.
DlgDirList

DlgDirSelectEx

List Box Structures
The following structure is used with list boxes.

DELETEITEMSTRUCT

List Box Messages
Following are the messages used with list boxes.
LB_ADDFILE
LB_ADDSTRING
LB_DELETESTRING
LB_DIR
LB_FINDSTRING
LB_FINDSTRINGEXACT
LB_GETANCHORINDEX
LB_GETCARETINDEX
LB_GETCOUNT
LB_GETCURSEL
LB_GETHORIZONTALEXTENT
LB_GETITEMDATA
LB_GETITEMHEIGHT
LB_GETITEMRECT
LB_GETLOCALE
LB_GETSEL
LB_GETSELCOUNT
LB_GETSELITEMS
LB_GETTEXT
LB_GETTEXTLEN
LB_GETTOPINDEX
LB_INITSTORAGE
LB_INSERTSTRING
LB_ITEMFROMPOINT
LB_RESETCONTENT
LB_SELECTSTRING
LB_SELITEMRANGE
LB_SELITEMRANGEEX
LB_SETANCHORINDEX
LB_SETCARETINDEX
LB_SETCOLUMNWIDTH
LB_SETCOUNT
LB_SETCURSEL
LB_SETHORIZONTALEXTENT
LB_SETITEMDATA
LB_SETITEMHEIGHT
LB_SETLOCALE
LB_SETSEL
LB_SETTABSTOPS
LB_SETTOPINDEX
LBN_DBLCLK
LBN_ERRSPACE
LBN_KILLFOCUS
LBN_SELCANCEL
LBN_SELCHANGE
LBN_SETFOCUS
WM_CHARTOITEM
WM_CTLCOLORLISTBOX
WM_DELETEITEM

WM_VKEYTOITEM

Scroll BarsA window in an application written for Microsoft® Windows® can display a data object, such as a
document or a bitmap, that is larger than the window's client area. When provided with a scroll
bar, the user can scroll a data object in the client area to bring into view the portions of the object
that extend beyond the borders of the window.

About Scroll Bars
Scroll bars should be included in any window for which the content of the client area extends
beyond the window's borders. A scroll bar's orientation determines the direction in which scrolling
occurs when the user operates the scroll bar. A horizontal scroll bar enables the user to scroll the
content of a window to the left or right. A vertical scroll bar enables the user to scroll the content
up or down.

Parts of a Scroll Bar
A scroll bar consists of a shaded shaft with an arrow button at each end and a scroll box
(sometimes called a thumb) between the arrow buttons. A scroll bar represents the overall length
or width of a data object in a window's client area; the scroll box represents the portion of the
object that is visible in the client area. The position of the scroll box changes whenever the user
scrolls a data object to display a different portion of it. In version 4.0 or later, Windows also adjusts
the size of a scroll bar's scroll box so that it indicates what portion of the entire data object is
currently visible in the window. If most of the object is visible, the scroll box occupies most of the
scroll bar's shaft. Similarly, if only a small portion of the object is visible, the scroll box occupies a
small part of the shaft.

The user scrolls the content of a window by clicking one of the arrow buttons, by clicking the area
in the shaded shaft, or by dragging the scroll box. When the user clicks an arrow button, the
application scrolls the content by one unit (typically a single line or column). When the user clicks
the shaded areas, the application scrolls the content by one window. The amount of scrolling that
occurs when the user drags the scroll box depends on the distance the user drags the scroll box
and on the scrolling range of the scroll bar. For more information about the scrolling range, see
Scroll Box Position and Scrolling Range.

Standard Scroll Bars and Scroll Bar Controls
A scroll bar is included in a window either as a standard scroll bar or as a scroll bar control. A
standard scroll bar is located in the nonclient area of a window. It is created with the window and
displayed when the window is displayed. The sole purpose of a standard scroll bar is to enable
the user to generate scrolling requests for viewing the entire content of the client area. You can
include a standard scroll bar in a window by specifying WS_HSCROLL, WS_VSCROLL, or both
styles when you create the window. The WS_HSCROLL style creates a horizontal scroll bar
positioned at the bottom of the client area. The WS_VSCROLL style creates a vertical scroll bar
positioned at the right of the client area. The SM_CXHSCROLL and SM_CYHSCROLL system
metric values define the width and height of a standard horizontal scroll bar. The
SM_CXVSCROLL and SM_CYVSCROLL values define the width and height of a standard vertical
scroll bar.

A scroll bar control is a control window that belongs to the SCROLLBAR window class. A scroll
bar control appears and functions like a standard scroll bar, but it is a separate window. As a
separate window, a scroll bar control receives direct input focus, indicated by a flashing caret
displayed in the scroll box. Unlike a standard scroll bar, a scroll bar control also has a built-in
keyboard interface that enables the user to direct scrolling. You can use as many scroll bar
controls as needed in a single window. When you create a scroll bar control, you must specify the
scroll bar's size and position. However, if a scroll bar control's window can be resized,
adjustments to the scroll bar's size must be made whenever the size of the window changes.

The advantage of using a standard scroll bar is that Windows creates the scroll bar and
automatically sets its size and position. However, standard scroll bars are sometimes too
restrictive. For example, suppose that you want to divide a client area into quadrants and use a
separate set of scroll bars to control the content of each quadrant. You cannot use standard scroll
bars because you can only create one set of scroll bars for a particular window. Use scroll bar
controls instead, because you can add as many of them to a window as you want.

Applications can provide scroll bar controls for purposes other than scrolling the content of a
window. For example, a screen saver application might provide a scroll bar for setting the speed
at which graphics are moved about on the screen.

A scroll bar control can have a number of styles that serves to control the orientation and position
of the scroll bar. You specify the styles that you want when you call the CreateWindowEx
function to create a scroll bar control. Some of the styles create a scroll bar control that uses a
default width or height. However, you must always specify the x- and y-coordinates and the other
dimensions of the scroll bar. Following are the scroll bar control styles.

Style Meaning

SBS_BOTTOMALIGN
Aligns the bottom edge of the scroll bar with the bottom
edge of the rectangle defined by the CreateWindowEx
parameters x, y, nWidth, and nHeight. The scroll bar has the
default height for system scroll bars. Use this style with the
SBS_HORZ style.

SBS_HORZ
Designates a horizontal scroll bar. If neither the
SBS_BOTTOMALIGN nor SBS_TOPALIGN style is
specified, the scroll bar has the height, width, and position
specified by the parameters of CreateWindowEx.

SBS_LEFTALIGN
Aligns the left edge of the scroll bar with the left edge of the
rectangle defined by the parameters of CreateWindowEx.
The scroll bar has the default width for system scroll bars.
Use this style with the SBS_VERT style.

SBS_RIGHTALIGN
Aligns the right edge of the scroll bar with the right edge of
the rectangle defined by the parameters of
CreateWindowEx. The scroll bar has the default width for
system scroll bars. Use this style with the SBS_VERT style.

SBS_SIZEBOX

Designates a size box. If you specify neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor the
SBS_SIZEBOXTOPLEFTALIGN style, the size box has the
height, width, and position specified by the parameters of
CreateWindowEx.

SBS_SIZEBOXBOTTOMRIGHTALIGN
Aligns the lower right corner of the size box with the lower
right corner of the rectangle specified by the parameters of
CreateWindowEx. The size box has the default size for
system size boxes. Use this style with the SBS_SIZEBOX
style.

SBS_SIZEBOXTOPLEFTALIGN
Aligns the upper left corner of the size box with the upper left
corner of the rectangle specified by the parameters of
CreateWindowEx. The size box has the default size for
system size boxes. Use this style with the SBS_SIZEBOX
style.

SBS_SIZEGRIP
Same as SBS_SIZEBOX, but with a raised edge (version 4.
0 or later).

SBS_TOPALIGN
Aligns the top edge of the scroll bar with the top edge of the
rectangle defined by the parameters of CreateWindowEx.
The scroll bar has the default height for system scroll bars.
Use this style with the SBS_HORZ style.

SBS_VERT
Designates a vertical scroll bar. If you specify neither the
SBS_RIGHTALIGN nor the SBS_LEFTALIGN style, the
scroll bar has the height, width, and position specified by the
parameters of CreateWindowEx.

Scroll Box Position and Scrolling Range
The position of the scroll box is represented as an integer; it is relative to the left or upper end of
the scroll bar, depending on whether the scroll bar is horizontal or vertical. The position must be
within the minimum and maximum values of the scrolling range. For example, in a scroll bar with a
range of 0 through 100, position 50 is in the middle, with the remaining positions distributed
equally along the scroll bar. The initial range depends on the scroll bar. Standard scroll bars have
an initial range of 0 through 100; scroll bar controls have an empty range (both minimum and
maximum values are zero), unless you supply an explicit range when the control is created. You
can change the range at any time. With operating system version 4.0 or later, you can use the
SetScrollInfo function to set the range values, and the GetScrollInfo function to retrieve the
current range values. In versions earlier than 4.0, you can use the SetScrollRange and
GetScrollRange functions.

An application typically adjusts the scroll range to convenient integers, making it easy to translate
the scroll box position into a value corresponding to the data object to be scrolled. For example, if
an application must display 260 lines of a text file in a window that can show only 16 lines at a
time, the vertical scroll bar range can be set to 1 through 244. If the scroll box is at position 1, the
first line will be at the top of the window. If the scroll box is at position 244, the last line (line 260)
will be at the bottom of the window. If an application attempts to specify a position value that is
less than the minimum or more than the maximum, the minimum or maximum scrolling range
value is used instead.

In version 4.0 or later, an application can set a page size for a scroll bar. The page size
represents the number of data units that can fit in the client area of the owner window given its
current size. For example, if the client area can hold 16 lines of text, an application would set the
page size to 16. Windows uses the page size, along with the scrolling range and length of the
scroll shaft, to set the size of the scroll box. Whenever a window containing a scroll bar is resized,
an application should call the SetScrollInfo function to set the page size. An application can
retrieve the current page size by calling the sending GetScrollInfo function.

To establish a useful relationship between the scroll bar range and the data object, an application
must adjust the range whenever the size of the data object changes.

As the user moves the scroll box in a scroll bar, the scroll bar reports the scroll box position as an
integer in the scrolling range. If the position is the minimum value, the scroll box is at the top of a
vertical scroll bar or at the left end of a horizontal scroll bar. If the position is the maximum value,
the scroll box is at the bottom of a vertical scroll bar or at right end of a horizontal scroll bar.

In version 4.0 or later, the maximum value that a scroll bar can report (that is, the maximum
scrolling position) depends on the page size. If the scroll bar has a page size greater than one, the
maximum scrolling position is less than the maximum range value. You can use the following
formula to calculate the maximum scrolling position:MaxScrollPos = MaxRangeValue - (PageSize - 1)An application must move the scroll box in a scroll bar. Although the user makes a request for
scrolling in a scroll bar, the scroll bar does not automatically update the scroll box position.
Instead, it passes the request to the parent window, which must scroll the data and update the
scroll box position. In version 4.0 or later, an application uses the SetScrollInfo function to update
the scroll box position; otherwise, it uses the SetScrollPos function. Because it controls the scroll
box movement, the application can move the scroll box in increments that work best for the data
being scrolled.

Scroll Bar Visibility
The system hides and disables a standard scroll bar when equal minimum and maximum values
are specified. With version 4.0 or later, the system also hides and disables a standard scroll bar if
you specify a page size that includes the entire scroll range of the scroll bar. This is the way to
temporarily hide a scroll bar when it is not needed for the content of the client area. There is no
need to make scrolling requests through the scroll bar when it is hidden. The system enables the
scroll bar and shows it again when you set the minimum and maximum values to unequal values
or, in version 4.0 or later, when the page size that does not include the entire scroll range. The
ShowScrollBar function can also be used to hide or show a scroll bar. It does not affect the scroll
bar's range, page size, or scroll box position.

The EnableScrollBar function can be used to disable one or both arrows of a scroll bar. An
application displays disabled arrows in gray and does not respond to user input.

Scroll Bar Requests
The user makes scrolling requests by clicking various parts of a scroll bar. Windows sends the
request to the given window in the form of a WM_HSCROLL or WM_VSCROLL message. A
horizontal scroll bar sends the WM_HSCROLL message; a vertical scroll bar sends the
WM_VSCROLL message. Each message includes a notification code that corresponds to the
user's action, to the handle of the scroll bar (scroll bar controls only), and, in some cases, to the
position of the scroll box.

The following figure shows the notification messages that the user generates when clicking
various parts of a scroll bar.

ewc msdncd, EWGraphic, bsd23482 0 /a "SDK_02.BMP"

The scroll bar notification codes specify the action the user takes. An application examines the
codes that accompany the WM_HSCROLL and WM_VSCROLL messages and then performs the
appropriate scrolling operation. In the following table of notification messages, the user's action is
specified for each message, followed by the application's response. In each case, a unit is defined
by the application as appropriate for the given data. For example, the typical unit for scrolling text
vertically is a line of text.
Notification
message Action Response
SB_LINEUP The user clicks the

top scroll arrow.
Decrements the scroll
box position; scrolls
toward the top of the data
by one unit.

SB_LINEDOWN The user clicks the
bottom scroll arrow.

Increments the scroll box
position; scrolls toward
the bottom of the data by
one unit.

SB_LINELEFT The user clicks the
left scroll arrow.

Decrements the scroll
box position; scrolls
toward the left end of the
data by one unit.

SB_LINERIGHT The user clicks the
right scroll arrow.

Increments the scroll box
position; scrolls toward
the right end of the data
by one unit.

SB_PAGEUP The user clicks the
scroll bar shaft above
the scroll box.

Decrements the scroll
box position by the
number of data units in
the window; scrolls
toward the top of the data
by the same number of
units.

SB_PAGEDOWN The user clicks the
scroll bar shaft below
the scroll box.

Increments the scroll box
position by the number of
data units in the window;
scrolls toward the bottom
of the data by the same
number of units.

SB_PAGELEFT The user clicks the
scroll bar shaft to the
left of the scroll box.

Decrements the scroll
box position by the
number of data units in
the window; scrolls
toward the left end of the
data by the same number
of units.

SB_PAGERIGHT The user clicks the
scroll bar shaft to the
right of the scroll box.

Increments the scroll box
position by the number of
data units in the window;
scrolls toward the right

end of the data by the
same number of units.

SB_THUMBPOSITIONThe user releases the
scroll box after
dragging it.

Sets the scroll box to the
position given in the
message; scrolls the data
by the same number of
units the scroll box has
moved.

SB_THUMBTRACK The user drags the
scroll box.

Sets the scroll box to the
position given in the
message and scrolls the
data by the same number
of units the scroll box has
moved for applications
that draw data quickly.
Applications that cannot
draw data quickly must
wait for the
SB_THUMBPOSITION
message before moving
the scroll box and
scrolling the data.

SB_ENDSCROLL The user releases the
mouse after holding it
on an arrow or in the
scroll bar shaft.

No response is needed.

A scroll bar generates the SB_THUMBPOSITION and SB_THUMBTRACK notification
messages when the user clicks and drags the scroll box. An application should be
programmed to process either the SB_THUMBTRACK or the SB_THUMBPOSITION
notification message.

The SB_THUMBPOSITION notification message occurs when the user releases the mouse
button after clicking the scroll box. An application that processes this message performs
the scrolling operation after the user has dragged the scroll box to the desired position
and released the mouse button.

SB_THUMBTRACK notification messages occur as the user drags the scroll box. If an
application processes SB_THUMBTRACK messages, it can scroll the content of a window
as the user drags the scroll box. However, a scroll bar can generate many
SB_THUMBTRACK notification messages in a short period, so an application should
process these messages only if it can quickly repaint the content of the window.

Keyboard Interface for a Scroll Bar
A scroll bar control provides a built-in keyboard interface that enables the user to issue scrolling
requests by using the keyboard; a standard scroll bar does not. When a scroll bar control has the
keyboard focus, it sends WM_HSCROLL and WM_VSCROLL messages to its parent window
when the user presses the arrow keys. The notification message is sent with each message
corresponding to the arrow key the user has pressed. Following are the arrow keys and their
corresponding notification messages.

Arrow key Notification message
DOWN SB_LINEDOWN or SB_LINERIGHT
END SB_BOTTOM
HOME SB_TOP
LEFT SB_LINEUP or SB_LINELEFT
PGDN SB_PAGEDOWN or SB_PAGERIGHT
PGUP SB_PAGEUP or SB_PAGELEFT
RIGHT SB_LINEDOWN or SB_LINERIGHT
UP SB_LINEUP or SB_LINELEFT

Note that the keyboard interface of a scroll bar control sends the SB_TOP and
SB_BOTTOM notification messages. The SB_TOP message indicates that the user has
reached the top value of the scrolling range. An application scrolls the window content
downward so that the top of the data object is visible. The SB_BOTTOM message indicates
that the user has reached the bottom value of the scrolling range. If an application
processes the SB_BOTTOM message, it scrolls the window content upward so that the
bottom of the data object is visible.

If you want a keyboard interface for a standard scroll bar, you can create one yourself by
processing the WM_KEYDOWN message in your window procedure and then performing the
appropriate scrolling action based on the virtual-key code that accompanies the message. For
information about how to create a keyboard interface for a scroll bar, see Creating a Keyboard
Interface for a Standard Scroll Bar.

Scrolling the Client Area
The simplest way to scroll the content of a client area is to erase and then redraw it. This is the
method an application is likely to use with SB_PAGEUP, SB_PAGEDOWN, and SB_TOP
notification messages, which typically require completely new content.

For some notification messages, such as SB_LINEUP and SB_LINEDOWN, not all the content
need be erased, because some remains visible after scrolling occurs. The ScrollWindowEx
function preserves a portion of the client area's content, move the preserved portion a specified
amount, and then prepares the rest of the client area for painting new information.
ScrollWindowEx uses the BitBlt function to move a specific part of the data object to a new
location within the client area. Any uncovered part of the client area (anything not preserved) is
invalidated, erased, and painted when the next WM_PAINT message occurs.

The ScrollWindowEx function can be used to exclude a portion of the client area from the
scrolling operation. This keeps items with fixed positions, such as child windows, from moving
within the client area. It automatically invalidates the portion of the client area that is to receive the
new information, so the application does not have to compute its own clipping regions. For more
information on clipping, see Clipping.

Usually an application scrolls the content of a window in the direction opposite that indicated by
the scroll bar. For example, when the user clicks the shaft in the area below the scroll box, an
application scrolls the object in the window upward to reveal a portion of the object that is below
the visible portion.

Scroll Bar Colors and Metrics
The system-defined color value, COLOR_SCROLLBAR, controls the color within a scroll bar's
shaft. Use the GetSysColor function to determine the color of the shaft and the SetSysColors
function to set the color of the shaft. Note, however, that this change of color affects all scroll bars
in the system.

You can get the dimensions of the bitmaps that Windows uses in standard scroll bars by calling
the GetSystemMetrics function. Following are the system metric values associated with scroll
bars.

System metric Description

SM_CXHSCROLL Width of arrow bitmap on horizontal scroll bar
SM_CXHTHUMB Width of scroll box on horizontal scroll bar. In

version 4.0 or later, this value retrieves the width a
scroll bar that has a page size of zero.

SM_CXVSCROLL Width of arrow bitmap on vertical scroll bar
SM_CYHSCROLL Height of arrow bitmap on horizontal scroll bar
SM_CYVSCROLL Height of arrow bitmap on vertical scroll bar
SM_CYVTHUMB Height of scroll box on vertical scroll bar. In

version 4.0 or later, this value retrieves the height
of a scroll bar that has a page size of zero.

Using Scroll Bars
· Creating scroll bars
· Scrolling text
· Scrolling a bitmap
· Creating a keyboard interface for a standard scroll bar

Note The examples in this section set the scroll range, scroll position, and page size by using
SetScrollInfo function, which is available only with version 4.0 and later. For operating system
versions earlier than 4.0, use the SetScrollRange and SetScrollPos functions.

Creating Scroll Bars
When creating an overlapped, pop-up, or child window, you can add standard scroll bars by using
the CreateWindowEx function and specifying WS_HSCROLL, WS_VSCROLL, or both styles.
Doing this adds a horizontal or vertical scroll bar, or both, to the window. The following example
creates a window with standard horizontal and vertical scroll bars.hwnd = CreateWindowEx(

0L, /* no extended styles */
"MyAppClass", /* window class */
"Scroll Bar Application", /* text for window title bar */
WS_OVERLAPPEDWINDOW | /* window styles */
WS_HSCROLL |
WS_VSCROLL,
CW_USEDEFAULT, /* default horizontal position */
CW_USEDEFAULT, /* default vertical position */
CW_USEDEFAULT, /* default width*/
CW_USEDEFAULT, /* default height */
(HWND) NULL, /* no parent for overlapped windows */
(HMENU) NULL, /* window class menu */
hinst,/* instance owning this window */
(LPVOID) NULL /* pointer not needed */

);To process scroll bar messages for these scroll bars, you must include appropriate code in the
main window procedure.

When using the CreateWindowEx function to create a window, you can add a scroll bar control
by specifying the SCROLLBAR window class. This creates a horizontal or vertical scroll bar,
depending on whether SBS_HORZ or SBS_VERT is specified as the window style. The scroll bar
size and its position relative to its parent window can also be specified. The following example
creates a horizontal scroll bar control and positions it in the upper right corner of the window.hwndScroll = CreateWindowEx(

0L, /* no extended styles */
"SCROLLBAR", /* scroll bar control class */
(LPSTR) NULL, /* text for window title bar */
WS_CHILD | SBS_HORZ, /* scroll bar styles */
0, /* horizontal position */
0, /* vertical position */
200,/* width of the scroll bar */
CW_USEDEFAULT,/* default height */
hwnd, /* handle of main window*/
(HMENU) NULL, /* no menu for a scroll bar */
hinst, /* instance owning this window */
(LPVOID) NULL /* pointer not needed */

);

Scrolling Text
This section describes the changes you can make to an application's main window procedure to
enable a user to scroll text. The example in Example of Scrolling Text creates and displays an
array of text strings and processes WM_HSCROLL and WM_VSCROLL messages generated by
the scroll bars so that the user can scroll text both vertically and horizontally.

Scrolling Text with the WM_CREATE Message
Scrolling units are typically set while processing the WM_CREATE message. It is convenient to
base the scrolling units on the dimensions of the font associated with the window's display context
(DC). To retrieve the font dimensions for a specific DC, use the GetTextMetrics function.

In the example in Example of Scrolling Text, one vertical scrolling unit is equivalent to the height
of a character cell, plus external leading. One horizontal scrolling unit is equivalent to the average
width of a character cell. The horizontal scrolling positions, therefore, do not correspond to actual
characters, unless the screen font is fixed-width.

Scrolling Text with the WM_SIZE Message
When processing the WM_SIZE message, it is convenient to adjust the scrolling range and
scrolling position to reflect the dimensions of the client area as well as the number of lines of text
that will be displayed.

The SetScrollInfo function sets the minimum and maximum position values, the page size, and
the scrolling position for a scroll bar. For versions earlier than 4.0, use the SetScrollRange
function to set the minimum and maximum position values, and the SetScrollPos function to
adjust the scroll box to reflect the scrolling position.

Scrolling Text with the WM_HSCROLL and WM_VSCROLL
Messages
The scroll bar sends WM_HSCROLL and WM_VSCROLL messages to the window procedure
whenever the user clicks the scroll bar or drags the scroll box. The low-order words of
WM_VSCROLL and WM_HSCROLL each contain a notification message that indicates the
direction and magnitude of the scrolling action.

When the WM_HSCROLL and WM_VSCROLL messages are processed, the scroll bar
notification message is examined and the scrolling increment is calculated. After the increment is
applied to the current scrolling position, the window is scrolled to the new position by using the
ScrollWindowEx function, and the position of the scroll box is adjusted by using the
SetScrollInfo function. For operating system versions earlier than 4.0, use the SetScrollPos
function to adjust the scroll box position.

After a window is scrolled, part of its client area is made invalid. To ensure that the invalid region
is updated, the UpdateWindow function is used to generate a WM_PAINT message.

Scrolling Text with the WM_PAINT Message
When processing the WM_PAINT message, it is convenient to draw the lines of text that you want
to appear in the invalid portion of the window. The example in the following section uses the
current scrolling position and the dimensions of the invalid region to determine the range of lines
within the invalid region to display them.

Example of Scrolling Text
The following example shows how to have your application scroll text in response to input from
the horizontal and vertical scroll bars.HDC hdc;
PAINTSTRUCT ps;
TEXTMETRIC tm;
SCROLLINFO si;
/* These variables are required to display text. */
static int xClient;/* width of client area */
static int yClient;/* height of client area */
static int xClientMax; /* maximum width of client area*/
static int xChar; /* horizontal scrolling unit */
static int yChar; /* vertical scrolling unit*/
static int xUpper; /* average width of uppercase letters */
static int xPos; /* current horizontal scrolling position */
static int yPos; /* current vertical scrolling position */
static int xMax; /* maximum horiz. scrolling position*/
static int yMax; /* maximum vert. scrolling position */
int xInc;/* horizontal scrolling increment */
int yInc;/* vertical scrolling increment*/
int i; /* loop counter */
int x, y;/* horiz. and vert. printing coords */
int FirstLine;/* first line in the invalidated area */
int LastLine; /* last line in the invalidated area*/
/* Create an array of lines to display. */
#define LINES 27
static char *abc[] = { "anteater", "bear", "cougar", "dingo",
"elephant", "frog", "gazelle", "hyena", "iguana", "jackal",
"kangaroo", "llama", "moose", "newt", "octopus", "penguin",
"quail", "rat", "squid", "tortoise", "urus", "vole",
"walrus", "xylophone", "yak", "zebra",
"This line contains many words, but no character. Go figure." };

switch (uMsg) {
case WM_CREATE :
/* Get the handle of the client area's device context. */
hdc = GetDC (hwnd);
/* Extract font dimensions from the text metrics. */
GetTextMetrics (hdc, &tm);
xChar = tm.tmAveCharWidth;
xUpper = (tm.tmPitchAndFamily & 1 ? 3 : 2) * xChar/2;
yChar = tm.tmHeight + tm.tmExternalLeading;
/* Free the device context. */
ReleaseDC (hwnd, hdc);
/*
* Set an arbitrary maximum width for client area.
* (xClientMax is the sum of the widths of 48 average
* lowercase letters and 12 uppercase letters.)
*/
xClientMax = 48 * xChar + 12 * xUpper;
return 0;
case WM_SIZE:
/* Retrieve the dimensions of the client area. */
yClient = HIWORD (lParam);
xClient = LOWORD (lParam);
/*
* Determine the maximum vertical scrolling position.
* The two is added for extra space below the lines
* of text.
*/
yMax = max (0, LINES + 2 - yClient/yChar);
/*
* Make sure the current vertical scrolling position
* does not exceed the maximum.
*/
yPos = min (yPos, yMax);
/*
* Adjust the vertical scrolling range and scroll box
* position to reflect the new yMax and yPos values.
*/
si.cbSize = sizeof(si);
si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
si.nMin = 0;
si.nMax = yMax;
si.nPage = yClient / yChar;
si.nPos = yPos;
SetScrollInfo(hwnd, SB_VERT, &si, TRUE);
/*
* Determine the maximum horizontal scrolling position.
* The two is added for extra space to the right of the
* lines of text.
*/
xMax = max (0, 2 + (xClientMax - xClient)/xChar);
/*
* Make sure the current horizontal scrolling position
* does not exceed the maximum.
*/
xPos = min (xPos, xMax);
/*
* Adjust the horizontal scrolling range and scroll box
* position to reflect the new xMax and xPos values.
*/
si.cbSize = sizeof(si);
si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
si.nMin = 0;
si.nMax = xMax;
si.nPage = xClient / xChar;
si.nPos = xPos;
SetScrollInfo(hwnd, SB_HORZ, &si, TRUE);
return 0;
case WM_PAINT:
/* Prepare the window for painting. */
hdc = BeginPaint(hwnd, &ps);
/*
* Use the current vertical scrolling position and
* coordinates of the invalid rectangle to determine
* the range of new lines that should be drawn in the
* client area.
*/
FirstLine = max (0, yPos + ps.rcPaint.top/yChar - 1);
LastLine = min (LINES, yPos + ps.rcPaint.bottom/yChar);
/* Display these lines. */
for (i = FirstLine;i < LastLine;i++) {
x = xChar * (1 - xPos);
y = yChar * (1 - yPos + i);
TextOut (hdc, x, y, abc[i], lstrlen(abc[i]));
}
/* Indicate that painting is finished. */
EndPaint(hwnd, &ps);
break;
case WM_HSCROLL:
switch(LOWORD (wParam)) {
/* User clicked shaft left of the scroll box. */
case SB_PAGEUP:
xInc = -8;
break;
/* User clicked shaft right of the scroll box. */
case SB_PAGEDOWN:
xInc = 8;
break;
/* User clicked the left arrow. */
case SB_LINEUP:
xInc = -1;
break;
/* User clicked the right arrow. */
case SB_LINEDOWN:
xInc = 1;
break;
/* User dragged the scroll box. */
case SB_THUMBTRACK:
xInc = HIWORD(wParam) - xPos;
break;
default:
xInc = 0;
}
/*
* If applying the horizontal scrolling increment does not
* take the scrolling position out of the scrolling range,
* increment the scrolling position, adjust the position
* of the scroll box, and update the window.
*/
if (xInc = max (-xPos, min (xInc, xMax - xPos))) {
xPos += xInc;
ScrollWindowEx (hwnd, -xChar * xInc, 0,
(CONST RECT *) NULL, (CONST RECT *) NULL,
(HRGN) NULL, (LPRECT) NULL, SW_INVALIDATE);
si.cbSize = sizeof(si);
si.fMask = SIF_POS;
si.nPos = xPos;
SetScrollInfo(hwnd, SB_HORZ, &si, TRUE);
UpdateWindow (hwnd);
}
return 0;
case WM_VSCROLL:

switch(LOWORD (wParam)) {
/* User clicked the shaft above the scroll box. */
case SB_PAGEUP:
yInc = min(-1, -yClient / yChar);
break;
/* User clicked the shaft below the scroll box. */
case SB_PAGEDOWN:
yInc = max(1, yClient / yChar);
break;
/* User clicked the top arrow. */
case SB_LINEUP:
yInc = -1;
break;
/* User clicked the bottom arrow. */
case SB_LINEDOWN:
yInc = 1;
break;
/* User dragged the scroll box. */
case SB_THUMBTRACK:
yInc = HIWORD(wParam) - yPos;
break;
default:
yInc = 0;
}
/*
* If applying the vertical scrolling increment does not
* take the scrolling position out of the scrolling range,
* increment the scrolling position, adjust the position
* of the scroll box, and update the window. UpdateWindow
* sends the WM_PAINT message.
*/
if (yInc = max(-yPos, min(yInc, yMax - yPos))) {
yPos += yInc;
ScrollWindow(hwnd, 0, -yChar * yInc,
(CONST RECT *) NULL, (CONST RECT *) NULL,
(HRGN) NULL, (LPRECT) NULL, SW_INVALIDATE);
si.cbSize = sizeof(si);
si.fMask = SIF_POS;
si.nPos = YPos;
SetScrollInfo(hwnd, SB_VERT, &si, TRUE);
UpdateWindow (hwnd);
}
return 0;

Scrolling a Bitmap
This section describes changes you can make to an application's main window procedure to
enable the user to scroll a bitmap. The example in Example of Scrolling a Bitmap includes a menu
item that copies the screen content to a bitmap and displays the bitmap in the client area.

The example also processes the WM_HSCROLL and WM_VSCROLL messages generated by
the scroll bars so that the user may scroll the bitmap horizontally and vertically. Unlike the
example for scrolled text, the bitmap example employs the BitBlt function to draw the invalid
portion of the client area.

Scrolling a Bitmap with the WM_CREATE Message
When the WM_CREATE message is processed, the variables required for scrolling are initialized.
Use the CreateCompatibleDC function to create a compatible device context (DC), the
CreateBitmap function to create a bitmap, and the SelectObject function to select the bitmap for
the DC. Note that a compatible DC is also known as a memory DC.

The device-specific information about the display device is retrieved. If a compatible DC is created
for the screen, as in the example, use the GetDeviceCaps function to get this information. The
information includes the number of adjacent color bits per pixel, the number of color planes, and
the height and width of the DC.

Scrolling a Bitmap with the WM_SIZE Message
Processing of the WM_SIZE message requires adjusting the scrolling range and position, so it
reflects the dimensions of the client area and the bitmap that will be displayed.

The SetScrollInfo function sets the minimum and maximum position values, the page size, and
the scrolling position for a scroll bar. For operating system versions earlier than 4.0, use the
SetScrollPos function to adjust the scroll box position.

Scrolling a Bitmap with the WM_HSCROLL and WM_VSCROLL
Messages
When the WM_HSCROLL and WM_VSCROLL messages are processed, the scroll bar
notification message is examined and the scrolling position is set to a new value that reflects the
scrolling action of the user. If the scrolling position is within the scrolling range, the window is
scrolled to the new position by using the ScrollWindow function. The position of the scroll box is
then adjusted by using the SetScrollInfo function. In versions earlier than 4.0, use the
SetScrollPos function.

After a window is scrolled, part of its client area is made invalid. To ensure that the invalid region
is updated, use the UpdateWindow function to generate a WM_PAINT message. When
processing the WM_PAINT message, an application must repaint the invalid region at the bottom
of the client area. When scrolling or resizing the client area, the example uses the BitBlt function
to copy the appropriate portion of the bitmap to the invalid portion of the client area.

Example of Scrolling a Bitmap
The following example enables the user to capture the screen content into a bitmap and scroll the
bitmap in the client area.HDC hdc;
PAINTSTRUCT ps;
SCROLLINFO si;
/* These variables are required by BitBlt. */
static HDC hdcWin; /* window DC */
static HDC hdcScreen; /* DC for entire screen */
static HDC hdcScreenCompat; /* memory DC for screen */
static HBITMAP hbmpCompat; /* bitmap handle for old DC */
static BITMAP bmp; /* bitmap data structure */
static BOOL fBlt; /* TRUE if BitBlt occurred */
static BOOL fScroll; /* TRUE if scrolling occurred */
static BOOL fSize; /* TRUE if fBlt & WM_SIZE*/
/* These variables are required for horizontal scrolling. */
static int xMinScroll; /* minimum horizontal scroll value */
static int xCurrentScroll; /* current horizontal scroll value */
static int xMaxScroll; /* maximum horizontal scroll value */
/* These variables are required for vertical scrolling. */
static int yMinScroll; /* minimum vertical scroll value */
static int yCurrentScroll; /* current vertical scroll value */
static int yMaxScroll; /* maximum vertical scroll value */
switch (uMsg) {

case WM_CREATE:
/*
* Create a normal DC and a memory DC for the entire
* screen. The normal DC provides a snapshot of the
* screen contents. The memory DC keeps a copy of this
* snapshot in the associated bitmap.
*/
hdcScreen = CreateDC("DISPLAY", (LPCSTR) NULL,
(LPCSTR) NULL, (CONST DEVMODE *) NULL);
hdcScreenCompat = CreateCompatibleDC(hdcScreen);
/*
* Retrieve the metrics for the bitmap associated with the
* regular device context.
*/
bmp.bmBitsPixel =
(BYTE) GetDeviceCaps(hdcScreen, BITSPIXEL);
bmp.bmPlanes = (BYTE) GetDeviceCaps(hdcScreen, PLANES);
bmp.bmWidth = GetDeviceCaps(hdcScreen, HORZRES);
bmp.bmHeight = GetDeviceCaps(hdcScreen, VERTRES);
/* The width must be byte-aligned. */
bmp.bmWidthBytes = ((bmp.bmWidth + 15) &~15)/8;
/* Create a bitmap for the compatible DC. */
hbmpCompat = CreateBitmap(bmp.bmWidth, bmp.bmHeight,
bmp.bmPlanes, bmp.bmBitsPixel, (CONST VOID *) NULL);
/* Select the bitmap for the compatible DC. */
SelectObject(hdcScreenCompat, hbmpCompat);
/* Initialize the flags. */
fBlt = FALSE;
fScroll = FALSE;
fSize = FALSE;
/* Initialize the horizontal scrolling variables. */
xMinScroll = 0;
xCurrentScroll = 0;
xMaxScroll = 0;
/* Initialize the vertical scrolling variables. */
yMinScroll = 0;
yCurrentScroll = 0;
yMaxScroll = 0;
break;
case WM_SIZE: {
int xNewSize;
int yNewSize;
xNewSize = LOWORD(lParam);
yNewSize = HIWORD(lParam);
if (fBlt)
fSize = TRUE;
/*
* The horizontal scrolling range is defined by
* (bitmap_width) - (client_width). The current horizontal
* scroll value remains within the horizontal scrolling range.
*/
xMaxScroll = max(bmp.bmWidth-xNewSize, 0);
xCurrentScroll = min(xCurrentScroll, xMaxScroll);
si.cbSize = sizeof(si);
si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
si.nMin = xMinScroll;
si.nMax = xMaxScroll;
si.nPage = xNewSize;
si.nPos = xCurrentScroll;
SetScrollInfo(hwnd, SB_HORZ, &si, TRUE);
/*
* The vertical scrolling range is defined by
* (bitmap_height) - (client_height). The current vertical
* scroll value remains within the vertical scrolling range.
*/
yMaxScroll = max(bmp.bmHeight - yNewSize, 0);
yCurrentScroll = min(yCurrentScroll, yMaxScroll);
si.cbSize = sizeof(si);
si.fMask = SIF_RANGE | SIF_PAGE | SIF_POS;
si.nMin = yMinScroll;
si.nMax = yMaxScroll;
si.nPage = yNewSize;
si.nPos = yCurrentScroll;
SetScrollInfo(hwnd, SB_VERT, &si, TRUE);
}
break;
case WM_PAINT: {
PRECT prect;
hdc = BeginPaint(hwnd, &ps);
/*
* If the window has been resized and the user has
* captured the screen, use the following call to
* BitBlt to paint the window's client area.
*/
if (fSize) {
BitBlt(ps.hdc,
0, 0,
bmp.bmWidth, bmp.bmHeight,
hdcScreenCompat,
xCurrentScroll, yCurrentScroll,
SRCCOPY);
fSize = FALSE;
}
/*
* If scrolling has occurred, use the following call to
* BitBlt to paint the invalid rectangle.
*
* The coordinates of this rectangle are specified in the
* RECT structure to which prect points.
*
* Note that it is necessary to increment the seventh
* argument (prect->left) by xCurrentScroll and the
* eighth argument (prect->top) by yCurrentScroll in
* order to map the correct pixels from the source bitmap.
*/
if (fScroll) {
prect = &ps.rcPaint;
BitBlt(ps.hdc,
prect->left, prect->top,
(prect->right - prect->left),
(prect->bottom - prect->top),
hdcScreenCompat,
prect->left + xCurrentScroll,
prect->top + yCurrentScroll,
SRCCOPY);
fScroll = FALSE;
}
EndPaint(hwnd, &ps);
}
break;
case WM_HSCROLL: {
int xDelta;/* xDelta = new_pos - current_pos */
int xNewPos; /* new position */
int yDelta = 0;
switch (LOWORD(wParam)) {
/* User clicked the shaft left of the scroll box. */
case SB_PAGEUP:
xNewPos = xCurrentScroll - 50;
break;
/* User clicked the shaft right of the scroll box. */
case SB_PAGEDOWN:
xNewPos = xCurrentScroll + 50;
break;
/* User clicked the left arrow. */
case SB_LINEUP:
xNewPos = xCurrentScroll - 5;
break;
/* User clicked the right arrow. */
case SB_LINEDOWN:
xNewPos = xCurrentScroll + 5;
break;
/* User dragged the scroll box. */
case SB_THUMBPOSITION:
xNewPos = HIWORD(wParam);
break;
default:
xNewPos = xCurrentScroll;
}
/* New position must be between 0 and the screen width. */
xNewPos = max(0, xNewPos);
xNewPos = min(xMaxScroll, xNewPos);
/* If the current position does not change, do not scroll.*/
if (xNewPos == xCurrentScroll)
break;
/* Set the scroll flag to TRUE. */
fScroll = TRUE;
/* Determine the amount scrolled (in pixels). */
xDelta = xNewPos - xCurrentScroll;
/* Reset the current scroll position. */
xCurrentScroll = xNewPos;
/*
* Scroll the window. (The system repaints most of the
* client area when ScrollWindowEx is called; however, it is
* necessary to call UpdateWindow in order to repaint the
* rectangle of pixels that were invalidated.)
*/
ScrollWindowEx(hwnd, -xDelta, -yDelta, (CONST RECT *) NULL,
(CONST RECT *) NULL, (HRGN) NULL, (LPRECT) NULL,
SW_INVALIDATE);
UpdateWindow(hwnd);
/* Reset the scroll bar. */
si.cbSize = sizeof(si);
si.fMask = SIF_POS;
si.nPos = xCurrentScroll;
SetScrollInfo(hwnd, SB_HORZ, &si, TRUE);
}
break;
case WM_VSCROLL: {
int xDelta = 0;
int yDelta;/* yDelta = new_pos - current_pos */
int yNewPos; /* new position */
switch (LOWORD(wParam)) {
/* User clicked the shaft above the scroll box. */
case SB_PAGEUP:
yNewPos = yCurrentScroll - 50;
break;
/* User clicked the shaft below the scroll box. */
case SB_PAGEDOWN:
yNewPos = yCurrentScroll + 50;
break;
/* User clicked the top arrow. */
case SB_LINEUP:
yNewPos = yCurrentScroll - 5;
break;
/* User clicked the bottom arrow. */
case SB_LINEDOWN:
yNewPos = yCurrentScroll + 5;
break;
/* User dragged the scroll box. */
case SB_THUMBPOSITION:
yNewPos = HIWORD(wParam);
break;
default:
yNewPos = yCurrentScroll;
}
/* New position must be between 0 and the screen height. */
yNewPos = max(0, yNewPos);
yNewPos = min(yMaxScroll, yNewPos);
/* If the current position does not change, do not scroll.*/
if (yNewPos == yCurrentScroll)
break;
/* Set the scroll flag to TRUE. */
fScroll = TRUE;
/* Determine the amount scrolled (in pixels). */
yDelta = yNewPos - yCurrentScroll;
/* Reset the current scroll position. */
yCurrentScroll = yNewPos;
/*
* Scroll the window. (The system repaints most of the
* client area when ScrollWindowEx is called; however, it is
* necessary to call UpdateWindow in order to repaint the
* rectangle of pixels that were invalidated.)
*/
ScrollWindowEx(hwnd, -xDelta, -yDelta, (CONST RECT *) NULL,
(CONST RECT *) NULL, (HRGN) NULL, (LPRECT) NULL,
SW_INVALIDATE);
UpdateWindow(hwnd);
/* Reset the scroll bar. */
si.cbSize = sizeof(si);
si.fMask = SIF_POS;
si.nPos = yCurrentScroll;
SetScrollInfo(hwnd, SB_VERT, &si, TRUE);
}
break;
case WM_COMMAND: /* uMsg: command from app. menu */
switch(wParam) {
case IDM_STC:
/*
* Copy the contents of the current screen
* into the compatible DC.
*/
BitBlt(hdcScreenCompat, 0, 0, bmp.bmWidth,
bmp.bmHeight, hdcScreen, 0, 0, SRCCOPY);
/*
* Copy the compatible DC to the client area.
*/
hdcWin = GetDC(hwnd);
BitBlt(hdcWin, 0, 0, bmp.bmWidth, bmp.bmHeight,
hdcScreenCompat, 0, 0, SRCCOPY);
ReleaseDC(hwnd, hdcWin);
fBlt = TRUE;
break;
default:
return (DefWindowProc(hwnd, uMsg,
wParam, lParam));

}
break;

Creating a Keyboard Interface for a Standard Scroll Bar
Although a scroll bar control provides a built-in keyboard interface, a standard scroll bar does not.
To implement a keyboard interface for a standard scroll bar, a window procedure must process
the WM_KEYDOWN message and examine the virtual-key code specified by the wParam
parameter. If the virtual-key code corresponds to an arrow key, the window procedure sends itself
a WM_HSCROLL or WM_VSCROLL message with the low-order word of the wParam parameter
set to the appropriate scroll bar notification message. For example, when the user presses the UP
arrow key, the window procedure receives a WM_KEYDOWN message with wParam equal to
VK_UP. In response, the window procedure sends itself a WM_VSCROLL message with the low-
order word of wParam set to the SB_LINEUP notification message.

The following example shows how to include a keyboard interface for a standard scroll bar.WORD wScrollNotify = 0xFFFF;
.
.
.
case WM_KEYDOWN:

switch (wParam) {
case VK_UP:
wScrollNotify = SB_LINEUP;
break;
case VK_PRIOR:
wScrollNotify = SB_PAGEUP;
break;
case VK_NEXT:
wScrollNotify = SB_PAGEDOWN;
break;
case VK_DOWN:
wScrollNotify = SB_LINEDOWN;
break;
case VK_HOME:
wScrollNotify = SB_TOP;
break;
case VK_END:
wScrollNotify = SB_BOTTOM;
break;
}
if (wScrollNotify != -1)
SendMessage(hwnd, WM_VSCROLL,
MAKELONG(wScrollNotify, 0), 0L);
break;

.

.

.

Scroll Bar Reference
The following functions, structures and messages are associated with scroll bars.

Scroll Bar Functions
Following are the functions used with scroll bars.
EnableScrollBar
GetScrollPos
GetScrollInfo
GetScrollRange
ScrollDC
ScrollWindow
ScrollWindowEx
SetScrollInfo
SetScrollPos
SetScrollRange

ShowScrollBar

Scroll Bar Structures
The following structure is used with scroll bars.

SCROLLINFO

Scroll Bar Messages
Following are the messages used with scroll bars.
SBM_ENABLE_ARROWS
SBM_GETPOS
SBM_GETRANGE
SBM_GETSCROLLINFO
SBM_SETPOS
SBM_SETRANGE
SBM_SETRANGEREDRAW
SBM_SETSCROLLINFO
WM_CTLCOLORSCROLLBAR
WM_HSCROLL

WM_VSCROLL

Static ControlsThe Microsoft® Windows® operating system provides dialog boxes and controls to support
communication between an application and the user. A static control is a control that enables an
application to provide the user with certain types of text and graphics that typically require no
response.

About Static Controls
Applications often use static controls to label other controls or to separate a group of controls.
Although static controls are child windows, they cannot be selected. Therefore, they cannot
receive the keyboard focus and cannot have a keyboard interface. A static control that has the
SS_NOTIFY style receives mouse input, notifying the parent window when the user clicks or
double clicks the control. Static controls belong to the STATIC window class.

Although static controls can be used in overlapped, pop-up, and child windows, they are designed
for use in dialog boxes, where Windows standardizes their behavior. By using static controls
outside dialog boxes, a developer increases the risk that the application might behave in a
nonstandard fashion. Typically, a developer either uses static controls in dialog boxes or uses the
SS_OWNERDRAW style to create customized static controls.

For more information about dialog boxes, see Dialog Boxes. For more information about window
classes, see Window Classes. For more information about window subclassing, see Window
Procedures.

Static Control Types and Styles
The Microsoft® Win32® application programming interface (API) provides four types of static
controls: simple graphics, text, images, and owner-drawn. Each type has one or more styles.

Simple Graphics
A simple graphics static control displays a frame or a filled rectangle. A frame can be drawn in a
number of styles, included black, gray, or white. In addition, a frame and can drawn with an
etched style to give it a three-dimensional appearance. The frame styles include
SS_BLACKFRAME, SS_GRAYFRAME, SS_WHITEFRAME, SS_ETCHEDHORZ,
SS_ETCHEDVERT, and SS_ETCHEDFRAME.

A rectangle can be filled with color in one of three styles: black, gray, or white. These styles are
defined by the constants SS_BLACKRECT, SS_GRAYRECT, and SS_WHITERECT.

Text
A text static control displays text in a rectangle in one of five styles: left-aligned without wordwrap,
left aligned with wordwrap, centered, right-aligned, or "simple." These styles are defined by the
constants SS_LEFTNOWORDWRAP, SS_LEFT, SS_CENTER, SS_RIGHT, and SS_SIMPLE,
respectively. Windows rearranges the text in these controls in predefined ways, except for
"simple" text, which is not rearranged.

An application can change the text in a text static control at any time by using the
SetWindowText function or the WM_SETTEXT message.

The system displays as much text as it can in the static control and clips whatever does not fit. To
calculate an appropriate size for the control, retrieve the font metrics for the text. For more
information about fonts and font metrics, see Fonts and Text.

Images
An image static control can display bitmaps, icons (including animated icons), or enhanced
metafiles. The type of graphic that a particular static control displays depends on the control's
style: SS_BITMAP, SS_ICON, or SS_ENHMETAFILE. An application specifies the style when it
creates the control and also specifies the handle of the bitmap, icon, or metafile for the control to
display. After the control is created, an application can associate a different graphic with the
control by sending it an STM_SETIMAGE message, specifying the handle of the new graphic
object. An application can retrieve the handle of the graphic object currently associated with a
static control by sending it an STM_GETIMAGE message. An application sends messages to a
static control by using the SendDlgItemMessage function.

Owner-Drawn
By using the SS_OWNERDRAW style, an application can take responsibility for painting a static
control. The parent window of an owner-drawn static control (its owner) receives a
WM_DRAWITEM message whenever the static control needs to be painted. The message
includes the address of a DRAWITEMSTRUCT structure that contains information that the owner
window uses when drawing the control.

Static Control Styles
Many developers create dialog boxes by using standalone tools and so may not need to specify
static control styles. However, if a developer uses the CreateWindow or CreateWindowEx
function to create a static control for an application, the developer must use the following
constants to define the style.

Style Description

SS_BITMAP Specifies a bitmap is to be displayed in the
static control. The given text is the name of
a bitmap (not a filename) defined
elsewhere in the resource file. The style
ignores the nWidth and nHeight
parameters; the control automatically sizes
itself to accommodate the bitmap.

SS_BLACKFRAME Specifies a box with a frame drawn in the
same color as the window frames. This
color is black in the default Windows color
scheme.

SS_BLACKRECT Specifies a rectangle filled with the current
window frame color. This color is black in
the default Windows color scheme.

SS_CENTER Specifies a simple rectangle and centers
the given text in the rectangle. The text is
formatted before it is displayed. Words that
extend past the end of a line are
automatically wrapped to the beginning of
the next centered line.

SS_CENTERIMAGE Specifies that, if the bitmap or icon is
smaller than the client area of the static
control, the rest of the client area is filled
with the color of the pixel in the top left
corner of the bitmap or icon. If the static
control contains a single line of text, the
text is centered vertically in the client area
of the control.

SS_ENHMETAFILE Specifies an enhanced metafile is to be
displayed in the static control. The given
text is the name of a metafile. An
enhanced metafile static control has a
fixed size; the metafile is scaled to fit the
static control's client area.

SS_ETCHEDFRAME Draws the frame of the static control using
the EDGE_ETCHED edge style. For more
information, see the DrawEdge function.

SS_ETCHEDHORZ Draws the top and bottom edges of the
static control using the EDGE_ETCHED
edge style. For more information, see the
DrawEdge function.

SS_ETCHEDVERT Draws the left and right edges of the static
control using the EDGE_ETCHED edge
style. For more information, see the
DrawEdge function.

SS_GRAYFRAME Specifies a box with a frame drawn with
the same color as the screen background
(desktop). This color is gray in the default
Windows color scheme.

SS_GRAYRECT Specifies a rectangle filled with the current
screen background color. This color is gray
in the default Windows color scheme.

SS_ICON Specifies an icon is to be displayed in the
dialog box. The given text is the name of
an icon (not a filename) defined elsewhere
in the resource file. The icon can be an
animated cursor. The style ignores the

nWidth and nHeight parameters; the
control automatically sizes itself to
accommodate the icon.

SS_LEFT Specifies a simple rectangle and left-
aligns the given text in the rectangle. The
text is formatted before it is displayed.
Words that extend past the end of a line
are automatically wrapped to the beginning
of the next left-aligned line.

SS_LEFTNOWORDWRAPSpecifies a simple rectangle and left-
aligns the given text in the rectangle. Tabs
are expanded, but words are not wrapped.
Text that extends past the end of a line is
clipped.

SS_NOPREFIX Prevents interpretation of any ampersand
(&) characters in the control's text as
accelerator prefix characters. These are
displayed with the ampersand removed
and the next character in the string
underlined. This static control style may be
included with any of the defined static
controls.
An application can combine
SS_NOPREFIX with other styles by using
the bitwise OR (|) operator. This can be
useful when filenames or other strings that
may contain an ampersand (&) must be
displayed in a static control in a dialog box.

SS_NOTIFY Sends the parent window STN_CLICKED,
STN_DBLCLK, STN_DISABLE, and
STN_ENABLE notification messages when
the user clicks or double-clicks the control.

SS_OWNERDRAW Specifies that the owner of the static
control is responsible for drawing the
control. The owner window receives a
WM_DRAWITEM message whenever the
control needs to be drawn.

SS_REALSIZEIMAGE Prevents a static icon or bitmap control
(that is, static controls that have the
SS_ICON or SS_BITMAP style) from
being resized as it is loaded or drawn. If
the icon or bitmap is larger than the
destination area, the image is clipped.

SS_RIGHT Specifies a simple rectangle and right-
aligns the given text in the rectangle. The
text is formatted before it is displayed.
Words that extend past the end of a line
are automatically wrapped to the beginning
of the next right-aligned line.

SS_RIGHTJUST Specifies that the lower right corner of a
static control with the SS_BITMAP or
SS_ICON style is to remain fixed when the
control is resized. Only the top and left
sides are adjusted to accommodate a new
bitmap or icon.

SS_SIMPLE Specifies a simple rectangle and displays a
single line of left-aligned text in the
rectangle. The text line cannot be
shortened or altered in any way. The
control's parent window or dialog box must
not process the WM_CTLCOLORSTATIC
message.

SS_SUNKEN Draws a half-sunken border around a
static control.

SS_WHITEFRAME Specifies a box with a frame drawn with
the same color as the window background.
This color is white in the default Windows
color scheme.

SS_WHITERECT Specifies a rectangle filled with the current
window background color. This color is
white in the default Windows color
scheme.

Static Control Default Message Processing
The window procedure for the predefined static control window class performs default processing
for all messages that the static control procedure does not process. When the static control
returns FALSE for any message, the predefined window procedure checks the messages and
carries out the default action described in the following table. In the table, a text static control is a
static control with the style SS_LEFTNOWORDWRAP, SS_LEFT, SS_CENTER, SS_RIGHT, or
SS_SIMPLE.

Message Default action

WM_CREATE Loads the graphic object and sizes the
window to the object's size, for graphic static
controls. Takes no action for other static
controls.

WM_DESTROY Frees and destroys any graphic object, for
graphic static controls. Takes no action for
other static controls.

WM_ENABLE Repaints visible static controls.
WM_ERASEBKGND Returns TRUE, indicating the control erases

the background.
WM_GETDLGCODE Returns DLGC_STATIC.
WM_GETFONT Returns the handle of the font for text static

controls.
WM_GETTEXTLENGTHReturns the length, in characters, of the text

for a text static control.
WM_LBUTTONDBLCLKSends the parent window an STN_DBLCLK

notification message if the control style is
SS_NOTIFY.

WM_LBUTTONDOWN Sends the parent window an STN_CLICKED
notification message if the control style is
SS_NOTIFY.

WM_NCLBUTTONDBLCLKSends the parent window an STN_DBLCLK
notification message if the control style is
SS_NOTIFY.

WM_NCLBUTTONDOWNSends the parent window an STN_CLICKED
notification message if the control style is
SS_NOTIFY.

WM_NCHITTEST Returns HTCLIENT if the control style is
SS_NOTIFY; otherwise, returns
HTTRANSPARENT.

WM_PAINT Repaints the control.
WM_SETFONT Sets the font and repaints for text static

controls.
WM_SETTEXT Sets the text and repaints for text static

controls.

The predefined window procedure passes all other messages to DefWindowProc for default
processing.

Using Static Controls
The following example uses a timer and the STM_SETIMAGE message to animate an icon in a
dialog box. The icon handles and the icon identifier (IDI_ICON) are defined in a global header file.LRESULT APIENTRY StaticProc(hDlg, message, wParam, lParam)
HWND hDlg; /* window handle of dialog box */
UINT message; /* type of message */
UINT wParam; /* message-specific information*/
LONG lParam;
{

UINT idTimer = 1;
static UINT i;
static HICON aIcons[11];
switch (message) {
case WM_INITDIALOG: /* initialize dialog box */
i = 0;
/* Load icons("hinst" is defined globally). */
hiconOne = LoadIcon(hinst, "OneIco");
aIcons[i] = hiconOne;
hiconTwo = LoadIcon(hinst, "TwoIco");
aIcons[++i] = hiconTwo;
.
. /* Continue with the remaining icons. */
.
i = 0;
/*
* Use STM_SETIMAGE to associate an icon with the
* IDI_ICON identifier.
*/

SendDlgItemMessage(hDlg, /* dialog box window handle */
IDI_ICON, /* icon identifier*/
STM_SETIMAGE,/* message to send*/
(WPARAM) IMAGE_ICON, /* image type*/
(LPARAM) aIcons[i++]); /* icon handle */
/* Set a timer for 50-millisecond intervals. */
SetTimer(hDlg, idTimer, 50, (TIMERPROC) NULL);
return TRUE;
case WM_TIMER:
/*
* Use STM_SETIMAGE to associate a new icon with
* the IDI_ICON identifier whenever a WM_TIMER
* message is received.
*/

SendDlgItemMessage(hDlg, /* dialog box window handle */
IDI_ICON, /* icon identifier*/
STM_SETIMAGE,/* message to send*/
(WPARAM) IMAGE_ICON, /* image type*/
(LPARAM) aIcons[i++]); /* new icon handle*/
if (i == 10)
i = 0;
break;
case WM_COMMAND:
if (wParam == IDOK
|| wParam == IDCANCEL) {
EndDialog(hDlg, TRUE);
return TRUE;
}
return 0;
case WM_DESTROY: /* clean up */
KillTimer(hDlg, idTimer);
DeleteObject(hiconOne);
DeleteObject(hiconTwo);
.
. /* Continue with the remaining icons. */
.
return 0;
}
return FALSE;
UNREFERENCED_PARAMETER(lParam);

}

Static Control Messages
Following are the messages used with static controls. (STM_GETICON and STM_SETICON are
used only with icons.)
STM_GETIMAGE

STM_SETIMAGE

Static Control Notification Messages
The following messages are used with static control notification.
STN_CLICKED
STN_DBLCLK
STN_DISABLE
STN_ENABLE
STM_GETICON
STM_SETICON

WM_CTLCOLORSTATIC

Application Desktop ToolbarsAn application desktop toolbar (also called an appbar) is a window that is similar to the Microsoft®
Windows® taskbar. It is anchored to an edge of the screen, and it typically contains buttons that
give the user quick access to other applications and windows. The system prevents other
applications from using the desktop area occupied by an appbar. Any number of appbars can
exist on the desktop at any given time.

About Application Desktop Toolbars
Windows provides an application programming interface (API) that lets you take advantage of
appbar services provided by the system. The services help ensure that application-defined
appbars operate smoothly with one another and with the taskbar. The system maintains
information about each appbar and sends the appbars messages to notify them about events that
can effect their size, position, and appearance.

Sending Messages
An application uses a special set of messages, called appbar messages, to add or remove an
appbar, set an appbar's size and position, and retrieve information about the size, position, and
state of the taskbar. To send an appbar message, an application must use the
SHAppBarMessage function. The function's parameters include a message identifier, such as
ABM_NEW, and the address of an APPBARDATA structure. The structure members contain
information that the system needs to process the given message.

For any given appbar message, the system uses some members of the APPBARDATA structure
and ignores the others. However, because the system always uses the cbSize and hWnd
members, an application must fill these members for every appbar message. The cbSize member
specifies the size of the structure, and the hWnd member is the handle of the appbar's window.

Some appbar messages request information from the system. When processing these messages,
the system copies the requested information into the APPBARDATA structure.

Registration
The system keeps an internal list of appbars and maintains information about each bar in the list.
The system uses the information to manage appbars, perform services for them, and send them
notification messages.

An application must register an appbar (that is, add it to the internal list) before it can receive
appbar services from the system. To register an appbar, an application sends the ABM_NEW
message. The accompanying APPBARDATA structure includes the handle of the appbar's
window and an application-defined message identifier. The system uses the message identifier to
send notification messages to the window procedure of the appbar window. For more information
about appbar notification messages, see Appbar Notification Messages.

An application unregisters an appbar by sending the ABM_REMOVE message. Unregistering an
appbar removes it from the system's internal list of appbars. The system no longer sends
notification messages to the appbar nor prevents other applications from using the screen area
occupied by the appbar. An application should always send ABM_REMOVE before destroying an
appbar.

Appbar Size and Position
An application should set an appbar's size and position so that it does not interfere with any other
appbars or the taskbar. Every appbar must be anchored to a particular edge of the screen, and
multiple appbars can be anchored to an edge. However, if an appbar is anchored to the same
edge as the taskbar, the system ensures that the taskbar is always on the outermost edge.

To set the size and position of an appbar, an application first proposes a screen edge and
bounding rectangle for the appbar by sending the ABM_QUERYPOS message. The system
determines whether any part of the screen area within the proposed rectangle is occupied by the
taskbar or another appbar, adjusts the rectangle (if necessary), and returns the adjusted rectangle
to the application.

Next, the application sends the ABM_SETPOS message to set the new bounding rectangle for
the appbar. Again, the system may adjust the rectangle before returning it to the application. For
this reason, the application should use the adjusted rectangle returned by ABM_SETPOS to set
the final size and position. The application can use the MoveWindow function to move the appbar
into position.

By using a two-step process to set the size and position, the system allows the application to
provide intermediate feedback to the user during the move operation. For example, if the user
drags an appbar, the application might display a shaded rectangle indicating the new position
before the appbar actually moves.

An application should set the size and position of its appbar after registering it and whenever the
appbar receives the ABN_POSCHANGED notification message. An appbar receives this
notification message whenever a change occurs in the taskbar's size, position, or visibility state
and whenever another appbar on the same side of the screen is resized, added, or removed.

Whenever an appbar receives the WM_ACTIVATE message, it should send the ABM_ACTIVATE
message. Similarly, when an appbar receives a WM_WINDOWPOSCHANGED message, it must
call ABM_WINDOWPOSCHANGED. Sending these messages ensures that the system properly
sets the Z order of any autohide appbars on the same edge.

Autohide Application Desktop Toolbars
An autohide appbar is one that is normally hidden, but becomes visible when the user moves the
mouse cursor to the screen edge that the appbar is associated with. The appbar hides itself again
when the user moves the mouse cursor out of the bar's bounding rectangle.

Although the system allows a number of different appbars at any given time, it allows only one
autohide appbar at a time for each screen edge on a first come, first served basis. The system
automatically maintains the Z order of an autohide appbar (within its Z order group only).

An application uses the ABM_SETAUTOHIDEBAR message to register or unregister an autohide
appbar. The message specifies the edge for the appbar and a flag that specifies whether the
appbar is to be registered or unregistered. The message fails if an autohide appbar is being
registered, but one is already associated with the specified edge. An application can retrieve the
handle of the autohide appbar associated with an edge by sending the ABM_GETAUTOHIDEBAR
message.

An autohide appbar does not need to register as a normal appbar; that is, it does not need to be
registered by sending the ABM_NEW message. An appbar that is not registered by ABM_NEW
overlaps any appbars anchored on the same edge of the screen.

Appbar Notification Messages
The system sends messages to notify an appbar about events that can effect its position and
appearance. The messages are sent in the context of an application-defined message. The
application specifies the identifier of the message when it sends the ABM_NEW message to
register the appbar. The notification code is in the wParam parameter of the application-defined
message.

An appbar receives the ABN_POSCHANGED notification message when the taskbar's size,
position, or visibility state changes, when another appbar is added to the same edge of the
screen, or when another appbar on the same edge of the screen is resized or removed. An
appbar should respond to this notification message by sending ABM_QUERYPOS and
ABM_SETPOS messages. If an appbar's position has changed, it should call the MoveWindow
function to move itself to the new position.

The system sends the ABN_STATECHANGE notification message whenever the taskbar's
autohide or always-on-top state has changed ¾ that is, when the user checks or unchecks the
"Always on top" or "Auto hide" check box on the taskbar's property sheet. An appbar can use this
notification message to set its state to conform to that of the taskbar, if desired.

When a full-screen application is started or when the last full-screen application is closed, an
appbar receives the ABN_FULLSCREENAPP notification message. The lParam parameter
indicates whether the full-screen application is opening or closing. If it is opening, the appbar must
drop to the bottom of the Z order. The appbar should restore its Z order position when the last full-
screen application has closed.

An appbar receives the ABN_WINDOWARRANGE notification message when the user selects
the Cascade, Tile Horizontally, or Tile Vertically command from the task bar's context menu. The
system sends the message two times ¾ before rearranging the windows (lParam is TRUE) and
after arranging the windows (lParam is FALSE).

An appbar can use ABN_WINDOWARRANGE messages to exclude itself from the cascade or tile
operation. To exclude itself, the appbar should hide itself when lParam is TRUE and show itself
when lParam is FALSE. If an appbar hides itself in response to this message, it does not need to
send the ABM_QUERYPOS and ABM_SETPOS messages in response to the cascade or tile
operation.

Using Application Desktop Toolbars
This section includes examples that demonstrate how to perform the following tasks:

· Registering an application desktop toolbar (appbar)
· Setting the appbar size and position
· Processing appbar notification messages

Registering an Application Desktop Toolbar
An application must register an appbar by sending the ABM_NEW message. Registering an
appbar adds it to the system's internal list and provides the system with a message identifier to
use to send notification messages to the appbar. Before exiting, an application must unregister
the appbar by sending the ABM_REMOVE message. Unregistering removes the appbar from the
system's internal list and prevents the bar from receiving appbar notification messages.

The function in the following example either registers or unregisters an appbar, depending on the
value of a Boolean flag parameter.// RegisterAccessBar - registers or unregisters an appbar.
// Returns TRUE if successful or FALSE otherwise.
// hwndAccessBar - handle of the appbar
// fRegister - register and unregister flag
//
// Global variables
//g_uSide - screen edge (defaults to ABE_TOP)
//g_fAppRegistered - flag indicating whether the bar is registered
BOOL RegisterAccessBar(HWND hwndAccessBar, BOOL fRegister)
{

APPBARDATA abd;
// Specify the structure size and handle of the appbar.
abd.cbSize = sizeof(APPBARDATA);
abd.hWnd = hwndAccessBar;
if (fRegister) {
// Provide an identifier for notification messages.
abd.uCallbackMessage = APPBAR_CALLBACK;
// Register the appbar.
if (!SHAppBarMessage(ABM_NEW, &abd))
return FALSE;
g_uSide = ABE_TOP; // default edge
g_fAppRegistered = TRUE;
} else {
// Unregister the appbar.
SHAppBarMessage(ABM_REMOVE, &abd);
g_fAppRegistered = FALSE;
}
return TRUE;

}

Setting the Appbar Size and Position
An application should set an appbar's size and position after registering the appbar, after the user
user moves or sizes the appbar, and whenever the appbar receives the ABN_POSCHANGED
notification message. Before setting the size and position of the appbar, the application queries
the system for an approved bounding rectangle by sending the ABM_QUERYPOS message. The
system returns a bounding rectangle that does not interfere with the taskbar or any other appbar.
The system adjusts the rectangle purely by rectangle subtraction; it makes no effort to preserve
the rectangle's initial size. For this reason, the appbar should readjust the rectangle, as
necessary, after sending ABM_QUERYPOS.

Next, the application passes the bounding rectangle back to the system by using the
ABM_SETPOS message. Then it calls the MoveWindow function to move the appbar into
position.

The following example shows how to set an appbar's size and position.// AppBarQuerySetPos - sets the size and position of an appbar.
// uEdge - screen edge to which the appbar is to be anchored
// lprc - current bounding rectangle of the appbar
// pabd - address of APPBARDATA structure with the hWnd and
//cbSize members filled
void PASCAL AppBarQuerySetPos(UINT uEdge, LPRECT lprc, PAPPBARDATA
pabd)
{

int iHeight = 0;
int iWidth = 0;
pabd->rc = *lprc;
pabd->uEdge = uEdge;
// Copy the screen coordinates of the appbar's bounding
// rectangle into the APPBARDATA structure.
if ((uEdge == ABE_LEFT) ||

(uEdge == ABE_RIGHT)) {
iWidth = pabd->rc.right - pabd->rc.left;
pabd->rc.top = 0;
pabd->rc.bottom = GetSystemMetrics(SM_CYSCREEN);
} else {
iHeight = pabd->rc.bottom - pabd->rc.top;
pabd->rc.left = 0;
pabd->rc.right = GetSystemMetrics(SM_CXSCREEN);
}
// Query the system for an approved size and position.
SHAppBarMessage(ABM_QUERYPOS, pabd);
// Adjust the rectangle, depending on the edge to which the
// appbar is anchored.
switch (uEdge) {
case ABE_LEFT:
pabd->rc.right = pabd->rc.left + iWidth;
break;
case ABE_RIGHT:
pabd->rc.left = pabd->rc.right - iWidth;
break;
case ABE_TOP:
pabd->rc.bottom = pabd->rc.top + iHeight;
break;
case ABE_BOTTOM:
pabd->rc.top = pabd->rc.bottom - iHeight;
break;
}
// Pass the final bounding rectangle to the system.
SHAppBarMessage(ABM_SETPOS, pabd);
// Move and size the appbar so that it conforms to the
// bounding rectangle passed to the system.
MoveWindow(pabd->hWnd, pabd->rc.left, pabd->rc.top,
pabd->rc.right - pabd->rc.left,
pabd->rc.bottom - pabd->rc.top, TRUE);

}

Processing Appbar Notification Messages
An appbar receives a notification message when the state of the task bar changes, when a full
screen application starts (or the last one closes), or when an event occurs that can affect the
appbar's size and position. The following example shows how to process the various notification
messages.// AppBarCallback - processes notification messages sent by the system.
// hwndAccessBar - handle of the appbar
// uNotifyMsg - identifier of the notification message
// lParam - message parameter
void AppBarCallback(HWND hwndAccessBar, UINT uNotifyMsg,

LPARAM lParam)
{

APPBARDATA abd;
UINT uState;
abd.cbSize = sizeof(abd);
abd.hWnd = hwndAccessBar;
switch (uNotifyMsg) {
case ABN_STATECHANGE:
// Check to see if the taskbar's always-on-top state has
// changed and, if it has, change the appbar's state
// accordingly.
uState = SHAppBarMessage(ABM_GETSTATE, &abd);
SetWindowPos(hwndAccessBar,
(ABS_ALWAYSONTOP & uState) ? HWND_TOPMOST : HWND_BOTTOM,
0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);
break;
case ABN_FULLSCREENAPP:
// A full screen application has started, or the last full
// screen application has closed. Set the appbar's
// Z order appropriately.
if (lParam) {
SetWindowPos(hwndAccessBar,
(ABS_ALWAYSONTOP & uState) ?

HWND_TOPMOST : HWND_BOTTOM,
0, 0, 0, 0,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);
} else {
uState = SHAppBarMessage(ABM_GETSTATE, &abd);
if (uState & ABS_ALWAYSONTOP)
SetWindowPos(hwndAccessBar, HWND_TOPMOST,

0, 0, 0, 0,
SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);
}
case ABN_POSCHANGED:
// The taskbar or another appbar has changed its
// size or position.
AppBarPosChanged(&abd);
break;
}

}The following function adjusts an appbar's bounding rectangle and then calls the application-
defined AppBarQuerySetPos function (included in the previous section) to set the bar's size and
position accordingly.// AppBarPosChanged - adjusts the appbar's size and position.
// pabd - address of an APPBARDATA structure that contains information
//used to adjust the size and position
void PASCAL AppBarPosChanged(PAPPBARDATA pabd)
{

RECT rc;
RECT rcWindow;
int iHeight;
int iWidth;
rc.top = 0;
rc.left = 0;
rc.right = GetSystemMetrics(SM_CXSCREEN);
rc.bottom = GetSystemMetrics(SM_CYSCREEN);
GetWindowRect(pabd->hWnd, &rcWindow);
iHeight = rcWindow.bottom - rcWindow.top;
iWidth = rcWindow.right - rcWindow.left;
switch (g_uSide) {
case ABE_TOP:
rc.bottom = rc.top + iHeight;
break;
case ABE_BOTTOM:
rc.top = rc.bottom - iHeight;
break;
case ABE_LEFT:
rc.right = rc.left + iWidth;
break;
case ABE_RIGHT:
rc.left = rc.right - iWidth;
break;
}
AppBarQuerySetPos(g_uSide, &rc, pabd);
}

Application Desktop Toolbar Reference
The following functions, structures, messages, and notification messages are used with
application desktop toolbars.

Application Desktop Toolbar Functions
The following function is used with application desktop toolbars.

SHAppBarMessage

Application Desktop Toolbar Structures
The following structure is used with application desktop toolbars.

APPBARDATA

Application Desktop Toolbar Messages
The following messages are used with application desktop toolbars.
ABM_ACTIVATE
ABM_GETAUTOHIDEBAR
ABM_GETSTATE
ABM_GETTASKBARPOS
ABM_NEW
ABM_QUERYPOS
ABM_REMOVE
ABM_SETAUTOHIDEBAR
ABM_SETPOS

ABM_WINDOWPOSCHANGED

Application Desktop Toolbar Notification Messages
The following notification messages are used with application desktop toolbars.
ABN_FULLSCREENAPP
ABN_POSCHANGED
ABN_STATECHANGE

ABN_WINDOWARRANGE

Briefcase ReconcilersA briefcase reconciler gives the Windows Briefcase the means to reconcile different versions of a
document.

About Briefcase Reconcilers
A briefcase reconciler combines different input versions of a document to produce a single, new
output version of the document. You may need to create a briefcase reconciler to support your
type of document. This overview describes briefcase reconcilers and explains how to create them.

Reconciliation
A document is a collection of information that can be copied and changed. A document is said to
have versions if the content of at least two copies of the document are different. Reconciliation
produces a single version of a document from two or more initial versions. Typically, the final
version is a combination of information from the initial versions with the most recent or most useful
information preserved.

Reconciliation is initiated by the Briefcase when it determines that two or more copies of the same
document are different. The Briefcase, which is called the initiator in this context, locates and
starts the briefcase reconciler associated with the given document type. The reconciler compares
the documents and determines which portions of the documents to retain. Some reconcilers may
require user interaction to complete reconciliation. Others may complete reconciliation without
user interaction. The reconciler can be contained within an application or be an extension
implemented as a dynamic-link library (DLL).

Some briefcase reconcilers may create residues. A residue is a document, usually having the
same file type as the initial document, that contains information not saved in the merged version.
Residues are typically used to give authors a quick way to determine what information from their
original document is not in the final merged version. If a reconciler supports residues, it creates
one residue for each of the original versions of the document. Residues are not created unless the
initiator requests them. The Briefcase does not currently request residues, but future initiators
may.

Some briefcase reconcilers work in conjunction with the Briefcase to provide the user with a
means to terminate reconciliation. This capability is useful for a user who may decide that the
reconciliation should not proceed. A reconciler typically provides a termination object when the
reconciliation requires user interaction and may be lengthy. In some environments, a reconciler
may allow partial reconciliation, enabling a user to temporarily suspend a reconciliation and
resume it later. The Briefcase does not currently support partial reconciliation, but future initiators
may.

Creating a Briefcase Reconciler
You create a briefcase reconciler by implementing the reconciliation interfaces. At a minimum, a
reconciler implements the IReconcilableObject interface and the IPersistStorage or IPersistFile
interface. As the initiator, the Briefcase determines when reconciliation is needed and calls the
IReconcilableObject::Reconcile member function to initiate reconciliation.

Although the Reconcile member function can provide a wide-ranging set of reconciliation
capabilities, a briefcase reconciler carries out only minimal reconciliation in most cases. In
particular, the Briefcase does not require the reconciler to support residue generation or to
support the termination object. Also, the reconciler carries out a single top to bottom reconciliation
and must not return the REC_E_NOTCOMPLETE value; that is, it should not attempt partial
reconciliation.

The Briefcase provides the IReconcileInitiator interface. The briefcase reconciler can use the
IReconcileInitiator::SetAbortCallback member function to set the termination object. The
Briefcase does not use version identifiers and can, therefore, not provide previous versions of a
document if a reconciler requests them using the corresponding member functions in
IReconcileInitiator.

The Briefcase passes file monikers to Reconcile representing the versions of the document to be
reconciled. The briefcase reconciler gains access to the versions by using either the IMoniker::
BindToObject or IMoniker::BindToStorage member function. The latter is generally faster and is
recommended. The reconciler must release any objects or storage to which it binds.

When the briefcase reconciler uses BindToStorage, it binds to storage that is either flat storage
(a stream) or OLE-defined structured storage. If the reconciler expects flat storage, it should use
BindToStorage to request the IStream interface. If the reconciler expects structured storage, it
should request the IStorage interface. In both cases, it should request read-only direct
(nontransacted) access to the storage; read-write access may not generally be available.

A minimal briefcase reconciler typically looks directly at the storage of the other versions and
deals with embedded objects in a very primitive manner, such as merging two versions of the
object by including both versions in the output version.

The initiator locates the appropriate briefcase reconciler by using a subset of the logic
implemented by the GetClassFile function to determine the class of a given file and then looks in
the registry for the reconciler class associated with the given file class. The Briefcase, like other
shell components, determines the class of a file solely by the filename extension. A file's
extension must have a registered class for the Briefcase to invoke a reconciler for the file. You
must set a registry entry of the following form when installing your reconciler.

CLSID\clsid\Roles\Reconciler\reconciler-classid

The class must be quick loading, must be designated _MULTIPLEUSE, and, unless marshallers
are provided for the reconciliation interface, must be an in-process server (contained in a DLL)
rather than a local server (implemented in an .EXE file).

User Interaction
A briefcase reconciler should attempt to carry out reconciliation without user intervention. The
more automated the reconciliation, the better the user's perception of the process.

In some cases, user intervention may be valuable. For example, a document system may require
a user to review changes before accepting the merged version of a document or may require
comments from the user explaining the changes that have been made. In these cases, the
initiator, not the briefcase reconciler, is responsible for querying the user and carrying out the
user's instructions.

In other cases, user intervention may be necessary. For example, when two versions have been
edited in incompatible ways. In such cases, either the initiator or briefcase reconciler must query
the user for instructions on how to resolve the conflict. In general, no initiator can rely on
completing a reconciliation without expecting some user interaction. Reconcilers, on the other
hand, have the option of interacting with the user to resolve conflicts or requiring the initiator to do
so.

Embedded Objects
When reconciling a document, the briefcase reconciler itself may become an initiator if it discovers
an embedded object of a type that it cannot reconcile. In this case, the reconciler needs to
recursively reconcile each of the embedded objects and assume all the responsibilities of an
initiator.

To carry out the recursion, the briefcase reconciler loads the object and queries for the
appropriate interface. The handler for the object must support the interface. If any member
function of the interface returns the OLE_E_NOTRUNNING value, the reconciler must run the
object in order to carry out the operation. Because code for embedded objects is not always
available, a reconciler must provide a solution for this condition. For example, the reconciler might
include both old and new versions of the embedded object in the reconciled version. The
reconciler must not attempt to reconcile across links.

The initiator stores the document versions being merged. In many cases, the initiator has access
to the storage of each version and saves the result of reconciliation using similar storage.
Sometimes, however, the initiator may have an in-memory object for which no persistent version
is available. This situation can occur when a document containing open embedded objects must
be reconciled before being saved. In such cases, the initiator saves the result of the reconciliation
in the version found in memory.

The initiator uses the IPersistStorage interface to bind (load) the merged version. The initiator
uses the IPersistStorage::Load member function if an initial version has already been created
and uses the IPersistStorage::InitNew member function for the initial version. Once the merged
version is loaded, the initiator uses QueryInterface to retrieve the address of the
IReconcilableObject interface. This interface gives the initiator access to the storage of the
existing residues and gives it a way to create storage for any new residues. Then the initiator
directs the interface to carry out the reconciliation. The initiator actually queries for the
IPersistFile interface before IPersistStorage. If the reconciler supports IPersistFile, the initiator
manipulates the replica through the IPersistFile rather than IPersistStorage member functions.
This permits reconciliation of files that are not stored as compound documents.

Once the reconciliation is complete, the initiator can save the merged version by using the
IPersistStorage or IPersistFile interface. During reconciliation, the briefcase reconciler creates
residues as needed and writes their persistent bits to storage. If the merged version is a stream,
the IStorage interface passed to IPersistStorage::Load contains a stream named "Contents"
with its storage state set to STATEBITS_FLAT. (You can set the state bits by using the IStorage:
:Stat member function.) After the merge, the initiator saves the merged version by writing the data
in an appropriate manner. It should ensure that STATEBITS_FLAT is set as appropriate for the
storage.

Residues
The initiator indicates whether it wants residues by setting the pstgNewResidues parameter to a
valid address when calling the IReconcilableObject::Reconcile member function. If the
reconciler does not support the creation of residues, it must return immediately the
REC_E_NORESIDUES value, unless the dwFlags parameter specifies the
RECONCILEF_NORESIDUESOK value.

The briefcase reconciler returns residues to the initiator by creating new storage elements and
copying them to the array pointed to by pstgNewResidues. For structured storage residues, the
reconciler copies an IStorage interface, and for flat storage residues, it copies either an IStream
or IStorage interface with the STATEBITS_FLAT flag set. The reconciler uses IStorage to create
the necessary storage, using IStorage::CreateStream to create flat storage for a residue that is a
stream and IStorage::CreateStorage to create structured storage.

The initiator prepares pstgNewResidues such that it contains no elements in the nonreserved part
of the IStorage namespace. The briefcase reconciler places each residue in an element whose
name corresponds to the order of its initial version. For example, the first residue is contained in
"1," the second in "2," and so on. If the reconciled object itself produces a residue, that is found in
the element named "0."

The briefcase reconciler commits each of the newly created elements individually, ensuring that
the initiator has access to the information. The reconciler does not, however, commit
pstgNewResidues itself. The initiator is responsible for committing this or otherwise disposing of it.

Briefcase Reconciler Reference
This section contains information about the reconciliation interfaces. When handling errors, a
member function can return only those error values that are explicitly defined as possible return
values. Furthermore, the member function must set all variables whose addresses are passed as
parameters to NULL before returning from the error.

Briefcase Reconciler Interfaces
IReconcilableObject
IReconcileInitiator

INotifyReplica

Dragging and DroppingThis overview explains the general concepts that you need to know to support drag and drop
capabilities in your applications and lists the basic steps for implementing drag and drop support.

About Dragging and Dropping
A Win32- based application should fully support the source and target drag and drop capabilities
provided by OLE. One of the most attractive features of drag and drop in OLE is that the code that
handles the actual data transfer ¾ your implementation of the IDataObject interface ¾ is
reusable. You will be able to use the same code to implement cut and paste. OLE separates what
the user does to cause the data transfer from how the applications actually transfer the data. This
allows you to use the same "back-end" IDataObject interface for any number of ways that the
user may want to transfer data.

General OLE Concepts
One of the most attractive aspects of OLE is that it is completely modular. It is designed so that
each component can exist, for the most part, on its own. For example, you can add drag and drop
support to your application without adding in-place activation, automation, or compound storage.

Even if your application only uses a small part of OLE, the Component Object Model (COM)
enables other applications to know what your application's OLE capabilities are. COM is the
fundamental, underlying model that OLE is based upon; all OLE objects are also component
objects.

COM stipulates that any component object must control its own life span and be able to tell other
objects about its capabilities in a strictly defined manner. To control its life span, a component
object maintains a reference count. Capabilities are grouped into logical sets called interfaces;
each interface is a set of member functions necessary to support a certain capability. The "strictly
defined manner" that component objects must use is itself an interface, which is called IUnknown.
Because all OLE interfaces are derived from IUnknown, they are component objects. IUnknown
has three member functions: QueryInterface, AddRef, and Release.

An object uses QueryInterface to tell other objects about its capabilities. If the object implements
the requested interface, it returns a pointer to the interface. If it does not implement it, it returns
the E_NOTIMPL error value stating that the object does not support the requested interface.
AddRef and Release are used to control the object's life span. An object's AddRef member
function is called when another object holds a pointer to the object, and the Release member
function is called when the pointer is no longer needed. If a call to Release causes the object's
reference count to go to zero, the object can safely unload itself.

COM provides a couple of immediate benefits:

· An object can determine in advance if another object supports a certain feature. If the
other object does not support the feature, the calling object can react accordingly.

· Objects do not remain in memory longer (or shorter) than necessary, and they do not rely
on the user to launch or close them.

The OLE data transfer mechanism is a crucial element of drag and drop support. Data transfer in
OLE allows objects to be very specific about the data that they transfer. Instead of simply being
able to transfer a plain old bitmap, an object can now transfer a bitmap of the object's contents
rendered for a printer device and stored in a stream to be released by OLE.

To accomplish this, OLE uses the IDataObject interface and the FORMATETC and STGMEDIUM
structures. Applications implement IDataObject to accomplish all data transfer in OLE; it includes
member functions that set and retrieve an object's data, enumerate the available data formats,
and receive data change notifications. FORMATETC and STGMEDIUM provide the specific
details about the data that is being transferred ¾ that is, the target device, aspect, storage
medium, and release method.

Every drag and drop operation involves two objects: a source and a target. The source object
contains the data to be dragged, and the target object accepts the dragged data.

Adding Drop Source Capabilities
To enable your application to become the source of a drag and drop operation, follow these steps:

1. Initialize the OLE libraries. Any application that uses the OLE libraries must check the
version of the libraries and call the OleInitialize function during its initialization.
You should make sure that the system's OLE libraries are at least as recent as the ones for
which the application was written.
Before you call any other OLE functions, you must call OleInitialize to initialize the OLE
libraries. Because each call to OleInitialize must have a matching call to the OleUninitialize
function, you should maintain an fOleInitialized flag so that you will know whether to call
OleUninitialize when your application exits.

2. Implement the IDropSource interface. Not including the member functions that it inherits
from IUnknown, IDropSource has only two member functions: QueryContinueDrag and
GiveFeedback. OLE calls QueryContinueDrag intermittently during the drag operation. Its
parameters include the state of the keyboard, which the drop source uses to control the drag
operation. The drop source returns the S_OK value to continue dragging, the
DRAGDROP_CANCEL value to cancel dragging, or the DRAGDROP_DROP value to drop
the object.

3. OLE calls GiveFeedback to tell the drop source to update the cursor and ask the source
window for visual feedback about what would happen if the user dropped at the current point.
It sounds like a lot of work to update the cursor, but OLE will use its default cursors if the
DRAGDROP_S_USEDEFAULTCURSORS value is returned.

4. Implement the IDataObject interface, which is used by OLE applications to transfer data.
In a drag and drop operation, the drop source gives OLE a pointer to its IDataObject
implementation. OLE saves the pointer and passes it to the drop target when the cursor first
enters the target window and when the drop occurs. Fortunately, you only need to implement
the following (non-IUnknown) IDataObject member functions for drag and drop support:
GetData, GetDataHere, QueryGetData, and EnumFormatEtc.

5. Call the DoDragDrop function to begin the drag operation. After you have detected that
the user wants to drag something, you should call DoDragDrop. OLE uses the IDataObject
and IDropSource pointers that are passed in, along with its list of registered drop targets, to
control the drag operation. When the drag operation is complete, DoDragDrop returns either
the DRAGDROP_S_DROP or DRAGDROP_S_CANCEL value. In addition, OLE returns a
DWORD in the address pointed to by pdwEffect that tells how the drop should affect the
source data¾ that is, whether the operation was a move, copy, link, or scroll. You should look
at the pdwEffect value and modify the source data as necessary.

6. Call OleUninitialize. Before an OLE application exits, it must call OleUninitialize to
release the OLE libraries. You should check your fOleInitialized flag before calling
OleUninitialize and should only call OleUninitialize if OleInitialize returned successfully.

Adding Drop Target Capabilities
To enable your application to become a drop target, follow these steps:

1. Initialize the OLE libraries. You should check the build version and call the OleInitialize
function exactly as you would for a drop source.

2. Call the RegisterDragDrop function. OLE keeps a list of the windows that are drop
targets. Every window that accepts dropped objects must register itself and its IDropTarget
interface pointer. Then when the user drags the object over a drop target window, OLE has
the IDropTarget interface pointer handy.

3. Implement the IDropTarget interface. OLE uses the IDropTarget interface pointer that
you registered with RegisterDragDrop to keep you informed of the state of a drop operation.
When the cursor first enters a registered drop target window, OLE calls the IDropTarget::
DragEnter member function. In this member function, you should ensure that your application
can create the dragged object if it is dropped. Your application may also display visual
feedback showing where the dropped object will appear, if appropriate.
When the cursor moves around inside a drop target window, OLE calls the IDropTarget::
DragOver member function, just as Windows 95 sends WM_MOUSEMOVE messages. Here
you should update any visual feedback that your application displays to reflect the current
cursor position. When the cursor leaves a drop target window, OLE calls the IDropTarget::
DragLeave member function. In your DragLeave member function, you should remove any
feedback you displayed during DragOver or DragEnter.
OLE calls your IDropTarget::Drop member function when the user drops the object. To be
precise, a drop occurs when the drop source returns the DRAGDROP_DROP value from the
IDropSource::QueryContinueDrag member function. In your Drop member function, you
should create an appropriate object from IDataObject that is passed as a parameter. The
following example shows how to implement IDropTarget::Drop.STDMETHODIMP CDropTarget::Drop (LPDATAOBJECT pDataObj,

DWORD grfKeyState, POINTL pointl, LPDWORD pdwEffect)
{

FORMATETC fmtetc;
SCODE sc = S_OK;
UndrawDragFeedback(); // removes any visual feedback
// QueryDrop returns TRUE if the app. can accept a drop based on
// the current key state, requested action, and cursor position.
if (pDataObj && QueryDrop(grfKeyState,pointl,FALSE,pdwEffect)) {
m_pDoc->m_lpSite = CSimpleSite::Create(m_pDoc);
m_pDoc->m_lpSite->m_dwDrawAspect = DVASPECT_CONTENT;
// Initialize the FORMATETC structure.
fmtetc.cfFormat = NULL;
fmtetc.ptd = NULL;
fmtetc.lindex = -1;
fmtetc.dwAspect = DVASPECT_CONTENT; // draws object's content
fmtetc.tymed = TYMED_NULL;
HRESULT hrErr = OleCreateFromData
(pDataObj,IID_IOleObject,OLERENDER_DRAW,

&fmtetc, &m_pDoc->m_lpSite->m_OleClientSite,
m_pDoc->m_lpSite->m_lpObjStorage,
(LPVOID FAR *)&m_pDoc->m_lpSite->m_lpOleObject);
if (hrErr == NOERROR)
// The object was created successfully.
else
// The object creation failed.
sc = GetScode(hrErr);
}
return ResultFromScode(sc);

}4. Call the RevokeDragDrop function. Before a drop target window is destroyed, it must call
RevokeDragDrop to allow OLE to remove the window from its list of drop targets.

5. Uninitialize the OLE libraries. Like a drop source, your application needs to uninitialize the
OLE libraries before terminating.

Other Drag and Drop Considerations
You can use OLE drag and drop to add drag and drop support within your own application. There
is nothing to stop your application from being both a drop source and a drop target or from
accepting dropped objects from itself.

Scrap Files
Windows allows the user to transfer objects within a data file to the desktop or a folder. The result
of the transfer operation is a file icon called a scrap. An OLE application automatically supports
the creation of scrap files if its IDataObject interface supports enough data formats so that the
drop target can create either an embedding or a shortcut object. You do not need to add any other
functionality to your application to allow the user to create a scrap file. However, there are two
optional features you may wish to add to your application: round-trip support and caching
additional data formats in a scrap file. Round-trip support means that an object can be dragged
out of a document and into a new container and then dragged from the new container back into
the original document.

Round-Trip Support
When the user transfers a scrap into your application, it should integrate the scrap as if it were
being transferred from its original source. For example, if a selected range of cells from a
spreadsheet is transferred to the desktop, they become a scrap. If the user transfers the resulting
scrap into a word processing document, the cells should be incorporated as if they were
transferred directly from the spreadsheet. Similarly, if the user transfers the scrap back into the
spreadsheet, the cells should be integrated as if they were originally transferred within that
spreadsheet.

Your application must include code that integrates a scrap into a document; otherwise, the
embedding object of the scrap is copied into the document rather than the data associated with
the scrap. To retrieve the data for the scrap, your application must examine the class identifier,
CLSID, of the scrap object by retrieving the CF_OBJECTEDESCRIPTOR file format data. If the
application recognizes the CLSID, the application should transfer the native data into the
document rather than calling the OleCreateFromData function.

Caching Additional Data Formats
When an IDataObject is dropped onto a file system folder, such as the desktop, the shell receives
the CLSID of the object and looks for the list of clipboard formats to be cached in the scrap file.
The list is located in the following registry location.HKEY_CLASSES_ROOT\CLSID\{clsid}\DataFormats\PriorityCacheFormatsThe clipboard formats should be added to the registry as the names of named values (the value
should be empty). The additional formats give the user more choices when copying the scrap file
and opening the Paste Special dialog box from another application. You should choose only
useful formats to keep the scrap file from becoming too large. For example, WordPad scrap-
caches the RTF format, and MSPaint scrap-caches the CF_BITMAP format.HKEY_CLASSES_ROOT\CLSID\{D3E34B21-9D75-101A-8C3D-00AA001A1652}\
DataFormats\PriorityCacheFormats,"#8",,""
HKEY_CLASSES_ROOT\CLSID\{73FDDC80-AEA9-101A-98A7-00AA00374959}\
DataFormats\PriorityCacheFormats,"Rich Text Format",,""

Delay-Rendered Formats
You can specify the list of clipboard formats to be delay-rendered under the
HKEY_CLASSESROOT\CLSID\{clsid}\DataFormats\PriorityCacheFormats key. The
IDataObject of a scrap object with this CLSID will offer these formats in addition to the native data
and cached data. When the drop target requests one of these formats, the shell runs the
application and renders the format from the active object. However, you should avoid using this
mechanism because it does not work if the server is not available or if the application is a non-
OLE application.

Clipboard Formats for Shell Data Transfers
Windows allows the user to transfer data objects between applications and the shell. The user can
transfer data objects, such as printers, files, shortcuts, and folders, either by dragging and
dropping them or by using the Cut, Copy, and Paste menu commands. Both transfer methods
involve the clipboard.

Windows defines several clipboard formats that you must support to transfer objects between your
application and the shell. The Windows header files do not include predefined clipboard format
identifiers for these clipboard formats. Instead, they provide a set of clipboard format names and
corresponding values. To obtain an identifier for a clipboard format, you simply pass the format's
value to the RegisterClipboardFormat function. The following table lists the values and
corresponding clipboard format names.

Value Format name

CFSTR_SHELLIDLIST "Shell IDList Array"
CFSTR_SHELLIDLISTOFFSET "Shell Object Offsets"
CFSTR_NETRESOURCES "Net Resource"
CFSTR_FILEDESCRIPTOR "FileGroupDescriptor"
CFSTR_FILECONTENTS "FileContents"
CFSTR_FILENAME "FileName"
CFSTR_PRINTERGROUP "PrinterFriendlyName"
CFSTR_FILENAMEMAP "FileNameMap"

The following sections describe the clipboard formats used to transfer data between
applications and the shell.

"FileName" Format
The global memory object contains a single null-terminated and fully qualified filename. This
format is supported for compatibility with applications written for Windows version 3.1. New
applications should support the CF_HDROP clipboard format instead of the "FileName" format.

"FileNameMap" Format
The "FileNameMap" format is used with the CF_HDROP clipboard format to rename a list of files
that are copied to a new location during a copy and paste operation or a drag and drop operation.
Data in the "FileNameMap" format consist of a double-null terminated list of filenames that
correspond to the filenames in the CF_HDROP data. When the files listed in the CF_HDROP data
are copied to the new location, the files receive the new names specified in the "FileNameMap"
data. For example, if the CF_HDROP data contains two files with the names c:\temp.000 and c:\
temp.001, the "FileNameMap" data contains the following list of filenames."new.txt\0another.txt\0\0"If the files are copied to c:\target, they receive the following names.c:\target\new.txt(was c:\temp.000)
c:\target\another.txt(was c:\temp.001)The system stores files in the recycle bin using a coding system for the filenames (dcxxxx.ext).

When the user drags or copies files from the recycle bin, the system uses the filenames specified
in the "FileNameMap" format to rename the files.

CF_HDROP Format
The global memory object contains a DROPFILES structure. If the object was copied to the
clipboard as part of a drag and drop operation, the pt member of DROPFILES includes the
coordinates of the point where the drop occurred. The pFiles member is the offset to a double -
null-terminated list of filenames. An application can retrieve information from the data object by
passing the object's handle to the DragQueryFile and DragQueryPoint functions.

"PrinterFriendlyName" Format
This format is similar to the CF_HDROP format, except that the pFiles member of the
DROPFILES structure is the address of a double - null-terminated list of printer "friendly" names.

"FileContents" Format
The data object contains the contents of one or more files in a format that can be written to a file.
When a group of files is being transferred, the target of the drag and drop operation can use the
lindex member of the FORMATETC structure to indicate which file to retrieve. The names and
attributes of each file are contained in the "FileGroupDescriptor" data.

"FileGroupDescriptor" Format
The data object contains the filenames and attributes of a group of files being transferred during
an OLE style drag and drop operation. The data object consists of a FILEGROUPDESCRIPTOR
structure and any number of FILEDESCRIPTOR structures (one for each file in the group).

"Shell Object Offsets" Format
The global memory object contains an array of POINT structures. The first structure specifies the
screen coordinates of a group of shell objects, and the remaining structures specify the relative
offsets of each item in the group. All coordinates are in pixels.

"Net Resource" Format
The global memory object contains a list of network resources. The memory object consists of a
NRESARRAY structure and any number of NETRESOURCE structures (one for each network
resource in the list). Note that the string parameters (LPSTR types) in the NETRESOURCE
structure contain offsets instead of addresses.

"Shell IDList Array" Format
The global memory object contains an array of item identifier lists. The memory object consists of
a CIDA structure that contains offsets to any number of item identifier lists (ITEMIDLIST
structures). The first structure in the array corresponds to a folder, and subsequent structures
correspond to file objects within the folder.

Dragging and Dropping Reference
The following structures and enumeration types are used in dragging and dropping.

Dragging and Dropping Structures
The following structures define the clipboard formats used to transfer data between applications
and the shell.
DROPFILES
FILEDESCRIPTOR
FILEGROUPDESCRIPTOR

NRESARRAY

Dragging and Dropping Enumeration Types
The following enumeration type is used with dragging and dropping.

FD_FLAGS

File ParsersA file parser is a dynamic-link library (DLL) that provides the low-level parsing needed to generate
a "quick view" for a file of a given type.

About File Parsers
File parsers work in conjunction with the file viewing components of the Microsoft® Windows®
operating system. These components are the shell, the Quick View program (QUIKVIEW.EXE),
display engines, and file parsers. The shell responds to user requests to generate a quick view for
a file by calling the Quick View program. The program manages the process, directing one of the
display engines to draw the Quick View window and fill it with a view of the file. The display engine
uses a file parser to determine the contents of the file and to draw those contents correctly.

You can extend the file viewing capabilities of Windows by supplying additional file parsers. Each
file parser is responsible for a specific type or class of file and is associated with one of the display
engines. For example, you can allow a quick view to be generated for a .DOC file by creating a file
parser to support that file type and associating the file parser with the word processor display
engine.

This overview describes the file parser interface and explains how to write file parsers for word
processing documents, spreadsheets, databases, bitmapped graphics, and vector graphics. For
information about extending the file viewing capabilities in other ways, see File Viewers.

The file viewing technology used in the Quick View feature system has been jointly developed by
Microsoft Corporation and Systems Compatibility Corporation.

Adding or Removing File Parsers
For performance reasons, the file viewer builds a cache of the file parsers in the system the first
time the Quick View feature is used. This cache is stored in the registry. If a file parser is added or
removed, this cache must be rebuilt. To make the system rebuild the cache, set verify data not
equal to zero under the following key.\\HKEY_LOCAL_MACHINE\SOFTWARE\SCC\Viewer Technology\MS1

File Parser Requirements
Every file parser must implement the following functions.

VwStreamCloseFunc VwStreamSectionFunc

VwStreamOpenFunc VwStreamSeekFunc
VwStreamReadFunc VwStreamTellFunc
VwStreamReadRecordFunc

The display engine calls these functions to display a file of the type supported by the file
parser.

The display engine starts the file viewing process by calling VwStreamOpenFunc, sending
the name of a file to the file parser. The first responsibility of any parser is to verify that the given
file has the proper format and can be processed. If the file is viewable, the file parser returns a
value to the display engine acknowledging the request.

Once the parser completes verification, the display engine calls VwStreamSectionFunc, directing
the file parser to identify the type and name of the first section of the file to be processed. A
section is a portion of the file in which all the data is of one type; it forms a logical breaking point
for the processing of the file. The standard section types are word processing, spreadsheet,
database, bitmapped graphics, and vector graphics. A file can consist of a single section, multiple
sections of the same type, or a combination of sections of different types. The actions that the
display engine takes to display the file depend on the type of section currently being processed.
The file parser must call the SOPutSectionType and SOPutSectionName functions to output the
section type and to set the section name.

Before the file parser returns from VwStreamSectionFunc, it may need to provide the display
engine with additional information. If the portion to be processed is a word processing section, the
file parser must set entries for the font table by using the SOPutFontTableEntry function. If it is a
spreadsheet section, the file parser must set the column width by calling the SOPutColumnInfo
function. If it is a database section, the file parser must set the field format by calling the
SOPutFieldInfo function. The file parser can also set the date base used by spreadsheets and
databases to calculate dates by using the SOSetDateBase function. In addition, the file parser
can set header entries by calling the SOPutHdrEntry function.

After the section type and general information is set, the display engine requests data for the
section by calling VwStreamReadFunc. The file parser fulfills this request by calling the stream
output functions. These functions pass the data to the display engine in a form that is easiest for
the engine to display, copy to the clipboard, or write to disk.

The stream output functions used by the file parser depend on the section type. For word
processing sections, the file parser uses the SOPutParaSpacing, SOPutCharAttr, and
SOPutChar functions to set the spacing for paragraphs, set the style attributes for characters, and
output characters. For spreadsheet sections, the parser uses the SOPutDataCell and
SOPutTextCell functions to output the content (data or text) of cells. For database sections, it
uses the SOPutField and SOPutVarField functions to output the data of fields. The parser uses
the SOPutBitmapHeader and SOPutScanLineData functions for bitmapped graphics sections
and the SOVectorAttr and SOVectorObject functions for vector graphics sections.

To set a break for a paragraph, cell, or field, the file parser calls the SOPutBreak function with an
appropriate value, either SO_PARABREAK, SO_CELLBREAK, or SO_RECORDBREAK. The
return value from SOPutBreak tells the file parser how to proceed. If it is the SO_STOP value, the
file parser stops all processing and returns from VwStreamReadFunc.

The file parser continues to output data until it reaches the end of the section. The parser must
end a section by calling SOPutBreak with the SO_SECTIONBREAK value. If this is the last
section in the file, the file parser indicates that the end of the file has been reached by using the
SO_EOFBREAK value instead.

If there are subsequent sections in the file, the display engine calls VwStreamSectionFunc again
to request the type and name of the next section, and processing continues just as it did for the
first section.

After the last section, the display engine calls VwStreamCloseFunc to indicate that processing is
complete and that no further requests for data will be made. The file parser must close the file and
any related files it has opened and clean up resources, such as freeing memory.

If an error occurs while a file is parsed, the file parser should call the SOBailOut function to notify
the display engine of the error condition. The parser must immediately return from
VwStreamReadFunc after calling the SOBailOut function.

Restartable Parsing
You must design the file parser so that parsing can be efficiently restarted at discrete locations
within the file. The goal is to give the display engine the best performance without it having to
store a completely converted copy of a file.

To facilitate restartable parsing, the display engine incorporates a module, which is called the
chunker, that essentially caches data from the parser. The chunker does not cache all the data,
only the data that the display engine has most recently requested. However, it does cache state
data for restartable locations in the file. This means that as long as the parser maintains its own
internal data in a way that can be efficiently restarted, the display engine and the parser can work
cooperatively to locate and restart processing at the cached locations.

The file parser is responsible for determining the best locations for restarting parsing. It does this
by calling the SOPutBreak function. The chunker assumes that each break is a restartable
location in the file. Before calling SOPutBreak, however, the file parser must save up-to-date data
about the location so that it can quickly retrieve and begin processing the data at the location if
requested to do so.

The display engine uses the VwStreamSeekFunc and VwStreamTellFunc functions to direct the
file parser to a restartable location.

Word Processing Sections
Word processing sections contain text organized as paragraphs, tables, and subdocuments. Of
these, paragraphs and tables can have attributes, such as indentation, tab stops, and spacing.
The text in word processing sections consists of characters having attributes, such as typeface,
height, and weight. Word processing sections can also include embedded objects, allowing
bitmapped art and other graphics to be included with the text.

A file parser processes the text associated with a word processing section when the display
engine calls the VwStreamReadFunc function. The file parser must set all attributes before
calling the SOPutChar function or other text output functions. The file parser must never
automatically set an attribute as a default. If the state of a current attribute is not known, the file
parser must not set it.

Paragraph Attributes
The file parser sets the attributes of a paragraph before outputting characters for the paragraph.
The attributes are the alignment, indent, spacing, tab stops, and margins.

The file parser sets the alignment to be left, right, centered, or justified by using the
SOPutParaAlign function and sets the left, right, and first line indents by using the
SOPutParaIndents function. The file parser sets the spacing before and after the paragraph and
between lines of the paragraph by using the SOPutParaSpacing function. The file parser sets tab
stops by using the SOPutTabStop function, calling the function once for each tab stop. To mark
the start and end of a tab stop definition, the file parser calls the SOStartTabStops and
SOEndTabStops functions. The file parser sets page margins for the paragraph by using the
SOPutParaMargins function.

Tables
The file parser can add tables to text output by using the SOBeginTable and SOEndTable
functions to mark the start and end of the table definition and can format the rows and cells in
tables by using the SOPutTableRowFormat and SOPutTableCellInfo functions. The file parser
uses the character and paragraph functions to output the text for each cell and set the attributes.

The file parser marks the end of each cell and each row by using the SOPutBreak function with
the SO_TABLECELLBREAK and SO_TABLEROWBREAK values. A file parser must insert a cell
break after each cell and a row break at the end of each row. If a file parser inserts a row break
before inserting as many cells as were defined for the row, the remaining cells are assumed to be
empty. Empty cells may be inserted in the middle of a row by inserting consecutive cell breaks.

Row and cell formats must be defined before the last cell of a row. After defining the row
properties by using the SOPutTableRowFormat function, the parser must call the
SOPutTableCellInfo function for each cell in the row. After a row is defined, the row properties
are assumed to apply to subsequent rows until new row properties are specified. A filter may,
thus, define an entire table by specifying the row and cell properties once and then using the
appropriate row and cell breaks.

You can add borders to cells by setting the pLeftBorder, pRightBorder, pTopBorder, and
pBottomBorder members of the SOTABLECELLINFO structure to appropriate values when
setting the cell format.

You can add tabs to cells by using the special character, the SO_CHCELLTAB value. This
character is defined for cells that are merged with their neighbors and acts as a tab that moves
the current text position to the location of the next boundary that would have existed if the cells
had not been merged.

Subdocuments
The file parser adds subdocuments ¾ that is, headers, footers, footnotes, and comments ¾ to the
document by using the SOPutBreak function. The file parser must call SOPutBreak with the
SO_SUBDOCBEGINBREAK value to start a subdocument and with the
SO_SUBDOCENDBREAK value to end it.

After ending a subdocument, the file parser must restore character and paragraph attributes to
their state before the subdocument was started. The file parser can use the SUUserPushData
and SUUserPopData functions to save and restore nested subdocument information. A parser
can nest subdocuments without limit. The following example shows when to save and restore this
information.This is a <Bold On> test

// At this point, the filter should save its internal
// information to reflect the fact that bold is on.
SOPutBreak(SO_SUBDOCBEGINBREAK);
SoPutSubdocInfo(...);

<Subdoc Begin> This is a <Bold Off>subdocument<Subdoc End>
// At this point, the filter should restore its internal
// information to reflect the fact that bold is on.
SOPutBreak(SO_SUBDOCENDBREAK);

document <Bold Off>of mine.
File parsers are not expected to correctly exit a subdocument when run from a regular paragraph
break (with the SO_PARABREAK value) inside the subdocument. The display engine lets the file
parser run to the subdocument's end break (that is, the SO_SUBDOCENDBREAK value) and
returns the SO_STOP value to it.

Characters and Character Attributes
The file parser outputs characters by using the SOPutChar function. It can specify extra
properties for a character, such as grouped or hidden, when outputting by using the SOPutCharX
function. The file parser outputs special characters, such as tabs, hard line breaks, hard page
breaks, and hyphens by using the SOPutSpecialCharX function.

Before outputting characters, the file parser sets character attributes by using the
SOPutCharAttr, SOPutCharFontById, SOPutCharFontByName, and SOPutCharHeight
functions. These functions set the style, font, height, and width of the character. The
SOPutCharAttr function lets the file parser set style attributes, such as italic, underline, and
strikeout. The SOPutCharFontById and SOPutCharFontByName functions can specify any font
that the parser added to the font table during processing of the VwStreamSectionFunc function.
The SOPutCharHeight function sets the character height, in half points.

Embedded Graphics Objects
The file parser can embed graphics objects in the text of a paragraph section by using the
SOPutEmbeddedObject function. The function inserts the embedded graphics object at the
current location.

Spreadsheet Sections
The file parser outputs content (data or text) for cells in a spreadsheet by using the
SOPutDataCell and SOPutTextCell functions. Before outputting cell data, the file parser must get
the range of columns to be output by using the SOGetInfo function with the
SOINFO_COLUMNRANGE value. When SOGetInfo returns, the low-order word of its pInfo
parameter identifies the first column of data to generate output for, and the high-order word
identifies the last column. The file parser should only call SOPutDataCell or SOPutTextCell for
cells within the range indicated by a call to SOGetInfo. When there is no more data within a range
of columns, the file parser must call the SOPutBreak function with either the SO_EOFBREAK or
SO_SECTIONBREAK value, whichever applies. This must be done for each range of columns in
the document.

For example, if the first column is 10 and the last column is 19, the filter reads the file from its
current position, but it only calls SOPutDataCell or SOPutTextCell for cells that belong in
columns 10 through column 19, inclusively. (Column numbers are zero based.) The parser skips
over cells that belong in columns outside of this range. The filter must produce cells for all
columns in the range, filling in with empty cells, if necessary. As before, the filter continues until
SOPutBreak returns the SO_STOP value.

In general, the file parser should carry out the following steps:

1. Determine the desired range of columns.
2. Determine the next cell available from the input file.
3. If the cell is not in the given range of columns, jump to step 2.
4. If the cell is not empty, call SOPutDataCell or SOPutTextCell with the current data.

Otherwise, call SOPutDataCell for a cell of the SO_CELLEMPTY type.
5. Update local variables, such as row and column numbers.
6. Call SOPutBreak with the SO_CELLBREAK value.
7. If SOPutBreak returns the SO_STOP value, return from the VwStreamReadFunc

function.
8. If at the beginning of the next section, call SOPutBreak with the SO_SECTIONBREAK

value and return.
9. If at the end of the file, call SOPutBreak with the SO_EOFBREAK value and return.

10. Repeat steps 2 through 10.
When the chunker saves local data for various seek positions in a document, it does so within
SOPutBreak, when the break is of the SO_CELLBREAK type. Thus, when a file parser has its
local data restored for a random seek position, the data will reflect the state of the file parser
during its call to SOPutBreak for the last cell of the previous chunk in the current range of cells.
Any tracking done by the parser, such as the current row number, should be updated before
SOPutBreak is called for each cell.

Every horizontal range of columns, specified by dwExtraData in each call to your
VwStreamReadFunc function, must eventually be terminated by a call to SOPutBreak with
SO_EOFBREAK or SO_SECTIONBREAK value, whichever is applicable. The type of break
depends on the input file. A file parser must not put a section break at the end of the file, and an
end-of-file (EOF) break, of course, cannot occur anywhere but at the actual end of the file.

For example, if the input document contains a single spreadsheet that is 30 columns wide, the
display engine can call the parser with three different ranges of columns: 0 to 11, 12 to 23, and 24
to 29. The file parser calls SOPutBreak with an EOF break three times, once for each time it
reaches the end of the file while processing a given range.

When calling SOPutBreak with a section break, the file parser must be sure that the seek position
is at the beginning of the next section ¾ that is, the file position where the file parser needs to be
when VwStreamSectionFunc is next called. Any one of the calls to SOPutBreak for a section
break may be the one that sets the seek position for the top of the next section.

Database Sections
The file parser outputs data and text for a database by using the SOPutField,
SOPutMoreVarField, and SOPutVarField functions. The parser uses the SOPutField function
for fields of a fixed size. The other functions are used for variable length fields. The parser sets
field information by using the SOPutFieldInfo function while processing the
VwStreamSectionFunc function.

Bitmapped Sections
The file parser starts a bitmapped section by calling the SOPutSectionType function with the
SO_BITMAP value while processing the VwStreamSectionFunc function. The file parser must
also set the bitmap header information for the section by using the SOPutBitmapHeader function
before returning from VmStreamSectionFunc. The information in the bitmap header allows the
chunker to allocate storage for other bitmap information, such as the palette. This means that the
file parser must call SOPutBitmapHeader before any other bitmapped section functions.

Section Palettes
The file parser must generate a palette for those sections that have the SO_COLORPALETTE
value set in the wImageFlags member of the SOBITMAPHEADER structure. The parser uses the
SOStartPalette, SOPutPaletteEntry, and SOEndPalette functions to define the color palette for
a bitmapped section. Only one palette may be defined for a bitmapped section.

All members set during the stream read can use RGB (red, green, blue) values, palette index
values, or palette-relative RGB values. All settings of these values must be done through the
SOPALETTEINDEX, SORGB, or SOPALETTERGB macro. For more information about these
types of color values, see the description of the COLORREF value.

Tiles and Scan Lines
A bitmap image in a bitmapped section consists of tiles and scan lines. A tile is a rectangular
portion of an image, containing at least one scan line. An image is one or more tiles wide and one
or more tiles long. A tile column is the horizontal positioning of a tile; the tiles that have their x-
coordinate equal to zero belong to tile column zero, with tile column numbers incrementing in the
direction of the increasing x-coordinates.

The file parser specifies its tile length in terms of scan lines. Once the length is specified, the
display engine always requests bitmap data as whole tiles; that is, it tells the parser to stop only
on integral multiples of the tile length. For formats that contain multiple tiles, file parsers should set
the tile length to the minimum number of scan lines required for a single tile. Formats that are not
stored in tiles should have the tile width set equal to the image width and the tile length set to one
scan line.

The following values are expected to be valid when tiles are created.TILESACROSS = (ImageWidth+TileWidth-1)/TileWidth
TILESDOWN = (ImageLength+TileLength-1)/TileLength
TILESPERIMAGE=TILESACROSS*TILESDOWNTo output bitmap data, the file parser outputs a scan line at a time, in sequential order, by using

the SOPutScanLineData function. All of the scan line must belong to the same tile column. After
each scan line, the file parser calls the SOPutBreak function with the SO_SCANLINEBREAK
value. As is normally the case, the return value from SOPutBreak indicates whether the file
parser should return from the VwStreamReadFunc function.

Building Scan Lines
The file parser builds the scan line data as a continuous stream of bits that define each pixel.
Each pixel is packed into an array of bytes in such a way that if the data were written out in
hexadecimal or binary numbers, the pixels could be read in order from left to right. That is, for a 4-
bit-per-pixel format, the first pixel is stored in the high-order bits of the first byte (bit 7, bit 6, bit 5,
and bit 4), and the second pixel is stored in low-order bits of that byte (bit 3, bit 2, bit 1, and bit 0).
Thus, if the first eight pixels of a 4-bit-per-pixel scan line have the hex values of 0, 2, C, 9, A, 4, 3,
and F, the first four bytes of scan line data would be 02, C9, A4, and 3F.

If the parser provides a palette for the image, the data for each pixel is interpreted as an index into
the palette. If no palette exists for the image, the bits for each pixel specify either a true color (24-
bit only) or a gray scale value. For 24-bit color, each 3 bytes of a scan line represent the
intensities of red, green, and blue of a single pixel.

When the scan line has been completely specified, the parser must call SOPutBreak with the
SO_SCANLINEBREAK value, except for the last line of the bitmap. The last line of the bitmap
must end with a break of the SO_SECTIONBREAK or SO_EOFBREAK type, whichever applies.

The following example illustrates the use of the bitmapped functions in the simplest possible case:
a parser with scan line data stored one tile wide and with the same format that parsers are
required to provide it, so the data requires no additional processing after being read in. This
example also does not check for EOF or read errors.WORD wBytesRead;
WORD wBufSize = Proc.ScanLineBufSize;
do
{
...
xread(hFile, Proc.ScanLineBuf, wBufSize, &wBytesRead);
SOPutScanLineData(Proc.ScanLineBuf, hProc);
...
} while(SOPutBreak(SO_SCANLINEBREAK, 0, hProc) == SO_CONTINUE);

Vector Graphics Sections
The file parser starts a vector graphics section by calling the SOPutSectionType function with the
SO_VECTOR value while processing the VwStreamSectionFunc function. The file parser must
also set the vector header by using the SOPutVectorHeader function before returning from
VmStreamSectionFunc. The information in the SOVECTORHEADER structure defines the size
and attributes of the rectangle in which vector graphics are drawn.

The vector graphics functions are similar to the primitive GDI functions, but they include
extensions that are based on the file formats being supported. All vector graphics objects are
described in two-dimensional space on a logical coordinate system. The direction and resolution
of the x- and y-axis is defined in SOVECTORHEADER.

The file parser uses two functions to transfer data. The SOVectorAttr function sets attributes
related to drawing vector graphics objects, and the SOVectorObject function defines a vector
graphics object to be drawn. The parser specifies an identifier, a data size, and the address of
data when it calls a function. The identifier specifies the action to take and the size and data-
defined details of the action. Each action has a corresponding structure in which the data must be
given. For example, to define a logical font, the parser must set the members of the SOLOGFONT
structure and pass the structure to SOVectorAttr.

Although vector graphics functions are similar to the graphics device interface (GDI) functions,
they are not exactly the same. This means, for example, that the members of the SOLOGFONT
and LOGFONT structures are not necessarily the same.

The file parser should call the SOPutBreak function with the SO_VECTOROBJECTBREAK value
after drawing every object.

Writing a File Parser
File parsers should be contained in a set of source and include files as follows, where XXX
represents a mnemonic for the data format. For specific examples, see the sample ASCII filter
files identified in the following table.

Generic file name Contents Sample ASCII filter file

VS_XXX.C Code VS_ASC.C
VSD_XXX.C Data VSD_ASC.C
VS_XXX.H Type definitions VS_ASC.H
VSP_XXX.H Portability informationVSP_ASC.H

The portability information file makes porting of filters platforms easier. To allow file
parsers to be used for content indexing, a set of include files is provided that will allow
conditional compilations to yield executable DLLs for all of these needs from the same set
of source files.

Your VSP_XXX.H file should look something like the following. (For further information, see the
corresponding ASCII filter file.)

· The structure type and name of the static data.#define VwStreamStaticType ???
#define VwStreamStaticName ???The parser must not change the contents of the structure, because it is shared among all
instances of the parser.

· The structure type and name of the dynamic data.#define VwStreamDynamicType ???
#define VwStreamDynamicName ???VwStreamDynamicName is for consistency and has no real use, because all dynamic data is
accessed through the pseudonym Proc. Each instance of the parser has a separate copy of
dynamic data.

· The structure type and name of the save data.#define VwStreamSaveType ???
#define VwStreamSaveName ???VwStreamSaveName should reference an element in the VwStreamDynamicType structure.
The data in this structure is saved after every call to VwStreamSectionFunc and
VwStreamReadFunc and restored before every call to VwStreamReadFunc.

· The structure type and name of the section data.#define VwStreamSectionType ???
#define VwStreamSectionName ???If neither of these is defined, the file parser is assumed to be single section only.
VwStreamSectionName should reference an element in the VwStreamDynamicType
structure. The data in this structure is saved after each call to VwStreamSectionFunc and is
guaranteed to contain the current section's data on entry to VwStreamReadFunc.
This example shows the relationship of the various save areas to the dynamic data structure.typedef struct {
...
} VwStreamSaveType;
typedef struct {
...
} VwStreamSectionType;
typedef struct {
...

VwStreamSectionType VwStreamSectionName; // multisection only
VwStreamSaveType VwStreamSaveName;

} VwStreamDynamicType;· The stream identifier name and count.#define VwStreamIdName ???
#define VwStreamIdCount ???VwStreamIdName is the name of the FILTER_DESC array in VSD_XXX.C, and
VwStreamIdCount is the number of elements in this array. Like the static data, this data
should never be changed by a parser.

· The name of the include file. All the structure types used by the parser should be defined
in this file.#define VwInclude "vs_xxx.h"
#define VwStreamUserSaveType ???
#define VwStreamGenSeekName ???
#define VwStreamOpenFunc xxx_stream_open
#define VwStreamSeekFunc xxx_stream_seek
#define VwStreamTellFunc xxx_stream_tell
#define VwStreamReadFunc xxx_stream_read
#define VwStreamReadRecordFunc xxx_stream_readrecord
#define VwStreamSectionFuncxxx_stream_section
#define VwStreamCloseFunc xxx_stream_close
#define VwGetInfoFunc xxx_getinfo
#define VwGetRtnsFunc xxx_getrtns
#define VwGetDataFunc xxx_getdata
#define VwSetDataFunc xxx_setdata
#define VwAllocProcFunc xxx_alloc_proc
#define VwFreeProcFuncxxx_free_proc
#define VwLocalUpFunc xxx_local_up
#define VwLocalDownFunc xxx_local_down
#define VwGetSectionDataFunc xxx_getsectiondata
#define VwSetSectionDataFunc xxx_setsectiondata· The top of the VS_XXX.C file should look like this.#include "VSP_XXX.H"
#include "VSCTOP.H"
#include "VS_XXX.PRO"

File Parser Reference
The following functions, helper functions, and structures are associated with file parsers.

File Parser Functions
The following functions are used with file parsers.
VwStreamCloseFunc
VwStreamOpenFunc
VwStreamReadFunc
VwStreamReadRecordFunc
VwStreamSectionFunc
VwStreamSeekFunc

VwStreamTellFunc

File Parser Helper Functions
The following helper functions are used with file parsers.
SOBailOut
SOBeginTable
SOEndColumnInfo
SOEndFieldInfo
SOEndFontTable
SOEndPalette
SOEndTable
SOEndTabStops
SOGetInfo
SOGetScanLineBuffer
SOPutChar
SOPutCharAttr
SOPutCharFontById
SOPutCharFontByName
SOPutCharHeight
SOPutCharX
SOPutColumnInfo
SOPutDataCell
SOPutEmbeddedObject
SOPutField
SOPutFieldInfo
SOPutFontTableEntry
SOPutHdrEntry
SOPutMoreText
SOPutMoreVarField
SOPutPaletteEntry
SOPutParaAlign
SOPutParaIndents
SOPutParaMargins
SOPutParaSpacing
SOPutScanLineData
SOPutSectionName
SOPutSectionType
SOPutSpecialCharX
SOPutSubdocInfo
SOPutTableCellInfo
SOPutTableRowFormat
SOPutTabStop
SOPutTextCell
SOPutVarField
SOPutVectorHeader
SOSetDatebase
SOStartColumnInfo
SOStartFieldInfo
SOStartFontTable
SOStartPalette
SOStartTabStops
SOVectorAttr
SOVectorObject
SUUserPopData
SUUserPushData
SUUserRetrieveData

SUUserSaveData

File Parser Structures
The following structures are used with file parsers.
SOARCINFO
SOBITMAPHEADER
SOBORDER
SOCOLUMN
SOCPARCANGLE
SOCPPIEANGLE
SOCPTEXTATPOINT
SODATACELL
SOEMBEDDEDGRAPHIC
SOEMBEDDEDOBJECT
SOEMBEDINFO
SOFIELD
SOFILTERINFO
SOGROUPINFO
SOLOGBRUSH
SOLOGFONT
SOLOGPEN
SOPARAINDENTS
SOPATHINFO
SOPOINT
SOPOLYINFO
SORECT
SOTAB
SOTABLECELLINFO
SOTEXTATARCANGLE
SOTEXTATPOINT
SOTEXTCELL
SOTEXTINRECT
SOTRANSFORM

SOVECTORHEADER

File Parser Macros
The following macros are used with file parsers.
SOANGLETENTHS
SOPALETTEINDEX
SOPALETTERGB
SORGB

SOSETRATIO

File Parser Constants
The following vector object values and vector attribute values are used with the vector graphics
functions.

Vector Object Values
SO_ARC

Draws an arc. dwDataSize must be 4* sizeof(SOPOINT), and pData must be the address of
four SOPOINT structures.

SO_ARCCLOCKWISE
Draws an arc in the clockwise direction. dwDataSize must be 4* sizeof(SOPOINT), and pData
must be the address of four SOPOINT structures.

SO_ARCANGLE
Draws an arc by defining the angles of the two points on the ellipse that locate the start and
end of the arc. dwDataSize must be sizeof(SOARCINFO), and pData must be the address of
a SOARCINFO structure that defines the arc.

SO_ARCANGLECLOCKWISE
Draws an arc in the clockwise direction by defining the angles of the two points on the ellipse
that locate the start and end of the arc. dwDataSize must be sizeof(SOARCINFO), and pData
must be the address of a SOARCINFO structure.

SO_CHORD
Draws a chord. dwDataSize must be 4 * sizeof(SOPOINT), and pData must be the address of
four SOPOINT structures.

SO_CHORDANGLE
Draws a chord by defining the angles of the two points on the ellipse that locate the start and
end of the chord. dwDataSize must be sizeof(SOARCINFO), and pData must be the address
of a SOARCINFO structure that defines the chord in terms of the arc located on the chord.

SO_TEXTINRECT
Draws text in a rectangle. dwDataSize must be sizeof(SOTEXTINRECT) added to the length
of the text string, and pData must be the address of a SOTEXTINRECT structure followed by
the text string.

SO_ELLIPSE
Draws an ellipse. dwDataSize must be 2 * sizeof(SOPOINT), and pData must be the address
of two SOPOINT structures.

SO_FLOODFILL
Fills the area with the given color. dwDataSize must be sizeof(SOPOINT) added to
sizeof(SOCOLORREF), and pData must be the address of a variable containing the
coordinates of the point to start at followed by the RGB color value to use to fill the area.

SO_LINE
Draws a line from point 1 to point 2 using the current pen. dwDataSize must be 2 *
sizeof(SOPOINT), and pData must be the address of two SOPOINT structures.

SO_PIE
Draws a pie shape. dwDataSize must be 4 * sizeof(SOPOINT), and pData must be the
address of four SOPOINT structures.

SO_PIEANGLE
Draws a pie by defining the angles of the two points on the ellipse that locate the start and
end of the pie. dwDataSize must be sizeof(SOARCINFO), and pData must be the address of
a SOARCINFO structure that defines the pie in terms of the arc located on the pie.

SO_STARTPOLY
Starts drawing of a polygon. dwDataSize must be sizeof(SOPOLYINFO), and pData must be
the address of a SOPOLYINFO structure.

SO_POINTS
Specifies vertices of a polygon. dwDataSize must be N * sizeof(SOPOINT), and pData must
be the address of consecutively stored SOPOINT structures. At most, SOMAXPOINTS can be
passed in a single SO_POINTS object. Multiple SO_POINTS objects can be generated to
define all of the points associated with a polygon object. The number of points defined in
SO_STARTPOLY must be defined using SO_POINTS before the object is closed with
SO_ENDPOLY.

SO_ENDPOLY
Ends drawing of a polygon. dwDataSize must be zero, and pData must be NULL.

SO_RECTANGLE
Draws a rectangle. dwDataSize must be 2 * sizeof(SOPOINT), and pData must be the
address of two SOPOINT structures.

SO_ROUNDRECT
Draws a rectangle with rounded corners. dwDataSize must be 3 * sizeof(SOPOINT), and
pData must be address of the three SOPOINT structures.

SO_SETPIXEL

Sets the color of a pixel. dwDataSize must be sizeof(SOPOINT) added to
sizeof(SOCOLORREF), and pData must be the address of a variable containing the pixel
point followed by the RGB color value to set.

SO_TEXTATPOINT
Draws text at the given point. dwDataSize must be sizeof(SOTEXTATPOINT) added to the
length of the text string, and pData must be the address of a SOTEXTATPOINT structure
followed by the text string.

SO_TEXTATARCANGLE
Draws text at the given location. dwDataSize must be sizeof(SOTEXTATARCANGLE) added
to the length of the text string, and pData must be the address of a SOTEXTATARCANGLE
structure followed by the text string.

SO_BEGINPATH
Starts the definition of a path. dwDataSize must be sizeof(SOPATHINFO) added to
GroupInfo.nTransforms*sizeof(SOTRANSFORM), and pData must be the address of a
SOPATHINFO structure followed by the number of SOTRANSFORM structures defined in the
nTransforms member of the SOPATHINFO structure. The transformations will occur to all
objects in the path in the order supplied. For more information, see the
SO_OBJECTTRANSFORM vector attribute value.
This item is used to begin the definition of a path. Paths are a collection of points connected
by lines that form opened or closed objects. Multiple subpaths may be created using
SO_CLOSESUBPATH while defining a path. Note that the current object and group
transformations will also apply during creation of a path. This allows maximum flexibility with
transforming paths. Any object can be rendered to create the path. However, due to current
limitations, text objects will not be added to the path. Multiple levels of paths are also allowed.

SO_ENDPATH
Ends the definition of a path. dwDataSize must be zero, and pData must be NULL.

SO_CLOSESUBPATH
Closes the current subpath. dwDataSize must be zero, and pData must be NULL.

SO_DRAWPATH
Strokes, fills, or both strokes and fills the current path with the current pen and brush. Since
the group, path, and object transformations were applied when the path was created, they are
not applied again. dwDataSize must be sizeof(WORD), and pData must be the address of a
variable containing the SODP_STROKE or SODP_FILL value, or both.

SO_BEGINGROUP
Starts the definition of a group. dwDataSize must be sizeof(SOGROUPINFO) added to
GroupInfo.nTransforms*sizeof(SOTRANSFORM), and pData must be the address of a
SOGROUPINFO structure followed by the number of SOTRANSFORM structures defined in
the nTransforms member of the SOGROUPINFO structure. The transformations will occur to
all objects in the group in the order supplied. For more information, see the
SO_OBJECTTRANSFORM vector attribute value.

SO_ENDGROUP
Ends the definition of a group. dwDataSize must be zero, and pData must be NULL.

SO_CPSET
Moves the current pen position to this point. dwDataSize must be sizeof(SOPOINT), and
pData must be the address of the variable containing the point.

SO_CPLINE
Draws a line from the current pen position. dwDataSize must be sizeof(SOPOINT), and
pData must be the address of a variable containing the point to draw to.

SO_CPRECTANGLE
Draws a rectangle starting at the current pen position. dwDataSize must be sizeof(SOPOINT)
, and pData must be the address of a variable containing the point to be the opposite corner of
the rectangle.

SO_CPELLIPSE
Draws an ellipse around the current point with an x- and y-radius described by the SOPOINT
data. dwDataSize must be sizeof(SOPOINT), and pData must be the address of a variable
containing the x- and y-radius values.

SO_CPARCTRIPLE
Draws a circle arc from the current point through the first point and ending at the second point.
dwDataSize must be 2*(sizeof(SOPOINT), and pData must be the address of two SOPOINT
structures.

SO_CPARCANGLE

Draws an arc from the current point pivoting around the center point of the specified sweep
angle. dwDataSize must be sizeof(SOCPARCANGLE), and pData must be the address of a
SOCPARCANGLE structure that gives the center point of the arc and the sweep angle.

SO_CPPIEANGLE
Draws a pie with the current position as the center and with the given start and sweep angles.
dwDataSize must be sizeof(SOCPPIECANGLE), and pData must be the address of a
SOCPPIEANGLE structure that gives the radius of the circle.

SO_BEGINSYMBOL
Starts the definition of a symbol. A symbol is collection of vector commands that together
make up a single symbol. Symbols are considered in the wrapping algorithm of frame text.
dwDataSize must be sizeof(SORECT), and pData must be the address of a SORECT
structure that identifies the bounding rectangle of all commands used within the symbol.

SO_ENDSYMBOL
Ends the definition of a symbol. dwDataSize must be zero, and pData must be NULL.

SO_BEGINTEXTFRAME
Starts the definition of a text frame. A text frame is used in conjunction with SO_TEXTINPARA
to wrap text within a frame. Text is wrapped according to the SO_PARAINDENTS vector
attribute value. Symbols are included in the wrapping algorithm. dwDataSize must be
sizeof(SORECT), and pData must be the address of a SORECT structure that identifies the
bounding rectangle of the text frame.

SO_ENDTEXTFRAME
Ends the definition of a text frame. dwDataSize must be zero, and pData must be NULL.

SO_TEXTINPARA
Draws the text string in the current font and text attributes at the current wrap location. The
wrap location is moved by the text extent. Any words that would extend beyond the right
indent of the frame are wrapped. This object is only valid within a text frame. dwDataSize
must be sizeof(INT) added to the length of the text string, and pData must be the address of a
integer variable containing the size of the text string that follows.

SO_PARAEND
Ends a paragraph. dwDataSize must be zero, and pData must be NULL.

Vector Attribute Values
SO_SELECTFONT

Selects the given font. dwDataSize must be sizeof(SOLOGFONT), and pData must be the
address of a SOLOGFONT structure.

SO_SELECTPEN
Selects the given pen. dwDataSize must be sizeof(SOLOGPEN), and pData must be the
address of a SOLOGPEN structure.

SO_SELECTBRUSH
Selects the given brush. dwDataSize must be sizeof(SOLOGBRUSH), and pData must be
the address of a SOLOGBRUSH structure.

SO_POLYFILLMODE
Sets the polygon-filling mode. dwDataSize must be sizeof(INT), and pData must be the
address of a variable containing either the SOPF_ALTERNATE or SOPF_WINDING value.

SO_TEXTCHAREXTRA
Sets the text character extra value. dwDataSize must be sizeof(INT), and pData must be the
address of a variable containing a value. This attribute affects text objects.

SO_DRAWMODE
Sets the drawing mode used when drawing the pen and interiors. dwDataSize must be
sizeof(INT), and pData must be the address of a variable containing one of these values:

SOR2_BLACK SOR2_NOT
SOR2_COPYPEN SOR2_NOTCOPYPEN
SOR2_MASKNOTPEN SOR2_NOTMASKPEN
SOR2_MASKPEN SOR2_NOTMERGEPEN
SOR2_MASKPENNOT SOR2_NOTXORPEN
SOR2_MERGENOTPEN SOR2_WHITE
SOR2_MERGEPEN SOR2_XORPEN
SOR2_NOP

SO_TEXTCOLOR
Sets the foreground color. dwDataSize must be sizeof(SOCOLORREF), and pData must be
the address of a variable containing a RGB or palette-relative color value. To set this value,
use the SORGB or SOPALETTE macro.

SO_BKMODE
Sets the background mode. dwDataSize must be sizeof(INT), and pData must be the address
of a variable containing either the SOBK_OPAQUE or SOBK_TRANSPARENT value.

SO_BKCOLOR
Sets the background color used for styled lines, hatched brushes, and text when the
background mode is SOBK_OPAQUE. dwDataSize must be sizeof(SOCOLORREF), and
pData must be the address of a variable containing an RGB or palette-relative color value. To
set this value, use the SORGB or SOPALETTE macro.

SO_OBJECTTRANSFORM
Sets object transformations. dwDataSize must be sizeof (INT) added to nCount*
sizeof(SOTRANSFORM), and pData must be one INT (nCount) followed by that number of
SOTRANSFORM structures. The transformations will occur in the order supplied.

SO_CLIPMODE
Sets the clipping mode. dwDataSize must be sizeof(WORD), and pData must be the address
of a variable containing either the SO_DONOTCLIP or SO_CLIPTOPATH value.

SO_POINTRELATION
Sets the coordinate orientation. dwDataSize must be sizeof(INT), and pData must be the
address of a variable containing the SOPR_ABSOLUTE or SOPR_RELATIVE value.

SO_PARAINDENTS
Sets the paragraph indents within a text frame, defining the first, left, and right indents of
paragraph text being built into the frame. These values are only valid when within a text
frame. All values are in the current coordinate system. dwDataSize must be
sizeof(SOPARAINDENTS), and pData must be the address of a SOPARAINDENTS
structure.

SO_PARAALIGN
Sets the alignment of paragraph text being built into a text frame. dwDataSize must be
sizeof(WORD), and pData must be the address of a 16-bit variable containing the
SO_ALIGNLEFT, SO_ALIGNCENTER, SO_ALIGNRIGHT, or SO_ALIGNJUSTIFY value.

File ViewersA file viewer is an OLE component object (not a compound document object) implemented inside
a 32-bit in-process server dynamic-link library (DLL), which is associated, in turn, with the file
viewer's class identifier. A file viewer provides the user interface for viewing a file. Menu items, a
toolbar, and a status bar are standard parts of the file viewer interface. A file viewer can optionally
add other functionality for further shell integration.

About File Viewers
The shell allows the user to browse the information in the file system and on the network. The
Quick View feature of the shell allows the user to quickly view the contents of a file without having
to run the full application that created it and without even the presence of the application. To view
the file contents, the user selects a file and chooses the Quick View command from the context
menu of the selection (or from the File menu). The following illustration shows the context menu.

ewc msdncd, EWGraphic, bsd23483 0 /a "SDKGUIDE_01.BMP"

In response to the user choosing the Quick View command, the shell activates a file-specific
viewer for the selected file. The shell uses the extension of the file to determine which viewer to
activate. A file viewer associates itself with file classes and filename extensions in the system
registry.

A file viewer is an OLE component object (not a compound document object) implemented inside
a 32-bit in-process server dynamic-link library (DLL), which is associated, in turn, with the file
viewer's class identifier. A file viewer provides the user interface for viewing a file. Menu items, a
toolbar, and a status bar are standard parts of the file viewer interface. A file viewer can optionally
add other functionality for further shell integration.

A file viewer object, which is separate from the class factory object in the in-process server, uses
the standard OLE IPersistFile interface as well as the IFileViewer interface. The shell does not
interact directly with file viewer objects. Instead, the shell starts an instance of a small program
called Quick View (QUIKVIEW.EXE) for each file to be viewed. Each instance of Quick View
defines a process for a file viewer, giving the viewer its own message queue. Although Quick View
is a Windows executable file, it is not a complete application. It associates a path with a file
viewer, creates an instance of the file viewer object, and instructs the file viewer to load and
display the file.

Because a file viewer is an OLE component object, additional interfaces and functionality can be
added in future versions of Windows to support new features. For example, a file viewer can act
as an OLE container application and can perform in-place activation of embedded objects inside
the file being viewed. A file viewer can let the user make a selection in a document and copy the
selection to the clipboard or use the selection in a drag and drop operation. However, such
functionality is entirely up to the developer of the file viewer. This overview describes the basic
functionality that a file viewer must provide and discusses user interface guidelines that all
developers of file viewers should follow.

Adding or Replacing File Viewers
The File Viewer interfaces allow you to add file viewers to Windows. For example, you may need
to add a file viewer that supports a new file format or provides additional functionality. To
understand how to add a file viewer to Windows, it is important first to understand how the default
file viewers work.

The shell calls the Quick View program to display a file. Quick View manages the file viewing
process and presents error messages for error conditions returned by the display engines ¾ a
collection of DLLs that draws the viewer window and displays the file. Windows includes display
engines for word processing documents, spreadsheets, databases, vector graphics, and raster
graphics. File parser DLLs are associated with a particular display engine and are specific to a
type or class of files. For example, spreadsheet and database files are associated with the
spreadsheet or database display engine. These DLLs are typically between 25K and 75K in size
and do all the low-level parsing of the files to be viewed.

There are two methods to add file viewing functionality to Windows. First, a particular file parser
DLL may be added to the system. The advantage of this method is that file parsers are relatively
straightforward to write and debug. The disadvantage is that the limitations built into the default
display engines (such as no printing and no cut, copy, and paste operations) remain even when a
new file parsing DLL is used. For more information about the interface between the file parsers
and the display engines, see File Parsers.

The second method of including file viewing functionality in Windows is to add one or more DLLs
that work directly with Quick View. The interaction between QUIKVIEW.EXE and the display
engines is the subject of this overview. An example of one of these file viewing systems for ASCII
files is found in the Samples subdirectory of the Microsoft® Win32® Software Development Kit
(SDK). The main advantage of this method is that the code you write can support whatever file
viewing functionality you wish to provide. This may be particularly important if your file format does
not display well with one of the four default display engines. For example, an accounting package
might have this problem. The main disadvantage of this method is that writing for the Quick View
interface requires more development and testing effort.

The remainder of this overview discusses the interaction between QUIKVIEW.EXE and the
display engines. The discussion is split into three sections. The first section describes the entries
in the registry necessary to support associations between a pathname and a file viewer. The
second section describes how the shell starts Quick View and outlines the steps Quick View
performs to locate an appropriate file viewer and activate it. The last section describes the
structure and implementation of a file viewer OLE component, including the recommended user
interface features.

The file viewing technology used by the Quick View feature was developed jointly by Microsoft
Corporation and Systems Compatibility Corporation.

File Viewer Registration
During installation, a file viewer should ensure that entries exist in the registry that accurately
associate a file with the class identifier of the file viewer's in-process server DLL. The file viewer's
installation program may merge the contents of a registration (.REG) file into the registry. A file
viewer can register itself for more than one file type if it can handle multiple file formats. If a file
type has more than one registered file viewer, the shell activates the most recently registered
viewer for the file type when the user chooses the Quick View command.

Determining File Types
The Quick View program attempts a simple association using the filename extension. If there is no
filename extension or if there are no file viewers registered for the filename extension, Quick View
calls each registered file viewer to see if any of them recognize the file. If more than one file
viewer is registered for the same filename extension, Quick View calls each file viewer starting
with the last one in the list. If Quick View cannot find a file viewer that can read the file, the Quick
View operation fails and Quick View displays the following message.There are no viewers registered for this type of file. Would you like
to try the default viewer?The default viewer displays a hexadecimal dump using the word processing engine.

For more information, see Quick View Program.

Structure of Registry Entries
The following registry structure is required for Quick View to associate a class identifier or
filename extension with the class identifier of a file viewer.HKEY_CLASSES_ROOT

\QuickView\<extension> = <human-readable document type>
\{<CLSID>} = <human-readable viewer name>
\{<CLSID>} = <human-readable viewer name>
\{<CLSID>} = <human-readable viewer name>
...[More extension entries for additional file types]
...
\CLSID\{<CLSID>} = <human-readable viewer name>

\InprocServer32 = <full path to file viewer DLL>
= ThreadingModel = "Apartment"
...[More class IDs for file viewers and other object servers]

A description of the registry entries follows.

Entry Description

HKEY_CLASSES_ROOT Root of the registry.
QuickView Top-level key under which

associations are stored.
CLSID 16-byte OLE class identifier spelled

out in hexadecimal digits in the form of
12345678-1234-1234-1234-
1234567890AB with the hyphens
included. All class identifiers are
surrounded by curly braces when
stored in the registry.

human-readable document
type

String describing the file type
associated with the class identifier or
filename extension that can be
displayed to the user. A file viewer can
change the type when it is installed so
that the name always reflects the
preferred viewer. For example, this
string might be "Windows Write
Document."

human-readable viewer name String that describes the vendor of the
file viewer, as it might be displayed in
an About box, such as "Company ABC
Write Document Viewer."

<extension> Three-character filename extension
with the period, as is consistent with
the standard 8.3 filename format ¾ for
example, .WRI.

CLSID and InprocServer32 are standard OLE (32-bit) subkey names. The "ThreadingModel =
Apartment" entry is required for file viewers. The apartment threading model, which is new for
OLE in Windows 95 and Microsoft® Windows NT® version 3.51, allows the OleInitialize and
CoInitialize functions to be called from multiple threads.

The QuickView key can have any number of filename extension subkeys, each representing a
registered file type. Each filename extension subkey can have one or more class identifier
subkeys, each representing a registered file viewer object. The most recently registered file viewer
appears first in the list of class identifier subkeys, and it is the first one found when Quick View
enumerates the registered file viewers.
Note The file viewer class identifier should always differ from the file type class identifier because
the application that created the file may already be using the class identifier to identify the
application as a compound document server.

Each class identifier stored under the filename extension subkeys must correspond to an entry of
the same class identifier stored under the top-level key called CLSID. This is the standard location
for storing information for OLE object servers. For file viewers, there must be an InprocServer32
subkey under the file viewer's class identifier key. The value of the InprocServer32 subkey is the
full path to the file viewer DLL. You should store the full path and not depend on the DLL being in
the path of the Windows 95 environment. InprocServer32 is a standard OLE subkey where the

path to a component object server is stored. Using this subkey allows the Quick View program to
use standard OLE member functions to access and create objects from file viewer servers.

Registering a File Viewer
This section shows how to register a hypothetical file viewer for "AcmeWord Document" files with
the .AWD filename extension. The file viewer is implemented in an in-process server DLL called
ACMEWRDV.DLL. The DLL has this class identifier: 00021116-0000-0000-C000-000000000046.
The program that installs the file viewer creates the following registry entries.HKEY_CLASSES_ROOT

\QuickView
\.AWD = AcmeWord Document
\{00021117-0000-0000-C000-000000000046} = AcmeWord Document
Viewer
\CLSID
\{00021117-0000-0000-C000-000000000046} = AcmeWord Document

Viewer
\InprocServer32 = c:\acmeword\acmewrdv.dll
= ThreadingModel = "Apartment"The .REG file, which is an ASCII text file, contains these entries. (Note that wrapped lines are

indented on the second line.)HKEY_CLASSES_ROOT\QuickView\.AWD = AcmeWord Document
HKEY_CLASSES_ROOT\QuickView\.AWD \{00021117-0000-0000-C000-

000000000046} = AcmeWord Document Viewer
HKEY_CLASSES_ROOT\CLSID\{00021117-0000-0000-C000-000000000046} =

AcmeWord Document Viewer
HKEY_CLASSES_ROOT\CLSID\{00021117-0000-0000-C000-000000000046}

\InprocServer32 = c:\acmeword\acmewrdv.dll
= ThreadingModel = "Apartment"The Quick View program uses these registry entries to associate a path with the class identifier of

a file viewer's in-process server DLL.

Quick View Program
The Quick View program (QUIKVIEW.EXE) acts on behalf of the shell to locate and activate a file
viewer for a given path. There is a one to one correspondence between each running instance of
Quick View and each file being displayed in a file viewer. Each instance of Quick View defines a
process for a file viewer, giving the file viewer its own message queue. Quick View turns over
execution of the process to the file viewer until the file viewer shuts down.

Quick View Execution and Error Conditions
The lifetime of each instance of the Quick View program consists of the following steps:

1. When the user chooses the Quick View or Print command, the shell starts an instance of
QUIKVIEW.EXE for each selected file (by using the Win32 CreateProcess or WinExec
function). The shell may specify a show command, and Quick View passes the command to
the file viewer. The command-line argument that the shell passes to Quick View has the
following options.

Option Meaning
-f:pathname Path of the file to view or print. Universal Naming

Convention (UNC) filenames are allowed. If this
option is not specified, Quick View terminates
without displaying any messages.

-v File to be opened for viewing in the file viewer. If
this option is specified, Quick View ignores all of
the options described below. This is the default
option in the absence of both -v and -p.

-d Quick View and the file viewer to suppress all
user interface (UI) elements if -p is also specified.
Quick View suppresses any error messages, and
the file viewer should not display any dialog boxes
for printing. Quick View ignores this option in the
absence of -p.

-p File to be opened for printing. If -v is also present,
Quick View ignores this option.

-&:pathname Printer driver to use to print the file. Quick View
ignores this option in the absence of -p. If -p is
present but -& is not, Quick View instructs the file
viewer to use the default printer driver.

2. Quick View starts and checks for a path on the command line. If there is no path,
the user has attempted to start Quick View by itself and the program immediately
terminates without displaying any messages.

3. Quick View parses the filename extension from the path given in the -f option. If no
filename extension is given, Quick View proceeds to stage E1 (error condition 1). Otherwise,
Quick View uses the following procedure to find a file viewer class identifier associated with
the given filename extension.
a. Quick View attempts to open the HKEY_CLASS_ROOT\QuickView\extension key, where

extension is parsed from the path.
i. If the filename extension maps to a type such as

HKEY_CLASS_ROOT\extension = typename and there is
a registry entry with the form HKEY_CLASS_ROOT\
typename\QuickView = *, Quick View looks for file viewer
class identifiers under HKEY_CLASS_ROOT\
QuickView*. If a key with the HKEY_CLASS_ROOT*\
QuickView = * form exists, the system attempts to use all
the viewers listed under the "*" section.

ii. Otherwise, Quick View begins enumerating the file viewer
class identifiers under the HKEY_CLASS_ROOT\
QuickView\extension key. If the enumeration fails (that is,
there is nothing in the registry to enumerate), Quick View
closes the key and proceeds to stage E2. Otherwise,
Quick View reads the first file viewer class identifier in the
enumeration and proceeds to step 4.

b. If an error occurs in step 4, the enumeration continues until all file viewer class identifiers
have been tried. If no file viewer is activated, Quick View closes the key from (a) and
proceeds to stage E2.

4. Given a class identifier of a file viewer DLL, Quick View attempts to create an instance of
a file viewer object of the given class by using the following procedure.

a. Quick View calls a function to create an instance of a file viewer object, specifying
parameters that include the class identifier and the IID_IPersistFile interface identifier. This
instructs OLE to load the DLL listed under the class identifier's InprocServer32 subkey,
obtain an instance of the object from the DLL, and return an IPersistFile interface pointer
to the object. If the instance cannot be created because of lack of memory, Quick View
proceeds to stage E4. If it fails for some other reason, Quick View proceeds to stage E3.
(Note that, because DLL objects are involved, any call to QueryInterface will not fail with
REGDB_IID_NOTREG, which typically signals a corrupted registry. That error is generated
only when LRPC proxies and stubs are involved.)

b. Given the IPersistFile interface pointer pIPersistFile, Quick View calls the Load member
function of the IPersistFile interface, specifying the path of the file and the STGM_READ
and STGM_SHARE_DENY_NONE values, which instruct the object to open the file for
read access. If Load fails, Quick View calls the Release member function of pIPersistFile
and proceeds to stage E4 if the error is due to a lack of memory. Otherwise, Quick View
proceeds to stage E3.

c. Quick View obtains the file viewer object's IFileViewer interface by specifying the
IID_IFileViewer interface identifier in a call to the QueryInterface member function of
pIPersistFile. Quick View calls the Release member function of pIPersistFile, regardless of
the outcome. If this call fails due to lack of memory, Quick View proceeds to stage E4.
Otherwise, Quick View proceeds to stage E3.

d1. If the -v option was present or both the -v and -p options were absent, Quick View calls
the ShowInitialize member function of pIFileViewer, which instructs the file viewer to load
the file and perform any preshowing initialization that is prone to failure (including the
creation of windows, the loading of resources, and so on). This is the file viewer's one
chance to fail. If it fails, Quick View proceeds to stage E4 if the error is due to lack of
memory or to stage E3 otherwise. If ShowInitialize succeeds, Quick View calls the Show
member function of pIFileViewer, specifying the show command that was passed to Quick
View's WinMain function. Show does not return until the user closes the file viewer, and it
always returns NOERROR in that case. If Show is called before ShowInitialize, it returns
E_UNEXPECTED.

d2. If the -p option was present (and the -v option was absent), Quick View calls the PrintTo
member function of pIFileViewer specifying the path of the printer driver provided in the -&
option (or NULL if -& was absent) and a value indicating if the -d option was present on the
command line (UI suppression flag). PrintTo does not return until printing is complete or an
error occurs. If an error occurs, the file viewer is responsible for notifying the user if the UI
suppression flag is FALSE.

e. When Show or PrintTo returns (whichever was called in steps d1 or d2), Quick View calls
the Release member function of pIFileViewer, regardless of the return value. If the file
viewer successfully executed the IFileViewer::ShowInitialize member function, the
Release member function will not fail. Release fails only if it is called before
ShowInitialize. If PrintTo fails but the -d option was not specified on the command line,
Quick View assumes that the file viewer displayed a message to indicate printing failed,
and Quick View fails without displaying a message in that case. In any case, Quick View
proceeds to step 5.

5. Quick View releases any interface pointers it may have had and calls OleUninitialize.
Quick View then terminates normally.

Quick View may encounter these four error conditions (stages E1 through E4) during the lifetime
of an instance.

E1. If Quick View fails to associate the path with a file viewer class identifier (using a filename
extension), it displays this message.There are no viewers for this type of file. Would you like to try the
default viewers.If the user clicks No, Quick View terminates. If the user clicks Yes, Quick View displays
the Searching dialog box, enumerates all registered file viewers (regardless of file type or
filename extension), and attempts to have each one load and display the file. Quick View
tries each file viewer of a given class identifier once. If no file viewer successfully displays the
file, Quick View removes the Searching dialog box and displays this message.Error opening or reading file.When the user closes the dialog box, Quick View terminates.

E2. If Quick View successfully determines the file type but fails to enumerate any file viewers
associated with the filename extension, it displays the Searching dialog box and attempts to
have each registered viewer display the file, trying each file viewer class identifier once. If that
fails, the Quick View removes the Searching dialog box and displays this message.There are no viewers capable of viewing <human-readable document
type> files.When the user closes the dialog box, Quick View terminates.

E3. If Quick View successfully locates an initial file viewer but fails to view the file for any
reason other than an out of memory condition, Quick View displays the Searching dialog box
and continues enumerating viewers under the class identifier or filename extension key
currently in use (steps 3d or 4c). If Quick View tries all viewers registered for the type
unsuccessfully, processing continues as in stage E2 by trying all registered viewers
regardless of registered type.

E4. If an out of memory condition occurs for one file viewer, it is likely that other viewers will
not succeed either. In that case, Quick View displays a dialog box (using
MB_ICONEXCLAMATION) with this message.There is not enough memory to view or print <filename>. Quit one or
more files or programs, and then try again.A file viewer can return a number of error values to Quick View. When Quick View receives an

error value, it displays an error message. Quick View recognizes the following error values.
FV_E_BADFILE ((HRESULT)0x8534E102L)
FV_E_EMPTYFILE (
(HRESULT)0x8534E108L)
FV_E_FILEOPENFAILED (
(HRESULT)0x8534E105L)
FV_E_INVALIDID (
(HRESULT)0x8534E106L)
FV_E_MISSINGFILES (
(HRESULT)0x8534E104L)
FV_E_NOFILTER (
(HRESULT)0x8534E100L)
FV_E_NONSUPPORTEDTYPE (
(HRESULT)0x8534E101L)
FV_E_NOVIEWER (
(HRESULT)0x8534E10AL)
FV_E_OUTOFMEMORY (
(HRESULT)0x8534E107L)
FV_E_PROTECTEDFILE (
(HRESULT)0x8534E109L)

FV_E_UNEXPECTED (
(HRESULT)0x8534E103L)

Pinned Windows
The shell can request Quick View to display a new file in the same window as that used by the
previous file viewer; that is, Quick View can "pin" a viewer window. Quick View communicates the
shell's request by sending a WM_DROPFILES message to the file viewer. The message contains
an internal drop files structure whose members include the path of the new file to be displayed. A
file viewer uses the same code to handle both the "pinned" state and drag and drop operations in
which the file viewer displays a file that the user has dragged and dropped on the file viewer's
window.

Quick View implements the IFileViewerSite interface, which allows a file viewer to retrieve the
handle of the current pinned window, if there is any, or set a new pinned window. When Quick
View calls a file viewer's IFileViewer::ShowInitialize member function, the file viewer receives
the address of Quick View's IFileViewerSite interface. If the file viewer saves the address of the
interface, it should call the IFileViewerSite::AddRef member function to increment the reference
count.

Only one pinned window can exist at a time. A file viewer uses the IFileViewerSite::
SetPinnedWindow interface to set a new pinned window and the IFileViewerSite::
GetPinnedWindow interface to retrieve the handle of the current pinned window.

When Quick View calls the file viewer's IFileViewer::Show member function, the file viewer
receives the address of a FVSHOWINFO structure that includes a optional RECT structure. A
valid RECT structure is a hint from the shell that the file viewer window should be pinned; the file
viewer should set the size and position of its window based on the information in the structure.

If the file viewer window receives a WM_DROPFILES message, it should fill in the strNewFile
member of the FVSHOWINFO structure with the path of the new file to be displayed, fill the rect
member with the size and position of the viewer window, and set the appropriate values in the
dwFlags member. The file viewer should also fill the punkrel member with the address of an
interface that the new file viewer should call to release the previous file viewer. Doing this allows
the previous file viewer to perform cleanup operations. The new file viewer may be the same as
the current file viewer if the current one supports the new file. If the old file viewer is the same as
the new one, the release does not do anything because the reference count is greater than zero.

If a file viewer returns a file but Quick View cannot find a viewer for the new file, it calls the
IFileViewer::Show member function for the old file viewer with the FVSIF_NEWFAILED value.
The file viewer can either terminate or continue showing the previous file.

Searching Dialog Box
When Quick View must enumerate more than one file viewer from the registry, it displays a dialog
box containing a message that reads, as follows.Searching for a viewer to display or print the <human-readabledocument type> in <filename>. Press Cancel to stop the search.
If the document type is not known, the following message appears.

Searching for a viewer to display or print <filename>.
Press Cancel to stop the search.

Quick View animates the magnifying glass icon in the dialog box to indicate that Quick View is
searching the hard disk. Pressing the Cancel button stops any search in progress and closes
Quick View without performing any further actions or providing any user interface.

File Viewer Structure and Implementation
A file viewer is an OLE component object in an in-process server DLL where the object
implements the IPersistFile and IFileViewer interfaces. The in-process server exports the
DllGetClassObject and DllCanUnloadNow functions, implements a class factory object with the
IClassFactory interface, and implements the file viewer object with the interfaces required. The
following illustration shows the structure of a file viewer.

ewc msdncd, EWGraphic, bsd23483 1 /a "SDKGUIDE_04.BMP"

There are a number of reasons why a file viewer is best implemented in a DLL with the given
interfaces. In general, a DLL is faster to load and usually comes in a small package. In the future,
these same DLLs will provide other nonuser interface features, such as content indexing, and a
component object DLL will be the most efficient and fastest way to access those features. In some
cases, a file viewer object may need to display pop-up windows and process messages through
its own message loop as in Windows 95. The DLL structure still allows this when used in
conjunction with a stub process like Quick View, which gives the file viewer DLL the right to
execute a message loop.

The IPersistFile interface in the file viewer object is intended to be a general mechanism through
which the object is given a path for a file. From then on, the component that loaded the object can
ask it to do any number of things with the file. Through Quick View, the Windows 95 shell asks the
object to show the file by using the IFileViewer::ShowInitialize and IFileViewer::Show member
functions or asks the object to print the file to a specific printer by using the IFileViewer::PrintTo
member function. In the future, the shell may ask the object to perform content indexing, which
would happen through an interface other than IFileViewer. For this reason, the file loading
member functions of IPersistFile are separate from the operations that perform on the file, which
is why IFileViewer was not just extended with its own Load member function. This latter option is
a little more efficient (because it avoids IPersistFile entrypoint functions that are not
implemented), but the design given here is easier to extend.

IFileViewer Interface
The shell uses the IFileViewer interface to tell a file viewer object when to show its user interface
for the file being viewed or to print the file. In addition to the usual IUnknown members, the
interface includes the ShowInitialize, Show, and PrintTo member functions.

Before calling the Show member function, the shell calls ShowInitialize to instruct the file viewer
to perform any creations, allocations, or loading. ShowInitialize may fail, whereas Show may not
because Quick View needs to know, before anything becomes visible and before transferring
control to the file viewer, whether the file viewer can show the file. If the file viewer can show the
file, Quick View hides its Searching dialog box before the file viewer window appears.

The ShowInitialize member function should return the same FV_ error codes listed in the topic
Structure of Registry Entries. Although the sample file viewer included in the Win32 SDK uses a
more generic form of error codes, new file viewer DLLs should use the FV_ form.

The Show member function is similar to the Windows ShowWindow function in that it receives a
Show command indicating how the file viewer should initially display its window. The meaning of
the Show command is exactly the same as for ShowWindow. In general, Quick View passes the
Show command from its WinMain function directly to IFileViewer::Show, which passes the
command to ShowWindow. Since Quick View obtains this parameter from the shell, this design
enables the shell to open a file viewer in the minimized, normal, or maximized state and even
allows the shell to hide a file viewer (with the SW_HIDE value). There is no extra overhead in
providing this flexibility. Note that the Windows 95 shell always starts Quick View with the
SW_SHOWNORMAL value.

The only case when Show may fail is if ShowInitialize has not been called. In that case, it returns
the E_UNEXPECTED status code (SCODE). Otherwise, Show must return the NOERROR error
code.

The PrintTo member function is like Show in that it does not return until it finishes printing or an
error occurs. If an error occurs, the file viewer object is responsible for informing the user of the
problem. When calling PrintTo, the shell specifies the name of the printer driver that the file
viewer should use to print the file. The shell also specifies a flag that indicates whether the file
viewer should display any UI elements, including error message, during the print operation. If the
flag is FALSE, the file viewer may show Print dialog boxes, Printer Setup dialog boxes, error
messages, and so on.

The interface identifier of IFileViewer is defined in the Windows header files as the
IID_IFileViewer interface identifier.

File Viewer Creation
You can create a file viewer that interacts appropriately with Quick View by following these steps:

1. Define the file viewer object to use the IPersistFile and IFileViewer interfaces. The object
must also implement a separate IUnknown interface that does not delegate calls in
aggregation situations. In general, a file viewer object creates or attaches to a window that
displays a file's contents.

2. Implement the Load and GetCurFile member functions (as well as the IUnknown
member functions) of the IPersistFile interface. The IsDirty member function can simply
return ResultFromScode(S_FALSE) because a file viewer does not modify the file, and the
Save and SaveCompleted member functions should simply return ResultFromScode
(E_NOTIMPL). Load stores the filename, but delays opening the file until the later call to the
IFileViewer::ShowInitialize member function. GetCurFile returns ResultFromScode
(E_UNEXPECTED) if Load has not yet been called. Otherwise, it copies the pathname and
returns the NOERROR error code.

3. Implement the IFileViewer::ShowInitialize and IFileViewer::Show member functions (as
well as the IUnknown member functions of IFileViewer). ShowInitialize must perform all
operations that are prone to failure such that if ShowInitialize succeeds, Show will never fail.
The implementation of these two member functions is like an implementation of an
application's WinMain function, where ShowInitialize registers window classes (using the
instance handle that the DLL receives in its DllEntryPoint function, not the instance of Quick
View), creates the necessary windows to meet the UI guidelines, and loads the file as read-
only with the path given in IPersistFile::Load. Then Show displays the contents of that file in
the viewport window, shows the top-level file viewer window, and enters a message loop. To
enhance the appearance of the UI, the file should be loaded and completely displayed in the
viewport window before the windows are made visible.
Show does not return until the user has closed the window; that is, Quick View waits for
Show to return before terminating. Quick View delegates the responsibility of the message
loop to the Show member function, so ShowInitialize and Show look and behave exactly like
a WinMain function in any application (the code is just stored in a DLL).
Note that the path in the IPersistFile::Load member function may be a uniform naming
convention (UNC) path. Functions such as Win32 OpenFile and OLE StgOpenStorage
automatically handle UNC paths. If you open a file any other way, you must be sure to handle
UNC paths properly.

4. Define the class factory object with the IClassFactory interface and implement the
interface completely to create a file viewer object. The class factory must support aggregation
and server locking, as required by the IClassFactory interface.

5. Implement the DllGetClassObject function to create an instance of the class factory
mentioned in step 4 and return a pointer to one of its interfaces, as required for any
component object DLL.

6. Implement the DllCanUnloadNow function to return the appropriate code, depending on
the number of file viewer objects in service and the number of lock counts implemented by
using the IClassFactory::LockServer member function, as required for any component
object DLL.

7. Include the Print To feature by using the IFileViewer::PrintTo member function. This step
is optional. If this feature is not implemented, the member function must return
ResultFromScode(E_NOTIMPL).

8. Finish the DLL implementation by using the DllEntryPoint function, as required for any
Win32-based DLL.

In general, only the implementations of IPersistFile::Load and the IFileViewer member functions
are specific to a file viewer. The other steps that deal with creating an OLE component object are
standard OLE mechanisms.

File Viewer User Interface Guidelines
This section describes the minimal user interface recommended for a file viewer. These guidelines
are provided to promote a consistent user interface in all file viewers. You should follow these
guidelines as closely as possible and include viewer-specific features within the context of these
guidelines.

File Viewer Main Window
A file viewer's main window should have Minimize, Maximize, and Close buttons and these top-
level menu items: File, View, and Help. A file viewer should also include a toolbar and a status
window. The appearance and contents of the viewport window, which occupies all space not used
by the toolbar and status window, is left to the developer. However, the viewport window typically
has proportional scroll bars if the file contents are not entirely visible in the viewport.

The following illustration shows the typical initial state of a file viewer window. The initial state can
be minimized or maximized if the file viewer is given a different show command through the
IFileViewer::Show member function.

ewc msdncd, EWGraphic, bsd23483 2 /a "SDKGUIDE_05.BMP"

A file viewer can include other top-level menu items for file-specific features. For example, a file
viewer should include an Edit menu with a single &Copy item to allow the user to make a selection
in the viewport window and copy it to the clipboard. However, such extensions are not part of the
basic user interface for a file viewer.

You should also use the window flags to create a three-dimensional window appearance and use
scroll bars with proportional scroll boxes.

File Viewer File Menu Items
The standard file viewer File menu has the following four items (as well as separators), two of
which are optional. A file viewer can add other items to the menu, but in most cases there is no
need for other items.

Menu item string Result of selecting the menu item

"&Open File for Editing" Locates and starts the application that can
open and edit the file. After successfully
starting the application, the file viewer should
hide its window immediately, shut down, and
eventually return from IFileViewer::Show,
after which the Quick View process
terminates. If the file viewer fails to start the
application, it should display the following
message.There is no application
available that can open this
file.Separator Not applicable.

"Page Set&up"
(optional)

Activates the standard Page Setup dialog
box (or an application-specific dialog box if
desired), the results of which affect the
display of the file in the viewport window.
The effects of the Page Setup command last
only for the duration of the file viewer and do
not affect the contents of the disk file. This
menu item should appear if the file viewer
supports printing and only if the Print menu
item appears as well.

"&Print\tCtrl+P"
(optional)

Activates the standard Print/Printer Setup
property sheet. Any changes made to the
printer setup that would affect the display of
the file in the viewport window last only for
the duration of the file viewer and do not
affect the contents of the disk file. This menu
item should appear only if the file viewer
supports printing a file without starting the full
application.

Separator Not applicable.
"E&xit" Hides the window, closes the file, destroys all

the windows, performs other necessary
cleanup, and returns with the NOERROR
error code from IFileViewer::Show. The
window should be hidden before cleanup
happens to avoid marring its appearance,
when the system destroys the toolbar and
other controls.

File Viewer View Menu Items
The View menu of a standard file viewer has the following items.

Menu item string Result of selecting the menu item

"&Toolbar" Toggles the visibility of the toolbar. This item
is checked when the toolbar is visible and
unchecked when it is hidden.

"&Status Bar" Toggles the visibility of the status window.
This item is checked when the status line is
visible and unchecked when it is hidden.

"&Page View" Toggles between a full-sized view and a
single-page view.

"Replace &Window" Toggles between reusing the current window
to view a file and creating a new window to
view a file.

Separator Not applicable.
"&Landscape" Toggles between landscape and portrait view

when in page view.
"&Rotate" Rotates a raster graphic image 90 degrees

every time the image is selected.
Separator Not applicable.
"&Font" Displays a dialog box that allows the user to

select a font and point size for viewing word
processing documents and spreadsheets.

File Viewer Help Menu Items
The standard file viewer Help menu has the following items.

Menu item string Result of selecting the menu item

"&Help Topics" Activates WINHELP.EXE with the file
viewer's help file.

"&About fileviewer
name"

Displays an About dialog box for the file
viewer. The About dialog box identifies the
vendor of the file viewer.

A file viewer can also add other help items and context-sensitive help.

File Viewer Toolbar Buttons
A file viewer must include a toolbar with a single button tied to the Open File for Editing menu item
on the File menu described previously. The image in this button is a 16- by 15-pixel bitmap
derived from the icon of the application that would be started if the user opened the file from the
shell (using the shell's association route). The image is obtained by calling the SHGetFileInfo
function with the path of the file. If this function fails, a file viewer can include a button that
contains its own image and attempt to start the parent application, or the file viewer can remove
the button and disable the Open File for Editing menu item on the File menu. This single button
must be the leftmost item on the toolbar and must be separated from any other buttons that are
specific to the file viewer.

ewc msdncd, EWGraphic, bsd23483 3 /a "SDKGUIDE_06.BMP"

Other buttons should correspond roughly to the functions present in the file viewer menus. A file
viewer that supports a Font menu item should have Increase Font Size and Decrease Font Size
buttons. Other file viewer classes may need to include printing and rotation buttons on the toolbar.

A standard toolbar button is the Replace Window button. The default behavior for file viewers is
for a new file viewer instance to be created whenever the user chooses the Quick View menu
item. When the Replace Window button is toggled to the on position, however, a new instance is
not created; instead, the contents of the relevant file viewer window are replaced by a view of the
new file.

All buttons should have a corresponding tooltip control that displays some context information
when the mouse cursor is positioned on the button. The standard Windows 95 toolbar control
provides built-in support for tooltip controls such that you only have to provide the text string. <>
The following illustration shows a tooltip control for a toolbar button.

ewc msdncd, EWGraphic, bsd23483 4 /a "SDKGUIDE_07.BMP"

The recommended tooltip strings for various toolbar buttons follow.

Toolbar button Tooltip string

Open File for Editing "Open File for Editing"
Font Increase "Increase Font Size"
Font Decrease "Decrease Font Size"
Small View "Toggle view size"
Landscape "Toggle portrait/landscape"
Rotate [Again] "Rotate image 90 degrees"
Replace Window "Replace Window"

File Viewer Status Window Messages
A file viewer should display status window messages for the system menu and all top-level and
pop-up menu items. The messages for the system menu and other menu items used by the
default Windows file viewers follow.

[Menu] item Message

[System] "Commands for manipulating this and
other windows."

[System] Restore "Restores this window to normal size." /
"Expands this window to full screen
size."

[System] Move "Move this window to another screen
location."

[System] Size "Resizes this window."
[System] Minimize "Collapses this window to an icon."
[System] Maximize "Expands this window to full screen

size."
[System] Close "Closes this window."
[System] Switch To... "Switch to another task."
[File] "Contains commands for opening the

file and quitting Quick View."
[File] Open File for Editing "Opens the file for editing."
[File] Page Setup "Changes the page setup for printing."
[File] Print... "Prints the file contents."
[File] Exit "Quits Quick View."
[View] "Contains commands for customizing

this window."
[View] Toolbar "Shows or hides the toolbar."
[View] Status Bar "Shows or hides the status bar."
[View] Page View "Switches between document and page

views."
[View] Replace Window "Displays new files in current Quick

View window."
[View] Landscape "Switches between portrait and

landscape."
[View] Rotate (Again) "Rotates the image by 90 degrees."
[View] Font "Changes the display font."
[Help] "Contains commands for displaying

Help and information about Quick View.
"

[Help] Help Topics "Displays the Help Contents and Index.
"

[Help] About "Displays program information, version
number and copyright."

The following standard messages for other conditions not related to menu items are
implemented in the Windows default file viewers:

· In the inactive state, when the user is doing nothing else, the status line should read as
follows.Display details may be inaccurate.This line should be the first visible message when the file viewer appears.

· When the mouse cursor is positioned over the viewport window, the status window should
read as follows.To edit, click Open File for Editing on the File menu.Note that the document type is specific for the file viewer in use, as shown in the following
illustration.

ewc msdncd, EWGraphic, bsd23483 5 /a "SDKGUIDE_08.BMP"

· The status window should reflect longer versions of tooltip messages when tooltip controls
are displayed. For example, a longer version of the "Increase Font Size" tooltip is "Increase
the font size of the display" shown at the same time in the status window.

File Viewer Viewport Window Contents
The viewport window is where you provide most file-specific UI elements. The viewport occupies
all space in the client area of the main window not used for the toolbar and status bar. It displays
the file contents in whatever mode is applicable, and it is sensitive to the user-selected printer and
page setup, as well as other View menu commands.

If the contents of the file are too large to be completely displayed within the viewport, the file
viewer should provide scroll bars (with proportional scroll boxes) to shift the image. If the contents
of the file are smaller than the viewport window, no scroll bars should appear. In addition, the file
contents should not be initially scaled to fill the viewport window unless the user selects scaling
through the View menu commands.

The only other requirement for the viewport window is that it should provide a context menu for
the file. The context menu should appear when the user clicks the viewport with the mouse button
2. The context menu should include the following items.

Menu item string Equivalent found on other menu

"&Open File for
Editing"

Open File for Editing command on the File
menu

Separator Not applicable
"Page Se&tup"
(optional)

Page Setup command on the File menu

"&Print" (optional) Print command on the File menu (note, no
accelerator)

Separator Not applicable

A file viewer may add more items as necessary. The Toolbar and Status bar menu items
commands on the View menu should not appear in the context menu.

Drag and Drop in File Viewers
The default file viewers in Windows allow the user to drag a file from the desktop or Explorer and
drop the file on a file viewer's window. A file viewer should show the small document icon that
includes the "+" sign when the mouse is over the file viewer's window before the drop takes place.
The Replace Window command in the View menu controls whether another file viewer window is
displayed or the same window is reused.

Sophisticated File Viewers
This overview only describes the minimal file viewer UI. There are, of course, many other
possibilities besides just rudimentary printing and viewing capabilities. One useful feature is the
ability to copy data from a document either to the clipboard or in a drag and drop operation. In
such cases, the file viewer needs to provide the ability to select data in the file, a Copy command
(on an Edit menu as well as in a context menu), and the ability to pick up the selection and drag it
elsewhere. However, the file viewer should not be a drop target and should not support the Cut
and Paste commands on the Edit menu (or other variants) because those operations modify the
file.

If the parent application creating the files that are handled in a specific file viewer is an OLE
compound document container, the file viewer itself must be sensitive to viewing a compound
document. That means that the file viewer itself will support some minimal container features and
will, of course, use OLE to load and display compound document objects in the file itself. If the file
viewer also supports in-place activation, it can activate inside-out objects in-place to allow the
user to select and copy data from embeddings. While there are no standards for such functionality
now, there will be in future versions of Windows.

File Viewer Reference
The following interfaces and structures are used with file viewers.

File Viewer Interfaces
The following interfaces are used with file viewers.
IFileViewer

IFileViewerSite

File Viewer Structures
The following structure is used with file viewers.

FVSHOWINFO

Shell ExtensionsThe shell is an application that enables users to group, start, and otherwise control other
applications.

Win32-based applications can extend the shell in a number of ways. A shell extension enhances
the shell by providing additional means of manipulating file objects, by simplifying the task of
browsing through the file system and networks, or by giving the user easier access to tools that
manipulate objects in the file system. For example, a shell extension can assign an icon to each
file or add commands to the context menu and File menu for a file.

About Shell Extensions
Windows supports two groups of shell extensions. The first group are registered for each type of
file:

· Context menu handlers. They add items to the context menu for a particular file object.
The context menu is displayed when the user clicks a file object with mouse button 2.

· Icon handlers. They typically add instance-specific icons for file objects. They can also be
used to add icons for all files belonging to the same class.

· Data handlers. They provide a type-specific IDataObject interface to be passed to the
OLE DoDragDrop function.

· Drop handlers. They provide type-specific drop behavior to files that can accept drag and
drop objects.

· Property sheet handlers. They add pages to the property sheet dialog box that the shell
displays for a file object. The pages are specific to a class of files or a particular file object.

The second group of shell extensions are associated with file operations such as move, copy,
rename, and so on:

· Copy hook handlers. They are called when a folder object is about to be copied, moved,
deleted, or renamed. They can either allow or prevent the operation.

· Drag and drop handlers. They are context menu handlers that the system calls when the
user drops an object after dragging it to a new position.

The design of a shell extension is based on the OLE Component Object Model (COM). The shell
accesses an object through interfaces. An application implements the interfaces in a shell
extension dynamic-link library (DLL), which is essentially an OLE in-process server DLL.

This overview explains how to create shell extensions and describes how the shell interacts with
them.

Shell Extension Terms
You should be familiar with the following shell extension terms before proceeding.

file object
A file object is an item within the shell. The most familiar file objects are files and directories.
However, a file object may not actually be a part of the file system; it may only appear that
way. For example, printers, Control Panel applications, and network shares, servers, and
workgroups are also considered to be file objects.

file class
Each file object is a member of a file class. The file class refers to the code that "owns" the
manipulation of files belonging to the class. For example, text files and Microsoft Word
documents are examples of file classes. Each file class has specific shell extensions
associated with it. When the shell is about to take an action involving a file object, it uses the
file class to determine the shell extensions to load.

handler
A handler is the code that implements a particular shell extension.

Registry Entries for Extending the Shell
An application that creates and maintains files, such as a spreadsheet, word proces-sor, or
graphics application, typically adds two keys to the system registry: a file association key and an
application identifier key. The file association key maps a filename extension to an application
identifier. For example, a word processing application might register the following key under
HKEY_CLASSES_ROOT.HKEY_CLASSES_ROOT

.doc=AWordProcessorThe value name (.doc) specifies the filename extension, and the value (AWordProcessor) denotes
the key name that contains the information about the application handling the filename extension.

The application identifier key is the second registry entry made by an application handling files.HKEY_CLASSES_ROOT
AWordProcessor=A Word ProcessorThe value (A Word Processor) is a string describing the application that recognizes files having

the given filename extension. (In this case, it is the .DOC filename extension.)

Extending the shell requires that you add other entries below the file association and application
identifier keys. The system checks these entries to determine the commands to add to various
shell menus, when to load an extension DLL, where to find the DLL, and so on.

There are several registry keys that allow you to extend the shell without having to write any code
at all. These keys let you set the default icon for a class of files or add commands to the File menu
and its New submenu in Windows Explorer.

Setting Default Icons for File Classes
The system uses icons to represent file objects in the shell. Typically, all files of the same class
have the same icon. By adding the DefaultIcon key to the file association key for a particular file
class, you can specify the icon that the system displays for all files of the class. The value of the
DefaultIcon key specifies the executable file (or DLL) that contains the icon and the index of the
icon within the file.HKEY_CLASSES_ROOT

.doc=AWordProcessor
DefaultIcon=C:\MYDIR\MYAPP.EXE,1If the registry does not contain a DefaultIcon key for a particular file class, the system uses the

default icon for the class. One of the advantages of using a class icon is that it requires no
programming; the shell handles displaying the icon for the class.

By writing an icon handler, you give each instance of a file a different icon. For more information
about icon handlers, see Icon Handlers.

Modifying the Context Menu for a File Class
When the user clicks a file object using mouse button 2, the system displays a context menu for
the object. The context menu contains a set of menu items that allow the user to perform various
operations on the file object, such as opening or printing it. A context menu contains two types of
items: dynamic items and static items. Dynamic items are added to a context menu by a context
menu handler.

Static menu items are listed in the system registry and are automatically added to a context menu
by the system. Because static items are listed in the system registry based on their class, the
context menus for all file objects belonging to a particular class receive the same set of static
items.

You specify static menu items for a file class by adding a shell key below the application identifier
key of the file class and then adding verb and command value entries below the shell key.
Following is the registry format for static items.HKEY_CLASSES_ROOT

<applicationID> = <"description">
shell
<verb> = <"menu-item text">
command = <"command string">Each verb value entry specifies a menu-item text string for the system to add to the context menu.

The command value entry specifies the action that the system takes when the user chooses the
menu item. Typically, the command string value specifies the path and filename of an application
and includes command-line options that direct the application to perform an action on the
corresponding file object. For example, the following registry keys add an Open command and a
Print command to the context menu for all files with the .WRI filename extension.HKEY_CLASSES_ROOT

wrifile = Write Document
shell
open

command = C:\Progra~1\Access~1\WORDPAD.EXE %1
print

command = C:\Progra~1\Access~1\WORDPAD.EXE /p "%1"
printto

command =
C:\Progra~1\Access~1\WORDPAD.EXE /pt "%1" "%2" "%3" "%4"In the preceding commands, the %1 parameter is the filename, %2 is the printer name, %3 is the

driver name, and %4 is the port name. In Windows 95, you can ignore the %3 and %4 parameters
(the printer name is unique in Windows 95).

The system defines a set of verbs called canonical verbs that introduce an element of language-
independence to context menus. When you include a canonical verb in the registry, the system
automatically generates a localized menu item string for the verb before adding it to the context
menu. The canonical verbs include the open, print, explore, find, openas, and properties verbs.
The printto verb is also canonical, but it is a special case because it is never actually displayed.
Instead, it allows the user to print a file by dragging it to a printer object. Canonical verbs are also
used with context menu handlers.

If the open canonical verb is included in the registry entries for a file class, the system adds an
Open menu item to the corresponding context menu and makes it the default item. If the open
verb is not included, the menu item corresponding to the verb listed in the registry is the default
item. A context menu handler can change the default item. For more information about context
menu handlers, see Context Menu Handlers.

Modifying the New Submenu
The File menu in a file system folder contains a New submenu that, by default, includes the
Shortcut and Folder commands. These commands allow the user to create new shortcuts and
folders within the current folder. The New submenu can also include other nondefault commands
that let the user create new files of various types within the current folder, such as sound files, text
files, and bitmap files. For example, the New submenu might include a Sound command that
creates a .WAV file in the current folder.

If your application creates a type of file that the user may want to create from within a file system
folder, you should consider adding a command for it to the New submenu. For example, suppose
you have created a graphics application that creates files with the .XYZ filename extension. You
could add a command, such as XYZ Picture, that creates a new .XYZ file or launches your
application and opens a new .XYZ file for editing.

You add a command to the New submenu by including a ShellNew key below the file association
key for your filetype. When the system needs to create the New submenu, it searches through the
file association entries for instances of the ShellNew key. When it finds an instance of ShellNew,
the system retrieves the string associated with the application identifier key (xyzfile) and adds the
string to the New submenu as a new command. Note that an Open command must be registered
below the application identifier key; otherwise, the system does not add the Open command to the
New submenu.

The following example shows the registry entries needed to add the XYZ Picture command to the
New submenu.HKEY_CLASSES_ROOT

.xyz="xyzfile"
ShellNew
NullFile=""
.
.
.
xyzfile="XYZ Picture"
shell
open
command="C:\XYZ\XYZAPP.EXE %1The data names for the ShellNew key specify the method to use to create a new file of the type

designated by the filename extension. There are four possible data names and values for the
ShellNew key.

Data
name

Value Description

NullFile "" Creates an empty (null) file. If this data
name is specified, Data and FileName are
ignored.

Data binary-value Creates a file that contains the data
specified by binary-value. This data name is
ignored if either NullFile or FileName is
specified.

FileName path-name Creates a copy of the file specified by path-
name. This data name is ignored if NullFile
is specified.

Commandpath-name Executes the command specified by path-
name when the file is created. For example,
the command might start a wizard.

Registering Shell Extensions
A shell extension must be registered in the registry database. The class identifier of each handler
must be registered under the HKEY_CLASSES_ROOT\CLSID key. The CLSID key contains a list
of class identifier key values, such as {00030000-0000-0000-C000-000000000046}. Each class
identifier key is a globally unique identifier (GUID) generated by the UUIDGEN tool. Within each
class identifier key, the handler adds an InProcServer32 key that gives the location of the
handler's DLL. It is best to give the complete path for the handler; using the complete path keeps
the handler independent of the current path and speeds up the load time for the DLL.

The information that the shell uses to associate a shell extension handler with a file type is stored
under the shellex key. The shell also uses several other special keys under
HKEY_CLASSES_ROOT to look for shell extensions: *, Folder, Drives, Printers, and keys for
network providers. Descriptions of the keys follow:

· You can use the * key to register handlers that the shell calls whenever it creates a
context menu or property sheet for a file object in the following manner.HKEY_CLASSES_ROOT
* = *
shellex

ContextMenuHandlers
{00000000-1111-2222-3333-00000000000001}
PropertySheetHandlers
{00000000-1111-2222-3333-00000000000002}The shell uses instances of the ExtraMenu and SummaryInfo handlers to add to the
context menus and property sheets for every file object.

· You can use Folder key to register a shell extension for directories in the file system. You
can register context menu handlers, copy hook handlers, and property sheet handlers in the
same way you register these handlers for the * key. An additional handler, the drag and drop
handler, applies only to the Folder and Printers keys. An example showing the Folder key
follows.Folder = Folder
shellex
DragDropHandlers
{00000000-1111-2222-3333-00000000000004}
CopyHookHandlers
{00000000-1111-2222-3333-00000000000005}· You can use the Drives key for the same registrations as the Folder key, but the Drives

key is called only for root paths (for example, C: \).
· The Printers key allows the same registrations as the Folder key, but it uses additional

handlers for printer events, deletion or removal of printers (through the copy hook handler),
and printer properties (with property sheet handlers and context menu handlers).

To avoid conflicts with other classes, you must use real GUIDs, not the sample strings shown in
the previous examples.

Installing Handlers on Windows NT
Because shell extensions handlers run in a system process, namely the shell process, Windows
NT administrators require control over which shell handlers are allowed to run. Administrators will
have control over which shell handlers can run in much the same way they can now control which
device drivers can run.

For the Windows NT shell to recognize and run a shell-extension handler, you must follow the
instructions in Registering Shell Extensions, then the handler's CLSID must also be listed under
another new registry key. This registry key contains a list of the handlers that are approved for the
shell to run. By default, this key's access control permissions allow only someone with
administrator privileges to modify the list.

The CLSID for the extension must be registered at the following location:HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Shell
Extensions\ApprovedTo register the extension, a "named value" should be added to the "Approved" key. The name of

the value must be the string form of the CLSID as obtained from the StringFromCLSID() function,
which is used elsewhere in the registry. The value itself should be the ProgID. The ProgID is
stored here simply to make inspection of the registry easier, as it is easier to decipher than a
CLSID. The Windows NT shell does not look at this value, however, only at the presence or
absence of the CLSID.

Your setup application may or may not be able to write to this key, depending on the privileges of
the person installing the application. The setup application should attempt to open the key
described above, requesting the KEY_SET_VALUE permission. If it succeeds, the new CLSID
can be added to fully register the corresponding shell extension. If the request fails with a security
violation, then the person installing the application does not have permission to register new shell
extensions. In this case, the setup application might warn the user that some application features
will not be available unless an administrator turns them on (by installing the application, or by
writing the registry keys directly). Or, if the shell extension is crucial to the application's
functioning, the setup application might cause the installation to fail completely, notifying the user
that the program must be installed by an administrator.

When setting up on Windows 95, it is not necessary to write the CLSID to this key, although
writing it is harmless. Note, however, that the key may not exist in a Windows 95 installation, so
that if your setup application does attempt to open the key, it may fail.

The following sample code details this process. Full error handling has been omitted.#include <windows.h>
#include <string.h>
void main(void)
{
//
// First, attempt to open the registry key where approved extensions
are
// listed. Note the extra slashes within the second parameter (the
// registry path string).
//
long err;
HKEY hkApproved;
err = RegOpenKeyEx(
HKEY_LOCAL_MACHINE,
"Software\\Microsoft\\Windows\\CurrentVersion\\Shell Extensions\\
Approved",
0,
KEY_SET_VALUE,
&hkApproved);

if (err == ERROR_ACCESS_DENIED)
{
//
// The user does not have permissions to add a new value to this key.
In this
// case, a reasonable action would be to warn the user that some
// application features will not be available unless an administrator
// installs the application. If the shell extension is central to the
// functioning of the application, tell the user that the install
// can only be performed by an administrator, and stop the install.
//
}
else if (err == ERROR_FILE_NOT_FOUND)
{
//
// The key does not exist. This should only happen if setup is running
// on Windows 95 instead of Windows NT, or if you are installing on an
older
// version of either operating system that does not have the new shell.
//
}
else if (err != ERROR_SUCCESS)
{
//
// some other problem...
//
}
else
{
//
// The open of the key succeeded. Now register the new shell extension
// under this key. This requires having the ProgID and string form of
the
// CLSID handy.
//
//
// Assume that lpstrProgID contains our ProgID string.
//
LPSTR lpstrProgID = "My Bogus Class";

//
// Assume that clsidExtension contains the CLSID struct. The code below
// creates a string form this CLSID. If a string version of
// the CLSID is already handy, skip this code.
//
CLSID clsidExtension = {0x11111111, 0x1111, 0x1111, 0x11, 0x11,

0x11, 0x11, 0x11, 0x11, 0x11, 0x11};
HRESULT hr;
LPOLESTR lpolestrCLSID;
CHAR rgchCLSID[40];
CoInitialize(NULL);
hr = StringFromCLSID(clsidExtension, &lpolestrCLSID);
//
// StringFromCLSID returns a Unicode string, so convert to ANSI for
// calling the registry. Note that on Windows NT you can call the
Unicode
// version of the registry API instead.
//
WideCharToMultiByte(CP_ACP,0, lpolestrCLSID, -1, rgchCLSID, 40,
NULL, NULL);
CoTaskMemFree(lpolestrCLSID);
CoUninitialize();

//
// Now add the new value to the registry.
// Note that each new shell extension CLSID must be registered here.
//
err = RegSetValueEx(
hkApproved,
rgchCLSID,
0,
REG_SZ,
(const BYTE *)lpstrProgID,
strlen(lpstrProgID));

//
// Finally, close the key.
//
err = RegCloseKey(hkApproved);
}
}

Debugging Tips
The shell automatically unloads a DLL when the DLL's usage count is zero, but only after the DLL
has not been used for a period of time. The inactive period may be unacceptably long at times,
especially when a shell extension DLL is being debugged. You can shorten the inactive period by
adding the following information to the registry.HKLM

Software
Microsoft
Windows
CurrentVersion
Explorer

AlwaysUnloadDllAlwaysUnloadDll shortens the inactive period so that DLLs are unloaded quickly.

While debugging your extension, you may want to shut down Windows without closing the
currently running applications. To do so, follow these steps:

1. From the Start menu on the Windows taskbar, choose Shut Down.
2. While holding down the CTRL+ALT+SHIFT key combination, click the No button in the Shut

Down Windows dialog box.

Running and Testing Namespace Extensions (Windows NT)
You can run and test your Windows NT extensions in a separate Explorer process to avoid
stopping and restarting the Desktop and tray. While you run and test the extensions, your Desktop
and tray will remain in a usable state.

To enable this feature, add the following value to the registry:HKEY_CURRENT_USER\Software\Microsoft\Windows\Current\Version\Explorer
\DesktopProcess(REG_DWORD) = 1For this value to take effect, you must logoff and logon again. This setting causes the Desktop and

tray windows to be created in one EXPLORER.EXE process and all other Explorer and folder
windows to be opened in a different EXPLORER.EXE process.

Besides providing convenience in running and testing your extension, the setting also makes the
Desktop more robust as it relates to shell extensions. Many such extensions (context menu
extensions, for example) will be loaded into the non-Desktop EXPLORER.EXE process. If this
process terminates, the Desktop and tray will be unaffected and the next Explorer or folder
window will re-create the terminated process.

In future releases, this setting may also be controlled as part of the system policy so that system
administrators can require certain users to always run in this two-process mode. A slight
performance penalty will occur, depending on the amount of physical memory in the machine, so
this setting is not enabled by default.

How the Shell Accesses Shell Extension Handlers
The shell uses two interfaces to initialize instances (objects created by IClassFactory::
CreateInstance) of shell extensions: IShellExtInit and IPersistFile. The shell uses the
IShellExtInit interface to initialize instances of context menu handlers, drag and drop handlers,
and property sheet handlers. The shell uses IPersistFile to initialize instances of icon handlers,
data handlers, and drop handlers. This interface is defined by OLE.

The IShellExtInit interface adds an additional member function, Initialize, to the standard
IUnknown interface. A handler's Initialize function should keep a copy of the parameters that the
shell passes to the function for later use. An example showing how to initialize instances follows.STDMETHODIMP CShellExt::Initialize(LPCITEMIDLIST pIDFolder,

LPDATAOBJECT pDataObj, HKEY hRegKey)
{

// Initialize can be called more than once.
if (m_pDataObj)
m_pDataObj->Release();
// Save the object pointer.
if (pDataObj) {
m_pDataObj = pDataObj;
pDataObj->AddRef();
}
// Duplicate the registry handle.
if (hRegKey)
RegOpenKeyEx(hRegKey, NULL, 0L, MAXIMUM_ALLOWED,
&this->hRegKey);
return NOERROR;

}A shell extension handler must implement three functions: an entrypoint function (often called
DllMain or LibMain), DllCanUnloadNow, and DllGetClassObject.

DllCanUnloadNow and DllGetClassObject are essentially the same as they would be for any
OLE in-process server DLL. The use of DllCanUnloadNow is shown in the following example.STDAPI DllCanUnloadNow(void)
{

// g_cRefThisDll must be placed in the instance-specifc
// data section.
return ResultFromScode((g_cRefThisDll==0) ? S_OK : S_FALSE);

}DllGetClassObject needs to expose the class factory for the object in the DLL. For more
information about exposing the class factory, see the OLE documentation included in the
Microsoft® Win32® Software Development Kit (SDK). The following example shows how to expose
the class factory.// DllGetClassObject - a DLL entrypoint function used by
// most in-process server DLLs.
STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID *ppvOut)
{

*ppvOut = NULL; // assume failure
if (IsEqualIID(rclsid, CLSID_ShellExtension)) {
return CShellExtSample_Create(riid, ppvOut);
} else {
return CLASS_E_CLASSNOTAVAILABLE;
}

}

Using Shell Extensions
The following sections describe the handlers supported by the shell.

Context Menu Handlers
A context menu handler is a shell extension that adds menu items to any of the shell's context
menus. There are two types of context menu handlers. Each type has a different purpose, but the
same implementation. Context menu extensions are used when the user clicks a file object by
using mouse button 2, and drag and drop handlers are used when the user drags a file object
using mouse button 2. This section describes the types of context menu handlers, how they are
used, how they are added to the registry, and the interfaces that they must implement.

Context Menu Extensions
When the user clicks mouse button 2 on an item within the shell's namespace (that is, file,
directory, server, work group, and so on), it creates the default context menu for the type of item
and then loads context menu extensions that are registered for the type (and its base type) so that
they can add extra menu items. The context menu extensions are registered at the following
location.HKCR\{ProgID}\shellex\ContextMenuHandlers

IContextMenu Interface
An application implements a context menu handler interface, IContextMenu, to add menu items
to the context menu for a file object. The shell displays the object's context menu when the user
clicks the object with mouse button 2. The menu items can be either class-specific (that is,
applicable to all files of a particular type) or instance-specific (that is, applicable to an individual
file).

When the user clicks a file object by using mouse button 2, the system passes the address of the
object's context menu to the context menu handler, which should use the handle only to add items
to the menu. The handler should not delete or modify existing menu items, because other
handlers may add items either before or after it does. In addition, the shell adds items to the menu
after all context menu handlers have been called.

Context menu handlers are entered in the registry under the shellex key within an application's
information area. The ContextMenuHandlers key lists the names of subkeys that contain the
CLSID of each context menu handler. An example showing the ContextMenuHandlers key
follows.ContextMenuHandlers

{00000000-1111-2222-3333-00000000000001}You can register multiple context menu handlers for a file type.

In addition to the standard IUnknown member functions, the context menu handler interface uses
the QueryContextMenu, InvokeCommand, and GetCommandString member functions.

When the user selects one of the menu items added by a context menu handler, the shell calls the
handler's IContextMenu::InvokeCommand member function to let the handler process the
command. If multiple context menu handlers are registered for a file type, the value of the
ContextMenuHandlers key determines the order of the commands.

When the system is about to display a context menu (or the File menu on the menu bar) for a file
object, the system calls the context menu handler's QueryContextMenu member function. The
context menu handler inserts menu items by position (MF_POSITION) directly into the context
menu by calling the InsertMenu function. The following example shows that menu items must be
string items (MF_STRING).STDMETHODIMP CShellExt::QueryContextMenu(HMENU hMenu,

UINT indexMenu, UINT idCmdFirst, UINT idCmdLast, UINT uFlags)
{

UINT idCmd = idCmdFirst;
char szMenuText[64];
char szMenuText2[64];
char szMenuText3[64];
char szMenuText4[64];
BOOL bAppendItems=TRUE;
if ((uFlags & 0x000F) == CMF_NORMAL) {
lstrcpy(szMenuText, "&New .GAK menu 1, Normal File");
lstrcpy(szMenuText2, "&New .GAK menu 2, Normal File");
lstrcpy(szMenuText3, "&New .GAK menu 3, Normal File");
lstrcpy(szMenuText4, "&New .GAK menu 4, Normal File");
} else if (uFlags & CMF_VERBSONLY) {
lstrcpy(szMenuText, "&New .GAK menu 1, Shortcut File");
lstrcpy(szMenuText2, "N&ew .GAK menu 2, Shortcut File");
lstrcpy(szMenuText3, "&New .GAK menu 3, Shortcut File");
lstrcpy(szMenuText4, "&New .GAK menu 4, Shortcut File");
} else if (uFlags & CMF_EXPLORE) {
lstrcpy(szMenuText, "&New .GAK menu 1,
Normal File right click in Explorer");
lstrcpy(szMenuText2, "N&ew .GAK menu 2,
Normal File right click in Explorer");
lstrcpy(szMenuText3, "&New .GAK menu 3,
Normal File right click in Explorer");
lstrcpy(szMenuText4, "&New .GAK menu 4,
Normal File right click in Explorer");
} else if (uFlags & CMF_DEFAULTONLY) {
bAppendItems = FALSE;
} else {
char szTemp[32];
bAppendItems = FALSE;
}
if (bAppendItems) {
InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL);
InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText);
InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL);
InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText2);
InsertMenu(hMenu, indexMenu++, MF_SEPARATOR | MF_BYPOSITION,
0, NULL);
InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText3);
InsertMenu(hMenu, indexMenu++, MF_STRING | MF_BYPOSITION,
idCmd++, szMenuText4);
// Must return the number of menu items added.
return ResultFromShort(idCmd-idCmdFirst);
}
return NOERROR;

}The system calls the InvokeCommand member function when the user selects a menu item that
the context menu handler added to the context menu. The InvokeCommand function in the
following example handles the commands associated with the menu items added by the previous
example.STDMETHODIMP CShellExt::InvokeCommand(LPCMINVOKECOMMANDINFO lpcmi)
{

HRESULT hr = E_INVALIDARG;
// If the high-order word of lpcmi->lpVerb is not NULL, this
// function was called by an application and lpVerb is a command
// that should be activated. Otherwise, the shell has called this
// function, and the low-order word of lpcmi->lpVerb is the
// identifier of the menu item that the user selected.
if (!HIWORD(lpcmi->lpVerb)) {
UINT idCmd = LOWORD(lpcmi->lpVerb);
switch (idCmd) {
case 0:
hr = DoGAKMenu1(lpcmi->hwnd, lpcmi->lpDirectory,
lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;
case 1:
hr = DoGAKMenu2(lpcmi->hwnd, lpcmi->lpDirectory,
lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;
case 2:
hr = DoGAKMenu3(lpcmi->hwnd, lpcmi->lpDirectory,
lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;
case 3:
hr = DoGAKMenu4(lpcmi->hwnd, lpcmi->lpDirectory,
lpcmi->lpVerb, lpcmi->lpParameters, lpcmi->nShow);
break;
}
}
return hr;

}Windows calls the GetCommandString member function to get a language-independent
command string or the help text for a context menu item.

Drag and Drop Handlers
Drag and drop handlers implement the IContextMenu interface. In fact, a drag and drop handler
is simply a context menu handler affecting the menu that the shell displays when a user drags and
drops a file object with mouse button 2. Because this menu is called the drag and drop menu,
shell extensions that add items to this menu are called drag and drop handlers. Drag and drop
handlers work the same way as context menu handlers.

Note that drag and drop handlers are registered under the key of folder types (typically the
Directory key). To change the behavior of the dragged object (IDataObject), you need to
implement a data handler.

Icon Handlers
An application can customize the icons that the shell displays for the application's file types. The
icon interface also allows an application to specify icons for folders and subfolders within the
application's file structure.

An application can specify icons for its file types in two ways. The simplest way is to specify a
class icon to be used for all files of a particular file type by adding a DefaultIcon key to the
registry under the program information. For information about specifying a class icon, see Setting
Default Icons for File Classes.

An application can use the %1 value with the DefaultIcon key. This value denotes that each file
instance of this type can have a different icon. The application must supply an icon handler for the
file type and add an IconHandler key to the shellex key for the application. An application can
have only one entry for the IconHandler key, and the value of its key denotes the CLSID of the
icon handler.shellex

IconHandler
{00000000-1111-2222-3333-00000000000003}

DefaultIcon = %1To have customized icons, an application must provide an icon handler that implements the
IExtractIcon interface. The system follows these steps when it is about to display an icon for a file
type that has instance-specific icons:

1. Retrieves the class identifier of the handler.
2. Creates a handler object by calling the CoCreateInstance function with the CLSID.
3. Initializes the instance by calling the IPersistFile::Load member function.
4. Uses the QueryInterface member function to get to the IExtractIcon interface.
5. Calls the IExtractIcon::GetIconLocation and IExtractIcon::Extract member functions.

The IExtractIcon interface has the Extract and GetIconLocation member functions in addition to
the usual IUnknown member functions.

The system calls the GetIconLocation member function to get the location and index of an icon
to display. Typically, the icon location is an executable or DLL filename, but it can be any file.

The system calls the Extract member function when it needs to display an icon for a file that does
not reside in an executable or DLL file. Applications usually have the file icons in their executable
or DLL files, so icon handlers can simply implement this member function as a return-only function
that returns the E_FAIL error value. You need to implement the Extract member function only if
the icon image is stored in a file in an application-defined format. When the icon for a file is in a
separate .ICO file (or any other type of file), the icon handler must extract the icon for the shell
and return it in this member function.

Property Sheet Handlers
Another way the shell can be extended is by custom property sheets. When the user selects the
properties for a file, the shell displays a standard property sheet. If the registered file type has a
property sheet handler, the shell allows the user to access additional sheets that the handler
provides. Property sheet handlers implement the IShellPropSheetExt interface.

Property sheet handlers are entered in the registry under the shellex key within an application's
information area. The PropertySheetHandlers key lists the names of subkeys that contain the
class identifier of each context menu handler, as shown in the following example.PropertySheetHandlers

{00000000-1111-2222-3333-00000000000002}You can register multiple property sheet handlers for a file type. In this case, the order of the
subkey names in the PropertySheetHandlers key determines the order of the additional property
sheets. You can use a maximum of 24 (the value of MAXPROPPAGES) pages in a property
sheet.

Adding Property Sheet Pages
The property sheet handler uses the AddPages member function in addition to the usual
IUnknown member functions. The system calls the AddPages member function when it is about
to display a property sheet. The system calls each property sheet handler registered to the file
type to allow the handlers to add pages to the property sheets. The following example shows how
to implement the AddPages member function.STDMETHODIMP CSamplePageExt::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage,

LPARAM lParam)
{

PROPSHEETPAGE psp;
HPROPSHEETPAGE hpage;
psp.dwSize = sizeof(psp); // no extra data
psp.dwFlags= PSP_USEREFPARENT | PSP_USERELEASEFUNC;
psp.hInstance = (HINSTANCE)g_hmodThisDll;
psp.pszTemplate = MAKEINTRESOURCE(DLG_FSPAGE);
psp.pfnDlgProc = FSPage_DlgProc;
psp.pcRefParent = &g_cRefThisDll;
psp.pfnRelease = FSPage_ReleasePage;
psp.lParam = (LPARAM)hdrop;
hpage = CreatePropertySheetPage(&psp);
if (hpage) {
if (!lpfnAddPage(hpage, lParam))
DestroyPropertySheetPage(hpage);
}
return NOERROR;

}

Replacing Control Panel Pages
The ReplacePage member function is called only by Control Panel applications. It allows you to
replace the property sheet of a standard Control Panel application with a custom page. For
example, if a mouse manufacturer adds extra buttons to its mouse, the manufacturer can replace
the standard Mouse Control Panel's "Buttons" property sheet page. The ReplacePage member
function is not called by the shell because the shell does not have any property sheet pages that
can be replaced by a shell extension. Currently, only Control Panel applications call this member
function, but other property sheet suppliers could use this member function to allow their property
sheet pages to be replaced.

Each property sheet handler that allows a property sheet page to be replaced must specify the
registry location where other handlers that replace pages register themselves. For standard
Control Panel applications, this location is defined by the REGSTR_PATH_CONTROLSFOLDER
macro in the REGSTR.H file. The macro defines the key under the HKEY_LOCAL_MACHINE
key in which all Control Panel property sheet page replacement handlers must register. For
example, a property sheet handler that needs to replace a property sheet page for the Mouse
Control Panel would register a property sheet extension handler in the following registry location.HKEY_LOCAL_MACHINE

REGSTR_PATH_CONTROLSFOLDER
Mouse

shellex
PropertySheetHandlers = NewMousePage
NewMousePage = {00000000-1111-2222-3333-00000000000002}In addition, a property sheet handler that allows replaceable pages must define identifiers for each

page that can be replaced.

Standard Control Panel applications define this location in the REGSTR.H and CPLEXT.H header
files. In REGSTR.H, the REGSTR_PATH_CONTROLSFOLDER macro defines the key under the
HKEY_LOCAL_MACHINE key in which all Control Panel property sheet page replacement
handlers must register. CPLEXT.H defines the subkey for each Control Panel application that
contains a replacable property sheet page: \Mouse for a Mouse Control Panel application and \
Keyboard for a Keyboard Control Panel application.

Standard Control Panel applications define these identifiers in CPLEXT.H. For example,
CPLPAGE_MOUSE_BUTTONS defines the identifier for the Mouse Control Panel's Buttons page,
and CPLPAGE_KEYBOARD_SPEED defines the identifier for the Keyboard Control Panel's
Speed page.

Copy Hook Handlers
A copy hook handler is a shell extension that the shell calls before copying, moving, deleting, or
renaming a folder object. The copy hook handler does not perform the task itself, but the handler
provides approval for the task. When the shell receives approval from the copy hook handler, it
performs the actual file system operation (that is, copies, moves, deletes, or renames). Copy hook
handlers are not informed about the success of the operation, so they cannot monitor actions that
occur to folder objects.

The shell initializes the copy hook handler interface directly ¾ that is, without using an
IShellExtInit or IPersistFile interface first. A folder object can have multiple copy hook handlers.
The copy hook handler interface has one member function, CopyCallBack, in addition to the
standard IUnknown member functions.

The shell calls the CopyCallBack member function before it copies, moves, deletes, or renames
a folder object. The function returns an integer value that indicates whether the shell should
perform the operation. The shell will call each copy hook handler registered for a folder object until
either all the handlers have been called or any handler returns the IDCANCEL value. The handler
can also return the IDYES value to specify that the operation should be carried out or the IDNO
value to specify that the operation should not be performed.

Data Handlers
When a file is dragged from the shell (or copied to the clipboard from the shell), the shell creates a
default IDataObject interface that supports standard clipboard formats (CF_HDROP, "Shell IDList
Array", and so on). An application can add more clipboard formats by providing a data handler for
the file type. A data handler must support both the IPersistFile and IDataObject interfaces. The
shell initializes a data handler by calling the IPersistFile::Load member function. When a data
handler is provided, the default IDataObject interface delegates some member function calls to
the data handler so that the additional clipboard data formats become available to the drop target.

You register a data handler by adding a DataHandler key and class identifier for the handler
under the shellex key for the file type as shown in the following example.shellex

DataHandler = {00000000-1111-2222-3333-00000000000003}

Drop Handlers
By default, a file is not a drop target. By providing a drop handler for the file types created by your
application, you can make the files into drop targets. A drop handler must support both the
IPersistFile and IDropTarget interfaces. The shell initializes a drop handler by calling the
IPersistFile::Load member function. When the user drags an object over one of your
application's files or drops an object onto one of its files, the system calls the appropriate member
functions of the IDropTarget interface.

You register a drop handler by adding a DropHandler key and class identifier for the handler
under the shellex key for the file type as shown in the followng example.shellex

DropHandler = {00000000-1111-2222-3333-00000000000003}

Shell Extensions Reference
The following interfaces and structures are associated with shell extensions.

Shell Extensions Interfaces
IContextMenu
IContextMenu2
ICopyHook
IExtractIcon
IShellPropSheetExt

IShellExtInit

Shell Extensions Structures
CMINVOKECOMMANDINFO
ITEMIDLIST

SHITEMID

Shell LinksA shell link is a data object that contains information used to access another object in the shell's
namespace ¾ that is, any object visible through Microsoft® Windows® Explorer. The objects that
can be accessed through shell links include files, folders, disk drives, and printers. A shell link
allows the user or an application to access an object from anywhere in the namespace; the user
or application does not need to know the current name and location of the object.

About Shell Links
The user creates a shell link by choosing the Create Shortcut command from an object's context
menu. The system automatically creates an icon for the shell link by combining the object's icon
with a small arrow (known as the system-defined link overlay icon) that appears in the lower left
corner of the icon. A shell link that has an icon is called a shortcut; however, the terms shell link
and shortcut are often used interchangeably. Typically, the user creates shortcuts to gain quick
access to objects stored in subfolders or in shared folders on other machines. For example, a
user can create a shortcut to a Microsoft Word document located in a subfolder and place the
shortcut icon on the desktop. Later the user can start Word and open the document simply by
double-clicking the shortcut icon. If the document is later moved or renamed, the system takes
steps to update the shortcut the next time the user selects it.

Applications can also create and use shell links and shortcuts. For example, a word processing
application might create a shell link to implement a list of the most recently used documents. An
application creates a shell link by using the IShellLink interface to create a shell link object and
uses the IPersistFile or IPersistStream interface to store the object in a file or stream. This
overview describes the IShellLink interface and explains how to use the interface to create and
resolve shell links from within a Win32-based application.

Because the design of shell links is based on the OLE Component Object Model (COM), you
should be familiar with the basic concepts of COM and OLE programming before reading this
overview.

Link Resolution
If a user creates a shortcut to an object and the name or location of the object is subsequently
changed, the system automatically takes steps to update, or resolve, the shortcut the next time
the user selects it. However, if an application creates a shell link and stores it in a stream, the
system does not automatically attempt to resolve the link. The application must resolve the link by
calling the IShellLink::Resolve member function.

When a shell link is created, the system saves information about the link. When resolving a link
(either automatically or if IShellLink::Resolve is called), the system first retrieves the path
associated with the shell link by using a pointer to the shell link's identifier list. (For more
information about the identifier list, see Item Identifiers and Identifier Lists.) The system searches
for the associated object in that path and, if it finds the object, resolves the link. If the system
cannot find the object, it looks in the same directory for an object that has the same file creation
time and attributes, but a different name. This type of search resolves a link to an object that has
been renamed.

If the system still cannot find the object, it searches the subdirectories of the current directory,
looking recursively though the directory tree for a match with either the same name or creation
time. If the system does not find a match after that, it displays a dialog box prompting the user for
a location. An application can suppress the dialog box by specifying the SLR_NO_UI value in a
call to IShellLink::Resolve.

Initialization of the Component Object Library
Before an application can create and resolve shortcuts, it must initialize the component object
library by calling the CoInitialize function. Each call to CoInitialize requires a corresponding call
to the CoUninitialize function, which an application should call when it terminates. The call to
CoUninitialize ensures that the application does not terminate until it has received all of its
pending messages.

Location-Independent Names
The system provides location-independent names for shell links to objects stored in shared
folders. If the object is stored locally, the system provides the local path and filename for the
object. If the object is stored remotely, the system provides the Universal Naming Convention
(UNC) network resource name for the object. Because the system provides location-independent
names, a shell link can serve as a universal name for a file that can be transferred to other
machines.

Link Files
When the user creates a shortcut to an object by choosing the Create Shortcut command from the
object's context menu, Windows stores the information it needs to access the object in a link file
¾ that is, a binary file that has the .LNK filename extension. A link file contains the following
information:

· The location (path) of the object referenced by the shortcut (called the "corresponding
object").

· The working directory of the corresponding object.
· The list of arguments that the system passes to the corresponding object when the

IContextMenu::InvokeCommand member function is activated for the shortcut.
· The show (SW_) command used to set the initial show state of the corresponding object.
· The location (path and index) of the shortcut's icon.
· The shortcut's description string.
· The hot key for the shortcut.

When a link file is deleted, the corresponding object is not affected.

If you create a shortcut to another shortcut, the system simply copies the link file rather than
creating a new link file. This is important to remember if you are assuming that the shortcuts will
remain independent of each other.

An application can register a filename extension as a "shortcut" file type. If a file has a filename
extension that has been registered as a shortcut file type, the system automatically adds the
system-defined link overlay icon (a small arrow) to the file's icon. To register a filename extension
as a shortcut file type, you must add the "IsShortcut" value to the registry description of the
filename extension. Note that the shell must be restarted for the overlay icon to take effect.HKEY_CLASSES_ROOT

.xyz (Default) = "XYZApp"

.

.

.
XYZApp IsShortcut = ""

Location in the Namespace
A shortcut can exist on the desktop or anywhere in the shell's namespace. Similarly, the object
that is associated with the shortcut can also exist anywhere in the shell's namespace. An
application can use the IShellLink::SetPath member function to set the path and filename for the
associated object, and the IShellLink::GetPath member function to retrieve the current path and
filename for the object.

Object Working Directory
The working directory is the directory where the corresponding object of a shortcut loads or stores
files when the user does not identify a specific directory. A link file contains the name of the
working directory for the corresponding object. An application can set the name of the working
directory for the corresponding object by using the IShellLink::SetWorkingDirectory member
function and can retrieve the name of the current working directory for the corresponding object by
using the IShellLink::GetWorkingDirectory member function.

Object Command-Line Arguments
A link file contains command-line arguments that the shell passes to the corresponding object
when the user selects the link. An application can set the command-line arguments for a shortcut
by using the IShellLink::SetArguments member function. It is useful to set command-line
arguments when the corresponding application, such as a linker or compiler, takes special flags
as arguments. An application can retrieve the command-line arguments from a shortcut by using
the IShellLink::GetArguments member function.

Shortcut Show Command
When the user double-clicks a shortcut, the system starts the application associated with the
corresponding object and sets the initial show state of the application based on the show
command specified by the shortcut. The show command can be any of the SW_ values included
in the description of the ShowWindow function. An application can set the show command for a
shortcut by using the IShellLink::SetShowCmd member function and can retrieve the current
show command by using the IShellLink::GetShowCmd member function.

Shortcut Icon and Description
Like other shell objects, a shortcut has an icon. The user accesses the object associated with a
shortcut by double-clicking the shortcut's icon. When the system creates an icon for a shortcut, it
uses the bitmap of the corresponding object and adds the system-defined link overlay icon (a
small arrow) to the lower left corner. An application can set the location (path and index) of a
shortcut's icon by using the IShellLink::SetIconLocation member function. An application can
retrieve the current location (path and index) of a shortcut's icon by using the IShellLink::
GetIconLocation member function.

A shortcut also has a description, which is a brief string that appears below the shell link icon. By
default, the description consists of the words "Shortcut to" followed by the filename of the object.
The user can edit the description string by selecting it and entering a new string. An application
can set the description string by using the IShellLink::SetDescription member function and can
retrieve the current description string by using the IShellLink::GetDescription member function.

Shortcut Hot Key
A shortcut object can have a hot key associated with it. A hot key allows the user to use the
shortcut by pressing a particular combination of keys. An application can set the hot key for a
shortcut by using the IShellLink::SetHotkey member function and can retrieve the current hot
key for a shortcut by using the IShellLink::GetHotkey member function.

Item Identifiers and Identifier Lists
The shell uses object identifiers within the shell namespace. All of the objects that are visible in
the shell (files, directories, servers, workgroups, and so on) have an identifier that is unique
among the objects within the parent folder. These identifiers are called item identifiers, and they
have the SHITEMID data type as defined in the SHLOBJ.H header file. An item identifier is a
variable-length byte stream that contains information for identifying an object within a folder. Only
the creator of an item identifier knows the content and format of the identifier. The only part of an
item identifier that the shell uses is the first two bytes, which specify the size of the identifier.

Each parent folder has its own item identifier that identifies it within its own parent folder. Thus,
any shell object can be uniquely identified by a list of item identifiers. A parent folder keeps a list
of identifiers for the items in the folder. The list has the ITEMIDLIST data type. Item identifier lists
are allocated by the shell and may be passed across shell interfaces, such as IShellFolder. It is
important to remember that each identifier in an item identifier list is only meaningful within the
context of the parent folder.

An application can set a shortcut's item identifier list by using the IShellLink::SetIDList member
function. This function is useful when setting a shortcut to an object that is not a file, such as a
printer or disk drive. An application can retrieve a shortcut's item identifier list by using the
IShellLink::GetIDList member function.

Using Shell Links
This section contains examples that demonstrate how to create and resolve shortcuts from within
a Win32-based application.

Creating a Shortcut to a File
The CreateLink function in the following example creates a shortcut. The parameters include a
pointer to the name of the file to link to, a pointer to the name of the shortcut that you are creating,
and a pointer to the description of the link. The description consists of the string, "Shortcut to
filename," where filename is the name of the file to link to.

Because CreateLink calls the CoCreateInstance function, it is assumed that the CoInitialize
function has already been called. CreateLink uses the IPersistFile interface to save the shortcut
and the IShellLink interface to store the filename and description.// CreateLink - uses the shell's IShellLink and IPersistFile interfaces
// to create and store a shortcut to the specified object.
// Returns the result of calling the member functions of the
interfaces.
// lpszPathObj - address of a buffer containing the path of the object
// lpszPathLink - address of a buffer containing the path where the
// shell link is to be stored
// lpszDesc - address of a buffer containing the description of the
// shell link
HRESULT CreateLink(LPCSTR lpszPathObj,

LPSTR lpszPathLink, LPSTR lpszDesc)
{

HRESULT hres;
IShellLink* psl;
// Get a pointer to the IShellLink interface.
hres = CoCreateInstance(&CLSID_ShellLink, NULL,
CLSCTX_INPROC_SERVER, &IID_IShellLink, &psl);
if (SUCCEEDED(hres)) {
IPersistFile* ppf;
// Set the path to the shortcut target, and add the
// description.
psl->lpVtbl->SetPath(psl, lpszPathObj);
psl->lpVtbl->SetDescription(psl, lpszDesc);
// Query IShellLink for the IPersistFile interface for saving the
// shortcut in persistent storage.
hres = psl->lpVtbl->QueryInterface(psl, &IID_IPersistFile,
&ppf);
if (SUCCEEDED(hres)) {
WORD wsz[MAX_PATH];
// Ensure that the string is ANSI.
MultiByteToWideChar(CP_ACP, 0, lpszPathLink, -1,
wsz, MAX_PATH);
// Save the link by calling IPersistFile::Save.
hres = ppf->lpVtbl->Save(ppf, wsz, TRUE);
ppf->lpVtbl->Release(ppf);
}
psl->lpVtbl->Release(psl);
}
return hres;

}

Resolving A Shortcut
An application may need to access and manipulate a shortcut that was created previously. This
operation is referred to as "resolving" the shortcut.

The application-defined ResolveIt function in the following example resolves a shortcut. Its
parameters include a window handle, a pointer to the path of the shortcut, and the address of a
buffer that receives the new path to the object. The window handle identifies the parent window
for any message boxes that the shell may need to display. For example, the shell can display a
message box if the link is on unshared media, if network problems occur, if the user needs to
insert a floppy disk, and so on.

The ResolveIt function calls the CoCreateInstance function and assumes that the CoInitialize
function has already been called. Note that ResolveIt needs to use the IPersistFile interface to
store the link information. IPersistFile is implemented by the IShellLink object. The link
information must be loaded before the path information is retrieved, which happens later in the
example. Failing to load the link information causes the calls to the IShellLink::GetPath and
IShellLink::GetDescription member functions to fail.HRESULT ResolveIt(HWND hwnd, LPCSTR lpszLinkFile, LPSTR lpszPath)
{

HRESULT hres;
IShellLink* psl;
char szGotPath[MAX_PATH];
char szDescription[MAX_PATH];
WIN32_FIND_DATA wfd;
*lpszPath = 0; // assume failure
// Get a pointer to the IShellLink interface.
hres = CoCreateInstance(&CLSID_ShellLink, NULL,

CLSCTX_INPROC_SERVER, &IID_IShellLink, &psl);
if (SUCCEEDED(hres)) {
IPersistFile* ppf;
// Get a pointer to the IPersistFile interface.
hres = psl->lpVtbl->QueryInterface(psl, &IID_IPersistFile,
&ppf);
if (SUCCEEDED(hres)) {
WORD wsz[MAX_PATH];
// Ensure that the string is Unicode.
MultiByteToWideChar(CP_ACP, 0, lpszLinkFile, -1, wsz,
MAX_PATH);
// Load the shortcut.
hres = ppf->lpVtbl->Load(ppf, wsz, STGM_READ);
if (SUCCEEDED(hres)) {
// Resolve the link.
hres = psl->lpVtbl->Resolve(psl, hwnd, SLR_ANY_MATCH);
if (SUCCEEDED(hres)) {
// Get the path to the link target.
hres = psl->lpVtbl->GetPath(psl, szGotPath,

MAX_PATH, (WIN32_FIND_DATA *)&wfd,
SLGP_SHORTPATH);

if (!SUCCEEDED(hres)
HandleErr(hres); // application-defined function

// Get the description of the target.
hres = psl->lpVtbl->GetDescription(psl,

szDescription, MAX_PATH);
if (!SUCCEEDED(hres))

HandleErr(hres);
lstrcpy(lpszPath, szGotPath);
}
}
// Release the pointer to the IPersistFile interface.
ppf->lpVtbl->Release(ppf);
}
// Release the pointer to the IShellLink interface.
psl->lpVtbl->Release(psl);
}
return hres;

}

Creating a Shortcut to a Nonfile Object
Creating a shortcut to a nonfile object, such as a printer, is similar to creating a shortcut to a file.
The main difference is that, rather than setting the path to the file, you must set the identifier list to
the printer. To set the identifier list, you must call the IShellLink::SetIDList member function,
specifying the address of an identifier list.

Each object within the shell's namespace has an item identifier, a variable-length byte stream
containing information that identifies the object within its folder. The shell often concatenates item
identifiers into null-terminated lists consisting of any number of item identifiers.

In general, if you need to set a shortcut to an item that does not have a filename, such as a
printer, you will already have a pointer to the object's IShellFolder interface. The IShellFolder
interface is used to create namespace extensions.

Once you have the class identifier for the IShellFolder interface, you can call the
CoCreateInstance function to get the address of the interface. Then you can call the interface to
enumerate the objects in the folder and retrieve the address of the item identifier for the object
that you are searching for. Finally, you can use the address in a call to the IShellLink::SetIDList
member function to create a shortcut to the object.

Shell Links Reference
The following interfaces are used with shell links.

Shell Links Interfaces
The following interface is used with shell links.

IShellLink

Shell's NamespaceA namespace is a collection of symbols, such as database keys or file and directory names.

About the Shell's Namespace
The shell uses a single hierarchical namespace to organize all objects of interest to the user: files,
storage devices, printers, network resources, and anything else that can be viewed using
Windows Explorer. The root of this unified namespace is the desktop.

In many ways, the shell's namespace is analogous to a file system's directory structure. However,
the namespace contains more types of objects than just files and directories. Familiar file system
concepts, such as filename and path, have been replaced by more general and powerful
associations. This overview discusses some of these associations, outlines the organization of the
shell's namespace, and describes the functions and interfaces associated with the namespace.

Folders and File Objects
A folder is a collection of items in the shell's namespace. A folder is analogous to a file system
directory, and many folders are, in fact, directories. However, there are also other types of folders,
such as remote computers, storage devices, the desktop folder, the Control Panel, the Printers
folder, and the Fonts folder. A folder may contain other folders as well as items called file objects.
A file object may be an actual file, or it can be a Control Panel application, a printer, or another
type of object. Each type of folder can only contain certain kinds of file objects; for example, you
cannot move a Control Panel application into a file system directory.

Because there are many kinds of folders and file objects, each folder is a OLE component object
model (COM) object that "knows" how to enumerate its contents and carry out other actions. More
precisely, each folder implements the IShellFolder interface. Retrieving the IShellFolder object
for a shell folder is referred to as binding to the folder. An application that binds to a folder must
eventually free the IShellFolder interface object by calling its Release member function.

You can bind to the desktop folder (retrieve the folder's IShellFolder interface) by using the
SHGetDesktopFolder member function. You can enumerate subfolders by using the
IShellFolder::EnumObjects member function. You can bind to a subfolder of any given folder by
using the IShellFolder::BindToObject member function. Using these three functions, an
application can navigate throughout the shell's entire namespace.

Item Identifiers and Pointers to Item Identifier Lists
Objects in the shell's namespace are assigned item identifiers and item identifier lists. An item
identifier uniquely identifies an item within its parent folder. An item identifier list uniquely identifies
an item within the shell's namespace by tracing a path to the item from the desktop. A pointer to
an item identifier list, which is sometimes called a PIDL (pronounced piddle), is used with many
functions.

Item identifiers and PIDLs are much like the filenames and paths used in a file system. However,
they share this important difference: item identifiers and PIDLs are binary data structures that
never appear to the user. Item names that can be shown to the user (called display names) are
described in Display Names and Filenames.

An item identifier is defined by the variable-length SHITEMID structure. The first two bytes of this
structure specify its size, and the format of the remaining bytes depends on the parent folder, or
more precisely on the software that implements the parent folder's IShellFolder interface. Except
for the first two bytes, item identifiers are not strictly defined, and applications should make no
assumptions about their format. To determine whether two item identifiers are equal, an
application can use the IShellFolder::CompareIDs member function.

The ITEMIDLIST structure defines an element in an item identifier list (the only member of this
structure is an SHITEMID structure). An item identifier list consists of one or more consecutive
ITEMIDLIST structures packed on byte boundaries, followed by a 16-bit zero value. An application
can walk a list of item identifiers by examining the size specified in each SHITEMID structure and
stopping when it finds a size of zero.

Item identifier lists are almost always allocated using the shell's allocator (an IMalloc interface that
you can retrieve by using the SHGetMalloc function). For example, some shell functions create
an item identifier list and return a PIDL to it. In such cases, it is usually the application's
responsibility to free the PIDL using the shell's allocator. Note that the SHGetMalloc function
retrieves the task allocator for OLE applications.

Folder Locations
Certain folders have special meanings for the shell. An application can use shell functions to
retrieve the locations of these special folders and to enable the user to browse for specific folders.

Some special folders are virtual folders ¾ so called because they are not actual directories on any
storage device, local or remote. Virtual folders like the desktop folder, the My Computer folder,
and the Network Neighborhood folder make a unified namespace possible by serving as
containers for any number of storage devices and network resources. Other virtual folders contain
file objects, such as printers, that are not part of the file system.

File system directories that the shell uses for specific purposes are also considered special
folders. Examples include the Programs folder (which contains the user's program groups) and
the desktop directory (which is used to physically store files that have been copied to the desktop
folder). The locations of special file system folders are stored in the registry under the
HKEY_CURRENT_USER / Software / Microsoft / Windows / CurrentVersion / Explorer / Shell
Folders key.

You can use the SHGetSpecialFolderLocation function to retrieve the location of a special
folder, which can be virtual or part of the file system. The function returns a PIDL, which the
application must eventually free using the shell's allocator. If the folder is part of the file system,
you can convert the PIDL to a file system path by using the SHGetPathFromIDList function. For
a list of special folders, see the description of the SHGetSpecialFolderLocation function.

To display a dialog box that enables the user to browse for a folder, you can use the
SHBrowseForFolder function. An application might use this function to prompt the user for a
directory or remote computer. This function can also be used to browse for network printers, even
though printers are not considered folders. An application can specify the root folder to browse
from. For example, to prompt the user for a program group, you might call SHBrowseForFolder
specifying the PIDL for the Programs folder as the root.

Item Enumeration
An application that uses the IShellFolder interface for a folder can determine the folder's contents
by using the EnumObjects member function. This member function creates an item enumeration
object, which is a set of item identifiers that can be retrieved by using the IEnumIDList interface.

One or more item identifiers can be retrieved from the enumeration object by using the
IEnumIDList::Next member function. Calling this function repeatedly allows an application to
retrieve all of the item identifiers one or more at a time. Using other member functions, you can
skip items in the sequence, return to the beginning of the sequence, or "clone" the enumeration
object to save its state.

When you are finished using the enumeration object, you must free it by calling the IEnumIDList:
:Release member function.

Display Names and Filenames
Because item identifiers are binary data structures, each item in a shell folder also has a display
name, which is a string that can be shown to the user. You can use member functions in the
IShellFolder interface to retrieve an item's display name, to find an item with the specified display
name, or to change an item's display name.

The IShellFolder::GetDisplayNameOf member function can be used to retrieve a display name.
The actual string returned depends on the type of display name specified. Values identifying the
different types of display names are defined by the SHGNO enumerated type and have the
SHGDN prefix. The type of display name that an application requests might depend on whether
an item is shown by itself or within its parent folder. (A shared directory might be labeled Public on
'bill' in the former case and simply Public in the latter case.)

A special type of display name is one that can be converted back to an item identifier by using the
IShellFolder::ParseDisplayName member function. You might use this type of display name as
a parameter to the ShellExecute function or as a command-line argument for an application. For
items within the file system, the display name for parsing is the same as the file system path. You
can also convert a PIDL to a file system path by using the SHGetPathFromIDList function.

The IShellFolder::SetNameOf member function can be used to change the display name of a file
object or subfolder. Changing an item's display name also changes its item identifier, so the
function returns a PIDL containing the new item identifier. For file objects or folders within the file
system, changing the display name renames the file or directory.

Object Attributes and Interfaces
Every file object and folder has attributes that determine, among other things, what actions can be
carried out on it. An application can determine the attributes of any file object or folder and can
retrieve interfaces for items in a shell folder.

To determine the attributes of a file object or folder, an application can use the IShellFolder::
GetAttributesOf member function. Attributes include capabilities (such as whether a file object
can be deleted or can be a drop target), display attributes (such as whether a folder is shared),
contents flags (such as whether a folder has subfolders), as well as other attributes (such as
whether an object is a folder, whether it is part of the file system, and so on). For a list of
attributes, see the description of the IShellFolder::GetAttributesOf member function.

An application can retrieve interfaces that can be used to carry out actions on a file object or
folder by using the IShellFolder::GetUIObjectOf member function. For example, the application
can display the property sheets for a file object by retrieving the object's IContextMenu interface
and activating the Properties command.

Using the Shell's Namespace
This section contains examples that demonstrate the functions and interfaces associated with the
shell's namespace.

Using PIDLs and Display Names
This section presents an example illustrating how to retrieve the location of a special folder, walk
an item identifier list, and use the IShellFolder interface to retrieve display names. The example
is a console application that prints the display names of the folders a user would have to open to
get to the Programs folder. To display them, the application would carry out these steps:

1. Retrieve the PIDL (obtain a pointer to an item identifier list) for the Programs folder by
using the SHGetSpecialFolderLocation function.

2. Bind to the desktop folder (retrieve the folder's IShellFolder interface) by using the
SHGetDesktopFolder function.

3. Walk the item identifier list and process elements as follows: print the subfolder's display
name, bind to the subfolder, and release the parent folder's IShellFolder interface.

Before carrying out any of the preceding steps, the application uses the SHGetMalloc function to
retrieve a pointer to the shell's IMalloc interface, which it saves in the following global variable.// Global pointer to the shell's IMalloc interface.
LPMALLOC g_pMalloc;The following example shows the application's main function. This function carries out all of the

steps described previously, although it calls the application-defined GetNextItemID and
CopyItemID functions to walk the item identifier list and the application-defined PrintStrRet
function to print the display names. Code for these application-defined functions is shown
following the code for the main function.// main - the application's entrypoint function
int __cdecl main()
{

LPITEMIDLIST pidlPrograms;
LPSHELLFOLDER pFolder;
// Get the shell's allocator.
if (!SUCCEEDED(SHGetMalloc(&g_pMalloc)))
return 1;
// Get the PIDL for the Programs folder.
if (SUCCEEDED(SHGetSpecialFolderLocation(NULL,

CSIDL_PROGRAMS, &pidlPrograms))) {
// Start with the desktop folder.
if (SUCCEEDED(SHGetDesktopFolder(&pFolder))) {
LPITEMIDLIST pidl;
// Process each item identifier in the list.
for (pidl = pidlPrograms; pidl != NULL;

pidl = GetNextItemID(pidl)) {
STRRET sName;
LPSHELLFOLDER pSubFolder;
LPITEMIDLIST pidlCopy;
// Copy the item identifier to a list by itself.
if ((pidlCopy = CopyItemID(pidl)) == NULL)
break;
// Display the name of the subfolder.
if (SUCCEEDED(pFolder->lpVtbl->GetDisplayNameOf(

pFolder, pidlCopy, SHGDN_INFOLDER,
&sName)))

PrintStrRet(pidlCopy, &sName);
// Bind to the subfolder.
if (!SUCCEEDED(pFolder->lpVtbl->BindToObject(

pFolder, pidlCopy, NULL,
&IID_IShellFolder, &pSubFolder))) {

g_pMalloc->lpVtbl->Free(g_pMalloc, pidlCopy);
break;
}
// Free the copy of the item identifier.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlCopy);
// Release the parent folder and point to the
// subfolder.
pFolder->lpVtbl->Release(pFolder);
pFolder = pSubFolder;
}
// Release the last folder that was bound to.
if (pFolder != NULL)
pFolder->lpVtbl->Release(pFolder);
}
// Free the PIDL for the Programs folder.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlPrograms);
}
// Release the shell's allocator.
g_pMalloc->lpVtbl->Release(g_pMalloc);
return 0;

}Following is the GetNextItemID function. Given a pointer to an element in an item identifier list, the
function returns a pointer to the next element (or NULL if there are no more elements). The main
function calls this function to walk the item identifier list for the Programs folder.// GetNextItemID - points to the next element in an item identifier
//list.
// Returns a PIDL if successful or NULL if at the end of the list.
// pdil - previous element
LPITEMIDLIST GetNextItemID(LPITEMIDLIST pidl)
{

// Get the size of the specified item identifier.
int cb = pidl->mkid.cb;
// If the size is zero, it is the end of the list.
if (cb == 0)
return NULL;
// Add cb to pidl (casting to increment by bytes).
pidl = (LPITEMIDLIST) (((LPBYTE) pidl) + cb);
// Return NULL if it is null-terminating or a pidl otherwise.
return (pidl->mkid.cb == 0) ? NULL : pidl;

}Following is the CopyItemID function. Given a pointer to an element in an item identifier list, the
function allocates a new list containing only the specified element followed by a terminating zero.
The main function uses this function to create single-element PIDLs, which it passes to
IShellFolder member functions.// CopyItemID - creates an item identifier list containing the first
//item identifier in the specified list.
// Returns a PIDL if successful or NULL if out of memory.
LPITEMIDLIST CopyItemID(LPITEMIDLIST pidl)
{

// Get the size of the specified item identifier.
int cb = pidl->mkid.cb;
// Allocate a new item identifier list.
LPITEMIDLIST pidlNew = (LPITEMIDLIST)
g_pMalloc->lpVtbl->Alloc(g_pMalloc, cb + sizeof(USHORT));
if (pidlNew == NULL)
return NULL;
// Copy the specified item identifier.
CopyMemory(pidlNew, pidl, cb);
// Append a terminating zero.
*((USHORT *) (((LPBYTE) pidlNew) + cb)) = 0;
return pidlNew;

}The IShellFolder::GetDisplayNameOf member function returns a display name in a STRRET
structure. The display name may be returned in one of three ways, which is specified by the
uType member of the STRRET structure. The main function calls the following PrintStrRet
function to print the display name.// PrintStrRet - prints the contents of a STRRET structure.
// pidl - PIDL containing the display name if STRRET_OFFSET
// lpStr - address of the STRRET structure
void PrintStrRet(LPITEMIDLIST pidl, LPSTRRET lpStr)
{

LPSTR lpsz;
int cch;
switch (lpStr->uType) {
case STRRET_WSTR:
cch = WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,
lpStr->pOleStr, -1, NULL, 0, NULL, NULL);
lpsz = (LPSTR) g_pMalloc->lpVtbl->Alloc(g_pMalloc, cch);
if (lpsz != NULL) {
WideCharToMultiByte(CP_OEMCP, WC_DEFAULTCHAR,
lpStr->pOleStr, -1, lpsz, cch, NULL, NULL);
printf("%s\n", lpsz);
g_pMalloc->lpVtbl->Free(g_pMalloc, lpsz);
}
break;
case STRRET_OFFSET:
printf("%s\n", ((char *) pidl) + lpStr->uOffset);
break;
case STRRET_CSTR:
printf("%s\n", lpStr->cStr);
break;
}

}

Browsing for Folders
The following example uses the SHBrowseForFolder function to prompt the user for a program
group. The Programs directory is specified as the root.// Main_OnBrowse - browses for a program folder.
// hwnd - handle of the application's main window
//
// Uses the global variable g_pMalloc, which is assumed to point
//to the shell's IMalloc interface.
void Main_OnBrowse(HWND hwnd)
{

BROWSEINFO bi;
LPSTR lpBuffer;
LPITEMIDLIST pidlPrograms; // PIDL for Programs folder
LPITEMIDLIST pidlBrowse; // PIDL selected by user
// Allocate a buffer to receive browse information.
if ((lpBuffer = (LPSTR) g_pMalloc->lpVtbl->Alloc(

g_pMalloc, MAX_PATH)) == NULL)
return;
// Get the PIDL for the Programs folder.
if (!SUCCEEDED(SHGetSpecialFolderLocation(

hwnd, CSIDL_PROGRAMS, &pidlPrograms))) {
g_pMalloc->lpVtbl->Free(g_pMalloc, lpBuffer);
return;
}
// Fill in the BROWSEINFO structure.
bi.hwndOwner = hwnd;
bi.pidlRoot = pidlPrograms;
bi.pszDisplayName = lpBuffer;
bi.lpszTitle = "Choose a Program Group";
bi.ulFlags = 0;
bi.lpfn = NULL;
bi.lParam = 0;
// Browse for a folder and return its PIDL.
pidlBrowse = SHBrowseForFolder(&bi);
if (pidlBrowse != NULL) {
// Show the display name, title, and file system path.
MessageBox(hwnd, lpBuffer, "Display name", MB_OK);
if (SHGetPathFromIDList(pidlBrowse, lpBuffer))
SetWindowText(hwnd, lpBuffer);
// Free the PIDL returned by SHBrowseForFolder.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlBrowse);
}
// Clean up.
g_pMalloc->lpVtbl->Free(g_pMalloc, pidlPrograms);
g_pMalloc->lpVtbl->Free(g_pMalloc, lpBuffer);

}

Extending the Shell's Namespace
A namespace extension provides a way for you to define a new object that a browser, such as the
Windows Explorer, can explore. The code you provide and the registry entries you make define
the icon images and text that the user sees while viewing your data, as well as the menus,
toolbars, and status information the user can use on your data objects.

One of the reasons it is relatively simple to extend the shell's namespace is that the Explorer can
be viewed as two independent parts: the browser code and the system namespace provider code.
Because they were written polymorphically and communicate by using COM-based interfaces,
they do not depend on each other's implementation. Thus, anyone can provide either browser
code that browses the system namespace, or a namespace extension that extends the system
namespace that can be browsed using the Explorer.

Your extension has to provide the Explorer with icons, names, and details you want to represent
the items in your namespace. It can provide the Explorer with a custom context menu for your
data, and drag-and-drop capabilities. A key thought to remember, however, is that the contents of
your namespace are known only to you so the Explorer can work only with what you provide.

Structuring a Namespace Extension
As is the case with shell extensions, a namespace extension is implemented as a COM in-
process server DLL. For even the simplest of extensions, experience with COM, OLE, and the
behavior of the Windows Explorer is required before you attempt to implement a namespace
extension. It also means that you must properly enter it in the system Registry or it will not work.

As a reminder, the construction of an in-process server DLL requires the implementation of a DLL
that exports the following functions:

· DllMain
· DllGetClassObject
· DllUnloadNow

The DLL also implements an object that exposes IClassFactory for the creation of the other
objects contained in the DLL. Those objects will expose IUnknown and the other interfaces
necessary to implement a namespace extension, including IPersistFolder, IShellFolder,
IEnumIDList, and IShellView. These interfaces allow the Explorer and your extension to display,
interact, and communicate.

It is important to remember that the Explorer calls into your extension by using the IShellFolder
and IShellView interfaces you have implemented in your extension. The IShellBrowser interface
(implemented by the Explorer), allows your extension to call back into the Explorer. It is very
similar to "Site"-type interfaces commonly found in OLE scenarios.

Beyond these required interfaces, your extension will need to implement other interfaces that will
be created by the IShellFolder object. These include IExtractIcon to provide icons,
IContextMenu to provide context menus for your items, drag-and-drop interfaces (IDropSource
and IDropTarget), and IDataObject for data transfer.

Examples of in-process server DLLs, especially any that contain namespace or shell extensions,
are obviously helpful in learning to build namespace extension DLLs.

Identifying Items in the Namespace
One of the operations that must be handled when extending the shell's namespace is the
enumeration of items. The IShellFolder::EnumObjects method returns an enumerator object,
IEnumIdList that will return a set of identifiers that identifies each item within a specific folder.
Called a shell item IDList, it is an array of bytes that contains enough data to identify items by the
parent folder. Only the first two bytes are defined (as the size of the ID) and the rest is opaque to
the caller.

A shell item IDList must contain sufficient information to identify an object with a folder, but it may
also contain additional information for efficient manipulation (such as retrieving display name or
sorting). You have the option to store additional information because the Explorer does not
compare two item IDs directly for either sorting or identification. Instead it uses IShellFolder::
CompareID to perform this task.

Nonrooted and Rooted Explorers
Your namespace extension can be implemented in either of two ways and there is no set criteria
for determining which to use. Rather, it depends only on your evaluation of which is more logical
and better suited to your particular application.

You can implement your extension so the user can browse into it using the standard Explorer. In
this case, your new namespace is presented as a sub-namespace to the system namespace
already there. Since the Desktop is the root folder of the system's namespace, it also serves this
purpose for your extension. Accordingly, your extension resides within the existing hierarchy of
objects on the desktop and appears to the user as just another item in the system namespace.

On the other hand, if you analyze your application and determine that a completely separate
namespace makes more sense, you can choose to implement your extension in just this way.
However, the user will not be able to browse into it without running a special instance of the
Explorer rooted in an item of your choosing. The rooted Explorer's top level is referred to as a
junction point. It can be a file or a folder but if the extension uses anything as a junction point, it is
by definition "rooted" because the Explorer does not support exploring directly into files.

As noted earlier, whether you choose to implement your extension as rooted or nonrooted is
largely situational. There is no hard-and-fast rule. If your extension logically blends into the
existing hierarchy of objects, a nonrooted Explorer might be best. If not, it will probably be better
to implement a rooted Explorer with a specific file as your entry point to the new namespace,

Creating a Junction Point
Creating a junction point can be done in several different ways, depending on the item you choose
for the junction point, such as a file or directory. For example, to make a junction point in either the
Desktop or in the My Computer folder, add the following key to the registry:HKEY_LOCAL_MACHINE

SOFTWARE
Microsoft
CurrentVersion

Explorer[MyComputer or Desktop]
{CLSID}

You can also use a directory as your junction point. If your operating system supports long
filenames, you can use the CLSID of your namespace extension as the file extension of a folder
(MyFolder.{20D....}. Otherwise, you can create a directory, change its file attributes to read-only
and place a file called DESKTOP.INI into it. This simple text file is made up of the following:

[.ShellClassInfo]

CLSID={CLSID}

Opening a Rooted Explorer
To open a rooted Explorer for the namespace you have created, you must provide a way to start
the new instance of EXPLORER.EXE, using the /root switch on the command line. There are
several ways to accomplish this. For example, you can either call ShellExecute directly, or you
can create a shortcut file that contains one of the following as a command line:

· If the junction point is an item under the desktop:explorer.exe /e,/root,::{CLSID of item}· If the junction point is an item under My Computer:explorer.exe /e,/root,,::{20D04FE0 - 3AEA - 1069 - A2D8 -
08002B30309D}\::{CLSID of item}}
· If the junction point is a file system folder:

explorer.exe /e,/root, [path to a junction point]
When the Explorer is opened using the /root::{CLSID} option, it sets the junction point object as
the root of hierarchy and calls its IShellFolder.

When the user opens a junction point object or one of its subfolders, the Explorer lets it
create a view object by calling IShellFolder::CreateViewObject and requesting an IShellView
interface. The Explorer then calls IShellView::CreateViewWindow to allow it to create the view
window of its folder. One of the parameters passed is a pointer to the IShellBrowser interface
which allows the extension to communicate with the Explorer. The view object is able to add menu
items to the menu bar, add toolbar buttons, display status information on the status bar, and/or
process shortcut keys.

UI Negotiation (Menu, Toolbar, and Status Bar)
The mechanism to determine which items will appear in the view window while the contents are
visible is similar to OLE in-place activation but notable differences do exist. Three of them are
discussed here.

First, the view window always exists even though it does not have the input focus. Therefore, it
should maintain three states:

· Deactivated
· Activated with the focus
· Activated without the focus

The view window may present different sets of menu items depending on the focus state. The
Explorer notifies the state changes by calling IShellView::UIActivate. The view object should call
IShellBrowser::OnViewWindowActivate when the view window is activated by the user.

Second, the Explorer does not support layout negotiation. Instead, it allows the view window to
add toolbar buttons or set status bar texts. The view window may create modeless popups. The
view object may call IShellBrowser::GetControlWindow or IShellBrowser::SendControlMsg to
control them. The Explorer forwards appropriate notification messages from those controls using
IShellView::ForwardControlMsg.

Third, the Explorer allows the view window to add menu items to the Explorer's pull-down menus
(in addition to inserting top-level pull-down menus). In other words, the view object is allowed to
insert menu items to submenus returned from IShellBrowser::InsertMenus. To let the Explorer
dispatch menu messages correctly, a certain range of menu item IDs (between SHVIEW_FIRST
and SHVIEW_LAST) must be used.

Persistent View State
The Explorer defines a set of standard view states:

· View mode, such as large/small icon view (or detail view)
· View attributes, such as snap to grid.

The Explorer provides a persistent medium to store these states and though using them is not
required, it is recommended. The setting is passed to the view object by using IShellView::
CreateViewWindow and retrieved from it by using IShellView::GetCurrentInfo.

The Explorer also provides a persistent medium (a stream) to let the view object store view-
specific information (such as scroll positions or icon layout). The view object can access this
stream by calling IShellBrowser::GetViewStateStream.

When the user is browsing from one folder to another, the Explorer passes the pointer to the
previously viewed IShellView instance as a parameter to IShellView::CreateViewWindow
(before calling its DestroyViewWindow). This allows the next view object to retrieve appropriate
view state from the previous view object (such as column widths of its details view), typically by
calling IUnknown::QueryInterface on a private interface.

Registering Your Namespace Extension
Registering your extension is not particularly difficult but it must be done precisely or users will
never find your namespace extension. Consider the following registry entries, some of which are
required for any namespace extension.

Namespace extensions, like all COM objects, must be registered in the CLSID section. In
addition, they also have to be "apartment aware", having the named value ThreadingModel set to
Apartment, as shown below.

HKEY_CLASSES_ROOT\CLSID\{CLSID}
HKEY_CLASSES_ROOT_CLSID\{CLSID}\InProcServer32\(default)=path\
filename.dll
HKEY_CLASSES_ROOT_CLSID\{CLSID} \InProcServer32\"ThreadingModel" =
"Apartment"

If your namespace extension is going to run under a rooted Explorer, you should add the following
entries so the Open and Explorer verbs appear on your namespace extension.

HKEY_CLASSES_ROOT_CLSID\{CLSID}\Shell\Open\Command\(default)
=c:\windows\explorer.exe/root,%1

HKEY_CLASSES_ROOT_CLSID\{CLSID}\Shell\Explore\Command\(default)
=c:\windows\explorer.exe/e,/root/%1

You can also include entries under the following key for the default icon.

HKEY_CLASSES_ROOT_CLSID\{CLSID}\DefaultIcon\(default)="path\filename.
dll",IconIndex

The following is an optional key but one that can be very important. If you include the "Attributes"
named value under ...{CLSID}\ShellFolder, it specifies the attributes of a junction point by using
the SFGAO_* flags returned by the IShellFolder::GetAttributesOf method.

HKEY_CLASSES_ROOT_CLSID\{CLSID}\ShellFolder\Attributes = 0000 00 00
For example, if the SFGAO_FOLDER flag is set and its junction point exists in the system
namespace, the user sees your extension's icon in the Explorer's left pane and is able to browse
into it using the standard (nonrooted) Explorer. If this flag is not set, you must provide a rooted
Explorer for browsing

Another example is the SFGAO_HASSUBFOLDER flag. If it is set, the Explorer can make the
extension's icon expandable to the next level by displaying the + icon to its left.

Other registry entries you should know about include those required for putting items into
MyComputer or on the Desktop. The following entries list all the items in those two locations:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer
\MyComputer\NameSpace
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer
\Desktop\NameSpaceFinally, the following entry is currently required only for Windows NT but it should always be

included for future compatibility. This is the list of extensions that the shell will load. Extensions
not on this list will not be loaded by the shell on NT.HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\
ShellExtensions\Approved\{CLSID}="Extension Name"

Shell's Namespace Reference
The following functions, interfaces, structures, and enumeration types are associated with the
shell's namespace.

Shell's Namespace Functions
The following functions are used with the shell's namespace.
BrowseCallbackProc
SHAddToRecentDocs
SHBrowseForFolder
SHChangeNotifySHFileOperation
SHFreeNameMappings
SHGetDataFromIDListSHGetDesktopFolder
SHGetFileInfo
SHGetInstanceExplorer
SHGetMalloc
SHGetPathFromIDList
SHGetSpecialFolderLocation

SHLoadInProc

Shell's Namespace Interfaces
The following interfaces are used with the shell's namespace.
ICommDlgBrowser
IEnumIDList
IPersistFolder
IShellBrowser
IShellExecuteHook
IShellFolder
IShellIcon

IShellView

Shell's Namespace Structures
The following structures are used with the shell's namespace.
BROWSEINFO
CIDA
FOLDERSETTINGS
SHFILEINFO
SHFILEOPSTRUCT
SHNAMEMAPPING

STRRET

Shell's Namespace Enumeration Types
The following enumeration types are used with the shell's namespace.
SHCONTF

SHGNO

System PoliciesSystem administrators can use Microsoft® Windows® 95 system policies to control user and
computer configurations from a single location on a network. System Policies propagate registry
settings to a large number of computers without requiring the administrator to have detailed
knowledge of the registry.

About System Policies
There are many settings in the registry, and multiple registry settings must often be manipulated
to achieve a particular result. The System Policies feature provides a layer of abstraction that
makes it easier to control registry settings.

Instead of changing individual registry settings, a system administrator can specify policies. Each
policy has some text that describes its effect. Some examples of policies follow:

· Disable file sharing.
· Display a custom logon banner.
· Remove the Run command from the Start menu.
· Use user-level security.

Registry Settings
Each policy is associated with one or more registry settings. When the administrator chooses to
enforce a policy, the System Policies tool identifies registry changes that must be made and then
makes the changes to the registries of the users and computers for which the policy applies. The
administrator can specify policies for individual users, user groups, and individual computers.
Default values can also be specified.

Policies have been implemented for most of the registry settings that an administrator might want
to control and propagate. Although System Policies control only a subset of the registry, they are
extensible. Application developers are encouraged to supply template files and implement policies
for registry settings used by their products so that customers can plug the template files into a
policy editor and control policies for the application.

Policy Editors and Downloaders
There are two administrative components involved in specifying policies: a policy editor and a
policy downloader. A policy editor is an application that lets administrators specify registry settings
for particular computers, users, and user groups, and a policy downloader is a small program
installed on every client computer that merges the administrator's settings into the local registry.

The policy editor uses a template file, which is a text file describing registry settings and specifying
how the settings should appear in the policy editor's user interface. The policy editor creates a
policy file, which is a single file containing policy settings for a number of computers, users, and
user groups. The policy file is a registry hive that is created and manipulated using Microsoft®
Win32® functions. Windows 95 includes a policy editor, the System Policy Editor. Developers may
create their own policy editors, but the editors must be able to read template files and be able to
read and write policy files.

Windows 95 provides a policy downloader, which is built into Multiple Provider Router (MPR).
Developers may also create their own policy downloaders. Policy downloaders may be installed
so that MPR will call the installed component to do the downloading rather than doing so itself.
Because the policy file format allows for extensions, developers may provide additional
functionality.

Architecture
A computer's configuration is defined in terms of policies. The policies are ultimately stored in the
local computer's registry. Every component that provides a policy is responsible for reading the
registry at appropriate times and acting accordingly. For example, the policy that removes the Run
command from the Start menu requires the shell code that displays the Start menu to check the
appropriate registry setting to determine whether or not it is supposed to display the Run
command. The policies are generic data items; the administrative tools and components have no
information about them besides their names, their associated data, and where they reside in the
registry. The only responsibilities of the administrative components are to allow the administrator
to make policy settings and propagate those settings to the user's registry.

Policy Primitives
The following definitions are important for a complete understanding of policies:

· A policy is a permission or attribute for a particular item, action, or object. It is either
enabled or disabled.

· A part is a subcomponent of a policy. A policy may have zero or more parts. Policy parts
may have various data types, including Boolean values, numeric values, and string values.
The values of the parts apply only if the policy is enabled.

· A category is a collection of similar policies.
Some policies do not need any parts. For instance, "Lock Desktop Links" could be a policy. For
such a policy, it would be sufficient to say that it was either enabled or disabled. If it were enabled,
the user could not modify his or her desktop links in any way. "Desktop Links" could be another
policy, and it could have the Boolean parts "Create Links," "Delete Links," and "Modify Links." As
another example, "Password Expiration" could be a policy, and "Number of days" (a numeric
value) could be its part.

Policies and parts are analogous to a group of controls in a dialog box that are all enabled by a
single check box. The check box, which corresponds to whether or not the policy is enabled,
"turns on" the controls in the dialog box (the policy parts) and allows data to be entered into the
controls. A policy with no parts (that is, no associated controls) is analogous to a single check box.

The following types of policies can be specified:

· A user-specific policy can be specified for each user or group. A default set of policies can
be specified for users or groups who do not have sets of policies defined for them explicitly.
Most policies are user-specific. User-specific policies are always merged into the
HKEY_CURRENT_USER key of the registry.

· A machine-specific policy should not change according to user. A machine-specific policy
applies to all users. It does not follow users as they move between different computers.
Machine-specific policies are always merged into the HKEY_LOCAL_MACHINE key of the
registry.

Policy Information
Any application or component can define a policy. The policy will appear in the administrator user
interface, and information that the administrator sets about the policy will migrate to the local
computer's registry. The application or component that defines a policy must check the registry
appropriately to enforce its own policy.

Policy information is typically added to a local registry in the following sequence:

1. Categories, policies, and parts are described in a template (.ADM) file. The .ADM file
format is described in "Template File Format" later in this topic. An ADMIN.ADM file with all
the policies that the system supports is shipped with Windows 95. Developers, however, may
also provide their own template files.

2. The administrator runs the policy editor, which reads one or more policies and lists the
available categories and policies. The administrator sets up the desired policies, and the
policy editor uses registry functions to save the work to a policy (.POL) file. The format of
policy files is described in "Policy File Format" later in this topic.

3. After the user logs on (and user profiles are reconciled if they are enabled), the policy
downloader is activated. It determines where to find the file on the network, opens the policy
file, and merges the appropriate computer, user, and user group policies into the local
registry.

Default User and Computer Names
There is a standard user name called DEFAULT USER and a standard computer name called
DEFAULT COMPUTER. When the policy downloader updates machine- and user-specific
policies, it first tries to find an entry in the policy file for the local computer name or user name. If
the downloader does not find an entry, it looks for the DEFAULT USER or DEFAULT COMPUTER
entry and uses those entries for the update. If there are no entries for a particular user or
computer and default entries do not exist, no update takes place.

The DEFAULT USER and DEFAULT COMPUTER entries are powerful because administrators
can set policies for a large number of users and computers and then manage the exceptions by
creating specific user and computer entries in a .POL file.

Policy Downloading
Policy downloading can be set in one of the following three states:

· Off
· Automatic
· Manual

If policy downloading is off, no downloading takes place.

If policy downloading is set to automatic, MPR asks the primary network provider to provide a
place to look on the network for the policy file. Microsoft® Windows NT® and Novell® NetWare®
providers both support this capability. (For a Windows NT network, MPR looks in the primary
domain controller's NETLOGON directory for a file named CONFIG.POL. For a NetWare version
3..x network, MPR looks on the preferred server's SYS\PUBLIC directory for a file named
CONFIG.POL.) Any software vendor who provides a 32-bit network provider can support this
capability by implementing the NPGetPolicyPath function. If policy downloading is set to
automatic and the primary network provider does not support NPGetPolicyPath, no downloading
takes place.

If policy downloading is set to manual, a specific path to the policy file must also be supplied. It
can be either a Universal Naming Convention (UNC) path or a path beginning with a drive letter.
(In the latter case, the drive letter must be appropriately mapped before downloading takes place.
)

The default setting for policy downloading is automatic. No error messages are displayed if a
policy file cannot be found in the location that the network provider suggests. This means that a
site can install a number of Windows 95 clients and then deploy the policies at a later date. To
deploy them, the administrator just needs to place the policy file(s) in the appropriate location(s)
on the network, and the clients will immediately begin using them the next time they log on.

Using the System Policy Editor
This section describes the user interface of the System Policy Editor that ships with Windows 95.
Other software vendors may, however, choose to use a different user interface.

Policy Editor User Interface
The System Policy Editor requires an .ADM file describing the available policies to use. By default,
it will use a file named ADMIN.ADM, but different template files may be specified using the
Templates menu.

The main window of the System Policy Editor displays the users and computers that have entries
in the policy file that is currently open. To create a new policy file, choose the New command on
the File menu. A new policy file contains entries for the default user and default computer. To add
entries for particular users or particular computers, use the Add User, Add Group, or Add
Computer button. Note that policies for all of the entries shown in the main window are saved to
one policy file. Typically, an administrator saves the policy file to the network location where the
policy downloader looks by default.

The following illustration shows the main window of the System Policy Editor.

ewc msdncd, EWGraphic, bsd23484 0 /a "SDKGUIDE_01.BMP"

Double-clicking an entry, such as Default Computer, brings up a properties dialog box containing
the policies for the entry. The Default Computer Properties dialog box shown in the following
illustration has an upper section listing the policies and a lower section showing settings for a
specific policy.

ewc msdncd, EWGraphic, bsd23484 1 /a "SDKGUIDE_02.BMP"

A check box in the properties dialog box has three states. If it is checked, the policy will be
enforced; that is, the corresponding settings will be added to the registry when the policy is
downloaded. If the check box is empty, the settings will be deleted from the registry when the
policy is downloaded. If the check box is gray, the registry settings will not be changed when the
policy is downloaded; that is, the user has the freedom to choose settings, assuming that the
settings can be changed from the user interface.

For example, there is a user policy for desktop wallpaper. By checking that policy, the
administrator specifies the particular wallpaper that the user will have. Even if the user uses the
Display Control Panel application to change the wallpaper, the wallpaper specified by the
administrator will appear the next time he or she logs on. If the administrator unchecks this policy,
the wallpaper setting is deleted so that when the user logs on, there is no wallpaper. If the
administrator makes the check box gray, nothing is enforced, and the user can choose the
wallpaper.

As a second example, there is a user policy "Remove Run from Start menu" (under the Shell/
Restrictions registry key). Checking this policy adds a registry setting that tells the shell not to
include the Run command on the Start menu. By unchecking this policy, this registry key is
deleted, and the shell displays the Run command. If the policy is left gray, the setting will not be
changed. If the policy was already in force, it will stay that way, and the Run command will
continue to be denied to the user. If the policy had not been applied already, the user would
continue to see the Run command. Note that unlike the wallpaper example, the user cannot
change this setting by using Control Panel or another user interface element.

The System Policy Editor can also operate directly on the local registry rather than on a policy file.
This capability is useful for troubleshooting problems that may be policy-related, because it shows
what policies are currently in place for a user on a particular computer. There is no policy file
involved in this mode. To switch to the local registry view, use the Open Registry command on the
File menu. Note that the check boxes will show only two states, checked and unchecked, because
the registry settings for the policy are either present (the policy is on) or not present (the policy is
off).

Template File Format
A template (.ADM) file describes a number of categories. Each category can contain zero or more
policies, and each policy can contain zero or more parts. The following sections describe
categories, policies, policy parts, and part types.

The ADMIN.ADM file that ships with Windows 95 identifies strings that are important for an
internal localization tool by using two exclamation points (!!). Each of these strings is explicitly
defined in the [strings] section of ADMIN.ADM. You do not need to use this mechanism when you
create a template file.

Categories
A category is specified as follows.
CATEGORY name TYPE category type

[KEYNAME key name]

[... policy definition
statements ...]

END CATEGORY

name
Category name as it should appear in the System Policy Editor list box. It may optionally be
enclosed by double quotation marks. (Names with spaces must be enclosed by double
quotation marks.)

category type
Type, which must be USER or MACHINE. It specifies whether the category is user-specific or
machine-specific.

key name
Optional registry key name to use for the category. If a key name is specified, it will be used
by all child categories, policies, and parts, unless they specifically provide a key name of their
own.

A policy definition statement may not appear more than once in a single category.

Policies
A policy is specified as follows.
POLICY name

[KEY key name]
[... part definition statements ...]

END POLICY

name
Policy name as it should appear in the System Policy Editor list box. It may optionally be
enclosed by double quotation marks. (Names with spaces must be enclosed by double
quotation marks.)

key name
Optional registry key name to use for the policy. If a key name is specified, it will be used by
all child parts of the policy, unless they specifically provide a key name of their own.

Policy Parts
A policy part is specified as follows.
PART name TYPE part type

type-dependent data
[KEYNAME key name]

VALUENAME
value name
END PART

name
Part name as it should appear in the System Policy Editor list box. It may optionally be
enclosed by double quotation marks. (Names with spaces must be enclosed by double
quotation marks.)

part type
Policy part type. Part types are discussed individually in the following section.

type-dependent data
Information about the part. Type-dependent data is discussed in the following section.

key name
Optional key name to use. If no key name is specified, the previous key name in hierarchy is
used.

value name
Value name to use to set the data for this part.

Part Types
The following policy part types are defined:

CHECKBOX Displays a check box. The value is set in the
registry with the REG_DWORD type. The value
will be nonzero if the check box is checked by
the user and zero if it is unchecked.

COMBOBOX Displays a combo box.
DROPDOWNLIST Displays a combo box with a drop-down list

style. The user may only choose from one of the
entries supplied. The main advantage of a
combo box with a drop-down list is that a number
of extra registry edits may be specified, based on
the user's selection.

EDITTEXT Displays an edit field that accepts alphanumeric
text. The text is set in the registry with the
REG_SZ type.

LISTBOX Displays a list box with "add" and "remove"
buttons. This is the only part type that can be
used to manage multiple values under one key.

NUMERIC Displays an edit field with an optional spinner
control (an up-down control) that accepts a
numeric value. The value is set in the registry
with the REG_DWORD type.

TEXT Displays a line of static (label) text. There is no
associated registry value with this part type.

Descriptions of these policy part types follow.CHECKBOX Part TypeThe CHECKBOX part type accepts the following options:

ACTIONLISTOFF Specifies an optional action list to be used if the
check box is turned off. For more information,
see "Action Lists" later in this topic.

ACTIONLISTON Specifies an optional action list to be used if the
check box is turned on. For more information,
see "Action Lists" later in this topic.

DEFCHECKED Causes the check box to be initially checked.
VALUEOFF Overrides the default "off" behavior of the check

box if specified.
VALUEON Overrides the default "on" behavior of the check

box if specified.

The default behavior of a check box is to write the value 1 to the registry if it is checked and 0 if it
is unchecked. VALUEON and VALUEOFF are used to override this behavior. For example, the
following option writes "Fred" to the registry when the check box is checked.VALUEON "Fred"The following option writes the value 12 to the registry when the check box is unchecked.VALUEOFF NUMERIC 12
COMBOBOX Part TypeThe COMBOBOX part type accepts all the options that EDITTEXT does as well as the following
option:

SUGGESTIONS
Begins a list of suggestions to be placed in the drop-
down list. Suggestions are separated with spaces
and can be enclosed by double quotation marks.
The list ends with END SUGGESTIONS. Following
is an example:

SUGGESTIONS
Alaska Alabama Mississippi "New York"
END SUGGESTIONS

DROPDOWNLIST Part TypeThe DROPDOWNLIST part type accepts the following options:

ITEMLIST Begins a list of the items in the drop-down list. The list
must end with END ITEMLIST.

REQUIRED Specifies that the policy editor will not allow a policy
containing this part to be enabled unless a value has
been entered for the part.

Each item in the ITEMLIST option must be specified as follows.
NAME name VALUE value
[ACTIONLIST actionlist]

...

name
Text to be displayed in the drop-down list for this item.

value
Value to be written as the part's value if this item is selected. Values are assumed to be
strings, unless they are preceded by NUMERIC. The following example shows both string and
numeric values.VALUE "Some value"
VALUE NUMERIC 1If VALUE is followed by DELETE (for example, VALUE DELETE), the registry valuename and

value pair will be deleted.
actionlist

Optional action list to be used if this value is selected. For more information about action lists,
see "Action Lists" later in this topic.EDITTEXT Part TypeThe EDITTEXT part type accepts the following options:

DEFAULT value Specifies the initial string to place in the edit
field. If this option is not specified, the field is
initially empty.

MAXLEN value Specifies the maximum length of a string. The
string in the edit field is limited to this length.

REQUIRED Specifies that the policy editor will not allow a
policy containing this part to be enabled, unless
a value has been entered for this part.

OEMCONVERT Sets the ES_OEMCONVERT style in the edit
field so that typed text is mapped from ANSI to
OEM and back.

LISTBOX Part TypeThe VALUENAME option cannot be used with the LISTBOX part type, because there is no single
value name associated with this type. By default, only one column appears in the list box, and for
each entry a value is created whose name and value are the same. For instance, a "fred" entry in
the list box would create a value named "fred" whose data was "fred".

The LISTBOX part type accepts the following options:

ADDITIVE By default, the content of list boxes will "override"
whatever values are set in the target registry.
(That is, a control value is inserted in the policy
file, which causes existing values to be deleted
before the values set in the policy file are merged.
) If this option is specified, existing values are not
deleted, and the values set in the list box will be
in addition to whatever values exist in the target
registry.

EXPLICITVALUE This option makes the user specify not only the
value data, but the value name as well. The list
box will show two columns for each item, one for
the name and one for the data. This option cannot
be used with the VALUEPREFIX option.

VALUEPREFIX
prefix

The prefix specified is used in determining value
names. If a prefix is specified, the prefix and an
incremented integer will be used instead of the
default value naming scheme described
previously. For example, a prefix of "SomeName"
will generate the value names "SomeName1",
"SomeName2", and so on. The prefix can be
empty (""), which will cause the value names to
be "1", "2", and so on.

NUMERIC Part TypeThe NUMERIC part type accepts the following options:

DEFAULT value Specifies the initial numeric value for the edit
field. If this option is not specified, the field is
initially empty.

MAX value Specifies the maximum value for the number.
The default value is 9999.

MIN value Specifies the minimum value for the number. The
default value is 0.

REQUIRED Specifies that the policy editor will not allow a
policy containing this part to be enabled unless a
value has been entered for this part.

SPIN value Specifies increments to use for the spinner
control. SPIN 0 removes the spinner control.
SPIN 1 is the default.

TXTCONVERT Writes values as REG_SZ strings ("1," "2," or
"128") rather than as binary values.

TEXT Part TypeThe TEXT part type accepts no type-specific data.

Action Lists
An action list is a set of arbitrary changes to the registry that are made in response to a control
being in a certain state. For instance, if a check box is turned on, an application could install some
virtual device drivers and record some other changes.

The syntax for an actionlist follows.
ACTIONLIST

[KEYNAME key name]
VALUENAME value name
VALUE value
[KEYNAME key name]
VALUENAME value name
VALUE value
....

END ACTIONLIST

The actionlist specifies a number of key name, value name, and value triplets. A key name is not
required for every action, but if it is not listed, the key name from the previous action will be used.
(This is useful for writing a number of values to one key.) Values are treated as strings unless they
are preceded by NUMERIC, as in the following examples.VALUE "Some value"
VALUE NUMERIC 1If VALUE is followed by DELETE (for example, VALUE DELETE), the registry valuename and

value pair will be deleted.

Comments
Comments can be added to a template (.ADM) file by preceding the line with two forward slashes
(//) or a semicolon (;).

Conditional Expressions
Future policy editors may include new capabilities. If these new capabilities require revisions to
the template file format, older versions of the System Policy Editor will not be able to read the new
template files. You can use conditional expressions to ensure that any future template files you
create will be compatible with older policy editors.

The System Policy Editor supports two conditional expressions. The first one allows you to include
different parts of the template file, based on the version number. This expression has the following
syntax.

#if VERSION operator version_number

.

.

.

[#else]

.

.

.

#endif

The operator can be one of the following symbols: >, >=, <, <=, ==, or !=. The version_number
can be any integer; for Windows 95, the version number is 1.

The other conditional expression is #ifdef. This expression has the following syntax.

[#ifdef | #ifndef] keyword

.

.

.

[#else]

.

.

.

#endif

Keywords are implicitly understood by the policy editor. For example, a fictitious company named
PolicyCorp might implement its own policy editor that could recognize the POLICYCORP keyword.
This company could use the #ifdef and #endif conditional expressions to make sure its template
files can be recognized by the Windows 95 System Policy Editor. (Because the Windows 95
System Policy Editor does not currently recognize any keywords, #ifdef always evaluates to
FALSE and #ifndef always evaluates to TRUE.)

Policy File Format
A policy (.POL) file is a registry hive, which is created by using the Win32 RegSaveKey function.

The following top-level keys are defined:

· Computers
· Groups
· GroupData
· Users
· Misc

A policy downloader uses the following steps to download policies:

1. Locates the appropriate computer key, if any, under Computers. Beneath that key is an
image of the registry settings to be merged. The policy downloader should walk through all the
subkeys and values and merge those settings into the HKEY_LOCAL_MACHINE key, paying
attention to the control codes that are defined in the following section.

2. Locates the appropriate groups key(s), if any, under Groups. Under the Groups keys is
an image of the registry settings to be merged. These settings must be merged into the
HKEY_CURRENT_USER key.

3. Locates the appropriate user key, if any, under Users. Under the Users key is an image
of the registry settings to be merged. These settings must be merged into the
HKEY_CURRENT_USER key.

Control Codes
Control codes are used to signify that special processing of a value or key name must take place.
All control codes are prefixes to a value or key name and take the form of the code name (that is,
**code.) directly followed by value name or key name.

The following control codes are defined for use with value names.

**del. Specifies that the value name following the control code
should be deleted.

**delvals. Deletes all values under this key in the local registry
before propagating values under this key from the policy
file. When processing a particular key, a downloader
must look for and process this value first. This control
code is inserted by a list box control so that existing
values are removed before the new values are added.

**soft. Specifies that it is a soft value. The downloader only
propagates the value name following the control code if a
value by that name does not exist in the local registry;
that is, the downloader does not overwrite existing
settings with soft values.

No control codes are currently defined for use with key names.

If a policy downloader encounters a control code that it does not understand, it must not
process the key or value. If the control code is part of a value name, the policy downloader
should skip that value in the hive file but continue to process other values under that key
and its subkeys. If the control code is part of a key name, the downloader should ignore
the key and not process any values under it or its subkeys. This behavior is important
because it allows developers to create new control codes without breaking existing
downloaders.

Developers may create new control codes in the same format as shown in the preceding
table (that is, **code.). Developers who do so should notify Microsoft so that Microsoft can
document the new codes.

Computers Key
Underneath the Computers key is a list of computers that have entries in the policy file. The steps
to use in locating a Computers key follow:

1. Determine whether there is a key that is the same as the computer name. If there is one,
merge the registry image beneath it into the HKEY_LOCAL_MACHINE key.

2. If the key is not there, determine whether there is a key called ".default". (This appears in
the System Policy Editor user interface as Default Computer.) If a default key exists, merge
the registry image beneath it.

3. If neither of the two steps work, do nothing.

Groups and GroupData Keys
Underneath the Groups key is a list of user groups who have entries in the policy file. Since a
user may belong to many groups and those groups may have conflicting settings, it is important to
specify an order in which groups are processed. This order is contained in the GroupData\
Priority key, which has values in the form "1"="group name", "2"="group name", and so on. "1" is
highest priority, and the priority diminishes as the number in the value name increases. The
downloader reads the group priority values and then processes groups from lowest priority to
highest; that is, the downloader begins with the highest numbered value and works to the value
"1".

For each group in the priority list, the downloader determines if the user is a member of the group.
If the user is in the group, the downloader should try to find a key with the group name under the
Groups key. If such a key exists, the downloader merges the registry image under that key into
the HKEY_CURRENT_USER key. It is not an error if a group is specified in the priority list but
does not have an entry under the Groups key; it simply means that nothing happens. This
process is repeated for each group in the priority list. (If a group has an entry under the Groups
key but does not have an entry in the priority list, it is never processed.)

Users Key
Underneath the Users key is a list of computers that have entries in the policy file. The steps to
use in locating a Users key follow:

1. Determine whether there is a key that is the same as the user name. If there is one,
merge the registry image beneath it into the HKEY_CURRENT_USER key.

2. If the key is not there, determine whether there is a key called ".default". This appears in
the System Policy Editor user interface as Default User. If a default key exists, merge the
registry image beneath it.

3. If neither of the two steps work, do nothing.

Misc Key
The Misc key can be used by developers to store vendor-specific data. The naming convention
for this key follows.

Misc\Vendor Name \Product Name\Version\ data

A software vendor may store any needed information in data. A key or value containing version
information is highly recommended. As is recommended for the registry, Version should be
"CurrentVersion" for the most current version of the product.

Installable Policy Downloaders
An installable policy downloader must be a Win32 dynamic-link library (DLL). It should export a
named function that has the following form.

VOID FAR PASCAL ProcessPolicies(HWND hwndOwner,
LPSTR lpszPolicyFilePath,

LPSTR lpszUserName,

LPSTR
lpszComputerName, DWORD dwFlags);

hwndOwner
Handle of the parent window.

lpszPolicyFilePath
Address of the full path and filename that MPR would have used to look for the policy file. The
downloader may use this parameter, or ignore it and use a different path.

lpszUserName
Address of the user name for the user who is logged on.

lpszComputerName
Address of the local computer name.

dwFlags
Flags. This parameter can be this value:

PP_DISPLAYERRORSDisplays error messages about errors
encountered during downloading (including
the file is not found, the network resource
is not found, and so on). Otherwise, the
function should fail silently if there is an
error.

In addition to defining and exporting this function, an application must record it in the registry. The
following entry should be added under the HKEY_LOCAL_MACHINE\Network\Logon key.

PolicyHandler = "dll name, function name"

In this example, dll name is the name of the DLL containing the function, and function name is the
exported function name.

TaskbarThe Microsoft® Windows® interface includes a special application desktop toolbar called the
taskbar. The taskbar can be used for such tasks as switching between open windows and starting
new applications.

The taskbar is also known as an appbar. For more information on appbars, see application
desktop toolbars.

About the Taskbar
The taskbar includes the Start menu, taskbar buttons, a shortcut menu, and a status area.

The Start menu contains commands that can be used to access programs, documents, and
settings. The Start menu items are Programs, Documents, Settings, Find, Help, Run, and
Shut Down.

A window button is placed on the taskbar whenever an application creates a unowned primary
window. To switch to a window, simply click its window button.

To open the shortcut menu, click the taskbar with the right mouse button. The shortcut menu
includes commands to cascade windows, tile windows, minimize all windows, and set taskbar
properties.

Applications can put icons in the status area to indicate the status of an operation or to notify the
user about an event. For example, an application might put a printer icon in the status area to
show that a print job is under way. The status area is at the right end of the taskbar (if the taskbar
has a horizontal orientation) or at the bottom (if the taskbar has a vertical orientation). The status
area will also contain the current time if the Show Clock check box is selected in the taskbar
properties.

Taskbar Display Options
The taskbar supports two display options: Auto hide and Always on top. To set these options,
open the taskbar shortcut menu, click Properties, and select or clear the Auto hide check box or
the Always on top check box. To retrieve the state of these display options, use the
ABM_GETSTATE message. If you would like to be notified when the state of these display
options changes, process the ABN_STATECHANGE notification message in your window
procedure.

The work area is the portion of the screen not obscured by the taskbar. To retrieve the size of the
work area, call the SystemParametersInfo function with SPI_GETWORKAREA. To retrieve the
rectangle coordinates that describe the location of the taskbar, use the ABM_GETTASKBARPOS
message.

Adding to the Start Menu
Applications can use the shell dynamic data exchange interface to add items to the Programs
submenu of the Start menu, just as they would use it to add items to a group in Program Manager
in earlier versions of Windows. However, this is not the recommended method to use with the
Windows NT® version 4.0 and Windows® 95 operating systems.

To add an item to the Programs submenu, create a shell link using the IShellLink interface. Add
the link file (.LNK) to the directory specified in the following registry key:
HKEY_CURRENT_USER\Software\Microsoft\Windows

CurrentVersion\Explorer\User shell
folders

On Windows 95, the default location is <windir>\start menu\programs. On Windows NT, the
default location is <windir>\profiles\<username>\start menu\programs.

Visibility of Taskbar Buttons
A taskbar button is placed on the taskbar whenever an application creates a unowned primary
window. To ensure that the window button is placed on the taskbar, create the window by calling
CreateWindowEx and include the WS_EX_APPWINDOW style. To prevent the window button
from being placed on the taskbar, create the window by calling CreateWindowEx and include the
WS_EX_TOOLWINDOW style. As an alternative, you can create a hidden window and make it
the owner of your primary window.

The window button typically contains the application icon and title. However, if the application
does not contain a window menu, the window button is created without the icon.

If you want your application to display a message to the user while its window is not active, use
the FlashWindow function to let the user know that a message is waiting. This function flashes
the window button. Once the user clicks the window button to activate the window, your
application can display the message.

Working with the Status Area
Applications use the Shell_NotifyIcon function to put icons in the status area of the taskbar to
serve as status indicators. You should allow the user to obtain additional information by moving
the mouse over the icon, clicking the icon, clicking the icon with the right mouse button, and
double-clicking the icon. The system notifies you of this mouse movement. The information the
user can receive can be summarized as follows:

· When the user moves the mouse over the icon, the system will display the ToolTip that
you provided when you added the icon.

· When the user clicks the icon, your application should display a window with additional
information.

· When the user clicks the icon with the right mouse button, your application should display
the shortcut menu.

· When the user double-clicks the icon, your application should execute the default shortcut
menu command.

Sending Taskbar Messages
Use the Shell_NotifyIcon function to send messages to add, modify, or delete icons from the
status area. The parameters for Shell_NotifyIcon include the identifier of the message to send
and the address of a NOTIFYICONDATA structure. The structure members contain information
that the system needs to process the specified message.

To add an icon to the taskbar's status area, send the NIM_ADD message. The
NOTIFYICONDATA structure that accompanies the message specifies the handle of the icon, the
identifier of the icon, and any ToolTip text for the icon. If the Show Clock check box in the taskbar
properties is selected, the system places the icon to the immediate left of the clock. Otherwise, the
icon appears on the right side or at the bottom of the taskbar. Any existing icons are shifted to the
left to make room for the new icon.

You can delete an icon from the status area by sending the NIM_DELETE message. You can
send the NIM_MODIFY message to modify the information that the system maintains for a taskbar
icon, including its icon handle, ToolTip text, and callback message identifier.

Receiving Callback Messages
Each taskbar icon can have an application-defined callback message associated with it. If an icon
has a callback message, the system will send the message to the application whenever a mouse
event occurs within the icon. In this way, the system can notify an application whenever the user
clicks or double-clicks the icon, or moves the mouse cursor into the icon's bounding rectangle.

An application defines an icon's callback message when it adds the icon to the taskbar. The
uCallbackMessage member of the NOTIFYICONDATA structure included with the NIM_ADD
message specifies the identifier of the callback message. When a mouse event occurs, the
system sends the callback message to the window identified by the hWnd member. The
message's lParam parameter is the identifier of the mouse message that the system generated as
a result of the mouse event. For example, when the mouse cursor moves into a taskbar icon, the
lParam parameter of the resulting callback message contains the WM_MOUSEMOVE identifier.
The wParam parameter contains the identifier of the taskbar icon in which the mouse event
occurred.

Using the Taskbar
This section includes examples that demonstrate how to add icons to the taskbar status area and
how to process callback messages for taskbar icons.

Adding and Deleting Taskbar Icons
You add an icon to the taskbar status area by filling a NOTIFYICONDATA structure and then
sending the structure through the NIM_ADD message. The structure members must specify the
handle of the window that is adding the icon, as well as the icon identifier and icon handle. You
can also specify ToolTip text for the icon. If you need to receive mouse messages for the icon,
specify the identifier of the callback message that the system should use to send the message to
the window procedure.

The function in the following example demonstrates how to add an icon to the taskbar.// MyTaskBarAddIcon - adds an icon to the taskbar status area.
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window to receive callback messages
// uID - identifier of the icon
// hicon - handle of the icon to add
// lpszTip - ToolTip text
BOOL MyTaskBarAddIcon(HWND hwnd, UINT uID, HICON hicon, LPSTR lpszTip)
{

BOOL res;
NOTIFYICONDATA tnid;
tnid.cbSize = sizeof(NOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.uID = uID;
tnid.uFlags = NIF_MESSAGE | NIF_ICON | NIF_TIP;
tnid.uCallbackMessage = MYWM_NOTIFYICON;
tnid.hIcon = hicon;
if (lpszTip)
lstrcpyn(tnid.szTip, lpszTip, sizeof(tnid.szTip));
else
tnid.szTip[0] = '\0';
res = Shell_NotifyIcon(NIM_ADD, &tnid);
if (hicon)
DestroyIcon(hicon);
return res;

}To delete an icon from the taskbar status area, fill a NOTIFYICONDATA structure and send it to
the system when you send a NIM_DELETE message. When deleting a taskbar icon, specify only
the cbSize, hWnd, and uID members, as the following example shows.// MyTaskBarDeleteIcon - deletes an icon from the taskbar
//status area.
// Returns TRUE if successful or FALSE otherwise.
// hwnd - handle of the window that added the icon
// uID - identifier of the icon to delete
BOOL MyTaskBarDeleteIcon(HWND hwnd, UINT uID)
{

BOOL res;
NOTIFYICONDATA tnid;
tnid.cbSize = sizeof(NOTIFYICONDATA);
tnid.hWnd = hwnd;
tnid.uID = uID;
res = Shell_NotifyIcon(NIM_DELETE, &tnid);
return res;

}

Receiving Mouse Events
If you specify a callback message for a taskbar icon, the system sends the message to your
application whenever a mouse event occurs in the icon's bounding rectangle. The wParam
parameter specifies the identifier of the taskbar icon, and the lParam parameter specifies the
mouse message that the system generated as a result of the mouse event.

The function in the following example is from an application that adds both battery and printer
icons to the taskbar. The application calls the function when it receives a callback message. The
function determines whether the user has clicked one of the icons and, if a click has occurred,
calls an application-defined function to display status information.// On_MYWM_NOTIFYICON - processes callback messages for taskbar icons
// wParam - first message parameter of the callback message
// lParam - second message parameter of the callback message
void On_MYWM_NOTIFYICON(WPARAM wParam, LPARAM lParam)
{

UINT uID;
UINT uMouseMsg;
uID = (UINT) wParam;
uMouseMsg = (UINT) lParam;
if (uMouseMsg == WM_LBUTTONDOWN) {
switch (uID) {
case IDI_MYBATTERYICON:
// The user clicked the battery icon. Display the
// battery status.
ShowBatteryStatus();
break;
case IDI_MYPRINTERICON:
// The user clicked the printer icon. Display the
// status of the print job.
ShowJobStatus();
break;
default:
break;
}

}
return;
}

Taskbar Reference
The following function, structure, and messages are associated with the taskbar.

Taskbar Functions
The following function is used with the taskbar.

Shell_NotifyIcon

Taskbar Structures
The following structure is used with the taskbar.

NOTIFYICONDATA

Taskbar Messages
An application sends the following messages to add, modify, or delete icons from the taskbar.
NIM_ADD
NIM_DELETE

NIM_MODIFY

Control Panel ApplicationsControl Panel applications are special-purpose dynamic-link libraries (DLLs) that let users
configure the environment of Microsoft® Windows®.

This overview describes Control Panel applications and explains the functions and messages that
these applications use and process to complete their work.

About Control Panel Applications
Even though Windows provides a number of standard Control Panel applications, you can create
additional applications to let users examine and modify the settings and operational modes of
specific hardware and software.

Application Responsibilities and Operation
The primary responsibility of any Control Panel application is to display a dialog box and to carry
out any tasks specified by the user. Despite this responsibility, Control Panel applications do not
provide menus or other direct means for users to access their dialog boxes. Instead, these
applications operate under the control of another application and display their dialog boxes only
when requested by the controlling application.

Control Panel applications are usually controlled by a Windows system utility specifically designed
to give users access to these applications. However, any application can load and manage
Control Panel applications, as long as the controlling application sends messages and processes
return values in the way that the Control Panel applications expect.

Most Control Panel applications display and manage a single dialog box, giving the user control of
the settings and operational modes of a single system component. However, any given Control
Panel application can provide any number of dialog boxes to control any number of system
components. (These individual dialog boxes are sometimes called applets.) To distinguish
between dialog boxes, a Control Panel application typically supplies the controlling application
with a unique icon for each dialog box. The controlling application displays these icons and the
user can choose a dialog box by choosing the corresponding icon.

Application Entry-Point Function
Every Control Panel application must export the standard entry-point function, CPlApplet. This
function receives requests, in the form of Control Panel (CPL) messages, and carries out the
requested work, such as initializing the application, displaying and managing the dialog box(es),
and closing the application.

When the controlling application first loads the Control Panel application, it retrieves the address
of the CPlApplet function and subsequently uses the address to call the function and pass it
messages. The controlling application may send the following messages:

Message Description

CPL_DBLCLK Sent to notify CPlApplet that the user has
chosen the icon associated with a given dialog
box. CPlApplet should display the
corresponding dialog box and carry out any
user-specified tasks.

CPL_EXIT Sent after the last CPL_STOP message and
immediately before the controlling application
uses the FreeLibrary function to free the DLL
containing the Control Panel application.
CPlApplet should free any remaining memory
and prepare to close.

CPL_GETCOUNT Sent after the CPL_INIT message to prompt
CPlApplet to return a number indicating how
many dialog boxes it supports.

CPL_INIT Sent immediately after the DLL containing the
Control Panel application is loaded, to prompt
CPlApplet to perform initialization procedures,
including memory allocation.

CPL_INQUIRE Sent after the CPL_GETCOUNT message, to
prompt CPlApplet to provide information about
a specified dialog box. The lParam2 parameter
of CPlApplet points to a CPLINFO structure.

CPL_NEWINQUIRE Sent after the CPL_GETCOUNT message, to
prompt CPlApplet to provide information about
a specified dialog box. The lParam2 parameter
is a pointer to a NEWCPLINFO structure. For
better performance on Windows 95 and
Windows NT version 4.0, your application should
process CPL_INQUIRE and not
CPL_NEWINQUIRE.

CPL_SELECT This message is obsolete. Current versions of
Windows do not send this message.

CPL_STOP Sent once for each dialog box before the
controlling application closes. CPlApplet should
free any memory associated with the given
dialog box.

Message Processing
The CPlApplet callback function processes all messages sent to a Control Panel application by a
controlling application. The function expects to be sent messages in a specific order. The
controlling application expects the messages to be processed in a specific way.

The CPlApplet function receives the CPL_INIT message when the controlling application first
loads the Control Panel application. The function should carry out any initialization, such as
allocating memory, and return nonzero. If CPlApplet cannot complete the initialization, it must
return zero, directing the controlling application to terminate communication and release the DLL.

The CPlApplet function receives the CPL_GETCOUNT message only if the CPL_INIT message
succeeded. The function must then return the number of dialog boxes supported by the Control
Panel application.

The CPlApplet function receives one CPL_INQUIRE message and one CPL_NEWINQUIRE
message for each dialog box supported by the Control Panel application. The function fills in a
CPLINFO or NEWCPLINFO structure with information about your application, such as its name,
icon, and a descriptive string. Most applications should process the CPL_INQUIRE message and
ignore the CPL_NEWINQUIRE message. The CPL_INQUIRE message provides information in a
form that the controlling application can cache, resulting in much better performance. The
CPL_NEWINQUIRE message is useful only if you need to change your application's icon or
display strings based on the state of the computer.

The CPlApplet function receives a CPL_DBLCLK message as a notification that the user has
chosen the icon representing the dialog box. The function may receive this message any number
of times. The message includes the dialog box identifier and the lData value. The function should
display the corresponding dialog box and process subsequent user input.

Before the controlling application terminates, CPlApplet receives the CPL_STOP message once
for each dialog box supported by the Control Panel application. The message includes the
identifier for the dialog box and the lData value. The function should free any memory that it
allocated for the specified dialog box.

After the last CPL_STOP message, CPlApplet receives a CPL_EXIT message. The function
should free all remaining allocated memory and unregister any private window classes that it may
have registered. Immediately after the function returns from this message, the controlling
application releases the Control Panel application by calling the FreeLibrary function.

Application Setup
Every Control Panel application is a dynamic-link library. To make sure the DLL containing your
Control Panel application can be located and automatically loaded by the Windows system utility,
the DLL file must have the .CPL filename extension and must be set up in one of the following
ways:

· Copied to the directory that contains the Windows system utility.
· Copied to the Windows SYSTEM directory.
· Registered under the the MMCPL key of the HKEY_CURRENT_USER key in the registry.

You should register the DLL in the registry if the DLL exports functions other than CPlApplet and
provides functionality beyond the scope of a Control Panel application. For more information
about the registry, see Registry.

Creating Control Panel Applications
Although a Control Panel application may support more than one dialog box, it processes all
requests through the single CPlApplet function. In the following example, the Control Panel
application supports three dialog boxes that let the user set preferences for a component stereo
system attached to the computer. The example uses an application-defined StereoApplets array
that contains three structures, each corresponding to one of the dialog boxes. Each structure
contains all the information required by the CPL_INQUIRE message, as well as the dialog box
template and dialog box procedure required by the CPL_DBLCLK message. The code
demonstrates how to fill the structures in the StereoApplets array.#define NUM_APPLETS 3
typedef struct tagApplets
{

int icon; // icon resource identifier
int namestring; // name-string resource identifier
int descstring; // description-string resource identifier
int dlgtemplate; // dialog box template resource identifier
DLGPROC dlgfn; // dialog box procedure

} APPLETS;
APPLETS StereoApplets[NUM_APPLETS] =
{

AMP_ICON, AMP_NAME, AMP_DESC, AMP_DLG, AmpDlgProc,
TUNER_ICON, TUNER_NAME, TUNER_DESC, TUNER_DLG, TunerDlgProc,
TAPE_ICON, TAPE_NAME, TAPE_DESC, TAPE_DLG, TapeDlgProc,

};
HANDLE hinst = NULL;
LONG CALLBACK CPlApplet(hwndCPL, uMsg, lParam1, lParam2)
HWND hwndCPL; // handle of Control Panel window
UINT uMsg; // message
LPARAM lParam1; // first message parameter
LPARAM lParam2; // second message parameter
{

int i;
LPCPLINFO lpCPlInfo;
i = (int) lParam1;
switch (uMsg) {
case CPL_INIT: // first message, sent once
hinst = GetModuleHandle("ecp.cpl");
return TRUE;
case CPL_GETCOUNT: // second message, sent once
return NUM_APPLETS;
break;
case CPL_INQUIRE: // third message, sent once per application
lpCPlInfo = (LPCPLINFO) lParam2;
lpCPlInfo->lData = 0;
lpCPlInfo->idIcon = StereoApplets[i].icon;
lpCPlInfo->idName = StereoApplets[i].namestring;
lpCPlInfo->idInfo = StereoApplets[i].descstring;
break;
case CPL_DBLCLK: // application icon double-clicked
DialogBox(hinst,
MAKEINTRESOURCE(StereoApplets[i].dlgtemplate),
hwndCPL, StereoApplets[i].dlgfn);
break;
case CPL_STOP: // sent once per application before CPL_EXIT
break;
case CPL_EXIT: // sent once before FreeLibrary is called
break;
default:
break;
}
return 0;

}

Control Panel Reference
The following functions, structures and messages are associated with the control panel.

Control Panel Functions
Following is the function used with the control panel.

CPlApplet

Control Panel Structures
The following structures are used with control panel.
CPLINFO

NEWCPLINFO

Control Panel Messages
Following are the messages used with the control panel.
CPL_DBLCLK
CPL_EXIT
CPL_GETCOUNT
CPL_INIT
CPL_INQUIRE
CPL_NEWINQUIRE
CPL_STOP
WM_CPL_LAUNCH

WM_CPL_LAUNCHED

Obsolete Messages
CPL_SELECT

File Installation LibraryThe Microsoft® Win32® application programming interface (API) includes a file installation library
that makes it easier for applications to install files properly and enables setup programs to analyze
files currently installed.

About File Installation
The functions included in the file installation library determine where a file should be installed,
identify conflicts with currently installed files, and perform the installation process. These functions
enable installation programs to avoid the following problems:

· Installing older versions of components over newer versions
· Changing the language in a mixed-language system without notification
· Installing multiple copies of a library in different directories
· Copying files to network directories shared by multiple users

The file installation library also includes functions that enable applications to query a version
resource for file information and present the information in a clear format. This information
includes the file's purpose, author, version number, and so on.

Version information can be added to any Microsoft® Windows® file that can have Windows
resources, such as a dynamic-link library (DLL), an executable file, or a font file. To add the
information, a developer must create a version resource and add the resource to the file by using
a resource compiler and specifying VS_FILE_INFO as the resource type.

Creating an Installation Program
An installation program typically has the following goals:

· To place files in the correct location.
· To notify the user if the installation program is replacing an existing file with a version that

is significantly different ¾ for example, replacing a German-language file with an English-
language file, or replacing a newer file with an older file.

When writing the installation program, the developer must have the following information for each
file on the installation disk(s):

· The name and location of the file (referred to as the source file).
· The name of the equivalent file on the user's hard disk (referred to as the destination file).

This name is usually the same as the filename on the installation disk.
· The sharing status of the file ¾ that is, whether the file is private to the application being

installed or could be shared by multiple applications.
For each file on the installation disk(s), the installation program must, at a minimum, call the
VerFindFile and VerInstallFile functions. These functions are described briefly in the following
paragraphs.

The installation program can use VerFindFile with the destination-file name to determine where
the file should be copied on the disk. This function can also be used to specify whether the file is
private to the application or can be shared. If a problem occurs in finding the file, VerFindFile
returns an error value. For example, if Windows is using the destination file, VerFindFile returns
VFF_FILEINUSE. The installation program must notify the user of the problem and respond to the
user's decision to continue or to end the installation.

VerInstallFile copies the source file to a temporary file in the directory specified by VerFindFile. If
necessary, VerInstallFile expands the file by using the functions in the data decompression
library.

VerInstallFile compares the version information of the temporary file to that of the destination file.
If the two differ, VerInstallFile returns one or more error values. For example, it returns
VIF_SRCOLD if the temporary file is older than the destination file and VIF_DIFFLANG if the files
have different language identifiers or code-page values. The installation program must notify the
user of the problem and respond to the user's decision to continue or to end the installation.

Some VerInstallFile errors are recoverable. That is, the installation program can call
VerInstallFile again, specifying the VIFF_FORCEINSTALL option, to install the file regardless of
the version conflict. If VerInstallFile returns VIF_TEMPFILE and the user chooses not to force the
installation, the installation program should delete the temporary file.

VerInstallFile could encounter a nonrecoverable error when attempting to force installation, even
though the error did not exist previously. For example, the file could be locked by another user
before the installation program attempted to force installation. If an installation program attempts
to force installation after a non-recoverable error, VerInstallFile fails. The installation program
must contain routines to recover from this type of error.

The recommended solution is to display for all errors a common dialog box with the buttons
Install, Skip, and Install All. (Another solution is a dialog box with the buttons Yes, Yes to All, Skip,
and Cancel.) The Install All button should prevent the installation program from prompting the user
about similar errors by including the VIFF_FORCEINSTALL option in all subsequent uses of
VerInstallFile. For nonrecoverable errors, the Install and Install All buttons should be disabled.

To display a useful error message to the user, the installation program usually must retrieve
information from the version resources of the conflicting files. The file installation library provides
four functions the installation program can use for this purpose: GetFileVersionInfoSize,
GetFileVersionInfo, VerQueryValue, and VerLanguageName. GetFileVersionInfoSize returns
the size of the version information. GetFileVersionInfo uses information retrieved by
GetFileVersionInfoSize to retrieve a structure that contains the version information.
VerQueryValue retrieves a specific member from that structure.

For example, if VerInstallFile returns the VIF_DIFFTYPE error, the installation program should
use the GetFileVersionInfoSize, GetFileVersionInfo, and VerQueryValue functions on the
temporary and destination files to obtain the general type of each file. If the languages of the files

conflict, the installation program should also use VerLanguageName to translate the binary
language identifier into a text representation of the language. (For example, 0x040C translates to
the string "French.")

If VerInstallFile returns a file error, such as VIF_ACCESSVIOLATION, the installation program
should use the GetLastError function to retrieve the most recent error value. The program should
translate this value into an informative message to display to the user. The program must not yield
control between the calls to VerInstallFile and GetLastError.

File Installation Library Reference
The following functions and structures are used with file installation library.

File Installation Library Functions
Following are the functions used for file installation.
GetFileVersionInfo
GetFileVersionInfoSize
VerFindFile
VerInstallFile
VerLanguageName

VerQueryValue

File Installation Library Structures
The following structures are used with file installation library.
String
StringFileInfo
StringTable
Var
VarFileInfo
VS_FIXEDFILEINFO

VS_VERSION_INFO

File Manager ExtensionsIn Microsoft® Windows®, a File Manager extension is a dynamic-link library (DLL) that adds a
menu and buttons to File Manager. A File Manager extension can also display (in the status bar)
Help text for the buttons. This guide describes how to create and install extensions for File
Manager.

About File Manager Extensions
File Manager maintains a list of extensions in an initialization file and loads the extensions when
starting. An extension DLL contains an entry point that processes menu commands and
notification messages sent by File Manager. Up to five extension DLLs can be installed at any one
time.

Creating a File Manager Extension
A File Manager extension must reside in a DLL that includes a standard entry point, the
FMExtensionProc callback function. The extension must include the WFEXT.H header file that
defines File Manager messages and structures. File Manager communicates with the extension
DLL by sending the following messages to the DLL's FMExtensionProc function.

Message Meaning

1- 99 User has selected an item from the
extension-supplied menu. The value is
the identifier of the selected menu item.

FMEVENT_HELPSTRING User is selecting an extension menu or
toolbar command item. File Manager
wants the extension to supply a
helpstring.

FMEVENT_HELPMENUITEMUser has pressed F1 while selecting an
extension menu or toolbar command
item. File Manager wants the extension
to call WinHelp appropriately for the
command item.

FMEVENT_INITMENU User has selected the extension's menu.
The extension should initialize items in
the menu.

FMEVENT_LOAD File Manager is loading the extension
DLL and prompts the DLL for
information about the menu that the DLL
supplies.

FMEVENT_SELCHANGE Selection in the File Manager directory
window or Search Results window has
changed.

FMEVENT_TOOLBARLOADFile Manager is creating the toolbar and
prompts the extension DLL for
information about any buttons the DLL
adds to the toolbar.

FMEVENT_UNLOAD File Manager is unloading the extension
DLL.

FMEVENT_USER_REFRESHUser has chosen the Refresh command
from the Window menu. The extension
should update items in the menu, if
necessary.

Creating the Entry-Point Function
File Manager communicates with an extension DLL through the FMExtensionProc callback
function. Make sure to export this function by listing it in the EXPORTS statement of your
extension's module-definition (.DEF) file. The FMExtensionProc function handles the messages
listed in the preceding section by performing the tasks listed in the following table.

Task Action

Initializing the extension
(FMEVENT_LOAD)

Provides File Manager with the
name and handle of the menu
and saves the menu-item delta
value.

Initializing the menu
(FMEVENT_INITMENU)

Initializes all top-level menu
items and the items in any
submenus.

Initializing the toolbar
(FMEVENT_TOOLBARLOAD)

Provides File Manager with
information about the buttons to
add to the toolbar, including the
command identifier, Help string
identifier, styles, and bitmap
identifier.

Processing menu selections Carries out commands that the
user chooses from the
extension's menu.

Processing file selections
(FMEVENT_SELCHANGE)

Queries File Manager for
information about the file that the
user has selected from the
directory window or Search
Results window.

Updating items in the menu
(FMEVENT_USER_REFRESH)

Modifies the menu as
appropriate when the user
chooses File Manager's Refresh
command from the Window
menu.

Providing menu item help strings
(FMEVENT_HELPSTRING)

Provides File Manager with a
help string for a specified
command in a specified menu.
File Manager displays this string
in the area at the bottom left of
the window.

Passing menu item help requests on
to WinHelp
(FMEVENT_HELPMENUITEM)

Provides WinHelp with the
window passed by File Manager
and menu item information,

Quitting the extension DLL
(FMEVENT_UNLOAD)

Frees any memory allocated and
prepares to exit.

The FMExtensionProc function is defined as follows.LONG WINAPI FMExtensionProc(hwnd, wMsg, lParam)
HWND hwnd;
WORD wMsg;
LONG lParam;The hwnd parameter identifies the File Manager window. An extension should use this window

handle to specify the parent window for any dialog box or message box it must display. It should
also use this handle to send query messages to File Manager. The uMsg parameter contains one
of the File Manager messages listed previously. The lParam parameter contains a message-
specific value. The return value from the FMExtensionProc function depends on the value of the
uMsg parameter.

The menu added to File Manager may be a hierarchical (cascaded) menu and may contain
grayed, disabled, or checked menu items in addition to command items. Menu items should be
text only; owner-drawn menus and bitmap menus are not supported. Changing the bitmap for
check marks is not supported.

Whenever File Manager calls the FMExtensionProc function, it waits to refresh its directory
windows (for changes in the file system) until after the function returns. This allows the extension
to perform large numbers of file operations without excessive repainting on the part of File
Manager. It is not necessary for the extension to send the FM_REFRESH_WINDOWS message
to notify File Manager to repaint its directory windows.

Loading the Extension
File Manager first sends the FMEVENT_LOAD message to the FMExtensionProc function. The
lParam parameter accompanying the FMEVENT_LOAD message points to an FMS_LOAD
structure that File Manager uses to obtain information about the extension-supplied menu,
including the menu name and menu handle.

File Manager also uses the FMS_LOAD structure to pass the menu-item delta value to the
extension. To avoid conflicts with its own menu-item identifiers, File Manager renumbers the
menu-item identifiers in an extension-supplied menu by adding the delta value to each identifier.
An extension DLL that must modify its menu after File Manager has loaded it must use the delta
value. For example, to delete a menu item, the extension DLL finds the sum of the delta value and
the menu-item identifier and passes it as the idItem parameter to the DeleteMenu function.

If an extension returns FALSE in response to this message, File Manager calls the FreeLibrary
function and ends any communication with the extension DLL. This is the only place where an
extension can notify File Manager of initialization problems and thus prevent the extension from
being loaded.

Adding Custom Buttons
A File Manager extension can add custom buttons to the File Manager toolbar by returning button
information in response to the FMEVENT_TOOLBARLOAD message. File Manager sends this
message to the FMExtensionProc function of the extension only if the extension successfully
installed a custom menu during the processing of the FMEVENT_LOAD message. Use custom
buttons as accelerator keys for menu commands specified in the custom menu.

When FMExtensionProc receives the FMEVENT_TOOLBARLOAD message, the lParam
parameter points to an FMS_TOOLBARLOAD structure. The File Manager extension must copy
information about the custom buttons to the structure, including the number of buttons and a
specifier for the bitmap containing the button images (either the identifier for a bitmap resource or
a handle to a memory bitmap). The extension must also include the address of an array of
EXT_BUTTON structures, each of which must contain a command identifier for the corresponding
button. If the button is an accelerator for a menu command, the button identifier and
corresponding menu-command identifier must be equal.

The bitmap containing the button images must be a bitmap resource or a memory bitmap. The
extension must copy either the resource identifier or the memory bitmap's handle to the
FMS_TOOLBARLOAD structure; and, in the case of a bitmap resource, the resource must be in
the extension's executable file.

The bitmap must contain one image for each specified button. The bitmap height is always 15
pixels; the width is always a multiple of 16 pixels because each button image must be 16 pixels
wide. Button images are concatenated from left to right. For example, the image of the first button
specified in the array of EXT_BUTTON structures must be the leftmost image in the bitmap.

An extension can provide a line of Help text for a button by specifying the identifier of a string
resource in the idsHelp member of the EXT_BUTTON structure. When the user selects the
button, File Manager retrieves the string resource and displays it on the toolbar.

Processing Menu Selections
The menu resource that you define for your extension's menu must use menu-item identifiers in
the range 1 through 99. When the user selects an item, the extension receives a command
notification that is the identifier of the selected item as defined in the resource-definition file (which
has the .RC filename extension). The command notification is not the sum of the delta value and
the identifier. An extension DLL's FMExtensionProc function carries out commands by
processing command notifications.

Initializing the Extension Menu
Whenever the user selects the extension's main menu item from File Manager's menu bar, File
Manager sends the FMEVENT_INITMENU message to the extension DLL. An extension can use
this message to initialize its menu items. For example, an extension can add check marks, disable
items, or gray items during this message.

When the user selects submenus within the extension's menu, File Manager does not send the
FMEVENT_INITMENU message. An extension DLL must initialize all items at the same time,
including those in submenus.

Updating the Extension Menu
When the user chooses the Refresh command from the Window menu, File Manager sends an
FMEVENT_USER_REFRESH message to an extension DLL. The extension can use this
opportunity to update its menu items.

Processing File Selections
When the user selects a filename in the directory window or in the Search Results window, File
Manager sends the FMEVENT_SELCHANGE message to an extension DLL. The extension can
use this opportunity to send a query message to File Manager to obtain more information about
the user's selection.

Because the user can change the selection often, the extension should return promptly after
processing the FMEVENT_SELCHANGE message to avoid slowing the user's selection process.

Quitting the Extension Dynamic-Link Library
When File Manager quits, it sends the FMEVENT_UNLOAD message to each extension DLL and
then calls the FreeLibrary function to free the DLLs. Each DLL should free any memory that it has
allocated.

Installing Extensions
File Manager installs extensions that have settings in the [AddOns] section of the WINFILE.INI
initialization file. Each setting contains an entry and a value. An entry consists of a string that
represents the name of an extension. The value assigned to the entry consists of a string that
specifies the path to the extension DLL. An application can use the WritePrivateProfileString
function to add a setting to WINFILE.INI. The following example shows a setting in WINFILE.INI.[AddOns]
MyExtension=C:\NT\SYSTEM\MYEXT.DLLFile Manager does not display an error message if it cannot find an extension DLL, so an

extension DLL can be deleted in order to uninstall it. Even so, an application that installs an
extension DLL should provide an uninstall option to remove the extension's setting from the
WINFILE.INI file.

Extension Messages
An extension can send the following window messages to retrieve relevant information from File
Manager. File Manager is guaranteed to respond correctly only to messages sent from the
FMExtensionProc function.

Message Description

FM_GETDRIVEINFO File Manager returns drive information
from the active window. An extension
provides a pointer to an
FMS_GETDRIVEINFO structure; File
Manager fills the structure with drive
information.

FM_GETFILESEL File Manager returns information about a
selected file from the active File Manager
window (either the directory window or
the Search Results window). An
extension provides a pointer to an
FMS_GETFILESEL structure; File
Manager fills the structure with file
information.

FM_GETFILESELLFN Same as the FM_GETFILESEL message
except that the selected file may have a
long filename.

FM_GETFOCUS File Manager returns a value that
identifies the type of window with input
focus.

FM_GETSELCOUNT File Manager returns the count of
selected files in the directory and Search
Results windows.

FM_GETSELCOUNTLFN Same as the FM_GETSELCOUNT
message except that the count includes
files with long filenames.

FM_REFRESH_WINDOWS File Manager repaints either its active
window or all of its windows. This
message is similar to File Manager's
Refresh command on the Window menu.

FM_RELOAD_EXTENSIONSFile Manager reloads all extensions.
First, File Manager unloads all
extensions, sending an
FMEVENT_UNLOAD message to each
extension. Then, it reloads the
extensions, sending an
FMEVENT_LOAD message to each
extension. The
FM_RELOAD_EXTENSIONS message
allows an extension to uninstall itself by
removing its setting from the WINFILE.
INI file; this action causes File Manager
to reload the remaining extensions. Other
applications and programs (for example,
installation programs) can also post this
message by calling the PostMessage
function.

Processing Commands and Messages from File Manager
The following code shows the FMExtensionProc function for a sample extension DLL. It
demonstrates how an extension processes the menu commands and notification messages sent
by File Manager.HINSTANCE hinst;
HMENU hmenu;
WORD wMenuDelta;
BOOL fMultiple = FALSE;
BOOL fLFN = FALSE;
LONG WINAPI FMExtensionProc(hwnd, wMsg, lParam)
HWND hwnd;
WORD wMsg;
LONG lParam;
{

CHAR szBuf[200];
INT count;
switch (wMsg) {
case FMEVENT_LOAD:

#define lpload ((LPFMS_LOAD) lParam)
/* Save the menu-item delta value. */
wMenuDelta = lpload->wMenuDelta;
/* Fill the FMS_LOAD structure. */
lpload->dwSize = sizeof(FMS_LOAD);
lstrcpy(lpload->szMenuName, "&Extension");
/* Return the handle of the menu. */
hinst = GetModuleHandle("ext.dll");
lpload->hMenu = GetSubMenu(LoadMenu(hinst,
MAKEINTRESOURCE(MYMENU)), 0);
return (LONG)TRUE;
case FMEVENT_UNLOAD:
/* Perform any cleanup procedures here. */
break;
case FMEVENT_INITMENU:
/* Copy the menu handle. */
hmenu = (HMENU) lParam;
/*
* Add check marks to menu items as appropriate.
* Add menu-item delta values to menu-item
* identifiers to specify the menu items to check.
*/
CheckMenuItem(hmenu,

wMenuDelta + IDM_MULTIPLE,
fMultiple ? MF_BYCOMMAND | MF_CHECKED :

MF_BYCOMMAND | MF_UNCHECKED);
CheckMenuItem(hmenu,

wMenuDelta + IDM_LFN,
fLFN ? MF_BYCOMMAND | MF_CHECKED :

MF_BYCOMMAND | MF_UNCHECKED);
break;
case FMEVENT_TOOLBARLOAD:
{
static EXT_BUTTON extbtn[] = {

{1, 0, 0},
};
/* Fill the FMS_TOOLBARLOAD structure. */
#define lptbld ((LPFMS_TOOLBARLOAD) lParam)
lptbld->dwSize = sizeof(FMS_TOOLBARLOAD);
lptbld->lpButtons = (LPEXT_BUTTON) &extbtn;
lptbld->cButtons = 1;
lptbld->cBitmaps = 1;
lptbld->idBitmap = ID_BUTTONBITMAP;
return (LONG)TRUE;
}
case FMEVENT_USER_REFRESH:
MessageBox(hwnd, "User refresh event",
"Hey!", MB_OK);
break;
case FMEVENT_SELCHANGE:
break;
/*
* The following messages are generated when the user
* chooses items from the extension menu.
*/
case FMEVENT_HELPSTRING:
#define lphs ((LPFMS_HELPSTRING)lParam)
if (lphs->idCommand == -1)

lstrcpy(lphs->szHelp, "Help for extension menu");
else

wsprintf(lphs->szHelp, "Help for item %d", lphs->idCommand);
break;
case FMEVENT_HELPMENUITEM:
wsprintf(szBuf, "Help for %d", lParam);
MessageBox(hwnd, szBuf, "WinHelp call", MB_OK);
/*
* Use: WinHelp(hwnd, "ExtHelp.hlp", HELP_CONTEXT, lParam);
*/
break;
case IDM_GETFOCUS:
wsprintf(szBuf, "Focus %d",

(INT) SendMessage(hwnd, FM_GETFOCUS, 0, 0));
MessageBox(hwnd, szBuf, "Focus", MB_OK);
break;
case IDM_GETCOUNT:
count = (INT) SendMessage(hwnd,
fLFN ? FM_GETSELCOUNTLFN : FM_GETSELCOUNT,
0, 0);
wsprintf(szBuf, "%d files selected", count);
MessageBox(hwnd, szBuf, "Selection Count", MB_OK);
break;
case IDM_GETFILE:
{
FMS_GETFILESEL file;
count = (INT) SendMessage(hwnd,

fLFN ? FM_GETSELCOUNTLFN : FM_GETSELCOUNT,
FMFOCUS_DIR,
0);
while (count >= 1) {
/*
* Selection indices are zero-based (0 is
* first).
*/
count--;
SendMessage(hwnd, FM_GETFILESEL, count,
(LONG) (LPFMS_GETFILESEL) &file);
wsprintf(szBuf, "file %s\nSize %ld",
(LPSTR) file.szName, file.dwSize);
MessageBox(hwnd, szBuf, "File Information",
MB_OK);
if (!fMultiple)

break;
}
break;
}
case IDM_GETDRIVE:
{
FMS_GETDRIVEINFO drive;
SendMessage(hwnd, FM_GETDRIVEINFO, 0,
(LONG) (LPFMS_GETDRIVEINFO)&drive);
wsprintf(szBuf,
"%s\nFree %ld\nTotal %ld\nVolume %s\nShare %s",
(LPSTR) drive.szPath, drive.dwFreeSpace,
drive.dwTotalSpace, (LPSTR) drive.szVolume,
(LPSTR) drive.szShare);
MessageBox(hwnd, szBuf, "Drive Info", MB_OK);
break;
}
case IDM_LFN:
MessageBox(hwnd, "IDM_LFN", "Hi", MB_OK);
fLFN = !fLFN;
break;
case IDM_MULTIPLE:
MessageBox(hwnd, "IDM_MULTIPLE", "Hi", MB_OK);
fMultiple = !fMultiple;
break;
case IDM_REFRESH:
case IDM_REFRESHALL:
SendMessage(hwnd, FM_REFRESH_WINDOWS,
wMsg == IDM_REFRESHALL, 0);
break;
case IDM_RELOAD:
PostMessage(hwnd, FM_RELOAD_EXTENSIONS, 0, 0);
break;
}
return 0L;

}

Adding the Undelete Command
File Manager supports a hook for adding an Undelete command to the File menu (below the
Delete command). If an "undelete" dynamic-link library is specified in the WINFILE.INI file, File
Manager adds the Undelete command to the File menu when starting. When the user chooses the
Undelete command, File Manager calls the DLL.

The [settings] section of the WINFILE.INI file should include a reference to the undelete DLL, as
follows.[settings]
UNDELETE.DLL=C:\MYDIR\OTHER.DLLAn undelete DLL must include a standard entry point, the UndeleteFile function. This function

must be exported by specifying the name of the function in the EXPORTS statement of the DLL's
module-definition (.DEF) file.

The UndeleteFile function is defined as follows:DWORD APIENTRY UndeleteFile(hwndParent, lpszDir)
HWND hwndParent;
LPSTR lpszDir;The hwndParent parameter identifies the parent window for any dialog boxes the DLL creates.

The lpszDir parameter specifies the initial directory to be used (for example, C:\TEMP).

File Manager Extension Reference
The following functions, structures and messages are used with file manager extensions.

File Manager Extension Functions
Following are the functions used with file manager extensions.
FMExtensionProc

UndeleteFile

File Manager Extension Structures
The following structures are used with file manager extensions.
EXT_BUTTON
FMS_GETDRIVEINFO
FMS_GETFILESEL
FMS_LOAD

FMS_TOOLBARLOAD

File Manager Extension Messages
The following messages are used with file manager extensions.
FM_GETDRIVEINFO
FM_GETFILESEL
FM_GETFILESELLFN
FM_GETFOCUS
FM_GETSELCOUNT
FM_GETSELCOUNTLFN
FM_REFRESH_WINDOWS

FM_RELOAD_EXTENSIONS

File Manager Extension Event Messages
The following messages are used with file manager extensions.
FMEVENT_HELPMENUITEM
FMEVENT_HELPSTRING
FMEVENT_INITMENU
FMEVENT_LOAD
FMEVENT_SELCHANGE
FMEVENT_TOOLBARLOAD
FMEVENT_UNLOAD
FMEVENT_USER_REFRESH

Screen Saver LibraryThe Microsoft® Win32® application programming interface (API) supports special applications
called screen savers that start when the mouse and keyboard have been idle for a period of time.
Screen savers exist for two main reasons:

· To avoid phosphor burn caused by static images on a screen
· To conceal sensitive information left on a screen

About Screen Savers
The Desktop application in Windows Control Panel lets users select from a list of screen savers,
specify how much time should elapse before the screen saver is started, configure screen savers,
and preview screen savers. Screen savers are loaded automatically when Windows starts or
when a user activates the screen saver feature by using Control Panel.

Once a screen saver is chosen, Windows monitors keystrokes and mouse movements, starting
the screen saver after a period of inactivity. However, Windows does not start the screen saver if
any of the following conditions exist:

· The active application is not a Windows-based application.
· A computer-based training (CBT) window is present.
· The active application receives the WM_SYSCOMMAND message with wParam set to

the SC_SCREENSAVE value, but does not pass the message to the DefWindowProc
function.

Screen savers contain specific exported functions, resource definitions, and variable declarations.
The static-link library SCRNSAVE.LIB contains the main function and other startup code required
for a screen saver. When a screen saver starts, the startup code in SCRNSAVE.LIB creates a full-
screen window. The window class for this window is declared as follows.WNDCLASS cls;
cls.hCursor = NULL;
cls.hIcon= LoadIcon(hInst, MAKEINTATOM(ID_APP));
cls.lpszMenuName = NULL;
cls.lpszClassName = "WindowsScreenSaverClass";
cls.hbrBackground = GetStockObject(BLACK_BRUSH);
cls.hInstance = hInst;
cls.style= CS_VREDRAW | CS_HREDRAW |
CS_SAVEBITS | CS_DBLCLKS;
cls.lpfnWndProc = (WNDPROC) ScreenSaverProc;
cls.cbWndExtra= 0;
cls.cbClsExtra= 0;To create a screen saver, most developers create a source-code module containing three

required functions and link them with SCRNSAVE.LIB. A screen saver module is responsible only
for configuring itself and for providing visual effects.

One of the three required functions in a screen saver module is ScreenSaverProc. This function
processes specific messages and passes any unprocessed messages back to SCRNSAVE.LIB.
Following are some of the typical messages processed by ScreenSaverProc.

Message Meaning

WM_CREATE Retrieve any initialization data from the file
REGEDIT.INI. Set a window timer for the
screen saver window. Perform any other
required initialization.

WM_ERASEBKGND Erase the screen saver window and prepare for
subsequent drawing operations.

WM_TIMER Perform drawing operations.
WM_DESTROY Destroy the timer(s) created when the

application processed the WM_CREATE
message. Perform any additional required
cleanup.

ScreenSaverProc passes unprocessed messages to SCRNSAVE.LIB by calling the
DefScreenSaverProc function. The following table describes how this function processes various
messages.

Message Action

WM_SETCURSOR Sets the cursor to the null cursor, removing it
from the screen.

WM_PAINT Paints the screen background.
WM_LBUTTONDOWN Terminates the screen saver.
WM_MBUTTONDOWN Terminates the screen saver.
WM_RBUTTONDOWN Terminates the screen saver.
WM_KEYDOWN Terminates the screen saver.
WM_MOUSEMOVE Terminates the screen saver.
WM_ACTIVATE If wParam is FALSE, terminates the screen

saver.

The second required function in a screen saver module is ScreenSaverConfigureDialog.
This function displays a dialog box that enables the user to configure the screen saver. (Thus, an
application must provide a corresponding dialog box template.) Windows displays the
configuration dialog box when the user chooses the Setup button in the Screen Saver box in the
Desktop application in Control Panel. The data entered by the user with the configuration dialog
box is stored in the REGEDIT.INI file.

The third required function in a screen saver module is RegisterDialogClasses. This function
must be called by all screen saver applications. However, applications that do not require special
windows or custom controls in the configuration dialog box can simply return TRUE. Applications
requiring custom controls or special windows should use this function to register the
corresponding window classes.

In addition to creating a module that supports the three functions just described, a screen saver
should supply an icon. This icon is visible only when the screen saver is run as a standalone
application. (To be run by Control Panel, a screen saver must have the .SCR filename extension;
to be run as a standalone application, it must have the .EXE filename extension.) The icon must

be identified in the screen saver's resource file by the constant ID_APP, which is defined in the
header file SCRNSAVE.H.

One final requirement is a screen saver description string. The resource file for a screen saver
must contain a descriptive string that Control Panel displays as the screen saver name. The
description string must be the first string in the resource file's string table (identified with the
ordinal value 1).

Using the Screen Saver Functions
· Creating a screen saver
· Installing new screen savers
· Adding help

Creating a Screen Saver
This section contains example code taken from a screen saver application. At intervals ranging
from 1 through 10 seconds, this application repaints the screen with one of four colors: white, light
gray, dark gray, and black. The application paints the screen each time it receives a WM_TIMER
message. The user can adjust the interval at which this message is sent by displaying the
application's configuration dialog box and adjusting a single horizontal scroll bar.

Supporting the Configuration Dialog Box
Most screen savers provide a configuration dialog box to let the user specify customization data
such as unique colors, drawing speeds, line thicknesses, fonts, and so on. To support the
configuration dialog box, the application must provide a dialog box template and must also
support the ScreenSaverConfigureDialog function. Following is the dialog box template for the
sample application.DLG_SCRNSAVECONFIGURE DIALOG 6, 18, 160, 63
LANGUAGE LANG_NEUTRAL, SUBLANG_NEUTRAL
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |

WS_SYSMENU
CAPTION "Sample Screen-Saver Setup"
FONT 8, "MS Shell Dlg"
BEGIN

GROUPBOX "Redraw Speed", 101, 0, 6, 98, 40
SCROLLBARID_SPEED, 5, 31, 89, 10
LTEXT "Fast", 103, 6, 21, 20, 8
LTEXT "Slow", 104, 75, 21, 20, 8
PUSHBUTTON "OK", ID_OK, 117, 10, 40, 14
PUSHBUTTON "Cancel", ID_CANCEL, 117, 32, 40, 14

ENDYou must define the constant used to identify the dialog box template by using the decimal value
2003, as in the following example.#define DLG_SCRNSAVECONFIGURE 2003The following example shows the ScreenSaverConfigureDialog function found in the sample
application.#define MINVEL 1/* minimum redraw-speed value */
#define MAXVEL 10 /* maximum redraw-speed value */
#define DEFVEL 5/* default redraw-speed value */
LONG lSpeed = DEFVEL; /* redraw-speed variable */
extern HINSTANCE hMainInstance; /* screen saver instance handle */
CHAR szAppName[80]; /* .INI section name */
CHAR szTemp[20]; /* temporary array of characters */
CHAR szRedrawSpeed[] = "Redraw Speed"; /* .INI speed entry */
BOOL WINAPI ScreenSaverConfigureDialog(hDlg, message, wParam, lParam)
HWND hDlg;
UINT message;
DWORD wParam;
LONG lParam;
{

static HWND hSpeed; /* handle of speed scroll bar */
static HWND hOK; /* handle of OK push button */
switch(message)
{
case WM_INITDIALOG:
/* Retrieve the application name from the .RC file. */
LoadString(hMainInstance, idsAppName, szAppName, 40);
/* Retrieve the .INI (or registry) filename. */
LoadString(hMainInstance, idsIniFile, szIniFile,
MAXFILELEN);
/* Retrieve any redraw-speed data from the registry. */
lSpeed = GetPrivateProfileInt(szAppName, szRedrawSpeed,
DEFVEL, szIniFile);
/*
* If the initialization file does not contain an entry
* for this screen saver, use the default value.
*/
if(lSpeed > MAXVEL || lSpeed < MINVEL)
lSpeed = DEFVEL;
/* Initialize the redraw-speed scroll bar control. */
hSpeed = GetDlgItem(hDlg, ID_SPEED);
SetScrollRange(hSpeed, SB_CTL, MINVEL, MAXVEL, FALSE);
SetScrollPos(hSpeed, SB_CTL, lSpeed, TRUE);
/* Retrieve a handle of the OK push button control. */
hOK = GetDlgItem(hDlg, ID_OK);
return TRUE;
case WM_HSCROLL:
/*
* Process scroll bar input, adjusting the lSpeed
* value as appropriate.
*/
switch (LOWORD(wParam))
{
case SB_PAGEUP:

--lSpeed;
break;
case SB_LINEUP:

--lSpeed;
break;
case SB_PAGEDOWN:

++lSpeed;
break;
case SB_LINEDOWN:

++lSpeed;
break;
case SB_THUMBPOSITION:

lSpeed = HIWORD(wParam);
break;
case SB_BOTTOM:

lSpeed = MINVEL;
break;
case SB_TOP:

lSpeed = MAXVEL;
break;
case SB_THUMBTRACK:
case SB_ENDSCROLL:

return TRUE;
break;
}
if ((int) lSpeed <= MINVEL)
lSpeed = MINVEL;
if ((int) lSpeed >= MAXVEL)
lSpeed = MAXVEL;
SetScrollPos((HWND) lParam, SB_CTL, lSpeed, TRUE);
break;
case WM_COMMAND:
switch(LOWORD(wParam))
{
case ID_OK:

/*
* Write the current redraw-speed variable to
* the .INI file.
*/
wsprintf(szTemp, "%ld", lSpeed);
WritePrivateProfileString(szAppName, szRedrawSpeed,

szTemp, szIniFile);
case ID_CANCEL:
EndDialog(hDlg, LOWORD(wParam) == ID_OK);
return TRUE;
}
}
return FALSE;

}In addition to providing the dialog box template and supporting the ScreenSaverConfigureDialog
function, an application must also support the RegisterDialogClasses function. This function
registers any nonstandard window classes required by the screen saver. Because the sample
application used only standard window classes in its dialog box procedure, this function simply
returns TRUE, as in the following example.BOOL WINAPI RegisterDialogClasses(hInst)
HANDLE hInst;
{

return TRUE;
}

Supporting the Screen Saver Window Procedure
Each screen saver must support a window procedure named ScreenSaverProc. Like most
window procedures, ScreenSaverProc processes a set of specific messages and passes any
unprocessed messages to a default procedure. However, instead of passing them to the
DefWindowProc function, ScreenSaverProc passes unprocessed messages to the
DefScreenSaverProc function. Another difference between ScreenSaverProc and a normal
window procedure is that the handle passed to ScreenSaverProc identifies the entire desktop
rather than a client window. The following example shows the ScreenSaverProc window
procedure for the sample screen saver.LONG WINAPI ScreenSaverProc(hwnd, message, wParam, lParam)
HWND hwnd;
UINT message;
DWORD wParam;
LONG lParam;
{
static HDChdc; /* device-context handle */
static RECT rc;/* RECT structure */
static UINT uTimer; /* timer identifier */

switch(message)
{
case WM_CREATE:
/* Retrieve the application name from the .RC file. */
LoadString(hMainInstance, idsAppName, szAppName, 40);
/* Retrieve the .INI (or registry) filename. */
LoadString(hMainInstance, idsIniFile, szIniFile,
MAXFILELEN);
/* Retrieve any redraw-speed data from the registry. */
lSpeed = GetPrivateProfileInt(szAppName, szRedrawSpeed,
DEFVEL, szIniFile);
/*
* Set a timer for the screen saver window using the
* redraw-rate stored in REGEDIT.INI.
*/
uTimer = SetTimer(hwnd, 1, lSpeed * 1000, NULL);
break;
case WM_ERASEBKGND:

/*
* The WM_ERASEBKGND message is issued before the
* WM_TIMER message, allowing the screen saver to
* paint the background as appropriate.
*/
hdc = GetDC(hwnd);
GetClientRect (hwnd, &rc);
FillRect (hdc, &rc, GetStockObject(BLACK_BRUSH));
ReleaseDC(hwnd,hdc);
break;
case WM_TIMER:

/*
* The WM_TIMER message is issued at (lSpeed * 1000)
* intervals, where lSpeed == .001 seconds. This
* code repaints the entire desktop with a white,
* light gray, dark gray, or black brush each
* time a WM_TIMER message is issued.
*/
hdc = GetDC(hwnd);
GetClientRect(hwnd, &rc);
if (i++ <= 4)
FillRect(hdc, &rc, GetStockObject(i));
else
(i = 0);
ReleaseDC(hwnd,hdc);
break;
case WM_DESTROY:

/*
* When the WM_DESTROY message is issued, the screen saver
* must destroy any of the timers that were set at WM_CREATE
* time.
*/
if (uTimer)
KillTimer(hwnd, uTimer);
break;
}
/*
* DefScreenSaverProc processes any messages
* ignored by ScreenSaverProc.
*/
return DefScreenSaverProc(hwnd, message, wParam, lParam);

}

Creating a Module-Definition File
The ScreenSaverProc and ScreenSaverConfigureDialog functions must be exported in the
application's module-definition file; RegisterDialogClasses should not be exported, however. The
following example shows the module-definition file for the sample application.NAME SSTEST.SCR
DESCRIPTION 'SCRNSAVE : Test'
STUB 'WINSTUB.EXE'
EXETYPE WINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 4096
EXPORTS

ScreenSaverProc
ScreenSaverConfigureDialog

Installing New Screen Savers
When compiling the list of available screen savers, Control Panel searches the Windows startup
directory for files with the .SCR extension. Because screen savers are standard Windows
executable files with .EXE extensions, you must rename them so they have .SCR extensions and
copy them to the correct directory.

Adding Help
The configuration dialog box for a screen saver typically includes a Help button. Screen saver
applications can check for the Help button identifier and call the WinHelp function in the same
way Help is provided in other Windows-based applications.

Screen Saver Functions
Following are the functions used with screen savers.
DefScreenSaverProc
RegisterDialogClasses
ScreenSaverConfigureDialog

ScreenSaverProc

Shell Dynamic Data Exchange InterfaceThis overview describes the dynamic data exchange (DDE) interface of Program Manager
(PROGMAN.EXE). Program Manager is a shell ¾ that is, an application that enables users to
group, start, and otherwise control other applications for the Microsoft® Windows® operating
system.

About Program Manager Initialization
Program Manager starts automatically when the user starts Windows and runs as long as
Windows is in use. When it starts, Program Manager displays one or more windows within its
main window. Each window contains icons that correspond to logically related Windows-based
applications. For example, the Accessories window contains icons for Windows Write, Paintbrush,
Notepad, and other accessory applications.

Program Manager stores initialization and configuration information in the registry. This
information is stored under the Settings, Groups, and Restrictions keys in the following section
of the registry:
HKEY_CURRENT_USER\Software\Microsoft\WindowsNT\

CurrentVersion\Program Manager

Additional information is stored in the Program Groups key in the following section of the registry:

HKEY_LOCAL_MACHINE\SOFTWARE

Settings Key
The Settings key contains information that Program Manager uses to configure its environment.
The following entries appear in the Settings key.

Entry Description

MinOnRun Specifies whether to minimize Program Manager
when an application is started.

AutoArrange Specifies whether Program Manager should
automatically arrange icons within groups.

SaveSettings Specifies whether to save the position of the
Program Manager window when Program Manager
terminates.

DISPLAY.DRV Specifies the filename of the display driver in use
when Program Manager last terminated. When
Program Manager starts, it compares this value to
the filename of the display driver currently in use. If
the names are different, Program Manager re-
extracts the application icons.

Window Specifies the location and dimensions of the
Program Manager window.

Order Specifies the order that the groups listed in the
Groups key appear in the Program Manager
window.

Startup Specifies the name of the startup group. Program
Manager automatically starts the applications in the
startup group whenever it starts.

Groups Key
The windows that appear in the Program Manager window correspond to group files. From the
user's perspective, a group file is a collection of icons that represent logically related applications,
but from the programmer's perspective, a group file is actually a collection of data. This data
includes the color information for the icons (AND and XOR masks), an offset to the resource
header of each icon, the ideal resolution for displaying each icon, the name of the executable (.
EXE) file that contains the application, and so on.

There are two types of groups: common and personal. A common group is shared among multiple
users through network connections; a personal group is not shared. Program Manager stores
information about personal groups under the Groups key. It stores information about common
groups under the HKEY_LOCAL_MACHINE\SOFTWARE key.

The Groups key of the registry identifies the names of the group files that Program Manager
displays as unique windows or icons. The groups must be numbered, but they need not be listed
in any particular order. Program Manager never changes the number of an existing group.

Restrictions Key
The Restrictions key controls whether certain features of Program Manager are enabled or
disabled. The following entries can appear in the Restrictions key.

Entry Description

NoRun Specifies whether to disable the Run command on
the File menu. If this entry is set to 1, the Run
command is disabled. If this entry is set to 0, the
Run command is enabled. The default is 0 if no
value is specified.

NoClose Specifies whether to prevent the user from closing
Program Manager through the File menu, the
System menu, the ALT+F4 key combination, or the
Task List. If this entry is set to 1, closing is
prevented. If this entry is set to 0, closing is allowed.
The default is 0 if no value is specified.

EditLevel Controls the extent to which the user can modify
read-write groups. (Shared read-only groups cannot
be modified.) This entry can be set to one of the
following values.

ValueAction
0 Allows any modifications to the group.

This is the default value.
1 Prevents the user from creating,

deleting, or renaming groups.
2 Prevents the user from creating,

deleting, or renaming groups and from
creating or deleting items in a group.

3 Prevents the user from creating,
deleting, or renaming groups; from
creating or deleting items in a group;
and from changing command lines for
items in a group.

4 Prevents the user from changing any
property of an item in a group; from
creating, deleting, or renaming groups;
from creating or deleting items in a
group; and from changing command
lines for items in a group.

NoFileMenu Specifies whether to disable the File menu and
all of its commands. If this entry is set to 1, the
File menu is disabled. If this entry is set to 0, the
menu is enabled. The default setting is 0 if no
value is specified.

NoSaveSettingsSpecifies whether to disable the Save Settings
on Exit command on the Options menu. If this
entry is set to 1, the Save Settings on Exit
command is disabled. If this entry is set to 0, the
command is enabled. The default setting is 0 if
no value is specified.

Setting the value of NoRun to 1 and the value of EditLevel to 3 prevents a user from using
Program Manager to run any applications not already in a program group.

Command-String Interface
Program Manager has a DDE command-string interface that allows other applications to create,
display, delete, and reload groups; add items to groups; replace items in groups; delete items
from groups; and close Program Manager. The following commands perform these actions:

AddItem ExitProgman

CreateGroup Reload
DeleteGroup ReplaceItem
DeleteItem ShowGroup

For example, the setup program for an application can use these commands to instruct
Program Manager to install the application's icon in a group.

Multiple commands can be concatenated; each command must be contained in square
brackets, and parameters must be contained in parentheses and separated by commas.
Quotation marks must delimit arguments that contain spaces, brackets, or parentheses.
For example, the following set of commands adds WINAPP.EXE to the Windows
Applications group:[CreateGroup("Windows Applications")]
[ShowGroup("My Group",1)]
[AddItem(winapp.exe,Win App,winapp.exe,2)]To use these commands, an application must first initiate a DDE conversation with Program

Manager. The application and topic names for the conversation are both PROGMAN. Then the
application sends the WM_DDE_EXECUTE message, specifying the appropriate command and
its parameters.
Note The user can configure Windows to use a shell other than Program Manager as the default.
Therefore, do not design an application that assumes Program Manager will be available for a
DDE conversation.
The following sections describe Program Manager DDE command strings in detail. In the syntax
blocks in the following sections, brackets enclose optional parameters.

CreateGroup
The syntax for the CreateGroup command has this form:

CreateGroup(GroupName[,CommonGroupFlag])

The CreateGroup command instructs Program Manager to create a new group or activate the
window of an existing group.

Following are the parameters for this command:

GroupName
Identifies the group to be created or activated. This parameter is a string. If a group already
exists with the name specified by GroupName, CreateGroup activates the group window.

CommonGroupFlag
Specifies whether the new group is a common group or a personal group. If this parameter is
1, a common group is created; if it is 0, a personal group is created. To create a common
group, the user currently logged on must have administrative privileges. If this parameter is 1
but the user does not have administrative privileges, the command fails. The default value of
this parameter is 1 (common group) if no value is specified and if the user has administrative
privileges. The default value is 0 (personal group) if no value is specified and the user does
not have administrative privileges.

Note If the second parameter of the CreateGroup command specifies the path of the group file
(as was required in Windows version 3.1), the parameter is ignored.

ShowGroup
The syntax for the ShowGroup command has this form:

ShowGroup(GroupName,ShowCommand[,CommonGroupFlag])

The ShowGroup command instructs Program Manager to minimize, maximize, or restore the
window of an existing group.

Following are the parameters for this command:

GroupName
Identifies the group window to be minimized, maximized, or restored.

ShowCommand
Specifies the action Program Manager is to perform on the group window. This parameter is
an integer. It must have one of the following values.

Value Action
1 Activates and displays the group window. If the window

is minimized or maximized, Windows restores it to its
original size and position.

2 Activates the group window and displays it as an icon.
3 Activates the group window and displays it as a

maximized window.
4 Displays the group window in its most recent size and

position. The window that is currently active remains
active.

5 Activates the group window and displays it in its current
size and position.

6 Minimizes the group window.
7 Displays the group window as an icon. The currently

active window remains active.
8 Displays the group window in its current state. The

currently active window remains active.

CommonGroupFlag
Specifies whether the group is a common group or a personal group. If this parameter is 1, the
group being minimized, maximized, or restored is a common group; if it is 0, the group is a
personal group. This parameter defaults to 1 (common group) if no value is specified. To
minimize, maximize, or restore a common group, the user currently logged on must have
administrative privileges. If this parameter is 1 but the user does not have administrative
privileges, the command fails.

DeleteGroup
The syntax for the DeleteGroup command has this form:

DeleteGroup(GroupName[,CommonGroupFlag])

The DeleteGroup command instructs Program Manager to delete an existing group.

Following are the parameters for this command:

GroupName
Identifies the group to be deleted.

CommonGroupFlag
Specifies whether the group is a common group or a personal group. If this parameter is 1, the
group being deleted is a common group; if it is 0, the group is a personal group. This
parameter defaults to 1 (common group) if no value is specified. To delete a common group,
the user currently logged on must have administrative privileges. If this parameter is 1 but the
user does not have administrative privileges, the command fails.

Note If the second parameter of the DeleteGroup command specifies the path of the group file
(as was required in Windows version 3.1), the parameter is ignored.

Reload
The syntax for the Reload command has this form:

Reload(GroupName[,CommonGroupFlag])

The ReloadGroup command instructs Program Manager to remove and reload an existing group.
An application that modifies group files can use this command to cause Program Manager to
update the groups when it has finished making modifications.

Following are the parameters for this command:

GroupName
Identifies the group to be removed and reloaded. If no value is specified for the GroupName
parameter, Program Manager unloads all groups and reloads the groups specified in the
Groups key of the registry. The Settings and Restrictions keys are not reread.

CommonGroupFlag
Specifies whether the group is a common group or a personal group. If this parameter is 1, the
group being reloaded is a common group; if it is 0, the group is a personal group. This
parameter defaults to 1 (common group) if no value is specified. To reload a common group,
the user currently logged on must have administrative privileges. If this parameter is 1 but the
user does not have administrative privileges, the command fails.

AddItem
The syntax for the AddItem command has this form:
AddItem(CmdLine[,

Name[,IconPath[,IconIndex[,xPos,yPos[,DefDir[,

HotKey[,fMinimize[fSeparateMemSpace]]]]]]])

The AddItem command instructs Program Manager to add an icon to an existing group. There is
a limit of 50 items per group.

Following are the parameters for this command:

CmdLine
Specifies the full command line required to run the application. This parameter is a string. At a
minimum, this string is the name of the executable file for the application. It can also include
the full path of the application and any parameters required by the application.

Name
Specifies the title that is displayed below the icon in the group window.

IconPath
Identifies the filename for the icon to be displayed in the group window. This parameter is a
string. This file can be either a Windows-based executable file or an icon file. If no value is
specified for the IconPath parameter, Program Manager uses the first icon in the file specified
by the CmdLine parameter if that file is an executable file. If CmdLine specifies an associated
file, Program Manager uses the first icon of the associated executable file. The association is
taken from the registry. (For more information about the registry, see Registry.) If CmdLine
specifies neither an executable file nor an associated executable file, Program Manager uses
a default icon.

IconIndex
Specifies the index of the icon in the file identified by the IconPath parameter. The IconIndex
parameter is an integer. PROGMAN.EXE contains five built-in icons that can be used for
programs not written for Windows.

xPos
Specifies the horizontal position of the icon in the group window. This parameter is an integer.
Both the xPos and yPos parameters must be used to specify the position of the icon. If the
position is not specified, Program Manager places the icon in the next available space.

yPos
Specifies the vertical position of the icon in the group window. This parameter is an integer.
Both the xPos and yPos parameters must be used to specify the position of the icon. If the
position is not specified, Program Manager places the icon in the next available space.

DefDir
Specifies the name of the default (or working) directory. This parameter is a string.

HotKey
Identifies a hot (or shortcut) key that is specified by the user.

fMinimize
Specifies whether an application window is to be minimized when first displayed.

fSeparateMemSpace
Specifies whether a 16-bit application runs in a separate memory space.

ReplaceItem
The syntax for the ReplaceItem command has this form:

ReplaceItem(ItemName)

The ReplaceItem command instructs Program Manager to delete an item and record the position
of the deleted item. Program Manager adds a new item (specified by the next AddItem command)
at this recorded position.

Following is the parameter for this command:

ItemName
Specifies the item to be deleted. Its position is recorded by Program Manager.

DeleteItem
The syntax for the DeleteItem command has this form:

DeleteItem(ItemName)

The DeleteItem command instructs Program Manager to delete an item from the currently active
group.

Following is the parameter for this command:

ItemName
Specifies the item to be deleted from the currently active group.

ExitProgman
The syntax for the ExitProgman command has this form:

ExitProgman(bSaveGroups)

If Program Manager was started by another application, the ExitProgman command instructs
Program Manager to terminate and, optionally, save its group information.

Following is the parameter for this command:

bSaveGroups
Specifies a Boolean value that, if it is nonzero, causes Program Manager to save its group
information before closing. If bSaveGroups is zero, Program Manager does not save its group
information.

Requesting Group Information
Program Manager can provide information about its groups to an application. Applications can
request this information from Program Manager by using the PROGMAN topic.

An application can obtain a list of Program Manager groups by issuing a request for the Group
item. Program Manager provides the list in CF_TEXT format. The list consists of group-name
strings separated by carriage returns.

An application can use a group name as an item name to request information about the group.
Program Manager provides this information in CF_TEXT format. The fields of group information
are separated by commas. The first line of the information contains the group name (in quotation
marks), the path of the group file, and the number of items in the group. Each subsequent line
contains information about an item in the group, including the command line (in quotation marks),
the default directory, the icon path, the position in the group, the icon index, the shortcut key (in
numeric form), and the minimize flag.

Shell LibraryA shell is an application that enables users to group, start, and otherwise control other
applications. This overview describes features of the shell for the Microsoft® Windows® operating
system.

About the Shell Library
The following features are supported by the dynamic-link library SHELL.DLL:

· The drag-drop feature
· Associations (used) to find and start applications
· Extraction of icons from executable files

Using the Shell Features
The following sections describe how to implement the shell features in your applications:

· Using the drag-drop feature
· Using associations to find and start applications
· Extracting icons from executable files

Using the Drag-Drop Feature
When an application implements the drag-drop feature, a user can select one or more files in File
Manager, drag them to an open application, and drop them there. The application in which the
files were dropped receives a message it can use to retrieve the filenames and the coordinates of
the point at which the files were dropped.

An application that can accept dropped files from File Manager calls the DragAcceptFiles
function for one or more of its windows. When the user releases the mouse button to drop a file or
files in the window specified in the call to DragAcceptFiles, File Manager sends the application a
WM_DROPFILES message. (File Manager does not send the WM_DROPFILES message to an
application unless the application calls DragAcceptFiles.) WM_DROPFILES contains a handle of
a structure the application can query to retrieve the name of the dropped file and the coordinates
of the cursor when the file was dropped. The application can use the DragQueryFile function to
retrieve a count of the files that were dropped and their names. The DragQueryPoint function
returns the window coordinates of the cursor when the user released the mouse button.

To free the memory allocated by the system for the WM_DROPFILES message, an application
calls the DragFinish function when it is finished.

For example, an application can call the DragAcceptFiles function when it starts and call a drag-
drop function when it receives a WM_DROPFILES message, as shown in the following example.case WM_CREATE:

DragAcceptFiles(hwnd, TRUE);
break;

case WM_DROPFILES:
DragFunc(hwnd, wParam); /* application-defined function */
break;

case WM_DESTROY:
DragAcceptFiles(hwnd, FALSE);
break;The following example uses the DragQueryPoint function to determine where to begin to write

text. The first call to the DragQueryFile function determines the number of dropped files. The loop
writes the name of each file, beginning at the point returned by DragQueryPoint.POINT pt;
WORD cFiles, a;
char lpszFile[80];
DragQueryPoint((HANDLE) wParam, &pt);
cFiles = DragQueryFile((HANDLE) wParam, 0xFFFF, (LPSTR) NULL, 0);
for(a = 0; a < cFiles; pt.y += 20, a++) {

DragQueryFile((HANDLE) wParam, a, lpszFile, sizeof(lpszFile));
TextOut(hdc, pt.x, pt.y, lpszFile, lstrlen(lpszFile));

}
DragFinish((HANDLE) wParam);

Using Associations to Find and Start Applications
File Manager includes an Associate dialog box that makes it possible for users to associate a
filename extension with a specific application. File Manager stores these associations in the
registry (under HKEY_CURRENT_USER\Software\Description\Microsoft\Windows\
CurrentVersion\Extensions). If a file has a filename extension that is associated with an
application, that application starts automatically whenever a user double-clicks that file in File
Manager.

Using the FindExecutable and ShellExecute functions, applications can take advantage of such
associations to find and start applications or open and print files.

An application can use the FindExecutable function to retrieve the name and handle of the
executable file that is associated with a specified filename. The ShellExecute function either
opens or prints a specified file, depending on the value of its lpOperation parameter. To open a
document file, the function relies on the association of the filename extension.

You can use ShellExecute to open or explore a folder. To open a folder, use either of the
following calls:ShellExecute(handle, NULL, "path_to_folder", NULL, NULL, SW_SHOWNORMAL)
; orShellExecute(handle, "open", "path_to_folder", NULL, NULL,
SW_SHOWNORMAL);

To explore a folder, use the following call:ShellExecute(handle, "explore", "path_to_folder", NULL, NULL,
SW_SHOWNORMAL);

If the lpOperation parameter is NULL, the function opens the file specified by its lpFile parameter.
If lpOperation is "open" or "explore", the function will force a open window or explorer.

Extracting Icons from Executable Files
An application can use the ExtractIcon function to retrieve the handle of an icon from a specified
executable file, dynamic-link library, or icon file. The following example uses the DragQueryPoint
function to retrieve the coordinates of the point where a file was dropped, the DragQueryFile
function to retrieve the filename of a dropped file, and the ExtractIcon function to retrieve the
handle of the first icon in the file, if any.POINT pt;
WORD cFiles;
HDC hdc;
char lpszFile[80];
HANDLE hCurrentInst, hicon;
DragQueryPoint((HANDLE) wParam, &pt);
cFiles = DragQueryFile((HANDLE) wParam, 0xFFFF, NULL, NULL);
if(cFiles > 1) {

TextOut(hdc, pt.x, pt.y,
"Please drop only one icon file.", 31);
return FALSE;

}
else {

DragQueryFile((HANDLE) wParam, 0, lpszFile, sizeof(lpszFile));
hCurrentInst = (HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE);
hicon = ExtractIcon(hCurrentInst, lpszFile, 0);
if (hicon == NULL)
TextOut(hdc, pt.x, pt.y, "No icons found.", 15);
else if (hicon == (HICON) 1)
TextOut(hdc, pt.x, pt.y,
"File must be .EXE, .ICO, or .DLL.", 33);
else
DrawIcon(hdc, pt.x, pt.y, hicon);

}
DragFinish((HANDLE) wParam);

Shell Library Reference
The following functions, interfaces, messages, and structures are associated with shell features.

Shell Library Functions
The following functions are used to implement shell features.
DragAcceptFiles
DragFinish
DragQueryFile
DragQueryPoint
ExtractAssociatedIcon
ExtractIcon
ExtractIconEx
FindExecutable
ShellAbout
ShellExecute

ShellExecuteEx

Shell Library Messages
The following message is used to implement shell features.

WM_DROPFILES

Shell Library Structures
The following structure is used to implement shell features.

SHELLEXECUTEINFO

BitmapsA bitmap is a powerful graphics object used to create, manipulate (scale, scroll, rotate, and paint),
and store images as files on a disk.

About Bitmaps
A bitmap is one of seven objects that can be selected into a device context. The other six objects
are the pen, brush, font, region, logical palette, and path. (For more information about device
contexts and related objects, see Device Contexts.)

In the Microsoft® Win32® application programming interface (API), Control Panel applications are
examples of applications that use bitmaps. When a user selects wallpaper for the desktop, the
user actually selects a bitmap, which Windows uses to paint the desktop background.

Windows creates this pattern by repeatedly drawing a 32- by 32-pixel pattern on the desktop. This
pattern is stored as a bitmap in the file REDBRICK.BMP.

From the user's point of view, a bitmap is a rectangle of pixels that form a visual image. However,
from the developer's perspective, a bitmap is a collection of structures that specify or contain the
following elements:

· A header that describes the resolution of the device on which the rectangle of pixels was
created, the dimensions of the rectangle, the size of the array of bits, and so on.

· A logical palette.
· An array of bits that defines the relationship between pixels in the bitmapped image and

entries in the logical palette.
The following illustration shows the developer's perspective of the bitmap found in the file
REDBRICK.BMP. It shows a palette array, a 32- by 32-pixel rectangle, and the index array that
maps colors from the palette to pixels in the rectangle.

ewc msdncd, EWGraphic, bsd23485 0 /a "SDK_01.BMP"

In the preceding example, the rectangle of pixels was created on a VGA display device using a
palette of 16 colors. A 16-color palette requires 4-bit indices; therefore, the array that maps palette
colors to pixel colors is composed of 4-bit indices as well. (For more information about logical
color-palettes, see Colors.)

Note that in the above bitmap, Windows maps indices to pixels beginning with the bottom scan
line of the rectangular region and ending with the top scan line. (A scan line is a single row of
adjacent pixels on a video display.) For example, the first row of the array (row 0) corresponds to
the bottom row of pixels, scan line 31. This is because the above bitmap is a "bottom-up" device-
independent bitmap (DIB), a common type of bitmap. In "top-down" DIBs and in device-
dependent bitmaps (DDBs), Windows maps indices to pixels beginning with the top scan line.

Bitmap Types
There are two types of bitmaps: device-dependent (DDBs) and device-independent (DIBs). DDBs
were common in early (pre-3.0) versions of Windows. In fact, they were the only bitmaps available
to developers. However, as display technology improved and as the variety of display devices
increased among Windows users, certain inherent problems surfaced. For example, there was no
method of storing (or retrieving) the resolution of the display type on which a bitmap was created,
so a drawing application could not quickly determine whether a bitmap was suitable for the type of
video display device on which the application was running. To solve this problem, Microsoft
created DIBs.

Device-Independent Bitmaps
A DIB contains the following color and dimension information:

· The color format of the device on which the rectangular image was created.
· The resolution of the device on which the rectangular image was created.
· The palette for the device on which the image was created.
· An array of bits that maps red, green, blue (RGB) triplets to pixels in the rectangular

image.
· A data-compression identifier that indicates the data compression scheme (if any) used to

reduce the size of the array of bits.
This information is stored in a BITMAPINFO structure consisting of a BITMAPINFOHEADER
structure followed by two or more RGBQUAD structures. The BITMAPINFOHEADER specifies
the dimensions of the pixel rectangle, describes the device's color technology, and identifies the
compression schemes used to reduce the bitmap's size. The RGBQUAD structures identify the
colors that appear in the pixel rectangle.

There are two varieties of DIB: "bottom-up" DIBs, in which the origin lies at the lower left corner,
and "top-down" DIBs, in which the origin lies at the upper left corner. If the height of a DIB, as
indicated by the biHeight member of the BITMAPINFOHEADER structure, is a positive value, it is
a bottom-up DIB; if the height is a negative value, it is a top-down DIB. Top-down DIBs cannot be
compressed.

The color format is specified in terms of a count of color planes and color bits. The count of color
planes is always 1; the count of color bits is 1 for monochrome bitmaps, 4 for VGA bitmaps, and 8,
16, 24, or 32 for bitmaps on other color devices. An application retrieves the number of color bits a
particular display (or printer) uses by calling the GetDeviceCaps function, specifying BITSPIXEL
as the second argument.

The resolution of a display device is specified in pixels per meter. An application can retrieve the
horizontal resolution for a video display, or printer, by following a three-step process:

1. Call the GetDeviceCaps function, specifying HORZRES as the second argument.
2. Call GetDeviceCaps a second time, specifying HORZSIZE as the second argument.
3. Divide the first return value by the second return value.

The application can retrieve the vertical resolution by using the same three-step process with
different parameters: VERTRES in place of HORZRES, and VERTSIZE in place of HORZSIZE.

The palette is represented by an array of RGBQUAD structures that specify the red, green, and
blue intensity components for each color in a display device's color palette. Each color index in the
palette array maps to a specific pixel in the rectangular region associated with the bitmap. The
size of this array, in bits, is equivalent to the width of the rectangle, in pixels, multiplied by the
height of the rectangle, in pixels, multiplied by the count of color bits for the device. An application
can retrieve the size of the device's palette by calling the GetDeviceCaps function, specifying the
NUMCOLORS constant as the second argument.

The Win32 API supports the compression of the palette array for 8-bit-per-pixel and 4-bit-per-
pixel bottom-up DIBs. These arrays can be compressed by using the run-length encoding (RLE)
scheme. The RLE scheme uses 2-byte values, the first byte specifying the number of consecutive
pixels that use a color index and the second byte specifying the index. For more information about
bitmap compression, see the description of the BITMAPINFOHEADER structure.

An application can create a DIB from a DDB by initializing the required structures and calling the
GetDIBits function. To determine whether a device supports this function, call the
GetDeviceCaps function, specifying RC_DI_BITMAP as the RASTERCAPS flag.

An application can use a DIB to set pixels on the display device by calling the SetDIBitsToDevice
or the StretchDIBits function. To determine whether a device supports the SetDIBitsToDevice
function, call the GetDeviceCaps function, specifying RC_DIBTODEV as the RASTERCAPS flag.
Specify RC_STRETCHDIB as the RASTERCAPS flag to determine if the device supports
StretchDIBits.

An application that simply needs to display a preexisting DIB can use the SetDIBitsToDevice
function. For example, a spreadsheet application can open existing charts and display them in a
window by using the SetDIBitsToDevice function. To repeatedly redraw a bitmap in a window,
however, the application should use the BitBlt function. For example, a multimedia application
that combines animated graphics with sound would benefit from calling the BitBlt function
because it executes faster than SetDIBitsToDevice.

Device-Dependent Bitmaps
Device-dependent bitmaps are supported only for compatibility with applications written for
Windows versions earlier than 3.0. A developer writing a new application, or porting an application
written for a previous version of Windows to the Win32 platform, should use DIBs.

DDBs are described by using a single structure, the BITMAP structure. The members of this
structure specify the width and height of a rectangular region, in pixels; the width of the array that
maps entries from the device palette to pixels; and the device's color format, in terms of color
planes and bits per pixel. An application can retrieve the color format of a device by calling the
GetDeviceCaps function and specifying the appropriate constants.

There are two types of DDBs: discardable and nondiscardable. A discardable DDB is a bitmap
that Windows discards if the bitmap is not selected into a DC and if system memory is low. The
CreateDiscardableBitmap function creates discardable bitmaps. The CreateBitmap,
CreateCompatibleBitmap, and CreateBitmapIndirect functions create nondiscardable bitmaps.

An application can create a DDB from a DIB by initializing the required structures and calling the
CreateDIBitmap function. Specifying CBM_INIT in the call to CreateDIBitmap is equivalent to
calling the CreateCompatibleBitmap function to create a DDB in the format of the device and
then calling the SetDIBits function to translate the DIB bits to the DDB. To determine whether a
device supports the SetDIBits function, call the GetDeviceCaps function, specifying
RC_DI_BITMAP as the RASTERCAPS flag.

Bitmaps, Device Contexts, and Drawing Surfaces
A device context (DC) is a data structure defining the graphics objects, their associated attributes,
and the graphics modes affecting output on a device. An application creates a DC by calling the
CreateDC function; it retrieves a window manager device context by calling the GetDC function.

The Drawing Surface
Before returning a handle that identifies that DC, the window manager selects a drawing surface
into the DC. If the application called the CreateDC function to create a device context for a VGA
display, the dimensions of this drawing surface are 640 by 480 pixels. If the application called the
GetDC function, the dimensions reflect the size of the client area.

When an application passes the handle returned by CreateDC or GetDC to one of the graphics
device interface (GDI) drawing functions, the requested output appears on the drawing surface
selected into the device context.

Compatible Device Contexts
To enable applications to place output in memory rather than sending it to an actual device, the
Win32 API provides a special device context for bitmap operations called a compatible device
context. A compatible DC enables Windows to treat a portion of memory as a virtual device. It is
an array of bits in memory that an application can use temporarily to store the color data for
bitmaps created on a normal drawing surface.

An application creates a compatible DC by calling the CreateCompatibleDC function and
receives a handle that identifies a normal device context. Windows creates a temporary one-bit
placeholder for the array. Before performing drawing operations using the compatible DC handle,
the application must increase the size of this array. To do this, the application can call the
CreateBitmap, CreateBitmapIndirect, or CreateCompatibleBitmap function to create a bitmap
of the appropriate dimensions and then call the SelectObject function to select the bitmap into the
DC. After the bitmap is selected into the compatible DC, Windows replaces the single-bit array
with an array large enough to store color information for the specified rectangle of pixels.

When an application passes the handle returned by CreateCompatibleDC to one of the GDI
drawing functions, the requested output does not appear on a device's drawing surface. Instead,
Windows stores the color information for the resultant line, curve, text or region in the array of bits.
The application can copy the image stored in memory back onto a drawing surface by calling the
BitBlt function, identifying the compatible DC as the source device context and a window or
screen DC as the target device context.

When displaying a DIB or a DDB created from a DIB on a palette device, you can improve the
speed at which the image is drawn by arranging the logical palette to match the layout of the
system palette. To do this, call GetDeviceCaps with the NUMRESERVED value to get the
number of reserved colors in the system. Then call GetSystemPaletteEntries and fill in the first
and last NUMRESERVED/2 entries of the logical palette with the corresponding system colors.
For example, if NUMRESERVED is 20, you would fill in the first and last 10 entries of the logical
palette with the system colors. Then fill in the remaining 256 - NUMRESERVED colors of the
logical palette (in our example, the remaining 236 colors) with colors from the DIB and set the
PC_NOCOLLAPSE flag on each of these colors. For more information about color and palettes,
see Colors.

Bitmap Rotation
Windows provides a function to copy a bitmap into a parallelogram; this function, PlgBlt, performs
a bit-block transfer from a rectangle in a source device context into a parallelogram in a
destination device context. In order to rotate the bitmap, an application must provide the
coordinates, in world units, to be used for the corners of the parallelogram. (For more information
about rotation and world units, see Coordinate Spaces and Transformations.)

Bitmap Scaling
The Win32 API also provides a function to scale a bitmap; this function, StretchBlt, performs a
bit-block transfer from a rectangle in a source device context into a rectangle in a destination
device context. However, unlike the BitBlt function, which duplicates the source rectangle
dimensions in the destination rectangle, StretchBlt allows an application to specify the
dimensions of both the source and the destination rectangles. When the destination bitmap is
smaller than the source bitmap, Windows combines rows or columns of color data (or both) in the
bitmap before rendering the corresponding image on the display device. Windows combines the
color data according to the specified stretch mode, which the application defines by calling the
SetStretchBltMode function. When the destination bitmap is larger than the source bitmap,
Windows scales or magnifies each pixel in the resultant image accordingly.

Bitmaps as Brushes
The Win32 API provides a number of functions that use the brush currently selected into a device
context to perform bitmap operations. For example, the PatBlt function replicates the brush in a
rectangular region within a window, and the FloodFill function replicates the brush inside an area
in a window bounded by the specified color (unlike PatBlt, FloodFill does fill nonrectangular
shapes).

The PatBlt function name (an abbreviation for pattern block transfer) implies that the function
simply replicates the brush (or pattern) until it fills a specified rectangle. However, the function is
actually much more powerful. Before replicating the brush, it combines the color data for the
pattern with the color data for the existing pixels on the video display by using a raster operation
(ROP). An ROP is a bitwise operation that is applied to the bits of color data for the replicated
brush and the bits of color data for the target rectangle on the display device. There are 256
ROPs in the Win32 API; however, the PatBlt function recognizes only those that require a pattern
and a destination (not those that require a source). The following table identifies the five most
common ROPs.

ROP Description

PATCOPY Copies the pattern to the destination bitmap.
PATINVERT Combines the destination bitmap with the pattern by

using the Boolean OR operator.
DSTINVERT Inverts the destination bitmap.
BLACKNESS Turns all output to binary zeroes.
WHITENESS Turns all output to binary ones.

The FloodFill function replicates the brush within a region bounded by a specified color.
However, unlike the PatBlt function, FloodFill does not combine the color data for the brush with
the color data for the pixels on the display; it simply sets the color of all pixels within the enclosed
region on the display to the color of the brush that is currently selected into the device context.

Bitmap Storage
Bitmaps should be saved in a file that uses the established Windows format and assigned a name
with the three-character .BMP extension. The established Windows format consists of a
BITMAPFILEHEADER structure followed by a BITMAPINFOHEADER structure. An array of
RGBQUAD structures (also called a color table) follows the BITMAPINFOHEADER structure. The
color table is followed by a second array of indexes into the color table (the actual bitmap data).

The Windows format is shown in the following illustration.

ewc msdncd, EWGraphic, bsd23485 1 /a "SDK_02.BMP"

The members of the BITMAPFILEHEADER structure identify the file; specify the size of the file, in
bytes; and specify the offset from the first byte in the header to the first byte of bitmap data. The
members of the BITMAPINFOHEADER structure specify the bitmap's width and height, in pixels;
the color format (count of color planes and color bits per pixel) of the display device on which the
bitmap was created; whether the bitmap data was compressed before storage and the type of
compression used; the number of bytes of bitmap data; the resolution of the display device on
which the bitmap was created; and the number of colors represented in the data. The RGBQUAD
structures specify the RGB intensity values for each of the colors in the device's palette. The
color-index array maps indices values from the RGBQUAD array to pixels in a rectangular region
on the display.

The following hexadecimal output shows the contents of the file REDBRICK.BMP.0000 42 4d 76 02 00 00 00 00 00 00 76 00 00 00 28 00
0010 00 00 20 00 00 00 20 00 00 00 01 00 04 00 00 00
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 80
0040 00 00 00 80 80 00 80 00 00 00 80 00 80 00 80 80
0050 00 00 80 80 80 00 c0 c0 c0 00 00 00 ff 00 00 ff
0060 00 00 00 ff ff 00 ff 00 00 00 ff 00 ff 00 ff ff
0070 00 00 ff ff ff 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 09 00
0090 00 00 00 00 00 00 11 11 01 19 11 01 10 10 09 09
00a0 01 09 11 11 01 90 11 01 19 09 09 91 11 10 09 11
00b0 09 11 19 10 90 11 19 01 19 19 10 10 11 10 09 01
00c0 91 10 91 09 10 10 90 99 11 11 11 11 19 00 09 01
00d0 91 01 01 19 00 99 11 10 11 91 99 11 09 90 09 91
00e0 01 11 11 11 91 10 09 19 01 00 11 90 91 10 09 01
00f0 11 99 10 01 11 11 91 11 11 19 10 11 99 10 09 10
0100 01 11 11 11 19 10 11 09 09 10 19 10 10 10 09 01
0110 11 19 00 01 10 19 10 11 11 01 99 01 11 90 09 19
0120 11 91 11 91 01 11 19 10 99 00 01 19 09 10 09 19
0130 10 91 11 01 11 11 91 01 91 19 11 00 99 90 09 01
0140 01 99 19 01 91 10 19 91 91 09 11 99 11 10 09 91
0150 11 10 11 91 99 10 90 11 01 11 11 19 11 90 09 11
0160 00 19 10 11 01 11 99 99 99 99 99 99 99 99 09 99
0170 99 99 99 99 99 99 00 00 00 00 00 00 00 00 00 00
0180 00 00 00 00 00 00 90 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 99 11 11 11 19 10 19 19 11 09
01a0 10 90 91 90 91 00 91 19 19 09 01 10 09 01 11 11
01b0 91 11 11 11 10 00 91 11 01 19 10 11 10 01 01 11
01c0 90 11 11 11 91 00 99 09 19 10 11 90 09 90 91 01
01d0 19 09 91 11 01 00 90 10 19 11 00 11 11 00 10 11
01e0 01 10 11 19 11 00 90 19 10 91 01 90 19 99 00 11
01f0 91 01 11 01 91 00 99 09 09 01 10 11 91 01 10 91
0200 99 11 10 90 91 00 91 11 00 10 11 01 10 19 19 09
0210 10 00 99 01 01 00 91 01 19 91 19 91 11 09 10 11
0220 00 91 00 10 90 00 99 01 11 10 09 10 10 19 09 01
0230 91 90 11 09 11 00 90 99 11 11 11 90 19 01 19 01
0240 91 01 01 19 09 00 91 10 11 91 99 09 09 90 11 91
0250 01 19 11 11 91 00 91 19 01 00 11 00 91 10 11 01
0260 11 11 10 01 11 00 99 99 99 99 99 99 99 99 99 99
0270 99 99 99 99 99 90The following table shows the data bytes associated with the structures in a bitmap file.

Structure Corresponding bytes

BITMAPFILEHEADER 0x00 - 0x0D
BITMAPINFOHEADER 0x0E - 0x31
RGBQUAD array 0x32 - 0x75
Color-index array 0x76 - 0x275

Using Bitmaps
· Capturing an image
· Scaling an image
· Storing an image

Capturing an Image
You can use a bitmap to capture an image, and you can store the captured image in memory,
display it at a different location in your application's window, or display it in another window.

In some cases, you may want your application to capture images and store them only temporarily.
For example, when you scale or "zoom" a picture created in a drawing application, the application
must temporarily save the normal view of the image and display the zoomed view. Later, when the
user selects the normal view, the application must replace the zoomed image with a copy of the
normal view that it temporarily saved.

To store an image temporarily, your application must call CreateCompatibleDC to create a DC
that is compatible with the current window DC. After you create a compatible DC, you create a
bitmap with the appropriate dimensions by calling the CreateCompatibleBitmap function and
then select it into this device context by calling the SelectObject function.

After the compatible device context is created and the appropriate bitmap has been selected into
it, you can capture the image. The Win32 API provides the BitBlt function to capture images. This
function performs a bit block transfer ¾ that is, it copies data from a source bitmap into a
destination bitmap. Because it copies data from bitmaps, you'd expect that two arguments to this
function would be bitmap handles; however, this is not the case. Instead, BitBlt receives handles
that identify two device contexts and copies the bitmap data from a bitmap selected into the
source DC into a bitmap selected into the target DC. In this case, the target DC is the compatible
DC, so when BitBlt completes the transfer, the image has been stored in memory. To redisplay
the image, call BitBlt a second time, specifying the compatible DC as the source DC and a
window (or printer) DC as the target DC.

The following example code, from an application that captures an image of the entire desktop,
creates a compatible device context and a bitmap with the appropriate dimensions, selects the
bitmap into the compatible DC, and then copies the image using the BitBlt function./*
* Create a normal DC and a memory DC for the entire screen. The
* normal DC provides a "snapshot" of the screen contents. The
* memory DC keeps a copy of this "snapshot" in the associated
* bitmap.
*/
hdcScreen = CreateDC("DISPLAY", NULL, NULL, NULL);
hdcCompatible = CreateCompatibleDC(hdcScreen);
/* Create a compatible bitmap for hdcScreen. */
hbmScreen = CreateCompatibleBitmap(hdcScreen,
GetDeviceCaps(hdcScreen, HORZRES),
GetDeviceCaps(hdcScreen, VERTRES));
if (hbmScreen == 0)

errhandler("hbmScreen", hwnd);
/* Select the bitmaps into the compatible DC. */
if (!SelectObject(hdcCompatible, hbmScreen))

errhandler("Compatible Bitmap Selection", hwnd);
/* Hide the application window. */
ShowWindow(hwnd, SW_HIDE);
/*
* Copy color data for the entire display into a
* bitmap that is selected into a compatible DC.
*/
if (!BitBlt(hdcCompatible,

0,0,
bmp.bmWidth, bmp.bmHeight,
hdcScreen,
0,0,
SRCCOPY))

errhandler("Screen to Compat Blt Failed", hwnd);
/* Redraw the application window. */
ShowWindow(hwnd, SW_SHOW);

Scaling an Image
Some applications scale images ¾ that is, they display zoomed or reduced views of an image.
For example, a drawing application may provide a zoom feature that enables the user to view and
edit a drawing on a pixel-by-pixel basis.

Applications scale images by calling the StretchBlt function. Like the BitBlt function, StretchBlt
copies bitmap data from a bitmap in a source DC into a bitmap in a target DC. However, unlike
the BitBlt function, StretchBlt scales the image based on the specified dimensions of the source
and target rectangles. If the source rectangle is larger than the target rectangle, the resultant
image will appear to have shrunk; if the source rectangle is smaller than the target rectangle, the
resultant image will appear to have expanded.

If the target rectangle is smaller than the source rectangle, StretchBlt removes color data from
the image according to a specified stretch mode as shown in the following table.

Stretch Mode Method

BLACKONWHITE Performs a logical AND operation on the color
data for the eliminated pixels and the color data
for the remaining pixels.

WHITEONBLACK Performs a logical OR operation on the color data
for the eliminated pixels and the color data for the
remaining pixels.

COLORONCOLOREliminates the color data of the deleted pixels
completely.

HALFTONE Approximates the original (source) color data in
the destination.

You set the stretch mode by calling the SetStretchBltMode function.

The following example code is taken from an application that displays an image either at its
original size or a twice the original size. (This application uses the default stretch mode.)hdcScaled = CreateCompatibleDC(hdcScreen);

hbmScaled = CreateCompatibleBitmap(hdcScreen,
GetDeviceCaps(hdcScreen, HORZRES) * 2,
GetDeviceCaps(hdcScreen, VERTRES) * 2);

if (hbmScaled == 0)
errhandler("hbmScaled", hwnd);
/* Select the bitmaps into the compatible DC. */
if (!SelectObject(hdcScaled, hbmScaled))
errhandler("Scaled Bitmap Selection", hwnd);

case WM_COMMAND:/* message: command from application menu */
switch(wParam) {
case IDM_SCALEX1:
if (fBlt){
fScaled = FALSE;
hdcWin = GetDC(hwnd);
BitBlt(hdcWin,

0,0,
bmp.bmWidth, bmp.bmHeight,
hdcCompatible,
0,0,
SRCCOPY);
ReleaseDC(hwnd, hdcWin);
}
break;
case IDM_SCALEX2:
if (fBlt){
fScaled = TRUE;
StretchBlt(hdcScaled,
0, 0,
bmp.bmWidth * 2, bmp.bmHeight * 2,
hdcCompatible,
0, 0,
bmp.bmWidth, bmp.bmHeight,
SRCCOPY);
hdcWin = GetDC(hwnd);
BitBlt(hdcWin,

0,0,
bmp.bmWidth, bmp.bmHeight,
hdcScaled,
0,0,
SRCCOPY);
ReleaseDC(hwnd, hdcWin);
}
break;

Storing an Image
Many applications store images permanently as files. For example, drawing applications store
pictures, spreadsheet applications store charts, CAD applications store drawings, and so on.

If you are writing an application that will store a bitmapped image in a file, you should use the
Windows file format described in Bitmap Storage. In order to store a bitmap in this format, you
must initialize a BITMAPINFO structure (consisting of a BITMAPFILEHEADER structure and an
array of RGBQUAD structures), as well as an array of palette indices.

The following example code defines a function that allocates memory for and initializes members
within a BITMAPINFOHEADER structure.PBITMAPINFO CreateBitmapInfoStruct(HWND hwnd, HBITMAP hBmp) {

BITMAP bmp;
PBITMAPINFO pbmi;
WORD cClrBits;
/* Retrieve the bitmap's color format, width, and height. */
if (!GetObject(hBmp, sizeof(BITMAP), (LPSTR)&bmp))
errhandler("GetObject", hwnd);

/* Convert the color format to a count of bits. */
cClrBits = (WORD)(bmp.bmPlanes * bmp.bmBitsPixel);
if (cClrBits == 1)
cClrBits = 1;
else if (cClrBits <= 4)
cClrBits = 4;
else if (cClrBits <= 8)
cClrBits = 8;
else if (cClrBits <= 16)
cClrBits = 16;
else if (cClrBits <= 24)
cClrBits = 24;
else
cClrBits = 32;
/*

* Allocate memory for the BITMAPINFO structure. (This structure
* contains a BITMAPINFOHEADER structure and an array of RGBQUAD data
* structures.)
*/

if (cClrBits != 24)
pbmi = (PBITMAPINFO) LocalAlloc(LPTR,

sizeof(BITMAPINFOHEADER) +
sizeof(RGBQUAD) * (2^cClrBits));

/*
* There is no RGBQUAD array for the 24-bit-per-pixel format.
*/

else
pbmi = (PBITMAPINFO) LocalAlloc(LPTR,

sizeof(BITMAPINFOHEADER));

/* Initialize the fields in the BITMAPINFO structure. */
pbmi->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
pbmi->bmiHeader.biWidth = bmp.bmWidth;
pbmi->bmiHeader.biHeight = bmp.bmHeight;
pbmi->bmiHeader.biPlanes = bmp.bmPlanes;
pbmi->bmiHeader.biBitCount = bmp.bmBitsPixel;
if (cClrBits < 24)
pbmi->bmiHeader.biClrUsed = 2^cClrBits;

/* If the bitmap is not compressed, set the BI_RGB flag. */
pbmi->bmiHeader.biCompression = BI_RGB;
/*

* Compute the number of bytes in the array of color
* indices and store the result in biSizeImage.
*/

pbmi->bmiHeader.biSizeImage = (pbmi->bmiHeader.biWidth + 7) /8
* pbmi->bmiHeader.biHeight
* cClrBits;
/*

* Set biClrImportant to 0, indicating that all of the
* device colors are important.
*/

pbmi->bmiHeader.biClrImportant = 0;
return pbmi;

}The following example code defines a function that initializes the remaining structures, retrieves
the array of palette indices, opens the file, copies the data, and closes the file.void CreateBMPFile(HWND hwnd, LPTSTR pszFile, PBITMAPINFO pbi,

HBITMAP hBMP, HDC hDC)
{

HANDLE hf; /* file handle */
BITMAPFILEHEADER hdr; /* bitmap file-header */
PBITMAPINFOHEADER pbih;/* bitmap info-header */
LPBYTE lpBits; /* memory pointer */
DWORD dwTotal; /* total count of bytes */
DWORD cb; /* incremental count of bytes */
BYTE *hp; /* byte pointer */
DWORD dwTmp;

pbih = (PBITMAPINFOHEADER) pbi;
lpBits = (LPBYTE) GlobalAlloc(GMEM_FIXED, pbih->biSizeImage);
if (!lpBits)
errhandler("GlobalAlloc", hwnd);
/*

* Retrieve the color table (RGBQUAD array) and the bits
* (array of palette indices) from the DIB.
*/

if (!GetDIBits(hDC, hBMP, 0, (WORD) pbih->biHeight,
lpBits, pbi, DIB_RGB_COLORS))
errhandler("GetDIBits", hwnd);
/* Create the .BMP file. */
hf = CreateFile(pszFile,
GENERIC_READ | GENERIC_WRITE,
(DWORD) 0,
(LPSECURITY_ATTRIBUTES) NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
(HANDLE) NULL);
if (hf == INVALID_HANDLE_VALUE)
errhandler("CreateFile", hwnd);
hdr.bfType = 0x4d42; /* 0x42 = "B" 0x4d = "M" */
/* Compute the size of the entire file. */
hdr.bfSize = (DWORD) (sizeof(BITMAPFILEHEADER) +

pbih->biSize + pbih->biClrUsed
* sizeof(RGBQUAD) + pbih->biSizeImage);
hdr.bfReserved1 = 0;
hdr.bfReserved2 = 0;
/* Compute the offset to the array of color indices. */
hdr.bfOffBits = (DWORD) sizeof(BITMAPFILEHEADER) +

pbih->biSize + pbih->biClrUsed
* sizeof (RGBQUAD);

/* Copy the BITMAPFILEHEADER into the .BMP file. */
if (!WriteFile(hf, (LPVOID) &hdr, sizeof(BITMAPFILEHEADER),

(LPDWORD) &dwTmp, (LPOVERLAPPED) NULL))
errhandler("WriteFile", hwnd);
/* Copy the BITMAPINFOHEADER and RGBQUAD array into the file. */
if (!WriteFile(hf, (LPVOID) pbih, sizeof(BITMAPINFOHEADER)
+ pbih->biClrUsed * sizeof (RGBQUAD),
(LPDWORD) &dwTmp, (LPOVERLAPPED) NULL))
errhandler("WriteFile", hwnd);
/* Copy the array of color indices into the .BMP file. */
dwTotal = cb = pbih->biSizeImage;
hp = lpBits;
while (cb > MAXWRITE) {

if (!WriteFile(hf, (LPSTR) hp, (int) MAXWRITE,
(LPDWORD) &dwTmp, (LPOVERLAPPED) NULL))
errhandler("WriteFile", hwnd);
cb-= MAXWRITE;
hp += MAXWRITE;
}
if (!WriteFile(hf, (LPSTR) hp, (int) cb,
(LPDWORD) &dwTmp, (LPOVERLAPPED) NULL))

errhandler("WriteFile", hwnd);
/* Close the .BMP file. */
if (!CloseHandle(hf))

errhandler("CloseHandle", hwnd);
/* Free memory. */
GlobalFree((HGLOBAL)lpBits);

}

Bitmap Reference
The following functions, structures, and macros are used with bitmaps.

Bitmap Functions
The following functions are used with bitmaps.
BitBlt
CreateBitmap
CreateBitmapIndirect
CreateCompatibleBitmap
CreateDIBitmap
CreateDIBSection
CreateDiscardableBitmap
ExtFloodFill
FloodFill
GetBitmapBits
GetBitmapDimensionEx
GetDIBColorTable
GetDIBits
GetPixel
GetStretchBltMode
LoadBitmap
MaskBlt
PatBlt
PlgBlt
SetBitmapBits
SetBitmapDimensionEx
SetDIBColorTable
SetDIBits
SetDIBitsToDevice
SetPixel
SetPixelV
SetStretchBltMode
StretchBlt

StretchDIBits

Bitmap Structures
The following structures are used with bitmaps.
BITMAP
BITMAPCOREHEADER
BITMAPCOREINFO
BITMAPFILEHEADER
BITMAPINFO
BITMAPINFOHEADER
COLORADJUSTMENT
DIBSECTION
RGBQUAD
RGBTRIPLE

SIZE

Bitmap Macros
The following macro is used with bitmaps

MAKEROP4

BrushesA brush is a graphics tool that a Microsoft® Win32®-based application uses to paint the interior of
polygons, ellipses, and paths. Drawing applications use brushes to paint shapes; word processing
applications use brushes to paint rules; computer-aided design (CAD) applications use brushes to
paint the interiors of cross-section views; and spreadsheet applications use brushes to paint the
sections of pie charts and the bars in bar graphs.

About Brushes
There are two types of brushes: logical and physical. A logical brush is a description of the ideal
bitmap that an application would use to paint shapes. A physical brush is the actual bitmap that a
device driver creates based on an application's logical-brush definition. For more information
about bitmaps, see Bitmaps.

When an application calls one of the functions that create a brush, it retrieves a handle that
identifies a logical brush. When the application passes this handle to the SelectObject function,
the device driver for the corresponding display or printer creates the physical brush.

Brush Origin
When an application calls a drawing function to paint a shape, Windows positions a brush at the
start of the paint operation and maps a pixel in the brush bitmap to the window origin of the client
area. (The window origin is the upper-left corner of the window's client area.) The coordinates of
the pixel that Windows maps are called the brush origin. The default brush origin is located in the
upper-left corner of the brush bitmap, at the coordinates (0,0). Windows then copies the brush
across the client area, forming a pattern that is as tall as the bitmap. The copy operation
continues, row by row, until the entire client area is filled. However, the brush pattern is visible
only within the boundaries of the specified shape.

There are instances when the default brush origin should not be used. For example, it may be
necessary for an application to use the same brush to paint the backgrounds of its parent and
child windows and blend a child window's background with that of the parent window. To do this,
the application should reset the brush origin by calling the SetBrushOrgEx function and shifting
the origin the required number of pixels. (An application can retrieve the current brush origin by
calling the GetBrushOrgEx function.)

The following illustration shows a five-pointed star filled by using an application-defined brush.
The illustration shows a zoomed image of the brush, as well as the location to which it was
mapped at the beginning of the paint operation.

ewc msdncd, EWGraphic, bsd23486 0 /a "SDK_01.BMP"

Logical Brush Types
There are four types of logical brushes (solid, stock, hatch, and pattern) as shown in the following
illustration.

ewc msdncd, EWGraphic, bsd23486 1 /a "SDK_02.BMP"

The stock and hatch types each have several predefined brushes, as described in Hatch Brush.

The CreateBrushIndirect function creates a logical brush with a specified style, color, and
pattern.

Solid Brush
A solid brush is a logical brush that contains 64 pixels of the same color. An application can create
a solid logical brush by calling the CreateSolidBrush function, specifying the color of the brush
required. After creating the solid brush, the application can select it into its device context and use
it to paint filled shapes.

Stock Brush
There are seven predefined logical stock brushes maintained by the graphics device interface
(GDI). There are also 21 predefined logical stock brushes maintained by the window management
interface (USER).

The following rectangles were painted by using the seven predefined stock brushes.

ewc msdncd, EWGraphic, bsd23486 2 /a "SDK_03.BMP"

An application can retrieve a handle identifying one of the seven stock brushes by calling the
GetStockObject function, specifying the brush type.

The 21 stock brushes maintained by the window management interface correspond to the colors
of window elements such as menus, scroll bars, and buttons. An application can obtain a handle
identifying one of these brushes by calling the GetSysColorBrush function and specifying a
system-color value. An application can retrieve the color corresponding to a particular window
element by calling the GetSysColor function. An application can set the color corresponding to a
window element by calling the SetSysColors function.

Hatch Brush
There are six predefined logical hatch brushes maintained by GDI. The following rectangles were
painted by using the six predefined hatch brushes.

ewc msdncd, EWGraphic, bsd23486 3 /a "SDK_04.BMP"

An application can create a hatch brush by calling the CreateHatchBrush function, specifying
one of the six hatch styles.

Pattern Brush
A pattern (or custom) brush is created from an application-defined bitmap or device-independent
bitmap (DIB). The following rectangles were painted by using different pattern brushes.

ewc msdncd, EWGraphic, bsd23486 4 /a "SDK_05.BMP"

To create a logical pattern brush, an application must first create a bitmap. After creating the
bitmap, the application can create the logical pattern brush by calling the CreatePatternBrush or
CreateDIBPatternBrushPt function, supplying a handle that identifies the bitmap (or DIB). The
brushes that appear in the preceding illustration were created from monochrome bitmaps. For a
description of bitmaps, DIBs, and the functions that create them, see Bitmaps.

Using Brushes
You can use a brush to paint the interior of virtually any shape by using a GDI function. This
includes the interiors of rectangles, ellipses, polygons, and paths. Depending on the requirements
of your application, you can use a solid brush of a specified color, a stock brush, a hatch brush, or
a pattern brush.

This section contains code samples that demonstrate the creation of a custom brush dialog box.
The dialog box contains a grid that represents the bitmap Windows uses as a brush. A user can
use this grid to create a pattern-brush bitmap and then view the custom pattern by clicking the
Test Pattern button.

The following illustration shows a pattern created by using the Custom Brush dialog box.

ewc msdncd, EWGraphic, bsd23486 5 /a "SDK_06.BMP"

To display a dialog box, you must first create a dialog box template. The following dialog box
template defines the Custom Brush dialog box.CustBrush DIALOG 6, 18, 160, 118
STYLE WS_DLGFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Custom Brush"
FONT 8, "MS Sans Serif"
BEGIN

CONTROL "", IDD_GRID, "Static", SS_BLACKFRAME |
WS_CHILD, 3, 2, 83, 79

CONTROL "", IDD_RECT, "Static", SS_BLACKFRAME |
WS_CHILD, 96, 11, 57, 28

PUSHBUTTON "Test Pattern", IDD_PAINTRECT, 96, 47, 57, 14
PUSHBUTTON "OK", IDD_OK, 29, 98, 40, 14
PUSHBUTTON "Cancel", IDD_CANCEL, 92, 98, 40, 14

ENDThe Custom Brush dialog box contains five controls: a bitmap-grid window, a pattern-viewing
window, and three push buttons, labeled Test Pattern, OK and Cancel. The Test Pattern push
button enables the user to view the pattern. The dialog box template specifies the overall
dimensions of the dialog box window, assigns a value to each control, specifies the location of
each control, and so forth. (For more information about creating dialog box templates, see Dialog
Boxes.)

The control values in the dialog box template are constants that have been defined as follows in
the application's header file.#define IDD_GRID 120
#define IDD_RECT 121
#define IDD_PAINTRECT 122
#define IDD_OK 123
#define IDD_CANCEL 124After you create a dialog box template and include it in the application's resource-definition file,

you must write a dialog procedure. This procedure processes messages that Windows sends to
the dialog box. The following excerpt from an application's source code shows the dialog box
procedure for the Custom Brush dialog box and the two application-defined functions it calls.int APIENTRY BrushDlgProc(HWND hdlg, WORD message, LONG wParam,
LONG lParam)
{

static HWND hwndGrid; /* grid-window control*/
static HWND hwndBrush; /* pattern-brush control */
static RECT rctGrid; /* grid-window rectangle */
static RECT rctBrush; /* pattern-brush rectangle */
static UINT bBrushBits[8]; /* bitmap bits */
static RECT rect[64]; /* grid-cell array */
static HBITMAP hbm; /* bitmap handle */
HBRUSH hbrush; /* current brush */
HBRUSH hbrushOld; /* default brush */
HRGN hrgnCell; /* test-region handle */
HDC hdc;/* DC handle*/
int x, y, deltaX, deltaY; /* drawing coordinates*/
POINTS ptlHit; /* mouse coordinates */
int i; /* count variable*/
switch (message)
{
case WM_INITDIALOG:
/*
* Retrieve a window handle for the grid-window and
* pattern-brush controls
*/
hwndGrid = GetDlgItem(hdlg, IDD_GRID);
hwndBrush = GetDlgItem(hdlg, IDD_RECT);
/* Initialize the array of bits that defines the
* custom brush pattern with the value 1 to produce a
* solid white brush).
*/
for (i=0; i<8; i++)
bBrushBits[i] = 0xFF;
/*
* Retrieve dimensions for the grid-window and pattern-brush
* controls.
*/
GetClientRect(hwndGrid, &rctGrid);
GetClientRect(hwndBrush, &rctBrush);
/* Determine the width and height of a single cell. */
deltaX = (rctGrid.right - rctGrid.left)/8;
deltaY = (rctGrid.bottom - rctGrid.top)/8;
/* Initialize the array of cell rectangles. */
for (y=rctGrid.top, i=0; y < rctGrid.bottom; y += deltaY){
for (x=rctGrid.left; x < (rctGrid.right - 8) && i < 64;

x += deltaX, i++) {
rect[i].left = x; rect[i].top = y;
rect[i].right = x + deltaX;
rect[i].bottom = y + deltaY;
}
}
return FALSE;

case WM_PAINT:

/* Draw the grid. */
hdc = GetDC(hwndGrid);
for (i=rctGrid.left; i<rctGrid.right;
i+=(rctGrid.right - rctGrid.left)/8){
MoveToEx(hdc, i, rctGrid.top, NULL);
LineTo(hdc, i, rctGrid.bottom);
}
for (i=rctGrid.top; i<rctGrid.bottom;
i+=(rctGrid.bottom - rctGrid.top)/8){
MoveToEx(hdc, rctGrid.left, i, NULL);
LineTo(hdc, rctGrid.right, i);
}
ReleaseDC(hwndGrid, hdc);
return FALSE;

case WM_LBUTTONDOWN:
/* Store the mouse coordinates in a POINT structure. */
ptlHit = MAKEPOINTS((POINTS FAR *)lParam);
/*
* Create a rectangular region with dimensions and
* coordinates that correspond to those of the grid
* window.
*/
hrgnCell = CreateRectRgn(rctGrid.left, rctGrid.top,
rctGrid.right, rctGrid.bottom);

/* Retrieve a window DC for the grid window. */
hdc = GetDC(hwndGrid);
/* Select the region into the DC. */
SelectObject(hdc, hrgnCell);
/* Test for a button click in the grid-window rectangle. */
if (PtInRegion(hrgnCell, ptlHit.x, ptlHit.y)){
/*
* A button click occurred in the grid-window rectangle;
* isolate the cell in which it occurred.
*/
for(i=0; i<64; i++){
DeleteObject(hrgnCell);
hrgnCell = CreateRectRgn(rect[i].left, rect[i].top,
rect[i].right, rect[i].bottom);
if (PtInRegion(hrgnCell, ptlHit.x, ptlHit.y)){
InvertRgn(hdc, hrgnCell);
/* Set the appropriate brush bits. */
if (i % 8 == 0)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x80;
else if (i % 8 == 1)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x40;
else if (i % 8 == 2)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x20;
else if (i % 8 == 3)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x10;
else if (i % 8 == 4)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x08;
else if (i % 8 == 5)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x04;
else if (i % 8 == 6)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x02;
else if (i % 8 == 7)

bBrushBits[i/8] = bBrushBits[i/8] ^ 0x01;
/* Exit the "for" loop after the bit is set. */

break;
} /* end if */
} /* end for */
} /* end if */
/* Release the DC for the control. */
ReleaseDC(hwndGrid, hdc);
return TRUE;

case WM_COMMAND:
switch (wParam){

case IDD_PAINTRECT:
hdc = GetDC(hwndBrush);
/* Create a monochrome bitmap. */
hbm = CreateBitmap(8, 8, 1, 1,
(LPBYTE)bBrushBits);
/* Select the custom brush into the DC. */
hbrush = CreatePatternBrush(hbm);
hbrushOld = SelectObject(hdc, hbrush);
/* Use the custom brush to fill the rectangle. */
Rectangle(hdc, rctBrush.left, rctBrush.top,
rctBrush.right, rctBrush.bottom);
/* Clean up memory. */
SelectObject(hdc, hbrushOld);
DeleteObject(hbrush);
DeleteObject(hbm);
ReleaseDC(hwndBrush, hdc);

return TRUE;
case IDD_OK:
case IDD_CANCEL:
EndDialog(hdlg, TRUE);
return TRUE;
} /* end switch */
break;
default:
return FALSE;
}

}

int GetStrLngth(LPTSTR cArray)
{

int i = 0;
while (cArray[i++] != 0);
return i-1;

}
DWORD RetrieveWidth(LPTSTR cArray, int iLength)
{

int i, iTmp;
double dVal, dCount;
dVal = 0.0;
dCount = (double)(iLength-1);
for (i=0; i<iLength; i++){
iTmp = cArray[i] - 0x30;
dVal = dVal + (((double)iTmp) * pow(10.0, dCount--));
}
return (DWORD)dVal;

}The dialog box procedure for the Custom Brush dialog box processes four messages, as
described in the following table.

Message Action

WM_INITDIALOG Retrieves a window handle and dimensions
for the grid-window and pattern-brush
controls, computes the dimensions of a single
cell in the grid-window control, and initializes
an array of grid-cell coordinates.

WM_PAINT Draws the grid pattern in the grid-window
control.

WM_LBUTTONDOWN Determines whether the cursor is within the
grid-window control when the user presses
the left mouse button. If so, the dialog box
procedure inverts the appropriate grid cell
and records the state of that cell in an array
of bits that is used to create the bitmap for
the custom brush.

WM_COMMAND Processes input for the three push button
controls. If the user presses the Test Pattern
button, the dialog box procedure paints the
Test Pattern control with the new custom
brush pattern. If the user presses the OK or
Cancel button, the dialog box procedure
performs actions accordingly.

For more information about messages and message processing, see Messages and
Message Queues.

After you write the dialog box procedure, export it in the module-definition file, include the function
definition for the procedure in the application's header file, and then call the dialog box procedure
at the appropriate point in the application.

The following excerpt from the module-definition file shows how the dialog box procedure for the
Custom Brush is exported.; Export all functions that are called by a Windows routine.
EXPORTS

MainWndProc @1 ; name of window processing function
BrushDlgProc @2 ; name of custom-brush processing functionThe following excerpt from the application's header file shows the function definition for the dialog

box procedure and the two functions it calls.int APIENTRY BrushDlgProc(HWND hdlg, WORD message, LONG wParam,
LONG lParam);

int GetStrLngth(LPTSTR cArray);
DWORD RetrieveWidth(LPTSTR cArray, int iLength);Finally, the following code shows how the dialog box procedure is called from the application's

source-code file. In this example, the dialog box procedure is called when the user chooses an
option from the application's menu.switch (message)
{

case WM_CREATE:
break;
case WM_COMMAND:// command from application menu
switch(wParam)
{
case IDM_CUSTOMBRUSH:
DialogBox((HANDLE)GetModuleHandle(NULL),
(LPTSTR)"CustBrush", hWnd,
(DLGPROC)BrushDlgProc);
break;

Brush Reference
The following functions and structures are used with brushes.

Brush Functions
The following functions are used with brushes.
CreateBrushIndirect
CreateDIBPatternBrushPt
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
GetBrushOrgEx
GetSysColorBrush

SetBrushOrgEx

Obsolete Functions
CreateDIBPatternBrush

FixBrushOrgEx

Brush Structures
The following structure is used with brushes.

LOGBRUSH

ClippingClipping is the process of limiting output to a region or path within the client area of an
application's window.

About Clipping
Clipping is used by Microsoft® Win32®-based applications in a variety of ways. Word processing
and spreadsheet applications clip keyboard input to keep it from appearing in the margins of a
page or spreadsheet. Computer-aided design (CAD) and drawing applications clip graphics output
to keep it from overwriting the edges of a drawing or picture.

A clipping region is a region with edges that are either straight lines or curves. A clip path is a
region with edges that are straight lines, Bézier curves, or combinations of both. For more
information about regions, see Regions. For more information about paths, see Paths.

Clipping Regions
A clipping region is one of the graphic objects that an application can select into a device context
(DC). It is typically rectangular. Some device contexts provide a predefined or default clipping
region while others do not. For example, if you obtain a device context handle from the
BeginPaint function, the DC contains a predefined rectangular clipping region that corresponds to
the invalid rectangle that requires repainting. However, if you obtain a device context handle by
calling the CreateDC or GetDC function, the DC does not contain a default clipping region. For
more information about device contexts returned by the BeginPaint function, see Painting and
Drawing. For more information about device contexts returned by the CreateDC and GetDC
functions, see Device Contexts.

Applications can perform a variety of operations on clipping regions. Some of these operations
require a handle identifying the region and some do not. For example, an application can perform
the following operations directly on a device context's clipping region:

· Determine whether graphics output appears within the region's borders by passing
coordinates of the corresponding line, arc, bitmap, text, or filled shape to the PtVisible
function.

· Determine whether part of the client area intersects a region by calling the RectVisible
function.

· Move the existing region by a specified offset by calling the OffsetClipRgn function.
· Exclude a rectangular part of the client area from the current clipping region by calling the

ExcludeClipRect function.
· Combine a rectangular part of the client area with the current clipping region by calling the

IntersectClipRect function.
After obtaining a handle identifying the clipping region, an application can perform any operation
that is common with regions; for example:

· Combining a copy of the current clipping region with a second region by calling the
CombineRgn function.

· Compare a copy of the current clipping region to a second region by calling the EqualRgn
function.

· Determine whether a point lies within the interior of a copy of the current clipping region
by calling the PtInRegion function.

Clip Paths
Like a clipping region, a clip path is another graphics object that an application can select into a
device context. Unlike a clipping region, a clip path is always created by an application and it is
used for clipping to one or more irregular shapes. For example, an application can use the lines
and curves that form the outlines of characters in a string of text to define a clip path.

To create a clip path, it's first necessary to create a path that describes the required irregular
shape. Paths are created by calling the appropriate graphics device interface (GDI) drawing
functions after calling the BeginPath function and before calling the EndPath function. This
collection of functions is called a path bracket. For more information about paths and path
brackets, see Paths.

After the path is created, it can be converted to a clip path by calling the SelectClipPath function,
identifying a device context, and specifying a usage mode. The usage mode determines how
Windows combines the new clip path with the device context's original clipping region. The
following table describes the usage modes.

Mode Description

RGN_AND The clip path includes the intersection (overlapping
areas) of the device context's clipping region and the
current path.

RGN_COPY The clip path is the current path.
RGN_DIFF The clip path includes the device context's clipping

region with any intersecting parts of the current path
excluded.

RGN_OR The clip path includes the union (combined areas) of
the device context's clipping region and the current
path.

RGN_XOR The clip path includes the union of the device context's
clipping region and the current path but excludes the
intersection.

Using Clipping
This section contains example code that shows how to generate a clip path consisting of a
character string. The example creates a logical font and uses it to draw a string within a clip path,
then fills the path by drawing horizontal and vertical lines.
/*
* DoClipPat - Draws a clip path using the specified string
* Return value - TRUE if successful; FALSE otherwise
* lplf - address of a LOGFONT structure that defines the font to
* use to draw the clip path
* lpsz - address of a string to use for the clip path
*/
BOOL DoClipPath(LPLOGFONT lplf, LPSTR lpsz)
{

LOGFONT lf; /* logical font structure*/
HFONT hfont; /* new logical font handle */
HFONT hfontOld;/* original logical font handle */
HDC hdc; /* display DC handle*/
int nXStart, nYStart; /* drawing coordinates */
RECT rc; /* rectangle structure for painting window */
SIZE sz; /* size structure that receives text extents */
int nStrLen; /* length of the string */
int i; /* loop counter*/
/* Retrieve a cached DC for the window. */
hdc = GetDC(hwnd);
/* Erase the current window contents. */
GetClientRect(hwnd, &rc);
FillRect(hdc, &rc, GetStockObject(WHITE_BRUSH));
/*

* Use the specified font to create a logical font and select it
* into the DC.
*/

hfont = CreateFontIndirect(lplf);
if (hfont == NULL)
return FALSE;
hfontOld = SelectObject(hdc, hfont);
/* Create a clip path. */
nStrLen = lstrlen(lpsz);
BeginPath(hdc);
TextOut(hdc, nXStart, nYStart, lpsz, nStrLen);
EndPath(hdc);
SelectClipPath(hdc, RGN_DIFF);
/*

* Retrieve the dimensions of the rectangle surrounding
* the text.
*/

GetTextExtentPoint32(hdc, lpsz, nStrLen, &sz);
/* Draw horizontal lines through the clip path. */
for (i = nYStart + 1; i < (nYStart + sz.cy); i += 3) {

MoveToEx(hdc, nXStart, i, (LPPOINT) NULL);
LineTo(hdc, (nXStart + sz.cx), i);
}
/* Draw vertical lines through the clip path. */
for (i = nXStart + 1; i < (nXStart + sz.cx); i += 3){

MoveToEx(hdc, i, nYStart, (LPPOINT) NULL);
LineTo(hdc, i, (nYStart + sz.cy));
}
/* Select the original font into the DC and release the DC. */
SelectObject(hdc, hfontOld);
DeleteObject(hfont);
ReleaseDC(hwnd, hdc);
return TRUE;

}For an example that demonstrates how an application creates a rectangular clipping region, see
Regions.

Clipping Functions
Following are the functions that can be used with clipping.
ExcludeClipRect
ExtSelectClipRgn
GetClipBox
GetClipRgn
GetMetaRgn
IntersectClipRect
OffsetClipRgn
PtVisible
RectVisible
SelectClipPath
SelectClipRgn

SetMetaRgn

ColorsColor is an important element in the pictures and images generated by Windows-based
applications. This overview describes how Windows-based applications can manage and use
colors with pens, brushes, text, or bitmaps.

About Colors
Color can be used to communicate ideas, show relationships between items, and improve the
appeal and quality of output. Windows enables applications to discover the color capabilities of
given devices and to choose from the available colors those that best suit their needs.

Although not described in this overview, image color matching is an important feature of color
management that helps ensure that color images look the same whether displayed on screen or
printed on paper. For more information, see Image Color Matching.

Color Basics
The color capabilities of devices, such as displays and printers, can range from monochrome to
thousands of colors. Because an application may need to generate output for devices throughout
this range, it should be prepared be prepared to handle varying color capabilities.

An application can discover the number of colors available for a given device by using the
GetDeviceCaps function to retrieve the NUMCOLORS value. This value specifies the count of
colors available for use by the application. Usually, this count corresponds to a physical property
of the output device, such as the number of inks in the printer or the number of distinct color
signals the display adapter can transmit to the monitor.

Although the NUMCOLORS value specifies the count of colors, it does not identify what the
available colors are. An application can discover what colors are available by enumerating all
pens having the PS_SOLID type. Because the device driver that supports a given device usually
has a full range of solid pens and because Windows requires that solid pens have only colors that
the device can generate, enumerating these pens is often equivalent to enumerating the colors.
An application can enumerate the pens by using the EnumObjects function.

Color Values
By default, Windows defines color as a combination of three primary colors ¾ red, green, and
blue. Windows identifies a color by giving it a color value (sometimes called an RGB triplet), which
consists of three 8-bit values specifying the intensities of its color components. Black has the
minimum intensity for red, green, and blue, so the color value for black is (0, 0, 0). White has the
maximum intensity for red, green, and blue, so its color value is (255, 255, 255).
Note If image color matching is enabled, the definition of color and the meaning of a color value
depends on the type of color space that is currently set for the device context.
Windows and applications use parameters and variables having the COLORREF type to pass and
store color values. For example, the EnumObjects function identifies the color of each pen by
setting the lopnColor member in a LOGPEN structure to a color value. Applications can extract
the individual values of the red, green, and blue components from a color value by using the
GetRValue, GetGValue, and GetBValue macros, respectively. Applications can create a color
value from individual component values by using the RGB macro. When creating or examining a
logical palette, an application uses the RGBQUAD structure to define color values and to examine
individual component values.

Color Approximations and Dithering
Although an application can use color without regard to the color capabilities of the device, the
resulting output may not be as informative and pleasing as output for which color is carefully
chosen. Few, if any, devices guarantee an exact match for every possible color value; therefore, if
an application requests a color that the device cannot generate, Windows approximates that color
by using a color that the device can generate. For example, if an application attempts to create a
red pen for a black and white printer, it will receive a black pen instead ¾ Windows uses black as
the approximation for red.

An application can discover whether Windows will approximate a given color by using the
GetNearestColor function. The function takes a color value and returns the color value of the
closest matching color the device can generate. The method Windows uses to determine this
approximation depends on the device driver and its color capabilities. In most cases, the
approximated color's overall intensity is closest to that of the requested color.

When an application creates a pen or sets the color for text, Windows always approximates a
color if no exact match exists. When an application creates a solid brush, Windows may attempt
to simulate the requested color by dithering. Dithering simulates a color by alternating two or more
colors in a pattern. For example, different shades of pink can be simulated by alternating different
combinations of red and white. Depending on the colors and the pattern, dithering can produce
reasonable simulations. It is most useful for monochrome devices, because it expands the
number of available "colors" well beyond simple black and white.

The method used to create dithered colors depends on the device driver. Most device drivers use
a standard dithering algorithm, which generates a pattern based on the intensity values of the
requested red, green, and blue colors. In general, any requested color that cannot be generated
by the device is subject to simulation, but an application is not notified when Windows simulates a
color. Furthermore, an application cannot modify or change the dithering algorithm of the device
driver. An application, however, can bypass the algorithm by creating and using pattern brushes.
In this way, the application creates its own dithered colors by combining solid colors in the bitmap
that it uses to create the brush.

Color in Bitmaps
Windows handles colors in bitmaps differently than colors in pens, brushes, and text. Compatible
bitmaps, created by using the CreateBitmap or CreateCompatibleBitmap function, are device
specific and retain color information in a device-dependent format. No color values are used, and
the colors are not subject to approximations and dithering.

Device-independent bitmaps (DIBs) retain color information either as color values or color palette
indices. If color values are used, the colors are subject to approximation, but not dithering. Color
palette indices can only be used with devices that support color palettes. Although Windows does
not approximate or dither colors identified by indices, the resulting color may be different than that
intended, because the indices yield valid results only in the context of the color palette that was
current at the time the bitmap was created. If the palette changes, so do the colors in the bitmap.

Color Mixing
Color mixing lets an application create new colors by combining the pen or brush color with colors
in the existing image. The application can choose either to draw the pen or brush color as is
(effectively drawing over any existing image) or to mix the color with the colors already present.

The foreground mix mode, sometimes called the binary raster operation, determines how these
colors are mixed. An application can merge colors, preserving all components of both colors;
mask colors, removing or moderating components that are not common; or exclusively mask
colors, removing or moderating components that are common. There are several variations on
these basic mixing operations.

Color mixing is subject to color approximation. If the result of color mixing is a color that the device
cannot generate, Windows approximates the result, using a color it can generate. If an application
mixes dithered colors, the individual colors used to create the dithered color are mixed, and the
results are subject to color approximation.

An application sets the foreground mix mode by using the SetROP2 function and retrieves the
current mode by using the GetROP2 function.

Although there is a background mix mode, that mode does not control the mixing of colors.
Instead, it specifies whether a background color is used when drawing styled lines, hatched
brushes, and text.

Color Palettes
A color palette is an array that contains color values identifying the colors that can currently be
displayed or drawn on the output device. Color palettes are used by devices that are capable of
generating many colors but that can only display or draw a subset of these at any given time. For
such devices, Windows maintains a system palette to track and manage the current colors of the
device. Applications do not have direct access to the system palette. Instead, Windows associates
a default palette with each device context. Applications can use the colors in the default palette or
define their own colors by creating logical palettes and associating them with individual device
contexts.

An application can determine whether a device supports color palettes by checking for the
RC_PALETTE bit in the RASTERCAPS value returned by the GetDeviceCaps function.

Default Palette
The default palette is an array of color values identifying the colors that can be used with a device
context by default. Windows associates the default palette with a context whenever an application
creates a context for a device that supports color palettes. The default palette ensures that colors
are available for use by an application without any further action.

The default palette typically has 20 entries (colors), but the exact number of entries may vary from
device to device. This number is equal to the NUMCOLORS value returned by the
GetDeviceCaps function. An application can retrieve the color values for colors in the default
palette by enumerating solid pens, the same technique used to discover the colors available on
nonpalette devices. The colors in the default palette depend on the device. Display devices, for
example, often use the 16 standard colors of the VGA display and 4 other colors defined by
Windows. Printer devices may use other default colors.

When using the default palette, applications use color values to specify pen and text colors. If the
requested color is not in the palette, Windows approximates the color by using the closest color in
the palette. If an application requests a solid brush color that is not in the palette, Windows
simulates the color by dithering with colors that are in the palette.

To avoid approximations and dithering, applications can also specify pen, brush, and text colors
by using color palette indices rather than color values. A color palette index is an integer value
that identifies a specific palette entry. Applications can use color palette indices in place of color
values but must use the PALETTEINDEX macro to create the indices.

Color palette indices are only useful for devices that support color palettes. To avoid this device
dependence, applications that use the same code to draw to both palette and nonpalette devices
should use palette-relative color values to specify pen, brush, and text colors. These values are
identical to color values except when creating solid brushes. (On palette devices, a solid brush
color specified by a palette-relative color value is subject to color approximation instead of
dithering.) Applications must use the PALETTERGB macro to create palette-relative color values.

Windows does not allow an application to change the entries in the default palette. To use colors
other than those in the default palette, an application must create its own logical palette and select
the palette into the device context.

Logical Palette
A logical palette is a color palette that an application creates and associates with a given device
context. Logical palettes let applications define and use colors that meet their specific needs.
Applications can create any number of logical palettes, using them for separate device contexts or
switching between them for a single device context. The maximum number of palettes that an
application can create depends on the resources of the system.

An application creates a logical palette by using the CreatePalette function. The application fills a
LOGPALETTE structure, which specifies the number of entries and the color values for each
entry, and then the application passes the structure to CreatePalette. The function returns a
palette handle that the application uses in all subsequent operations to identify the palette. To use
colors in the logical palette, the application selects the palette into a device context by using the
SelectPalette function and then realizes the palette by using the RealizePalette function. The
colors in the palette are available as soon as the logical palette is realized.

An application should limit the size of its logical palettes to just enough entries to represent the
colors needed. Applications cannot create logical palettes larger than the maximum palette size, a
device-dependent value. Applications can obtain the maximum size by using the GetDeviceCaps
function to retrieve the SIZEPALETTE value.

Although an application can specify any color value for a given entry in a logical palette, not all
colors can be generated by the given device. Windows does not provide a way to discover which
colors are supported, but the application can discover the total number of these colors by
retrieving the color resolution of the device. The color resolution, specified in color bits per pixel, is
equal to the COLORRES value returned by the GetDeviceCaps function. A device that has a
color resolution of 18 has 262,144 possible colors. If an application requests a color that is not
supported, Windows chooses an appropriate approximation.

Once a logical palette is created, an application can change colors in the palette by using the
SetPaletteEntries function. If the logical palette has been selected and realized, changing the
palette does not immediately affect the colors being displayed. The application must use the
UnrealizeObject and RealizePalette functions to update the colors. In some cases, the
application may need to deselect, unrealize, select, and realize the logical palette to ensure that
the colors are updated exactly as requested. If an application selects a logical palette into more
than one device context, changes to the logical palette affect all device contexts for which it is
selected.

An application can change the number of entries in a logical palette by using the ResizePalette
function. If the application reduces the size, the remaining entries are unchanged. If the
application extends the size, Windows sets the color for each new entry to black (0, 0, 0) and the
flag to zero.

An application can retrieve the color and flag values for entries in a given logical palette by using
the GetPaletteEntries function. An application can retrieve the index for the entry in a given
logical palette that most closely matches a specified color value by using the
GetNearestPaletteIndex function.

When an application no longer needs a logical palette, it can delete it by using the DeleteObject
function. The application must make sure the logical palette is no longer selected into a device
context before deleting the palette.

Palette Animation
Palette animation is a technique to simulate motion by rapidly changing the colors of selected
entries in a color palette. An application can carry out palette animation by creating a logical
palette that contains "reserved" entries and then using the AnimatePalette function to change
colors in those reserved entries.

An application creates a reserved entry in a logical palette by setting the peFlags member of the
PALETTEENTRY structure to the PC_RESERVED flag. Once this logical palette is selected and
realized, the application can call the AnimatePalette function to change one or more reserved
entries. If the given palette is associated with the active window, Windows updates the colors on
the screen immediately.

System Palette
Windows maintains a system palette for each device that uses palettes. The system palette
contains the color values for all colors that can currently be displayed or drawn by the device.
Other than viewing the contents of the system palette, applications cannot access the system
palette directly. Instead, Windows has complete control of the system palette and permits access
only through the use of logical palettes.

An application can view the contents of the system palette by using the
GetSystemPaletteEntries function. This function retrieves the contents of one or more entries,
up to the total number of entries in the system palette. The total is always equal to the number
returned for the SIZEPALETTE value by the GetDeviceCaps function and is the same as the
maximum size for any given logical palette.

Although applications cannot change colors in the system palette directly, they may cause
changes when realizing logical palettes. To realize a palette, Windows examines each requested
color and attempts to find an entry in the system palette that contains an exact match. If Windows
finds a matching color, it maps the logical palette index to the corresponding system palette index.
If Windows does not find an exact match, it copies the requested color to an unused system
palette entry before mapping the indices. If all system palette entries are in use, Windows maps
the logical palette index to the system palette entry whose color most closely matches the
requested color. Once this mapping is set, applications cannot override it. For example,
applications cannot use system palette indices to specify colors; only logical palette indices are
permitted.

Applications can modify the way indices are mapped by setting the peFlags member of the
PALETTEENTRY structure to selected values when creating the logical palette. For example, the
PC_NOCOLLAPSE flag directs Windows to immediately copy the requested color to an unused
system palette entry regardless of whether a system palette entry already contains that color.
Also, the PC_EXPLICIT flag directs Windows to map the logical palette index to an explicitly given
system palette index. (The application gives the system palette index in the low-order word of the
PALETTEENTRY structure.)

Palettes can be realized as either a background palette or a foreground palette by specifying
TRUE or FALSE respectively for the bForceBackground parameter in the SelectPalette function.
There can be only one foreground palette in the system at a time. If the window is the currently
active window or a descendent of the currently active window, it can realize a foreground palette.
Otherwise the palette is realized as a background palette regardless of the value of the
bForceBackground parameter. The critical property of a foreground palette is that, when realized,
it can overwrite all entries (except for the static entries) in the system palette. Windows
accomplishes this by marking all of the entries that are not static in the system palette as unused
before the realization of a foreground palette, thereby eliminating all of the used entries. No
preprocessing occurs on the system palette for a background palette realization. The foreground
palette sets all of the possible nonstatic colors. Background palettes can set only what remains
open and are prioritized in a first-come, first-serve manner. Typically, applications use background
palettes for child windows which realize their own individual palettes. This helps minimize the
number of changes that occur to the system palette.

An unused system palette entry is any entry that is not reserved and does not contain a static
color. Reserved entries are explicitly marked with the PC_RESERVED value. These entries are
created when an application realizes a logical palette for palette animation. Static color entries are
created by Windows and correspond to the colors in the default palette. The GetDeviceCaps
function can be used to retrieve the NUMRESERVED value, which specifies the number of
system palette entries reserved for static colors.

Because the system palette has a limited number of entries, selecting and realizing a logical
palette for a given device may affect the colors associated with other logical palettes for the same
device. These color changes are especially dramatic when they occur on the display. An
application can make sure that reasonable colors are used for its currently selected logical palette
by resetting the palette before each use. An application resets the palette by calling the
UnrealizeObject and RealizePalette functions. Using these functions causes Windows to remap
the colors in the logical palette to reasonable colors in the system palette.

System Palette and Static Colors
Ordinarily, the system palette entries that Windows reserves for static colors cannot be changed.
An application can override this default behavior by using the SetSystemPaletteUse function to
reduce the number of static color entries and, thereby, increase the number of unused system
palette entries. However, because changing the static colors can have an immediate and dramatic
effect on all windows on the display, an application should not call SetSystemPaletteUse, unless
it has a maximized window and the input focus.

When an application calls SetSystemPaletteUse with the SYSPAL_NOSTATIC value, Windows
frees all but two of the reserved entries, allowing those entries to receive new color values when
the application subsequently realizes its logical palette. The remaining two static color entries
remain reserved and are set to white and black. An application can restore the reserved entries by
calling SetSystemPaletteUse with the SYSPAL_STATIC value. It can discover the current
system palette usage by using the GetSystemPaletteUse function.

Furthermore, after setting the system palette usage to SYSPAL_NOSTATIC, the application must
immediately realize its logical palette, call the GetSysColor function to save the current system
color settings, call the SetSysColors function to set the system colors to reasonable values using
black and white, and finally send the WM_SYSCOLORCHANGE message to other top-level
windows to allow them to be redrawn with the new system colors. When setting system colors
using black and white, the application should make sure adjacent or overlapping items, such as
window frames and borders, are set to black and white, respectively.

Before the application loses the input focus, closes its window, or terminates, it must immediately
call SetSystemPaletteUse with the SYSPAL_STATIC value, realize its logical palette, restore the
system colors to their previous values, and send the WM_SYSCOLORCHANGE message.
Windows sends a WM_PAINT message to any window that is affected by a system color change.
Applications that have brushes using the existing system colors should delete those brushes and
recreate them using the new system colors.

Palette Messages
Changes to the system palette for the display device can have dramatic and sometimes
undesirable effects on the colors used in windows on the desktop. To minimize the impact of
these changes, Windows provides a set of messages that help applications manage their logical
palettes while ensuring that colors in the active window are as close as possible to the colors
intended.

Windows sends a WM_QUERYNEWPALETTE message to a top-level or overlapped window just
before activating the window. This message gives an application the opportunity to select and
realize its logical palette so that it receives the best possible mapping of colors for its logical
palette. When the application receives the message, it should use the SelectPalette,
UnrealizeObject, and RealizePalette functions to select and realize the logical palette. Doing so
directs Windows to update colors in the system palette so that its colors match as many colors in
the logical palette as possible.

When an application causes changes to the system palette as a result of realizing its logical
palette, Windows sends a WM_PALETTECHANGED message to all top-level and overlapped
windows. This message gives applications the opportunity to update the colors in the client areas
of their windows, replacing colors that have changed with colors that more closely match the
intended colors. An application that receives the WM_PALETTECHANGED message should use
UnrealizeObject and RealizePalette to reset the logical palettes associated with all inactive
windows and then update the colors in the client area for each inactive window by using the
UpdateColors function. This technique does not guarantee the greatest number of exact color
matches; however, it does ensure that colors in the logical palette are mapped to reasonable
colors in the system palette.
Note To avoid creating an infinite loop, an application should never realize the palette for the
window whose handle matches the handle passed in the wParam parameter of the
WM_PALETTECHANGED message.
The UpdateColors function typically updates a client area of an inactive window faster than
redrawing the area. However, because UpdateColors performs color translation based on the
color of each pixel before the system palette changed, each call to this function results in the loss
of some color accuracy. This means UpdateColors cannot be used to update colors when the
window becomes active. In such cases, the application should redraw the client area.

Windows may send the WM_QUERYNEWPALETTE message when changes to the logical
palette are made. Also, Windows may send the WM_PALETTEISCHANGING message to all top-
level and overlapped windows when the system palette is about to change.

Halftone Palette and Color Adjustment
Halftone palettes are intended to be used whenever the stretching mode of a device context is set
to HALFTONE. An application creates a halftone palette by using the CreateHalftonePalette
function. The application must select and realize this palette into the device context before calling
the StretchBlt or StretchDIBits function.

Windows automatically adjusts the input color of source bitmaps whenever applications call the
StretchBlt and StretchDIBits functions and the stretching mode of a device context is set to
HALFTONE. These color adjustments affect certain attributes of the image, such as contrast and
brightness. An application can set the color adjustment values by using the SetColorAdjustment
function. The application can retrieve the color adjustment values for the specified device context
by using the GetColorAdjustment function.

Using Color
· Enumerating colors
· Creating colored pens and brushes

Enumerating Colors
You can determine how many colors a device supports and what those colors are by retrieving the
count of colors for the device and enumerating the colors of the solid pens. To retrieve the number
of colors, use the GetDeviceCaps function with the NUMCOLORS value. To enumerate solid
pens, use the EnumObjects function and a corresponding callback function that receives
information about each pen.// GetTheColors - returns the count and color values of solid colors
// Returns the address of array containing colors
// hdc - handle of device context
COLORREF *GetTheColors(HDC hdc)
{

int cColors;
COLORREF *aColors;
// Get the number of colors.
cColors = GetDeviceCaps(hdcCurrent, NUMCOLORS);
// Allocate space for the array.
aColors = (COLORREF *)LocalAlloc(LPTR, sizeof(COLORREF) *
(cColors+1));
// Save the count of colors in first element.
aColors[0] = (LONG)cColors;
// Enumerate all pens and save solid colors in the array.
EnumObjects(hdc, OBJ_PEN, (GOBJENUMPROC)MyEnumProc, (LONG)aColors)

;
// Refresh the count of colors.
aColors[0] = (LONG)cColors;
return aColors;

}
int MyEnumProc(LPVOID lp, LPBYTE lpb)
{

LPLOGPEN lopn;
COLORREF *aColors;
int iColor;
lopn = (LPLOGPEN)lp;
aColors = (COLORREF *)lpb;
if (lopn->lopnStyle==PS_SOLID) {
// Check for too many colors.
if ((iColor = (int)aColors[0]) <= 0)
return 0;
aColors[iColor] = lopn->lopnColor;
aColors[0]--;
}
return 1;

}

Creating Colored Pens and Brushes
Although you can specify any color for a pen when creating it, Windows uses only colors that are
available on the device. This means Windows uses the closest matching color when it realizes the
pen for drawing. When creating brushes, Windows generates a dithered color if you specify a
color that the device does not support. In either case, you can use the RGB macro to specify a
color when creating a pen or brush.// DrawARectangle - draws a red rectangle with a green border
// No return value.
// hdc - handle of the device context
void DrawARectangle(HDC hdc)
{

HPEN hpen, hpenOld;
HBRUSH hbrush, hbrushOld;
// Create a green pen.
hpen = CreatePen(PS_SOLID, 10, RGB(0, 255, 0));
// Create a red brush.
hbrush = CreateSolidBrush(RGB(255, 0, 0));
// Select the new pen and brush, and then draw.
hpenOld = SelectObject(hdc, hpen);
hbrushOld = SelectObject(hdc, hbrush);
Rectangle(hdc, 100,100, 200,200);
// Do not forget to clean up.
SelectObject(hdc, hpenOld);
DeleteObject(hpen);
SelectObject(hdc, hbrushOld);
DeleteObject(hbrush);

}

Color Reference
The following functions, structures and messages are associated with color.

Color Functions
The following functions are used with color.
AnimatePalette
CreateHalftonePalette
CreatePalette
GetColorAdjustment
GetNearestColor
GetNearestPaletteIndex
GetPaletteEntries
GetSystemPaletteEntries
GetSystemPaletteUse
RealizePalette
ResizePalette
SelectPalette
SetColorAdjustment
SetPaletteEntries
SetSystemPaletteUse
UnrealizeObject

UpdateColors

Color Structures
The following structures are used with color.
COLORREF
LOGPALETTE

PALETTEENTRY

Color Macros
The following macros are used with color.
GetBValue
GetGValue
GetRValue
PALETTEINDEX
PALETTERGB

RGB

Color Messages
The following messages are used with color.
WM_PALETTECHANGED
WM_PALETTEISCHANGING
WM_QUERYNEWPALETTE

WM_SYSCOLORCHANGE

Coordinate Spaces and TransformationsApplications written for the Microsoft® Windows® operating system use coordinate spaces and
transformations to scale, rotate, translate, shear, and reflect graphics output. A coordinate space
is a planar space based on the Cartesian coordinate system. This system requires two axes that
are perpendicular and equal in length. There are four coordinate spaces in Windows: world, page,
device, and physical device (client area, or desktop, or page of printer paper). A transformation is
an algorithm that alters ("transforms") the size, orientation, and shape of objects.

About Coordinate Spaces and Transformations
Coordinate spaces and transformations are used, for example, by desktop publishing applications
to "zoom" parts of a page or to display adjacent pages in a window; computer-aided design (CAD)
applications use them to rotate objects, scale drawings, or to create perspective views; and
spreadsheet applications use them to move and size graphs.

The following illustrations show successive views of an object created in a drawing application.
The first illustration shows the object as it appears in the original drawing; the five remaining
illustrations show the effects of applying various transformations.

ewc msdncd, EWGraphic, bsd23487 0 /a "SDK_01.BMP"

Original View

ewc msdncd, EWGraphic, bsd23487 1 /a "SDK_02.BMP"

Scaled View

ewc msdncd, EWGraphic, bsd23487 2 /a "SDK_03.BMP"

Translated View

ewc msdncd, EWGraphic, bsd23487 3 /a "SDK_04.BMP"

Rotated View

ewc msdncd, EWGraphic, bsd23487 4 /a "SDK_05.BMP"

Sheared View

ewc msdncd, EWGraphic, bsd23487 5 /a "SDK_06.BMP"

Reflection

Transformation of Coordinate Spaces
A coordinate space is a planar space based on the Cartesian coordinate system. This system
provides a means of specifying the location of each point on a plane. It requires two axes that are
perpendicular and equal in length. The following illustration shows a coordinate space.

ewc msdncd, EWGraphic, bsd23487 6 /a "SDK_07.BMP"

The Microsoft® Win32® application programming interface (API) uses four coordinate spaces:
world, page, device, and physical device. Applications use world space to rotate, shear, or reflect
graphics output. World space measures 2^32 units high by 2^32 units wide. Page space (referred
to as logical space in earlier versions of Windows) also measures 2^32 units high by 2^32 units
wide. Device space measures 2^27 units high by 2^27 units wide. Page space works with device
space to provide applications with device-independent units, such as millimeters and inches. The
Win32 API refers to both world space and page space as logical space. The final coordinate
space, physical device, usually refers to the client area of the application's window; however, it
can also include the entire desktop, a complete window (including the frame, title bar, and menu
bar), or a page of printer or plotter paper. Physical device dimensions vary according to the
dimensions set by the display, printer, or plotter technology.

To depict output on a physical device, Windows copies (or maps) a rectangular region from one
coordinate space into the next coordinate space until finally the output appears in its entirety on
the physical device. Mapping begins in the application's world space if the application has called
the SetWorldTransform function; otherwise, mapping occurs in page space. As Windows copies
each point within the rectangular region from one space into another, it applies an algorithm called
a transformation. A transformation alters (or transforms) the size, orientation, and shape of objects
that are copied from one coordinate space into another. Although a transformation affects an
object as a whole, it is applied to each point, or to each line, in the object.

The following illustration shows a typical transformation performed by using the
SetWorldTransform function.

ewc msdncd, EWGraphic, bsd23487 7 /a "SDK_08.BMP"

World-Space to Page-Space Transformations
World-space to page-space transformations are new to Windows. They support translation and
scaling that were available in previous versions of Windows. In addition, they support rotation,
shear, and reflection capabilities. The following sections describe these transformations, illustrate
their effects, and provide the algorithms used to achieve them.

Translation
Some applications translate (or shift) objects drawn in the client area. If your application features
this capability, use the SetWorldTransform function to set the appropriate world-space to page-
space transformation. This function receives a pointer to an XFORM structure containing the
appropriate values. The eDx and eDy members of XFORM specify the horizontal and vertical
translation components, respectively.

When translation occurs, each point in an object is shifted vertically, horizontally, or both, by a
specified amount. The following illustration shows a 20- by 20-unit rectangle that was translated to
the right by 10 units when copied from world coordinate space to page coordinate space.

ewc msdncd, EWGraphic, bsd23487 8 /a "SDK_09.BMP"

In the preceding illustration, the x-coordinate of each point in the rectangle is 10 units greater than
the original x-coordinate.

Horizontal translation can be represented by the following algorithm.x' = x + DxWhere x' is the new x-coordinate, x is the original x-coordinate, and Dx is the horizontal distance
moved.

Vertical translation can be represented by the following algorithm.y' = y + DyWhere y' is the new y-coordinate, y is the original y-coordinate, and Dy is the vertical distance
moved.

The horizontal and vertical translation transformations can be combined into a single operation by
using a 3-by-3 matrix.|1 0 0|
|x' y' 1| = |x y 1| * |0 1 0|
|Dx Dy 1|(The rules of matrix multiplication state that the number of rows in one matrix must equal the

number of columns in the other. The integer 1 in the matrix |x y 1| is a placeholder that was added
to meet this requirement.)

The 3-by-3 matrix that produced the illustrated translation transformation contains the following
values.|1 0 0|
|0 1 0|
|10 0 1|

Scaling
Most CAD and drawing applications provide features that scale output created by the user. If your
application features scaling (or zoom) capabilities, use the SetWorldTransform function to set
the appropriate world-space to page-space transformation. This function receives a pointer to an
XFORM structure containing the appropriate values. The eM11 and eM22 members of XFORM
specify the horizontal and vertical scaling components, respectively.

When scaling occurs, the vertical and horizontal lines (or vectors), that constitute an object, are
stretched or compressed with respect to the x- or y-axis. The following illustration shows a 20- by
20-unit rectangle scaled vertically to twice its original height when copied from world coordinate
space to page coordinate space.

ewc msdncd, EWGraphic, bsd23487 9 /a "SDK_10.BMP"

In the preceding illustration, the vertical lines that define the original rectangle's side measure 20
units, while the vertical lines that define the scaled rectangle's sides measure 40 units.

Vertical scaling can be represented by the following algorithm.y' = y * DyWhere y' is the new length, y is the original length, and Dy is the vertical scaling factor.

Horizontal scaling can be represented by the following algorithm.x' = x * DxWhere x' is the new length, x is the original length, and Dx is the horizontal scaling factor.

The vertical and horizontal scaling transformations can be combined into a single operation by
using a 2-by-2 matrix.|x' y'| = |Dx 0| * |x y|

|0 Dy|
The 2-by-2 matrix that produced the scaling transformation contains the following values.|1 0|
|0 2|

Rotation
Many CAD applications provide features that rotate objects drawn in the client area. If your
application features rotation capabilities, use the SetWorldTransform function to set the
appropriate world-space to page-space transformation. This function receives a pointer to an
XFORM structure containing the appropriate values. The eM11, eM12, eM21, and eM22 members
of XFORM specify, respectively, the cosine, sine, negative sine, and cosine of the angle of
rotation.

When rotation occurs, the points that constitute an object are rotated with respect to the
coordinate-space origin. The following illustration shows a 20- by 20-unit rectangle rotated 30
degrees when copied from world coordinate space to page coordinate space.

ewc msdncd, EWGraphic, bsd23487 10 /a "SDK_11.BMP"

In the preceding illustration, each point in the rectangle was rotated 30 degrees with respect to the
coordinate-space origin.

The following algorithm computes the new x-coordinate (x') for a point (x,y) that is rotated by angle
A with respect to the coordinate-space origin.x' = (x * cos A) - (y * sin A)The following algorithm computes the y-coordinate (y') for a point (x,y) that is rotated by the angle
A with respect to the origin.y' = (x * sin A) + (y * cos A)The two rotation transformations can be combined in a 2-by-2 matrix as follows.|x' y'| == |x y| * | cos A sin A|

|-sin A cos A|The 2-by-2 matrix that produced the rotation contains the following values.| .8660 .5000|
|-.5000 .8660|

Rotation Algorithm DerivationRotation algorithms are based on trigonometry's addition theorem stating that the trigonometric
function of a sum of two angles (A1 and A2) can be expressed in terms of the trigonometric
functions of the two angles.sin(A1 + A2) = (sin A1 * cos A2) + (cos A1 * sin A2)
cos(A1 + A2) = (cos A1 * cos A2) - (sin A1 * sin A2)The following illustration shows a point p rotated counterclockwise to a new position p'. In addition,

it shows two triangles formed by a line drawn from the coordinate-space origin to each point and a
line drawn from each point through the x-axis.

ewc msdncd, EWGraphic, bsd23487 11 /a "SDK_12.BMP"

Using trigonometry, the x-coordinate of point p can be obtained by multiplying the length of the
hypotenuse h by the cosine of A1.x = h * cos A1The y-coordinate of point p can be obtained by multiplying the length of the hypotenuse h by the
sine of A1.y = h * sin A1Likewise, the x-coordinate of point p' can be obtained by multiplying the length of the hypotenuse
h by the cosine of (A1 + A2).x' = h * cos (A1 + A2)Finally, the y-coordinate of point p' can be obtained by multiplying the length of the hypotenuse h
by the sine of (A1 + A2).y' = h * sin (A1 + A2)Using the addition theorem, the preceding algorithms become the following.x' = (h * cos A1 * cos A2) - (h * sin A1 * sin A2)
y' = (h * cos A1 * sin A2) + (h * sin A1 * cos A2)The rotation algorithms for a given point rotated by angle A2 can be obtained by substituting x for

each occurrence of (h * cos A1) and substituting y for each occurrence of (h * sin A1).x' = (x * cos A2) - (y * sin A2)
y' = (x * sin A2) + (y * cos A2)

Shear
Some applications provide features that shear objects drawn in the client area. If your application
features shear capabilities, use the SetWorldTransform function to set appropriate values in the
world-space to page-space transformation. This function receives a pointer to an XFORM
structure containing the appropriate values. The eM12 and eM21 members of XFORM specify the
horizontal and vertical proportionality constants, respectively.

There are two components of the shear transformation. The first alters the vertical lines in an
object; the second alters the horizontal lines. The following illustration shows a 20- by 20-unit
rectangle sheared horizontally when copied from world space to page space.

ewc msdncd, EWGraphic, bsd23487 12 /a "SDK_13.BMP"

A horizontal shear can be represented by the following algorithm:x' = x + (Sx * y)where x is the original x-coordinate, Sx is the proportionality constant, and x' is the result of the
shear transformation.

A vertical shear can be represented by the following algorithm:y' = y + (Sy * x)where y is the original y-coordinate, Sy is the proportionality constant, and y' is the result of the
shear transformation.

The horizontal-shear and vertical-shear transformations can be combined into a single operation
using a 2-by-2 matrix.|x' y'| == |x y| * | 1 Sx|

| Sy 1|The 2-by-2 matrix that produced the shear contains the following values.|1 1|
|0 1|

Reflection
Some applications provide features that reflect (or mirror) objects drawn in the client area. If your
application features reflection capabilities, use the SetWorldTransform function to set the
appropriate values in the world-space to page-space transformation. This function receives a
pointer to an XFORM structure containing the appropriate values. The eM11 and eM22 members
of XFORM specify the horizontal and vertical reflection components, respectively.

The reflection transformation creates a "mirror" image of an object with respect to either the x- or
y-axis. In short, reflection is just negative scaling. To produce a horizontal reflection, x-
coordinates are multiplied by - 1. To produce a vertical reflection, y-coordinates are multiplied by -
1.

Horizontal reflection can be represented by the following algorithm:x' = - xwhere x is the x-coordinate and x' is the result of the reflection.
The 2-by-2 matrix that produced horizontal reflection contains the following values:|-1 0|
|01|

Vertical reflection can be represented by the following algorithm:y' = -ywhere y is the y-coordinate and y' is the result of the reflection.

The 2-by-2 matrix that produced vertical reflection contains the following values:|1 0|
|0 -1|The horizontal-reflection and vertical-reflection operations can be combined into a single operation

by using the following 2-by-2 matrix:|-1 0|
|0 -1|

Combined World-to-Page Space Transformations
You can combine the five world-to-page transformations into a single 3-by-3 matrix. The
CombineTransform function can be used to combine two world-space to page-space
transformations. You can use the combined transformations to alter output associated with a
particular device context (DC) by calling the SetWorldTransform function and supplying the
elements for this matrix. When an application calls SetWorldTransform, it stores the elements of
the 3-by-3 matrix in an XFORM structure. The members of this structure correspond to the first
two columns of a 3-by-3 matrix; the last column of the matrix is not required because its values
are constant.

You can retrieve the elements of the current world transformation matrix by calling the
GetWorldTransform function and supplying a pointer to an XFORM structure.

Page-Space to Device-Space Transformations
The page-space to device-space transformation was part of the original Windows interface. This
transformation determines the mapping mode for all graphics output associated with a particular
DC. A mapping mode is a scaling transformation that specifies the size of the units used for
drawing operations. The mapping mode may also perform translation. In some cases, the
mapping mode alters the orientation of the x- and y-axes in device space. The mapping modes
are described in the following table.

Mapping mode Description

MM_ANISOTROPICEach unit in page space is mapped to an
application-specified unit in device space. The
axis may or may not be equally scaled (for
example, a circle drawn in world space may
appear to be an ellipse when depicted on a given
device). The orientation of the axis is also
specified by the application.

MM_HIENGLISH Each unit in page space is mapped to 0.001 inch
in device space. Increasing values of x occur as
you move to the right; increasing values of y
occur as you move up.

MM_HIMETRIC Each unit in page space is mapped to 0.01
millimeter in device space. Increasing values of x
occur as you move to the right; increasing values
of y occur as you move up.

MM_ISOTROPIC Each unit in page space is mapped to an
application-defined unit in device space. The
axes are always equally scaled. The orientation
of the axes may be specified by the application.

MM_LOENGLISH Each unit in page space is mapped to 0.01 inch
in device space. Increasing values of x occur as
you move to the right; increasing values of y
occur as you move up.

MM_LOMETRIC Each unit in page space is mapped to 0.1
millimeter in device space. Increasing values of x
occur as you move to the right; increasing values
of y occur as you move up.

MM_TEXT Each unit in page space is mapped to one pixel;
that is, no scaling is performed at all. When no
translation is in effect (this is the default), page
space in the MM_TEXT mapping mode is
equivalent to physical device space. Increasing
values of x occur as you move to the right;
increasing values of y occur as you move down.

MM_TWIPS Each unit in page space is mapped to one
twentieth of a printer's point (1/1440 inch).
Increasing values of x occur as you move to the
right; increasing values of y occur as you move
up.

You set a mapping mode by calling the SetMapMode function. You retrieve the current
mapping mode for a DC by calling the GetMapMode function.

The page-space to device-space transformations consist of values calculated from the points
given by the window and viewport. The window and viewport each consist of a pair of points, with
one point specifying an origin and the other a width and height (called the extents). The window
points are in logical coordinates; the viewport in device coordinates (pixels). Windows combines
the origins and extents from both the window and viewport to create the transformation. This
means that the window and viewport each specify half of the factors needed to define the
transformation used to map points in page space to device space. The effect of a transformation
calculated in this way is that Windows maps the window origin to the viewport origin and the
window extents to the viewport extents, as shown in the following illustration.

ewc msdncd, EWGraphic, bsd23487 13 /a "SDK_15.BMP"

The window and viewport extents establish a ratio or scaling factor used in the page-space to
device-space transformations. For the six predefined mapping modes (MM_HIENGLISH,
MM_LOENGLISH, MM_HIMETRIC, MM_LOMETRIC, MM_TEXT, and MM_TWIPS), the extents
are set by Windows when you call SetMapMode. They cannot be changed. The other two
mapping modes (MM_ISOTROPIC and MM_ANISOTROPIC) require that you specify the extents.
This is done by calling SetMapMode to set the appropriate mode and then calling the
SetWindowExtEx and SetViewportExtEx functions to specify the extents. In the
MM_ISOTROPIC mapping mode, it is important to call SetWindowExtEx before calling
SetViewportExtEx.

The window and viewport origins establish the translation used in the page-space to device-
space transformations. You set the window and viewport origins by using the SetWindowOrgEx
and SetViewportOrgEx functions. The origins are independent of the extents, and an application
can set them regardless of the current mapping mode. Changing a mapping mode does not affect
the currently set origins (although it can affect the extents). Origins are specified in absolute units
that the current mapping mode does not affect. You can also alter the origins by using the
OffsetWindowOrgEx and OffsetViewportOrgEx functions.

The following formula shows the math involved in converting a point from page space to device
space.Dx = ((Lx - WOx) * VEx / WEx) + VOxThe following variables are involved.Dx x value in device units
Lx x value in logical units (also known as page space units)
WOx window x origin
VOx viewport x origin
WEx window x-extent
VEx viewport x-extentThe same equation with y replacing x transforms the y component of a point.

The formula first offsets the point from its coordinate origin. This value, no longer biased by the
origin, is then scaled into the destination coordinate system by the ratio of the extents. Finally, the
scaled value is offset by the destination origin to its final mapping.

The LPtoDP and DPtoLP functions may be used to convert from logical points to device points
and from device points to logical points, respectively.

Predefined Mapping Modes
Of the six predefined mapping modes, one is device dependent (MM_TEXT) while the remaining
five (MM_HIENGLISH, MM_LOENGLISH, MM_HIMETRIC, MM_LOMETRIC, and MM_TWIPS)
are device independent.

The default mapping mode is MM_TEXT. One logical unit equals one pixel. Positive x is to the
right, and positive y is down. This mode maps directly to the device's coordinate system. The
logical-to-physical mapping involves only an offset in x and y that is defined by the application-
controlled window and viewport origins. The viewport and window extents are all set to 1, creating
a one-to-one mapping.

If your application displays geometric shapes (circles, squares, polygons, and so on), you may
want to choose one of the device-independent mapping modes. For example, if you are writing
code to provide charting capabilities for a spreadsheet application and want to guarantee that the
diameter of each pie chart is 2 inches, you can choose the MM_LOENGLISH mapping mode and
call the appropriate functions to draw and fill the chart. By specifying MM_LOENGLISH, you
guarantee that the diameter of the chart is consistent on any display or printer. If you were to
choose MM_TEXT instead of MM_LOENGLISH, a chart that appears circular on a VGA display
would appear elliptical on an EGA display and would appear very small on a 300 dpi (dots per
inch) laser printer.

Application-Defined Mapping Modes
The two application-defined mapping modes (MM_ISOTROPIC and MM_ANISOTROPIC) are
provided for application-specific mapping modes. The MM_ISOTROPIC mode guarantees that
logical units in the x-direction and in the y-direction are equal, while the MM_ANISOTROPIC
mode allows the units to differ. A CAD or drawing application can benefit from the
MM_ISOTROPIC mapping mode but may need to specify logical units that correspond to the
increments on an engineer's scale (1/64 inch). These units would be difficult to obtain with the
predefined mapping modes (MM_HIENGLISH or MM_HIMETRIC); however, they can easily be
obtained by selecting the MM_ISOTROPIC (or MM_ANISOTROPIC) mode. The following
example shows how to set logical units to 1/64 inch:SetMapMode(hDC, MM_ISOTROPIC);
SetWindowExtEx(hDC, 64, 64, NULL);
SetViewportExtEx(hDC, GetDeviceCaps(hDC, LOGPIXELSX),
GetDeviceCaps(hDC, LOGPIXELSY), NULL);

Device-Space to Physical-Device Transformation
The device-space to physical-device transformation is unique in several respects. For example, it
is limited to translation and is controlled by the window manager component of Windows. The sole
purpose of this transformation is to ensure that the origin of device space is mapped to the proper
point on the physical device. There are no functions to set this transformation, nor are there any
functions to retrieve related data.

Default Transformations
Whenever an application creates a DC and immediately begins calling GDI drawing or output
functions, it takes advantage of the default page-space to device-space, and device-space to
client-area transformations. A world-to-page space transformation cannot happen until the
application first calls the SetGraphicsMode function to set the mode to GM_ADVANCED and
then calls the SetWorldTransform function.

Use of MM_TEXT (the default page-space to device-space transformation) results in a one-to-
one mapping; that is, a given point in page space maps to the same point in device space. As
previously mentioned, this transformation is not specified by a matrix. Instead, it is obtained by
dividing the width of the viewport by the width of the window and the height of the viewport by the
height of the window. In the default case, the viewport dimensions are 1-pixel by 1-pixel and the
window dimensions are 1-page unit by 1-page unit.

The device-space to physical-device (client area, desktop, or printer paper) transformation always
results in a one-to-one mapping; that is, one unit in device space is always equivalent to one unit
in the client area, on the desktop, or on a page. The sole purpose of this transformation is
translation; it ensures that output appears correctly in an application's window no matter where
that window is moved on the desktop.

The one unique aspect of MM_TEXT is the orientation of the y-axis in page space. In MM_TEXT,
the positive y-axis extends downward and the negative y-axis extends upward.

Using Coordinate Spaces and Transformations
This section contains an example that demonstrates the following tasks:

· Drawing graphics with predefined units.
· Centering graphics in the application's client area.
· Scaling graphics output to half its original size.
· Translating graphics output 3/4 of an inch to the right.
· Rotating graphics 30 degrees.
· Shearing graphics output along the x-axis.
· Reflecting graphics output about an imaginary horizontal axis drawn through its midpoint.

The following example was used to create the illustrations that appear earlier in this topic.void TransformAndDraw(int iTransform, HWND hWnd)
{
HDC hDC;
XFORM xForm;
RECT rect;
/* Retrieve a DC handle for the application's window. */
hDC = GetDC(hWnd);

/*
* Set the mapping mode to LOENGLISH. This moves the
* client area origin from the upper left corner of the
* window to the lower left corner (this also reorients
* the y-axis so that drawing operations occur in a true
* Cartesian space). It guarantees portability so that
* the object drawn retains its dimensions on any
* display running Windows.
*/
SetMapMode(hDC, MM_LOENGLISH);
/*
* Set the appropriate world transformation (based on the
* user's menu selection).
*/
switch (iTransform) {

case SCALE: /* Scale to 1/2 of the original size. */
xForm.eM11 = (FLOAT) 0.5;
xForm.eM12 = (FLOAT) 0.0;
xForm.eM21 = (FLOAT) 0.0;
xForm.eM22 = (FLOAT) 0.5;
xForm.eDx = (FLOAT) 0.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
case TRANSLATE: /* Translate right by 3/4 inch. */
xForm.eM11 = (FLOAT) 1.0;
xForm.eM12 = (FLOAT) 0.0;
xForm.eM21 = (FLOAT) 0.0;
xForm.eM22 = (FLOAT) 1.0;
xForm.eDx = (FLOAT) 75.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
case ROTATE: /* Rotate 30 degrees counterclockwise. */
xForm.eM11 = (FLOAT) 0.8660;
xForm.eM12 = (FLOAT) 0.5000;
xForm.eM21 = (FLOAT) -0.5000;
xForm.eM22 = (FLOAT) 0.8660;
xForm.eDx = (FLOAT) 0.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
case SHEAR: /* Shear along the x-axis with a */

/* proportionality constant of 1.0. */
xForm.eM11 = (FLOAT) 1.0;
xForm.eM12 = (FLOAT) 1.0;
xForm.eM21 = (FLOAT) 0.0;
xForm.eM22 = (FLOAT) 1.0;
xForm.eDx = (FLOAT) 0.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
case REFLECT:/* Reflect about a horizontal axis. */
xForm.eM11 = (FLOAT) 1.0;
xForm.eM12 = (FLOAT) 0.0;
xForm.eM21 = (FLOAT) 0.0;
xForm.eM22 = (FLOAT) -1.0;
xForm.eDx = (FLOAT) 0.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
case NORMAL: /* Set the unity transformation. */
xForm.eM11 = (FLOAT) 1.0;
xForm.eM12 = (FLOAT) 0.0;
xForm.eM21 = (FLOAT) 0.0;
xForm.eM22 = (FLOAT) 1.0;
xForm.eDx = (FLOAT) 0.0;
xForm.eDy = (FLOAT) 0.0;
SetWorldTransform(hDC, &xForm);
break;
}

/* Find the midpoint of the client area. */
GetClientRect(hWnd, (LPRECT) &rect);
DPtoLP(hDC, (LPPOINT) &rect, 2);
/* Select a hollow brush. */
SelectObject(hDC, GetStockObject(HOLLOW_BRUSH));

/* Draw the exterior circle. */
Ellipse(hDC, (rect.right / 2 - 100), (rect.bottom / 2 + 100),

(rect.right / 2 + 100), (rect.bottom / 2 - 100));
/* Draw the interior circle. */
Ellipse(hDC, (rect.right / 2 -94), (rect.bottom / 2 + 94),

(rect.right / 2 + 94), (rect.bottom / 2 - 94));
/* Draw the key. */
Rectangle(hDC, (rect.right / 2 - 13), (rect.bottom / 2 + 113),

(rect.right / 2 + 13), (rect.bottom / 2 + 50));
Rectangle(hDC, (rect.right / 2 - 13), (rect.bottom / 2 + 96),

(rect.right / 2 + 13), (rect.bottom / 2 + 50));

/* Draw the horizontal lines. */

MoveToEx(hDC, (rect.right / 2 - 150), (rect.bottom / 2 + 0), NULL);
LineTo(hDC, (rect.right / 2 - 16), (rect.bottom / 2 + 0));
MoveToEx(hDC, (rect.right / 2 - 13), (rect.bottom / 2 + 0), NULL);
LineTo(hDC, (rect.right / 2 + 13), (rect.bottom / 2 + 0));
MoveToEx(hDC, (rect.right / 2 + 16), (rect.bottom / 2 + 0), NULL);
LineTo(hDC, (rect.right / 2 + 150), (rect.bottom / 2 + 0));

/* Draw the vertical lines. */
MoveToEx(hDC, (rect.right / 2 + 0), (rect.bottom / 2 - 150), NULL);
LineTo(hDC, (rect.right / 2 + 0), (rect.bottom / 2 - 16));
MoveToEx(hDC, (rect.right / 2 + 0), (rect.bottom / 2 - 13), NULL);
LineTo(hDC, (rect.right / 2 + 0), (rect.bottom / 2 + 13));
MoveToEx(hDC, (rect.right / 2 + 0), (rect.bottom / 2 + 16), NULL);
LineTo(hDC, (rect.right / 2 + 0), (rect.bottom / 2 + 150));
ReleaseDC(hWnd, hDC);
}

Coordinate Space and Transformation Reference
The following functions and structures are used with coordinate space and transformation.

Coordinate Space and Transformation Functions
Following are the functions used with coordinate spaces and transformations.
ClientToScreen
CombineTransform
DPtoLP
GetCurrentPositionEx
GetGraphicsMode
GetMapMode
GetViewportExtEx
GetViewportOrgEx
GetWindowExtEx
GetWindowOrgEx
GetWorldTransform
LPtoDP
MapWindowPoints
ModifyWorldTransform
OffsetViewportOrgEx
OffsetWindowOrgEx
ScaleViewportExtEx
ScaleWindowExtEx
ScreenToClient
SetGraphicsMode
SetMapMode
SetViewportExtEx
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx

SetWorldTransform

Coordinate Space and Transformation Structures
The following structures are used with coordinate space and transformation.
SIZE

XFORM

Device ContextsA device context is a structure that defines a set of graphic objects and their associated attributes,
and the graphic modes that affect output. The graphic objects include a pen for line drawing, a
brush for painting and filling, a bitmap for copying or scrolling parts of the screen, a palette for
defining the set of available colors, a region for clipping and other operations, and a path for
painting and drawing operations.

About Device Contexts
One of the chief features of the Microsoft® Win32® application programming interface (API) is
device independence. Win32-based applications can draw and print output on a variety of
devices. The software that supports this device independence is contained in two dynamic-link
libraries. The first, GDI.DLL, is referred to as the graphics device interface (GDI); the second is
referred to as a device driver. The name of the second depends on the device where the
application draws output. For example, if the application draws output in the client area of its
window on a VGA display, this library is VGA.DLL; if the application prints output on an Epson®
FX-80 printer, this library is EPSON9.DLL.

An application must inform GDI to load a particular device driver and, once the driver is loaded, to
prepare the device for drawing operations (such as selecting a line color and width, a brush
pattern and color, a font typeface, a clipping region, and so on). These tasks are accomplished by
creating and maintaining a device context. A device context is a structure that defines a set of
graphic objects and their associated attributes, and the graphic modes that affect output. The
graphic objects include a pen for line drawing, a brush for painting and filling, a bitmap for copying
or scrolling parts of the screen, a palette for defining the set of available colors, a region for
clipping and other operations, and a path for painting and drawing operations. Unlike most of the
Win32 structures, an application never has direct access to the device context; instead, it
operates on the structure indirectly by calling various functions.

Graphic Objects
The pen, brush, bitmap, palette, region, and path associated with a device context are referred to
as the device context's graphic objects. Following are the attributes associated with each of these
objects.

Graphic object Associated attributes

Bitmap Size, in bytes; dimensions, in pixels; color-format;
compression scheme; and so on

Brush Style, color, pattern, and origin
Palette Colors and size (or number of colors)
Font Typeface name, width, height, weight, character set,

and so on
Path Shape
Pen Style, width, and color
Region Location and dimensions

When an application creates a device context, Windows automatically stores a set of
default objects in it. (There is no default bitmap or path.) An application can examine the
attributes of the default objects by calling the GetCurrentObject and GetObject functions.
The application can change these defaults by creating a new object and selecting it into the
device context. An object is selected into a device context by calling the SelectObject function.

Graphic Modes
Windows supports five graphic modes that allow an application to specify how colors are mixed,
where output appears, how the output is scaled, and so on. These modes, which are stored in a
device context, are described in the following table.

Mode Description

Background mode Defines how background colors are mixed with
existing window or screen colors for bitmap and
text operations.

Drawing mode Defines how foreground colors are mixed with
existing window or screen colors for pen, brush,
bitmap, and text operations.

Mapping mode Defines how graphics output is mapped from
logical (or world) space onto the window, screen,
or printer paper.

Polygon-fill mode Defines how the brush pattern is used to fill the
interior of complex regions.

Stretching mode Defines how bitmap colors are mixed with existing
window or screen colors when the bitmap is
compressed (or scaled down).

As it does with graphic objects, Windows initializes a device context with default graphic
modes. An application can retrieve and examine these default modes by calling the
following functions.

Graphic mode Function

Background mode GetBkMode
Drawing mode GetROP2
Mapping mode GetMapMode
Polygon-fill mode GetPolyFillMode
Stretching mode GetStretchBltMode

An application can change the default modes by calling one of the following functions.

Graphic mode Function

Background mode SetBkMode
Drawing mode SetROP2
Mapping mode SetMapMode
Polygon-fill mode SetPolyFillMode
Stretching mode SetStretchBltMode

Device Context Types
The Win32 API provides four types of device contexts: display, printer, memory (or compatible),
and information. Each type serves a specific purpose, as described in the following table.

Device contextPurpose

Display Supports drawing operations on a video display.
Printer Supports drawing operations on a printer or plotter.
Memory Supports drawing operations on a bitmap.
Information Supports the retrieval of device data.

Display Device Contexts
Windows provides three types of device contexts for video displays: class, common and private.
Class and private device contexts are used in applications that perform numerous drawing
operations such as computer-aided design (CAD) applications, desktop-publishing applications,
drawing and painting applications, and so on. Common device contexts are used in applications
that perform infrequent drawing operations.

An application obtains a display device context by calling either the BeginPaint or GetDC function
and identifying the window in which the corresponding output will appear. (The type of device
context Windows returns is dependent on how the application registered its window class.)
Typically, an application obtains a display device context only when it must draw in the client area.
When the application is finished drawing, it must release the device context by calling the
EndPaint or ReleaseDC function.Class Device ContextsClass device contexts are supported strictly for compatibility with previous versions of Windows.
When writing a Win32-based application, avoid using the class device context. Use a private
device context instead.Common Device ContextsCommon device contexts are display device contexts maintained in a special cache by the
window-management component of the Win32 API. An application obtains a handle identifying
one of the available common device contexts by calling the GetDC, GetDCEx, or BeginPaint
function. Before returning this device context handle, Windows initializes a common device
context with default objects, attributes, and modes. Any drawing operations performed by the
application use these defaults unless one of the GDI functions is called to select a new object,
change the attributes of an existing object, or select a new mode.

Because only a limited number of common device contexts exist in the window manager's heap,
an application should release these device contexts after it has finished drawing. An application
releases a common device context by calling the ReleaseDC or EndPaint function. When the
application releases a common device context, any changes to the default data are lost.Private Device ContextsPrivate device contexts are display device contexts that, unlike common device contexts, retain
any changes to the default data ¾ even after an application calls the ReleaseDC or EndPaint
function. Private device contexts are not part of the window manager's cache and therefore need
not be released after use. The window manager automatically removes a private device context
after the last window of that class has been destroyed.

An application creates a private device context by first specifying the CS_OWNDC window-class
style when it initializes the style member of the WNDCLASS structure and calls the
RegisterClass function. (For more information about window classes, see Window Classes.) After
creating a window with the CS_OWNDC style, an application can call the GetDC, GetDCEx, or
BeginPaint function once to obtain a handle identifying a private device context. The application
can continue using this handle (and the associated device context) until it deletes the window
created with this class. Any changes to graphic objects and their attributes, or graphic modes are
retained by Windows until the window is deleted.

Printer Device Contexts
Windows provides a single type of printer device context that can be used when printing on a dot-
matrix printer, ink-jet printer, laser printer, or plotter. An application creates a printer device
context by calling the CreateDC function and supplying the appropriate arguments (the name of
the printer driver, the name of the printer, the file or device name for the physical output medium,
and other initialization data). When an application has finished printing, it deletes the printer
device context by calling the DeleteDC function. An application must delete (rather than release)
a printer device context; the ReleaseDC function fails when an application attempts to use it to
release a printer device context.

Memory Device Contexts
Windows supports a memory device context that stores bitmapped images for a particular device.
An application creates a memory device context by calling the CreateCompatibleDC function and
supplying a handle that identifies a device context for a particular device. When Windows
processes this call, it creates a bitmap having a color format compatible with the original device.
Because the bitmap is compatible with the given device, a memory device context is also
sometimes referred to as a compatible device context.

The original bitmap in a memory device context is simply a placeholder. Its dimensions are one
pixel by one pixel. Before an application can begin drawing, it must select a bitmap with the
appropriate width and height into the device context by calling the SelectObject function. Once
the new bitmap is selected into the memory device context, an application can begin using the
device context to store images. For more information about bitmaps and bitmap operations, see
Bitmaps.

Information Device Contexts
Windows supports an information device context used to retrieve default device data. For
example, an application can call the CreateIC function to create an information device context for
a particular model of printer and then call the GetCurrentObject and GetObject functions to
retrieve the default pen or brush attributes. Because Windows can retrieve device information
without creating the structures normally associated with the other types of device contexts, an
information device context involves far less overhead and is created significantly faster than any
of the other types. After an application finishes retrieving data by using an information device
context, it must call the DeleteDC function.

Device Context Operations
An application can perform the following operations on a device context:

· Enumerate existing graphic objects.
· Select new graphic objects.
· Delete existing graphic objects.
· Save the current graphic objects, their attributes, and the graphic modes.
· Restore previously saved graphic objects, their attributes, and the graphic modes.

In addition, an application can use a device context to determine how graphics output is
translated, cancel lengthy drawing operations (begun by a thread in a multithreaded application),
or reset a printer to a particular state.

Operations on Graphic Objects
Once an application creates a display or printer device context, it can begin drawing on the
associated device or, in the case of the memory device context, it can begin drawing on the
bitmap stored in memory. However, before drawing begins and sometimes while drawing is in
progress, it is often necessary to replace the default objects with new objects.

An application can examine a default object's attributes by calling the GetCurrentObject and
GetObject functions. The GetCurrentObject function returns a handle identifying the current pen,
brush, palette, bitmap, or font, and the GetObject function initializes a structure containing that
object's attributes.

Some printers provide resident pens, brushes, and fonts that can be used to improve drawing
speed in an application. Two functions can be used to enumerate these objects: EnumObjects
and EnumFontFamilies. If the application must enumerate resident pens or brushes, it can call
the EnumObjects function to examine the corresponding attributes. If the application must
enumerate resident fonts, it can call the EnumFontFamilies function (which can also enumerate
GDI fonts).

Once an application determines that a default object needs replacing, it creates a new object by
calling one of the following creation functions.

Graphic object Function

Bitmap CreateBitmap, CreateBitmapIndirect,
CreateCompatibleBitmap,
CreateDiscardableBitmap, CreateDIBitmap

Brush CreateBrushIndirect, CreateDIBPatternBrush,
CreateDIBPatternBrushPt, CreateHatchBrush,
CreatePatternBrush, CreateSolidBrush

Color Palette CreatePalette
Font CreateFont, CreateFontIndirect
Pen CreatePen, CreatePenIndirect, ExtCreatePen
Region CreateEllipticRgn, CreateEllipticRgnIndirect,

CreatePolygonRgn, CreatePolyPolygonRgn,
CreateRectRgn, CreateRectRgnIndirect,
CreateRoundRectRgn

Each of these functions returns a handle identifying a new object. After an application
retrieves a handle, it must call the SelectObject function to replace the default object.
However, the application should save the handle identifying the default object and use this handle
to replace the new object when it is no longer needed. When the application finishes drawing with
the new object, it must restore the default object by calling the SelectObject function and delete
the new object by calling the DeleteObject function. Failing to delete objects causes serious
performance problems.

Cancellation of Drawing Operations
When complex drawing applications perform lengthy graphics operations, they consume valuable
system resources. By taking advantage of Win32 multitasking features, an application can use
threads and the CancelDC function to manage these operations. For example, if the graphics
operation performed by thread A is consuming needed resources, thread B can call the
CancelDC function to halt that operation.

Retrieving Device Data
Windows supports two functions, GetDeviceCaps and DeviceCapabilities, that applications can
use to retrieve device data using a device context. GetDeviceCaps retrieves general device data
for the following devices:

· Raster displays
· Dot-matrix printers
· Ink-jet printers
· Laser printers
· Vector plotters
· Raster cameras

The data includes the supported capabilities of the device, including device resolution (for video
displays), color format (for video displays and color printers), number of graphic objects, raster
capabilities, curve drawing, line drawing, polygon drawing, and text drawing. An application
retrieves this data by supplying a handle identifying the appropriate device context as well as an
index specifying the type of data the function is to retrieve.

The DeviceCapabilities function retrieves data specific to printers, including the number of
available paper bins, the duplex capabilities of the printer, the resolutions supported by the printer,
the maximum and minimum supported paper size, and so on. An application retrieves this data by
supplying strings specifying a printer device and port, as well as an index specifying the type of
data that the function is to retrieve.

Saving, Restoring, and Resetting a Device Context
The Win32 API supports three functions that an application can use to save, restore, and reset a
device context: SaveDC, RestoreDC, and ResetDC. The SaveDC function records on a special
GDI stack the current device context's graphic objects and their attributes, and graphic modes. A
drawing application can call this function before a user begins drawing and save the application's
original state ¾ providing a "clean slate" for the user. To return to this original state, the
application calls the RestoreDC function.

ResetDC is provided to reset printer device context data. An application calls this function to reset
the paper orientation, paper size, output scaling factor, number of copies to be printed, paper
source (or bin), duplex mode, and so on. Typically, an application calls this function after a user
has changed one of the printer options and Windows has issued a WM_DEVMODECHANGE
message.

Using the Device Context Functions
· Obtaining a private display device context
· Creating a printer device context
· Retrieving the capabilities of a printer
· Retrieving graphic-object attributes and selecting new graphic objects

Obtaining a Private Display Device Context
An application performing numerous drawing operations in the client area of its window must use
a private display device context. To create this type of device context, the application must specify
the CS_OWNDC constant for the style member of the WNDCLASS structure when registering the
window class. After registering the window class, the application obtains a handle identifying a
private display device context by calling the GetDC function.

The following example shows how to create a private display device context.#include <windows.h> /* required for all Windows apps */
#include <stdio.h>
#include <string.h>/* strtok */
#include "dc.h" /* specific to this program */
/* Function prototypes */
BOOL InitApplication(HINSTANCE);
long FAR PASCAL MainWndProc(HWND, UINT, UINT, LONG);
/* Global variables */
HINSTANCE hinst; /* handle of current instance*/
HDC hdc;/* display device context handle */

.

.

.
BOOL InitApplication(HINSTANCE hinstance)
{

WNDCLASS wc;
/*

* Fill in the window class structure with parameters
* describing the main window.
*/

wc.style = CS_OWNDC; /* Private-DC constant */
wc.lpfnWndProc = (WNDPROC) MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hinstance;
wc.hIcon = LoadIcon((HINSTANCE) NULL,
MAKEINTRESOURCE(IDI_APPLICATION));
wc.hCursor = LoadCursor((HINSTANCE) NULL,
MAKEINTRESOURCE(IDC_ARROW));
wc.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "GenericMenu";
wc.lpszClassName = "GenericWClass";
/* Register the window class and return the

* resultant code.
*/

return RegisterClass(&wc);
}
LRESULT APIENTRY MainWndProc(

HWND hwnd, /* window handle*/
UINT message, /* type of message */
WPARAM wParam, /* additional information */
LPARAM lParam) /* additional information */

{
PAINTSTRUCT ps; /* paint structure */

/* Retrieve a handle identifying the private DC. */
hdc = GetDC(hwnd);
switch (message) {
case WM_PAINT:
BeginPaint(hwnd, &ps);
.
. /* Draw and paint using private DC. */
.

Creating a Printer Device Context
An application can create a printer device context in one of two ways:

· Calling the PrintDlg function to display a common dialog box that allows the user to
specify printer options, then creating a printer device context by using those options.

· Creating a printer device context by using the default printer data from the WIN.INI file.
This section contains code demonstrating the latter method.

To use the default printer, retrieve and parse the appropriate string from the WIN.INI file. This
string is retrieved by calling the GetProfileString function and specifying the appropriate section
and entry names. In the case of the default printer, this data is stored in the [windows] section and
identified by the entry named device. The seventh line in the following excerpt from a WIN.INI file
shows an entry for a Kodak® Diconix™ printer.[windows]

load=
run=
Beep=yes
Spooler=yes
NullPort=None
device=Diconix,winspool,LPT1:
CoolSwitch=1
BorderWidth=3
KeyboardSpeed=31
InitialKeyboardIndicators=2
CursorBlinkRate=530
DoubleClickSpeed=686
Programs=com exe bat pif cmd
Documents=
DeviceNotSelectedTimeout=15
TransmissionRetryTimeout=45
swapdisk=
NetWarn=1
fPromptOnVerbose=FALSE
fPromptOnWarning=FALSE
fPromptOnError=TRUE
fPrintVerbose=FALSE
fPrintFileLine=FALSE
shell=
ScreenSaveTimeOut=300
ScreenSaveActive=0
DebugOptions=2048The following example shows how a printer device context was created by using the data from

WIN.INI.HDC hdcPrint;/* printer DC handle */
char szDevString[120]; /* array for WIN.INI data */
char *szPrinter, *szDriver; /* printer and driver names */
char *szPort;/* port name */

/*
* Retrieve the printer, printer-driver, and
* output-port names from WIN.INI.
*/

GetProfileString("windows", "device", ",,,",
szDevString, 120);
/*

* Parse the string of names, setting ptrs
* as required. If the string contains the
* required names, use them to create a
* device context.
*/

if ((szPrinter = strtok(szDevString,
(const char *) ","))
&& (szDriver = strtok ((char *) NULL,

(const char *) ", "))
&& (szPort = strtok ((char *) NULL,

(const char *) ", ")))
hdcPrint = CreateDC(szDriver, szPrinter,
szPort, NULL);
/*

* Print a test page that contains the string
* "PRINTER TEST" in the upper left corner.
*/

Escape(hdcPrint, STARTDOC, 8, "Test-Doc", NULL);
TextOut(hdcPrint, 50, 50, "PRINTER TEST", 12);
Escape(hdcPrint, NEWFRAME, 0, NULL, NULL);
Escape(hdcPrint, ENDDOC, 0, NULL, NULL);

/* Delete the printer DC. */
DeleteDC(hdcPrint);

Retrieving the Capabilities of a Printer
Not every output device supports the entire set of Win32 graphics functions. For example,
because of hardware limitations, most vector plotters do not support bit-block transfers. An
application can determine whether a device supports a particular Win32 graphics function by
calling the GetDeviceCaps function, specifying the appropriate index, and examining the return
value.

The following example shows how an application tests a printer to determine whether it supports
bit-block transfers./*
* Examine the raster capabilities of the device
* identified by hdcPrint to verify that it supports
* the BitBlt function.
*/
if ((GetDeviceCaps(hdcPrint, RASTERCAPS)
& RC_BITBLT) == 0) {
DeleteDC(hdcPrint);
break;

}
else
/* Print the bitmap using the printer DC. */

Retrieving Graphic-Object Attributes and Selecting New Graphic Objects
An application can retrieve the attributes for a pen, brush, palette, font, or bitmap by calling the
GetCurrentObject and GetObject functions. The GetCurrentObject function returns a handle
identifying the object currently selected into the device context; the GetObject function returns a
structure that describes the object's attributes.

The following example shows how an application can retrieve the current brush attributes and use
the retrieved data to determine whether it is necessary to select a new brush.HDC hdc; /* display DC handle */
HBRUSH hbrushNew, hbrushOld; /* brush handles */
HBRUSH hbrush;/* brush handle */
LOGBRUSH lb; /* logical-brush structure */

/*
* Retrieve a handle identifying the current brush.
*/

hbrush = GetCurrentObject(hdc, OBJ_BRUSH);
/*

* Retrieve a LOGBRUSH structure that contains the
* current brush attributes.
*/

GetObject(hbrush, sizeof(LOGBRUSH), &lb);
/*

* If the current brush is not a solid-black brush,
* replace it with the solid-black stock brush.
*/

if ((lb.lbStyle != BS_SOLID)
|| (lb.lbColor != 0x000000)) {
hbrushNew = GetStockObject(BLACK_BRUSH);
hbrushOld = SelectObject(hdc, hbrushNew);
}

/* Perform painting operations with the white brush. */

/*
* After completing the last painting operation
* with the new brush, the application should
* select the original brush back into the
* device context and delete the new brush.
* In this example, hbrushNew contains a handle
* to a stock object. It is not necessary (but it
* is not harmful) to call DeleteObject on a stock
* object. If hbrushNew contained a handle to a brush
* created by a function such as CreateBrushIndirect,
* it would be necessary to call DeleteObject.
*/

SelectObject(hdc, hbrushOld);
DeleteObject(hbrushNew);Note that the application saved the original brush handle when calling the SelectObject function

the first time. This handle is saved so that the original brush can be selected back into the device
context after the last painting operation has been completed with the new brush. After the original
brush is selected back into the device context, the new brush is deleted, freeing memory in the
GDI heap.

Device Context Reference
The following functions and messages are associated with device contexts.

Device Context Functions
Following are the functions used with device contexts.
CancelDC
ChangeDisplaySettings
CreateCompatibleDC
CreateDC
CreateIC
DeleteDC
DeleteObject
DeviceCapabilities
DrawEscape
EnumDisplaySettings
EnumObjects
EnumObjectsProc
GetCurrentObject
GetDC
GetDCEx
GetDCOrgEx
GetDeviceCaps
GetGraphicsMode
GetObject
GetObjectType
GetStockObject
ReleaseDC
ResetDC
RestoreDC
SaveDC

SelectObject

Device Context Messages
Following is the message used with device contexts.

WM_DEVMODECHANGE

Enhanced Metafile RecordsAn enhanced metafile is an array of variable-length structures called enhanced metafile records.
This overview contains definitions for enhanced metafile records.

About Enhanced Metafile Records
The first records in a metafile specify general information, such as the resolution of the device on
which the picture was created, the dimensions of the picture, and so on. The remaining records,
which constitute the bulk of the metafile, identify the graphics device interface (GDI) functions
used to create the picture.

Enhanced Metafile Record Structure
At the beginning of every enhanced metafile record is an EMR structure, which contains two
members. The first member, iType, identifies the record type ¾ that is, the GDI function whose
parameters are contained in the record. Because the structures are variable in length, the other
member, nSize, contains the size of the record. Immediately following the nSize member are the
remaining parameters, if any, of the GDI function.

Playing Back Enhanced Metafiles
Applications can play back enhanced metafiles using the PlayEnhMetaFile or EnumEnhMetaFile
function. If using PlayEnhMetaFile to draw the picture, you pass a handle to the enhanced
metafile without being concerned with the format of the enhanced metafile records. However, it is
sometimes desirable to enumerate the records in the enhanced metafile to search for a particular
GDI function and modify the parameters of the function in some manner. To do this, you can use
EnumEnhMetaFile and provide a callback function of the type ENHMFENUMPROC to process
the enhanced metafile records. To modify the parameters for an enhanced metafile record, you
must know the format of the parameters within the record.

Enhanced Metafile Reference
The following structures are used with enhanced metafile records. Note that the first structure,
EMR, is used as the first member of the remaining structures.
EMR
EMRANGLEARC
EMRARC, EMRARCTO, EMRCHORD, EMRPIE
EMRBITBLT
EMRCREATEBRUSHINDIRECT
EMRCREATECOLORSPACE
EMRCREATEDIBPATTERNBRUSHPT
EMRCREATEMONOBRUSH
EMRCREATEPALETTE
EMRCREATEPEN
EMRELLIPSE, EMRRECTANGLE
EMREOF
EMREXCLUDECLIPRECT, EMRINTERSECTCLIPRECT
EMREXTCREATEFONTINDIRECTW
EMREXTCREATEPEN
EMREXTFLOODFILL
EMREXTSELECTCLIPRGN
EMREXTTEXTOUTA, EMREXTTEXTOUTW
EMRFILLPATH, EMRSTROKEANDFILLPATH, EMRSTROKEPATH
EMRFILLRGN
EMRFORMAT
EMRFRAMERGN
EMRGDICOMMENT
EMRINVERTRGN, EMRPAINTRGN
EMRLINETO, EMRMOVETOEX
EMRMASKBLT
EMRMODIFYWORLDTRANSFORM
EMROFFSETCLIPRGN
EMRPLGBLT
EMRPOLYDRAW
EMRPOLYDRAW16
EMRPOLYPOLYLINE, EMRPOLYPOLYGON
EMRPOLYPOLYLINE16, EMRPOLYPOLYGON16
EMRPOLYTEXTOUTA, EMRPOLYTEXTOUTW
EMRRESIZEPALETTE
EMRRESTOREDC
EMRROUNDRECT
EMRSELECTOBJECT, EMRDELETEOBJECT
EMRSELECTPALETTE
EMRSETARCDIRECTION
EMRSETBKCOLOR, EMRSETTEXTCOLOR
EMRSETCOLORADJUSTMENT
EMRSETDIBITSTODEVICE
EMRSETMAPPERFLAGS
EMRSETMITERLIMIT
EMRSETPALETTEENTRIES
EMRSETPIXELV
EMRSETWORLDTRANSFORM
EMRSTRETCHBLT
EMRSTRETCHDIBITS
EMRTEXT
EMRPOLYLINE, EMRPOLYBEZIER, EMRPOLYGON, EMRPOLYBEZIERTO, EMRPOLYLINETO
EMRPOLYLINE16, EMRPOLYBEZIER16, EMRPOLYGON16, EMRPOLYBEZIERTO16,
EMRPOLYLINETO16
EMRSCALEVIEWPORTEXTEX, EMRSCALEWINDOWEXTEX
EMRSELECTCOLORSPACE, EMRDELETECOLORSPACE
EMRSETVIEWPORTEXTEX, EMRSETWINDOWEXTEX
EMRSETVIEWPORTORGEX, EMRSETWINDOWORGEX, EMRSETBRUSHORGEX
POINTL

RECTL

Enhanced Metafile Records with No Parameters
typedef struct tagABORTPATH{

EMR emr;
} EMRABORTPATH, *PEMRABORTPATH,
EMRBEGINPATH, *PEMRBEGINPATH,
EMRENDPATH, *PEMRENDPATH,
EMRCLOSEFIGURE, *PEMRCLOSEFIGURE,
EMRFLATTENPATH, *PEMRFLATTENPATH,
EMRWIDENPATH, *PEMRWIDENPATH,
EMRSETMETARGN,*PEMRSETMETARGN,
EMRSAVEDC, *PEMRSAVEDC,
EMRREALIZEPALETTE, *PEMRREALIZEPALETTE;Contains data for the AbortPath, BeginPath, EndPath, CloseFigure, FlattenPath, WidenPath,

SetMetaRgn, SaveDC, and RealizePalette enhanced metafile records.

Enhanced Metafile Records with One Parameter
typedef struct tagEMRSELECTCLIPPATH
{

EMR emr;DWORD iMode;
} EMRSELECTCLIPPATH, *PEMRSELECTCLIPPATH,
EMRSETBKMODE, *PEMRSETBKMODE,
EMRSETMAPMODE, *PEMRSETMAPMODE,
EMRSETPOLYFILLMODE, *PEMRSETPOLYFILLMODE,
EMRSETROP2, *PEMRSETROP2,
EMRSETSTRETCHBLTMODE, *PEMRSETSTRETCHBLTMODE,
EMRSETTEXTALIGN, *PEMRSETTEXTALIGN,
EMRENABLEICM, *PEMRENABLEICMContains parameters for the SelectClipPath, SetBkMode, SetPolyFillMode, SetROP2,

SetStretchBltMode, SetTextAlign, and EnableICM enhanced metafile records.Membersemr
Base structure for all record types.

iMode
Value and meaning that varies depending on the function contained in the enhanced metafile
record. For a description of this member, see the documentation of the functions contained in
this record .

See AlsoSelectClipPath, SetBkMode, SetPolyFillMode, SetROP2, SetStretchBltMode, SetTextAlign

Filled ShapesFilled shapes are geometric shapes that are outlined by using the current pen and filled by using
the current brush. There are five filled shapes: ellipse, chord, pie, polygon, and rectangle.

About Filled Shapes
An application written for Microsoft® Windows® uses filled shapes in a variety of ways.
Spreadsheet applications, for example, use filled shapes to construct charts and graphs, and
drawing and painting applications use filled shapes to allow the user to draw figures and
illustrations.

About Ellipses
An ellipse is a closed curve defined by two fixed points (f1 and f2) such that the sum of the
distances (d1 + d2) from any point on the curve to the two fixed points is constant. The following
illustration shows an ellipse drawn by using the Ellipse function.

ewc msdncd, EWGraphic, bsd23488 0 /a "SDK_01.BMP"

When calling Ellipse, an application supplies the coordinates of the upper left and lower right
corners of the ellipse's bounding rectangle. A bounding rectangle is the smallest rectangle
completely surrounding the ellipse. When Windows draws the ellipse, it excludes the right and
lower sides if no world transformations are set. Therefore, for any rectangle measuring x units
wide by y units high, the associated ellipse measures x- 1 units wide by y- 1 units high. If the
application sets a world transformation by calling the SetWorldTransform or
ModifyWorldTransform function, Windows includes the right and lower sides.

About Chords
A chord is a region bounded by the intersection of an ellipse and a line segment called a secant.
The following illustration shows a chord drawn by using the Chord function.

ewc msdncd, EWGraphic, bsd23488 1 /a "SDK_02.BMP"

When calling Chord, an application supplies the coordinates of the upper left and lower right
corners of the ellipse's bounding rectangle, as well as the coordinates of two points defining two
radials. A radial is a line drawn from the center of an ellipse's bounding rectangle to a point on the
ellipse.

When Windows draws the curved part of the chord, it does so by using the current arc direction
for the specified device context. The default arc direction is counterclockwise. You can have your
application reset the arc direction by calling the SetArcDirection function.

About Pies
A pie is a region bounded by the intersection of an ellipse curve and two radials. The following
illustration shows a pie drawn by using the Pie function.

ewc msdncd, EWGraphic, bsd23488 2 /a "SDK_03.BMP"

When calling Pie, an application supplies the coordinates of the upper left and lower right corners
of the ellipse's bounding rectangle, as well as the coordinates of two points defining two radials.

When Windows draws the curved part of the pie, it uses the current arc direction for the given
device context. The default arc direction is counterclockwise. An application can reset the arc
direction by calling the SetArcDirection function.

About Polygons
A polygon is a filled shape with straight sides. The sides of a polygon are drawn by using the
current pen. When Windows fills a polygon, it uses the current brush and the current polygon fill
mode. The two fill modes ¾ alternate (the default) and winding ¾ determine whether regions
within a complex polygon are filled or left unpainted. An application can select either mode by
calling the SetPolyFillMode function. For more information about polygon fill modes, see
Regions.

The following illustration shows a polygon drawn by using Polygon.

ewc msdncd, EWGraphic, bsd23488 3 /a "SDK_04.BMP"

In addition to drawing a single polygon by using Polygon, an application can draw multiple
polygons by using the PolyPolygon function.

Drawing Rectangles
A rectangle is a four-sided polygon whose opposing sides are parallel and equal in length.
Although an application can draw a rectangle by calling the Polygon function, supplying the
coordinates of each corner, Windows provides a simpler method, use of the Rectangle function.
This function requires only the coordinates for the upper left and the lower right corners. When an
application calls the Rectangle function, Windows draws the rectangle, excluding the right and
lower sides if no world transformation is set for the given device context.

If a world transformation has been set by using the SetWorldTransform or
ModifyWorldTransform function, Windows includes the right and lower edges.

In addition to drawing a normal rectangle, the Microsoft® Win32® application programming
interface (API) provides a function that applications can use to draw rectangles with rounded
corners. This function, RoundRect, requires that the application supply the coordinates of the
lower left and upper right corners, as well as the width and height of the ellipse used to round
each corner.

The Win32 API also provides three functions that applications can use to manipulate rectangles,
described as follows.

Function Description

FillRect Repaints the interior of a rectangle.
FrameRect Redraws the sides of a rectangle.
InvertRect Inverts the colors that appear within the interior of a

rectangle.

Using Filled Shapes
This section illustrates how to use filled shape functions. The example uses the main window
procedure from an application that enables the user to draw ellipses, rectangles, and rectangles
with rounded corners.

The user draws a filled shape by selecting a particular shape from the menu, positioning the
cursor at the upper left corner of the shape (or the shape's bounding rectangle in the case of an
ellipse), and then dragging the mouse until the desired dimensions are obtained.

The following illustration shows three filled shapes drawn using the sample code in this section.

ewc msdncd, EWGraphic, bsd23488 4 /a "SDK_05.BMP"

To enable the user to draw filled shapes, include the following code in your application.LRESULT APIENTRY MainWndProc(hwnd, uMsg, wParam, lParam)
HWND hwnd; /* handle of window */
UINT uMsg; /* message */
WPARAM wParam; /* first message parameter */
LPARAM lParam; /* second message parameter */
{

HDC hdc; /* handle of device context (DC) */
PAINTSTRUCT ps; /* paint data for Begin/EndPaint */
POINT ptClientUL; /* client area upper left corner */
POINT ptClientLR; /* client area lower right corner */
static HDC hdcCompat;/* handle of DC for bitmap*/
static POINT pt;/* x- and y-coordinates of cursor */
static RECT rcTarget; /* rect to receive filled shape*/
static RECT rcClient; /* client area rectangle */
static BOOL fSizeEllipse; /* TRUE if ellipse is sized*/
static BOOL fDrawEllipse; /* TRUE if ellipse is drawn */
static BOOL fDrawRectangle; /* TRUE if rectangle is drawn */
static BOOL fSizeRectangle; /* TRUE if rectangle is sized */
static BOOL fSizeRoundRect; /* TRUE if rounded rect is sized */
static BOOL fDrawRoundRect; /* TRUE if rounded rect is drawn */
static int nEllipseWidth; /* width for round corners */
static int nEllipseHeight; /* height for round corners */
switch (uMsg) {
case WM_COMMAND:
switch (wParam) {
/*
* Set the appropriate flag to indicate which
* filled shape the user is drawing.
*/
case IDM_ELLIPSE:
fSizeEllipse = TRUE;
break;
case IDM_RECTANGLE:
fSizeRectangle = TRUE;
break;
case IDM_ROUNDRECT:
fSizeRoundRect = TRUE;
break;
default:
return DefWindowProc(hwnd, uMsg, wParam,
lParam);
}
break;

case WM_CREATE:
nEllipseWidth = 20;
nEllipseHeight = 20;
return 0;
case WM_PAINT:

BeginPaint(hwnd, &ps);
/*
* Because the default brush is white, select
* a different brush into the device context
* to demonstrate the painting of filled shapes.
*/
SelectObject(ps.hdc, GetStockObject(GRAY_BRUSH));
/*
* If one of the filled shape "draw" flags is TRUE,
* draw the corresponding shape.
*/
if (fDrawEllipse) { /* draws ellipse */
Ellipse(ps.hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
fDrawEllipse = FALSE;
rcTarget.left = rcTarget.right = 0;
rcTarget.top = rcTarget.bottom = 0;
}
if (fDrawRectangle) { /* Draws rectangle */
Rectangle(ps.hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
fDrawRectangle = FALSE;
rcTarget.left = rcTarget.right = 0;
rcTarget.top = rcTarget.bottom = 0;
}
if (fDrawRoundRect) { /* Draws rounded rectangle */
RoundRect(ps.hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom,
nEllipseWidth, nEllipseHeight);
fDrawRectangle = FALSE;
rcTarget.left = rcTarget.right = 0;
rcTarget.top = rcTarget.bottom = 0;
}
EndPaint(hwnd, &ps);
break;
case WM_SIZE:
/*
* Convert the client coordinates of the client area
* rectangle to screen coordinates and save them in a
* rectangle. The rectangle is passed to the ClipCursor
* function during WM_LBUTTONDOWN processing.
*/
GetClientRect(hwnd, &rcClient);
ptClientUL.x = rcClient.left;
ptClientUL.y = rcClient.top;
ptClientLR.x = rcClient.right;
ptClientLR.y = rcClient.bottom;
ClientToScreen(hwnd, &ptClientUL);
ClientToScreen(hwnd, &ptClientLR);
SetRect(&rcClient, ptClientUL.x, ptClientUL.y,
ptClientLR.x, ptClientLR.y);
return 0;
case WM_LBUTTONDOWN:
/*
* Restrict the cursor to the client area.
* This ensures that the window receives a matching
* WM_LBUTTONUP message.
*/
ClipCursor(&rcClient);
/* Save the coordinates of the cursor. */
pt.x = (LONG) LOWORD(lParam);
pt.y = (LONG) HIWORD(lParam);
/*
* If the user chooses one of the filled shapes,
* set the appropriate flag to indicate that the
* shape is being sized.
*/
if (fDrawEllipse)

fSizeEllipse = TRUE;
return 0;
case WM_MOUSEMOVE:
/*
* If one of the "size" flags is set, draw
* the target rectangle as the user drags
* the mouse.
*/
if ((wParam && MK_LBUTTON)

&& (fSizeEllipse || fSizeRectangle
|| fSizeRoundRect)) { /* draws target rect. */
/*
* Set the mixing mode so that the pen color is the
* inverse of the background color. The previous
* rectangle can then be erased by drawing
* another rectangle on top of it.
*/
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOTXORPEN);
/*
* If a previous target rectangle exists, erase
* it by drawing another rectangle on top.
*/
if (!IsRectEmpty(&rcTarget))
Rectangle(hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
/*
* Save the coordinates of the target rectangle.
* Avoid invalid rectangles by ensuring that the
* value of the left coordinate is greater than
* that of the right, and that the value of the
* bottom coordinate is greater than that of
* the top.
*/
if ((pt.x < (LONG) LOWORD(lParam)) &&

(pt.y > (LONG) HIWORD(lParam)))
SetRect(&rcTarget, pt.x, HIWORD(lParam),

LOWORD(lParam), pt.y);
else if ((pt.x > (LONG) LOWORD(lParam)) &&

(pt.y > (LONG) HIWORD(lParam)))
SetRect(&rcTarget, LOWORD(lParam),

HIWORD(lParam), pt.x, pt.y);
else if ((pt.x > (LONG) LOWORD(lParam)) &&

(pt.y < (LONG) HIWORD(lParam)))
SetRect(&rcTarget, LOWORD(lParam), pt.y,

pt.x, HIWORD(lParam));
else
SetRect(&rcTarget, pt.x, pt.y, LOWORD(lParam),

HIWORD(lParam));
/* Draw the new target rectangle. */
Rectangle(hdc, rcTarget.left, rcTarget.top,
rcTarget.right, rcTarget.bottom);
ReleaseDC(hwnd, hdc);
}
return 0;
case WM_LBUTTONUP:
/*
* If one of the "size" flags is TRUE, reset
* it to FALSE, and then set the corresponding
* "draw" flag.
* Invalidate the appropriate rectangle and issue
* a WM_PAINT message.
*/
if (fSizeEllipse) {
fSizeEllipse = FALSE;
fDrawEllipse = TRUE;
}
if (fSizeRectangle) {
fSizeRectangle = FALSE;
fDrawRectangle = TRUE;
}
if (fSizeRoundRect) {
fSizeRoundRect = FALSE;
fDrawRoundRect = TRUE;
}
if (fDrawEllipse || fDrawRectangle || fDrawRoundRect)

{
InvalidateRect(hwnd, &rcTarget, TRUE);
UpdateWindow(hwnd);
}
/* Release the cursor. */
ClipCursor((LPRECT) NULL);
return 0;
case WM_DESTROY:
/*
* Destroy the background brush, compatible bitmap,
* and bitmap.
*/
DeleteDC(hdcCompat);
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
return (LRESULT) NULL;

}

Filled Shape Functions
The following functions are used with filled shapes.
Chord
Ellipse
FillRect
FrameRect
InvertRect
Pie
Polygon
PolyPolygon
Rectangle

RoundRect

Fonts and TextFonts are used to draw text on video displays and other output devices. The Microsoft® Windows®
operating system provides a set of functions that developers can use to install, select, and query
different fonts.

About Fonts
To a person trained in the mechanics of manuscript composition or familiar with standard
typography, some of the typographic terms used in Windows may be unusual. Most of the
differences between standard typography and Windows reflect changes in technology. The
original typographic terms were based on hot-metal composition, whereas the terms used in
Windows, which appear as member names for the font and text output structures, reflect a new
technology based on laser-printer output and composition performed on a personal computer
using desktop publishing software.

Fonts Overview
In Windows, a font is a collection of characters and symbols that share a common design. The
three major elements of this design are referred to as typeface, style, and size.TypefaceThe term typeface refers to specific characteristics of characters and symbols in the font, such as
the width of the thick and thin strokes that compose the characters and the presence or absence
of serifs. A serif is the short cross line at the ends of an unconnected stroke. A font or typeface
without serifs is usually called a sans-serif font.StyleThe term style refers to the weight and slant of a font. Font weights can range from thin to black.
The following list identifies possible weights for Windows fonts (beginning with the lightest and
ending with the heaviest).
Thin
Extralight
Light
Normal
Medium
Semibold
Bold
Extrabold

Heavy

Three terms categorize the slant of a Windows font: roman, oblique, and italic.

The characters in a roman font are upright. The characters in an oblique font are artificially
slanted. The slant is achieved by performing a shear transformation on the characters from a
roman font. The characters in an italic font are truly slanted and appear as they were designed.
For more information on shearing, see Coordinate Spaces and Transformations.SizeIn Windows, the size of a font is an imprecise value. It can generally be determined by measuring
the distance from the bottom of a lowercase "g" to the top of an adjacent uppercase "M," as
shown in the following illustration.

ewc msdncd, EWGraphic, bsd23489 0 /a "SDK_01.BMP"

A font's size is specified in units called points. A point is .013837 of an inch. Following the point
system devised by Pierre Simon Fournier, it is common practice to approximate a point as 1/72
inch.

Font Families
Windows organizes fonts by family; a family is a set of fonts having common stroke width and serif
characteristics. Windows categorizes families with five family names. A sixth name ("Dontcare")
allows an application to use the default font. The following table describes the font-family names.

Font-family nameDescription

Decorative Specifies a novelty font. An example is Old
English.

Dontcare Specifies a generic family name. This name is
used when information about a font does not exist
or does not matter.

Modern Specifies a monospace font with or without serifs.
Monospace fonts are usually modern; examples
include Pica, Elite, and Courier New®.

Roman Specifies a proportional font with serifs. An
example is Times New Roman.

Script Specifies a font that is designed to look like
handwriting; examples include Script and Cursive.

Swiss Specifies a proportional font without serifs. An
example is Arial.

These family names correspond to constants found in the WINGDI.H file: FF_DECORATIVE,
FF_DONTCARE, FF_MODERN, FF_ROMAN, FF_SCRIPT, and FF_SWISS. An application
uses these constants when it creates a font, selects a font, or retrieves information about a
font.

Fonts within a family are distinguished by size (10 point, 24 point, and so on) and style
(regular, italic, and so on).

Raster, Vector, and TrueType® Fonts
Windows-based applications can use three different kinds of font technologies to display and print
text: raster, vector, and TrueType. The differences between these fonts reflect the way that the
glyph for each character or symbol is stored in the respective font-resource file. In raster fonts, a
glyph is a bitmap that Windows uses to draw a single character or symbol in the font. In vector
fonts, a glyph is a collection of line endpoints that define the line segments Windows uses to draw
a character or symbol in the font. In TrueType fonts, a glyph is a collection of line and curve
commands as well as a collection of hints. Windows uses the line and curve commands to define
the outline of the bitmap for a character or symbol in the TrueType font. Windows uses the hints to
adjust the length of the lines and shapes of the curves used to draw the character or symbol.
These hints and the respective adjustments are based on the amount of scaling used to reduce or
increase the size of the bitmap.

Because the bitmaps for each glyph in a raster font are designed for a specific resolution of
device, raster fonts are generally considered to be device dependent. Vector fonts, on the other
hand, are not device dependent, because each glyph is stored as a collection of scalable lines.
However, vector fonts are generally drawn more slowly than raster or TrueType fonts. TrueType
fonts provide both relatively fast drawing speed and true device independence. By using the hints
associated with a glyph, a developer can scale the characters from a TrueType font up or down
and still maintain their original shape.

As previously mentioned, the glyphs for a font are stored in a font-resource file. A font-resource
file is actually a Windows library that contains only data ¾ there is no code. For raster and vector
fonts, this data is divided into two parts: a header describing the font's metrics and the glyph data.
A font-resource file for a raster or vector font is identified by the .FON filename extension. For
TrueType fonts, there are two files for each font: the first file contains a relatively short header and
the second contains the actual font data. The first file is identified by a .FOT extension and the
second is identified by a .TTF extension.

Character Sets Used by Fonts
All fonts use a character set. A character set contains punctuation marks, numerals, uppercase
and lowercase letters, and all other printable characters. Each element of a character set is
identified by a number.

Most character sets used in Windows are supersets of the U.S. ASCII character set, which
defines characters for the 96 numeric values from 32 through 127. There are five major groups of
character sets:

· Windows
· Unicode
· OEM (original equipment manufacturer)
· Symbol
· Vendor-specificWindows Character SetThe Windows character set is the most commonly used character set in Windows programming. It

is essentially equivalent to the ANSI character set. The blank character is the first character in the
Windows character set. It has a hexadecimal value of 0x20 (decimal 32). The last character in the
Windows character set has a hexadecimal value of 0xFF (decimal 255).

Many fonts specify a default character. Whenever a request is made for a character that is not in
the font, Windows provides this default character. Many fonts using the Windows character set
specify the period (.) as the default character. TrueType fonts typically use an open box as the
default character.

Fonts use a break character called a quad to separate words and justify text. Most fonts using the
Windows character set specify that the blank character will serve as the break character.

Windows version 3.1 added 24 characters to the Windows code page, as shown in the following
table.

Character Name Windows character code

‚ base line single quote130
ƒ florin 131
„ base line double

quote
132

… ellipsis 133
† dagger 134
‡ double dagger 135
ˆ circumflex 136
‰ permille 137
Š S Hacek 138
‹ left single guillemet 139
Œ OE ligature 140
' left single quote 145
' right single quote 146
" left double quote 147
" right double quote 148
• bullet 149
- en dash 150
¾ em dash 151
˜ tilde 152
™ trademark ligature 153
š s Hacek 154
› right single guillemet 155
œ oe ligature 156
Ÿ Y Dieresis 159

It should be noted that the characters for left and right single quote were first added to the
character set for the release of Windows version 3.0.Unicode™Character SetThe Windows ANSI character uses 8 bits to represent each character; therefore, the maximum
number of characters that can be expressed using 8 bits is 256 (2^8). This is usually sufficient for
Western languages, including the diacritical marks used in French, German, Spanish, and other
languages. However, Eastern languages employ thousands of separate characters, which cannot
be encoded by using a single-byte coding scheme. With the proliferation of computer commerce,
double-byte coding schemes were developed so that characters could be represented in 8-bit, 16-
bit, 24-bit, or 32-bit sequences. This requires complicated passing algorithms; even so, using
different code sets could yield entirely different results on two different computers.

To address the problem of multiple coding schemes, the Unicode standard for data representation
was developed. A 16-bit character coding scheme, Unicode can represent 65,536 (2^16)
characters, which is enough to include all languages in computer commerce today, as well as
punctuation marks, mathematical symbols, and room for future expansion. Unicode establishes a
unique code for every character to ensure that character translation is always accurate.OEM Character SetThe OEM character set is typically used in full-screen MS-DOS® sessions for screen display.
Characters 32 through 127 are usually the same in the OEM, U.S. ASCII, and Windows character
sets. The other characters in the OEM character set (0 through 31 and 128 through 255)
correspond to the characters that can be displayed in a full-screen MS-DOS session. These
characters are generally different from the Windows characters.Symbol Character SetThe Symbol character set contains special characters typically used to represent mathematical
and scientific formulas.Vendor-Specific Character SetsMany printers and other output devices provide fonts based on character sets that differ from the
Windows and OEM sets ¾ for example, the Extended Binary Coded Decimal Interchange Code
(EBCDIC) character set. To use one of these character sets, the printer driver translates from the
Windows character set to the vendor-specific character set.

Font Installation and Deletion
A font must already be resident on a given device or installed in the Windows font table in order
for an application to draw text using glyphs from that font. The Windows font table is an internal
array that identifies all nondevice fonts that are available to a Windows-based application. An
application can retrieve the names of fonts currently installed on a device and stored in the
internal font table by calling the EnumFontFamilies or ChooseFont function.

An application can install a font by calling the font-installation function AddFontResource. The
AddFontResource function loads a font that is stored in a font-resource file.

In the case of TrueType fonts, an additional step is sometimes necessary before the font can be
installed in the font table. Some font manufacturers ship only the TrueType font-data files
(identified by the .TTF extension). Before Windows can load these fonts, it requires a
corresponding header file (identified by the .FOT extension). To create this header file, an
application must call the CreateScalableFontResource function and pass the name of the font-
data file as the third parameter. When this header file is created, an application can install the font
by calling the AddFontResource function and passing the name of the new header file.

When an application finishes using an installed font, it must remove that font by calling the
RemoveFontResource function.

Whenever an application calls the functions that add and delete font resources, it should also call
the SendMessage function and send a WM_FONTCHANGE message to all top-level windows in
the system. This message notifies other applications that the internal font table has been altered
by an application that added or removed a font.

Font Creation and Selection
Previous versions of Windows required that the application developer provide source code and a
dialog box template to support an interface that displayed the available fonts from which the user
could choose. The new Font common dialog box simplifies the creation and selection process. By
initializing the CHOOSEFONT structure and calling the ChooseFont function, an application can
support the same font-selection interface that previously required many lines of code. (For more
information about the Font common dialog box, see Common Dialog Box Library.)Selection by the UserMost font creation and selection operations involve the user. For example, word processing
applications let the user select unique fonts for headings, footnotes, and body text. After the user
selects a font by using the Font dialog box and presses the OK button, the ChooseFont function
initializes the members of a LOGFONT structure with the attributes of the requested font. To use
this font for text-output operations, an application must first create a logical font and then select
that font into its device context. A logical font is an application-supplied description of an ideal
font. A developer can create a logical font by calling the CreateFont or the CreateFontIndirect
functions. In this case, the application would call CreateFontIndirect and supply a pointer to the
LOGFONT structure initialized by ChooseFont. In general, it is more efficient to call
CreateFontIndirect because CreateFont requires several parameters while CreateFontIndirect
requires only one ¾ a pointer to LOGFONT.

Before an application can actually begin drawing text with a logical font, it must find the closest
match from the fonts stored internally on the device and the fonts whose resources have been
loaded into the operating system. The fonts stored on the device or in the operating system are
called physical fonts. The process of finding the physical font that most closely matches a
specified logical font is called font mapping. This process occurs when an application calls the
SelectObject function and supplies a handle identifying a logical font. Font mapping is performed
by using an internal algorithm that compares the attributes of the requested logical font against
the attributes of available physical fonts. When the font mapper algorithm completes its search
and determines the closest possible match, the SelectObject function returns and the application
can begin drawing text with the new font.

The SetMapperFlags function specifies whether or not the font mapper algorithm searches only
for physical fonts with aspect ratios that match the physical device. The aspect ratio for a device is
the ratio formed by the width and the height of a pixel on that device.

Special Font Selection Considerations
Although most font selection operations involve the user, there are some instances where this is
not true. For example, a developer may want to use a unique font in an application to draw text in
a control window. To select an appropriate font, the application must be able to determine what
fonts are available, create a logical font that describes one of these available fonts, and then
select that font into the appropriate device context.

An application can enumerate the available fonts by using the EnumFontFamilies function. This
can be useful when an application must determine which fonts are available from a given family.

Once an application has enumerated the available fonts and located an appropriate match, it
should use the values returned by the font enumeration function to initialize the members of a
LOGFONT structure. Then it can call the CreateFontIndirect function, passing to it a pointer to
the initialized LOGFONT structure. If the CreateFontIndirect function is successful, the
application can then select the logical font by calling the SelectObject function.

When initializing the members of the LOGFONT structure, be sure to specify a specific character
set in the lfCharSet member. This member is important in the font mapping process and the
results will be inconsistent if this member is not initialized correctly. If you specify a typeface name
in the lfFaceName member of the LOGFONT structure, make sure that the lfCharSet value
matches the character set of the typeface specified in lfFaceName. For example, if you want to
select a font such as "MS Mincho", lfCharSet must be set to the predefined value
SHIFTJIS_CHARSET.

Embedded Fonts
Embedding a font is the technique of bundling a document and the fonts it contains into a file for
transmission to another computer. Embedding a font guarantees that a font specified in a
transmitted file will be present on the computer receiving the file. Not all fonts can be moved from
computer to computer, however, since most fonts are licensed to only one computer at a time. In
Windows, only TrueType fonts can be embedded.

Applications should embed a font in a document only when requested by a user. An application
cannot be distributed along with documents that contain embedded fonts, nor can an application
itself contain an embedded font. Whenever an application distributes a font, in any format, the
proprietary rights of the owner of the font must be acknowledged.

It may be a violation of a font vendor's proprietary rights or user license agreement to embed any
fonts where embedding is not permitted or to fail to observe the following guidelines on
embedding fonts. A font's license may give only read-write permission for a font to be installed
and used on the destination computer. Or the license may give read-only permission. Read-only
permission allows a document to be viewed and printed (but not modified) by the destination
computer; documents with read-only embedded fonts are themselves read-only. Read-only
embedded fonts may not be unbundled from the document and installed on the destination
computer.

An application can determine the license status by calling the GetOutlineTextMetrics function
and examining the otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of
otmfsType is set, embedding is not permitted for the font. If bit 1 is clear, the font can be
embedded. If bit 2 is set, the embedding is read-only.

To embed a font, an application can use the GetFontData function to read the font file. Setting the
dwTable and dwOffset parameters of GetFontData to 0L and the cbData parameter to - 1L
ensures that the application reads the entire font file from the beginning.

After an application retrieves the font data, it can store the data with the document by using any
applicable format. Most applications build a font directory in the document, listing the embedded
fonts and whether the embedding is read-write or read-only. An application can use the
otmpStyleName and otmFamilyName members of the OUTLINETEXTMETRIC structure to
identify the font.

If the read-only bit is set for the embedded font, applications must encrypt the font data before
storing it with the document. The encryption method need not be complicated; for example, using
the XOR operator to combine the font data with an application-defined constant is adequate and
fast.

About Text Output
Text output is the most common type of graphic output found within the client area of Windows-
based applications. It is used by Windows-based applications in different ways. Word processing
and desktop publishing applications create documents with formatted text; spreadsheet
applications use text, numbers, and symbols to specify formulas, label columns, and list values;
database applications create records and display queries with text, and CAD applications use text
to label objects and display dimensions.

The Win32® application programming interface (API) provides a complete set of functions to
format and draw text in an application's client area and on a page of printer paper. These
functions can be divided into two categories: those that format the text (or prepare it for output)
and those that actually draw the text. The formatting functions align text, set the intercharacter
spacing, set the text and text-background colors, and justify text. The drawing functions draw
individual characters (or symbols) or entire strings of text.

Formatting Text
The formatting functions can be divided into three categories: those that retrieve or set the text-
formatting attributes for a device context, those that retrieve character widths, and those that
retrieve string widths and heights.

Text-Formatting Attributes
An application can use six functions to set the text-formatting attributes for a device context:
SetBkColor, SetBkMode, SetTextAlign, SetTextCharacterExtra, SetTextColor, and
SetTextJustification. These functions affect the text alignment, the intercharacter spacing, the
text justification, and text and background colors. In addition, six other functions can be used to
retrieve the current text formatting attributes for any device context: GetBkColor, GetBkMode,
GetTextAlign, GetTextCharacterExtra, GetTextColor, and GetTextExtentPoint32.Text AlignmentApplications can use the SetTextAlign function to specify how Windows should position the
characters in a string of text when they call one of the drawing functions. This function can be
used to position headings, page numbers, callouts, and so on. Windows positions a string of text
by aligning a reference point on an imaginary rectangle that surrounds the string, with the current
cursor position or with a point passed as an argument to one of the text drawing functions. The
SetTextAlign function lets the application specify the location of this reference point. The list
below identifies the possible reference point locations.

Location Description

left/bottom The reference point is located at the bottom left
corner of the rectangle.

left/base line The reference point is located at the intersection of
the character-cell base line and the left edge of the
rectangle.

left/top The reference point is located at the top left corner
of the rectangle.

center/bottom The reference point is located at the center of the
bottom of the rectangle.

center/base line The reference point is located at the intersection of
the character-cell base line and the center of the
rectangle.

center/top The reference point is located at the center of the
top of the rectangle.

right/bottom The reference point is located at the bottom right
corner of the rectangle.

right/base line The reference point is located at the intersection of
the character-cell base line and the right edge of the
rectangle.

right/top The reference point is located at the top right corner
of the rectangle.

The following illustration shows a string of text drawn by calling the TextOut function.
Before drawing the text, the SetTextAlign function was called to relocate the reference point at
each one of the nine possible locations.

ewc msdncd, EWGraphic, bsd23489 1 /a "SDK_04.BMP"

The default text alignment for a device context is the upper left corner of the imaginary rectangle
that surrounds the text. An application can retrieve the current text-alignment setting for any
device context by calling the GetTextAlign function.Intercharacter SpacingApplications can use the SetTextCharacterExtra function to alter the intercharacter spacing for
all text output operations in a given device context. The following illustration shows a string of text
drawn twice by calling the TextOut function. Before drawing the text the second time, the
SetTextCharacterExtra function was called to increment the intercharacter spacing.

ewc msdncd, EWGraphic, bsd23489 2 /a "SDK_06.BMP"

The default intercharacter spacing value for any device context is zero. An application can retrieve
the current intercharacter spacing value for a device context by calling the
GetTextCharacterExtra function.Text JustificationApplications can use the GetTextExtentPoint32 and SetTextJustification functions to justify a
line of text. Text justification is a common operation in any desktop publishing and in most word
processing applications. The GetTextExtentPoint32 function computes the width and height of a
string of text. After the width is computed, the application can call the SetTextJustification
function to distribute extra spacing between each of the words in a line of text. The following
illustration shows a paragraph of text printed twice: in the first paragraph, the text was not justified;
in the second paragraph, the text was justified by calling the GetTextExtentPoint32 and
SetTextJustification functions.

ewc msdncd, EWGraphic, bsd23489 3 /a "SDK_05.BMP"Text and Background ColorApplications can use the SetTextColor function to set the color of text drawn in the client-area of
their windows, as well as the color of text drawn on a color printer. An application can use the
SetBkColor function to set the color that appears behind each character and the SetBkMode
function to specify how Windows should blend the selected background color with the current
color or colors on the video display.

The default text color for a display device context is black; the default background color is white;
and the default background mode is OPAQUE. An application can retrieve the current text color
for a device context by calling the GetTextColor function. An application can retrieve the current
background color for a device context by calling the GetBkColor function and the current
background mode by calling the GetBkMode function.

Character Widths
Applications need to retrieve character-width data when they perform such tasks as fitting strings
of text to page or column widths. There are four functions that an application can use to retrieve
character-width data. Two of these functions retrieve the character-advance width and two of
these functions retrieve actual character-width data.

An application can use the GetCharWidth32 and GetCharWidthFloat functions to retrieve the
advance width for individual characters or symbols in a string of text. The advance width is the
distance that the cursor on a video display or the print-head on a printer must advance before
printing the next character in a string of text. The GetCharWidth32 function returns the advance
width as an integer value. If greater precision is required, an application can use the
GetCharWidthFloat function to retrieve fractional advance-width values.

An application can retrieve actual character-width data by using the GetCharABCWidths and
GetCharABCWidthsFloat functions. To retrieve character widths for characters in a string of text
that will be printed using a TrueType font, an application can call the GetCharABCWidths
function; however, for any other font, the application should call the GetCharABCWidthsFloat
function. (For more information about TrueType fonts, see Raster, Vector, and TrueType Fonts).
The following illustration shows the three components of the ABC width:

ewc msdncd, EWGraphic, bsd23489 4 /a "SDK_02.BMP"

The "A" spacing is the width to add to the current position before placing the character. The "B"
spacing is the width of the character itself. The "C" spacing is the white space to the right of the
character. The total advance width is determined by calculating the sum of A+B+C. The character
cell is an imaginary rectangle that surrounds each character or symbol in a Windows font.
Because characters can overhang or underhang the character cell, either or both of the A and C
increments can be a negative number.

String Widths and Heights
In addition to retrieving character-width data for individual characters, applications also need to
compute the width and height of entire strings. Two functions retrieve string-width and height
measurements: GetTextExtentPoint32, and GetTabbedTextExtent. If the string does not
contain tab characters, an application can use the GetTextExtentPoint32 function to retrieve the
width and height of a specified string. If the string contains tab characters, an application should
call the GetTabbedTextExtent function.

Windows also supports a special function, called GetTextExtentExPoint, that applications can
use for word-wrapping operations. This function returns the number of characters from a specified
string that fit within a given space.Font Ascenders and DescendersSome applications determine the line spacing between text lines of different sizes by using a font's
maximum ascender and descender. An application can retrieve these values by calling the
GetTextMetrics function and then checking the tmAscent and tmDescent members of the
TEXTMETRIC.

The maximum ascent and descent are different from the typographic ascent and descent. In
TrueType fonts, the typographic ascent and descent are typically the top of the "f" glyph and
bottom of the "g" glyph. An application can retrieve the typographic ascender and descender for a
TrueType font by calling the GetOutlineTextMetrics function and checking the values in the
otmMacAscent and otmMacDescent members of the OUTLINETEXTMETRIC structure. It is
important to note that TrueType font metrics do not correspond exactly to the metrics for Windows
raster fonts, because TrueType font metrics have been designed by Apple Computer, Inc. for
consistency across a variety of display and output devices.

The following figure shows the difference between the vertical text metric values returned in the
NEWTEXTMETRIC and OUTLINETEXTMETRIC structures. (The names beginning with otm are
members of the OUTLINETEXTMETRIC structure.)

ewc msdncd, EWGraphic, bsd23489 5 /a "SDK_03.BMP"Font DimensionsAn application can retrieve the physical dimensions of a TrueType font by calling the
GetOutlineTextMetrics function. An application can retrieve the physical dimensions of any other
font by calling the GetTextMetrics function. To determine the dimensions of an output device, an
application can call the GetDeviceCaps function. GetDeviceCaps returns both physical and
logical dimensions.

A logical inch is a measure Windows uses to present legible fonts on the screen and is
approximately 30 to 40 percent larger than a physical inch. The use of logical inches precludes an
exact match between the output of the screen and printer. Developers should be aware that the
text on a screen is not simply a scaled version of the text that will appear on the page, particularly
if graphics are incorporated into the text.

Drawing Text
After an application selects the appropriate font, sets the required text-formatting options, and
computes the necessary character width and height values for a string of text, it can begin
drawing characters and symbols by calling any of the four text-output functions. Two of these
functions, DrawText and TabbedTextOut, are part of Window Manager and found in the library
USER.DLL; the remaining two functions are part of GDI and found in the library GDI.DLL. When
an application calls one of these functions, the operating system passes the call to the graphics
engine, which in turn passes the call to the appropriate device driver. At the device driver level, all
of these calls are supported by one or more calls to the driver's own ExtTextOut or TextOut
function. An application will achieve the fastest execution by calling the ExtTextOut function,
which is quickly converted into an ExtTextOut call for the device. However, there are instances
when an application should call one of the other three functions; for example, to draw multiple
lines of text within the borders of a specified rectangular region, it is more efficient to call the
DrawText function. To create a multicolumn table with justified columns of text, it is more efficient
to call the TabbedTextOut function.

Using the Font and Text-Output Functions
This section describes how you can use the font and text-output functions to draw normal text,
draw text from different fonts on the same line, rotate lines of text, display the font-selection
common dialog-box, enumerate fonts, and so on.

· Using a stock font to draw text
· Creating a logical font
· Enumerating the installed fonts
· Checking the text capabilities of a device
· Setting the text alignment
· Drawing text from different fonts on the same line
· Rotating lines of text
· Retrieving character outlines
· Using portable truetype metrics
· Using PANOSE numbers
· Creating customized fonts

Using a Stock Font to Draw Text
Windows provides six stock fonts. A stock font is a logical font that an application can obtain by
calling the GetStockObject function and passing a value that identifies the requested font. The
following list contains the six values that you can specify to obtain a stock font.

Value Meaning

ANSI_FIXED_FONT Specifies a monospace font based on the
Windows character set. A Courier font is
typically used.

ANSI_VAR_FONT Specifies a proportional font based on the
Windows character set. MS Sans Serif is
typically used.

DEVICE_DEFAULT_FONTSpecifies the preferred font for the given
device. This is typically the System font for
display devices; however, for some dot-
matrix printers this is a font that is resident
on the device. (Printing with this font is
usually faster than printing with a
downloaded, bitmapped font).

OEM_FIXED_FONT Specifies a monospace font based on an
OEM character set. For IBM® computers
and compatibles, the OEM font is based
on the IBM PC character set.

SYSTEM_FONT Specifies the System font. This is a
proportional font based on the Windows
character set, and is used by the operating
system to display window titles, menu
names, and text in dialog boxes. The
System font is always available. Other
fonts are available only if they have been
installed.

SYSTEM_FIXED_FONT Specifies a monospace font compatible
with the System font in Windows versions
earlier than 3.0.

The following example retrieves a handle of the Windows variable stock font, selects it into
a device context, and then writes a string using that font:HFONT hfnt, hOldFont;

hfnt = GetStockObject(ANSI_VAR_FONT);
if (hOldFont = SelectObject(hdc, hfnt)) {
TextOut(hdc, 10, 50, "Sample ANSI_VAR_FONT text.", 26);
SelectObject(hdc, hOldFont);
}If other stock fonts are not available, GetStockObject returns a handle to the System font

(SYSTEM_FONT). You should use stock fonts only if the mapping mode for your application's
device context is MM_TEXT.

Creating a Logical Font
You can use the Font common dialog box to display available fonts. The ChooseFont dialog box
is displayed after an application initializes the members of a CHOOSEFONT structure and calls
the ChooseFont function. After the user chooses one of the available fonts and presses the OK
button, the ChooseFont function initializes a LOGFONT structure with the relevant data. Your
application can then call the CreateFontIndirect function and create a logical font based on the
user's request. The following example demonstrates how this is done.HFONT FAR PASCAL MyCreateFont(void)
{
CHOOSEFONT cf;
LOGFONT lf;
HFONT hfont;

/* Initialize members of the CHOOSEFONT structure. */
cf.lStructSize = sizeof(CHOOSEFONT);
cf.hwndOwner = (HWND)NULL;
cf.hDC = (HDC)NULL;
cf.lpLogFont = &lf;
cf.iPointSize = 0;
cf.Flags = CF_SCREENFONTS;
cf.rgbColors = RGB(0,0,0);
cf.lCustData = 0L;
cf.lpfnHook = (LPCFHOOKPROC)NULL;
cf.lpTemplateName = (LPSTR)NULL;
cf.hInstance = (HINSTANCE) NULL;
cf.lpszStyle = (LPSTR)NULL;
cf.nFontType = SCREEN_FONTTYPE;
cf.nSizeMin = 0;
cf.nSizeMax = 0;
/* Display the CHOOSEFONT common-dialog box. */
ChooseFont(&cf);
/* Create a logical font based on the user's */
/* selection and return a handle identifying */
/* that font. */
hfont = CreateFontIndirect(cf.lpLogFont);
return (hfont);

}

Enumerating the Installed Fonts
In some instances, an application must be able to enumerate the available fonts and select the
one most appropriate for a particular operation. An application can enumerate the available fonts
by calling the EnumFonts or EnumFontFamilies function. These functions send information
about the available fonts to a callback function that the application supplies. The callback function
receives information in LOGFONT and NEWTEXTMETRIC structures. (The NEWTEXTMETRIC
structure contains information about a TrueType font. When the callback function receives
information about a non-TrueType font, the information is contained in a TEXTMETRIC structure.
) By using this information, an application can limit the user's choices to only those fonts that are
available.

The EnumFontFamilies function is similar to the EnumFonts function but includes some extra
functionality. EnumFontFamilies allows an application to take advantage of styles available with
TrueType fonts. New and upgraded applications should use EnumFontFamilies instead of
EnumFonts.

In previous versions of Windows, the only style attributes were weight and italic; any other styles
were specified in the family name for the font. For example, when an application used the
EnumFonts function to query the available Courier fonts, EnumFonts might return information for
Courier, Courier Bold, Courier Bold Italic, and Courier Italic. It would not return information about
any other Courier fonts that might be installed, because any other Courier fonts would typically
have a different family name.

TrueType fonts are organized around a typeface name (for example, Courier New) and style
names (for example, italic, bold, and extra-bold). The EnumFontFamilies function enumerates all
the styles associated with a given family name, not simply the bold and italic attributes. For
example, when the system includes a TrueType font called Courier New Extra-Bold,
EnumFontFamilies lists it with the other Courier New fonts. The capabilities of
EnumFontFamilies are helpful for fonts with many or unusual styles and for fonts that cross
international borders.

If an application does not supply a typeface name, the EnumFonts and EnumFontFamilies
functions supply information about one font in each available family. To enumerate all the fonts in
a device context, the application can specify NULL for the typeface name, compile a list of the
available typefaces, and then enumerate each font in each typeface.

The following example uses the EnumFontFamilies function to retrieve the number of available
raster, vector, and TrueType font families.UINT uAlignPrev;

int aFontCount[] = { 0, 0, 0 };
char szCount[8];
EnumFontFamilies(hdc, (LPCTSTR) NULL,
(FONTENUMPROC) EnumFamCallBack, (LPARAM) aFontCount);
uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);
MoveToEx(hdc, 10, 50, (LPPOINT)NULL);
TextOut(hdc, 0, 0, "Number of raster fonts: ", 24);
itoa(aFontCount[0], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
MoveToEx(hdc, 10, 75, (LPPOINT)NULL);
TextOut(hdc, 0, 0, "Number of vector fonts: ", 24);
itoa(aFontCount[1], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
MoveToEx(hdc, 10, 100, (LPPOINT)NULL);
TextOut(hdc, 0, 0, "Number of TrueType fonts: ", 26);
itoa(aFontCount[2], szCount, 10);
TextOut(hdc, 0, 0, szCount, strlen(szCount));
SetTextAlign(hdc, uAlignPrev);
.
.
.

BOOL FAR PASCAL EnumFamCallBack(lplf, lpntm, FontType, aFontCount)
LPLOGFONT lplf;
LPNEWTEXTMETRIC lpntm;
DWORD FontType;
LPVOID aFontCount;
{

int far * aiFontCount = (int far *) aFontCount;
/*

* Record the number of raster, TrueType, and vector
* fonts in the font-count array.
*/

if (FontType & RASTER_FONTTYPE)
aiFontCount[0]++;
else if (FontType & TRUETYPE_FONTTYPE)
aiFontCount[2]++;
else
aiFontCount[1]++;
if (aiFontCount[0] || aiFontCount[1] || aiFontCount[2])
return TRUE;
else
return FALSE;
UNREFERENCED_PARAMETER(lplf);
UNREFERENCED_PARAMETER(lpntm);

}This example uses two masks, RASTER_FONTTYPE and TRUETYPE_FONTTYPE, to determine
the type of font being enumerated. If the RASTER_FONTTYPE bit is set, the font is a raster font.
If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If neither bit is set, the font is
a vector font. A third mask, DEVICE_FONTTYPE, is set when a device (for example, a laser
printer) supports downloading TrueType fonts; it is zero if the device is a display adapter, dot-
matrix printer, or other raster device. An application can also use the DEVICE_FONTTYPE mask
to distinguish GDI-supplied raster fonts from device-supplied fonts. Windows can simulate bold,
italic, underline, and strikeout attributes for GDI-supplied raster fonts, but not for device-supplied
fonts.

An application can also check bits 1 and 2 in the tmPitchAndFamily member of the
NEWTEXTMETRIC structure to identify a TrueType font. If bit 1 is 0 and bit 2 is 1, the font is a
TrueType font.

Vector fonts are categorized as OEM_CHARSET instead of ANSI_CHARSET. Some applications
identify vector fonts by using this information, checking the tmCharSet member of the
NEWTEXTMETRIC structure. This categorization usually prevents the font mapper from choosing
vector fonts unless they are specifically requested. (Most applications no longer use vector fonts
because their strokes are single lines and they take longer to draw than TrueType fonts, which
offer many of the same scaling and rotation features that required vector fonts in earlier versions
of Windows.)

Checking the Text Capabilities of a Device
You can use the EnumFonts and EnumFontFamilies functions to enumerate the fonts that are
available in a printer-compatible memory device context. You can also use the GetDeviceCaps
function to retrieve information about the text capabilities of a device. By calling the
GetDeviceCaps function with the NUMFONTS index, you can determine the minimum number of
fonts supported by a printer. (An individual printer may support more fonts than specified in the
return value from GetDeviceCaps with the NUMFONTS index.) By using the TEXTCAPS index,
you can identify many of the text capabilities of the specified device.

Setting the Text Alignment
You can query and set the text alignment for a device context by using the GetTextAlign and
SetTextAlign functions. The text-alignment settings determine how text is positioned relative to a
given location. Text can be aligned to the right or left of the position or centered over it; it can also
be aligned above or below the point.

The following example shows a method for determining which horizontal alignment flag is set:switch ((TA_LEFT | TA_RIGHT | TA_CENTER) & GetTextAlign(hdc))
{
case TA_LEFT:

.

.

.
case TA_RIGHT:

.

.

.
case TA_CENTER:

.

.

.
}You can also use the SetTextAlign function to update the current position when a text-output

function is called. For instance, the following example uses the SetTextAlign function to update
the current position when the TextOut function is called. In this example, the cArial parameter is
an integer that specifies the number of Arial fonts.UINT uAlignPrev;
char szCount[8];
uAlignPrev = SetTextAlign(hdc, TA_UPDATECP);
MoveToEx(hdc, 10, 50, (LPPOINT) NULL);
TextOut(hdc, 0, 0, "Number of Arial fonts: ", 23);
itoa(cArial, szCount, 10);
TextOut(hdc, 0, 0, (LPSTR) szCount, strlen(szCount));
SetTextAlign(hdc, uAlignPrev);

Drawing Text From Different Fonts on the Same Line
Different type styles within a font family can have different widths. For example, bold and italic
styles of a family are always wider than the roman style for a given point size. When you display
or print several type styles on a single line, you must keep track of the width of the line to avoid
having characters displayed or printed on top of one another.

You can use two functions to retrieve the width (or extent) of text in the current font. The
GetTabbedTextExtent function computes the width and height of a character string. If the string
contains one or more tab characters, the width of the string is based upon a specified array of tab-
stop positions. The GetTextExtentPoint32 function computes the width and height of a line of
text.

When necessary, Windows synthesizes a font by changing the character bitmaps. To synthesize
a character in a bold font, Windows draws the character twice: once at the starting point, and
again one pixel to the right of the starting point. To synthesize a character in an italic font,
Windows draws two rows of pixels at the bottom of the character cell, moves the starting point one
pixel to the right, draws the next two rows, and continues until the character has been drawn. By
shifting pixels, each character appears to be sheared to the right. The amount of shear is a
function of the height of the character.

One way to write a line of text that contains multiple fonts is to use the GetTextExtentPoint32
function after each call to TextOut and add the length to a current position. The following example
writes the line "This is a sample string." using bold characters for "This is a", switches to italic
characters for "sample", then returns to bold characters for "string." After printing all the strings, it
restores the system default characters.int XIncrement;
int YStart;
TEXTMETRIC tm;
HFONT hfntDefault, hfntItalic, hfntBold;
SIZE sz;
LPSTR lpszString1 = "This is a ";
LPSTR lpszString2 = "sample ";
LPSTR lpszString3 = "string.";
/* Create a bold and an italic logical font. */
hfntItalic = MyCreateFont();
hfntBold = MyCreateFont();

/* Select the bold font and draw the first string */
/* beginning at the specified point (XIncrement, YStart). */
XIncrement = 10;
YStart = 50;
hfntDefault = SelectObject(hdc, hfntBold);
TextOut(hdc, XIncrement, YStart, lpszString1,

lstrlen(lpszString1));
/*
* Compute the length of the first string and add
* this value to the x-increment that is used for the
* text-output operation.
*/
GetTextExtentPoint32(hdc, lpszString1,

lstrlen(lpszString1), &sz);
XIncrement += sz.cx;
/*
* Retrieve the overhang value from the TEXTMETRIC
* structure and subtract it from the x-increment.
* (This is only necessary for non-TrueType raster
* fonts.)
*/
GetTextMetrics(hdc, &tm);
XIncrement -= tm.tmOverhang;
/*
* Select an italic font and draw the second string
* beginning at the point (XIncrement, YStart).
*/
hfntBold = SelectObject(hdc, hfntItalic);
GetTextMetrics(hdc, &tm);
XIncrement -= tm.tmOverhang;
TextOut(hdc, XIncrement, YStart, lpszString2,

lstrlen(lpszString2));
/*
* Compute the length of the second string and add
* this value to the x-increment that is used for the
* text-output operation.
*/
GetTextExtentPoint32(hdc, lpszString2, lstrlen(lpszString2), &sz);
XIncrement += sz.cx;
/*
* Reselect the bold font and draw the third string
* beginning at the point (XIncrement, YStart).
*/
SelectObject(hdc, hfntBold);
TextOut(hdc, XIncrement - tm.tmOverhang, YStart, lpszString3,
lstrlen(lpszString3));

/* Reselect the original font. */
SelectObject(hdc, hfntDefault);
/* Delete the bold and italic fonts. */
DeleteObject(hfntItalic);
DeleteObject(hfntBold);In this example, the GetTextExtentPoint32 function initializes the members of a SIZE structure

with the length and height of the specified string. The GetTextMetrics function retrieves the
overhang for the current font. Because the overhang is zero if the font is a TrueType font, the
overhang value does not change the string placement. For raster fonts, however, it is important to
use the overhang value.

The overhang is subtracted from the bold string once, to bring subsequent characters closer to the
end of the string if the font is a raster font. Because overhang affects both the beginning and end
of the italic string in a raster font, the glyphs start at the right of the specified location and end at
the left of the endpoint of the last character cell. (The GetTextExtentPoint32 function retrieves
the extent of the character cells, not the extent of the glyphs.) To account for the overhang in the
raster italic string, the example subtracts the overhang before placing the string and subtracts it
again before placing subsequent characters.

The SetTextJustification function adds extra space to the break characters in a line of text. You
can use the GetTextExtentPoint function to determine the extent of a string, then subtract that
extent from the total amount of space the line should occupy, and use the SetTextJustification
function to distribute the extra space among the break characters in the string. The
SetTextCharacterExtra function adds extra space to every character cell in the selected font,
including the break character. (You can use the GetTextCharacterExtra function to determine the
current amount of extra space being added to the character cells; the default setting is zero.)

You can place characters with greater precision by using the GetCharWidth32 or
GetCharABCWidths function to retrieve the widths of individual characters in a font. The
GetCharABCWidths function is more accurate than the GetCharWidth32 function, but only when
it is used with TrueType fonts; when you use GetCharABCWidths with non-TrueType fonts, it
retrieves the same information as GetCharWidth32.

ABC spacing also allows an application to perform very accurate text alignment. For example,
when the application right aligns a raster roman font without using ABC spacing, the advance
width is calculated as the character width. This means the white space to the right of the glyph in
the bitmap is aligned, not the glyph itself. By using ABC widths, applications have more flexibility
in the placement and removal of white space when aligning text, because they have information
that allows them to finely control intercharacter spacing.

Rotating Lines of Text
You can rotate TrueType fonts at any angle. This is useful for labeling charts and other
illustrations. The following example rotates a string in 10-degree increments around the center of
the client area by changing the value of the lfEscapement and lfOrientation members of the
LOGFONT structure used to create the font.RECT rc;
int angle;
HFONT hfnt, hfntPrev;
LPSTR lpszRotate = "String to be rotated.";
/* Allocate memory for a LOGFONT structure. */
PLOGFONT plf = (PLOGFONT) LocalAlloc(LPTR, sizeof(LOGFONT));

/* Specify a font typeface name and weight. */
lstrcpy(plf->lfFaceName, "Arial");
plf->lfWeight = FW_NORMAL;
/* Retrieve the client-rectangle dimensions. */
GetClientRect(hwnd, &rc);
/*
* Set the background mode to transparent for the
* text-output operation.
*/
SetBkMode(hdc, TRANSPARENT);
/*
* Draw the string 36 times, rotating 10 degrees
* counter-clockwise each time.
*/
for (angle = 0; angle < 3600; angle += 100) {

plf->lfEscapement = angle;
hfnt = CreateFontIndirect(plf);
hfntPrev = SelectObject(hdc, hfnt);
TextOut(hdc, rc.right / 2, rc.bottom / 2,
lpszRotate, lstrlen(lpszRotate));
SelectObject(hdc, hfntPrev);
DeleteObject(hfnt);

}
/* Reset the background mode to its default. */
SetBkMode(hdc, OPAQUE);
/* Free the memory allocated for the LOGFONT structure. */
LocalFree((LOCALHANDLE) plf);

Retrieving Character Outlines
You can use the GetGlyphOutline function to retrieve the outline of a glyph from a TrueType font.
The glyph outline returned by the GetGlyphOutline function is for a grid-fitted glyph. (A grid-fitted
glyph has been modified so that its bitmap image conforms as closely as possible to the original
design of the glyph.) If your application requires an unmodified glyph outline, request the glyph
outline for a character in a font whose size is equal to the font's em units. (To create a font with
this size, set the lfHeight member of the LOGFONT structure to the negative of the value of the
ntmSizeEM member of the NEWTEXTMETRIC structure.)

GetGlyphOutline returns the outline as a bitmap or as a series of polylines and splines. When an
application retrieves a glyph outline as a series of polylines and splines, the information is
returned in a TTPOLYGONHEADER structure followed by as many TTPOLYCURVE structures
as required to describe the glyph. All points are returned as POINTFX structures and represent
absolute positions, not relative moves. The starting point given by the pfxStart member of the
TTPOLYGONHEADER structure is the point where the outline for a contour begins. The
TTPOLYCURVE structures that follow can be either polyline records or spline records.

To render a TrueType character outline in Windows, you must use both the polyline and the spline
records. Windows can render both polylines and splines easily. Each polyline and spline record
contains as many sequential points as possible, to minimize the number of records returned.

The starting point given in the TTPOLYGONHEADER structure is always on the outline of the
glyph. The specified point serves as both the starting and ending points for the contour.

Polyline Records
Polyline records are a series of points; lines drawn between the points describe the outline of the
character. A polyline record begins with the last point in the previous record (or, for the first record
in the contour, the starting point). Each point in the record is on the glyph outline and can be
connected simply by using straight lines.

Spline Records
Spline records represent the quadratic curves (that is, quadratic b-splines) used by TrueType. A
spline record begins with the last point in the previous record (or for the first record in the contour,
with the starting point). For the first spline record, the starting point and the last point in the record
are on the glyph outline. For all other spline records, only the last point is on the glyph outline. All
other points in the spline records are off the glyph outline and must be rendered as the control
points of b-splines.

The last spline or polyline record in a contour always ends with the contour's starting point. This
arrangement ensures that every contour is closed.

Because b-splines require three points (one point off the glyph outline between two points that are
on the outline), you must perform some calculations when a spline record contains more than one
off-curve point.

For example, if a spline record contains three points (A, B, and C) and it is not the first record,
points A and B are off the glyph outline. To interpret point A, use the current position (which is
always on the glyph outline) and the point on the glyph outline between points A and B. To find
the midpoint (M) between A and B, you can perform the following calculation.

M = A + (B - A)/2

The midpoint between consecutive off-outline points in a spline record is a point on the glyph
outline, according to the definition of the spline format used in TrueType fonts.

If the current position is designated by P, the two quadratic splines defined by this spline record
are (P, A, M) and (M, B, C).

Using Portable TrueType Metrics
Applications that use the TrueType text metrics can achieve a high degree of printer and
document portability; even applications that must maintain compatibility with earlier versions of
Windows can use the TrueType metrics.

Design widths overcome most of the problems of device-dependent text introduced by physical
devices. Design widths are a kind of logical width. Independent of any rasterization problems or
scaling transformations, each glyph has a logical width and height. Composed to a logical page,
each character in a string has a place that is independent of the physical device widths. Although
a logical width implies that widths can be scaled linearly at all point sizes, this is not necessarily
true for either nonportable or most TrueType fonts. At smaller point sizes, some glyphs are made
wider relative to their height for better readability.

The characters in TrueType core fonts are designed against a 2048 by 2048 grid. The design
width is the width of a character in these grid units. (TrueType supports any integer grid size up to
16,384 by 16,384; grid sizes that are integer powers of 2 scale faster than other grid sizes.)

The font outline is designed in notional units. The em square is the notional grid against which the
font outline is fitted. (You can use the otmEMSquare member of OUTLINETEXTMETRIC and the
ntmSizeEM member of NEWTEXTMETRIC to retrieve the size of the em square in notional units.
) When a font is created that has a point size (in device units) equal to the size of its em square,
the ABC widths for this font are the desired design widths. For example, assume the size of an em
square is 1000 and the ABC widths of a character in the font are 150, 400, and 150. A character
in this font that is 10 device units high would have ABC widths of 1.5, 4, and 1.5, respectively.
Since the MM_TEXT mapping mode is most commonly used with fonts (and MM_TEXT is
equivalent to device units), this is a simple calculation.

Because of the high resolution of TrueType design widths, applications that use them must take
into account the large numeric values that can be created.

Device vs. Design Units
An application can retrieve font metrics for a physical font only after the font has been selected
into a device context. When a font is selected into a device context, it is scaled for the device. The
font metrics specific to the device are known as device units.

Portable metrics in fonts are known as design units. To apply to a given device, design units must
be converted to device units. Use the following formula to convert design units to device units.

DeviceUnits = (DesignUnits/unitsPerEm) * (PointSize/72) * DeviceResolution

The variables in this formula have the following meanings.

Variable Description

DeviceUnits Specifies the DesignUnits font metric converted to
device units. This value is in the same units as the
value given for DeviceResolution.

DesignUnits Specifies the font metric to be converted to device
units. This value can be any font metric, including
the width of a character or the ascender value for
an entire font.

unitsPerEm Specifies the em square size for the font.
PointSize Specifies size of the font, in points. (One point

equals 1/72 of an inch.)
DeviceResolution Specifies number of device units (pixels) per inch.

Typical values might be 300 for a laser printer or
96 for a VGA screen.

This formula should not be used to convert device units back to design units. Device units
are always rounded to the nearest pixel. The propagated round-off error can become very
large, especially when an application is working with screen sizes.

To request design units, create a logical font whose height is specified as -unitsPerEm.
Applications can retrieve the value for unitsPerEm by calling the EnumFontFamilies function and
checking the ntmSizeEM member of the NEWTEXTMETRIC structure.

Metrics for Portable Documents
The following table specifies the most important font metrics for applications that require portable
documents and the functions that allow an application to retrieve them.

Function Metric Use

EnumFontFamilies ntmSizeEM Retrieval of design
metrics; conversion to
device metrics

GetCharABCWidths ABCWidths Accurate placement of
characters at the start
and end of margins,
picture boundaries, and
other text breaks

GetCharWidth32 AdvanceWidths Placement of characters
on a line

GetOutlineTextMetricsotmfsType Font-embedding bits
otmsCharSlopeRiseY-component for slope of

cursor for italic fonts
otmsCharSlopeRunX-component for slope of

cursor for italic fonts
otmAscent Line spacing
otmDescent Line spacing
otmLineGap Line spacing
otmpFamilyName Font identification
otmpStyleName Font identification
otmpFullName Font identification

(typically, family and style
name)

The otmsCharSlopeRise, otmsCharSlopeRun, otmAscent, otmDescent, and otmLineGap
members of the OUTLINETEXTMETRIC structure are scaled or transformed to correspond to the
current device mode and physical height (as given in the tmHeight member of the
NEWTEXTMETRIC structure).

Font identification is important in those instances when an application must select the same font
¾ for example, when a document is reopened or moved to a different operating system. The font
mapper always selects the correct font when an application requests a font by full name. The
family and style names provide input to the standard font dialog box, which ensures that the
selection bars are properly placed.

The otmsCharSlopeRise and otmsCharSlopeRun values are used to produce a close
approximation of the main italic angle of the font. For typical roman fonts, otmsCharSlopeRise is
1 and otmsCharSlopeRun is 0. For italic fonts, the values attempt to approximate the sine and
cosine of the main italic angle of the font (in counterclockwise degrees past vertical); note that the
italic angle for upright fonts is 0. Because these values are not expressed in design units, they
should not be converted into device units.

The character placement and line spacing metrics enable an application to compute device-
independent line breaks that are portable across screens, printers, typesetters, and even
platforms.

Device-independent page layout requires the following seven basic steps:

1. Normalize all design metrics to a common ultra-high resolution (UHR) value (for example,
65,536 DPI); this prevents round-off errors.

2. Compute line breaks based on UHR metrics and physical page width; this yields a starting
point and an ending point of a line within the text stream.

3. Compute the device page width in device units (for example, pixels).
4. Fit each line of text into the device page width, using the line breaks computed in step 2.
5. Compute page breaks by using UHR metrics and the physical page length; this yields the

number of lines per page.
6. Compute the line heights in device units.

7. Fit the lines of text onto the page, using the lines per page from step 5 and the line
heights from step 6.

If all applications adopt these techniques, developers can virtually guarantee that documents
moved from one application to another will retain their original appearance and format.

Using PANOSE Numbers
TrueType font files include PANOSE numbers, which applications can use to choose a font that
closely matches their specifications. The PANOSE system classifies faces by 10 different
attributes. For more information about these attributes, see the PANOSE structure. A PANOSE
structure is part of the OUTLINETEXTMETRIC structure (whose values are filled in by calling the
GetOutlineTextMetrics function).

The PANOSE attributes are rated individually on a scale. The resulting values are concatenated
to produce a number. Given this number for a font and a mathematical metric to measure
distances in the PANOSE space, an application can determine the nearest neighbors.

Creating Customized Fonts
Windows keeps a font table containing all the fonts that applications can use. Windows chooses a
font from this table when an application calls the CreateFont or CreateFontIndirect function.
There can be up to 253 entries in the table.

A font resource is a group of individual fonts representing characters in a given character set that
have various combinations of heights, widths, and pitches. You can load font resources and add
the fonts in each resource to the operating system font table by using the AddFontResource
function. To remove a font resource from the font table, you can use the RemoveFontResource
function.

After you add a font resource to the font table, you can use the individual fonts in the resource. In
other words, the CreateFont function takes the fonts into account when it tries to match a physical
font to the specified logical font. (Fonts in the table are never directly accessible to an application.
They are available only through the CreateFontIndirect and CreateFont functions, which return
the handles of the fonts, not their memory addresses.)

Whenever your application adds or removes a font resource, it should inform all other applications
of the change by sending a WM_FONTCHANGE message to them. Use the following call to the
SendMessage function to send the message to all windows.SendMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);You can use the GetProfileString function to search the [Fonts] section of the WIN.INI file for the
list of fonts that the user has used Control Panel to install.

Creating Font Resources
A font resource file is an empty Windows dynamic-link library; it contains no code or data, but it
does contain resources. You can create font resources by creating font files and adding them as
resources to a font resource file. To create a font resource file, follow these steps:

1. Create the font files.
2. Create a resource-definition file for the font.
3. Create a dummy code module.
4. Create a module-definition file that describes the fonts and the devices that use the fonts.
5. Compile and link the source files.

You can add a font file to an empty library, along with such resources as icons, cursors, and
menus, by using resource compiler.

Note A complete explanation of how to create a font resource file is beyond the scope of this
book. For more information on this topic, see the documentation provided with your
application development tools.

Installing and Using an Embedded Font
You must separate an embedded font from the containing document and install it in the user's
operating system before Windows can use it. Although the exact procedure for separating the font
from the document depends on the method used to embed it, your application should always
perform these steps:

1. Resolve name conflicts before installing the font.
2. Write the font data to a file, decoding read-only fonts as necessary.
3. Use the CreateScalableFontResource function to create a font resource file for the

unembedded font.
In Windows, only a TrueType font can be embedded.

Your application should avoid installing a font with the same name as a font that is already on the
system. To determine whether there are duplicate style names, an application can compare the
information returned by EnumFontFamilies against the family name and style name stored with
the embedded font.Read-Write PermissionEmbedded fonts that have read-write permission (and that therefore can be permanently installed
on the user's system) should be written to a file that has the .TTF filename extension.

Most applications put the files for embedded fonts that have read-write permission into either the
SYSTEM subdirectory of the user's Windows directory or into the application's working directory.
Files for read-only embedded fonts are typically put into a temporary directory.

Before installing an embedded font, you must use the CreateScalableFontResource function to
create a font resource file. Because Windows cannot directly interpret the native TrueType font file
format, it requires a file that mimics the standard .FON file (called a .FOT file) to make internal
bookkeeping and enumeration easier. The CreateScalableFontResource function produces a .
FOT file that points to the TrueType font file. Once this .FOT file is produced, Windows
applications can use TrueType fonts transparently by using the AddFontResource and
RemoveFontResource functions. You can also use the CreateScalableFontResource function
to install special fonts for logos, icons, and other graphics. Font resource files for read-only fonts
should use a different extension (for example, .FOR) and should be hidden from other
applications in the system by specifying 1 for the first parameter of
CreateScalableFontResource.

Your application should offer users the option of permanently installing embedded fonts that have
read-write permission. To permanently install a font, applications should concatenate the typeface
and style names and then use the WriteProfileString function to insert this string along with the .
FOT file name in the [Fonts] section of the WIN.INI file. A typical font entry in the [Fonts] section
looks like the following example.Times New Roman Bold (TrueType)=TIMESBD.FOT
Read-Only PermissionEmbedded fonts with read-only permission should not use the .TTF extension and should avoid
the .FOT and .FON extensions. A typical filename extension for read-only embedded fonts is .
TTR. Files for read-only embedded fonts must be removed from the operating system and from
both physical and logical memory as soon as the containing document is closed, so their names
do not need to be meaningful except to the application.

If a document contains one or more read-only embedded fonts, the user must not be permitted to
edit the document. If the user is allowed to edit the document in any way, your application must
first strip away and delete the read-only embedded fonts. As mentioned earlier, read-only
embedded fonts must be removed from the operating system and memory immediately when the
document in which they are bundled is closed.

To delete read-only embedded fonts, your application should follow these steps:

1. Call the RemoveFontResource function for each font to be deleted.
2. Delete the font resource file for each font.
3. Delete each TrueType font file for each font.

When an application creates a file for a read-only embedded font and specifies 1 for the first
parameter of the CreateScalableFontResource function, the EnumFonts and
EnumFontFamilies functions will not enumerate this font. Hiding read-only embedded fonts in
this manner makes it unlikely that another application can use them, even though Windows
resources are theoretically available to all processes in Windows. The RemoveFontResource
function does not delete a font currently in use. If your application uses a read-only embedded
font installed by another application, it can be difficult for the installing application to delete the
font. In this case, your application should delete the resource file and the TrueType font file when
the user closes the document containing the read-only fonts.

It is very important that applications delete the TrueType font file for read-only embedded fonts. If
the delete operation fails when the user closes the document, the application should periodically
attempt to delete the file as the application runs, when it closes, and the next time it starts.

In some cases, an application is unable to delete a TrueType font file for a read-only embedded
font because of external events (such as a system failure). There is no legal liability for events that
are out of the control of the application.

Font and Text Reference
The following functions, structures and messages are used with fonts.

Font and Text Functions
Following are the functions used with fonts.
AddFontResource
CreateFont
CreateFontIndirect
CreateScalableFontResource
DrawText
DrawTextEx
EnumFontFamilies
EnumFontFamiliesEx
EnumFontFamExProc
EnumFontFamProc
EnumFonts
EnumFontsProc
ExtTextOut
GetAspectRatioFilterEx
GetCharABCWidths
GetCharABCWidthsFloat
GetCharacterPlacement
GetCharWidth
GetCharWidthFloat
GetCharWidth32
GetFontData
GetFontLanguageInfo
GetGlyphOutline
GetKerningPairs
GetOutlineTextMetrics
GetRasterizerCaps
GetTabbedTextExtent
GetTextAlign
GetTextCharacterExtra
GetTextColor
GetTextExtentExPoint
GetTextExtentPoint
GetTextExtentPoint32
GetTextFace
GetTextMetrics
PolyTextOut
RemoveFontResource
SetMapperFlags
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
TabbedTextOut

TextOut

Font and Text Structures
The following structures are used with fonts.
ABC
ABCFLOAT
DRAWTEXTPARAMS
ENUMLOGFONT
ENUMLOGFONTEX
EXTLOGFONT
FIXED
GCP_RESULTS
GLYPHMETRICS
KERNINGPAIR
LOGFONT
MAT2
NEWTEXTMETRIC
NEWTEXTMETRICEX
OUTLINETEXTMETRIC
PANOSE
POINTFX
POLYTEXT
RASTERIZER_STATUS
SIZE
TEXTMETRIC
TTPOLYCURVE

TTPOLYGONHEADER

Font and Text Messages
The following message is used with font messages.

WM_FONTCHANGE

Image Color MatchingImage color matching provides accurate and consistent reproductions of color images on all
output devices. This overview describes image color matching and explains how to use the
related functions. For general information about colors and how to specify colors when drawing,
see Colors.

About Image Color Matching
Despite differences in imaging technologies and color capabilities between devices, image color
matching ensures that a color image will look the same or as close as possible to the same when
output to screen, paper, film, and other media. Applications typically use image color matching to
let users create color images on the screen that can then be reproduced exactly on a printer or on
other screens.

Logical Colors, Gamuts, and Gamut Matching
By default, Windows disables image color matching to ensure that existing applications continue
to draw color images as originally intended. You can enable image color matching for a device
context by using the SetICMMode function. You must enable image color matching for each
device context you intend to use for output.

Once you enable image color matching, you can create a color space and select it into the device
contexts of the devices you wish to use. The color space defines the set of logical colors that you
may use to draw. For each device, the system or the device driver transforms the logical colors to
device (or physical) colors in a way that ensures consistency across devices.

To use a color from the color space, you specify a logical color value. The format of the value
depends on the color space type. In some color spaces, this is similar to RGB (red, green, blue)
color value described in previous Windows documentation, but the red, green, and blue
components of logical color values are defined in terms of independent colormetric measure
rather than arbitrary color units imposed by a device driver. In other cases, you may use color
values that actually contain CMYK (cyan, magenta, yellow, black) values.

Not all devices support all colors. You can determine which colors are supported by a given
device by checking its gamut, the set of colors it can produce. Different devices have different
gamuts. For example, the screen can display cyans that no printer can produce; likewise, there
are some reds on a page that never appear on a display.

An important element of image color matching is gamut matching, the process of finding color
matches in the gamuts of different devices. This can range from the simple (such as truncating to
the surface of the printer gamut), to the sophisticated (such as moving all colors a bit to maintain
contrasts). Matching is not simply the process of ensuring that each pixel is faithfully reproduced
with a given color. Instead, image color matching works within the capabilities of the given output
device to produce an image in which the colors have the same relation to one another as they do
when produced on other devices.

You can determine whether given colors are within the gamut of a device by using the
CheckColorsInGamut function. This is useful for determining whether the screen has a larger
gamut than the current printer. In such cases, you can notify the user of which screen colors won't
print. You can preview the colors of a print job on the screen by using the ColorMatchToTarget
function. The function first uses the current color space and gamut-matching method of a given
device context, such as for a printer, to convert the colors in an image. It then converts the
converted image to display on the preview device.

Image color matching applies to any drawing operation in which colors are given as color values.
It affects colors that you specify directly, such as when setting the color of individual pixels using
the SetPixel function, or indirectly, when you set the colors in pens, brushes, fonts and other
graphics objects. Image color matching does not apply to device-dependent bitmaps, such as
those created by the CreateBitmap and CreateCompatibleBitmap functions.

Color Spaces
Image color matching uses color spaces to define the set of colors available for a device. To each
device context, the system assigns a default color space whose attributes, such as color space
type, gamut-matching method and color endpoints, fully define how the system transforms color
values for the device. You can create your own color spaces and replace the default color space
for a device context by using the CreateColorSpace and SetColorSpace functions. These
functions let you explicitly set the format of the color values you use in your application and how
the device interprets those values and generates colors.

To create a color space, you set the members of a LOGCOLORSPACE structure and pass the
structure to the CreateColorSpace function. You can either set the members to the values you
want or specify the filename of a color profile that contains the characterization of the device. For
more information, see Color Profiles.

Every color space must have a color space type and a gamut matching method. Gamut matching
specifies whether colors in a given image are transformed into an exact match or are modified to
make best use of the gamut of the given device, and is described in Gamut Matching Method.

The color space types can be device RGB (red, green, blue), device CMYK (cyan, magenta,
yellow, black), or calibrated RGB. Device RGB, the default color space for device contexts,
consists of the arbitrary set of colors for the specified output device. Logical color values in this
space are given as three 8-bit color values (in a 32-bit value) and are sent to the device driver
without transformation. Device CMYK is similar to device RGB except that logical color values are
given as four 8-bit values. You use this color space for devices, typically printers, that use CMYK
color values. For example, you might use it to carry out color separation and pass color values
directly to a CMYK printer.

Calibrated RGB consists of colors in the set defined by three color endpoints. The color endpoints
are given as three 32-bit values and are interpreted as defined by the 1931 CIE (Commission
Internationale de L'Eclairage) XYZ standard.

After you have created a color space, you can select it into a device context by using the
SetColorSpace function. You can delete a color space if you no longer need it by using the
DeleteColorSpace function.

You can retrieve the color space for a specified device context by using the GetColorSpace
function. This is useful if you want to get the logical definition or color profile file associated with
the color space. You can use the GetLogColorSpace function to copy this information to a
LOGCOLORSPACE structure.

Gamut Matching Method
The gamut matching method determines how colors on a given device are "matched" with colors
on another device. The type of matching needed depends on the image. There are some images
for which users rarely want image color matching. For example, users like saturated, undithered
colors in bar charts and highlights used in presentations ¾ the device colors are far superior to
dithered patterns of primary colors.

Gamut-matching methods include the following:

· Business graphics
Preserves saturation (prevents dithering) if the requested color is not available. Useful for
business charts and many computer-generated presentations.

· Colormetric
Produces exact colormetric matches. Dithers primary colors if necessary. Colormetric
matching is important when named colors are wanted.

· Photographic
Produces the best perceptual match between devices. Takes advantage of the entire gamut
of the device to maximize the number of distinct colors presented. This is best for
photographic images.

You set the gamut-matching method for a device context by setting the lcsIntent member in the
LOGCOLORSPACE structure when creating the color space. The matching choices for the
display and printer are global settings; they apply to all applications at all times.

In some cases, a user may want to use different matching methods in the same document. For
example, the user may want to use the colormetric method to draw the company logo but the
business graphics method for bar charts. You can mix gamut-matching methods on the same
page of output by creating appropriate color spaces and using SetColorSpace to switch between
the spaces as needed.

Color Profiles
A color profile is a file that contains information that defines the color capabilities of a device. A
color profile for a display monitor, for example, defines the chromaticities of the phosphors for that
monitor; one for a printer defines the chromaticities of the inks on a given type of paper. The
system uses this information when mapping logical colors to the physical colors available on the
device.

Color profiles exist for display monitors, printers, and scanners. By default, the system uses the
color profile that best matches a given device, based on information in the profile and provided by
the device driver. If a color profile is not present for a given device, the system uses a default
profile for that device.

In some cases, it may be important to let the user choose the color profile to use for a given
device. This can occur when the device configuration has changed in a way that the system
cannot detect. You can enumerate all color profiles for a device by using the EnumICMProfiles
function. This identifies each color profile by passing its filename to an EnumICMProfilesProc
callback function that you supply. You can set the color profile for the device by using the
SetICMProfile function. You can determine the current color profile for the device by using the
GetICMProfile function.

A color profile is available only if it is listed in the registry. You can install or remove color profiles
in the registry by using the UpdateICMRegKey function. You can also use this function to query
for printer profiles that match specified device settings, or to associate a color profile with a given
color-matching DLL and output device.

Device-Independent Bitmaps and Enhanced Metafiles
To provide for image color matching, color characterization is included in device-independent
bitmaps (DIBs) and enhanced metafiles. In DIBs, the color characterization is placed in the DIB
header. In enhanced metafiles, the characterization is in metafile records. Color characterization
is not available for compatible bitmaps and standard (16-bit) metafiles.

You set the color characterization for a DIB by setting the appropriate members in the
BITMAPV4HEADER structure for the DIB. This structure is identical to the
BITMAPINFOHEADER structure except that it includes members that define the color space type,
color endpoints, and other related values. Some operating systems support the device CMYK
color space type in DIBs but only for 32-bit DIBs. In such cases, the output device must also
accept this format. If a DIB does not contain color characterization information, the system uses a
default characterization.

You set color characterization for an enhanced metafile by using the CreateColorSpace and
SetColorSpace functions when recording the metafile. The system records information about the
color spaces and carries out color matching with the intended output device when the metafile is
played. The system also records the SetICMMode and DeleteColorSpace functions, but no other
image color matching functions can be used with enhanced metafiles. If you specify a color profile
in the LOGCOLORSPACE structure when recording an enhanced metafile, the system records
the filename of the color profile but not the content of the profile. This is similar to the way fonts
are handled in enhanced metafiles.

Gamma Correction
Some display adapters support downloadable gamma correction tables. These tables let you
control the colors generated by the digital-to-analog converter (DAC) by mapping specific RGB
values to DAC values. You can set the gamma ramp for any 24-bit display adapters that provide
hardware gamma correction by using the SetDeviceGammaRamp function. The hardware
gamma ramp is a global property that affects all running applications and is not changed on a per-
device context basis. You can retrieve the current gamma ramp by using the
GetDeviceGammaRamp function.

Image Color Matching Reference
This section provides a listing of the image color matching functions and structures.

Image Color Matching Functions
The following are the image color matching functions.
CheckColorsInGamut
ColorMatchToTarget
CreateColorSpace
DeleteColorSpace
EnumICMProfiles
EnumICMProfilesProc
GetColorSpace
GetDeviceGammaRamp
GetICMProfile
GetLogColorSpace
SetColorSpace
SetDeviceGammaRamp
SetICMMode
SetICMProfile

UpdateICMRegKey

Image Color Matching Macros
This following are the image color matching macros.
CMYK
GetCValue
GetKValue
GetMValue

GetYValue

Image Color Matching Structures
The following structures are used with the image color matching functions.
BITMAPV4HEADER
CIEXYZ
CIEXYZTRIPLE
LOGCOLORSPACE

Lines and CurvesLines and curves are used to draw graphics output on raster devices. As discussed in this
overview, a line is a set of highlighted pixels on a raster display (or a set of dots on a printed
page) identified by two points: a starting point and an ending point. A regular curve is a set of
highlighted pixels on a raster display (or dots on a printed page) that defines the perimeter (or part
of the perimeter) of a conic section. An irregular curve is a set of pixels that defines a curve that
does not fit the perimeter of a conic section.

About Lines and Curves
All types of applications written for Microsoft® Windows® use lines and curves to draw graphics
output on raster devices. Computer-aided design (CAD) and drawing applications use lines and
curves to outline objects, specify the centers of objects, the dimensions of objects, and so on.
Spreadsheet applications use lines and curves to draw grids, charts, and graphs. Word
processing applications use lines to create rules and borders on a page of text.

Lines
A line is a set of highlighted pixels on a raster display (or a set of dots on a printed page) identified
by two points: a starting point and an ending point. In Windows, the pixel located at the starting
point is always included in the line, and the pixel located at the ending point is always excluded.
(This kind of line is sometimes called inclusive-exclusive.)

When an application calls one of the Windows line-drawing functions, graphics device interface
(GDI), or in some cases a device driver, determines which pixels should be highlighted. GDI is a
dynamic-link library (DLL) that processes graphics function calls from a Windows-based
application and passes those calls to a device driver. A device driver is a DLL that receives input
from GDI, converts the input to device commands, and passes those commands to the
appropriate device. GDI uses a digital differential analyzer (DDA) to determine the set of pixels
that define a line. A DDA determines the set of pixels by examining each point on the line and
identifying those pixels on the display surface (or dots on a printed page) that correspond to the
points. The following illustration shows a line, its starting point, its ending point, and the pixels
highlighted by using a simple DDA.

ewc msdncd, EWGraphic, bsd23490 0 /a "SDK_01.BMP"

The simplest and most common DDA is the Bresenham, or incremental, DDA. A modified version
of this algorithm draws lines in Windows versions 3.x. The incremental DDA is noted for its
simplicity, but it is also noted for its inaccuracy. Because it rounds off to the nearest integer value,
it sometimes fails to represent the original line requested by the application. The Microsoft®
Win32® DDA used by GDI does not round off to the nearest integer. As a result, this new DDA
produces output that is sometimes much closer in appearance to the original line requested by the
application.
Note If an application requires line output that cannot be achieved with the new DDA, it can draw
its own lines by calling the LineDDA function and supplying a private DDA. However, the
LineDDA function draws lines much slower than the Windows line-drawing functions. Do not use
this function within an application if speed is a primary concern.
An application can use the new DDA to draw single lines and multiple, connected line segments.
An application can draw a single line by calling the LineTo function. This function draws a line
from the current position up to, but not including, a specified ending point. An application can draw
a series of connected line segments by calling the Polyline function, supplying an array of points
that specify the ending point of each line segment. An application can draw multiple, disjointed
series of connected line segments by calling the PolyPolyline function, supplying the required
ending points.

The following illustration shows line output created by calling the LineTo, Polyline, and
PolyPolyline functions.

ewc msdncd, EWGraphic, bsd23490 1 /a "SDK_02.BMP"

Curves
A regular curve is a set of highlighted pixels on a raster display (or dots on a printed page) that
define the perimeter (or part of the perimeter) of a conic section. An irregular curve is a set of
pixels that define a curve that does not fit the perimeter of a conic section. In Windows, the ending
point is excluded from a curve just as it is excluded from a line.

When an application calls one of the Windows curve-drawing functions, GDI breaks the curve into
a number of extremely small, discrete line segments. After determining the endpoints (starting
point and ending point) for each of these line segments, GDI determines which pixels (or dots)
define each line by applying its DDA.

An application can draw an ellipse or part of an ellipse by calling the Arc function. This function
draws the curve within the perimeter of an invisible rectangle called a bounding rectangle. The
size of the ellipse is specified by two invisible radials extending from the center of the rectangle to
the sides of the rectangle. The following illustration shows an arc (part of an ellipse) drawn by
using the Arc function.

ewc msdncd, EWGraphic, bsd23490 2 /a "SDK_03.BMP"

When calling the Arc function, an application specifies the coordinates of the bounding rectangle
and radials. The preceding illustration shows the rectangle and radials with dashed lines while the
actual arc was drawn using a solid line.

When drawing the arc of another object, the application can call the SetArcDirection and
GetArcDirection functions to control the direction (clockwise or counterclockwise) in which the
object is drawn. The default direction for drawing arcs and other objects is counterclockwise.

In addition to drawing ellipses or parts of ellipses, Windows-based applications can draw irregular
curves called Bézier curves. A Bézier curve is an irregular curve whose curvature is defined by
four control points (p1, p2, p3, and p4). The control points p1 and p4 define the starting and
ending points of the curve, and the control points p2 and p3 define the shape of the curve by
marking points where the curve reverses orientation.

ewc msdncd, EWGraphic, bsd23490 3 /a "SDK_04.BMP"

An application can draw irregular curves by calling the PolyBezier function, supplying the
appropriate control points.

Combined Lines and Curves
In addition to drawing lines or curves, Windows-based applications can draw combinations of line
and curve output by calling a single function. For example, an application can draw the outline of a
pie chart by calling the AngleArc function.

The AngleArc function draws an arc along a circle's perimeter and draws a line connecting the
starting point of the arc to the circle's center. In addition to using the AngleArc function, a
Windows-based application can also combine line and irregular curve output by using the
PolyDraw function.

Line and Curve Attributes
A device context (DC) contains attributes that affect line and curve output. The line and curve
attributes include the current position, brush style, brush color, pen style, pen color,
transformation, and so on.

The default current position for any DC is located at the point (0,0) in logical (or world) space. You
can set these coordinates to a new position by calling the MoveToEx function and passing a new
set of coordinates.
Note Windows provides two sets of line- and curve-drawing functions. The first set retains the
current position in a DC, and the second set alters the position. You can identify the functions that
alter the current position by examining the function name. If the function name ends with the
preposition "To", the function sets the current position to the ending point of the last line drawn
(LineTo, ArcTo, PolylineTo, or PolyBezierTo). If the function name does not end with this
preposition, it leaves the current position intact (Arc, Polyline, or PolyBezier).
The default brush is a solid white brush. An application can create a new brush by calling the
CreateBrushIndirect function. After creating a brush, the application can select it into its DC by
calling the SelectObject function. Windows provides a complete set of functions to create, select,
and alter the brush in an application's DC. For more information about these functions and about
brushes in general, see Brushes.

The default pen is a cosmetic, solid black pen that is one pixel wide. An application can create a
pen by using the ExtCreatePen function. After creating a pen, your application can select it into
its DC by calling the SelectObject function. Windows provides a complete set of functions to
create, select, and alter the pen in an application's DC. For more information about these
functions and about pens in general, see Pens.

The default transformation is the unity transformation (specified by the identity matrix). An
application can specify a new transformation by calling the SetWorldTransform function.
Windows provides a complete set of functions to transform lines and curves by altering their width,
location, and general appearance. For more information about these functions, see Coordinate
Spaces and Transformations.

Using Lines and Curves
You can use the line and curve functions to draw virtually any shape or object in the client area of
an application window. This section illustrates how these functions can be used to draw markers
or a pie chart.

· Drawing markers
· Drawing a pie chart

Drawing Markers
You can use the line functions to draw markers. A marker is a symbol centered over a point.
Drawing applications use markers to designate starting points, ending points, and control points.
Spreadsheet applications use markers to designate points of interest on a chart or graph.

In the following code sample, the application-defined Marker function creates a marker by using
the MoveToEx and LineTo functions. These functions draw two intersecting lines, 20 pixels in
length, centered over the cursor coordinates.void Marker(LONG x, LONG y, HWND hwnd)
{

HDC hdc;
hdc = GetDC(hwnd);
MoveToEx(hdc, (int) x - 10, (int) y, (LPPOINT) NULL);
LineTo(hdc, (int) x + 10, (int) y);
MoveToEx(hdc, (int) x, (int) y - 10, (LPPOINT) NULL);
LineTo(hdc, (int) x, (int) y + 10);
ReleaseDC(hwnd, hdc);

}Windows stores the coordinates of the cursor in the lParam parameter of the
WM_LBUTTONDOWN message when the user presses the left mouse button. The following code
demonstrates how an application gets these coordinates, determines whether they lie within its
client area, and passes them to the Marker function to draw the marker./* Line- and arc-drawing variables */
static BOOL bCollectPoints;
static POINT ptMouseDown[32];
static int index;
POINTS ptTmp;
RECT rc;

case WM_LBUTTONDOWN:

if (bCollectPoints && index < 32){
/* Create the region from the client area. */
GetClientRect(hwnd, &rc);
hrgn = CreateRectRgn(rc.left, rc.top,
rc.right, rc.bottom);
ptTmp = MAKEPOINTS((POINTS FAR *) lParam);
ptMouseDown[index].x = (LONG) ptTmp.x;
ptMouseDown[index].y = (LONG) ptTmp.y;
/* Test for a hit in the client rectangle. */
if (PtInRegion(hrgn, ptMouseDown[index].x,

ptMouseDown[index].y)) {
/* If a hit occurs, record the mouse coords. */
Marker(ptMouseDown[index].x, ptMouseDown[index].y,
hwnd);
index++;
}
}
break;

Drawing a Pie Chart
You can use the line and curve functions to draw a pie chart. The primary function used to draw
pie charts is the AngleArc function, which requires you to supply the coordinates of the center of
the pie, the radius of the pie, a start angle, and a sweep angle. Following is a dialog box that the
user can use to enter these values.

ewc msdncd, EWGraphic, bsd23490 4 /a "SDK_05.BMP"

The dialog box template found in the application's resource script (.RC) file specifies
characteristics of the preceding dialog box (its height, the controls it contains, and its style), as
follows.AngleArc DIALOG 6, 18, 160, 100
STYLE WS_DLGFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Pie Chart"
FONT 8, "MS Sans Serif"
BEGIN

EDITTEXT IDD_X, 18, 22, 25, 12, ES_AUTOHSCROLL
LTEXT "X", 102, 4, 24, 9, 8
EDITTEXT IDD_Y, 18, 39, 25, 12, ES_AUTOHSCROLL
LTEXT "Y", 104, 5, 42, 12, 8
LTEXT "Center", 105, 19, 11, 23, 8
EDITTEXT IDD_RADIUS, 103, 9, 32, 12, ES_AUTOHSCROLL
EDITTEXT IDD_STARTANGLE, 103, 31, 32, 12, ES_AUTOHSCROLL
EDITTEXT IDD_SWEEPANGLE, 103, 53, 32, 12, ES_AUTOHSCROLL
LTEXT "Radius", 109, 73, 11, 25, 8
LTEXT "Start Angle", 110, 59, 33, 42, 8
LTEXT "Sweep Angle", 111, 55, 55, 43, 8
PUSHBUTTON "OK", IDD_OK, 9, 82, 40, 14
PUSHBUTTON "Cancel", IDD_CANCEL, 110, 82, 40, 14

END
The dialog box procedure, found in the application's source file, retrieves data (center coordinates,
arc radius, and start and sweep angles) by following these steps:

1. The application-defined ClearBits function initializes the array that receives the user-input
to zero.

2. The application-defined GetStrLngth function retrieves the length of the string entered by
the user.

3. The application-defined RetrieveInput function retrieves the value entered by the user.
The following sample code shows the dialog box procedure.BOOL CALLBACK ArcDlgProc(HWND hdlg, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

CHAR chInput[4]; /* receives control-window input */
int cch; /* array-size and count variable */
switch (uMsg) {
case WM_INITDIALOG:
return FALSE;
case WM_COMMAND:
switch (wParam){
/*
* If the user pressed the OK button, retrieve the
* data that was entered in the various AngleArc
* controls.
*/
case IDD_OK:
/*
* Retrieve the x-coordinate of the arc's
* center.
*/
ClearBits(chInput, sizeof(chInput));
GetDlgItemText(hdlg, IDD_X, chInput,

sizeof(chInput));
cch = GetStrLngth(chInput);
nX = (int)RetrieveInput(chInput, cch);
/*
* Retrieve the y-coordinate of the arc's
* center.
*/
ClearBits(chInput, sizeof(chInput));
GetDlgItemText(hdlg, IDD_Y, chInput,

sizeof(chInput));
cch = GetStrLngth(chInput);
nY = (int)RetrieveInput(chInput, cch);
/* Retrieve the radius of the arc. */
ClearBits(chInput, sizeof(chInput));
GetDlgItemText(hdlg, IDD_RADIUS, chInput,

sizeof(chInput));
cch = GetStrLngth(chInput);
dwRadius = (DWORD) RetrieveInput(chInput, cch);
/* Retrieve the start angle. */
ClearBits(chInput, sizeof(chInput));
GetDlgItemText(hdlg, IDD_STARTANGLE, chInput,

sizeof(chInput));
cch = GetStrLngth(chInput);
xStartAngle = (float) RetrieveInput(chInput,
cch);
/* Retrieve the sweep angle. */
ClearBits(chInput, sizeof(chInput));
GetDlgItemText(hdlg, IDD_SWEEPANGLE, chInput,

sizeof(chInput));
cch = GetStrLngth(chInput);
xSweepAngle = (float) RetrieveInput(chInput,
cch);

EndDialog(hdlg, FALSE);
return TRUE;
/*
* If user presses the CANCEL button, close the
* dialog box.
*/
case IDD_CANCEL:
EndDialog(hdlg, FALSE);
return TRUE;
} /* end switch (wParam) */
break;
default:
return FALSE;
} /* end switch (message) */
UNREFERENCED_PARAMETER(lParam);

}

void ClearBits(LPTSTR cArray, int iLength)
{

int i;
for (i = 0; i < iLength; i++)
cArray[i] = 0;

}
int GetStrLngth(LPTSTR cArray)
{

int i = 0;
while (cArray[i++] != 0);
return i - 1;

}
DWORD RetrieveInput(LPTSTR cArray, int iLength)
{

int i, iTmp;
double dVal, dCount;
dVal = 0.0;
dCount = (double) (iLength - 1);
/* Convert ASCII input to a floating-point value. */
for (i = 0; i < iLength; i++) {
iTmp = cArray[i] - 0x30;
dVal = dVal + (((double)iTmp) * pow(10.0, dCount--));
}
return (DWORD) dVal;

}To draw each section of the pie chart, pass the values entered by the user to the AngleArc
function. To fill the pie chart using the current brush, embed the call to AngleArc in a path
bracket. The following code sample shows the defined path bracket and the call to AngleArc.int nX;
int nY;
DWORD dwRadius;
float xStartAngle;
float xSweepAngle;
case (IDM_ANGLEARC):

DialogBox((HINSTANCE) GetModuleHandle (NULL),
(LPTSTR) "AngleArc",
hwnd, (DLGPROC) ArcDlgProc);

hdc = GetDC(hwnd);
BeginPath(hdc);
SelectObject(hdc,
GetStockObject(GRAY_BRUSH));
MoveToEx(hdc, nX, nY, (LPPOINT) NULL);
AngleArc(hdc, nX, nY, dwRadius,
xStartAngle, xSweepAngle);
LineTo(hdc, nX, nY);
EndPath(hdc);

StrokeAndFillPath(hdc);
ReleaseDC(hwnd, hdc);
break;

Line and Curve Functions
Following are the functions used with lines and curves.
AngleArc
Arc
ArcTo
GetArcDirection
LineDDA
LineDDAProc
LineTo
MoveToEx
PolyBezier
PolyBezierTo
PolyDraw
Polyline
PolylineTo
PolyPolyline

SetArcDirection

MetafilesApplications written for the Microsoft® Windows® operating system use two graphics tools to store
pictures: metafiles and bitmaps. For information about bitmaps, see Bitmaps. This overview
describes metafiles.

About Metafiles
A metafile is a collection of structures that store a picture in a device-independent format. Device
independence is the one feature that sets metafiles apart from bitmaps: unlike a bitmap, a metafile
guarantees device independence. For example, when an application creates a picture measuring
2 by 2 inches on a VGA display and stores that picture in a metafile, the picture maintains its
original dimensions when printed on a 300 dpi laser printer or copied over a network and
displayed in another application that is running on an 8514/A video display. There is a drawback
to metafiles, however; they are generally drawn more slowly than bitmaps. Therefore, if an
application requires fast drawing and device independence is not an issue, it should use bitmaps
instead of metafiles.

Internally, a metafile is an array of variable-length structures called metafile records. The first
records in the metafile specify general information such as the resolution of the device on which
the picture was created, the dimensions of the picture, and so on. The remaining records, which
constitute the bulk of any metafile, correspond to the graphics device interface (GDI) functions
required to draw the picture. These records are stored in the metafile after a special metafile
device context (DC) is created. This DC is then used for all drawing operations required to create
the picture. When Windows processes a GDI function associated with a metafile DC, it converts
the function into the appropriate data and stores this data in a record appended to the metafile.

After a picture is complete and the last record is stored in the metafile, the metafile can be passed
to another application by means of the clipboard, embedded within another file, stored on disk, or
played repeatedly. A metafile is played when its records are converted to device commands and
processed by the appropriate device.

There are two types of metafiles: enhanced and Windows. An enhanced metafile is used in
applications written using the Microsoft® Win32® application programming interface (API). The
enhanced format consists of a header, a table of handles to GDI objects, a private palette, and an
array of metafile records. Enhanced metafiles provide true device independence. (You can think
of the picture stored in an enhanced metafile as a "snapshot" of the video display taken at a
particular moment. This "snapshot" maintains its dimensions no matter where it appears: on a
printer, a plotter, or the desktop, or in the client area of any Win32-based application.)

A Windows metafile is used for applications written using the Windows version 3.x API. The
Windows format consists of a header and an array of metafile records. Windows-format metafiles
are limited in their capabilities and should rarely be used ¾ the Windows-metafile API is
supported to maintain backward compatibility with applications that were written to run with
Windows version 3.x.

Enhanced-Format Metafiles
A developer can use enhanced metafiles to store a picture created by using the Win32 GDI
functions (including new path and transformation functions). Because the enhanced metafile
format is standardized for the Win32 API, pictures that are stored in this format can be copied
from one Win32 application to another; and, because the pictures are truly device independent,
they are guaranteed to maintain their shape and proportion on any output device.

Enhanced Metafiles
An enhanced metafile is an array of records. A metafile record is a variable-length
ENHMETARECORD structure. This structure identifies the record type, specifies the record
length, and contains additional data that is dependent on the record type.

The first record in an enhanced metafile is always the enhanced-metafile header. The header
specifies the following information.

· Size of the metafile, in bytes
· Dimensions of the picture frame, in device units
· Dimensions of the picture frame, in .01-millimeter units
· Number of records in the metafile
· Offset to an optional text description
· Size of the optional palette
· Resolution of the original device, in pixels
· Resolution of the original device, in millimeters

An optional text description can follow the header record. The text description describes the
picture and the author's name. The optional palette specifies the colors used to create the
enhanced metafile. The remaining records identify the GDI functions used to create the picture.
The following hexadecimal output corresponds to a record generated for a call to the
SetMapMode function.00000011 0000000C 00000004The value 0x00000011 specifies the record type (corresponds to the EMR_SETMAPMODE
constant defined in the file WINGDI.H). The value 0x0000000C specifies the length of the record,
in bytes. The value 0x00000004 identifies the mapping mode (corresponds to the
MM_LOENGLISH constant defined in the file WINGDI.H).

Enhanced Metafile Operations
A developer creates an enhanced metafile by using the CreateEnhMetaFile function and
supplying the appropriate arguments. The Win32 API uses these arguments to maintain picture
dimensions, to determine whether the metafile should be stored on a disk or in memory, and so
on.

To maintain picture dimensions across output devices, the Win32 API requires the resolution of
the reference device. This reference device is the device on which the picture first appeared, and
the reference DC is the DC associated with the reference device. When calling the
CreateEnhMetaFile function, the application must supply a handle that identifies this DC. The
application can get this handle by calling the GetDC or CreateDC function or specify NULL as the
handle to use the current display device for the reference device.

Most applications store pictures permanently and therefore create an enhanced metafile that is
stored on a disk; however, there are some instances when this is not necessary. For example, a
word-processing application that provides chart-drawing capabilities could store a user-defined
chart in memory as an enhanced metafile and then copy the enhanced metafile bits from memory
into the user's document file. An application that requires a metafile that is stored permanently on
a disk must supply the filename when it calls the CreateEnhMetaFile function. If the developer
does not supply a filename, Windows automatically treats the metafile as a temporary file and
stores it in memory.

The developer can add an optional text description to a metafile containing information about the
picture and the author. An application can display these strings in the File Open dialog box to
provide the user with information about metafile content that will help in selecting the appropriate
file. If an application includes the text description, the application must supply a pointer to the
string when it calls the CreateEnhMetaFile function.

When the CreateEnhMetaFile function is successful, it returns a handle that identifies a special
metafile DC. A metafile DC is unique in that it is associated with a file rather than with an output
device. When Windows processes a GDI function that received a handle to a metafile DC, it
converts the GDI function into an enhanced-metafile record and appends the record to the end of
the enhanced metafile.

After a picture is complete and the last record is appended to the enhanced metafile, the
application can close the file by calling the CloseEnhMetaFile function. This function closes and
deletes the special metafile DC and returns a handle identifying the enhanced metafile. The
application can use this handle to accomplish the following tasks.

· Display the picture stored in the enhanced metafile.
· Create copies of the enhanced metafile.
· Enumerate, edit, or copy the individual records in the enhanced metafile.
· Retrieve the optional description that is stored in the enhanced metafile.
· Retrieve a copy of the enhanced-metafile header.
· Retrieve a binary version of the enhanced metafile.
· Enumerate the colors in the optional palette.
· Convert an enhanced-format metafile into a Windows-format metafile.

Some applications create temporary backup (or duplicate) copies of a file before enabling the user
to alter the original. An application can create a backup copy of an enhanced metafile by calling
the CopyEnhMetaFile function, supplying a handle that identifies the enhanced metafile, and
supplying a pointer to the name of the new file.

Most drawing, illustration, and computer-aided design (CAD) applications require a means of
editing a picture stored in an enhanced metafile. Although editing an enhanced metafile is a
complex task, a developer can use the EnumEnhMetaFile function in combination with other
Win32 functions to provide this capability in your application. The EnumEnhMetaFile function and
its associated callback function enable the application to process individual records in an
enhanced metafile.

Some applications display the text description of an enhanced metafile with the corresponding
filename in the File Open dialog box. An application can determine whether this string exists in an
enhanced metafile by retrieving the metafile header and examining one of its members. The
GetEnhMetaFileHeader function can retrieve the metafile header. If the string exists, the
application retrieves it by calling the GetEnhMetaFileDescription function.

Some applications retrieve the contents of a metafile by calling the GetEnhMetaFileBits function;
however, before retrieving the contents, the application must specify the size of the file. To get the
size, the application can use the GetEnhMetaFileHeader function and examine the appropriate
member.

To achieve consistent colors when a picture is displayed on various output devices, an application
can call the CreatePalette function and store a logical palette in an enhanced metafile. Other
applications that display the picture stored in the enhanced metafile retrieve this palette and call
the RealizePalette function before displaying the picture. To determine whether a palette is stored
in an enhanced metafile, an application can retrieve the metafile header and examine the
appropriate member. If a palette exists, the application can call the
GetEnhMetaFilePaletteEntries function to retrieve the logical palette.

Windows-Format Metafiles
The Win32 API supports the Windows metafile format to maintain compatibility with applications
written for Windows version 3.x. Following are the limitations of this format.

· A Windows-format metafile is application and device dependent. Changes in the
application's mapping modes or the device resolution affect the appearance of metafiles
created in this format.

· A Windows-format metafile does not contain a comprehensive header that describes the
original picture dimensions, the resolution of the device on which the picture was created, an
optional text description, or an optional palette.

· A Windows-format metafile does not support the new curve, path, and transformation
functions.

· Some Windows-format metafile records cannot be scaled.
· The metafile DC associated with a Windows-format metafile cannot be queried (that is, an

application cannot retrieve device-resolution data, font metrics, and so on).
To convert a Windows-format metafile to an enhanced-format metafile, an application can call the
GetMetaFileBitsEx function to retrieve the data from the Windows-format metafile and then call
the SetWinMetaFileBits function to convert this data into an enhanced-format metafile.

A developer writing a Win32-based application should avoid using the Windows-format functions
and use the enhanced-format functions instead.

Using Metafiles
· Creating an enhanced metafile
· Displaying a picture and storing it in an enhanced metafile
· Opening an enhanced metafile and displaying its contents
· Editing an enhanced metafile

Creating an Enhanced Metafile
This section contains an example that demonstrates the creation of an enhanced metafile that is
stored on a disk, using a filename specified by the user.

The example uses a DC for the application window as the reference DC. (Windows stores the
resolution data for this device in the enhanced-metafile's header.) The application retrieves a
handle identifying this DC by calling the GetDC function.

The example uses the dimensions of the application's client area to define the dimensions of the
picture frame. Using the rectangle dimensions returned by the GetClientRect function, the
application converts the device units to .01-millimeter units and passes the converted values to
the CreateEnhMetaFile function.

The example displays a Save As common dialog box that enables the user to specify the filename
of the new enhanced metafile. The system appends the three-character .EMF extension to this
filename and passes the name to the CreateEnhMetaFile function.

The example also embeds a text description of the picture in the enhanced-metafile header. This
description is specified as a resource in the string table of the application's resource file. However,
in a working application, this string would be retrieved from a custom control in a common dialog
box or from a separate dialog box displayed solely for this purpose./* Obtain a handle to a reference DC. */
hdcRef = GetDC(hWnd);
/*
* Determine the picture frame dimensions.
* iWidthMM is the display width in millimeters.
* iHeightMM is the display height in millimeters.
* iWidthPels is the display width in pixels.
* iHeightPels is the display height in pixels
*/
iWidthMM = GetDeviceCaps(hdcRef, HORZSIZE);
iHeightMM = GetDeviceCaps(hdcRef, VERTSIZE);
iWidthPels = GetDeviceCaps(hdcRef, HORZRES);
iHeightPels = GetDeviceCaps(hdcRef, VERTRES);
/*
* Retrieve the coordinates of the client
* rectangle, in pixels.
*/
GetClientRect(hWnd, &rect);
/*
* Convert client coordinates to .01-mm units.
* Use iWidthMM, iWidthPels, iHeightMM, and
* iHeightPels to determine the number of
* .01-millimeter units per pixel in the x-
* and y-directions.
*/
rect.left = (rect.left * iWidthMM * 100)/iWidthPels;
rect.top = (rect.top * iHeightMM * 100)/iHeightPels;
rect.right = (rect.right * iiWidthMM * 100)/iWidthPels;
rect.bottom = (rect.bottom * iHeightMM * 100)/iHeightPels;
/* Load the filename filter from the string table. */
LoadString(hInst, IDS_FILTERSTRING,
(LPSTR)szFilter, sizeof(szFilter));
/*
* Replace the '%' separators that are embedded
* between the strings in the string-table entry
* with '\0'.
*/
for (i=0; szFilter[i]!='\0'; i++)

if (szFilter[i] == '%')
szFilter[i] = '\0';

/* Load the dialog title string from the table. */
LoadString(hInst, IDS_TITLESTRING,
(LPSTR)szTitle, sizeof(szTitle));

/* Initialize the OPENFILENAME members. */
szFile[0] = '\0';
Ofn.lStructSize = sizeof(OPENFILENAME);
Ofn.hwndOwner = hWnd;
Ofn.lpstrFilter = szFilter;
Ofn.lpstrFile= szFile;
Ofn.nMaxFile = sizeof(szFile);
Ofn.lpstrFileTitle = szFileTitle;
Ofn.nMaxFileTitle = sizeof(szFileTitle);
Ofn.lpstrInitialDir = (LPSTR)NULL;
Ofn.Flags = OFN_SHOWHELP | OFN_OVERWRITEPROMPT;
Ofn.lpstrTitle = szTitle;
/*
* Display the Filename common dialog box. The
* filename specified by the user is passed
* to the CreateEnhMetaFile function and used to
* store the metafile on disk.
*/
GetSaveFileName(&Ofn);
/* Load the description from the string table. */
LoadString(hInst, IDS_DESCRIPTIONSTRING,
(LPSTR)szDescription, sizeof(szDescription));
/*
* Replace the '%' string separators that are
* embedded between strings in the string-table
* entry with '\0'.
*/
for (i=0; szDescription[i]!='\0'; i++)

if (szDescription[i] == '%')
szDescription[i] = '\0';

/* Create the metafile DC. */
hdcMeta = CreateEnhMetaFile(hdcRef,
(LPTSTR) Ofn.lpstrFile,
&rect, (LPSTR)szDescription);
if (!hdcMeta)

errhandler("CreateEnhMetaFile", hWnd);
/* Release the reference DC. */
ReleaseDC(hWnd, hdcRef);

Displaying a Picture and Storing It in an Enhanced Metafile
This section contains an example demonstrating the creation of a picture and the process of
storing the corresponding records in a metafile. The example draws a picture to the display or
stores it in a metafile. If a display DC handle is given, it draws a picture to the screen using
various GDI functions. If an enhanced metafile DC is given, it stores the same picture in the
enhanced metafile.void DrawOrStore(HWND hwnd, HDC hdcMeta, HDC hdcDisplay)
{
RECT rect;
HDC hDC;
int fnMapModeOld;
HBRUSH hbrOld;
/* Draw it to the display DC or store it in the metafile DC. */
if (hdcMeta)

hDC = hdcMeta;
else

hDC = hdcDisplay;
/* Set the mapping mode in the DC. */
fnMapModeOld = SetMapMode(hDC, MM_LOENGLISH);
/* Find the midpoint of the client area. */
GetClientRect(hwnd, (LPRECT)&rect);
DPtoLP(hDC, (LPPOINT)&rect, 2);
/* Select a gray brush. */
hbrOld = SelectObject(hDC, GetStockObject(GRAY_BRUSH));
/* Draw a circle with a one inch raduis. */
Ellipse(hDC, (rect.right/2 - 100), (rect.bottom/2 + 100),
(rect.right/2 + 100), (rect.bottom/2 - 100));

/* Perform additional drawing here. */

/* Set the device context back to its original state. */
SetMapMode(hDC, fnMapModeOld);
SelectObject(hDC, hbrOld);
}

Opening an Enhanced Metafile and Displaying Its Contents
This section contains an example demonstrating how an application opens an enhanced metafile
stored on disk and displays the associated picture in the client area.

The example uses the Open common dialog box to enable the user to select an enhanced
metafile from a list of existing files. It then passes the name of the selected file to the
GetEnhMetaFile function, which returns a handle identifying the file. This handle is passed to the
PlayEnhMetaFile function in order to display the picture.LoadString(hInst, IDS_FILTERSTRING,
(LPSTR)szFilter, sizeof(szFilter));
/*
* Replace occurrences of '%' string separator
* with '\0'.
*/
for (i=0; szFilter[i]!='\0'; i++)

if (szFilter[i] == '%')
szFilter[i] = '\0';

LoadString(hInst, IDS_DEFEXTSTRING,
(LPSTR)szDefExt, sizeof(szFilter));

/*
* Use the OpenFilename common dialog box
* to obtain the desired filename.
*/
szFile[0] = '\0';
Ofn.lStructSize = sizeof(OPENFILENAME);
Ofn.hwndOwner = hWnd;
Ofn.lpstrFilter = szFilter;
Ofn.lpstrCustomFilter = (LPSTR)NULL;
Ofn.nMaxCustFilter = 0L;
Ofn.nFilterIndex = 1L;
Ofn.lpstrFile = szFile;
Ofn.nMaxFile = sizeof(szFile);
Ofn.lpstrFileTitle = szFileTitle;
Ofn.nMaxFileTitle = sizeof(szFileTitle);
Ofn.lpstrInitialDir = (LPSTR) NULL;
Ofn.lpstrTitle = (LPSTR)NULL;
Ofn.Flags = OFN_SHOWHELP | OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
Ofn.nFileOffset = 0;
Ofn.nFileExtension = 0;
Ofn.lpstrDefExt = szDefExt;
GetOpenFileName(&Ofn);
/* Open the metafile. */
hemf = GetEnhMetaFile(Ofn.lpstrFile);
/* Retrieve a handle to a window DC. */
hDC = GetDC(hWnd);
/* Retrieve the client rectangle dimensions. */
GetClientRect(hWnd, &rct);
/* Draw the picture. */
PlayEnhMetaFile(hDC, hemf, &rct);
/* Release the metafile handle. */
DeleteEnhMetaFile(hemf);
/* Release the window DC. */
ReleaseDC(hWnd, hDC);

Editing an Enhanced Metafile
To edit a picture stored in an enhanced metafile, an application must perform the following tasks.

1. Use hit-testing to capture the cursor coordinates and retrieve the position of the object
(line, arc, rectangle, ellipse, polygon, or irregular shape) that the user wants to alter.

2. Convert these coordinates to logical (or world) units.
3. Call the EnumEnhMetaFile function and examine each metafile record.
4. Determine whether a given record corresponds to a GDI drawing function.
5. If it does, determine whether the coordinates stored in the record correspond to the line,

arc, ellipse, or other graphics element that intersects the coordinates specified by the user.
6. Upon finding the record that corresponds to the output that the user wants to alter, erase

the object on the screen that corresponds to the original record.
7. Delete the corresponding record from the metafile, saving a pointer to its location.
8. Permit the user to redraw or replace the object.
9. Convert the GDI functions used to draw the new object into one or more enhanced-

metafile records.
10. Store these records in the enhanced metafile.

Metafile Reference
The following functions and structures are used with metafiles.

Metafile Functions
Following are the functions used with enhanced format metafiles.
CloseEnhMetaFile
CopyEnhMetaFile
CreateEnhMetaFile
DeleteEnhMetaFile
EnhMetaFileProc
EnumEnhMetaFile
GdiComment
GetEnhMetaFile
GetEnhMetaFileBits
GetEnhMetaFileDescription
GetEnhMetaFileHeader
GetEnhMetaFilePaletteEntries
GetWinMetaFileBits
PlayEnhMetaFile
PlayEnhMetaFileRecord
SetEnhMetaFileBits

SetWinMetaFileBits

The following functions are provided for compatibility with Windows-format metafiles:
CloseMetaFile
CopyMetaFile
CreateMetaFile
DeleteMetaFile
EnumMetaFile
EnumMetaFileProc
GetMetaFile
GetMetaFileBitsEx
PlayMetaFile
PlayMetaFileRecord

SetMetaFileBitsEx

Metafile Structures
The following structures are used with metafiles.
ENHMETAHEADER
ENHMETARECORD
HANDLETABLE
METAHEADER

METARECORD

PathsA path is one or more figures (or shapes) that are filled, outlined, or both filled and outlined.
Applications written for Microsoft® Windows® use paths in many ways. Paths are used in drawing
and painting applications. Computer-aided design (CAD) applications use paths to create unique
clipping regions, to draw outlines of irregular shapes, and to fill the interiors of irregular shapes.
An irregular shape is a shape composed of Bézier curves and straight lines. (A regular shape is
an ellipse, a circle, a rectangle, or a polygon.)

About Paths
A path is one of the objects associated with a device context (DC). However, unlike the default
objects (the pen, the brush, and the font) that are part of any new DC, there is no default path. For
more information about DCs, see Device Contexts.

To create a path and select it into a DC, it is first necessary to define the points that describe it.
This is done by calling the BeginPath function, specifying the appropriate drawing functions, and
then by calling the EndPath function. This combination of functions (BeginPath, drawing
functions, and EndPath) constitute a path bracket. The following functions can be used in a path
bracket.

AngleArc LineTo Polyline

Arc MoveToEx PolylineTo
ArcTo Pie PolyPolygon
Chord PolyBezier PolyPolyline
CloseFigure PolyBezierTo Rectangle
Ellipse PolyDraw RoundRect
ExtTextOut Polygon TextOut

When an application calls EndPath, Windows selects the associated path into the specified DC.
(If another path had previously been selected into the DC, Windows deletes that path without
saving it.) After Windows selects the path into the DC, an application can operate on the path in
one of the following ways:

· Draw the outline of the path (using the current pen).
· Paint the interior of the path (using the current brush).
· Draw the outline and fill the interior of the path.
· Modify the path (converting curves to line segments).
· Convert the path into a clip path.
· Convert the path into a region.
· Flatten the path by converting each curve in the path into a series of line segments.
· Retrieve the coordinates of the lines and curves that compose a path.

Outlined and Filled Paths
An application can draw the outline of a path by calling the StrokePath function, it can fill the
interior of a path by calling the FillPath function, and it can both outline and fill the path by calling
the StrokeAndFillPath function.

Whenever an application fills a path, Windows uses the DC's current fill mode. An application can
retrieve this mode by calling the GetPolyFillMode function, and it can set a new fill mode by
calling the SetPolyFillMode function. For a description of the two fill modes, see Regions.

The following illustration shows the cross-section of an object created by a computer-aided design
(CAD) application using paths that were both outlined and filled.

ewc msdncd, EWGraphic, bsd23491 0 /a "SDK_01.BMP"

Transformations of Paths
Paths are defined using logical units and current transformations. (If the SetWorldTransform
function has been called, the logical units are world units; otherwise, the logical units are page
units.) An application can use world transformations to scale, rotate, shear, translate, and reflect
the lines and Bézier curves that define a path.
Note A world transformation within a path bracket only affects those lines and curves drawn after
the transformation was set. It will have no affect on those lines and curves that were drawn before
it was set. For a description of the world transformation, see Coordinate Spaces and
Transformations.
An application can also use SetWorldTransform to outline the shape of the pen used to outline a
path if the pen is a geometric pen. For a description of geometric pens, see Pens.

Clip Paths and Graphic Effects
An application can use clipping and paths to create special graphic effects. The following
illustration shows a string of text drawn with a large Arial font.

ewc msdncd, EWGraphic, bsd23491 1 /a "SDK_02.BMP"

The next illustration shows the result of selecting the text as a clip path and drawing radial lines
for a circle whose center is located above and left of the string.

ewc msdncd, EWGraphic, bsd23491 2 /a "SDK_03.BMP"
Note Before graphics device interface (GDI) adds text created with a bitmapped font to a path, it
converts the font to an outline or vector font.
An application creates a clip path by generating a path bracket and then calling the
SelectClipPath function. After a clip path is selected into a DC, output only appears within the
borders of the path.

In addition to creating special graphics effects, clip paths are also useful in applications that save
images as enhanced metafiles. By using a clip path, an application is able to ensure device
independence because the units used to specify a path are logical units (as opposed to device
units that are used to specify a region).

Conversion of Paths to Regions
An application can convert a path into a region by calling the PathToRegion function. Like
SelectClipPath, PathToRegion is useful in the creation of special graphics effects. For example,
there are no functions that allow an application to offset a path; however, there is a function that
enables an application to offset a region (OffsetRgn). Using PathToRegion, an application can
create the effect of animating a complex shape by creating a path that defines the shape,
converting the path into a region (by calling PathToRegion), and then repeatedly painting,
moving, and erasing the region (by calling functions in a sequence, such as FillRgn, OffsetRgn,
and FillRgn).

Curved Paths
An application can flatten the curves in a path by calling the FlattenPath function. This function is
especially useful for applications that fit text onto the contour of a path which contains curves. To
fit the text, the application must perform the following steps:

1. Create the path where the text appears.
2. Call the FlattenPath function to convert the curves in a path into line segments.
3. Call the GetPath function to retrieve those line segments.
4. Calculate the length of each line and the width of each character in the string.
5. Use line-width and character-width data to position each character along the curve.

Using Paths
This section contains a code sample that enables the user to select a font of a particular point size
(by using the Choose Font dialog box), select a clip path (by using text drawn with this font), and
then view the result of clipping to the text.

This code sample was used to create the illustration that appears in Clip Paths.CHOOSEFONT cf;/* common dialog box font structure */
LOGFONT lf; /* logical font structure */
HFONT hfont; /* new logical font handle */
HFONT hfontOld; /* original logical font handle */
HDC hdc; /* display DC handle */
int nXStart, nYStart; /* drawing coordinates */
RECT rc; /* rect structure for painting window */
SIZE sz; /* structure that receives text extents */
double aflSin[90]; /* sine of 0-90 degrees */
double aflCos[90]; /* cosine of 0-90 degrees */
double flRadius,a; /* radius of circle */
int iMode; /* clipping mode */
HRGN hrgn; /* clip region handle */
LRESULT APIENTRY MainWndProc(

HWND hwnd, /* window handle */
UINT message, /* type of message */
WPARAM wParam, /* additional information*/
LPARAM lParam) /* additional information*/

{
PAINTSTRUCT ps;
switch (message) {
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
EndPaint(hwnd, &ps);
break;
case WM_COMMAND:/* command from app's menu */
switch (wParam) {
case IDM_VANISH: /* erases client area */
hdc = GetDC(hwnd);
GetClientRect(hwnd, &rc);
FillRect(hdc, &rc, GetStockObject(WHITE_BRUSH));
ReleaseDC(hwnd, hdc);
break;
case IDM_AND: /* sets clip mode to RGN_AND */
iMode = RGN_AND;
break;
case IDM_COPY: /* sets clip mode to RGN_COPY */
iMode = RGN_COPY;
break;
case IDM_DIFF: /* sets clip mode to RGN_DIFF */
iMode = RGN_DIFF;
break;
case IDM_OR: /* sets clip mode to RGN_OR */
iMode = RGN_OR;
break;
case IDM_XOR: /* sets clip mode to RGN_XOR */
iMode = RGN_XOR;
break;
case IDM_CLIP_PATH:
/* Retrieve a cached DC for the window. */
hdc = GetDC(hwnd);

/*
* Use the font requested by the user in the
* Choose Font dialog box to create a logical font,
* then select that font into the device context.
*/
hfont = CreateFontIndirect(cf.lpLogFont);
hfontOld = SelectObject(hdc, hfont);
/*
* Retrieve the dimensions of the rectangle
* that surrounds the text.
*/
GetTextExtentPoint32(hdc, "Clip Path", 9, &sz);
/*
* Set a clipping region using the rect that
* surrounds the text.
*/
hrgn = CreateRectRgn(nXStart, nYStart,
nXStart + sz.cx,
nYStart + sz.cy);
SelectClipRgn(hdc, hrgn);
/*
* Create a clip path using text drawn with
* the user's requested font.
*/
BeginPath(hdc);

TextOut(hdc, nXStart, nYStart, "Clip Path", 9);
EndPath(hdc);
SelectClipPath(hdc, iMode);
/* Compute the sine of 0, 1, ... 90 degrees. */
for (i = 0; i < 90; i++) {

aflSin[i] = sin((((double)i) / 180.0)
* 3.14159);

}
/* Compute the cosine of 0, 1,... 90 degrees. */
for (i = 0; i < 90; i++) {

aflCos[i] = cos((((double)i) / 180.0)
* 3.14159);

}
/* Set the radius value. */
flRadius = (double)(2 * sz.cx);
/*
* Draw the 90 rays extending from the
* radius to the edge of the circle.
*/
for (i = 0; i < 90; i++) {

MoveToEx(hdc, nXStart, nYStart,
(LPPOINT) NULL);
LineTo(hdc, nXStart + ((int) (flRadius
* aflCos[i])),

nYStart + ((int) (flRadius
* aflSin[i])));
}

/* Reselect the original font into the DC. */
SelectObject(hdc, hfontOld);
/* Delete the user's font. */
DeleteObject(hfont);
/* Release the DC. */
ReleaseDC(hwnd, hdc);
break;

case IDM_FONT:
/* Initialize necessary members. */
cf.lStructSize = sizeof (CHOOSEFONT);
cf.hwndOwner = hwnd;
cf.lpLogFont = &lf;
cf.Flags = CF_SCREENFONTS | CF_EFFECTS;
cf.rgbColors = RGB(0, 255, 255);
cf.nFontType = SCREEN_FONTTYPE;
/*
* Display the Font dialog box, allow the user
* to choose a font, and render text in the
* window with that selection.
*/
if (ChooseFont(&cf)) {

hdc = GetDC(hwnd);
hfont = CreateFontIndirect(cf.lpLogFont);
hfontOld = SelectObject(hdc, hfont);
crOld = SetTextColor(hdc, cf.rgbColors);
TextOut(hdc, nXStart, nYStart,
"Clip Path", 9);
SetTextColor(hdc, crOld);
SelectObject(hdc, hfontOld);
DeleteObject(hfont);
ReleaseDC(hwnd, hdc);

}
break;
default:
return DefWindowProc(hwnd, message, wParam,
lParam);
}
break;
case WM_DESTROY: /* window is being destroyed */
PostQuitMessage(0);
break;
default: /* if unprocessed... */
return DefWindowProc(hwnd, message, wParam, lParam);
}
return 0;

}

Path Functions
Use the following functions to create, alter, or draw paths.
AbortPath
BeginPath
CloseFigure
EndPath
FillPath
FlattenPath
GetMiterLimit
GetPath
PathToRegion
SetMiterLimit
StrokeAndFillPath
StrokePath

WidenPath

PensA pen is a graphics tool that an application for Microsoft® Windows® uses to draw lines and
curves. Drawing applications use pens to draw freehand lines, straight lines, and curves.
Computer-aided design (CAD) applications use pens to draw visible lines, hidden lines, section
lines, center lines, and so on. Word processing and desktop publishing applications use pens to
draw borders and rules. Spreadsheet applications use pens to designate trends in graphs and to
outline bar graphs and pie charts.

About Pens
There are two types of pen: cosmetic and geometric. A cosmetic pen is used with applications
requiring lines of fixed width and lines that are quickly drawn. A CAD application, for example,
uses a cosmetic pen to generate hidden, section, center, and dimension lines that are between .
015 and .022 inches wide ¾ regardless of the scale factor. A geometric pen is used with
applications requiring scalable lines, lines with unique end or join styles, and lines that are wider
than a single pixel. A spreadsheet application, for example, uses a geometric pen to define each
of the bars in a bar graph as a wide line.

Cosmetic Pens
The dimensions of a cosmetic pen are specified in device units. Therefore, lines drawn with a
cosmetic pen always have a fixed width. Lines drawn with a cosmetic pen are generally drawn
three to ten times faster than lines drawn with a geometric pen. Cosmetic pens have three
attributes: width, style, and color. For more information about these attributes, see Pen Attributes.

To create a cosmetic pen, an application uses the CreatePen, CreatePenIndirect, or
ExtCreatePen function. To retrieve one of the three stock cosmetic pens managed by window
manager, the application uses the GetStockObject function.

After a pen is created (or a handle identifying one of the stock pens is obtained), the pen is
selected into the application's device context (DC) by calling the SelectObject function. From this
point on, the application uses this pen for any line-drawing operations in its client area.

Geometric Pens
The dimensions of a geometric pen are specified in logical units. Therefore, lines drawn with a
geometric pen can be scaled ¾ that is, they may appear wider or narrower, depending on the
current world transformation. For more information about the world transformation, see Coordinate
Spaces and Transformations.

In addition to the three attributes shared with cosmetic pens (width, style, and color), geometric
pens possess the following four attributes: pattern, optional hatch, end style, and join style. For
more information about these attributes, see Pen Attributes.

To create a geometric pen, an application uses the ExtCreatePen function. As with cosmetic
pens, the SelectObject function selects a geometric pen into the application's DC.

Pen Attributes
There are seven pen attributes that define the type of pen and its characteristics: width, style,
color, pattern, hatch, end style, and join style. Both cosmetic and geometric pens have the width,
style, and color attributes. Only geometric pens have the pattern, hatch, end style, and join style
attributes. The pattern and optional hatch attribute are usually associated with a brush, but can
also be used with geometric pens.

Width
The width attribute specifies a cosmetic pen width in device units. When used with a geometric
pen, however, it specifies the pen's width in logical units. For more information about device units,
see Coordinate Spaces and Transformations.

Currently, Windows limits the width of cosmetic pens to a single pixel; however, future versions
may remove this limitation.

Style
The style attribute specifies the line pattern that appears when a particular cosmetic or geometric
pen is used. There are eight predefined pen styles. The following illustration shows the seven of
these styles that are defined by Windows.

ewc msdncd, EWGraphic, bsd23492 0 /a "SDK_01.BMP"

The inside-frame style is identical to the solid style for cosmetic pens. However, it operates
differently when used with a geometric pen. If the geometric pen is wider than a single pixel and a
drawing function uses the pen to draw a border around a filled object, Windows draws the border
inside the object's frame. By using the inside-frame style, an application can ensure that an object
appears entirely within the specified dimensions, regardless of the geometric pen width.

In addition to the seven styles defined by Windows, there is an eighth style that is user (or
application) defined. A user-defined style generates lines with a customized series of dashes and
dots.

Use the CreatePen, CreatePenIndirect, or ExtCreatePen function to create a pen that has the
Windows-defined styles. Use the ExtCreatePen function to create a pen that has a user-defined
style.

Color
The color attribute specifies the pen's color. An application can create a cosmetic pen with a
unique color by storing the red, green, blue (RGB) triplet that specifies the desired color in a
COLORREF structure and passing this structure's address to the CreatePen, CreatePenIndirect,
or ExtCreatePen function. (The stock pens are limited to black, white, and invisible.) For more
information about RGB triplets and color, see Colors.

Pattern
The pattern attribute specifies the pattern of a geometric pen.

The following illustration shows lines drawn with different geometric pens. Each pen was created
using a different pattern attribute.

ewc msdncd, EWGraphic, bsd23492 1 /a "SDK_02.BMP"

The first line in the previous illustration is drawn using one of the six available hatch patterns; for
more information about hatch patterns, see Hatch. The next line is drawn using the hollow pattern,
identical to the null pattern. The third line is drawn using a custom pattern created from an 8- by 8-
pixel bitmap. (For more information about bitmaps and their creation, see Bitmaps.) The last line is
drawn using a solid pattern. Creating a brush and passing its handle to the ExtCreatePen
function creates a pattern.

Hatch
The hatch attribute specifies the hatch type of a geometric pen with the hatch pattern attribute.
There are six patterns available. The following illustration shows lines drawn using different hatch
patterns.

ewc msdncd, EWGraphic, bsd23492 2 /a "SDK_03.BMP"

End Cap
The end cap attribute specifies the shape of a geometric pen: round, square, or flat. The following
illustration shows parallel lines drawn using each type of end cap.

ewc msdncd, EWGraphic, bsd23492 3 /a "SDK_04.BMP"

The round and square end caps extend past the starting and ending points of a line drawn with a
geometric pen; the flat end cap does not.

Join
The join attribute specifies how the ends of two geometric lines are joined: beveled, mitered, or
round. The following illustration shows pairs of connected lines drawn using each type of join.

ewc msdncd, EWGraphic, bsd23492 4 /a "SDK_05.BMP"

Using Pens
This section contains sample code that demonstrates the appearance of lines drawn using various
pen styles and attributes.LRESULT CALLBACK MainWndProc(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)
{

PAINTSTRUCT ps;
LOGBRUSH lb;
RECT rc;
HDC hdc;
int i;
HPEN hPen, hPenOld;
DWORD dwPenStyle[] = {

PS_DASH,
PS_DASHDOT,
PS_DOT,
PS_INSIDEFRAME,
PS_NULL,
PS_SOLID
};
UINT uHatch[] = {

HS_BDIAGONAL,
HS_CROSS,
HS_DIAGCROSS,
HS_FDIAGONAL,
HS_HORIZONTAL,
HS_VERTICAL
};

switch (uMsg)
{
case WM_PAINT:
{
GetClientRect(hWnd, &rc);
rc.left += 10;
rc.top += 10;
rc.bottom -= 10;
/* Initialize the pen's "brush." */
lb.lbStyle = BS_SOLID;
lb.lbColor = RGB(255,0,0);
lb.lbHatch = 0;
hdc = BeginPaint(hWnd, &ps);
for (i = 0; i < 6; i++)
{
hPen = ExtCreatePen(PS_COSMETIC | dwPenStyle[i],
1, &lb, 0, NULL);
hPenOld = SelectObject(hdc, hPen);
MoveToEx(hdc, rc.left + (i * 20), rc.top, NULL);
LineTo(hdc, rc.left + (i * 20), rc.bottom);
SelectObject(hdc, hPenOld);
DeleteObject(hPen);
}
rc.left += 150;
for (i = 0; i < 6; i++)
{
lb.lbStyle = BS_HATCHED;
lb.lbColor = RGB(0,0,255);
lb.lbHatch = uHatch[i];
hPen = ExtCreatePen(PS_GEOMETRIC,
5, &lb, 0, NULL);
hPenOld = SelectObject(hdc, hPen);
MoveToEx(hdc, rc.left + (i * 20), rc.top, NULL);
LineTo(hdc, rc.left + (i * 20), rc.bottom);
SelectObject(hdc, hPenOld);
DeleteObject(hPen);
}
EndPaint(hWnd, &ps);
}
break;
case WM_DESTROY:
DeleteObject(hPen);
PostQuitMessage(0);
break;
default:
return DefWindowProc(hWnd, uMsg, wParam, lParam);
}
return FALSE;

}

Pen Reference
The following functions and structures are used with pens.

Pen Functions
Following are the functions that support the pen interface.
CreatePen
CreatePenIndirect

ExtCreatePen

Pen Structures
The following structures are used with pens.
EXTLOGPEN

LOGPEN

Printing and Print SpoolerMicrosoft® Windows® provides a complete set of functions that allow applications to print on a
variety of devices: laser printers, vector plotters, raster printers, and fax machines.

About Printing
One of the chief features of Windows printing functions is their support of device independence;
instead of issuing device-specific commands to draw output on a particular printer or plotter, an
application calls high-level functions from graphics device interface (GDI). For example, to print a
bitmapped image, an application can call the BitBlt function, supplying the coordinates for the
bitmap as well as handles identifying the source and destination device contexts (DCs). The call
to BitBlt is then converted to raw device commands by a printer device driver. A device driver is a
Windows dynamic-link library (DLL) that supports the Windows device driver interface (DDI). A
device driver generates raw device commands when it processes calls to DDI functions made by
the graphics engine. The commands are processed by the printer when it prints the image. The
syntax, number, and type of these commands vary from device to device.

Default Printing Interface
In addition to GDI and the device driver, the default printing interface consists of several other
components that process output before it arrives at the printer. These components are the print
spooler, the print processor, the graphics engine, and the monitor.

Print Spooler
The primary component of the printing interface is the print spooler. The print spooler is a
Windows executable file that manages the printing process. Management of printing involves
retrieving the location of the correct printer driver, loading that driver, converting high-level
function calls to journal records, storing those journal records on disk as a print job, and so on.

The spooler is loaded at startup and continues to run until the operating system is shut down.
Windows Print Manager provides a graphical interface that the user or system administrator can
use to access and configure the spooler; however, if Print Manager is disabled or shut down, the
spooler continues to run.

Applications that print create a printer DC. When an application creates a printer DC, the spooler
performs necessary tasks such as determining the location of the required printer driver and then
loading the appropriate printer driver. It also determines the data type used to record the print job.
The supported data types include journal records, ASCII text, and PostScript®. A print job is a
document stored internally (by using one of the supported data types) that may contain one or
more pages of output. It may consist of multiple forms; for example, a job may consist of one
envelope and three pages of A4 paper. A print job is defined (or bracketed) by the StartDoc and
EndDoc functions.

The default data type for a print job is the journal record. A journal record is a compact structure
used to store text output commands, raster graphics commands, and so on. When an application
calls StartDoc, the spooler creates a journal file and a data file and begins storing journal records
in the journal file. Each time the application calls one of the GDI drawing functions, one or more
new journal records are created and stored in the journal file. The journal and data files are
created in an operating system directory. The spooler uses the journal file to store journal records
and uses the data file to record the type of form, the data type for the print job, the target printer,
and so on. These files are deleted by the spooler when the job has successfully printed.

Print Processor
The spooler monitors the current print jobs and the target printer to determine an appropriate time
to print a job. Once the spooler determines that a job should be printed, it calls the print processor.
The print processor is a Windows DLL that reads and converts journal records into DDI calls.

Graphics Engine
The graphics engine is a Windows DLL that converts print processor output into calls to device
driver functions. The device driver, in turn, processes these calls and converts them into raw
device commands that the device can process.

Monitor
Once a device driver has converted an entire journal file into raw device commands, the file of
converted commands is passed back to the spooler. The spooler sends these low-level
commands to a monitor. A monitor is a Windows DLL that passes the raw device commands over
the network, through a parallel port, or through a serial port to the device.

Printer Device Contexts Overview
Just as an application requires a display DC before it can begin drawing in the client area of a
window, it needs a special printer DC before it can begin sending output to a printer. A printer DC
is similar to a display DC in that it is an internal data structure that defines a set of graphic objects
and their associated attributes and specifies the graphic modes that affect output. The graphic
objects include a pen (for line drawing), a brush (for painting and filling), and a font (for text
output).

Unlike a display DC, printer DCs are not owned by the window management component, and they
cannot be obtained by calling the GetDC function. Instead, an application must call the CreateDC
or PrintDlg function. When an application calls CreateDC, it must supply a driver and port name.
This data is stored in one of the operating system initialization (.INI) files. It can be retrieved by
calling the EnumPrinters function.

When an application calls PrintDlg and specifies the PD_RETURNDC value in the Flags member
of the PRINTDLG structure, Windows automatically returns a handle identifying the user's
selected printer DC. For an example that demonstrates this task, see Using a Print Dialog Box
and Retrieving a Printer Device Context.

Printer Escapes
Windows version 3.x supported as many as 64 special functions called printer escapes that
applications used to access special device features. An application called these functions by
specifying one of 64 predefined values as the second parameter to the Escape function. For
example, one of these applications printing on a PostScript printer could draw a PostScript
graphic object called a path by calling the Escape function and supplying the BEGIN_PATH and
END_PATH values. Most of these escapes are obsolete in the Microsoft® Win32® application
programming interface (API) but are provided to simplify the porting of 16-bit Windows-based
applications. The Win32 version of GDI supports a complete set of path functions that applications
can use instead of the escapes to draw paths on any device. For a list of the Win32 functions that
replace some of the escapes, see the Escape function.

Of the 64 original printer escapes, only the QUERYESCSUPPORT and the PASSTHROUGH
escapes can be used by Win32-based applications:

Applications written for Windows 3.x can also use QUERYESCSUPPORT and PASSTHROUGH
as well as the following 10 escapes. Note that the following escapes are only supported for
backwards compatibility with Windows 3.x-based applications. The Escape function may fail if a
Win32-based application uses any of these.

· ABORTDOC
· ENDDOC
· GETPHYSPAGESIZE
· GETPRINTINGOFFSET
· GETSCALINGFACTOR
· NEWFRAME
· NEXTBAND
· SETABORTPROC
· SETCOPYCOUNT
· STARTDOC

In addition to supporting Escape, the Win32 API provides a new extended escape function called
ExtEscape. This function allows applications to access capabilities of a particular device not
directly available through GDI.

WYSIWYG Display and Output
Most applications attempt to support WYSIWYG (what you see is what you get) output. This
means that text drawn with a 10-point Helvetica bold font in the application window should have a
similar appearance when it is printed. Obtaining true WYSIWYG output is virtually impossible and
even undesirable in most cases. This is due, in part, to the differences in video and printer
technologies; a pixel on a screen is generally larger than a dot on a common laser printer. Viewing
distances are different as well; a computer user typically sits about two feet away from the screen,
but a reader's eyes are usually one foot or less from the printed page.

To compensate for legibility differences between screens and the printed page, Windows supports
a unit called the logical inch that is always specified in pixels. For a video display, the logical inch
is always greater than the physical inch to compensate for the longer viewing distance and the
(generally) coarser resolution. For printers, the logical inch is always equal to the physical inch.

To obtain a WYSIWYG effect when drawing text, an application can use the CreateFont function
to specify the typeface name and point size of an ideal (or logical) font and then call the
SelectObject function to identify the display or printer DC. When the application calls
SelectObject, Windows selects a physical font that is the closest possible match to the specified
logical font. When Windows selects the display font, it chooses a physical font that is larger than
the actual point size. From the user's perspective, however, it appears to be very close to the
correct height. When Windows selects the font for the printer, it chooses a physical font that is
actually the requested point size. For more information about fonts and text output, see Fonts and
Text.

To obtain a WYSIWYG effect when drawing bitmapped graphics, an application can retrieve the
width and height, in logical inches, of the screen and the printed page. Using these values, the
application can create horizontal and vertical scaling factors to maintain the proportion of
bitmapped images when they are drawn on a printer. For an example that demonstrates this
process, see WYSIWYG Display and Output. For more information about bitmaps and bitmap
output, see Bitmaps.

Using the Printing Functions
This section contains examples that demonstrate how to print text and graphics. The code was
taken from an application that allows a user to open and display a 16-color bitmapped image that
is stored as a .BMP file.

In addition to displaying the bitmapped image, the application allows the user to configure the
printer and then print the image and a string of text specifying the location of the file that contained
the image. The application prints the text at the top of the page and the image in the center of the
page.

· Opening and displaying a .BMP file
· Using a print dialog box and retrieving a printer device context
· Preparing to print
· Printing a document

Opening and Displaying a .BMP File
In the sample application, a user is able to open a .BMP file that contains a bitmapped image and
display that image in the client area of the application's window. The user selects the file to be
opened when the application displays the Open dialog box. (For more information about the Open
dialog box, see Common Dialog Box Library.)

After the user selects a file and closes the dialog box, the file and path names are stored in
members of the OPENFILENAME structure. The application uses this data to open the
appropriate file and retrieve the bitmap header and data. The following code sample can be used
to retrieve this data./* Retrieve a handle identifying the file. */
hfbm = CreateFile(ofn.lpstrFile, GENERIC_READ,
FILE_SHARE_READ, (LPSECURITY_ATTRIBUTES) NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_READONLY,
(HANDLE) NULL);

/* Retrieve the BITMAPFILEHEADER structure. */
ReadFile(hfbm, &bmfh, sizeof(BITMAPFILEHEADER),
&dwRead, (LPOVERLAPPED)NULL);
/* Retrieve the BITMAPFILEHEADER structure. */
ReadFile(hfbm, &bmih, sizeof(BITMAPINFOHEADER),
&dwRead, (LPOVERLAPPED)NULL);
/* Allocate memory for the BITMAPINFO structure. */
hmem1 = GlobalAlloc(GHND,
sizeof(BITMAPINFOHEADER) +
((1<<bmih.biBitCount) * sizeof(RGBQUAD)));
lpbmi = GlobalLock(hmem1);
/*
* Load BITMAPINFOHEADER into the BITMAPINFO
* structure.
*/
lpbmi->bmiHeader.biSize = bmih.biSize;
lpbmi->bmiHeader.biWidth = bmih.biWidth;
lpbmi->bmiHeader.biHeight = bmih.biHeight;
lpbmi->bmiHeader.biPlanes = bmih.biPlanes;
lpbmi->bmiHeader.biBitCount = bmih.biBitCount;
lpbmi->bmiHeader.biCompression = bmih.biCompression;
lpbmi->bmiHeader.biSizeImage = bmih.biSizeImage;
lpbmi->bmiHeader.biXPelsPerMeter = bmih.biXPelsPerMeter;
lpbmi->bmiHeader.biYPelsPerMeter = bmih.biYPelsPerMeter;
lpbmi->bmiHeader.biClrUsed = bmih.biClrUsed;
lpbmi->bmiHeader.biClrImportant = bmih.biClrImportant;
/*
* Retrieve the color table.
* 1 << bmih.biBitCount == 2 ^ bmih.biBitCount
*/
ReadFile(hfbm, lpbmi->bmiColors,
((1<<bmih.biBitCount) * sizeof(RGBQUAD)),
&dwRead, (LPOVERLAPPED) NULL);
/*
* Allocate memory for the required number of
* bytes.
*/
hmem2 = GlobalAlloc(GHND,
(bmfh.bfSize - bmfh.bfOffBits));
lpvBits = GlobalLock(hmem2);
/* Retrieve the bitmap data. */
ReadFile(hfbm, lpvBits,
(bmfh.bfSize - bmfh.bfOffBits),
&dwRead, (LPOVERLAPPED) NULL);
/*
* Create a bitmap from the data stored in the
* .BMP file.
*/
hbm = CreateDIBitmap(hdc, &bmih,
CBM_INIT, lpvBits,
lpbmi, DIB_RGB_COLORS);
/*
* Unlock the global memory objects and
* close the .BMP file.
*/
GlobalUnlock(hmem1);
GlobalUnlock(hmem2);
CloseHandle(hfbm);
/* Set the fDisplayBitmap flag. */
if (hbm)
fDisplayBitmap = TRUE;
else
TextOut(hdc, 100, 100, "LoadBitmap Failed", 17);
/* Paint the window (and draw the bitmap). */
GetClientRect(hwnd, &rect);
InvalidateRect(hwnd, &rect, TRUE);
UpdateWindow(hwnd);Once the bitmap data is retrieved, the bitmapped image can be drawn in the application's client

area. The following code sample is used to draw the bitmap.case WM_PAINT:
BeginPaint(hwnd, &ps);
if (fDisplayBitmap) {
hdcMem = CreateCompatibleDC(ps.hdc);
SelectObject(hdcMem, hbm);
GetObject(hbm, sizeof(BITMAP), (LPSTR) &bm);
BitBlt(ps.hdc, 0, 0, bm.bmWidth, bm.bmHeight,
hdcMem, 0, 0, SRCCOPY);
DeleteDC(hdcMem);
}
EndPaint(hwnd, &ps);
break;

Using a Print Dialog Box and Retrieving a Printer Device Context
The first step in printing involves setting up the printer and obtaining a printer DC. In the sample
application, the File menu contains two options, Print and Print Setup. By selecting either option,
the user can configure the printer. When the user selects the Print Setup option, the Print Setup
dialog box is displayed and the user can select a printer, a page orientation, a paper size, and so
on. When the user selects the Print option, the Print dialog box is displayed and the user can
select a range of pages, a print quality, a number of copies, and so on. The user can also display
the Print Setup dialog box by clicking the Setup push button.

The Print and Print Setup dialog boxes are both displayed by initializing the members of a
PRINTDLG structure and calling the PrintDlg function. (For more information about displaying the
Print Setup dialog box, see Common Dialog Box Library). In addition to retrieving user-specified
data, PrintDlg can be used to obtain a printer DC by specifying the PD_RETURNDC value in the
Flags member of the PRINTDLG structure. The following code sample shows how to intialize the
members of the structure and to display the Print dialog box./* Initialize the PRINTDLG members. */
pd.lStructSize = sizeof(PRINTDLG);
pd.hDevMode = (HANDLE) NULL;
pd.hDevNames = (HANDLE) NULL;
pd.Flags = PD_RETURNDC;
pd.hwndOwner = hwnd;
pd.hDC = (HDC) NULL;
pd.nFromPage = 1;
pd.nToPage = 1;
pd.nMinPage = 0;
pd.nMaxPage = 0;
pd.nCopies = 1;
pd.hInstance = (HANDLE) NULL;
pd.lCustData = 0L;
pd.lpfnPrintHook = (LPPRINTHOOKPROC) NULL;
pd.lpfnSetupHook = (LPSETUPHOOKPROC) NULL;
pd.lpPrintTemplateName = (LPSTR) NULL;
pd.lpSetupTemplateName = (LPSTR) NULL;
pd.hPrintTemplate = (HANDLE) NULL;
pd.hSetupTemplate = (HANDLE) NULL;
/* Display the PRINT dialog box. */
PrintDlg(&pd);

Preparing to Print
The following code sample determines whether the selected printer is capable of printing bitmaps
by calling the GetDeviceCaps function, supplying the RASTERCAPS value. By examining this
function's return value, the application can determine whether it should print a document or inform
the user that the device does not support raster output./*
* Examine the raster capabilities of the device
* identified by pd.hDC to verify that it supports
* the BitBlt function.
*/
if (!(GetDeviceCaps(pd.hDC, RASTERCAPS)

& RC_BITBLT)) {
DeleteDC(pd.hDC);
MessageBox(hwnd,
"Printer cannot display bitmaps.",
"Device Error",
MB_OK);
break;

}After the sample application determines that the selected printer is capable of printing bitmaps, it
follows these steps:

1. Sets a Boolean flag that the application's abort procedure can examine to determine
whether to allow printing to continue.

2. Registers the application's AbortProc function, which is used to cancel a print job.
3. Displays a modeless Cancel dialog box.
4. Disables the application's window while the dialog box is displayed.

The steps are illustrated in the following code sample./*
* Set the flag used by the AbortPrintJob
* dialog procedure.
*/
bPrint = TRUE;

/*
* Register the application's AbortProc
* function with GDI.
*/
SetAbortProc(pd.hDC, AbortProc);
/* Display the modeless Cancel dialog box. */
hdlgCancel = CreateDialog(hinst, (LPTSTR) "AbortDlg",

hwnd, (DLGPROC) AbortPrintJob);
/* Disable the application's window. */
EnableWindow(hwnd, FALSE);Once the application registers AbortProc with Windows, GDI calls the function repeatedly during

the printing process to determine whether to cancel a job. In the current version of the Win32 API,
GDI calls this function approximately every two seconds until the entire job has been spooled.

If the user chooses to cancel the job, GDI notifies the spooler that it should delete the
corresponding journal file from the print queue and reset the printer to its default state.

Abort Procedure
Any application written for Windows that supports printing should provide an abort procedure and
a modeless dialog box that allow a user to cancel a print job. The abort procedure for the sample
application contains a message loop that retrieves messages for the modeless dialog box.BOOL CALLBACK AbortProc(HDC hdc, int nCode)
{

MSG msg;
/*

* Retrieve and remove messages from the thread's message
* queue.
*/

while (PeekMessage((LPMSG) &msg, (HWND) NULL,
0, 0, PM_REMOVE)) {
/* Process any messages for the Cancel dialog box. */
if (!IsDialogMessage(hdlgCancel, (LPMSG) &msg)) {
TranslateMessage((LPMSG) &msg);
DispatchMessage((LPMSG) &msg);
}
}
/*

* Return the global bPrint flag (which is set to FALSE
* if the user presses the Cancel button).
*/
return bPrint;
}For Win16-based applications, this procedure must be exported in the application's module-

definition (.DEF) file.

Cancel Dialog Box
The Cancel dialog box typically contains a single push button that allows the user to cancel a print
job. The following template for the Cancel dialog box was taken from the sample application's
resource (.RES) file.AbortDlg DIALOG LOADONCALL MOVEABLE DISCARDABLE 33, 32, 160, 70
CAPTION "Sample Printing App"
STYLE WS_BORDER | WS_CAPTION | WS_DLGFRAME | WS_VISIBLE |
WS_POPUP | WS_SYSMENU
BEGIN

CONTROL "Now Printing: ", IDD_TEXT, "static",
SS_CENTER | WS_CHILD, 0, 10, 160, 8
CONTROL "", IDD_FILE, "static",
SS_CENTER | WS_CHILD, 0, 25, 160, 8
CONTROL "Cancel", IDD_CANCEL, "button",
BS_DEFPUSHBUTTON | WS_TABSTOP | WS_CHILD,
60, 45, 45, 15

ENDThe code sample that follows shows the dialog box procedure for the application.LRESULT CALLBACK AbortPrintJob(
HWND hwndDlg,/* window handle of dialog box*/
UINT message,/* type of message */
WPARAM wParam, /* message-specific information */
LPARAM lParam) /* message-specific information */

{
switch (message) {
case WM_INITDIALOG: /* message: initialize dialog box */
/* Initialize the static text control. */
SetDlgItemText(hwndDlg, IDD_FILE, ofn.lpstrFile);
return TRUE;

case WM_COMMAND:/* message: received a command */
/* User pressed "Cancel" button--stop print job. */
MessageBox(hwndDlg, "Incoming", "WM_COMMAND", MB_OK);
bPrint = FALSE;
return TRUE;
default:
return FALSE;/* didn't process a message */
}
UNREFERENCED_PARAMETER(lParam);
UNREFERENCED_PARAMETER(wParam);
UNREFERENCED_PARAMETER(message);

}

Printing a Document
Once the application initializes the necessary variables, registers its AbortProc function, and
displays its modeless Cancel dialog box, it can start the print job by calling the StartDoc function.

After the application begins a print job, it can define individual pages in the document by calling
the StartPage and EndPage functions and embedding the appropriate calls to GDI drawing
functions within this bracket. After the application has defined the last page, it can close the
document and end the print job by calling the EndDoc function.

The following example shows the code required to print a string of text and a bitmapped image.
The string of text, centered at the top of the page, identifies the path and filename for the file that
contains the bitmapped image. The bitmapped image, centered vertically and horizontally on the
page, is drawn so that the same proportions used to draw the image in the application's window
are maintained./*

* Initialize the members of a DOCINFO
* structure.
*/
di.cbSize = sizeof(DOCINFO);
di.lpszDocName = "Bitmap Printing Test";
di.lpszOutput = (LPTSTR) NULL;
di.lpszDataType = (LPTSTR) NULL;
di.fwType = 0;
/*
* Begin a print job by calling the StartDoc
* function.
*/
nError = StartDoc(pd.hDC, &di);
if (nError == SP_ERROR) {
errhandler("StartDoc", hwnd);
goto Error;
}
/*
* Inform the driver that the application is
* about to begin sending data.
*/
nError = StartPage(pd.hDC);
if (nError <= 0) {
errhandler("StartPage", hwnd);
goto Error;
}
/*
* Retrieve the number of pixels-per-logical-inch
* in the horizontal and vertical directions
* for the display upon which the bitmap
* was created.
*/
fLogPelsX1 = (float) GetDeviceCaps(pd.hDC, LOGPIXELSX);
fLogPelsY1 = (float) GetDeviceCaps(pd.hDC, LOGPIXELSY);

/*
* Retrieve the number of pixels-per-logical-inch
* in the horizontal and vertical directions
* for the printer upon which the bitmap
* will be printed.
*/
fLogPelsX2 = (float) GetDeviceCaps(pd.hDC,
LOGPIXELSX);
fLogPelsY2 = (float) GetDeviceCaps(pd.hDC,
LOGPIXELSY);
/*
* Determine the scaling factors required to
* print the bitmap and retain its original
* proportions.
*/
if (fLogPelsX1 > fLogPelsX2)

fScaleX = (fLogPelsX1 / fLogPelsX2);
else

fScaleX = (fLogPelsX2 / fLogPelsX1);
if (fLogPelsY1 > fLogPelsY2)

fScaleY = (fLogPelsY1 / fLogPelsY2);
else

fScaleY = (fLogPelsY2 / fLogPelsY1);
/*
* Compute the coordinate of the upper left
* corner of the centered bitmap.
*/
cWidthPels = GetDeviceCaps(pd.hDC, HORZRES);
xLeft = ((cWidthPels / 2) -
((int) (((float) bmih.biWidth)
* fScaleX)) / 2);

cHeightPels = GetDeviceCaps(pd.hDC, VERTRES);
yTop = ((cHeightPels / 2) -
((int) (((float) bmih.biHeight)
* fScaleY)) / 2);

/*
* Create a memory DC that is compatible with
* the printer and select the bitmap (which
* the user requested) into this DC.
*/
hdcMem = CreateCompatibleDC(pd.hDC);
if (!SelectObject(hdcMem, hbm))

errhandler("SelectObject Failed", hwnd);

/*
* Use the StretchBlt function to scale the
* bitmap and maintain its original proportions
* (that is, if the bitmap was square when it
* appeared in the application's client area,
* it should also appear square on the page).
*/

if (!StretchBlt(pd.hDC, xLeft, yTop,
(int) ((float) bmih.biWidth * fScaleX),
(int) ((float) bmih.biHeight * fScaleY),
hdcMem, 0, 0,
bmih.biWidth, bmih.biHeight,
SRCCOPY))
errhandler("StretchBlt Failed", hwnd);

/* Delete the memory DC. */
DeleteDC(hdcMem);
/*
* Retrieve the width of the string that
* specifies the full path and filename for the
* file that contains the bitmap.
*/
GetTextExtentPoint32(pd.hDC, ofn.lpstrFile,
ofn.nFileExtension + 3,
&szMetric);
/*
* Compute the starting point for the
* text-output operation. The string will
* be centered horizontally and positioned
* three-lines down from the top of the page.
*/
xLeft = ((cWidthPels / 2) - (szMetric.cx / 2));
yTop = (szMetric.cy * 3);
/*
* Print the path and filename for the bitmap,
* centered at the top of the page.
*/
TextOut(pd.hDC, xLeft, yTop, ofn.lpstrFile,
ofn.nFileExtension + 3);
/*
* Determine whether the user has pressed
* the Cancel button in the AbortPrintJob
* dialog box; if the button has been pressed,
* call the AbortDoc function. Otherwise, inform
* the spooler that the page is complete.
*/
nError = EndPage(pd.hDC);
if (nError <= 0) {

errhandler("EndPage", hwnd);
goto Error;
}
/* Inform the driver that document has ended. */
nError = EndDoc(pd.hDC);
if (nError <= 0)

errhandler("EndDoc", hwnd);
Error:
/* Enable the application's window. */
EnableWindow(hwnd, TRUE);
/* Remove the AbortPrintJob dialog box. */
DestroyWindow(hdlgCancel);
/* Delete the printer DC. */
DeleteDC(pd.hDC);Because the pixels on a screen typically have different dimensions than the dots on a printer, it is

necessary to scale bitmapped images to obtain a WYSIWYG effect. This is done by obtaining
horizontal and vertical scaling factors and then applying those factors to the width and height
values passed to the StretchBlt function. In the sample application, the scaling factors were
obtained by retrieving the horizontal and vertical logical-pixel count for the two devices. Once the
scaling factors were obtained, they were used to adjust the bitmap width and height.

To center the bitmap on the page, the application first computed the width and height of the
scaled bitmap. (The bitmap was scaled to maintain the original proportions of the image.) These
values were divided by two and then subtracted from half of the width and height of the page. The
result defines the coordinates of the upper left corner of the bitmap.

To center the text at the top of the page, the application called the GetTextExtentPoint32
function to retrieve the width and height of the string specifying the path names and filenames.
Once these values were obtained, the application used the height to position the string three lines
down the page and the width to position the string horizontally centered on the page.

The following illustration shows a representation of the page that appeared when the application
printed the bitmapped image in the WINLOGO.BMP file. This illustration also depicts the variables
used to position the text and to position and scale the bitmap.

ewc msdncd, EWGraphic, bsd23493 0 /a "SDK_01.BMP"

Printing and Print Spooler Reference
The following functions, structures, and messages are associated with printing and the print
spooler.

Printing and Print Spooler Functions
Following are the functions used to print.
AbortDoc
DeviceCapabilities
EndDoc
EndPage
Escape
ExtEscape
SetAbortProc
StartDoc

StartPage

Following are the functions used to access the print spooler.
AbortPrinter
AbortProc
AddForm
AddJob
AddMonitor
AddPort
AddPrinter
AddPrinterConnection
AddPrinterDriver
AddPrintProcessor
AddPrintProvidor
AdvancedDocumentProperties
ClosePrinter
ConfigurePort
ConnectToPrinterDlg
DeleteForm
DeleteMonitor
DeletePort
DeletePrinter
DeletePrinterConnection
DeletePrinterData
DeletePrinterDriver
DeletePrintProcessor
DeletePrintProvidor
DocumentProperties
EndDocPrinter
EndPagePrinter
EnumForms
EnumJobs
EnumMonitors
EnumPorts
EnumPrinterData
EnumPrinterDrivers
EnumPrinters
EnumPrintProcessorDataTypes
EnumPrintProcessors
FindClosePrinterChangeNotification
FindFirstPrinterChangeNotification
FindNextPrinterChangeNotification
FreePrinterNotifyInfo
GetForm
GetJob
GetPrinter
GetPrinterData
GetPrinterDriver
GetPrinterDriverDirectory
GetPrintProcessorDirectory
OpenPrinter
PrinterMessageBox

PrinterProperties
ReadPrinter
ResetPrinter
ScheduleJob
SetForm
SetJob
SetPort
SetPrinter
SetPrinterData
StartDocPrinter
StartPagePrinter
WaitForPrinterChange

WritePrinter

Printing and Print Spooler Structures
The following structures are used with the print spooler:
ADDJOB_INFO_1
DATATYPES_INFO_1
DEVMODE
DOC_INFO_1
DOC_INFO_2
DOCINFO
DRIVER_INFO_1
DRIVER_INFO_2
DRIVER_INFO_3
FORM_INFO_1
JOB_INFO_1
JOB_INFO_2
JOB_INFO_3
MONITOR_INFO_1
MONITOR_INFO_2
PORT_INFO_1
PORT_INFO_2
PORT_INFO_3
PRINTER_DEFAULTS
PRINTER_INFO_1
PRINTER_INFO_2
PRINTER_INFO_3
PRINTER_INFO_4
PRINTER_INFO_5
PRINTER_INFO_6
PRINTER_NOTIFY_OPTIONS
PRINTER_NOTIFY_OPTIONS_TYPE
PRINTER_NOTIFY_INFO
PRINTER_NOTIFY_INFO_DATA
PRINTPROCESSOR_INFO_1

PROVIDOR_INFO_1

Printing and Print Spooler Messages
Following is the message used with the print spooler.

WM_SPOOLERSTATUS

RegionsIn Microsoft® Windows®, a region is a rectangle, polygon, or ellipse (or a combination of two or
more of these shapes) that can be filled, painted, inverted, framed, and used to perform hit testing
(testing for the cursor location).

About Regions
Following are three types of regions that have been filled and framed.

ewc msdncd, EWGraphic, bsd23494 0 /a "SDK_01.BMP"

Region Creation and Selection
An application creates a region by calling a function associated with a specific shape. The
following table shows the function(s) associated with each of the standard shapes.

Shape Function

Rectangular region CreateRectRgn, CreateRectRgnIndirect
Rectangular region
with rounded
corners

CreateRoundRectRgn

Elliptical region CreateEllipticRgn, CreateEllipticRgnIndirect
Polygonal region CreatePolygonRgn, CreatePolyPolygonRgn

Each region creation function returns a handle that identifies the new region. An
application can use this handle to select the region into a device context by calling the
SelectObject function and supplying this handle as the second argument. After a region is
selected into a device context, the application can perform various operations on it.

Region Operations
Applications can combine regions, compare them, paint or invert their interiors, draw a frame
around them, retrieve their dimensions, and test whether the cursor lies within their boundaries.

Combining
An application combines two regions by calling the CombineRgn function. Using this function, an
application can combine the intersecting parts of two regions, all but the intersecting parts of two
regions, the two original regions in their entirety, and so on. Following are five values that define
the region combinations.

Value Meaning

RGN_AND The intersecting parts of two original regions define a
new region.

RGN_COPY A copy of the first (of the two original regions) defines a
new region.

RGN_DIFF The part of the first region that does not intersect the
second defines a new region.

RGN_OR The two original regions define a new region.
RGN_XOR Those parts of the two original regions that do not

overlap define a new region.

The following illustration shows the five possible combinations of a square and a circular
region resulting from a call to CombineRgn.

ewc msdncd, EWGraphic, bsd23494 1 /a "SDK_02.BMP"

Comparing
An application compares two regions to determine whether or not they are identical by calling the
EqualRgn function. EqualRgn considers two regions identical if they are equal in size and shape.

Filling
An application fills the interior of a region by calling the FillRgn function and supplying a handle
that identifies a specific brush. When an application calls FillRgn, Windows fills the region with
the brush by using the current fill mode for the specified device context. There are two fill modes:
alternate and winding. The application can set the fill mode for a device context by calling the
SetPolyFillMode function. The application can retrieve the current fill mode for a device context
by calling the GetPolyFillMode function.

The following illustration shows two identical regions: one filled using alternate mode and the
other filled using winding mode.

ewc msdncd, EWGraphic, bsd23494 2 /a "SDK_03.BMP"Alternate ModeTo determine which pixels Windows highlights when alternate mode is specified, perform the
following test:

1. Select a pixel within the region's interior.
2. Draw an imaginary ray, in the positive x-direction, from that pixel towards infinity.
3. Each time the ray intersects a boundary line, increment a count value.

Windows highlights the pixel if the count value is an odd number.Winding ModeTo determine which pixels Windows highlights when winding mode is specified, perform the
following test:

1. Determine the direction in which each boundary line is drawn.
2. Select a pixel within the region's interior.
3. Draw an imaginary ray, in the positive x-direction, from the pixel toward infinity.
4. Each time the ray intersects a boundary line with a positive y-component, increment a

count value. Each time the ray intersects a boundary line with a negative y-component,
decrement the count value.

Windows highlights the pixel if the count value is nonzero.

Painting
An application fills the interior of a region by using the brush currently selected into a device
context by the PaintRgn function. This function uses the current polygon fill modes (alternate and
winding).

Inverting
An application inverts the colors that appear within a region by calling the InvertRgn function. On
monochrome displays, InvertRgn makes white pixels black and black pixels white. On color
screens, this inversion is dependent on the type of technology used to generate the colors for the
screen.

Framing
An application draws a border around a region by calling the FrameRgn function and specifying
the border width and brush pattern that Windows uses when drawing the frame.

Retrieving a Bounding Rectangle
An application retrieves the dimensions of a region's bounding rectangle by calling the
GetRgnBox function. If the region is rectangular, GetRgnBox returns the dimensions of the
region. If the region is elliptical, the function returns the dimensions of the smallest rectangle that
can be drawn around the ellipse. The long sides of the rectangle are the same length as the
ellipse's major axis, and the short sides of the rectangle are the same length as the ellipse's minor
axis. If the region is polygonal, GetRgnBox returns the dimensions of the smallest rectangle that
can be drawn around the entire polygon.

Moving
An application moves a region by calling the OffsetRgn function. The given offsets along the x-
axis and y-axis determine the number of logical units to move left or right and up or down.

Hit Testing
An application performs hit testing on regions to determine the coordinates of the current cursor
position. Then it passes these coordinates ¾ as well as a handle identifying the region ¾ to the
PtInRegion function. The cursor coordinates can be retrieved by processing the various mouse
messages, such as WM_LBUTTONDOWN, WM_LBUTTONUP, WM_RBUTTONDOWN, and
WM_RBUTTONUP. The return value for PtInRegion indicates whether the cursor position is
within the given region.

Using Regions
· Using regions to clip output
· Using regions to perform hit testing

Using Regions to Clip Output
This section contains a single example that demonstrates how you can use regions to enable the
user to define how a part of client area output can appear. Regions used for this purpose are
called clipping regions.

The example for this section is taken from a Windows-based application that enables a user to
capture the entire desktop as a bitmap and then isolate and save a part of this image as a .BMP
file.

By selecting the Define Clip Region option from the application's menu, the user is able to select a
clipping region by clicking the left mouse button and dragging the mouse. As the user drags the
mouse, the application draws a rectangle that corresponds to the new clipping region.

By selecting the Clip option, the user is able to redraw the isolated part of the image within the
boundaries of the specified rectangle.

Defining the Clipping Region
When the user selects the Define Clip Region option, Windows issues a WM_COMMAND
message. The wParam parameter of this message contains an application-defined constant,
IDM_DEFINE, that indicates that the user selected this option from the menu. The application
processes this input by setting a Boolean flag, fDefineRegion, as shown in the following code
sample.case WM_COMMAND:

switch (wParam) {
case IDM_DEFINE:

fDefineRegion = TRUE;
break;After selecting the Define Clipping Region option, the user can begin drawing the rectangle by

clicking and dragging the mouse while the cursor is in the application's client area.

When the user presses the left button, Windows issues a WM_LBUTTONDOWN message. The
lParam parameter of this message contains the cursor coordinates, which correspond to the upper
left corner of a rectangle used to define the clipping region. The application processes the
WM_LBUTTONDOWN message, as follows./* These variables are required for clipping. */
static POINT ptUpperLeft;
static POINT ptLowerRight;
static POINT aptRect[5];
static POINT ptTmp;
static POINTS ptsTmp;
static BOOL fDefineRegion;
static BOOL fRegionExists;
static HRGN hrgn;
static RECT rctTmp;
int i;
switch (message) {
case WM_LBUTTONDOWN:

if (fDefineRegion) {
/* Retrieve the new upper left corner. */
ptsTmp = MAKEPOINTS(lParam);
ptUpperLeft.x = (LONG) ptsTmp.x;
ptUpperLeft.y = (LONG) ptsTmp.y;
}
if (fRegionExists) {
/* Erase the previous rectangle. */
hdc = GetDC(hwnd);
SetROP2(hdc, R2_NOTXORPEN);
if (!Polyline(hdc, (CONST POINT *) aptRect, 5))
errhandler("Polyline Failed", hwnd);
ReleaseDC(hwnd, hdc);
/* Clear the rectangle coordinates. */
for (i = 0; i < 4; i++) {

aptRect[i].x = 0;
aptRect[i].y = 0;

}
/* Clear the temporary point structure. */
ptTmp.x = 0;
ptTmp.y = 0;
/* Clear the lower right coordinates. */
ptLowerRight.x = 0;
ptLowerRight.y = 0;
/* Reset the flag. */
fRegionExists = FALSE;
fDefineRegion = TRUE;
/* Retrieve the new upper left corner. */
ptsTmp = MAKEPOINTS(lParam);
ptUpperLeft.x = (LONG) ptsTmp.x;
ptUpperLeft.y = (LONG) ptsTmp.y;
}

break;As the user drags the mouse, Windows issues WM_MOUSEMOVE messages and stores the new
cursor coordinates in the lParam parameter. Each time the application receives a new
WM_MOUSEMOVE message, it erases the previous rectangle (if one exists) and draws the new
rectangle by calling the Polyline function, passing it the coordinates of the four corners of the
rectangle. The application performs the following tasks./* These variables are required for clipping. */
static POINT ptUpperLeft;
static POINT ptLowerRight;
static POINT aptRect[5];
static POINT ptTmp;
static POINTS ptsTmp;
static BOOL fDefineRegion;
static BOOL fRegionExists;
static HRGN hrgn;
static RECT rctTmp;
int i;
switch (message) {
case WM_MOUSEMOVE:

if (wParam & MK_LBUTTON && fDefineRegion) {
/* Get a window DC. */
hdc = GetDC(hwnd);
if (!SetROP2(hdc, R2_NOTXORPEN))
errhandler("SetROP2 Failed", hwnd);

/*
* If previous mouse movement occurred, store the original
* lower right corner coordinates in a temporary structure.
*/
if (ptLowerRight.x) {
ptTmp.x = ptLowerRight.x;
ptTmp.y = ptLowerRight.y;
}
/*
* Get the new coordinates of the clipping region's lower
* right corner.
*/
ptsTmp = MAKEPOINTS(lParam);
ptLowerRight.x = (LONG) ptsTmp.x;
ptLowerRight.y = (LONG) ptsTmp.y;

/*
* If previous mouse movement occurred, erase the original
* rectangle.
*/
if (ptTmp.x) {
aptRect[0].x = ptUpperLeft.x;
aptRect[0].y = ptUpperLeft.y;
aptRect[1].x = ptTmp.x;
aptRect[1].y = ptUpperLeft.y;
aptRect[2].x = ptTmp.x;
aptRect[2].y = ptTmp.y;
aptRect[3].x = ptUpperLeft.x;
aptRect[3].y = ptTmp.y;
aptRect[4].x = aptRect[0].x;
aptRect[4].y = aptRect[0].y;
if (!Polyline(hdc, (CONST POINT *) aptRect, 5))
errhandler("Polyline Failed", hwnd);
}
aptRect[0].x = ptUpperLeft.x;
aptRect[0].y = ptUpperLeft.y;
aptRect[1].x = ptLowerRight.x;
aptRect[1].y = ptUpperLeft.y;
aptRect[2].x = ptLowerRight.x;
aptRect[2].y = ptLowerRight.y;
aptRect[3].x = ptUpperLeft.x;
aptRect[3].y = ptLowerRight.y;
aptRect[4].x = aptRect[0].x;
aptRect[4].y = aptRect[0].y;
if (!Polyline(hdc, (CONST POINT *) aptRect, 5))
errhandler("Polyline Failed", hwnd);
ReleaseDC(hwnd, hdc);
}
break;

Clipping Output
After the user chooses the Clip option from the menu, the application uses the coordinates of the
rectangle the user created to define a clipping region. After defining the clipping region and
selecting it into the application's device context, the application redraws the bitmapped image. The
application performs these tasks, as follows./* These variables are required for clipping. */
static POINT ptUpperLeft;
static POINT ptLowerRight;
static POINT aptRect[5];
static POINT ptTmp;
static POINTS ptsTmp;
static BOOL fDefineRegion;
static BOOL fRegionExists;
static HRGN hrgn;
static RECT rctTmp;
int i;
case WM_COMMAND:

switch (wParam) {
case IDM_CLIP:

hdc = GetDC(hwnd);
/*

* Retrieve the application's client rectangle and paint
* with the default (white) brush.
*/

GetClientRect(hwnd, &rctTmp);
FillRect(hdc, &rctTmp, GetStockObject(WHITE_BRUSH));
/* Use the rect coordinates to define a clipping region. */
hrgn = CreateRectRgn(aptRect[0].x, aptRect[0].y,
aptRect[2].x, aptRect[2].y);
SelectClipRgn(hdc, hrgn);
/* Transfer (draw) the bitmap into the clipped rectangle. */
BitBlt(hdc,

0, 0,
bmp.bmWidth, bmp.bmHeight,
hdcCompatible,
0, 0,
SRCCOPY);
ReleaseDC(hwnd, hdc);

break;

Using Regions to Perform Hit Testing
The example in Brushes uses regions to simulate a "zoomed" view of an 8- by 8-pixel
monochrome bitmap. By clicking on the pixels in this bitmap, the user creates a custom brush
suitable for drawing operations. The example shows how to use the PtInRegion function to
perform hit testing and the InvertRgn function to invert the colors in a region.

Region Reference
The following functions and structures are used with regions.

Region Functions
Following are the functions used with regions.
CombineRgn
CreateEllipticRgn
CreateEllipticRgnIndirect
CreatePolygonRgn
CreatePolyPolygonRgn
CreateRectRgn
CreateRectRgnIndirect
CreateRoundRectRgn
EqualRgn
ExtCreateRegion
FillRgn
FrameRgn
GetPolyFillMode
GetRegionData
GetRgnBox
InvertRgn
OffsetRgn
PaintRgn
PtInRegion
RectInRegion

SetPolyFillMode

Region Structures
The following structures are used with regions.
RGNDATA

RGNDATAHEADER

AccessibilityThe Microsoft® Win32® API provides a set of accessibility features that make it easier for persons
with disabilities to use computers. This overview describes the provided accessibility features and
the Win32 functions and structures for controlling these features.

About Accessibility
There are two categories of accessibility features:

· Accessibility parameters. These are system parameters that can be set by the user.
Applications can check the state of an accessibility parameter to determine whether the user
wants special behavior that can be provided in an application-specific manner. For example,
the ShowSounds parameter indicates that an application that typically uses sound to convey
important information should also provide the information visually.

· Built-in accessibility features. These features are built into the system or provided as an
extension to the system. They affect how the user provides keyboard and mouse input to the
computer. When enabled, their functionality is available regardless of which applications are
running. An example is a keyboard filter that makes it easier for users with movement
impairments to type key combinations such as CTRL+ALT+DEL.

Accessibility Parameters
The system maintains a set of accessibility parameters that indicate whether the user has special
needs or preferences. The user controls the state of these parameters, typically using a Control
Panel application. Control Panel applications or other programs that allow the user to customize
the Windows environment can use the SystemParametersInfo function to set the accessibility
parameters.

Applications should use the GetSystemMetrics function to determine the state of the accessibility
parameters. When an accessibility parameter is set to TRUE, the application should modify its
user interface, if necessary, to accomodate the user's preferences.

Win32 supports the following accessibility parameter:

Parameter Description

ShowSounds Indicates that an application that typically uses
sound to convey important information should
provide the information visually.

Built-in Accessibility Features
The built-in accessibility features are extensions to the operating system. These features affect
the behavior of the system regardless of which applications are running.

Win32 supports the following built-in accessibility features:

Feature Description

AccessTimeout Enables a user to specify a timeout interval after
which system-wide accessibility features are
automatically disabled. The AccessTimeout
feature is intended for computers that are shared
by several users with different preferences. Each
individual can use hot keys or the Control Panel to
enable preferred features. After a user leaves, the
features he or she enabled will be automatically
disabled by the timeout. The accessibility features
affected by the timeout are FilterKeys,
MouseKeys, StickyKeys, and ToggleKeys. The
ACCESSTIMEOUT structure defines the
parameters for this feature.

FilterKeys Enables control of keyboard properties, such as
the amount of time before a keystroke is accepted
as input and the amount of time before a
keystroke begins to repeat. The FilterKeys feature
also provides sound feedback when a key is
pressed and when it is accepted as input. The
FILTERKEYS structure defines the parameters
for this feature.

MouseKeys Enables the user to control the mouse pointer
using the numeric keypad. The MOUSEKEYS
structure defines the parameters for this feature.

SoundSentry Displays a visual signal when a sound is
generated by a Windows-based application or an
MS-DOS application running in a window. The
SOUNDSENTRY structure defines the
parameters for this feature.

StickyKeys Enables the user to type key combinations, such
as CTRL+ALT+DEL, in sequence rather than at the
same time. The STICKYKEYS structure defines
the parameters for this feature.

ToggleKeys Provides sound feedback when the user turns on
or off the CAPS LOCK, NUM LOCK, or SCROLL LOCK
keys. The TOGGLEKEYS structure defines the
parameters for this feature.

The SystemParametersInfo function provides the programming interface to the built-in
accessibility features. This function is useful in Control Panel applications or other programs that
allow the user to customize the Windows environment. The SystemParametersInfo function can
perform the following tasks:

· Query the system to determine the availability and current state of a specified built-in
accessibility feature

· Enable a feature and specify parameters that control its behavior
· Disable a feature
· Enable a hot key that allows the user to enable or disable a feature

For each of the built-in features, Win32 defines a structure that applications use with
SystemParametersInfo to query or set the parameters of the feature.

An application can use SystemParametersInfo to enable or disable a feature directly. For some
of the features, SystemParametersInfo can enable a hot key or key combination so the user can

toggle the state of a feature. There are no hot keys for the SoundSentry feature. The following
accessibility features have hot keys:

Feature Description

FilterKeys Hold down the LEFT SHIFT key for eight seconds to
toggle the FilterKeys feature on or off. Holding
down the LEFT SHIFT key for 12 seconds enables
FilterKeys using the most conservative values for
FILTERKEYS.iBounceMSec. Holding down the
LEFT SHIFT key for 16 seconds enables FilterKeys
using the most conservative values for
FILTERKEYS.iWaitMSec.

MouseKeys LEFT ALT+LEFT SHIFT+NUM LOCK

StickyKeys Press the SHIFT key 5 times
ToggleKeys Hold down the NUM LOCK key for 5 seconds

Using Accessibility
· Checking the state of an accessibility parameter
· Enabling a built-in accessibility feature

Checking the State of an Accessibility Parameter
The following code fragment uses the GetSystemMetrics function to check the ShowSounds
parameter. If GetSystemMetrics returns TRUE, the application should present all important
information in visual form.BOOL fShowSounds;
fShowSounds = GetSystemMetrics(SM_SHOWSOUNDS);

Enabling a Built-in Accessibility Feature
The following code fragment uses the SystemParametersInfo function to enable the FilterKeys
feature:FILTERKEYS fk;
BOOL bSuccess;
// fill in members of the FILTERKEYS structure
fk.cbSize = sizeof(FILTERKEYS);
fk.dwFlags = (FKF_FILTERKEYSON | FKF_HOTKEYACTIVE |

FKF_AVAILABLE | FKF_HOTKEYSOUND | FKF_CLICKON);
fk.iWaitMSec = 1000;
fk.iDelayMSec = 1000;
fk.iRepeatMSec = 500;
fk.iBounceMSec = 0;
// call SystemParametersInfo with SPI_SETFILTERKEYS code
bSuccess = SystemParametersInfo(SPI_SETFILTERKEYS, 0, (LPVOID) &fk, 0)
;

Accessibility Reference
The following structures and messages are associated with accessibility features.

Accessibility Functions
Use the following functions to implement accessibility features:

SoundSentryProc

Accessibility Structures
Use the following structures to implement accessibility features:
ACCESSTIMEOUT
FILTERKEYS
HIGHCONTRAST
MOUSEKEYS
SERIALKEYS
SOUNDSENTRY
STICKYKEYS

TOGGLEKEYS

AtomsIn Microsoft® Windows®, an atom table is a system-defined table that stores strings and
corresponding identifiers. An application places a string in an atom table and receives a 16-bit
integer, called an atom, that can be used to access the string. A string that has been placed in an
atom table is called an atom name.

About Atom Tables
Dynamic data exchange (DDE) applications use an atom table to share item-name and topic-
name strings with other applications. Rather than passing actual strings, a DDE application
passes atoms to its partner application. The partner uses the atoms to obtain the strings from the
atom table.

Global Atom Table
The Windows global atom table, which can contain up to 37 entries, is available to all applications.
When an application places a string in the global atom table, the system generates an atom that is
unique throughout the system. Any application that has the atom can obtain the string it identifies
by querying the global atom table.

An application that defines a private clipboard-data format or DDE-data format for sharing data
with other applications should place the format name in the global atom table. This technique
prevents conflicts with the names of formats defined by the system or by other applications, and
makes the identifiers (atoms) for the messages or formats available to the other applications.

Local Atom Tables
An application can use a local atom table to efficiently manage a large number of strings used
only within the application. These strings, and the associated atoms, are available only to the
application that created the table.

An application requiring the same string in a number of structures can reduce memory usage by
using a local atom table. Rather than copying the string into each structure, the application can
place the string in the atom table and include the resulting atom in the structures. In this way, a
string appears only once in memory but can be used many times in the application.

Applications can also use local atom tables to save time when searching for a particular string. To
perform a search, an application need only place the search string in the atom table and compare
the resulting atom with the atoms in the relevant structures. Comparing atoms is typically faster
than comparing strings.

By default, a local atom table can contain up to 37 entries. However, the size of a local atom table,
unlike the size of a global atom table, can be changed. An application uses the InitAtomTable
function to accomplish this task. If the application calls InitAtomTable, however, it must do so
before calling any other atom-management functions.

Atom Types
Applications can use two types of atoms: string and integer. The following sections describe these
types.

String Atoms
Applications pass null-terminated strings to atom tables and receive string atoms (16-bit integers)
in return. String atoms have the following properties:

· The values of string atoms are in the range 0xC000 through 0xFFFF.
· Case is not significant in searches for an atom name in an atom table. Also, the entire

string must match in a search operation; no substring matching is performed.
· The string associated with a string atom can be no more than 255 bytes in size. This

limitation applies to all atom functions.
· A reference count is associated with each atom name. The count is incremented each

time the atom name is added to the table and decremented each time the atom name is
deleted from it. This prevents different users of the same string atom from destroying each
other's atom names. When the reference count for an atom name equals zero, the system
removes the atom and the atom name from the table.

Integer Atoms
Integer atoms differ from string atoms in the following ways:

· The values of integer atoms are in the range 0x0001 through 0xBFFF. The values of
integer atoms and string atoms do not overlap, so both types of atoms can be used in the
same block of code.

· The string representation of an integer atom is #dddd, where the values represented by
dddd are decimal digits. Leading zeros are ignored.

· There is no reference count or storage overhead associated with an integer atom.
Several Windows functions accept either string or integer atoms as parameters. When passing an
integer atom to these functions, an application must use the MAKEINTATOM macro to create the
atom.

Atom Creation and Usage Count
An application creates a local atom by calling the AddAtom function; it creates a global atom by
calling the GlobalAddAtom function. Both functions require a pointer to a string. The system
searches the appropriate atom table for the string and returns the corresponding atom to the
application. In the case of a string atom, if the string already resides in the atom table, the system
increments the reference count for the string during this process.

Repeated calls to add the same atom name return the same atom. If the atom name does not
exist in the table when AddAtom is called, the atom name is added to the table and a new atom
is returned. If it is a string atom, its reference count is also set to one.

An application should call the DeleteAtom function when it no longer needs to use a local atom; it
should call the GlobalDeleteAtom function when it no longer needs a global atom. In the case of
a string atom, either of these functions reduces the reference count of the corresponding atom by
one. When the reference count reaches zero, the system deletes the atom name from the table.

The atom name of a string atom remains in the global atom table as long as its reference count is
greater than zero, even after the application that placed it in the table terminates. A local atom
table is destroyed when the associated application terminates, regardless of the reference counts
of the atoms in the table.

Atom-Table Queries
An application can determine whether a particular string is already in an atom table by using the
FindAtom or GlobalFindAtom function. These functions search an atom table for the specified
string and, if the string is there, return the corresponding atom.

An application can use the GetAtomName or GlobalGetAtomName function to retrieve an atom-
name string from an atom table, provided the application has the atom corresponding to the string
sought. Both functions copy the atom-name string of the specified atom to a buffer and return the
length of the string that was copied. GetAtomName retrieves an atom-name string from a local
atom table, and GlobalGetAtomName retrieves an atom-name string from the global atom table.

Atom String Formats
The AddAtom, GlobalAddAtom, FindAtom, and GlobalFindAtom functions take a pointer to a
null-terminated string. An application can specify this pointer in one of the following ways.

Format Description

#dddd An integer specified as a decimal string. Used
to create or find an integer atom.

string atom name A string atom name. Used to add a string atom
name to an atom table and receive an atom in
return.

Using Atoms
The most typical use for atoms is in DDE applications. In the DDE protocol, applications use
global atoms to identify the applications exchanging data, the nature of the data being exchanged,
and the actual data items being exchanged. For more information about DDE and for examples
that show how to use atoms, see Dynamic Data Exchange.

Atom Reference
The following functions and macros are used with atoms.

Atom Functions
The following functions are used with atoms.
AddAtom
DeleteAtom
FindAtom
GetAtomName
GlobalAddAtom
GlobalDeleteAtom
GlobalFindAtom
GlobalGetAtomName

InitAtomTable

Atom Macros
The following macro is used with atoms.

MAKEINTATOM

CommunicationsA communications resource is a physical or logical device that provides a single bidirectional,
asynchronous data stream. Serial ports, parallel ports, fax machines, and modems are examples
of communications resources. For each communications resource, there is a service provider,
consisting of a library or driver, that enables applications to access the resource.

About Communications
The file input and output (I/O) functions (CreateFile, CloseHandle, ReadFile, ReadFileEx,
WriteFile, and WriteFileEx) provide the basic interface for opening and closing a communications
resource handle and for performing read and write operations. The Microsoft® Win32® application
programming interface (API) also includes a set of communications functions that provide access
to communications resources. This overview describes the use of file I/O and communications
functions, which enable applications to perform the following tasks:

· Open a handle to a specified communications resource.
· Set and query the configuration of a serial communications resource.
· Read from or write to a serial communications resource.
· Monitor a specified set of events that might occur for a given serial communications

resource.
· Send a control command to the device driver associated with a specified communications

resource, causing the driver to execute an extended function.

Communications Resource Handles
A process uses the CreateFile function to open a handle to a communications resource. For
example, specifying COM1 opens a handle to a serial port, and LPT1 opens a handle to a parallel
port. If the specified resource is currently being used by another process, CreateFile fails. Any
thread of the process can use the handle returned by CreateFile to identify the resource in any of
the functions that access the resource.

When using CreateFile to open a handle directly to a device, an application must use the special
characters " \\ .\" to identify the device. For example, to open a handle to drive A, specify " \\ .\a:"
for the lpszName parameter of CreateFile. The calling process can use the handle in the
DeviceIoControl function to send control codes to the device.

When the process calls CreateFile to open a communications resource, it specifies the following
attributes:

· What type of read-write access exists for the specified resource.
· Whether the handle can be inherited by child processes.
· Whether the handle can be used in overlapped (asynchronous) I/O operations. (For a

description of overlapped operations, see Synchronization.)
When the process uses CreateFile to open a communications resource, it must specify certain
values for the following parameters:

· The fdwShareMode parameter must be zero, opening the resource for exclusive access.
· The fdwCreate parameter must specify the OPEN_EXISTING flag.
· The hTemplateFile parameter must be NULL.

Modification of Communications Resource Settings
When the CreateFile function opens a handle to a serial communications resource, the system
initializes and configures the resource according to the values set up the last time the resource
was opened. Preserving the previous settings enables the user to retain the settings specified
through an MS-DOS® mode command when the device is reopened. The values inherited from
the previous open operation include the configuration settings of the device control block (a DCB
structure) and the time-out values used in I/O operations. If the device has never been opened, it
is configured with the system defaults.

To determine the initial configuration of a serial communications resource, a process calls the
GetCommState function, which fills in a serial port DCB structure with the current configuration
settings. To modify this configuration, a process specifies a DCB structure in a call to the
SetCommState function.

Members of the DCB structure specify the configuration settings such as the baud rate, the
number of data bits per byte, and the number of stop bits per byte. Other DCB members specify
special characters and enable parity checking and flow control. When a process needs to modify
only a few of these configuration settings, it should first call GetCommState to fill in a DCB
structure with the current configuration. Then the process can adjust the important values in the
DCB structure and reconfigure the device by calling SetCommState and specifying the modified
DCB structure. This procedure ensures that the unmodified members of the DCB structure
contain appropriate values. For example, a common error is to configure a device with a DCB
structure in which the structure's XonChar member is equal to the XoffChar member. Some
members of the DCB structure are different from those in previous versions of Microsoft
Windows®. In particular, the flags for controlling RTS (request-to-send) and DTR (data-terminal-
ready) flow control have changed.

The BuildCommDCB function provides another way to modify a DCB structure. BuildCommDCB
uses a string with the same form as the command-line arguments of the mode command to
specify the baud rate, parity scheme, number of stop bits, and number of data bits. The remaining
members of DCB are not changed by this function, except that the appropriate members are set
to disable XON/XOFF and hardware flow control. BuildCommDCB only modifies a DCB
structure; it does not reconfigure the device.

A process can reconfigure a communications resource by using the GetCommProperties
function to get information from a device driver about the configuration settings that it supports.
The process can use this information to avoid specifying a configuration that is not supported.

The SetCommState function reconfigures the communications resource, but it does not affect the
internal output and input buffers of the specified driver. The buffers are not flushed, and pending
read and write operations are not terminated prematurely.

A process reinitializes a communications resource by using the SetupComm function, which
performs the following tasks:

· Terminates pending read and write operations, even if they have not been completed.
· Discards unread characters and frees the internal output and input buffers of the driver

associated with the specified resource.
· Reallocates the internal output and input buffers.

A process is not required to call SetupComm. If it does not, the resource's driver initializes the
device with the default settings the first time that the communications resource handle is used.

Communications Resource Configuration
The COMMCONFIG structure defines the configuration of a communications resource, serial or
otherwise. The format of the structure varies depending on the type of communications resource
(the provider subtype). The first few structure members are common to all communications
resources; additional members are defined for specific provider subtypes. Specific service
providers may extend the COMMCONFIG structure as well.

An application can get and set the configuration of a communications resource by using the
GetCommConfig and SetCommConfig functions. When opened, a communications resource is
initialized using the default configuration for its provider subtype. To get and set the default
configuration for a provider subtype, use the GetDefaultCommConfig and
SetDefaultCommConfig functions.

To prompt the user for configuration information, use the CommConfigDialog function. This
function displays a dialog box defined by the service provider and fills in a COMMCONFIG
structure based on user input.

Modem Configuration
Modem configuration functions enable you to configure a modem before making a connection. An
application can set modem options and determine the features of a modem without using
commands specific to any modem device. Following are the general features an application may
set before making a call:

· Primary mode of operation (synchronous, asynchronous, and whether error control is
enabled).

· V.42 error control (defined by CCITT recommendation V.42), including specific
parameters. CCITT stands for the International Telegraph and Telephone Consultative
Committee.

· V.42bis (defined by CCITT recommendation V.42bis) and MNP5 data compression.
· Time-out options, including call setup, inactivity, and buffered data delivery.

Before setting a modem's configuration, an application should determine the capabilities of the
modem device by using the GetCommProperties function. This function fills in a COMMPROP
structure. This structure contains both a general portion, which applies to all communications
devices, and a portion that is specific to each provider subtype. For modem devices, the provider-
specific portion of the COMMPROP structure is a MODEMDEVCAPS structure.

An application can get and set the current configuration of a modem by using the
GetCommConfig and SetCommConfig functions, both of which use a COMMCONFIG structure.
This structure contains both a general portion, which applies to all communications devices, and a
portion that is specific to each provider subtype. For modem devices, the provider-specific portion
of the COMMCONFIG structure is a MODEMSETTINGS structure.

After configuring a modem, an application can use the telephony application programming
interface (TAPI) to actually establish a connection.

The modem configuration functions do not provide for long-term management and maintenance of
a modem. Modem service providers should supply modem configuration dialog boxes for this
purpose.

Read and Write Operations
The Win32 API supports both synchronous and asynchronous (overlapped) file I/O operations on
serial communications resources. Overlapped operations enable the calling thread to perform
other tasks while the operation executes in the background. A thread uses the ReadFile or
ReadFileEx function to read from a communications resource, and the WriteFile or WriteFileEx
function to write to a communications resource. ReadFile and WriteFile can be performed
synchronously or asynchronously. ReadFileEx and WriteFileEx can only be performed
asynchronously.

The behavior of these read and write functions is affected by whether the function is executed as
an overlapped operation, whether the time-out parameters are associated with the handle, and
whether flow control parameters are associated with the handle.

A thread can also write to a communications resource by using the TransmitCommChar function,
which transmits a specified character ahead of any pending data in the output buffer. This function
is useful for transmitting a high priority signal character to the receiving system. Transmission of
the high priority character is still subject to flow control and write time-outs, and the operation is
performed synchronously.

A thread can use the PurgeComm function to discard all characters in a device's output or input
buffer. PurgeComm can also terminate pending read or write operations, even if the operations
have not been completed. If a thread uses PurgeComm to flush an output buffer, the deleted
characters are not transmitted. To empty the output buffer while ensuring that the contents are
transmitted, a thread can call the FlushFileBuffers function (a synchronous operation). Note,
however, that FlushFileBuffers is subject to flow control but not to write time-outs, and it will not
return until all pending write operations have been transmitted.

Overlapped Operations
Overlapped operations enable a thread to execute a time-consuming I/O operation in the
background, leaving the thread free to perform other tasks. To enable overlapped I/O operations
on a communications resource, the thread must specify the FILE_FLAG_OVERLAPPED flag in
the CreateFile function when the handle is opened. To execute the ReadFile or WriteFile
function as an overlapped operation, the calling thread must specify a pointer to an
OVERLAPPED structure.The OVERLAPPED structure must contain a handle to a manual-reset
(not an auto-reset) event object. The system sets the state of the event object to not-signaled
when a call to the I/O function returns before the operation has been completed. The system sets
the state of the event object to signaled when the operation has been completed. The thread uses
a wait function to check the current state of the event object or to wait for its state to be signaled.

The ReadFileEx and WriteFileEx functions can be performed only as overlapped operations. The
calling thread specifies a pointer to the FileIOCompletionRoutine function, which is executed
when the overlapped operation is completed. The completion routine is executed only if the calling
thread performs an alertable operation.

For more information about event objects, wait functions, alertable waits, and completion routines,
see Synchronization.

Time-Outs
A handle to a communications resource has an associated set of time-out parameters that affect
the behavior of read and write operations. Time-outs can cause a ReadFile, ReadFileEx,
WriteFile, or WriteFileEx operation to conclude when a time-out interval elapses, even though
the specified number of characters have not been read or written. It is not treated as an error
when a time-out occurs during a read or write operation (that is, the read or write function's return
value indicates success). The count of bytes actually read or written is reported by ReadFile or
WriteFile (or by the GetOverlappedResult or FileIOCompletionRoutine function, if the I/O was
performed as an overlapped operation).

When an application opens a communications resource, the operating system sets the resource's
time-out values to the values in effect when the resource was last used. If the communications
resource has never been opened, the operating system sets the time-out values to some default
value. In either case, an application should always determine the current time-out values after
opening the resource, and then explicitly set them to meet its requirements. To determine the
current time-out values of a communications resource, use the GetCommTimeouts function. To
change the time-out values, use the SetCommTimeouts function.

Two types of time-outs are enabled by the time-out parameters. An interval time-out occurs when
the time between the receipt of any two characters exceeds a specified number of milliseconds.
Timing starts when the first character is received and is restarted when each new character is
received. A total time-out occurs when the total amount of time consumed by a read operation
exceeds a calculated number of milliseconds. Timing starts immediately when the I/O operation
begins. Write operations support only total time-outs. Read operations support both interval and
total time-outs, which can be used separately or combined.

The time, in milliseconds, of the total time-out period for a read or write operation is calculated by
using the multiplier and constant values from the COMMTIMEOUTS structure specified in the
GetCommTimeouts or SetCommTimeouts function. The following formula is used:Timeout = (MULTIPLIER * number_of_bytes) + CONSTANTUsing both a multiplier and a constant enables the total time-out period to vary, depending on the
amount of data being requested. An application can use only the constant by setting the multiplier
to zero, or use only the multiplier by setting the constant to zero. If both the constant and multiplier
are zero, total time-out is not used.

If all read time-out parameters are zero, read time-outs are not used, and a read operation is not
complete until the requested number of bytes have been read or an error occurs. Similarly, if all
write time-out parameters are zero, a write operation is not completed until the requested number
of bytes have been written or an error occurs.

If the read interval time-out parameter is the MAXDWORD value and both read total time-out
parameters are zero, a read operation is completed immediately after reading whatever
characters are available in the input buffer, even if it is empty. This is the same as the
ReadComm function in previous versions of Windows.

Interval timing forces a read operation to return when there is a lull in reception. A process using
interval time-outs can set a fairly short interval parameter, so it can respond quickly to small,
isolated bursts of one or a few characters, yet it can still collect large buffers of characters with a
single call when data is received in a steady stream.

Time-outs for a write operation can be useful when transmission is blocked by some kind of flow
control or when the SetCommBreak function has been called to suspend character transmission.

The following table summarizes the behavior of read operations based on the values specified for
total and interval time-outs.

Total Interval Behavior

0 0 Returns when the buffer is completely filled. Time-
outs are not used.

T 0 Returns when the buffer is completely filled or
when T milliseconds have elapsed since the
beginning of the operation.

0 Y Returns when the buffer is completely filled or
when Y milliseconds have elapsed between the
receipt of any two characters. Timing does not
begin until the first character is received.

T Y Returns when the buffer is completely filled or
when either type of time-out occurs.

Note, however, that timing is relative to the system controlling the physical device. For a
remote device such as a modem, the timing is relative to the server system to which the
modem is attached. Any network propagation delay is not factored in. For example, a client
application might specify a total time-out that computes to be 500 milliseconds. When 500
milliseconds have elapsed at the server, a time-out error is returned to the client. If there is
a 50 milliseconds network propagation delay, the client will not be notified of the time-out
until approximately 50 milliseconds after the time-out actually occurred.

The time-out parameters affect the behavior of overlapped read and write operations on a
communications device. With overlapped I/O, the ReadFile, WriteFile, ReadFileEx, or
WriteFileEx function can return before the operation has been completed. The time-out
parameters can determine when the operation has been completed.

Communications Errors
There are other circumstances where a read or write operation can be completed with fewer than
the requested number of characters, even though a time-out has not occurred. Following are
some examples:

· Some drivers support the use of special characters, which complete a read operation
immediately with only the characters that have been read up to the point when they are
received.

· The PurgeComm function can be called to prematurely terminate pending read or write
operations. This function can also delete the contents of the output or input buffers, or both.

· If a communications error occurs during a read or write operation, all I/O operations on the
communications resource are terminated. Break conditions, parity errors, or framing errors are
examples of such errors. When an error occurs, the process must call the ClearCommError
function to clear the error flag before it can begin additional I/O operations. ClearCommError
reports the specific error that occurred and the current status of the device.

Communications Events
A process can monitor a set of events that occur in a communications resource. For example, an
application can use event monitoring to determine when the CTS (clear-to-send) and DSR (data-
set-ready) signals change state.

A process can monitor events on a given communications resource by using the SetCommMask
function to create an event mask. To determine the current event mask for a communications
resource, a process can use the GetCommMask function. The following values specify events
that can be monitored.

Value Meaning

EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are

CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal

changed state.
EV_RXCHAR A character was received and placed in the input

buffer.
EV_RXFLAG The event character was received and placed in the

input buffer. The event character is specified in the
device's DCB structure, which is applied to a serial
port by using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.

After a set of events is specified, a process uses the WaitCommEvent function to wait for one
of the events to occur. WaitCommEvent can be used synchronously or as an overlapped
operation. For additional information about executing a function as an overlapped operation, see
Synchronization.

When one of the events specified in the event mask occurs, the process completes the wait
operation and sets an event mask variable to indicate the type of event detected. If the
SetCommMask is called for a communications resource while a wait is pending for that resource,
WaitCommEvent returns an error.

The WaitCommEvent function detects events that have occurred since the last call to
SetCommMask or WaitCommEvent. For example, if you specify the EV_RXCHAR event as a
wait-satisfying event, a call to WaitCommEvent will be satisfied if there are characters in the
driver's input buffer that have arrived since the last call to WaitCommEvent or SetCommMask.
Thus, given the following pseudo-code,while (we_care) {

WaitCommEvent
T1: // Read bytes

// process them
T2: }

... any characters received between T1 and T2 will satisfy the next call to WaitCommEvent.

When monitoring an event that occurs when a signal (CTS, DSR, and so on) changes state,
WaitCommEvent reports the change, but not the current state. To query the current state of the
CTS (clear-to-send), DSR (data-set-ready), RLSD (receive-line-signal-detect), and ring indicator
signals, a process can use the GetCommModemStatus function.

Extended Functions
Some communications functions can be called for a device by using the EscapeCommFunction
function. This function sends a code to direct the device to execute an extended function. For
example, an application can suspend character transmission with the SETBREAK code and
resume transmission with the CLRBREAK code. These particular operations can also be started
by calling the SetCommBreak and ClearCommBreak functions. EscapeCommFunction can
also be used to implement manual modem control. For example, the CLRDTR and SETDTR
codes can be used to implement manual DTR (data-terminal-ready) flow control. Note, however,
that an error occurs if a process uses EscapeCommFunction to manipulate the DTR line when
the device has been configured to enable DTR handshaking, or the RTS (request-to-send) line if
RTS handshaking is enabled.

The DeviceIoControl function enables a process to send an extended function code directly to a
specified device driver, causing the device to perform a given operation. DeviceIoControl gives a
device associated with a communications resource capabilities not supported by the standard
serial communications functions. It enables an application to configure a device using parameters
unique to that device as well as to call any device-specific functions.

Using the Communications Functions
· Configuring a communications resource
· Monitoring communications events

Configuring a Communications Resource
The following example opens a handle to COM1 and fills in a DCB structure with the current
configuration. The DCB structure is then modified and used to reconfigure the device.DCB dcb;
HANDLE hCom;
DWORD dwError;
BOOL fSuccess;
hCom = CreateFile("COM1",

GENERIC_READ | GENERIC_WRITE,
0, /* comm devices must be opened w/exclusive-access */
NULL, /* no security attrs */
OPEN_EXISTING, /* comm devices must use OPEN_EXISTING */
0, /* not overlapped I/O */
NULL /* hTemplate must be NULL for comm devices */
);

if (hCom == INVALID_HANDLE_VALUE) {
dwError = GetLastError();
/* handle error */

}
/*
* Omit the call to SetupComm to use the default queue sizes.
* Get the current configuration.
*/
fSuccess = GetCommState(hCom, &dcb);
if (!fSuccess) {

/* Handle the error. *
}
/* Fill in the DCB: baud=9600, 8 data bits, no parity, 1 stop bit. */
dcb.BaudRate = 9600;
dcb.ByteSize = 8;
dcb.Parity = NOPARITY;
dcb.StopBits = ONESTOPBIT;
fSuccess = SetCommState(hCom, &dcb);
if (!fSuccess) {

/* Handle the error. *
}

Monitoring Communications Events
The following example code opens the serial port for overlapped I/O, creates an event mask to
monitor CTS and DSR signals, and then waits for an event to occur. The WaitCommEvent
function should be executed as an overlapped operation so the other threads of the process
cannot perform I/O operations during the wait.HANDLE hCom;
OVERLAPPED o;
BOOL fSuccess;
DWORD dwEvtMask;
hCom = CreateFile("COM1",

GENERIC_READ | GENERIC_WRITE,
0, /* exclusive access */
NULL, /* no security attrs */
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL
);

if (hCom == INVALID_HANDLE_VALUE) {
/* Deal with the error. */

}
/* Set the event mask. */
fSuccess = SetCommMask(hCom, EV_CTS | EV_DSR);
if (!fSuccess) {

/* deal with error */
}
/* Create an event object for use in WaitCommEvent. */
o.hEvent = CreateEvent(NULL, /* no security attributes */

FALSE, /* auto reset event */
FALSE, /* not signaled */
NULL /* no name */
);

assert(o.hEvent);
if (WaitCommEvent(hCom, &dwEvtMask, &o)) {

if (dwEvtMask & EV_DSR) {
/*
* . . .
*/
}
if (dwEvtMask & EV_CTS) {
/*
* . . .
*/
}

}

Communication Reference
The following functions and structures are used with communications devices.

Communication Functions
Following are the functions used with communications devices.
BuildCommDCB
BuildCommDCBAndTimeouts
ClearCommBreak
ClearCommError
CommConfigDialog
DeviceIoControl
EscapeCommFunction
GetCommConfig
GetCommMask
GetCommModemStatus
GetCommProperties
GetCommState
GetCommTimeouts
GetDefaultCommConfig
PurgeComm
SetCommBreak
SetCommConfig
SetCommMask
SetCommState
SetCommTimeouts
SetDefaultCommConfig
SetupComm
TransmitCommChar

WaitCommEvent

Communication Structures
The following structures are used with communications devices.
COMMCONFIG
COMMPROP
COMMTIMEOUTS
COMSTAT
DCB
MODEMDEVCAPS

MODEMSETTINGS

Consoles and Character-Mode SupportThe Microsoft® Win32® application programming interface (API) provides consoles that manage
input and output (I/O) for character-mode applications (applications that do not provide their own
graphical user interface).

This overview describes support for character-mode applications.

About Character-Mode Support
Consoles provide high-level support for simple character-mode applications that interact with the
user by using functions that read from standard input and write to standard output or standard
error. Consoles also provide sophisticated low-level support that gives direct access to a console's
screen buffer and that enables applications to receive extended input information (such as mouse
input).

Consoles
A console is an interface that provides I/O to character-mode applications. This processor-
independent mechanism makes it easy to port existing character-mode applications or to create
new character-mode tools and applications.

A console consists of an input buffer and one or more screen buffers. The input buffer contains a
queue of input records, each of which contains information about an input event. The input queue
always includes key-press and key-release events. It can also include mouse events (pointer
movements and button presses and releases) and events during which user actions affect the
size of the active screen buffer. A screen buffer is a two-dimensional array of character and color
data for output in a console window.

The Win32 API functions enable different levels of access to a console. The high-level console I/
O functions enable an application to read from standard input to retrieve keyboard input stored in
a console's input buffer. The functions also enable an application to write to standard output or
standard error to display text in the console's screen buffer. The high-level functions also support
redirection of standard handles and control of console modes for different I/O functionality. The
low-level console I/O functions enable applications to receive detailed input about keyboard and
mouse events, as well as events involving user interactions with the console window. The low-
level functions also enable greater control of output to the screen.

Creation of a Console
Microsoft Windows® creates a new console when it starts a console process, a character-mode
process whose entry point is the main function. For example, Windows creates a new console
when it starts the command processor. When the command processor starts a new console
process, the user can specify whether the system creates a new console for the new process or
whether it inherits the command processor's console. A process can create a console by using
one of the following methods:

· A graphical user interface (GUI) or console process that is not currently attached to a
console can use the AllocConsole function to create a new console.

· A GUI or console process can use the CreateProcess function to create a new console
process and specify a flag to tell the system to create a new console.

Typically, a process uses AllocConsole to create a console when an error occurs requiring
interaction with the user. For example, a GUI process can create a console when an error occurs
that prevents it from using its normal graphical interface, or a console process that does not
normally interact with the user can create a console when an error makes it necessary. The
process that calls AllocConsole must not be attached to an existing console. GUI processes are
not attached to any console when they are created. A console process is not attached to a
console if the DETACHED_PROCESS flag was specified in a call to CreateProcess when the
process was created. A process can use the FreeConsole function to detach itself from an
inherited console or from a console created by AllocConsole.

A process can also create a console by specifying the CREATE_NEW_CONSOLE flag in a call to
CreateProcess. This method creates a new console that is accessible to the child process but not
to the parent process. Separate consoles enable both parent and child processes to interact with
the user without conflict. If this flag is not specified when a console process is created, both
processes are attached to the same console, and there is no guarantee that the correct process
will receive the input intended for it. Applications can prevent confusion by creating child
processes that do not inherit handles of the input buffer, or by enabling only one child process at a
time to inherit an input buffer handle while preventing the parent process from reading console
input until the child has finished.

Creating a new console results in a new console window, as well as separate I/O screen buffers.
The process associated with the new console uses the GetStdHandle function to get the handles
of the new console's input and screen buffers. These handles enable the process to access the
console.

When a process uses CreateProcess, it can specify a STARTUPINFO structure, whose
members control the characteristics of the first new console (if any) created for the child process.
The STARTUPINFO structure specified in the call to CreateProcess affects a console created if
the CREATE_NEW_CONSOLE flag is specified. It also affects a console created if the child
process subsequently uses AllocConsole. The following console characteristics can be specified:

· The size, in character cells, and the location, in screen pixel coordinates, of the new
console window

· The size, in character cells, of the new console's screen buffer
· The text and background color attributes of the new console's screen buffer
· The name appearing in the title bar of the new console's window

The system uses default values if the STARTUPINFO values are not specified. A child process
can use the GetStartupInfo function to determine the values in its STARTUPINFO structure.

A process cannot change the location of its console window on the screen, but the following
console functions are available to set or retrieve the other properties specified in the
STARTUPINFO structure.

Function Description

GetConsoleScreenBufferInfoRetrieves the window size, screen buffer
size, and color attributes.

SetConsoleWindowInfo Changes the size of the console window.
SetConsoleScreenBufferSizeChanges the size of the screen buffer.
SetConsoleTextAttribute Sets the color attributes.
SetConsoleTitle Sets the console window title.
GetConsoleTitle Retrieves the console window title.

Closing a Console
A process can use the FreeConsole function to detach itself from its console. If other processes
share the console, the console is not destroyed, but the process that called FreeConsole cannot
refer to it. After calling FreeConsole, the process can use AllocConsole to create a new console.

A console is closed when the last process attached to it terminates or calls FreeConsole.

Console Handles
A console process uses handles to access the input and screen buffers of its console. A process
can use the GetStdHandle, CreateFile, or CreateConsoleScreenBuffer function to open one of
these handles.

The GetStdHandle function provides a mechanism for retrieving the standard input (STDIN),
standard output (STDOUT), and standard error (STDERR) handles associated with a process.
During console creation, the system creates these handles. Initially, STDIN is a handle of the
console's input buffer, and STDOUT and STDERR are handles of the console's active screen
buffer. However, the SetStdHandle function can redirect the standard handles by changing the
handle associated with STDIN, STDOUT, or STDERR. Because the parent's standard handles
are inherited by any child process, subsequent calls to GetStdHandle return the redirected
handle. A handle returned by GetStdHandle may, therefore, refer to something other than
console I/O. For example, before creating a child process, a parent process can use
SetStdHandle to set a pipe handle to be the STDIN handle that is inherited by the child process.
When the child process calls GetStdHandle, it gets the pipe handle. This means that the parent
process can control the standard handles of the child process. The handles returned by
GetStdHandle have GENERIC_READ | GENERIC_WRITE access unless SetStdHandle has
been used to set the standard handle to have lesser access.

The value of the handles returned by GetStdHandle will not be 0, 1, and 2, so the standard
predefined stream constants in the STDIO.H header file (STDIN, STDOUT, and STDERR) cannot
be used in functions that require a console handle.

The CreateFile function enables a process to get a handle of its console's input buffer and active
screen buffer, even if STDIN and STDOUT have been redirected. To open a handle of a console's
input buffer, specify the CONIN$ value in a call to CreateFile. Specify the CONOUT$ value in a
call to CreateFile to open a handle of a console's active screen buffer. CreateFile enables you to
specify the read-write access of the handle that it returns.

The CreateConsoleScreenBuffer function creates a new screen buffer and returns a handle,
which can be used in any function that accepts a handle of console output. The new screen buffer
is not active until its handle is specified in a call to the SetConsoleActiveScreenBuffer function.
Note that changing the active screen buffer does not affect the handle returned by GetStdHandle.
Similarly, using SetStdHandle to change the STDOUT handle does not affect the active screen
buffer.

Console handles returned by CreateFile and CreateConsoleScreenBuffer can be used in any of
the console functions that require a handle of a console's input buffer or of a console screen
buffer. Handles returned by GetStdHandle can be used by the console functions if they have not
been redirected to refer to something other than console I/O. If a standard handle has been
redirected to refer to a file or a pipe, however, the handle can only be used by the ReadFile and
WriteFile functions.

A process can use the DuplicateHandle function to create a duplicate console handle that has
different access or inheritability from the original handle. Note, however, that a process can create
a duplicate console handle only for its own use. This differs from other handle types (such as file,
pipe, or mutex objects), for which DuplicateHandle can create a duplicate that is valid for a
different process.

To close a console handle, a process can use the CloseHandle function.

Console Input Buffer
Each console has an input buffer that contains a queue of input event records. When a console's
window has the keyboard focus, a console formats each input event (such as a single keystroke,
a movement of the mouse, or a mouse-button click) as an input record that it places in the
console's input buffer.

Applications can access a console's input buffer indirectly by using the high-level console I/O
functions, or directly by using the low-level console I/O functions. The high-level input functions
filter and process the data in the input buffer, returning only a stream of input characters. The low-
level input functions enable applications to read input records directly from a console's input
buffer, or to place input records into the input buffer.

An input record is a structure containing information about the type of event that occurred
(keyboard, mouse, window resizing, focus, or menu event) as well as specific details about the
event. The EventType member in an INPUT_RECORD structure indicates which type of event is
contained in the record.

Focus and menu events are placed in a console's input buffer for internal use by the system and
should be ignored by applications.Keyboard EventsKeyboard events are generated when any key is pressed or released; this includes control keys.
However, the ALT key has special meaning to Windows when pressed and released without being
combined with another character, and it is not passed through to the application. Also, the CTRL+
C key combination is not passed through if the input handle is in processed mode.

If the input event is a keystroke, the Event member in INPUT_RECORD is a
KEY_EVENT_RECORD structure containing the following information:

· A Boolean value indicating whether the key was pressed or released.
· A repeat count that can be greater than one when a key is held down.
· The virtual-key code, identifying the given key in a device-independent manner.
· The virtual-scan code, indicating the device-dependent value generated by the keyboard

hardware.
· The translated Unicode™ or ANSI character.
· A flag variable indicating the state of the control keys (the ALT, CTRL, SHIFT, NUM LOCK,

SCROLL LOCK, and CAPS LOCK keys) and indicating whether an enhanced key was pressed.
Enhanced keys for the IBM® 101-key and 102-key keyboards are the INS, DEL, HOME, END,
PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad and the
divide (/) and ENTER keys in the numeric keypad.

Mouse EventsMouse events are generated whenever the user moves the mouse or presses or releases one of
the mouse buttons. Mouse events are placed in the input buffer only if the following conditions are
met:

· The console input mode is set to ENABLE_MOUSE_INPUT (the default mode).
· The console window has the keyboard focus.
· The mouse pointer is within the borders of the console's window.

If the input event is a mouse event, the Event member in INPUT_RECORD is a
MOUSE_EVENT_RECORD structure containing the following information:

· The coordinates of the mouse pointer in terms of the character-cell row and column in the
screen buffer's coordinate system.

· A flag variable indicating the state of the mouse buttons.
· A flag variable indicating the state of the control keys (ALT, CTRL, SHIFT, NUM LOCK,

SCROLL LOCK, and CAPS LOCK) and indicating whether an enhanced key was pressed.
Enhanced keys for the IBM 101-key and 102-key keyboards are the INS, DEL, HOME, END,
PAGE UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad and the
divide (/) and ENTER keys in the numeric keypad.

· A flag variable indicating whether the event was a normal button-press or button-release
event, a mouse movement event, or the second click of a double-click event.

Note that the mouse position coordinates are in terms of the screen buffer, not the console
window. The screen buffer may have been scrolled with respect to the window, so the upper left
corner of the window is not necessarily the (0,0) coordinate of the screen buffer. To determine the
coordinates of the mouse relative to the coordinate system of the window, subtract the window
origin coordinates from the mouse position coordinates. Use the GetConsoleScreenBufferInfo
function to determine the window origin coordinates.

The dwButtonState member of the MOUSE_EVENT_RECORD structure has a bit corresponding
to each mouse button. The bit is 1 if the button is down and 0 if the button is up. A button-release

event is detected by a 0 value for the dwEventFlags member of MOUSE_EVENT_RECORD and
a change in a button's bit from 1 to 0. The GetNumberOfConsoleMouseButtons function
retrieves the number of buttons on the mouse.Buffer-Resizing EventsA console window's menu enables the user to change the size of the active screen buffer; this
change generates a buffer-resizing event. Buffer-resizing events are placed in the input buffer if
the console's input mode is set to ENABLE_WINDOW_INPUT (that is, the default mode is
disabled).

If the input event is a buffer-resizing event, the Event member of INPUT_RECORD is a
WINDOW_BUFFER_SIZE_RECORD structure containing the new size of the screen buffer,
expressed in character-cell columns and rows.

If the user reduces the size of the screen buffer, any data in the discarded portion of the buffer is
lost.

Changes to the screen buffer size as a result of application calls to the
SetConsoleScreenBufferSize function are not generated as buffer-resizing events.

Console Screen Buffers
A screen buffer is a two-dimensional array of character and color data for output in a console
window. A console can have multiple screen buffers. The active screen buffer is the one that is
displayed on the screen.

The system creates a screen buffer whenever it creates a new console. A process can use the
CreateConsoleScreenBuffer function to create additional screen buffers for its console. A new
screen buffer is not active until its handle is specified in a call to the
SetConsoleActiveScreenBuffer function. However, screen buffers can be accessed for reading
and writing whether they are active or inactive.

Each screen buffer has its own two-dimensional array of character information records. The data
for each character is stored in a CHAR_INFO structure that specifies the Unicode or ANSI
character and the foreground and background colors in which that character is displayed.

A number of properties associated with a screen buffer can be set independently for each screen
buffer. This means that changing the active screen buffer can have a dramatic effect on the
appearance of the console window. The properties associated with a screen buffer include:

· Screen buffer size, in character rows and columns.
· Text attributes (foreground and background colors for displaying text to be written by the

WriteFile or WriteConsole function).
· Window size and location (the rectangular region of the screen buffer that is displayed in

the console window).
· Cursor position, appearance, and visibility.
· Output modes (ENABLE_PROCESSED_OUTPUT and

ENABLE_WRAP_AT_EOL_OUTPUT). For more information about console output modes,
see High-Level Console Modes.

When a screen buffer is created, it contains blanks. Its cursor is visible and positioned at the
buffer's origin (0,0), and the window is positioned with its upper left corner at the buffer's origin.
The size of the screen buffer, the window size, the text attributes, and the appearance of the
cursor are determined by the user or by the system defaults. To retrieve the current values of the
various properties associated with the screen buffer, use the GetConsoleScreenBufferInfo,
GetConsoleCursorInfo, and GetConsoleMode functions.

Applications that change any of the screen buffer properties should either create their own screen
buffer or save the state of the inherited screen buffer during startup and restore it at exit.

Window and Screen Buffer Size
The size of a screen buffer is expressed in terms of a coordinate grid based on character cells.
The width is the number of character cells in each row, and the height is the number of rows.
Associated with each screen buffer is a window that determines the size and location of the
rectangular portion of the screen buffer displayed in the console window. A screen buffer's window
is defined by specifying the character-cell coordinates of the upper left and lower right cells of the
window's rectangle.

A screen buffer can be any size, limited only by available memory. The dimensions of a screen
buffer's window cannot exceed the corresponding dimensions of either the screen buffer or the
maximum window that can fit on the screen based on the current font size (controlled exclusively
by the user).

The GetConsoleScreenBufferInfo function returns the following information about a screen
buffer and its window:

· The current size of the screen buffer
· The current location of the window
· The maximum size of the window given the current screen buffer size, the current font

size, and the screen size
The GetLargestConsoleWindowSize function returns the maximum size of a console's window
based on the current font and screen sizes. This size differs from the maximum window size
returned by GetConsoleScreenBufferInfo in that the screen buffer size is ignored.

To change a screen buffer's size, use the SetConsoleScreenBufferSize function. This function
fails if either dimension of the specified size is less than the corresponding dimension of the
console's window.

To change the size or location of a screen buffer's window, use the SetConsoleWindowInfo
function. This function fails if the specified window-corner coordinates exceed the limits of the
screen buffer or the screen. Changing the window size of the active screen buffer changes the
size of the console window displayed on the screen.

A process can change its console's input mode to enable window input so that the process is able
to receive input when the user changes the screen buffer size. If an application enables window
input, it can use GetConsoleScreenBufferInfo to retrieve window and screen buffer size at
startup. This information can then be used to determine the way data is displayed in the window. If
the user changes the screen buffer size, the application can respond by changing the way data is
displayed. For example, an application can adjust the way text wraps at the end of the line if the
number of characters per row changes. If an application does not enable window input, it must
either use the inherited window and screen buffer sizes, or set them to the desired size during
startup and restore the inherited sizes at exit. For additional information about window input mode,
see Low-Level Console Modes.

Scrolling the Screen Buffer
The console window displays a portion of the active screen buffer. Each screen buffer maintains
its own current window rectangle that specifies the coordinates of the upper left and lower right
character cells to be displayed in the console window. To determine the current window rectangle
of a screen buffer, use GetConsoleScreenBufferInfo. When a screen buffer is created, the upper
left corner of its window is at the upper left corner of the screen buffer at (0,0).

The window rectangle can change to display different parts of the screen buffer. The window
rectangle of a screen buffer can change in the following situations:

· When SetConsoleWindowInfo is called to specify a new window rectangle, it scrolls the
view of the screen buffer by changing the position of the window rectangle without changing
the size of the window. For examples of scrolling the window's contents, see Scrolling a
Screen Buffer's Window.

ewc msdncd, EWGraphic, bsd23495 0 /a "SDK_01.BMP"

· When using the WriteFile function to write to a screen buffer with wrap at end-of-line
(EOL) output mode enabled, the window rectangle shifts automatically, so the cursor is
always displayed.

· When the SetConsoleCursorPosition function specifies a new cursor position that is
outside the boundaries of the current window rectangle, the window rectangle shifts
automatically to display the cursor.

· When the user changes the size of the console window or uses the window's scroll bars,
the window rectangle of the active screen buffer can change. This change is not reported as a
window resizing event in the input buffer.

In each of these situations, the window rectangle shifts to display a different part of the screen
buffer, but the contents of the screen buffer remain in the same position. The following situations
can cause the screen buffer's contents to shift:

· When the ScrollConsoleScreenBuffer function is called, a rectangular block is copied
from one part of a screen buffer to another.

· When using WriteFile to write to a screen buffer with wrap at EOL output mode enabled,
the screen buffer's contents scroll automatically when the end of the screen buffer is
encountered. This scrolling discards the top row of the screen buffer.

ScrollConsoleScreenBuffer specifies the screen buffer rectangle that is moved and the new
upper left coordinates to which the rectangle is copied. This function can scroll a portion or the
entire contents of the screen buffer.

The illustration shows a ScrollConsoleScreenBuffer operation that scrolls the entire contents of
the screen buffer up by several rows. The contents of the top rows are discarded, and the bottom
rows are filled with a specified character and color.

ewc msdncd, EWGraphic, bsd23495 1 /a "SDK_02.BMP"

The effects of ScrollConsoleScreenBuffer can be limited by specifying an optional clipping
rectangle so that the contents of the screen buffer outside the clipping rectangle are unchanged.
The effect of clipping is to create a subwindow (the clipping rectangle) whose contents are
scrolled without affecting the rest of the screen buffer. For an example that uses
ScrollConsoleScreenBuffer, see Scrolling a Screen Buffer's Contents.Cursor Appearance and PositionA screen buffer's cursor can be visible or hidden. When it is visible, its appearance can vary,
ranging from from completely filling a character cell to appearing as a horizontal line at the bottom
of the cell. To retrieve information about the appearance and visibility of the cursor, use the
GetConsoleCursorInfo function. This function reports whether the cursor is visible and describes
the appearance of the cursor as the percentage of a character cell that it fills. To set the
appearance and visibility of the cursor, use the SetConsoleCursorInfo function.

Characters written by the high-level console I/O functions are written at the current cursor
location, advancing the cursor to the next location. To determine the current cursor position in the
coordinate system of a screen buffer, use GetConsoleScreenBufferInfo. You can use
SetConsoleCursorPosition to set the cursor position and, thereby, control the placement of text
that is written or echoed by the high-level I/O functions. If you move the cursor, text at the new
cursor location is overwritten.

The position, appearance, and visibility of the cursor are set independently for each screen buffer.Screen Buffer Color AttributesEach screen buffer character cell stores the color attributes for the colors used in drawing the text
and background of that cell. An application can set the color data for each character cell
individually, storing the data in the Attributes member of the CHAR_INFO structure for each cell.

The current text attributes of each screen buffer determine the foreground (text) and background
colors of characters subsequently written or echoed by the high-level functions. An application can
use GetConsoleScreenBufferInfo to determine the current text attributes of a screen buffer and
the SetConsoleTextAttribute function to set the text attributes. Changing a screen buffer's text
attributes does not affect the display of characters previously written. These text attributes do not
affect characters written by the low-level console I/O functions (such as the WriteConsoleOutput
or WriteConsoleOutputCharacter function) which either explicitly specify the attributes for each
cell that is written or leave the attributes unchanged at the written positions.

The following attribute constants are defined in the WINCON.H header file:

· FOREGROUND_BLUE
· FOREGROUND_GREEN
· FOREGROUND_RED
· FOREGROUND_INTENSITY
· BACKGROUND_BLUE
· BACKGROUND_GREEN
· BACKGROUND_RED
· BACKGROUND_INTENSITY

The foreground attributes specify the text color, and the background attributes specify the color
used to fill the cell's background. An application can combine the constants to achieve different
colors. For example, the following combination results in bright cyan text on a blue background.FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_INTENSITY |
BACKGROUND_BLUEIf no background constant is specified, the background is black, and if no foreground constant is

specified, the text is black. For example, the following combination produces black text on a white
background.BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED

Input and Output Methods
The Win32 API provides two very different approaches to console I/O, the choice of which
depends on how much flexibility and control an application needs. The high-level approach
enables simple character stream I/O, but it limits access to a console's input and screen buffers.
The low-level approach requires that developers write more code and choose among a greater
range of functions, but it also gives an application more flexibility.

An application can use the file I/O functions, ReadFile and WriteFile, and the console functions,
ReadConsole and WriteConsole, for high-level I/O that provides indirect access to a console's
input and screen buffers. The high-level input functions filter and process the data in a console's
input buffer to return input as a stream of characters, discarding mouse and buffer-resizing input.
Similarly, the high-level output functions write a stream of characters that are displayed at the
current cursor location in a screen buffer. An application controls the way these functions work by
setting a console's I/O modes.

The low-level I/O functions provide direct access to a console's input and screen buffers, enabling
an application to access mouse and buffer-resizing input events and extended information for
keyboard events. Low-level output functions enable an application to read from or write to a
specified number of consecutive character cells in a screen buffer, or to read or write to
rectangular blocks of character cells at a specified location in a screen buffer. A console's input
modes affect low-level input by enabling the application to determine whether mouse and buffer-
resizing events are placed in the input buffer. A console's output modes have no effect on low-
level output.

The high-level and low-level I/O methods are not mutually exclusive, and an application can use
any combination of these functions. Typically, however, an application uses one approach or the
other exclusively.

The sections that follow describe in detail the console modes and the high-level and low-level I/O
functions.

Console Modes
Associated with each console input buffer are a set of input modes that affects input operations.
Similarly, each console screen buffer has a set of output modes that affects output operations.
The input modes can be divided into two groups: those that affect the high-level input functions
and those that affect the low-level input functions. The output modes only affect applications that
use the high-level output functions.

The GetConsoleMode function reports the current input mode of a console's input buffer or the
current output mode of a screen buffer. The SetConsoleMode function sets the current mode of
either a console input buffer or a screen buffer. If a console has multiple screen buffers, the output
modes of each can be different. An application can change I/O modes at any time. For more
information about the console modes that affect high-level and low-level I/O operations, see High-
Level Console Modes and Low-Level Console Modes.

High-Level Console I/O
The high-level I/O functions provide a simple way to read a stream of characters from console
input or to write a stream of characters to console output. A high-level read operation gets input
characters from a console's input buffer and stores them in a specified buffer. A high-level write
operation takes characters from a specified buffer and writes them to a screen buffer at the
current cursor location, advancing the cursor as each character is written.

High-level I/O gives you a choice between the ReadFile and WriteFile functions and the
ReadConsole and WriteConsole functions. They are identical, except for two important
differences. The console functions support the use of either Unicode characters or the ANSI
character set; the file I/O functions do not support Unicode. Also, the file I/O functions can be used
to access files, pipes, and serial communications devices; the console functions can only be used
with console handles. This distinction is important if an application relies on standard handles that
may have been redirected.

When using either set of high-level functions, an application can control the text and background
colors used to display characters subsequently written to a screen buffer. An application can also
use the console modes that affect high-level console I/O to enable or disable the following
properties:

· Echoing of keyboard input to the active screen buffer
· Line input, in which a read operation does not return until the ENTER key is pressed
· Automatic processing of keyboard input to handle carriage returns, CTRL+C, and other

input details
· Automatic processing of output to handle line wrapping, carriage returns, backspaces,

and other output details

High-Level Console Modes
The behavior of the high-level console functions is affected by the console input and output
modes. All of the following console input modes are enabled for a console's input buffer when a
console is created:

· Line input mode
· Processed input mode
· Echo input mode

Both of the following console output modes are enabled for a console screen buffer when it is
created:

· Processed output mode
· Wrapping at EOL output mode

All three input modes, along with processed output mode, are designed to work together. It is best
to either enable or disable all of these modes as a group. When all are enabled, the application is
said to be in "cooked" mode, which means that most of the processing is handled for the
application. When all are disabled, the application is in "raw" mode, which means that input is
unfiltered and any processing is left to the application.

An application can use the GetConsoleMode function to determine the current mode of a
console's input buffer or screen buffer. You can enable or disable any of these modes by using
the following values in the SetConsoleMode function. Note that setting the output mode of one
screen buffer does not affect the output mode of other screen buffers.

Mode Description

ENABLE_PROCESSED_INPUT
Used with a console input handle to cause the system to
process any system editing or control key input rather than
returning it as input in the read operation's buffer. If line input
is also enabled, backspaces and carriage returns are
handled correctly. A backspace causes the cursor to move
back one space without affecting the character at the cursor
position. A carriage return is converted to carriage return -
linefeed character combination. If echo input mode is
enabled and the output should reflect system editing,
processed output must be enabled for the active screen
buffer. If processed input is enabled, the CTRL+C key
combination is passed on to the appropriate handler
regardless of whether line input is enabled. For more
information about control handlers, see Console Control
Handlers.

ENABLE_LINE_INPUT
Used with a console input handle to cause the ReadFile and
ReadConsole functions to return when the ENTER key is
pressed. If line input mode is disabled, the functions return
when one or more characters are available in the input
buffer.

ENABLE_ECHO_INPUT
Used with a console input handle to cause keyboard input
read by the ReadFile or ReadConsole function to be echoed
to the active screen buffer. Characters are echoed only if the
process that calls ReadFile or ReadConsole has an open
handle of the active screen buffer. Echo mode cannot be
enabled unless line input is also enabled. The output mode
of the active screen buffer affects the way echoed input is
displayed.

ENABLE_PROCESSED_OUTPUT
Used with a console screen buffer handle to cause the
system to perform the appropriate action for ANSI control
characters that are written to a screen buffer. The
backspace, tab, bell, carriage return, and linefeed characters
are processed. A tab character moves the cursor to the next
tab stop, which occurs every eight characters. A bell
character sounds a short tone.

ENABLE_WRAP_AT_EOL_OUTPUT

Used with a console screen buffer handle to cause the
current output position (cursor position) to move to the first
column in the next row (line) when the end of the current row
is reached. If the bottom of the window region is reached, the
window origin is moved down one row. This movement has
the effect of scrolling the contents of the window up one row.
If the bottom of the screen buffer is reached, the contents of
the screen buffer are scrolled up one row, and the top row of
the screen buffer is discarded. If this mode is disabled, the
last character in the row is overwritten with any subsequent
characters.

High-Level Console Input and Output Functions
The ReadFile and WriteFile functions, or the ReadConsole and WriteConsole functions, enable
an application to read console input and write console output as a stream of characters.
ReadConsole and WriteConsole behave exactly like ReadFile and WriteFile except that they
can be used either as wide-character functions (in which text arguments must use Unicode) or as
ANSI functions (in which text arguments must use characters from the Windows 3.x character set)
. Applications that need to maintain a single set of sources to support either Unicode or the ANSI
character set should use ReadConsole and WriteConsole.

ReadConsole and WriteConsole can only be used with console handles; ReadFile and
WriteFile can be used with other handles (such as files or pipes). ReadConsole and
WriteConsole fail if used with a standard handle that has been redirected and is no longer a
console handle.

To get keyboard input, a process can use ReadFile or ReadConsole with a handle of the
console's input buffer, or it can use ReadFile to read input from a file or a pipe if STDIN has been
redirected. These functions only return keyboard events that can be translated into ANSI
characters (or Unicode characters in the case of ReadConsole). The input that can be returned
includes control key combinations. The functions do not return keyboard events involving the
function keys or arrow keys. Input events generated by mouse, window, focus, or menu input are
discarded.

If line input mode is enabled (the default mode), ReadFile and ReadConsole do not return to the
calling application until the ENTER key is pressed. If line input mode is disabled, the functions do
not return until at least one character is available. In either mode, all available characters are read
until either no more keys are available or the specified number of characters has been read.
Unread characters are buffered until the next read operation. The functions report the total
number of characters actually read. If echo input mode is enabled, characters read by these
functions are written to the active screen buffer at the current cursor position.

A process can use WriteFile or WriteConsole to write to either an active or inactive screen
buffer, or it can use WriteFile to write to a file or a pipe if STDOUT has been redirected.
Processed output mode and wrap at EOL output mode control the way characters are written or
echoed to a screen buffer.

Characters written by WriteFile or WriteConsole, or echoed by ReadFile or ReadConsole, are
inserted in a screen buffer at the current cursor position. As each character is written, the cursor
position advances to the next character cell; however, the behavior at the end of a row depends
on the screen buffer's wrap at EOL output mode. An application can use the
GetConsoleScreenBufferInfo function to determine the current cursor position and the
SetConsoleCursorPosition function to set the cursor position.

For an example that uses the high-level console I/O functions, see Using the High-Level Input and
Output Functions.

Low-Level Console I/O
The low-level console I/O functions expand an application's control over console I/O by enabling
direct access to a console's input and screen buffers. These functions enable an application to
perform the following tasks:

· Receive input about mouse and buffer-resizing events
· Receive extended information about keyboard input events
· Write input records to the input buffer
· Read input records without removing them from the input buffer
· Determine the number of pending events in the input buffer
· Flush the input buffer
· Read and write strings of Unicode or ANSI characters at a specified location in a screen

buffer
· Read and write strings of text and background color attributes at a specified screen buffer

location
· Read and write rectangular blocks of character and color data at a specified screen buffer

location
· Write a single Unicode or ANSI character, or a text and background color attribute

combination, to a specified number of consecutive cells beginning at a specified screen buffer
location

Low-Level Console Modes
The types of input events reported in a console's input buffer depend on the console's mouse and
window input modes. The console's processed input mode determines how the system handles
the CTRL+C key combination. To set or retrieve the state of a console's input modes, an
application can specify a console input buffer handle in a call to the SetConsoleMode or
GetConsoleMode function. The following modes are used with console input handles.

Mode Description

ENABLE_MOUSE_INPUT
Controls whether mouse events are reported in the input
buffer. By default, mouse input is enabled and window input
is disabled. Changing either of these modes affects only
input that occurs after the mode is set; pending mouse or
window events in the input buffer are not flushed. The mouse
pointer is displayed regardless of the mouse mode.

ENABLE_WINDOW_INPUT
Controls whether buffer-resizing events are reported in the
input buffer. By default, mouse input is enabled and window
input is disabled. Changing either of these modes affects
only input that occurs after the mode is set; pending mouse
or window events in the input buffer are not flushed. The
mouse pointer is displayed regardless of the mouse mode.

ENABLE_PROCESSED_INPUT
Controls the processing of input for applications using the
high-level console I/O functions. However, if processed input
mode is enabled, the CTRL+C key combination is not reported
in the console's input buffer. Instead, it is passed on to the
appropriate control handler function. For more information
about control handlers, see Console Control Handlers.

The output modes of a screen buffer do not affect the behavior of the low-level output
functions.

Low-Level Console Input Functions
A console's input buffer contains input records that can include information about keyboard,
mouse, buffer-resizing, focus, and menu events. The low-level functions provide direct access to
the input buffer, unlike the high-level functions that filter and process the input buffer's data,
discarding all but keyboard input.

The Win32 API provides five low-level functions for accessing a console's input buffer:

· ReadConsoleInput
· PeekConsoleInput
· GetNumberOfConsoleInputEvents
· WriteConsoleInput
· FlushConsoleInputBuffer

The ReadConsoleInput, PeekConsoleInput, and WriteConsoleInput functions use the
INPUT_RECORD structure to read from or write to an input buffer.

Following are descriptions of the low-level console input functions.

Function Description

ReadConsoleInput Reads and removes input records
from an input buffer. The function
does not return until at least one
record is available to be read. Then
all available records are transferred
to the buffer of the calling process
until either no more records are
available or the specified number of
records has been read. Unread
records remain in the input buffer for
the next read operation. The function
reports the total number of records
that have been read. For an example
that uses ReadConsoleInput, see
Reading Input Buffer Events.

PeekConsoleInput Reads without removing the pending
input records in an input buffer. All
available records up to the specified
number are copied into the buffer of
the calling process. If no records are
available, the function returns
immediately. The function reports the
total number of records that have
been read.

GetNumberOfConsoleInputEventsDetermines the number of unread
input records in an input buffer.

WriteConsoleInput Places input records into the input
buffer behind any pending records in
the buffer. The input buffer grows
dynamically, if necessary, to hold as
many records as are written. To use
this function, the specified input
buffer handle must have
GENERIC_WRITE access.

FlushConsoleInputBuffer Discards all unread events in the
input buffer. To use this function, the
specified input buffer handle must
have GENERIC_WRITE access.

A thread of an application's process can perform a wait operation to wait for input to be
available in an input buffer. To initiate a wait operation, specify a handle of the input buffer
in a call to any of the wait functions. These functions can return when the state of one or more
objects is signaled. The state of a console input handle becomes signaled when there are unread
records in its input buffer. The state is reset to nonsignaled when the input buffer becomes empty.
If there is no input available, the calling thread enters an efficient wait state, consuming very little
processor time while waiting for the conditions of the wait operation to be satisfied.

Low-Level Console Output Functions
The low-level console output functions provide direct access to the character cells of a screen
buffer. One set of functions reads from or writes to consecutive cells beginning at any location in
the screen buffer. Another set of functions reads from or writes to rectangular blocks of cells.

The following functions read from or write to a specified number of consecutive character cells in a
screen buffer, beginning with a specified cell.

Function Description

ReadConsoleOutputCharacter
Copies a string of Unicode or ANSI characters from a
screen buffer.

WriteConsoleOutputCharacter
Writes a string of Unicode or ANSI characters to a screen
buffer.

ReadConsoleOutputAttribute
Copies a string of text and background color attributes
from a screen buffer.

WriteConsoleOutputAttribute
Writes a string of text and background color attributes to
a screen buffer.

FillConsoleOutputCharacter
Writes a single Unicode or ANSI character to a specified
number of consecutive cells in a screen buffer.

FillConsoleOutputAttribute
Writes a text and background color attribute combination
to a specified number of consecutive cells in a screen
buffer.

For all of these functions, when the last cell of a row is encountered, reading or writing
wraps around to the first cell of the next row. When the end of the last row of the screen
buffer is encountered, the write functions discard all unwritten characters or attributes,
and the read functions report the number of characters or attributes actually written..

The following functions read from or write to rectangular blocks of character cells at a
specified location in a screen buffer.

Function Description

ReadConsoleOutput
Copies character and color data from a specified block of
screen buffer cells into a given block in a destination
buffer.

WriteConsoleOutput
Writes character and color data to a specified block of
screen buffer cells from a given block in a source buffer.

These functions treat screen buffers and source or destination buffers as two-dimensional
arrays of CHAR_INFO structures (containing character and color attribute data for each cell). The
functions specify the width and height, in character cells, of the source or destination buffer, and
the pointer to the buffer is treated as a pointer to the origin cell (0,0) of the two-dimensional array.
The functions use a SMALL_RECT structure to specify which rectangle to access in the screen
buffer, and the coordinates of the upper left cell in the source or destination buffer determine the
location of the corresponding rectangle in that buffer.

These functions automatically clip the specified screen buffer rectangle to fit within the boundaries
of the screen buffer. For example, if the rectangle specifies lower right coordinates that are
(column 100, row 50) and the screen buffer is only 80 columns wide, the coordinates are clipped
so that they are (column 79, row 50). Similarly, this adjusted rectangle is again clipped to fit within
the boundaries of the source or destination buffer. The screen buffer coordinates of the actual
rectangle that was read from or written to are specified. For an example that uses these functions,
see Reading and Writing Blocks of Characters and Attributes.

The illustration shows a ReadConsoleOutput operation where clipping occurs when the block is
read from the screen buffer, and again when the block is copied into the destination buffer. The
function reports the actual screen buffer rectangle that it copied from.

ewc msdncd, EWGraphic, bsd23495 2 /a "SDK_03.BMP"

Console Code Pages
A code page is a mapping of 256 character codes to individual characters. Different code pages
include different special characters, typically customized for a language or a group of languages.

Associated with each console are two code pages: one for input and one for output. A console
uses its input code page to translate keyboard input into the corresponding character value. It
uses its output code page to translate the character values written by the various output functions
into the images displayed in the console window. An application can use the SetConsoleCP and
GetConsoleCP functions to set and retrieve a console's input code pages and the
SetConsoleOutputCP and GetConsoleOutputCP functions to set and retrieve its output code
pages.

The identifiers of the code pages available on the local computer are stored in the registry under
the following key.%HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Control\\Nls\\
CodePage%For information about using the registry functions to determine the available code pages, see

Registry.

For more information about code pages, see String Manipulation.

Console Control Handlers
Each console process has its own list of control handler functions that are called by the system
when the process receives a CTRL+C, CTRL+BREAK, or CTRL+CLOSE signal. Initially, the list of
control handlers for each process contains only a default handler function that calls the
ExitProcess function. A console process can add or remove additional handler functions by
calling the SetConsoleCtrlHandler function. This function does not affect the lists of control
handlers for other processes. When a console process receives any of the control signals, it calls
the handler functions on a last-registered, first-called basis until one of the handlers returns
TRUE. If none of the handlers returns TRUE, the default handler is called.

The following typedef declaration illustrates the format of a control handler function.typedef BOOL (*PHANDLER_ROUTINE)(DWORD dwCtrlType);The function's dwCtrlType parameter identifies which control signal was received, and the return
value indicates whether the signal was handled.

For an example of a control handler function, see Registering a Control Handler Function.

CTRL+C and CTRL+BREAK Signals
The CTRL+C and CTRL+BREAK key combinations receive special handling by console processes.
By default, when a console window has the keyboard focus, CTRL+C or CTRL+BREAK is treated as
a signal (SIGINT or SIGBREAK) and not as keyboard input. By default, these signals are passed
to all console processes that are attached to the console, causing the system to call the control
handler function or functions associated with these processes. Detached processes (GUI
processes or console processes started with the DETACHED_PROCESS or
CREATE_NEW_CONSOLE flag) are not affected.

CTRL+BREAK is always treated as a signal, but an application can change the default CTRL+C
behavior in two ways that prevent the handler functions from being called:

· The SetConsoleMode function can disable the ENABLE_PROCESSED_INPUT input
mode for a console's input buffer, so CTRL+C is reported as keyboard input rather than as a
signal.

· When SetConsoleCtrlHandler is called with NULL and TRUE values for its parameters,
the calling process ignores CTRL+C signals. Normal CTRL+C processing is restored by calling
SetConsoleCtrlHandler with NULL and FALSE values. This attribute of ignoring or not
ignoring CTRL+C signals is inherited by child processes, but it can be enabled or disabled by
any process without affecting existing processes.

CTRL+CLOSE Signal
The system generates a CTRL+CLOSE signal when the user closes a console. All processes
attached to the console receive the signal, giving each process an opportunity to clean up before
termination. When a process receives this signal, the handler function can take one of the
following actions after performing any cleanup operations:

· Call ExitProcess to terminate the process.
· Return FALSE. If none of the registered handler functions returns TRUE, the default

handler terminates the process.
· Return TRUE. In this case, no other handler functions are called, and a pop-up dialog box

asks the user whether to terminate the process. If the user chooses not to terminate the
process, the system does not close the console until the process finally terminates.

Console Process Groups
When a process uses the CreateProcess function to create a new console process, it can specify
the CREATE_NEW_PROCESS_GROUP flag to make the new process the root process of a
console process group. The process group includes all processes that are descendants of the root
process.

A process can use the GenerateConsoleCtrlEvent function to send a CTRL+C or CTRL+BREAK
signal to all processes in a console process group. The signal is only received by those processes
in the group that are attached to the same console as the process that called
GenerateConsoleCtrlEvent.

Using the Console
· Using the high-level input and output functions
· Writing characters or colors to consecutive cells
· Reading and writing blocks of characters and attributes
· Reading input buffer events
· Scrolling a screen buffer's window
· Scrolling a screen buffer's contents
· Registering a control handler function
· Console application issues

Using the High-Level Input and Output Functions
The following example uses the high-level console I/O functions for console I/O. For more
information about the high-level console I/O functions, see High-Level Console I/O.

The example assumes that the default I/O modes are in effect initially for the first calls to the
ReadFile and WriteFile functions. Then the input mode is changed to turn off line input mode and
echo input mode for the second calls to ReadFile and WriteFile. The SetConsoleTextAttribute
function is used to set the colors in which subsequently written text will be displayed. Before
exiting, the program restores the original console input mode and color attributes.

The example's NewLine function is used when line input mode is disabled. It handles carriage
returns by moving the cursor position to the first cell of the next row. If the cursor is already in the
last row of the screen buffer, the contents of the screen buffer are scrolled up one line. For an
example that illustrates the use of the ScrollConsoleScreenBuffer function to scroll a screen
buffer, see Scrolling a Screen Buffer's Contents.#include <windows.h>
VOID NewLine(VOID);
VOID ScrollScreenBuffer(HANDLE, INT);
HANDLE hStdout, hStdin;
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
VOID main(void) {
LPSTR lpszPrompt1 = "Type something and press Enter:\n";
LPSTR lpszPrompt2 = "Type any key: ";
CHAR chBuffer[256];
DWORD cRead, cWritten, fdwMode, fdwOldMode;
WORD wOldColorAttrs;
/* Get handles to STDIN and STDOUT. */
hStdin = GetStdHandle(STD_INPUT_HANDLE);
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
if (hStdin == INVALID_HANDLE_VALUE ||

hStdout == INVALID_HANDLE_VALUE)
MyErrorExit("GetStdHandle");

/* Save the current text colors. */
if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))

MyErrorExit("GetConsoleScreenBufferInfo");
wOldColorAttrs = csbiInfo.wAttributes;
/* Set the text attr. to draw red text on black background. */
if (! SetConsoleTextAttribute(hStdout, FOREGROUND_RED))

MyErrorExit("SetConsoleTextAttribute");
/*
* Write to STDOUT and read from STDIN by using the default
* modes. Input is echoed automatically, and ReadFile
* does not return until a carriage return is typed.
*
* The default input modes are line, processed, and echo.
* The default output modes are processed and wrap at EOL.
*/
while (1) {

if (! WriteFile(
hStdout, /* output handle */
lpszPrompt1,/* prompt string */
lstrlen(lpszPrompt1), /* string length */
&cWritten, /* bytes written */
NULL))/* not overlapped */
break;
if (! ReadFile(

hStdin, /* input handle */
chBuffer, /* buffer to read into */
255, /* size of buffer */
&cRead, /* actual bytes read */
NULL)) /* not overlapped */
break;
if (chBuffer[0] == 'q') break;

}
/* Turn off the line input mode, and echo the input mode. */
if (! GetConsoleMode(hStdin, &fdwOldMode))

MyErrorExit("GetConsoleMode");
fdwMode = fdwOldMode &
~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
if (! SetConsoleMode(hStdin, fdwMode))

MyErrorExit("SetConsoleMode");
/* Prompt for input. */
if (! WriteFile(

hStdout, /* output handle */
lpszPrompt2,/* prompt string */
lstrlen(lpszPrompt2), /* string length */
&cWritten, /* bytes written */
NULL))/* not overlapped */
MyErrorExit("WriteFile");

/*
* Without line and echo input modes, ReadFile returns
* when any input is available. Carriage returns must
* be handled, and WriteFile is used to echo input.
*/
while (1) {

if (! ReadFile(hStdin, chBuffer, 1, &cRead, NULL))
break;
if (chBuffer[0] == '\r')
NewLine();
else
if (! WriteFile(hStdout, chBuffer, cRead,
&cWritten, NULL))

break;
if (chBuffer[0] == 'q') break;

}
/* Restore the original console mode. */
if (! SetConsoleMode(hStdin, fdwOldMode))

MyErrorExit("SetConsoleMode");
/* Restore the original text colors. */
if (! SetConsoleTextAttribute(hStdout, wOldColorAttrs))

MyErrorExit("SetConsoleTextAttribute");
}
/*
* The NewLine function handles carriage returns when the processed
* input mode is disabled. It gets the current cursor position
* and resets it to the first cell of the next row.
*/
VOID NewLine(VOID) {
if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))

MyErrorExit("GetConsoleScreenBufferInfo");
csbiInfo.dwCursorPosition.X = 0;
/*
* If it is the last line in the screen buffer, scroll
* the buffer up.
*/
if ((csbiInfo.dwSize.Y-1) == csbiInfo.dwCursorPosition.Y) {

ScrollScreenBuffer(hStdout, 1);
}
/* Otherwise, advance the cursor to the next line. */
else

csbiInfo.dwCursorPosition.Y += 1;
if (! SetConsoleCursorPosition(hStdout,

csbiInfo.dwCursorPosition))
MyErrorExit("SetConsoleCursorPosition");

}

Writing Characters or Colors to Consecutive Cells
Characters or color attributes can be written to specified character cells in a screen buffer. The
following example uses the WriteConsoleOutputCharacter function to write a string of
characters beginning at the upper left corner of a screen buffer. Then the example uses the
WriteConsoleOutputAttribute function to write a string of color attributes to the first 51 cells of
the same row. The coord parameter for both functions specifies the character cell in the screen
buffer at which writing begins. The location in the console window where these characters or
colors appear depends on the current window rectangle of the screen buffer. For additional
information about the relationship between a screen buffer and its windows, see Window and
Screen Buffer Size and Scrolling the Screen Buffer.HANDLE hOutput;

LPTSTR lpszString = "Character String";
DWORD cWritten;
BOOL fSuccess;
COORD coord;
WORD wColors[3], wColor;
CHAR chFillChar;

/* Write a string of characters to a screen buffer. */
coord.X = 0; /* start at first cell */
coord.Y = 0; /* of first row */
fSuccess = WriteConsoleOutputCharacter(
hOutput, /* screen buffer handle*/
lpszString, /* pointer to source string */
lstrlen(lpszString), /* length of string */
coord, /* first cell to write to */
&cWritten); /* actual number written to */
if (! fSuccess)
MyErrorExit("WriteConsoleOutputCharacter");

/* Write a string of colors to a screen buffer. */
wColors[0] = BACKGROUND_RED;
wColors[1] = BACKGROUND_RED |/* white background */

BACKGROUND_GREEN |
BACKGROUND_BLUE;
wColors[2] = BACKGROUND_BLUE;
for (;fSuccess && coord.X < 50; coord.X += 3)
fSuccess = WriteConsoleOutputAttribute(
hOutput,/* screen buffer handle*/
wColors,/* pointer to source string */
3, /* length of string */
coord, /* first cell to write to */
&cWritten); /* actual number written to */
if (! fSuccess)
MyErrorExit("WriteConsoleOutputAttribute");The same character or color attribute can be written to a specified number of consecutive screen

buffer cells beginning at a specified location. The following example uses the
FillConsoleOutputCharacter function to clear a 80-by-50-character screen buffer, and then it
uses the FillConsoleOutputAttribute function to set the color attributes of the same cells./* Fill an 80-by-50-character screen buffer with the space character. *
/

coord.X = 0; /* start at first cell */
coord.Y = 0; /* of first row */
chFillChar = ' ';
fSuccess = FillConsoleOutputCharacter(
hStdout,/* screen buffer handle*/
chFillChar, /* fill with spaces */
80*50, /* number of cells to fill */
coord, /* first cell to write to */
&cWritten); /* actual number written to */
if (! fSuccess)
MyErrorExit("FillConsoleOutputCharacter");

/* Set 80-by-50-character screen buffer colors to white text on red. *
/

wColor = BACKGROUND_RED |
FOREGROUND_RED |
FOREGROUND_GREEN |
FOREGROUND_BLUE;
fSuccess = FillConsoleOutputAttribute(
hStdout,/* screen buffer handle*/
wColor, /* color to fill with */
80*50, /* number of cells to fill */
coord, /* first cell to write to */
&cWritten); /* actual number written to */
if (! fSuccess)
MyErrorExit("FillConsoleOutputAttribute");

Reading and Writing Blocks of Characters and Attributes
The ReadConsoleOutput function copies a rectangular block of character and color attribute data
from a console screen buffer into a destination buffer. The function treats the destination buffer as
a two-dimensional array of CHAR_INFO structures. Similarly, the WriteConsoleOutput function
copies a rectangular block of character and color attribute data from a source buffer to a console
screen buffer. For more information about reading from or writing to rectangular blocks of screen
buffer cells, see Input and Output Methods.

The following example uses the CreateConsoleScreenBuffer function to create a new screen
buffer. After the SetConsoleActiveScreenBuffer function makes this the active screen buffer, a
block of characters and color attributes is copied from the top two rows of the SDTOUT screen
buffer into a temporary buffer. The data is then copied from the temporary buffer into the new
active screen buffer. When the application is finished using the new screen buffer, it calls
SetConsoleActiveScreenBuffer to restore the original STDOUT screen buffer.#include <windows.h>
VOID main(void) {

HANDLE hStdout, hNewScreenBuffer;
SMALL_RECT srctReadRect;
SMALL_RECT srctWriteRect;
CHAR_INFO chiBuffer[160]; // [2][80];
COORD coordBufSize;
COORD coordBufCoord;
BOOL fSuccess;
/*

* Get a handle of the STDOUT screen buffer to copy from and
* create a new screen buffer to copy to.
*/

hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
hNewScreenBuffer = CreateConsoleScreenBuffer(

GENERIC_READ | /* read-write access */
GENERIC_WRITE,
0, /* not shared */
NULL,/* no security attributes */
CONSOLE_TEXTMODE_BUFFER, /* must be TEXTMODE */
NULL); /* reserved; must be NULL */
if (hStdout == INVALID_HANDLE_VALUE ||

hNewScreenBuffer == INVALID_HANDLE_VALUE)
MyErrorExit("CreateConsoleScreenBuffer");
/* Make the new screen buffer the active screen buffer. */
if (! SetConsoleActiveScreenBuffer(hNewScreenBuffer))
MyErrorExit("SetConsoleActiveScreenBuffer");
/* Set the source rectangle. */
srctReadRect.Top = 0; /* top left: row 0, col 0 */
srctReadRect.Left = 0;
srctReadRect.Bottom = 1; /* bot. right: row 1, col 79 */
srctReadRect.Right = 79;
/* The temporary buffer size is 2 rows x 80 columns. */
coordBufSize.Y = 2;
coordBufSize.X = 80;
/*

* The top left destination cell of the temporary buffer is
* row 0, col 0.
*/

coordBufCoord.X = 0;
coordBufCoord.Y = 0;
/* Copy the block from the screen buffer to the temp. buffer. */
fSuccess = ReadConsoleOutput(

hStdout, /* screen buffer to read from */
chiBuffer, /* buffer to copy into */
coordBufSize, /* col-row size of chiBuffer */
coordBufCoord, /* top left dest. cell in chiBuffer */
&srctReadRect); /* screen buffer source rectangle */
if (! fSuccess)
MyErrorExit("ReadConsoleOutput");
/* Set the destination rectangle. */
srctWriteRect.Top = 10; /* top lt: row 10, col 0 */
srctWriteRect.Left = 0;
srctWriteRect.Bottom = 11; /* bot. rt: row 11, col 79 */
srctWriteRect.Right = 79;
/* Copy from the temporary buffer to the new screen buffer. */
fSuccess = WriteConsoleOutput(
hNewScreenBuffer, /* screen buffer to write to */
chiBuffer, /* buffer to copy from*/
coordBufSize,/* col-row size of chiBuffer */
coordBufCoord, /* top left src cell in chiBuffer */
&srctWriteRect); /* dest. screen buffer rectangle */
if (! fSuccess)
MyErrorExit("WriteConsoleOutput");
Sleep(10000);
/* Restore the original active screen buffer. */
if (! SetConsoleActiveScreenBuffer(hStdout))
MyErrorExit("SetConsoleActiveScreenBuffer");

}

Reading Input Buffer Events
The ReadConsoleInput function can be used to directly access a console's input buffer. When a
console is created, mouse input is enabled and window input is disabled. To ensure that the
process receives all types of events, this example uses the SetConsoleMode function to enable
window and mouse input. Then it goes into a loop that reads and handles console input events.VOID MouseEventProc(MOUSE_EVENT_RECORD);
VOID ResizeEventProc(WINDOW_BUFFER_SIZE_RECORD);
VOID KeyEventProc(KEY_EVENT_RECORD);
VOID GetInputEvents(VOID);
DWORD main(VOID) {

HANDLE hStdin;
DWORD cNumRead, fdwMode, fdwSaveOldMode, i;
INPUT_RECORD irInBuf[128];
/* Get the standard input handle. */
hStdin = GetStdHandle(STD_INPUT_HANDLE);
if (hStdin == INVALID_HANDLE_VALUE)
MyErrorExit("GetStdHandle");
/* Save the current input mode, to be restored on exit. */
if (! GetConsoleMode(hStdin, &fdwSaveOldMode))
MyErrorExit("GetConsoleMode");
/* Enable the window and mouse input events. */
fdwMode = ENABLE_WINDOW_INPUT | ENABLE_MOUSE_INPUT;
if (! SetConsoleMode(hStdin, fdwMode))
MyErrorExit("SetConsoleMode");
/* Loop to read and handle the input events. */
while (1) {
/* Wait for the events. */
if (! ReadConsoleInput(

hStdin, /* input buffer handle */
irInBuf,/* buffer to read into */
128, /* size of read buffer */
&cNumRead)) /* number of records read */
MyErrorExit("ReadConsoleInput");
/* Dispatch the events to the appropriate handler. */
for (i = 0; i < cNumRead; i++)
switch(irInBuf[i].EventType) {
case KEY_EVENT: /* keyboard input */
KeyEventProc(irInBuf[i].Event.KeyEvent);
break;
case MOUSE_EVENT: /* mouse input */
MouseEventProc(irInBuf[i].Event.MouseEvent);
break;
case WINDOW_BUFFER_SIZE_EVENT: /* scrn buf. resizing */
ResizeEventProc(

irInBuf[i].Event.WindowBufferSizeEvent);
break;
case FOCUS_EVENT: /* disregard focus events */
case MENU_EVENT: /* disregard menu events */
break;
default:
MyErrorExit("unknown event type");
break;
}
}
return 0;

}

Scrolling a Screen Buffer's Window
The SetConsoleWindowInfo function can be used to scroll the contents of a screen buffer in the
console window. This function can also change the window size. The function can either specify
the new upper left and lower right corners of the screen buffer's window as absolute screen buffer
coordinates or specify the changes from the current window coordinates. The function fails if the
specified window coordinates are outside the boundaries of the screen buffer.

The following example scrolls the view of the screen buffer up one row by modifying the absolute
window coordinates returned by the GetConsoleScreenBufferInfo function.HANDLE hStdout;
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
SMALL_RECT srctWindow;
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
/* Get the current screen buffer size and window position. */
if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))

MyErrorExit("GetConsoleScreenBufferInfo");
/* Set srctWindow to the current window size and location. */
srctWindow = csbiInfo.srWindow;
/* If window is not at the screen buffer top, move it up one line. */
if (srctWindow.Top > 0) {

srctWindow.Top -= 1; /* move top up by one row */
srctWindow.Bottom -= 1; /* move bottom up by one row */
if (! SetConsoleWindowInfo(

hStdout, /* screen buffer handle */
TRUE, /* absolute coordinates */
&srctWindow)) /* specifies new location*/

MyErrorExit("SetConsoleWindowInfo");
}The same scrolling can be done by specifying changes in the window coordinates./* Get the current screen buffer window position. */
if (! GetConsoleScreenBufferInfo(hStdout, &csbiInfo))

MyErrorExit("GetConsoleScreenBufferInfo");
/*If window is not at the screen buffer top, move it up one line. */
if (csbiInfo.srWindow.Top > 0) {

srctWindow.Top = -1; /* move top up by one row */
srctWindow.Bottom = -1; /* move bottom up by one row */
srctWindow.Left = 0; /* no change */
srctWindow.Right = 0;/* no change */
if (! SetConsoleWindowInfo(

hStdout, /* screen buffer handle */
FALSE, /* deltas, not absolute */
&srctWindow)) /* specifies new location */

MyErrorExit("SetConsoleWindowInfo");
}

Scrolling a Screen Buffer's Contents
The ScrollConsoleScreenBuffer function moves a block of character cells from one part of a
screen buffer to another part of the same screen buffer. The function specifies the upper left and
lower right cells of the source rectangle to be moved and the destination coordinates of the new
location for the upper left cell. The character and color data in the source cells is moved to the
new location, and any cells left empty by the move are filled in with a specified character and
color. If a clipping rectangle is specified, the cells outside of it are left unchanged.

ScrollConsoleScreenBuffer can be used to delete a line by specifying coordinates of the first
cell in the line as the destination coordinates and specifying a scrolling rectangle that includes all
the rows below the line.

The following example shows the use of a clipping rectangle to scroll only the bottom 15 rows of
the screen buffer. The rows in the specified rectangle are scrolled up one line at a time, and the
top row of the block is discarded. The contents of the screen buffer outside the clipping rectangle
are left unchanged.HANDLE hStdout;
BOOL fSuccess;
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
SMALL_RECT srctScrollRect, srctClipRect;
CHAR_INFO chiFill;
COORD coordDest;
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
if (hStdout == INVALID_HANDLE_VALUE)

MyErrorExit("GetStdHandle");
/* Get the screen buffer size. */
fSuccess = GetConsoleScreenBufferInfo(hStdout, &csbiInfo);
if (! fSuccess)

MyErrorExit("GetConsoleScreenBufferInfo");
/*
* The scrolling rectangle is the bottom 15 rows of the
* screen buffer.
*/
srctScrollRect.Top = csbiInfo.dwSize.Y - 16;
srctScrollRect.Bottom = csbiInfo.dwSize.Y - 1;
srctScrollRect.Left = 0;
srctScrollRect.Right = csbiInfo.dwSize.X - 1;
/* The destination for the scroll rectangle is one row up. */
coordDest.X = 0;
coordDest.Y = csbiInfo.dwSize.Y - 17;
/*
* The clipping rectangle is the same as the scrolling rectangle.
* The destination row is left unchanged.
*/
srctClipRect = srctScrollRect;
/* Fill the bottom row with green blanks. */
chiFill.Attributes = BACKGROUND_GREEN | FOREGROUND_RED;
chiFill.Char.AsciiChar = ' ';
/* Scroll up one line. */
fSuccess = ScrollConsoleScreenBuffer(

hStdout, /* screen buffer handle*/
&srctScrollRect, /* scrolling rectangle */
&srctClipRect, /* clipping rectangle */
coordDest, /* top left destination cell*/
&chiFill); /* fill character and color */

Registering a Control Handler Function
This section shows an example of the SetConsoleCtrlHandler function that is used to install a
control handler.

When a CTRL+C signal is received, the control handler returns TRUE, indicating that it has handled
the signal. Doing this prevents other control handlers from being called.

When a CTRL_CLOSE_EVENT signal is received, the control handler returns TRUE, causing the
system to display a dialog box that gives the user the choice of terminating the process and
closing the console or allowing the process to continue execution. If the user chooses not to
terminate the process, the system closes the console when the process finally terminates.

When a CTRL+BREAK, CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT signal is
received, the control handler returns FALSE. Doing this causes the signal to be passed to the next
control handler function. If no other control handlers have been registered or none of the
registered handlers returns TRUE, the default handler will be used, resulting in the process being
terminated.BOOL CtrlHandler(DWORD fdwCtrlType) {

switch (fdwCtrlType) {
/* Handle the CTRL+C signal. */
case CTRL_C_EVENT:
Beep(1000, 1000);
return TRUE;
/* CTRL+CLOSE: confirm that the user wants to exit. */
case CTRL_CLOSE_EVENT:
return TRUE;
/* Pass other signals to the next handler. */
case CTRL_BREAK_EVENT:
case CTRL_LOGOFF_EVENT:
case CTRL_SHUTDOWN_EVENT:
default:
return FALSE;
}

}
VOID main(void) {
BOOL fSuccess;
fSuccess = SetConsoleCtrlHandler(

(PHANDLER_ROUTINE) CtrlHandler, /* handler function */
TRUE); /* add to list */

if (! fSuccess)
MyErrorExit("Could not set control handler");

Console Application Issues
The 8-bit console functions use the OEM code page. All other functions use the ANSI code page
by default. This means that strings returned by the console functions may not be processed
correctly by the other functions and vice versa. For example, if FindFirstFileA returns a string that
contains certain extended ANSI characters, WriteConsoleA will not display the string properly.

The best long-term solution for a console application is to use Unicode. Barring that solution, a
console application should use the SetFileApisToOEM function. That function changes relevant
Win32 file functions so that they produce OEM character set strings rather than ANSI character
set strings.

Following are the Win32 file functions:

_lopen GetDriveType LoadLibrary

CopyFile GetFileAttributes LoadLibraryEx
CreateDirectory GetFullPathName MoveFile
CreateFile GetModuleFileName MoveFileEx
CreateProcess GetModuleHandle OpenFile
DeleteFile GetSystemDirectory RemoveDirectory
FindFirstFile GetTempFileName SearchPath
FindNextFile GetTempPath SetCurrentDirectory
GetCurrentDirectoryGetVolumeInformationSetFileAttributes
GetDiskFreeSpace GetWindowsDirectory

When dealing with command lines, a console application should obtain the command line
in Unicode form and convert it to OEM form, using the relevant character-to-OEM
functions. Note, also, that argv uses the ANSI character set.

Console Reference
The following functions and structures are associated with accessing a console.

Console Functions
Following are the functions used to access a console.
AllocConsole
CreateConsoleScreenBuffer
FillConsoleOutputAttribute
FillConsoleOutputCharacter
FlushConsoleInputBuffer
FreeConsole
GenerateConsoleCtrlEvent
GetConsoleCP
GetConsoleCursorInfo
GetConsoleMode
GetConsoleOutputCP
GetConsoleScreenBufferInfo
GetConsoleTitle
GetLargestConsoleWindowSize
GetNumberOfConsoleInputEvents
GetNumberOfConsoleMouseButtons
GetStdHandle
HandlerRoutine
PeekConsoleInput
ReadConsole
ReadConsoleInput
ReadConsoleOutput
ReadConsoleOutputAttribute
ReadConsoleOutputCharacter
ScrollConsoleScreenBuffer
SetConsoleActiveScreenBuffer
SetConsoleCP
SetConsoleCtrlHandler
SetConsoleCursorInfo
SetConsoleCursorPosition
SetConsoleMode
SetConsoleOutputCP
SetConsoleScreenBufferSize
SetConsoleTextAttribute
SetConsoleTitle
SetConsoleWindowInfo
SetStdHandle
WriteConsole
WriteConsoleInput
WriteConsoleOutput
WriteConsoleOutputAttribute

WriteConsoleOutputCharacter

Console Structures
Following are the structures used to access a console.
CHAR_INFO
CONSOLE_CURSOR_INFO
CONSOLE_SCREEN_BUFFER_INFO
COORD
FOCUS_EVENT_RECORD
INPUT_RECORD
KEY_EVENT_RECORD
MENU_EVENT_RECORD
MOUSE_EVENT_RECORD
SMALL_RECT

WINDOW_BUFFER_SIZE_RECORD

Data Decompression LibraryThis overview describes important concepts relating to data compression and describes the
decompression functions in LZEXPAND.DLL.

About the Data Decompression Library
The Microsoft® Windows® operating system includes a dynamic-link library (DLL) named
LZEXPAND.DLL. Typically, an application calls functions in LZEXPAND.DLL to decompress data
previously compressed by using the Microsoft File Compression Utility (COMPRESS.EXE).

Data Compression
Data compression is an operation that reduces the size of a file by minimizing redundant data. In
a file that contains text, redundant data can be frequently occurring characters, such as the space
character, or common vowels, such as the letters e and a; it can also be frequently occurring
character strings. Data compression creates a compressed version of a file by minimizing this
redundant data.

Each type of data-compression algorithm minimizes redundant data in a unique manner. For
example, the Huffman encoding algorithm assigns a code to characters in a file based on how
frequently those characters occur. Another compression algorithm, called run-length encoding,
generates a two-part value for repeated characters: the first part specifies the number of times the
character is repeated, and the second part identifies the character. Another compression
algorithm, known as the Lempel-Ziv algorithm, converts variable-length strings into fixed-length
codes that consume less space than the original strings.

To compress large applications or data files, you can run COMPRESS.EXE from the command
line. COMPRESS.EXE uses the Lempel-Ziv compression algorithm.

Data Decompression
Applications can call the functions in LZEXPAND.DLL to decompress files compressed by using
COMPRESS.EXE. The functions can also process uncompressed files without attempting to
decompress them. To use these functions, applications must include the LZEXPAND.H header
file.

The following table describes each function found in LZEXPAND.DLL.

Function Purpose

CopyLZFile This function is obsolete. It is provided to simplify
porting of 16-bit Windows-based applications.
Win32-based applications should use the
LZCopy function.

GetExpandedNameRetrieves the original name of a compressed file,
if the /r option was used during compression of
the file.

LZClose Closes a file that was opened when the
application called the LZOpenFile function.

LZCopy Copies a source file to a destination file. If the
source file is compressed, this function creates a
decompressed destination file. If the source file is
not compressed, this function duplicates the
original file. This function is intended for single-
file copy operations.

LZDone This function is obsolete and should not be used
in Win32-based applications. It is provided to
simplify porting of 16-bit Windows-based
applications.

LZInit Creates structures used for decompressing files.
LZOpenFile Opens a file and returns a handle that identifies it.
LZRead Reads a specified number of bytes from a file. If

the file is compressed, this function
decompresses the bytes before copying them to
the destination buffer.

LZSeek Positions the file pointer within the decompressed
image of a compressed file. The application calls
this function to position the pointer before calling
the LZRead function.

LZStart This function is obsolete and should not be used
in Win32-based applications. It is provided to
simplify porting of 16-bit Windows-based
applications.

Using the Data Decompression Library
Functions in LZEXPAND.DLL can be used to decompress single or multiple files. They can also
be used to decompress compressed files a portion at a time.

· Decompressing a single file
· Decompressing multiple files
· Reading bytes from compressed files

Decompressing a Single File
An application can decompress a single compressed file by performing the following tasks.

1. Open the source file by calling the LZOpenFile function.
2. Open the destination file by calling LZOpenFile.
3. Copy the source file to the destination file by calling the LZCopy function and passing the

handles returned by LZOpenFile.
4. Close the files by calling the LZClose function.

Decompressing Multiple Files
An application can decompress multiple files by performing the following tasks.

1. Open the source files by calling the LZOpenFile function.
2. Open the destination files by calling LZOpenFile.
3. Copy the source files to the destination files by calling the LZCopy function.
4. Close the files by calling the LZClose function.

Reading Bytes from Compressed Files
In addition to decompressing a complete file in a single operation, an application can decompress
a compressed file a portion at a time by using the LZSeek and LZRead functions. These functions
are particularly useful when it is necessary to extract parts of large files. For example, a font
manufacturer may have compressed files containing font metrics in addition to character data. To
use the information in these files, an application would need to decompress the file; however,
most applications would use only part of the file at any particular time. To get information about
font metrics, the application would extract data from the header. To get information from the text,
the application would reposition the file pointer by calling LZSeek and extract character data by
calling LZRead.

Data Decompression Library Reference
The following functions are used to decompress files.

Data Decompression Library Functions
The following functions are used to decompress files.
GetExpandedName
LZClose
LZCopy
LZInit
LZOpenFile
LZRead

LZSeek

Obsolete Functions
CopyLZFile
LZDone

LZStart

DebuggingA debugger is an application that enables a developer to observe and correct programming errors.

The first section of this overview, Support from Process, Thread, and Exception Functions,
describes the debugging-specific features of certain Win32 process, thread, and exception-
handling functions.

The second section of this overview, Debugging Functions, describes the Win32 debugging
functions. These functions enable an application to wait for debugging events, cause breakpoint
exceptions, transfer execution control to the debugger, and so on.

About Debugging Support
Microsoft® Windows® supports several functions that can be used to create a basic, event-driven
debugger. "Event-driven" means that the debugger is notified every time certain events occur in
the process being debugged. Notification enables the debugger to take appropriate action in
response to the events.

Support from Process, Thread, and Exception Functions
Some functions essential to debugging are actually part of the process, thread, or exception-
handling architectures. This section describes how to start a process that is going to be debugged
and how to examine and manipulate the context and execution of a thread. It also describes how
a debugger should handle exceptions.

Process Functions
The CreateProcess function enables a debugger to start a process and debug it. The fdwCreate
parameter of CreateProcess is used to specify the type of debugging operation. If the
DEBUG_PROCESS flag is specified for the parameter, a debugger debugs the new process and
all of the process's descendants, provided that the descendants are created without the
DEBUG_PROCESS flag.

If the DEBUG_PROCESS and DEBUG_ONLY_THIS_PROCESS flags are specified for
fdwCreate, a debugger debugs the new process but none of its descendants.

One debugger can debug another by creating a process with the DEBUG_PROCESS flag. The
new process (the debugger being debugged) must then create a process with the
DEBUG_PROCESS flag.

The OpenProcess function enables a debugger to obtain the identifier of an existing process.
(The DebugActiveProcess function uses this identifier to attach the debugger to the process.)
Typically, debuggers open a process with the PROCESS_VM_READ and
PROCESS_VM_WRITE flags. Using these flags enables the debugger to read from and write to
the virtual memory of the process by using the ReadProcessMemory and WriteProcessMemory
functions. For more information about processes, see Processes and Threads.

Thread Functions
The CreateThread function creates a new thread for a process. Debuggers typically need to
examine or change the contents of a thread's registers. To accomplish this, a debugger must
obtain a handle of the thread by using the DuplicateHandle function and specifying the
appropriate access to the thread (THREAD_GET_CONTEXT, THREAD_SET_CONTEXT, or
both).

A process with appropriate access to a thread can examine the thread's registers by using the
GetThreadContext function and set the contents of the thread's registers by using the
SetThreadContext function.

A process can also obtain THREAD_SUSPEND_RESUME access to a thread. This type of
access enables a debugger to control a thread's execution with the SuspendThread and
ResumeThread functions. For more information about threads, see Processes and Threads.

Exception Handling for Debugging
When an exception occurs in a process that is being debugged, the kernel notifies the debugger
by passing the exception to it. This is known as first-chance notification. The kernel then suspends
all threads in the process being debugged.

If the debugger does not handle the exception, the kernel attempts to locate an appropriate
exception handler. If the kernel cannot locate an appropriate one, the kernel again notifies the
debugger that an exception has occurred. This is known as last-chance notification. If the
debugger does not handle the exception after the last-chance notification, the kernel terminates
the process being debugged.

For more information about exception handling, see Structured Exception Handling.

Debugging Functions
Although most of the Windows debugging functions are used to create a debugger, several
functions are designed for use in the process being debugged.

To start a process and debug it, a debugger must use CreateProcess, as described in the
previous section.

To debug a process that is already executing, the debugger should use DebugActiveProcess
with the process identifier retrieved by OpenProcess. DebugActiveProcess attaches the
debugger to the active process. In this case, only the active process can be debugged; its child
processes cannot. The debugger must have appropriate access to the executing process to use
DebugActiveProcess. For more information about access rights, see Security.

After the debugger has either created or attached itself to the process it intends to debug, the
kernel notifies the debugger of all debugging events that occur in the process, and, if specified, in
any child processes. For more information about debugging events, see Debugging Events.

The debugger uses the WaitForDebugEvent function at the beginning of its main loop. This
function blocks the debugger until a debugging event occurs. When the debugging event occurs,
the system suspends all threads in the process being debugged and notifies the debugger of the
event. The debugger can call the SetDebugErrorLevel function to set the minimum error level at
which Windows will pass the debugging event to it.

The debugger can interact with the user, or manipulate the state of the process being debugged,
by using the GetThreadContext, GetThreadSelectorEntry, ReadProcessMemory,
SetThreadContext, and WriteProcessMemory functions. GetThreadSelectorEntry returns the
descriptor table entry for a specified selector and thread. Debuggers use the descriptor table entry
to convert a segment-relative address to a linear virtual address. The ReadProcessMemory and
WriteProcessMemory functions require linear virtual addresses.

Debuggers frequently read the memory of the process being debugged and write the memory that
contains instructions to the instruction cache. After the instructions are written, the debugger calls
FlushInstructionCache to execute the cached instructions.

The debugger uses the ContinueDebugEvent function at the end of its main loop. This function
allows the process being debugged to continue executing.

Communicating with the Debugger
The OutputDebugString function sends a string from the process being debugged to the
debugger by generating an OUTPUT_DEBUG_STRING_EVENT debugging event. A process can
detect whether it is being debugged by calling the IsDebuggerPresent function.

The DebugBreak function causes a breakpoint exception in the current process. A breakpoint is a
location in a program where execution is stopped to allow the developer to examine the program's
code, variables, and register values and, as necessary, to make changes, continue execution, or
terminate execution.

The FatalExit function terminates the current process and gives execution control to the
debugger, but unlike DebugBreak, it does not generate an exception. This function should only
be used as a last resort, because it does not always free the process's memory or close its files.

Debugging Events
A debugging event is an incident in the process being debugged that causes the kernel to notify
the debugger. Debugging events include creating a process, creating a thread, loading a dynamic-
link library (DLL), unloading a DLL, sending an output string, and generating an exception.

If a debugging event occurs while a debugger is waiting for one, the kernel fills the
DEBUG_EVENT structure specified by WaitForDebugEvent with information describing the
event.

When the kernel notifies the debugger of a debugging event, it also suspends all threads in the
affected process. The threads do not resume execution until the debugger continues the
debugging event by using ContinueDebugEvent. The following debugging events may occur
while a process is being debugged.

Debugging eventDescription

CREATE_PROCESS_DEBUG_EVENT
Generated whenever a new process is
created in a process being debugged or
whenever the debugger begins
debugging an already active process.
The kernel generates this debugging
event before the process begins to
execute in user mode and before the
kernel generates any other debugging
events for the new process.
The DEBUG_EVENT structure contains a
CREATE_PROCESS_DEBUG_INFO
structure. This structure includes a handle of
the new process, a handle of the process's
image file, a handle of the process's initial
thread, and other information that describes
the new process.
The handle of the process has
PROCESS_VM_READ and
PROCESS_VM_WRITE access. If a
debugger has these types of access to a
thread, it can read and write to the process's
memory by using the ReadProcessMemory
and WriteProcessMemory functions.
The handle of the process's image file has
GENERIC_READ access and is opened for
read-sharing.
The handle of the process's initial thread has
THREAD_GET_CONTEXT,
THREAD_SET_CONTEXT, and
THREAD_SUSPEND_RESUME access to
the thread. If a debugger has these types of
access to a thread, it can read from and
write to the thread's registers by using the
GetThreadContext and SetThreadContext
functions and can suspend and resume the
thread by using the SuspendThread and
ResumeThread functions.

CREATE_THREAD_DEBUG_EVENT
Generated whenever a new thread is
created in a process being debugged or
whenever the debugger begins
debugging an already active process.
This debugging event is generated before
the new thread begins to execute in user
mode.
The DEBUG_EVENT structure contains a
CREATE_THREAD_DEBUG_INFO
structure. This structure includes a handle of
the new thread and the thread's starting

address. The handle has
THREAD_GET_CONTEXT,
THREAD_SET_CONTEXT, and
THREAD_SUSPEND_RESUME access to
the thread. If a debugger has these types of
access to a thread, it can read from and
write to the thread's registers by using the
GetThreadContext and SetThreadContext
functions and can suspend and resume the
thread by using the SuspendThread and
ResumeThread functions.

EXCEPTION_DEBUG_EVENT
Generated whenever an exception occurs
in the process being debugged. Possible
exceptions include attempting to access
inaccessible memory, executing
breakpoint instructions, attempting to
divide by zero, or any other exception
noted in Structured Exception Handling.
The DEBUG_EVENT structure contains an
EXCEPTION_DEBUG_INFO structure. This
structure describes the exception that
caused the debugging event.
Besides the standard exception conditions,
an additional exception code can occur
during console process debugging. The
kernel generates a DBG_CONTROL_C
exception code when CTRL+C is input to a
console process that handles CTRL+C signals
and is being debugged. This exception code
is not meant to be handled by applications.
An application should never use an
exception handler to deal with it. It is raised
only for the benefit of the debugger and is
only used when a debugger is attached to
the console process.
If a process is not being debugged or if the
debugger passes on the
DBG_CONTROL_C exception unhandled
(through the gn command), the application's
list of handler functions is searched, as
documented for the SetConsoleCtrlHandler
function.
If the debugger handles the
DBG_CONTROL_C exception (through the
gh command), an application will not notice
the CTRL+C except in code like this.while ((inputChar = getchar())
!= EOF) ...
while (gets(inputString)) ...

Thus, the debugger cannot be used to stop
the read wait in such code from terminating.

EXIT_PROCESS_DEBUG_EVENT
Generated whenever the last thread in a
process being debugged exits. This
debugging event occurs immediately
after the kernel unloads the process's
DLLs and updates the process's exit
code.
The DEBUG_EVENT structure contains an
EXIT_PROCESS_DEBUG_INFO structure
that specifies the exit code.
The debugger deallocates any internal
structures associated with the process on
receipt of this debugging event. The kernel

closes the debugger's handle of the exiting
process and all of the process's threads.

EXIT_THREAD_DEBUG_EVENT
Generated whenever a thread that is part
of a process being debugged exits. The
kernel generates this debugging event
immediately after it updates the thread's
exit code.
The DEBUG_EVENT structure contains an
EXIT_THREAD_DEBUG_INFO structure
that specifies the exit code.
The debugger deallocates any internal
structures associated with the thread on
receipt of this debugging event. The system
closes the debugger's handle of the exiting
thread.
This debugging event does not occur if the
exiting thread is the last thread of a process.
In this case, the
EXIT_PROCESS_DEBUG_EVENT
debugging event occurs instead.

LOAD_DLL_DEBUG_EVENT
Generated whenever a process being
debugged loads a DLL. This debugging
event occurs when the system loader
resolves links to a DLL or when the
debugged process uses the LoadLibrary
function. This debugging event only occurs
the first time the kernel attaches a DLL to
the virtual address space of a process.
The DEBUG_EVENT structure contains a
LOAD_DLL_DEBUG_INFO structure. This
structure includes a handle of the newly
loaded DLL, the base address of the DLL,
and other information that describes the
DLL.
Typically, a debugger loads a symbol table
associated with the DLL on receipt of this
debugging event.

OUTPUT_DEBUG_STRING_EVENT
Generated when a process being
debugged uses the OutputDebugString
function.
The DEBUG_EVENT structure contains an
OUTPUT_DEBUG_STRING_INFO
structure. This structure specifies the
address, length, and format of the
debugging string.

UNLOAD_DLL_DEBUG_EVENT
Generated whenever a process being
debugged unloads a DLL by using the
FreeLibrary function. This debugging event
only occurs the last time a DLL is unloaded
from a process's address space (that is,
when the DLL's usage count is zero).
The DEBUG_EVENT structure contains an
UNLOAD_DLL_DEBUG_INFO structure.
This structure specifies the base address of
the DLL in the address space of the process
that unloads the DLL.
Typically, a debugger unloads a symbol

table associated with the DLL upon receiving
this debugging event.

When a process exits, the kernel automatically
unloads the process's DLLs, but does not
generate an UNLOAD_DLL_DEBUG_EVENT
debugging event.

Using Debugging Support
The following example uses the WaitForDebugEvent and ContinueDebugEvent functions to
illustrate how a simple debugger might be organized.DEBUG_EVENT DebugEv; // debugging event information
DWORD dwContinueStatus = DBG_CONTINUE; // exception continuation
for(;;)
{
// Wait for a debugging event to occur. The second parameter indicates
// that the function does not return until a debugging event occurs.

WaitForDebugEvent(&DebugEv, INFINITE);
// Process the debugging event code.

switch (DebugEv.dwDebugEventCode)
{
case EXCEPTION_DEBUG_EVENT:
// Process the exception code. When handling
// exceptions, remember to set the continuation
// status parameter (dwContinueStatus). This value
// is used by the ContinueDebugEvent function.
switch (DebugEv.u.Exception.ExceptionRecord.ExceptionCode)
{
case EXCEPTION_ACCESS_VIOLATION:
// First chance: Pass this on to the kernel.
// Last chance: Display an appropriate error.
case EXCEPTION_BREAKPOINT:
// First chance: Display the current
// instruction and register values.
case EXCEPTION_DATATYPE_MISALIGNMENT:
// First chance: Pass this on to the kernel.
// Last chance: Display an appropriate error.
case EXCEPTION_SINGLE_STEP:
// First chance: Update the display of the
// current instruction and register values.
case DBG_CONTROL_C:
// First chance: Pass this on to the kernel.
// Last chance: Display an appropriate error.
// Handle other exceptions.
}
case CREATE_THREAD_DEBUG_EVENT:
// As needed, examine or change the thread's registers
// with the GetThreadContext and SetThreadContext functions;
// and suspend and resume thread execution with the
// SuspendThread and ResumeThread functions.
case CREATE_PROCESS_DEBUG_EVENT:
// As needed, examine or change the registers of the
// process's initial thread with the GetThreadContext and
// SetThreadContext functions; read from and write to the
// process's virtual memory with the ReadProcessMemory and
// WriteProcessMemory functions; and suspend and resume
// thread execution with the SuspendThread and ResumeThread
// functions.
case EXIT_THREAD_DEBUG_EVENT:
// Display the thread's exit code.
case EXIT_PROCESS_DEBUG_EVENT:
// Display the process's exit code.
case LOAD_DLL_DEBUG_EVENT:
// Read the debugging information included in the newly
// loaded DLL.
case UNLOAD_DLL_DEBUG_EVENT:
// Display a message that the DLL has been unloaded.
case OUTPUT_DEBUG_STRING_EVENT:
// Display the output debugging string.
}

// Resume executing the thread that reported the debugging event.
ContinueDebugEvent(DebugEv.dwProcessId,

DebugEv.dwThreadId, dwContinueStatus);
}

Debugging Reference
The following functions and structures are used with debugging.

Debugging Functions
The following functions are used with debugging.
ContinueDebugEvent
DebugActiveProcess
DebugBreak
FatalExit
FlushInstructionCache
GetThreadContext
GetThreadSelectorEntry
IsDebuggerPresent
OutputDebugString
ReadProcessMemory
SetDebugErrorLevel
SetThreadContext
WaitForDebugEvent

WriteProcessMemory

Debugging Structures
The following structures are used with debugging.
CONTEXT
CREATE_PROCESS_DEBUG_INFO
CREATE_THREAD_DEBUG_INFO
DEBUG_EVENT
EXCEPTION_DEBUG_INFO
EXIT_PROCESS_DEBUG_INFO
EXIT_THREAD_DEBUG_INFO
LDT_ENTRY
LOAD_DLL_DEBUG_INFO
OUTPUT_DEBUG_STRING_INFO
RIP_INFO

UNLOAD_DLL_DEBUG_INFO

Device Input and OutputApplications use a device input and output control to communicate with a device driver. This
overview discusses device handles, which identify the device being accessed, and device control
codes, which specify the action the driver is to perform.

About Device Input and Output
The DeviceIoControl function provides a device input and output control (IOCTL) interface
through which an application can communicate directly with a device driver. The DeviceIoControl
function is a general-purpose interface that can send control codes to a variety of devices.

Device Handles
A DeviceIoControl call specifies a handle of a device driver to identify the device being
accessed. You can use the CreateFile function to get a device driver handle.

The CreateFile call must specify either the name of a device or the name of the driver associated
with a device. To specify a device name, the lpszname parameter of CreateFile specifies a string
with the format\\.\DeviceNameThe types of devices that you can open and the method that you must use to specify them in the
CreateFile function depend on the Win32 platform on which your application is running.

On Windows NT, DeviceIoControl can open a handle of a specific device. For example, to open
a handle to the logical drive A:, specify "\\\\.\\a:". Alternatively, you can use the names "\\\\.\\
PhysicalDrive0", "\\\\.\\PhysicalDrive1", and so on, to open handles to the physical drives on a
system.

For Win32-based applications running on Windows 95, DeviceIoControl must specify a handle of
a virtual device driver. For example, to open a handle to the system VxD, specify "\\\\.\\vwin32".

The CreateFile call should specify the FILE_SHARE_READ and FILE_SHARE_WRITE access
flags when opening a handle to a device driver. However, when opening a communications
resource, such as a serial port, CreateFile must specify exclusive access. Other CreateFile
parameters are used as follows when opening a device handle:

· The fdwCreate parameter must specify the OPEN_EXISTING flag.
· The hTemplateFile parameter must be NULL.
· The fdwAttrsAndFlags parameter can specify FILE_FLAG_OVERLAPPED to indicate that

the returned handle can be used in overlapped (asynchronous) I/O operations.

Device Control Codes
An application can use the DeviceIoControl function to send a control code to a device driver.
The control code specifies the action that the driver is to perform. For example, a control code can
ask a device driver to return information about the corresponding device, or direct the driver to
carry out an action on the device, such as formatting a disk.

A number of standard control codes are defined in the Win32 header files. For a list of standard
control codes, see DeviceIoControl . In addition, device drivers can define their own device-
specific control codes. The types of control codes you can specify depend on the device being
accessed and the Win32 platform on which your application is running.

Applications running on Windows NT can use the standard control codes or device-specific
control codes to perform direct input and output operations on a floppy disk drive, hard disk drive,
tape drive, or CD-ROM drive.

Win32-based applications running on Windows 95 cannot use the standard control codes in the
Win32 header files. These applications are restricted to using the control codes supported by the
virtual device driver being accessed. For example, the system VxD, VWIN32.VXD, supports the
input and output control (IOCTL) functions originally provided by MS-DOS Interrupt 21h.

The control code specified in a DeviceIoControl call determines the values that must be specified
for the other DeviceIoControl parameters. For example, a Windows NT application can specify
the IOCTL_DISK_FORMAT_TRACKS control code. In this case, the lpvInBuffer parameter must
point to a filled-in FORMAT_PARAMETERS structure, and the cbInBuffer parameter must specify
the size of the structure.

Using Device Input and Output Control
· Calling DeviceIoControl on Windows NT
· Calling DeviceIoControl on Windows 95

Calling DeviceIoControl on Windows NT
On Windows NT, an application can use the DeviceIoControl function to perform direct input and
output operations on, or retrieve information about, a floppy disk drive, hard disk drive, tape drive,
or CD-ROM drive. The following example demonstrates how to retrieve information about the first
physical drive in the system. It uses the CreateFile function to obtain the device handle of the first
physical drive, and then uses the DeviceIoControl function with the
IOCTL_DISK_GET_DRIVE_GEOMETRY control code to fill a DISK_GEOMETRY structure with
information about the drive.BOOL GetDriveGeometry(DISK_GEOMETRY *pdg)
{

HANDLE hDevice;
BOOL fResult;
DWORD cb;
hDevice = CreateFile("\\\\.\\PhysicalDrive0",
0, FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, 0, NULL);
if (hDevice == NULL)
return FALSE;
fResult = DeviceIoControl(hDevice,
IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0,
pdg, sizeof(*pdg), &cb, (LPOVERLAPPED) NULL);
if (!fResult)
return FALSE;

CloseHandle(hDevice);
}This example succeeds only when it runs on Windows NT, for two reasons:

· The standard device input/output control codes are available only on Windows NT, and
· On Windows 95, an application must specify a virtual device driver in the CreateFile

function ¾ not a specific device.

Calling DeviceIoControl on Windows 95
A Win32-based application running on Windows 95 can use the DeviceIoControl function to send
control codes directly to a virtual device driver (VxD). Any VxD can support any number of control
codes, or none at all.

The system VxD, VWIN32.VXD, supports the input and output control (IOCTL) functions originally
provided by MS-DOS Interrupt 21h. The following example shows how to call Get Media ID
(Interrupt 21h Function 440Dh Minor Code 66h) from a Win32-based application:"\\\\.\\VxDName"
In Windows 95,
#define VWIN32_DIOC_DOS_IOCTL 1
typedef struct _DEVIOCTL_REGISTERS {

DWORD reg_EBX;
DWORD reg_EDX;
DWORD reg_ECX;
DWORD reg_EAX;
DWORD reg_EDI;
DWORD reg_ESI;
DWORD reg_Flags;

} DEVIOCTL_REGISTERS, *PDEVIOCTL_REGISTERS;
typedef struct _MID {

WORD midInfoLevel;
DWORD midSerialNum;
BYTE midVolLabel[11];
BYTE midFileSysType[8];

} MID, *PMID;
BOOL GetMediaID(PMID pmid, UINT nDrive)
{

DEVIOCTL_REGISTERS reg;
reg.reg_EAX = 0x440D; /* IOCTL for block devices */
reg.reg_EBX = nDrive; /* zero-based drive ID*/
reg.reg_ECX = 0x0866; /* Get Media ID command */
reg.reg_EDX = (DWORD) pmid; /* receives media ID info */
if (!DoIOCTL(®))
return FALSE;
if (reg.reg_Flags & 0x8000) /* error if carry flag set */
return FALSE;
return TRUE;

}
BOOL DoIOCTL(PDEVIOCTL_REGISTERS preg)
{

HANDLE hDevice;
BOOL fResult;
DWORD cb;
preg->reg_Flags = 0x8000; /* assume error (carry flag set) */
hDevice = CreateFile("\\\\.\\vwin32",
GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE,
(LPSECURITY_ATTRIBUTES) NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, (HANDLE) NULL);
if (hDevice == (HANDLE) INVALID_HANDLE_VALUE)
return FALSE;
else {
fResult = DeviceIoControl(hDevice, VWIN32_DIOC_DOS_IOCTL,
preg, sizeof(*preg), preg, sizeof(*preg), &cb, 0);
if (!fResult)
return FALSE;
}
CloseHandle(hDevice);
return TRUE;

}

Device Input and Output Reference
The following functions, operations, structures, and enumeration types are used with device input
and output.

Device Input and Output Functions
The following function is used with device input and output.

DeviceIoControl

Device Input and Output Operations
The following operations are used with device input and output.
FSCTL_DISMOUNT_VOLUME
FSCTL_GET_COMPRESSION
FSCTL_LOCK_VOLUME
FSCTL_SET_COMPRESSION
FSCTL_UNLOCK_VOLUME
IOCTL_DISK_FORMAT_TRACKS
IOCTL_DISK_GET_DRIVE_GEOMETRY
IOCTL_DISK_GET_DRIVE_LAYOUT
IOCTL_DISK_GET_PARTITION_INFO
IOCTL_DISK_PERFORMANCE
IOCTL_DISK_REASSIGN_BLOCKS
IOCTL_DISK_SET_DRIVE_LAYOUT
IOCTL_DISK_SET_PARTITION_INFO
IOCTL_DISK_VERIFY
IOCTL_SERIAL_LSRMST_INSERT
IOCTL_STORAGE_CHECK_VERIFY
IOCTL_STORAGE_EJECT_MEDIA
IOCTL_STORAGE_GET_MEDIA_TYPES
IOCTL_STORAGE_LOAD_MEDIA

IOCTL_STORAGE_MEDIA_REMOVAL

Obsolete Operations
IOCTL_DISK_CHECK_VERIFY
IOCTL_DISK_EJECT_MEDIA
IOCTL_DISK_GET_MEDIA_TYPES
IOCTL_DISK_LOAD_MEDIA

IOCTL_DISK_MEDIA_REMOVAL

Device Input and Output Structures
The following structures are used with device input and output.
FORMAT_PARAMETERS
DISK_GEOMETRY
DRIVE_LAYOUT_INFORMATION
PARTITION_INFORMATION
PREVENT_MEDIA_REMOVAL
DISK_PERFORMANCE
REASSIGN_BLOCKS
SET_PARTITION_INFORMATION
VERIFY_INFORMATION

Device Input and Output Enumeration Types
The following enumeration type is used with device input and output.

MEDIA_TYPE

Dynamic Data ExchangeThis overview provides guidelines for implementing dynamic data exchange for applications that
cannot use the Dynamic Data Exchange Management Library (DDEML). For more information
about the DDEML, see Dynamic Data Exchange Management Library.

About Dynamic Data Exchange
The Microsoft® Win32® application programming interface (API) provides several methods for
transferring data between applications. One method is to use the Win32 dynamic data exchange
(DDE) protocol. The DDE protocol is a set of messages and guidelines. It sends messages
between applications that share data and uses shared memory to exchange data between
applications. Applications can use the DDE protocol for one-time data transfers and for continuous
exchanges in which applications send updates to one another as new data becomes available.

The Win32 API also includes the Dynamic Data Exchange Management Library (DDEML). The
DDEML is a dynamic-link library (DLL) that applications running with Windows can use to share
data. The DDEML provides an application programming interface (API) that simplifies the task of
adding DDE capability to a Win32-based application. Instead of sending, posting, and processing
DDE messages directly, an application uses the DDEML functions to manage DDE conversations.
(A DDE conversation is the interaction between client and server applications.)

The DDEML also provides a facility for managing the strings and data that DDE applications
share. Instead of using atoms and pointers to shared memory objects, DDE applications create
and exchange string handles, which identify strings, and data handles, which identify memory
objects. The DDEML also makes it possible for a server application to register the service names
it supports. The names are broadcast to other applications in the system, which can use the
names to connect to the server. Moreover, the DDEML ensures compatibility among DDE
applications by forcing them to implement the DDE protocol in a consistent manner.

Existing applications that use the message-based DDE protocol are fully compatible with those
that use the DDEML. That is, an application that uses message-based DDE can establish
conversations and perform transactions with applications that use the DDEML. Because of the
many advantages of the DDEML, new applications should use it rather than the DDE messages.
To use the API elements of the DDEML, you must include the DDEML header file in your source
files, link with the DDEML library, and ensure that the DDEML dynamic-link library is in the
system's search path.

Dynamic Data Exchange Protocol
Because the Win32 API has a message-based architecture, passing messages is the most
appropriate method for automatically transferring information between applications. However,
Win32 messages contain only two parameters (wParam and lParam) for passing data. As a result,
these parameters must refer indirectly to other pieces of data when more than a few words of
information pass between applications. The DDE protocol defines exactly how applications should
use the wParam and lParam parameters to pass larger pieces of data by means of global atoms
and shared memory handles. The DDE protocol has specific rules for allocating and deleting
global atoms and shared memory objects.

A global atom is a reference to a character string. In the DDE protocol, atoms identify the
applications exchanging data, the nature of the data being exchanged, and the data items
themselves. For more information about atoms, see Atoms. A shared memory handle is a handle
to a memory object allocated by GlobalAlloc, using the GMEM_DDESHARE flag. In the DDE
protocol, shared memory objects store data items passed between applications, protocol options,
and remote command execution strings.

Uses for Windows Dynamic Data Exchange
DDE is most appropriate for data exchanges that do not require ongoing user interaction. Usually,
an application provides a method for the user to establish the link between the applications
exchanging data. Once that link is established, however, the applications exchange data without
further user involvement.

DDE can be used to implement a broad range of application features ¾ for example:

· Linking to real-time data, such as to stock market updates, scientific instruments, or
process control.

· Creating compound documents, such as a word processing document that includes a
chart produced by a graphics application. Using DDE, the chart will change when the source
data is changed, while the rest of the document remains the same.

· Performing data queries between applications, such as a spreadsheet querying a
database for accounts past due.

Dynamic Data Exchange from the User's Point of View
The following example illustrates illustrates how two DDE applications can cooperate, as seen
from the user's point of view.

A spreadsheet user wants to use Microsoft® Excel to track the price of a particular stock on the
New York Stock Exchange. The user has a Win32-based application called Quote that in turn has
access to NYSE data. The DDE conversation between Microsoft Excel and Quote takes place as
follows:

· The user initiates the conversation by supplying the name of the application (Quote) that
will supply the data and the particular topic of interest (NYSE). The resulting DDE
conversation is used to request quotes on specific stocks.

· Microsoft Excel broadcasts the application and topic names to all DDE applications
currently running in the system. Quote responds, establishing a conversation with Microsoft
Excel about the NYSE topic.

· The user can then create a spreadsheet formula in a cell that requests that the
spreadsheet be automatically updated whenever a particular stock quotation changes. For
example, the user could request an automatic update whenever a change occurs in the selling
price of ZAXX stock by specifying the following Microsoft Excel formula:='Quote'|'NYSE'!ZAXX· The user can terminate the automatic updating of the ZAXX stock quotation at any time.
Other data links that were established separately (such as for quotations for other stocks) still
will remain active under the same NYSE conversation.

· The user can also terminate the entire conversation between Microsoft Excel and Quote
on the NYSE topic, so that no specific data links on that topic can be established without
initiating a new conversation.

Dynamic Data Exchange Concepts
The following sections explain the important concepts and terminology that are key to
understanding dynamic data exchange.

Client, Server, and Conversation
Two applications participating in dynamic data exchange are said to be engaged in a DDE
conversation. The application that initiates the conversation is the DDE client application; the
application that responds to the client is the DDE server application. An application can engage in
several conversations at the same time, acting as the client in some and as the server in others.

A DDE conversation takes place between two windows, one for each of the participating
applications. A window may be the main window of the application; a window associated with a
specific document, as in a multiple document interface (MDI) application; or a hidden (invisible)
window whose only purpose is to process DDE messages.

Since a DDE conversation is identified by the pair of handles to the windows engaged in the
conversation, no window should be engaged in more than one conversation with another window.
Either the client application or the server application must provide a different window for each of
its conversations with a particular server or client application.

An application can ensure a pair of client and server windows is never involved in more than one
conversation by creating a hidden window for each conversation. The sole purpose of this window
is to process DDE messages.

Application, Topic, and Item Names
The DDE protocol identifies the units of data passed between the client and server with a three-
level hierarchy of application, topic, and item names.

Each DDE conversation is uniquely defined by the application name and topic. At the beginning of
a DDE conversation, the client and server determine the application name and topic. The
application name is usually the name of the server application. For example, when Microsoft Excel
acts as the server in a conversation, the application name is Excel.

The DDE topic is a general classification of data within which multiple data items may be
"discussed" (exchanged) during the conversation. For applications that operate on file-based
documents, the topic is usually a filename. For other applications, the topic is an application-
specific name.

Because the client and server window handles together identify a DDE conversation, the
application name and topic that define a conversation cannot be changed during the course of the
conversation.

A DDE data item is information related to the conversation topic exchanged between the
applications. Values for the data item can be passed from the server to the client, or from the
client to the server. Data can be passed with any of the standard clipboard formats or with a
registered clipboard format. A special, registered format named Link identifies an item in a DDE
conversation. For more information about clipboard formats, see Clipboard.

The System Topic
Applications should support the system topic at all times. This topic provides a context for
information that may be of general interest to another application.

Data-item values must be rendered in the CF_TEXT clipboard format. Individual elements of item
values for a system topic must be delimited by tab characters. The following table suggests some
items for the system topic.

Item Description

Formats Tab-delimited list of clipboard formats the
application can render. Typically, CF_ formats are
listed with the "CF_" portion of the names removed
(for example, CF_TEXT is listed as "TEXT").

Help Text that briefly explains how to use the DDE
server.

ReturnMessage Supporting detail for the most recently used
WM_DDE_ACK message. This item is useful when
more than eight bits of application-specific return
data are required.

Status Indication of the current status of the application.
When a server receives a WM_DDE_REQUEST
message for this system-topic item, it should
respond by posting a WM_DDE_DATA message
with a string containing either Busy or Ready, as
appropriate.

SysItems List of system-topic items the application supports.
TopicItemList Similar to the SysItems item, except that

TopicItemList should be supported for each topic
other than the system topic. This allows browsing of
the items supported under any topic. If the items
cannot be enumerated, this item should contain only
"TopicItemList".

Topics List of topics the application supports at the current
time; this list can vary from moment to moment.

Permanent Data Links
Once a DDE conversation has begun, the client can establish one or more permanent data links
with the server. A data link is a communications mechanism by which the server notifies the client
whenever the value of a given data item changes. The data link is permanent in the sense that
this notification process continues until the data link or the DDE conversation itself is terminated.

There are two kinds of permanent DDE data links: warm and hot. In a warm data link, the server
notifies the client that the value of the data item has changed, but the server does not send the
data value to the client until the client requests it. In a hot data link, the server immediately sends
the changed data value to the client.

Applications that support warm or hot data links typically provide a Copy or Paste Link command
in their Edit menu to enable the user to establish links between applications. For more information,
see Initiating a Data Link.

Atoms and Shared Memory Objects
Certain arguments of DDE messages are global atoms or shared memory objects. Applications
using these arguments must follow explicit rules about when to allocate and delete them. In all
cases, the message sender must delete any atom or shared memory object that the intended
receiver will not receive because of an error condition, such as failure of the PostMessage
function.

DDE uses shared memory objects for three purposes:

· To carry a data-item value to be exchanged. This is an item referenced by the hData
parameter in the WM_DDE_DATA and WM_DDE_POKE messages.

· To carry options in a message. This is an item referenced by the hOptions parameter in a
WM_DDE_ADVISE message.

· To carry a command execution string. This is an item referenced by the hCommands
parameter in the WM_DDE_EXECUTE message and its corresponding WM_DDE_ACK
message.

An application that receives a DDE shared memory object must treat it as read only. The
application must not use the object as a mutual read-write area for the free exchange of data.

As it does with a DDE atom, an application should free a shared memory object to manage
memory effectively. The application should also lock and unlock memory objects.

Dynamic Data Exchange Messages Overview
Because DDE is a message-based protocol, it employs no special Win32 functions or libraries. All
DDE transactions are conducted by passing certain defined DDE messages between the client
and server windows.

There are nine DDE messages; the symbolic constants for these messages are defined in the
DDE header file. Certain structures for the various DDE messages are also defined in this header
file.

The following table summarizes the nine DDE messages.

Message Description

WM_DDE_ACK Acknowledges receiving or not receiving a
message.

WM_DDE_ADVISE Requests the server application to supply an
update or notification for a data item
whenever it changes. This establishes a
permanent data link.

WM_DDE_DATA Sends a data-item value to the client
application.

WM_DDE_EXECUTE Sends a string to the server application,
which is expected to process the string as a
series of commands.

WM_DDE_INITIATE Initiates a conversation between the client
and server applications.

WM_DDE_POKE Sends a data-item value to the server
application.

WM_DDE_REQUEST Requests the server application to provide
the value of a data item.

WM_DDE_TERMINATE Terminates a conversation.
WM_DDE_UNADVISE Terminates a permanent data link.

An application calls SendMessage to issue the WM_DDE_INITIATE message or a
WM_DDE_ACK message sent in response to WM_DDE_INITIATE. All other messages are sent
by PostMessage. The first parameter of these calls is the handle of the receiving window; the
second parameter contains the message to be sent; the third parameter identifies the sending
window; and the fourth parameter contains the message-specific arguments.

Dynamic Data Exchange Message Flow
A typical DDE conversation consists of the following events:

1. The client application initiates the conversation, and the server application responds.
2. The applications exchange data by any or all of the following methods:

· The server application sends data to the client at the client's request.
· The client application sends unsolicited data to the server application.
· The client application requests the server application to notify the client whenever a data

item changes (warm data link).
· The client application requests the server application to send data whenever the data

changes (hot data link).
· The server application carries out a command at the client's request.

3. Either the client or server application terminates the conversation.
An application window that processes requests from a client or server must process them strictly
in the order they are received.

A client can establish conversations with more than one server; a server can have conversations
with more than one client. When handling messages from more than one source, a client or server
must process the messages of a given conversation synchronously, but need not process all
messages synchronously. In other words, it can shift from one conversation to another as needed.

If an application is unable to process an incoming request because it is waiting for a DDE
response, it must prevent deadlock by posting a WM_DDE_ACK message with the fBusy
member of the DDEACK structure set to 1. An application can also send a busy WM_DDE_ACK
message if, for any reason, it cannot process an incoming request within a reasonable amount of
time.

An application should be able to handle the failure of a client or server to respond to a message
within a certain time. Since the time-out interval may vary depending on the nature of the
application and the configuration of the user's system (including whether it is connected to a
network), the application should provide a way for the user to specify the interval.

Parameter-Packing Functions
The lParam parameter of many DDE messages contains two pieces of data. For example, the
lParam of the WM_DDE_DATA message contains a data handle and an atom. In previous
versions of Windows, an application could use the MAKELONG macro to prepare an lParam
parameter, and the LOWORD and HIWORD macros to remove the low-order and high-order
values from lParam. Because a Win32 data handle is a 32-bit value, a Win32-based application
must use the PackDDElParam function to pack the handle and atom into an lParam parameter,
and the UnpackDDElParam function to remove the values. DDE applications must use
PackDDElParam and UnpackDDElParam for all messages posted during a DDE conversation.

The Win32 API also includes the ReuseDDElParam and FreeDDElParam functions.
ReuseDDElParam allows a DDE application to reuse a packed lParam parameter, helping reduce
the number of memory reallocations the application must perform during a conversation. An
application can use FreeDDElParam to free the memory associated with a data handle received
during a DDE conversation.

Dynamic Data Exchange and Impersonation
To allow a server to impersonate a client, the client calls the DdeSetQualityOfService function.
The SECURITY_IMPERSONATION_LEVEL structure is used to control the level of
impersonation the server may perform.

A DDE server can impersonate a DDE client by calling the ImpersonateDdeClientWindow
function. A DDEML server should use the DdeImpersonateClient function.

Using Dynamic Data Exchange
· Initiating a conversation
· Transferring a single item
· Establishing a permanent data link
· Carrying out commands in a server application
· Terminating a conversation

Initiating a Conversation
To initiate a DDE conversation, the client sends a WM_DDE_INITIATE message. Usually, the
client broadcasts this message by calling SendMessage, with - 1 as the first parameter. If the
application already has the window handle of the server application, it can send the message
directly to that window. The client prepares atoms for the application name and topic name by
calling GlobalAddAtom. The client can request conversations with any potential server
application and for any potential topic by supplying NULL (wildcard) atoms for the application and
topic.

The following example illustrates how the client initiates a conversation, where both the
application and topic are specified./* Global variable */
static BOOL fInInitiate = FALSE;

char *szApplication;
char *szTopic;
atomApplication = *szApplication == 0 ?
NULL : GlobalAddAtom((LPSTR) szApplication);
atomTopic = *szTopic == 0 ?
NULL : GlobalAddAtom((LPSTR) szTopic);
fInInitiate = TRUE;
SendMessage((HWND) -1, /* broadcasts message*/
WM_DDE_INITIATE,/* initiates conversation */
(WPARAM) hwndClientDDE, /* handle of client DDE window */
MAKELONG(atomApplication, /* application-name atom */
atomTopic));/* topic-name atom */
fInInitiate = FALSE;
if (atomApplication != NULL)
GlobalDeleteAtom(atomApplication);
if (atomTopic != NULL)
GlobalDeleteAtom(atomTopic);Note that if your application uses NULL atoms, you need not use the GlobalAddAtom and

GlobalDeleteAtom functions. In this example, the client application creates two global atoms
containing the name of the server and the name of the topic, respectively.

The client application sends a WM_DDE_INITIATE message with these two atoms in the lParam
parameter of the message. In the call to the SendMessage function, the special window handle -
1 directs Windows to send this message to all other active applications. SendMessage does not
return to the client application until all applications that receive the message have, in turn,
returned control to Windows. This means that all WM_DDE_ACK messages sent in reply by the
server applications are guaranteed to have been processed by the client by the time the
SendMessage call has returned.

After SendMessage returns, the client application deletes the global atoms.

Server applications respond according to the logic illustrated in the following diagram.

ewc msdncd, EWGraphic, bsd23496 0 /a "SDK_01.BMP"

To acknowledge one or more topics, the server must create atoms for each conversation
(requiring duplicate application-name atoms if there are multiple topics) and send a
WM_DDE_ACK message for each conversation, as illustrated in the following example.if ((atomApplication = GlobalAddAtom("Server")) != 0) {

if ((atomTopic = GlobalAddAtom(szTopic)) != 0) {
SendMessage(hwndClientDDE,
WM_DDE_ACK,
(WPARAM) hwndServerDDE,
MAKELONG(atomApplication, atomTopic));
GlobalDeleteAtom(atomApplication);
}
GlobalDeleteAtom(atomTopic);

}
if ((atomApplication == 0) || (atomTopic == 0)) {
.
. /* error handling */
.
}When a server responds with a WM_DDE_ACK message, the client application should save the

handle of the server window. The client receiving the handle as the wParam parameter of the
WM_DDE_ACK message then sends all subsequent DDE messages to the server window this
handle identifies.

If your client application uses a NULL atom for the application name or topic name, expect the
application to receive acknowledgments from more than one server application. Multiple
acknowledgements can also come from multiple instances of a DDE server, even if your client
application does not use NULL atoms. A server should always use a unique window for each
conversation. The window procedure in the client application can use the handle of the server
window (provided as the lParam parameter of WM_DDE_INITIATE) to track multiple
conversations. This allows a single client window to process several conversations without
needing to terminate and reconnect with a new client window for each conversation.

Transferring a Single Item
Once a DDE conversation has been established, the client can either retrieve the value of a data
item from the server by issuing the WM_DDE_REQUEST message, or submit a data-item value
to the server by issuing WM_DDE_POKE.

Retrieving an Item from the Server
To retrieve an item from the server, the client sends the server a WM_DDE_REQUEST message
specifying the item and format to retrieve, as shown in the following example.if ((atomItem = GlobalAddAtom(szItemName)) != 0) {

if (!PostMessage(hwndServerDDE,
WM_DDE_REQUEST,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_REQUEST, CF_TEXT, atomItem)))
GlobalDeleteAtom(atomItem);

}
if (atomItem == 0) {
.
. /* error handling */
.
}In this example, the client specifies the clipboard format CF_TEXT as the preferred format for the

requested data item.

The receiver (server) of the WM_DDE_REQUEST message typically must delete the item atom,
but if the PostMessage call fails, the client must delete the atom.

If the server has access to the requested item and can render it in the requested format, the
server copies the item value as a shared memory object and sends the client a WM_DDE_DATA
message, as illustrated in the following example./*
* Allocate the size of the DDE data header, plus the data: a
* string,<CR><LF><NULL>. The byte for the string's terminating
* null character is counted by DDEDATA.Value[1].
*/
if (!(hData = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(LONG) sizeof(DDEDATA) + lstrlen(szItemValue) + 2)))
return;

if (!(lpData = (DDEDATA FAR*) GlobalLock(hData))) {
GlobalFree(hData);
return;

}
.
.
.

lpData->cfFormat = CF_TEXT;
lstrcpy((LPSTR) lpData->Value, (LPSTR) szItemValue);
/* Each line of CF_TEXT data is terminated by CR/LF. */
lstrcat((LPSTR) lpData->Value, (LPSTR) "\r\n");
GlobalUnlock(hData);
if ((atomItem = GlobalAddAtom((LPSTR) szItemName)) != 0) {

lParam = PackDDElParam(WM_DDE_ACK, (UINT) hData, atomItem);
if (!PostMessage(hwndClientDDE,

WM_DDE_DATA,
(WPARAM) hwndServerDDE,
lParam)) {
GlobalFree(hData);
GlobalDeleteAtom(atomItem);
FreeDDElParam(WM_DDE_ACK, lParam);
}

}
if (atomItem == 0) {
.
. /* error handling */
.
}In this example, the server application allocates a memory object to contain the data item. The

memory is allocated with the GMEM_DDESHARE option, so that the server and client
applications can share the memory. After allocating the memory object, the server application
locks the object so it can obtain the object's address. The data object is initialized as a DDEDATA
structure.

The server application then sets the cfFormat member of the structure to CF_TEXT to inform the
client application that the data is in text format. The client responds by copying the value of the
requested data into the Value member of the DDEDATA structure. After the server has filled the
data object, the server unlocks the data and creates a global atom containing the name of the
data item.

Finally, the server issues the WM_DDE_DATA message by calling PostMessage. The handle of
the data object and the atom containing the item name are packed into the lParam parameter of
the message by the PackDDElParam function.

If PostMessage fails, the server must use the FreeDDElParam function to free the packed
lParam parameter. The server must also free the packed lParam parameter for the
WM_DDE_REQUEST message it received.

If the server cannot satisfy the request, it sends a negative WM_DDE_ACK message to the client,
as shown in the following example./* negative acknowledgment */
PostMessage(hwndClientDDE,

WM_DDE_ACK,
(WPARAM) hwndServerDDE,
PackDDElParam(WM_DDE_ACK, 0, atomItem));Upon receiving a WM_DDE_DATA message, the client processes the data-item value as

appropriate. Then, if the fAckReq member pointed to in the WM_DDE_DATA message is 1, the
client must send the server a positive WM_DDE_ACK message, as shown in the following
example.UnpackDDElParam(WM_DDE_DATA, lParam, (PUINT) &hData,

(PUINT) &atomItem);
if (!(lpDDEData = (DDEDATA FAR*) GlobalLock(hData))

|| (lpDDEData->cfFormat != CF_TEXT)) {
PostMessage(hwndServerDDE,
WM_DDE_ACK,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_ACK, 0, atomItem)); /* negative ACK */

}
/* Copy data from lpDDEData here.*/
if (lpDDEData->fAckReq) {

PostMessage(hwndServerDDE,
WM_DDE_ACK,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_ACK, 0x8000,
atomItem)); /* positive ACK */

}
bRelease = lpDDEData->fRelease;
GlobalUnlock(hData);
if (bRelease)

GlobalFree(hData);In this example, the client examines the format of the data. If the format is not CF_TEXT (or if the
client cannot lock the memory for the data), the client sends a negative WM_DDE_ACK message
to indicate that it cannot process the data. If the client cannot lock a data handle because the
handle contains the fAckReq member, the client should not send a negative WM_DDE_ACK
message. Instead, the client should terminate the conversation.

If a client sends a negative acknowledgement in response to a WM_DDE_DATA message, the
server is responsible for freeing the memory (but not the lParam parameter) referenced by the
WM_DDE_DATA message associated with the negative acknowledgement.

If it can process the data, the client examines the fAckReq member of the DDEDATA structure to
determine whether the server requested that it be informed that the client received and processed
the data successfully. If the server did request this information, the client sends the server a
positive WM_DDE_ACK message.

Because unlocking data invalidates the pointer to the data, the client saves the value of the
fRelease member before unlocking the data object. After saving the value, the client then
examines it to determine whether the server application requested the client to free the memory
containing the data; the client acts accordingly.

Upon receiving a negative WM_DDE_ACK message, the client can ask for the same item value
again, specifying a different clipboard format. Typically, a client will first ask for the most complex
format it can support, then step down if necessary through progressively simpler formats until it
finds one the server can provide.

If the server supports the Formats item of the system topic, the client can determine once what
clipboard formats the server supports, instead of determining them each time the client requests
an item. For more information about the system topic, see The System Topic.

Submitting an Item to the Server
The client may send an item value to the server by using the WM_DDE_POKE message. The
client renders the item to be sent and sends the WM_DDE_POKE message, as illustrated in the
following example.if (!(hPokeData = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

(LONG) sizeof(DDEPOKE) + lstrlen(szValue) + 2)))
return;

if (!(lpPokeData = (DDEPOKE FAR*) GlobalLock(hPokeData))) {
GlobalFree(hPokeData);
return;

}
lpPokeData->fRelease = TRUE;
lpPokeData->cfFormat = CF_TEXT;
lstrcpy((LPSTR) lpPokeData->Value, (LPSTR) szValue);
/* Each line of CF_TEXT data is terminated by CR/LF. */
lstrcat((LPSTR) lpPokeData->Value, (LPSTR) "\r\n");
GlobalUnlock(hPokeData);
if ((atomItem = GlobalAddAtom((LPSTR) szItem)) != 0) {
.
.
.
if (!PostMessage(hwndServerDDE,

WM_DDE_POKE,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_POKE, (UINT) hPokeData,
atomItem))) {
GlobalDeleteAtom(atomItem);
GlobalFree(hPokeData);
}

}
if (atomItem == 0) {
.
. /* error handling */
.
}Note that sending data by using a WM_DDE_POKE message is essentially the same as sending

it by using WM_DDE_DATA, except that WM_DDE_POKE is sent from the client to the server.

If the server is able to accept the data-item value in the format rendered by the client, the server
processes the item value as appropriate and sends the client a positive WM_DDE_ACK message.
If it is unable to process the item value, because of its format or for other reasons, the server
sends the client a negative WM_DDE_ACK message.UnpackDDElParam(WM_DDE_POKE, lParam, (PUINT) &hPokeData,

(PUINT) &atomItem);
GlobalGetAtomName(atomItem, szItemName, ITEM_NAME_MAX_SIZE);
if (!(lpPokeData = (DDEPOKE FAR*) GlobalLock(hPokeData))

|| lpPokeData->cfFormat != CF_TEXT
|| !IsItemSupportedByServer(szItemName)) {
PostMessage(hwndClientDDE,
WM_DDE_ACK,
(WPARAM) hwndServerDDE,
PackDDElParam(WM_DDE_ACK, 0, atomItem)); /* negative ACK */

}
lstrcpy(szItemValue, lpPokeData->Value); /* copies value */
bRelease = lpPokeData->fRelease;
GlobalUnlock(hPokeData);
if (bRelease) {

GlobalFree(hPokeData);
}
PostMessage(hwndClientDDE,

WM_DDE_ACK,
(WPARAM) hwndServerDDE,
PackDDElParam(WM_DDE_ACK,
0x8000, atomItem)); /* positive ACK */In this example, the server calls GlobalGetAtomName to retrieve the name of the item the client

sent. The server then determines whether it supports the item and whether the item is rendered in
the correct format (that is, CF_TEXT). If the item is not supported and not rendered in the correct
format, or if the server cannot lock the memory for the data, the server sends a negative
acknowledgment back to the client application. Note that in this case, sending a negative
acknowledgement is correct because WM_DDE_POKE messages are always assumed to have
the fAckReq member set. The server should ignore the member.

If a server sends a negative acknowledgement in response to a WM_DDE_POKE message, the
client is responsible for freeing the memory (but not the lParam parameter) referenced by the
WM_DDE_POKE message associated with the negative acknowledgement.

Establishing a Permanent Data Link
A client application can use DDE to establish a link to an item in a server application. After such a
link is established, the server sends periodic updates of the linked item to the client, typically,
whenever the value of the item changes. Thus, a permanent data stream is established between
the two applications; this data stream remains in place until it is explicitly disconnected.

Initiating a Data Link
The client initiates a data link by posting a WM_DDE_ADVISE message, as shown in the
following example.if (!(hOptions = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

sizeof(DDEADVISE))))
return;

if (!(lpOptions = (DDEADVISE FAR*) GlobalLock(hOptions))) {
GlobalFree(hOptions);
return;

}
lpOptions->cfFormat = CF_TEXT;
lpOptions->fAckReq = TRUE;
lpOptions->fDeferUpd = FALSE;
GlobalUnlock(hOptions);
if ((atomItem = GlobalAddAtom(szItemName)) != 0) {

if (!(PostMessage(hwndServerDDE,
WM_DDE_ADVISE,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_ADVISE, (UINT) hOptions,
atomItem)))) {
GlobalDeleteAtom(atomItem);
GlobalFree(hOptions);
FreeDDElParam(WM_DDE_ADVISE, lParam);
}

}
if (atomItem == 0) {

.

. /* error handling */

.
}In this example, the client application sets the fDeferUpd flag of the WM_DDE_ADVISE message

to FALSE. This directs the server application to send the data to the client whenever the data
changes.

If the server is unable to service the WM_DDE_ADVISE request, it sends the client a negative
WM_DDE_ACK message. But if the server has access to the item and can render it in the
requested format, the server notes the new link (recalling the flags specified in the hOptions
parameter) and sends the client a positive WM_DDE_ACK message. From then on, until the client
issues a matching WM_DDE_UNADVISE message, the server sends the new data to the client
every time the value of the item changes in the server.

The WM_DDE_ADVISE message establishes the format of the data to be exchanged during the
link. If the client attempts to establish another link with the same item but is using a different data
format, the server can choose to reject the second data format or attempt to support it. If a warm
link has been established for any data item, the server can support only one data format at a time.
This is because the WM_DDE_DATA message for a warm link has a NULL data handle, which
otherwise contains the format information. Thus, a server must reject all warm links for an item
already linked, and must reject all links for an item that has warm links. Another interpretation may
be that the server changes the format and the hot or warm state of a link when a second link is
requested for the same data item.

In general, client applications should not attempt to establish more than one link at a time for a
data item.

Initiating a Data Link with the Paste Link Command
Applications that support hot or warm data links typically support a registered clipboard format
named Link. When associated with the application's Copy and Paste Link commands, this
clipboard format enables the user to establish DDE conversations between applications simply by
copying a data item in the server application and pasting it into the client application.

A server application supports the Link clipboard format by placing in the clipboard a string
containing the application, topic, and item names when the user chooses the Copy command from
the Edit menu. Following is the standard Link format:

application\0topic\0item\0\0

A single null character separates the names, and two null characters terminate the entire string.

Both the client and server applications must register the Link clipboard format, as shown:cfLink = RegisterClipboardFormat("Link");A client application supports the Link clipboard format by means of a Paste Link command on its
Edit menu. When the user chooses this command, the client application parses the application,
topic, and item names from the Link-format clipboard data. Using these names, the client
application initiates a conversation for the application and topic, if such a conversation does not
already exist. The client application then sends a WM_DDE_ADVISE message to the server
application, specifying the item name contained in the Link-format clipboard data.

Following is an example of a client application's response when the user chooses the Paste Link
command.void DoPasteLink(hwndClientDDE)
HWND hwndClientDDE;
{

HANDLE hData;
LPSTR lpData;
HWND hwndServerDDE;
CHAR szApplication[APP_MAX_SIZE + 1];
CHAR szTopic[TOPIC_MAX_SIZE + 1];
CHAR szItem[ITEM_MAX_SIZE + 1];
int nBufLen;
if (OpenClipboard(hwndClientDDE)) {
if (!(hData = GetClipboardData(cfLink)) ||

!(lpData = GlobalLock(hData))) {
CloseClipboard();
return;
}
/* Parse the clipboard data. */
if ((nBufLen = lstrlen(lpData)) >= APP_MAX_SIZE) {
CloseClipboard();
GlobalUnlock(hData);
return;
}
lstrcpy(szApplication, lpData);
lpData += (nBufLen + 1); /* skips over null */
if ((nBufLen = lstrlen(lpData)) >= TOPIC_MAX_SIZE) {
CloseClipboard();
GlobalUnlock(hData);
return;
}
lstrcpy(szTopic, lpData);
lpData += (nBufLen + 1); /* skips over null */
if ((nBufLen = lstrlen(lpData)) >= ITEM_MAX_SIZE) {
CloseClipboard();
GlobalUnlock(hData);
return;
}
lstrcpy(szItem, lpData);
GlobalUnlock(hData);
CloseClipboard();
if (hwndServerDDE =

FindServerGivenAppTopic(szApplication, szTopic)) {
/* App/topic conversation is already started. */
if (DoesAdviseAlreadyExist(hwndServerDDE, szItem))
MessageBox(hwndMain,
"Advisory already established",
"Client", MB_ICONEXCLAMATION | MB_OK);
else
SendAdvise(hwndClientDDE, hwndServerDDE, szItem);
}
else {
/* Client must initiate a new conversation first. */
SendInitiate(szApplication, szTopic);
if (hwndServerDDE =

FindServerGivenAppTopic(szApplication,
szTopic))

SendAdvise(hwndClientDDE, hwndServerDDE, szItem);
}
}
return;

}In this example, the client application opens the clipboard and determines whether it contains data
in the Link format (that is, cfLink) it had previously registered. If not, or if it cannot lock the data in
the clipboard, the client returns.

After the client application retrieves a pointer to the clipboard data, it parses the data to extract the
application, topic, and item names.

The client application determines whether a conversation on the topic already exists between it
and the server application. If a conversation does exist, the client checks whether a link already
exists for the data item. If such a link exists, the client displays a message box to the user;
otherwise, it calls its own SendAdvise function to send a WM_DDE_ADVISE message to the
server for the item.

If a conversation on the topic does not already exist between the client and the server, the client
first calls its own SendInitiate function to broadcast the WM_DDE_INITIATE message to request a
conversation and, second, calls its own FindServerGivenAppTopic function to establish the
conversation with the window that responds on behalf of the server application. After the
conversation has begun, the client application calls SendAdvise to request the link.

Notifying the Client that Data Has Changed
When the client establishes a link by using the WM_DDE_ADVISE message, with the fDeferUpd
member not set (that is, equal to zero) in the DDEDATA structure, the client has requested the
server send the data item each time the item's value changes. In such cases, the server renders
the new value of the data item in the previously specified format and sends the client a
WM_DDE_DATA message, as shown in the following example./*
* Allocate the size of a DDE data header, plus data (a string),
* plus a <CR><LF><NULL>
*/
if (!(hData = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

sizeof(DDEDATA) + lstrlen(szItemValue) + 3)))
return;

if (!(lpData = (DDEDATA FAR*) GlobalLock(hData))) {
GlobalFree(hData);
return;

}
lpData->fAckReq = bAckRequest; /* as specified in original*/
/* WM_DDE_ADVISE message */

lpData->cfFormat = CF_TEXT;
lstrcpy(lpData->Value, szItemValue); /* copies value to be sent */
lstrcat(lpData->Value, "\r\n"); /* CR/LF for CF_TEXT format*/
GlobalUnlock(hData);
if ((atomItem = GlobalAddAtom(szItemName)) != 0) {

if (!PostMessage(hwndClientDDE,
WM_DDE_DATA,
(WPARAM) hwndServerDDE,
PackDDElParam(WM_DDE_DATA, (UINT) hData, atomItem))) {
GlobalFree(hData);
GlobalDeleteAtom(atomItem);
FreeDDElParam(WM_DDE_DATA, lParam);
}

}
if (atomItem == 0) {
.
. /* error handling */
.
}In this example, the client processes the item value as appropriate. If the fAckReq flag for the

item is set, the client sends the server a positive WM_DDE_ACK message.

When the client establishes the link, with the fDeferUpd member set (that is, equal to 1), the client
has requested that only a notification, not the data itself, be sent each time the data changes. In
such cases, when the item value changes, the server does not render the value but simply sends
the client a WM_DDE_DATA message with a null data handle, as illustrated in the following
example.if (bDeferUpd) {/* checking whether the flag was originally */
/* set in the WM_DDE_ADVISE message */

if ((atomItem = GlobalAddAtom(szItemName)) != 0) {
if (!PostMessage(hwndClientDDE,

WM_DDE_DATA,
(WPARAM) hwndServerDDE,
PackDDElParam(WM_DDE_DATA, 0,
atomItem))) { /* NULL data */
GlobalDeleteAtom(atomItem);
FreeDDElParam(WM_DDE_DATA, lParam);
}
}

}
if (atomItem == 0) {
.
. /* error handling */
.
}As necessary, the client can request the latest value of the data item by issuing a normal

WM_DDE_REQUEST message, or it can simply ignore the notice from the server that the data
has changed. In either case, if fAckReq is equal to 1, the client is expected to send a positive
WM_DDE_ACK message to the server.

Terminating a Data Link
If the client requests that a specific data link be terminated, the client sends the server a
WM_DDE_UNADVISE message, as shown in the following example.if ((atomItem = GlobalAddAtom(szItemName)) != 0) {

if (!PostMessage(hwndServerDDE,
WM_DDE_UNADVISE,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_UNADVISE, 0, atomItem))) {
GlobalDeleteAtom(atomItem);
FreeDDElParam(WM_DDE_UNADVISE, lParam);
}

}
if (atomItem == 0) {
.
. /* error handling */
.
}The server checks whether the client currently has a link to the specific item in this conversation. If

a link exists, the server sends the client a positive WM_DDE_ACK message; the server is then no
longer required to send updates about the item. If no link exists, the server sends the client a
negative WM_DDE_ACK message.

The WM_DDE_UNADVISE message specifies a data format. A format of zero informs the server
to stop all links for the specified item, even if several hot links are established and each uses a
different format.

To terminate all links for a conversation, the client application sends the server a
WM_DDE_UNADVISE message with a null item atom. The server determines whether the
conversation has at least one link currently established. If a link exists, the server sends the client
a positive WM_DDE_ACK message; the server then no longer has to send any updates in the
conversation. If no link exists, the server sends the client a negative WM_DDE_ACK message.

Carrying Out Commands in a Server Application
A Win32-based application can use the WM_DDE_EXECUTE message to cause a certain
command or series of commands to be carried out in another application. To do this, the client
sends the server a WM_DDE_EXECUTE message containing a handle to a command string, as
shown in the following example.if (!(hCommand = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE,

sizeof(szCommandString) + 1)))
return;

if (!(lpCommand = GlobalLock(hCommand))) {
GlobalFree(hCommand);
return;

}
lstrcpy(lpCommand, szCommandString);
GlobalUnlock(hCommand);
if (!PostMessage(hwndServerDDE,

WM_DDE_EXECUTE,
(WPARAM) hwndClientDDE,
PackDDElParam(WM_DDE_EXECUTE, 0, (UINT) hCommand))) {
GlobalFree(hCommand);
FreeDDElParam(WM_DDE_EXECUTE, lParam);

}In this example, the server attempts to carry out the specified command string. If it succeeds, the
server sends the client a positive WM_DDE_ACK message; otherwise, it sends a negative
WM_DDE_ACK message. This WM_DDE_ACK message reuses the hCommand handle passed
in the original WM_DDE_EXECUTE message.

If the client's command execution string requests that the server terminate, the server should
respond by sending a positive WM_DDE_ACK message and then post a WM_DDE_TERMINATE
message before terminating. All other commands sent with a WM_DDE_EXECUTE message
should be executed synchronously; that is, the server should send a WM_DDE_ACK message
only after successfully completing the command.

Terminating a Conversation
Either the client or the server can issue a WM_DDE_TERMINATE message to terminate a
conversation at any time. Similarly, both the client and server applications should be prepared to
receive this message at any time. An application must terminate all of its conversations before
shutting down.

In the following example, the application terminating the conversation posts a
WM_DDE_TERMINATE message.PostMessage(hwndServerDDE, WM_DDE_TERMINATE,

PackDDElParam(WM_DDE_TERMINATE, (UINT) hwndClientDDE, 0), 0);This informs the other application that the sending application will send no further messages and
the recipient can close its window. The recipient is expected in all cases to respond promptly by
sending a WM_DDE_TERMINATE message. The recipient must not send a negative, busy, or
positive WM_DDE_ACK message.

After an application has sent the WM_DDE_TERMINATE message to the partner in a DDE
conversation, it must not respond to messages from that partner, since the partner might have
destroyed the window to which the response would be sent.

If an application receives a DDE message other than WM_DDE_TERMINATE after it has posted
WM_DDE_TERMINATE, it should free all objects associated with the received messages except
the data handles for WM_DDE_DATA or WM_DDE_POKE messages that do not have the
fRelease member set.

When an application is about to terminate, it should end all active DDE conversations before
completing processing of the WM_DESTROY message. However, if an application does not end
its active DDE conversations, the system will terminate any DDE conversations associated with a
window when the window is destroyed. The following example shows how a server application
terminates all DDE conversations.void TerminateConversations(hwndServerDDE)
HWND hwndServerDDE;
{

HWND hwndClientDDE;
/* Terminate each active conversation. */
while (hwndClientDDE = GetNextLink(hwndClientDDE)) {
SendTerminate(hwndServerDDE, hwndClientDDE);
}
return;

}
BOOL AtLeastOneLinkActive(VOID)
{

return TRUE;
}
HWND GetNextLink(hwndDummy)

HWND hwndDummy;
{

return (HWND) 1;
}
VOID SendTerminate(HWND hwndServerDDE, HWND hwndClientDDE)
{

return;
}

Dynamic Data Exchange Reference
The following functions, structures and messages are associated with dynamic data exchange.

Dynamic Data Exchange Functions
Following are the functions used with DDE.
DdeSetQualityOfService
FreeDDElParam
ImpersonateDdeClientWindow
PackDDElParam
ReuseDDElParam

UnpackDDElParam

Dynamic Data Exchange Structures
The following structures are used with DDE.
DDEACK
DDEADVISE
DDEDATA
DDEPOKE

HSZPAIR

Obsolete
DDELN

DDEUP

Dynamic Data Exchange Messages
Following are the messages used with DDE.
WM_DDE_ACK
WM_DDE_ADVISE
WM_DDE_DATA
WM_DDE_EXECUTE
WM_DDE_INITIATE
WM_DDE_POKE
WM_DDE_REQUEST
WM_DDE_TERMINATE

WM_DDE_UNADVISE

Dynamic Data Exchange ManagementLibraryIn Microsoft® Windows®, dynamic data exchange (DDE) is a form of interprocess communications
that uses shared memory to exchange data between applications. Applications can use DDE for
one-time data transfers and for ongoing exchanges and updating of data.

About the DDEML
DDE differs from the clipboard data-transfer mechanism that is also part of the Windows operating
system. One difference is that the clipboard is almost always used as a one-time response to a
specific action by the user ¾ such as choosing the Paste command from a menu. Although DDE
may also be initiated by a user, it typically continues without the user's further involvement.

The dynamic data exchange management library (DDEML) provides an application programming
interface (API) that simplifies the task of adding DDE capability to a Windows application. Instead
of sending, posting, and processing DDE messages directly, an application uses the functions
provided by the DDEML to manage DDE conversations. A DDE conversation is the interaction
between client and server applications. The DDEML also provides a means for managing the
strings and data shared among DDE applications. Instead of using atoms and pointers to shared
memory objects, DDE applications create and exchange string handles, which identify strings, and
data handles, which identify DDE objects. The DDEML provides a function (DdeNameService)
that enables a server application to register the service names it supports. The service names are
then broadcast to other applications in the system, which use the names to connect to the server.
The DDEML also ensures compatibility among DDE applications by requiring them to implement
the DDE protocol in a consistent manner.

Existing applications using the message-based DDE protocol are fully compatible with those that
use the DDEML; that is, an application using message-based DDE can establish conversations
and perform transactions with applications using the DDEML. Instead of using DDE messages in
your new application, take advantage of the DDEML and the many improvements it offers.

To use the API elements of the DDEML, you must include the DDEML.H header file in your
source files, link with the USER32.LIB file, and ensure that the DDEML.DLL file resides in the
system's path.

Basic Concepts
The concepts in this section are key to understanding DDE and the DDEML.

Client and Server Interaction
DDE always occurs between a client application and a server application. The DDE client
application initiates the exchange by establishing a conversation with the server to send
transactions to the server. A transaction is a request for data or services. The DDE server
application responds to transactions by providing data or services to the client. For example, a
graphics application might contain a bar graph representing a corporation's quarterly profits, but
the data for the bar graph might be contained in a spreadsheet application. To obtain the latest
profit figures, the graphics application (the client) could establish a conversation with the
spreadsheet application (the server). The graphics application could then send a transaction to
the spreadsheet application, requesting the latest profit figures.

A server can have many clients at the same time, and a client can request data from multiple
servers. An application can also be both a client and a server. Either the client or the server can
terminate the conversation at any time.

Transactions and the DDE Callback Function
The DDEML notifies an application about DDE activity that affects the application by sending
transactions to the application's DDE callback function. A DDE transaction is similar to a message
¾ it is a named constant accompanied by other parameters that contain additional information
about the transaction.

The DDEML passes a transaction to an application-defined DDE callback function that carries out
an action appropriate to the type of transaction. For example, when a client application attempts to
establish a conversation with a server application, the client calls the DdeConnect function. This
function causes the DDEML to send an XTYP_CONNECT transaction to the server's DDE
callback function. The callback function can allow the conversation by returning TRUE to the
DDEML, or it can deny the conversation by returning FALSE. For a detailed discussion of
transactions, see Transaction Management.

Service Names, Topic Names, and Item Names
A DDE server uses a three-level hierarchy ¾ service name (called "application name" in previous
DDE documentation), topic name, and item name ¾ to uniquely identify a unit of data the server
can exchange during a conversation.

A service name is a string a server application responds to when a client attempts to establish a
conversation with the server. A client must specify this service name to establish a conversation
with the server. Although a server can respond to many service names, most servers respond to
only one name.

A topic name is a string that identifies a logical data context. For servers that operate on file-
based documents, topic names are typically filenames; for other servers, they are other
application-specific strings. A client must specify a topic name along with a server's service name
when it attempts to establish a conversation with a server.

An item name is a string that identifies a unit of data a server can pass to a client during a
transaction. For example, an item name might identify an integer, a string, several paragraphs of
text, or a bitmap.

The service, topic, and item names enable the client to establish a conversation with a server and
to receive data from the server.

System Topic
The System topic provides a context for information of general interest to any DDE client. It is
recommended that server applications support the System topic at all times. The System topic is
defined in the DDEML.H header file as SZDDESYS_TOPIC.

To determine which servers are present and the kinds of information they can provide, a client
application can request a conversation on the System topic upon starting, setting the device name
to NULL. Such wildcard conversations are costly in terms of system performance, so they should
be kept to a minimum. For more information about initiating DDE conversations, see Conversation
Management.

A server must support the following item names within the System topic and any other item names
that are useful to a client.

Item Description

SZDDE_ITEM_ITEMLIST A list of the items supported under a
non-System topic. (This list may vary
from moment to moment and from topic
to topic.)

SZDDESYS_ITEM_FORMATSA tab-delimited list of strings
representing all clipboard formats
potentially supported by the service
application. Strings that represent
predefined clipboard formats are
equivalent to the CF_ values with the
"CF_" prefix removed. For example, the
CF_TEXT format is represented by the
string "TEXT". These strings must be
uppercase to further identify them as
predefined formats. The list of formats
must appear in the order of most rich in
content to least rich in content.
For more information about clipboard
formats and rendering data, see
Clipboard.

SZDDESYS_ITEM_HELP User-readable information of general
interest. This item must contain, at a
minimum, information on how to use the
server application's DDE features. This
information may include, but is not
limited to, how to specify items within
topics, what execute strings the server
can perform, what poke transactions
are allowed, and how to find help on
other System topic items.

SZDDESYS_ITEM_RTNMSGSupporting detail for the most recently
used WM_DDE_ACK message. This
item is useful when more than 8 bits of
application-specific return data are
required.

SZDDESYS_ITEM_STATUS An indication of the current status of the
server. Typically, this item supports only
the CF_TEXT format and contains the
Ready or Busy string.

SZDDESYS_ITEM_SYSITEMSA list of the items supported under the
System topic by this server.

SZDDESYS_ITEM_TOPICS A list of the topics supported by the
server at the current time. (This list may
vary from moment to moment.)

These item names are values defined in the DDEML.H header file. To obtain string handles
for these strings, an application must use the DDEML string-management functions, just as
it would for any other string in a DDEML application. For more information about managing
strings, see String Management.

DDEML and Threads
The DdeInitialize function registers an application with the DDEML, creating a DDEML instance.
A DDEML instance is thread-based, associated with the thread that called DdeInitialize.

All DDEML function calls for objects belonging to a DDEML instance must be made from the
same thread that called DdeInitialize to create the instance. If you call a DDEML function from a
different thread, the function will fail. You cannot access a DDEML conversation from a thread
other than the one that allocated the conversation.

Initialization
Before calling any other DDEML function, an application must call the DdeInitialize function.
DdeInitialize obtains an instance identifier for the application, registers the application's DDE
callback function with the DDEML, and specifies the transaction filter flags for the callback
function.

Each instance of an application or a dynamic-link library (DLL) must pass its instance identifier as
the idInst parameter to any other DDEML function that requires it. The purpose of multiple DDEML
instances is to support DLLs that must use the DDEML at the same time an application is using it.
An application must not use more than one instance of the DDEML.

Transaction filters optimize system performance by preventing the DDEML from passing
unwanted transactions to the application's DDE callback function. An application sets the
transaction filters when it calls DdeInitialize. An application must specify a transaction filter flag
for each type of transaction that it does not process in its callback function. An application can
change its transaction filters with a subsequent call to DdeInitialize. For a complete list of
transaction filter flags, see the description of DdeInitialize in the Microsoft Win32 Programmer's
Reference, Volume 3. For more information about transactions, see Transaction Management.

The following example shows how to initialize an application to use the DDEML.DWORD idInst = 0;
HINSTANCE hinst;
.
.
.
DdeInitialize(&idInst, /* receives instance identifier */

(PFNCALLBACK) DdeCallback, /* address of callback function */
CBF_FAIL_EXECUTES | /* filter XTYPE_EXECUTE */
CBF_SKIP_ALLNOTIFICATIONS, /* filter notifications */
0);

.

.

.An application must call the DdeUninitialize function when it is no longer going to use the
DDEML. This function terminates any conversations currently open for the application and frees
the DDEML resources the system allocated for the application.

Callback Function
An application that uses the DDEML must provide a callback function that processes the DDE
events affecting the application. The DDEML notifies an application of such events by sending
transactions to the application's DDE callback function. The transactions a callback function
receives depend on which callback filter flags the application specified in DdeInitialize and
whether the application is a client, a server, or both. For more information, please see
DdeCallback.

The following example shows the general structure of a callback function for a typical client
application.HDDEDATA CALLBACK DdeCallback(uType, uFmt, hconv, hsz1,

hsz2, hdata, dwData1, dwData2)
UINT uType; /* transaction type */
UINT uFmt; /* clipboard data format */
HCONV hconv; /* handle of conversation */
HSZ hsz1; /* handle of string */
HSZ hsz2; /* handle of string */
HDDEDATA hdata; /* handle of global memory object */
DWORD dwData1; /* transaction-specific data */
DWORD dwData2; /* transaction-specific data */
{

switch (uType) {
case XTYP_REGISTER:
case XTYP_UNREGISTER:
.
.
.
return (HDDEDATA) NULL;
case XTYP_ADVDATA:
.
.
.
return (HDDEDATA) DDE_FACK;
case XTYP_XACT_COMPLETE:
.
.
.
return (HDDEDATA) NULL;
case XTYP_DISCONNECT:
.
.
.
return (HDDEDATA) NULL;
default:
return (HDDEDATA) NULL;
}

}The uType parameter specifies the transaction type sent to the callback function by the DDEML.
The values of the remaining parameters depend on the transaction type. The transaction types
and the events that generate them are described in the following topics. For detailed information
about each transaction type, see Transaction Management.

String Management
To carry out a DDE task, many DDEML functions require access to strings. For example, a client
must specify a service name and a topic name when it calls the DdeConnect function to request
a conversation with a server. An application specifies a string by passing a string handle (HSZ)
rather than a pointer in a DDEML function. A string handle is a doubleword value, assigned by the
system, that identifies a string.

An application can obtain a string handle for a particular string by calling the
DdeCreateStringHandle function. This function registers the string with the system and returns a
string handle to the application. The application can pass the handle to DDEML functions that
must access the string. The following example obtains string handles for the System topic string
and the service name string.HSZ hszServName;
HSZ hszSysTopic;
.
.
.
hszServName = DdeCreateStringHandle(

idInst, /* instance identifier */
"MyServer",/* string to register*/
CP_WINANSI); /* Windows ANSI code page */

hszSysTopic = DdeCreateStringHandle(
idInst, /* instance identifier */
SZDDESYS_TOPIC, /* System topic */
CP_WINANSI); /* Windows ANSI code page */

.

.

.The idInst parameter in the preceding example specifies the instance identifier obtained by the
DdeInitialize function.

An application's DDE callback function receives one or more string handles during most DDE
transactions. For example, a server receives two string handles during the XTYP_REQUEST
transaction: one identifies a string specifying a topic name, and the other identifies a string
specifying an item name. An application can obtain the length of the string that corresponds to a
string handle and copy the string to an application-defined buffer by calling the DdeQueryString
function, as shown in the following example.DWORD idInst;
DWORD cb;
HSZ hszServ;
PSTR pszServName;
.
.
.
cb = DdeQueryString(idInst, hszServ, (LPSTR) NULL, 0,

CP_WINANSI) + 1;
pszServName = (PSTR) LocalAlloc(LPTR, (UINT) cb);
DdeQueryString(idInst, hszServ, pszServName, cb, CP_WINANSI);
.
.
.An instance-specific string handle cannot be mapped from string handle to string and back to

string handle. For instance, although DdeQueryString creates a string from a string handle and
then DdeCreateStringHandle creates a string handle from that string, the two handles are not the
same, as shown in the following example.DWORD idInst;
DWORD cb;
HSZ hszInst, hszNew;
PSZ pszInst;
.
.
.
DdeQueryString(idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idInst, pszInst, CP_WINANSI);
/* hszNew != hszInst ! */
.
.
.To compare the values of two string handles, use the DdeCmpStringHandles function.

A string handle passed to an application's DDE callback function becomes invalid when the
callback function returns. An application can save a string handle for use after the callback
function returns by using the DdeKeepStringHandle function.

When an application calls DdeCreateStringHandle, the system enters the specified string into a
string table and generates a handle that it uses to access the string. The system also maintains a
usage count for each string in the string table.

When an application calls DdeCreateStringHandle and specifies a string that already exists in
the table, the system increments the usage count rather than adding another occurrence of the
string. (An application can also increment the usage count by using DdeKeepStringHandle.)
When an application calls the DdeFreeStringHandle function, the system decrements the usage
count.

A string is removed from the table when its usage count equals zero. Because more than one
application can obtain the handle of a particular string, an application must not free a string handle
more times than it has created or retained the handle. Otherwise, the application can cause the
string to be removed from the table, denying other applications access to the string.

The DDEML string-management functions are based on the Windows atom manager and are
subject to the same size restrictions as are atoms.

Name Service
The DDEML makes it possible for a server application to register the service names that it
supports and to prevent the DDEML from sending XTYP_CONNECT transactions for unsupported
service names to the server's DDE callback function. The remaining topics in this section describe
the name service.

Service Name Registration
By registering its service names with the DDEML, a server informs other DDE applications in the
system that a new server is available. A server registers a service name by calling the
DdeNameService function and specifying a string handle that identifies the name. In response,
the DDEML sends an XTYP_REGISTER transaction to the callback function of each DDEML
application in the system (except those that specified the CBF_SKIP_REGISTRATIONS filter flag
in the DdeInitialize function). The XTYP_REGISTER transaction passes two string handles to a
callback function: the first identifies the string specifying the base service name, and the second
identifies the string specifying the instance-specific service. A client typically uses the base service
name in a list of available servers, so the user can select a server from the list. The client uses the
instance-specific service name to establish a conversation with a specific instance of a server
application, if more than one instance is running.

A server can use DdeNameService to unregister a service name. This function causes the
DDEML to send XTYP_UNREGISTER transactions to the other DDE applications in the system,
informing them that they can no longer use the name to establish conversations.

A server must call DdeNameService to register its service names soon after calling DdeInitialize.
A server must unregister its service names by using DdeNameService just before calling the
DdeUninitialize function.

Service Name Filter
In addition to registering service names, DdeNameService enables a server to turn its service
name filter on or off. When a server turns off its service name filter, the DDEML sends the
XTYP_CONNECT transaction to the server's DDE callback function whenever any client calls the
DdeConnect function, regardless of the service name specified in the function. When a server
turns on its service name filter, the DDEML sends the XTYP_CONNECT transaction to the server
only when DdeConnect specifies a service name the server has specified in a call to
DdeNameService.

By default, the service name filter is on when an application calls DdeInitialize. This default
prevents the DDEML from sending the XTYP_CONNECT transaction to a server before the server
has created the string handles it needs. A server can turn off its service name filter by specifying
the DNS_FILTEROFF flag in a call to DdeNameService. The DNS_FILTERON flag turns on the
filter.

Conversation Management
A conversation between a client and a server is always established at the request of the client.
When a conversation is established, each partner receives a handle that identifies the
conversation. The partners use this handle in other DDEML functions to send transactions and
manage the conversation. A client can request a conversation with a single server, or it can
request multiple conversations with one or more servers.

The remaining topics in this section describe how an application establishes new conversations
and gets information about existing conversations.

Single Conversations
A client application requests a single conversation with a server by calling the DdeConnect
function and specifying string handles that identify the strings containing the service name of the
server application and the topic name for the conversation. The DDEML responds by sending the
XTYP_CONNECT transaction to the DDE callback function of each server application that either
has registered a service name that matches the one specified in DdeConnect or has turned
service name filtering off by calling DdeNameService. A server can also filter XTYP_CONNECT
transactions by specifying the CBF_FAIL_CONNECTIONS filter flag in the DdeInitialize function.
During the XTYP_CONNECT transaction, the DDEML passes the service name and the topic
name to the server. The server must examine the names and return TRUE if it supports the
service name and topic name pair or FALSE if it does not.

If no server responds positively to the client's request to connect, the client receives NULL from
DdeConnect and no conversation is established. If a server returns TRUE, a conversation is
established and the client receives a conversation handle ¾ a doubleword value that identifies the
conversation. The client uses the handle in subsequent DDEML calls to obtain data from the
server. The server receives the XTYP_CONNECT_CONFIRM transaction (unless the server
specified the CBF_SKIP_CONNECT_CONFIRMS filter flag). This transaction passes the
conversation handle to the server.

The following example requests a conversation on the System topic with a server that recognizes
the service name MyServer. The hszServName and hszSysTopic parameters are previously
created string handles.HCONV hConv; /* conversation handle */
HWND hwndParent;/* parent window handle */
HSZ hszServName;/* service name string handle*/
HSZ hszSysTopic;/* System topic string handle*/
.
.
hConv = DdeConnect(

idInst,/* instance identifier */
hszServName,/* service name string handle */
hszSysTopic,/* System topic string handle */
(PCONVCONTEXT) NULL); /* use default context */

if (hConv == NULL) {
MessageBox(hwndParent, "MyServer is unavailable.",
(LPSTR) NULL, MB_OK);
return FALSE;

}
.
.
.In the preceding example, DdeConnect causes the DDE callback function of the MyServer

application to receive an XTYP_CONNECT transaction.

In the following example, the server responds to the XTYP_CONNECT transaction by comparing
the topic name string handle the DDEML passed to the server with each element in the array of
topic name string handles the server supports. If the server finds a match, it establishes the
conversation.#define CTOPICS 5
HSZ hsz1; /* string handle passed by DDEML */
HSZ ahszTopics[CTOPICS]; /* array of supported topics */
int i; /* loop counter */
.
. /* Use a switch statement to examine transaction types. */
.
case XTYP_CONNECT:

for (i = 0; i < CTOPICS; i++) {
if (hsz1 == ahszTopics[i])
return TRUE; /* establish a conversation */
}
return FALSE; /* topic not supported; deny conversation */

.

. /* Process other transaction types. */

.If the server returns TRUE in response to the XTYP_CONNECT transaction, the DDEML sends
an XTYP_CONNECT_CONFIRM transaction to the server's DDE callback function. The server
can obtain the handle for the conversation by processing this transaction.

A client can establish a wildcard conversation by specifying NULL for the service name string
handle, the topic name string handle, or both in a call to DdeConnect. If at least one of the string
handles is NULL, the DDEML sends the XTYP_WILDCONNECT transaction to the callback
functions of all DDE applications (except those that filter the XTYP_WILDCONNECT transaction).
Each server application should respond by returning a data handle that identifies a null-
terminated array of HSZPAIR structures. If the server application has not called
DdeNameService to register its service names and if filtering is on, the server does not receive
XTYP_WILDCONNECT transactions. For more information about data handles, see Data
Management.

The array must contain one structure for each service name and topic name pair that matches the
pair specified by the client. The DDEML selects one of the pairs to establish a conversation and
returns to the client a handle that identifies the conversation. The DDEML sends the
XTYP_CONNECT_CONFIRM transaction to the server (unless the server filters this transaction).
The following example shows a typical server response to the XTYP_WILDCONNECT
transaction.#define CTOPICS 2
UINT uType;
HSZPAIR ahszp[(CTOPICS + 1)];
HSZ ahszTopicList[CTOPICS];
HSZ hszServ, hszTopic;
WORD i, j;
if (uType == XTYP_WILDCONNECT) {
/*
* Scan the topic list and create an array of HSZPAIR
* structures.
*/

j = 0;
for (i = 0; i < CTOPICS; i++) {
if (hszTopic == (HSZ) NULL ||

hszTopic == ahszTopicList[i]) {
ahszp[j].hszSvc = hszServ;
ahszp[j++].hszTopic = ahszTopicList[i];
}
}
/*

* End the list with an HSZPAIR structure that contains NULL
* string handles as its members.
*/

ahszp[j].hszSvc = NULL;
ahszp[j++].hszTopic = NULL;
/*

* Return a handle to a global memory object containing the
* HSZPAIR structures.
*/

return DdeCreateDataHandle(
idInst,/* instance identifier*/
(LPBYTE) &ahszp, /* points to HSZPAIR array */
sizeof(HSZ) * j, /* length of the array*/
0,/* start at the beginning */
(HSZ) NULL, /* no item name string*/
0,/* return the same format */
0); /* let the system own it */

}Either the client or the server can terminate a conversation at any time by calling the
DdeDisconnect function. This function causes the callback function of the partner in the
conversation to receive the XTYP_DISCONNECT transaction (unless the partner specified the
CBF_SKIP_DISCONNECTS filter flag). Typically, an application responds to the
XTYP_DISCONNECT transaction by using the DdeQueryConvInfo function to obtain information
about the conversation that terminated. After the callback function returns from processing the
XTYP_DISCONNECT transaction, the conversation handle is no longer valid.

A client application that receives an XTYP_DISCONNECT transaction in its DDE callback function
can attempt to reestablish the conversation by calling the DdeReconnect function. The client
must call DdeReconnect from within its DDE callback function.

Multiple Conversations
A client application can use the DdeConnectList function to determine whether any servers of
interest are available in the system. A client specifies a service name and topic name when it calls
DdeConnectList, causing the DDEML to broadcast the XTYP_WILDCONNECT transaction to the
DDE callback functions of all servers that match the service name (except those that filter the
transaction). A server's callback function should return a data handle that identifies a null-
terminated array of HSZPAIR structures. The array should contain one structure for each service
name and topic name pair that matches the pair specified by the client. The DDEML establishes a
conversation for each HSZPAIR structure filled by the server and returns a conversation list
handle to the client. The server receives the conversation handle by way of the
XTYP_CONNECT_CONFIRM transaction (unless the server filters this transaction).

A client can specify NULL for the service name, topic name, or both when it calls
DdeConnectList. If the service name is NULL, all servers in the system that support the specified
topic name respond. A conversation is established with each responding server, including multiple
instances of the same server. If the topic name is NULL, a conversation is established on each
topic recognized by each server that matches the service name.

A client can use the DdeQueryNextServer and DdeQueryConvInfo functions to identify the
servers that respond to DdeConnectList. DdeQueryNextServer returns the next conversation
handle in a conversation list, and DdeQueryConvInfo fills a CONVINFO structure with
information about the conversation. The client can keep the conversation handles that it needs
and discard the rest from the conversation list.

The following example uses DdeConnectList to establish conversations with all servers that
support the System topic and then uses the DdeQueryNextServer and DdeQueryConvInfo
functions to obtain the servers' service name string handles and store them in a buffer.HCONVLIST hconvList; /* conversation list */
DWORD idInst; /* instance identifier*/
HSZ hszSystem; /* System topic */
HCONV hconv = NULL; /* conversation handle*/
CONVINFO ci; /* holds conversation data */
UINT cConv = 0; /* count of conv. handles */
HSZ *pHsz, *aHsz; /* point to string handles */
/* Connect to all servers that support the System topic. */
hconvList = DdeConnectList(idInst, NULL, hszSystem, NULL, NULL);
/* Count the number of handles in the conversation list. */
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL)

cConv++;
/* Allocate a buffer for the string handles. */
hconv = NULL;
aHsz = (HSZ *) LocalAlloc(LMEM_FIXED, cConv * sizeof(HSZ));
/* Copy the string handles to the buffer. */
pHsz = aHsz;
while ((hconv = DdeQueryNextServer(hconvList, hconv)) != NULL) {

DdeQueryConvInfo(hconv, QID_SYNC, (PCONVINFO) &ci);
DdeKeepStringHandle(idInst, ci.hszSvcPartner);
*pHsz++ = ci.hszSvcPartner;

}
.
. /* Use the handles; converse with the servers. */
.
/* Free the memory and terminate the conversations. */
LocalFree((HANDLE) aHsz);
DdeDisconnectList(hconvList);An application can terminate an individual conversation in a conversation list by calling the

DdeDisconnect function. An application can terminate all conversations in a conversation list by
calling the DdeDisconnectList function. Both functions cause the DDEML to send
XTYP_DISCONNECT transactions to each partner's DDE callback function. DdeDisconnectList
sends an XTYP_DISCONNECT transaction for each conversation handle in the list.

A client can retrieve a list of the conversation handles in a conversation list by passing an existing
conversation list handle to DdeConnectList. The enumeration process removes the handles of
terminated conversations from the list, and nonduplicate conversations that fit the specified
service name and topic name are added.

If DdeConnectList specifies an existing conversation list handle, the function creates a new
conversation list that contains the handles of any new conversations and the handles from the
existing list.

If duplicate conversations exist, DdeConnectList attempts to prevent duplicate conversation
handles in the conversation list. A duplicate conversation is a second conversation with the same
server on the same service name and topic name. Two such conversations would have different
handles, yet they would identify the same conversation.

Data Management
Because DDE uses memory objects to pass data from one application to another, the DDEML
provides a set of functions that DDE applications can use to create and manage DDE objects.

All transactions that involve the exchange of data require the application supplying the data to
create a local buffer containing the data and then to call the DdeCreateDataHandle function. This
function allocates a DDE object, copies the data from the buffer to the object, and returns a data
handle. A data handle is a doubleword value that the DDEML uses to provide access to data in
the DDE object. To share the data in a DDE object, an application passes the data handle to the
DDEML, and the DDEML passes the handle to the DDE callback function of the application that is
receiving the data transaction.

The following example shows how to create a DDE object and obtain a handle of the object.
During the XTYP_ADVREQ transaction, the callback function converts the current time to an
ASCII string, copies the string to a local buffer, and then creates a DDE object that contains the
string. The callback function returns the handle of the DDE object (HDDEDATA) to the DDEML,
which passes the handle to the client application.typedef struct tagTIME

{
INThour; /* 0 - 11 hours for analog clock */
INThour12; /* 12-hour format */
INThour24; /* 24-hour format */
INTminute;
INTsecond;
INTampm; /* 0 - AM , 1 - PM */

} TIME;
HDDEDATA EXPENTRY DdeCallback(uType, uFmt, hconv, hsz1, hsz2,

hdata, dwData1, dwData2)
UINT uType;
UINT uFmt;
HCONV hconv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hdata;
DWORD dwData1;
DWORD dwData2;
{

CHAR szBuf[32];
switch (uType) {
case XTYP_ADVREQ:
if ((hsz1 == hszTime && hsz2 == hszNow) &&

(uFmt == CF_TEXT)) {
/* Copy the formatted string to a buffer. */
itoa(tmTime.hour, szBuf, 10);
lstrcat(szBuf, ":");
if (tmTime.minute < 10)
lstrcat(szBuf, "0");
itoa(tmTime.minute, &szBuf[lstrlen(szBuf)], 10);
lstrcat(szBuf, ":");
if (tmTime.second < 10)
strcat(szBuf, "0");
itoa(tmTime.second, &szBuf[lstrlen(szBuf)], 10);
szBuf[lstrlen(szBuf)] = '\0';
/* Create a global object and return its data handle. */
return (DdeCreateDataHandle(
idInst,
(LPBYTE) szBuf,/* instance identifier */
lstrlen(szBuf) + 1, /* source buffer length */
0, /* offset from beginning */
hszNow, /* item name string */
CF_TEXT, /* clipboard format */
0)); /* no creation flags*/
} else
return (HDDEDATA) NULL;
.
. /* Process other transactions. */
.
}

}The receiving application obtains a pointer to the DDE object by passing the data handle to the
DdeAccessData function. The pointer returned by DdeAccessData provides read-only access.
The application should use the pointer to review the data and then call the DdeUnaccessData
function to invalidate the pointer. The application can copy the data to a local buffer by using the
DdeGetData function.

The following example obtains a pointer to the DDE object identified by the hData parameter,
copies the contents to a local buffer, and then invalidates the pointer.HDDEDATA hdata;
LPBYTE lpszAdviseData;
DWORD cbDataLen;
DWORD i;
char szData[32];
.
.
.
case XTYP_ADVDATA:

lpszAdviseData = DdeAccessData(hdata, &cbDataLen);
for (i = 0; i < cbDataLen; i++)
szData[i] = *lpszAdviseData++;
DdeUnaccessData(hdata);
return (HDDEDATA) TRUE;

.

.

.Usually, when an application that created a data handle passes that handle to the DDEML, the
handle becomes invalid in the creating application. This situation is not a problem if the application
must share data with only a single application. If an application must share the same data with
multiple applications, however, the creating application should specify the HDATA_APPOWNED
flag in DdeCreateDataHandle. Doing so gives ownership of the DDE object to the creating
application and prevents the DDEML from invalidating the data handle. The application can then
pass the data handle any number of times after calling DdeCreateDataHandle only once.

If an application specifies the HDATA_APPOWNED flag in the afCmd parameter of
DdeCreateDataHandle, it must call the DdeFreeDataHandle function to free the memory handle,
regardless of whether it passed the handle to the DDEML. Before it terminates, an application
must call DdeFreeDataHandle to free any data handle that it created but did not pass to the
DDEML.

An application that has not yet passed the handle of a DDE object to the DDEML can add data to
the object or overwrite data in the object by using the DdeAddData function. Typically, an
application uses DdeAddData to fill an uninitialized DDE object. After an application passes a
data handle to the DDEML, the DDE object identified by the handle cannot be changed; it can
only be freed.

Transaction Management
After establishing a conversation with a server, a client can send transactions to obtain data and
services from the server. The remaining topics in this section describe the types of transactions
that clients can use to interact with a server.

Request Transaction
A client application can use the XTYP_REQUEST transaction to request a data item from a server
application. The client calls the DdeClientTransaction function, specifying XTYP_REQUEST as
the transaction type and specifying the data item the application needs.

The DDEML passes the XTYP_REQUEST transaction to the server, specifying the topic name,
item name, and data format requested by the client. If the server supports the requested topic,
item, and format, the server should return a data handle that identifies the current value of the
item. The DDEML passes this handle to the client as the return value from
DdeClientTransaction. The server should return NULL if it does not support the topic, item, or
format requested.

DdeClientTransaction uses the lpdwResult parameter to return a transaction-status flag to the
client. If the server does not process the XTYP_REQUEST transaction, DdeClientTransaction
returns NULL, and lpdwResult points to the DDE_FNOTPROCESSED or DDE_FBUSY flag. If the
DDE_FNOTPROCESSED flag is returned, the client cannot determine why the server did not
process the transaction.

If a server does not support the XTYP_REQUEST transaction, it should specify the
CBF_FAIL_REQUESTS filter flag in the DdeInitialize function. This flag prevents the DDEML
from sending the transaction to the server.

Poke Transaction
A client can send unsolicited data to a server by using DdeClientTransaction to send an
XTYP_POKE transaction to a server's callback function.

The client application first creates a buffer that contains the data to send to the server and then
passes a pointer to the buffer as a parameter to DdeClientTransaction. Alternatively, the client
can use the DdeCreateDataHandle function to obtain a data handle that identifies the data and
then pass the handle to DdeClientTransaction. In either case, the client also specifies the topic
name, item name, and data format when it calls DdeClientTransaction.

The DDEML passes the XTYP_POKE transaction to the server, specifying the topic name, item
name, and data format that the client requested. To accept the data item and format, the server
should return DDE_FACK. To reject the data, the server should return DDE_FNOTPROCESSED.
If the server is too busy to accept the data, the server should return DDE_FBUSY.

When DdeClientTransaction returns, the client can use the lpdwResult parameter to access the
transaction-status flag. If the flag is DDE_FBUSY, the client should send the transaction again
later.

If a server does not support the XTYP_POKE transaction, it should specify the
CBF_FAIL_POKES filter flag in DdeInitialize. This flag prevents the DDEML from sending this
transaction to the server.

Advise Transaction
A client application can use the DDEML to establish one or more links to items in a server
application. When such a link has been established, the server sends periodic updates about the
linked item to the client (typically, whenever the value of the item associated with the server
application changes). Linking establishes an advise loop between the two applications that
remains in place until the client ends it.

There are two kinds of advise loops: "hot" and "warm." In a hot advise loop, the server
immediately sends a data handle that identifies the changed value. In a warm advise loop, the
server notifies the client that the value of the item has changed but does not send the data handle
until the client requests it.

A client can request a hot advise loop with a server by specifying the XTYP_ADVSTART
transaction type in a call to DdeClientTransaction. To request a warm advise loop, the client
must combine the XTYPF_NODATA flag with the XTYP_ADVSTART transaction type. In either
event, the DDEML passes the XTYP_ADVSTART transaction to the server's DDE callback
function. The server's DDE callback function should examine the parameters that accompany the
XTYP_ADVSTART transaction (including the requested format, topic name, and item name) and
then return TRUE to allow the advise loop or FALSE to deny it.

After an advise loop has been established, the server application should call the DdePostAdvise
function whenever the value of the item associated with the requested item name changes. This
call results in an XTYP_ADVREQ transaction being sent to the server's own DDE callback
function. The server's DDE callback function should return a data handle that identifies the new
value of the data item. The DDEML then notifies the client that the specified item has changed by
sending the XTYP_ADVDATA transaction to the client's DDE callback function.

If the client requested a hot advise loop, the DDEML passes the data handle for the changed item
to the client during the XTYP_ADVDATA transaction. Otherwise, the client can send an
XTYP_REQUEST transaction to obtain the data handle.

It is possible for a server to send updates faster than a client can process the new data. The
speed of updates can be a problem for a client that must perform lengthy processing operations
on the data. In this case, the client should specify the XTYPF_ACKREQ flag when it requests an
advise loop. This flag causes the server to wait for the client to acknowledge that it has received
and processed a data item before the server sends the next data item. Advise loops that are
established with the XTYPF_ACKREQ flag are more robust with fast servers but may occasionally
miss updates. Advise loops established without the XTYPF_ACKREQ flag are guaranteed not to
miss updates as long as the client keeps up with the server.

A client can end an advise loop by specifying the XTYP_ADVSTOP transaction type in a call to
DdeClientTransaction.

If a server does not support advise loops, it should specify the CBF_FAIL_ADVISES filter flag in
the DdeInitialize function. This flag prevents the DDEML from sending the XTYP_ADVSTART
and XTYP_ADVSTOP transactions to the server.

Execute Transaction
A client can use the XTYP_EXECUTE transaction to cause a server to execute a command or a
series of commands.

To execute a server command, the client first creates a buffer that contains a command string for
the server to execute and then passes either a pointer to the buffer or a data handle identifying
the buffer when it calls DdeClientTransaction. Other required parameters include the
conversation handle, the item name string handle, the format specification, and the
XTYP_EXECUTE transaction type. An application that creates a data handle for passing execute
data must specify NULL for the hszItem parameter of the DdeCreateDataHandle function and
zero for the uFmt parameter.

The DDEML passes the XTYP_EXECUTE transaction to the server's DDE callback function and
specifies the format name, conversation handle, topic name, and data handle identifying the
command string. If the server supports the command, it should use the DdeAccessData function
to obtain a pointer to the command string, execute the command, and then return DDE_FACK. If
the server does not support the command or cannot complete the transaction, it should return
DDE_FNOTPROCESSED. The server should return DDE_FBUSY if it is too busy to complete the
transaction.

In general, a server's callback function should process the XTYP_EXECUTE transaction before
returning with the following exceptions:

1. When the command passed with the XTYP_EXECUTE transaction requests the server to
terminate, the server should not terminate until its callback function returns from processing
XTYP_EXECUTE.

2. If the server must perform an operation, such as processing a dialog box or a DDE
transaction that might cause DDEML recursion problems, the server should return the
CBR_BLOCK return code to block the execute transaction, perform the operation, and then
resume processing the execute transaction.

When DdeClientTransaction returns, the client can use the lpdwResult parameter to access the
transaction status flag. If the flag is DDE_FBUSY, the client should send the transaction again
later.

If a server does not support the XTYP_EXECUTE transaction, it should specify the
CBF_FAIL_EXECUTES filter flag in the DdeInitialize function. Doing so prevents the DDEML
from sending the transaction to the server.

Synchronous and Asynchronous Transactions
A client can send either synchronous or asynchronous transactions. In a synchronous transaction,
the client specifies a time-out value that indicates the maximum amount of time it will wait for the
server to process the transaction. DdeClientTransaction does not return until the server
processes the transaction, the transaction fails, or the time-out value expires. The client specifies
the time-out value when it calls DdeClientTransaction.

During a synchronous transaction, the client enters a modal loop while waiting for the transaction
to be processed. The client can still process user input but cannot send another synchronous
transaction until DdeClientTransaction returns.

A client sends an asynchronous transaction by specifying the TIMEOUT_ASYNC flag in
DdeClientTransaction. The function returns after the transaction has begun, passing a
transaction identifier to the client. When the server finishes processing the asynchronous
transaction, the DDEML sends an XTYP_XACT_COMPLETE transaction to the client. One of the
parameters that the DDEML passes to the client during the XTYP_XACT_COMPLETE transaction
is the transaction identifier. By comparing this transaction identifier with the identifier returned by
DdeClientTransaction, the client identifies which asynchronous transaction the server has
finished processing.

A client can use the DdeSetUserHandle function as an aid in processing an asynchronous
transaction. This function makes it possible for a client to associate an application-defined
doubleword value with a conversation handle and a transaction identifier. The client can use the
DdeQueryConvInfo function during the XTYP_XACT_COMPLETE transaction to obtain the
application-defined doubleword value. Because of this function, an application need not maintain
a list of active transaction identifiers.

When a client successfully completes a request for data using a synchronous transaction, the
DDEML has no way to tell when the client has finished using the data received. The client
application must pass the data handle received to the DdeFreeDataHandle function, notifying the
DDEML that the handle will no longer be used. Data handles returned by synchronous
transactions are effectively owned by the client.

If a server does not process an asynchronous transaction in a timely manner, the client can
abandon the transaction by calling the DdeAbandonTransaction function. The DDEML releases
all resources associated with the transaction and discards the results of the transaction when the
server finishes processing it. A time-out during a synchronous transaction effectively cancels the
transaction.

The asynchronous transaction method is provided for applications that must send a high volume
of DDE transactions while simultaneously performing a substantial amount of processing, such as
performing calculations. The asynchronous method is also useful in applications that must stop
processing DDE transactions temporarily so they can complete other tasks without interruption. In
most other situations, an application should use the synchronous method.

Synchronous transactions are simpler to maintain and are faster than asynchronous transactions.
However, only one synchronous transaction can be performed at a time, whereas many
asynchronous transactions can be performed simultaneously. With synchronous transactions, a
slow server can cause a client to remain idle while it is waiting for a response. Also, synchronous
transactions cause the client to enter a modal loop that could bypass message filtering in the
application's own message loop.

If the client has installed a hook procedure to filter messages (that is, specified the
WH_MSGFILTER hook type in a call to the SetWindowsHookEx function), a synchronous
transaction will not cause the system to bypass the hook procedure. When an input event occurs
while the client is waiting for a synchronous transaction to end, the hook procedure receives an
MSGF_DDEMGR hook code. The main danger of using a synchronous transaction modal loop is
that a modal loop created by a dialog box can interfere with its operation. Asynchronous
transactions should always be used when the DDEML is being used by a dynamic-link library
(DLL).

Transaction Control
An application can suspend transactions to its DDE callback function ¾ either those transactions
associated with a specific conversation handle or all transactions regardless of the conversation
handle. This capability is useful when an application receives a transaction that requires lengthy
processing. In such a case, the application can return the CBR_BLOCK return code to suspend
future transactions associated with the transaction's conversation handle, so that the application is
free to process other conversations.

When processing has been completed, the application calls the DdeEnableCallback function to
resume transactions associated with the suspended conversation. Calling DdeEnableCallback
causes the DDEML to resend the transaction that resulted in the application suspending the
conversation. Therefore, the application should store the result of the transaction in such a way
that it can obtain and return the result without reprocessing the transaction.

An application can suspend all transactions associated with a specific conversation handle by
specifying the handle and the EC_DISABLE flag in a call to DdeEnableCallback. By specifying a
NULL handle, an application can suspend all transactions for all conversations.

When a conversation has been suspended, the DDEML saves transactions for the conversation in
a transaction queue. When the application reenables the conversation, the DDEML removes the
saved transactions from the queue and passes each transaction to the appropriate callback
function. The capacity of the transaction queue is large, but an application should reenable a
suspended conversation as soon as possible to avoid losing transactions.

An application can resume usual transaction processing by specifying the EC_ENABLEALL flag in
DdeEnableCallback. For a more controlled resumption of transaction processing, the application
can specify the EC_ENABLEONE flag. This flag removes one transaction from the transaction
queue and passes it to the appropriate callback function; after that transaction has been
processed, any conversations are again disabled.

If the EC_ENABLEONE flag and a conversation handle are specified in the call to
DdeEnableCallback, only that conversation is blocked after the transaction has been processed.
If a NULL conversation handle is specified, all conversations are blocked after a transaction has
been processed in any conversation.

Transaction Classes
The DDEML has four classes of transactions. Each class is identified by a constant that begins
with the XCLASS_ prefix. The classes are defined in the DDEML header file. The class value is
combined with the transaction-type value and is passed to the DDE callback function of the
receiving application.

A transaction's class determines the return value that a callback function is expected to return if it
processes the transaction. The following return values and transaction types are associated with
each of the four transaction classes.

Class Return value Transaction

XCLASS_BOOL TRUE or FALSE XTYP_ADVSTART
XTYP_CONNECT

XCLASS_DATA A data handle, the
CBR_BLOCK return
code, or NULL

XTYP_ADVREQ
XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS_FLAGS A transaction flag:
DDE_FACK,
DDE_FBUSY, or
DDE_FNOTPROCESSED

XTYP_ADVDATA
XTYP_EXECUTE
XTYP_POKE

XCLASS_NOTIFICATIONNone XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR
XTYP_REGISTER
XTYP_UNREGISTER
XTYP_XACT_COMPLETE

Transaction Types
Each DDE transaction type has a receiver and an associated activity that causes the DDEML to
generate each type.

Transaction type Receiver Cause

XTYP_ADVDATA Client A server responded to an
XTYP_ADVREQ
transaction by returning a
data handle.

XTYP_ADVREQ Server A server called the
DdePostAdvise function,
indicating that the value of
a data item in an advise
loop had changed.

XTYP_ADVSTART Server A client specified the
XTYP_ADVSTART
transaction type in a call to
the
DdeClientTransaction
function.

XTYP_ADVSTOP Server A client specified the
XTYP_ADVSTOP
transaction type in a call to
DdeClientTransaction.

XTYP_CONNECT Server A client called the
DdeConnect function and
specified a service name
and topic name supported
by the server.

XTYP_CONNECT_CONFIRMServer The server returned TRUE
in response to an
XTYP_CONNECT or
XTYP_WILDCONNECT
transaction.

XTYP_DISCONNECT Client/Server A partner in a
conversation called the
DdeDisconnect function,
causing both partners to
receive this transaction.

XTYP_ERROR Client/Server A critical error has
occurred. The DDEML
may not have sufficient
resources to continue.

XTYP_EXECUTE Server A client specified the
XTYP_EXECUTE
transaction type in a call to
DdeClientTransaction.

XTYP_MONITOR DDE
monitoring
application

A DDE event occurred in
the system. For more
information about DDE
monitoring applications,
see Monitoring
Applications.

XTYP_POKE Server A client specified the
XTYP_POKE transaction
type in a call to
DdeClientTransaction.

XTYP_REGISTER Client/Server A server application used
the DdeNameService
function to register a
service name.

XTYP_REQUEST Server A client specified the
XTYP_REQUEST
transaction type in a call to

DdeClientTransaction.
XTYP_UNREGISTER Client/Server A server application used

DdeNameService to
unregister a service name.

XTYP_WILDCONNECT Server A client called the
DdeConnect or
DdeConnectList function,
specifying NULL for the
service name, the topic
name, or both.

XTYP_XACT_COMPLETE Client An asynchronous
transaction, sent when the
client specified the
TIMEOUT_ASYNC flag in
a call to
DdeClientTransaction,
has concluded.

Error Detection for DDEML Functions
Whenever a DDEML function fails, an application can call the DdeGetLastError function to
determine the cause of the failure. DdeGetLastError returns an error value that specifies the
cause of the most recent error.

Monitoring Applications
The application programming interface (API) elements of the DDEML can be used to create an
application that monitors DDE activity in the system. Like any DDEML application, a DDE
monitoring application contains a DDE callback function. The DDEML notifies a monitoring
application's DDE callback function whenever a DDE event occurs, passing information about the
event to the callback function. The application typically displays the information in a window or
writes it to a file.

To receive notifications from the DDEML, an application must have registered as a DDE monitor
by specifying the APPCLASS_MONITOR flag in a call to the DdeInitialize function. In this same
call, the application can specify one or more monitor flags to indicate the types of events for which
the DDEML is to notify the application's callback function. The following monitor flags can be
specified by an application:

Flag Description

MF_CALLBACKS Notifies the callback function whenever a
transaction is sent to any DDE callback function
in the system.

MF_CONV Notifies the callback function whenever a
conversation is established or terminated.

MF_ERRORS Notifies the callback function whenever a DDEML
error occurs.

MF_HSZ_INFO Notifies the callback function whenever a DDEML
application creates, frees, or increments the
usage count of a string handle or whenever a
string handle is freed as a result of a call to the
DdeUninitialize function.

MF_LINKS Notifies the callback function whenever an advise
loop is started or ended.

MF_POSTMSGS Notifies the callback function whenever the
system or an application posts a DDE message.

MF_SENDMSGS Notifies the callback function whenever the
system or an application sends a DDE message.

The following example shows how to register a DDE monitoring application so that its DDE
callback function receives notifications of all DDE events.DWORD idInst;
PFNCALLBACK lpDdeProc;
hInst = hInstance;
if (DdeInitialize(

(LPDWORD) &idInst, /* instance identifier */
DDECallback, /* points to callback function */
APPCLASS_MONITOR | /* this is a monitoring application */
MF_CALLBACKS| /* monitor callback functions */
MF_CONV| /* monitor conversation data */
MF_ERRORS | /* monitor DDEML errors */
MF_HSZ_INFO | /* monitor data handle activity*/
MF_LINKS | /* monitor advise loops */
MF_POSTMSGS | /* monitor posted DDE messages */
MF_SENDMSGS, /* monitor sent DDE messages */
0)) /* reserved*/
return FALSE;The DDEML informs a monitoring application of a DDE event by sending an XTYP_MONITOR

transaction to the application's DDE callback function. During this transaction, the DDEML passes
a monitor flag that specifies the type of DDE event that has occurred and a handle of a DDE
object that contains detailed information about the event. The DDEML provides a set of structures
that the application can use to extract the information from the DDE object. There is a
corresponding structure for each type of DDE event.

Structure Description

MONCBSTRUCT Contains information about a transaction.
MONCONVSTRUCT Contains information about a conversation.
MONERRSTRUCT Contains information about the latest DDE

error.
MONLINKSTRUCT Contains information about an advise loop.
MONHSZSTRUCT Contains information about a string handle.
MONMSGSTRUCT Contains information about a DDE message

that was sent or posted.

The following example shows the DDE callback function of a DDE monitoring application
that formats information about each string handle event and then displays the information
in a window. The function uses the MONHSZSTRUCT structure to extract the information from
the DDE object.HDDEDATA CALLBACK DDECallback(uType, uFmt, hconv, hsz1, hsz2,

hdata, dwData1, dwData2)
UINT uType;
UINT uFmt;
HCONV hconv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hdata;
DWORD dwData1;
DWORD dwData2;
{

LPVOID lpData;
CHAR *szAction;
CHAR szBuf[256];
DWORD cb;
switch (uType) {
case XTYP_MONITOR:
/* Obtain a pointer to the global memory object. */
if (lpData = DdeAccessData(hdata, &cb)) {
/* Examine the monitor flag. */
switch (dwData2) {
case MF_HSZ_INFO:
#define PHSZS ((MONHSZSTRUCT FAR *)lpData)

/*
* The global memory object contains
* string handle data. Use the MONHSZSTRUCT
* structure to access the data.
*/

switch (PHSZS->fsAction) {
/*
* Examine the action flags to
* determine the action performed on
* the handle.
*/
case MH_CREATE:
szAction = "Created";
break;
case MH_KEEP:
szAction = "Incremented";
break;
case MH_DELETE:
szAction = "Deleted";
break;
case MH_CLEANUP:
szAction = "Cleaned up";
break;
default:
DdeUnaccessData(hdata);
return (HDDEDATA) 0;
}
/* Write formatted output to a buffer. */
wsprintf(szBuf,
"Handle %s, Task: %x, Hsz: %lx(%s)",
(LPSTR) szAction, PHSZS->hTask,
PHSZS->hsz, (LPSTR) PHSZS->str);
.
. /* Display text or write to a file. */
.
break;

#undef PHSZS
.
. /* Process other MF_* flags. */
.
default:

break;
}
}
/* Free the global memory object. */
DdeUnaccessData(hdata);
break;
default:
break;
}
return (HDDEDATA) 0;

}

Dynamic Data Exchange Management Reference
The following functions and structures are used to manage dynamic data exchange.

Dynamic Data Exchange Management Functions
Following are the functions used to manage dynamic data exchange.
DdeAbandonTransaction
DdeAccessData
DdeAddData
DdeCallback
DdeClientTransaction
DdeCmpStringHandles
DdeConnect
DdeConnectList
DdeCreateDataHandle
DdeCreateStringHandle
DdeDisconnect
DdeDisconnectList
DdeEnableCallback
DdeFreeDataHandle
DdeFreeStringHandle
DdeGetData
DdeGetLastError
DdeImpersonateClient
DdeInitialize
DdeKeepStringHandle
DdeNameService
DdePostAdvise
DdeQueryConvInfo
DdeQueryNextServer
DdeQueryString
DdeReconnect
DdeSetUserHandle
DdeUnaccessData

DdeUninitialize

Dynamic Data Exchange Management Structures
The following structures are used to manage dynamic data exchange.
CONVCONTEXT
CONVINFO
DDEML_MSG_HOOK_DATA
MONCBSTRUCT
MONCONVSTRUCT
MONERRSTRUCT
MONHSZSTRUCT
MONLINKSTRUCT

MONMSGSTRUCT

Dynamic Data Exchange Management Transactions
XTYP_ADVDATA
XTYP_ADVREQ
XTYP_ADVSTART
XTYP_ADVSTOP
XTYP_CONNECT
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR
XTYP_EXECUTE
XTYP_MONITOR
XTYP_POKE
XTYP_REGISTER
XTYP_REQUEST
XTYP_UNREGISTER
XTYP_WILDCONNECT

XTYP_XACT_COMPLETE

Dynamic-Link LibrariesIn Microsoft® Windows®, dynamic-link libraries (DLL) are modules that contain functions and data.
A DLL is loaded at runtime by its calling modules (.EXE or DLL). When a DLL is loaded, it is
mapped into the address space of the calling process.

DLLs can define two kinds of functions: exported and internal. The exported functions can be
called by other modules. Internal functions can only be called from within the DLL where they are
defined. Although DLLs can export data, its data is usually only used by its functions.

DLLs provide a way to modularize applications so that functionality can be updated and reused
more easilly. They also help reduce memory overhead when several applications use the same
functionality at the same time, because although each application gets its own copy of the data,
they can share the code.

The Microsoft® Win32® application programming interface (API) is implemented as a set of
dynamic-link libraries, so any process using the Win32 API uses dynamic linking.

About Dynamic-Link Libraries
Dynamic linking allows a module to include only the information the system needs at load time or
run time to locate the code for an exported DLL function. Dynamic linking differs from the more
familiar static linking, in which the linker copies a library function's code into each module that
calls it.Types of Dynamic LinkingThere are two methods for calling a function in a DLL:

· In load-time dynamic linking, a module makes explicit calls to exported DLL functions.
This requires you to link the module with the import library for the DLL. An import library
supplies the operating system with the information needed to load the DLL and locate the
exported DLL functions when the application is loaded. For more information, see Load-Time
Dynamic Linking.

· In run-time dynamic linking, a module uses the LoadLibrary or LoadLibraryEx function
to load the DLL at run time. After the DLL is loaded, the module calls the GetProcAddress
function to get the addresses of the exported DLL functions. The module calls the exported
DLL functions using the function pointers returned by GetProcAddress. This eliminates the
need for an import library. For more information, see Using Run-Time Dynamic Linking.

DLLs and Memory ManagementEvery process that loads the DLL maps it into its virtual address space. After the process loads
the DLL into its virtual address, it can call the exported DLL functions.

The system maintains a reference count for each DLL. When a thread loads the DLL, its reference
count is incremented by one. When the process terminates, or when the reference count goes to
0 (run-time dynamic linking only), the DLL is unloaded from the virtual address space.

Like any other function, an exported DLL function runs in the context of the thread that calls it.
Therefore, the following conditions apply:

· The threads of the process that called the DLL can use handles opened by a DLL
function. Similarly, handles opened by any thread of the calling process can be used in the
DLL function.

· The DLL uses the stack of the calling thread and the virtual address space of the calling
process.

· The DLL allocates memory from the virtual address space of the calling process.

Advantages of Dynamic Linking
Dynamic linking has the following advantages over static linking:

· Processes that load a DLL at the same base address can use a single DLL
simultaneously, sharing a single copy of the DLL code in physical memory. Doing this saves
memory and reduces swapping.

· When the functions in a DLL change, the applications that use them do not need to be
recompiled or relinked as long as the function arguments, calling conventions, and return
values do not change. In contrast, statically linked object code requires that the application be
relinked when the functions change.

· A DLL can provide after-market support. For example, a display driver DLL can be
modified to support a display that was not available when the application was initially shipped.

· Programs written in different programming languages can call the same DLL function as
long as the programs follow the same calling convention that the function uses. The calling
convention (such as C, Pascal, or standard call) controls the order in which the calling
function must push the arguments onto the stack, whether the function or the calling function
is responsible for cleaning up the stack, and whether any arguments are passed in registers.
For more information, see the documentation included with your compiler.

A potential disadvantage to using DLLs is that the application is not self-contained; it depends on
the existence of a separate DLL module. The system terminates processes using load-time
dynamic linking if they require a DLL that is not found at process startup and gives an error
message to the user. The system does not terminate a process using run-time dynamic linking in
this situation, but functions exported by the DLL are not available to the program.

Dynamic-Link Library Creation
To create a DLL, you must create one or more source code files, and possibly a linker file for
exporting the functions. If you plan to allow applications that use your DLL to use load-time
dynamic linking, you must also create an import library.Creating Source FilesThe source files contain exported functions, internal functions, and an optional entry-point function
for the DLL. You may use any development tools that support the creation of Win32-based DLLs.

If your DLL may be used by a multithreaded application, you should make your DLL "thread-safe"
by linking only with libraries that have support for multiple threads. Also, be sure to synchronize
access to your global data.Exporting FunctionsHow you specify exported functions depends on the tools that you are using for development.
Some compilers allow you to export a function directly in the source code by using a modifier in
the function declaration. Other times, you must specify exports in a file that you pass to the linker.

For example, using Microsoft Visual C++, there are two possible ways to export DLL functions:
with _declspec modifier or with a .DEF file. If you use the _declspec modifier, it is not necessary to
use a .DEF file.

For more information about exporting functions, see the documentation included with your
development tools.Creating an Import LibraryThe import library (.LIB) file contains information the linker needs to resolve external references to
exported DLL functions, so the system can locate the specified DLL and exported DLL functions
at run time. For example, to call the CreateWindow function, you must link your code with the
import library USER32.LIB. The reason is that CreateWindow resides in a system DLL. The file
USER32.LIB is the import library used to resolve the call to CreateWindow in your code.

For information about creating import libraries, see the documentation included with your
development tools.

Dynamic-Link Library Entry-Point Function
Every DLL must have an entry point, just as an application does. The operating system calls the
entry-point function whenever processes and threads load or unload the DLL. If you are linking
your DLL with a library, such as the C run-time library, it may provide an entry-point function for
you, and allow you to provide a separate initialization function. Check the documentation for your
runtime library for more information.

If you are providing your own entry-point, see the DllEntryPoint function. The name
DllEntryPoint is a placeholder for a user-defined function. Generally, you specify an entry point
for your DLL using the linker. Check your linker documentation for more information.Calling the Entry-Point FunctionThe operating system calls the entry-point function whenever any one of the following events
occurs:

· A process loads the DLL. For processes using load-time dynamic linking, the DLL is
loaded during process initialization. For processes using run-time linking, the DLL is loaded
before LoadLibrary or LoadLibraryEx returns.

· A process unloads the DLL. The DLL is unloaded when the process terminates or calls
the FreeLibrary function and the reference count becomes zero. If the process terminates as
a result of the TerminateProcess or TerminateThread function, the system does not call the
DLL entry-point function.

· A new thread is created in a process that has loaded the DLL. You can use the
DisableThreadLibraryCalls function to disable notification when threads are created.

· A thread of a process that has loaded the DLL terminates normally, not using
TerminateThread or TerminateProcess. When a process unloads the DLL, the entry-point
function is called only once for the entire process, rather than once for each existing thread of
the process. You can use DisableThreadLibraryCalls to disable notification when threads
are terminated.

Only one thread at a time can call the entry-point function.

The system calls the entry-point function in the context of the process or thread that caused the
function to be called. This allows a DLL to use its entry-point function for allocating memory in the
virtual address space of the calling process or to open handles accessible to the process.The
entry-point function can also allocate memory that is private to a new thread by using thread local
storage (TLS). For more information about thread local storage, see Thread Local Storage.Entry-Point Function DefinitionThe DLL entry-point function must be declared with the standard-call calling convention.

Windows NT: If the DLL entry point is not declared correctly, the DLL is not loaded, and the
system displays a message indicating that the DLL entry point must be declared with WINAPI.

Windows 95: If the DLL entry point is not declared correctly, the DLL is not loaded and the
system displays a message titled "Error starting program," which instructs the user to check
the file to determine the problem.

In the body of the function, you may handle any combination of the following scenarios in which
the DLL entry point has been called:

· A process loads the DLL (DLL_PROCESS_ATTACH).
· The current process creates a new thread (DLL_THREAD_ATTACH).
· A thread exits normally (DLL_THREAD_DETACH).
· A process unloads the DLL (DLL_PROCESS_DETACH).

The following example demonstrates how to structure the DLL entry-point function.BOOL WINAPI DllEntryPoint(
HINSTANCE hinstDLL, // handle to DLL module
DWORD fdwReason,// reason for calling function
LPVOID lpReserved) // reserved

{
// Perform actions based on the reason for calling.
switch(fdwReason)
{case DLL_PROCESS_ATTACH:
// Initialize once for each new process.
// Return FALSE to fail DLL load.

break;
case DLL_THREAD_ATTACH:// Do thread-specific initialization.
break;case DLL_THREAD_DETACH:
// Do thread-specific cleanup.

break;
case DLL_PROCESS_DETACH:
// Perform any necessary cleanup.

break;
}
return TRUE; // Successful DLL_PROCESS_ATTACH.

}Entry-Point Function Return ValueWhen a DLL entry-point function is called because a process is loading, the function returns
TRUE to indicate success. For processes using load-time linking, a return value of FALSE causes
the process initialization to fail and the process terminates. For processes using run-time linking, a
return value of FALSE causes the LoadLibrary or LoadLibraryEx function to return NULL,
indicating failure. The return value of the entry-point function is disregarded when the function is
called for any other reason.

Load-Time Dynamic Linking
When the system starts a program that uses load-time dynamic linking, it uses the information in
the file to locate the names of the required DLL(s). The system then searches for the DLLs in the
following locations, in sequence:

1. The directory that contains the module for the current process.
2. The current directory.
3. The Windows system directory. The GetSystemDirectory function retrieves the path of

this directory.
4. The Windows directory. The GetWindowsDirectory function retrieves the path of this

directory.
5. The directories listed in the PATH environment variable.

If the system cannot locate a specified DLL, it terminates the process and displays a dialog box
that reports the error. Otherwise, the system maps the DLL modules into the virtual address space
of the process and increments the DLL reference count.

The operating system calls the entry-point function. The function receives a code indicating that
the process is loading the DLL. If the entry-point function does not return TRUE, the system
terminates the process and reports the error. For more information about the entry-point function,
see Dynamic-Link Library Entry-Point Function.

Finally, the system modifies the code of the process to provide starting addresses for the
referenced DLL functions.

The DLL is mapped into the virtual address space of the process during its initialization and is
loaded into physical memory only when needed.

Run-Time Dynamic Linking
When the application calls the LoadLibrary or LoadLibraryEx functions, the system attempts to
locate the DLL using the same search sequence used in load-time dynamic linking (see Load-
Time Dynamic Linking). If the search succeeds, the system maps the DLL module into the virtual
address space of the process and increments the reference count. If the call to LoadLibrary or
LoadLibraryEx specifies a DLL whose code is already mapped into the virtual address space of
the calling process, the function simply returns a handle to the DLL and increments the DLL
reference count. Note that two DLLs that have the same base filename and extension but are
found in different directories are not considered to be the same DLL.

The operating system calls the entry-point function in the context of the thread that called
LoadLibrary or LoadLibraryEx. The entry-point function is not called if the DLL was already
loaded by the process through a call to LoadLibrary or LoadLibraryEx with no corresponding
call to the FreeLibrary function.

If the system cannot find the DLL or if the entry-point function returns FALSE, LoadLibrary or
LoadLibraryEx returns NULL. If LoadLibrary or LoadLibraryEx succeeds, it returns a handle of
the DLL module. The process can use this handle to identify the DLL in a call to the
GetProcAddress, FreeLibrary, or FreeLibraryAndExitThread function.

The GetModuleHandle function returns a handle used in GetProcAddress, FreeLibrary, or
FreeLibraryAndExitThread. The GetModuleHandle function succeeds only if the DLL module is
already mapped into the address space of the process by load-time linking or by a previous call to
LoadLibrary or LoadLibraryEx. Unlike LoadLibrary or LoadLibraryEx, GetModuleHandle
does not increment the module reference count. The GetModuleFileName function retrieves the
full path of the module associated with a handle returned by GetModuleHandle, LoadLibrary, or
LoadLibraryEx.

The process can use GetProcAddress to get the address of an exported function in the DLL
using a DLL module handle returned by either LoadLibrary, LoadLibraryEx, or
GetModuleHandle.

When the DLL module is no longer needed, the process can call FreeLibrary or
FreeLibraryAndExitThread. These functions decrement the module reference count and unmap
the DLL code from the virtual address space of the process if the reference count is zero.

Run-time dynamic linking enables the process to continue running even if a DLL is not available.
The process can then use an alternate method to accomplish its objective. For example, if a
process is unable to locate one DLL, it can try to use another, or it can notify the user of an error.
If the user can provide the full path of the missing DLL, the process can use this information to
load the DLL even though it is not in the normal search path. This situation contrasts with load-
time linking, in which the operating system simply terminates the process if it cannot find the DLL.

Run-time dynamic linking can cause problems if the DLL uses the DllEntryPoint function to
perform initialization for each thread of a process, because the entry-point is not called for threads
that existed before LoadLibrary or LoadLibraryEx is called. For an example showing how to
deal with this problem, see Using Thread Local Storage in a Dynamic-Link Library.

Dynamic-Link Library Data
Win32-based DLLs can contain global data or local data.Variable ScopeThe default scope of DLL variables is the same as that of variables declared in the application.
Global variables in a DLL source code file are global to each process using the DLL. Static
variables have scope limited to the block in which they are declared. As a result, each process
has its own instance of the DLL global and static variables by default.

Your development tools may allow you to override the default scope of global and static variables.
For more information, see the documentation included with your development tools.Dynamic Memory AllocationWhen a DLL allocates memory using any of the memory allocation functions (GlobalAlloc,
LocalAlloc, HeapAlloc, and VirtualAlloc), the memory is allocated in the virtual address space
of the calling process and is accessible only to the threads of that process.

A DLL can use file mapping to allocate memory that can be shared among processes. For a
general discussion of how to use file mapping to create named shared memory, see File Mapping.
For an example that uses the DllEntryPoint function to set up shared memory using file mapping,
see Using Shared Memory in a Dynamic-Link Library.Thread Local StorageThe thread local storage (TLS) functions enable a DLL to allocate an index for storing and
retrieving a different value for each thread of a multithreaded process. For example, a
spreadsheet application can create a new instance of the same thread each time the user opens a
new spreadsheet. A DLL providing the functions for various spreadsheet operations can use TLS
to save information about the current state of each spreadsheet (row, column, and so on). For a
general discussion of thread local storage, see Thread Local Storage. For an example that uses
the DllEntryPoint function to set up thread local storage, see Using Thread Local Storage in a
Dynamic-Link Library.

Using Dynamic-Link Libraries
· Creating a simple dynamic-link library
· Viewing the DLL exports
· Using load-time dynamic linking
· Using run-time dynamic linking
· Using shared memory in a dynamic-link library
· Using thread local storage in a dynamic-link library

Creating a Simple Dynamic-Link Library
The following example, MYPUTS.C, is the source code needed to create a simple DLL, MYPUTS.
DLL. The file MYPUTS.C contains a simple string-printing function called myPuts. The MYPUTS
DLL does not define an entry-point function, because it is linked with the C run-time library and
has no initialization or cleanup functions of its own to perform.// File: MYPUTS.C.
// The myPuts function writes a null-terminated string to
// the standard output device.
.
#include <windows.h>
VOID myPuts(LPTSTR lpszMsg)
{

DWORD cchWritten;
HANDLE hStdout;
// Get a handle to the standard output device.hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
// Write a null-terminated string to the standard output device.
while (*lpszMsg)
WriteFile(hStdout, lpszMsg++, 1, &cchWritten, NULL);}To build the DLL, follow the directions in the documentation included with your development tools.

Viewing the DLL Exports
If you would like to view the names of the functions that are exported from a given Win32-based
DLL, use the following steps.

· Start the Windows Explorer from the Start menu.
· Click the DLL with the right mouse button.
· Click Quick View from the menu.
· Scroll to the heading, Export Table. The table contains the ordinal, entry point, and name

for each export.
Your linker (or a similar tool) may also provide a list of exported functions. For more information,
see the documentation included with your development tools.

Using Load-Time Dynamic Linking
After you have created a DLL, you can use it in an application. The following file, LOADTIME.C, is
the source code for a simple console application that uses the myPuts function exported from
MYPUTS.DLL.// File: LOADTIME.C.
// A simple program that uses myPuts from MYPUTS.DLL.
#include <windows.h>
VOID myPuts(LPTSTR); // a function from a DLL
VOID main(VOID)
{

myPuts("message printed using the DLL function\n");
}Because LOADTIME.C calls the DLL function explicitly, the module for the application must be

linked with the import library MYPUTS.LIB. For more information about building DLLs, see the
documentation included with your development tools.

Using Run-Time Dynamic Linking
You can use the same DLL in both load-time and run-time dynamic linking. The following source
code produces the same output as the load-time example in the previous section. The program
uses the LoadLibrary function to get a handle of MYPUTS.DLL. If LoadLibrary succeeds, the
program uses the returned handle in the GetProcAddress function to get the address of the
DLL's myPuts function. After calling the DLL function, the program calls the FreeLibrary function
to unload the DLL.

The following example illustrates an important difference between run-time and load-time dynamic
linking. If the MYPUTS.DLL file is not available, the application using load-time dynamic linking
simply terminates. The run-time dynamic linking example, however, can respond to the error.// File: RUNTIME.C
// A simple program that uses LoadLibrary and
// GetProcAddress to access myPuts from MYPUTS.DLL.
#include <stdio.h>
#include <windows.h>
typedef VOID (*MYPROC)(LPTSTR);
VOID main(VOID)
{

HINSTANCE hinstLib;
MYPROC ProcAdd;
BOOL fFreeResult, fRunTimeLinkSuccess = FALSE;
// Get a handle to the DLL module.
hinstLib = LoadLibrary("myputs");
// If the handle is valid, try to get the function address.
if (hinstLib != NULL)
{
ProcAdd = (MYPROC) GetProcAddress(hinstLib, "myPuts");
// If the function address is valid, call the function.
if (fRunTimeLinkSuccess = (ProcAdd != NULL))
(ProcAdd) ("message via DLL function\n");
// Free the DLL module.
fFreeResult = FreeLibrary(hinstLib);
}
// If unable to call the DLL function, use an alternative.
if (! fRunTimeLinkSuccess)
printf("message via alternative method\n");

}Because the program uses run-time dynamic linking, you should not link with the import library
when creating the program module.

Using Shared Memory in a Dynamic-Link Library
This section shows how the DLL entry-point function can use a file-mapping object to set up
memory that can be shared by processes that load the DLL. The shared DLL memory persists
only as long as the DLL is loaded.

The example uses file mapping to map a block of named shared memory into the virtual address
space of each process that loads the DLL. To do this, the entry-point function must:

1. Call the CreateFileMapping function to get a handle to a file-mapping object. The first
process that loads the DLL creates the file-mapping object. Subsequent processes open a
handle of the existing object. For more information, see Creating a File-Mapping Object.

2. Call the MapViewOfFile function to map a view into the virtual address space. This
enables the process to access the shared memory. For more information, see Creating a File
View.// File: DLLSHMEM.C.

// The DLL entry-point function sets up shared memory using
// a named file-mapping object.
#include <windows.h>
#include <memory.h>
#define SHMEMSIZE 4096
static LPVOID lpvMem = NULL; // pointer to shared memory
BOOL DllEntryPoint(HINSTANCE hinstDLL, // DLL module handle

DWORD fdwReason,// reason called
LPVOID lpvReserved) // reserved

{
HANDLE hMapObject = NULL; // handle to file mapping
BOOL fInit, fIgnore;
switch (fdwReason)
{
// The DLL is loading due to process
// initialization or a call to LoadLibrary.case DLL_PROCESS_ATTACH:
// Create a named file mapping object.
hMapObject = CreateFileMapping(
(HANDLE) 0xFFFFFFFF, // use paging file
NULL, // no security attributes
PAGE_READWRITE, // read/write access0, // size: high 32-bits
SHMEMSIZE, // size: low 32-bits
"dllmemfilemap"); // name of map object
if (hMapObject == NULL)
return FALSE;
// The first process to attach initializes memory.
fInit = (GetLastError() != ERROR_ALREADY_EXISTS);
// Get a pointer to the file-mapped shared memory.
lpvMem = MapViewOfFile(
hMapObject,// object to map view of
FILE_MAP_WRITE, // read/write access
0, // high offset: map from
0, // low offset: beginning
0); // default: map entire file
if (lpvMem == NULL)
return FALSE;
// Initialize memory if this is the first process.
if (fInit)
memset(lpvMem, '\0', SHMEMSIZE);
break;
// The attached process creates a new thread.case DLL_THREAD_ATTACH:
break;
// The thread of the attached process terminates.
case DLL_THREAD_DETACH:
break;
// The DLL is unloading from a process due to
// process termination or a call to FreeLibrary.
case DLL_PROCESS_DETACH:
// Unmap shared memory from the process's address space.
fIgnore = UnmapViewOfFile(lpvMem);
// Close the process's handle to the file-mapping object.
fIgnore = CloseHandle(hMapObject);
break;
default:

break;
}

return TRUE;
UNREFERENCED_PARAMETER(hinstDLL);
UNREFERENCED_PARAMETER(lpvReserved);

}
// SetSharedMem sets the contents of shared memory.
VOID SetSharedMem(LPTSTR lpszBuf)
{

LPTSTR lpszTmp;
// Get the address of the shared memory block.
lpszTmp = (LPTSTR) lpvMem;
// Copy the null-terminated string into shared memory.
while (*lpszBuf)
*lpszTmp++ = *lpszBuf++;
*lpszTmp = '\0';

}
// GetSharedMem gets the contents of shared memory.
VOID GetSharedMem(LPTSTR lpszBuf, DWORD cchSize)
{

LPTSTR lpszTmp;
// Get the address of the shared memory block.
lpszTmp = (LPTSTR) lpvMem;
// Copy from shared memory into the caller's buffer.
while (*lpszTmp && --cchSize)
*lpszBuf++ = *lpszTmp++;
*lpszBuf = '\0';

}Note that the shared memory can be mapped to a different address in each process. For this
reason, each process has its own instance of the lpvMem parameter, which is declared as a
global variable so that it is available to all DLL functions. The example assumes that the DLL
global data is not shared, so each process that loads the DLL has its own instance of lpvMem.

In this example, the shared memory is released when the last handle of the file-mapping object is
closed. To create persistent shared memory, a DLL can create a detached process (see
CreateProcess) when the DLL is first loaded. If this detached process uses the DLL and does not
terminate, it has a handle of the file-mapping object that prevents the shared memory from being
released.

Using Thread Local Storage in a Dynamic-Link Library
This section shows the use of a DLL entry-point function to set up a thread local storage (TLS)
index to provide private storage for each thread of a multithreaded process.

The entry-point function uses the TlsAlloc function to allocate a TLS index whenever a process
loads the DLL. Each thread can then use this index to store a pointer to its own block of memory.

When the entry-point function is called with the DLL_PROCESS_ATTACH value, the code
performs the following actions:

1. Uses the TlsAlloc function to allocate a TLS index.
2. Allocates a block of memory to be used exclusively by the initial thread of the process.
3. Uses the TLS index in a call to the TlsSetValue function to store a pointer to the allocated

memory.
Each time the process creates a new thread, the entry-point function is called with the
DLL_THREAD_ATTACH value. The entry-point function then allocates a block of memory for the
new thread and stores a pointer to it by using the TLS index. Each thread can use the TLS index
in a call to TlsGetValue to retrieve the pointer to its own block of memory.

When a thread terminates, the entry-point function is called with the DLL_THREAD_DETACH
value and the memory for that thread is freed. When a process terminates, the entry-point function
is called with the DLL_PROCESS_DETACH value and the memory referenced by the pointer in
the TLS index is freed.

The TLS index is stored in a global variable, making it available to all of the DLL functions. The
following example assumes that the DLL's global data is not shared, because the TLS index is not
necessarily the same for each process that loads the DLL.static DWORD dwTlsIndex; // address of shared memory
// DllMain() is the entry-point function for this DLL.
BOOL DllEntryPoint(HINSTANCE hinstDLL, // DLL module handle

DWORD fdwReason,// reason called
LPVOID lpvReserved) // reserved

{
LPVOID lpvData;
BOOL fIgnore;
switch (fdwReason) {
// The DLL is loading due to process
// initialization or a call to LoadLibrary.case DLL_PROCESS_ATTACH:
// Allocate a TLS index.
if ((dwTlsIndex = TlsAlloc()) == 0xFFFFFFFF)
return FALSE;
// No break: Initialize the index for first thread.
// The attached process creates a new thread.case DLL_THREAD_ATTACH:
// Initialize the TLS index for this thread.
lpvData = (LPVOID) LocalAlloc(LPTR, 256);
if (lpvData != NULL)
fIgnore = TlsSetValue(dwTlsIndex, lpvData);
break;
// The thread of the attached process terminates.case DLL_THREAD_DETACH:
// Release the allocated memory for this thread.
lpvData = TlsGetValue(dwTlsIndex);
if (lpvData != NULL)
LocalFree((HLOCAL) lpvData);
break;
// The DLL unloading due to process termination or call to

FreeLibrary.
case DLL_PROCESS_DETACH:
// Release the allocated memory for this thread.
lpvData = TlsGetValue(dwTlsIndex);
if (lpvData != NULL)
LocalFree((HLOCAL) lpvData);
// Release the TLS index.
TlsFree(dwTlsIndex);
break;
default:
break;
}
return TRUE;
UNREFERENCED_PARAMETER(hinstDLL);
UNREFERENCED_PARAMETER(lpvReserved);

}When a process uses load-time linking with this DLL, the entry-point function is sufficient to
manage the thread local storage. Problems can occur with a process that uses run-time linking
because the entry-point function is not called for threads that exist before the LoadLibrary
function is called, so TLS memory is not allocated for these threads. The following example solves
this problem by checking the value returned by the TlsGetValue function and allocating memory if
the value indicates that the TLS slot for this thread is not set.LPVOID lpvData;
// Retrieve a data pointer for the current thread.
lpvData = TlsGetValue(dwTlsIndex);
// If NULL, allocate memory for this thread.
if (lpvData == NULL) {

lpvData = (LPVOID) LocalAlloc(LPTR, 256);
if (lpvData != NULL)
TlsSetValue(dwTlsIndex, lpvData);

}

Dynamic-Link Library Reference
The following functions are used in dynamic linking.

Dynamic-Link Library Functions
The following functions are used in dynamic linking.
DisableThreadLibraryCalls
DllEntryPoint
FreeLibrary
FreeLibraryAndExitThread
GetModuleFileName
GetModuleHandle
GetProcAddress
LoadLibrary
LoadLibraryEx

LoadModule

Obsolete Functions
FreeModule
FreeProcInstance

MakeProcInstance

ErrorsWell-written applications include code that allows them to recover gracefully from unexpected
errors. When an error occurs, the application may need to request user intervention, or it may be
able to recover without help. In extreme cases, the application may log the user off or shut down
the system.

About Errors
Microsoft® Windows® includes a special error-handling mechanism for exceptions, such as divide-
by-zero errors. For more information about exception handling, see Structured Exception
Handling.

Notifying the User
To notify the user that some kind of error has occurred, many applications simply produce a
sound by using the Beep or MessageBeep function or flash the window by using the
FlashWindow function. An application can also use these functions to call attention to an error
and then display a message box or an error message containing details about the error.

Last-Error Code
When an error occurs, most functions in the Microsoft® Win32® application programming interface
(API) return an error code, usually FALSE, NULL, 0xFFFFFFFF, or - 1. Many functions in the
Win32 API also set an internal error code called the last-error code. When a function succeeds,
the last-error code is not reset. The error code is maintained separately for each running thread;
an error in one thread does not overwrite the last-error code in another thread. An application can
retrieve the last-error code by using the GetLastError function; the error code may tell more
about what actually occurred to make the function fail.

The SetLastError function sets the error code for the current thread. The SetLastErrorEx
function also allows the caller to set an error type indicating the severity of the error. These
functions are intended primarily for dynamic-link libraries (DLLs), so they can emulate the
behavior of the Win32 API.

The Win32 API defines a set of error codes that can be set as last-error codes or be returned by
these functions. Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved
for application-defined error codes; no Win32 API error code has this bit set. Developers who
define an error code for an application should set this bit to indicate that the error code has been
defined by an application and to ensure that the error code does not conflict with any system-
defined error codes. For more information, see the WINERROR.H SDK header file or Error
Codes.

Error Message Boxes
Some errors, such as a drive-not-ready error (when the door of the floppy disk drive is open),
cause Windows to display a message box informing the user that an error has occurred.
Applications that handle these errors without user intervention can use the SetErrorMode function
to suppress error message boxes.

Fatal Application Exit
The FatalAppExit function displays a message box and terminates the application when the user
closes the message box. This function should only be used as a last resort, because it may not
free the memory or files owned by the application.

Using Errors
· Notifying the user of errors - example
· Retrieving the last-error code

Notifying the User of Errors - Example
The following example flashes a window and plays the system exclamation sound.FlashWindow(hwnd, TRUE); // invert the title bar
Sleep(500); // wait a bit
FlashWindow(hwnd, TRUE); // invert again
// Play the system exclamation sound.
MessageBeep(MB_ICONEXCLAMATION);

Retrieving the Last-Error Code
When a function in the Win32 API fails, it sets the last-error code. If your application needs more
details about an error, it can retrieve the last-error code.

The following example shows an error-handling function.void error(LPSTR lpszFunction)
{

CHAR szBuf[80];
DWORD dw = GetLastError();
sprintf(szBuf, "%s failed: GetLastError returned %u\n",
lpszFunction, dw);
MessageBox(NULL, szBuf, "ERROR", MB_OK);
ExitProcess(dw);

}

Error Functions
The following functions are used with errors.
Beep
FatalAppExit
FlashWindow
GetLastError
MessageBeep
SetErrorMode
SetLastError

SetLastErrorEx

Event LoggingEvent logging in Microsoft® Windows® provides a standard, centralized way for applications (and
the operating system) to record important software and hardware events. It also supplies a
standard user interface for viewing the logs and a programming interface for examining the logs.
Event logging provides a means to merge events from various sources into a single informative
story.

About Event Logging
When an error occurs in a Win32-based application, the system administrator or support
personnel must determine what caused the error, attempt to recover any lost data, and prevent
the error from recurring. If applications record important events such as low-memory conditions or
excessive disk retries, the record of this information, called an event log, can be used to help
determine what conditions may have caused the error and the context in which the error occurred.
(Event logging can also be applied to the Windows operating system and to system services.) By
periodically viewing the event log, the system administrator may be able to identify problems
before they cause serious damage.

Many applications record errors and events in various proprietary error logs. These proprietary
logs have different formats, apply different user interfaces for their display, and cannot be merged
to provide a complete report. But all of these logs store similar information and present the logged
data in similar ways.

Event Logging Model
Event logs store records of significant events on behalf of the Windows operating system and the
applications that run with Windows. Generally, applications should log only information that could
be useful in diagnosing a hardware or software problem.

Events are classified as information, warnings, and errors. All event classifications have well-
defined common data and can optionally include event-specific data. For example, information
can assert that a service has started. Warnings are used for recoverable problems such as low
disk-space conditions. Errors are used for nonrecoverable conditions that might cause an
application to fail. In addition to logging event classifications, the security service logs successes
and failures in audits.

Logging Guidelines
Because logging functions are general purpose, developers must decide what information is
appropriate to log. It is important to note that logging consumes resources: disk space and logging
time. The event log is not intended to be used as a trace facility.

You should log information about events that can be used to diagnose problems after they have
occurred. Logging low-memory conditions, for example, can provide information about a problem
that the system administrator can solve by adding more memory to the computer.

Following are more examples in which event logging is helpful:

· A disk driver encounters a bad sector on the disk. It may be able to read from or write to
the sector after some retries, but the sector will probably go bad eventually. The disk driver
should log a warning if it can proceed; otherwise, it should log an error.

· A file system finds a bad sector and fixes it. A large number of events of this type might
indicate that the disk is about to fail. The file system logs a warning event.

· A device driver encounters a hardware problem, such as a disk controller time-out, a
power failure in a parallel port, or a data error from a network or serial card. Logging
information about these events can help in diagnosing hardware problems. The device driver
logs the hardware problem.

· An Application encounters resource problems. An application or a device driver may get
into a low-memory situation (caused by a code bug, for example) that degrades performance.
Logging an event when memory allocation fails might later provide a clue about what went
wrong. The application logs the resource problem.

· A server application (a database or a communications server, for example) records events
such as a user logging on, opening a database, or starting a file transfer. The server can also
log important information as it runs, such as the number of resources the application is using,
errors it encounters (cannot access file, host process disconnected, and so on), a corruption
in the database (not able to find a leaf node down a certain path in a tree), or whether a file
transfer was successful or not. All of this information can be valuable to a support person (or
to the developer of the application). The application records such events and logs them as
information events.

Logging Performance and Size
Typically, how much disk space does an event log require? What is the overhead for an
application that makes a call to log an event? The answers to these questions depend on how
much information the application chooses to log. This is why it is important to log only essential
information and to place event logging calls in an error path in the application, rather than place
them in the main path, where the performance hit would be more severe.

Event Logging Management Information
Event logging management information is stored in the Services key of the configuration
database and can be modified by a system administrator.

The structure of the configuration information is as follows:HKEY_LOCAL_MACHINE
SYSTEM
CurrentControlSet

Services
EventLog

Application
Security
SystemThe EventLog key contains several subkeys, called logfiles. The default logfiles are Application,

Security, and System. Each logfile subkey can contain subkeys, called sources. You cannot use
a source name that has been used as a logfile name, and source names should not be
hierarchical. (The backslash character [\] cannot be used in a registry key.) Each source entry
contains information specific to the source of the event, as shown in the following table.

Value Description

EventMessageFile Specifies the path for the event identifier
message file. This value has the type
REG_EXPAND_SZ.

CategoryMessageFileSpecifies the path for the category message
file. The event category and event identifier
message strings can be in the same file. This
value has the type REG_EXPAND_SZ.

ParameterMessageFileSpecifies the path for the event source's
parameter message file. This file contains
language-independent strings that are to be
inserted into the event description strings. You
can use the same message file for parameter,
category, and event identifier message strings.
This value has the type REG_EXPAND_SZ.

CategoryCount Specifies the number of categories supported.
This value has the type REG_DWORD.

TypesSupported Specifies a bitmask of supported types. This
value has the type REG_DWORD.

When an application uses the RegisterEventSource or OpenEventLog function to get a
handle of an event log, the event logging service searches for the specified source name in the
registry. For example, the Application logfile might have configured sources of Microsoft® SQL
Server™ and Microsoft® Excel. If an application uses RegisterEventSource or OpenEventLog
with a source name of Application, SQL, or Excel, the event logging service returns a handle to
the Application logfile.

An application can use the Application event log without adding a new source key to the registry.
If the application calls RegisterEventSource, passing a source name that cannot be found in the
registry, the event logging service uses the Application logfile by default. However, because
there is not a message or category string file, the event viewer will not be able to map the event
identifier or category to a replacement string. For this reason, the recommended procedure is to
add a unique source name for the application to the registry. This allows you to specify message
files for the event identifier and category in your events. Applications and services should add
their source names to the Application logfile. Device drivers should add their source name to the
System logfile.

An event viewer application uses the OpenEventLog function to open the event log for an event
source. The event viewer can then use the ReadEventLog function to read event records from
the log. ReadEventLog returns a buffer containing an EVENTLOGRECORD structure and
additional information that describes a logged event. The EventID member of the
EVENTLOGRECORD is the identifier of a description string in the source's event message file.
The event viewer uses the LoadLibrary function to load the file indicated by the source's
EventMessageFile registry value. The viewer then uses the FormatMessage function to retrieve
the description string from the loaded module.

The description string may contain insertion string placeholders, such as %n, where %1 indicates
the first insertion string, and so on. In this case, the buffer returned by ReadEventLog contains
the insertion strings. The NumStrings member of the EVENTLOGRECORD indicates the number
of insertion strings. The StringOffset member of the EVENTLOGRECORD indicates the location
of the first insertion string in the buffer.

An insertion string may also contain placeholders of the form %%n, where n is the identifier of a
string in the source's parameter message file. In this case, the event viewer uses LoadLibrary
and FormatMessage to retrieve the insertion string from the file indicated by the source's
ParameterMessageFile registry value.

For more information about using the registry, see Registry. For more information about creating
and using message files, see your message compiler documentation.

Event Logging Operations
In the following table are the five operations that can be performed on the event logs.

Operation Function

Backup BackupEventLog
Clear ClearEventLog
Query GetOldestEventLogRecord,

GetNumberOfEventLogRecords
Read ReadEventLog
Write ReportEvent

The OpenEventLog, OpenBackupEventLog, RegisterEventSource, DeregisterEventSource,
and CloseEventLog functions also open and close event log handles; this provides an object-
oriented model for the function set, as well as some performance gain when performing multiple
operations on the logs.

The OpenEventLog and ReportEvent functions take an optional server name as a parameter so
that the operations can be performed on the remote server. OpenEventLog should be used for
reading or performing some administrative operation (backup, clear, query) on the log, and
RegisterEventSource should be used for writing to logs.

Event Log Entry
This guide describes the parameters supplied for logged events.

Source
Source is the name of the software that logs the event. For many applications, Source may be
simply the application name, or it may reflect a subcomponent of a larger application.

Event Identifier
Event identifiers are looked up within a message file to locate a description string that can be
presented to the user. Support personnel also use event identifiers; if a user can identify the
source and the event identifier, support personnel will know exactly which event has occurred.
Event identifiers are unique to a particular source.

Type
Windows NT™ defines five types of event logging. Each event must be of a single type, because
types cannot be combined.

Event type Description

Information Information events are used to note infrequent but
significant successful operations. For example, when
Microsoft SQL Server successfully loads, it may be
appropriate to log a "SQL Server has started"
information event. Note that while this is appropriate
for major server services, it is generally inappropriate
for a desktop application (Microsoft Excel, for
example) to log an event each time it is started.
Information events should not be used as a trace
facility.

Warning Warning events are used to indicate problems that
are not significant, but that may foretell of future
errors or other problems. Resource consumption is a
good candidate for a Warning event. For example, a
warning could be logged if disk space is low. Errors
that are recovered without loss of function or data
can be classified as warnings.

Error Error events are used to indicate significant problems
that have occurred and that the user should know
about. Errors usually indicate a loss of functionality
or data. For example, if a service cannot be loaded
as the system boots, an Error event can be logged.

Success Audit Success Audit events are security events that occur
when an audited access attempt is successful. For
example, a successful logon attempt is a Success
Audit event.

Failure Audit Failure Audit events are security events that occur
when an audited access attempt fails. For example, a
failed attempt to open a file is a Failure Audit event.

Category
Categories are used to help organize events so that they can be filtered in the Event Viewer. Each
Source can define its own numbered Categories and the text strings to which they are mapped.
The Categories must be numbered consecutively beginning with the number 1. With Event
Viewer, it is possible to filter by Source and within Source, by Category. The security system uses
several categories: Logon/Logoff, File System Access, Privileged Actions, Change in Security
Policy. Categories for other parts of the system are developed over time as it becomes clear
which events are being logged. An application can define its own categories.

Strings
Strings are optional language-independent (nonlocalized) strings used to fill in values for
placeholders in description strings. Because the strings are not localized, it is critical that this field
be used only to store language-independent strings such as numeric values or string tokens
(filenames, user names, and so on). String length must not exceed 32 kilobytes - 1 characters.

It is not acceptable to use several strings to "paste" together a larger description or to use
nontoken strings. The insertion string should be treated as data, not text. For example, the
following example is not recommended:Str1$ = successfully
Description = "User was %1 added to database."Using these two strings to form the string, "User was successfully added to database." (the

alternative being Str1$ = "not") is not acceptable for three reasons:

1. The strings "successfully" and "not" should be localized.
2. Even if the insertion strings are obtained from language-dependent message files, this is

done when the event is logged, not when it is viewed. When the event is viewed, the language
may be wrong.

3. Such substitutions of adverbs and adjectives will not work in many other languages. The
preceding example should use two separate events.

The following example shows an appropriate use of strings:Str1$ = "c:\testapp.c".
Description = "Access denied. Attempted to open the file %1"

Description
Each event is associated with a description located in a message file that is registered by the
Source. The description should help the user understand what went wrong and suggest what
actions to take. Focus the description toward users solving their own problems, not toward
support people or developers. Make the description clear and concise and avoid culture-specific
phrases. If your event includes private data in the Data field, include at the end of the description
an explanation about what the Data field contains. For example, the network software often notes:
"(The SMB is the event data)." As a convention, use parentheses around such remarks, as
indicated in this example. Several applications can share the same message file, and the
message file can contain descriptions for both the event identifier and the event category.

The description strings are indexed by event identifier, enabling Event Viewer to display event-
specific text for any event based on the event identifier. All descriptions are localized and
language dependent. Description strings can optionally contain placeholders for insertion strings.
Each placeholder is represented by a percent sign and an index number for the string to
substitute. For example, the placeholder %1 is replaced by the first insertion string, %5 is replaced
by the fifth insertion string, and so on.

Data
Each event can have event-specific data associated with it. Event Viewer has no information of
any of the events, and only displays extra data in a combined hexadecimal and text dump format.
Use event-specific data sparingly, including it only if you are sure it will be useful to a support
technician or a developer. You might include, for example, data containing a structure filled with
information that could help a technician debug an application failure.

Examples of event-specific data are found in many network events; network control blocks (NCBs)
are included as event-specific data. In all cases, the last part of the description string should
include a note about what information is available as event-specific data. Third-party applications
can use the Data field to store information the application can process independently of Event
Viewer. For example, you could write your own viewer specific to your events, or write a program
that scans the logfiles and makes reports, including information from the event-specific data.

The EVENTLOGRECORD Structure
The ReadEventLog function uses the EVENTLOGRECORD structure to format event log
information. This structure contains information relating to the content of the event record. The
actual event record information follows this structure in the buffer returned by the ReadEventLog
function.

Special Cases
Each call to an event logging function is considered to be an atomic operation. For reading the
event log, only whole event records are returned. For logging events, each event record is
guaranteed to be written as a complete record in the log. The following list describes how the
event logging service handles special conditions:

· Multiple calls written to the same log. The event logging service serializes the operations;
the event logs are written sequentially in the logfile.

· A call to read and a call to write are made at the same time. What happens depends on
where the current read operation is being carried out in the file. If the read position is at the
end of the file, either the read operation fails with an "end-of-file" status (if the write operation
has not been done), or it returns the new record that the write operation has just written to the
log.

· Clearing the log before reading. The read operation returns an "end-of-file" status after the
file is cleared.

· Clearing the log before writing. The clear operation truncates the logfile; the write
operation then writes the new record at the beginning of the log.

Using Event Logging
· Adding a source to the registry
· Reporting an event
· Querying the event log
· Reading the event log

You can use the Windows Registration Database Editor (REGEDIT.EXE) to view the event log
registry keys, and you can use Event Viewer to view the event logs.

Adding a Source to the Registry
You can use the default Application event log without adding your source name to the registry.
However, Event Viewer will not be able to map your event identifier codes to message strings
unless you register your source and provide a message-file name.

You can add a new source name to the registry by opening a new registry subkey under the
Application key and adding registry values to the new subkey. The following code sample opens
a new source name called SamplApp and adds to the new subkey a message-file name and a
bitmask of supported types.HKEY hk;
DWORD dwData;
UCHAR szBuf[80];
/*
* Add your source name as a subkey under the Application
* key in the EventLog service portion of the registry.
*/
if (RegCreateKey(HKEY_LOCAL_MACHINE,
"SYSTEM\\CurrentControlSet\\Services\
\\EventLog\\Application\\SamplApp",
&hk))
ErrorExit("could not create registry key");

/* Set the Event ID message-file name. */
strcpy(szBuf, "%SystemRoot%\\System\\SamplApp.dll");
/* Add the Event ID message-file name to the subkey. */
if (RegSetValueEx(hk, /* subkey handle */

"EventMessageFile", /* value name */
0, /* must be zero*/
REG_EXPAND_SZ, /* value type */
(LPBYTE) szBuf, /* address of value data */
strlen(szBuf) + 1)) /* length of value data */
ErrorExit("could not set event message file");

/* Set the supported types flags. */
dwData = EVENTLOG_ERROR_TYPE | EVENTLOG_WARNING_TYPE |

EVENTLOG_INFORMATION_TYPE;
if (RegSetValueEx(hk, /* subkey handle */

"TypesSupported", /* value name */
0, /* must be zero */
REG_DWORD, /* value type */
(LPBYTE) &dwData, /* address of value data */
sizeof(DWORD))) /* length of value data */
ErrorExit("could not set supported types");

RegCloseKey(hk);

Reporting an Event
After you have added a source name to the registry, use the RegisterEventSource function to
get a handle of the Application event log, as in the following example, which gets the handle and
then adds an event to the logs.LPSTR aszMsg[] = {

"SamplApp",
};

HANDLE h;
h = RegisterEventSource(NULL, /* uses local computer */

"SamplApp"); /* source name */
if (h == NULL)

ErrorExit("could not register event source");
if (!ReportEvent(h, /* event log handle */

EVENTLOG_ERROR_TYPE, /* event type */
0,/* category zero*/
0x1003,/* event identifier */
NULL, /* no user security identifier */
1,/* one substitution string*/
0,/* no data */
(LPTSTR *) aszMsg, /* address of string array*/
NULL)) /* address of data */
ErrorExit("could not report event");

DeregisterEventSource(h);

Querying the Event Log
The following code sample displays the number of event records currently in the Application
event log and the System event log./* Open the System log. */
h = OpenEventLog(NULL, /* uses local computer */

"System");/* source name*/
if (h == NULL)

ErrorExit("could not open System event log");
/* Get the number of records in the System event log. */
if (!GetNumberOfEventLogRecords(h, &cRecords))

ErrorExit
("could not get number of records");

printf("There are %d records in the System event log.\n", cRecords);
CloseEventLog(h);
/* Open the Application log. */
h = OpenEventLog(NULL, /* uses local computer */

"Application");/* source name*/
if (h == NULL)

ErrorExit("could not open Application event log");
/* Get the number of records in the Application event log. */
if (!GetNumberOfEventLogRecords(h, &cRecords))

ErrorExit("could not get number of records");
printf("There are %d records in the Application event log.\n",

cRecords);
CloseEventLog(h);

Reading the Event Log
The following code sample reads all the records in the Application logfile and displays the event
identifier, event type, and source name for each event log entry.EVENTLOGRECORD *pevlr;
BYTE bBuffer[BUFFER_SIZE];
DWORD dwRead, dwNeeded, cRecords, dwThisRecord = 0;

/* Open the Application event log. */
h = OpenEventLog(NULL, /* uses local computer */
"Application");/* source name */
if (h == NULL)
ErrorExit("could not open Application event log");
pevlr = (EVENTLOGRECORD *) &bBuffer;
/*

* Opening the event log positions the file pointer
* for this handle at the beginning of the log.
*
* Read records sequentially until there
* are no more.
*/

while (ReadEventLog(h, /* event log handle */
EVENTLOG_FORWARDS_READ | /* reads forward */
EVENTLOG_SEQUENTIAL_READ, /* sequential read */
0, /* ignored for sequential reads */
pevlr, /* address of buffer */
BUFFER_SIZE, /* size of buffer*/
&dwRead, /* count of bytes read*/
&dwNeeded)) { /* bytes in next record */
while (dwRead > 0) {
/*
* Print the event ID, type, and source name.
* The source name is just past the end of the
* formal structure.
*/
printf("%02d Event ID: 0x%08X ",
dwThisRecord++, pevlr->EventID);
printf("EventType: %d Source: %s\n",
pevlr->EventType, (LPSTR) ((LPBYTE) pevlr +
sizeof(EVENTLOGRECORD)));
dwRead -= pevlr->Length;
pevlr = (EVENTLOGRECORD *)
((LPBYTE) pevlr + pevlr->Length);
}
pevlr = (EVENTLOGRECORD *) &bBuffer;
}
CloseEventLog(h);

Event Logging Reference
The following functions and structures are used with event logging.

Event Logging Functions
The following functions are used with event logging.
BackupEventLog
ClearEventLog
CloseEventLog
DeregisterEventSource
GetNumberOfEventLogRecords
GetOldestEventLogRecord
NotifyChangeEventLog
OpenBackupEventLog
OpenEventLog
ReadEventLog
RegisterEventSource

ReportEvent

Event Logging Structures
The following structure is used with event logging.

EVENTLOGRECORD

File MappingThis overview describes file mapping and how to use it in a Win32-based application.

About File Mapping
File mapping is the association of a file's contents with a portion of the virtual address space of a
process. The operating system creates a file-mapping object to maintain this association. A file
view is the portion of virtual address space that the process uses to access the file's contents.
Processes read from and write to the file view using pointers, just as they would with dynamically
allocated memory. Processes can also manipulate the file view with the virtual memory function
VirtualProtect.

The file-mapping functions in the Microsoft® Win32® application programming interface (API) allow
a process to create file-mapping objects and file views to easily access and share data. The
following illustration shows the relationship between the file on disk, a file-mapping object, and a
file view.

ewc msdncd, EWGraphic, bsd23497 0 /a "SDK.BMP"

The file on disk can be any file that you want to map into memory, or it can be the system
pagefile.

The file-mapping object can consist of all or only part of the file. It is backed by the file on disk.
This means that when the system swaps out pages of the file-mapping object, any changes made
to the file-mapping object are written to the file. When the pages of the file-mapping object are
swapped back in, they are restored from the file.

A file view can consist of all or only part of the file-mapping object. A process manipulates the file
through the file views. A process can create multiple views for a file-mapping object.

Windows NT: The file views created by each process reside in the virtual address space of
that process.
Windows 95: All file views reside in the shared address space. The shared address space
exists in the range between 2 and 3 gigabytes in the virtual address space for each process. It
contains the 16-bit heap and shared system DLLs, as well as file views.

When multiple processes use the same file-mapping object to create views for a local file, the data
is coherent. That is, the views contain identical copies of the file on disk. The file cannot reside on
a remote computer if you want to share memory between multiple processes.

Advantages of File Mapping
File mapping provides two major advantages:

· Shared memory
· Faster and easier file access

File mapping allows two or more applications to share memory. Win32-based applications cannot
share memory by any other means.

File mapping allows a process to access files more quickly and easily by using a pointer to a file
view. Using a pointer improves efficiency because the file resides on disk, but the file view resides
in memory. File mapping allows the process to use both random I/O and sequential I/O. It also
allows the process to efficiently work with a large data file, such as a database, without having to
map the whole file into memory. When the process needs data from a portion of the file other than
what is in the current file view, it can unmap the current file view, then create a new file view.

Creating a File-Mapping Object
The first step in mapping a file is to open the file by calling the CreateFile function. To ensure that
other processes cannot write to the portion of the file that is mapped, you should open the file with
exclusive access. In addition, the file handle should remain open until the process no longer
needs the file-mapping object. An easy way to obtain exclusive access is to specify zero in the
fdwShareMode parameter of CreateFile. The handle returned by CreateFile is used by the
CreateFileMapping function to create a file-mapping object.

The CreateFileMapping function returns a handle to the file-mapping object. This handle will be
used when creating a file view so that you can access the shared memory. When you call
CreateFileMapping, you specify an object name, the number of bytes to be mapped from the file,
and the read/write permission for the mapped memory. The first process that calls
CreateFileMapping creates the file-mapping object. Processes calling CreateFileMapping for an
existing object receive a handle to the existing object. You can tell whether or not a successful call
to CreateFileMapping created or opened the file-mapping object by calling the GetLastError
function. GetLastError returns NO_ERROR to the creating process and
ERROR_ALREADY_EXISTS to subsequent processes.

The CreateFileMapping function fails if the access flags conflict with those specified when the
CreateFile function opened the file. For example, to read and write to the file:

· Specify the GENERIC_READ and GENERIC_WRITE values in the fdwAccess parameter
of CreateFile.

· Specify the PAGE_READWRITE value in the fdwProtect parameter of
CreateFileMapping.

File Mapping SizeThe size of the file-mapping object is independent of the size of the file being mapped. However, if
the file-mapping object is larger than the file, the system expands the file before
CreateFileMapping returns. If the file-mapping object is smaller than the file, the system maps
only the specified number of bytes from the file.

The dwMaximumSizeHigh and dwMaximumSizeLow parameters of CreateFileMapping allow you
to specify the number of bytes to be mapped from the file. Under Windows 95,
dwMaximumSizeHigh is not used because it is not supported by the 32-bit file system. The value
should be zero.

When you do not want the size of the file to change (for example, when mapping read-only files),
call CreateFileMapping and specify zero for both dwMaximumSizeHigh and
dwMaximumSizeLow. Doing this creates a file-mapping object exactly the same size as the file.
Otherwise, you must calculate or estimate the size of the finished file because file-mapping
objects are static in size; once created, their size cannot increase or decrease.

Windows NT: The size of a file-mapping object backed by a named file is limited by disk space.
The size of a file view is limited to the largest available contiguous block of unreserved virtual
memory. This is at most 2 GB minus the virtual memory already reserved by the process.

Windows 95: The size of a file-mapping object backed by a named file is also limited by disk
space. The size of a file view is limited to the largest available contiguous block of unreserved
virtual memory in the shared address space. This is at most 1 GB minus the virtual memory in use
by other processes, such as 16-bit Windows-based applications or Win32-based applications
using file mapping.

Creating a File View
To map the data from a file to the virtual memory of a process, you must create a view of the file.
The MapViewOfFile and MapViewOfFileEx functions use the file-mapping object handle
returned by CreateFileMapping to create a view of the file or a portion of the file in the process's
virtual address space. These functions fail if the access flags conflict with those specified when
CreateFileMapping created the file-mapping object.

The MapViewOfFile function returns a pointer to the file view. By dereferencing a pointer in the
range of addresses specified in MapViewOfFile, an application can read data from the file and
write data to the file. Writing to the file view results in changes to the file-mapping object. The
actual writing to the file on disk is handled by the system. Data is not actually transferred at the
time the file-mapping object is written to. Instead, much of the file input and output (I/O) is cached
to improve general system performance. Applications can override this behavior by calling the
FlushViewOfFile function to force the system to perform disk transactions immediately.

The MapViewOfFileEx function works exactly like the MapViewOfFile function except that it
allows a process to specify the base address of the view of the file in the process's virtual address
space in the lpvBase parameter. If there is not enough space at the specified address, the call
fails. Therefore, if you must map a file to the same address in multiple processes, the processes
should negotiate an appropriate address.

Windows NT: The lpvBase parameter must be an integral multiple of the system memory
allocation granularity or the call fails. To obtain the system's memory allocation granularity,
use the GetSystemInfo function, which fills in the members of a SYSTEM_INFO structure.
Windows 95: Under Windows 95, the address is rounded down to the nearest integral
multiple of the system's memory allocation granularity. For subsequent file views, if the
address specified does not match the address to which Windows 95 mapped the file view,
MapViewOfFileEx fails.

An application can create multiple file views from the same file-mapping object. A file view can be
a different size than the file-mapping object from which it is derived, but it must be smaller than
the file-mapping object. The offset specified by the dwOffsetHigh and dwOffsetLow parameters of
MapViewOfFile must be a multiple of the allocation granularity of the system.

Closing the File-Mapping Object
When a process has finished with the file-mapping object, it should destroy all file views in its
address space by using the UnmapViewOfFile function for each file view. This function
invalidates the pointer to the process's virtual address space. If any of the pages of the file view
have changed since the view was mapped, the system writes the changed pages of the file to disk
using caching. To commit the data to disk immediately, call the FlushViewOfFile function before
unmapping the file view.

You must call the CloseHandle function to first close the file-mapping object and then close the
file on disk. These calls to CloseHandle succeed even when there are file views that are still
open. However, leaving file views mapped causes memory leaks.

Sharing Files and Memory
File mapping can be used to share a file or memory between two or more processes. To share a
file or memory, all of the processes must use the name or the handle of the same file-mapping
object.

To share a file, the first process creates or opens a file by using the CreateFile function. Next, it
creates a file-mapping object by using the CreateFileMapping function, specifying the file handle
and a name for the file-mapping object. The names of event, semaphore, mutex, and file-
mapping objects share the same name space. Therefore, the CreateFileMapping and
OpenFileMapping functions fail if they specify a name that is in use by an object of another type.

To share memory that is not associated with a file, a process must use the CreateFileMapping
function and specify (HANDLE)0xFFFFFFFF as the hfile parameter instead of an existing file
handle. The corresponding file-mapping object accesses memory backed by the system paging
file. You must specify a size greater than zero when you specify an hfile of (HANDLE)
0xFFFFFFFF in a call to CreateFileMapping.

The easiest way for other processes to obtain a handle of the file-mapping object created by the
first process is to use the OpenFileMapping function and specify the object's name. This is
referred to as named shared memory. If the file-mapping object does not have a name, the
process must obtain a handle to it through inheritance or duplication. For more information on
inheritance and duplication, see Processes and Threads and Handles and Objects.

Processes that share files or memory must create file views by using the MapViewOfFile or
MapViewOfFileEx function. They must coordinate their access using semaphores, mutexes,
events, or some other mutual exclusion technique. For more information, see Synchronization.

A shared file-mapping object will not be destroyed until all processes that use it close their
handles to it by using the CloseHandle function.

Using File Mapping
The following code samples illustrate how two processes might access an existing file as named
shared memory.

· Creating named shared memory
· Reading and writing
· Cleaning up

As discussed earlier in this overview, the processes must synchronize their access to the
memory. For more information, see Synchronization.

Creating Named Shared Memory
The first process calls the CreateFileMapping function to create a file-mapping object and give it
the name MyFileMappingObject. By using the PAGE_READWRITE flag, the processes will have
read/write permission to the memory through any file views that are created.HANDLE hMapFile;
hMapFile = CreateFileMapping(hFile, // Current file handle.

NULL,// Default security.
PAGE_READWRITE,// Read/write permission.
0, // Max. object size.
0, // Size of hFile.
"MyFileMappingObject"); // Name of mapping object.

if (hMapFile == NULL) {
ErrorHandler("Could not create file-mapping object.");

}The process then uses the file-mapping object handle returned by CreateFileMapping in the call
to MapViewOfFile to create a view of the file in the process's address space. The
MapViewOfFile function returns a pointer to the file view.LPVOID lpMapAddress;
lpMapAddress = MapViewOfFile(hMapFile, // Handle to mapping object.

FILE_MAP_ALL_ACCESS,// Read/write permission
0, // Max. object size.
0, // Size of hFile.
0); // Map entire file.

if (lpMapAddress == NULL) {
ErrorHandler("Could not map view of file.");

}The second process calls the OpenFileMapping function with the name MyFileMappingObject to
use the same file-mapping object as the first process. Like the first process, the second process
uses the MapViewOfFile function to obtain a pointer to the file view.HANDLE hMapFile;
LPVOID lpMapAddress;
hMapFile = OpenFileMapping(FILE_MAP_ALL_ACCESS, // Read/write
permission.

FALSE, // Do not inherit the name
"MyFileMappingObject"); // of the mapping object.

if (hMapFile == NULL) {
ErrorHandler("Could not open file-mapping object.");

}
lpMapAddress = MapViewOfFile(hMapFile, // Handle to mapping object.

FILE_MAP_ALL_ACCESS,// Read/write permission.
0, // Max. object size.
0, // Size of hFile.
0); // Map entire file.

if (lpMapAddress == NULL) {
ErrorHandler("Could not map view of file.");

}

Reading and Writing
To read from a file view, a process dereferences the pointer returned by the MapViewOfFile
function:DWORD dwLength;
dwLength = *((LPDWORD) lpMapAddress);The process also uses the pointer returned by MapViewOfFile to write to the file view:*((LPDWORD) lpMapAddress) = dwLength;The FlushViewOfFile function copies the specified number of bytes of the file view to the physical

file, without waiting for the cached write operation to occur:if (!FlushViewOfFile(lpMapAddress, dwBytesToFlush)) {
ErrorHandler("Could not flush memory to disk.");

}

Cleaning Up
Each process uses the UnmapViewOfFile function to invalidate the pointer to the mapped
memory. This destroys the file view in the address space of the process. If any pages of the file
view have changed since the file view was mapped, UnmapViewOfFile also copies the changed
pages to the file on disk.if (!UnmapViewOfFile(lpMapAddress)) {

ErrorHandler("Could not unmap view of file.");
}When each process finishes using the file-mapping object and has umapped all views, it must

close the file mapping object's handle by calling CloseHandle.CloseHandle(hMapFile);

File Mapping Functions
The following functions are used with file mapping.
CreateFileMapping
FlushViewOfFile
MapViewOfFile
MapViewOfFileEx
OpenFileMapping

UnmapViewOfFile

File SystemsApplications based on the Microsoft® Win32® application programming interface (API) rely on file
systems to store and retrieve information on mass storage devices. File systems provide the
underlying support that applications need to create and access files and directories on the
individual volumes associated with the devices.

About File Systems
Depending on the configuration of a computer, a Win32-based application may have access to
volumes managed by any of the following file systems:

· New Technology file system (NTFS)
· File allocation table (FAT) file system
· Protected-mode FAT file system

For example, applications that connect to network drives may encounter file systems that range
from FAT to NTFS. Because different volumes may be managed by different file systems, it is
important to understand the differences between file systems and to prepare applications to work
effectively with all available file systems. The following sections describe these differences and
present guidelines for handling them within applications.

Guidelines
Each file system consists of one or more drivers and supporting dynamic-link libraries that define
the data formats and features of the file system. These determine the conventions used for
filenames, the level of security and recoverability available, and the general performance of input
and output (I/O) operations. Before you access files and directories on a given volume, you should
determine the capabilities of the file system by using the GetVolumeInformation function. The
function returns values, such as the maximum length of filenames, that you can use to adapt your
application to work effectively with the file system.

In general, you should always avoid using static buffers for filenames and paths. Instead, use the
values returned by GetVolumeInformation to allocate buffers as you need them. If you must use
static buffers, reserve 256 characters for filenames and 260 characters for paths. These are the
maximums currently recommended for Win32-based applications.

The New Technology File System
The New Technology file system (NTFS) organizes data on fixed disks. This file system supports
object-oriented applications by treating all files as objects with user- and system-defined
attributes. NTFS provides all the capabilities of the FAT file system without many of its limitations.
Accessing files under NTFS is often faster than accessing similar files under the FAT file system.

NTFS is a fully recoverable file system. It is designed to restore consistency to a disk after a CPU
failure, system crash, or I/O error. NTFS allows the operating system to recover without your
having to use disk-checking utilities. However, NTFS provides these utilities in case recovery fails
or corruption occurs outside the control of the file system. NTFS also includes features not
present in FAT, such as security, Unicode filenames, automatic creation of MS-DOS® aliases,
multiple data streams, and unique functionality specific to the POSIX subsystem. For more
information about security, see Security. For more information about Unicode, see Unicode and
Character Sets.

NTFS filenames can be any practical length (up to 255 characters). There is no requirement that
NTFS filenames have extensions; however, many applications still create and use them. For more
information, see Filename Conventions.

The File Allocation Table File System
The FAT file system organizes data on fixed disks and floppy disks. The distinguishing feature of
the FAT file system is its filename convention. The filename convention consists of a filename (up
to eight characters), a separating period (.), and a filename extension (up to three characters).

The main advantage of FAT volumes is that they are accessible by MS-DOS, Microsoft®
Windows®, and OS/2 systems. FAT is also the only file system currently supported on floppy disks
and other removable media.

Valid FAT filenames have the following form:

[[drive:]][[directory\]]filename[[.extension]]

The drive parameter must name an existing drive and can be any letter from A through Z. The
drive letter must be followed by a colon (:).

The directory parameter specifies the directory that contains the file's directory entry. This value
must be followed by a backslash (\) to separate it from the filename. If the specified directory is
not in the current directory, directory must include the names of all directories in the file's path,
separated by backslashes. The root directory is specified by using a backslash at the beginning of
the name. For example, if the directory ABCD is in the directory SAMPLE and SAMPLE is in the
root directory, the correct directory specification is \SAMPLE\ABCD. A directory name consists of
any combination of up to eight letters, digits, or the following special characters:

$ % ' - _ @ { } ~ ` ! # ()

A directory name can also have an extension that is any combination of up to three letters, digits,
or special characters, preceded by a period (.).

The filename and extension parameters specify the file. Filename can be any combination of up to
eight letters, digits, or the special characters previously listed; extension can be any combination
of up to three letters, digits, or special characters, all preceded by a period. Filename can also
include embedded (preceded and followed by one or more letters, digits, or special characters just
noted) spaces. For example, the string "disk 1" is a valid value for filename.

FAT volumes do not distinguish between uppercase and lowercase letters.

The Protected-Mode FAT File System
The protected-mode FAT file system organizes data on fixed and floppy disks. Protected-mode
FAT is compatible with the FAT file system, using file allocation tables and directory entries to
store information about the contents of a disk. Protected-mode FAT also supports long filenames,
storing these names and other information such as the date and time the file was last accessed in
the FAT structures.

Protected-mode FAT allows filenames of up to 255 characters, including the terminating null
character. This is similar to the New Technology file system (NTFS) which allows filenames of up
to 256 characters.

Protected-mode FAT allows paths of up to 260 characters, including the terminating null
character.

The High-Performance File System
The high-performance file system (HPFS) organizes data on fixed disks. HPFS supports extended
attributes and long, mixed-case filenames, and improves operating system performance by
implementing several levels of caching. HPFS files are not supported on 32-bit versions of
Microsoft Windows.

FilesA file is the basic unit of storage that enables a computer to distinguish one set of information from
another. This overview describes the file I/O operations and operating system information
provided by the file functions in the Microsoft® Win32® application programming interface (API).

About Files
In Microsoft® Windows®, files are stored on storage media, such as disks or tapes, and can be
organized into groups called directories. The Windows file input and output (I/O) functions enable
applications to create, open, modify, and delete files. They also enable applications to obtain
system information, such as what disk drives are present.

File System Organization
A volume is a storage device, such as a fixed disk or floppy disk, formatted to store directories
and files. Each volume has a root directory. Directories and files on the volume are organized in a
tree structure that starts at the root directory. Each directory entry identifies the name, attributes,
location, and size of a file or subdirectory.

A large volume can be divided into more than one logical volume, also called a partition. To the
user and to the operating system, each partition appears to be a separate volume.

A file system is operating system software that manages the low-level organization of files on a
volume. Windows supports one or more of the following file systems:

· File Allocation Table (FAT)
· New Technology File System (NTFS)

The type of file system defines the filename conventions on a volume and may also provide
specific file system features, such as security, recoverability, and high I/O performance. Each
volume can use a different file system.

For more information on FAT and New Technology file systems, see File Systems.

Accessing Files
The first time a file function accesses a volume and whenever a diskette is placed in a floppy-disk
drive, Windows examines the volume to determine its file system. Thereafter, Windows manages
all I/O to that volume through the device driver supporting the file system.

The Windows file functions enable applications to access files regardless of the underlying file
system. However, capabilities may vary depending on the file system and/or operating system in
use. For example, the CreateFile function includes a security parameter that provides no security
benefits for files not residing on an NTFS volume.

The Windows file functions that create, open, and delete files and directories identify them by their
names. These functions store or search for the file or directory in the current directory on the
current disk drive, unless the name explicitly specifies a path to a different directory, disk drive, or
both.

Filename Conventions
Although each file system can have specific rules about the formation of individual components in
a directory or filename, all file systems follow the same general conventions: a base filename and
an optional extension, separated by a period. For example, the MS-DOS FAT file system supports
8 characters for the base filename and 3 characters for the extension. This is known as an 8.3
filename. The FAT file system and NTFS support filenames that can be up to 255 characters long.
This is known as a long filename. To get an MS-DOS filename given a long filename, use the
GetShortPathName function. To get the full path of a file, use the GetFullPathName function.

Both file systems use the backslash (\) character to separate directory names and the filename
when forming a path.

General rules for applications creating names for directories and files or processing names
supplied by the user include the following:

· Use any character in the current code page for a name, but do not use a path separator, a
character in the range 0 through 31, or any character explicitly disallowed by the file system. A
name can contain characters in the extended character set (128- 255).

· Use the backslash (\), the forward slash (/), or both to separate components in a path. No
other character is acceptable as a path separator.

· Use a period (.) as a directory component in a path to represent the current directory.
· Use two consecutive periods (..) as a directory component in a path to represent the

parent of the current directory.
· Use a period (.) to separate the base filename from the extension in a directory name or

filename.
· Do not use the following characters in directory names or filenames, because they are

reserved for Windows:
< > : " / \ |

· Do not use device names, such as aux, con, and prn, as filenames or directory names.
· Process a path as a null-terminated string. The maximum length for a path, including a

trailing backslash, is given by MAX_PATH.
The wide (Unicode) versions of the CreateDirectory, FindFirstFile, GetFileAttributes, and
SetFileAttributes functions permit paths that exceed the MAX_PATH length if the path has
the "\\?\" or "\\?\UNC\" prefix. These prefixes direct the functions to turn off path parsing. Use
the "\\?\" prefix with paths for local storage devices and the "\\?\UNC\" prefix with paths having
the Universal Naming Convention format.

· Do not assume case sensitivity. Consider names such as OSCAR, Oscar, and oscar to be
the same.

By following the rules listed in this section, an application can create valid names for files and
directories regardless of the file system in use.Long Filenames on Windows NTThe operating system stores the long filenames on disk as special directory entries. When you
create a long filename, the operating system creates a corresponding short 8.3 form of the name.

The operating system stores the long filenames on disk in Unicode. This means that the original
long filename is always preserved, even if it contains extended characters, and regardless of the
code page that is active during a disk read or write operation. The case of the filename is
preserved, but the file system is not case-sensitive.

The valid character set for these long filenames is the NTFS character set, less one character: the
colon (':') that NTFS uses for opening alternate file streams. This means that you can freely copy
files between NTFS and FAT partitions without losing any file name information.

MS-DOS Device Names
MS-DOS device names are global. Once defined, an MS-DOS device name remains visible to all
processes until either it is explicitly removed or the system reboots.

The DefineDosDevice function is used to create and modify the symbolic links used to implement
the MS-DOS device namespace. To obtains a list of all MS-DOS devices known to the system,
use the QueryDosDevice function.

File Operations
The AreFileApisANSI function determines whether the file functions are using the ANSI or OEM
character set code page. The SetFileApisToANSI function causes the functions to use the ANSI
code page. The SetFileApisToOEM function causes the functions to use the OEM code page.

By default, file functions use ANSI filenames.

Creating and Opening Files with the CreateFile Function
The CreateFile function can create a new file or open an existing file.

When an application uses CreateFile, it must specify whether it will read from the file, write to the
file, or both. The application must also specify what action to take whether or not the file exists.
For example, an application can specify that CreateFile always be used to create the file. As a
result, the function creates the file if it does not exist and overwrites the file if it does exist.

CreateFile also enables an application to specify whether it wants to share the file for reading,
writing, both, or neither. A file that is not shared cannot be opened more than once by the first
application nor by another application until the first application has closed the file.

Windows assigns a unique identifier, called a file handle, to each file that is opened or created. An
application can use the file handle in functions that read from, write to, and describe the file. It is
valid until the file is closed. When an application starts, it inherits all open file handles from the
process that started it, if the handles are inheritable. For more information about processes, see
Processes and Threads.

For information about the standard input, standard output, and standard error file handles, see
Consoles and Character-Mode Support.

An application should check the return value of CreateFile before attempting to use the handle to
access the file. If an error occurs, the application can use the GetLastError function to get
extended error information.

Closing and Deleting Files
To use operating system resources efficiently, an application should close files when they are no
longer needed by using the CloseHandle function. If a file is open when an application
terminates, Windows closes it automatically.

The DeleteFile function can be used to delete a file. The file must, however, be closed before any
attempt to delete it will succeed.

Copying and Moving Files
Before a file can be copied, it must be closed or opened only for reading. No thread can have the
file opened for writing. To copy an existing file to a new one, use the CopyFile or CopyFileEx
function. Applications can specify whether CopyFile and CopyFileEx fail if the destination file
already exists.

The CopyFileEx function also allows an application to specify the address of a callback function
(see CopyProgressRoutine) that is called each time another portion of the file has been copied.
The application can use this information to display am indicator that shows the total number of
bytes copied as a percent of the total file size.

A file must also be closed before an application can move it. The MoveFile and MoveFileEx
functions copy an existing file to a new location and deletes the original.

The MoveFileEx function also allows an application to specify how to move the file. The function
can replace an existing file, move a file across volumes, and delay moving the file until the
operating system is restarted.

Reading from and Writing to a File
Every open file has a file pointer that specifies the next byte to be read or the location to receive
the next byte written. When a file is opened for the first time, Windows places the file pointer at the
beginning of the file. As each byte is read or written, Windows advances the file pointer. An
application can also move the file pointer by using the SetFilePointer function.

An application reads from and writes to a file by using the ReadFile and WriteFile functions.
These functions require a handle of a file to be opened for reading and writing, respectively.
ReadFile and WriteFile read and write a specified number of bytes at the location indicated by
the file pointer. The data is read and written exactly as given; the functions do not format the data.

When the file pointer reaches the end of a file and the application attempts to read from the file,
no error occurs, but no bytes are read. Therefore, reading zero bytes without an error means the
program has reached the end of the file. Writing zero bytes does nothing.

An application can truncate or extend a file by using the SetEndOfFile function. This function sets
the end of file to the current position of the file pointer.

When an application writes to a file, Windows usually collects the data being written in an internal
buffer and writes the data to the disk on a regular basis.

An application can force the operating system to write the contents of the buffer to the disk by
using the FlushFileBuffers function. Alternatively, an application can specify that write operations
are to bypass the internal buffer and write directly to the disk by setting a flag when the file is
created or opened by using the CreateFile function.

If there is data in the internal buffer when the file is closed, Windows does not automatically write
the contents of the buffer to the disk before closing the file. If the application does not force the
operating system to write the buffer to disk before closing the file, the caching algorithm
determines when the buffer is written.

Applications must not read from nor write to the input buffer that a read operation is using until the
read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.Locking and Unlocking FilesAlthough Windows allows more than one application to open a file and write to it, applications
must not write over each other's work. An application can prevent this problem by temporarily
locking a region in a file. The LockFile and LockFileEx functions lock a specified range of bytes
in a file. The range may extend beyond the current end of the file. Locking part of a file prevents
all other processes from reading or writing anywhere in the specified area. Attempts to read from
or write to a region locked by another process always fail.

The LockFileEx function allows an application to specify either a shared lock or an exclusive lock.
An exclusive lock denies all other processes both read and write access to the specified region of
the file. A shared lock denies all processes write access to the specified region of the file,
including the process that first locks the region. This can be used to create a read-only region in a
file.

The application unlocks the region by using the UnlockFile or UnlockFileEx function. An
application should unlock all locked areas before closing a file.Asynchronous Input and OutputAsynchronous input and output (asynchronous I/O) allows some I/O functions to return
immediately, even though an I/O request is still pending. Asynchronous I/O enables an application
to continue with other processing and wait for the I/O to be completed at a later time.
Asynchronous I/O is also called overlapped I/O.

The ReadFile and WriteFile functions enable an application to specify an OVERLAPPED
structure that indicates where to position the file pointer before the read or write operation. The
handle of the file being read from or written to must have been opened with the
FILE_FLAG_OVERLAPPED flag. You can also create an event and put the handle in the
OVERLAPPED structure; the wait functions can then be used to wait for the I/O operation to
complete by waiting on the event handle.

An application can also wait on the file handle to synchronize the completion of an I/O operation,
but doing so requires extreme caution. Each time an I/O operation is started, the operating system
sets the file handle to the nonsignaled state. Each time an I/O operation is completed, the
operating system sets the file handle to the signaled state. Therefore, if an application starts two I/
O operations and waits on the file handle, there is no way to determine which operation is finished
when the handle is set to the signaled state. If an application must perform multiple asynchronous
I/O operations on a single file, it should wait on the event handle in the OVERLAPPED structure
for each I/O operation, rather than on the file handle.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle.

The ReadFileEx and WriteFileEx functions enable an application to specify a routine to execute
(see FileIOCompletionRoutine) when the asynchronous I/O request is completed.

For more information, see Synchronization and Overlapped Input and Output.I/O Completion PortsI/O completion ports are used with asynchronous I/O. The CreateIoCompletionPort function
associates an I/O completion port with one or more file handles. When an asynchronous I/O
operation started on a file handle associated with an I/O completion port is completed, an I/O
completion packet is queued to the port. This can be used to combine the synchronization point
for multiple file handles into a single object.

A thread uses the GetQueuedCompletionStatus function to wait for an I/O completion packet to
be queued to the I/O completion port, rather than waiting directly for the asynchronous I/O to
complete. Threads that block their execution on an I/O completion port are released in last-in-
first-out (LIFO) order. This means that when an I/O completion packet is queued to the I/O
completion port, the system releases the last thread to block its execution on the port.

The most important property of an I/O completion port is the concurrency value. The concurrency
value of an I/O completion port is specified when the I/O completion port is created. This value
limits the number of runnable threads associated with the I/O completion port. When the total
number of runnable threads associated with the I/O completion port reaches the concurrency
value, the system blocks the execution of the threads until the number of runnable threads
associated with the I/O completion port drops below the concurrency value. The most efficient
scenario occurs when there are I/O completion packets waiting in the queue, but no waits can be
satisfied because the port has reached its concurrency limit. In this case, when a running thread
calls GetQueuedCompletionStatus, it will immediately pick up the queued I/O completion
packet. No context switches will occur, because the running thread is continually picking up I/O
completion packets and the other threads are unable to run.

The best value to pick for the concurrency value is the number of CPUs on the machine. If your
transaction required a lengthy computation, a larger concurrency value will allow more threads to
run. Each transaction will take longer to complete, but more transactions will be processed at the
same time. It is easy to experiment with the concurrency value to achieve the best effect for your
application.

The PostQueuedCompletionStatus function allows an application to queue its own special-
purpose I/O completion packets to the I/O completion port without starting an asynchronous I/O
operation. This is useful for notifying worker threads of external events.

The I/O completion port is freed when there are no more references to it. The port handle and
every file handle associated with the I/O completion port reference the I/O completion port. All the
handles must be closed to free the I/O completion port. To close the port handle, call the
CloseHandle function.

Searching for Files
An application can search the current directory for all filenames that match a given pattern by
using the FindFirstFile, FindFirstFileEx, FindNextFile, and FindClose functions. The pattern
must be a valid filename and can include wildcard characters.

The FindFirstFile and FindFirstFileEx functions create handles that FindNextFile uses to
search for other files with the same pattern. All functions return information about the file that was
found. This information includes the filename, size, attributes, and time.

The FindFirstFileEx function also allows an application to search for files based on additional
search criteria. The function can limit searches to device names or directory names.

The FindClose function destroys handles created by FindFirstFile and FindFirstFileEx.

An application can search for a single file on a specific path by using the SearchPath function.

Creating Temporary Files
Applications can create temporary filenames with the GetTempFileName function. The
GetTempPath function retrieves the path to the directory where temporary files are to be created.

Getting Information About Files
The GetFileInformationByHandle function retrieves information about a file and stores it in a
structure of type BY_HANDLE_FILE_INFORMATION. This information includes creation time, file
size, and attributes.

Eight characteristics called attributes may be associated with a file. The attributes can be one or
more of the following values.

Value Meaning

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive
file. Applications use this value to
mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is
compressed. For a file, this
means that all of the data in the
file is compressed. For a
directory, this means that
compression is the default for
newly created files and
subdirectories.

FILE_ATTRIBUTE_DIRECTORY This is a directory.
FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It

is not included in an ordinary
directory listing.

FILE_ATTRIBUTE_NORMAL The file or directory has no other
attributes set. This value is valid
only if used alone.

FILE_ATTRIBUTE_OFFLINE The data of the file is not
immediately available. Indicates
that the file data has been
physically moved to offline
storage.

FILE_ATTRIBUTE_READONLY The file or directory is read-only.
Applications can read the file but
cannot write to it or delete it. In
the case of a directory,
applications cannot delete it.

FILE_ATTRIBUTE_SYSTEM The file or directory is part of the
operating system or is used
exclusively by the operating
system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for
temporary storage. File systems
attempt to keep all of the data in
memory for quicker access
rather than flushing the data
back to mass storage. A
temporary file should be deleted
by the application as soon as it is
no longer needed..

An application can retrieve and set file attributes by using the GetFileAttributes,
GetFileAttributesEx, and SetFileAttributes functions. These attributes can also be used in the
CreateFile function. Applications cannot, however, use CreateFile or SetFileAttributes to set the
directory attribute, because files cannot be converted into directories. For more information, see
Directory Operations. It is also not possible to use SetFileAttributes to set the compressed
attribute. For information, see File Compression.

The GetFileType function returns the type of a file: disk, character (such as a console), pipe, or
unknown. The GetBinaryType function determines whether a file is executable, and if so, what
type of executable file it is. The GetFileSize function returns the size of a file.

Applications can retrieve and set the date and time a file was created, last modified, or last
accessed by using the GetFileTime and SetFileTime functions. For more information about file
times, see Time.

Getting Volume Information
Windows provides several functions that applications can use to obtain information about the file
system.

The GetVolumeInformation function retrieves information about the file system on a given
volume. This information includes the volume name, volume serial number, file system name, file
system flags, maximum length of a filename, and so on. The SetVolumeLabel function sets the
label of a file system volume.

The GetSystemDirectory and GetWindowsDirectory functions retrieve the paths to the
Windows system directory and the Windows directory, respectively.

The GetDiskFreeSpace function retrieves organizational information about a volume, including
the number of bytes per sector, the number of sectors per cluster, the number of free clusters, and
the total number of clusters.

The GetDriveType function indicates whether the volume referenced by the specified drive letter
is a removable, fixed, CD-ROM, RAM, or network drive.

The GetLogicalDrives function identifies the volumes present. The GetLogicalDriveStrings
function retrieves a null-terminated string for each volume present. Use these strings whenever a
root directory is required.

Directory Operations
When an application creates a new file, the operating system adds it to the specified directory.
Each directory can have any number of files, up to the physical limit of the disk. An application can
create new directories and delete existing directories by using the CreateDirectory,
CreateDirectoryEx, and RemoveDirectory functions. An application cannot delete a directory
unless it is empty.

The directory at the end of the active path is called the current directory; it is the directory in which
the active application started, unless explicitly changed. An application can determine which
directory is current by using the GetCurrentDirectory function. An application can change the
current directory by using the SetCurrentDirectory function.

Windows NT: You can obtain a handle to a directory by calling the CreateFile function with the
FILE_FLAG_BACKUP_SEMANTICS flag set, as follows:hDir = CreateFile (

DirName,
GENERIC_READ,
FILE_SHARE_READ|FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING,
FILE_FLAG_BACKUP_SEMANTICS,
NULL

);You can pass a directory handle to the following functions:
BackupRead
BackupSeek
BackupWrite
GetFileInformationByHandle
GetFileSize
GetFileTime
GetFileType
ReadDirectoryChangesW

SetFileTime

Notification Functions
An application can monitor the contents of a directory and its subdirectories by using the
FindFirstChangeNotification, FindNextChangeNotification, and
FindCloseChangeNotification functions. Waiting for a change notification is similar to having a
read operation pending against a directory and, if necessary, its subdirectories. When something
changes within the directory being watched, the read operation is completed. For example, an
application can use these functions to update a directory listing whenever a filename within the
monitored directory changes.

An application can specify a set of conditions that trigger a change notification by using the
FindFirstChangeNotification function. The conditions include changes to filenames, directory
names, attributes, file size, time of last write, and security. This function also returns a handle that
can be waited on by using the wait functions. If the wait condition is satisfied,
FindNextChangeNotification can be used to provide a notification handle to wait on subsequent
changes.

The FindCloseChangeNotification function closes the notification handle.

Another way to monitor directory changes is by using the ReadDirectoryChangesW function.

File Compression
Windows NT 3.51 and later support file compression on an individual file basis for NTFS volumes.

Compression Attribute
On NTFS volumes, each file and directory has a compression attribute. Other file systems may
also implement a compression attribute for individual files and directories.

You can determine whether a file system supports a compression attribute for files and directories
by calling the GetVolumeInformation function and examining the FS_FILE_COMPRESSION bit
flag.

Use the GetFileAttributes or GetFileAttributesEx function to determine the compression
attribute of a file or directory.

If a file's compression attribute is set, all of the data in the file is compressed. If the attribute is
clear, none of the data in the file is compressed. There is no partially compressed state. The
compression attribute is a simple Boolean indicator of compression state.

A directory's compression attribute provides a default compression attribute for newly created files
and subdirectories. When you call CreateFile or CreateDirectory to create a new file or directory,
the new file or directory inherits the compression attribute of its parent directory.

Compression State
Each file and directory on a volume that supports compression for individual files and directories
has a compression state.

Whereas the compression attribute of a file or directory indicates simply whether the file or
directory is compressed or not compressed, the compression state also specifies the format of
any compressed data.

Use the FSCTL_GET_COMPRESSION DeviceIoControl operation to determine the compression
state of a file or directory.

Compression state is encoded as a 16-bit value. A compression state value of
COMPRESSION_FORMAT_NONE indicates that a file is not compressed. A value of
COMPRESSION_FORMAT_DEFAULT indicates that a file is compressed, using the default
compression format. Any other value indicates that a file is compressed, using the compression
format specified by the compression state value.

Use the FSCTL_SET_COMPRESSION DeviceIoControl operation to set the compression state
of a file or directory. This operation also sets the compression attribute of the file or directory.

Setting the compression state of a file to a nonzero value compresses the file, using the
compression format encoded by the compression state value. Setting a file's compression state to
zero decompresses the file. These are synchronous operations. The file is compressed or
decompressed immediately when you set its compression state.

Setting a directory's compression state does not cause any immediate compression or
decompression. Instead, setting a directory's compression state sets a default compression state
that will be given to all newly created files and subdirectories.

Obtaining the Size of a Compressed File
Use the GetCompressedFileSize function to obtain the compressed size of a file. If the file is
compressed, its compressed size will be less than its uncompressed size. Use the GetFileSize).
function to determine the uncompressed size of a file.

Using Files
The Windows file functions enable applications to access files regardless of the underlying file
system. However, their functionality may vary depending on the operating system in use. If you
have questions about a specific function, consult the reference information for that function.

For functions that manipulate files, the filenames may be relative to the current directory. A
filename is relative to the current directory if it does not begin with a disk designator or directory
name separator, such as a backslash (\). If the filename begins with a disk designator, it is a fully
qualified path.

The examples in this section illustrate how to perform the following tasks:

· Creating and opening files
· Reading, writing, and locking files
· Creating and using a temporary file
· Searching for files and changing file attributes
· Monitoring changes in a directory or directory tree
· Testing for the end of the file
· Retrieving a file pointer

Creating and Opening Files
You can use the CreateFile function to create a new file or open an existing file. You must specify
the filename, preferred access, share mode, creation instructions, and attributes.

In the following example, CreateFile opens an existing file for reading.HANDLE hFile;
hFile = CreateFile("MYFILE.TXT", // open MYFILE.TXT
GENERIC_READ, // open for reading
FILE_SHARE_READ, // share for reading
NULL, // no security
OPEN_EXISTING, // existing file only
FILE_ATTRIBUTE_NORMAL,// normal file
NULL); // no attr. template
if (hFile == INVALID_HANDLE_VALUE) {

ErrorHandler("Could not open file."); /* process error */
}In this example, CreateFile succeeds only if a file named MYFILE.TXT already exists in the

current directory. An application should check the return value of CreateFile before attempting to
use the handle to access the file. If an error occurs, the application should use the GetLastError
function to get extended error information and respond accordingly.

A file must be closed before it can be deleted. The following lines close and delete the MYFILE.
TXT file.CloseHandle(hFile);
DeleteFile("MYFILE.TXT");In the following example, CreateFile creates a new file and opens it for writing.HANDLE hFile;
hFile = CreateFile("MYFILE.TXT", // create MYFILE.TXT

GENERIC_WRITE, // open for writing
0, // do not share
NULL,// no security
CREATE_ALWAYS, // overwrite existing
FILE_ATTRIBUTE_NORMAL | // normal file
FILE_FLAG_OVERLAPPED, // asynchronous I/O
NULL); // no attr. template

if (hFile == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open file."); // process error

}In addition to the standard attributes (read only, hidden, system, and so on), you can also specify
security attributes by including a pointer to a SECURITY_ATTRIBUTES structure as the fourth
parameter. However, the underlying file system must support security for these attributes for them
to have any effect. For more information about security, see Security.

Reading, Writing, and Locking Files
The ReadFile function requires a file handle that is open for reading, or reading and writing.
ReadFile copies a specified number of bytes, from the current position up to the end of the file, to
a specified buffer. The current position is either the current file pointer setting or the Offset and
OffsetHigh members of the specified OVERLAPPED structure. The function returns the actual
number of bytes read in a variable specified by its fourth parameter.

The WriteFile function requires a file handle that is open for writing, or writing and reading.
WriteFile copies a specified number of bytes, from the current position up to the end of the buffer,
to a specified file. The function returns the actual number of bytes written in a variable specified by
its fourth parameter.

The following example illustrates a possible flow for using callback completion asynchronous I/O.

Completion Routine:VOID IoCompletionRoutine(DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped)

{
// If an I/O error occurs, display the error and exit.
if (dwErrorCode) {
printf("FATAL I/O Error %ld I/O Context %lx.%lx\n",
dwErrorCode, lpOverlapped, lpOverlapped->hEvent);
ExitProcess(dwErrorCode);
}
LocalFree(lpOverlapped);

}Main Thread:VOID IoWorkerThread(VOID)
{

HANDLE HandleVector[2];
DWORD CompletionStatus;
PIOREQUEST IoRequestPacket;
LPOVERLAPPED Overlapped;
BOOL IoOperationStatus;
HandleVector[0] = IoWorkerListLock;
HandleVector[1] = IoWorkerListSemaphore;
for(;;) {
// Do an alertable wait on the handle vector.

Both objects
// being signaled at the same time means that there is an
// I/O request in the queue and the caller has exclusive
// access to the queue.
CompletionStatus = WaitForMultipleObjectsEx(2, HandleVector,

TRUE, INFINITE, TRUE);
// If the wait failed, error out.
if (CompletionStatus == 0xFFFFFFFF) {
printf("FATAL WAIT ERROR %ld\n", GetLastError());
ExitProcess(1);
}
// If an I/O completion occurred, wait for another
// I/O request or I/O completion.
if (CompletionStatus != WAIT_IO_COMPLETION) {
// The wait was satisfied. Ownership of the I/O
// request queue is exclusive, and there is something in
// the queue. To insert something in the queue, the
// inserter gets the list lock (mutex), inserts an entry,
// signals the list semaphore, and finally releases the
// list lock.
IoRequestPacket = RemoveHeadList(&IoRequestList);
ReleaseMutex(IoWorkerListLock);
// Allocate an overlapped structure.
Overlapped = LocalAlloc(LMEM_ZEROINIT,

sizeof(OVERLAPPED));
if (!Overlapped) {
printf("FATAL allocation error\n");
ExitProcess(1);
}
Overlapped->Offset = IoRequestPacket->Offset;
Overlapped->OffsetHigh = IoRequestPacket->OffsetHigh;
Overlapped->hEvent =

IoRequestPacket->dwAdditionalIoContext;
if (IoRequestPacket->bRead) {
IoOperationStatus =
ReadFileEx(IoRequestPacket->hFile,

IoRequestPacket->lpBuffer,
IoRequestPacket->dwTransferCount,
Overlapped, IoCompletionRoutine);
}
else {
IoOperationStatus =
WriteFileEx(IoRequestPacket->hFile,

IoRequestPacket->lpBuffer,
IoRequestPacket->dwTransferCount,
Overlapped,
IoCompletionRoutine);

}
// Test to see if the I/O was queued successfully.
if (!IoOperationStatus) {
printf("FATAL I/O Error %ld I/O Context %lx.%lx\n",
GetLastError(), Overlapped, Overlapped->hEvent);
ExitProcess(1);
}
// The I/O queued successfully. Go back into the
// alertable wait for I/O completion or for
// more I/O requests.
}
}

}The SetFilePointer function moves the file pointer a specified number of bytes, relative to the
beginning or end of the file, or the file pointer's current position. If a positive number of bytes is
specified, SetFilePointer moves the file pointer toward the end of the file; a negative value moves
the pointer toward the beginning of the file.

The following example appends one file to the end of another file. The application opens two files
by using CreateFile: ONE.TXT is opened for reading, and TWO.TXT is opened for writing. Then
the application appends the contents of ONE.TXT to the end of TWO.TXT by reading and writing
4K blocks by using ReadFile and WriteFile. Before writing to the second file, the application sets
the second file's pointer to the end of the file by using SetFilePointer and locks the area to be
written by using LockFile. This prevents another process from accessing the area while the write
is in progress. After each write operation, UnlockFile unlocks the locked area.HANDLE hFile;
HANDLE hAppend;
DWORD dwBytesRead, dwBytesWritten, dwPos;
char buff[4096];
// Open the existing file.
hFile = CreateFile("ONE.TXT",// open ONE.TXT

GENERIC_READ, // open for reading
0, // do not share
NULL,// no security
OPEN_EXISTING, // existing file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hFile == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open ONE."); // process error

}
// Open the existing file, or if the file does not exist,
// create a new file.
hAppend = CreateFile("TWO.TXT", // open TWO.TXT

GENERIC_WRITE, // open for writing
0, // do not share
NULL,// no security
OPEN_ALWAYS, // open or create
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hAppend == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open TWO."); // process error

}
// Append the first file to the end of the second file.
// Lock the second file to prevent another process from
// accessing it while writing to it. Unlock the
// file when writing is finished.
do {
if (ReadFile(hFile, buff, 4096, &dwBytesRead, NULL)) {
dwPos = SetFilePointer(hAppend, 0, NULL, FILE_END);
LockFile(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);
WriteFile(hAppend, buff, dwBytesRead,
&dwBytesWritten, NULL);
UnlockFile(hAppend, dwPos, 0, dwPos + dwBytesRead, 0);
}

} while (dwBytesRead == 4096);
// Close both files.
CloseHandle(hFile);
CloseHandle(hAppend);

Creating and Using a Temporary File
The following example copies one file to another. The second file is an uppercase version of the
first file.

The application opens the ORIGINAL.TXT file by using CreateFile. The application then obtains a
temporary filename with the GetTempFileName function and uses CreateFile to create the
temporary file. The application reads 4K blocks into a buffer, converts the buffer contents to
uppercase, and writes the converted buffer to the temporary file. When all of ORIGINAL.TXT has
been written to the temporary file, the application closes both files and renames the temporary file
to ALLCAPS.TXT by using the MoveFile function.HANDLE hFile;
HANDLE hTempFile;
DWORD dwBytesRead, dwBytesWritten, dwPos;
char szTempName[MAX_PATH];
char buffer[4096];
// Open the existing file.
hFile = CreateFile("ORIGINAL.TXT", // filename

GENERIC_READ, // open for reading
0, // do not share
NULL,// no security
OPEN_EXISTING, // existing file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hFile == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not open file."); // process error

}
// Create a temporary file.
GetTempFileName("\\TEMP", // dir. for temp. files

"NEW", // temp. filename prefix
0,// create unique name
szTempName);// buffer for name

hTempFile = CreateFile((LPTSTR) szTempName, // filename
GENERIC_READ | GENERIC_WRITE, // open for read-write
0, // do not share
NULL,// no security
CREATE_ALWAYS, // overwrite existing file
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hTempFile == INVALID_HANDLE_VALUE) {
ErrorHandler("Could not create temporary file.");

}
// Read 4K blocks to the buffer.
// Change all characters in the buffer to uppercase.
// Write the buffer to the temporary file.

do
{

if (ReadFile(hFile, buffer, 4096,
&dwBytesRead, NULL)) {
CharUpperBuff(buffer, dwBytesRead);
WriteFile(hTempFile, buffer, dwBytesRead,
&dwBytesWritten, NULL);
}

} while (dwBytesRead == 4096);
// Close both files.
CloseHandle(hFile);
CloseHandle(hTempFile);
// Move the temporary file to the new text file.
if (!MoveFile(szTempName, "ALLCAPS.TXT")) {

ErrorHandler("Could not move temp. file.");
}

Searching for Files and Changing File Attributes
The following example copies all text files in the current directory to a new directory of read-only
files named \TEXTRO. Files in the new directory are changed to read only, if necessary.

The application uses the GetCurrentDirectory function to retrieve the current directory path. This
function is also used to return to the current directory after changing to the \TEXTRO directory.

The application then creates the \TEXTRO directory by using the CreateDirectory function.

The application searches the current directory for all .TXT files by using the FindFirstFile and
FindNextFile functions. Each .TXT file is copied to the \TEXTRO directory. After a file is copied,
the GetFileAttributes function determines whether the file is read only. If the file is not read only,
the application changes directories to \TEXTRO and converts the copied file to read only by using
the SetFileAttributes function.

After all .TXT files in the current directory have been copied, the application closes the search
handle by using the FindClose function.WIN32_FIND_DATA FileData;
HANDLE hSearch;
DWORD dwAttrs;
char szDirPath[] = "c:\\TEXTRO\\";
char szNewPath[MAX_PATH];
char szHome[MAX_PATH];
BOOL fFinished = FALSE;
// Create a new directory.
if (!CreateDirectory(szDirPath, NULL))
{

ErrorHandler("Couldn't create new directory.");
}
// Start searching for .TXT files in the current directory.
hSearch = FindFirstFile("*.txt", &FileData);
if (hSearch == INVALID_HANDLE_VALUE)
{

ErrorHandler("No .TXT files found.");
}
// Copy each .TXT file to the new directory
// and change it to read only, if not already.
while (!fFinished)
{

lstrcpy(szNewPath, szDirPath);
lstrcat(szNewPath, FileData.cFileName);
if (CopyFile(FileData.cFileName, szNewPath, FALSE))
{
dwAttrs = GetFileAttributes(FileData.cFileName);
if (!(dwAttrs & FILE_ATTRIBUTE_READONLY))
{
SetFileAttributes(szNewPath,
dwAttrs | FILE_ATTRIBUTE_READONLY);
}
}
else
{
ErrorHandler("Couldn't copy file.");
}
if (!FindNextFile(hSearch, &FileData))
if (GetLastError() == ERROR_NO_MORE_FILES)
{
MessageBox(hwnd, "No more .TXT files.",
"Search completed.", MB_OK);
fFinished = TRUE;
}
else
{
ErrorHandler("Couldn't find next file.");
}

}
// Close the search handle.
if (!FindClose(hSearch))
{

ErrorHandler("Couldn't close search handle.");
}

Monitoring Changes in a Directory or Directory Tree
The following example monitors the directory tree starting at C:\ for directory name changes. It
also monitors the C:\WINDOWS directory for filename changes.

The example uses the FindFirstChangeNotification function to create two notification handles
and the WaitForMultipleObjects function to wait on the handles. Whenever a directory is created
or deleted in the tree starting at C:\ , the example updates the entire directory tree. Whenever a
file is created or deleted in the C:\WINDOWS directory, the example refreshes the WINDOWS
directory. The FindNextChangeNotification function restarts the change notification each time
the example processes a change.DWORD dwWaitStatus;
HANDLE dwChangeHandles[2];
// Watch the C:\WINDOWS directory for file creation and
// deletion.
dwChangeHandles[0] = FindFirstChangeNotification(

"C:\\WINDOWS", // directory to watch
FALSE,// do not watch the subtree
FILE_NOTIFY_CHANGE_FILE_NAME); // watch filename changes

if (dwChangeHandles[0] == INVALID_HANDLE_VALUE)
ExitProcess(GetLastError());

// Watch the C:\ subtree for directory creation and
// deletion.
dwChangeHandles[1] = FindFirstChangeNotification(

"C:\\", // directory to watch
TRUE, // watch the subtree
FILE_NOTIFY_CHANGE_DIR_NAME); // watch dir. name changes

if (dwChangeHandles[1] == INVALID_HANDLE_VALUE)
ExitProcess(GetLastError());

// Change notification is set. Now wait on both notification
// handles and refresh accordingly.
while (TRUE)
{

// Wait for notification.
dwWaitStatus = WaitForMultipleObjects(2, dwChangeHandles,
FALSE, INFINITE);
switch (dwWaitStatus) {
case WAIT_OBJECT_0:
// A file was created or deleted in C:\WINDOWS.
// Refresh this directory and restart the
// change notification. RefreshDirectory is an
// application-defined function.
RefreshDirectory("C:\\WINDOWS")
if (FindNextChangeNotification(

dwChangeHandles[0]) == FALSE)
ExitProcess(GetLastError());
break;
case WAIT_OBJECT_0 + 1:
// A directory was created or deleted in C:\.
// Refresh the directory tree and restart the
// change notification. RefreshTree is an
// application-defined function.
RefreshTree("C:\\");
if (FindNextChangeNotification(

dwChangeHandles[1]) == FALSE)
ExitProcess(GetLastError());
break;
default:
ExitProcess(GetLastError());
}

}

Testing for the End of the File
The ReadFile function checks for the end-of-file condition (eof) differently for synchronous and
asynchronous read operations. When a synchronous read operation reaches the end of a file,
ReadFile returns TRUE and sets the variable pointed to by lpNumberOfBytesRead to zero. An
asynchronous read operation can encounter the end of a file during the initiating call to ReadFile
or during subsequent asynchronous operation.

The test for end-of-file during a synchronous read operation is simple, as shown in the following
example:// attempt a synchronous read operation
bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead, NULL);
// check for eof
if (bResult && nBytesRead == 0,) {

// we're at the end of the file
}The test for end-of-file during an asynchronous read operation is more difficult. There are three

end-of-file indicators for asynchronous read operations:

· ReadFile returns FALSE and GetLastError returns ERROR_HANDLE_EOF.
· ReadFile returns FALSE and GetLastError returns ERROR_IO_PENDING.
· GetOverlappedResult returns FALSE and GetLastError returns

ERROR_HANDLE_EOF.
The following example shows how to test for an end-of-file during an asynchronous read
operation:// Attempt to initiate an asynchronous read operation.
bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead, NULL);
// Check if there was a problem.
if (!bResult) {

switch (dwError = GetLastError())
{
case ERROR_HANDLE_EOF:
// At the end of the file.
break;
case ERROR_IO_PENDING:
// I/O pending.

break;
}

}
.
.
.

// Check on an asynchronous read operation.
bResult = GetOverlappedResult(hFile, &gOverlapped, &nBytesRead, TRUE);
// Check if there was a problem.
if (!bResult) {

switch (dwError = GetLastError())
{
case ERROR_HANDLE_EOF:
// At the end of the file
}

}

Retrieving a File Pointer
The following example retrieves the current position of the file pointer in the file specified by the
hFile value.HANDLE hFile;
DWORD dwCurrentFilePosition;
dwCurrentFilePosition = SetFilePointer(

hFile, // must have GENERIC_READ and/or GENERIC_WRITE
0,// do not move pointer
NULL, // hFile is not large enough to need this pointer
FILE_CURRENT); // provides offset from current position

File Reference
The following functions, structures, and enumeration types are used with files.

File Functions
The following functions are used with files.
AreFileApisANSI
CancelIO
CopyFile
CopyFileEx
CopyProgressRoutine
CreateDirectory
CreateDirectoryEx
CreateFile
CreateIoCompletionPort
DefineDosDevice
DeleteFile
FileIOCompletionRoutine
FindClose
FindCloseChangeNotification
FindFirstChangeNotification
FindFirstFile
FindFirstFileEx
FindNextChangeNotification
FindNextFile
FlushFileBuffers
GetBinaryType
GetCompressedFileSize
GetCurrentDirectory
GetDiskFreeSpace
GetDiskFreeSpaceEx
GetDriveType
GetFileAttributes
GetFileAttributesEx
GetFileInformationByHandle
GetFileSize
GetFileType
GetFullPathName
GetLogicalDrives
GetLogicalDriveStrings
GetQueuedCompletionStatus
GetShortPathName
GetTempFileName
GetTempPath
GetVolumeInformation
LockFile
LockFileEx
MoveFile
MoveFileEx
PostQueuedCompletionStatus
QueryDosDevice
ReadDirectoryChangesW
ReadFile
ReadFileEx
RemoveDirectory
SearchPath
SetCurrentDirectory
SetEndOfFile
SetFileApisToANSI
SetFileApisToOEM
SetFileAttributes
SetFilePointer
SetVolumeLabel
UnlockFile
UnlockFileEx
WriteFile

WriteFileEx

Obsolete Functions
_hread
_hwrite
_lclose
_lcreat
_llseek
_lopen
_lread
_lwrite
OpenFile

SetHandleCount

File Structures
The following structures are used with files.
BY_HANDLE_FILE_INFORMATION
FILE_NOTIFY_INFORMATION
OFSTRUCT
WIN32_FILE_ATTRIBUTE_DATA

WIN32_FIND_DATA

File Enumeration Types
The following enumeration type is used with files.

GET_FILEEX_INFO_LEVELS

Handles and ObjectsAn object is an internal structure that represents a system resource, such as a file, a thread, or a
graphic image. An application cannot directly access the internal structure of an object or the
system resource that an object represents. Instead, an application must obtain an object handle
and use this handle to examine or modify the system resource (or both). In the Microsoft® Win32®
application programming interface (API), handles are usually implemented as indirect pointers, but
this is not always the case.

About Handles and Objects
Windows uses objects and handles to regulate access to system resources for two main reasons.
First, the use of objects ensures that developers are not writing code specifically to low-level,
internal structures. This enables Microsoft to add or change functionality of the operating system,
as long as the original calling conventions are maintained. When subsequent versions of the
operating system are released, applications will gain this new functionality with little or no
additional development.

Second, the use of objects enables developers to take advantage of Win32 security. Each object
has its own access-control list (ACL) that specifies the types of actions processes can perform on
the object. The operating system examines an object's ACL each time an application attempts to
create a handle to the object. For more information about security, see Security.

For most objects, the Win32 API provides functions that create the object, create an object
handle, close the object handle, and destroy the object. These tasks may be combined or
unnecessary, depending on the type of object and the situation. For example, an application could
create an event object. Other applications could open the event and each would have a unique
handle to the same event object. In this scenario, as the applications finish using the object, each
closes its handle. When there are no open handles to the event object, the operating system
removes the object from memory.

In contrast, an application could obtain the existing window-object handle. In this instance, when
the window object is no longer needed, the application must remove the object from memory,
which invalidates the window handle.

When a process terminates, the system automatically closes handles and deletes objects created
by the process. However, when a thread terminates, the system usually does not close handles or
delete objects. The only exceptions are window, hook, window position, and dynamic data
exchange (DDE) conversation objects that are deleted when the creating thread terminates.

Handles and objects consume memory. Therefore, to preserve system performance, an
application should close handles and delete objects as soon as they are no longer needed.
Applications that do not do this can slow the operating system, due to excessive use of the paging
file.

Windows provides three categories of objects: user, graphics device interface (GDI), and kernel,
as shown in the following tables. The system uses user objects to support window management,
GDI objects to support graphics, and kernel objects to support memory management, process
execution, and interprocess communications (IPC). For information about creating and using a
specific object, refer to the associated overview.Windows User Objects
User object Overview
Accelerator table Keyboard Accelerators
Caret Carets
Cursor Cursors
Dynamic data exchange
conversation

Dynamic Data Exchange
Management Library

Desktop Security
Hook Hooks
Icon Icons
Menu Menus
Window Windows
Window position Windows
Window station Windows

Windows GDI Objects
GDI object Overview
Bitmap Bitmaps
Brush Brushes
Font Fonts and Text
Palette Colors
Pen Pens

Extended pen Pens
Region Regions
Device context Device Contexts
Memory device context Device Contexts
Metafile Metafiles
Metafile device context Metafiles
Enhanced metafile Metafiles
Enhanced-metafile device context Metafiles

Windows Kernel Objects
Kernel object Overview
Process Processes and Threads
Thread Processes and Threads
File Files
File mapping File Mapping
Event Synchronization
Semaphore Synchronization
Mutex Synchronization
Pipe (named and anonymous) Pipes
Mailslot Mailslots
Communications device Communications
Heap Memory Management
Module Dynamic-Link Libraries
Update resource Resources
Find file Files
Event log Event Logging
Change notification Files
Token Security
Service object Printing and Print Spooler
LZ file Data Decompression Library

Handle Limitations
Some objects, such as user and GDI objects, support only one handle at a time. The system
provides the handle when an application creates the object and invalidates the handle when the
application destroys the object. Other objects, such as some kernel objects, support multiple
handles to a single object. The operating system automatically removes the object from memory
after the last handle to the object is closed.

The total number of open handles in the operating system is limited only by the amount of
memory available to the operating system. However, a single process may have no more than 16,
384 open GDI object handles. The per-process limit on kernel handles is 2^30. There is no per-
process limit on user handles, but there is a systemwide limit of 65,536.

User and Graphics Device Interface Objects
User and GDI objects support only one handle per object. Processes cannot inherit or duplicate
handles to user or GDI objects.

Handles to user objects are public to all processes. That is, any process can use the user object
handle, provided that the process has access to the object as defined by user security. For more
information about security, see Security.

Handles to GDI objects are private to a process. That is, only the process that created the GDI
object can use the object handle.

In the following illustration, an application creates a window object. The CreateWindow function
creates the window object and returns an object handle.

ewc msdncd, EWGraphic, bsd23498 0 /a "SDK_01.BMP"

After the window object has been created, the application can use the window handle to display or
change the window. The handle remains valid until the window object is destroyed.

In the next illustration, the application destroys the window object. The DestroyWindow function
removes the window object from memory, which invalidates the window handle.

ewc msdncd, EWGraphic, bsd23498 1 /a "SDK_02.BMP"

The following table lists the Windows user objects and each object's creator and destructor
functions. The creator functions either create the object and an object handle or simply return the
existing object handle. The destructor functions remove the object from memory, which invalidates
the object handle.

Note that the window station and desktop objects are created and maintained by the system;
applications cannot delete these objects.User Objects
Object Creator function Destructor function
Accelerator
table

CreateAcceleratorTable DestroyAcceleratorTable

Cursor CreateCursor,
LoadCursor, GetCursor,
SetCursor

DestroyCursor

DDE
conversation

DdeConnect,
DdeConnectList,
DdeQueryNextServer,
DdeReconnect

DdeDisconnect,
DdeDisconnectList

Desktop GetThreadDesktop
Hook SetWindowsHook,

SetWindowsHookEx
UnhookWindowsHook,
UnhookWindowsHookEx

Menu CreateMenu,
CreatePopupMenu,
GetMenu, GetSubMenu,
GetSystemMenu,
LoadMenu,
LoadMenuIndirect

DestroyMenu

Window CreateWindow,
CreateWindowEx,
CreateDialogParam,
CreateDialogIndirectParam,
CreateMDIWindow,
FindWindow,
GetWindow,
GetClipboardOwner,
GetDesktopWindow,
GetDlgItem,
GetForegroundWindow,
GetLastActivePopup,

DestroyWindow

GetOpenClipboardWindow,
GetTopWindow,
WindowFromDC,
WindowFromPoint, and
others

Window
position

BeginDeferWindowPos EndDeferWindowPos

Window
station

GetProcessWindowStation

The following table lists the Windows GDI objects and each object's creator and destructor
functions. The creator functions either create the object and an object handle or simply
return the existing object handle. The destructor functions remove the object from
memory, which invalidates the object handle.GDI Objects
Object Creator function Destructor

function
Bitmap CreateBitmap,

CreateBitmapIndirect,
CreateCompatibleBitmap,
CreateDIBitmap,
CreateDIBSection,
CreateDiscardableBitmap

DeleteObject

Brush CreateBrushIndirect,
CreateDIBPatternBrush,
CreateDIBPatternBrushPt,
CreateHatchBrush,
CreatePatternBrush,
CreateSolidBrush

DeleteObject

Font CreateFont,
CreateFontIndirect

DeleteObject

Palette CreatePalette DeleteObject
Pen CreatePen,

CreatePenIndirect
DeleteObject

Extended pen ExtCreatePen DeleteObject
Region CombineRgn,

CreateEllipticRgn,
CreateEllipticRgnIndirect,
CreatePolygonRgn,
CreatePolyPolygonRgn,
CreateRectRgn,
CreateRectRgnIndirect,
CreateRoundRectRgn,
ExtCreateRegion,
PathToRegion

DeleteObject

Device context (DC) CreateDC, GetDC DeleteDC,
ReleaseDC

Memory DC CreateCompatibleDC DeleteDC
Metafile CloseMetaFile,

CopyMetaFile,
GetMetaFile,
SetMetaFileBitsEx

DeleteMetaFile

Metafile DC CreateMetafile CloseMetaFile
Enhanced metafile CloseEnhMetaFile,

CopyEnhMetaFile,
GetEnhMetaFile,
SetEnhMetaFileBits

DeleteEnhMetaFile

Enhanced- metafile DCCreateEnhMetaFile CloseEnhMetaFile

Kernel Objects
Kernel object handles are process specific. That is, a process must either create a kernel object or
open an existing object to obtain an object handle. Any process can create a new handle to an
existing kernel object (even one created by another process), provided that the process knows the
name of the object and has access to the object as defined by user security. For more information
about security, see Security.

Processes can inherit or duplicate handles to the following types of kernel objects:

· Processes
· Threads
· Files (including file-mapping objects)
· Events
· Semaphores
· Mutexes
· Pipes (named and anonymous)
· Mailslots
· Communications devices

All other kernel objects are private to the process that created them; object handles cannot be
duplicated or inherited.

A child process inherits an open handle from its parent process if inheritance was specified when
the original handle was created and if the child process was created with the "inherit handles" flag
set. An inherited handle is valid only in the context of the child process.

The DuplicateHandle function duplicates a handle into the current process or into another
process. If an application duplicates one of its handles into another process, the duplicated handle
is valid only in the context of the other process.

A duplicated or inherited handle is a unique value, but it refers to the same object as the original
handle.

Kernel object handles include access rights that indicate the actions the application wants to
perform on the object. An application specifies access rights when it creates an object or obtains
an existing object handle. Each type of kernel object supports its own set of access rights. For
example, event handles can have "set" or "wait" access (or both), file handles can have "read" or
"write" access (or both), and so on. For more information about access rights, see Security, and
topics that describe individual objects.

In the following illustration, an application creates an event object. The CreateEvent function
creates the event object and returns an object handle.

ewc msdncd, EWGraphic, bsd23498 2 /a "SDK_03.BMP"

After the event object has been created, the application can use the event handle to set or wait on
the event. The handle remains valid until the application closes the handle or terminates.

Most kernel objects support multiple handles to a single object. For example, the application in the
preceding illustration could obtain additional event object handles by using the OpenEvent
function, as shown in the following illustration.

ewc msdncd, EWGraphic, bsd23498 3 /a "SDK_04.BMP"

This method enables an application to have handles with different access rights. For example,
Handle 1 might have "set" and "wait" access to the event, and Handle 2 might have only "wait"
access.

If another process knows the event name and has security access to the object, it can create its
own event object handle by using OpenEvent, as shown in the following illustration.

ewc msdncd, EWGraphic, bsd23498 4 /a "SDK_05.BMP"

The original application could also duplicate one of its handles into the same process or into
another process by using the DuplicateHandle function, as shown in the following illustration.

ewc msdncd, EWGraphic, bsd23498 5 /a "SDK_06.BMP"

The following illustration shows how a child process inherits a handle created by its parent
process.

ewc msdncd, EWGraphic, bsd23498 6 /a "SDK_07.BMP"

A child process of an application automatically inherits handles created by its parent process if
inheritance was specified when the handles were created and if the child process was created
with the "inherit handles" flag set. Note that in the preceding illustration, Handle 2 is not equivalent
to Handle 1 but does refer to the same event object.

For more information about inheritance, see Processes and Threads and Files

An object remains in memory as long as at least one object handle exists. In the following
illustration, the applications use the CloseHandle function to close their event object handles.
When there are no event handles, the system removes the object from memory, as shown in the
following illustration.

ewc msdncd, EWGraphic, bsd23498 7 /a "SDK_08.BMP"

Occasionally, an object remains in memory after all object handles have been closed. For
example, a thread could create an event object and wait on the event handle. While the thread is
waiting, another thread could close the same event object handle. The event object remains in
memory, without any event object handles, until the event object is set to the signaled state and
the wait operation is completed. At this time, the system removes the object from memory.

Windows manages file objects somewhat differently from other kernel objects. File objects contain
the file pointer ¾ the pointer to the next byte to be read or written in a file. Whenever an
application creates a new file handle, the system creates a new file object. Therefore, more than
one file object can refer to a single file on disk, as shown in the next illustration.

ewc msdncd, EWGraphic, bsd23498 8 /a "SDK_09.BMP"

Only through duplication or inheritance can more than one file handle refer to the same file object,
as shown in the following illustration.

ewc msdncd, EWGraphic, bsd23498 9 /a "SDK_10.BMP"

The following table lists each of the Windows kernel objects and each object's creator and
destructor functions. The creator functions either create the object and an object handle or create
a new existing object handle. The destructor functions close the object handle. When an
application closes the last handle to a kernel object, the system removes the object from memory.Kernel Objects
Object Creator function Destructor function
Process CreateProcess,

OpenProcess,
GetCurrentProcess

CloseHandle,
TerminateProcess

Thread CreateThread,
CreateRemoteThread,
GetCurrentThread

CloseHandle,
TerminateThread

File CreateFile CloseHandle, DeleteFile
File mapping CreateFileMapping,

OpenFileMapping
CloseHandle

Event CreateEvent, OpenEventCloseHandle
Semaphore CreateSemaphore,

OpenSemaphore
CloseHandle

Mutex CreateMutex,
OpenMutex

CloseHandle

Pipe CreatePipe CloseHandle
Named pipe CreateNamedPipe CloseHandle,

DisconnectNamedPipe
Mailslot CreateMailslot CloseHandle
Communications
device

GetStdHandle CloseHandle

Heap HeapCreate HeapDestroy
Module LoadLibrary,

GetModuleHandle
FreeLibrary

Update
resource

BeginUpdateResource EndUpdateResource

Find file FindFirstFile FindClose
Event log OpenEventLog,

RegisterEventSource,
OpenBackupEventLog

CloseEventLog

Change
notification

FindFirstChangeNotificationFindCloseChangeNotification

Handles and Objects Functions
CloseHandle
DuplicateHandle
GetHandleInformation

SetHandleInformation

,

HelpOnline help can come in a variety of forms, from detailed conceptual information to quick
definitions. This overview discusses elements of the Win32 application programming interface
(API) that support online help.

About Help
An important element of a user-friendly application is readily available online help. Microsoft®
Windows® provides functions and messages that when used in conjunction with the Windows
Help application make it easy to implement online help in your application. This overview
discusses elements of the Win32 application programming interface (API) that support online
help. It describes how to use these elements to give users a means to request help and explains
how to use the Windows Help application to display help.

Help Requests
Most Windows-based applications provide online help information in a variety of forms, ranging
from conceptual help that explains the purpose of an application's features to pop-up help that
provides quick definitions of individual elements in the application's user interface. You use Win32
functions and messages to give users a variety of ways to request access to this information. The
following sections describe these help requests.

Help Menu
Most applications provide user access to help information by including a Help menu in the main
window. When the user selects an item from a Help menu, the corresponding window procedure
receives a WM_COMMAND message that identifies the selected item. The application responds
by displaying the appropriate help information, such as a list of help topics, an index, or an
introduction to the application.

Help from the Keyboard
Windows provides user access to help information from the keyboard by notifying the application
whenever the user presses the F1 key. The system sends WM_HELP to the window that has the
keyboard focus when the user presses the F1 key. If the window is child window (for example, a
control in a dialog box), the DefWindowProc function passes the message to the parent window.
If a menu is active when F1 is pressed, the system sends the message to the window associated
with the menu. The application responds by displaying help information associated with the
window, control, or menu that has the focus or is active. For example, if the user selects a control
in a dialog box and presses F1, the application displays help information for that control.

The lParam parameter of WM_HELP is a pointer to a HELPINFO structure that contains detailed
information about the item for which help is requested. You use this information to determine the
help topic to display. The HELPINFO structure also includes the coordinates of the mouse cursor
at the time the user pressed the F1 key. You can use this information to provide help based on the
location of the mouse cursor.

Help from the Mouse
Windows provides user access to help information from the mouse by notifying the application
whenever the user clicks the right mouse button or clicks a window, control, or menu after clicking
the Question (?) button. The application responds by displaying help information associated with
the given window, control, or menu.

The system sends a WM_CONTEXTMENU message when the user clicks the right mouse button.
The window that was clicked receives the message. If the window is a child window, such as a
control, the DefWindowProc function passes the message to the parent window. The
WM_CONTEXTMENU message specifies the coordinates of the mouse cursor. The x-coordinate
is in the low-order word of the lParam parameter, and the y-coordinate is in the high-order word. If
the user clicked a control, the wParam parameter is the handle of the control that received the
button click.

The system sends a WM_HELP message when the user clicks an item in a window after clicking
the Question (?) button that appears in the title bar of the window. You can add a Question button
to a title bar by specifying the WS_EX_CONTEXTHELP style in the CreateWindowEx function
when creating the window. The lParam parameter of WM_HELP is a pointer to a HELPINFO
structure that contains detailed information about the item for which help is requested, including
the coordinates of the mouse cursor at the time the user clicked the mouse button.

The Question button is recommended for use in dialog boxes only. In the past, applications have
provided user access to help information about a dialog box by providing a Help button in the
dialog box. This method is no longer recommended. Use the Question button instead.

Help Display and Windows Help
Once an application receives a request for help, it should display the appropriate help information.
Because the Windows Help application supports a variety of ways to display help and a user
interface that is consistent with that used by Windows to display its own help information, it is
recommended that applications use Windows Help rather than other ways to display help. To
direct Windows Help to display help information, an application uses the WinHelp function,
specifying details such as the information to display and the form of the window in which to display
it. The following sections explain how to use WinHelp to display help information.

Help Files
To view help information, you must specify a help file when calling the WinHelp function. The help
file must have the Windows Help (.HLP) file format and have one or more topics. Each topic is a
distinct unit of information, such as a conceptual description, a set of instructions, a picture, a
glossary definition, and so on. Topics must be uniquely identified so that Windows Help can locate
the topic whenever it is requested. Internally, Windows Help uses topic identifiers to locate topics,
but applications most often use context identifiers (unique integer values) to specify topics to
display. The help file author must explicitly map context identifiers to topic identifiers in the [MAP]
section of the project file used to build the help file.

When you specify a help file but you do not specify a path, WinHelp looks for the help file in the
Help directory or in a directory specified by the PATH environment variable. In addition, WinHelp
can find a help file whose name is listed in the following registry location:HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\HelpTo take advantage of the registry, you must create a value name that has the same name as your
help file. The value assigned to that name must be the directory where the help file resides.

If WinHelp cannot find the given help file, it displays a dialog box that allows the user to specify
the location of the help file. Because WinHelp saves the location information in the registry,
WinHelp does not ask again for the location of the same help file.

For more information about how to author and build a help file, see the documentation provided
with your development tools.

Starting Windows Help
The following example uses the WinHelp function to start the Windows Help application and open
the Windows NT Help file to its Contents topic.HWND hwnd;// main window handle
BOOL bResult // for checking boolean function result
bResult = WinHelp(hWnd, "WINNT.HLP", HELP_CONTENTS, 0L);This next example opens the Windows NT user Help file, searches the file for the topic associated

with a keyword string, and then displays the topic.HWND hwnd;// main window handle
BOOL bResult // for checking boolean function result
bResult = WinHelp(hWnd, "WINNT.HLP", HELP_KEY,

(DWORD) "finding topics");

Help Topics Dialog Box
You can display the Help Topics dialog box by calling the WinHelp function with the
HELP_FINDER command. The Help Topics dialog box lets the user select topics to display by
viewing the titles of the topics, the keywords associated with the topics, or the words and phrases
found in the topics. Applications typically display the Help Topics dialog box when the user
chooses a command, such as Help Topics, from the Help menu. An application may also display
this dialog box if the user presses the F1 key when no specific window, control, or menu in the
application has the focus or is active.

In the past, applications have used the HELP_CONTENTS and HELP_INDEX commands with the
WinHelp function to display the Contents topic and the keyword index of the help file. These
commands are no longer recommended. Use the HELP_FINDER command instead.

Information Topics
You can display a specific topic by calling the WinHelp function with the HELP_CONTEXT
command and specifying the context identifier for the topic. Applications typically use the
HELP_CONTEXT command in response to user requests for topics containing conceptual
information or procedural help rather than information about a specific control or menu. In such
cases, the user may continue to browse the help file looking for related information before
returning to the application.

The HELP_CONTEXT command invokes a regular instance of Windows Help, enabling the user
to access other topics in the help file. It typically displays the main help window, which includes a
title bar, system menu, minimize and maximize buttons, main menu, optional navigation bar,
sizing border, and a client area. The text of the selected topic appears in the client area, and the
user can navigate through the help file by using hot links or navigation buttons in the main
window. The regular instance of Windows Help can also be used to display help in one or more
secondary windows instead of the main window.

Pop-up Topics
You can display a pop-up topic that contains information for a specific control or menu by calling
the WinHelp function with the HELP_WM_HELP or HELP_CONTEXTMENU command. These
commands display a topic in a pop-up window near the corresponding control or menu. To let the
user return immediately to work in the application, the pop-up window is destroyed as soon as the
user presses a key or clicks the left mouse button.

You use the HELP_WM_HELP command when processing WM_HELP messages for control
windows. Because most controls pass the WM_HELP message to the DefWindowProc function,
the corresponding dialog box procedure (or parent window procedure) processes this message.
Rather than give a specific context identifier, the dialog box procedure must pass an array of
control and context identifier pairs to WinHelp along with the control handle specified in the
hItemHandle member of HELPINFO structure passed with the WM_HELP message. The function
determines the identifier of the control for which the WM_HELP message was generated and uses
the matching context identifier to display the appropriate topic.

You use the HELP_CONTEXTMENU command when processing WM_CONTEXTMENU
messages. Because most controls pass the WM_CONTEXTMENU message to the
DefWindowProc function, the corresponding dialog box procedure (or parent window procedure)
processes this message. Again, the procedure specify an array of control and context identifier
pairs and the handle in wParam when calling WinHelp so that the function can pick the
appropriate context identifier from the array and display the appropriate topic. Unlike the
HELP_WM_HELP command, HELP_CONTEXTMENU first displays a What's This? command in a
menu. If the user chooses the command, WinHelp displays the topic. Otherwise, the request is
canceled.

You can also display pop-up topics by using the HELP_CONTEXTPOPUP command and
specifying a context identifier of the topic. This command is similar to the HELP_CONTEXT
command but invokes the pop-up instance of Windows Help used by HELP_WM_HELP and
HELP_CONTEXTMENU. Applications can use this command in response to WM_HELP
messages to display help for menus and for windows that are not controls in a dialog box. To use
this command most effectively, the application should assign context identifiers to these menus
and windows.

You can assign a context identifier to any window or menu in the application. When the user's
help requests generates a WM_HELP message, the system includes the context identifier in the
HELPINFO structure that it passes to the parent window along with the WM_HELP message. The
parent window can then pass the context identifier to WinHelp to display the requested help topic.

You use the SetWindowContextHelpId function to assign a context identifier to a window or
control and the SetMenuContextHelpId function to assign a context identifier to a menu. You can
retrieve the context identifier for a window or menu by using the GetWindowContextHelpId or
GetMenuContextHelpId function.

Keyword Searches
You can enable the user to find and view topics by assigning keywords to topics in the help file. A
keyword is simply a string that is associated with one or more topics. Windows Help collects all
keywords in a help file, places them in a table, and displays them in the Index list of the Help
Topics dialog box. When the user selects a keyword, Windows Help displays the associated help
topic or displays a list of topics from which the user can choose if there is more than one topic
associated with the keyword.

In an application, you can use the HELP_KEY, HELP_PARTIALKEY, or HELP_MULTIKEY
command with WinHelp to search for and display help topics based on whole or partial keywords.
You specify the command, the keyword string, the help file, and the handle of the owner window.
In all cases, if a single match is found, WinHelp displays the corresponding topic. If more than
one match is found, the function displays the Topics Found dialog, letting the user choose which
topic to view. If no match is found, WinHelp either displays the Index list (for HELP_KEY and
HELP_PARTIALKEY) or displays an error message (for HELP_MULTIKEY).

You can search for multiple keywords in a single call to WinHelp by separating each keyword
from the preceeding one with a semicolon (;). (Searching for multiple keywords is not supported
for help files created for version 3.x.) You can also search for a keywords across multiple help
files if the help file that you specify has a contents (.CNT) file that contains :Index or :Link
commands. With the HELP_KEY command, WinHelp searches for keywords in all files specified
by these commands. With the HELP_MULTIKEY and HELP_PARTIALKEY commands, the
function searches all files except those specified by :Link commands.

By default, Windows Help recognizes only the keyword table identified by the K footnote character
in the help source file. You can direct Windows Help to create additional keyword tables by
specifying a footnote character other than K with the keyword definitions in the Windows Help file.
(The footnote character A, however, is reserved.) You must define any additional keyword tables
by using MULTIKEY statements in the [OPTIONS] section of the project file when building the
help file.

An application can use the HELP_SETINDEX command with the WinHelp function to direct
Windows Help to display a keyword table other than K in its Index list. To direct Windows Help to
search for a keyword in an alternate keyword table, an application can use the HELP_MULTIKEY
command. You specify the keyword and keyword table in a MULTIKEYHELP structure, which you
pass to WinHelp.

When WinHelp displays a topic, it displays it in the window specified by the > footnote for the
topic, or in the window specified by the :Base command in the contents file, or in the main
window. If the main window is already open to a different help file when you call WinHelp, the
function hides main window while searching. In this case, canceling both the Topics Found and
Help Topics dialogs, close the main window.

Secondary Help Windows
The main window of the Windows Help application is called the primary window. Windows Help
can also display help topics in a secondary window. Unlike the main help window, a secondary
window does not contain a menu bar. You can include a navigation bar in a secondary window,
and you can add buttons to the bar. You can also choose to have Windows Help automatically
adjust the height of secondary window to accommodate the topic.

You must define secondary windows in the [WINDOWS] section of your help project file, providing
the name and, optionally, initial size and position of each window. You can direct the Windows
Help application to display a topic in a secondary window by appending an angle bracket (>) and
the name you have defined for the secondary window to the name of the help file and then
passing the resulting string to the WinHelp function.

An application can change the size and position of a primary or secondary window by specifying
the address of a HELPWININFO structure and the HELP_SETWINPOS command in a call to
WinHelp. HELPWININFO specifies the name of the window and its new size and position. The
primary help window is the "main" window.

Training Card Help
Using training card help, an application can display a sequence of instructions to guide the user
through the steps of a task. A training card typically consists of text that explains a particular step
and authorable buttons associated with TCard macros that allow the user to tell the application
what to do next. Training cards may only be displayed in secondary windows and must not
contain hot links to other topics in the help file.

An application initiates the training card instance of Windows Help by calling the WinHelp function
and specifying the HELP_TCARD command in combination with another command such as
HELP_CONTEXT. Subsequently, when the user clicks an authorable button in the training card,
clicks a hot spot assigned to the TCard macro, or closes the training card, Windows Help notifies
the application by sending it a WM_TCARD message. The wParam parameter identifies the
button or user action, and the lParam parameter contains additional data, the meaning of which
depends on the value of wParam.

Canceling Help
Windows Help requires an application to explicitly cancel Help so that it can free any resources it
used to keep track of the application and its help files. The application can do this at any time by
calling the WinHelp function and specifying the HELP_QUIT command. Note that this is not true
for the pop-up instance of Windows Help. An application should not try to close the pop-up
instance.

If an application has made any calls to WinHelp, it must cancel Help before it closes its main
window (for example, in response to the WM_DESTROY message in the main window procedure)
. An application needs to call WinHelp only once to cancel Help, no matter how many help files it
has opened. Windows Help remains running until all applications or dynamic-link libraries (DLLs)
that have called WinHelp have canceled Help.

To close the training card instance of Windows Help, you must specify both the HELP_TCARD
and HELP_QUIT commands when calling the WinHelp function. An application does not need to
cancel the training card instance of Windows Help if the user cancels it first. Windows Help
notifies an application when the user cancels the training card instance by sending the
WM_TCARD message with the wParam parameter set to IDCLOSE.

Using Help
This section shows how to provide context-sensitive help for a dialog box and how to set the
appearance of a secondary help window.

· Providing Help in a dialog box
· Setting the appearance of a secondary help window

Providing Help in a Dialog Box
To provide context-sensitive help in a dialog box, you must create an array consisting of pairs of
doubleword values. The first value in each pair is the identifier of a control in the dialog box, and
the second is the context identifier of the help topic for the control. The array should contain one
pair of identifiers for each control in the dialog box.

The dialog box procedure must process the WM_HELP and WM_CONTEXTMENU messages.
The dialog box procedure receives WM_HELP when the user presses the F1 key and
WM_CONTEXTMENU when the user clicks the right mouse button.

The lParam parameter of WM_HELP is a pointer to a HELPINFO structure. The hItemHandle
member of this structure identifies the control for which the user has requested help. You must
pass the handle to the WinHelp function along with the HELP_WM_HELP command, the name of
your help file, and a pointer to the array of identifiers. The WinHelp function searches the array for
the control identifier of the specified control and then retrieves the corresponding help context
identifier. Next, the function passes the help context identifier to Windows Help, which finds the
corresponding topic and displays it in a pop-up window. If the control has an identifier of - 1, the
system searches for the next control that is a tab stop and uses its identifier to find the help
context identifier. For this reason, it is important that you place static text before controls in a
resource file.

Processing WM_CONTEXTMENU is similar to processing WM_HELP when calling the WinHelp
function, with these two exceptions:

· You pass the wParam parameter from WM_CONTEXTMENU, which is the handle of the
control that sent the message.

· You specify the HELP_CONTEXTMENU command instead of HELP_WM_HELP.
The HELP_CONTEXTMENU command causes Windows Help to display a menu before it
displays the help topic. The menu is system defined. It allows the user to display help for the
control or to display the Help Topics dialog box.

The following example shows how to implement context-sensitive help in a dialog box.LRESULT CALLBACK EditDlgProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
// Create an array of control identifiers and context identifiers.
static DWORD aIds[] = {

ID_SAVE, IDH_SAVE,
ID_DELETE, IDH_DELETE,
ID_COPY, IDH_COPY,
ID_PASTE, IDH_PASTE,
0,0

};
switch (uMsg) {

case WM_HELP:
WinHelp(((LPHELPINFO) lParam)->hItemHandle, "helpfile.hlp",
HELP_WM_HELP, (DWORD) (LPSTR) aIds);
break;
case WM_CONTEXTMENU:
WinHelp((HWND) wParam, "helpfile.hlp", HELP_CONTEXTMENU,
(DWORD) (LPVOID) aIds);
break;
.
. // process other messages here
.
}

return FALSE;
}

Setting the Appearance of a Secondary Help Window
An application can set the size, position, and show state of a secondary help window by passing
the HELP_SETWINPOS command and the address of a HELPWININFO structure to the WinHelp
function. The members of HELPWININFO specify the name of the window to change and the
window's new size, position, and show state.

The following example sets the appearance of a secondary window named "wnd_menu". The
name must be defined in the [WINDOWS] section of the help project file.BOOL DoWindowSize(VOID)
{

HANDLE hhwi;
LPHELPWININFO lphwi;
WORD wSize;
char *szWndName = "wnd_menu";
wSize = sizeof(HELPWININFO) + lstrlen(szWndName);
hhwi = GlobalAlloc(GHND, wSize);
lphwi = (LPHELPWININFO) GlobalLock(hhwi);
lphwi->wStructSize = wSize;
lphwi->x = 256; // horizontal position
lphwi->y = 256; // vertical position
lphwi->dx = 767; // width
lphwi->dy = 512; // height
lphwi->wMax = SW_SHOW; // show the window
lstrcpy(lphwi->rgchMember, szWndName); // secondary window
WinHelp(hwnd, "myhelp.hlp", HELP_SETWINPOS, (DWORD) lphwi);
GlobalUnlock(hhwi);
GlobalFree(hhwi);

return;
}

Help Reference
The following functions, structures and messages are associated with Help controls.

Help Functions
The following functions are used with Help.
GetMenuContextHelpId
GetWindowContextHelpId
SetMenuContextHelpId
SetWindowContextHelpId

WinHelp

Help Structures
The following structures are used with Help.
HELPINFO
HELPWININFO

MULTIKEYHELP

Help Messages
The following messages are used with Help.
WM_HELP
WM_TCARD

Interprocess CommunicationsThe Microsoft® Win32® application programming interface (API) provides a rich set of
mechanisms for facilitating communications and data sharing between applications. Collectively,
the activities enabled by these mechanisms are called interprocess communications (IPC). In
addition to facilitating the division of labor among several specialized processes, some forms of
IPC can distribute the computational load among cooperating computers on a network.

About Interprocess Communications
As computer users become more sophisticated, they demand more power from the applications
they use. To meet this demand, developers add more features to their applications, and the
applications become larger. These large applications can eventually become unmanageable, both
from a development standpoint and from a user-interface point of view. Therefore, developers
now tend to produce highly focused applications that do a good job on a limited number of
features and then to enable those applications to communicate and share data with other
specialized applications. No longer can any one application meet all user expectations; the age of
cooperating and communicating applications has arrived.

Typically, cooperating and communicating applications can be categorized as clients or servers. A
client is an application or a process that requests a service from some other process. A server is
an application or a process that responds to a client request. Many applications act as both a
client and a server, depending on the situation. For example, a word processing application might
act as a client in requesting a summary table of manufacturing costs from a spreadsheet
application acting as a server. The spreadsheet application, in turn, might act as a client in
requesting the latest inventory levels from an automated inventory control application.

Development Considerations
If a developer decides that an application would benefit from IPC, the developer must consider
some of the following questions before deciding which of the available IPC methods to use.

· Should the application be able to communicate with other applications running on other
computers on a network, or is it sufficient for the application to communicate only with
applications on the local computer? In other words, does the application need to be
networkable? Some IPC methods work either on the local computer or over a network; others
work only on the local computer.

· Should the application be able to communicate with applications running on other
computers that may be running under different operating systems (that is, MS-DOS®,
Microsoft® Windows® Version 3.x, UNIX)? In other words, must the application be
interoperable?

· Should the user of the application have to choose the other application(s) with which the
application communicates, or can the application implicitly find its cooperating partners?

· Should the application communicate with many different applications in a general way,
such as allowing cut and paste operations with any other application, or should its
communications requirements be limited to a restricted set of interactions with specific other
applications? Applications that communicate in a general way are called loosely coupled;
applications that have a more strictly defined interaction are called tightly coupled.

· Is performance a critical aspect of the application? All IPC mechanisms include some
amount of communications overhead.

· Should the application be a Windows-based application, or will character-mode
functionalities be sufficient? Some IPC mechanisms discussed in this topic do not work in
character-mode- only applications. The clipboard, dynamic data exchange (DDE), and object
linking and embedding (OLE) all require that the application have at least one window.

The answers to these questions determine whether an application can benefit by using one or
more of the IPC mechanisms available in the Win32 API. This topic discusses the strengths and
weaknesses of each of the Win32 IPC mechanisms.

File Mapping and IPC
File mapping enables a process to treat the content of a file as if it were a block of memory in the
process's address space. Therefore, instead of using file input and output (I/O) operations, the
process can use simple pointer operations to examine and modify the contents of the file.

The Win32 API enables two or more processes to access the same file-mapping object. Each
process receives a pointer to memory in its own address space. With this pointer, the process can
read or modify the contents of the file.

There are three ways an application can share a file-mapping object created in one process with
another process:

· Inheritance. The first process creates the file-mapping object and then allows the handle
of the object to be inherited by a child process.

· Named file mapping. The first process creates the file-mapping object with a well-known
name (which can be different from the filename). The second process opens the file-mapping
object by specifying the well-known name. Alternatively, the first process can create a file-
mapping object with a unique name and communicate that name to the second process
through some other IPC mechanism (named pipe, mailslot, and so on).

· Handle duplication. The first process creates the file-mapping object and then passes the
handle of the object to the second process. The second process then duplicates the handle to
gain access to the shared memory. The original process can communicate the file-mapping
handle to the second process through one of the other IPC mechanisms described in this
topic (named pipe, mailslot, and so on). For more information about duplicating handles, see
Synchronization.

When two or more processes have read-write access to a shared memory block, they must use
some sort of synchronization object, such as a semaphore, to prevent data corruption in a
multitasking environment.

File mapping is quite efficient and also provides operating-system- supported security attributes
that can help prevent unauthorized data corruption. File mapping can be used only between
processes on a local computer; it cannot be used over a network. An application can, however,
create a file-mapping object to a file on a remotely mounted volume. For example, if a remote
server is mounted as the F drive, an application can create a file-mapping object to a file on that
volume. However, a process running on a remote server cannot share a file-mapping object with a
process running on a local computer.
Key Point File mapping is an efficient way for two or more processes on the same computer to
share data, but the developer must provide synchronization between the processes. For more
information, see File Mapping, and Synchronization.

Shared Memory and IPC
The Win32 API uses a special case of file mapping to provide shared memory access between
processes. If you specify the system swapping file when creating a file-mapping object, the file-
mapping object is treated as a shared memory block. Other processes can access the same block
of memory by opening the same file-mapping object, as described in File Mapping.

Because shared memory is implemented with file mapping, it supports security access attributes
and can operate only between processes running on the same computer.
Key Point Shared memory in the Win32 API is implemented by using file mapping. All
characteristics of file mapping apply to shared memory. For more information, see File Mapping.

Anonymous Pipes and IPC
An anonymous (or unnamed) pipe enables related processes to transfer information back and
forth as if they were reading from and writing to a file. Typically, anonymous pipes are used for
redirecting the standard input and output (I/O) of a child process so that it can exchange data with
its parent process.

To use an anonymous pipe, the parent process typically creates the pipe and then allows its read
and write handles to be inherited by a child process. The parent process writes data to the pipe;
the child process can read the data from the other end of the pipe. Likewise, the child process can
write data to the pipe and the parent process can read the data from its end of the pipe. A parent
process can also create two or more child processes that inherit the read and write handles to an
anonymous pipe. Those child processes can use that pipe to communicate between each other
directly, without going through the parent process.

Anonymous pipes cannot be used over a network, nor can they be used between unrelated
processes. For information about a pipe mechanism that can be used with unrelated processes
and over a network, see Named Pipes.
Key Point Anonymous pipes provide an efficient way to redirect standard I/O to child processes
on the same computer. For more information, see Pipes.

Named Pipes and IPC
Like anonymous pipes, named pipes are used to transfer data back and forth between processes.
Unlike anonymous pipes, however, named pipes can operate between unrelated processes and
across a network between computers. Typically, a server process creates a named pipe with a
well-known name. Client processes that can get the name of the pipe can open the other end of
the pipe, subject to access restrictions specified by the pipe's creator. After they are connected,
the server and client can exchange data by performing read and write operations on the pipe.
Alternatively, the pipe creator can create a pipe and let a child process inherit the handle to the
pipe, or it can create a pipe with a unique name and communicate that name to the client through
some other IPC mechanism (such as a mailslot maintained by the client).
Key Point Named pipes provide a relatively simple programming interface that makes transferring
data across a network no more difficult than transferring data between two processes on the same
computer. For more information, see Pipes.

IPC Mailslots
Mailslots provide a one-way interprocess communications capability. Any process can create a
mailslot and become a mailslot server. Other processes, called mailslot clients, can gain access to
the mailslot by its name and send messages to the mailslot server process. A process can be
both a mailslot server and a mailslot client, so two-way IPC is possible with multiple mailslots.

Incoming messages are always appended to the mailslot. The mailslot saves the messages until
the creating process has a chance to read them.

Mailslots are similar to named pipes, but with a somewhat simplified programming interface and
the added ability to broadcast messages to all computers in a specified network domain. A
mailslot client can send a message to a mailslot on its local computer, to a mailslot on another
computer, or to all mailslots with the same name on all computers in a specified network domain.
Messages broadcast to a domain can be no longer than 400 bytes; messages sent to a single
mailslot are limited only by the maximum message size specified by the creator of the mailslot
(which can be unlimited).
Key Point Mailslots offer an easy way for applications to send and receive short messages. They
also provide the ability to broadcast messages across all computers in a network domain. For
more information, see Mailslots.

Using the Clipboard for IPC
The clipboard provides a mechanism for the well-established cut-copy-paste model for simple
data sharing between Win32-based applications. It enables an application to read or write data in
many different standard and application-defined formats. It also works between applications on
the same computer or on different computers on a network.

The clipboard acts as a central depository for data sharing among applications. When a user
performs a cut or copy operation in an application, the application puts the selected data on the
clipboard in one or more formats. Any other application can then retrieve the data from the
clipboard, choosing from the available formats. The clipboard is a very loosely coupled exchange
medium, wherein the two applications need only agree on the data format.
Key Point All Win32-based applications should support the clipboard for those data formats that
they understand. For example, a text editor or word processor should at least be able to produce
and accept clipboard data in pure text format. For more information, see Clipboard.

Dynamic Data Exchange and IPC
Dynamic data exchange (DDE) is a protocol for interprocess communications that enables
applications to exchange data in a variety of formats. Applications can use DDE for one-time data
exchanges or for ongoing exchanges in which the applications update one another as new data
becomes available.

The data formats used by DDE are the same as those used for the Windows clipboard IPC
mechanism. DDE can be thought of as an extension of the clipboard mechanism. The clipboard is
almost always used for a one-time response to a user command, such as choosing the Paste
command from a menu. DDE is also usually initiated by a user command, but it often continues to
function without further user interaction.

Three types of data exchange are possible with DDE:

· Cold link. The exchange is a one-time data transfer, like the clipboard.
· Warm link. A server notifies the client when data changes, and the client must then

request new data.
· Hot link. A server sends data updates to the client when data changes.

DDE exchanges can occur between applications running on the same computer or on different
computers on a network.
Key Point Most major Windows-based applications support DDE. Like the clipboard, DDE support
enables an application to exchange data in a variety of standard formats with other Windows-
based applications that support DDE. A developer can also define custom DDE data formats for
special-purpose IPC between applications with more tightly coupled communications
requirements. For more information, see Dynamic Data Exchange and Dynamic Data Exchange
Management Library.

Object Linking and Embedding
Object linking and embedding (OLE) applications manage compound documents ¾ that is,
documents made up of data from a variety of different applications. OLE provides services that
make it easy for applications to call on other applications for data editing. For example, an OLE-
aware word processor could embed a graph from a spreadsheet. The user could start the
spreadsheet automatically from within the word processor by choosing the embedded chart for
editing. The OLE libraries would take care of starting the spreadsheet and presenting the graph
for editing. When the user quit the spreadsheet, the graph would be updated in the original word
processor document. Contrast this with a DDE link involving a spreadsheet graph in a word
processor document. With DDE, the user would have to explicitly start the spreadsheet and open
the graph document in order to make changes. With OLE, the spreadsheet appears to be an
extension of the word processor.

Like an application using DDE, an OLE-aware application can communicate with a wide variety of
other Windows-based applications. Because the OLE protocol includes all necessary context
information, the application will be able to hold OLE conversations with all other OLE-aware
applications ¾ even those that have yet to be written.
Key Point OLE supports compound documents and enables an application to include embedded
or linked data that, when chosen, automatically starts another application for data editing. This
enables the application to be extended by any other OLE-aware application.

Dynamic-Link Libraries and IPC
It is possible to build a Win32-based dynamic-link library (DLL) so that its global data is shared
with all processes that call the DLL. Therefore, cooperating processes can call the DLL to
examine and modify global data owned by the DLL. For example, process A calls a DLL function
with data that the DLL stores in its global data space. Process B calls another DLL function that
retrieves that data. Because of the multitasking nature of the Win32 API, the DLL would have to
use a semaphore or another synchronization object to control access to the shared memory.

Although shared global data can be used in a DLL, Win32 file mapping is recommended for
shared memory. File mapping is more efficient and provides the additional benefit of access
protection. (For example, a client can be limited to read-only access to a file-mapping object.)
Key Point Although a developer can use shared global data segments in a DLL to allow two or
more applications to share data, it is preferable to use Win32 file-mapping functions to create
shared memory. For more information, see Dynamic-Link Libraries.

Remote Procedure Call
The Win32 API provides remote procedure calls (RPC) to enable applications to call functions
remotely. With RPC, communication with other processes becomes as easy as calling a function.
RPC operates between processes on a single computer or on different computers on a network.
One way to think of RPC is as a DLL that works on a network.

The RPC provided by the Win32 API is compliant with the Open Software Foundation (OSF)
Distributed Computing Environment (DCE). This means that RPC applications written by using the
Win32 API are able to communicate with other RPC applications running with other operating
systems that support DCE. RPC automatically supports data conversion to account for different
hardware architectures and for byte-ordering between dissimilar environments.

The Win32 software development kit includes RPC libraries that support MS-DOS- hosted RPC
clients. With this facility, a Windows NT server, for example, can provide service to many MS-
DOS clients through RPC.

RPC clients and servers are tightly coupled but still maintain high performance. Windows makes
extensive use of RPC to facilitate a client-server relationship between different parts of the
operating system.
Key Point RPC provides IPC with a function interface, with support for automatic data conversion
and for communications with other operating systems. Using RPC, a developer can create high-
performance, tightly coupled distributed applications. For more information, see the Microsoft RPC
Components.

The Netbios Function and IPC
The Win32 API provides the Netbios function to process low-level network control functions. This
capability is provided primarily for applications written using the IBM NetBIOS system that must be
ported to Windows. It is highly recommended that a developer writing a new application use the
other IPC mechanisms described in this topic rather than the low-level Netbios function. The IPC
mechanisms provided in the Win32 API encapsulate and hide an enormous amount of raw
NetBIOS functionality that the developer would otherwise have to implement.

Consider, for example, the following list of NetBIOS actions that would be necessary to emulate a
Win32-based mailslot:

On the server end
· Add the name to the local table.
· Listen for the session connection.
· Read the data upon connection.
· Append the data to the message queue.
· Close the session.
· Listen for another session connection.
· Allow the queued messages to be retrieved.

On the client side
· Open the session.
· Write the data.
· Close the session.

Key Point The Netbios function is provided only for porting an existing application written using
the IBM NetBIOS system or for those applications that need specialized access to low-level
network functionality. For most applications, it is better to use the higher-level IPC mechanisms
available in the Win32 API.

Summary
It is likely that an application will support IPC by using several of the mechanisms described in this
topic. For example, all Win32-based applications should provide at least minimal support for the
clipboard. In addition, DDE and OLE may offer the application an opportunity to communicate in a
loosely coupled way with a wide variety of applications that support these protocols. The great
strength of these loosely coupled mechanisms is that a developer can enable an application to
share data with other applications without knowing anything about the applications themselves. By
supporting the protocols for the clipboard, DDE, and OLE, the developer is assured of a growing
number of applications with which the application can share data. As new applications are written
that support these protocols, the developer's application will be ready to communicate with them.

As an application becomes more sophisticated, a developer may find it advantageous to break up
the application into tightly coupled cooperating processes that use shared memory, pipes, or RPC
to communicate. These tightly coupled mechanisms can provide high-performance extensions to
the application. But when adding these more specialized IPC methods, the developer should not
abandon the more loosely coupled IPC methods that allow the application to share data in a
general way with most other Win32-based applications.

Large Integer OperationsThis overview describes Microsoft Win32 support for operations on large (64-bit) integers.

About Large Integer Operations
Applications can multiply signed or unsigned 32-bit integers, generating 64-bit results, by using
the Int32x32To64 and UInt32x32To64 functions. Applications can shift bits in 64-bit values to the
left or right by using the Int64ShllMod32, Int64ShraMod32, and Int64ShrlMod32 functions.
These functions provide logical and arithmetic shifting.

Applications can also multiply and divide 32-bit values in a single operation by using the MulDiv
function. Although the result of the operation is a 32-bit value, the function stores the intermediate
result as a 64-bit value, so that information is not lost when large 32-bit values are multiplied and
divided.

Large Integer Operations Reference
The following functions and structures are used with large integer operations.

Large Integer Operations Functions
Following are the functions used with large integer operations.
Int32x32To64
Int64ShllMod32
Int64ShraMod32
Int64ShrlMod32
MulDiv

UInt32x32To64

Large Integer Operations Structures
The following structures are used with large integer operations.
LARGE_INTEGER

ULARGE_INTEGER

License Service Application ProgrammingInterfaceNotice: This is a pre-release version of the LSAPI code and documentation. The documentation
is meant to accompany technology that is still in development. Some of the information in this
documentation may be inaccurate or may not be an accurate representation of the functionality of
the final technology. Microsoft assumes no responsibility for any damages that might occur either
directly or indirectly from these inaccuracies.

Software metering and license-tracking technology are available to Windows applications running
on Microsoft® Windows® 95 and Windows NT® if they make calls to the License Service
Application Programming Interface (LSAPI) version 1.10, a standard set of seven functions that
provides licensing services. The LSAPI has been jointly developed with the cooperation, input,
and support from a number of companies and associations.

About the LSAPI
Notice: This is a pre-release version of the LSAPI code and documentation. The documentation
is meant to accompany technology that is still in development. Some of the information in this
documentation may be inaccurate or may not be an accurate representation of the functionality of
the final technology. Microsoft assumes no responsibility for any damages that might occur either
directly or indirectly from these inaccuracies.

License systems provide a management layer that can track the rights to use purchased software.
You can incorporate license verification in your product by using the License Service Application
Programming Interface (LSAPI) version 1.10, a set of functions that provides licensing services
within applications. The LSAPI specification provides a standard interface between LSAPI-
enabled software and LSAPI-compliant software licensing products. An LSAPI-enabled
application is one that uses calls to the LSAPI function layer to register license usage. An LSAPI-
compliant licensing system is one that conforms to the LSAPI standard. Applications can gain
access to the LSAPI interface through the dynamic-link library, LSAPI32.DLL.

The LSAPI-compliant model includes the following basic components:

· An LSAPI-enabled desktop application
· The standard LSAPI function layer
· An LSAPI-compliant license product that includes a database for storing license data, and

access "tokens" that serve as digital license certificates
The standard LSAPI functions are listed following.

Function Description

LSEnumProviders Returns a unique string for each
installed license system service
provider.

LSFreeHandle Frees the handle to the license
context.

LSGetMessage Returns the message string
associated with a license service
function status code.

LSQuery Returns information about the
service provider or the license
system context associated with the
specified handle obtained by the
LSRequest call.

LSRelease Requests that the license system
release the licensing resources
associated with a specific license
context.

LSRequest Requests that the license system
grant the licensing resources so the
calling application can execute.

LSUpdate Updates the synchronization
between the licensed application
and the license system.

The LSAPI standardizes access to, and use of, the primary features common to many
licensing products. These include the ability to request that the licensing system grant the
application software rights to run, release those rights when they are no longer needed,
and update the state of the licensing resources granted to the software product.

The LSAPI also provides a standard software development approach to software license
management. Because all LSAPI-compliant license service providers support the same
API, applications can use one interface to communicate with all LSAPI-compliant license
servers. Developers can isolate code from license policy; the policy can be handled by the
licensing system rather than by the application. The LSAPI allows you to develop a single
package that cooperates with multiple licensing systems. You only need to change
existing product code once to incorporate the licensing functions; the platform and the

networking environment can change, but you do not need to rewrite the desktop
application. This provides license system independence, and multiple license providers
can be used at one time.

LSAPI-enabled Windows applications running on Windows 95 and Windows NT will also
interface with other LSAPI-compliant license servers, without modifications.

License System Security
It is not possible to guarantee complete protection against the unauthorized use of software. A
licensed application is only as secure as the steps the software publisher takes to prevent code
modifications that could result in bypassing license requirements. However, if you incorporate the
License Service Application Programming Interface (LSAPI) functions in your application, you can
deter license system tampering and reveal when tampering occurs. The measure of security the
LSAPI functions provide is not tamperproof, but intruders must use an overt act of programming to
compromise it.

Much of the security provided by the LSAPI functions is accomplished by including a challenge/
response protocol in the calls to the LSAPI functions. The purpose of the protocol is to ensure that
a valid license is present. It provides a reasonably reliable way for both the license system and the
application to verify that the other has an identical secret value. Applications can use the protocol
to authenticate both the license and the path from the application to the license.

The LSAPI functions use the MD4 Message-Digest Algorithm from RSA Data Security, Inc., to
meet basic LSAPI security goals. This algorithm does not require patented cryptographic
techniques. Knowledge of the algorithm neither compromises the secrets the application passes
through it, nor the level of security the LSAPI offers. If you use a more complex challenge/
response algorithm, it may not raise the level of security, and if you use a more sophisticated
challenge/response protocol, all license systems may not support it. Maintaining the privacy of the
shared secret values, however, is essential to the reliability of the LSAPI security protocol.

Challenge/Response Protocols
The LSAPI functions support multiple challenge/response protocols for license authentication.
Every challenge/response protocol has an assigned 32-bit protocol identifier. Protocols in the
range of zero through 0x0000FFFF, and 0xFFFFFFFF, are reserved for LSAPI. LSAPI tags the
application challenge with the protocol identifier, and the license system tags the response with
the protocol that answers the challenge.

Because the LSAPI standard provides for multiple challenge/response protocols, it requires a tag
field that identifies the protocol the application uses. LSAPI defines a standard basic challenge
protocol that all LSAPI-compliant license systems support, the LS_BASIC_PROTOCOL.

The LSAPI standard also requires a basic data structure format. The main structure in the basic
challenge protocol is LS_CHALLENGE. All challenge/response protocols support this structure.
The LSRequest and LSUpdate functions use it for both the application challenge and the license
system response.

The LSAPI also recognizes another protocol: LS_OUT_OF_BAND_PROTOCOL. This protocol
permits the license server to authenticate itself to the application, using an out-of-band challenge/
response protocol that is available to an application by means external to the LSAPI, when such
means are available. When the protocol specified is LS_OUT_OF_BAND_PROTOCOL, there is
no challenge and no response.

For additional information about these protocols, see LSAPI Constants.

Basic Challenge Protocol
The basic challenge protocol provides the means for an LSAPI-enabled application to verify that
an LSAPI-compliant license system has given it legitimate permission to run.

Every license has one or more keys, called secrets, that the software publisher chooses. The
publisher typically encrypts the secrets within the license and only the license server has the
means to decrypt them. The basic challenge protocol supported by all LSAPI-compliant license
systems works on the principle of shared secrets: the application and the license server share a
secret value.

An LSAPI-compliant license system requires a minimum of four secrets, each 4 bytes (32 bits) in
length. The application challenges the authenticity of a license by requiring the license system to
prove that it has one of the secrets. The server can compute the correct response to the challenge
only if it has the secret. It must return a mathematical function of the challenge plus the shared
secret. Since the application also has the secrets on the license, it can compute the correct
expected response to the challenge and check that the server's response was appropriate for the
challenge. The secret itself never passes between the application and the license system in plain
text.

The basic challenge protocol includes a level of mutual authentication to prove to the license
system that the application has the selected secret. The protocol also helps ensure that an
intruder cannot modify the parameters the application sends to the license system, or the
parameters the license system returns to the application.

Additional information about the steps in the basic challenge protocol is provided in the following
topics:

· The Application Challenge
· The License System Response
· The Application Verification

The Application Challenge
In order to initiate a challenge, your application must perform the following steps:

1. Generate a 32-bit random number.
2. Select the index of the application secret you choose to challenge, and look up the actual

application secret.
3. Compute a message digest with the MD4 Message-Digest Algorithm supplied by RSA

Data Security, Inc. For information about creating the algorithm input, see LS_CHALLDATA.
4. Pass the algorithm output in the LS_CHALLDATA structure to the license system with a

call to the LSRequest or the LSUpdate function.
For additional information about coding the challenge, see Anti-Tampering Guidelines.

The License System Response
The license system first attempts to authenticate the message digest that the application sends as
the challenge by performing the following steps:

1. Look up the secret stored within the license.
2. Compute a message digest with the MD4 Message-Digest Algorithm supplied by RSA

Data Security, Inc.
3. Compare this message digest to the one passed by the application initiating the

challenge.
4. Compute another message digest and passes it in the LS_MSG_DIGEST structure as the

challenge response back to the application. The result of this encryption scheme is unique.
For additional information about the format of this message digest, see LS_CHALLDATA.

The server cannot respond correctly to the challenge if it does not have the secrets associated
with a particular license. The license system does not return a challenge response if either a
license request or an update is unsuccessful.

The Application Verification
Your application must perform the following steps to verify the license system's response to the
challenge:

1. Receive the output parameters of the call to the LSRequest or the LSUpdate function,
and the license system's response.

2. Compute a second message digest with the MD4 Message-Digest Algorithm supplied by
RSA Data Security, Inc. For additional information about the format of this message digest,
see LS_CHALLDATA.

3. Compare this message digest to the license system's message digest.
4. Accept the result only if the two are equal.

There are two different methods you can use to verify a challenge response:

· You can either incorporate the secrets and the algorithm in the code (Algorithmic Method)
, or

· You can precompute a table containing a number of random challenges with their
expected responses (Table Lookup Method).

For additional information about coding the challenge, see Anti-Tampering Guidelines.Algorithmic MethodWith this method, you incorporate the challenge algorithm and the actual secret values in the
program code. This method requires that you take steps to obscure the code and to ensure that
the secrets themselves are not readily detectable. These steps are described in Anti-Tampering
Guidelines.Table Lookup MethodWith this method, you incorporate a precomputed table of valid challenge responses in the
program code. The table should contain a row for each possible challenge and a column for each
unique secret response. Your application can verify a challenge by examining the appropriate
challenge/response intersection in the table. This method requires that you choose the challenge
values in addition to the secrets when you code the application.

If intruders successfully duplicate an application's challenge and response table, they can also
circumvent and replace the legitimate license provider. If all the data in the table is known, the
application's secrets are vulnerable. It becomes more difficult to copy the entire table while
inspecting the data exchanges between the application and the license provider as the size of the
table increases. Therefore, if you use the table lookup method, compute a large number of
random number values to ensure that there are a large number of possible challenges and
responses.

At the beginning of each run time, your application must select one of the challenge values from
your table. It must then pass this value in a call to the LSRequest function. When the call returns,
the application must compare the actual challenge response to the expected response for that
challenge value.

A sample table follows. The format and size of the values are examples only.
Challenge
Value

Secret 1

Response

Secret 2

Response

Secret 3

Response

Secret 4

Response

1. 8675309 783ndmw732 3487dn262 367dkb37 476dndk263

2. 63JSk23 63387d6b36 7b6b5u8b7 8hn65bv4g7 076bb856v6

3. 833jh26 73d83m29s 8N7GJ829n8 89bn73nBH 89348nUU7

4. 8LES654 733nbV8 8H8hu8 B73h0dn39 7590nd73n

5. 28gHjB4 39834nd83 93n3d93n38 393n3ed83n 983n38db38

If an application used the preceding sample table and challenged Secret 3 with the second
challenge value, 63JSk23, it would then pass this value in a call to the LSRequest function. A
legitimate license system would respond with a challenge response of 8hn65bv4g7 and a status
of success. The application would then examine the entry at the appropriate challenge/response
intersection in the table and compare it to the value 8hn65bv4g7. In this case it would find a
match, so the challenge response would be valid.

In addition to including a table such as the preceding example, your application could also include
a similar table of challenge responses for use with calls to the LSUpdate function.

For additional information about coding the challenge, see Anti-Tampering Guidelines.

Anti-Tampering Guidelines
The security that the LSAPI provides is only as good as the security of the application code and
the secret values themselves.

Distribution of application code to end users means that an intruder can recover the shared
secrets and use them to create a license system flow that appears to be correct for whatever
challenge the application issues. An intruder can also locate and modify the code that compares
and then validates the license system's challenge response.

You should take defensive steps by using antivirus programming techniques and other measures
to prevent code modification, and also to make it difficult to circumvent the basic challenge
protocol. Following are guidelines that you can use when you develop an application that includes
calls to the LSAPI functions. For additional information, see Table Lookup Method.

When you select the license secrets

· Choose unique secrets for each one of your company's applications.
· Choose unique secrets for each application version.

When you code the application

· If you include the secrets in the application, obscure them by encrypting them or
scattering them throughout the code.

· Place most of the challenge code and data in discardable overlays, if possible.
· Incorporate an obscure internal checksum over the code that interfaces with the license

system and with the challenge verification.
· Use different challenge values for calls to the LSRequest and LSUpdate functions.
· Verify the code offset when your application calls the challenge algorithm, at the entry

point to the algorithm, if applicable.
· Avoid simple comparisons and obscure critical comparisons.
· Save the challenge response that the license system returns. Do not compare it for

equality immediately after a call to the LSRequest or LSUpdate function.
· Perform a meaningless comparison immediately after a call to the LSRequest or

LSUpdate function.
· Verify the challenge result more than once.
· Perform mathematical operations with the challenge response, and compute another

result that your application verifies later in the code.
· Perform multiple operations with the challenge response, like meaningless read,

comparison, and subtraction operations, before doing a final comparison. If the intruder uses a
hardware monitor, this strategy can increase the number of hardware breakpoints that occur
and thereby cause additional confusion for the intruder.

· To verify that the current license is still valid, call the LSUpdate function periodically.

How to Incorporate the LSAPI in an Application
This section provides an example of how to incorporate the License Service Application
Programming Interface (LSAPI) functions in your application, using the basic challenge protocol.
For additional programming suggestions, see Anti-Tampering Guidelines.

Before you begin coding your application, you will need to choose four secrets and create values
for the PublisherName, ProductName, and Version parameters in the LSRequest function, as
follows:

· Create four secret values. You will need these secrets to initiate the basic challenge, and
to verify the license system's response. For additional information, see The Application
Challenge and The Application Verification.

· Create a unique publisher name. This name can be up to 32 characters long. It should be
a trademarked name and the same for all applications that your company develops.

· Create a unique product name within the publisher domain. This name must be unique
within the first 32 characters.

· Create a unique version string within the product domain. The version string is used to
differentiate multiple versions.

You will also need to select the specific LSAPI-compliant license systems for which you want to
issue licenses. You can expand the set of license systems you support on platforms that allow
shared or dynamically linked libraries after the software product has shipped, provided the
application does not require functionality specific to one license system.

When you code the application, use calls to the LSAPI function layer to register license usage and
include code that implements the functionality of the basic challenge protocol.

To code the application
1. Add calls to the LSRequest, LSRelease and LSFreeHandle functions in your application

to grant and release license resources.
2. Incorporate the code to prepare the challenge. For additional information about the steps

required to initiate the challenge, see The Application Challenge.
3. Select and implement the method to verify the challenge response. For additional

information about the steps required to verify the response, see The Application Verification,
Algorithmic Method, and Table Lookup Method.

4. Include periodic calls to the LSUpdate function to verify that the current license is still
valid.

5. Choose and implement your license strategy. For examples, see License Strategies.
6. Incorporate code to handle errors. Use a call to the LSGetMessage function to return a

message string that describes the error.
You will also need to locate the following files on your hard disk in the location specified by your
environment variable during application development. Note that the dynamic-link libraries must
also be installed on all computers on which your application runs, so you should include their
installation in your application's setup procedure.

· LSAPI.H, in your %INCLUDE% path
· LSAPI32.LIB, in your %LIB% path

For Windows NT:

· LSAPI32.DLL and MSLSP32.DLL in %WinDir%\System32
For Windows 95:

· LSAPI32.DLL and MSLSP32.DLL in %WinDir%\System

License Strategies
You can customize your application to respond to the situation when a valid license is unavailable.
Following are examples of license strategies.

Announcement only. Use the LSAPI functions to announce when your application begins and
when it terminates. This announcement can be logged by a license system to record or meter
the number of software applications in use at any one time.
Authorization desired. Use the LSAPI functions to obtain authorization from the license system
for your application to run. If there is no license or license system, the software can display a
warning message but continue to run.
Authorization required. Use the LSAPI functions to obtain authorization from the license
system for your application to run. If no valid license is available, the software will not run.

LSAPI Reference
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The following functions and structures are used with LSAPI.

LSAPI Functions
LSEnumProviders
LSFreeHandle
LSGetMessage
LSQuery
LSRelease
LSRequest

LSUpdate

LSAPI Structures
LS_CHALLDATA
LS_CHALLENGE

LS_MSG_DIGEST

LSAPI Constants
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

This section describes the standard LSAPI C constants. They are listed in alphabetic order.

Constant/Value Type Meaning

LS_ANY
null string

LS_STR FAR * Indicates that all license
system providers should
be searched for a license
match.

LS_BASIC_PROTOCOL
0x00000001

LS_ULONG Specifies the basic
challenge protocol that is
supported by all LSAPI-
compliant license
systems.

LS_DEFAULT_UNITS
0xFFFFFFFF

LS_ULONG Indicates that the license
system and the
associated license policy
should determine the
number of license units.

LS_INFO_DATA
2

LS_ULONG Returns a vendor-
defined block of data
contained on the license.
The first ULONG value in
this data buffer indicates
the size, in bytes, of the
data following it. The
space allocated for this
data can vary on each
license system, or might
not be available at all.

LS_INFO_NONE
0

LS_ULONG Reserved.

LS_INFO_SYSTEM
1

LS_ULONG Returns the unique
identification of the
license system supplying
the current license
context. The value is a
null-terminated string,
and it is the same as that
returned by a call to the
LSEnumProviders
function.

LS_LICENSE_CONTEXT
4

LS_ULONG Returns a value that
uniquely identifies the
license context within the
specific license service
provider identified by the
LicenseHandle
parameter. The bytes
returned are specific to
the license system.
When license-system -
specific functionality is
being used, you can use
this sequence of bytes to
identify the current
license context.

LS_MAX_PROVIDER
_NAME

LS_ULONG Specifies the maximum
length of a provider

255 name that the
LSEnumProviders
function returns.

LS_NO
_RECOMMENDATION
0xFFFFFFFF

LS_ULONG Indicates that the license
system cannot supply an
interval recommendation
when a call to the
LSQuery function using
LS_UPDATE_PERIOD
returns this value.

LS_NULL
NULL

LS_VOID FAR * Specifies a null value for
all optional pointer
arguments. LS_NULL
must be used to indicate
the absence of a value.

LS_OUT_OF_BAND
_PROTOCOL
0xFFFFFFFF

LS_ULONG Specifies an out-of-band
challenge/response
protocol, one that is
available to an
application by means
external to the LSAPI.

LS_UPDATE_PERIOD
3

LS_ULONG Returns the
recommended interval, in
minutes, at which an
application should call
the LSUpdate function. If
a value of 0xFFFFFFFF
is returned, the license
system cannot supply a
recommendation.

LS_USE_LAST
0x0800FFFF

LS_ULONG Indicates that the
LSGetMessage function
should use as input the
last status value returned
for the current process.

LSAPI Data Type Definitions
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

This section describes the standard LSAPI C data types. They are listed in alphabetic order.

Data type Definition Description

LS_HANDLE unsigned long Defines the handle to
the license context
used by the license
service function calls.

LS_LONG long Defines a 32-bit signed
integer type.

LS_STATUS_CODE unsigned long Indicates the result of a
license service function
call that is a 32-bit
unsigned integer type.

LS_STR char Defines a null-
terminated string of
characters in ASCII
format.

LS_ULONG unsigned long Defines a 32-bit
unsigned integer type.

LS_VOID void Refers to an
unspecified type that
usually indicates a data
buffer.

LSAPI Status Code Constants
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

This section describes the standard LSAPI status code constants. They are listed in alphabetic
order.

Constant Status Value Meaning

LS_AUTHORIZATION_
UNAVAILABLE

0xC0001005 The license system has
no license resources to
complete the request.

LS_BAD_ARG 0xC000100E One or more of the
arguments is incorrect.

LS_BAD_HANDLE 0xC0001001 The handle used on the
call does not describe a
valid license system
context.

LS_BAD_INDEX 0xC000100B An invalid index was
specified in a call to the
LSEnumProviders or
the LSQuery function.

LS_BUFFER_TOO_SMALL 0xC000100D Either the buffer pointed
to by the Buffer
parameter in the
LSGetMessage function
is too small to
accommodate the text
string to be returned, or
the challenge data
structure is too small to
accommodate the
challenge response.

LS_INSUFFICIENT_UNITS 0xC0001002 The license system
cannot locate enough
available license
resources to complete
the request.

LS_LICENSE_EXPIRED 0x8000100C The license associated
with the current context
has expired. This may be
due to a time restriction
on the license.

LS_LICENSE_TERMINATED 0xC0001004 The license system has
determined that the
resources used to
complete a previous
request are no longer
granted to the calling
software.

LS_LICENSE_UNAVAILABLE0xC0001006 The license system has
license resources that
could complete the
request, but they were
not available at the time
of the request.

LS_NETWORK_
UNAVAILABLE

0xC0001008 The network is
unavailable.

LS_RESOURCES_
UNAVAILABLE

0xC0001007 The request cannot be
completed because of
insufficient resources,
such as memory.

LS_SUCCESS 0x0 The function completed
successfully.

LS_SYSTEM_UNAVAILABLE0xC0001003 A license system cannot
be found to carry out the
called function.

LS_TEXT_UNAVAILABLE 0x80001009 An error occurred while
looking up an error
message string with the
LSGetMessage function.

LS_UNKNOWN_STATUS 0xC000100A An unrecognized status
code was passed to the
LSGetMessage function.

Structure of LSAPI Status Codes
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The status codes returned by the LSAPI functions are 32-bit unsigned values. The value is divided
into 3 fields. The format of these fields with their bit positions are shown following.

ewc msdncd, EWGraphic, bsd23499 0 /a "SDK.WMF"

Field Meaning

31 - 30 The high-order 2 bits indicate a severity code.
Possible values include the following:
00 success
01 information
10 warning
11 error

29 - 16 The middle 14 bits are reserved, and must
equal zero.

15 - 0 The low-order 16 bits are a unique value
LSAPI assigns to indicate the area
responsible for the condition, error, or
warning.

For additional information, see LSAPI Status Code Constants.

MailslotsA mailslot is a mechanism for one-way interprocess communications (IPC). An application written
for Microsoft® Windows® can store messages in a mailslot. The owner of the mailslot can retrieve
messages that are stored there. These messages are typically sent over a network to either a
specified computer or to all computers in a specified domain. A domain is a group of workstations
and servers that share a group name.

About Mailslots
A mailslot is a pseudofile; it resides in memory, and standard Windows file functions write to it.
Unlike disk files, however, mailslots are temporary. When every handle of a mailslot is closed, the
mailslot and all the data it contains are deleted. The data in a mailslot message can be in any
form.

A mailslot server is a process that creates and owns a mailslot. When the server creates a
mailslot, it receives a mailslot handle. This handle must be used when a process reads messages
from the mailslot. Only the process that creates a mailslot (or has obtained the handle by some
other mechanism, such as inheritance) can read from the mailslot. A mailslot exists until all server
handles to it have been closed or all server processes have exited. All mailslots are local to the
process that creates them; a process cannot create a remote mailslot.

A mailslot client is a process that writes a message to a mailslot. Any process that has the name
of a mailslot can put a message there. New messages follow preexisting messages in the mailslot.

Mailslots can broadcast messages within a domain. If several processes in a domain each create
a mailslot using the same name, every message that is addressed to that mailslot and sent to the
domain is received by the participating processes. Because one process can control both a server
mailslot handle and the client handle retrieved when the mailslot is opened for a write operation,
applications can easily implement a simple message-passing facility within a domain.

Some developers choose to use named pipes instead of mailslots for interprocess
communications. Named pipes are a simple way for two processes to exchange messages.
Mailslots, on the other hand, are a simple way for a process to broadcast messages to many other
processes. For more information about named pipes, see Pipes.

Another issue in the choice between mailslots and named pipes is that mailslots use datagrams,
and named pipes do not. A datagram is a small packet of information that the network sends
along the wire. Like a radio or television broadcast, a datagram offers no confirmation of receipt;
there is no way to guarantee that a datagram has been received. Just as mountains, large
buildings, or interfering signals might cause a radio or television signal to get lost, there are things
the sender has no knowledge of that can prevent a datagram from reaching a particular
destination. Named pipes are more like simple one-to-one telephone calls: you can talk only to
one party, but you know that the conversation is occurring. So, if an application requires
guaranteed reception, it should use a named pipe; but named pipes cannot broadcast. Mailslots
do not guarantee reception, but they can broadcast.

Mailslot Names
When a process creates a mailslot, the mailslot name must have the following form.

\\.\mailslot\[path]name

A mailslot name requires the following elements: two backslashes to begin the name, a period, a
backslash following the period, the word mailslot, and a trailing backslash. Case, however, is not
important. A mailslot name can be preceded by a path consisting of the names of one or more
pseudodirectories, separated by backslashes. For example, if a user expects messages on the
subject of taxes from Bob, Pete, and Sue, the user's mailslot application might allow the user to
create individual mailslots for each sender.\\.\mailslot\taxes\bobs_comments
\\.\mailslot\taxes\petes_comments
\\.\mailslot\taxes\sues_commentsTo put a message into a mailslot, a process opens a mailslot whose name is in one of several

forms. To write to a mailslot on the local computer, a process can use a mailslot name using the
same form required for creating a mailslot. This situation, however, is relatively uncommon. More
frequently, a process uses the following form to write to a mailslot on a specific remote computer.

\\computername\mailslot\[path]name

The following form allows a process to put a message into every mailslot in the specified domain
that has the given name.

\\domainname\mailslot\[path]name

To put a message into every mailslot with a given name in the system's primary domain, a
process uses the following form.

*\mailslot\[path]name

Mailslots and Microsoft LAN Manager 2.x
Windows uses mailslots similar to those developed for Microsoft LAN Manager version 2.0. An
application that uses LAN Manager 2.x mailslots can interact easily with mailslots created by
Windows. There are significant differences, however, between Windows-based mailslots and LAN
Manager mailslots:

· Windows-based mailslots all have the same class ¾ there are no "first class" and "second
class" mailslots.

· All Windows-based mailslot messages have equal priority and are always appended to
the mailslot buffer. When a Windows-based mailslot message is written to a mailslot on a
computer that requires message priority, the system sets the priority to the lowest value (0).

· Write operations to Windows-based mailslots on local computers return an error value if
an error occurs. Write operations to remote Windows-based mailslots do not return an error
value when they fail. (Because there is no built-in limit to the size of the mailslot buffer failure
is unlikely.)

· Write operations to Windows-based mailslots fail immediately if the message cannot be
appended to the mailslot buffer (if the buffer is too small, for example). Immediate failure
makes write time-outs irrelevant; contrary to LAN Manager mailslots, there are no write time-
outs for Windows-based mailslots.

· A process that creates a Windows-based mailslot can specify that the mailslot handle be
inherited by its child processes. (Mailslot handles in LAN Manager cannot be inherited.)

A process writes messages to a Windows-based mailslot by using standard file input and output
functions. The following table shows LAN Manager mailslot functions and their corresponding
Windows functions.

LAN Manager
functions

Windows functions

DosDeleteMailslot CloseHandle
DosMailslotInfo GetMailslotInfo
DosMakeMailslot CreateMailslot
DosReadMailslot ReadFile
DosWriteMailslot WriteFile

Server and Client Functions
Clients and servers when working with mailslots should use only the functions discussed in this
section. Other Windows functions should not be used, even if they accept file handles or
filenames as arguments.

Mailslot Server Functions
Mailslot servers have exclusive use of three functions, as shown in the following table.

Function Description

CreateMailslot Creates a mailslot and returns a mailslot handle.
GetMailslotInfo Retrieves the maximum message size, the mailslot

size, the size of the next message in the mailslot,
the number of messages in the mailslot, and the
amount of time a read operation can wait for a
message.

SetMailslotInfo Changes the read time-out for a mailslot.

The following functions are also used by mailslot servers.

Function Description

DuplicateHandleDuplicates the mailslot handle.
ReadFile Retrieves messages from a mailslot.
GetFileTime Retrieves the date and time a mailslot was created.
SetFileTime Sets the date and time a mailslot was created.

Client Functions
A client process uses the following functions when interacting with a mailslot.

Function Description

CloseHandle Closes a mailslot handle for a client process.
CreateFile Creates a mailslot handle for a client process.
DuplicateHandleDuplicates a mailslot handle.
WriteFile Writes data to a mailslot.

Using Mailslots
· Creating a mailslot
· Writing to a mailslot
· Reading from a mailslot

Creating a Mailslot
Mailslots are supported by three specialized functions: CreateMailslot, GetMailslotInfo, and
SetMailslotInfo. These functions are used by the mailslot server.

The following code sample uses the CreateMailslot function to retrieve the handle of a mailslot
named sample_mailslot.BOOL FAR PASCAL Makeslot(HWND hwnd, HDC hdc)
{

LPSTR lpszSlotName = "\\\\.\\mailslot\\sample_mailslot";
/* The mailslot handle "hSlot1" is declared globally. */
hSlot1 = CreateMailslot(lpszSlotName,
0,/* no maximum message size */
MAILSLOT_WAIT_FOREVER,/* no time-out for read operations */
(LPSECURITY_ATTRIBUTES) NULL); /* no security attributes */
if (hSlot1 == INVALID_HANDLE_VALUE) {
ErrorHandler(hwnd, "CreateMailslot"); /* local error handler */
return FALSE;
}
TextOut(hdc, 10, 10, "CreateMailslot successful.", 26);
return TRUE;

}To create a mailslot that can be inherited by child processes, an application should change the
SECURITY_ATTRIBUTES structure passed as the last parameter of CreateMailslot. To do this,
the application sets the bInheritHandle member of this structure to TRUE (the default setting is
FALSE).

Writing to a Mailslot
Writing to a mailslot is similar to writing to a standard disk file. The following code uses the
CreateFile, WriteFile, and CloseHandle functions to put a short message in a mailslot. The
message is broadcast to every computer in the primary domain of the system.LPSTR lpszMessage = "Message for sample_mailslot in primary domain.";
BOOL fResult;
HANDLE hFile;
DWORD cbWritten;
hFile = CreateFile("*\\mailslot\\sample_mailslot",

GENERIC_WRITE,
FILE_SHARE_READ, /* required to write to a mailslot */
(LPSECURITY_ATTRIBUTES) NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
(HANDLE) NULL);

if (hFile == INVALID_HANDLE_VALUE) {
ErrorHandler(hwnd, "Primary domain"); /* local error handler */
return FALSE;

}
fResult = WriteFile(hFile,

lpszMessage,
(DWORD) lstrlen(lpszMessage) + 1, /* include terminat. null char. *

/
&cbWritten,
(LPOVERLAPPED) NULL);

if (!fResult) {
ErrorHandler(hwnd, "WriteFile");
return FALSE;

}
TextOut(hdc, 10, 10, "WriteFile successful.", 21);
fResult = CloseHandle(hFile);
if (!fResult) {

ErrorHandler(hwnd, "CloseHandle");
return FALSE;

}
TextOut(hdc, 10, 30, "CloseHandle successful.", 23);
return TRUE;Messages broadcast to a domain must be no longer than 400 bytes. Messages that are not

broadcast should be smaller than 64 kilobytes. There is no limit to the number of messages that
can be sent to a mailslot.

Reading from a Mailslot
The process that creates a mailslot can read messages from it by using the mailslot handle in a
call to the ReadFile function. The code in the following example calls the GetMailslotInfo function
to determine whether there are messages in the mailslot. If messages are waiting, each is
displayed in a message box along with the number of messages remaining to be read.BOOL FAR PASCAL Readslot(HWND hwnd, HDC hdc)
{

DWORD cbMessage, cMessage, cbRead;
BOOL fResult;
LPSTR lpszBuffer;
CHAR achID[80];
DWORD cAllMessages;
cbMessage = cMessage = cbRead = 0;
/* Mailslot handle "hSlot1" is declared globally. */
fResult = GetMailslotInfo(hSlot1, /* mailslot handle */
(LPDWORD) NULL,/* no maximum message size */
&cbMessage, /* size of next message */
&cMessage,/* number of messages */
(LPDWORD) NULL); /* no read time-out */
if (!fResult) {
ErrorHandler(hwnd, "GetMailslotInfo");
return FALSE;
}
if (cbMessage == MAILSLOT_NO_MESSAGE) {
TextOut(hdc, 10, 10, "No waiting messages.", 20);
return TRUE;
}
cAllMessages = cMessage;
while (cMessage != 0) { /* retrieves each message */
/* Create a message-number string. */
wsprintf((LPSTR) achID,
"\nMessage #%d of %d\n", cAllMessages - cMessage + 1,
cAllMessages);
/* Allocate memory for the message. */
lpszBuffer = (LPSTR) GlobalAlloc(GPTR,
lstrlen((LPSTR) achID) + cbMessage);
lpszBuffer[0] = '\0';
fResult = ReadFile(hSlot1,
lpszBuffer,
cbMessage,
&cbRead,
(LPOVERLAPPED) NULL);
if (!fResult) {
ErrorHandler(hwnd, "ReadFile");
GlobalFree((HGLOBAL) lpszBuffer);
return FALSE;
}
/* Concatenate the message and the message-number string. */
lstrcat(lpszBuffer, (LPSTR) achID);
/* Display the message. */
MessageBox(hwnd,
lpszBuffer,
"Contents of Mailslot",
MB_OK);
GlobalFree((HGLOBAL) lpszBuffer);
fResult = GetMailslotInfo(hSlot1, /* mailslot handle */
(LPDWORD) NULL,/* no maximum message size */
&cbMessage, /* size of next message */
&cMessage,/* number of messages */
(LPDWORD) NULL); /* no read time-out */
if (!fResult) {
ErrorHandler(hwnd, "GetMailslotInfo");
return FALSE;
}
}
return TRUE;

}A mailslot exists until the CloseHandle function is called for all open server handles or until all
server processes that own a mailslot handle exit. In both cases, any unread messages are
deleted from the mailslot, all client handles to the mailslot are closed, and the mailslot itself is
deleted from memory.

Mailslot Functions
The following functions can be used with mailslots.
CreateMailslot
GetMailslotInfo

SetMailslotInfo

Memory ManagementThis overview describes Win32 memory management. It also explains how to allocate and use
memory.

About Memory Management
In the Microsoft® Win32® application programming interface (API), each process has its own 32-
bit virtual address space that enables addressing up to 4 gigabytes (GB) of memory. The 2 GB in
low memory (0x00 to 0x7FFFFFFF) are available to the user, and the 2 GB in high memory
(0x80000000 to 0xFFFFFFFF) are reserved for the kernel. The virtual addresses used by a
process do not represent the actual physical location of an object in memory. Instead, for each
process the kernel maintains a page map, an internal data structure used to translate virtual
addresses into corresponding physical addresses.

Virtual Address Space and Physical Storage
The virtual address space of each process is much larger than the total physical memory,
random-access memory (RAM), available to all processes. To increase the size of physical
storage, the kernel uses the disk for additional storage. The total amount of storage available to all
executing processes is the sum of the physical memory, RAM, and the free space on disk
available to the paging file, a disk file used to increase the amount of physical storage. Physical
storage and the virtual (logical) address space of each process are organized into pages, units of
memory, whose size depends on the host computer. For example, on x86 computers the host
page size is 4 kilobytes (K).

To maximize its flexibility in managing memory, the kernel can move pages of physical memory to
and from a paging file on disk. When a page is moved in physical memory, the kernel updates the
page maps of the affected processes. When the kernel needs space in physical memory, it moves
the least recently used pages of physical memory to the paging file. Manipulation of physical
memory by the kernel is completely transparent to applications, which operate only in their virtual
address spaces.

The pages of a process's virtual address space can be in one of the following states.

State Description

Free A free page is not currently accessible, but it is available
to be committed or reserved.

Reserved A reserved page is a block of the process's virtual
address space that has been set aside for future use.
The process cannot access a reserved page, and there
is no physical storage associated with it. A reserved
page reserves a range of virtual addresses that cannot
be used subsequently by other allocation operations
(that is, by functions such as malloc, LocalAlloc, and
so on). A process can use the VirtualAlloc function to
reserve pages of its address space and later to commit
the reserved pages. It can use the VirtualFree function
to release them.

Committed A committed page is one for which physical storage (in
memory or on disk) has been allocated. It can be
protected to allow either no access or read-only access,
or it can have read and write access. A process can use
the VirtualAlloc function to allocate committed pages.
The GlobalAlloc and LocalAlloc functions allocate
committed pages with read-write access. A committed
page allocated by VirtualAlloc can be decommitted by
the VirtualFree function, which releases the page's
storage and changes the state of the page to reserved.

Global and Local Functions
A process can use the GlobalAlloc and LocalAlloc functions to allocate memory. In the linear
32-bit environment of the Win32 API, the local heap and the global heap are not distinguished. As
a result, there is no difference between the memory objects allocated by these functions.

Memory objects allocated by GlobalAlloc and LocalAlloc are in private, committed pages with
read-write access. Private memory cannot be accessed by other processes. Memory allocated by
using GlobalAlloc with the GMEM_DDESHARE flag is not actually shared globally as it is in
Windows version 3. x. However, this flag is available for compatibility purposes and can be used
by some applications to enhance the performance of dynamic data exchange (DDE) operations.
Applications requiring shared memory for other purposes must use file-mapping objects. Multiple
processes can map a view of the same file-mapping object to provide named shared memory. For
more information about file mapping, see File Mapping and Shared Memory.

By using GlobalAlloc and LocalAlloc, you can allocate a block of memory of any size that can
be represented by 32 bits. You are limited only by the available physical memory, including
storage in the paging file on disk. These functions, along with the other global and local functions
that manipulate global and local memory objects, are included in the Win32 API for compatibility
with 16-bit versions of Windows. However, the change from a 16-bit segmented memory model to
a 32-bit virtual memory model has made some of the functions and their options unnecessary or
meaningless. For example, there are no longer near and far pointers, because both local and
global allocations return 32-bit virtual addresses.

Both GlobalAlloc and LocalAlloc can allocate fixed or movable memory objects. Movable
objects can also be marked as discardable. In earlier versions of Windows, movable memory
objects were important for memory management. They enabled the system to compact the heap
when necessary to make space available for other memory allocations. By using virtual memory,
the system is able to manage memory by moving pages of physical memory without affecting the
virtual addresses of the processes using the pages. When the system moves a page of physical
memory, it simply maps the process's virtual page to the new location of the physical page.
Movable memory is still useful for allocating discardable memory. When the system needs
additional physical storage, it can use a "least recently used" algorithm to free discardable
memory that is not locked. Discardable memory should be used for data that is needed
infrequently and can be regenerated easily.

When allocating a fixed memory object, GlobalAlloc and LocalAlloc return a 32-bit pointer that
the calling process can immediately use to access the memory. For movable memory, the return
value is a handle. To get a pointer to a movable memory object, the calling process uses the
GlobalLock and LocalLock functions. These functions lock the memory so that it cannot be
moved or discarded. The internal data structures for each memory object include a lock count that
is initially zero. For movable memory objects, GlobalLock and LocalLock increment the count by
one, and the GlobalUnlock and LocalUnlock functions decrement the count by one. Locked
memory is not moved or discarded, unless the memory object is reallocated by using the
GlobalReAlloc or LocalReAlloc function. The memory block of a locked memory object remains
locked in memory until its lock count is decreased to zero, at which time it can be moved or
discarded.

The actual size of the memory allocated by GlobalAlloc or LocalAlloc can be larger than the
requested size. To determine the actual number of bytes allocated, use the GlobalSize or
LocalSize function. If the amount allocated is greater than the amount requested, the process can
use the entire amount.

The GlobalReAlloc and LocalReAlloc functions change the size, in bytes, or the attributes of a
memory object allocated by GlobalAlloc and LocalAlloc. The size can increase or decrease.

The GlobalFree and LocalFree functions release memory allocated by GlobalAlloc, LocalAlloc,
GlobalReAlloc, or LocalReAlloc.

Other global and local functions include the GlobalDiscard, LocalDiscard, GlobalFlags,
LocalFlags, GlobalHandle, and LocalHandle functions. To discard a specified discardable
memory object without invalidating the handle, use GlobalDiscard or LocalDiscard. The handle
can be used later by GlobalReAlloc or LocalReAlloc to allocate a new block of memory
associated with the same handle. To return information about a specified memory object, use
GlobalFlags or LocalFlags. The information includes the object's lock count and indicates

whether the object is discardable or has already been discarded. To return the handle of the
memory object associated with a specified pointer, use GlobalHandle or LocalHandle.

Standard C Library Functions
Win32 processes can safely use the standard C library functions (malloc, free, and so on) to
manipulate memory. When used with previous versions of Windows, these functions had potential
problems that no longer apply to applications using the Win32 API. For example, malloc allocates
a fixed pointer that does not take advantage of movable memory. Memory management is no
longer a problem because the system is free to manage memory by moving pages of physical
memory without affecting the virtual addresses. Similarly, the distinction between near and far
pointers is no longer relevant. So, unless you want to allocate discardable memory, it is now
reasonable to use the standard C library functions for memory management.

Virtual Memory Functions
The Win32 API provides a set of virtual memory functions that enable a process to manipulate or
determine the status of pages in its virtual address space. Many applications are able to satisfy
their memory needs by using the standard allocation functions (GlobalAlloc, LocalAlloc, malloc,
and so on). However, virtual memory functions provide some capabilities not available to the
standard allocation functions. They can perform the following operations:

· Reserve a range of a process's virtual address space. Reserving address space does not
allocate any physical storage, but it prevents other allocation operations from using the
specified range. It does not affect the virtual address spaces of other processes. Reserving
pages prevents needless consumption of physical storage, while enabling a process to
reserve a range of its address space into which a dynamic data structure can grow. The
process can allocate physical storage for this space, as needed.

· Commit a range of reserved pages in a process's virtual address space so that physical
storage (either in RAM or on disk) is accessible only to the allocating process.

· Specify read-write, read-only, or no access for a range of committed pages. This differs
from the standard allocation functions that always allocate pages with read-write access.

· Free a range of reserved pages, making the range of virtual addresses available for
subsequent allocation operations by the calling process.

· Decommit a range of committed pages, releasing their physical storage and making it
available for subsequent allocation by any process.

· Lock one or more pages of committed memory into physical memory (RAM) so that the
system cannot swap the pages out to the paging file.

· Obtain information about a range of pages in the virtual address space of the calling
process or a specified process.

· Change the access protection for a specified range of committed pages in the virtual
address space of the calling process or a specified process.

The virtual memory functions manipulate pages of memory. The functions use the size of a page
on the current computer to round off specified sizes and addresses.

To determine the size of a page on the current computer, use the GetSystemInfo function.

The VirtualAlloc function performs one of the following operations:

· Reserves one or more free pages.
· Commits one or more reserved pages.
· Reserves and commits one or more free pages.

You can specify the starting address of the pages to be reserved or committed, or you can allow
the system to determine the address. The function rounds the specified address to the appropriate
page boundary. Reserved pages are not accessible, but committed pages can be allocated with
the PAGE_READWRITE, PAGE_READONLY, or PAGE_NOACCESS flag. When pages are
committed, storage is allocated in the paging file, but each page is initialized and loaded into
physical memory only at the first attempt to read from or write to that page. You can use normal
pointer references to access memory committed by the VirtualAlloc function.

The VirtualFree function performs one of the following operations:

· Decommits one or more committed pages, changing the state of the pages to reserved.
Decommitting pages releases the physical storage associated with the pages, making it
available to be allocated by any process. Any block of committed pages can be decommitted.

· Releases a block of one or more reserved pages, changing the state of the pages to free.
Releasing a block of pages makes the range of reserved addresses available to be allocated
by the process. Reserved pages can be released only by freeing the entire block that was
initially reserved by VirtualAlloc.

· Decommits and releases a block of one or more committed pages simultaneously,
changing the state of the pages to free. The specified block must include the entire block
initially reserved by VirtualAlloc, and all of the pages must be currently committed.

The VirtualLock function enables a process to lock one or more pages of committed memory into
physical memory (RAM), preventing the system from swapping the pages out to the paging file. It
can be used to ensure that critical data is accessible without disk access. Locking pages into
memory is dangerous because it restricts the system's ability to manage memory. Excessive use

of VirtualLock can degrade system performance by causing executable code to be swapped out
to the paging file. The VirtualUnlock function unlocks memory locked by VirtualLock.

The VirtualQuery and VirtualQueryEx functions return information about a region of consecutive
pages beginning at a specified address in the address space of a process. VirtualQuery returns
information about memory in the calling process. VirtualQueryEx returns information about
memory in a specified process and is used to support debuggers that need information about a
process being debugged. The region of pages is bounded by the specified address rounded down
to the nearest page boundary. It extends through all subsequent pages with the following
attributes in common:

· The state of all pages is the same: either committed, reserved, or free.
· If the initial page is not free, all pages in the region are part of the same initial allocation of

pages that were reserved by a call to VirtualAlloc.
· The access protection of all pages is the same (that is, the PAGE_READONLY,

PAGE_READWRITE, or PAGE_NOACCESS flag).
The VirtualProtect function enables a process to modify the access protection of any committed
page in the address space of a process. For example, a process can allocate read-write pages to
store sensitive data, and then it can change the access to read only or no access to protect
against accidental overwriting. VirtualProtect is typically used with pages allocated by
VirtualAlloc, but it also works with pages committed by any of the other allocation functions.
However, VirtualProtect changes the protection of entire pages, and pointers returned by the
other functions are not necessarily aligned on page boundaries. The VirtualProtectEx function is
similar to VirtualProtect, except it changes the protection of memory in a specified process.
Changing the protection is useful to debuggers in accessing the memory of a process being
debugged.

Heap Functions
The heap functions enable a process to create a private heap, a block of one or more pages in the
address space of the calling process. The process can then use a separate set of functions to
manage the memory in that heap. There is no difference between memory allocated from a
private heap and that allocated by using the standard allocation functions (GlobalAlloc,
LocalAlloc, malloc, and so on).

The HeapCreate function creates a private heap object from which the calling process can
allocate memory blocks by using the HeapAlloc function. HeapCreate specifies both an initial
size and a maximum size for the heap. The initial size determines the number of committed, read-
write pages initially allocated for the heap. The maximum size determines the total number of
reserved pages. These pages create a contiguous block in the virtual address space of a process
into which the heap can grow. Additional pages are automatically committed from this reserved
space if requests by HeapAlloc exceed the current size of committed pages, assuming that the
physical storage for it is available. Once the pages are committed, they are not decommitted until
the process is terminated or until the heap is destroyed by calling the HeapDestroy function.

The memory of a private heap object is accessible only to the process that created it. If a
dynamic-link library (DLL) creates a private heap, it does so in the address space of the process
that called the DLL. It is accessible only to that process.

The HeapAlloc function allocates a specified number of bytes from a private heap and returns a
pointer to the allocated block. The pointer identifies the block for the HeapFree function to release
or for the HeapSize function to determine the size.

Memory allocated by HeapAlloc is not movable. Because the system cannot compact a private
heap, the heap can become fragmented.

A possible use for the heap functions is to create a private heap when a process starts up,
specifying an initial size sufficient to satisfy the memory requirements of the process. If the call to
the HeapCreate function fails, the process can terminate or notify the user of the memory
shortage; if it succeeds, however, the process is assured of having the memory it needs.

Shared Memory
In the Win32 API, shared memory is implemented by file mapping. All memory allocated by the
other allocation methods (the GlobalAlloc, LocalAlloc, HeapAlloc, or VirtualAlloc function) is
accessible only to the calling process. Memory allocated by a DLL, however, is in the address
space of the process that called the DLL and is not accessible to other processes using the same
DLL.

Named file mapping provides an easy way to create a block of shared memory. A process can
specify a name when it uses the CreateFileMapping function to create a file-mapping object.
Other processes can specify the same name to either the CreateFileMapping or
OpenFileMapping function to obtain a handle of the mapping object. The names of event objects,
semaphore objects, mutex objects, and file-mapping objects share the same name space. If a
specified name matches the name of an existing object of a different type, an error occurs. When
creating named objects, try to use unique names and check the function return values for
duplicate name errors.

Each process specifies its handle of the file-mapping object in the MapViewOfFile function to
map a view of the file into its own address space. The views of all processes for a single file-
mapping object are mapped into the same sharable pages of physical storage. However, the
virtual addresses of the mapped views can vary from one process to another, unless the
MapViewOfFileEx function is used to map the view at a specified address. Although sharable, the
pages of physical storage used for a mapped file view are not global; they are not accessible to
processes that have not mapped a view of the file.

A file-mapping object is associated with a disk file that the system uses when the mapped view is
swapped out of physical memory and onto the disk. This disk swap file can be the system's
paging file, or it can be some other file that was specified when the file-mapping object was
created. In that case, the memory is initialized along with the contents of the file. Mapping a
specified file in the file system is useful for processes that need to share the data in an existing file
or that want to use the file to save data generated by the sharing processes. If you map a
specified file, you should open it for exclusive access and keep the handle open until you are
finished with the shared memory. Keeping it open will prevent other processes from opening
another handle on the file to use ReadFile or WriteFile or from creating additional mapping
objects for the same file, any of which actions can lead to unpredictable results.

Any pages committed by mapping a view of a file are released when the last process with a view
of the mapping object either terminates or unmaps its view by calling the UnmapViewOfFile
function. At this time, the specified file (if any) associated with the mapping object is updated. A
specified file can also be forced to update by calling the FlushViewOfFile function.

For more information about file mapping, see File Mapping. For an example of shared memory in
a DLL, see Dynamic-Link Libraries.

If multiple processes have write access to shared memory, access to the memory should be
synchronized. For more information about interprocess synchronization, see Synchronization.

Access Validation
The Win32 API provides a set of functions that a process can use to verify whether it has a
specified type of access to a given memory address or range of addresses. The following access
validation functions are available.

Function Description

IsBadCodePtrDetermines whether the calling process has read
access to the memory at the specified address.

IsBadReadPtrDetermines whether the calling process has read
access to the memory at a specified range of
addresses.

IsBadStringPtrDetermines whether the calling process has read
access to the memory pointed to by a null-terminated
string pointer. The function validates access for a
specified number of characters or until it encounters
the string's terminating null character.

IsBadWritePtrDetermines whether the calling process has write
access to the memory at a specified range of
addresses.

The IsBadHugeReadPtr and IsBadHugeWritePtr functions are also available for compatibility
with earlier versions of Windows that distinguished between normal memory allocations and huge
allocations occupying multiple segments. In the Win32 API, these functions are equivalent to
IsBadReadPtr and IsBadWritePtr.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when an access validation function indicates
that the process has the desired access to the specified memory, you should use structured
exception handling when attempting to access the memory. Use of structured exception handling
enables the system to notify the process if an access violation exception occurs, giving the
process an opportunity to handle the exception. For more information about structured exception
handling, see Structured Exception Handling.

Guard Pages
An application establishes a guard page by setting a memory page's PAGE_GUARD page
protection modifier flag. This flag can be specified, along with other page protection flags, in the
functions VirtualAlloc, VirtualProtect, and VirtualProtectEx. The PAGE_GUARD flag can be
used with any other page protection flag, except for the NO_ACCESS flag.

If a program attempts to access an address within a guard page, the operating system raises a
STATUS_GUARD_PAGE (0x80000001) exception. The operating system also clears the
PAGE_GUARD flag, removing the memory page's guard page status. The system will not stop the
next attempt to access the memory page with a STATUS_GUARD_PAGE exception.

If a guard page exception occurs during a system service, the service fails and typically returns
some failure status indicator. Since the system also removes the relevant memory page's guard
page status, the next invocation of the same system service won't fail due to a
STATUS_GUARD_PAGE exception (unless, of course, someone reestablishes the guard page).

A guard page thus provides a one-shot alarm for memory page access. This can be useful for an
application that needs to monitor the growth of large dynamic data structures. For example, there
are operating systems that use guard pages to implement automatic stack checking.

The following short program illustrates the one-shot behavior of guard page protection, and how it
can cause a system service to fail:#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
// local variables
LPVOID lpvAddr;
DWORD cbSize;
BOOL vLock;
LPVOID commit;
// amount of memory we'll allocate
cbSize = 512;
// try to allocate some memory
lpvAddr = VirtualAlloc(NULL,cbSize,MEM_RESERVE,PAGE_NOACCESS);
// if we failed ...
if(lpvAddr == NULL)

fprintf(stdout,"VirtualAlloc failed on RESERVE with %ld\n",
GetLastError());

// try to commit the allocated memory
commit = VirtualAlloc(NULL,cbSize,MEM_COMMIT,PAGE_READONLY|PAGE_GUARD)
;
// if we failed ...
if(commit == NULL)

fprintf(stderr,"VirtualAlloc failed on COMMIT with %ld\n",
GetLastError());

else // we succeeded
fprintf(stderr,"Committed %lu bytes at address %lp\n",

cbSize,commit);
// try to lock the committed memory
vLock = VirtualLock(commit,cbSize);
// if we failed ...
if(!vLock)

fprintf(stderr,"Cannot lock at %lp, error = %lu\n",
commit,GetLastError());

else // we succeeded
fprintf(stderr,"Lock Achieved at %lp\n",commit);

// try to lock the committed memory again
vLock = VirtualLock(commit,cbSize);
// if we failed ...
if(!vLock)

fprintf(stderr,"Cannot get 2nd lock at %lp, error = %lu\n",
commit,GetLastError());

else // we succeeded
fprintf(stderr,"2nd Lock Achieved at %lp\n",commit);

} // endof functionThe output of this program looks like this:Committed 512 bytes at address 003F0000
Cannot lock at 003F0000, error = 0x80000001
2nd Lock Achieved at 003F0000Note that the first attempt to lock the memory block fails, raising a STATUS_GUARD_PAGE

exception. The second attempt succeeds, because the memory block's guard page protection has
been toggled off by the first attempt.

Using the Virtual Memory Functions
This section explains how to use the virtual memory functions for dynamic allocation.

The following example illustrates the use of the VirtualAlloc and VirtualFree functions in
reserving and committing memory as needed for a dynamic array. First, VirtualAlloc is called to
reserve a block of pages with NULL specified as the base address parameter, forcing the kernel
to determine the location of the block. Later, VirtualAlloc is called whenever it is necessary to
commit a page from this reserved region, and the base address of the next page to be committed
is specified.

The example uses try-except structured exception-handling syntax to commit pages from the
reserved region. Whenever a page fault exception occurs during the execution of the try block,
the filter function in the expression preceding the except block is executed. If the filter function
can allocate another page, execution continues in the try block at the point where the exception
occurred. Otherwise, the exception handler in the except block is executed. For more information
about structured exception handling, see Structured Exception Handling.

As an alternative to dynamic allocation, the process can simply commit the entire region instead of
only reserving it. However, committing the region consumes physical storage that might not be
needed, making it unavailable for use by other processes.

The example uses VirtualFree to free the reserved and committed pages when it is finished with
them. The function is called twice: first to decommit the committed pages and again to release the
entire region of reserved pages.#define PAGELIMIT 80
#define PAGESIZE 0x1000
INT PageFaultExceptionFilter(DWORD);
VOID MyErrorExit(LPTSTR);
LPTSTR lpNxtPage;
DWORD dwPages = 0;
VOID UseDynamicVirtualAlloc(VOID) {
LPVOID lpvBase;
LPTSTR lpPtr;
BOOL bSuccess;
DWORD i;
/* Reserve pages in the process's virtual address space. */
lpvBase = VirtualAlloc(
NULL,/* system selects address */
PAGELIMIT*PAGESIZE, /* size of allocation */
MEM_RESERVE, /* allocates reserved pages */
PAGE_NOACCESS);/* protection = no access */

if (lpvBase == NULL)
MyErrorExit("VirtualAlloc reserve");
lpPtr = lpNxtPage = (LPTSTR) lpvBase;
/*
* Use try-except structured exception handling when
* accessing the pages. If a page fault occurs, the
* exception filter is executed to commit another page
* from the reserved block of pages.
*/
for (i=0; i < PAGELIMIT*PAGESIZE; i++) {
try {
/* Write to memory. */
lpPtr[i] = 'a';
}
/*
* If there is a page fault, commit another page
* and try again.
*/
except (PageFaultExceptionFilter(

GetExceptionCode())) {
/*
* This is executed only if the filter function is
* unsuccessful in committing the next page.
*/
ExitProcess(GetLastError());
}
}
/* Release the block of pages when you are finished using them. */
/* First, decommit the committed pages. */
bSuccess = VirtualFree(
lpvBase,/* base address of block */
dwPages*PAGESIZE, /* bytes of committed pages */
MEM_DECOMMIT); /* decommit the pages */
/* Release the entire block. */
if (bSuccess)
bSuccess = VirtualFree(
lpvBase, /* base address of block*/
0, /* releases the entire block */
MEM_RELEASE); /* releases the pages */

}
INT PageFaultExceptionFilter(DWORD dwCode) {
LPVOID lpvResult;
/* If the exception is not a page fault, exit. */
if (dwCode != EXCEPTION_ACCESS_VIOLATION) {
printf("exception code = %d\n", dwCode);
return EXCEPTION_EXECUTE_HANDLER;
}
printf("page fault\n");
/* If the reserved pages are used up, exit. */
if (dwPages >= PAGELIMIT) {
printf("out of pages\n");
return EXCEPTION_EXECUTE_HANDLER;
}
/* Otherwise, commit another page. */
lpvResult = VirtualAlloc(
(LPVOID) lpNxtPage, /* next page to commit */
PAGESIZE, /* page size, in bytes */
MEM_COMMIT, /* alloc committed page */
PAGE_READWRITE); /* read-write access */
if (lpvResult == NULL) {
printf("VirtualAlloc failed\n");
return EXCEPTION_EXECUTE_HANDLER;
}
/*
* Increment the page count, and advance lpNxtPage
* to the next page.
*/
dwPages++;
lpNxtPage += PAGESIZE;
/* Continue execution where the page fault occurred. */
return EXCEPTION_CONTINUE_EXECUTION;

}

Memory Management Reference
The following functions and structures are used with memory management.

Memory Management Functions
The following functions are used in memory management.
CopyMemory
FillMemory
GetProcessHeap
GetProcessHeaps
GlobalAlloc
GlobalDiscard
GlobalFlags
GlobalFree
GlobalHandle
GlobalLock
GlobalMemoryStatus
GlobalReAlloc
GlobalSize
GlobalUnlock
HeapAlloc
HeapCompact
HeapCreate
HeapDestroy
HeapFree
HeapLock
HeapReAlloc
HeapSize
HeapUnlock
HeapValidate
HeapWalk
IsBadCodePtr
IsBadHugeReadPtr
IsBadHugeWritePtr
IsBadReadPtr
IsBadStringPtr
IsBadWritePtr
LocalAlloc
LocalDiscard
LocalFlags
LocalFree
LocalHandle
LocalLock
LocalReAlloc
LocalSize
LocalUnlock
MoveMemory
VirtualAlloc
VirtualAllocEx
VirtualFree
VirtualFreeEx
VirtualLock
VirtualProtect
VirtualProtectEx
VirtualQuery
VirtualQueryEx
VirtualUnlock

ZeroMemory

Obsolete Functions
DefineHandleTable
GetFreeSpace
GlobalCompact
GlobalFix
GlobalLRUNewest
GlobalLRUOldest

GlobalUnfix
GlobalUnWire
GlobalWire
LimitEmsPages
LocalCompact
LocalShrink
LockSegment
SetSwapAreaSize

UnlockSegment

Memory Management Structures
The following structures are used with memory management.
MEMORY_BASIC_INFORMATION
MEMORYSTATUS

PROCESS_HEAP_ENTRY

PipesA pipe is a communication conduit with two ends; a process with a handle to one end can
communicate with a process having a handle to the other end. This overview describes how to
create, manage, and use pipes.

About Pipes
The Microsoft® Win32® application programming interface (API) provides both anonymous pipes
and named pipes.

Pipes can be one-way ¾ where one end is read-only and the other end is write-only, or they can
be two-way ¾ where both ends of the pipe are read and write.

Anonymous Pipes
An anonymous pipe is an unnamed, one-way pipe that transfers data between a parent process
and a child process or between two child processes of the same parent process. Although it is
possible to use anonymous pipes for communication between unrelated processes, it is easier to
use named pipes for that purpose (for more information, see Named Pipes). Anonymous pipes
are always local; they cannot be used for communication over a network.

The CreatePipe function creates an anonymous pipe and returns two handles, one to the read
end and one to the write end of the pipe. The read handle has only read access to the pipe, and
the write handle has only write access to the pipe. To communicate through the pipe, a handle to
one of the ends must be passed to another process. Usually, this is done through inheritance; that
is, a child process inherits a handle from its parent process. The inheritability of these handles is
controlled by the creating process in the following ways:

· The CreatePipe function specifies a SECURITY_ATTRIBUTES structure. If the
bInheritHandle member of this structure is TRUE, the handles can be inherited.

· The DuplicateHandle function can change the inheritability of a pipe handle. This
function enables a process to create a noninheritable duplicate of an inheritable pipe handle
or to create an inheritable duplicate of a noninheritable pipe handle.

· The CreateProcess function enables a parent process to specify whether the new child
process will inherit all or none of the parent's inheritable handles.

When a child process inherits a handle, the system enables the process to access the pipe
referred to by that handle. However, the parent process must communicate the handle value to
the child process. Typically, this is done by using the SetStdHandle and GetStdHandle functions,
which set and retrieve the standard handles (standard input, standard output, or standard error) of
a process. The parent process can specify a pipe handle in a call to SetStdHandle before the
child process is created. The current standard handles of the parent process are inherited by the
child process. So, when the child process starts up, it can use the GetStdHandle function to
retrieve the handle value. The parent process can change its own standard handles without
affecting the standard handles of its existing child processes.

To read from the pipe, a process uses the read handle in a call to the ReadFile function. When a
write operation of any number of bytes completes, the ReadFile call returns. The ReadFile call
also returns when all handles to the write end of the pipe have been closed or if any errors occur
before the read operation completes normally.

To write to the pipe, a process uses the write handle in a call to the WriteFile function. WriteFile
does not return until the specified number of bytes has been written or an error occurs. If the
pipe's buffer is full and bytes remain to be written, WriteFile does not return until some other
process or thread reads from the pipe, making more buffer space available. CreatePipe enables
the creating process to specify a buffer size for the pipe, or it can use the default buffer size.

Asynchronous (overlapped) read and write operations are not supported for anonymous pipes.
This means that the ReadFileEx and WriteFileEx functions cannot be used with anonymous
pipes. The lpOverLapped parameter of the ReadFile and WriteFile functions is ignored when
used with an anonymous pipe.

An anonymous pipe exists until all handles to both read and write ends of the pipe are closed by
the CloseHandle function.

Named Pipes
A named pipe is a one-way or two-way pipe for communicating between a server process and one
or more client processes. A server process specifies a name when it calls the CreateNamedPipe
function to create one or more instances of a named pipe. All instances of a named pipe share the
same pipe name, but each instance has its own buffers and handles and provides a separate
conduit for client-server communication. When a client process specifies a pipe name in the
CreateFile or CallNamedPipe function, it connects to an instance of the pipe. The use of
instances enables multiple client processes to use the same named pipe simultaneously.

Subject to security checks, any client process can access a named pipe, making it easy to
communicate between related or unrelated processes. Named pipes can be used locally to
communicate between processes on the same machine or across a network to connect processes
on different machines.

Any process can act as both a server and a client, making peer-to-peer communication possible.
As used here, server refers to a process that uses CreateNamedPipe to create a named pipe,
and client refers to a process that uses CreateFile or CallNamedPipe to connect to an instance
of a named pipe.

Pipe Names
Each named pipe must have a unique name that distinguishes it from other named pipes. Use the
following form when specifying the name of a pipe in the CreateNamedPipe, CreateFile,
WaitNamedPipe, or CallNamedPipe function.

\\servername\pipe\pipename

The server process cannot create a pipe on a computer, so CreateNamedPipe must use a period
to indicate the local computer as shown in this example.

\\.\pipe\pipename

Client processes using CreateFile, WaitNamedPipe, or CallNamedPipe can use a period to
specify a local pipe, but they must specify the name of a server to open a pipe on a remote
computer.

The pipename part of the name can include any character, including numbers and special
characters. The entire pipe name string can be up to 256 characters long. Pipe names are not
case-sensitive.

Named Pipe Modes
A number of modes associated with a named pipe or with a handle to a named pipe affect the use
and behavior of the pipe. Some of these modes can be set differently for each handle to a pipe,
while others must be the same for all handles to a pipe.

The server process specifies the following modes when it calls the CreateNamedPipe function.
The type and access modes must be the same for all instances of a pipe.

Mode Meaning

Type PIPE_TYPE_BYTE or PIPE_TYPE_MESSAGE. The type
mode determines whether data is written to a named pipe
as a stream of messages or as a stream of bytes. If no
type is specified in CreateNamedPipe, the default is
PIPE_TYPE_BYTE. A handle to a byte pipe must be in
byte-read mode. A handle to a message pipe can be in
either byte-read or message-read mode. For more
information about pipe types, see Named Pipe Type and
Read Mode.

Access PIPE_ACCESS_INBOUND,
PIPE_ACCESS_OUTBOUND, or
PIPE_ACCESS_DUPLEX. This mode is equivalent to
specifying the read or write access of the server's handles
to the pipe, where inbound is equivalent to
GENERIC_READ access, outbound is equivalent to
GENERIC_WRITE access, and duplex is equivalent to
GENERIC_READ | GENERIC_WRITE access. Client
processes using the CreateFile function to connect to a
named pipe must specify an access compatible with the
access specified by the server. For example, a client must
specify GENERIC_READ access for an outbound pipe.

The remaining pipe modes can differ for each pipe handle. This means that the client and
server ends of the same pipe instance can use different modes. CreateNamedPipe sets all
of these modes for the pipe handles of a server. CreateFile supports setting the overlapped and
write-through modes for the pipe handles of a client. Both client and server processes use the
SetNamedPipeHandleState function to set the read and wait modes of a pipe handle.

Mode Meaning

Read PIPE_READMODE_BYTE or
PIPE_READMODE_MESSAGE. In byte-read mode,
data is read from a named pipe as a stream of bytes.
In message-read mode, data is read from a named
pipe as a stream of messages. Only byte-read mode
is allowed for byte-type pipes. Either byte-read or
message-read mode is allowed for message-type
pipes. The default is byte-type mode, if no read mode
is specified in CreateNamedPipe. For more
information about read modes, see Named Pipe
Type and Read Mode.

Wait PIPE_WAIT or PIPE_NOWAIT. In blocking-wait
mode, the ReadFile, WriteFile, and
ConnectNamedPipe functions wait indefinitely in
some situations for a process on the other end of
the pipe to perform an action. In nonblocking-wait
mode, the functions return if they cannot finish their
operations immediately. For more information about
wait modes, see Blocking and Nonblocking Pipe
Operations.

Overlapped FILE_FLAG_OVERLAPPED. In overlapped mode,
functions performing read, write, and connect
operations that take a significant time to be
completed can return immediately. This enables the
thread to perform other operations while a time-
consuming operation executes in the background.
For more information about overlapped mode, see

Synchronous and Overlapped Input and Output.
Write-through FILE_FLAG_WRITE_THROUGH. In write-through

mode, the functions that write to a named pipe do not
return until the data written is transmitted across the
network and into the pipe's buffer on the remote
computer. This mode affects only write operations on
byte-type pipes and, then, only when the client and
server processes are on different computers. If write-
through mode is not enabled, a write function returns
successfully, even if the data is not transmitted. For
more information about write-through modes, see
Write-through to Remote Clients.

The initial read mode for a pipe handle is specified when a server process calls
CreateNamedPipe. If PIPE_READMODE_BYTE is specified or if no read mode is specified, the
pipe handle is created in byte-read mode. If both PIPE_READMODE_MESSAGE and
PIPE_TYPE_MESSAGE are specified, the handle is created in message-read mode. For a client
process, a pipe handle returned by CreateFile is always in byte-read mode initially. Both client
and server processes can use the SetNamedPipeHandleState function to change the read mode
of a pipe handle. For a message-type pipe, the read mode can be different for server and client
handles to the same pipe instance.

Named Pipe Operations
The first time the server calls CreateNamedPipe, the function specifies the maximum number of
instances of the pipe that can exist simultaneously. Limited by this maximum, the server can call
CreateNamedPipe repeatedly to create additional instances of the pipe. If the function succeeds,
each call returns a handle to the server end of a named pipe instance.

As soon as a pipe instance is created, a client process can connect to it by calling the CreateFile
or CallNamedPipe function. If a pipe instance is available, CreateFile returns a handle to the
client end of the pipe instance. If no instances of the pipe are available, a client process can use
the WaitNamedPipe function to wait for one to become available.

A client process can also use CallNamedPipe to combine into a single operation the functions
that connect to a pipe instance (waiting for one to be available, if necessary), write a message,
read a message, and close its pipe handle. CallNamedPipe can be used only by a client process
and only with a message-type pipe.

A server process specifies a handle to a pipe instance in a call to the ConnectNamedPipe
function to determine when a client process is connected to it. If the pipe handle is in blocking
mode, the ConnectNamedPipe operation does not return until a client is connected.

Client and server processes can call one of several functions ¾ in addition to CallNamedPipe ¾
to read from and write to a named pipe. The behavior of these functions depends on the type of
pipe and the modes in effect for the specified pipe handle, as follows:

· The ReadFile and WriteFile functions can be used with either byte-type or message-type
pipes.

· The ReadFileEx and WriteFileEx functions can be used with either byte-type or
message-type pipes if the pipe handle was opened for overlapped operations.

· The PeekNamedPipe function can be used to read without removing the contents of
either a byte-type pipe or a message-type pipe. PeekNamedPipe can also return additional
information about the pipe instance.

· The TransactNamedPipe function can be used with message-type pipes if the pipe
handle of the calling process is set to message-read mode. The function writes a request
message and reads a reply message in a single operation, enhancing network performance.

For a pipe handle in byte-read mode, a read operation is completed successfully when all
available bytes in the pipe are read or when the specified number of bytes is read.

For a pipe handle in message-read mode, a ReadFile or ReadFileEx operation is completed
successfully only when the entire message is read. If the specified number of bytes to read is less
than the size of the next message, the function reads as much of the message as possible before
returning FALSE (with the GetLastError function returning ERROR_MORE_DATA). However, the
remainder of the message can be read by making additional calls to ReadFile, ReadFileEx, or
PeekNamedPipe. Note that PeekNamedPipe returns TRUE after reading a complete or partial
message, and it reports the number of bytes remaining in a partially read message.

For a message-type pipe with multiple unread messages, a read operation using a message-read
pipe handle returns after reading one message. An operation using a byte-read handle does not
distinguish between the messages ¾ it reads all available bytes up to the specified number.

When a client and server finish using a pipe instance, the server calls the DisconnectNamedPipe
function to close the connection to the client process. This function makes the client's handle
invalid (if it has not already been closed). Any unread data in the pipe is discarded. To ensure that
all bytes or messages written to the pipe are read by the client, the server first calls the
FlushFileBuffers function, which does not return until the client has read all data from the pipe.
After the client is disconnected, the server calls the CloseHandle function to close its handle to
the pipe instance. Alternatively, the server can use ConnectNamedPipe to enable a new client to
connect to this instance of the pipe.

A process can retrieve information about a named pipe by calling the GetNamedPipeInfo
function, which returns the type of the pipe, the size of the input and output buffers, and the
maximum number of pipe instances that can be created. The GetNamedPipeHandleState
function reports on the read and wait modes of a pipe handle, the current number of pipe
instances, and additional relevant information for pipes that communicate over a network. The
SetNamedPipeHandleState function sets the read mode and wait modes of a pipe handle. For

client processes communicating with a remote server, the function also controls the maximum
number of bytes to collect or the maximum time to wait before transmitting a message (assuming
the client's handle was not opened with write-through mode enabled).

Named Pipe Server Process
The simplest server process can use the CreateNamedPipe function to create a single instance
of a pipe, connect to a single client, communicate with the client, disconnect the pipe, close the
pipe handle, and terminate. Typically, however, a server process must communicate with multiple
client processes. A server process can use a single pipe instance by connecting to and
disconnecting from each client in sequence, but performance would be poor. To handle multiple
clients simultaneously, the server process must create multiple pipe instances.

There are three basic strategies for servicing multiple pipe instances.

· Create multiple threads (and/or processes) with a separate thread for each instance of the
pipe. For an example of a multithreaded server process, see Multithreaded Server.

· Overlap operations by specifying an OVERLAPPED structure in the ReadFile, WriteFile,
and ConnectNamedPipe functions. For an example of a server process that uses overlapped
operations, see Server Using Overlapped Input and Output.

· Overlap operations by using the ReadFileEx and WriteFileEx functions, which specify a
completion routine to be executed when the operation is complete. For an example of a server
process that uses completion routines, see Server Using Completion Routines.

The multithreaded server strategy is easy to write, because the thread for each instance handles
communications for only a single client. The system allocates processor time to each thread as
needed. But each thread uses system resources, which is a potential disadvantage for a server
that handles a large number of clients. Other complications occur if the actions of one client
necessitate communications with other clients (as for a network game program, where a move by
one player must be communicated to the other players).

With a single-threaded server, it is easier to coordinate operations that affect multiple clients, and
it is easier to protect shared resources (for example, a database file) from simultaneous access by
multiple clients. The challenge of a single-threaded server is that it requires coordination of
overlapped operations in order to allocate processor time for handling the simultaneous needs of
the clients.

Named Pipe Type and Read Mode
The type of a pipe determines how data is written to a named pipe, and the read mode determines
how data is read from a named pipe. Data can be transmitted through a named pipe as either a
stream of bytes or as a stream of messages. When using the CreateNamedPipe function to
create an instance of a named pipe, the server process specifies the pipe's type, the type it must
specify for all instances.

A byte-type pipe is created if PIPE_TYPE_BYTE is specified or, by default, if no type is specified.
This means that data is written to the pipe as a stream of bytes, and the system does not
differentiate between the bytes written in different write operations. A handle to a byte-type pipe
can be in byte-read mode only.

A message-type pipe is created if PIPE_TYPE_MESSAGE is specified. This means that the
system treats each write operation to the pipe as a message unit. A handle to a message-type
pipe can be in either byte-read or message-read mode.

Blocking and Nonblocking Pipe Operations
The wait mode (blocking or nonblocking) of a pipe handle determines whether the ReadFile,
WriteFile, and ConnectNamedPipe functions return immediately in situations that would
otherwise require an indefinite wait. By default, all named pipe handles returned by the
CreateNamedPipe or CreateFile function are created with blocking-wait mode enabled.
Nonblocking-wait mode can be enabled for a server's pipe handle by specifying PIPE_NOWAIT in
CreateNamedPipe. Both server and client processes can change a pipe handle's wait mode by
specifying either PIPE_WAIT or PIPE_NOWAIT in a call to the SetNamedPipeHandleState
function.

Note that nonblocking-wait mode is supported for compatibility with Microsoft® LAN Manager
version 2.0, and it should not be used to achieve overlapped input and output (I/O) with named
pipes. Overlapped I/O should be used instead because it enables time-consuming ReadFile,
WriteFile, and ConnectNamedPipe operations to execute in the background after the function
returns. For more information about overlapped I/O, see Synchronous and Overlapped Input and
Output.

A ReadFile operation is affected by the wait mode of a pipe handle when the pipe is empty. With
a blocking-wait handle, the operation is not completed successfully until data is available from a
thread writing to the other end of the pipe. Using a nonblocking-wait handle, the function returns
FALSE immediately, and the GetLastError function returns ERROR_NO_DATA.

A WriteFile operation is affected by a pipe handle's wait mode when there is insufficient space in
the pipe's buffer to hold all the data. With a blocking-wait handle, the write operation cannot
succeed until sufficient space is created in the buffer by a thread reading from the other end of the
pipe. With a nonblocking-wait handle, the write operation returns TRUE immediately, without
writing any bytes (for a message-type pipe) or after writing as many bytes as the buffer holds (for
a byte-type pipe).

A ConnectNamedPipe operation is affected by the wait mode of a pipe handle when there is no
client connected or waiting to connect to the pipe instance. With a blocking-wait handle, the
connect operation does not succeed until a client process connects to the pipe instance by calling
either the CreateFile or CallNamedPipe function. With a nonblocking-wait handle, the connect
operation returns FALSE immediately, and the GetLastError function returns
ERROR_PIPE_LISTENING.

The wait mode of a pipe handle does not affect read or write operations when using the
TransactNamedPipe or CallNamedPipe function.

Synchronous and Overlapped Input and Output
The ReadFile, WriteFile, TransactNamedPipe, and ConnectNamedPipe functions can run
either synchronously or asynchronously. The ReadFileEx and WriteFileEx functions can run only
asynchronously. When functions run synchronously, they do not return until the operation is
finished. This means that the execution of the calling thread can be blocked for an indefinite
period while it waits for a time-consuming operation to finish. When functions run asynchronously,
they return immediately even before their operations are finished. This enables a time-consuming
operation to be executed in the background while the calling thread is free to perform other tasks.

Overlapped operations make it possible for one pipe to read and write data simultaneously and for
a single thread to perform simultaneous I/O operations on multiple pipe handles. This enables a
single-threaded server process to handle communications with multiple client processes
efficiently. For examples that illustrate overlapped operations by a server process, see Server
Using Overlapped Input and Output and Server Using Completion Routines.

For a server process to use synchronous operations to communicate with more than one client, it
must create a separate thread for each client process so that one or more threads can run while
other threads are waiting. For an example of a multithreaded server process that uses
synchronous operations, see Multithreaded Server.

Overlapped operations on a named pipe are enabled by specifying the
FILE_FLAG_OVERLAPPED flag when the handle is created (by the CreateNamedPipe function
for a server process or the CreateFile function for a client process). If this flag is not specified,
overlapped mode is disabled. The overlapped mode of a pipe handle cannot be changed after the
pipe handle has been created. The overlapped mode can be different for server and client
handles to the same pipe instance.

The ReadFile, WriteFile, TransactNamedPipe, and ConnectNamedPipe functions can be
performed asynchronously only if overlapped mode is enabled for the specified pipe handle and a
valid pointer to an OVERLAPPED structure is specified. If the OVERLAPPED pointer is NULL,
the function return value may incorrectly indicate that the operation completed. Therefore, it is
strongly recommended that if you create a handle with FILE_FLAG_OVERLAPPED and want
asynchronous behavior, you should always specify a valid OVERLAPPED structure or use the
functions intended for asynchronous operations such as ReadFileEx and WriteFileEx.

When ReadFile, WriteFile, TransactNamedPipe, and ConnectNamedPipe are performed
asynchronously, one of the following outcomes occurs:

· If the operation is complete when the function returns, the return value indicates the
success or failure of the operation. If an error occurs, the return value is FALSE and the
GetLastError function returns something other than ERROR_IO_PENDING.

· If the operation has not finished when the function returns, the return value is FALSE and
GetLastError returns ERROR_IO_PENDING. In this case, the calling thread must wait until
the operation has finished. The calling thread must then call the GetOverlappedResult
function to determine the results.

The hEvent member of the specified OVERLAPPED structure must contain a handle to a manual-
reset ¾ not an auto-reset ¾ event object. This is a synchronization object created by the
CreateEvent function. The thread that initiates the overlapped operation uses the event object to
determine when the operation is finished. For more information about event objects, see
Synchronization.

An event object is either in a signaled or nonsignaled state. If an overlapped function returns
before its operation has finished, the system sets the state of the event object to nonsignaled.
When the operation is finished, the system sets the state to signaled. The thread can detect the
object's state by specifying a handle to the event object in a call to one of the wait functions.
These functions do not return until the state of a specified object is signaled or until a time-out
interval has elapsed. For the wait functions that wait for multiple objects, the function's return
value indicates which of the objects is signaled. Doing this enables a server process to use a loop
that performs the following steps:

1. Specify multiple event objects in a call to the wait function, then wait for one of the objects
to be in a signaled state.

2. Use the wait function's return value to determine which overlapped operation is finished.

3. Perform the tasks necessary to clean up the completed operation and initiate the next
operation for that pipe handle. This may involve starting another overlapped operation for the
same pipe handle.

If the hEvent member of the OVERLAPPED structure is a NULL pointer instead of a handle to an
event object, the calling thread can use the pipe handle to determine when an overlapped
operation has finished. In this case, the system sets the state of the pipe handle to signaled or
nonsignaled, as described previously for the state of an event object. It is strongly recommended
that you always use an event object when performing overlapped operations rather than relying
on the pipe handle. In particular, you should not use the pipe handle for this purpose when
performing simultaneous operations on the same handle because there is no way of knowing
which operation's completion caused the pipe handle to be signaled. The only safe technique for
performing simultaneous operations on the same pipe handle is to use a separate OVERLAPPED
structure with its own event object for each operation.

The ReadFileEx and WriteFileEx functions provide another form of overlapped I/O. Unlike the
overlapped ReadFile and WriteFile functions, which use an event object to signal completion, the
extended functions specify a completion routine. A completion routine is a function that is queued
for execution when the read or write operation is finished. The completion routine is not executed
until the thread that called ReadFileEx and WriteFileEx enters an alertable wait by calling one of
the alertable wait functions: MsgWaitForMultipleObjectsEx. SignalObjectAndWait,
WaitForSingleObjectEx, or WaitForMultipleObjectsEx. These functions are like the normal wait
functions in that they return when a specified object is in the signaled state or when a time-out
interval has elapsed. However, these functions can also perform an alertable wait that occurs
when their fAlertable parameter is set to TRUE. In an alertable wait, the functions also return
when a ReadFileEx or WriteFileEx completion routine is queued for execution. A server process
can use the extended functions to perform a sequence of read and write operations for each client
that connects to it. Each read or write operation in the sequence specifies a completion routine,
and each completion routine initiates the next step in the sequence.

Write-through to Remote Clients
The write-through mode of a named pipe handle affects the behavior of byte-type pipes when data
is transmitted across a network. To enable write-through mode for a named pipe handle, a
process specifies the FILE_FLAG_WRITE_THROUGH flag in the CreateNamedPipe function for
a server process or in the CreateFile function for a client process. If this flag is not specified,
write-through mode is disabled. The write-through mode of a pipe handle cannot be changed after
the pipe handle has been created. The write-through mode can be different for server and client
handles to the same pipe instance.

If write-through mode is not enabled, the system enhances the efficiency of network operations by
buffering data until a minimum number of bytes have accumulated or until a maximum time period
has elapsed. Buffering enables multiple write operations to be combined into a single network
transmission. This means that a write operation can be successfully completed after the data is in
the outbound buffer but before it is transmitted across the network.

A client process can use the SetNamedPipeHandleState function to control the number of bytes
and the time-out period before transmission for a pipe on which write-through mode is disabled.

If write-through mode is enabled, the transmission across the network is not delayed and the write
operation is not completed until the data is in the pipe buffer on the remote machine. Write-
through mode is useful for applications that require synchronization for every write operation.

The system always performs write operations on message-type pipes as if write-through mode
were enabled.

Pipe Security
A server process uses the ImpersonateNamedPipeClient function to assume the security token
of the client process connected to the specified pipe instance. This function can be useful in
determining whether to grant the request of a client process. For example, a named pipe server
can provide access to a database or file system to which the server process has privileged
access. When a client process makes a request from the server, the client typically has some
lesser level of security access. By assuming the security token of the client, the server can
attempt to access the protected database. The system then grants or denies the server's access,
based on the security level of the client. When the server is finished, it uses the RevertToSelf
function to restore its original security token.

Using Pipes
Pipes are useful in applications that must pass a continuous stream of data between processes.
The examples in this section illustrate the following tasks:

· Anonymous pipes overview
· Multithreaded server
· Server using overlapped input and output
· Server using completion routines
· Named pipe client process
· Transactions on named pipes

Anonymous Pipes Overview
A typical use of an anonymous pipe is to create a channel for communication between a parent
process and its child process by redirecting the standard input or standard output handles of the
child process. To redirect the standard output handle of a child process, the parent process
performs the following steps:

1. Call the GetStdHandle function to get the current standard output handle; save the
handle for later use.

2. Call the CreatePipe function to create an anonymous pipe. This function returns handles
to the read and write ends of the pipe.

3. Call the SetStdHandle function to set its standard output to be the write handle of the
pipe.

4. Call the CreateProcess function to create the child process. The child process inherits
the inheritable handles of the parent process. It also inherits the values of the standard
handles of its parent process, which it can retrieve using the GetStdHandle function.

5. Call the CloseHandle function to close the parent's handle to the write end of the pipe.
After the child process inherits this handle, the parent process no longer needs its copy of the
handle.

6. Call the ReadFile function to read from the pipe. This operation enables the parent
process to read the data written to standard output by the child process.

The child process uses the GetStdHandle function to get its standard output handle, which is
actually a handle to the write end of the pipe. The child process then uses the WriteFile function
to write its output to the pipe.

Data is written to an anonymous pipe as a stream of bytes. This means that a process reading
from a pipe cannot distinguish between the bytes written in separate write operations, unless both
reading and writing processes use some protocol that lets the reading process know how many
bytes to read. Typically, there is no protocol, so the reading process reads from the pipe until all
write handles to the pipe are closed, which causes the ReadFile function to return FALSE. When
a child process's standard output is redirected, the child process calls CloseHandle or terminates
(which automatically closes the handle). Note that it is important for the parent process to close its
handle to the write end of the pipe before trying to read from the pipe. Otherwise, its ReadFile
operation cannot return FALSE because there is still an open handle to the write end of the pipe.

The procedure for redirecting standard input is similar to that for redirecting standard output,
except that the pipe's read handle is used for the child's standard input. In this case, the parent
process must ensure that the child process does not inherit the pipe's write handle. Otherwise, the
ReadFile operation of the child process cannot return FALSE because the child process has an
open handle to the write end of the pipe.

The parent process typically creates the read and write handles to the pipe so that they can be
inherited by a child process. It does this by using CreatePipe, specifying a
SECURITY_ATTRIBUTES structure with the bInheritHandle member set to TRUE. When a
child's standard input is redirected, the child process should not inherit the pipe's write handle.
The parent process prevents inheritance by using the DuplicateHandle function to create a
noninheritable duplicate of the handle and then using CloseHandle to close the inheritable
handle.

For an example program that uses anonymous pipes to redirect the standard handles of a child
process, see Processes and Threads.

Multithreaded Server
This example of a multithreaded server process has a main thread that loops continuously,
creating a pipe instance and waiting for a client process to connect. When a client process
connects, the server process creates a thread to service that client and the loop starts over. It is
possible for a client process to connect successfully to the pipe instance in the interval between
calls to the CreateNamedPipe and ConnectNamedPipe functions. If this happens,
ConnectNamedPipe returns FALSE, and GetLastError returns ERROR_PIPE_CONNECTED.

The thread created to service each pipe instance reads requests from the pipe and writes replies
to the pipe until the client process closes its handle. When this happens, the thread flushes the
pipe, disconnects, closes its pipe handle, and terminates.#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
VOID InstanceThread(LPVOID);
VOID GetAnswerToRequest(LPTSTR, LPTSTR, LPDWORD);
int xx = 0;
DWORD main(VOID)
{

BOOL fConnected;
DWORD dwThreadId;
HANDLE hPipe, hThread;
LPTSTR lpszPipename = "\\\\.\\pipe\\mynamedpipe";

// The main loop creates an instance of the named pipe and
// then waits for a client to connect to it. When the client
// connects, a thread is created to handle communications
// with that client, and the loop is repeated.

for (;;)
{

hPipe = CreateNamedPipe(
lpszPipename, // pipe name
PIPE_ACCESS_DUPLEX, // read/write access
PIPE_TYPE_MESSAGE | // message type pipe
PIPE_READMODE_MESSAGE | // message-read mode
PIPE_WAIT, // blocking mode
PIPE_UNLIMITED_INSTANCES, // max. instances
BUFSIZE, // output buffer size
BUFSIZE, // input buffer size
PIPE_TIMEOUT, // client time-out
NULL);// no security attribute
if (hPipe == INVALID_HANDLE_VALUE)
MyErrExit("CreatePipe");
// Wait for the client to connect; if it succeeds,
// the function returns TRUE. If the function returns FALSE,
// GetLastError returns ERROR_PIPE_CONNECTED.
fConnected = ConnectNamedPipe(hPipe, NULL) ?

TRUE :
(GetLastError() == ERROR_PIPE_CONNECTED);

if (fConnected)
{
// Create a thread for this client.

hThread = CreateThread(
NULL, // No security attribute
0, // Default stack size
(LPTHREAD_START_ROUTINE) InstanceThread,
(LPVOID) hPipe, // Thread parameter
0, // Not suspended
&dwThreadId); // Returns thread ID
if (hThread == INVALID_HANDLE_VALUE)

MyErrExit("CreateThread");
}
else
// The client could not connect, so close the pipe.
CloseHandle(hPipe);
}
return 1;

}
VOID InstanceThread(LPVOID lpvParam)
{

CHAR chRequest[BUFSIZE];
CHAR chReply[BUFSIZE];
DWORD cbBytesRead, cbReplyBytes, cbWritten;
BOOL fSuccess;
HANDLE hPipe;

// The thread's parameter is a handle to a pipe instance.
hPipe = (HANDLE) lpvParam;
while (1)
{
// Read client requests from the pipe.

fSuccess = ReadFile(
hPipe, // handle to pipe
chRequest, // buffer to receive data
BUFSIZE, // size of buffer
&cbBytesRead, // number of bytes read
NULL); // not overlapped I/O

if (! fSuccess || cbBytesRead == 0)
break;

GetAnswerToRequest(chRequest, chReply, &cbReplyBytes);
// Write the reply to the pipe.

fSuccess = WriteFile(
hPipe, // handle to pipe
chReply, // buffer to write from
cbReplyBytes, // number of bytes to write
&cbWritten, // number of bytes written
NULL); // not overlapped I/O

if (! fSuccess || cbReplyBytes != cbWritten) break;
}

// Flush the pipe to allow the client to read the pipe's contents
// before disconnecting. Then disconnect the pipe, and close the
// handle to this pipe instance.

FlushFileBuffers(hPipe);
DisconnectNamedPipe(hPipe);
CloseHandle(hPipe);

}

Server Using Overlapped Input and Output
This example is a single-threaded server process that uses overlapped operations to service
simultaneous connections to multiple client processes. The server process creates a fixed number
of pipe instances, each of which can be connected to a separate client process. When a client
process has finished using its pipe instance, the server disconnects from the client and reuses the
pipe instance to connect to a new client.

Associated with each pipe instance is an OVERLAPPED structure containing an event object.
This structure is specified as a parameter in each ReadFile, WriteFile, and ConnectNamedPipe
operation on the pipe instance. Although the example shows simultaneous operations on different
pipe instances, it avoids simultaneous operations on a single pipe instance. Because the same
event object is used for read, write, and connect operations for each instance, there is no way to
know which operation's completion caused the event to be set to the signaled state for
simultaneous operations using the same pipe instance.

The event handles for each pipe instance are also stored in an array used by the
WaitForMultipleObjects function. This function waits for one of the events to be signaled, and its
return value is the array index of the event that satisfied the wait. The example uses this index to
retrieve a structure containing information for the pipe instance. The server uses the fPendingIO
member of the structure to keep track of whether the most recent I/O operation on the instance
was pending, necessitating a call to the GetOverlappedResult function. It uses the dwState
member of the structure to determine the next operation that must be performed for the instance.

Overlapped ReadFile, WriteFile, and ConnectNamedPipe operations may have finished when
the function returns, or they may still be pending when the function returns. If the operation is
pending, the event object in the specified OVERLAPPED structure is set to the nonsignaled state
before the function returns. When the pending operation has finished, the system sets the state of
the event object to signaled. The state of the event object is not changed if the operation finishes
before the function returns.

Because the example uses manual reset event objects, the state of the event objects is not
changed to nonsignaled by the WaitForMultipleObjects function. This is important, because the
example relies on the event objects remaining in the signaled state except when there is a
pending operation.

If the operation is already finished when ReadFile, WriteFile, or ConnectNamedPipe returns, the
function's return value indicates the result. For read and write operations, the number of bytes
transferred is also returned. If the operation is still pending, the ReadFile, WriteFile, or
ConnectNamedPipe function returns FALSE and the GetLastError function returns
ERROR_IO_PENDING. In this case, the results are retrieved using the GetOverlappedResult
function after the operation has finished. GetOverlappedResult returns only the results of
operations that were pending, and does not report the results of operations that were completed
before the overlapped ReadFile, WriteFile, or ConnectNamedPipe function returned.

Before disconnecting from a client, the multithreaded server example in the previous section used
FlushFileBuffers to ensure that the client had read everything written to the pipe. This would
defeat the purpose of overlapped I/O, because the flush operation would block the execution of
the server thread while it waits for the client to empty the pipe. Consequently, it is necessary to
wait for a signal from the client that it has finished before disconnecting. In this example, the
signal is the error generated by trying to read from the pipe after the client process closes its
handle.#include <windows.h>
#define CONNECTING_STATE 0
#define READING_STATE 1
#define WRITING_STATE 2
#define INSTANCES 4
typedef struct
{

OVERLAPPED oOverlap;
HANDLE hPipeInst;
CHAR chBuf[BUFSIZE];
DWORD cbToWrite;
DWORD dwState;
BOOL fPendingIO;

} PIPEINST, *LPPIPEINST;

VOID DisconnectAndReconnect(DWORD);
BOOL ConnectToNewClient(HANDLE, LPOVERLAPPED);
VOID GetDataToWriteToClient(LPPIPEINST);
PIPEINST Pipe[INSTANCES];
HANDLE hEvents[INSTANCES];
DWORD main(VOID)
{

DWORD i, dwWait, cbBytes, dwErr;
BOOL fSuccess;
LPTSTR lpszPipename = "\\\\.\\pipe\\mynamedpipe";

// The initial loop creates several instances of a named pipe
// along with an event object for each instance. An
// overlapped ConnectNamedPipe operation is started for
// each instance.

for (i = 0; i < INSTANCES; i++)
{
// Create an event object for this instance.

hEvents[i] = CreateEvent(
NULL, // no security attribute
TRUE, // manual-reset event
TRUE, // initial state = signaled
NULL); // unnamed event object

if (hEvents[i] == NULL)
MyErrExit("CreateEvent");

Pipe[i].oOverlap.hEvent = hEvents[i];
Pipe[i].hPipeInst = CreateNamedPipe(

lpszPipename, // pipe name
PIPE_ACCESS_DUPLEX |// read/write access
FILE_FLAG_OVERLAPPED, // overlapped mode
PIPE_TYPE_MESSAGE | // message-type pipe
PIPE_READMODE_MESSAGE | // message-read mode
PIPE_WAIT,// blocking mode
INSTANCES,// number of instances
BUFSIZE, // output buffer size
BUFSIZE, // input buffer size
PIPE_TIMEOUT, // client time-out
NULL); // no security attributes

if (Pipe[i].hPipeInst == INVALID_HANDLE_VALUE)
MyErrExit("CreatePipe");

// Call the subroutine to connect to the new client
Pipe[i].fPendingIO = ConnectToNewClient(

Pipe[i].hPipeInst,
&Pipe[i].oOverlap);

Pipe[i].dwState = Pipe[i].fPendingIO ?
CONNECTING_STATE : // still connecting
READING_STATE;// ready to read
}
while (1)
{
// Wait for the event object to be signaled, indicating
// completion of an overlapped read, write, or
// connect operation.

dwWait = WaitForMultipleObjects(
INSTANCES, // number of event objects
hEvents, // array of event objects
FALSE, // does not wait for all
INFINITE); // waits indefinitely
// dwWait shows which pipe completed the operation.

i = dwWait - WAIT_OBJECT_0; // determines which pipe
if (i < 0 || i > (INSTANCES - 1))

MyErrExit("index out of range");
// Get the result if the operation was pending.

if (Pipe[i].fPendingIO)
{

fSuccess = GetOverlappedResult(
Pipe[i].hPipeInst, // handle to pipe
&Pipe[i].oOverlap, // OVERLAPPED structure
&cbBytes,// bytes transferred
FALSE); // do not wait
switch (Pipe[i].dwState)
{
// Pending connect operation

case CONNECTING_STATE:
if (! fSuccess)

MyErrExit("ConnectNamedPipe");
Pipe[i].dwState = READING_STATE;
break;

// Pending read operation
case READING_STATE:

if (! fSuccess || cbBytes == 0)
{

DisconnectAndReconnect(i);
continue;

}
Pipe[i].dwState = WRITING_STATE;
break;

// Pending write operation
case WRITING_STATE:

if (! fSuccess || cbBytes != Pipe[i].cbToWrite)
{

DisconnectAndReconnect(i);
continue;

}
Pipe[i].dwState = READING_STATE;
break;
default:

MyErrExit("invalid pipe state");
}

}
// The pipe state determines which operation to do next.

switch (Pipe[i].dwState)
{
// READING_STATE:
// The pipe instance is connected to the client
// and is ready to read a request from the client.

case READING_STATE:
fSuccess = ReadFile(

Pipe[i].hPipeInst,
Pipe[i].chBuf,
BUFSIZE,
&cbBytes,
&Pipe[i].oOverlap);

// The read operation completed successfully.
if (fSuccess && cbBytes != 0)
{

Pipe[i].fPendingIO = FALSE;
Pipe[i].dwState = WRITING_STATE;
continue;
}
// The read operation is still pending

dwErr = GetLastError();
if (! fSuccess && (dwErr == ERROR_IO_PENDING))
{

Pipe[i].fPendingIO = TRUE;
continue;
}
// An error occurred; disconnect from the client.

DisconnectAndReconnect(i);
break;
// WRITING_STATE:
// The request was successfully read from the client.
// Get the reply data and write it to the client.

case WRITING_STATE:
GetDataToWriteToClient(&Pipe[i]);
fSuccess = WriteFile(

Pipe[i].hPipeInst,
Pipe[i].chBuf,
Pipe[i].cbToWrite,
&cbBytes,
&Pipe[i].oOverlap);

// The write operation completed successfully.
if (fSuccess && cbBytes == Pipe[i].cbToWrite)
{

Pipe[i].fPendingIO = FALSE;
Pipe[i].dwState = READING_STATE;
continue;
}
// The write operation is still pending.

dwErr = GetLastError();
if (! fSuccess && (dwErr == ERROR_IO_PENDING))
{

Pipe[i].fPendingIO = TRUE;
continue;
}
// An error occurred; disconnect from the client.

DisconnectAndReconnect(i);
break;
default:

MyErrExit("invalid pipe state");
}
}
return 0;

}

// DisconnectAndReconnect(DWORD)
// This function is called when an error occurs or when the client
// closes its handle to the pipe. Disconnect from this client, then
// call ConnectNamedPipe to wait for another client to connect.
VOID DisconnectAndReconnect(DWORD i)
{
// Disconnect the pipe instance.

if (! DisconnectNamedPipe(Pipe[i].hPipeInst))
MyErrExit("DisconnectNamedPipe");
// Call a subroutine to connect to the new client.

Pipe[i].fPendingIO = ConnectToNewClient(
Pipe[i].hPipeInst,
&Pipe[i].oOverlap);
Pipe[i].dwState = Pipe[i].fPendingIO ?

CONNECTING_STATE : // still connecting
READING_STATE;// ready to read
}
// ConnectToNewClient(HANDLE, LPOVERLAPPED)
// This function is called to start an overlapped connect operation.
// It returns TRUE if an operation is pending or FALSE if the
// connection has been completed.
BOOL ConnectToNewClient(HANDLE hPipe, LPOVERLAPPED lpo)
{

BOOL fConnected, fPendingIO = FALSE;
// Start an overlapped connection for this pipe instance.

fConnected = ConnectNamedPipe(hPipe, lpo);
// Overlapped ConnectNamedPipe should return FALSE.

if (fConnected)
MyErrExit("ConnectNamedPipe");
switch (GetLastError())
{
// The overlapped connection in progress.

case ERROR_IO_PENDING:
fPendingIO = TRUE;
break;
// Client is already connected, so signal an event.

case ERROR_PIPE_CONNECTED:
if (SetEvent(lpo->hEvent))

break;
// If an error occurs during the connect operation...

default:
MyErrExit("ConnectNamedPipe");
}
return fPendingIO;

}

Server Using Completion Routines
The ReadFileEx and WriteFileEx functions provide another form of overlapped I/O. Unlike the
overlapped ReadFile and WriteFile functions, which use an event object to signal completion, the
extended functions specify a completion routine. A completion routine is a function that is queued
for execution when the read or write operation is done. The completion routine is not executed
until the thread that called ReadFileEx and WriteFileEx enters an alertable wait by calling one of
the extended wait functions: WaitForSingleObjectEx, WaitForMultipleObjectsEx, or SleepEx.
These functions are like the other wait functions in that they return when a specified object is in
the signaled state or when a time-out interval has elapsed. However, these functions can also
perform an alertable wait, which occurs when their fAlertable parameter is set to TRUE. In an
alertable wait, the functions also return when a ReadFileEx or WriteFileEx completion routine is
queued for execution. A server process can use the extended functions to perform a sequence of
read and write operations for each client that connects to it. Each read or write operation in the
sequence specifies a completion routine, and each completion routine initiates the next step in the
sequence.

Like the previous example, this example is a single-threaded server process that creates a
message-type pipe and uses overlapped operations. The server process differs in that it uses the
extended functions ReadFileEx and WriteFileEx to perform overlapped I/O. Unlike the
overlapped ReadFile and WriteFile functions, which signal an event object upon completion, the
extended functions specify a completion routine, which is queued for execution when the
operation is finished. The server process uses the WaitForSingleObjectEx function, which
performs an alertable wait that returns when a completion routine is ready to execute. The wait
function also returns when an event object is signaled, which in this example indicates that the
overlapped ConnectNamedPipe operation has finished (a new client has connected).

Initially, the server process creates a single instance of the pipe and starts an overlapped
ConnectNamedPipe operation. When a client connects, the server allocates a structure to
provide storage for that pipe instance and then calls the ReadFileEx function to start a sequence
of I/O operations to handle communications with the client. Each operation specifies a completion
routine that performs the next operation in the sequence. The sequence terminates when the
client is disconnected and the pipe instance closed. After starting the sequence of operations for
the new client, the server creates another pipe instance and waits for the next client to connect.

The parameters of the ReadFileEx and WriteFileEx functions specify a completion routine and a
pointer to an OVERLAPPED structure. This pointer is later passed to the completion routine in its
lpOverLap parameter. Because the OVERLAPPED structure points to the first member in the
structure allocated for each pipe instance, the completion routine can use its lpOverLap parameter
to access the structure for the pipe instance.

To avoid duplication, the listing for the ConnectToNewClient subroutine is not shown; it is identical
to the one used by the overlapped server process in the previous section.#include <windows.h>
typedef struct
{

OVERLAPPED oOverlap;
HANDLE hPipeInst;
CHAR chBuf[BUFSIZE];
DWORD cbToWrite;

} PIPEINST, *LPPIPEINST;
BOOL CreateAndConnectInstance();
BOOL ConnectToNewClient(HANDLE, LPOVERLAPPED);
VOID GetDataToWriteToClient(LPPIPEINST);
VOID DisconnectAndClose(LPPIPEINST);
VOID WINAPI CompletedWriteRoutine(DWORD, DWORD, LPOVERLAPPED);
VOID WINAPI CompletedReadRoutine(DWORD, DWORD, LPOVERLAPPED);
HANDLE hPipe;
DWORD main(VOID)
{

HANDLE hConnectEvent;
OVERLAPPED oConnect;
LPPIPEINST lpPipeInst;
DWORD dwWait, cbBytes;
BOOL fSuccess, fPendingIO;

// Create one event object for the connect operation.
hConnectEvent = CreateEvent(

NULL, // no security attribute
TRUE, // manual reset event
TRUE, // initial state = signaled
NULL); // unnamed event object
if (hConnectEvent == NULL)
MyErrExit("CreateEvent");
oConnect.hEvent = hConnectEvent;

// Call a subroutine to create one instance, and wait for
// the client to connect.

fPendingIO = CreateAndConnectInstance(&oConnect);
while (1)
{
// Wait for a client to connect, or for a read or write
// operation to be completed, which causes a completion
// routine to be queued for execution.

dwWait = WaitForSingleObjectEx(
hConnectEvent, // event object to wait for
INFINITE, // waits indefinitely
TRUE);// alertable wait enabled

switch (dwWait)
{
// The wait is satisfied by a completed connect operation.

case 0:
// If an operation is pending, get the result of the
// connect operation.
if (fPendingIO)
{

fSuccess = GetOverlappedResult(
hPipe,// pipe handle
&oConnect, // OVERLAPPED structure
&cbBytes, // bytes transferred
FALSE); // does not wait
if (!fSuccess)

MyErrExit("ConnectNamedPipe");
}
// Allocate storage for this instance.

lpPipeInst = (LPPIPEINST) GlobalAlloc(
GPTR, sizeof(PIPEINST));
if (lpPipeInst == NULL)

MyErrExit("GlobalAlloc lpPipeInst");
lpPipeInst->hPipeInst = hPipe;
// Start the read operation for this client.
// Note that this same routine is later used as a
// completion routine after a write operation.

lpPipeInst->cbToWrite = 0;
CompletedWriteRoutine(0, 0, (LPOVERLAPPED) lpPipeInst);
// Create new pipe instance for the next client.

fPendingIO = CreateAndConnectInstance(
&oConnect);
break;
// The wait is satisfied by a completed read or write
// operation. This allows the system to execute the
// completion routine.

case WAIT_IO_COMPLETION:
break;
// An error occurred in the wait function.

default:
MyErrExit("WaitForSingleObjectEx");
}
}
return 0;

}
// CompletedWriteRoutine(DWORD, DWORD, LPOVERLAPPED)
// This routine is called as a completion routine after writing to
// the pipe, or when a new client has connected to a pipe instance. It
// starts another read operation.
VOID WINAPI CompletedWriteRoutine(DWORD dwErr, DWORD cbWritten,

LPOVERLAPPED lpOverLap)
{

LPPIPEINST lpPipeInst;
BOOL fRead = FALSE;

// lpOverlap points to storage for this instance.
lpPipeInst = (LPPIPEINST) lpOverLap;

// The write operation has finished, so read the next request (if
// there is no error).

if ((dwErr == 0) && (cbWritten == lpPipeInst->cbToWrite))
fRead = ReadFileEx(

lpPipeInst->hPipeInst,
lpPipeInst->chBuf,
BUFSIZE,
(LPOVERLAPPED) lpPipeInst,
(LPOVERLAPPED_COMPLETION_ROUTINE) CompletedReadRoutine);

// Disconnect if an error occurred.
if (! fRead)

DisconnectAndClose(lpPipeInst);
}
// CompletedReadRoutine(DWORD, DWORD, LPOVERLAPPED)
// This routine is called as an I/O completion routine after reading a
// request from the client. It gets data and writes it to the pipe.
VOID WINAPI CompletedReadRoutine(DWORD dwErr, DWORD cbBytesRead,

LPOVERLAPPED lpOverLap)
{

LPPIPEINST lpPipeInst;
BOOL fWrite = FALSE;

// lpOverlap points to storage for this instance.
lpPipeInst = (LPPIPEINST) lpOverLap;

// The read operation has finished, so write a response (if no
// error occurred).

if ((dwErr == 0) && (cbBytesRead != 0))
{

GetDataToWriteToClient(lpPipeInst);
fWrite = WriteFileEx(

lpPipeInst->hPipeInst,
lpPipeInst->chBuf,
lpPipeInst->cbToWrite,
(LPOVERLAPPED) lpPipeInst,
(LPOVERLAPPED_COMPLETION_ROUTINE) CompletedWriteRoutine);
}

// Disconnect if an error occurred.
if (! fWrite)

DisconnectAndClose(lpPipeInst);
}
// DisconnectAndClose(LPPIPEINST)
// This routine is called when an error occurs or the client closes
// its handle to the pipe.
VOID DisconnectAndClose(LPPIPEINST lpPipeInst)
{
// Disconnect the pipe instance.

if (! DisconnectNamedPipe(lpPipeInst->hPipeInst))
MyErrExit("DisconnectNamedPipe");
// Close the handle to the pipe instance.

CloseHandle(lpPipeInst->hPipeInst);
// Release the storage for the pipe instance.

if (lpPipeInst != NULL)
GlobalFree(lpPipeInst);
}
// CreateAndConnectInstance(LPOVERLAPPED)
// This function creates a pipe instance and connects to the client.
// It returns TRUE if the connect operation is pending and FALSE if
// the connection has been completed.
BOOL CreateAndConnectInstance(LPOVERLAPPED lpoOverlap)
{

LPTSTR lpszPipename = "\\\\.\\pipe\\mynamedpipe";
hPipe = CreateNamedPipe(

lpszPipename, // pipe name
PIPE_ACCESS_DUPLEX | // read/write access
FILE_FLAG_OVERLAPPED,// overlapped mode
PIPE_TYPE_MESSAGE | // message-type pipe
PIPE_READMODE_MESSAGE | // message read mode
PIPE_WAIT, // blocking mode
PIPE_UNLIMITED_INSTANCES, // unlimited instances
BUFSIZE, // output buffer size
BUFSIZE, // input buffer size
PIPE_TIMEOUT, // client time-out
NULL);// no security attributes
if (hPipe == INVALID_HANDLE_VALUE)
MyErrExit("CreatePipe");
// Call a subroutine to connect to the new client.

return ConnectToNewClient(hPipe, lpoOverlap);
}

Named Pipe Client Process
A client process uses the CreateFile function to open a handle to a named pipe. If the pipe exists
but all of its instances are busy, CreateFile returns FALSE and the GetLastError function returns
ERROR_PIPE_BUSY. When this happens, the client process uses the WaitNamedPipe function
to wait for an instance of the pipe to be available.

CreateFile fails if the access specified is incompatible with the access specified (duplex,
outbound, or inbound) when the server created the pipe. For a duplex pipe (read/write), the client
can specify read, write, or read/write access; for an outbound pipe (server write only), the client
must specify read only; and for an inbound pipe (server read only), the client must specify write
only.

The handle returned by CreateFile defaults to byte-read mode, blocking-wait mode, overlapped
mode disabled, and write-through mode disabled. The client process can use CreateFile to
enable overlapped mode by specifying FILE_FLAG_OVERLAPPED or to enable write-through
mode by specifying FILE_FLAG_WRITE_THROUGH. The client can use the
SetNamedPipeHandleState function to enable nonblocking mode by specifying PIPE_WAIT or to
enable message-read mode by specifying PIPE_READMODE_MESSAGE.

The following example shows a client process that opens a named pipe, sets the pipe handle to
message-read mode, uses WriteFile to send a request to the server, and uses ReadFile to read
the server's reply. This client process can be used with any of the message-type servers shown in
the previous sections. With a byte-type server, however, this client process fails when it calls
SetNamedPipeHandleState to change to message-read mode. Because the client is reading
from the pipe in message-read mode, it is possible for the ReadFile operation to return FALSE
after reading a partial message. This happens when the message is larger than the read buffer. In
this situation, GetLastError returns ERROR_MORE_DATA, and the remainder of the message is
read by additional calls to ReadFile.#include <windows.h>
DWORD main(int argc, char *argv[])
{

HANDLE hPipe;
LPVOID lpvMessage;
CHAR chBuf[512];
BOOL fSuccess;
DWORD cbRead, cbWritten, dwMode;
LPTSTR lpszPipename = "\\\\.\\pipe\\mynamedpipe";

// Try to open a named pipe; wait for it, if necessary.
while (1)
{

hPipe = CreateFile(
lpszPipename, // pipe name
GENERIC_READ | // read and write access
GENERIC_WRITE,
0, // no sharing
NULL, // no security attributes
OPEN_EXISTING, // opens existing pipe
0, // default attributes
NULL);// no template file
// Break if the pipe handle is valid.

if (hPipe != INVALID_HANDLE_VALUE)
break;

// Exit if an error other than ERROR_PIPE_BUSY occurs.
if (GetLastError() != ERROR_PIPE_BUSY)

MyErrExit("Could not open pipe");
// All pipe instances are busy, so wait for 20 seconds.
if (! WaitNamedPipe(lpszPipename, 20000))

MyErrExit("Could not open pipe");
}

// The pipe connected; change to message-read mode.
dwMode = PIPE_READMODE_MESSAGE;
fSuccess = SetNamedPipeHandleState(

hPipe, // pipe handle
&dwMode, // new pipe mode
NULL,// don't set max. bytes
NULL); // don't set max. time
if (!fSuccess)

MyErrExit("SetNamedPipeHandleState");
// Send a message to the pipe server.

lpvMessage = (argc > 1) ? argv[1] : "default message";
fSuccess = WriteFile(

hPipe, // pipe handle
lpvMessage, // message
strlen(lpvMessage) + 1, // message length
&cbWritten, // bytes written
NULL); // not overlapped
if (! fSuccess)

MyErrExit("WriteFile");
do
{
// Read from the pipe.

fSuccess = ReadFile(
hPipe, // pipe handle
chBuf, // buffer to receive reply
512, // size of buffer
&cbRead, // number of bytes read
NULL); // not overlapped

if (! fSuccess && GetLastError() != ERROR_MORE_DATA)
break;

// Reply from the pipe is written to STDOUT.
if (! WriteFile(GetStdHandle(STD_OUTPUT_HANDLE),

chBuf, cbRead, &cbWritten, NULL))
break;
} while (! fSuccess); // repeat loop if ERROR_MORE_DATA
CloseHandle(hPipe);
return 0;

}

Transactions on Named Pipes
A named pipe transaction is a client-server communication that combines a write operation and a
read operation into a single network operation. A transaction can be used only on a duplex,
message-type pipe. Transactions improve the performance of network communications between a
client and a remote server. Processes can use the TransactNamedPipe and CallNamedPipe
functions to perform named pipe transactions.

TransactNamedPipe is typically used by a client process to write a request message to the
named pipe server and read the server's response message. The client process must specify
GENERIC_READ | GENERIC_WRITE access when it opens its pipe handle by calling the
CreateFile function. Then, the client process sets the pipe handle to message-read mode by
calling the SetNamedPipeHandleState function. If the read buffer specified in the call to
TransactNamedPipe is not large enough to hold the entire message written by the server, the
function returns FALSE and GetLastError returns ERROR_MORE_DATA. The client can read
the remainder of the message by calling either the ReadFile, ReadFileEx, or PeekNamedPipe
function.

TransactNamedPipe is typically called by client processes, but can also be used by a server
process.

The following example shows a client process using TransactNamedPipe. The example
assumes that the client process has used CreateFile to connect to the pipe and
SetNamedPipeHandleState to set the pipe handle's read mode, as shown in the client process
example in the preceding section.fSuccess = TransactNamedPipe(

hPipe,// pipe handle
lpszWrite, // message to server
strlen(lpszWrite)+1, // message length
chReadBuf, // buffer to receive reply
512, // size of read buffer
&cbRead, // number of bytes read
NULL);// not overlapped

// Exit if an error occurs, unless the error indicates there is more
// data in the message.
if (!fSuccess && (GetLastError() != ERROR_MORE_DATA))

MyErrExit("TransactNamedPipe");
while(1)
{
// Data from the pipe is written to STDOUT.

if (! WriteFile(GetStdHandle(STD_OUTPUT_HANDLE),
chReadBuf, cbRead, &cbWritten, NULL))
break;
// Break if TransactNamedPipe or ReadFile is successful.

if (fSuccess)
break;
// Read from the pipe if there is more data in the message.

fSuccess = ReadFile(
hPipe, // pipe handle
chReadBuf, // buffer to receive reply
512, // size of buffer
&cbRead, // number of bytes read
NULL); // not overlapped
// Exit if an error other than ERROR_MORE_DATA occurs.

if (! fSuccess && (GetLastError() != ERROR_MORE_DATA))
break;
}A client process uses CallNamedPipe to combine calling the CreateFile, WaitNamedPipe (if

necessary), TransactNamedPipe, and CloseHandle function into a single call. Because the pipe
handle is closed before the function returns, any additional bytes in the message are lost if the
message is larger than the specified size of the read buffer. The following example shows the use
of CallNamedPipe.// Combines connect, wait, write, read, and close operations.
fSuccess = CallNamedPipe(

lpszPipename, // pipe name
lpszWrite, // message to server
strlen(lpszWrite)+1, // message length
chReadBuf, // buffer to receive reply
512, // size of read buffer
&cbRead, // number of bytes read
20000); // waits for 20 seconds

if (fSuccess || GetLastError() == ERROR_MORE_DATA)
{
// Data from the pipe is written to STDOUT.

WriteFile(GetStdHandle(STD_OUTPUT_HANDLE),
chReadBuf, cbRead, &cbWritten, NULL);
// The pipe is closed, so no more bytes can be read from the
// message.

if (! fSuccess)
printf("\n...extra data in message was lost\n");
}

Pipe Functions
Following are the functions used with pipes.
CallNamedPipe
ConnectNamedPipe
CreateNamedPipe
CreatePipe
DisconnectNamedPipe
GetNamedPipeHandleState
GetNamedPipeInfo
PeekNamedPipe
SetNamedPipeHandleState
TransactNamedPipe

WaitNamedPipe

Portable Executable File Manipulation(New)This document describes the function set provided by the IMAGEHLP DLL. This set extends the
Win32 API to provide functions that either manipulate or provide some form of access to a
portable executable (PE) image. A PE image is one that is produced by a compatible Win32 linker
such as the one provided by the Microsoft Visual Development Environment.

The IMAGEHLP function set is an API for the Windows NT and Windows 95 operating systems.
The functions included are used mostly by programming tools, application setup utilities, and other
programs that need access to the data contained in a PE image.

Overview
The IMAGEHLP function set contains six different classes of functions: general, image
modification, debugging services, image access, symbol handler, and image integrity.

It is assumed that the reader is familiar with the PE format and its specification.

General Functions
The general functions apply to general Win32 programming or support the IMAGEHLP API itself.
These functions are sometimes higher-level wrappers for other Win32 functions.

ImagehlpApiVersion
[Now Supported on Windows NT]

The ImagehlpApiVersion function returns a pointer to an API_VERSION structure.

LPAPI_VERSION ImagehlpApiVersion(VOID);ParametersThis function has no parameters.Return ValuesThe ImagehlpApiVersion function returns a pointer to an API_VERSION structure.RemarksUse the information from the API_VERSION structure to determine if the version of IMAGEHLP is
compatible with the version of the application. Although all the functions in IMAGEHLP are
backwards compatible, functions that are added later will not be available in earlier versions of the
DLL.

ImagehlpApiVersionEx
[Now Supported on Windows NT]

The ImagehlpApiVersionEx function modifies the version information maintained by IMAGEHLP.

LPAPI_VERSION ImagehlpApiVersionEx(
IN OUT LPAPI_VERSION AppVersion

);ParametersAppVersion
A pointer to an API_VERSION structure. This structure should contain valid version
information.

Return ValuesThe ImagehlpApiVersionEx function returns a pointer to an API_VERSION structure.RemarksUse the ImagehlpApiVersionEx function to indicate to IMAGEHLP which version of IMAGEHLP
the application was built with. IMAGEHLP uses this information to ensure compatibility if a
function changes in the future. For example, consider stack walking through kernel-mode callback
frames (which exist in Windows NT 4.0, where User and GDI exist in kernel mode). If you call
ImagehlpApiVersionEx to set API_VERSION.Revision to at least 4, StackWalk will continue
through a callback stackframe; if API_VERSION.Revision is less than 4, StackWalk will stop at
the kernel transition.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

MakeSureDirectoryPathExists
The MakeSureDirectoryPathExists function creates all the directories in the specified DirPath.

BOOL MakeSureDirectoryPathExists(
IN LPSTR DirPath

);ParametersDirPath
A pointer to an ASCII string that contains a valid path name.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe DirPath is parsed and each directory, beginning at the root, is created, if it does not already
exist. If only some of the directories are created, the function will return FALSE.

SearchTreeForFile
The SearchTreeForFile function is used to search a tree for a specified file.

BOOL SearchTreeForFile(
IN LPSTR RootPath,
IN LPSTR InputPathName,
OUT LPSTR OutputPathBuffer

);ParametersRootPath
The starting path where SearchTreeForFile begins searching for InputPathName.

InputPathName
The filename that is searched for. A partial path can be included.

OutputPathBuffer
The full path to the filename that is found. This string is not modified if the return value is
FALSE.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe filename contained in InputPathName is searched for beginning at the path specified in
RootPath. The maximum path depth that is allowed in the RootPath is 32 directories. When the
file is found in the directory tree, the full path to the file is placed in the OutputPathBuffer string.
The order of the subdirectory search is defined by the underlying file system.

Image Modification
The image modification functions change an image's data. They are used by development tools
and programs that install applications.

Any tool needing to modify an executable image should use these functions. They provide easy
access to the image and also provide other features such as checksumming, which is important
for ensuring image integrity.

BindImage
The BindImage function computes the virtual address of each function that is imported from all
DLLs.

BOOL BindImage(
IN LPSTR ImageName,
IN LPSTR DllPath,
IN LPSTR SymbolPath

);ParametersImageName
The filename of the file to be bound. This can contain only a filename, a partial path, or a full
path.

DllPath
A root path to search for ImageName if the filename contained in ImageName cannot be
opened.

SymbolPath
A root path to search for the corresponding symbol file.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksCalling BindImage is equivalent to the following call to BindImageEx:

BindImageEx(0, ImageName, DllPath, SymbolPath, NULL);
For more information, see BindImageEx.

BindImageEx
The BindImageEx function computes the virtual address of each function that is imported from all
DLLs.

BOOL BindImageEx(
IN DWORD Flags,
IN LPSTR ImageName,
IN LPSTR DllPath,
IN LPSTR SymbolPath,
IN PIMAGEHLP_STATUS_ROUTINE StatusRoutine

);ParametersFlags
A mask of values that controls the behavior of the function. This parameter can be a
combination of the following values:

Value Meaning
BIND_NO_BOUND_IMPORTSDo not generate a new import address

table.
BIND_NO_UPDATE Do not make any changes to the file.
BIND_ALL_IMAGES Bind all images that are in the call tree

for this file.

ImageName
The filename of the file to be bound. This can contain only a filename, a partial path, or a full
path.

DllPath
A root path to search for ImageName if the filename contained in ImageName cannot be
opened.

SymbolPath
A root path to search for the corresponding symbol file.

StatusRoutine
A pointer to a status routine. The status routine is called during the progress of the image
binding.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe process of binding an image consists of computing the virtual address of each function

that is imported from all DLLs. The computed virtual address is then saved in the importing
image's Import Address Table (IAT).

The result of the process is an image that is loaded much faster because the imported functions'
addresses do not have to be computed by the system loader. If an application uses many DLLs,
the process of binding all the application's DLLs can significantly reduce the application load time.

The time stamp and checksum in the corresponding symbol file is updated, if the symbol file can
be located.

CheckSumMappedFile
The CheckSumMappedFile function computes the checksum of an image file.

PIMAGE_NT_HEADERS CheckSumMappedFile(
IN LPVOID BaseAddress,
IN DWORD FileLength,
OUT LPDWORD HeaderSum,
OUT LPDWORD CheckSum

);ParametersBaseAddress
A pointer to the base of the mapped file. This value is obtained by calling the MapViewOfFile
function.

FileLength
The length of the file, in bytes.

HeaderSum
A pointer to a variable that receives the original checksum from the image file, or zero if there
is an error.

CheckSum
A pointer to the variable that receives the computed checksum.

Return ValuesIf the function succeeds, the return value is a pointer to the IMAGE_NT_HEADERS structure
contained in the mapped image.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksA new checksum for the file is computed and returned in the CheckSum parameter. This

function is used by any application that creates or modifies an executable image. Checksums
are required for Windows NT kernel mode drivers and some system DLLs. The Win32 linker
computes the original checksum at link time, if the linker switch for checksumming is turned
on.

The linker switch to enable the checksum calculation is /RELEASE. It is recommended that all
images have valid checksums. It is the caller's responsibility to place the newly computed
checksum into the mapped image and update the on-disk image of the file.

MapFileAndCheckSumA
The MapFileAndCheckSumA function computes the checksum of an image file.

ULONG MapFileAndCheckSumA(
IN LPSTR Filename,
OUT LPDWORD HeaderSum,
OUT LPDWORD CheckSum

);ParametersFilename
The filename of the file for which the checksum is to be computed.

HeaderSum
A pointer to a variable that receives the original checksum from the image file, or zero if there
is an error.

CheckSum
A pointer to the variable that receives the computed checksum.

Return ValuesIf the function succeeds, the return value is CHECKSUM_SUCCESS.

If the function fails, then the return value is one of the following:

Value Meaning

CHECKSUM_OPEN_FAILURE Could not open the file.
CHECKSUM_MAP_FAILURE Could not create the file

mapping for the file.
CHECKSUM_MAPVIEW_FAILURECould not map a view of the file.
CHECKSUM_UNICODE_FAILURECould not convert the filename

to UNICODE.
RemarksA new checksum for the file is computed and returned in the CheckSum parameter. This function

is used by any application that creates or modifies an executable image. Checksums are required
for Windows NT kernel mode drivers and some system DLLs. The Win32 linker computes the
original checksum at link time, if the linker switch for checksumming is turned on. It is
recommended that all images have valid checksums.

MapFileAndCheckSumW
The MapFileAndCheckSumW function computes the checksum of an image file.

ULONG MapFileAndCheckSumW(
IN PWSTR Filename,
OUT LPDWORD HeaderSum,
OUT LPDWORD CheckSum

);ParametersFilename
The filename of the file for which the checksum is to be computed.

HeaderSum
A pointer to a variable that receives the original checksum from the image file, or zero if there
is an error.

CheckSum
A pointer to the variable that receives the computed checksum.

Return ValuesIf the function succeeds, the return value is CHECKSUM_SUCCESS.

If the function fails, then the return value is one of the following:

Value Meaning

CHECKSUM_OPEN_FAILURE Could not open the file.
CHECKSUM_MAP_FAILURE Could not create the file mapping for

the file.
CHECKSUM_MAPVIEW_FAILURECould not map a view of the file.
CHECKSUM_UNICODE_FAILURECould not convert the filename to

UNICODE.
RemarksA new checksum for the file is computed and returned in the CheckSum parameter. This function

is used by any application that creates or modifies an executable image. Checksums are required
for Windows NT kernel mode drivers and some system DLLs. The Win32 linker computes the
original checksum at link time, if the linker switch for checksumming is turned on. It is
recommended that all images have valid checksums.

ReBaseImage
The ReBaseImage function is used to change the load address for a Win32 image, which
reduces the required load time for a DLL.

BOOL ReBaseImage(
IN LPSTR CurrentImageName,
IN LPSTR SymbolPath,
IN BOOL fReBase,
IN BOOL fRebaseSysfileOk,
IN BOOL fGoingDown,
IN DWORD CheckImageSize,
OUT LPDWORD OldImageSize,
OUT LPDWORD OldImageBase,
OUT LPDWORD NewImageSize,
IN OUT LPDWORD NewImageBase,
IN DWORD TimeStamp

);ParametersCurrentImageName
The filename that is rebased.

SymbolPath
The path to find the corresponding symbol file.

fReBase
The image is rebased if this value is TRUE.

fRebaseSysfileOk
System images can be rebased only if this value is TRUE. A system image is one that has a
preferred load address of 0x80000000 or greater.

fGoingDown
If the image should be rebased below the given base, this value is TRUE.

CheckImageSize
The maximum size that the image can grow to, or zero if there is no limit.

OldImageSize
The original image size before the rebase operation.

OldImageBase
The original image base before the rebase operation.

NewImageSize
The new image size after the rebase operation.

NewImageBase
The new image base after the rebase operation.

TimeStamp
The new time stamp for the image. Use the C run-time (CRT) function time to retrieve a
compatible time stamp value. The value must be represented in the number of seconds
elapsed since midnight (00:00:00), January 1, 1970, Universal Coordinated Time, according to
the system clock.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ReBaseImage function changes the desired load address for a Win32 image. This

operation involves reading the entire image and updating all fixups, debug information,
checksum, and time stamp values. The purpose of this function is to reduce the required load
time for DLLs. If an application can rely on a DLL being loaded at the desired load address,
then the system loader does not have to relocate the image. The image is simply loaded into
the application's virtual address space and the DLL's initialization routine is called, if one is
present.

A well-behaved application has all its DLLs rebased so they each fall within a unique range of the
virtual address space. Microsoft publishes an address range that applications should use for their
DLLs. By using this address range, the ReBaseImage function, and the list of application DLLs,
each one of the DLLs can be assigned a unique base address. This process can be part of the
build process or part of the final release procedure for the application.

RemovePrivateCvSymbolic
The RemovePrivateCvSymbolic function removes all but public information from the CodeView
(CV) debug information.

BOOL RemovePrivateCvSymbolic(
IN PCHAR DebugData,
OUT PCHAR *NewDebugData,
OUT LPDWORD NewDebugSize

);ParametersDebugData
A pointer to the CV debug data (found by mapping the image and searching the debug
directories for debug type IMAGE_DEBUG_TYPE_CODEVIEW.

NewDebugData
A pointer to a block (allocated with LocalAlloc) with just the public CV symbolics.

NewDebugSize
The size of the public symbolics.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe RemovePrivateCvSymbolic function removes all but public information from the CV debug
information. The intent is to allow the user to ship the debug symbols for an image without
disclosing the data structures or source information. A consumer can only get a stack trace, place
breakpoints on functions, and dump memory. All but the following CV sections are discarded:

· sstSegMap
· sstSegName
· sstOffsetMap16
· sstOffsetMap32
· sstModule
· sstPublic
· sstPublicSym
· sstGlobalPub

It is the responsibility of the caller to free the new debug data when finished.

RemoveRelocations
The RemoveRelocations function strips relocation information from an executable image.

VOID RemoveRelocations(
IN LPSTR ImageName

);ParametersImageName
The name of the image to strip relocations from. This must be a fully qualified path.

Return ValuesNone.RemarksThe RemoveRelocations function lets the user strip relocation information from an executable
image. However, it is not recommended that you do this because the image will not load if its
preferred address is occupied. This function exists so an image can be rebased after building and
then have the relocations stripped so it will always load at that preferred load address.See AlsoReBaseImage

SplitSymbols
The SplitSymbols function strips symbols from an image.

BOOL SplitSymbols(
IN LPSTR ImageName,
IN LPSTR SymbolsPath,
OUT LPSTR SymbolFilePath,
IN DWORD Flags

);ParametersImageName
The name of the image to split symbols from.

SymbolsPath
A subdirectory for storing symbols. (This is optional.)

SymbolFilePath
The name of the generated symbol file (.DBG extension).

Flags
Zero or a combination of the following flag values:

Value Meaning
SPLITSYM_EXTRACT_ALL Usually, an image with the symbols

split off will still contain a MISC
debug directory with the name of
the .DBG file. In this way, the
debugger will know where to find
the symbols. Using this flag
removes this link and the end result
is similar to using the -debug:none
switch on the linker.

SPLITSYM_REMOVE_PRIVATE This strips off the private CodeView
(CV) symbolic information when
generating the .DBG file. It does
this by making a call to the
RemovePrivateCvSymbolic
function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SplitSymbols function should be used when stripping symbols from an image. It will create a
.DBG file that all the Microsoft Win32 debuggers can understand. The format is defined in WINNT.
H and consists of an image header (IMAGE_SEPARATE_DEBUG_HEADER), followed by the
array of section headers, the exception (on RISC) or FPO (on X86) information, and all the debug
symbolic information from the image.

If NULL is passed for SymbolsPath, the .DBG file is stored in the directory where the image exists.
Otherwise, it is stored in the subdirectory below SymbolsPath that matches the extension of the
image. It is recommended that this method be used because it reduces the chances of symbol file
collision (the symbols for foo.exe will be in SymbolsPath\exe and foo.dll will be in SymbolsPath\
dll).

UpdateDebugInfoFile
The UpdateDebugInfoFile function takes the information stored in NtHeaders and updates the
corresponding fields in the .DBG file.

BOOL UpdateDebugInfoFile(
IN LPSTR ImageFileName,
IN LPSTR SymbolPath,
OUT LPSTR DebugFilePath,
IN OUT PIMAGE_NT_HEADERS NtHeaders

);ParametersImageFileName
The name of the image that is now out of date with respect to its symbol file.

SymbolPath
The path in which to look for the symbol file.

DebugFilePath
The symbol file that was updated.

NtHeaders
The new NT headers.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe UpdateDebugInfoFile function takes the information stored in NtHeaders and updates the
corresponding fields in the .DBG file. Any time an image file is modified, this function should be
called to keep the numbers in sync. Specifically, whenever an image checksum changes, the .
DBG file should be updated to match.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

UpdateDebugInfoFileEx
The UpdateDebugInfoFileEx function takes the information stored in NtHeaders and updates the
corresponding fields in the .DBG file.

BOOL UpdateDebugInfoFileEx(
IN LPSTR ImageFileName,
IN LPSTR SymbolPath,
OUT LPSTR DebugFilePath,
IN OUT PIMAGE_NT_HEADERS NtHeaders,
IN DWORD OldChecksum

);ParametersImageFIleName
The name of the image that is now out of date with respect to its symbol file.

SymbolPath
The path in which to look for the symbol file.

DebugFilePath
The symbol file that was updated.

NtHeaders
The new NT headers.

OldChecksum
The original checksum value. If this value does not match the checksum that is present in the
mapped image, the flags in the .DBG file contain IMAGE_SEPARATE_DEBUG_MISMATCH
and the last error value is set to ERROR_INVALID_DATA.Return ValuesIf the function succeeds, the return value is TRUE.RemarksThe UpdateDebugInfoFileEx function takes the information stored in NtHeaders and updates the

corresponding fields in the .DBG file. Any time an image file is modified, this function should be
called to keep the numbers in sync. Specifically, whenever an image checksum changes, the .
DBG file should be updated to match.

Debugging Services
The debugging service functions are the IMAGEHLP functions most suited for use by a debugger
or the debugging code in an application. These functions can be used in concert with the symbol
handler functions for easier use. The StackWalk function, for example, is used by the memory
allocators of several applications to best track memory leaks. The functions for finding and
mapping debug information can be used when the IMAGEHLP symbol handler functions are not
needed.

StackWalk
The StackWalk function provides a portable method for obtaining a stack trace.

BOOL StackWalk(
IN DWORD MachineType,
IN HANDLE hProcess,
IN HANDLE hThread,
IN OUT LPSTACKFRAME StackFrame,
IN OUT LPVOID ContextRecord,
IN PREAD_PROCESS_MEMORY_ROUTINE ReadMemoryRoutine,
IN PFUNCTION_TABLE_ACCESS_ROUTINE FunctionTableAccessRoutine,
IN PGET_MODULE_BASE_ROUTINE GetModuleBaseRoutine,
IN PTRANSLATE_ADDRESS_ROUTINE TranslateAddress

);ParametersMachineType
The architecture type of the machine for which the stack trace is generated. This can be one
of the following values:
· IMAGE_FILE_MACHINE_I386
· IMAGE_FILE_MACHINE_R4000
· IMAGE_FILE_MACHINE_R10000
· IMAGE_FILE_MACHINE_ALPHA
· IMAGE_FILE_MACHINE_POWERPC

hProcess
The process handle for which the stack trace is generated. If the caller supplies a valid
callback pointer for ReadMemoryRoutine, then this value does not have to be a valid Win32
process handle. It can be a token that is unique and consistently the same for all calls to the
StackWalk function. If IMAGEHLP's symbol handler is used with StackWalk, the process
handles used should be the same for the calls to each function.

hThread
The thread handle for which the stack trace is generated. If the caller supplies a valid callback
pointer for ReadMemoryRoutine, then this value does not have to be a valid Win32 thread
handle. It can be a token that is unique and consistently the same for all calls to the
StackWalk function.

StackFrame
A pointer to a STACKFRAME structure. This structure is filled with the next frame's
information, if the function call succeeds.

ContextRecord
A pointer to a CONTEXT record. This parameter is required only when MachineType is not
equal to IMAGE_FILE_MACHINE_I386.

ReadMemoryRoutine
A pointer to a callback routine that provides memory read services. When the StackWalk
function needs to read memory from the process's address space, this callback is used. If
NULL is passed, then the Win32 ReadProcessMemory function is used. In this case, the
hProcess parameter must be a valid Win32 process handle.

FunctionTableAccessRoutine
A pointer to a callback routine that provides access to the run-time function table for the
process. For RISC machines, this function accesses the pdata table, while on X86 machines
this function accesses the fpo table. This parameter is required because the StackWalk
function does not have access to the process's run-time function table.
The symbol handler in IMAGEHLP provides functions that load and access the run-time table.
If these functions are used, then SymFunctionTableAccess can be passed as a valid
parameter.

GetModuleBaseRoutine
A pointer to a callback routine that provides a module base for any given virtual address. This
parameter is required. The symbol handler in IMAGEHLP provides functions that load and
maintain module information. If these functions are used, then SymGetModuleBase can be
passed as a valid parameter.

TranslateAddress

A pointer to a callback routine that provides address translation for 16-bit addresses. Most, if
not all, callers of StackWalk can safely pass NULL for this parameter.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe StackWalk function provides a portable method for obtaining a stack trace. This function is
used by all Microsoft Win32 debuggers and tools that require stack trace facilities. Using
IMAGEHLP's StackWalk function is recommended over writing your own function because of all
the complexities associated with stack walking on the various Win32 platforms. In addition, the
various compiler options that cause the stack to appear differently, depending on how the module
is compiled, complicate the problem even more. By using this function, your application has a
portable stack trace that continues to work when the compiler and operating system change.

FindDebugInfoFile
The FindDebugInfoFile function locates a symbol file.

HANDLE FindDebugInfoFile(
IN LPSTR FileName,
IN LPSTR SymbolPath,
OUT LPSTR DebugFilePath

);ParametersFileName
The name of the .DBG file that is desired. This can contain a partial path.

SymbolPath
The path where symbol files are located. This can be multiple paths, with each separated by a
semicolon (;).

DebugFilePath
The full path of the symbol file that is found.

Return ValuesIf the function succeeds, the return value is an open handle to the debug file.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe FindDebugInfoFile function is used to locate a symbol file. This function is provided so
symbol files can be located in several different directories through a single function call. The
SymbolPath parameter can contain multiple paths, with each separated by a semicolon (;). When
multiple paths are specified, each directory tree is searched for the symbol file. When the file is
located, the search stops. Thus, be sure to specify the SymbolPath with the paths in the correct
order.

FindExecutableImage
The FindExecutableImage function locates an executable image file.

HANDLE FindExecutableImage(
IN LPSTR FileName,
IN LPSTR SymbolPath,
OUT LPSTR ImageFilePath

);ParametersFileName
The name of the executable image file that is needed. This can contain a partial path.

SymbolPath
The path where symbol files are located. This can be multiple paths, with each separated by a
semicolon (;).

ImageFilePath
The full path of the executable image file that is found.

Return ValuesIf the function succeeds, the return value is an open handle to the executable image file.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe FindExecutableImage function is used to locate an executable image file. This function is
provided so executable image files can be located in several different directories through a single
function call. The SymbolPath parameter can contain multiple paths, with each separated by a
semicolon (;). When multiple paths are specified, each directory tree is searched for the
executable image file. When the file is located, the search stops. Thus, be sure to specify the
SymbolPath with the paths in the correct order.

MapDebugInformation
The MapDebugInformation function gains access to the debug information for an image.

PIMAGE_DEBUG_INFORMATION MapDebugInformation(
IN HANDLE FileHandle,
IN LPSTR FileName,
IN LPSTR SymbolPath,
IN DWORD ImageBase

);ParametersFileHandle
A handle to an open executable image, a symbol file, or NULL.

FileName
The name of an executable image file, symbol file, or NULL.

SymbolPath
The path where symbol files are located. The path can be multiple paths, with each separated
by a semicolon (;).

ImageBase
The base address for the image or zero.

Return ValuesIf the function succeeds, the return value is a pointer to an IMAGE_DEBUG_INFORMATION
structure. This structure is allocated by IMAGEHLP and must be deallocated by IMAGEHLP
through the use of the UnmapDebugInformation function. The memory for the structure is not in
the process's default heap, so attempts to free it with any memory deallocation routine will fail.

If the function fails, the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe MapDebugInformation function is used to gain access to an image's debug information. The
debug information is extracted from the image or the symbol file and placed into the
IMAGE_DEBUG_INFORMATION structure.

UnmapDebugInformation
The UnmapDebugInformation function deallocates the memory and resources allocated by a
call to the MapDebugInformation function.

BOOL UnmapDebugInformation(
IN PIMAGE_DEBUG_INFORMATION DebugInfo

);ParametersDebugInfo
A pointer to an IMAGE_DEBUG_INFORMATION structure that is returned from a call to the
MapDebugInformation function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe UnmapDebugInformation function is the counterpart to the MapDebugInformation function
and must be used to deallocate the memory and resources allocated by a call to the
MapDebugInformation function.

UnDecorateSymbolName
The UnDecorateSymbolName function undecorates decorated C++ symbol names.

DWORD UnDecorateSymbolName(
IN LPSTR DecoratedName,
OUT LPSTR UnDecoratedName,
IN DWORD UndecoratedLength,
IN DWORD Flags

);ParametersDecoratedName
A decorated C++ symbol name. This name can be identified by the first character of the
name, which is always a question mark (?).

UnDecoratedName
A buffer where the undecorated name is placed.

UndecoratedLength
The length of the UnDecoratedName buffer.

Flags
These flags control how the decorated name is undecorated. The value can be zero or any
combination of the following values:
· UNDNAME_COMPLETE
· UNDNAME_NO_LEADING_UNDERSCORES
· UNDNAME_NO_MS_KEYWORDS
· UNDNAME_NO_FUNCTION_RETURNS
· UNDNAME_NO_ALLOCATION_MODEL
· UNDNAME_NO_ALLOCATION_LANGUAGE
· UNDNAME_NO_MS_THISTYPE
· UNDNAME_NO_CV_THISTYPE
· UNDNAME_NO_THISTYPE
· UNDNAME_NO_ACCESS_SPECIFIERS
· UNDNAME_NO_THROW_SIGNATURES
· UNDNAME_NO_MEMBER_TYPE
· UNDNAME_NO_RETURN_UDT_MODEL
· UNDNAME_32_BIT_DECODE
· UNDNAME_NAME_ONLY
· UNDNAME_NO_ARGUMENTS
· UNDNAME_NO_SPECIAL_SYMS

Return ValuesIf the function succeeds, the return value is the number of characters in the UnDecoratedName
buffer, not including the NULL terminator.

If the function fails, then the return value is zero. To retrieve extended error information, call
GetLastError.RemarksIf the function fails and returns zero, the content of the UnDecoratedName buffer is undetermined.

Image Access
The image access functions get access to the data in an executable image. The functions provide
high-level access to the base of images and very specific access to the most common parts of an
image's data.

ImageDirectoryEntryToData
[Now Supported on Windows NT]

The ImageDirectoryEntryToData function obtains access to image-specific data.

PVOID ImageDirectoryEntryToData(
IN LPVOID Base,
IN BOOLEAN MappedAsImage,
IN USHORT DirectoryEntry,
OUT PULONG Size

);ParametersBase
The base address of the image.

MappedAsImage
If this flag is TRUE, the image is mapped by the system loader. If the flag is FALSE, the file is
mapped by a call to MapViewOfFile.

DirectoryEntry
The index number of the desired directory entry. The value must be one of the following:
· IMAGE_DIRECTORY_ENTRY_EXPORT
· IMAGE_DIRECTORY_ENTRY_IMPORT
· IMAGE_DIRECTORY_ENTRY_RESOURCE
· IMAGE_DIRECTORY_ENTRY_EXCEPTION
· IMAGE_DIRECTORY_ENTRY_SECURITY
· IMAGE_DIRECTORY_ENTRY_BASERELOC
· IMAGE_DIRECTORY_ENTRY_DEBUG
· IMAGE_DIRECTORY_ENTRY_COPYRIGHT
· IMAGE_DIRECTORY_ENTRY_GLOBALPTR
· IMAGE_DIRECTORY_ENTRY_TLS
· IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
· IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
· IMAGE_DIRECTORY_ENTRY_IAT

Size
The size of the desired directory entry's data.

Return ValuesIf the function succeeds, the return value is a pointer to the directory entry's data.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe ImageDirectoryEntryToData function is used to obtain access to image-specific data.

ImageLoad
The ImageLoad function maintains a list of loaded DLLs.

PLOADED_IMAGE ImageLoad(
IN LPSTR DllName,
IN LPSTR DllPath

);ParametersDllName
The name of the image that is loaded.

DllPath
The path used to locate the image if the name provided cannot be found. If NULL is used,
then the search path rules set forth in the SearchPath function will apply.

Return ValuesIf the function succeeds, the return value is a pointer to a LOADED_IMAGE structure. The
returned structure must be deallocated by the ImageUnload function.

If the function fails, the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe ImageLoad function is used to maintain a list of loaded DLLs. If the image has already been
loaded, the prior PLOADED_IMAGE is returned. Otherwise, the new image is added to the list.

ImageNtHeader
The ImageNtHeader function locates the IMAGE_NT_HEADERS structure in a Win32 image and
returns a pointer to the data.

PIMAGE_NT_HEADERS ImageNtHeader(
IN LPVOID ImageBase

);ParametersImageBase
The base address of an image that is mapped into memory by a call to the MapViewOfFile
function.

Return ValuesIf the function succeeds, the return value is a pointer to an IMAGE_NT_HEADERS structure.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe ImageNtHeader function locates the IMAGE_NT_HEADERS structure in a Win32 image and
returns a pointer to the data.

ImageRvaToSection
The ImageRvaToSection function locates a Relative Virtual Address (RVA) within the image
header of a file that is mapped as a file and returns a pointer to the section table entry for that
virtual address.

PIMAGE_SECTION_HEADER ImageRvaToSection(
IN PIMAGE_NT_HEADERS NtHeaders,
IN LPVOID Base,
IN DWORD Rva

);ParametersNtHeaders
A pointer to an IMAGE_NT_HEADERS structure. This can be obtained by calling the
ImageNtHeader function.

Base
The base address of an image that is mapped into memory through a call to MapViewOfFile.

Rva
The relative virtual address to locate.

Return ValuesIf the function succeeds, the return value is a pointer to an IMAGE_SECTION_HEADER structure.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe ImageRvaToSection function locates an RVA within the image header of a file that is
mapped as a file and returns a pointer to the section table entry for that virtual address.

ImageRvaToVa
The ImageRvaToVa function locates a Relative Virtual Address (RVA) within the image header of
a file that is mapped as a file and returns the virtual address of the corresponding byte in the file.

LPVOID ImageRvaToVa(
IN PIMAGE_NT_HEADERS NtHeaders,
IN LPVOID Base,
IN DWORD Rva,
IN OUT PIMAGE_SECTION_HEADER *LastRvaSection

);ParametersNtHeaders
A pointer to an IMAGE_NT_HEADERS structure. This can be obtained by calling the
ImageNtHeader function.

Base
The base address of an image that is mapped into memory through a call to MapViewOfFile.

Rva
The relative virtual address to locate.

LastRvaSection
The last RVA section. This is an optional parameter. When specified, it points to a variable
that contains the last section value used for the specified image to translate an RVA to a VA.

Return ValuesIf the function succeeds, the return value is the virtual address in the mapped file.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe ImageRvaToVa function locates an RVA within the image header of a file that is mapped as
a file and returns the virtual address of the corresponding byte in the file.

ImageUnload
The ImageUnload function is used to deallocate resources from a previous call to the ImageLoad
function.

BOOL ImageUnload(
IN PLOADED_IMAGE LoadedImage

);ParametersLoadedImage
A pointer to a LOADED_IMAGE structure that is returned from a call to the ImageLoad
function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksUse this function to deallocate resources from a previous call to ImageLoad.

MapAndLoad
The MapAndLoad function maps an image and preloads data from the mapped file.

BOOL MapAndLoad(
IN LPSTR ImageName,
IN LPSTR DllPath,
OUT PLOADED_IMAGE LoadedImage,
IN BOOL DotDll,
IN BOOL ReadOnly

);ParametersImageName
The name of the image that is loaded.

DllPath
The path used to locate the image if the name provided cannot be found. If NULL is used,
then the search path rules set forth in the SearchPath function will apply.

LoadedImage
A pointer to a LOADED_IMAGE structure. This structure receives information about the image
after it is loaded.

DotDll
If the image needs to be located and the image name does not contain a file extension, this
parameter controls the default extension used for the search process. If the value is TRUE, a .
dll extension is used. If the value is FALSE, then a .exe extension is used.

ReadOnly
If this value is TRUE, the file is mapped for read-access only. If the value is FALSE, the file is
mapped for read and write access.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe MapAndLoad function maps an image and preloads data from the mapped file. The
corresponding function, UnMapAndLoad, must be used to deallocate all resources that are
allocated by the MapAndLoad function.

UnMapAndLoad
The UnMapAndLoad function is used to deallocate all resources that are allocated by a previous
call to the MapAndLoad function.

BOOL UnMapAndLoad(
IN PLOADED_IMAGE LoadedImage

);ParametersLoadedImage
A pointer to a LOADED_IMAGE structure that is returned from a call to the MapAndLoad
function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe UnMapAndLoad function must be used to deallocate all resources that are allocated by a
previous call to MapAndLoad. This function also writes a new checksum value into the image
before the file is closed. This ensures that if a file is changed, it can be successfully loaded by the
system loader.

GetTimestampForLoadedLibrary
The GetTimestampForLoadedLibrary function returns the timestamp of a loaded image.

DWORD GetTimestampForLoadedLibrary(
IN LPVOID ImageBase

);ParametersImageBase
The base address of an image that is mapped into memory by a call to the MapViewOfFile
function.

Return ValuesIf the function succeeds, the return value is the time stamp from the image.

If the function fails, then the return value is zero. To retrieve extended error information, call
GetLastError.RemarksThe time stamp for an image indicates the date and time that the image was created by the Win32
linker. The value is represented in the number of seconds elapsed since midnight (00:00:00),
January 1, 1970, Universal Coordinated Time, according to the system clock. The time stamp can
be printed using the C run-time (CRT) function ctime.

GetImageConfigInformation
The GetImageConfigInformation function locates and returns the load configuration data of an
image.

BOOL GetImageConfigInformation(
IN PLOADED_IMAGE LoadedImage,
OUT PIMAGE_LOAD_CONFIG_DIRECTORY ImageConfigInformation

);ParametersLoadedImage
A pointer to a LOADED_IMAGE structure that is returned from a call to MapAndLoad or
LoadImage.

ImageConfigInformation
A pointer to an IMAGE_LOAD_CONFIG_DIRECTORY structure.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe GetImageConfigInformation function locates and returns the load configuration data of an
image.

SetImageConfigInformation
The SetImageConfigInformation function locates and changes the load configuration data of an
image.

BOOL SetImageConfigInformation(
IN PLOADED_IMAGE LoadedImage,
IN OUT PIMAGE_LOAD_CONFIG_DIRECTORY ImageConfigInformation

);ParametersLoadedImage
A pointer to a LOADED_IMAGE structure that is returned from a call to MapAndLoad or
LoadImage.

ImageConfigInformation
A pointer to an IMAGE_LOAD_CONFIG_DIRECTORY structure.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SetImageConfigInformation function locates and changes the load configuration data of an
image.

GetImageUnusedHeaderBytes
The GetImageUnusedHeaderBytes function returns the offset and size of the part of the PE
header that is currently unused.

DWORD GetImageUnusedHeaderBytes(
IN PLOADED_IMAGE LoadedImage,
OUT LPDWORD SizeUnusedHeaderBytes

);ParametersLoadedImage
A pointer to a LOADED_IMAGE structure that is returned from a call to MapAndLoad or
LoadImage.

SizeUnusedHeaderBytes
This receives the size of the image's unused header bytes.

Return ValuesIf the function succeeds, the return value is the offset from the base address of the first unused
header byte.

If the function fails, then the return value is zero. To retrieve extended error information, call
GetLastError.RemarksThe GetImageUnusedHeaderBytes function returns the offset and size of the part of the PE
header that is currently unused.

Symbol Handler
The symbol handler functions give applications easy and portable access to the symbolic debug
information of an image. These functions should be used exclusively to ensure access to symbolic
information. This is necessary because these functions isolate the application from the symbol
format.

There are generic, high-level functions that provide symbol access without having knowledge of
the symbolic format. This frees the application from compiler, linker, and image format changes
and isolates the dependency to the IMAGEHLP function set.

SymInitialize
The SymInitialize function initializes the symbol handler for a process.

BOOL SymInitialize(
IN HANDLE hProcess,
IN LPSTR UserSearchPath,
IN BOOL fInvadeProcess

);ParametershProcess
Process handle for which symbols are to be maintained. If the application is a debugger, then
the process handle for the object being debugged is used, otherwise GetCurrentProcess
provides a valid process handle. The handle is not used as a real process handle, so any
value will work as well as the next. The only limitation placed on the handle value is that it be
unique for each time the application calls SymInitialize. Also, if the fInvadeProcess flag is
TRUE, then the handle must be a valid process ID.

UserSearchPath
A path, or series of paths separated by a semicolon (;), that is used to search for symbol files.
If a value of NULL is used, then IMAGEHLP attempts to form a symbol path from the following
sources:
· Current directory
· Environment variable _NT_SYMBOL_PATH
· Environment variable _NT_ALTERNATE_SYMBOL_PATH
· Environment variable SYSTEMROOT

fInvadeProcess
If this value is TRUE, then IMAGEHLP enumerates the loaded modules for the process and
effectively calls SymLoadModule for each module. In this case, the hProcess parameter
must be a valid Win32 process handle.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymInitialize function is used to initialize the symbol handler for a process. In the context of
the symbol handler, a process is a convenient object to use when collecting symbol information.
Usually, symbol handlers are used by debuggers and other tools that need to load symbols for a
process being debugged.

The process handle passed to SymInitialize can be any unique value, except in the case when
fInvadeProcess is TRUE. The value passed to SymInitialize must be the same value passed to
all other IMAGEHLP symbol handler functions. It is the process handle that IMAGEHLP uses to
identify the caller and locate the correct symbol information. The companion function,
SymCleanup, must be called to deallocate all resources associated with the process for which
symbols are loaded.

SymCleanup
The SymCleanup function deallocates all resources associated with the process handle.

BOOL SymCleanup(
IN HANDLE hProcess

);ParametershProcess
The process handle that was originally passed to SymInitialize.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThis function deallocates all resources associated with the process handle. Failure to call this
function causes memory and resource leaks in the calling application

SymEnumerateModules
The SymEnumerateModules function enumerates all modules that have been loaded for the
process.

BOOL SymEnumerateModules(
IN HANDLE hProcess,
IN PSYM_ENUMMODULES_CALLBACK EnumModulesCallback,
IN PVOID UserContext

);ParametershProcess
The process handle that was originally passed to SymInitialize.

EnumModulesCallback
A pointer to a callback function. This function is called once per module.

UserContext
A user-defined value or NULL. This value is simply passed through to the callback function.
Normally, this parameter is used by an application to pass a pointer to a data structure that
lets the callback function establish some type of context.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymEnumerateModules function enumerates all modules that have been loaded for the
process, even if the symbols are deferred. The EnumModulesCallback function is called once for
each module and is passed the module information.

PSYM_ENUMMODULES_CALLBACK
typedef BOOL (CALLBACK *PSYM_ENUMMODULES_CALLBACK)(
LPSTR ModuleName,
ULONG BaseOfDll,
PVOID UserContext

);ParametersModuleName
The name of the module.

BaseOfDll
The base address where the module is loaded into memory.

UserContext
The value passed to SymEnumerateModules.

Return ValuesIf a value of TRUE is returned, the enumeration will continue.

If a value of FALSE is returned, then the enumeration will stop.RemarksThe calling application gets called once per module until all modules are enumerated, or until the
enumeration callback function returns FALSE.

SymEnumerateSymbols
The SymEnumerateSymbols function enumerates all the symbols for a specified module.

BOOL SymEnumerateSymbols(
IN HANDLE hProcess,
IN DWORD BaseOfDll,
IN PSYM_ENUMSYMBOLS_CALLBACK EnumSymbolsCallback,
IN PVOID UserContext

);ParametershProcess
The process handle that was originally passed to SymInitialize.

BaseOfDll
The base address of the module for which symbol enumeration is to take place.

EnumSymbolsCallback
A pointer to the callback function that receives the symbol information.

UserContext
A user-defined value or NULL. This value is simply passed through to the callback function.
Normally, this parameter is used by an application to pass a pointer to a data structure that
lets the callback function establish some type of context.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymEnumerateSymbols function enumerates all the symbols for a desired module. The
module information is located by the BaseOfDll parameter. The EnumSymbolsCallback function
is called once per symbol and is passed the information for each symbol.

PSYM_ENUMSYMBOLS_CALLBACK
typedef BOOL (CALLBACK *PSYM_ENUMSYMBOLS_CALLBACK)(
LPSTR SymbolName,
ULONG SymbolAddress,
ULONG SymbolSize,
PVOID UserContext

);ParametersSymbolName
The name of the symbol. The name can be undecorated if the SYMOPT_UNDNAME option is
turned on.

SymbolAddress
The virtual address for the beginning of the symbol.

SymbolSize
The size of the symbol. The size is calculated and is actually a best-guess value. In some
cases, the value can be zero.

UserContext
The UserContext that is passed to the SymEnumerateSymbols function.

Return ValuesIf a value of TRUE is returned, the enumeration will continue.

If a value of FALSE is returned, then the enumeration will stop.RemarksThe calling application gets called once per symbol until all the symbols are enumerated or until
the enumeration callback function returns FALSE.

SymFunctionTableAccess
LPVOID SymFunctionTableAccess(
IN HANDLE hProcess,
IN DWORD AddrBase

);ParametershProcess
The process handle that was originally passed to SymInitialize.

AddrBase
The base address for which function table information is required.

Return ValuesIf the function succeeds, the return value is a pointer to the function table entry. The page in
memory that contains the function table entry is marked as read-only. Any attempt to write to the
returned pointer results in an access violation exception.

If the function fails, then the return value is NULL. To retrieve extended error information, call
GetLastError.RemarksThe type of pointer returned is specific to the image from which symbols are loaded. If the image
is from an Intel x86 machine, the pointer is a PFPO_DATA type. If the image is for any of the
RISC platforms supported by Windows NT, the pointer is a PIMAGE_FUNCTION_ENTRY type.
See the WINNT.H header file for a description of these types.

SymGetModuleBase
DWORD SymGetModuleBase(
IN HANDLE hProcess,
IN DWORD dwAddr

);ParametershProcess
The process handle that was originally passed to SymInitialize.

dwAddr
The valid virtual address that is contained in one of the modules loaded by SymLoadModule.

Return ValueIf the function succeeds, the return value is a nonzero virtual address. The value is the base
address of the module containing the dwAddr.

If the function fails, the return value is zero. To retrieve extended error information, call
GetLastError.RemarksThe module table is searched for a module that contains the dwAddr. The module is located
based on the load address and size of each module.

SymGetModuleInfo
BOOL SymGetModuleInfo(
IN HANDLE hProcess,
IN DWORD dwAddr,
OUT PIMAGEHLP_MODULE ModuleInfo

);ParametershProcess
The process handle that was originally passed to SymInitialize.

dwAddr
The valid, virtual address that is contained in one of the modules loaded by
SymLoadModule.

ModuleInfo
A pointer to an IMAGEHLP_MODULE structure. The SizeOfStruct member must be set to the
size of the IMAGEHLP_MODULE structure. An invalid value will result in an error.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe module table is searched for a module that contains the dwAddr. The module is located
based on the load address and size of each module. If a valid module is found, the ModuleInfo
parameter is filled with the information about the module.

SymGetOptions
The SymGetOptions function returns the current options mask.

DWORD SymGetOptions(VOID);ParametersThis function has no parameters.Return ValuesThe SymGetOptions function always returns the current options mask. Zero is a valid value and
indicates that all options are turned off. The options values are masks that are combined using the
OR operator to form a valid options value. The valid mask values are:

Value Meaning

SYMOPT_CASE_INSENSITIVEAll symbol searches are insensitive to
case.

SYMOPT_UNDNAME All symbols are presented in
undecorated form.

SYMOPT_DEFERRED_LOADSSymbols are not loaded until a
reference is made requiring the
symbols be loaded. This is the fastest,
most efficient way to use the symbol
handler.

SYMOPT_NO_CPP All C++ decorated symbols containing
the symbol separator "::" are replaced
by "__". This option exists for
debuggers that cannot handle parsing
real C++ symbol names.

RemarksThe options value can be changed several times while IMAGEHLP is in use by an application.
The option change affects all future calls to the symbol handler.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

SymGetSearchPath
The SymGetSearchPath function copies the search path for the requested process into the
SearchPath buffer.

BOOL SymGetSearchPath(
IN HANDLE hProcess,
OUT LPSTR SearchPath,
IN DWORD SearchPathLength

);ParametershProcess
The process handle that was originally passed to SymInitialize.

SearchPath
A pointer to the buffer that receives the search path.

SearchPathLength
The length in bytes of the SearchPath buffer.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymGetSearchPath function copies the search path for the requested process into the
SearchPath buffer. If the function fails, the contents of the buffer are undefined.

SymGetSymFromAddr
The SymGetSymFromAddr function locates the symbol for a requested address.

BOOL SymGetSymFromAddr(
IN HANDLE hProcess,
IN DWORD Address,
OUT LPDWORD Displacement,
IN OUT PIMAGEHLP_SYMBOL Symbol

);ParametershProcess
The process handle that was originally passed to SymInitialize.

Address
The address for which a symbol is requested. The address does not have to be on a symbol
boundary. If the address comes after the beginning of a symbol and before the end of the
symbol (the beginning of the symbol plus the symbol size), the symbol is found.

Displacement
The displacement from the beginning of the symbol, or zero.

Symbol
A pointer to an IMAGEHLP_SYMBOL structure.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymGetSymFromAddr function locates the symbol for a requested address. The modules
are searched for the one the address belongs to. When the module is found, its symbol table is
searched for a match. When the symbol is found, the symbol information is copied into the Symbol
buffer provided by the caller. The caller must allocate the Symbol buffer properly and fill in the
required parameters in the IMAGEHLP_SYMBOL structure before calling the
SymGetSymFromAddr function.

SymGetSymFromName
The SymGetSymFromName function locates a symbol for the requested name.

BOOL SymGetSymFromName(
IN HANDLE hProcess,
IN LPSTR Name,
OUT PIMAGEHLP_SYMBOL Symbol

);ParametershProcess
The process handle that was originally passed to SymInitialize.

Name
The symbol name for which a symbol is requested.

Symbol
A pointer to an IMAGEHLP_SYMBOL structure.

Return ValueIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymGetSymFromName function is used to locate a symbol for the requested name. The
name can contain a module prefix that isolates the symbol search to a single module's symbol
table.

The module prefix is in the form of "module!". The "!" character is the delimiter between the
module name and the symbol name. If there is no module prefix, then the search is performed on
each module's symbol table in a linear manner, beginning with the first module that is loaded.

Using the module prefix is preferable for two reasons. First, the symbol search occurs much
faster. Second, when deferred symbol loading is turned on, the search causes symbols to be
loaded for each module that is searched. When the symbol is found, the symbol information is
copied into the Symbol buffer provided by the caller. The caller must allocate the Symbol buffer
properly and fill in the required parameters in the IMAGEHLP_SYMBOL structure before calling
the SymGetSymFromName function.

SymGetSymNext
The SymGetSymNext function retrieves the symbol information of the next symbol.

BOOL SymGetSymNext(
IN HANDLE hProcess,
IN OUT PIMAGEHLP_SYMBOL Symbol

);ParametershProcess
The process handle that was originally passed to SymInitialize.

Symbol
A pointer to an IMAGEHLP_SYMBOL structure.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymGetSymNext function requires that the IMAGEHLP_SYMBOL structure have valid data,
presumably obtained from a call to SymGetSymFromAddr or SymGetSymFromName. This
structure is filled in with the symbol information for the next symbol in sequence by virtual
address.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

SymGetSymPrev
The SymGetSymPrev function retrieves the symbol information of the previous symbol.

BOOL SymGetSymPrev(
IN HANDLE hProcess,
IN OUT PIMAGEHLP_SYMBOL Symbol

);ParametershProcess
The process handle that was originally passed to SymInitialize.

Symbol
A pointer to an IMAGEHLP_SYMBOL structure.

Return ValueIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymGetSymPrev function requires the IMAGEHLP_SYMBOL structure to have valid data,
presumably obtained from a call to SymGetSymFromAddr or SymGetSymFromName. This
structure is filled in with the symbol information for the previous symbol in sequence by virtual
address.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

SymLoadModule
BOOL SymLoadModule(
IN HANDLE hProcess,
IN HANDLE hFile,
IN LPSTR ImageName,
IN LPSTR ModuleName,
IN DWORD BaseOfDll,
IN DWORD SizeOfDll

);ParametershProcess
The process handle that was originally passed to SymInitialize.

hFile
The file handle for the executable image. This argument is used mostly by debuggers, where
the debugger passes the file handle obtained from a debug event. A value of NULL indicates
that the hFile is not used.

ImageName
The name of the executable image. This name can contain a partial path, a full path, or no
path at all. If the file cannot be located by the name provided, the symbol search path is used.

ModuleName
A shortcut name for the module. If the pointer value is NULL, IMAGEHLP creates a name
using the base name of the symbol file.

BaseOfDll
The load address of the module. If the value is zero, IMAGEHLP obtains the load address
from the symbol file. The load address contained in the symbol file is not necessarily the
actual load address. Debuggers and other applications having an actual load address should
use the real load address when calling this function.

SizeOfDll
The size of the module. If the value is zero, IMAGEHLP obtains the size from the symbol file.
The size contained in the symbol file is not necessarily the actual size. Debuggers and other
applications having an actual size should use the real size when calling this function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe symbol handler creates an entry for the module and if the deferred symbol loading option is
turned off, an attempt is made to load the symbols. If deferred symbol loading is enabled, the
module is marked as deferred and the symbols are not loaded until a reference is made to a
symbol in the module.

SymRegisterCallback
The SymRegisterCallback function lets an application register a callback function for use by the
symbol handler.

BOOL SymRegisterCallback(
IN DWORD UserOptions,
IN HANDLE hProcess,
IN PSYMBOL_REGISTERED_CALLBACK CallbackFunction,
IN PVOID UserContext

);ParametersUserOptions
hProcess

The process handle that was originally passed to SymInitialize.
CallbackFunction

A pointer to a callback function.
UserContext

A user-defined value or NULL. This value is simply passed through to the callback function.
Normally, this parameter is used by an application to pass a pointer to a data structure that
lets the callback function establish some type of context.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe SymRegisterCallback function lets an application register a callback function for use by the
symbol handler. The symbol handler calls the registered callback function when there is status or
progress information for the application.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

PSYMBOL_REGISTERED_CALLBACK
typedef BOOL (CALLBACK *PSYMBOL_REGISTERED_CALLBACK)(
HANDLE hProcess,
ULONG ActionCode,
PVOID CallbackData,
PVOID UserContext

);ParametershProcess
The process handle that was originally passed to SymInitialize.

ActionCode
The reason for the callback. The valid values are:
· CBA_DEFERRED_SYMBOL_LOAD_START
· CBA_DEFERRED_SYMBOL_LOAD_COMPLETE
· CBA_DEFERRED_SYMBOL_LOAD_FAILURE
· CBA_SYMBOLS_UNLOADED
· CBA_DUPLICATE_SYMBOL

CallbackData
A pointer to an action-specific data structure or NULL.

UserContext
The UserContext that is passed to SymRegisterCallback.

Return ValuesReturning the value TRUE indicates success.

Returning the value FALSE indicates failure.

The result of returning TRUE or FALSE depends on the reason for the call.RemarksThe calling application gets called through the registered callback function as a result of another
call to one of IMAGEHLP's symbol handler functions. The calling application must be prepared for
the possible side effects that this can cause. If the application has only one callback function that
is being used by multiple threads, then care may be necessary to synchronize some types of data
access while in the context of the callback function.

SymSetOptions
The SymSetOptions function sets the options mask.

DWORD SymSetOptions(
IN DWORD SymOptions

);ParametersSymOptions
The new options value. Zero is a valid value and indicates that all options are turned off. The
options values are masks that are combined using the OR operator to form a valid options
value. The valid mask values are:

Value Meaning
SYMOPT_CASE_INSENSITIVE All symbol searches are

insensitive to case.
SYMOPT_UNDNAME All symbols are presented in

undecorated form.
SYMOPT_DEFERRED_LOADS Symbols are not loaded until a

reference is made requiring the
symbols be loaded. This is the
fastest, most efficient way to use
the symbol handler.

SYMOPT_NO_CPP All C++ decorated symbols
containing the symbol separator
"::" are replaced by "__". This
option exists for debuggers that
cannot handle parsing real C++
symbol names.

Return ValuesThe SymSetOptions function always returns the current options mask.RemarksThe options value can be changed any number of times while IMAGEHLP is in use by an
application. The option change affects all future calls to the symbol handler.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

SymSetSearchPath
The SymSetSearchPath function sets the search path for the requested process.

BOOL SymSetSearchPath(
IN HANDLE hProcess,
IN LPSTR SearchPath

);ParametershProcess
The process handle that was originally passed to SymInitialize.

SearchPath
The search path. The string can contain multiple paths separated by a semicolon (;).

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe search path can be changed any number of times while IMAGEHLP is in use by an
application. The change affects all future calls to the symbol handler.

SymUnDName
The SymUnDName function undecorates a decorated symbol.

BOOL SymUnDName(
IN PIMAGEHLP_SYMBOL Symbol,
IN LPSTR UnDecName,
IN DWORD UnDecNameLength

);ParametersSymbol
The symbol for undecoration.

UnDecName
The buffer that contains the undecorated symbol name.

UnDecNameLength
The length in bytes of the UnDecName buffer.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe UnDecName buffer contains the undecorated symbol name. However, if the buffer is too
small, the name is truncated to UnDecNameLength length.

SymUnloadModule
BOOL SymUnloadModule(
IN HANDLE hProcess,
IN DWORD BaseOfDll

);ParametershProcess
The process handle that was originally passed to SymInitialize.

BaseOfDll
The base address of the module that is unloaded.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.

Image Integrity
The following functions manage the set of certificates in an image file. Routines are provided to
add, remove, and query certificates. There is also a function available for obtaining the byte
stream of an image file required to calculate a message digest of the image file. This is needed to
create signature certificates.

Every certificate in a file has an index which can change as certificates are removed. New
certificates will always be added "at the end" of the list of existing certificates. That is, they will be
assigned indices that are greater than any index currently in use. In general, an application should
not assume that a given certificate has the same index it had the last time it was referenced.

At the time of the release of Windows NT 4.0, full support for creating or verifying certificates was
not in place. Full support will be provided in a future release.

Unless otherwise noted, all the functions return TRUE on success and FALSE on failure. The
GetLastError function can be called for more detailed error information.

ImageGetDigestStream
[Now Supported on Windows NT]

The ImageGetDigestStream function returns the data to be digested from a given image file,
subject to the passed DigestLevel parameter.

BOOL ImageGetDigestStream(
IN HANDLE FileHandle,
IN DWORD DigestLevel,
IN PVOID Buffer,
IN OUT PDWORD BufferLength,
IN OUT PDWORD Context

);ParametersFileHandle
This supplies a handle to the image file to be modified. This handle must be opened for
FILE_READ_DATA access.

DigestLevel
This indicates which aspects of the image are to be included in the returned data stream. The
flag values are:
· DICE_PE_IMAGE_DIGEST_DEBUG_INFO
· DICE_PE_IMAGE_DIGEST_RESOURCES

Buffer
Provides a pointer to a buffer for the returned data.

BufferLength
On input, this supplies the size of the passed Buffer in bytes. On output, it returns the amount
of data remaining in the image. Thus, an application can pass in a BufferLength of zero to
determine exactly how much space is required to retrieve all the data in a single pass.

Context
Supplies and returns cross-call context information so sequential calls can return data blocks
without requiring the system to maintain state information about the operation in progress.
This parameter must be zero on the first call for accurate results.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageGetDigestStream function returns the data to be digested from a given image file,
subject to the passed DigestLevel parameter. The order of the bytes will be consistent for different
calls, which is required to ensure that the same message digest is always produced from the
retrieved byte stream.

To ensure cross-platform compatibility, all implementations of this function must behave in a
consistent manner with respect to the order in which the various parts of the image file are
returned.

Data should be returned in the following order:

1. Image (executable and static data) information.
2. Resource data.
3. Debug information.

If any of these are not specified, the remaining parts must be returned in the same order.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

ImageAddCertificate
[Now Supported on Windows NT]

The ImageAddCertificate function is used to add a DICE_CERTIFICATE to the specified file.

BOOL ImageAddCertificate(
IN HANDLE FileHandle,
IN PDICE_CERTIFICATE Certificate,
OUT PDWORD Index

);ParametersFileHandle
This supplies a handle to the image file to be modified. This handle must be opened for
FILE_READ_DATA and FILE_WRITE_DATA access.

Certificate
This supplies a buffer containing a DICE_CERTIFICATE header and all associated sections.
The Length field in the certificate header will be used to determine the length of this buffer.

Index
This returns the index of the newly added certificate.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageAddCertificate function adds a DICE_CERTIFICATE to the specified file. The
certificate is added at the end of the existing list of certificates and is assigned an index.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

ImageRemoveCertificate
[Now Supported on Windows NT]

The ImageRemoveCertificate function is used to remove the specified certificate from the given
file.

BOOL ImageRemoveCertificate(
IN HANDLE FileHandle,
IN DWORD Index

);ParametersFileHandle
This supplies a handle to the image file to be modified. This handle must be opened for
FILE_READ_DATA and FILE_WRITE_DATA access.

Index
This supplies the index of the certificate to be removed.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageRemoveCertificate function removes the specified certificate from the given file.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

ImageEnumerateCertificates
[Now Supported on Windows NT]

The ImageEnumerateCertificates function is used to return information about the certificates
currently contained in an image file.

BOOL ImageEnumerateCertificates(
IN HANDLE FileHandle,
IN DWORD TypeFilter,
OUT PDWORD CertificateCount,
IN OUT PDWORD Indices OPTIONAL,
IN OUT DWORD IndexCount OPTIONAL

);ParametersFileHandle
This supplies a handle to the image file to be examined. This handle must be opened for
FILE_READ_DATA access.

TypeFilter
This supplies a DICE certificate section type to be used as a filter when returning certificate
information. DICE_SECTION_TYPE_ANY should be passed for information on all section
types present in the image.

CertificateCount
This is filled in with the number of certificates in the image containing sections of the type
specified by the TypeFilter parameter. If none are found, this parameter will return zero .

Indices
This optionally provides a buffer to use to return an array of indices to the certificates
containing sections of the specified type. No ordering should be assumed for the index values,
nor are they guaranteed to be contiguous when DICE_SECTION_TYPE_ANY is queried.

IndexCount
This supplies the length in DWORDs of the Indices buffer. This parameter will be examined
whenever Indices is present. If CertificateCount is greater than IndexCount, Indices will be
filled in with the first IndexCount sections found in the image and an appropriate warning will
be returned.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageEnumerateCertificates function returns information about the certificates currently
contained in an image file. It has filtering capabilities which allow certificates containing sections of
any single type (or of any type) to be returned.

Once the indices of interesting certificates are discovered, they can be passed into
ImageGetCertificateData to obtain the actual bodies of the certificates.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

ImageGetCertificateData
[Now Supported on Windows NT]

The ImageGetCertificateData function is used to return a complete certificate from a file.

BOOL ImageGetCertificateData(
IN HANDLE FileHandle,
IN DWORD CertificateIndex,
OUT PDICE_CERTIFICATE Certificate,
IN OUT PDWORD RequiredLength

);ParametersFileHandle
This supplies a handle to the image file to be modified. This handle must be opened for
FILE_READ_DATA access.

CertificateIndex
This provides the index of the certificate to be returned within the specified file.

Certificate
This provides a buffer to receive the desired certificate data.

RequiredLength
On input, this supplies the length of the Certificate buffer in bytes. On return, it receives the
length of the requested certificate.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageGetCertificateData function returns a complete certificate from a file.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

ImageGetCertificateHeader
[Now Supported on Windows NT]

The ImageGetCertificateHeader function is used to return only the header part of the specified
DICE_CERTIFICATE up to, but not including, the section offset array.

BOOL ImageGetCertificateHeader(
IN HANDLE FileHandle,
IN DWORD CertificateIndex,
OUT PDICE_CERTIFICATE CertificateHeader

);ParametersFileHandle
This supplies a handle to the image file to be modified. This handle must be opened for
FILE_READ_DATA access.

CertificateIndex
This provides the index of the certificate whose header is to be returned.

CertificateHeader
This provides a buffer to receive the desired certificate header.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, then the return value is FALSE. To retrieve extended error information, call
GetLastError.RemarksThe ImageGetCertificateHeader function returns only the header part of the specified
DICE_CERTIFICATE up to, but not including, the section offset array.

Windows NT: This function is not available under Windows NT 3.51; it was introduced in
Windows NT 4.0.

Data Structures
This section describes all the data structures that are owned by IMAGEHLP. These are the
structures that are either returned through pointers or are passed to IMAGEHLP in function
parameters. IMAGEHLP references many other data structures which are not documented in this
specification. The documentation for these structures can be found in other specifications or in the
header files where they are defined.

LOADED_IMAGE
typedef struct _LOADED_IMAGE {LPSTR ModuleName;

HANDLE hFile;
PUCHAR MappedAddress;
PIMAGE_NT_HEADERS FileHeader;
PIMAGE_SECTION_HEADER LastRvaSection;
ULONG NumberOfSections;
PIMAGE_SECTION_HEADER Sections;
ULONG Characteristics;
BOOLEAN fSystemImage;
BOOLEAN fDOSImage;
LIST_ENTRY Links;
ULONG SizeOfImage;

} LOADED_IMAGE, *PLOADED_IMAGE;
MembersModuleName

The filename of the mapped file.
hFile

The open handle for the mapped file.
MappedAddress

The base address of the mapped file.
FileHeader

A pointer to the NT headers.
LastRvaSection

A pointer to the first COFF section header.
NumberOfSections

The count of the COFF section headers.
Sections

A pointer to the first COFF section header.
Characteristics

The image characteristics value.
fSystemImage

This value is TRUE if the image is a kernel mode executable image.
fDOSImage

This value is TRUE if the image is a 16-bit executable image.
Links

The list of loaded images.
SizeOfImage

The size of the image.

IMAGE_DEBUG_INFORMATION
typedef struct _IMAGE_DEBUG_INFORMATION {LIST_ENTRY List;

DWORD Size;
PVOID MappedBase;
USHORT Machine;
USHORT Characteristics;
DWORD CheckSum;
DWORD ImageBase;
DWORD SizeOfImage;
DWORD NumberOfSections;
PIMAGE_SECTION_HEADER Sections;
DWORD ExportedNamesSize;
LPSTR ExportedNames;
DWORD NumberOfFunctionTableEntries;
PIMAGE_FUNCTION_ENTRY FunctionTableEntries;
DWORD LowestFunctionStartingAddress;
DWORD HighestFunctionEndingAddress;
DWORD NumberOfFpoTableEntries;
PFPO_DATA FpoTableEntries;
DWORD SizeOfCoffSymbols;
PIMAGE_COFF_SYMBOLS_HEADER CoffSymbols;
DWORD SizeOfCodeViewSymbols;
PVOID CodeViewSymbols;
LPSTR ImageFilePath;
LPSTR ImageFileName;
LPSTR DebugFilePath;
DWORD TimeDateStamp;
BOOL RomImage;
PIMAGE_DEBUG_DIRECTORY DebugDirectory;
DWORD NumberOfDebugDirectories;
DWORD Reserved[3];

} IMAGE_DEBUG_INFORMATION, *PIMAGE_DEBUG_INFORMATION;
MembersList

The linked list pointers.
Size

The size of the memory allocated for the IMAGE_DEBUG_INFORMATION structure and all
debug information.

MappedBase
The base address of the image.

Machine
The machine type. (See WINNT.H for valid values.)

Characteristics
The characteristics of the image.

CheckSum
The checksum of the image.

ImageBase
The requested base address of the image.

SizeOfImage
The size of the image.

NumberOfSections
The number of COFF section headers.

Sections
A pointer to the first COFF section header.

ExportedNamesSize
The size in bytes of the ExportedNames.

ExportedNames
A pointer to a series of null-terminated strings that name all the functions exported from the
image.

NumberOfFunctionTableEntries
The number of entries contained in FunctionTableEntries.

FunctionTableEntries
A pointer to the first function table entry.

LowestFunctionStartingAddress
The lowest function table starting address.

HighestFunctionEndingAddress
The highest function table ending address.

NumberOfFpoTableEntries
The number of entries contained in FpoTableEntries.

FpoTableEntries
A pointer to the first FPO entry.

SizeOfCoffSymbols
The size of the COFF symbol table.

CoffSymbols
A pointer to the COFF symbol table.

SizeOfCodeViewSymbols
The size of the CodeView symbol table.

CodeViewSymbols
A pointer to the beginning of the CodeView symbol table.

ImageFilePath
The relative path to the image filename.

ImageFileName
The image filename.

DebugFilePath
The full path to the symbol file.

TimeDateStamp
The time stamp of the image. This represents the date and time the image was created by the
linker.

RomImage
This value is TRUE if the image is a ROM image.

DebugDirectory
A pointer to the first debug directory. (See WINNT.H for structure format.)

NumberOfDebugDirectories
The number of entries contained in DebugDirectories.

Reserved
The value in Reserved[0] contains the original executable image's section alignment. The
values in Reserved[1] and Reserved[2] are undefined and reserved for use by the operating
system.

ADDRESS
typedef struct _tagADDRESS {DWORD Offset;

WORD Segment;
ADDRESS_MODE Mode;

} ADDRESS, *LPADDRESS;
MembersOffset

This value contains either an offset into the Segment, or a 32-bit virtual address. The
interpretation of this value depends on the value contained in the Mode field.

Segment
The segment number. (Used only for 16-bit addressing.)

Mode
Addressing mode, valid values are:

AddrMode1616
AddrMode1632
AddrModeReal
AddrModeFlat

KDHELP
typedef struct _KDHELP {DWORD Thread;

DWORD ThCallbackStack;
DWORD NextCallback;
DWORD FramePointer;
DWORD KiCallUserMode;
DWORD KeUserCallbackDispatcher;

} KDHELP, *PKDHELP;
MembersThread

The address of the kernel thread object, as provided in the WAIT_STATE_CHANGE packet.
ThCallbackStack

The offset in the thread object to the pointer to the current callback frame in the kernel stack.
NextCallback

The address of the next callback frame.
FramePointer

The address of the saved frame pointer, if applicable.
KiCallUserMode

The address of the kernel function that calls out to user mode.
KeUserCallbackDispatcher

The address of the user mode dispatcher function.

STACKFRAME
typedef struct _tagSTACKFRAME {ADDRESS AddrPC;

ADDRESS AddrReturn;
ADDRESS AddrFrame;
ADDRESS AddrStack;
LPVOID FuncTableEntry;
DWORD Params[4];
BOOL Far;
BOOL Virtual;
DWORD Reserved[3];
KDHELP KdHelp;

} STACKFRAME, *LPSTACKFRAME;
MembersAddrPC

The program counter.
AddrReturn

The return address.
AddrFrame

The frame pointer.
AddrStack

The stack pointer.
FuncTableEntry

The pointer to pdata, fpo, or NULL.
Params

The possible arguments to the function.
Far

This member is TRUE if this is a WOW far call.
Virtual

This member is TRUE if this is a virtual frame.
Reserved

Used internally by the StackWalk function.
KdHelp

The helper data for walking kernel callback frames.

API_VERSION
typedef struct API_VERSION {USHORT MajorVersion;

USHORT MinorVersion;
USHORT Revision;
USHORT Reserved;

} API_VERSION, *LPAPI_VERSION;
MembersMajorVersion

The major version number.
MinorVersion

The minor version number.
Revision

The revision number.
Reserved

Reserved for use by the operating system.

IMAGEHLP_SYMBOL
typedef struct _IMAGEHLP_SYMBOL {DWORD SizeOfStruct;

DWORD Address;
DWORD Size;
DWORD Flags;
DWORD MaxNameLength;
CHAR Name[1];

} IMAGEHLP_SYMBOL, *PIMAGEHLP_SYMBOL;
MembersSizeOfStruct

The caller must set this to sizeof(IMAGEHLP_SYMBOL).
Address

The virtual address for the symbol.
Size

The size of the symbol. This value is a best guess and can be zero.
Flags

A mask containing extra information about the symbol.
#define SYMF_OMAP_GENERATED0x00000001
#define SYMF_OMAP_MODIFIED 0x00000002

MaxNameLength
The caller must set this value to the maximum length that the Name member can contain.
Because symbol names can vary in length, this data structure is allocated by the caller. This
member is used so IMAGEHLP knows how much memory is available for use by the symbol
name.

Name
This is a null-terminated ASCII string containing either the decorated or undecorated symbol
name. If the buffer is not large enough for the complete symbol, then the name is truncated to
MaxNameLength length.

IMAGEHLP_MODULE
typedef struct _IMAGEHLP_MODULE {DWORD SizeOfStruct;

DWORD BaseOfImage;
DWORD ImageSize;
DWORD TimeDateStamp;
DWORD CheckSum;
DWORD NumSyms;
SYM_TYPE SymType;
CHAR ModuleName[32];
CHAR ImageName[256];
CHAR LoadedImageName[256];

} IMAGEHLP_MODULE, *PIMAGEHLP_MODULE;
MembersSizeOfStruct

The caller must set this to sizeof(IMAGEHLP_MODULE).
BaseOfImage

The base virtual address where the image is loaded.
ImageSize

The size of the image.
TimeDateStamp

The date and time stamp value. This value is in ctime format.
CheckSum

The computed checksum of the image. This value can be zero.
NumSyms

The number of symbols in the symbol table.
SymType

The type of symbols that are loaded. These are the types:
Value Meaning
SymNone No symbols are loaded.
SymCoff COFF symbols.
SymCv CodeView symbols.
SymPdb PDB symbols. (Actually

CodeView stored in a PDB file.)
SymExport Symbols generated from a DLL's

export table.
SymDeferred IMAGEHLP has not yet attempted

to load symbols.

ModuleName
The module name. (Usually the filename without the extension.)

ImageName
The image name. The name may or may not contain a full path.

LoadedImageName
The full path and filename from which symbols were loaded.

IMAGEHLP_DEFERRED_SYMBOL_LOAD
typedef struct _IMAGEHLP_DEFERRED_SYMBOL_LOAD {DWORD SizeOfStruct;

DWORD BaseOfImage;
DWORD CheckSum;
DWORD TimeDateStamp;
CHAR FileName[MAX_PATH];

} IMAGEHLP_DEFERRED_SYMBOL_LOAD,
*PIMAGEHLP_DEFERRED_SYMBOL_LOAD;

MembersSizeOfStruct
The caller must set this to sizeof(IMAGEHLP_DEFERRED_SYMBOL_LOAD).

BaseOfImage
The base virtual address where the image is loaded.

CheckSum
The computed checksum of the image. This value can be zero.

TimeDateStamp
The date and time stamp value. This value is in ctime format.

FileName
The image name. The name may or may not contain a full path.

IMAGEHLP_DUPLICATE_SYMBOL
typedef struct _IMAGEHLP_DUPLICATE_SYMBOL {DWORD SizeOfStruct;

DWORD NumberOfDups;
PIMAGEHLP_SYMBOL Symbol;
ULONG SelectedSymbol;

} IMAGEHLP_DUPLICATE_SYMBOL, *PIMAGEHLP_DUPLICATE_SYMBOL;
MembersSizeOfStruct

The caller must set this to sizeof(IMAGEHLP_DUPLICATE_SYMBOL).
NumberOfDups

The number of duplicate symbols.
Symbol

A pointer to an array of symbols. There are NumberOfDups entries in the array.
SelectedSymbol

The index into the symbol array for the selected symbol.

Power ManagementThis overview describes the power management functions and messages, and explains how to
use them in applications and installable drivers.

About Power Management
The Windows operating system uses power management to reduce the power consumption of a
computer and the attached devices. Windows works in conjunction with the computer and its
devices to monitor system operation and shut down devices or the computer itself when idle. To
help applications and installable drivers take advantage of power management and to ensure that
no data is lost when a device or the computer is shut down, Windows provides functions and
messages that reveal the system power status and notify of power management events.

About System Power Status
System power status indicates the source of power for a computer, that is, whether it uses a
system battery or AC power. For computers that use batteries, the status also indicates how much
battery life remains and whether the battery is currently charging.

You can retrieve the system power status by using the GetSystemPowerStatus function. This
copies information about the power supply and battery status to a SYSTEM_POWER_STATUS
structure. This structure identifies whether the system has a battery, and if it does, whether the
battery is being used and the percentage of charge remaining.

Applications and installable drivers typically use the system power status to make decisions about
whether to continue operation. For example, an application that is beginning a lengthy operation
may check the status to determine whether enough battery power exists to complete the
operation.

If power is low, an application can request user intervention or request that the system to shut
itself down. You can suspend the operation of the system by using the SetSystemPowerState
function. This generates a power management event that, if approved by all applications and
drivers in the system, shuts the system down until the user restores power. Even if a computer
uses AC power, an application that determines that the system is idle and can request that the
system shut itself down to save power.

Power Management Events
A power management event is a change in either the system power status or the operational
mode of a device or the computer. Because these events can affect the operation of applications
and installable drivers and can lead to loss of data, Windows notifies all applications and
installable drivers by broadcasting a WM_POWERBROADCAST message for each event.

A system power status event occurs when there is a change in the power supply or in the system
battery status. For example, the system broadcasts a message whenever the user switches from
battery to AC power or vice versa. The system also broadcasts a message when remaining
battery power slips below 10%.

An operational mode event occurs when there is a change in power consumption, such as the
system shutting itself down or the user turning the system back on. Some changes in operational
mode can cause loss of data if applications and drivers do not prepare for them. Therefore, the
system broadcasts messages about these changes before they actually occur. For example, if the
system determines that it is idle, it broadcasts a message notifying applications and drivers that it
is about to suspend operation and shut itself down to save power. The applications and drivers
can prepare for this suspension by closing files and saving data that may otherwise be lost when
power is shut off.

The system has two ways to shut itself down. It can suspend operation or carry out critical
suspension. An application can also shut the system down by using the SetSystemPowerState
function to suspend operation.

When system operation is suspended, power to all devices is lost. The
WM_POWERBROADCAST messages, sent immediately before suspension, allow device drivers
to save the state of the device. For many devices (but not all), saving the state means the driver
can restore the state when power is eventually restored, allowing the device to continue operation
as if power was never lost.

When the system carries out a critical suspension, battery power is too low to let the computer
continue to run. Unlike for suspended operation, the system does not notify applications and
drivers before carrying out a critical suspension. This means data may be lost.

When system operation is restored after having been suspended, the system notifies all
applications and drivers. It also identifies how the system was previously shut down so that the
application or driver can take appropriate steps to restore its data and continue its own operation.

Power Messages
The system sends power messages to all applications and installable drivers whenever a power
management event occurs or whenever an application calls the SetSystemPowerState function
to suspend operation. The system sends these messages through the
WM_POWERBROADCAST message, setting the wParam parameter to the message type. For
example, the message type, PBT_APMPOWERSTATUSCHANGE, indicates a system power
status change message.

The system sends a PBT_APMQUERYSUSPEND message to request permission to suspend
system operation. The system expects each application and driver to determine whether the
requested event should occur and to return TRUE or BROADCAST_QUERY_DENY indicating
this decision. Any application or driver can deny the request and prevent it from occurring.

The system sends a PBT_APMSUSPEND message immediately before suspending operation.
This gives applications and drivers one last chance to prepare for the event before it occurs. In
many cases, the system sends these messages without requesting permission to do so. This
happens, for example, if an application forces suspension with the SetSystemPowerState
function.

The system sends the PBT_APMQUERYSUSPENDFAILED message whenever a requested
event is denied. These messages are intended to notify applications and drivers to continue
operation as usual.

The system sends the PBT_APMRESUMESUSPEND or PBT_APMRESUMECRITICAL message
when system operation has been restored.
Note The WM_POWER message, previously available to applications and drivers for use with
power management, is maintained for backward compatibility. All current applications and
installable drivers should use and process the WM_POWERBROADCAST message instead.

Power Management Reference
This section describes the power management functions, messages, and structures.

Power Management Functions
This section describes the power management functions.
GetSystemPowerStatus

SetSystemPowerState

Power Management Messages
This section descibes the power management messages.
PBT_APMBATTERYLOW
PBT_APMOEMEVENT
PBT_APMPOWERSTATUSCHANGE
PBT_APMQUERYSUSPEND
PBT_APMQUERYSUSPENDFAILED
PBT_APMRESUMECRITICAL
PBT_APMRESUMESUSPEND
PBT_APMSUSPEND
WM_POWERBROADCAST

Power Management Structure
This section describes the power management structure.

SYSTEM_POWER_STATUS

Processes and ThreadsAn application written for Microsoft® Windows® consists of one or more processes. A process, in
the simplest terms, is an executing program. One or more threads run in the context of the
process. A thread is the basic unit to which the operating system allocates processor time. A
thread can execute any part of the process code, including parts currently being executed by
another thread.

About Processes and Threads
Each process provides the resources needed to execute a program. A process has a virtual
address space, executable code, data, object handles, environment variables, a base priority, and
minimum and maximum working set sizes. Each process is started with a single thread, often
called the primary thread, but can create additional threads from any of its threads.

All threads of a process share its virtual address space and system resources. In addition, each
thread maintains exception handlers, a scheduling priority, and a set of structures the system will
use to save the thread context until it is scheduled. The thread context includes the thread's set of
machine registers, the kernel stack, a thread environment block, and a user stack in the address
space of the thread's process.

Windows NT and Windows 95 support preemptive multitasking, which creates the effect of
simultaneous execution of multiple threads from multiple processes. On a multiprocessor
computer, Windows NT can simultaneously execute as many threads as there are processors on
the computer.

This overview discusses the following topics:

· Multitasking
· Scheduling
· Multiple Threads
· Child Processes
· Process Working Set
· Fibers

Multitasking
A multitasking operating system divides the available processor time among the processes or
threads that need it. Windows is designed for preemptive multitasking; it allocates a processor
time slice to each thread it executes. The currently executing thread is suspended when its time
slice elapses, allowing another thread to run. When the system switches from one thread to
another, it saves the context of the preempted thread and restores the saved context of the next
thread in the queue.

The length of the time slice depends on the operating system and the processor. Because each
time slice is small (approximately 20 milliseconds), multiple threads appear to be executing at the
same time. This is actually the case on multiprocessor systems, where the executable threads are
distributed among the available processors. However, you must use caution when using multiple
threads in an application, because system performance can decrease if there are too many
threads.

Advantages of Multitasking
To the user, the advantage of multitasking is the ability to have several applications open and
working at the same time. For example, a user can edit a file with one application while another
application is recalculating a spreadsheet.

To the application developer, the advantage of multitasking is the ability to create applications that
use more than one process and to create processes that use more than one thread of execution.
For example, a process can have a user interface thread that manages interactions with the user
(keyboard and mouse input), and worker threads that perform other tasks while the user interface
thread waits for user input. If you give the user interface thread a higher priority, the application
will be more responsive to the user, while the worker threads use the processor efficiently during
the times when there is no user input.

When to Use Multitasking
There are two ways to implement multitasking: as a single process with multiple threads or as
multiple processes, each with one or more threads. An application can put each thread that
requires a private address space and private resources into its own process, to protect it from the
activities of other process threads.

A multithreaded process can manage mutually exclusive tasks with threads, such as providing a
user interface and performing background calculations. Creating a multithreaded process can also
be a convenient way to structure a program that performs several similar or identical tasks
concurrently. For example, a named pipe server can create a thread for each client process that
attaches to the pipe. This thread manages the communication between the server and the client.
Your process could use multiple threads to accomplish the following tasks:

· Manage input for multiple windows.
· Manage input from several communications devices.
· Distinguish tasks of varying priority. For example, a high-priority thread manages time-

critical tasks, and a low-priority thread performs other tasks.
· Allow the user interface to remain responsive, while allocating time to background tasks.

It is typically more efficient for an application to implement multitasking by creating a single,
multithreaded process, rather than creating multiple processes, for the following reasons:

· The system can perform a context switch more quickly for threads than processes,
because a process has more overhead than a thread does (the process context is larger than
the thread context).

· All threads of a process share the same address space and can access the process's
global variables, which can simplify communication between threads.

· All threads of a process can share open handles to resources, such as files and pipes.
The Win32 API also provides alternative methods that can be used in the place of multithreading.
The most significant of these methods are asynchronous input and output (I/O) and the ability to
wait for multiple events.

A single thread can initiate multiple time-consuming I/O requests that can run concurrently using
asynchronous I/O. Asynchronous I/O can be performed on files, pipes, and serial communication
devices. For more information, see Synchronization and Overlapped Input and Output.

A single thread can block its own execution while waiting for any one or all of several events to
occur. This is more efficient than using multiple threads, each waiting for a single event, and more
efficient than using a single thread that consumes processor time by continually checking for
events to occur. For more information, see Wait Functions.

Multitasking Considerations
Multitasking has resource requirements and potential conflicts to be considered when designing
your application. The resource requirements are as follows:

· The system consumes memory for the context information required by both processes
and threads. Therefore, the number of processes and threads that can be created is limited by
available memory.

· Keeping track of a large number of threads consumes significant processor time. If there
are too many threads, most of them will not be able to make significant progress. If most of
the current threads are in one process, threads in other processes are scheduled less
frequently.

Providing shared access to resources can create conflicts. To avoid them, you must synchronize
access to shared resources. This is true for system resources (such as communications ports),
resources shared by multiple processes (such as file handles), or the resources of a single
process (such as global variables) accessed by multiple threads. Failure to synchronize access
properly (in the same or in different processes) can lead to problems such as deadlock and race
conditions. The Win32 API provides a set of synchronization objects and functions you can use to
coordinate resource sharing among multiple threads. For more information about synchronization,
see Synchronizing Execution of Multiple Threads.

Scheduling
The system scheduler controls multitasking by determining which of the competing threads
receives the next processor time slice. The scheduler determines which thread runs next using its
scheduling priority.

This section discusses the following topics:

· Scheduling Priorities
· Context Switches
· Priority Boosts
· Priority Inversion
· Multiple Processors

Scheduling Priorities
Each thread is assigned a scheduling priority. The priority levels range from zero (lowest priority)
to 31 (highest priority). Only the zero-page thread can have a priority of zero. The zero-page
thread is a system thread.

The priority of each thread is determined by the following criteria:

· The priority class of its process
· The priority level of the thread within the priority class of its process

The priority class and priority level are combined to form the base priority of a thread.Priority ClassEach process belongs to one of the following priority classes:
IDLE_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS

REALTIME_PRIORITY_CLASS
By default, the priority class of a process is NORMAL_PRIORITY_CLASS. Use the
CreateProcess function to specify the priority class of a child process when you create it. Use
SetPriorityClass to change the priority class of a process and GetPriorityClass to determine the
current priority class of a process.

Processes that monitor the system, such as screen savers or applications that periodically update
a display, should use IDLE_PRIORITY_CLASS. This prevents the threads of this process, which
do not have high priority, from interfering with higher priority threads.

Use HIGH_PRIORITY_CLASS with care. If a thread runs at the highest priority level for extended
periods, other threads in the system will not get processor time. If several threads are set at high
priority at the same time, the threads lose their effectiveness. The high-priority class should be
reserved for threads that must respond to time-critical events. If your application performs one
task that requires the high-priority class while the rest of its tasks are normal priority, use
SetPriorityClass to raise the priority class of the application temporarily; then reduce it after the
time-critical task has been completed. Another strategy is to create a high-priority process that
has all of its threads blocked most of the time, awakening threads only when critical tasks are
needed. The important point is that a high-priority thread should execute for a brief time, and only
when it has time-critical work to perform.

You should almost never use REALTIME_PRIORITY_CLASS, because this interrupts system
threads that manage mouse input, keyboard input, and background disk flushing. This class can
be appropriate for applications that "talk" directly to hardware or that perform brief tasks that
should have limited interruptions.Priority LevelThe following are priority levels within each priority class

THREAD_PRIORITY_IDLE
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_TIME_CRITICAL
All threads are created using THREAD_PRIORITY_NORMAL. This means that the thread priority
is the same as the process priority class. After you create a thread, use the SetThreadPriority
function to adjust its priority relative to other threads in the process.

A typical strategy is to use THREAD_PRIORITY_ABOVE_NORMAL or
THREAD_PRIORITY_HIGHEST for the process's input thread, to ensure that the application is
responsive to the user. Background threads, particularly those that are processor intensive, can
be set to THREAD_PRIORITY_BELOW_NORMAL or THREAD_PRIORITY_LOWEST, to ensure
that they can be preempted when necessary. However, if you have a thread waiting for another
thread with a lower priority to complete some task, be sure to block the execution of the waiting
high-priority thread. To do this, use a wait function, critical section, or the Sleep function,
SleepEx, or SwitchToThread function. This is preferable to having the thread execute a loop.
Otherwise, the process may become deadlocked, because the thread with lower priority is never
scheduled.

To determine the current priority level of a thread, use the GetThreadPriority function.Base PriorityThe priority level of a thread is determined by both the priority class of its process and its priority
level. The priority class and priority level are combined to form the base priority of each thread.

The following table shows the base priority levels for combinations of priority class and priority
value.

Process Priority Class Thread Priority Level

1IDLE_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS

THREAD_PRIORITY_IDLE

2IDLE_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
3IDLE_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
4IDLE_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
5Background
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_LOWEST

IDLE_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
6Background
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_BELOW_NORMAL

IDLE_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
7Foreground
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_LOWEST

Background
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_NORMAL

8Foreground
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_BELOW_NORMAL

NORMAL_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
9Foreground
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_NORMAL

NORMAL_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
10Foreground

NORMAL_PRIORITY_CLASS
THREAD_PRIORITY_ABOVE_NORMAL

11HIGH_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
Foreground
NORMAL_PRIORITY_CLASS

THREAD_PRIORITY_HIGHEST

12HIGH_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
13HIGH_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
14HIGH_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
15IDLE_PRIORITY_CLASS,

NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS

THREAD_PRIORITY_TIME_CRITICAL

HIGH_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
16REALTIME_PRIORITY_CLASS THREAD_PRIORITY_IDLE
22REALTIME_PRIORITY_CLASS THREAD_PRIORITY_LOWEST
23REALTIME_PRIORITY_CLASS THREAD_PRIORITY_BELOW_NORMAL
24REALTIME_PRIORITY_CLASS THREAD_PRIORITY_NORMAL
25REALTIME_PRIORITY_CLASS THREAD_PRIORITY_ABOVE_NORMAL
26REALTIME_PRIORITY_CLASS THREAD_PRIORITY_HIGHEST
31REALTIME_PRIORITY_CLASS THREAD_PRIORITY_TIME_CRITICAL

Context Switches
The scheduler maintains a queue of executable threads for each priority level. These are known
as ready threads. When a processor becomes available, the system performs a context switch.
The steps in a context switch are:

1. Save the context of the thread that just finished executing.
2. Place the thread that just finished executing at the end of the queue for its priority.
3. Find the highest priority queue that contains ready threads.
4. Remove the thread at the head of the queue, load its context, and execute it.

The following classes of threads are not ready threads.

· Threads created with the CREATE_SUSPENDED flag
· Threads halted during execution with the SuspendThread or SwitchToThread function
· Threads waiting for a synchronization object or input.

Until threads that are suspended or blocked become ready to run, the scheduler does not allocate
any processor time to them, regardless of their priority.

The most common reasons for a context switch are:

· The time slice has elapsed.
· A thread with a higher priority has become ready to run.
· A running thread needs to wait.

When a running thread needs to wait, it relinquishes the remainder of its time slice.

Priority Boosts
Each thread has a dynamic priority. This is the priority the scheduler uses to determine which
thread to execute. Initially, a thread's dynamic priority is the same as its base priority. The system
can boost and lower the dynamic priority, to ensure that it is responsive and that no threads are
starved for processor time. The system does not boost the priority of threads with a base priority
level between 16 and 31. Only threads with a base priority between 0 and 15 receive dynamic
priority boosts.

The system boosts the dynamic priority of a thread to enhance its responsiveness as follows.

· When a process that uses NORMAL_PRIORITY_CLASS is brought to the foreground, the
scheduler boosts the priority class of the process associated with the foreground window, so
that it is greater than or equal to the priority class of any background processes. The priority
class returns to its original setting when the process is no longer in the foreground.
Windows NT: The user can control the boosting of processes that use
NORMAL_PRIORITY_CLASS through the System control panel application.

· When a window receives input, such as timer messages, mouse messages, or keyboard
input, the scheduler boosts the priority of the thread that owns the window.

· When the wait conditions for a blocked thread are satisfied, the scheduler boosts the
priority of the thread. For example, when a wait operation associated with disk or keyboard I/
O finishes, the thread receives a priority boost.
Windows NT: You can disable the priority-boosting feature by calling the
SetProcessPriorityBoost or SetThreadPriorityBoost function. To determine whether this
feature has been disabled, call the GetProcessPriorityBoost or GetThreadPriorityBoost
function.

After raising a thread's dynamic priority, the scheduler reduces that priority by one level each time
the thread completes a time slice, until the thread drops back to its base priority. A thread's
dynamic priority is never less than its base priority.

Priority Inversion
Priority inversion occurs when two or more threads with different priorities are in contention to be
scheduled. Consider a simple case with three threads: thread 1, thread 2, and thread 3. Thread 1
is high priority and becomes ready to be scheduled. Thread 2, a low-priority thread, is executing
code in a critical section. Thread 1, the high-priority thread, begins waiting for a shared resource
from thread 2. Thread 3 has medium priority. Thread 3 receives all the processor time, because
the high-priority thread (thread 1) is waiting for shared resources from the low-priority thread
(thread 2). Thread 2 won't leave the critical section, because does not have the highest priority
and won't be scheduled.

Windows NT: The scheduler solves this problem by randomly boosting the priority of the ready
threads (in this case, the low priority lock-holders). The low priority threads run long enough to exit
the critical section, and the high- priority thread can enter the critical section. If the low-priority
thread doesn't get enough CPU time to exit the critical section the first time, it will get another
chance during the next round of scheduling.

Windows 95: If a high-priority thread is dependent on a low-priority thread that will not be allowed
to run because a medium priority thread is getting all of the CPU time, the system recognizes that
the high-priority thread is dependent on the low-priority thread. It will boost the low-priority thread's
priority up to the priority of the high-priority thread. This will allow the thread that formerly had the
lowest priority to run and release the high-priority thread that was waiting for it.

Multiple Processors
Windows NT uses a symmetric multiprocessing (SMP) model to schedule threads on multiple
processors. With this model, any thread can be assigned to any processor. Therefore, scheduling
threads on a computer with multiple processors is similar to scheduling threads on a computer
with a single processor. However, the scheduler has a pool of processors, so that it can schedule
threads to run concurrently. Scheduling is still determined by thread priority. However, on a
multiprocessor computer, you can also affect scheduling by setting thread affinity and thread ideal
processor, as discussed here.Thread AffinityThread affinity forces a thread to run on a specific subset of processors. Use the
SetProcessAffinityMask function to specify thread affinity for all threads of the process. To set
the thread affinity for a single thread, use the SetThreadAffinityMask function. The thread affinity
must be a subset of the process affinity. You can obtain the current process affinity by calling the
GetProcessAffinityMask function.

Setting thread affinity should generally be avoided, because it can interfere with the scheduler's
ability to schedule threads effectively across processors. This can decrease the performance
gains produced by parallel processing. An appropriate use of thread affinity is testing each
processor.Thread Ideal ProcessorWhen you specify a thread ideal processor, the scheduler runs the thread on the specified
processor when possible. Use the SetThreadIdealProcessor function to specify a preferred
processor for a thread. This does not guarantee that the ideal processor will be chosen, but
provides a useful hint to the scheduler.

Multiple Threads
Each process is started with a single thread, but can create additional threads from any of its
threads.

This section discusses the following topics:

· Creating Threads
· Thread Handles and Identifiers
· Suspending Thread Execution
· Synchronizing Execution of Multiple Threads
· Multiple Threads and GDI Objects
· Thread Local Storage
· Creating Windows in Threads
· Terminating a Thread
· Thread Times

Creating Threads
The CreateThread function creates a new thread for a process. The creating thread must specify
the starting address of the code that the new thread is to execute. Typically, the starting address
is the name of a function defined in the program code. This function takes a single parameter and
returns a DWORD value. A process can have multiple threads simultaneously executing the same
function.

The following example demonstrates how to create a new thread that executes the locally defined
function, ThreadFunc.DWORD WINAPI ThreadFunc(LPVOID lpParam)
{

char szMsg[80];
wsprintf(szMsg, "ThreadFunc: Parameter = %d\n", *lpParam);
MessageBox(NULL, szMsg, "Thread created.", MB_OK);
return 0;

}
VOID main(VOID)
{

DWORD dwThreadId, dwThrdParam = 1;
HANDLE hThread;
hThread = CreateThread(
NULL, // no security attributes
0, // use default stack size
ThreadFunc, // thread function
&dwThrdParam, // argument to thread function
0, // use default creation flags
&dwThreadId); // returns the thread identifier
// Check the return value for success.
if (hThread == NULL)

ErrorExit("CreateThread failed.");
CloseHandle(hThread);

}For simplicity, this example passes a pointer to a DWORD value as an argument to the thread
function. This could be a pointer to any type of data or structure, or it could be omitted altogether
by passing a NULL pointer and deleting the references to the parameter in ThreadFunc.

It is risky to pass the address of a local variable if the creating thread exits before the new thread,
because the pointer becomes invalid. Instead, either pass a pointer to dynamically allocated
memory or make the creating thread wait for the new thread to terminate. Data can also be
passed from the creating thread to the new thread using global variables. With global variables, it
is usually necessary to synchronize access by multiple threads. For more information about
synchronization, see Synchronizing Execution of Multiple Threads.

In processes where a thread might create multiple threads to execute the same code, it is
inconvenient to use global variables. For example, a process that enables the user to open
several files at the same time can create a new thread for each file, with each of the threads
executing the same thread function. The creating thread can pass the unique information (such as
the filename) required by each instance of the thread function as an argument. You cannot use a
single global variable for this purpose, but you could use a dynamically allocated string buffer.

The creating thread can use the arguments to CreateThread to specify the following:

· The security attributes for the handle of the new thread. These security attributes include
an inheritance flag that determines whether the handle can be inherited by child processes.
The security attributes also include a security descriptor, which the system uses to perform
access checks on all subsequent uses of the thread's handle before access is granted.

· The initial stack size of the new thread. The thread's stack is allocated automatically in the
memory space of the process; the system increases the stack as needed and frees it when
the thread terminates.

· A creation flag that enables you to create the thread in a suspended state. When
suspended, the thread does not run until the ResumeThread function is called.

Windows NT: You can also create a thread by calling the CreateRemoteThread function. This
function is used by debugger processes to create a thread that runs in the address space of the
process being debugged.

Thread Handles and Identifiers
When a new thread is created by the CreateThread or CreateRemoteThread function, a handle
of the thread is returned. By default, this handle has full access rights, and ¾ subject to security
access checking ¾ can be used in any of the functions that accept a thread handle. This handle
can be inherited by child processes, depending on the inheritance flag specified when it is
created. The handle can be duplicated by DuplicateHandle, which enables you to create a thread
handle with a subset of the access rights. The handle is valid until closed, even after the thread it
represents has been terminated.

The CreateThread and CreateRemoteThread functions also return an identifier that uniquely
identifies the thread throughout the system. A thread can use the GetCurrentThreadId function to
get its own thread identifier. The identifiers are valid from the time the thread is created until the
thread has been terminated.

The Win32 API does not provide a way to get the thread handle from the thread identifier. If the
handles were made available this way, the owning process could fail because another process
unexpectedly performed an operation on one of its threads, such as suspending it, resuming it,
adjusting its priority, or terminating it. Instead, you must request the handle from the thread
creator or the thread itself.

A thread can use the GetCurrentThread function to retrieve a pseudo handle to its own thread
object. This pseudo handle is valid only for the calling process; it cannot be inherited or duplicated
for use by other processes. To get the real handle to the thread, given a pseudo handle, use the
DuplicateHandle function.

Suspending Thread Execution
A thread can suspend and resume the execution of another thread using the SuspendThread
and ResumeThread functions. While a thread is suspended, it is not scheduled for time on the
processor.

The SuspendThread function is not particularly useful for synchronization because it does not
control the point in the code at which the thread's execution is suspended. However, you might
want to suspend a thread in a situation where you are waiting for user input that could cancel the
work the thread is performing. If the user input cancels the work, have the thread exit; otherwise,
call ResumeThread.

If a thread is created in a suspended state (with the CREATE_SUSPENDED flag), it does not
begin to execute until another thread calls ResumeThread with a handle to the suspended
thread. This can be useful for initializing the thread's state before it begins to execute. See Using
a Multithreaded Multiple Document Interface Application for an example that uses this method to
modify the thread's priority before it can run. Suspending a thread at creation can be useful for
one-time synchronization, because this ensures that the suspended thread will execute the
starting point of its code when you call ResumeThread.

A thread can temporarily yield its execution for a specified interval by calling the Sleep or
SleepEx functions This is useful particularly in cases where the thread responds to user
interaction, because it can delay execution long enough to allow users to observe the results of
their actions. During the sleep interval, the thread is not scheduled for time on the processor.

The SwitchToThread function is similar to Sleep and SleepEx, except that you cannot specify
the interval. SwitchToThread allows the thread to give up its time slice.

Synchronizing Execution of Multiple Threads
To avoid race conditions and deadlocks, it is necessary to synchronize access by multiple threads
to shared resources. Synchronization is also necessary to ensure that interdependent code is
executed in the proper sequence.

The Win32 API provides a number of objects whose handles can be used to synchronize multiple
threads. These objects include:

· Console input buffers
· Events
· Mutexes
· Processes
· Semaphores
· Threads
· Timers

The state of each of these objects is either signaled or not signaled. When you specify a handle to
any of these objects in a call to one of the wait functions, the execution of the calling thread is
blocked until the state of the specified object becomes signaled.

Some of these objects are useful in blocking a thread until some event occurs. For example, a
console input buffer handle is signaled when there is unread input, such as a keystroke or mouse
button click. Process and thread handles are signaled when the process or thread terminates.
This allows a process, for example, to create a child process and then block its own execution
until the new process has terminated.

Other objects are useful in protecting shared resources from simultaneous access. For example,
multiple threads can each have a handle to a mutex object. Before accessing a shared resource,
the threads must call one of the wait functions to wait for the state of the mutex to be signaled.
When the mutex becomes signaled, only one waiting thread is released to access the resource.
The state of the mutex is immediately reset to not signaled so any other waiting threads remain
blocked. When the thread is finished with the resource, it must set the state of the mutex to
signaled to allow other threads to access the resource.

For the threads of a single process, critical-section objects provide a more efficient means of
synchronization than mutexes. A critical section is used like a mutex to enable one thread at a
time to use the protected resource. A thread can use the EnterCriticalSection function to request
ownership of a critical section. If it is already owned by another thread, the requesting thread is
blocked. A thread can use the TryEnterCriticalSection function to request ownership of a critical
section, without blocking upon failure to obtain the critical section. After it receives ownership, the
thread is free to use the protected resource. The execution of the other threads of the process is
not affected unless they attempt to enter the same critical section.

The WaitForInputIdle function makes a thread wait until a specified process is initialized and
waiting for user input with no input pending. Calling WaitForInputIdle can be useful for
synchronizing parent and child processes, because CreateProcess returns without waiting for the
child process to complete its initialization.

For more information, see Synchronization.

Multiple Threads and GDI Objects
To enhance performance, access to graphics device interface (GDI) objects (such as palettes,
device contexts, regions, and the like) is not serialized. This creates a potential danger for
processes that have multiple threads sharing these objects. For example, if one thread deletes a
GDI object while another thread is using it, the results are unpredictable. This danger can be
avoided simply by not sharing GDI objects. If sharing is unavoidable (or desirable), the application
must provide its own mechanisms for synchronizing access. For more information about
synchronizing access, see Synchronizing Execution of Multiple Threads.

Thread Local Storage
All threads of a process share the virtual address space and the global variables of that process.
The local variables of a thread function are local to each thread that runs the function. However,
the static or global variables used by that function have the same value for all threads. With thread
local storage (TLS), you can create a unique copy of a variable for each thread. Using TLS, one
thread allocates an index that can be used by any thread of the process to retrieve its unique
copy.

Use the following steps to implement TLS:

1. Use the TlsAlloc function during process or dynamic-link library (DLL) initialization to
allocate a TLS index.

2. For each thread that needs to use the TLS index, allocate dynamic storage, then use the
TlsSetValue function to associate the index with a pointer to the dynamic storage.

3. When you need a thread to access its storage, specify the TLS index in a call to the
TlsGetValue function to retrieve the pointer.

4. When each thread no longer needs the dynamic storage that it has associated with a TLS
index, it must free the index. When all threads have finished using a TLS index, use the
TlsFree function to free the index.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes available
in each process. This minimum is guaranteed to be at least 64 for all systems.

It is ideal to use TLS in a DLL. Perform the initial TLS operations in the DllEntryPoint function in
the context of the process or thread attaching to the DLL. When a new process attaches to the
DLL, call TlsAlloc in the entry-point function to allocate a TLS index for that process. Then store
the TLS index in a global variable that is private to each attached process. When a new thread
attaches to the DLL, allocate dynamic memory for that thread in the entry-point function, and use
TlsSetValue with the TLS index from TlsAlloc to save private data to the index. Then you can
use the TLS index in a call to TlsGetValue to access the private data for the calling thread from
within any function in the DLL. When a process detaches from the DLL, call TlsFree.

For an example illustrating the use of thread local storage, see Using Thread Local Storage.

Creating Windows in Threads
Any thread can create a window. The thread that creates the window owns the window and its
associated message queue. Therefore, the thread must provide a message loop to process the
messages in its message queue. In addition, you must use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx in that thread, rather than the other wait functions, so that it can
process messages. Otherwise, the system can become deadlocked when the thread is sent a
message while it is waiting.

The AttachThreadInput function can be used to allow a set of threads to share the same input
state. By sharing input state, the threads share their concept of the active window. By doing this,
one thread can always activate another thread's window. This function is also useful for sharing
focus state, mouse capture state, keyboard state, and window Z-order state among windows
created by different threads whose input state is shared.

Terminating a Thread
A thread executes until one of the following events occurs:

· The thread calls the ExitThread function.
· Any thread of the process calls the ExitProcess function.
· The thread function returns.
· Any thread calls the TerminateThread function with a handle to the thread.
· Any thread calls the TerminateProcess function with a handle to the process.

The GetExitCodeThread function returns the termination status of a thread. While a thread is
executing, its termination status is STILL_ACTIVE. When a thread terminates, its termination
status changes from STILL_ACTIVE to the exit code of the thread. The exit code is either the
value specified in the call to ExitThread, ExitProcess, TerminateThread, or TerminateProcess,
or the value returned by the thread function.

When a thread terminates, the state of the thread object changes to signaled, releasing any other
threads that had been waiting for the thread to terminate. For more about synchronization, see
Synchronizing Execution of Multiple Threads.

If a thread is terminated by ExitThread, the system calls the entry-point function of each attached
DLL with a value indicating that the thread is detaching from the DLL (unless you call the
DisableThreadLibraryCalls function). If a thread is terminated by ExitProcess, the DLL entry-
point functions are invoked once, to indicate that the process is detaching. DLLs are not notified
when a thread is terminated by TerminateThread or TerminateProcess. For more information
about DLLs, see Dynamic-Link Libraries.

Warning The TerminateThread and TerminateProcess functions should be used only in extreme
circumstances, since they do not allow threads to clean up, do not notify attached DLLs, and do
not free the initial stack. The following steps provide a better solution:

· Create an event object using the CreateEvent function.
· Create the threads.
· Each thread monitors the event state by calling the WaitForSingleObject function. Use a

wait time-out interval of zero.
· Each thread terminates its own execution when the event is set to the signaled state

(WaitForSingleObject returns WAIT_OBJECT_0).

Thread Times
Windows NT only: The GetThreadTimes function obtains timing information for a thread. It
returns the thread creation time, how much time the thread has been executing in kernel mode,
and how much time the thread has been executing in user mode. These times do not include time
spent executing system threads or waiting in a suspended or blocked state. If the thread has
exited, GetThreadTimes returns the thread exit time.

Child Processes
A child process is a process that is created by another process, called the parent process.

This section discusses the following topics:

· Creating Processes
· Setting Window Properties Using STARTUPINFO
· Process Handles and Identifiers
· Obtaining Additional Process Information
· Inheritance
· Environment Variables
· Terminating a Process
· Process Times

Creating Processes
The CreateProcess function creates a new process, which runs independently of the creating
process. However, for simplicity, the relationship is referred to as a parent-child relationship.

The following code fragment demonstrates how to create a process.void main(VOID)
{

STARTUPINFO si;
PROCESS_INFORMATION pi;
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
// Start the child process.
if(!CreateProcess(NULL, // No module name (use command line).
"MyChildProcess", // Command line.
NULL, // Process handle not inheritable.
NULL, // Thread handle not inheritable.
FALSE, // Set handle inheritance to FALSE.
0, // No creation flags.
NULL, // Use parent's environment block.
NULL, // Use parent's starting directory.
&si, // Pointer to STARTUPINFO structure.
&pi) // Pointer to PROCESS_INFORMATION structure.
)
ErrorExit("CreateProcess failed.");
// Wait until child process exits.
WaitForSingleObject(pi.hProcess, INFINITE);
// Close process and thread handles.
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

}If CreateProcess succeeds, it returns a PROCESS_INFORMATION structure containing handles
and identifiers for the new process and its primary thread. The thread and process handles are
created with full access rights, although access can be restricted if you specify security
descriptors. When you no longer need these handles, close them by using the CloseHandle
function.

You can also create a process using the CreateProcessAsUser function. This function allows
you to specify the security context of the user account in which the process will execute.

Setting Window Properties Using STARTUPINFO
A parent process can specify properties associated with the main window of its child process. The
CreateProcess function takes a pointer to a STARTUPINFO structure as one of its parameters.
Use the members of this structure to specify characteristics of the child process's main window.
The dwFlags member contains a bit field that determines which other members of the structure
are used. This allows you to specify values for any subset of the window properties. The system
uses default values for the properties you do not specify. The dwFlags member can also force a
feedback cursor to be displayed during the initialization of the new process.

For GUI processes, the STARTUPINFO structure specifies the default values to be used the first
time the new process calls the CreateWindow and ShowWindow functions to create and display
an overlapped window. The following default values can be specified:

· The width and height, in pixels, of the window created by CreateWindow.
· The location, in screen coordinates of the window created by CreateWindow.
· The nCmdShow parameter of ShowWindow.

For console processes, use the STARTUPINFO structure to specify window properties only when
creating a new console (either using CreateProcess with CREATE_NEW_CONSOLE or with the
AllocConsole function). The STARTUPINFO structure can be used to specify the following
console window properties:

· The size of the new console window, in character cells.
· The location of the new console window, in screen coordinates.
· The size, in character cells, of the new console's screen buffer.
· The text and background color attributes of the new console's screen buffer.
· The title of the new console's window.

Process Handles and Identifiers
When a new process is created by the CreateProcess function, handles of the new process and
its primary thread are returned. These handles are created with full access rights, and ¾ subject
to security access checking ¾ can be used in any of the functions that accept thread or process
handles. These handles can be inherited by child processes, depending on the inheritance flag
specified when they are created. The handles are valid until closed, even after the process or
thread they represent has been terminated.

The CreateProcess function also returns an identifier that uniquely identifies the process
throughout the system. A process can use the GetCurrentProcessId function to get its own
process identifier. The identifier is valid from the time the process is created until the process has
been terminated.

If you have a process identifier, you can get the process handle by calling the OpenProcess
function. OpenProcess enables you to specify the handle's access rights and whether it can be
inherited.

A process can use the GetCurrentProcess function to retrieve a pseudo handle to its own
process object. This pseudo handle is valid only for the calling process; it cannot be inherited or
duplicated for use by other processes. To get the real handle to the process, call the
DuplicateHandle function.

Obtaining Additional Process Information
The Win32 API provides functions for obtaining information about processes. Some of these
functions can be used only for the calling process, because they do not take a process handle as
a parameter. You can use functions that take a process handle to obtain information about other
processes.

· To obtain the command-line string for the current process, use the GetCommandLine
function.

· To parse a Unicode command-line string obtained from the Unicode version of
GetCommandLine, use the CommandLineToArgvW function.

· To retrieve the STARTUPINFO structure specified when the current process was created,
use the GetStartupInfo function.

· To obtain the version information from the executable header, use the
GetProcessVersion function.

· To obtain the full path and filename for the executable file containing the process code,
use the GetModuleFileName function.

· To determine whether a process is being debugged, use the IsDebuggerPresent
function.

Inheritance
A child process can inherit several properties and resources from its parent process. You can also
prevent a child process from inheriting properties from its parent process. The following can be
inherited:

· Open handles returned by the CreateFile function. This includes handles to files, console
input buffers, console screen buffers, named pipes, serial communication devices, and
mailslots.

· Open handles to process, thread, mutex, event, semaphore, named-pipe, anonymous-
pipe, and file-mapping objects.

· Environment variables.
· The current directory.
· The console, unless the process is detached or a new console is created. A child console

process also inherits the parent's standard handles, as well as access to the input buffer and
the active screen buffer.

The child process does not inherit the following:

· Priority class.
· Handles returned by LocalAlloc, GlobalAlloc, HeapCreate, and HeapAlloc.
· Pseudo handles, as in the handles returned by the GetCurrentProcess or

GetCurrentThread function. These handles are valid only for the calling process.
· DLL module handles returned by the LoadLibrary function.
· GDI or USER handles, such as HBITMAP or HMENU.Inheriting HandlesTo cause a handle to be inherited, you must do two things:

· Specify that the handle is to be inherited when you create, open, or duplicate the handle.
· Specify that inheritable handles are to be inherited when you call the CreateProcess

function.
This allows a child process to inherit some of its parent's handles, but not inherit others. For
example, creation functions such as CreateProcess and CreateFile take a security attributes
argument that determines whether the handle can be inherited. Open functions such as
OpenMutex and OpenEvent take a handle inheritance flag that determines whether the handle
can be inherited. The DuplicateHandle function takes a handle inheritance flag that determines
whether the handle can be inherited.

When a child process is created, the fInheritHandles parameter of CreateProcess determines
whether the inheritable handles of the parent process are inherited by the child process. An
inherited handle refers to the same object in the child process as it does in the parent process. It
also has the same value and access privileges. Therefore, when one process changes the state
of the object, the change affects both processes. To use a handle, the child process must retrieve
the handle value and "know" the object to which it refers. Usually, the parent process
communicates this information to the child process through its command line, environment block,
or some form of interprocess communication.

The DuplicateHandle function is useful if a process has an inheritable open handle that you do
not want to be inherited by the child process. In this case, use DuplicateHandle to open a
duplicate of the handle that cannot be inherited, then use the CloseHandle function to close the
inheritable handle. You can also use the DuplicateHandle function to open an inheritable
duplicate of a handle that cannot be inherited.Inheriting Environment VariablesA child process inherits the environment variables of its parent process by default. However,
CreateProcess enables the parent process to specify a different block of environment variables.
For more information, see Environment Variables.Inheriting the Current DirectoryThe GetCurrentDirectory function retrieves the current directory of the calling process. A child
process inherits the current directory of its parent process by default. However, CreateProcess
enables the parent process to specify a different current directory for the child process. To change
the current directory of the calling process, use the SetCurrentDirectory function.

Environment Variables
Every process has an environment block that contains a set of environment variables and their
values. The command processor provides the set command to display its environment block or to
create new environment variables. Programs started by the command processor inherit the
command processor's environment variables.

By default, a child process inherits the environment variables of its parent process. However, you
can specify a different environment for the child process by creating a new environment block and
passing a pointer to it as a parameter to the CreateProcess function.

The GetEnvironmentStrings function returns a pointer to the environment block of the calling
process. This should be treated as a read-only block; do not modify it directly. Instead, use the
SetEnvironmentVariable function to change an environment variable. When you are finished
with the environment block obtained from GetEnvironmentStrings, call the
FreeEnvironmentStrings function to free the block.

The GetEnvironmentVariable function determines whether a specified variable is defined in the
environment of the calling process, and, if so, what its value is.

For more information, see the examples in Changing Environment Variables.

Terminating a Process
A process executes until one of the following events occurs:

· Any thread of the process calls the ExitProcess function. This terminates all threads of
the process.

· The primary thread of the process returns. The primary thread can avoid terminating other
threads by explicitly calling ExitThread before it returns. One of the remaining threads can
still call ExitProcess to ensure that all threads are terminated.

· The last thread of the process terminates.
· Any thread calls the TerminateProcess function with a handle to the process. This

terminates all threads of the process, without allowing them to clean up or save data.
· For console processes, the default handler function calls ExitProcess when the console

receives a CTRL+C or CTRL+BREAK signal. All console processes attached to the console
receive these signals. Detached processes and GUI processes are not affected by CTRL+C or
CTRL+BREAK signals. For more information, see SetConsoleCtrlHandler.

· The user shuts down the system or logs off. Use the SetProcessShutdownParameters
function to specify shutdown parameters, such as when a process should terminate relative to
the other processes in the system. The GetProcessShutdownParameters function retrieves
the current shutdown priority of the process and other shutdown flags.

When a process is terminated, all threads of the process are terminated immediately with no
chance to run additional code. This means that the process does not execute code in termination
handler blocks. For more information, see Structured Exception Handling.

The GetExitCodeProcess function returns the termination status of a process. While a process is
executing, its termination status is STILL_ACTIVE. When a process terminates, its termination
status changes from STILL_ACTIVE to the exit code of the process. The exit code is either the
value specified in the call to ExitProcess or TerminateProcess, or the value returned by the
main or WinMain function of the process. If a process is terminated due to a fatal exception, the
exit code is the value of the exception that caused the termination. In addition, this value is used
as the exit code for all the threads that were executing when the exception occurred.

When a process terminates, the state of the process object becomes signaled, releasing any
threads that had been waiting for the process to terminate. For more about synchronization, see
Synchronizing Execution of Multiple Threads.

Open handles to files or other resources are closed automatically when a process terminates.
However, the objects themselves exist until all open handles to them are closed. This means that
an object remains valid after a process closes, if another process has a handle to it.

If a process is terminated by ExitProcess, the system calls the entry-point function of each
attached DLL with a value indicating that the process is detaching from the DLL. DLLs are not
notified when a process is terminated by TerminateProcess. For more information about DLLs,
see Dynamic-Link Libraries.

Warning The TerminateProcess function should be used only in extreme circumstances, since it
does not allow threads to clean up or save data and does not notify attached DLLs. If you need to
have one process terminate another process, the following steps provide a better solution:

· Have both processes call the RegisterWindowMessage function to create a private
message.

· One process can terminate the other process by broadcasting the private message using
the BroadcastSystemMessage function as follows:BroadcastSystemMessage(

BSF_IGNORECURRENTTASK, // do not send message to this process
BSM_APPLICATIONS, // broadcast only to applicationsprivate message, // message registered in previous step
wParam, // message-specific value
lParam); // message-specific value

· The process receiving the private message calls ExitProcess to terminate its execution.
Note When the system is terminating a process, it does not terminate any child processes
that the process has created.

Process Times
Windows NT only: The GetProcessTimes function obtains timing information for a process. It
returns the process creation time, how much time the process has been executing in kernel mode,
and how much time the process has been executing in user mode. These times do not include
time spent executing system threads or waiting in a suspended or blocked state. If the process
has exited, GetProcessTimes returns the process exit time.

Process Working Set
The working set of a program is a collection of those pages in its virtual address space that have
been recently referenced. It includes both shared and private data. The shared data includes
pages that contain all instructions your application executes, including those in your DLLs and the
system DLLs. As the working set size increases, memory demand increases.

A process has an associated minimum working set size and maximum working set size. Each
time you call CreateProcess, it reserves the minimum working set size for the process. The
virtual memory manager attempts to keep enough memory for the minimum working set resident
when the process is active, but keeps no more than the maximum size.

To get the requested minimum and maximum sizes of the working set for your application, call the
GetProcessWorkingSetSize function.

The system sets the default working set sizes. You can also modify the working set sizes using
the SetProcessWorkingSetSize function. Setting these values is not a guarantee that the
memory will be reserved or resident. Be careful about requesting too large a minimum or
maximum working set size, because doing so can degrade system performance.

Fibers
A fiber is a unit of execution that must be manually scheduled by the application. Fibers run in the
context of the threads that schedule them. Each thread can schedule multiple fibers. In general,
fibers do not provide advantages over a well-designed multithreaded application. However, using
fibers can make it easier to port applications that were designed to schedule their own threads.

From a system standpoint, a fiber assumes the identity of the thread that created it. For example,
if a fiber accesses thread local storage (TLS), it is accessing the thread local storage of the thread
that created it. In addition, if a fiber calls the ExitThread function, the thread that created it exits.
However, a fiber does not have all the same state information associated with it as that associated
with a thread. The only state information maintained for a fiber is its stack, a subset of its
registers, and the fiber data provided during fiber creation. The saved registers are the set of
registers typically preserved across a function call.

Fibers are not preemptively scheduled. You schedule a fiber by switching to it from another fiber.
The system still schedules threads to run. When a thread running fibers is preempted, its currently
running fiber is preempted. The fiber runs when its thread runs.

Before scheduling the first fiber, call the ConvertThreadToFiber function to create an area in
which to save fiber state information. The calling thread is now the currently executing fiber. The
stored state information for this fiber includes the fiber data passed as an argument to
ConvertThreadToFiber.

The CreateFiber function is used to create a new fiber from an existing fiber; the call requires the
stack size, the starting address, and the fiber data. The starting address is typically a user-
supplied function, called the fiber function, that takes one parameter (the fiber data) and does not
return a value. If your fiber function returns, the thread running the fiber exits. To execute any fiber
created with CreateFiber, call the SwitchToFiber function. You can call SwitchToFiber with the
address of a fiber created by a different thread. To do this, you must have the address returned to
the other thread when it called CreateFiber and you must use proper synchronization.

A fiber can retrieve the fiber data by calling the GetFiberData function. A fiber can retrieve the
fiber address at any time by calling the GetCurrentFiber function.

To clean up the data associated with a fiber, call the DeleteFiber function. You must take care
when calling DeleteFiber. If you call DeleteFiber for a fiber created by another thread, you can
cause the other thread to terminate abnormally. If DeleteFiber is called from the currently running
fiber, its thread calls ExitThread.

Using Processes and Threads
· Using a multithreaded multiple document interface application
· Creating a child process with redirected input and output
· Changing environment variables
· Using thread local storage

Using a Multithreaded Multiple Document Interface Application
The example in this topic shows how to use multiple threads in a multiple document interface
(MDI) process. The process has a single main window, but can have any number of child
windows. The primary thread of the process performs initialization and also handles messages to
all windows through the application-defined MainWndProc and ChildWndProc functions.

Each time a child window is created, a new thread is also created. In the example, the new thread
continually checks a global variable to see if it is time to terminate.

The ThreadFunc function is specified in the CreateThread function as the code for the new thread
to execute. The handle of the child window associated with the thread is passed as a parameter to
ThreadFunc. The child window's handle is also a parameter to ChildWndProc when a message is
dispatched to the child window. A handle is necessary for any communication between a child
window and its corresponding thread. Both ThreadFunc and ChildWndProc use the window
handle in the SetWindowLong function to access the value that is reserved for application use in
each window structure. In the example, the value is a termination flag. When ChildWndProc gets
the WM_CLOSE message, it sets the flag; ThreadFunc checks the flag each time through its loop.

The example demonstrates how to use normal priority for the primary thread and below-normal
priority for the other threads. Because the primary thread handles all messages for both the main
window and the child windows, its higher relative priority ensures responsiveness to user input.

When the user terminates the process by closing the main window, the primary thread sets the
global parameter to indicate that worker threads should terminate. The primary thread waits for
each child thread to terminate before proceeding. This is necessary only if you want the threads to
clean up, save changes to a file, or detach from DLLs before closing. If the primary thread does
not wait, no other threads will be able to execute, because they have a lower priority.#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#define MM_NEWWIN 8001
typedef struct _PTHREADLIST
{

HANDLE hThread;
LPVOID lpvNext;

} THREADLIST, *PTHREADLIST;
HANDLE hModule; // handle to .EXE file for this process
HWND hwndMain = NULL; // handle to main window
BOOL fKillAll = FALSE;// sets TRUE to terminate all threads
PTHREADLIST pHead = NULL; // head of thread information linked list
BOOL InitializeApp(VOID);
LRESULT CALLBACK MainWndProc(HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK ChildWndProc(HWND, UINT, WPARAM, LPARAM);
DWORD ThreadFunc(HWND);
VOID AddThreadToList(HANDLE);
VOID ErrorExit(LPSTR);
// Primary thread: Initialize the application and dispatch messages.
int WINAPI WinMain(HINSTANCE hInst,

HINSTANCE hPrevInst,
LPSTR lpszCmdLn,
int nShowCmd)

{
MSG msg;
hModule = GetModuleHandle(NULL);
if (! InitializeApp())

ErrorExit("InitializeApp failure!");
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);
}
return 1;
UNREFERENCED_PARAMETER(hInst);
UNREFERENCED_PARAMETER(hPrevInst);
UNREFERENCED_PARAMETER(lpszCmdLn);
UNREFERENCED_PARAMETER(nShowCmd);

}
// Register window classes and create the main window.
BOOL InitializeApp(VOID)
{

HMENU hmenuMain, hmenuPopup;
WNDCLASS wc;

// Register a window class for the main window.
wc.style = CS_OWNDC;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hModule;
wc.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wc.hCursor= LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_BACKGROUND+1);
wc.lpszMenuName= NULL;
wc.lpszClassName = "MainWindowClass";
if (! RegisterClass(&wc))

return FALSE;
// Register a window class for child windows.

wc.lpfnWndProc = ChildWndProc;
wc.lpszClassName = "ThreadWindowClass";
if (! RegisterClass(&wc))

return FALSE;
// Create a menu for the main window.

hmenuMain = CreateMenu();
hmenuPopup = CreateMenu();
if (!AppendMenu(hmenuPopup, MF_STRING, MM_NEWWIN, "&New Window"))

return FALSE;
if (!AppendMenu(hmenuMain, MF_POPUP, (UINT)hmenuPopup, "&Threads"))

return FALSE;
// Create the main window.

hwndMain = CreateWindow("MainWindowClass", "Primary Window",
WS_OVERLAPPED | WS_CAPTION | WS_BORDER | WS_THICKFRAME |
WS_MAXIMIZEBOX | WS_MINIMIZEBOX | WS_CLIPCHILDREN |
WS_VISIBLE | WS_SYSMENU, CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT, NULL, hmenuMain, hModule,
NULL);
if (hwndMain == NULL)

return FALSE;
// Set the initial focus.

SetFocus(hwndMain);
return TRUE;

}
// Main window procedure: Handle messages for the main window.
LRESULT CALLBACK MainWndProc(HWND hwnd, UINT uiMessage,

WPARAM wParam, LPARAM lParam)
{

static HWND hwndClient;
static DWORD dwCount = 1;
CLIENTCREATESTRUCT ccsClientCreate;
HWND hwndChildWnd;
DWORD IDThread;
PTHREADLIST pNode;
switch (uiMessage)
{
// Create a client window to receive child window messages.

case WM_CREATE:
ccsClientCreate.hWindowMenu = NULL;
ccsClientCreate.idFirstChild = 1;
hwndClient = CreateWindow("MDICLIENT", NULL,

WS_CHILD | WS_CLIPCHILDREN | WS_VISIBLE, 0, 0, 0, 0,
hwnd, NULL, hModule, (LPVOID)&ccsClientCreate);
return 0L;
// Close the main window. First set fKillAll to TRUE to
// terminate all threads. Then wait for the threads to exit
// before passing a close message to a default handler. If you
// don't wait for threads to terminate, the process terminates
// with no chance for thread cleanup.

case WM_CLOSE:
fKillAll = TRUE;
pNode = pHead;
while (pNode)
{

DWORD dwRes;
SetThreadPriority(pNode->hThread,

THREAD_PRIORITY_HIGHEST);
dwRes = WaitForSingleObject(pNode->hThread,

INFINITE);
pNode = (PTHREADLIST) pNode->lpvNext;
}
return DefFrameProc(hwnd, hwndClient, uiMessage,

wParam, lParam);
// Terminate the process.

case WM_DESTROY:
PostQuitMessage(0);
return 0L;
// Handle the menu commands.

case WM_COMMAND:
switch (LOWORD(wParam))
{
// Create a child window and start a thread for it.

case MM_NEWWIN:
HANDLE hThrd;
MDICREATESTRUCT mdicCreate;
TCHAR tchTitleBarText[32];
LONG lPrev;
sprintf(tchTitleBarText, "Thread Window %d", dwCount);
mdicCreate.szClass = "ThreadWindowClass";
mdicCreate.szTitle = tchTitleBarText;
mdicCreate.hOwner = hModule;
mdicCreate.x = mdicCreate.y =
mdicCreate.cx = mdicCreate.cy = CW_USEDEFAULT;
mdicCreate.style = mdicCreate.lParam = 0L;
// Send a "create child window" message to the
// client window.

hwndChildWnd = (HWND) SendMessage(hwndClient,
WM_MDICREATE, 0L, (LONG)&mdicCreate);

if (hwndChildWnd == NULL)
ErrorExit("Failed in Creating Thread Window!");
// Window structure used to pass a quit message to
// the thread.

lPrev = SetWindowLong(hwndChildWnd, GWL_USERDATA, 0);
// Create a suspended thread; alter its priority before
// calling ResumeThread.

hThrd = CreateThread(NULL, // no security attributes
0, // use default stack size
(LPTHREAD_START_ROUTINE) ThreadFunc,
(LPVOID)hwndChildWnd, // param to thread func
CREATE_SUSPENDED, // creation flag
&IDThread); // thread identifier
if (hThrd == NULL)

ErrorExit("CreateThread Failed!");
AddThreadToList(hThrd);
dwCount++;
// Set the priority lower than the primary (input)
// thread, so the process is responsive to user
// input. Then resume the thread.

if (!SetThreadPriority(hThrd,
THREAD_PRIORITY_BELOW_NORMAL))
ErrorExit("SetThreadPriority failed!");

if ((ResumeThread(hThrd)) == -1)
ErrorExit("ResumeThread failed!");

return 0L;
default:

return DefFrameProc(hwnd, hwndClient, uiMessage,
wParam, lParam);
}

default:
return DefFrameProc(hwnd, hwndClient, uiMessage,

wParam, lParam);
}

}
// Process messages for the child windows.
LRESULT CALLBACK ChildWndProc(HWND hwnd, UINT uiMessage, WPARAM

wParam, LPARAM lParam)
{

LONG lPrevLong;
switch (uiMessage)
{
// Use a window structure to pass "close" message to thread.

case WM_CLOSE:
lPrevLong = SetWindowLong(hwnd, GWL_USERDATA, 1);
return DefMDIChildProc(hwnd, uiMessage, wParam, lParam);

case WM_DESTROY:
return 0L;

default:
return DefMDIChildProc(hwnd, uiMessage, wParam, lParam);
}

}
// Each child window has a thread that can be used to perform tasks
// associated with that window--for example, drawing its contents.
DWORD ThreadFunc(HWND hwnd)
{

LONG lKillMe = 0L;
while (TRUE)
{

lKillMe = GetWindowLong(hwnd, GWL_USERDATA);
if (fKillAll || lKillMe) break;
// Perform tasks.
}
// Perform actions needed before thread termination.
return 0;

}
VOID AddThreadToList(HANDLE hThread)
{

PTHREADLIST pNode;
pNode = (PTHREADLIST) LocalAlloc(LPTR, sizeof(PTHREADLIST));
if (pNode == NULL)

ErrorExit("malloc Failed!");
pNode->hThread = hThread;
pNode->lpvNext = (LPVOID) pHead;
pHead = pNode;

}
VOID ErrorExit(LPSTR lpszMessage)
{

MessageBox(hwndMain, lpszMessage, "Error", MB_OK);
ExitProcess(0);

}

Creating a Child Process with Redirected Input and Output
The example in this topic demonstrates how to create a child process from a console process. It
also demonstrates a technique for using anonymous pipes to redirect the child process's standard
input and output handles.

The CreatePipe function uses the SECURITY_ATTRIBUTES structure to create inheritable
handles to the read and write ends of two pipes. The read end of one pipe serves as standard
input for the child process, and the write end of the other pipe is the standard output for the child
process. These pipe handles are specified in the SetStdHandle function, which makes them the
standard handles inherited by the child process. After the child process is created, SetStdHandle
is used again to restore the original standard handles for the parent process.

The parent process uses the other ends of the pipes to write to the child process's input and read
the child process's output. The handles to these ends of the pipe are also inheritable. However,
the handle must not be inherited. Before creating the child process, the parent process must use
DuplicateHandle to create a duplicate of the application-defined hChildStdinWr global variable
that cannot be inherited. It then uses CloseHandle to close the inheritable handle. For more
information, see Pipes.

The following is the parent process.#include <stdio.h>
#include <windows.h>
#define BUFSIZE 4096
HANDLE hChildStdinRd, hChildStdinWr, hChildStdinWrDup,

hChildStdoutRd, hChildStdoutWr, hChildStdoutRdDup,
hInputFile, hSaveStdin, hSaveStdout;

BOOL CreateChildProcess(VOID);
VOID WriteToPipe(VOID);
VOID ReadFromPipe(VOID);
VOID ErrorExit(LPTSTR);
VOID ErrMsg(LPTSTR, BOOL);
DWORD main(int argc, char *argv[])
{

SECURITY_ATTRIBUTES saAttr;
BOOL fSuccess;

// Set the bInheritHandle flag so pipe handles are inherited.
saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;
// The steps for redirecting child process's STDOUT:
//1. Save current STDOUT, to be restored later.
//2. Create anonymous pipe to be STDOUT for child process.
//3. Set STDOUT of the parent process to be write handle of
// the pipe, so it is inherited by the child process.
//4. Create a noninheritable duplicate of the read handle and
// close the inheritable read handle.

// Save the handle to the current STDOUT.
hSaveStdout = GetStdHandle(STD_OUTPUT_HANDLE);

// Create a pipe for the child process's STDOUT.
if (! CreatePipe(&hChildStdoutRd, &hChildStdoutWr, &saAttr, 0))

ErrorExit("Stdout pipe creation failed\n");
// Set a write handle to the pipe to be STDOUT.

if (! SetStdHandle(STD_OUTPUT_HANDLE, hChildStdoutWr))
ErrorExit("Redirecting STDOUT failed");
// Create noninheritable read handle and close the inheritable read
// handle.

fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdoutRd,
GetCurrentProcess(), &hChildStdoutRdDup , 0,
FALSE,
DUPLICATE_SAME_ACCESS);
if(!fSuccess)
ErrorExit("DuplicateHandle failed");
CloseHandle(hChildStdoutRd);
// The steps for redirecting child process's STDIN:
//1. Save current STDIN, to be restored later.
//2. Create anonymous pipe to be STDIN for child process.
//3. Set STDIN of the parent to be the read handle of the
// pipe, so it is inherited by the child process.
//4. Create a noninheritable duplicate of the write handle,
// and close the inheritable write handle.

// Save the handle to the current STDIN.
hSaveStdin = GetStdHandle(STD_INPUT_HANDLE);

// Create a pipe for the child process's STDIN.
if (! CreatePipe(&hChildStdinRd, &hChildStdinWr, &saAttr, 0))

ErrorExit("Stdin pipe creation failed\n");
// Set a read handle to the pipe to be STDIN.

if (! SetStdHandle(STD_INPUT_HANDLE, hChildStdinRd))
ErrorExit("Redirecting Stdin failed");
// Duplicate the write handle to the pipe so it is not inherited.

fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdinWr,
GetCurrentProcess(), &hChildStdinWrDup, 0,
FALSE, // not inherited
DUPLICATE_SAME_ACCESS);
if (! fSuccess)

ErrorExit("DuplicateHandle failed");
CloseHandle(hChildStdinWr);

// Now create the child process.
if (! CreateChildProcess())

ErrorExit("Create process failed");
// After process creation, restore the saved STDIN and STDOUT.

if (! SetStdHandle(STD_INPUT_HANDLE, hSaveStdin))
ErrorExit("Re-redirecting Stdin failed\n");
if (! SetStdHandle(STD_OUTPUT_HANDLE, hSaveStdout))

ErrorExit("Re-redirecting Stdout failed\n");
// Get a handle to the parent's input file.

if (argc > 1)
hInputFile = CreateFile(argv[1], GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL);
else

hInputFile = hSaveStdin;
if (hInputFile == INVALID_HANDLE_VALUE)

ErrorExit("no input file\n");
// Write to pipe that is the standard input for a child process.

WriteToPipe();
// Read from pipe that is the standard output for child process.

ReadFromPipe();
return 0;

}
BOOL CreateChildProcess()
{

PROCESS_INFORMATION piProcInfo;
STARTUPINFO siStartInfo;

// Set up members of STARTUPINFO structure.
ZeroMemory(&siStartInfo, sizeof(STARTUPINFO));
siStartInfo.cb = sizeof(STARTUPINFO);

// Create the child process.
return CreateProcess(NULL,

"child", // command line
NULL,// process security attributes
NULL,// primary thread security attributes
TRUE,// handles are inherited
0, // creation flags
NULL,// use parent's environment
NULL,// use parent's current directory
&siStartInfo, // STARTUPINFO pointer
&piProcInfo); // receives PROCESS_INFORMATION
}
VOID WriteToPipe(VOID)
{

DWORD dwRead, dwWritten;
CHAR chBuf[BUFSIZE];

// Read from a file and write its contents to a pipe.
for (;;)
{

if (! ReadFile(hInputFile, chBuf, BUFSIZE, &dwRead, NULL) ||
dwRead == 0) break;

if (! WriteFile(hChildStdinWrDup, chBuf, dwRead,
&dwWritten, NULL)) break;
}

// Close the pipe handle so the child process stops reading.
if (! CloseHandle(hChildStdinWrDup))

ErrorExit("Close pipe failed\n");
}
VOID ReadFromPipe(VOID)
{

DWORD dwRead, dwWritten;
CHAR chBuf[BUFSIZE];
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

// Close the write end of the pipe before reading from the
// read end of the pipe.

if (!CloseHandle(hChildStdoutWr))
ErrorExit("Closing handle failed");
// Read output from the child process, and write to parent's STDOUT.

for (;;)
{

if(!ReadFile(hChildStdoutRdDup, chBuf, BUFSIZE, &dwRead,
NULL) || dwRead == 0) break;

if (! WriteFile(hSaveStdout, chBuf, dwRead, &dwWritten, NULL))
break;
}

}
VOID ErrorExit (LPTSTR lpszMessage)
{

fprintf(stderr, "%s\n", lpszMessage);
ExitProcess(0);

}
// The code for the child process.
#include <windows.h>
#define BUFSIZE 4096
VOID main(VOID)
{

CHAR chBuf[BUFSIZE];
DWORD dwRead, dwWritten;
HANDLE hStdin, hStdout;
BOOL fSuccess;
hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
hStdin = GetStdHandle(STD_INPUT_HANDLE);
if ((hStdout == INVALID_HANDLE_VALUE) ||

(hStdin == INVALID_HANDLE_VALUE))
ExitProcess(1);
for (;;)
{
// Read from standard input.

fSuccess = ReadFile(hStdin, chBuf, BUFSIZE, &dwRead, NULL);
if (! fSuccess || dwRead == 0)

break;
// Write to standard output.

fSuccess = WriteFile(hStdout, chBuf, dwRead, &dwWritten, NULL);
if (! fSuccess)

break;
}

}

Changing Environment Variables
Each process has an environment block associated with it. The environment block consists of a
null-terminated block of null-terminated strings (meaning there are two null bytes at the end of the
block), where each string is in the form:

name=value
All strings in the environment block must be sorted alphabetically by name. Because the equal
sign is a separator, it must not be used in the name of an environment variable.

By default, a child process inherits a copy of the environment block of the parent process. The
following example demonstrates how to create a new environment block to pass to a child
process.LPTSTR lpszCurrentVariable;
BOOL fSuccess;
// Copy environment strings into an environment block.
lpszCurrentVariable = tchNewEnv;
if (lstrcpy(lpszCurrentVariable, "OperatingSystem=Windows") == NULL)

ErrorExit("lstrcpy failed");
lpszCurrentVariable += lstrlen(lpszCurrentVariable) + 1;
if (lstrcpy(lpszCurrentVariable, "API=Win32") == NULL)

ErrorExit("lstrcpy failed");
// Terminate the block with a NULL byte.
lpszCurrentVariable += lstrlen(lpszCurrentVariable) + 1;
*lpszCurrentVariable = '\0';
// Create the child process, specifying a new environment block.
fSuccess = CreateProcess(NULL, "childenv", NULL, NULL, TRUE, 0,

(LPVOID) tchNewEnv, // new environment block
NULL, &siStartInfo, &piProcInfo);

if (! fSuccess)
ErrorExit("CreateProcess failed");If you want the child process to inherit most of the parent's environment with only a few changes,

save the current values, make changes for the child process to inherit, create the child process,
and then restore the saved values, as shown following.LPTSTR lpszOldValue;
TCHAR tchBuf[BUFSIZE];
BOOL fSuccess;
// lpszOldValue gets current value of "varname", or NULL if "varname"
// environment variable does not exist. Set "varname" to new value,
// create child process, then use SetEnvironmentVariable to restore
// original value of "varname". If lpszOldValue is NULL, the "varname"
// variable will be deleted.
lpszOldValue = ((GetEnvironmentVariable("varname",

tchBuf, BUFSIZE) > 0) ? tchBuf : NULL);
// Set a value for the child process to inherit.
if (! SetEnvironmentVariable("varname", "newvalue"))

ErrorExit("SetEnvironmentVariable failed");
// Create a child process.
fSuccess = CreateProcess(NULL, "childenv", NULL, NULL, TRUE, 0,

NULL,// inherit parent's environment
NULL, &siStartInfo, &piProcInfo);

if (! fSuccess)
ErrorExit("CreateProcess failed");

// Restore the parent's environment.
if (! SetEnvironmentVariable("varname", lpszOldValue))

ErrorExit("SetEnvironmentVariable failed");The following example, taken from a console process, prints the contents of the process's
environment block.LPTSTR lpszVariable;
LPVOID lpvEnv;
// Get a pointer to the environment block.
lpvEnv = GetEnvironmentStrings();
// Variable strings are separated by NULL byte, and the block is
// terminated by a NULL byte.
for (lpszVariable = (LPTSTR) lpvEnv; *lpszVariable; lpszVariable++)
{

while (*lpszVariable)
putchar(*lpszVariable++);
putchar('\n');

}

Using Thread Local Storage
Thread local storage (TLS) enables multiple threads of the same process to use an index
allocated by the TlsAlloc function to store and retrieve a value that is local to the thread. In this
example, an index is allocated when the process starts. When each thread starts, it allocates a
block of dynamic memory and stores a pointer to this memory by using the TLS index. The TLS
index is used by the locally defined CommonFunc function to access the data local to the calling
thread. Before each thread terminates, it releases its dynamic memory.#include <stdio.h>
#include <windows.h>
#define THREADCOUNT 4
DWORD dwTlsIndex;
VOID ErrorExit(LPTSTR);
VOID CommonFunc(VOID)
{

LPVOID lpvData;
// Retrieve a data pointer for the current thread.

lpvData = TlsGetValue(dwTlsIndex);
if ((lpvData == 0) && (GetLastError() != 0))

ErrorExit("TlsGetValue error");
// Use the data stored for the current thread.

printf("common: thread %d: lpvData=%lx\n",
GetCurrentThreadId(), lpvData);
Sleep(5000);

}
DWORD WINAPI ThreadFunc(VOID)
{

LPVOID lpvData;
// Initialize the TLS index for this thread.

lpvData = (LPVOID) LocalAlloc(LPTR, 256);
if (! TlsSetValue(dwTlsIndex, lpvData))

ErrorExit("TlsSetValue error");
printf("thread %d: lpvData=%lx\n", GetCurrentThreadId(), lpvData);
CommonFunc();

// Release the dynamic memory before the thread returns.
lpvData = TlsGetValue(dwTlsIndex);
if (lpvData != 0)

LocalFree((HLOCAL) lpvData);
return 0;

}
DWORD main(VOID)
{

DWORD IDThread;
HANDLE hThread[THREADCOUNT];
int i;

// Allocate a TLS index.
if ((dwTlsIndex = TlsAlloc()) == 0xFFFFFFFF)

ErrorExit("TlsAlloc failed");
// Create multiple threads.

for (i = 0; i < THREADCOUNT; i++)
{

hThread[i] = CreateThread(NULL, // no security attributes
0, // use default stack size
(LPTHREAD_START_ROUTINE) ThreadFunc, // thread function
NULL,// no thread function argument
0, // use default creation flags
&IDThread); // returns thread identifier
// Check the return value for success.

if (hThread[i] == NULL)
ErrorExit("CreateThread error\n");
}
for (i = 0; i < THREADCOUNT; i++)

WaitForSingleObject(hThread[i], INFINITE);
return 0;

}
VOID ErrorExit (LPTSTR lpszMessage)
{

fprintf(stderr, "%s\n", lpszMessage);
ExitProcess(0);

}

Process and Thread Reference
The following functions and structures are used with processes and threads.

Process and Thread Functions
The following functions are used with processes and threads.
AttachThreadInput
CommandLineToArgvW
CreateProcess
CreateProcessAsUser
CreateRemoteThread
CreateThread
ExitProcess
ExitThread
FreeEnvironmentStrings
GetCommandLine
GetCurrentProcess
GetCurrentProcessId
GetCurrentThread
GetCurrentThreadId
GetEnvironmentStrings
GetEnvironmentVariable
GetExitCodeProcess
GetExitCodeThread
GetPriorityClass
GetProcessAffinityMask
GetProcessShutdownParameters
GetProcessPriorityBoost
GetProcessTimes
GetProcessVersion
GetProcessWorkingSetSize
GetStartupInfo
GetThreadPriority
GetThreadPriorityBoost
GetThreadTimes
OpenProcess
ResumeThread
SetEnvironmentVariable
SetPriorityClass
SetProcessAffinityMask
SetProcessShutdownParameters
SetProcessPriorityBoost
SetProcessWorkingSetSize
SetThreadAffinityMask
SetThreadIdealProcessor
SetThreadPriority
SetThreadPriorityBoost
Sleep
SleepEx
SuspendThread
SwitchToThread
TerminateProcess
TerminateThread
TlsAlloc
TlsFree
TlsGetValue
TlsSetValue

WaitForInputIdle

Fiber Functions
ConvertThreadToFiber
CreateFiber
DeleteFiber
GetCurrentFiber
GetFiberData

SwitchToFiber

Obsolete Functions
WinExec

Yield

Process and Thread Structures
The following structures are used with processes and threads.
PROCESS_INFORMATION

STARTUPINFO

RegistryThe registry is a system-defined database that applications and Microsoft® Windows® system
components use to store and retrieve configuration data.

About the Registry
The registry stores data in binary files. To manipulate registry data, an application must use the
registry functions. This overview describes the registry and the functions that applications use to
access and manipulate the data stored there. The data stored in the registry varies according to
the Windows platform that is used. This overview contains a description of registry entries that can
exist on any platform.

Structure of the Registry
The registry stores data in a hierarchically structured tree. Each node in the tree is called a key.
Each key can contain both subkeys and data entries called values. Sometimes, the presence of a
key is all the data that an application requires; other times, an application opens a key and uses
the values associated with the key. A key can have any number of values, and the values can be
in any form.

Each key has a name consisting of one or more printable ANSI characters ¾ that is, characters
ranging from values 32 through 127. Key names cannot include a space, a backslash (\), or a
wildcard character (* or ?). Key names beginning with a period (.) are reserved. The name of each
subkey is unique with respect to the key that is immediately above it in the hierarchy. Key names
are not localized into other languages, although values may be.

Registry Storage Space
Although there are few technical limits to the type and size of data an application can store in the
registry, certain practical guidelines exist to promote system efficiency. An application should
store configuration and initialization data in the registry, but other kinds of data should be stored
elsewhere.

Generally, data consisting of more than one or two kilobytes (K) should be stored as a file and
referred to by using a key in the registry rather than being stored as a value. Instead of duplicating
large pieces of data in the registry, an application should save the data as a file and refer to the
file. Executable binary code should never be stored in the registry.

A value entry uses much less registry space than a key. To save space, an application should
group similar data together as a structure and store the structure as a value rather than storing
each of the structure members as a separate key. (Storing the data in binary form allows an
application to store data in one value that would otherwise be made up of several incompatible
types.)

Predefined Keys
An application must open a key before it can add data to the registry. To open a key, an
application must supply the handle of another key in the registry that is already open. The system
defines standard handles that are always open. An application can use these predefined handles
as entry points to the registry.

The system provides two predefined keys at the root of the registry: HKEY_LOCAL_MACHINE
and HKEY_USERS. In addition, the system defines two subkeys: HKEY_CLASSES_ROOT (a
subkey of HKEY_LOCAL_MACHINE) and HKEY_CURRENT_USER (a subkey of
HKEY_USERS). These registry handles are valid for all Win32 implementations of the registry,
although the use of the handles may vary from platform to platform.

Predefined keys help an application navigate in the registry and make it possible to develop tools
that allow a system administrator to manipulate categories of data. Applications that add data to
the registry should always work within the framework of predefined keys, so administrative tools
can find and use the new data.

These predefined keys are used as entry points to the registry.

Entry point Use

HKEY_CLASSES_ROOT Registry entries subordinate to this key
define types (or classes) of documents
and the properties associated with those
types. Data stored under this key is
used by Windows shell applications and
by object linking and embedding (OLE)
applications.

HKEY_CURRENT_USER Registry entries subordinate to this key
define the preferences of the current
user. These preferences include the
settings of environment variables, data
about program groups, colors, printers,
network connections, and application
preferences.

HKEY_LOCAL_MACHINE Registry entries subordinate to this key
define the physical state of the
computer, including data about the bus
type, system memory, and installed
hardware and software.

HKEY_USERS Registry entries subordinate to this key
define the default user configuration for
new users on the local computer and the
user configuration for the current user.

The use of HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, and HKEY_USERS varies
depending on the implementation of the registry. In addition, other predefined handles have been
defined for specific Windows platforms.

Categories of Data
Before putting data into the registry, an application should divide the data into two categories:
computer-specific data and user-specific data. By making this distinction, an application can
support multiple users, and yet locate user-specific data over a network and use that data in
different locations, allowing location-independent user profile data. (A user profile is a set of
configuration data saved for every user.)

When the application is installed, it should record the computer-specific data under the
HKEY_LOCAL_MACHINE key. In particular, it should create keys for the company name, product
name, and version number, as shown in the following example:

HKEY_LOCAL_MACHINE\Software\MyCompany\MyProduct\1.0
If the application supports OLE, it should record that data under HKEY_LOCAL_MACHINE\
Software\Classes.

An application should record user-specific data under the HKEY_CURRENT_USER key, as
shown in the following example:

HKEY_CURRENT_USER\Software\MyCompany\MyProduct\1.0\...

Opening, Creating, and Closing Keys
Before an application can add data to the registry, it must create or open a key. To create or open
a key, an application always refers to the key as a subkey of a currently open key. The four
predefined keys (HKEY_LOCAL_MACHINE, HKEY_CLASSES_ROOT, HKEY_USERS, and
HKEY_CURRENT_USER) are always open. An application uses the RegOpenKey or
RegOpenKeyEx function to open a key and the RegCreateKey or RegCreateKeyEx function to
create a key.

An application can use the RegCloseKey function to close a key and write the data it contains
into the registry. RegCloseKey does not necessarily write the data to the registry before
returning; it can take as much as several seconds for the cache to be flushed to the hard disk. If
an application must explicitly write registry data to the hard disk, it can use the RegFlushKey
function. RegFlushKey, however, uses many system resources and should be called only when
absolutely necessary.

Writing and Deleting Registry Data
An application can use either the RegSetValue or RegSetValueEx function to associate a value
and its data with a key. RegSetValue works only with strings (values having the REG_SZ type).
RegSetValueEx, however, can write values with any type of data. Either of these functions can
create a key and its value at the same time.

To delete a value from a key, an application can use the RegDeleteValue function. To delete a
key, it can use the RegDeleteKey function. A deleted key is not removed until the last handle to it
has been closed. Subkeys and values cannot be created under a deleted key.

To change a key's security information, an application can use the RegSetKeySecurity function.

Retrieving Data from the Registry
To retrieve data from the registry, an application typically enumerates the subkeys of a key until it
finds a particular one and then retrieves data from the value or values associated with it. An
application can call either the RegEnumKey or RegEnumKeyEx function to enumerate the
subkeys of a given key. RegEnumKeyEx returns a subkey and its class, but RegEnumKey
returns only the subkey, not the class.

To retrieve detailed data about a particular subkey, an application can call the RegQueryInfoKey
function. The RegGetKeySecurity function retrieves a copy of the security descriptor protecting a
key.

An application can use the RegEnumValue function to enumerate the values for a given key, and
the RegQueryValue or RegQueryValueEx function to retrieve a particular value for a key. An
application typically calls RegEnumValue to determine the value names and then
RegQueryValueEx to retrieve the data for the names.

RegQueryValue and RegQueryValueEx differ in how they treat unexpanded references to
environment variables. If an unnamed value contains an unexpanded environment variable (for
example, %PATH%), RegQueryValue expands the variable into the storage buffer provided as
one of its parameters. RegQueryValueEx, however, does not expand these references.
(Applications can also use the ExpandEnvironmentStrings function to expand environment
variables.)

Registry Files
Applications can save part of the registry in a file and then load the contents of the file back into
the registry. A registry file is useful when a large amount of data is being manipulated, when many
entries are being made in the registry, or when the data is transitory and must be loaded and then
unloaded again. Applications that back up and restore parts of the registry are likely to use
registry files.

To save a key and its subkeys and values to a registry file, an application can call the
RegSaveKey function. To write the registry file back to the registry, an application can use the
RegLoadKey, RegReplaceKey, or RegRestoreKey function.

RegLoadKey loads registry data from a specified file into a specified subkey under
HKEY_USERS or HKEY_LOCAL_MACHINE on the calling application's computer or on a remote
computer. The function creates the specified subkey if it does not already exist. After calling this
function, an application can use the RegUnLoadKey function to restore the registry to its previous
state.

RegReplaceKey replaces a key and all its subkeys and values in the registry with the data
contained in a specified file. The new data takes effect the next time the system is started.

RegRestoreKey loads registry data from a specified file into a specified key on the calling
application's computer or on a remote computer. This function replaces the subkeys and values
below the specified key with the subkeys and values that follow the top-level key in the file.

Using the Registry
The following example demonstrates the use of the RegQueryInfoKey, RegEnumKey, and
RegEnumValue functions. The hKey parameter passed to each function is the handle of an open
key. This key must be opened before the function call and closed afterward.// QueryKey - enumerates the subkeys of a given key and the associated
//values and then copies the information about the keys and values
//into a pair of edit controls and list boxes.
// hDlg - dialog box that contains the edit controls and list boxes
// hKey - key whose subkeys and values are to be enumerated
VOID QueryKey(HWND hDlg, HANDLE hKey)
{

CHARachKey[MAX_PATH];
CHARachClass[MAX_PATH] = ""; /* buffer for class name */
DWORD cchClassName = MAX_PATH; /* length of class string */
DWORD cSubKeys; /* number of subkeys */
DWORD cbMaxSubKey; /* longest subkey size*/
DWORD cchMaxClass; /* longest class string */
DWORD cValues; /* number of values for key */
DWORD cchMaxValue;/* longest value name*/
DWORD cbMaxValueData; /* longest value data*/
DWORD cbSecurityDescriptor; /* size of security descriptor */
FILETIME ftLastWriteTime; /* last write time */
DWORD i, j;
DWORD retCode, retValue;
CHAR achValue[MAX_VALUE_NAME];
DWORD cchValue = MAX_VALUE_NAME;
CHAR achBuff[80];
// Get the class name and the value count.
RegQueryInfoKey(hKey, /* key handle*/
achClass, /* buffer for class name */
&cchClassName, /* length of class string */
NULL,/* reserved */
&cSubKeys,/* number of subkeys */
&cbMaxSubKey, /* longest subkey size */
&cchMaxClass, /* longest class string*/
&cValues, /* number of values for this key */
&cchMaxValue, /* longest value name */
&cbMaxValueData, /* longest value data */
&cbSecurityDescriptor, /* security descriptor */
&ftLastWriteTime); /* last write time*/
SetDlgItemText(hDlg, IDE_CLASS, achClass);
SetDlgItemInt(hDlg, IDE_CVALUES, cValues, FALSE);
SendMessage(GetDlgItem(hDlg, IDL_LISTBOX),
LB_ADDSTRING, 0, (LONG) "..");
// Enumerate the child keys, looping until RegEnumKey fails. Then
// get the name of each child key and copy it into the list box.
SetCursor(LoadCursor(NULL, IDC_WAIT));
for (i = 0, retCode = ERROR_SUCCESS;

retCode == ERROR_SUCCESS; i++) {
retCode = RegEnumKey(hKey, i, achKey, MAX_PATH);
if (retCode == (DWORD)ERROR_SUCCESS)
SendMessage(GetDlgItem(hDlg, IDL_LISTBOX),
LB_ADDSTRING, 0, (LONG) achKey);

}
SetCursor(LoadCursor (NULL, IDC_ARROW));
// Enumerate the key values.
SetCursor(LoadCursor(NULL, IDC_WAIT));
if (cValues)
for (j = 0, retValue = ERROR_SUCCESS;

j < cValues; j++) {
cchValue = MAX_VALUE_NAME;
achValue[0] = '\0';
retValue = RegEnumValue(hKey, j, achValue,
&cchValue,
NULL,
NULL, /* &dwType, */
NULL, /* &bData, */
NULL); /* &bcData */
if (retValue != (DWORD) ERROR_SUCCESS &&

retValue != ERROR_INSUFFICIENT_BUFFER) {
wsprintf (achBuff,
"Line:%d 0 based index = %d, retValue = %d, "
"ValueLen = %d",
__LINE__, j, retValue, cchValue);
MessageBox (hDlg, achBuff, "Debug", MB_OK);
}
achBuff[0] = '\0';
// Add each value to a list box.
if (!lstrlen(achValue))
lstrcpy(achValue, "<NO NAME>");
wsprintf(achBuff, "%d) %s ", j, achValue);
SendMessage(GetDlgItem(hDlg,IDL_LISTBOX2),
LB_ADDSTRING, 0, (LONG) achBuff);
}
SetCursor(LoadCursor(NULL, IDC_ARROW));

}

Registry Reference
The following functions and structures are used with the registry.

Registry Functions
Following are the functions used with the registry:
RegCloseKey
RegConnectRegistry
RegCreateKey
RegCreateKeyEx
RegDeleteKey
RegDeleteValue
RegEnumKey
RegEnumKeyEx
RegEnumValue
RegFlushKey
RegGetKeySecurity
RegLoadKey
RegNotifyChangeKeyValue
RegOpenKey
RegOpenKeyEx
RegQueryInfoKey
RegQueryMultipleValues
RegQueryValue
RegQueryValueEx
RegReplaceKey
RegRestoreKey
RegSaveKey
RegSetKeySecurity
RegSetValue
RegSetValueEx

RegUnLoadKey

Registry Structures
The following structure is used with the registry.

VALENT

SecurityThe security provisions of Microsoft® Windows NT® are available to Windows-based applications
automatically. Every application running on the system is subject to the security imposed by the
particular configuration of the local implementation of Windows NT.

About Security
The security functions in the Microsoft Win32® application programming interface (API) allow an
application to selectively grant and deny access to an object. An application can specify many
different kinds of access for particular users and groups of users. The operating system grants or
denies access to an object based on a comparison of the security provisions stored with an object
with the access rights specified in a token associated with the process or thread requesting the
access. These security functions allow an application to query and manipulate the security
features of both an object and a process or thread.

The impact of Windows security on most Windows functions is minimal, and a Windows-based
application not requiring security functionality usually does not need to incorporate any special
code. However, a developer can use the security features of Windows NT to provide a number of
services in a Windows-based application. Generally, any application that manipulates a system-
wide resource such as the system time, must use the security system to gain access to that
resource. A security-aware application might allow the user to query the security attributes of a
file, provide specialized feedback when access to a secure file is denied, or customize the security
attributes of a file or group of files so that only a subset of other users on a network has access to
the information.

Windows NT is designed to support C2-level security as defined by the US Department of
Defense. Some of the most important requirements of C2-level security are shown in the following
list.

· It must be possible to control access to a resource. This access control must include or
exclude individual users or named groups of users.

· Memory must be protected so its contents cannot be read after it is freed by a process.
· Users must identify themselves in a unique manner when they log on. All auditable

actions must identify the user performing the action.
· System administrators must be able to audit security-related events. Access to this audit

data must be limited to authorized administrators.
· The system must protect itself from external interference or tampering, such as

modification of the running system or of system files stored on disk.

Security Model
All named objects in Windows NT, and some unnamed objects, can be secured. The security
attributes of each securable object in Windows are described by a security descriptor, which
contains information about the owner of the object, and by an access-control list (ACL) identifying
the users and groups allowed or denied access to the object. An ACL contains an entry for each
user, global group, or local group (alias) being allowed or denied access to the object. Each of
these entries is an access-control entry (ACE).

At logon, a user is assigned an access token containing identifiers that represent the user and any
groups to which the user belongs. Every process run on behalf of this user will have a copy of this
particular access token. When a process attempts to use an object, the system compares the
security attributes listed in the access token with the ACEs in the object's ACL. The system
compares the access token with each ACE until access is either granted or denied or until there
are no more ACEs to check. Conceivably, several ACEs could apply to a token. And, if this
occurs, the access rights granted by each ACE accumulate. For example, if one ACE grants read
access to a group in an access token and another ACE grants write access to the user, who is
also a member of the group, the user will have both read and write access to the object when the
access check is complete.

The following illustration shows the relationship between these blocks of security information:

ewc msdncd, EWGraphic, bsd23500 0 /a "SDK_01.BMP"

Typically, the application protecting an object is a server in that it defines the users and groups
with access to the object. The application interacts with clients when they attempt to gain access
to the object. Users and groups are identified by security identifiers (SIDs). An SID is a structure
of variable length that uniquely identifies a user or group. SIDs are stored in a security database
that an application can query by calling Win32 functions. With one exception, an SID is used to
identify a user or group is never reassigned to another user or group. For a given account, the
only SID that will not be the same from logon to logon is the logon-identifier SID. In the model
represented by the preceding illustration, SIDs would be used to identify the following:

· The owner and group in the security descriptor
· The recipient of the access being granted by each ACE
· The user and groups in the access token

Security descriptors, SIDs, and ACLs are treated by applications as opaque structures and are
intended to be manipulated only by using Win32 functions. This helps ensure that these structures
remain syntactically accurate and prevents future enhancements to the security system from
breaking existing code.

Pointers to doubleword values or structures must be aligned on doubleword boundaries. However,
the exception is strings, for which alignment is not critical. All Win32 memory-allocation functions
return handles of doubleword-aligned memory objects.

Access Tokens
When a user logs on, the system verifies the user's password by comparing it with information
stored in a security database. If the password is authenticated, the system produces an access
token and attaches it to the user's process. This access token identifies the user in all subsequent
interactions with securable objects and contains the following information about a process:

· The user's SID
· Group SIDs
· Privileges
· An owner SID
· The SID for the primary group
· The default discretionary access-control list (ACL)
· The source of the access token
· Whether the token is a primary or impersonation token
· Current impersonation levels
· Other statistics

Every process has a primary token that determines the security context in which the process
interacts with securable objects. By default, a thread runs in the security context of its process.
However, a thread can use impersonation to run in a different security context. In this case, the
thread has an impersonation token that determines the security context for most of the thread's
actions. For more information, see Impersonation.

For more information about privileges, see Privileges. For more information about security
identifiers (SIDs), see Security Identifiers (SIDs). For more information about discretionary ACLs,
see Access-control Lists (ACLs). For more information about the components of an access token,
see the following token structures and enumerated types.

Structure or enumeration type Specifies

TOKEN_CONTROL Information useful in identifying an
access token.

TOKEN_DEFAULT_DACL The default discretionary ACL for an
access token.

TOKEN_GROUPS Specifies the SIDs of the access
token's groups and whether any
privileges are enabled.

TOKEN_INFORMATION_CLASSInformation being set in or retrieved
from an access token.

TOKEN_OWNER The SID of an access token's owner.
TOKEN_PRIMARY_GROUP The SID of the access token's

primary group.
TOKEN_PRIVILEGES The privileges associated with an

access token and whether the
privileges are enabled.

TOKEN_SOURCE The source of an access token.
TOKEN_STATISTICS Statistics associated with an access

token.
TOKEN_TYPE Whether an access token is being

used as an impersonation token.
TOKEN_USER The SID of an access token's user.

You can use the following functions to manipulate access tokens.

Following are the functions an application can use to manipulate access tokens.

Function Description

AdjustTokenGroups Changes the group information in an access
token.

AdjustTokenPrivilegesChanges the privileges in an access token.
DuplicateToken Creates a new impersonation token that

duplicates an existing token.
DuplicateTokenEx Creates a new primary token or

impersonation token that duplicates an
existing token.

GetTokenInformation Retrieves information about a token.
OpenProcessToken Retrieves the handle of the access token for a

process.
OpenThreadToken Retrieves the handle of the access token for a

thread.
SetThreadToken Assigns or removes an impersonation token

for a thread.
SetTokenInformation Changes a token's owner, primary group, or

default discretionary ACL.

Security Descriptors
A security descriptor contains the security information associated with an object. This information
can include an owner, a primary group, a discretionary access-control list (DACL), and a system
access-control list (SACL). This information is stored in the form of security identifiers (SIDs) and
access-control lists (ACLs). For more information, see Security Identifiers (SIDs) and Access-
Control Lists (ACLs).

Security Descriptors and Objects
You can use security descriptors to attach security information to many different kinds of
securable objects. The Win32 API provides functions for setting and retrieving the security
descriptor associated with a specified object.

Windows NT version 4.0 provides a new group of functions for manipulating the security
descriptors of a variety of securable objects. The SetSecurityInfo and SetNamedSecurityInfo
functions create a security descriptor from the specified SIDs and ACLs, and attach it to a
specified object. The GetSecurityInfo and GetNamedSecurityInfo functions retrieve the security
descriptor of a specified object. You can also use GetSecurityInfo and GetNamedSecurityInfo
to get pointers to the SIDs and ACLs in the security descriptor of a specified object. These
functions are easier to use than the older specialized functions for manipulating security
descriptors, such as the GetFileSecurity and SetFileSecurity functions. This is because the new
functions combine several steps into a single function call.

The GetSecurityInfo and SetSecurityInfo functions use handles to identify objects. You can use
these functions with the following types of objects:

· Local or remote files or directories on an NTFS file system
· Mailslots and named pipes
· Local or remote printers
· Local or remote Windows NT services
· Windows NT network shares
· Registry keys
· Semaphores, events, mutexes, and waitable timers
· Processes, threads, file-mapping objects
· Window stations and desktops

The GetNamedSecurityInfo and SetNamedSecurityInfo functions use names to identify objects.
You can use these functions with the following types of objects:

· Local or remote files or directories on an NTFS file system
· Local or remote printers
· Local or remote Windows NT services
· Windows NT network shares
· Registry keys
· Semaphores, events, mutexes, and waitable timers
· File-mapping objects

There is also a group of low-level functions for setting and retrieving security descriptors. For
more information, see Windows NT 3.x Security Functions.

Security Descriptors On Private Objects
The Win32 API provides functions for working with the security descriptors on objects that are
private to the creating application. The functions that manipulate private objects allow an
application, usually a server, to associate a security descriptor with its own object type. The
functions provide the ability to retrieve default information from an access token, support
inheritance, and manipulate specific parts of the security descriptor. These functions are:
CreatePrivateObjectSecurity, GetPrivateObjectSecurity, SetPrivateObjectSecurity, and
DestroyPrivateObjectSecurity.

Absolute and Self-Relative Security Descriptors
A security descriptor can be in either absolute or self-relative format. In absolute format, a security
descriptor contains pointers to its information, not the information itself. In self-relative format, a
security descriptor stores a SECURITY_DESCRIPTOR structure and associated security
information in a contiguous block of memory. You can use the MakeSelfRelativeSD and
MakeAbsoluteSD functions for converting between these two formats.

The absolute format is useful when default settings for the owner, group, and discretionary ACL
are available. In this case, you can simply call the InitializeSecurityDescriptor function to
initialize a SECURITY_DESCRIPTOR structure and then assign pointers to preexisting
components, such as SIDs and ACLs.

In self-relative format, a security descriptor always begins with a SECURITY_DESCRIPTOR
structure, but the other components of the security descriptor can follow the structure in any order.
Instead of using memory addresses, the security descriptor's components are identified by offsets
from the beginning of the descriptor. This format is useful when a security descriptor must be
stored on disk, transmitted by means of a communications protocol, or copied in memory.

All Win32 functions that return a security descriptor do so using the self-relative format. Security
descriptors passed back to the operating system can be in either self-relative or absolute form,
depending on the situation.

A server that copies secured objects to various media can use the MakeSelfRelativeSD function
to create a self-relative security descriptor from an absolute security descriptor. The
MakeAbsoluteSD function can create an absolute security descriptor from a self-relative security
descriptor.

Security Descriptor Components
A security descriptor is an opaque structure that consists of a SECURITY_DESCRIPTOR
structure and its associated security information. The security information can include the
following:

· Security identifiers (SIDs) for the owner and primary group of an object.
· A discretionary access-control list (DACL) that specifies the types of object access that

the system grants to particular users or groups.
· A system access-control list (SACL) that specifies the types of access attempts that

generate audit records for the object.
Applications must not directly manipulate the contents of a security descriptor. The Win32 API
provides functions for getting and setting the components of a security descriptor.

Windows NT version 4.0 introduces new functions for working with security descriptors:
BuildSecurityDescriptor and LookupSecurityDescriptorParts.

The BuildSecurityDescriptor function allocates and initializes a new self-relative security
descriptor. BuildSecurityDescriptor uses the EXPLICIT_ACCESS structure to specify
information for the DACL and SACL; and it uses the TRUSTEE structure to specify the owner and
primary group. BuildSecurityDescriptor can initialize the new security descriptor solely from the
specified security information; or it can merge the specified security information with the
information in an existing self-relative security descriptor.

The LookupSecurityDescriptorParts function retrieves information from an existing self-relative
security descriptor. Like BuildSecurityDescriptor, the LookupSecurityDescriptorParts function
uses the TRUSTEE and EXPLICIT_ACCESS structures. This makes it easy to call
LookupSecurityDescriptorParts to extract security information from one security descriptor, and
then call BuildSecurityDescriptor to use the extracted information in building another security
descriptor.

The InitializeSecurityDescriptor function initializes an absolute-format security descriptor so that
it has no owner, primary group, DACL, or SACL. You can then use other Win32 functions to set
the components of the security descriptor.

Windows NT version 4.0 provides the GetSecurityInfo, SetSecurityInfo,
GetNamedSecurityInfo, and SetNamedSecurityInfo functions to get and set the components of
an object's security descriptor. In addition, you can use the following low-level functions to get or
set specific components of a specified security descriptor. Note that the functions in this table that
set a component work only with a security descriptor in absolute format.

Function Description

GetSecurityDescriptorControlRetrieves revision and control
information from a security descriptor.

GetSecurityDescriptorDacl Gets the discretionary ACL from a
security descriptor.

GetSecurityDescriptorGroupRetrieves the primary group security
identifier (SID) from a security
descriptor.

GetSecurityDescriptorLengthReturns the length of a security
descriptor.

GetSecurityDescriptorOwnerRetrieves the owner SID from a security
descriptor.

GetSecurityDescriptorSacl Gets the system ACL from a security
descriptor.

SetSecurityDescriptorDacl Puts a discretionary ACL into a security
descriptor, superseding any existing
discretionary ACL.

SetSecurityDescriptorGroupSets the primary group SID of a security
descriptor.

SetSecurityDescriptorOwnerSets the owner SID of a security
descriptor.

SetSecurityDescriptorSacl Puts a system ACL into a security
descriptor, superseding any existing
system ACL.

To check the revision level and structural integrity of a security descriptor, call the
IsValidSecurityDescriptor function.

Access-Control Lists (ACLs)
An access-control list (ACL) contains information that controls access to an object or controls
auditing of attempts to access an object. An ACL is an opaque structure that you can attach to the
security descriptor of an object.

An ACL begins with a header in the form of an ACL structure. The header contains information
pertaining to the entire ACL, including the revision level of the structure, the size (in bytes) of the
ACL, and the number of access-control entries (ACEs) in the list. To retrieve this information, you
can use the GetAclInformation function. To change the revision level, you can use the
SetAclInformation function.

Following the ACL header is a list of access-control entries (ACEs). Each ACE specifies a trustee,
a set of access rights, and a set of flags that indicate whether the rights are allowed, denied, or
audited for the trustee. A trustee can be a user account, group account, or a logon account for a
program such as a Windows NT service.

Security descriptors use access-control lists to allow, deny, or audit attempts to access the object
to which the security descriptor is attached. A security descriptor can contain two types of ACLs: a
discretionary ACL (DACL) and a system ACL (SACL).

In a DACL, each ACE specifies the types of access that are allowed or denied for a specified
trustee. An object's owner controls the information in the object's DACL. For example, the owner
of a file can use a DACL to control which users can have access to the file, and which users are
denied access.

If the security descriptor for an object does not have a DACL, the object is not protected and the
system allows all attempts to access the object. However, if an object has a DACL that contains
no ACEs, the DACL does not grant any access rights. In this case, the system denies all attempts
to access the object. For information about setting an object's DACL, see Allowing Access.

In a SACL, each ACE specifies the types of access attempts by a specified trustee that cause the
system to generate audit records in the system event log. A system administrator controls the
information in the object's SACL. An ACE in a SACL can generate audit records when an access
attempt fails, when it succeeds, or both. In future releases, a SACL will also be able to raise an
alarm when an unauthorized user attempts to gain access to an object.

Access-Control Entries (ACEs)
An access-control list (ACL) contains zero or more access-control entries (ACEs) that control or
monitor access to an object by a specified trustee. Each ACE contains the following access-
control information:

· A security identifier (SID) that identifies the trustee. A trustee can be a user account,
group account, or a logon account for a program such as a Windows NT service.

· An access mask that specifies the access rights controlled by the ACE.
· A flag that indicates the type of ACE.
· A set of bit flags that determine whether other containers or objects can inherit the ACE

from the primary object to which the ACL is attached.
There are three types of ACEs currently supported by Windows NT. Windows NT does not
currently support system-alarm ACEs.

Type Description

Access-denied ACE Used in a DACL to deny the specified access
rights to the trustee.

Access-allowed ACE Used in a DACL to grant the specified access
rights to the trustee.

System-audit ACE Used in a SACL to generate an audit record
when the trustee attempts to exercise the
specified access rights.

In a DACL, you should place any access-denied ACEs at the beginning of the list of ACEs
in an ACL, ahead of any access-allowed ACEs. In determining whether to grant access to
an object, the system checks an access token against the ACEs in the ACL. The system
stops checking the ACEs when one of the following events occurs:

· One or more access-allowed ACEs explicitly grant the necessary access rights to the
trustee or to groups of which the trustee is a member.

· An access-denied ACE explicitly denies the requested access rights.
· All ACEs have been checked without granting the requested access, in which case,

access is implicitly denied.
Positioning access-denied ACEs at the beginning of the ACL ensures that the specified trustee is
denied access even if an access-allowed ACE in the list grants the access to the trustee or a
group to which the trustee belongs.

If a trustee is a member of several groups represented by ACEs in the DACL, the rights granted to
each group apply to the trustee. For example, a trustee may request read/write access to an
object. Suppose one ACE in the list grants read access to a group. Another ACE grants write
access to a different group. If the trustee belongs to both groups, the request for read/write access
succeeds.

A SACL is useful when a system administrator wants to keep a log of attempts to access a
secured object. A system-audit ACE can be set to generate an audit record when an access
attempt by the trustee succeeds, fails, or both. The system enters the audit record in the system
event log. An administrator can use the Event Viewer to examine entries in the event log.
Applications can use the event-logging functions to access the event log.

ACEs and ACLs are opaque structures. Internally, they use the ACL, ACE_HEADER,
ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, and SYSTEM_AUDIT_ACE structures to
store information. However, applications should not try to work directly with the contents of these
structures. To ensure that ACLs are semantically correct, use the appropriate Win32 functions to
create and manipulate ACLs and ACEs.

Working With ACLs and ACEs
Windows NT version 4.0 provides a new group of high-level access control functions for working
with access-control lists (ACLs) and security descriptors. These functions make it easier to create
new ACLs or to modify existing ACLs.

The SetEntriesInAcl function creates a new ACL. SetEntriesInAcl can specify a completely new
set of ACEs for the ACL, or it can merge new ACEs with the ACEs of an existing ACL.
SetEntriesInAcl uses an array of EXPLICIT_ACCESS structures to specify the information for
the new ACEs. Each EXPLICIT_ACCESS structure contains information that describes a single
ACE. This information includes the access rights, the type of ACE, the flags that control ACE
inheritance, and a TRUSTEE structure that identifies the trustee.

To add a new ACE to an existing ACL
1. Use the GetSecurityInfo or GetNamedSecurityInfo function to get the existing DACL or

SACL from an object's security descriptor.
2. Use the BuildExplicitAccessWithName function to fill EXPLICIT_ACCESS structures

with the information needed to describe each new ACE.
3. Call SetEntriesInAcl, specifying the existing ACL and the array of EXPLICIT_ACCESS

structures. SetEntriesInAcl allocates and initializes the ACL and its ACEs.
4. Call the SetSecurityInfo or SetNamedSecurityInfo function to attach the new ACL to the

object's security descriptor.
For an example that merges a new ACE into an existing ACL, see Allowing Access.

The SetEntriesInAcl function merges the new ACE information with the existing ACEs in the
ACL. Consider the case, for example, in which the existing ACL grants access to a specified
trustee and an EXPLICIT_ACCESS structure denies access to the same trustee. In this case,
SetEntriesInAcl adds a new access-denied ACE for the trustee and deletes or modifies the
existing access-allowed ACE for the trustee.

The SetEntriesInAcl function ensures that ACEs are in the correct order in the new ACL. The
function positions all access-denied ACEs at the beginning of the ACL's list of ACEs, ahead of any
access-allowed ACEs.

The high-level access-control functions use the TRUSTEE structure to identify a trustee. This
structure enables you to use a name string or a SID to identify a trustee. If you use a name, the
SetEntriesInAcl function performs the tasks of allocating the SID buffers and looking up the SID
that corresponds to the account name. There are two helper functions, BuildTrusteeWithSid and
BuildTrusteeWithName, that initialize a TRUSTEE structure with a specified SID or name. Three
other helper functions, GetTrusteeForm, GetTrusteeName, and GetTrusteeType, retrieve the
values of the various members of a TRUSTEE structure.

Getting Information From an ACL
Windows NT version 4.0 provides several functions for retrieving access-control information from
an ACL. These include functions for determining the access rights that an ACL grants or audits for
a specified trustee. A trustee can be a user account, group account, or a logon account for a
program such as a Windows NT service. Other functions enable you to extract ACE information
from an ACL.

The GetEffectiveRightsFromAcl function enables you to determine the effective access rights
that a DACL grants to a specified trustee. The trustee's effective access rights are the access
rights that the ACL grants to the trustee or to any groups of which the trustee is a member.
GetEffectiveRightsFromAcl checks all access-allowed and access-denied ACEs in the ACL to
determine the effective rights for the trustee.

The GetAuditedPermissionsFromAcl function enables you to check a SACL to determine the
audited access rights for a specified trustee. The audited rights indicate the types of access
attempts that cause the system to generate an audit record in the system event log. The function
returns two access masks: one containing the access rights monitored for failed access attempts,
and another containing the access rights monitored for successful access.
GetAuditedPermissionsFromAcl checks all system-audit ACEs in the ACL. The returned access
masks indicate the rights that the ACL audits for the trustee or for any groups of which the trustee
is a member.

The GetExplicitEntriesFromAcl function retrieves an array of EXPLICIT_ACCESS structures
that describe the ACEs in an ACL. This can be useful when you are copying ACE information from
one ACL to another. For example, you can call GetExplicitEntriesFromAcl to get information
about the ACEs in one ACL. Then pass the returned EXPLICIT_ACCESS structures in a call to
the SetEntriesInAcl function to create equivalent ACEs in the new ACL.

You can use the GetAce function to copy an ACE from an existing ACL. This can be useful if you
are using the low-level access control functions to build an ACL. For more information, see Low-
Level Access Control Functions.

Access Masks and Access Rights
An access right defines a particular set of abilities that can be granted or denied to a process
when it attempts to use an object. For example, if an application attempts to create a subkey in
the registry but does not have the KEY_CREATE_SUB_KEY access right, the system does not
carry out the operation. An application usually requests a set of access rights when it opens an
object, and in the case of registry keys, it makes that request when it calls the RegOpenKeyEx
function.

An access mask is the component of an access-control entry (ACE) that contains the specific
rights, standard rights, and generic rights defining the access a user or group has to an object.
Access masks are also used to request access rights when an object is opened. For example, an
application that needs to set values, create subkeys, and query values in the registry can open a
key using an access mask that combines the KEY_WRITE and KEY_QUERY_VALUE access
rights.

An access mask is a single 32-bit value. The first 16 bits are the specific rights and apply only to
the object type associated with the access mask. Bits 16 through 23 are the standard rights
applying to all objects. Bits 28 through 31 are the generic rights mapped to specific and standard
rights when access to an object is requested.

Generic access rights are broad types of access whose exact implementation is determined by
the application defining an object. These rights are used when protecting an object. For example,
an application that defines a voice-annotation object might define specific access rights by using
VOICE_PLAY and VOICE_EDIT for playing and editing the object. It might set up a
GENERIC_MAPPING structure in which GENERIC_EXECUTE maps to VOICE_PLAY and
GENERIC_WRITE maps to both VOICE_PLAY and VOICE_EDIT.

The following are the generic rights that have been defined.

Constant Meaning

GENERIC_ALL Read, write, and execute access
GENERIC_EXECUTEExecute access
GENERIC_READ Read access
GENERIC_WRITE Write access

If an application receives GENERIC_WRITE access to a file, for example, it has specific
rights allowing it to write and append data to the file, write file attributes, and write
extended attributes. In addition, the application has the STANDARD_RIGHTS_WRITE and
SYNCHRONIZE standard access rights.

The following constants are masks for the standard access rights.

Constant Meaning

DELETE Delete access.
READ_CONTROL Read access to the security

descriptor not including the system
ACL.

STANDARD_RIGHTS_ALL Combines DELETE,
READ_CONTROL, WRITE_DAC,
WRITE_OWNER, and
SYNCHRONIZE access.

STANDARD_RIGHTS_EXECUTECurrently defined to equal
READ_CONTROL.

STANDARD_RIGHTS_READ Currently defined to equal
READ_CONTROL.

STANDARD_RIGHTS_REQUIREDCombines DELETE,
READ_CONTROL, WRITE_DAC,
and WRITE_OWNER access.

STANDARD_RIGHTS_WRITE Currently defined to equal
READ_CONTROL.

SYNCHRONIZE Synchronize access. Allows a thread
to wait for the object. This access
type is not supported by all object
types.

WRITE_DAC Write access to the discretionary
ACL.

WRITE_OWNER Write access to the owner.

The SPECIFIC_RIGHTS_ALL constant denotes all of the specific rights, even those not be
defined for an object.

The system validates each requested access against the process's access token, so
requests for broad access can require a great deal of validation time. Therefore, it is
generally better for applications to avoid requesting the broadest possible access to an
object except when such access is actually required. Certain rights are commonly used in
an ACL to deny access to an object, but they are rarely used in requests to open an object.
In particular, requesting any of the access rights in the following list has a negative impact
on system performance:

EVENT_ALL_ACCESS SECTION_ALL_ACCESS

FILE_MAP_ALL_ACCESS SEMAPHORE_ALL_ACCESS
GENERIC_ALL SERVICE_ALL_ACCESS
KEY_ALL_ACCESS SPECIFIC_RIGHTS_ALL
MUTEX_ALL_ACCESS STANDARD_RIGHTS_ALL
PROCESS_ALL_ACCESS THREAD_ALL_ACCESS
SC_MANAGER_ALL_ACCESSTOKEN_ALL_ACCESS

The MAXIMUM_ALLOWED constant specifies that an object is to be opened by using all
the access rights that are valid for the given user. An additional access type,
ACCESS_SYSTEM_SECURITY, is needed to manipulate an object's system ACL. Neither
MAXIMUM_ALLOWED nor ACCESS_SYSTEM_SECURITY can be used in an DACL.
However, you can use ACCESS_SYSTEM_SECURITY in a SACL to audit use of that bit in
an access attempt.

The MapGenericMask function maps a series of generic rights specified in a
GENERIC_MAPPING structure to specific and standard rights in an access mask. An application
can use the GENERIC_MAPPING structure to specify the access rights for an object when it is
created. When a client process requests access to the object, the server can use
MapGenericMask to translate the client's requested access into the standard and specific rights
for that object.

To discover whether a client process has the proper access rights to an object, a server can call
the AccessCheck or AccessCheckAndAuditAlarm function. The AreAllAccessesGranted and
AreAnyAccessesGranted functions compare a requested access mask with a granted access
mask.

Security Identifiers (SIDs)
A security identifier (SID) is a unique value of variable length used to identify a user or group. The
SID assigned to a user when he or she logs on becomes part of the access token that
accompanies any process begun by that user. Except for the logon SID, an SID is always unique.
When it has been used to identify a user or group, it cannot be used again, at any time, to identify
another user or group.

SIDs identify several separate elements. These include the owner and group in security
descriptors, the recipient of the access being granted by access-control entries (ACEs), and the
user, as well as groups of which the user is a member in access tokens.

An SID also contains the following information.

· A 48-bit identifier authority value
· A revision level
· A variable number of subauthority values (relative identifiers)

The identifier authority value actually contains two values and is the most important piece of
information in an SID. It contains a value identifying the agency that issued the SID, usually
representing a Microsoft® Server™ domain, and a 32-bit relative identifier (RID) value, to uniquely
identify the user or group in that agency. Joining these values ensures that no two SIDs will be the
same, even if two different SID-issuing authorities issue the same RID. Each SID-issuing authority
issues a given RID only once.

A standardized shorthand notation for SIDs makes it simpler to visualize their components:

S-R-I-S-S...

In the notation shown above, S identifies the series of digits as an SID, R is the revision level, I is
the identifier-authority value, and S is the subauthority value. An SID could be written in this
notation as follows:

S-1- 4138 - 86

In this example, the SID has a revision level of 1, an identifier-authority value of 4138, and one
subauthority value of 86.

An application is never required to manipulate an SID directly. The following Win32 functions
provide all the functionality required to work with SIDs.

Function Description

AllocateAndInitializeSid Allocates and initializes an SID with the
specified number of subauthorities.

CopySid Copies a source SID to a buffer.
EqualPrefixSid Tests two SID prefix values for equality. An

SID prefix is the entire SID except for the
last subauthority value.

EqualSid Tests two SIDs for equality. They must
match exactly to be considered equal.

FreeSid Frees an SID previously allocated by using
the AllocateAndInitializeSid function.

GetLengthSid Retrieves the length of an SID.
GetSidIdentifierAuthorityRetrieves a pointer to an SID's identifier

authority.
GetSidLengthRequired Retrieves the size of the buffer required to

store an SID with a specified number of
subauthorities.

GetSidSubAuthority Retrieves a pointer to a specified
subauthority in an SID.

GetSidSubAuthorityCountRetrieves the number of subauthorities in
an SID.

InitializeSid Initializes an SID structure.

IsValidSid Tests the validity of an SID by verifying that
the revision number is within a known
range and that the number of
subauthorities is less than the maximum.

LookupAccountName Retrieves the SID corresponding to a
specified account name. Use the
GetUserName function to retrieve the user
name for the current thread.

LookupAccountSid Retrieves the account name corresponding
to a specified SID.

Some identifier authorities are predefined, as shown in the following table.

Identifier authority SID Value

SECURITY_NULL_SID_AUTHORITY 0
SECURITY_WORLD_SID_AUTHORITY1
SECURITY_LOCAL_SID_AUTHORITY2
SECURITY_CREATOR_SID_AUTHORITY3
SECURITY_NT_AUTHORITY 5

The following RID values are also defined.

Relative identifier authority Value Superior authority

SECURITY_NULL_RID 0 S-1- 0
SECURITY_WORLD_RID 0 S-1- 1
SECURITY_LOCAL_RID 0 S-1- 2
SECURITY_CREATOR_OWNER_RID0 S-1- 3
SECURITY_CREATOR_GROUP_RID1 S-1- 3

An application can combine an identifier authority and one of these RID values to create an
SID that is meaningful on all installations. For example, S-1-1- 0
(SECURITY_WORLD_SID_AUTHORITY and SECURITY_WORLD_RID) always identifies the
special group representing all users. These security identifiers are universal well-known SIDs. A
universal well-known SID is meaningful on all secure systems using this security model, including
systems not running Windows NT. The AllocateAndInitializeSid function provides a simple
method of combining an identifier authority and an RID.

The following are some universal well-known SIDs.

Universal well-known
SID

Value Identifies

Null SID (S-1- 0- 0) A group with no members. This
is often used when an SID value
is not known.

World (S-1- 1- 0) A group that includes all users.
Local (S-1- 2- 0) Users who log on to terminals

locally (physically) connected to
the system.

Creator Owner ID (S-1- 3- 0) A security identifier to be
replaced by the security identifier
of the user who created a new
object. This SID is used in
inheritable ACLs.

Creator Group ID (S-1- 3- 1) Identifies a security identifier to
be replaced by the primary-
group SID of the user who
created a new object. Use this
SID in inheritable ACLs.

Another predefined identifier authority is SECURITY_NT_AUTHORITY (S-1-5). This identifier
authority produces SIDs that are not universal but are meaningful only on Windows NT
installations. An application can use the following RID values with SECURITY_NT_AUTHORITY
to create well-known SIDs.

Constant Identifies

SECURITY_DIALUP_RID
(S-1- 5- 1)

Users who log on to terminals using a dialup modem.
This is a group identifier.

SECURITY_NETWORK_RID
(S-1- 5- 2)

Users who log on across a network. This is a group
identifier.

SECURITY_BATCH_RID
(S-1- 5- 3)

Users who log on using a batch queue facility. This is a
group identifier.

SECURITY_INTERACTIVE_RID
(S-1- 5- 4)

Users who log on for interactive operation. This is a
group identifier.

SECURITY_LOGON_IDS_RID
(S-1- 5- 5-
X-Y)

A logon session. This is used to ensure that only
processes in a given logon session can gain access to
the window-station objects for that session. The X and Y
values for these SIDs are different for each logon
session. The value
SECURITY_LOGON_IDS_RID_COUNT is the number of
RIDs in this identifier (5-X-Y).

SECURITY_SERVICE_RID
(S-1- 5- 6)

An account authorized to perform security services.
SECURITY_LOCAL_SYSTEM_RID
(S-1- 5-
0x12)

The user account used by the operating system.
SECURITY_BUILTIN_DOMAIN_RID
(S-1- 5-
0x20)

The built-in system domain.

The following RIDs are relative to each domain.

RID Identifies

DOMAIN_USER_RID_ADMIN The administrative user account in a
domain.

DOMAIN_USER_RID_GUEST The guest-user account in a domain.
This account can be logged onto
automatically by users who do not
have an account.

DOMAIN_GROUP_RID_ADMINSThe domain administrator's group.
This account exists only on systems
running Microsoft® LAN Manager for
Windows NT®, not Windows NT

systems.
DOMAIN_GROUP_RID_USERSA group containing all user accounts

in a domain. All users are
automatically added to this group.

An alias is a local group and is similar to a global group, but it can contain members from
other domains. Its members can be users or other groups. Some domain-relative RIDs,
such as the following, can be used to form well-known SIDs used as local groups.

RID Identifies

DOMAIN_ALIAS_RID_ADMINS A local group used for
administration of the domain.

DOMAIN_ALIAS_RID_USERS A local group representing all
users in the domain.

DOMAIN_ALIAS_RID_GUESTS A local group representing
guests of the domain.

DOMAIN_ALIAS_RID_POWER_USERSA local group used to represent a
user or set of users that expect to
treat a system as if it were their
personal computer rather than a
multiuser workstation.

DOMAIN_ALIAS_RID_ACCOUNT_OPSA local group existing only on
systems running Microsoft LAN
Manager for Windows NT. This
local group permits control over
non-administrator accounts.

DOMAIN_ALIAS_RID_SYSTEM_OPSA local group existing only on
systems running Microsoft LAN
Manager for Windows NT. This
local group performs system
administrative functions, not
including security functions. It
establishes network shares,
controls printers, unlocks
workstations, and performs other
operations.

DOMAIN_ALIAS_RID_PRINT_OPS A local group existing only on
systems running Microsoft LAN
Manager for Windows NT. This
local group controls printers and
print queues.

DOMAIN_ALIAS_RID_BACKUP_OPSA local group used for controlling
assignment of file backup-and-
restore privileges.

DOMAIN_ALIAS_RID_REPLICATORA local group responsible for
copying security databases from
the primary domain controller to
the backup domain controllers.

Privileges
A privilege is used to control access to an object or service more strictly than is normal with
discretionary access control. A system manager uses privileges to control which users are able to
manipulate system resources. An application uses privileges when it changes a system resource,
such as when it changes the system time or shuts down the system.

A privilege is a locally unique identifier (LUID) identified by a character string. This 64-bit value is
guaranteed to be unique on the operating system that generated it until the system is restarted.
For example, SE_SYSTEMTIME_NAME is a string identifying an LUID. A privilege has three
representations, as shown below.

· A string name, meaningful across systems, called a global program name (for example,
SE_SYSTEMTIME_NAME).

· A readable name that can be displayed to the user when necessary. For example,
"Change the system time."

· A local representation that differs from computer to computer.
Privileges provide access to services rarely needed by most users. An account usually has
privileges that are disabled, and they must be enabled to be used. For example, to set the time on
the local computer, an application has to set the SE_PRIVILEGE_ENABLED attribute for the
SE_SYSTEMTIME_NAME privilege. For security reasons, disable an enabled privilege when it is
no longer needed.

The following privileges are defined by Windows NT.

Privilege Description

SE_ASSIGNPRIMARYTOKEN_NAMERequired to assign the primary
token of a process.

SE_AUDIT_NAME Required to generate audit-log
entries. Give this privilege to
secure servers.

SE_BACKUP_NAME Required to perform backup
operations.

SE_CHANGE_NOTIFY_NAME Required to receive notifications
of changes to files or directories.
This privilege also causes the
system to skip all traversal
access checks. It is enabled by
default for all users.

SE_CREATE_PAGEFILE_NAME Required to create a paging file.
SE_CREATE_PERMANENT_NAMERequired to create a permanent

object.
SE_CREATE_TOKEN_NAME Required to create a primary

token.
SE_DEBUG_NAME Required to debug a process.
SE_INC_BASE_PRIORITY_NAME Required to increase the base

priority of a process.
SE_INCREASE_QUOTA_NAME Required to increase the quota

assigned to a process.
SE_LOAD_DRIVER_NAME Required to load or unload a

device driver.
SE_LOCK_MEMORY_NAME Required to lock physical pages

in memory.
SE_PROF_SINGLE_PROCESS_NAMERequired to gather profiling

information for a single process.
SE_REMOTE_SHUTDOWN_NAME Required to shut down a system

using a network request.
SE_RESTORE_NAME Required to perform restore

operations.
SE_SECURITY_NAME Required to perform a number of

security-related functions, such
as controlling and viewing audit
messages. This privilege
identifies its holder as a security
operator.

SE_SHUTDOWN_NAME Required to shut down a local
system.

SE_SYSTEM_ENVIRONMENT_NAMERequired to modify the non-
volatile RAM of systems that use
this type of memory to store
configuration information.

SE_SYSTEM_PROFILE_NAME Required to gather profiling
information for the entire system.

SE_SYSTEMTIME_NAME Required to modify the system
time.

SE_TAKE_OWNERSHIP_NAME Required to take ownership of an
object without being granted
discretionary access. This
privilege allows the owner value
to be set only to those values
that the holder may legitimately
assign as the owner of an object.

SE_TCB_NAME This privilege identifies its holder
as part of the trusted computer
base. Some trusted protected
subsystems are granted this
privilege.

SE_UNSOLICITED_INPUT_NAME Required to read unsolicited
input from a terminal device.

The following functions are provided for working with privileges.

Function Description

LookupPrivilegeValue Allows an application to retrieve the
LUID corresponding to a privilege on the
local system. This is the local
representation of that privilege and an
application can set it in the
TOKEN_PRIVILEGES and
LUID_AND_ATTRIBUTES structures.

LookupPrivilegeDisplayNameRetrieves a displayable privilege name.
For example, "Force shutdown from a
remote system."

LookupPrivilegeName Retrieves a programmatic privilege
name.

PrivilegeCheck Determines whether a client application
has the privileges required to gain
access to an object, such as,
SE_REMOTE_SHUTDOWN_NAME.

Impersonation
Impersonation is the ability of a thread to execute in a security context different from the that of
the process that owns the thread. Typically, a thread in a server application impersonates a client.
This allows the server thread to act on behalf of that client to access objects or validate access to
its own objects. For example, when a client in a DDE conversation requests information from a
DDE server, the server can impersonate the client so the system can verify that the client is
allowed access to the information.

The Win32 API provides several ways for a thread to begin an impersonation:

· A DDE server application can call the DdeImpersonateClient function to impersonate a
client.

· A named-pipe server can call the ImpersonateNamedPipeClient function.
· You can call the ImpersonateLoggedOnUser function to impersonate the security

context of a specifed user.
· The ImpersonateSelf function enables a thread to generate a copy of its own access

token. This is useful when an application needs to change the security context of a single
thread. For example, sometimes only one thread of a process requires a special privilege.

· You can call the SetThreadToken function to cause the target thread to run in the
security context of a specified impersonation token.

In all these cases, the impersonating thread can revert to its own security context by calling the
RevertToSelf function.

An RPC server can call the RpcImpersonateClient function to impersonate a client. The RPC
server calls RpcRevertToSelf or RpcRevertToSelfEx to restore the security context defined for
the server thread.

When a thread is impersonating a user, most actions by the thread are done in the security
context of the thread's impersonation token rather than the primary token of the process that owns
the thread. For example, an individual thread of a server process can impersonate a client to
verify that the client is allowed to access a securable object. However, some actions are always
done using the security context of the process. For example, if an impersonating thread calls the
CreateProcess function, the new process inherits the primary token of the process rather than
the impersonation token of the calling thread. Similarly, the system always uses the primary token
of the process to validate actions requiring the SE_TCB_NAME privilege.

To create a new process that runs in the security context of an impersonated user, you can use
the DuplicateTokenEx and CreateProcessAsUser functions. In a typical scenario, a server
thread impersonates a client by calling one of the impersonation functions, such as the
ImpersonateNamedPipeClient function. The impersonating thread then calls the
OpenThreadToken function to get its own token, which is an impersonation token that has the
security context of the client. The thread then calls DuplicateTokenEx to convert its
impersonation token into a primary token. You can then pass this primary token in a call to
CreateProcessAsUser. Note that a process created by this method may not have access to the
network. This is because Windows NT authentication does not send a password from the client to
the server, so the new process does not have the credentials to make a network connection to a
third machine.

The LogonUser function provides another method for impersonating a user. If your process has
the SE_TCB_NAME privilege, it can specify the authentication credentials of a user in a call to
LogonUser. If the logon operation is successful, the function returns a primary access token that
represents the specified user. You can use this primary token in a call to CreateProcessAsUser
to create a process that runs in the security context of the user. Note that in this case, the new
process would have access to the network because you supplied the password in the LogonUser
call.

The SECURITY_IMPERSONATION_LEVEL enumeration defines four impersonation levels.

Impersonation Level Meaning

SecurityAnonymous Indicates the client does not want the server
to obtain identification information about the
client.

SecurityIdentification Allows the server to obtain information about

the client, such as security identifiers and
privileges, without being able to impersonate
the client. This is useful for servers that export
their own objects, such as a database product
that exports tables and views. Using the
retrieved client security information, the server
is able to make access-validation decisions for
itself even though it is unable to use other
services as the client.

SecurityImpersonation Allows the server to impersonate the client's
security context on its local system. The
server cannot impersonate the client on
remote systems.

SecurityDelegation Windows NT security does not support this
impersonation level.

Security in New Objects
When an application creates an object, any values explicitly provided in a security descriptor are
assigned to the object. If a security descriptor is not explicitly provided, the system searches for
security information in different places, depending on the information required.

This guide describes the algorithms for security attribute assignments to newly created objects.

Assignment of Owner
To assign an owner to a new object when a security descriptor is not provided, the system checks
the creator's access token for a default value. If no default value is found, the creator's user
identifier (from the access token) is assigned as the object's owner. Even when an owner is
provided in a security descriptor, the system checks these values in the access token to make
sure the specified owner can be assigned ownership of the object.

Assignment of Group
To assign a primary group to a new object when a security descriptor is not provided, the system
uses the primary group in the creator's access token.

Assignment of Discretionary ACL
To assign a discretionary access-control list (ACL) to a new object when a security descriptor is
not provided, the system checks the parent's discretionary ACL for inheritable access-control
entries (ACEs) and creates an ACL from any it finds. If there are no inheritable ACEs, the system
checks the creator's security descriptor for a default discretionary ACL. If none is found in the
security descriptor, the system looks in the creator's access token. If none of these sources
provides a discretionary ACL, the object is created without one, and universal unconditional
access to the object is granted.

Assignment of System ACL
To assign a system ACL to a new object when a security descriptor is not provided, the system
checks the parent's system ACL for inheritable ACEs and creates an ACL from any it finds. If
there are no inheritable ACEs, the system checks the creator's security descriptor for a default
system ACL. When a system ACL is provided explicitly or by default in a security descriptor, the
creator of the object must have the SE_SECURITY_NAME privilege, although this privilege is not
required if the system ACL is acquired by inheritance. If none of these sources provides a system
ACL, the object is created without one.

Security Attributes Inheritance
The security attributes of an object can be passed from process to process through the
mechanism of handle inheritance. In addition, individual ACEs can be inherited in an ACL by new
objects.

Handle Inheritance
If a new process inherits a handle, it also inherits the security attributes associated with that
handle. A pointer to a SECURITY_ATTRIBUTES structure is used as a parameter in most Win32
kernel and window-management functions that return object handles. The bInheritHandle
member of this structure specifies whether the returned handle is inherited when a new process is
created. The security attributes of the inherited handle are identical to those of the original handle.

ACE Inheritance
Each ACE in an ACL begins with an ACE_HEADER structure structure specifying how that ACE
is inherited. Among other things, the flags in an ACE_HEADER structure specify whether the ACE
is inherited by container objects (directories or registry keys) or by non-container objects, such as
files.ACE Inheritance in Container ObjectsThis section outlines the rules governing the inheritance of ACEs by container objects.

If the CONTAINER_INHERIT_ACE flag is set in the ACE_HEADER structure of the parent ACE,
a copy of the ACE is added to the end of the inherited ACL and the following actions are
performed on the inherited ACE:

· All inheritance flags in the inherited ACE are cleared.
· If the ACE contains an access mask and any generic access flags are set, the generic

rights are mapped to the standard and specific rights for the child object type.
If neither the CONTAINER_INHERIT_ACE flag nor the NO_PROPAGATE_INHERIT_ACE flag is
set, the OBJECT_INHERIT_ACE and INHERIT_ONLY_ACE flags are set. If both the
CONTAINER_INHERIT_ACE and the NO_PROPAGATE_INHERIT_ACE are set, the ACE is
added to the end of the inherited ACL.

If neither the NO_PROPAGATE_INHERIT_ACE nor the CONTAINER_INHERIT_ACE flag is set
in the ACE_HEADER structure of the parent ACE, a copy of the ACE is added to the end of the
inherited ACL and its INHERIT_ONLY_ACE flag is set.

Otherwise, the ACE is not inherited.ACE Inheritance in Non-container ObjectsThe following rules govern the inheritance of ACEs in objects other than containers.

If the OBJECT_INHERIT_ACE flag is set in the ACE_HEADER structure of the parent ACE, the
ACE is copied to the end of the inherited ACL and:

· The INHERIT_ONLY_ACE flag in the inherited ACE is cleared.
· The NO_PROPAGATE_INHERIT_ACE, OBJECT_INHERIT_ACE, and

CONTAINER_INHERIT_ACE flags in the inherited ACE are cleared.
· If the ACE contains an access mask and, if any generic access flags are set, the generic

rights are mapped to the standard and specific rights for the child object type.
Otherwise, the ACE is not inherited.

Duplicating Handles
Among cooperating processes, any one process is only as restricted as the least restricted
process. For example, a process can call the DuplicateHandle function to duplicate an object
handle belonging to a second (source) process into a third (target) process. If the access rights
requested for the target process are greater than the rights held by the source process, the
system checks the requested access rights against the security context of the process calling
DuplicateHandle. If the calling process has the required access rights, the handle is duplicated,
and the target process has greater access to the object than the source process.

Audit Generation
C2-level security requirements specify that system administrators must be able to audit security-
related events and that access to this audit data must be limited to authorized administrators. The
Win32 API provides functions enabling an administrator to monitor security-related events.

The system access-control list (ACL) contains audit access-control entries (ACEs) for an object.
An application can use the GetSecurityDescriptorSacl and SetSecurityDescriptorSacl
functions to retrieve an existing system ACL or to set a new one. The AddAuditAccessAce
function adds an ACE to a system ACL that causes the system to record specified access
attempts in a security log. This security log can be read by using the Microsoft Windows Event
Viewer (EVENTVWR.EXE), and can be manipulated by using the event-logging functions
discussed in Event Logging. For more information about system ACLs, see Access-control Lists
(ACLs).

An application can use the ObjectPrivilegeAuditAlarm function to generate audit and alarm
messages whenever a process attempts to complete a privileged operation. The
PrivilegedServiceAuditAlarm generates audit and alarm messages whenever a process
attempts to perform a privileged system-service operation.

The ObjectCloseAuditAlarm generates audit messages when an object is deleted. The
ObjectOpenAuditAlarm function generates audit messages when a process attempts to open or
gain access to an object.

Windows NT 3.x Security Functions
This section describes the low-level security functions provided for earlier versions of Windows
NT. New applications should use the high-level security functions provided by Windows NT
version 4.0.

Low-Level Security Descriptor Functions
There are several groups of specialized functions for setting and retrieving an object's security
descriptor. Each of these groups of functions works only with a limited set of objects. For example,
one group of functions works with file objects and another works with registry keys. Applications
written for Windows NT version 4.0 or later should use the high-level security functions, which are
designed to work with most types of securable objects. For more information about the high-level
functions, see Security Descriptors and Objects.

To manipulate security descriptors for files, directories, mailslots, and named pipes, you can use
the GetFileSecurity and SetFileSecurity functions. These functions use character strings to
identify the securable object, instead of using the handles required by other security functions. For
more information, see File and Directory Objects and Pipe Objects.

To manipulate security descriptors for kernel objects, you can use the GetKernelObjectSecurity
and SetKernelObjectSecurity functions. Kernel objects include process, thread, semaphore,
event, mutex, file mapping, waitable timer, and access token objects. For more information, see
Special Access Kernel Objects.

To manipulate security descriptors for window station and desktop objects, you can use the
GetUserObjectSecurity and SetUserObjectSecurity functions. For more information, see
Window-management Objects.

To manipulate security descriptors for registry keys, you can use the RegGetKeySecurity and
RegSetKeySecurity functions. For more information, see Registry Key Objects.

To manipulate security descriptors for Windows NT services, you can use the
QueryServiceObjectSecurity and SetServiceObjectSecurity functions. For more information,
see Service Objects.

To manipulate security descriptors for printers, you can use the PRINTER_INFO_2 structure with
the GetPrinter and SetPrinter functions.

Low-Level Access Control Functions
You can use the following low-level functions to work with ACLs and ACEs. New Win32-based
applications should use the high-level access-control functions for this purpose. For more
information about the high-level functions, see Working With ACLs and ACEs.

To create an ACL using these low-level functions, allocate a buffer for the ACL and then initialize
it by calling the InitializeAcl function. To add ACEs to the end of a DACL, use the
AddAccessAllowedAce and AddAccessDeniedAce functions. The AddAuditAccessAce
function adds an ACE to the end of a SACL. You can use the AddAce function to add one or
more ACEs at a specified position in an ACL. The DeleteAce function removes an ACE from a
specified position in an ACL. The GetAce function retrieves an ACE from a specified position in
an ACL. The FindFirstFreeAce function retrieves a pointer to the first free byte in an ACL.

To modify an existing ACL in an object's security descriptor, use the GetSecurityDescriptorDacl
or GetSecurityDescriptorSacl function to get the existing ACL. You can use the GetAce function
to copy ACEs from the existing ACL. After allocating and initializing a new ACL, use functions
such as AddAccessAllowedAce and AddAce to add ACEs to it. When you have finished
building the new ACL, use the SetSecurityDescriptorDacl or SetSecurityDescriptorSacl
function to add the new ACL to the object's security descriptor.

Securable Objects
A securable object is an object that can have a security descriptor. Windows NT supports many
different types of securable objects.

All named objects are securable. Some unnamed objects, such as process and thread objects,
can have security descriptors, too.

For most securable objects, you can specify an object's security descriptor in the function call that
creates the object. For example, you can specify a security descriptor in the CreateFile and
CreateProcess functions. In addition, the Win32 API provides functions for getting and setting the
security descriptor of an existing object. The following table shows the functions to use for working
with the different types of securable objects.

Object type High-level functions Windows NT 3.x functions

Files and directoriesGetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

GetFileSecurity,
SetFileSecurity

Mailslots and
Named Pipes

GetSecurityInfo,
SetSecurityInfo

GetFileSecurity,
SetFileSecurity

Console screen
buffer

Not supported. Not supported.

Processes, threads,
and file-mapping
objects

GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

SetKernelObjectSecurity,
GetKernelObjectSecurity

Access tokens Not supported. SetKernelObjectSecurity,
GetKernelObjectSecurity

Window-
management
objects (window
stations and
desktops)

GetSecurityInfo,
SetSecurityInfo

GetUserObjectSecurity,
SetUserObjectSecurity

Registry objects GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

RegGetKeySecurity,
RegSetKeySecurity

Windows NT
Service objects

GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

QueryServiceObjectSecurity,
SetServiceObjectSecurity

Printer objects GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

GetPrinter, SetPrinter

Windows NT
network shares

GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

NetShareGetInfo and
NetShareSetInfo, using level
502.

Interprocess
synchronization
objects
(semaphores,
events, mutexes,
and waitable timers)

GetNamedSecurityInfo,
SetNamedSecurityInfo,
GetSecurityInfo,
SetSecurityInfo

SetKernelObjectSecurity,
GetKernelObjectSecurity

Private objects
(objects private to
the creating
application)

Not supported. CreatePrivateObjectSecurity,
DestroyPrivateObjectSecurity,
GetPrivateObjectSecurity,
SetPrivateObjectSecurity

File and Directory Objects
File and directory objects can be secured only when the New Technology file system (NTFS) is in
use.

The access rights for files and directories must be manipulated by using the generic access rights.

For file objects, the handle returned by the CreateFile function has SYNCHRONIZE access and
the right to read file attributes, in addition to the access rights specified in the call
(GENERIC_READ, GENERIC_WRITE, or both).

GENERIC_READ access for file objects combines STANDARD_RIGHTS_READ and
SYNCHRONIZE with rights that allow the process to read data from the file, read file attributes,
and read extended attributes.

GENERIC_WRITE access for file objects combines STANDARD_RIGHTS_WRITE and
SYNCHRONIZE with rights that allow the process to write data to the file, append data to it, write
file attributes, and write extended attributes.

An application cannot use an access-denied ACE to deny only GENERIC_READ or
GENERIC_WRITE access to a file. If an application denies GENERIC_WRITE access to a file,
SYNCHRONIZE access is implicitly denied. When the CreateFile function is used in an attempt to
open the file for read access, the function requests SYNCHRONIZE access and the operation
fails. Instead of denying read or write access to a file, an application can explicitly allow the
permitted access rights.

For directory objects, the handle returned by the CreateDirectory function has SYNCHRONIZE
access and the right to list the contents of the directory.

For more information about files and directories, see Files.

Mailslot Objects
The handle returned by the CreateMailslot function has GENERIC_READ, SYNCHRONIZE, and
WRITE_DAC access to the mailslot object.

GENERIC_READ access for a mailslot combines STANDARD_RIGHTS_READ with rights
allowing the process to read data from the mailslot, read mailslot attributes, and read extended
attributes.

For more information about mailslots, see Mailslots.

Pipe Objects
The security attributes of named pipes differ slightly from those of anonymous pipes.

Access Rights to Named Pipes
The handle returned by the CreateNamedPipe function always has SYNCHRONIZE access. It
also has GENERIC_READ, GENERIC_WRITE, or both, depending on the open mode of the pipe.
The following are the access rights for each open mode.

Open mode Access rights

PIPE_ACCESS_DUPLEX GENERIC_READ, GENERIC_WRITE,
and SYNCHRONIZE

PIPE_ACCESS_INBOUND GENERIC_READ and SYNCHRONIZE
PIPE_ACCESS_OUTBOUNDGENERIC_WRITE and SYNCHRONIZE

GENERIC_READ access for a named pipe combines STANDARD_RIGHTS_READ access
with rights that allow the process to read data from the named pipe and to read named-
pipe attributes.

GENERIC_WRITE access for a named pipe combines STANDARD_RIGHTS_WRITE with
rights that allow the process to write data to the named pipe and to write named-pipe
attributes.

CreatePipe Function and Anonymous Pipes
The handles returned by the CreatePipe function have GENERIC_READ, GENERIC_WRITE,
and SYNCHRONIZE access to the anonymous pipe, in addition to the right to write the attributes
of the pipe. GENERIC_READ and GENERIC_WRITE access map to the same access rights as
for named pipes.

For more information about pipes, see Pipes.

Special Access Kernel Objects
The following are the kernel objects for which the system defines special access rights:

· Processes
· Threads
· Access tokens
· File mapping

Process Objects
The valid access rights for process objects are STANDARD_RIGHTS_REQUIRED and the rights
given in the following table.

Value Meaning

PROCESS_ALL_ACCESS Specifies all possible access rights
for a process object.

PROCESS_CREATE_PROCESS Required to create a process.
PROCESS_CREATE_THREAD Required to create a thread.
PROCESS_DUP_HANDLE Required to duplicate a handle.
PROCESS_QUERY_INFORMATIONRequired to retrieve certain

information about a process, such
as its priority class.

PROCESS_SET_INFORMATION Required to set certain information
about a process, such as its priority
class.

PROCESS_TERMINATE Required to terminate a process.
PROCESS_VM_OPERATION Required to perform an operation

on the address space of a process.
PROCESS_VM_READ Required to read memory in a

process.
PROCESS_VM_WRITE Required to write to memory in a

process.
SYNCHRONIZE Required to wait for the process to

terminate.

The handle returned by the CreateProcess function has PROCESS_ALL_ACCESS access to
the process object.

For more information about processes, see Processes and Threads.

Thread Objects
The valid access rights for thread objects are STANDARD_RIGHTS_REQUIRED and the rights
given in the following table.

Value Meaning

SYNCHRONIZE Required to wait for the thread to
exit.

THREAD_ALL_ACCESS Specifies all possible access
rights for a thread object. A
thread created with
THREAD_ALL_ACCESS access
is created with its execution
suspended.

THREAD_DIRECT_IMPERSONATIONRequired for a server thread that
impersonates a client.

THREAD_GET_CONTEXT Required to read the context of a
thread using GetThreadContext.

THREAD_IMPERSONATE Required to use a thread's
security information directly
without calling it by using a
communication mechanism that
provides impersonation services.

THREAD_QUERY_INFORMATION Required to read certain
information from the thread
object.

THREAD_SET_CONTEXT Required to write the context of a
thread.

THREAD_SET_INFORMATION Required to set certain
information in the thread object.

THREAD_SET_THREAD_TOKEN Required to set the
impersonation token for a thread.

THREAD_SUSPEND_RESUME Required to suspend or resume a
thread.

THREAD_TERMINATE Required to terminate a thread.

The handle returned by the CreateThread function has THREAD_ALL_ACCESS access to the
thread object.

For more information about threads, see Processes and Threads.

Access-Token Objects
A process or thread cannot wait on an access-token object because the access-token object type
does not support the SYNCHRONIZE standard access type.

The access rights defined for access-token objects are STANDARD_RIGHTS_REQUIRED and
the rights given in the following table.

Value Meaning

TOKEN_ADJUST_DEFAULT Required to adjust default information,
such as the owner, primary group, and
default ACL in an access token.

TOKEN_ADJUST_GROUPS Required to adjust the groups in an
access token.

TOKEN_ADJUST_PRIVILEGESRequired to adjust the privileges in an
access token.

TOKEN_ASSIGN_PRIMARY Required to attach a primary token to a
process. The
SE_ASSIGNPRIMARYTOKEN_NAME
privilege is also required to accomplish
this task.

TOKEN_DUPLICATE Required to duplicate an access token.
TOKEN_EXECUTE Combines

STANDARD_RIGHTS_EXECUTE and
TOKEN_IMPERSONATE.

TOKEN_IMPERSONATE Required to attach an impersonation
access token to a process.

TOKEN_QUERY Required to query an access token.
TOKEN_QUERY_SOURCE Required to query the source of an

access token.
TOKEN_READ Combines

STANDARD_RIGHTS_READ and
TOKEN_QUERY.

TOKEN_WRITE Combines
STANDARD_RIGHTS_WRITE,
TOKEN_ADJUST_PRIVILEGES,
TOKEN_ADJUST_GROUPS, and
TOKEN_ADJUST_DEFAULT.

The TOKEN_ALL_ACCESS access right combines all possible access rights for a token.

The access rights for tokens are typically specified in calls to the OpenProcessToken and
OpenThreadToken functions.

File-Mapping Objects
A process or thread cannot wait on an access-token object because the access-token object type
does not support the SYNCHRONIZE standard access type.

The access rights defined for file-mapping objects are STANDARD_RIGHTS_REQUIRED and the
rights given in the following table.

Value Meaning

FILE_MAP_READ Read access to the file-mapping object is
requested. This allows a readable view of
the file to be mapped.

FILE_MAP_WRITE Write access to the file mapping object is
requested. This allows a writable view of
the file to be mapped. If the file mapping
access rights do not include
PAGE_READWRITE, this access type
does not allow writing the mapped file.

SECTION_EXTEND_SIZE Required to extend the size of a file
mapping object.

SECTION_MAP_EXECUTERequired to complete an operation in a file
mapping object.

SECTION_MAP_READ Equivalent to FILE_MAP_READ.
SECTION_MAP_WRITE Equivalent to FILE_MAP_WRITE.
SECTION_QUERY Required to query a file mapping object.

If the call to the CreateFileMapping function specifies the PAGE_READWRITE protection flag,
the handle to the file mapping object has SECTION_QUERY | SECTION_MAP_READ |
SECTION_MAP_WRITE access. If the call to CreateFileMapping specifies PAGE_READONLY,
the handle of the file mapping object has SECTION_QUERY | SECTION_MAP_READ access.

The FILE_MAP_ALL_ACCESS access right specifies all possible access rights for the file
mapping object. The SECTION_ALL_ACCESS access right is equivalent to it.

For more information about file-mapping objects, see File Mapping.

Window-Management Objects
The following are the securable window-management objects.

Securable ObjectDescription

Window station An object that contains a clipboard, a set of global
atoms, and a group of desktop objects. The
interactive window station assigned to the logon
session of the interactive user also contains the
display device, keyboard, and mouse. Window
stations provide the first level of security for a work
station and are the source of inheritable security
for desktop objects.

Desktop An object that has a display surface and contains
windows, menus, and hooks. A desktop object is a
subobject of a window-station object, from which it
inherits security.

Window-Station Objects
The following are the window-station access rights and their meanings.

Constant Description

WINSTA_ACCESSCLIPBOARD Required to use the clipboard.
WINSTA_ACCESSGLOBALATOMSRequired to manipulate global

atoms.
WINSTA_CREATEDESKTOP Required to create new desktop

objects on the window station.
WINSTA_ENUMDESKTOPS Required to enumerate existing

desktop objects.
WINSTA_ENUMERATE Required for the window station to

be enumerated.
WINSTA_EXITWINDOWS Required to successfully call the

ExitWindows or ExitWindowsEx
function. Window stations can be
shared by users and this access
type can prevent other users of a
window station from logging off the
window station owner.

WINSTA_READATTRIBUTES Required to read the attributes of a
window-station object. This
attribute includes color settings
and other global window station
properties.

WINSTA_READSCREEN Required to access screen
contents.

WINSTA_WRITEATTRIBUTES Required to modify the attributes of
a window-station object. The
attributes include color settings
and other global window-station
properties.

The following are the generic mappings for the interactive window-station object, which is
the window station assigned to the logon session of the interactive user.

Value Maps to

GENERIC_READ STANDARD_RIGHTS_READ,
WINSTA_ENUMDESKTOPS,
WINSTA_ENUMERATE,
WINSTA_READATTRIBUTES, and
WINSTA_READSCREEN

GENERIC_WRITE STANDARD_RIGHTS_WRITE,
WINSTA_ACCESSCLIPBOARD,
WINSTA_CREATEDESKTOP, and
WINSTA_WRITEATTRIBUTES

GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE,
WINSTA_ACCESSGLOBALATOMS, and
WINSTA_EXITWINDOWS

GENERIC_ALL STANDARD_RIGHTS_REQUIRED,
WINSTA_ACCESSCLIPBOARD,
WINSTA_ACCESSGLOBALATOMS,
WINSTA_CREATEDESKTOP,
WINSTA_ENUMDESKTOPS,
WINSTA_ENUMERATE,
WINSTA_EXITWINDOWS,
WINSTA_READATTRIBUTES,
WINSTA_READSCREEN, and
WINSTA_WRITEATTRIBUTES

The following are the generic mappings for a noninteractive window-station object. The
system assigns noninteractive window stations to all logon sessions other than that of the
interactive user.

Value Maps to

GENERIC_READ STANDARD_RIGHTS_READ,
WINSTA_ENUMDESKTOPS,
WINSTA_ENUMERATE, and
WINSTA_READATTRIBUTES

GENERIC_WRITE STANDARD_RIGHTS_WRITE,
WINSTA_ACCESSCLIPBOARD, and
WINSTA_CREATEDESKTOP

GENERIC_EXECUTE STANDARD_RIGHTS_EXECUTE,
WINSTA_ACCESSGLOBALATOMS, and
WINSTA_EXITWINDOWS

GENERIC_ALL STANDARD_RIGHTS_REQUIRED,
WINSTA_ACCESSCLIPBOARD,
WINSTA_ACCESSGLOBALATOMS,
WINSTA_CREATEDESKTOP,
WINSTA_ENUMDESKTOPS,
WINSTA_ENUMERATE,
WINSTA_EXITWINDOWS, and
WINSTA_READATTRIBUTES

An application can call the GetProcessWindowStation function to retrieve a handle of its
assigned window station. The security attributes of the window station can be retrieved and set by
using this handle in calls to the GetUserObjectSecurity and SetUserObjectSecurity functions.
An application can use the GetUserObjectInformation and SetUserObjectInformation functions
to get and set information about a window-station object. For more information on window-station
objects, see Window Stations and Desktops.

Desktop Objects
A new desktop inherits its security descriptor from its parent window station.

The following are the desktop access rights and their meanings.

Constant Description

DESKTOP_CREATEMENU Required to create a menu on the
the desktop.

DESKTOP_CREATEWINDOW Required to create a window on the
desktop.

DESKTOP_ENUMERATE Required for the desktop to be
enumerated.

DESKTOP_HOOKCONTROL Required to establish any of the
window hooks.

DESKTOP_JOURNALPLAYBACKRequired to perform journal playback
on a desktop.

DESKTOP_JOURNALRECORD Required to perform journal
recording on a desktop.

DESKTOP_READOBJECTS Required to read objects on the
desktop.

DESKTOP_SWITCHDESKTOP Required to activate the desktop
using the SwitchDesktop function.

DESKTOP_WRITEOBJECTS Required to write objects on the
desktop.

The following are the generic mappings for a desktop object contained in the interactive
window station of the user's logon session.

Value Maps to

GENERIC_READ DESKTOP_ENUMERATE,
DESKTOP_READOBJECTS, and
STANDARD_RIGHTS_READ

GENERIC_WRITE DESKTOP_CREATEMENU,
DESKTOP_CREATEWINDOW,
DESKTOP_HOOKCONTROL,
DESKTOP_JOURNALPLAYBACK,
DESKTOP_JOURNALRECORD,
DESKTOP_WRITEOBJECTS, and
STANDARD_RIGHTS_WRITE

GENERIC_EXECUTEDESKTOP_SWITCHDESKTOP and
STANDARD_RIGHTS_EXECUTE

GENERIC_ALL DESKTOP_CREATEMENU,
DESKTOP_CREATEWINDOW,
DESKTOP_ENUMERATE,
DESKTOP_HOOKCONTROL,
DESKTOP_JOURNALPLAYBACK,
DESKTOP_JOURNALRECORD,
DESKTOP_READOBJECTS,
DESKTOP_SWITCHDESKTOP,
DESKTOP_WRITEOBJECTS, and
STANDARD_RIGHTS_REQUIRED

An application can call the GetThreadDesktop function to retrieve a handle of the desktop for a
given thread. The desktop's security attributes can be retrieved and set by using this handle in
calls to GetUserObjectSecurity and SetUserObjectSecurity. An application can use the
GetUserObjectInformation and SetUserObjectInformation functions to get and set information
about a desktop object. For more information on desktop objects, see Window Stations and
Desktops.

Registry Key Objects
The following are the registry-key access rights and their meanings.

Value Meaning

KEY_ALL_ACCESS Combines the
STANDARD_RIGHTS_REQUIRED,
KEY_QUERY_VALUE,
KEY_SET_VALUE,
KEY_CREATE_SUB_KEY,
KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY, and
KEY_CREATE_LINK values.

KEY_CREATE_LINK Required to create a link to a registry-
key object.

KEY_CREATE_SUB_KEY Required to create a subkey of a
registry-key object.

KEY_ENUMERATE_SUB_KEYSRequired to enumerate the subkeys of
a registry-key object.

KEY_EXECUTE Equivalent to KEY_READ.
KEY_NOTIFY Required to request change

notifications for a registry key or for
subkeys of a registry key.

KEY_QUERY_VALUE Required to query a value of a
registry-key object.

KEY_READ Combines the
STANDARD_RIGHTS_READ,
KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, and
KEY_NOTIFY values.

KEY_SET_VALUE Required to create or set a value of a
registry-key object.

KEY_WRITE Combines the
STANDARD_RIGHTS_WRITE,
KEY_SET_VALUE, and
KEY_CREATE_SUB_KEY values.

For more information about registry objects, see Registry.

Service Objects
The access rights and generic mappings for service-control manager objects and service objects
are given in the reference materials for the OpenService and OpenSCManager functions. For
information about service objects, see Services.

Interprocess Synchronization Objects
The interprocess synchronization objects (event, mutex, semaphore, and timer) are securable.
Critical section objects, which are per-process synchronization objects, are not securable.Event ObjectsThe valid access rights for event objects are STANDARD_RIGHTS_REQUIRED and the rights
given in the following table.

Value Meaning

EVENT_ALL_ACCESS Specifies all possible access rights for an
event object.

EVENT_MODIFY_STATESpecifies modify state (release) access.
SYNCHRONIZE Specifies synchronization (wait or release)

access.

The handle returned by the CreateEvent function has EVENT_ALL_ACCESS access to the
semaphore object.Mutex ObjectsThe valid access rights for mutex objects are STANDARD_RIGHTS_REQUIRED and the rights
given in the following table.

Value Meaning

MUTEX_ALL_ACCESS Specifies all possible access rights for a
mutex object.

MUTEX_MODIFY_STATE Specifies modify state (release) access.
SYNCHRONIZE Specifies synchronization (wait or release)

access.

The handle returned by the CreateMutex function has MUTEX_ALL_ACCESS access to the
mutex object.Semaphore ObjectsThe valid access rights for semaphore objects are STANDARD_RIGHTS_REQUIRED and the
rights given in the following table.

Value Meaning

SEMAPHORE_ALL_ACCESS Specifies all possible access rights for
a semaphore object.

SEMAPHORE_MODIFY_STATESpecifies modify state (release)
access.

SYNCHRONIZE Specifies synchronization (wait)
access.

The handle returned by the CreateSemaphore function has SEMAPHORE_ALL_ACCESS
access to the semaphore object.Timer ObjectsThe valid access rights for timer objects are STANDARD_RIGHTS_REQUIRED and the rights
given in the following table.

Value Meaning

TIMER_ALL_ACCESS Specifies all possible access rights for a
timer object.

TIMER_MODIFY_STATE Specifies modify state (release) access.
SYNCHRONIZE Specifies synchronization (wait or release)

access.

The handle returned by the CreateWaitableTimer function has TIMER_ALL_ACCESS access
to the timer object.

Using Security
The following topics demonstrate some practical applications of the Win32 security functions and
structures. As noted in File and Directory Objects, file objects can be secured only when NTFS is
in use.

· Denying access
· Allowing access
· Setting privileges
· Security editor
· Designing a protected server

Denying Access
You can deny all access to an object by adding an empty discretionary access-control list (DACL)
to the object's security descriptor. An empty DACL has no access-control entries (ACEs), which
means that the DACL does not grant access to anyone. Note that this is different from a security
descriptor that has no DACL; in that case, the system grants everyone full access to the object.
You can also prevent a specified trustee from gaining access to an object by using a DACL that
has one or more access-denied ACEs.

This topic includes examples that use the high-level access-control functions that are new for
Windows NT version 4.0. For an example that uses the older low-level access control functions,
see Denying Access Using Low-Level Functions.

The high-level examples use the SetEntriesInAcl function to create an ACL. Then they use the
SetNamedSecurityInfo function to attach the ACL as the DACL of an object. Note that these
examples can work with a variety of named securable objects, such as files, registry keys, and
synchronization objects.

The first example shows how to add an empty DACL to an object's security descriptor. The effect
is to deny all access to the object.DWORD SetEmptyDACL(LPTSTR lpObjectName, SE_OBJECT_TYPE ObjectType)
{
DWORD dwRes;
PACL pDacl;
if (NULL == lpObjectName)

return ERROR_INVALID_PARAMETER;
// create an ACL with no ACEs
dwRes = SetEntriesInAcl(0, NULL, NULL, &pDacl);
if (ERROR_SUCCESS != dwRes)

return dwRes;
// attach the emtpy ACL as the object's DACL
dwRes = SetNamedSecurityInfo(lpObjectName, ObjectType,
DACL_SECURITY_INFORMATION,
NULL, NULL, pDacl, NULL);
// free the buffer returned by SetEntriesInAcl
LocalFree(pDacl);
return dwRes;
}You can modify this example to deny access to a specified trustee. The following variation uses

the BuildExplicitAccessWithName function to initialize an EXPLICIT_ACCESS structure with
the data for an access-denied ACE. Then it uses the SetEntriesInAcl and
SetNamedSecurityInfo functions to create the ACL and attach it to the object.#include <aclapi.h>
DWORD dwRes;
PACL pDacl;
EXPLICIT_ACCESS ea;
// initialize an EXPLICIT_ACCESS structure to deny access
ZeroMemory(&ea, sizeof(EXPLICIT_ACCESS));
BuildExplicitAccessWithName(&ea,

"ludwig",// name of trustee
GENERIC_ALL, // type of access
DENY_ACCESS, // access mode
NO_INHERITANCE); // inheritance mode

// create an ACL with one access-denied ACE
dwRes = SetEntriesInAcl(1, &ea, NULL, &pDacl);
if (ERROR_SUCCESS != dwRes)

return dwRes;
// attach the ACL as the object's DACLdwRes = SetNamedSecurityInfo(TEXT("myfile"), SE_FILE_OBJECT,
DACL_SECURITY_INFORMATION,
NULL, NULL, pDacl, NULL);
// free the buffer returned by SetEntriesInAcl
LocalFree(pDacl);

Allowing Access
You can allow all access to an object by adding a NULL discretionary access-control list (DACL)
to the object's security descriptor. Unlike an empty DACL that denies all access, a NULL DACL
grants everyone full access to the object. You can also grant access to a specified trustee by
using a DACL that has one or more access-allowed ACEs.

This topic includes examples that use the high-level access-control functions provided by
Windows NT version 4.0. For an example that uses the older low-level access control functions,
see Allowing Access Using the Low-Level Functions.

The first example uses the SetNamedSecurityInfo function to attach a NULL DACL to a file. The
SetNamedSecurityInfo call specifies the DACL_SECURITY_INFORMATION flag to indicate that
it is setting the file's DACL; and it passes a NULL pointer for the pDacl parameter.// grant full access to everyone with a NULL DACLdwRes = SetNamedSecurityInfo(TEXT("myfile"), SE_FILE_OBJECT,
DACL_SECURITY_INFORMATION,
NULL, NULL, NULL, NULL);

The second example adds an access-allowed ACE to the DACL of an object. The example uses
the GetNamedSecurityInfo function to get the existing DACL. Then it uses the
BuildExplicitAccessWithName and SetEntriesInAcl functions to merge a new ACE with any
existing ACEs in the DACL. Finally, the example calls the SetNamedSecurityInfo function to
attach the new DACL to the object's security descriptor.DWORD AddAceToAcl (LPTSTR lpObjectName, SE_OBJECT_TYPE ObjectType)
{
DWORD dwRes;
PACL pOldDACL, pNewDACL;
PSECURITY_DESCRIPTOR pSD;
EXPLICIT_ACCESS ea;
if (NULL == lpObjectName)

return ERROR_INVALID_PARAMETER;
// get a pointer to the existing DACL
dwRes = GetNamedSecurityInfo(lpObjectName, ObjectType,
DACL_SECURITY_INFORMATION,
NULL, NULL, &pOldDACL, NULL, &pSD);
if (ERROR_SUCCESS != dwRes)

return dwRes;
// initialize an EXPLICIT_ACCESS structure to allow access
ZeroMemory(&ea, sizeof(EXPLICIT_ACCESS));
BuildExplicitAccessWithName(&ea, "duke", GENERIC_READ,

SET_ACCESS, NO_INHERITANCE);
// create an new ACL by merging the EXPLICIT_ACCESS structure
// with the existing DACL
dwRes = SetEntriesInAcl(1, &ea, pOldDACL, &pNewDACL);
if (ERROR_SUCCESS != dwRes)

goto Cleanup;
// attach the new ACL as the object's DACL
dwRes = SetNamedSecurityInfo(lpObjectName, ObjectType,
DACL_SECURITY_INFORMATION,
NULL, NULL, pNewDACL, NULL);
// free the buffers returned by SetEntriesInAcl
// and GetNamedSecurityInfo
Cleanup:

if(pSD != NULL)
LocalFree((HLOCAL) pSD);
if(pNewDACL != NULL)
LocalFree((HLOCAL) pNewDACL);

return dwRes;
}

Setting Privileges
The following example removes the discretionary ACL from a file. If necessary, ownership of the
file is given to the Administrator account. If required, the SE_TAKE_OWNERSHIP_NAME
privilege is enabled for the account.LPSTR lpszOwnFile = "d:\\ntfs_sample_file";
PSID pSIDAliasAdmins = NULL;
static SID_IDENTIFIER_AUTHORITY

siaNTAuthority = SECURITY_NT_AUTHORITY;
BOOL FAR PASCAL TakeOwnership()
{

SECURITY_DESCRIPTOR sd;
/*

* Initialize a security descriptor and assign it a NULL
* discretionary ACL to allow unrestricted access.
* Assign the security descriptor to a file.
*/

if (!InitializeSecurityDescriptor(&sd,
SECURITY_DESCRIPTOR_REVISION)) {
ErrorHandler("InitializeSecurityDescriptor");
return FALSE;
}
if (!SetSecurityDescriptorDacl(&sd,

TRUE,
(PACL) NULL,
FALSE)) {
ErrorHandler("SetSecurityDescriptorDacl");
return FALSE;
}
if (SetFileSecurity(lpszOwnFile,

DACL_SECURITY_INFORMATION,
&sd))
return TRUE;
else
ErrorHandler("SetFileSecurity1");
/*

* If the preceding call to SetFileSecurity fails, create
* an Administrator SID and use it to set the owner of
* the security descriptor.
*/

if (!AllocateAndInitializeSid(&siaNTAuthority,
2, /* subauthority count */

/* first subauthority */
SECURITY_BUILTIN_DOMAIN_RID,

/* second subauthority */
DOMAIN_ALIAS_RID_ADMINS,
0, 0, 0, 0, 0, 0,
&pSIDAliasAdmins)) {
ErrorHandler("AllocateAndInitializeSid");
return FALSE;
}
if (!SetSecurityDescriptorOwner(&sd,

pSIDAliasAdmins,
FALSE)) {
ErrorHandler("SetSecurityDescriptorOwner");
FreeSid(pSIDAliasAdmins);
return FALSE;
}
/*

* If the following call to SetFileSecurity fails,
* enable SE_TAKE_OWNERSHIP_NAME in the access token for
* the current process and try again.
*/

if (!SetFileSecurity(lpszOwnFile,
OWNER_SECURITY_INFORMATION,
&sd)) {
ErrorHandler("SetFileSecurity2");
if (!AssertTakeOwnership(TRUE)) { /* local */
MessageBox(NULL, "Must be logged on as Administrator",
"AssertTakeOwnership", MB_OK);
FreeSid(pSIDAliasAdmins);
return FALSE;
}
if (!SetFileSecurity(lpszOwnFile,

OWNER_SECURITY_INFORMATION,
&sd)) {
MessageBox(NULL, "Must be logged on as Administrator",
"SetFileSecurity", MB_OK);
FreeSid(pSIDAliasAdmins);
return FALSE;
}
}
/*

* The Administrator is now the owner of the file.
* Try again to assign a NULL ACL.
*/

if (SetFileSecurity(lpszOwnFile,
DACL_SECURITY_INFORMATION,
&sd)) {
MessageBox(NULL, "Added NULL DACL; protection removed",
"SetFileSecurity", MB_OK);
AssertTakeOwnership(FALSE);
return TRUE;
}
else {
AssertTakeOwnership(FALSE);
ErrorHandler("SetFileSecurity3");
return FALSE;
}

}
BOOL FAR PASCAL AssertTakeOwnership(BOOL fEnable)
{

HANDLE hToken;
LUID TakeOwnershipValue;
TOKEN_PRIVILEGES tkp;
/* Retrieve a handle of the access token. */
if (!OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
&hToken)) {
ErrorHandler("OpenProcessToken");
return FALSE;
}
/*

* Enable the SE_TAKE_OWNERSHIP_NAME privilege or
* disable all privileges, depending on the fEnable
* flag.
*/

if(fEnable) {
if (!LookupPrivilegeValue((LPSTR) NULL,

SE_TAKE_OWNERSHIP_NAME,
&TakeOwnershipValue)) {
ErrorHandler("LookupPrivilegeValue");
return FALSE;
}
tkp.PrivilegeCount = 1;
tkp.Privileges[0].Luid = TakeOwnershipValue;
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
AdjustTokenPrivileges(hToken,
FALSE,
&tkp,
sizeof(TOKEN_PRIVILEGES),
(PTOKEN_PRIVILEGES) NULL,
(PDWORD) NULL);
/*
* The return value of AdjustTokenPrivileges cannot
* be tested.
*/
if (GetLastError() != ERROR_SUCCESS) {
ErrorHandler("AdjustTokenPrivileges");
return FALSE;
}
}
else {
AdjustTokenPrivileges(hToken,
TRUE,/* disable all privileges */
(PTOKEN_PRIVILEGES) NULL,
(DWORD) 0,
(PTOKEN_PRIVILEGES) NULL,
(PDWORD) NULL);
/*
* The return value of AdjustTokenPrivileges cannot
* be tested.
*/
if (GetLastError() != ERROR_SUCCESS) {
ErrorHandler("AdjustTokenPrivileges");
return FALSE;
}
}
return TRUE;

}

Security Editor
Both File Manager and the Microsoft Windows NT Registry Editor (REGEDT32.EXE) include a
security editor that allows a user with the appropriate privileges and access rights to change the
security attributes of files and registry keys. This security editor imposes guidelines on the form of
the security information. Applications that modify the security of files, directories, or registry keys
can follow these guidelines so the security editor will function correctly after the modifications.

The security editor accepts discretionary ACLs having either zero or more
ACCESS_DENIED_ACE access-control entries (ACEs) or zero or more
ACCESS_ALLOWED_ACE ACEs. The two ACE types cannot be mixed in a discretionary ACL.
Neither does the security editor accept ACCESS_DENIED_ACE ACEs that deny only partial
access. For example, it would reject an ACE that denies only read access to a file.

The security editor also imposes a requirement on inheritance flags. These flags are ignored for
noncontainer objects, such as files, but are important for container objects, such as directories
and registry keys. For container objects that support permissions on objects in the container,
make sure that each security identifier (SID) has an ACE inherited by objects and an ACE
inherited by containers. Accordingly, the discretionary ACL should contain ACEs in which the
AceFlags member of the ACE_HEADER structure structure contains the
OBJECT_INHERIT_ACE and CONTAINER_INHERIT_ACE flags. Sometimes these flags can be
combined in a single ACE. For example, a discretionary ACL that grants read access to a
directory can contain a CONTAINER_INHERIT_ACE ACE that grants GENERIC_READ access to
the user or group as well as an ACE with the OBJECT_INHERIT_ACE and INHERIT_ONLY_ACE
flags that also grants GENERIC_READ access. In this case, the required flags could be combined
into an ACE that grants GENERIC_READ access and combines the CONTAINER_INHERIT_ACE
and OBJECT_INHERIT_ACE flags.

The same rules for inheritance flags apply to system ACLs. The security editor does not support
the SYSTEM_ALARM_ACE type and will not edit a system ACL containing one. As noted earlier,
this ACE type is not supported by the current version of Windows NT.

Designing a Protected Server
The designer of a server application that assigns security to private object types must make many
decisions about the design of the security interface, such as those in the following list:

· Define object.
· Determine the types of objects and the access types required, including whether to

support SYNCHRONIZE.
· Determine whether an object is a container or noncontainer, as well as the appropriate

inheritance flags.
· Define appropriate access types and generic mappings.
· Determine impersonation characteristics.
· Develop security descriptor for the initial object and for new objects assembled from the

parent's security descriptor and the client's access token.
· Consider string- versus handle-based object-manipulation functions.
· Resolve potential conflicts in access rights. For example, decide what is to be done if an

administrator and a user both have delete access to an object.
For example, the designer of a protected print server might choose to define a server object, a
printer object, and a document object. The three access rights in the following table are likely to
be required:

Access right Description

Administrate Allows the holder to add objects to and delete them
from another object. This right applies to the server,
the printers, and the documents.

Enumerate Allows the holder to list a container object's contents.
This right applies to the server and to the printers.

Use Allow the holder to add items to a print queue. This
right applies to the printers.

Using Windows NT 3.x Security Functions
This topic contains examples that use the Windows NT version 3.x security functions. New
applications should use the high-level functions provided by Windows NT version 4.0. For
examples that use the high-level functions, see Denying Access and Allowing Access.

Denying Access Using Low-Level Functions
This example uses the low-level functions to attach an empty DACL to a file object. For similar
examples that use the high-level security functions, see Denying Access.

The example allocates a buffer for the security descriptor and calls the
InitializeSecurityDescriptor function to initialize the buffer. Then it allocates a buffer for the ACL
and calls the InitializeAcl function to initialize that buffer. Next, it calls the
SetSecurityDescriptorDacl function to attach the ACL to the security descriptor; and calls the
SetFileSecurity function to attach the security descriptor to a file.PSECURITY_DESCRIPTOR pSD;
PACL pACL;
DWORD cbACL = 1024;
/* Initialize a security descriptor. */
pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,

SECURITY_DESCRIPTOR_MIN_LENGTH); /* defined in WINNT.H */
if (pSD == NULL) {

ErrorHandler("LocalAlloc");
goto Cleanup;

}
if (!InitializeSecurityDescriptor(pSD,

SECURITY_DESCRIPTOR_REVISION)) { /* defined in WINNT.H */
ErrorHandler("InitializeSecurityDescriptor");
goto Cleanup;

}
/* Initialize a DACL. */
pACL = (PACL) LocalAlloc(LPTR, cbACL);
if (pACL == NULL) {

ErrorHandler("LocalAlloc");
goto Cleanup;

}
if (!InitializeAcl(pACL, cbACL, ACL_REVISION2)) {

ErrorHandler("InitializeAcl");
goto Cleanup;

}
/* Add an empty ACL to the SD to deny access. */
if (!SetSecurityDescriptorDacl(pSD,

TRUE,/* fDaclPresent flag */
pACL,
FALSE)) { /* not a default DACL */
ErrorHandler("SetSecurityDescriptorDacl");
goto Cleanup;

}
/* Use the new SD as the file's security info. */
if (!SetFileSecurity(lpszTestFile,

DACL_SECURITY_INFORMATION,
pSD)) {
ErrorHandler("SetFileSecurity");
goto Cleanup;

}
Cleanup:

if(pSD != NULL)
LocalFree((HLOCAL) pSD);
if(pACL != NULL)
LocalFree((HLOCAL) pACL);

Allowing Access Using the Low-Level Functions
This topic shows how to use the low-level functions to work with ACLs and ACEs that allow
access to an object. For similar examples that use the high-level security functions, see Allowing
Access.

The first example shows the use of the low-level access-control functions to add a NULL DACL to
a file's security descriptor. The low-level example allocates a security descriptor buffer and calls
the InitializeSecurityDescriptor function to initialize it. Then it calls the
SetSecurityDescriptorDacl function to attach a NULL DACL to the security descriptor. Finally, it
calls the SetFileSecurity function to attach the security descriptor to a file. An equivalent high-
level example could perform the same operation with a single call to the SetNamedSecurityInfo
function.
Note You can write code that builds security descriptors from scratch, as in the example.
However, when writing code that builds or manipulates security descriptors, your code should
explore the default security descriptors that Windows NT places on objects. For example, an
object may have a default DACL that contains ACEs inherited from its parent object. Rather than
simply replacing the default DACL, your code should first examine the default DACL to determine
whether you want to include its ACEs in the new DACL.PSECURITY_DESCRIPTOR pSD;
/* Initialize a security descriptor. */
pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,

SECURITY_DESCRIPTOR_MIN_LENGTH); /* defined in WINNT.H */
if (pSD == NULL) {

ErrorHandler("LocalAlloc");
goto Cleanup;

}
if (!InitializeSecurityDescriptor(pSD,

SECURITY_DESCRIPTOR_REVISION)) { /* defined in WINNT.H */
ErrorHandler("InitializeSecurityDescriptor");
goto Cleanup;

}
/* Add a NULL disc. ACL to the security descriptor. */
if (!SetSecurityDescriptorDacl(pSD,

TRUE,/* specifying a disc. ACL */
(PACL) NULL,
FALSE)) { /* not a default disc. ACL */
ErrorHandler("SetSecurityDescriptorDacl");
goto Cleanup;

}
/* Add the security descriptor to the file. */
if (!SetFileSecurity(lpszTestFile,

DACL_SECURITY_INFORMATION,
pSD)) {
ErrorHandler("SetFileSecurity");
goto Cleanup;

}
Cleanup:

if(pSD != NULL)
LocalFree((HLOCAL) pSD);The following example shows the use of the low-level access-control functions to add a DACL

with an access-allowed ACE to a file's security descriptor. The example allocates and initializes a
security descriptor, allocates and initializes an ACL, and allocates and looks up a security
identifier (SID) for a specified account. Then it adds an ACE to the ACL, adds the ACL as the
DACL of the security descriptor, and finally, attaches the security descriptor to the file. Note that
the high-level functions perform many of these steps for you.PSECURITY_DESCRIPTOR pSD;

PACL pACLNew;
DWORD cbACL = 1024;
PSID pSID;
DWORD cbSID = 1024;
LPSTR lpszAccount = "UserABC";
LPSTR lpszDomain;
DWORD cchDomainName = 80;
PSID_NAME_USE psnuType;
/* Initialize a new security descriptor. */
pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
SECURITY_DESCRIPTOR_MIN_LENGTH); /* defined in WINNT.H */
if (pSD == NULL) {
ErrorHandler("LocalAlloc");
goto Cleanup;
}
if (!InitializeSecurityDescriptor(pSD,

SECURITY_DESCRIPTOR_REVISION)) {
ErrorHandler("InitializeSecurityDescriptor");
goto Cleanup;
}
/* Initialize a new ACL. */
pACLNew = (PACL) LocalAlloc(LPTR, cbACL);
if (pACLNew == NULL) {
ErrorHandler("LocalAlloc");
goto Cleanup;
}
if (!InitializeAcl(pACLNew, cbACL, ACL_REVISION2)) {
ErrorHandler("InitializeAcl");
goto Cleanup;
}
/* Retrieve the SID for UserABC. */
pSID = (PSID) LocalAlloc(LPTR, cbSID);
psnuType = (PSID_NAME_USE) LocalAlloc(LPTR, 1024);
lpszDomain = (LPSTR) LocalAlloc(LPTR, cchDomainName);
if (pSID == NULL || psnuType == NULL ||
lpszDomain == NULL) {
ErrorHandler("LocalAlloc");
goto Cleanup;
}
if (!LookupAccountName((LPSTR) NULL, /* local name */

lpszAccount,
pSID,
&cbSID,
lpszDomain,
&cchDomainName,
psnuType)) {
ErrorHandler("LookupAccountName");
goto Cleanup;
}
if (!IsValidSid(pSID))
TextOut(hdc, 10, yIncrement += 18,
"SID is not valid.", 17);
else
TextOut(hdc, 10, yIncrement += 18,
"SID is valid.", 13);

/* Allow read but not write access to the file. */
if (!AddAccessAllowedAce(pACLNew,

ACL_REVISION2,
GENERIC_READ,
pSID)) {
ErrorHandler("AddAccessAllowedAce");
goto Cleanup;
}
/* Add a new ACL to the security descriptor.*/
if (!SetSecurityDescriptorDacl(pSD,

TRUE, /* fDaclPresent flag */
pACLNew,
FALSE)) {/* not a default disc. ACL */
ErrorHandler("SetSecurityDescriptorDacl");
goto Cleanup;
}
/* Apply the new security descriptor to the file. */
if (!SetFileSecurity("d:\\ntfs_sample_file",

DACL_SECURITY_INFORMATION,
pSD)) {
ErrorHandler("SetFileSecurity");
goto Cleanup;
}
TextOut(hdc, 10, yIncrement += 18,
"Successfully added access-allowed ACE to file's DACL.", 53);
Cleanup:
FreeSid(pSID);
if(pSD != NULL)
LocalFree((HLOCAL) pSD);
if(pACLNew != NULL)
LocalFree((HLOCAL) pACLNew);
if(psnuType != NULL)
LocalFree((HLOCAL) psnuType);
if(lpszDomain != NULL)
LocalFree((HLOCAL) lpszDomain);

Security Reference
The following functions, structures, and enumeration types are used with security.

Security Functions
The following functions are used with security.
AccessCheck
AccessCheckAndAuditAlarm
AddAccessAllowedAce
AddAccessDeniedAce
AddAce
AddAuditAccessAce
AdjustTokenGroups
AdjustTokenPrivileges
AllocateAndInitializeSid
AllocateLocallyUniqueId
AreAllAccessesGranted
AreAnyAccessesGranted
BuildExplicitAccessWithName
BuildSecurityDescriptor
BuildTrusteeWithName
BuildTrusteeWithSid
CopySid
CreatePrivateObjectSecurity
CreateProcessAsUser
DdeImpersonateClient
DeleteAce
DestroyPrivateObjectSecurity
DuplicateToken
DuplicateTokenEx
EqualPrefixSid
EqualSid
FindFirstFreeAce
FreeSid
GetAce
GetAclInformation
GetAuditedPermissionsFromAcl
GetEffectiveRightsFromAcl
GetExplicitEntriesFromAcl
GetFileSecurity
GetKernelObjectSecurity
GetLengthSid
GetNamedSecurityInfo
GetPrivateObjectSecurity
GetProcessWindowStation
GetSecurityDescriptorControl
GetSecurityDescriptorDacl
GetSecurityDescriptorGroup
GetSecurityDescriptorLength
GetSecurityDescriptorOwner
GetSecurityDescriptorSacl
GetSecurityInfo
GetSidIdentifierAuthority
GetSidLengthRequired
GetSidSubAuthority
GetSidSubAuthorityCount
GetTokenInformation
GetTrusteeForm
GetTrusteeName
GetTrusteeType
GetUserObjectSecurity
ImpersonateLoggedOnUser
ImpersonateNamedPipeClient
ImpersonateSelf
InitializeAcl
InitializeSecurityDescriptor
InitializeSid

IsValidAcl
IsValidSecurityDescriptor
IsValidSidLogonUser
LookupAccountName
LookupAccountSid
LookupPrivilegeDisplayName
LookupPrivilegeName
LookupPrivilegeValue
LookupSecurityDescriptorParts
MakeAbsoluteSD
MakeSelfRelativeSD
MapGenericMask
ObjectCloseAuditAlarm
ObjectDeleteAuditAlarm
ObjectOpenAuditAlarm
ObjectPrivilegeAuditAlarm
OpenProcessToken
OpenThreadToken
PrivilegeCheck
PrivilegedServiceAuditAlarm
RevertToSelf
SetAclInformation
SetEntriesInAcl
SetFileSecurity
SetKernelObjectSecurity
SetNamedSecurityInfo
SetPrivateObjectSecurity
SetSecurityDescriptorDacl
SetSecurityDescriptorGroup
SetSecurityDescriptorOwner
SetSecurityDescriptorSacl
SetSecurityInfo
SetThreadToken
SetTokenInformation

SetUserObjectSecurity

Security Structures
The following structures are used with security.
ACCESS_ALLOWED_ACE
ACCESS_DENIED_ACE
ACCESS_MASK
ACE
ACE_HEADER
ACL
ACL_REVISION_INFORMATION
ACL_SIZE_INFORMATION
EXPLICIT_ACCESS
GENERIC_MAPPING
LUID
LUID_AND_ATTRIBUTES
PRIVILEGE_SET
SECURITY_ATTRIBUTES
SECURITY_DESCRIPTOR
SECURITY_DESCRIPTOR_CONTROL
SECURITY_INFORMATION
SECURITY_QUALITY_OF_SERVICE
SID
SID_AND_ATTRIBUTES
SID_IDENTIFIER_AUTHORITY
SYSTEM_AUDIT_ACE
TOKEN_CONTROL
TOKEN_DEFAULT_DACL
TOKEN_GROUPS
TOKEN_OWNER
TOKEN_PRIMARY_GROUP
TOKEN_PRIVILEGES
TOKEN_SOURCE
TOKEN_STATISTICS
TOKEN_USER

TRUSTEE

Security Enumeration Types
The following enumeration types are used with security.
ACCESS_MODE
ACL_INFORMATION_CLASS
MULTIPLE_TRUSTEE_OPERATION
SE_OBJECT_TYPE
SECURITY_IMPERSONATION_LEVEL
SID_NAME_USE
TOKEN_INFORMATION_CLASS
TOKEN_TYPE
TRUSTEE_FORM

TRUSTEE_TYPE

IntroductionThe Microsoft Cryptographic API (CryptoAPI) provides services that enable application developers
to add cryptography to their Win32 applications. Applications can use the functions in CryptoAPI
without knowing anything about the underlying implementation, in much the same way that an
application can use a graphics library without knowing anything about the particular graphics
hardware configuration.

Audience
This document is intended to be used by developers familiar with the Microsoft Windows
programming environment. Previous experience with cryptography or other security related
subjects is helpful, but not absolutely necessary.

Related Documentation
Additional documents that will help you understand cryptography and the associated security
issues include:

· Bruce Schneier, Applied Cryptography, John Wiley & Sons, 1996.
· D. R. Stinson, Cryptography: Theory and Practice, CRC Press, 1995.
· R. Anderson, "Why Cryptosystems Fail," Communications of the ACM, v. 37, n. 11,

November 1994, pp. 32-40.
· RSA Laboratories, Public-Key Cryptography Standards, RSA Data Security, November

1993.
· Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algorithms,

MIT Press, 1990.
· D.W. Davies and W.L. Price, Security for Computer Networks, John Wiley & Sons, 1989.
· Dorothy E. Denning, Cryptography and Data Security, Addison-Wesley, 1982.

Overview of CryptographyCryptography provides a set of techniques for encoding data and messages such that the data
and messages can be stored and transmitted securely. This section introduces the basic
terminology of cryptography and explains some of the common methods used.

Cryptography can be used to achieve secure communications, even when the transmission media
(for example, the Internet) is untrustworthy. You can also use cryptography to encrypt your
sensitive files, so that an intruder cannot understand them.

Cryptography can be used to ensure data integrity as well as maintain secrecy.

Using cryptography, it becomes possible to verify the origin of data and messages. This is done
using digital signatures, which are explained a little later in this chapter.

When using cryptographic methods, the only part that must remain secret is the cryptographic
keys. The algorithms, the key sizes, and file formats can be made public without compromising
security.

Data Encryption
In using data encryption, a plaintext message can be encoded so it appears like random gibberish
and is very difficult to transform back to the original message, without a secret key. In this
document, the term message is used to refer to any piece of data. This message can consist of
ASCII text, a database file, or any data you want to store or transmit securely. Plaintext is used to
refer to data that has not been encrypted, while ciphertext refers to data that has.

Once a message has been encrypted, it can be stored on nonsecure media or transmitted on an
nonsecure network, and still remain secret. Later, the message can be decrypted into its original
form. This process is shown in the following illustration:

ewc msdncd, EWGraphic, bsd23501 0 /a "SDK-1CRYPT.WMF"

When a message is encrypted, an encryption key is used. This is analogous to the physical key
that is used to lock a padlock. To decrypt the message, the corresponding decryption key must be
used. It is very important to properly restrict access to the decryption key, because anyone who
possesses it will be able to decrypt all messages that were encrypted with the matching
encryption key. Note that the encryption and decryption keys are often the same key.

This may come as a surprise, but data encryption/decryption is pretty straight-forward. The really
difficult part is keeping the keys safe and transmitting them securely to other users. This is
discussed further in Exchanging Cryptographic Keys.

Symmetric Versus Public-Key Encryption
There are two main classes of encryption algorithms: symmetric algorithms and public-key
algorithms (also known as asymmetric algorithms). Systems that use symmetric algorithms are
sometimes referred to as conventional.

Symmetric Algorithms
Symmetric algorithms are the most common type of encryption algorithm. They are known as
symmetric because the same key is used for both encryption and decryption. Unlike the keys
used with public-key algorithms, symmetric keys are frequently changed. For this reason, they are
referred to here as session keys.

Compared to public-key algorithms, symmetric algorithms are very fast and, thus, are preferred
when encrypting large amounts of data. Some of the more common symmetric algorithms are
RC2, RC4, and the Data Encryption Standard (DES).

Public-Key Algorithms
Public-key (asymmetric) algorithms use two different keys: the public key and the private key. The
private key is kept private to the owner of the key pair, and the public key can be distributed to
anyone who requests it. If one key is used to encrypt a message, then the other key is required to
decrypt the message.

Public-key algorithms are very slow, on the order of 1000 times slower than symmetric algorithms.
Consequently, they are normally used only to encrypt session keys. They are also used to digitally
sign messages, as discussed in the next section.

One of the most common public-key algorithms is the RSA Public-Key Cipher.

Digital Signatures
Digital signatures can be used when you have a message that you plan to distribute in plaintext
form, and you want the recipients to be able to verify that the message comes from you and that it
hasn't been tampered with since it left your hands. Signing a message does not alter the
message, it simply generates a digital signature string you can bundle with the message or
transmit separately.

Digital signatures are generated using public-key signature algorithms. A private key is used to
generate the signature, and the corresponding public key is used to validate the signature. This
process is shown in the following illustration:

ewc msdncd, EWGraphic, bsd23501 1 /a "SDK-2SIGN.WMF"

On a network, there is often a trusted application running on a secure computer that is known as
the Certification Authority. This application knows the public key of each user. Certification
Authorities dispense messages known as certificates, each of which contains the public key of
one of its client users. Each certificate is signed with the private key of the Certification Authority.
A certificate containing the public key of the signer is often bundled with a signed message to
make it easier to verify the signature. (Certificates are described in more detail in Exchanging
Cryptographic Keys.)

The CryptoAPI Programming ModelThe Microsoft Cryptographic Application Program Interface (CryptoAPI) is a set of functions that
allow applications to encrypt or digitally sign data in a flexible manner, while providing protection
for the user's sensitive private key data.

All cryptographic operations are performed by independent modules known as cryptographic
service providers (CSPs). One CSP, the Microsoft RSA Base Provider, is bundled with the
operating system.

Each CSP provides a different implementation of the CryptoAPI. Some provide stronger
cryptographic algorithms while others contain hardware components such as smartcards. In
addition, some CSPs may occasionally communicate with users directly, such as when digital
signatures are performed using the user's signature private key.

The CryptoAPI programming model can be compared to the Windows GDI model in that the CSPs
are analogous to graphics device drivers, and the cryptographic hardware (optional) is analogous
to graphics hardware. Just as well-behaved applications are not allowed to communicate with
graphics device drivers and hardware, well-behaved applications cannot directly access the CSPs
and cryptographic hardware.

System Architecture
The Microsoft cryptographic system is composed of a number of different components, as shown
in the following illustration. The three executable portions are the application itself, the operating
system, and the CSP.

Applications communicate with the operating system through a set of functions known as the
cryptographic application program interface (CryptoAPI). The operating system, in turn,
communicates with CSPs through a set of functions known as the cryptographic service provider
interface (CryptoSPI).

ewc msdncd, EWGraphic, bsd23502 0 /a "SDK-1ARCH.WMF"

Note that applications do not communicate with CSPs directly. Instead, all cryptographic function
calls are routed through the operating system. A parameter in each CryptoAPI function indicates
to the operating system which CSP to use to perform the actual cryptographic operation.

Cryptographic Service Providers (CSPs)
As mentioned above, CSPs are independent modules that perform the real cryptographic work.
Ideally, they are written to be completely independent of any particular application, so that any
given application will run with a variety of CSPs. In reality however, some applications may have
very specific requirements that require a custom CSP.

The physical manifestation of a CSP consists of, at a minimum, a dynamic-link library (DLL) and a
signature file. The signature file is necessary to ensure that the operating system recognizes the
CSP. The operating system validates this signature periodically to ensure that the CSP has not
been tampered with.

Some CSPs may implement a fraction of their functionality either in an address separated service
called through local RPC, or in hardware called through a system device driver. Isolating global
key state and central cryptographic operations in hardware or in a service keeps keys and
operations safe from tampering within the application data space.

Applications should not take advantage of attributes particular to a specific CSP. For example, the
Microsoft RSA Base Provider currently uses 40-bit session keys and 512-bit public keys. When
applications manipulate these, they should be careful not to make assumptions about the amount
of memory needed to store them. Otherwise, the application is likely to fail when the user loads a
different CSP onto the system. You should take care to write applications that are as well-
behaved and flexible as possible.

Key Databases
Each CSP has a key database in which it stores its persistent cryptographic keys. Each key
database contains one or more key containers, each of which contain all the key pairs belonging
to a specific user (or CryptoAPI client). Each key container is given a unique name, which
applications provide to the CryptAcquireContext function when acquiring a handle to the key
container. Following is an illustration of the contents of a key database:

ewc msdncd, EWGraphic, bsd23502 1 /a "SDK-2ARCH.WMF"

The CSP stores each key container from session to session, including all the public/private key
pairs it contains. However, session keys are not preserved from session to session.

Generally, a default key container is created for each user. This key container takes the user's
logon name as its own name which is then used by any number of applications. It is also possible
for an application to create its own key container (and key pairs) which it usually names after
itself.

Session Keys
Session keys are used when encrypting and decrypting data. They are created by applications
using either the CryptGenKey or the CryptDeriveKey function. These keys are kept internal to
the CSP for safekeeping.

Unlike the key pairs, session keys are volatile. Applications can save these keys for later use or
transmission to other users by exporting them from the CSP into application space in the form of
an encrypted "key blob" using the CryptExportKey function. (This procedure is discussed in
Exchanging Cryptographic Keys.)

Public/Private Key Pairs
Each user generally has two public/private key pairs. One key pair is used to encrypt session keys
and the other to create digital signatures. These are known as the key exchange key pair and the
signature key pair, respectively. (These keys pairs are discussed later in detail.)

Note that the while key containers created by most CSPs will contain two key pairs, this is not
required. Some CSPs do not store any key pairs while others store additional ones.

Using Cryptography in your Applications
The Microsoft Cryptographic Application Program Interface (CryptoAPI) specifies functions in a
number of different areas:

· Context Functions
These functions are used by applications to connect to a CSP. These functions enable
applications to choose a specific CSP by name, or get one with a needed class of
functionality. (See Interfacing with a Cryptographic Service Provider (CSP) and Service
Provider Functions Summary.)

· Key Generation Functions
These functions allow applications to generate and customize cryptographic keys. Full support
is included for changing chaining modes, initialization vectors, and other encryption features.
(See Generating Cryptographic Keys and Key Generation Functions Summary.)

· Key Exchange Functions
These functions allow applications to exchange or transmit keys. These functions can also be
used to implement fully authenticated three-leg key exchange. (See Exchanging
Cryptographic Keys and Key Exchange Functions Summary.)

· Data Encryption Functions
These functions allow applications to encrypt or decrypt data. Support is also included for
simultaneously encrypting and hashing data. (See Encrypting and Decrypting Data and Data
Encryption Functions Summary.)

· Hashing and Signature Functions
These functions allow applications to compute cryptographically secure digests of data and
also enable digital signing of data. (See Hashes and Digital Signatures and Hashing and
Digital Signature Functions Summary.)

Interfacing with a Cryptographic ServiceProvider (CSP)The CSP architecture provides a safe way for multiple applications to access cryptographic and
signature services. Instead of being passive sets of encryption routines, CSPs are independently
functioning cryptographic modules capable of authenticating the user and checking for user
assent to actions.

For example, some CSPs will require a PIN to be entered before a digital signature is generated,
while some require a smart card, and still others have no authentication at all. The quality of
protection for keys within the system is a design parameter of the CSP itself and not the system
as a whole. This lets the same applications run in a variety of security contexts without
modification.

The amount of access that applications have to the cryptographic internals has been carefully
restricted. This was done to facilitate writing applications that are both secure and portable. The
following three design rules apply:

· Applications cannot directly access keying material. Because all keying material is
generated within the CSP and used by the application through opaque handles, there is no
risk of an application or its associated DLLs either divulging keying material or choosing
keying material from poor random sources.

· Applications cannot specify the details of cryptographic operations. The CSP interface
only allows applications to specify broad actions to take (for example, encrypt data using
algorithm X and sign data). The actual implementation of the cryptographic operations is the
responsibility of the CSP. This limits the scope of the API because esoteric protocols require
application intervention, but make a basic set of operations readily available to all
applications.

· Applications do not handle user authentication data. User authentication is done by the
CSP. In this way, CSPs that have better authentication capabilities (for example, biometric
inputs and data keys) will function without needing to change the application's authentication
model. It also prevents applications from divulging user secrets.

Different Types of CSPs
Each provider has both a name and a type. For example, the name of the CSP currently shipped
with the operating system is "Microsoft Base Cryptographic Provider v1.0," and its type is
PROV_RSA_FULL. The name of each provider is unique; the provider type is most definitely not.

Provider Types
The field of cryptography is very large. There are dozens of different "standard" data formats and
protocols. These are generally organized into groups or "families," each of which has its own set
of data formats and way of doing things. Even if they use the same algorithm (for example, the
RC2 block cipher), two families will often use a different padding scheme, different key lengths,
and different default modes. CryptoAPI has been designed so each CSP type represents a
particular family.

When an application connects to a CSP of a particular type, each of the CryptoAPI functions will,
by default, operate in a way prescribed by the "family" that corresponds to the CSP type. Among
other things, an application's choice of provider type specifies the following items:

· Key exchange algorithm ¾ Each provider type specifies one and only one key exchange
algorithm. Every CSP of a particular type must implement this algorithm. The only way
applications can specify which key exchange algorithm is used is by selecting a CSP of the
appropriate provider type.

· Digital signature algorithm ¾ This is the same as with the key exchange algorithm. Each
provider type specifies one and only one digital signature algorithm.

· Key blob format ¾ When a public key or session key is exported out of a CSP, the format
of the resulting "key blob" is specified by the provider type.

· Digital signature format ¾ The provider type prescribes a particular digital signature
format. This ensures that a signature produced by a CSP of a given provider type can be
verified by any CSP of the same provider type.

· Session key derivation scheme ¾ When a key is derived from a hash, the method used is
specified by the provider type.

· Key length ¾ Some provider types will specify that the public/private key pairs or the
session keys be of a certain length.

· Default modes ¾ The provider type will often specify a default mode for various options,
such as the block encryption cipher mode or the block encryption padding method.

Each application will generally work only with a single type of CSP. (However, an ambitious
application can connect to more than one CSP at a time.) When writing an application, you will
often need to obtain all the documentation that relates to the CSP type you are using. For
example, it is not recommended that you try to write an application using the PROV_RSA_FULL
provider type without obtaining the Public-Key Cryptographic Standards (PKCS) from RSA Data
Security, Inc. The relevant third-party documentation for each provider type is listed later on in this
section.

Predefined Provider Types
A number of provider types have already been defined. The following table lists these provider
types, along with the algorithms that each type must support. A CSP of a given type is free to
support other algorithms in addition to the ones listed.

Provider Type Key
Exchange

Signature Encryption Hashing

PROV_RSA_FULL RSA RSA RC2, RC4 MD5, SHA
PROV_RSA_SIG n/a RSA n/a MD5, SHA
PROV_DSS n/a DSS n/a SHA
PROV_FORTEZZA KEA DSS Skipjack SHA
PROV_MS_EXCHANGERSA RSA CAST MD5
PROV_SSL RSA RSA varies varies

If two or more applications plan to exchange keys and encrypted messages, they should
both use CSPs of the same type, however, some CSP types may be partially compatible
with others.

Anyone writing a custom CSP can define a new provider type. However, this person is then
responsible for distributing the new provider type to the authors of any applications that
are to use it.

In the event that the previous table mentioned algorithms you are not familiar with, the
following table provides a brief description of each.

Algorithm Description

CAST This is a 64-bit symmetric block cipher developed by C.
M. Adams and S. E. Tavares. This algorithm is
somewhat similar to DES (Data Encryption Standard).

DES National Institute of Standards and Technology (NIST)
Data Encryption Standard. This is a 64-bit symmetric
block cipher that has a fixed key length of 56-bits.

DH Diffie-Hellman. This is a public-key algorithm used for
secure key exchange. It cannot be used for data
encryption.

DSS Digital Signature Standard. This standard uses the
Digital Signature Algorithm (DSA), which is a public-key
cipher used to generate digital signatures. It cannot be
used for data encryption.

KEA Key Exchange Algorithm. This is an improved version of
Diffie-Hellman.

MD2 MD2. This is a hashing algorithm that produces a 128-
bit hash value.

MD4 MD4. This is a hashing algorithm that produces a 128-
bit hash value.

MD5 MD5. This is an improved version of MD4. It also
produces a 128-bit hash value.

RC2 RC2 Block Cipher. This is a 64-bit symmetric block
cipher.

RC4 RC4 Stream Cipher. This is a symmetric stream cipher.
RSA RSA Public-Key Cipher. This is a popular public-key

cipher used for both encryption and signatures.
SHA Secure Hash Algorithm. This is a hashing algorithm that

produces a 160-bit hash value.
Skipjack This is the algorithm used by the Clipper and Capstone

chips. It is a symmetric block cipher with a fixed key
length of 80 bits.

PROV_RSA_FULL Provider Type
This provider type supports both digital signatures and data encryption, and considered general
purpose. The RSA public-key algorithm is used for all public-key operations.

This provider type has been thoroughly defined by Microsoft and RSA Data Security. It is
described in the following documents:

· Microsoft Cryptographic Service Provider Programmer's Guide, Microsoft, 1995.
· RSA Laboratories, Public-Key Cryptography Standards, RSA Data Security, November

1993.

PROV_RSA_SIG Provider Type
This provider type is a subset of PROV_RSA_FULL. Only those functions and algorithms required
for hashes and digital signatures are supported.

PROV_DSS Provider Type
This provider type is similar to PROV_RSA_SIG in that it only supports hashes and digital
signatures, but the signature algorithm specified by the PROV_DSS provider type is the Digital
Signature Algorithm (DSA).

The DSA algorithm was proposed by the National Institute of Standards and Technology (NIST).
A description of the algorithm can be found in many books on cryptography or from the following
government reference:

· "Proposed Federal Information Processing Standard for Digital Signature Standard (DSS)
," Federal Register, v. 57, no. 21, 31 Jan 1992, pp. 3747-3749.

PROV_FORTEZZA Provider Type
The set of cryptographic protocols and algorithms known as "Fortezza" is "owned" by the National
Institute of Standards and Technology (NIST). More information is available directly from them or
from other sources.

PROV_MS_MAIL Provider Type
CSPs of this type are designed to cater to the cryptographic needs of the Microsoft Mail
application, as well as other applications that are compatible with MS Mail. This provider type is
preliminary.

PROV_SSL Provider Type
CSPs of this type support the Secure Sockets Layer (SSL) protocol. A specification explaining the
SSL protocol is available from Netscape Communications Corp.

The Microsoft RSA Base Provider
The Microsoft RSA Base Provider is supplied by Microsoft and is included with the operating
system (either Windows NT or Windows 95).

The Microsoft RSA Base Provider consists of a software implementation of the PROV_RSA_FULL
provider type. The RSA public-key cipher is used for both key exchange and digital signatures,
with a key length of 512 bits. The RC2 and RC4 encryption algorithms are implemented with a key
length of 40 bits. The MD2, MD5, and SHA hashing algorithms are also provided.

Connecting to a Cryptographic Service Provider
Each time an application is run, the first CryptoAPI function an application calls is the
CryptAcquireContext function. This function returns to the application a handle to a particular
CSP. In addition, this handle specifies a particular key container within the CSP. If the CSP has
just been installed and no key containers yet exist, the CryptAcquireContext function can also
be used to create a new one.

When an application uses CryptAcquireContext to obtain a CSP handle, it specifies a provider
type and, optionally, a provider name. If both a type and a name are specified, then the function
looks for a CSP with precisely the same type and name, loads it into memory, and returns a
handle to the application.

When an application calls CryptAcquireContext specifying a provider type but no provider name,
the function tries to find the provider name, first on a list of default providers associated with the
logged-on user and, if that fails, from a list of default providers associated with the computer.

Once the provider name has been determined successfully, the CryptAcquireContext function
searches for the CSP, loads it into memory, and returns a handle to the application.

Service Provider Functions Summary
The functions described in this section are used by applications to connect to and disconnect from
cryptographic service providers (CSPs). The following table briefly describes each function:

Function Description

CryptAcquireContext Acquires a handle to the current user's key
container within a particular CSP.

CryptGetProvParam Retrieves attributes of a CSP.
CryptReleaseContext Releases the handle acquired by

CryptAcquireContext.
CryptSetProvider Specifies the user default CSP for a particular

CSP type.
CryptSetProvParam Specifies attributes of a CSP.

Generating Cryptographic KeysKeys lie near the center of almost every cryptographic operation. It is important to keep these
secret because whoever possesses a given key then has access to any data that key is
associated with. For example, if a key is used to encrypt a file, then anyone with a copy of that key
can easily decrypt the file. Furthermore, if the key is used to sign messages, then anyone
possessing that key can forge the signatures.

Cryptographic Key Overview
There are two types of cryptographic keys: session keys and public/private key pairs.Session KeysSession keys are primarily used for data encryption/decryption and are used with symmetric
encryption algorithms. That is, the same key is used for both encryption and decryption.

Most of the activity involving session keys relates to keeping them secret. It is important to keep
the number of people who possess a particular session key as small as possible (one or two
people is recommended).Public/Private Key PairsKey pairs are composed of two components: the public key and the private key. The public key is
distributed far and wide while the private key, on the other hand, is kept secret. Only the owner of
the key pair is allowed to possess the private key.

If one of the keys (the public key) is used to encrypt a message, then the other key is required to
decrypt it. Thus, if you want to send someone a message, you can encrypt the file using their
public key and be confident that no one else will be able to read the file.

If the private key is used to sign a message, then the other key must be used to validate the
signature. For example, if you want to send someone a digitally signed message, you would sign
the message with your private key, and the other person could verify your signature using your
public key.

Unfortunately, public-key algorithms are incredibly slow and it is impractical to use them to encrypt
large amounts of data. In practice, symmetric algorithms are used for encryption/decryption, while
the public-key algorithms are used merely to encrypt the session keys. Similarly, it is not practical
to use public-key signature algorithms to sign large messages. Instead, a hash is made of the
message and the hash value is signed.

Using Keys With CryptoAPI
All keys are stored within cryptographic service providers (CSPs). CSPs are also responsible for
creating the keys, destroying them, and using them to perform a variety of cryptographic
operations. (Exporting keys out of the CSP so they can be sent to other users is discussed in the
section Exchanging Cryptographic Keys.)

Session Keys
Applications can create any number of session keys, which can be used to encrypt messages.
However, these keys are not preserved by the CSP from session to session. If you want to use a
key for long periods, you need to export the key out of the CSP and into your application for long-
term storage. (The procedure for doing this is discussed in the section Exchanging Cryptographic
Keys.)

Session keys are created using either the CryptGenKey or the CryptDeriveKey function. When
these keys are generated, it is necessary to specify the algorithm to use for any subsequent
encryption/decryption operations. This algorithm must be one of the symmetric algorithms
supported by the CSP being used.

Public/Private Key Pairs
For each user, the CSP usually maintains two public/private key pairs. These keys are maintained
from session to session.

The key exchange key pair (also known as the exchange key) is used to encrypt session keys so
that they can be safely stored and exchanged with other users. (This is discussed in detail in the
section Exchanging Cryptographic Keys.)

The digital signature key pair (also known as the signature key) is used to sign either hashes of
data. This is discussed in detail in the section Hashes and Digital Signatures.)

There are a number of reasons for having two separate key pairs. For example, some CSPs may
opt to use one algorithm for key exchange and another for digital signatures. This is because
some digital signature algorithms are unsuitable for encryption or key exchange, and vise versa.
Also, if some data (for example, a session key) is both signed and encrypted with the same public
key pair, subtle weaknesses could be introduced that make the data vulnerable.

The exchange key and the signature key pairs are created by calling the CryptGenKey function
and specifying either AT_KEYEXCHANGE or AT_SIGNATURE. The CSP implements these keys
in an application-independent manner. Applications are not permitted to know the details about
the algorithm used.

Key Generation Functions Summary
The functions described in this section are used by applications to create, configure, and destroy
cryptographic keys, and to exchange them with other users. The following table briefly describes
each function:

Function Description

CryptDeriveKey Create a key derived from a password.
CryptGenKey Create a random key.

Exchanging Cryptographic KeysThis section discusses those situations when you must export keys from the secure environment
of the cryptographic service provider (CSP) into your application's data space. Keys that have
been exported are stored in encrypted data structures known as key blobs. These are discussed
in the "Key Blobs Explained" section.

There are two specific situations when it is necessary to export keys:

· You want to save a session key for later use by your application. For example, if your
application has just encrypted a database file and you want your application to decrypt this file
at a later time, your application is responsible for storing the encryption key. This is necessary
because CSPs do not preserve symmetric keys from session to session.

· You want to send a key to someone else. This would be much easier (for your application)
if the respective CSPs could communicate directly, but they cannot. This means the key has
to be exported from your CSP, transmitted by your application to the destination application,
and then imported into the destination CSP. If you don't trust the communication path, this can
become somewhat complicated. However, this is covered in the next few sections.

Note This section assumes that users (or CryptoAPI client) already possess their own set of
public/private key pairs. Instructions for creating these can be found in the section Generating
Cryptographic Keys.

Storing Session Keys
This section discusses how you use CryptoAPI to store a session key for later use. This is useful
in those situations where you have encrypted a file using a key and want to decrypt the file at a
later time. Another possible situation is one in which you have shared the session key with
another user and you want to use the key at a later time to send the other user encrypted
messages.

In either case, your application will have to store the session key outside of the CSP for a certain
period. Following is the procedure for storing a session key.

1. Create a simple key blob using the CryptExportKey function. This will transfer the
session key from the CSP to your application's memory space. Specify that your own key
exchange public key be used to encrypt the key blob.

2. Store the signed key blob to disk. The assumption is made here that all disks are
nonsecure.

3. Later, when you need to use the key, read the key blob from disk.
4. Import the key blob back into the CSP using the CryptImportKey function.

If the session key is just to be bundled with an encrypted file (so that you can later decrypt the file)
, and the key is not going to be used to encrypt any more data, then the above procedure provides
adequate security.

If you plan to use the session key for encryption at a later time, then the key blob should be
signed with your key exchange key before the key is stored to disk. When you later read the key
blob back from disk, you should validate the signature to make sure the key blob is intact. If these
steps are omitted, then someone with access to your storage media can create their own session
key, encrypt it with your key exchange public key, and substitute it for your key blob. You could
then unknowingly use their session key to encrypt files and messages, which the unscrupulous
user could then easily decrypt. (Digital signatures are discussed in detail in the section Hashes
and Digital Signatures.)

Alternatives to Storing Session Keys
Instead of storing a random session key blob, a derived key can be used. Derived session keys
are created from a password using the CryptDeriveKey function. In this way, instead of storing a
particular derived key, an application can create a derived key as needed by prompting the user
for the password.

Stored key blobs are dependent on the stability of the public/private key pairs stored within the
CSP. If these key pairs are somehow lost, (for example, through a hardware or software incident)
, you will be unable to decrypt your key blobs. This means that any data that has been encrypted
using these keys will also be lost. For this reason, it is recommended that you use a backup
authority when storing long-term archival data.

A backup authority is a trusted application running on a secure computer which provides storage
for the session keys of its clients. All session keys stored there are encrypted in the form of key
blobs with the backup authority's public key. An application using a backup authority typically
follows these steps:

1. Encrypt the file normally.
2. Export the session key used to encrypt the file into a simple key blob, specifying that your

own key exchange public key be used to encrypt the key blob. Store this key blob with the
encrypted file.

3. Export the session key again, this time specifying that the backup authority's public key be
used to encrypt the key blob. Send this key blob to the backup authority, along with the key's
description, serial number, etc.

If, at a later time, you lose your key pairs, you can retrieve the session keys from the backup
authority. (You will first have to establish your identity to the backup authority, but this procedure
falls outside the scope of CryptoAPI.)

Exchanging Public Keys
Exchanging public keys is the first step that two users contemplating encrypted communication
need to do. Once this has been done, the users can send encrypted and signed data to each
other in a straightforward manner.

There are two fundamental ways to obtain each other's public keys:

· The users can obtain each other's keys in the form of certificates, from a certification
authority. This is the most secure way to exchange public keys which does not require user
interaction.

· The users can read their public keys to each other over the phone, use certified mail to
send them to each other, or use another method that is reasonably tamperproof. Note that
your public key is not secret, so that it doesn't matter if it is overheard by a third party.
This method can also be used to validate the public key values that have been exchanged in
some other manner.

Certificates and Certification Authorities
A certificate is a packet of data that contains a user's public key in addition to the data that serves
to identify the user in the real world (for example, the user's name). Every certificate is created
and signed by a trusted application known as a certification authority.

Because certificates are signed, they can be transmitted over a nonsecure network or stored on
nonsecure media. Each time you receive a certificate, you should verify the signature using the
certification authority's public key.

Certain details relating to certificates are beyond the scope of CryptoAPI. These include:

· The actual binary format of certificates is not specified by CryptoAPI, although ISO X.509
is recommended.

· The manner in which each client communicates his or her name and public keys to the
certification authority is not specified.

· The manner in which the certification authority's public key is distributed is not specified.Warning If you use the Microsoft RSA Base Provider to create a certification authority, your
license to issue certificates is limited to certificates intended for use in the context of your
particular application or service.

Exchanging Public Keys Manually
If a certification authority is not available, or if one or more of the users has not registered their
public keys with it, then the users need to exchange their public keys in some other manner. This
can also be done if the certification authority is not considered trustworthy by one or more of the
users.

When transferring keys or messages from one user to another, one of the users is designated the
sending user (or sender) and the other the destination user (or receiver).

The first step is for the sender to export his public key from the CSP into a public key blob, using
the CryptExportKey function. Next, the key blob must be sent to the destination user in some
secure manner. Although secrecy is not necessary, both users must be confident that the integrity
of the key blob remains untarnished during the transfer. (The mechanics of how this is done are
completely independent of the CryptoAPI.)

Public key blobs are not encrypted. Thus, it would not be difficult for the sending application to
convert the key blob to a human-readable format, so that the sender could read the public key to
the receiver over the phone. Furthermore, it would not be difficult for the receiving application to
reconstruct the public key blob.

Once the receiver has received the key blob data from the sender, it imports the key blob into its
own CSP. This is done using the CryptImportKey function.

Exchanging Session Keys
To send another user an encrypted message, it becomes necessary to send that user the session
key that was used to perform the encryption. There are two ways this can be approached:

· The sending user can create a random session key, encrypt it using the receiver's public
key, and send the encrypted key (key blob) to the receiver. The sender can then send
messages encrypted with this session key to the receiver. This approach is discussed in the
following section.

· The sending and receiving users can mutually agree on a session key by exchanging
several messages back and forth. The users can then use this session key to send encrypted
messages back and forth. The Sample Three-Phase Exchange Protocol section describes a
sample three-phase key exchange protocol that can be used for this purpose. Designing one
of these protocols (and getting it right!) is fairly difficult and should only be attempted by an
experienced cryptographer.

Note This section assumes that the users (or CryptoAPI clients) already possess their own
set of public/private key pairs and have also obtained each other's public keys.

Sending an Encrypted Session Key
The easiest way to send encrypted messages to another user is to send the message (encrypted
with a random session key) along with the session key (encrypted with the receiver's exchange
public key). These are the steps for sending an encrypted session key:

1. Create a random session key using the CryptGenKey function.
2. Encrypt the message using the session key. (This procedure is discussed in the section

Encrypting and Decrypting Data.)
3. Export the session key into a key blob with the CryptExportKey function, specifying that

the key be encrypted with the destination user's key exchange public key.
4. Send both the encrypted message and the encrypted key blob to the destination user.
5. The destination user should then import the key blob into his or her CSP using the

CryptImportKey function. This will automatically decrypt the session key, provided the
destination user's key exchange public key was specified in step 3.

6. The destination user can then decrypt the message using the session key, following the
procedure discussed in the section Encrypting and Decrypting Data.

The following illustration shows how to send an encrypted message using this procedure:

ewc msdncd, EWGraphic, bsd23503 0 /a "SDK-1XCHG.WMF"

This approach is vulnerable to at least one common form of attack. An eavesdropper can acquire
copies of one of more encrypted messages and the encrypted keys. Then, at some later time, the
eavesdropper can send one of these messages to the receiver and the receiver will have no way
of knowing the message did not come directly from the original sender. This risk can be reduced
by timestamping all messages or by using serial numbers. Using a three-phase key exchange
protocol will eliminate this problem entirely. See the Sample Three-Phase Exchange Protocol
section.

Key Blobs Explained
Key blobs provide a way to store keys outside of the CSP. The Generating Cryptographic Keys
section stated that keys are always kept inside of the provider for safekeeping and applications
are only allowed access to the key through a handle. Well, key blobs are the one exception to this
rule.

Key blobs are created by exporting an existing key out of the provider, using the CryptExportKey
function. Later, the key blob can be imported into a provider (often a different provider on a
different computer), using the CryptImportKey function. This will create a key in the provider that
is a duplicate of the one that was exported. In this way, key blobs are used as the medium for
securely transferring keys from one provider to another.

Note Private keys can be neither exported nor imported ¾ they never leave the safety of the
CSP module. When the handle to a public/private key pair is passed into CryptExportKey,
only the public portion is placed into the key blob.

Key blobs consist of a standard header followed by data that represents the key itself. If the key
blob contains a session key, then this data is always kept encrypted. Applications generally do not
access the internals of key blobs but, instead, treat them as opaque objects. This opaque quality
was the inspiration for the name of "key blob."

Key blobs are personalized in that they are encrypted with the key exchange public key of the
intended recipient. This makes them fairly secure. To make them tamperproof, keys are
sometimes signed with the key exchange private key of the originating user.

There are currently three types of key blobs defined:

· Simple key blobs
· Public key blobs
· Private key blobs

Simple Key Blobs
A simple key blob (SIMPLEBLOB) is a session key encrypted with the public key exchange key of
the destination user. This key blob type is used when storing a session key or transmitting a
session key to another user.

The format of simple key blobs is fully documented in the Simple Key Blob Format section.

Public Key Blobs
A public key blob (PUBLICKEYBLOB) contains the public key portion of a public/private key pair.
Unlike simple key blobs, these are not encrypted.

When communicating with someone who is not using CryptoAPI, your application may need to
build one of these key blobs manually so the other user's public keys can be imported into your
CSP. In addition, it is not unheard-of for an application to display the value of a public key in
plaintext form so the user can validate it by hand.

The format of public key blobs is fully documented in the Public Key Blob Format section.

Private Key Blobs
A private key blob (PRIVATEKEYBLOB) contains one complete public/private key pair. These key
blobs are used by administrative programs to distribute and/or transport public/private key pairs;
for example between a network administrator's computer and a user's computer or between the
user's desktop computer and his or her laptop computer. These key blobs can also be used by
advanced applications that want to store key pairs themselves, rather than relying on the CSP's
storage mechanism.

As the private key portion of the key pair is extremely confidential, these blobs are typically kept
encrypted with a symmetric cipher.

The format of private key blobs is fully documented in the Private Key Blob Format section.

Sample Three-Phase Exchange Protocol
To generate an authenticated and encrypted connection between two parties on a nonsecure
network, the parties can exchange a set of messages that negotiate a pair of encryption keys.
One key is used by the "sender" to encrypt messages and the other is used by the "receiver." This
protocol ensures that both parties are currently active and are sending messages directly to each
other. In other words, this protocol prevents "replay" and "man-in-the-middle" attacks.

Note This section assumes that both parties involved already possess their own set of public/
private key pairs and that they have also obtained each other's public keys.

It is further assumed that the parties have already exchanged human-readable user names.
This is generally done at the same time the public keys are exchanged, since the user name
is included as part of each certificate. When necessary, the public key data can be used as
the user name, although this is not recommended. All that really matters, though, is that each
party's user name be tightly bound to their public key and that both parties agree on what their
respective user names are.

Overview of the Sample Protocol
This protocol provides a standard way for two parties to create an authenticated, real-time
connection between themselves. The end result of this protocol is a session key that is shared by
both of the parties involved. This protocol is known as a three-phase protocol because it requires
that the two parties exchange three packets of data in the process of creating the shared session
keys. This is shown in the following illustration, reading from top to bottom.

ewc msdncd, EWGraphic, bsd23503 1 /a "SDK-2XCHG.WMF"

A variety of key exchange protocols can be implemented using CryptoAPI. The protocol discussed
here is just one of many possibilities. However, using this particular protocol will tend to increase
your application's potential interoperability.

Following is a description of this protocol. One of the parties is arbitrarily designated the sending
user (or sender) and the other the destination user (or receiver).

Phase 1
In Phase 1, the sender creates a random session key, to be known as "session key A", using the
CryptGenKey function. The sender then uses CryptExportKey to export this key into a simple
key blob, specifying that the receiver's exchange public key be used to encrypt the key blob. This
key blob is then sent to the receiver.

The receiver accepts the key blob from the sender and imports it into its CSP, using the
CryptImportKey function. This function returns a handle to session key A to the receiver.

Phase 2
In Phase 2, the receiver then creates a random session key of its own, to be known as "session
key B." The receiver exports this key into a key blob and transmits it to the sender.

The receiver then builds up a hash value containing session key A, the receiver's name, session
key B, the sender's name, and the text "phase 2." This hash value is then sent to the sending
user. (The details of this process are discussed in this section under "Receiver Code Example.")

The data must be hashed in the standard sequence, so the sender will be able to properly validate
it. The data formats used by the sender and receiver must also match, although a standard format
is not specified here.

The sending user accepts the "session key B" key blob from the receiver, and imports it into its
CSP. The hash value is also received.

The sending user then validates the receiver's hash value by creating a hash of its own containing
the same data, and comparing the two hash values. If the hash values do not match, then either
the destination user has not been forthright, or someone else is tampering with the data between
the two parties. In either case, the protocol should be terminated and the communication link
severed.

If the two hash value do match, this tells the sender that the destination user is presently online
and in real-time communication. This is primarily because the hash value contains session key A,
which was sent out encrypted with the destination user's public key. Only the real destination user
could have decrypted the session key and built the hash value. Including the human-readable
user names in the hash makes it possible to involve the users in the process as an additional
check.

Phase 3
In Phase 3, the sender builds up a hash value containing session key B, the sender's name, the
receiver's name, and the text "phase 3." This hash value is then sent to the destination user. (The
details of this process are discussed in this section under "Sender Code Example.")

The destination user accepts the hash value from the sender and validates it by creating a hash of
its own and comparing the two hash values. If the hash values do not match, then the protocol
should be terminated and the communication link severed.

If the two hash value do match, this tells the receiver that the sending user is presently online and
in real-time communication. This is primarily because the hash value contains session key B,
which was sent out encrypted with the sending user's public key. Only the real sending user could
have decrypted the session key and built the hash value.

Protocol Conclusion
Once the two parties have exchanged session keys and hash values and the hash values have
been properly validated, the protocol is complete. The sender and the receiver can now use
session key A and session key B respectively to send encrypted messages to each other.

Sender Code Example
This section shows the code needed on the sending user side to implement the three-phase key
exchange protocol. The details of the communication between the sending user and the
destination user are not shown, because these will be different for each implementation.

For purposes of readability, this example and the following one blatantly avoid good programming
practice in two major ways:

· No error checking is shown. A working program should always check the returned error
codes and perform some appropriate action when an error is encountered.

· Fixed-length buffers are used to store key blobs and hash values. In practice, these
buffers should be allocated dynamically, because this data will vary in size depending on the
CSP used.#include <wincrypt.h>

HCRYPTPROV hProv = 0;
#define NAME_SIZE 256
BYTE pbDestName[NAME_SIZE];
DWORD dwDestNameLen;
BYTE pbSendName[NAME_SIZE];
DWORD dwSendNameLen;
HCRYPTKEY hDestPubKey = 0;
HCRYPTKEY hKeyA = 0;
HCRYPTKEY hKeyB = 0;
#define BLOB_SIZE 256
BYTE pbKeyBlob[BLOB_SIZE];
DWORD dwBlobLen;
#define HASH_SIZE 256
BYTE pbHash[HASH_SIZE];
DWORD dwHashLen;
BYTE pbDestHash[HASH_SIZE];
DWORD dwDestHashLen;
HCRYPTHASH hHash = 0;
// Get handle to the default provider.
CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0);
// Obtain the destination user's exchange public key. Import it into
// the CSP and place a handle to it in 'hDestPubKey'.
...
CryptGetUserKey(hProv, AT_KEYEXCHANGE, &hDestPubKey);
// Obtain the destination user's name. This is usually done at the
// same time as the public key was obtained. Place this in
// 'pbDestName' and set 'dwDestNameLen' to the number of bytes in
// the name.
...
// Place the sending user's name in 'pbSendName' and set
// 'dwSendNameLen' to the number of bytes in it.
...
// Create a random session key (session key A). Because this key will
// be used solely for key exchange and not encryption, it
// does not matter which algorithm you specify here.
CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKeyA);
// Export session key A into a simple key blob.
dwBlobLen = BLOB_SIZE;
CryptExportKey(hKeyA, hDestPubKey, SIMPLEBLOB, 0, pbKeyBlob,
&dwBlobLen);
// Send key blob containing session key A to the destination user.
...
// Wait for the destination user to respond.
...
// Receive a key blob containing session key B from the destination
// user and place it in 'pbKeyBlob'. Set 'dwBlobLen' to the number
// of bytes in the key blob.
...
// Receive a hash value from the destination user and place it in
// 'pbHashValue'. Set 'dwHashLen' to the number of bytes in the hash
// value.
...
// Import the key blob into the CSP.
CryptImportKey(hProv, pbKeyBlob, dwBlobLen, 0, 0, &hKeyB);
//
// Verify hash value received from the destination user.
//
// Create hash object.
CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);
// Add session key A to hash.
CryptHashSessionKey(hHash, hKeyA, 0);
// Add destination user's name to hash.
CryptHashData(hHash, pbDestName, dwDestNameLen, 0);
// Add session key B to hash.
CryptHashSessionKey(hHash, hKeyB, 0);
// Add sending user's name to hash.
CryptHashData(hHash, pbSendName, dwSendNameLen, 0);
// Add "phase 2" text to hash.
CryptHashData(hHash, "phase 3", 7, 0);
// Complete the hash computation and retrieve the hash value.
dwHashLen = HASH_SIZE;
CryptGetHashParam(hHash, HP_HASHVALUE, pbHash, &dwHashLen, 0);
// Destroy the hash object.
CryptDestroyHash(hHash);
//
// Compare the hash value received from the destination user with
// the hash value that we just computed. If they do not match, then
// terminate the protocol.
//
if(dwHashLen!=dwDestHashLen || memcmp(pbHash, pbDestHash, dwHashLen)) {

printf("Key exchange protocol failed in phase 2!\n");
printf("Aborting protocol!\n");
return;

}
//
// Compute hash to be sent to the destination user.
//
// Create hash object.
CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);
// Add session key B to hash.
CryptHashSessionKey(hHash, hKeyB, 0);
// Add sending user's name to hash.
CryptHashData(hHash, pbSendName, dwSendNameLen, 0);
// Add destination user's name to hash.
CryptHashData(hHash, pbDestName, dwDestNameLen, 0);
// Add "phase 3" text to hash.
CryptHashData(hHash, "phase 3", 7, 0);
// Complete the hash computation and retrieve the hash value.
dwHashLen = HASH_SIZE;
CryptGetHashParam(hHash, HP_HASHVALUE, pbHash, &dwHashLen, 0);
// Destroy the hash object.
CryptDestroyHash(hHash);
// Send the hash value to the destination user.
...
//
// Use session key A to encrypt messages sent to the receiver.
// Use session key B to decrypt messages received from the receiver.
//
...
// Destroy session keys.
CryptDestroyKey(hKeyA);
CryptDestroyKey(hKeyB);
// Release provider handle.
CryptReleaseContext(hProv, 0);

Receiver Code Example
This section illustrates the code needed on the destination user side to implement the three-
phase key exchange protocol. The details of the communication between sending user and the
destination user are not shown, because these will be different for each implementation.#include <wincrypt.h>
HCRYPTPROV hProv = 0;
#define NAME_SIZE 256
BYTE pbDestName[NAME_SIZE];
DWORD dwDestNameLen;
BYTE pbSendName[NAME_SIZE];
DWORD dwSendNameLen;
HCRYPTKEY hSendPubKey = 0;
HCRYPTKEY hKeyA = 0;
HCRYPTKEY hKeyB = 0;
#define BLOB_SIZE 256
BYTE pbKeyBlob[BLOB_SIZE];
DWORD dwBlobLen;
#define HASH_SIZE 256
BYTE pbHash[HASH_SIZE];
DWORD dwHashLen;
BYTE pbSendHash[HASH_SIZE];
DWORD dwSendHashLen;
HCRYPTHASH hHash = 0;
// Get handle to the default provider.
CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0);
// Obtain the sending user's exchange public key. Import it into the
// CSP and place a handle to it in 'hSendPubKey'.
...
// Obtain the sending user's name. This is usually done at the
// same time the public key was obtained. Place this in
// 'pbSendName' and set 'dwSendNameLen' to the number of bytes in
// the name.
...
// Place the destination user's name in 'pbDestName' and set
// 'dwDestNameLen' to the number of bytes in the name.
...
// Receive a key blob containing session key A from the sending user
// and place it in 'pbKeyBlob'. Set 'dwBlobLen' to the number of
// bytes in the key blob.
...
// Import the key blob into the CSP.
CryptImportKey(hProv, pbKeyBlob, dwBlobLen, 0, 0, &hKeyA);
// Create a random session key (session key B). Because this key is
// going to be used solely for key exchange and not encryption, it
// does not matter which algorithm you specify here.
CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKeyB);
// Export session key B into a simple key blob.
dwBlobLen = BLOB_SIZE;
CryptExportKey(hKeyB, hSendPubKey, SIMPLEBLOB, 0, pbKeyBlob,
&dwBlobLen);
// Transmit key blob containing session key B to the sending user.
...
//
// Compute hash value and transmit it to the sending user.
//
// Create hash object.
CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);
// Add session key A to hash.
CryptHashSessionKey(hHash, hKeyA, 0);
// Add destination user's name to hash.
CryptHashData(hHash, pbDestName, dwDestNameLen, 0);
// Add session key B to hash.
CryptHashSessionKey(hHash, hKeyB, 0);
// Add sending user name to hash.
CryptHashData(hHash, pbSendName, dwSendNameLen, 0);
// Add "phase 2" text to hash.
CryptHashData(hHash, "phase 2", 7, 0);
// Complete the hash computation and retrieve the hash value.
dwHashLen = HASH_SIZE;
CryptGetHashParam(hHash, HP_HASHVALUE, pbHash, &dwHashLen, 0);
// Destroy the hash object.
CryptDestroyHash(hHash);
// Transmit the hash value to the sending user.
...
// Wait for the sending user to respond.
...
// Receive a hash value from the sending user and place it in
// 'pbSendHashValue'. Set 'dwSendHashLen' to the number of bytes in
// the hash value.
...
//
// Verify hash value received from the sending user.
//
// Create hash object.
CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);
// Add session key B to hash.
CryptHashSessionKey(hHash, hKeyB, 0);
// Add sending user's name to hash.
CryptHashData(hHash, pbSendName, dwSendNameLen, 0);
// Add destination user's name to hash.
CryptHashData(hHash, pbDestName, dwDestNameLen, 0);
// Add "phase 3" text to hash.
CryptHashData(hHash, "phase 3", 7, 0);
// Complete the hash computation and retrieve the hash value.
dwHashLen = HASH_SIZE;
CryptGetHashParam(hHash, HP_HASHVALUE, pbHash, &dwHashLen, 0);
// Destroy the hash object.
CryptDestroyHash(hHash));
//
// Compare the hash value received from the sending user with the
// hash value that we just computed. If they do not match, then
// terminate the protocol.
//
if(dwHashLen!=dwSendHashLen || memcmp(pbHash, pbSendHash, dwHashLen)) {

printf("Key exchange protocol failed in phase 3!\n");
printf("Aborting protocol!\n");
return;

}
//
// Use session key B to encrypt messages sent to the sender.
// Use session key A to decrypt messages received from the sender.
//
...
// Destroy session keys.
CryptDestroyKey(hKeyA);
CryptDestroyKey(hKeyB);
// Destroy handle to sending user's public key.
CryptDestroyKey(hSharedKey);
// Release provider handle.
CryptReleaseContext(hProv, 0);

Key Exchange Functions Summary
The functions described in this section are used by applications to create, configure, and destroy
cryptographic keys, and to exchange them with other users. The following table briefly describes
each function:

Function Description

CryptDestroyKey Destroy a key.
CryptExportKey Transfer a key from the CSP into a key blob in

the application's memory space.
CryptGenRandom Generate random data.
CryptGetKeyParam Retrieve a key's parameters.
CryptGetUserKey Get a handle to the key exchange or signature

key.
CryptImportKey Transfer a key from a key blob to a CSP.
CryptSetKeyParam Specify a key's parameters.

Encrypting and Decrypting DataEncryption is the process in which data (plaintext) is translated into something that appears to be
random and meaningless (ciphertext). Decryption is the process in which the ciphertext is
converted back to plaintext.

A symmetric encryption key (also known here as a session key) is used during both the encryption
and decryption processes. In order to decrypt a particular piece of ciphertext, you must possess
the key that was used to encrypt the data. Essentially, a session key merely consists of a random
number, of approximately 40 to 2000 bits in length. The longer the key that is used, the more
difficult it is to decrypt a piece of ciphertext without possessing the key.

The goal of every encryption algorithm is to make it as difficult as possible to decrypt the
generated ciphertext without using the key. If a really good encryption algorithm is used, then
there is no technique significantly better than methodically trying every possible key. Even for a
key size of just 40 bits, this works out to 240 (just over 1 trillion) possible keys.

It is surprisingly difficult to determine just how good an encryption algorithm is. Algorithms that
look promising sometimes turn out to be very easy to break, given the proper attack. When
selecting an encryption algorithm, it is probably a good idea to choose one that has been around
for a while, and successfully resisted all attacks thus far.

Introduction to Encryption Techniques
CryptoAPI can be used by applications to easily encrypt and decrypt messages and files. This
section discusses the various options available for encrypting data. For a hands-on description of
how to encrypt data using CryptoAPI, see "Encrypting Files and Messages" in this section.

The encryption algorithms available to an application depend on the cryptographic service
provider (CSP) being used. However, most CSPs share most of the attributes discussed here. All
data encryption using CryptoAPI is performed with a symmetric algorithm, regardless of which
CSP is installed.

Stream Ciphers
Stream cipher algorithms encrypt data one bit at a time. A stream of plaintext bits flows in one
side, and a stream of encrypted ciphertext flows out the other. At least, this is the way it works
mathematically; in practice, data is always encrypted in byte units.

Stream ciphers are not generally considered as secure as block ciphers, although this will vary
depending on the particular algorithm. On the other hand, they do tend to execute faster in
software. Ciphertext encrypted with stream ciphers is always the same size as the original
plaintext.

Error propagation is usually less when stream ciphers are used. If a bit of ciphertext gets garbled,
many stream cipher algorithms will produce only a single bit of garbled plaintext. When a block
cipher is used and a ciphertext bit is garbled, at minimum an entire block's worth of plaintext will
be garbled. This can be good or bad, depending on the application.

The only stream cipher provided with the Microsoft RSA Base Provider is the RC4 stream cipher.

Block Ciphers
Block cipher algorithms encrypt data in block units, rather than a single bit at a time. The most
common block size is 64 bits.

Because each block is heavily "processed," block ciphers are generally considered more secure
than stream ciphers. However, block cipher algorithms tend to execute quite a bit slower.

All that the basic block encryption algorithm specifies is how to get a block of ciphertext from a
block of plaintext and vice versa. All the other implementation details (for example, padding,
initialization vectors, and cipher modes) are specified independently of the algorithm. These
options are discussed in the next few sections.

The only block cipher provided with the Microsoft RSA Base Provider is the RC2 block cipher.
This algorithm has a block size of 64 bits.

Padding
Most plaintext messages will not consist of an even number of blocks. Often, the last block is
short, making it necessary to add a padding string. For example, if the block length is 64 bits and
the last block contains only 40 bits, then 24 bits of padding must be added.

This padding string can consist of all zeros, alternating zeros and ones, or some other pattern.
Some encryption standards specify a particular padding scheme, such as the one described in the
next section.

Applications using CryptoAPI need not add padding to their plaintext before it is encrypted, nor do
they have to remove it after decrypting. This is all handled automatically by CryptoAPI.PKCS PaddingThis padding scheme is defined by RSA Data Security, Inc. and is documented in Public-Key
Cryptography Standards (PKCS), PKCS #5, section 6.2.

When this method is used, a padding string is always added, even if the plaintext message
divides evenly into blocks. The padding string consists of a sequence of bytes, each of which is
equal to the total number of bytes in the padding string. If 24 bits of padding need to be added,
then the padding string is "03 03 03." If 64 bits of padding needs to be added, then the string is
"08 08 08 08 08 08 08 08."

Cipher Modes
When a block cipher is used, any one of the following cipher modes can be specified via the
CryptSetKeyParam function. If the application does not explicitly specify one of these modes,
then the cipher block chaining (CBC) cipher mode is used.Electronic Codebook (ECB)When this cipher mode is used, each block is encrypted individually. No feedback is used. This
means any blocks of plaintext that are identical and are either in the same message, or in a
different message that is encrypted with the same key, will be transformed into identical ciphertext
blocks.

If the plaintext to be encrypted contains substantial repetition, then it is feasible for the ciphertext
to be broken one block at a time. Furthermore, it is possible for an unscrupulous person to
substitute and exchange individual blocks without detection.

Initialization vectors cannot be used with this cipher mode.

If a single bit of the ciphertext block is garbled, then the entire corresponding plaintext block will
also be garbled.Cipher Block Chaining (CBC)This cipher mode introduces feedback. Before each plaintext block is encrypted, it is XOR'ed with
the ciphertext of the previous block. This ensures that even if the plaintext contains many identical
blocks, they will each encrypt to a different ciphertext block.

The initialization vector is XOR'ed with the first plaintext block before the block is encrypted.

As with the Codebook cipher mode, if a single bit of the ciphertext block is garbled, then the
corresponding plaintext block will also be garbled. In addition, a bit in the subsequent plaintext
block (in the same position as the original garbled bit) will be garbled. Synchronization errors are
fatal. If there are extra or missing bytes in the ciphertext, the plaintext will be garbled from that
point on.

When the Microsoft RSA Base Provider is used, this is the default cipher mode.Cipher Feedback Mode (CFB)The cipher feedback mode lets you process small increments of plaintext into ciphertext, instead
of processing an entire block at a time. This can be is useful, for example, when encrypting a
stream of data that originates at a keyboard. Each keystroke can be encrypted and transmitted
without the need to wait for an entire block to be typed.

This mode uses a shift register which is one block size in length and divided up into sections. For
example, if the block size is 64 bits with 8 bits processed at a time, then the shift register would be
divided up into 8 sections.

This is the procedure for each encryption cycle:

1. The block in the shift register is encrypted normally.
2. The leftmost 8 bits in the encrypted shift register are XOR'ed with the next 8 bits of

plaintext and sent off as 8 bits of ciphertext.
3. The shift register is shifted 8 bits to the left.
4. The 8 bits of ciphertext generated in step 2 is placed in the rightmost 8 bits of the shift

register.
In CryptoAPI, the number of bits processed at one time is specified by setting the encryption key's
KP_MODE_BITS parameter using the CryptSetKeyParam function. This parameter typically
defaults to 8.

Depending on the value of the KP_MODE_BITS parameter, this cipher mode is substantially
slower than the Cipher Block Chaining mode. For example, if the block size is 64 bits with 8 bits
are processed at a time, this cipher mode is 64/8 or 8 times slower.

Before the encryption process begins, the shift register is filled with the initialization vector.

If a bit in the cipher text is garbled, one plaintext bit is garbled and the shift register is corrupted.
This results in the next several plaintext blocks being garbled until the bad bit is shifted out of the
shift register. In the preceding example, 9 bytes of plaintext would be garbled. This is the same
amount of error propagation as with the Cipher Block Chaining mode. Synchronization errors are
not fatal, provided that the slip is a multiple of KP_MODE_BITS. Thus, if KP_MODE_BITS is 8
and there are extra or missing bytes from the ciphertext, then 9 bytes of plaintext are garbled and
the plaintext will have the same number of extra or missing bytes.Output Feedback Mode (OFB)This mode is similar to the cipher feedback mode. The only difference between the two modes is
how the shift register is filled.

The output feedback (OFB) cipher mode uses the following encryption cycle:

1. The block in the shift register is encrypted normally.

2. The leftmost 8 bits in the encrypted shift register are XOR'ed with the next 8 bits of
plaintext and sent off as 8 bits of ciphertext.

3. The shift register is shifted 8 bits to the left.
4. The leftmost 8 bits of the encrypted shift register used in step 2 is placed in the rightmost

8 bits of the shift register.
As with the Cipher Feedback mode, the shift register is filled with the initialization vector before
the encryption process starts.

If a bit in the cipher text is garbled, the corresponding bit of plaintext will also be garbled. This is
much better than the Cipher Feedback mode. However, synchronization errors are fatal. If there
are extra or missing bits from the ciphertext, then the plaintext will be garbled from that point on.

Note According to Gait (see reference below), the OFB block cipher mode has a weakness
when the number of bits fed back is different than the block size. It is thus recommended that
the KP_MODE_BITS parameter be set to the block size when this cipher mode is used.

*J. Gait, "A New Nonlinear Pseudorandom Number Generator," IEEE Transactions on
Software Engineering, v. SE-3, n. 5, Sep 1977, pp. 359-363.

Initialization Vectors
An initialization vector is a random number, usually the same number of bits as the block size, that
is used as a starting point when encrypting a set of data. Initialization vectors are only used with
those cipher modes that make use of feedback. This ensures that the effect of the initialization
vector is propagated throughout the entire plaintext message being encrypted.

If initialization vectors are not used, then when two identical plaintext messages are encrypted
with the same key, two identical ciphertext messages are generated. However, if each plaintext
message is encrypted with a different initialization vector, the ciphertext messages generated are
completely different.

You should always encrypt each message with a different initialization vector, particularly when
the messages contain a large amount of duplication.

Applications using CryptoAPI are responsible for transmitting the initialization vector along with
the encrypted message. There is no need to encrypt this vector.

Salt Values
Salt values make up a portion of many session keys, as shown.

ewc msdncd, EWGraphic, bsd23504 0 /a "SDK-1SALT.WMF"

As with the key bits, the salt bits also consist of random data. The difference is that the key bits
must be kept secret at all costs, while the salt values are made public. When exchanging keys
using the CryptoAPI, the key bits are transmitted inside of encrypted key blobs. The salt bits, on
the other hand, are transmitted in plaintext form.

The size of the salt values will vary, depending on the CSP used. For example, the Microsoft RSA
Base Provider uses salt values of 88 bits and key values of 40 bits, for a total key size of 128 bits.
Even though the salt bits make up part of each encryption key, they are usually ignored when
discussing keys and key sizes. That is, when talking about Microsoft RSA Base Provider
encryption keys, we refer to them as 40 bit keys.

Salt values are most useful when transmitting or storing large amounts of nearly identical packets
using the same encryption key. Normally, two identical packets would encrypt into two identical
ciphertext packets. However, this would indicate to an eavesdropper that the packets are identical
and, thus, could be attacked simultaneously. But, if the salt value is changed with every packet
sent, then a completely different ciphertext packet will always be generated, even if the plaintext
packets are the same.

Because salt values need not be kept secret and can be transmitted in plaintext form bundled with
each ciphertext packet, it is much easier to change salt values once per packet than it would be to
change the key value itself.

Applications should generate salt values with the CryptGenRandom function. It is important that
each salt value be completely different than the other ones, particularly when using stream
ciphers.

Common Encryption Algorithms
This section briefly describes each of the encryption algorithms supplied with the Microsoft RSA
Base Provider. The internal details of these algorithms are well beyond the scope of this
document.

The following table lists several encryption algorithms along with some performance benchmarks.
This table was generated by an application using CryptoAPI on a 120-MHz, Pentium-based
computer. These figures are for comparison purposes only, your mileage may vary.

Cipher Cipher Type Key Setup Time
(microseconds)

Encryption Speed
(bytes/second)

DES 64-bit block 460 1,138,519
RC2 64-bit block 40 286,888
RC4 stream 151 2,377,723

RC2 Block Cipher
The RC2 block cipher algorithm was developed by RSA Data Security, Inc. The details of this
algorithm have not been published.

RC2 is a variable-key-length cipher. However, when using CryptoAPI with the Microsoft RSA
Base Provider, the key length is hard-coded to 40 bits. The block size is fixed at 64 bits.

RC4 Stream Cipher
The RC4 stream cipher was developed by RSA Data Security, Inc. The details of this algorithm
have not been published.

RC4 is a variable-key-length cipher. However, when using CryptoAPI with the Microsoft RSA
Base Provider, the key length is hard-coded to 40 bits.

RSA Public-Key Cipher
The RSA public-key cipher was developed by (and named after) Ron Rivest, Adi Shamir, and
Leonard Adleman, in the late 1970's. This algorithm is very well known; you can read about its
internal details in any book on cryptography.

RSA is used by many CSPs to encrypt/decrypt keys and to generate/verify digital signatures. This
algorithm is used when operations are performed using either the key exchange or digital
signature key pair. When using CryptoAPI, this algorithm cannot be used to encrypt bulk data.

RSA is a variable-key-length cipher. However, when using CryptoAPI with the Microsoft RSA
Base Provider, the key length is hard-coded to 512 bits.

Encrypting Files and Messages
To encrypt a file so only the current user can access its data, the file is bulk encrypted with a
symmetric cipher. The key to this cipher is then kept in an access block (key blob) that can only
be opened with the user's private key. Note that this technique also works for encrypting
messages for specific recipients.

Encrypting Messages Using CryptoAPI
To encrypt a message, a session key must first be generated using the CryptGenKey function.
Making this call generates a random key and returns a handle so the key can be used to encrypt
and decrypt data. The encryption algorithm to use is also specified at this point. Because the
CryptoAPI does not permit applications to use public-key algorithms to encrypt bulk data, you
should specify a symmetric algorithm such as RC2 or RC4, with the CryptGenKey call.

Alternatively, if an application needs to encrypt the message in such a way that anyone with a
given password can decrypt the data, the CryptDeriveKey function should be used to transform
the password into a key suitable for encryption. Note that, in this case, this function is called
instead of the CryptGenKey function and the subsequent CryptExportKey calls are not needed.

Once the key has been generated, extra cryptographic properties of the key can be set with the
CryptSetKeyParam function. For example, this function allows different sections of the file to be
encrypted with different key salts and provides a way to change the cipher mode or initialization
vector of the key. These parameters can be used to make the encryption conform with a particular
data encryption standard.

Encrypt the data in the file with the CryptEncrypt function. The CryptEncrypt function takes a
session key, which was generated in the previous step, and encrypts a buffer of data. Note that as
the data is encrypted, the data may be slightly expanded by the encryption algorithm. The
application is responsible for remembering the length of the encrypted data so the proper length
can later be given to the CryptDecrypt function.

To allow the current user to decrypt the data in the future, the CryptExportKey function is used to
save the decryption key in an encrypted form (a key blob) that can only be decrypted with the
user's private key. This function requires the user's key exchange public key for this purpose,
which can be obtained by using the CryptGetUserKey function. The CryptExportKey function
will return a key blob that must be stored by the application for use in decrypting the file.

Note that if the application has certificates (or public keys) for other users, it can permit other
users to decrypt the file by performing CryptExportKey calls for each user it wants to give
access. The returned key blobs must be stored by the application, as in the previous step.

Structure of an Encrypted File
There are a number of standard formats for encrypted files and messages. These are designed to
make it easier for different applications to communicate. An explanation of these formats falls
outside the scope of this document. Refer to "Related Documentation" at the beginning of this
guide for a list of additional reading material.

Once a file or message has been encrypted, the following data must be stored by the application
and is usually kept bundled together. This is the data:

· The encrypted data. When a block cipher is used, the data is padded out to a multiple of
the cipher's block size. Padding is often added even when the original message is already an
even multiple. When a stream cipher is used, the encrypted data is generally the same size as
the original plaintext.

· One or more key blobs, each containing the session key used to encrypt the message.
Each of these key blobs is encrypted with the key exchange public key of a user who is to
later decrypt the data. Note that these are not stored if the key was derived from a password.
Instead, when it is time to decrypt the message, the session key is recreated from the
password. The password itself must be remembered by the user, of course.

· Any salt values that were specified as the data was being encrypted. When the data is
decrypted, these values will have to be specified (using the CryptSetKeyParam function) in
the same manner as when the data was encrypted.

· Any initialization vectors that were specified as the data was being encrypted. These
values are handled in much the same way as the salts.

All parameters that were specified with the CryptSetKeyParam function as the message was
being encrypted must also be specified as the message is decrypted. It may be appropriate to
store some of these parameters with the encrypted message as well.

Encryption Example
This example reads data from a text file (test1.txt), encrypts it using the RC2 block cipher, and
writes out the encrypted data to another file (test1.xxx). A random session key is generated to
perform the encryption and is stored to the output file along with the encrypted data. Note that this
session key is encrypted with our own public key exchange key by the CryptExportKey function.#include <wincrypt.h>
FILE *hSource = NULL;
FILE *hDest = NULL;
int eof = 0;
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
HCRYPTKEY hXchgKey = 0;
#define BLOCK_SIZE 160
#define BUFFER_SIZE (BLOCK_SIZE+16) // Give buffer 16 bytes of extra
// room for padding, etc.
BYTE pbBuffer[BUFFER_SIZE];
DWORD dwCount;
BYTE *pbKeyBlob = NULL;
DWORD dwBlobLen;
// Open source file.
if((hSource=fopen("test1.txt","rb"))==NULL) {

printf("Error opening source file!\n");
goto done;

}
// Open destination file.
if((hDest=fopen("test1.xxx","wb"))==NULL) {

printf("Error opening destination file!\n");
goto done;

}
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Get handle to key exchange key.
if(!CryptGetUserKey(hProv, AT_KEYEXCHANGE, &hXchgKey)) {

printf("Error %x during CryptGetUserKey!\n", GetLastError());
goto done;

}
// Create a random block cipher session key.
if(!CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptGenKey!\n", GetLastError());
goto done;

}
// Determine size of key blob and allocate memory.
if(!CryptExportKey(hKey, hXchgKey, SIMPLEBLOB, 0, NULL, &dwBlobLen)) {

printf("Error %x computing blob length!\n", GetLastError());
goto done;

}
if((pbKeyBlob = malloc(dwBlobLen)) == NULL) {

printf("Out of memory!\n");
goto done;

}
// Export key into a simple key blob.
if(!CryptExportKey(hKey, hXchgKey, SIMPLEBLOB, 0, pbKeyBlob,
&dwBlobLen)) {

printf("Error %x during CryptExportKey!\n", GetLastError());
free(pbKeyBlob);
goto done;

}
// Write size of key blob to destination file.
fwrite(&dwBlobLen, sizeof(DWORD), 1, hDest);
if(ferror(hDest)) {

printf("Error writing header!\n");
free(pbKeyBlob);
goto done;

}
// Write key blob to destination file.
fwrite(pbKeyBlob, 1, dwBlobLen, hDest);
if(ferror(hDest)) {

printf("Error writing header!\n");
free(pbKeyBlob);
goto done;

}
// Free memory.
free(pbKeyBlob);
// Encrypt source file and write to destination file.
do {

// Read up to BLOCK_SIZE bytes from source file.
dwCount = fread(pbBuffer, 1, BLOCK_SIZE, hSource);
if(ferror(hSource)) {
printf("Error reading data!\n");
goto done;
}
eof=feof(hSource);
// Encrypt data
if(!CryptEncrypt(hKey, 0, eof, 0, pbBuffer, &dwCount, BUFFER_SIZE)

) {
printf("Error %x during CryptEncrypt!\n", GetLastError());
goto done;
}
// Write data to destination file.
fwrite(pbBuffer, 1, dwCount, hDest);
if(ferror(hDest)) {
printf("Error writing data!\n");
goto done;
}

} while(!feof(hSource));
done:
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Destroy key exchange key.
if(hXchgKey != 0) CryptDestroyKey(hXchgKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
// Close source file.
if(hSource != NULL) fclose(hSource);
// Close destination file.
if(hDest != NULL) fclose(hDest);

Decrypting Messages Using CryptoAPI
If a message was encrypted for a particular user, then the CryptGenKey function was used to
create a random session key, before the encryption was performed. This means that before the
message can be decrypted, the key blob containing the session key needs to be imported into the
CSP with the CryptImportKey function. This function will use your key exchange private key to
decrypt the key blob. This means that the key blob must have been originally created using the
matching key exchange public key.

If the message was encrypted so that any password holder can access the data, the
CryptImportKey function is not used. Instead, you create the decryption session key with the
CryptDeriveKey function. You will also need to supply the function with the password (or other
access token).

The session key's parameters need to be configured in the same way as when the encryption was
performed. These parameters can be specified using the CryptSetKeyParam function. For
example, if the salt value was changed one or more times during the encryption process, then it
must also be changed during the decryption process in exactly the same manner.

The message is decrypted using the CryptDecrypt function. If the message is too large to fit
comfortably in memory, it can be decrypted in sections, through multiple calls to CryptDecrypt.

When the decryption is complete, be sure to destroy the session key, using the CryptDestroyKey
function. In addition to destroying the key, this will free up CSP resources.

Decryption Example
This example reads the encrypted data from the file created by the "Encryption Example" (test1.
xxx), decrypts it using the RC2 block cipher, and writes out the plaintext data to another file (test1.
txt). The session key used to perform the decryption is read from the ciphertext file.#include <wincrypt.h>
FILE *hSource = NULL;
FILE *hDest = NULL;
int eof = 0;
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
#define BLOCK_SIZE 160
BYTE pbBuffer[BLOCK_SIZE];
DWORD dwCount;
BYTE *pbKeyBlob = NULL;
DWORD dwBlobLen;
// Open source file.
if((hSource=fopen("test1.xxx","rb"))==NULL) {

printf("Error opening source file!\n");
goto done;

}
// Open destination file.
if((hDest=fopen("test1.txt","wb"))==NULL) {

printf("Error opening destination file!\n");
goto done;

}
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Read key blob length from source file and allocate memory.
fread(&dwBlobLen, sizeof(DWORD), 1, hSource);
if(ferror(hSource) || feof(hSource)) {

printf("Error reading file header!\n");
goto done;

}
if((pbKeyBlob = malloc(dwBlobLen)) == NULL) {

printf("Out of memory!\n");
goto done;

}
// Read key blob from source file.
fread(pbKeyBlob, 1, dwBlobLen, hSource);
if(ferror(hSource) || feof(hSource)) {

printf("Error reading file header!\n");
goto done;

}
// Import key blob into CSP.
if(!CryptImportKey(hProv, pbKeyBlob, dwBlobLen, 0, 0, &hKey)) {

printf("Error %x during CryptImportKey!\n", GetLastError());
goto done;

}
// Decrypt source file and write to destination file.
do {

// Read up to BLOCK_SIZE bytes from source file.
dwCount = fread(pbBuffer, 1, BLOCK_SIZE, hSource);
if(ferror(hSource)) {
printf("Error reading data from source file!\n");
goto done;
}
eof=feof(hSource);
// Decrypt data.
if(!CryptDecrypt(hKey, 0, eof, 0, pbBuffer, &dwCount)) {
printf("Error %x during CryptDecrypt!\n", GetLastError());
goto done;
}
// Write data to destination file.
fwrite(pbBuffer, 1, dwCount, hDest);
if(ferror(hDest)) {
printf("Error writing data to destination file!\n");
goto done;
}

} while(!feof(hSource));
done:
// Free memory.
if(pbKeyBlob) free(pbKeyBlob);
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
// Close source file.
if(hSource != NULL) fclose(hSource);
// Close destination file.
if(hDest != NULL) fclose(hDest);

Encrypting and Decrypting Simultaneously
When encrypting or decrypting two streams of data simultaneously with the same cryptographic
key, a certain amount of care must be taken. The same physical session key must not be used for
both operations, because every session key contains internal state information and it will get
mixed up if used for more than one operation at a time. A fairly simple solution to this problem is
to make a copy of the session key. In this way, the original key can be used for one operation and
the copy used for the other.

Copying a session key is done by exporting the key with CryptExportKey and then using
CryptImportKey to import it back in. When the key is imported, the CSP will give the "new" key its
own section of internal memory, as if it were not related at all to the original key.

The following code fragment shows how a copy of a session key can be obtained.HCRYPTPROV hProv; // Handle to a CSP.
HCRYPTKEY hKey; // Handle to a session key.
HCRYPTKEY hCopyKey = 0;
HCRYPTKEY hPubKey = 0;
BYTE pbBlob[256];
DWORD dwBlobLen;
// Get a handle to our own key exchange public key.
CryptGetUserKey(hProv, AT_KEYEXCHANGE, &hPubKey);
// Export the session key into a key blob.
dwBlobLen = 256;
CryptExportKey(hKey, hPubKey, SIMPLEBLOB, 0, pbBlob, &dwBlobLen);
// Import the session key back into the CSP. This is stored separately
// from the original session key.
CryptImportKey(hProv, pbBlob, dwBlobLen, 0, 0, &hCopyKey);
// Use 'hKey' for one set of operations and 'hCopyKey' for the other.
...Note that this technique should not be used with stream ciphers, as stream cipher keys should

never be used more than once. Instead, separate transmit and receive keys should be used.

Data Encryption Functions Summary
The functions in this section support encryption and decryption operations. Before invoking these
functions, you must first acquire an encryption key. This is done using the functions CryptGenKey
or CryptDeriveKey, defined in the section Generating Cryptographic Keys, or the function
CryptImportKey, defined in the section Exchanging Cryptographic Keys. The encryption
algorithm is specified when the key is created. You can also specify additional encryption
parameters using the CryptSetKeyParam function.

Function Description

CryptEncrypt Encrypt a section of plaintext using the specified
encryption key.

CryptDecrypt Decrypt a section of cipher text using the specified
encryption key.

Hashes and Digital SignaturesUsing the functions described in this section, a user can "digitally sign" a piece of data such that
any other user can easily verify that the data has not been changed since it was signed. The
identity of the user that signed the data can also be easily verified.

A digital signature consists of a small amount of binary data, typically less than 256 bytes. This
signature can be bundled with the signed message or stored separately; this is up to the individual
application.

The Microsoft RSA Base Provider creates digital signatures that conform to the RSA Public-Key
Cryptography Standard (PKCS) #6.

How Digital Signatures Work
There are two steps involved in creating a digital signature from a message. The first step
involves creating a hash value (also known as a message digest) from the message. This hash
value is then signed, using the private key of the signer. Following is an illustration of the steps
involved in creating a digital signature:

ewc msdncd, EWGraphic, bsd23505 0 /a "SDK-1SIGN.WMF"

To verify a signature, both the message and the signature are required. First, a hash value must
be created from the message, in the same way as when the signature was created. This hash
value is then verified against the signature, using the public key of the signer. If the hash value
and the signature match, you can be confident that the message is indeed the one the signer
originally signed and that it has not been tampered with. The following diagram illustrates the
process involved in verifying a digital signature.

ewc msdncd, EWGraphic, bsd23505 1 /a "SDK-2SIGN.WMF"

A hash value consists of a small amount of binary data, typically around 160 bits. This is produced
using a hashing algorithm. A number of these algorithms are listed later in this section.

All hash values share the following properties, regardless of the algorithm used:

· The hash value is of a fixed length, regardless of the size of the message. The message
can be several kilobytes or several gigabytes, it doesn't matter. Depending on the algorithm
used, the hash value length will generally be either 128 or 160 bits.

· Every pair of nonidentical messages will translate into a completely different hash value,
even if the two messages differ only by a single bit. Using today's technology, it is not feasible
to discover a pair of messages that translate to the same hash value without breaking the
hashing algorithm.

· All hashing algorithms are fully deterministic. That is, each time a particular message is
hashed using the same algorithm, the exact same hash value will be produced.

· All hashing algorithms are one-way. Given a hash value, it is not possible to recover the
original message. In fact, none of the properties of the original message can be determined
given the hash value alone.

Signing and Verifying Messages
To apply a digital signature to a piece of data, a secure hash function is used to build a digest of
the data (for example, a 160-bit hash value) which is then transformed with the private key of the
signer. Other users can then check the authenticity of the signature by reconstructing the hash
value, and checking it against the "inverse" of the digital signature data. CryptoAPI abstracts out
the actual method of doing the signature, so that applications need not be aware of the signature
mechanics.

Signing Data
In order to sign data, a hash object must first be created using the CryptCreateHash function.
This object will accumulate the data to be signed. Next, the data is added to the hash object with
the CryptHashData function.

After the last block of data is added to the hash, the CryptSignHash function is used to sign the
hash. A description of the data can also be added to the hash object at this point. Once the digital
signature data has been obtained, the hash object should be destroyed with the
CryptDestroyHash function.

Hashes can be signed with either the signature private key or the key exchange private key. The
signature key should be used when the user who owns the signature key is signing some of his or
her data. The key exchange key should be used when signing data that does not directly belong
to the user. The classic example of this is when the exchange key is used to sign session keys
during a key exchange protocol.

Verifying Signatures
To verify a signature, a hash object must first be created using the CryptCreateHash function.
This object will accumulate the data to be verified. The data is then added to the hash object with
the CryptHashData function.

After the last block of data is added to the hash, the CryptVerifySignature function is used to
verify the signature. The signature data, a handle to the hash object, and the description string
must all be supplied to CryptVerifySignature. A handle to the key pair that was used to sign the
data must also be specified.

Once the signature has been verified (or has failed the verification) the hash object should be
destroyed with the CryptDestroyHash function.

Obtaining the Hash Value
To obtain the hash value, a hash object must first be created using the CryptCreateHash
function. This object will accumulate the data to be verified. The data is then added to the hash
object with the CryptHashData function.

After the last block of data is added to the hash, the CryptGetHashParam function is used to
obtain the hash value.

Once the hash value has been obtained, the hash object should be destroyed with the
CryptDestroyHash function.

Hashing and Signature Algorithms
This section lists several algorithms used to compute hashes and digital signatures. Each of these
algorithms is supported by the Microsoft RSA Base Provider. However, the internal details of
these algorithms are well beyond the scope of this document. Refer to "Related Documentation"
at the beginning of this guide for a list of additional sources.

MD2, MD4, and MD5
The MD2, MD4, and MD5 hashing algorithms were all developed by RSA Data Security, Inc.
These algorithms were developed in sequential order, with the later algorithms generally being
better (more secure) than the earlier ones. All three generate 128-bit hash values. Of the three
algorithms, MD5 is recommended.

These algorithms are well known and can be reviewed in detail in any reference on cryptography.

Secure Hash Algorithm (SHA)
The SHA hashing algorithm was developed by the National Institute of Standards and Technology
(NIST) and by the National Security Agency (NSA). This algorithm was developed for use with
DSA (Digital Signature Algorithm) or DSS (Digital Signature Standard).

This algorithm generates a 160-bit hash value.

Message Authentication Code (MAC)
Message Authentication Codes (MACs) are similar to hash values, but are computed using a
session key. Because of this difference, you must possess the session key in order to recompute
the hash value to verify that the base data has not changed.

The MACs implemented by the Microsoft RSA Base Provider are of the most common sort. That
is, they are block cipher MACs. This method encrypts the base data with a block cipher and then
uses the last encrypted block as the hash value. The encryption algorithm used to build the MAC
is the one that was specified when the session key was created.

Warning The same session key should not be used for both message encryption and MAC
generation. Doing so greatly increases the risk of your messages being decoded.

Hashing and Digital Signature Functions Summary
The functions described in this section are used by applications to compute hashes (also known
as message digests), and are also used to create and verify digital signatures. The following table
briefly describes each function.

Function Description

CryptCreateHash Create an "empty" hash object.
CryptDestroyHash Destroy a hash object.
CryptGetHashParam Retrieve a hash object parameter.
CryptHashData Hash a block of data, adding it to the

specified hash object.
CryptHashSessionKey Hash a session key, adding it to the

specified hash object.
CryptSetHashParam Set a hash object parameter.
CryptSignHash Sign the specified hash object.
CryptVerifySignature Verify a digital signature, given a handle to

the hash object that was supposedly signed.

System AdministrationThis section discusses how multiple cryptographic service providers (CSPs) can be installed on a
computer and the default providers specified. The structure of the system Registry is also
mentioned.

Installing a New Provider
New providers are installed by running their Setup program. This copies the CSP files to the
appropriate directories and makes all needed changes to the system Registry.

Outline of CryptoAPI Registry Usage
CryptoAPI uses the system Registry to store a database of the CSPs that have been installed on
the computer. Both the machine default providers and the user default providers are also recorded
here.

Warning This section is included for informational purposes only. The details of CryptoAPI's
Registry usage may change at any time. Under no circumstances should an application read
from or alter the Registry directly.

The following is a partial outline of the portions of the system Registry used by CryptoAPI. Some
sample entries are also shown.
HKEY_LOCAL_MACHINE

SOFTWARE
Microsoft

Cryptography
Defaults

Provider
Microsoft Base Cryptographic Provider v1.0

>Image Path:REG_SZ:rsabase.dll
>Signature:REG_BINARY:<digital signature>
>Type:REG_DWORD:0x1
John's Provider
>Image Path:REG_SZ:johncsp.dll
>Signature:REG_BINARY:<digital signature>
>Type:REG_DWORD:0x2a

Provider Types
Type 001

>Name:REG_SZ:Microsoft Base Cryptographic Provider v1.0
Type 042

>Name:REG_SZ:John's Provider
HKEY_CURRENT_USER

Software
Microsoft

Cryptography
Providers

Type 001

>Name:REG_SZ:Microsoft Base Cryptographic Provider v1.0

Entries under the HKEY_LOCAL_MACHINE\...\Provider key contain information about all the
CSPs that have been installed on the computer. These entries are created by the Setup program
used to install a new CSP. Note that these entries are organized under subkeys whose names
indicate the provider name.

Entries under the HKEY_LOCAL_MACHINE\...\Provider Types key contain the name of the
machine default CSP for each provider type. These entries are also created by the Setup program
used to install a new CSP. Note that these entries are organized under subkeys whose names
indicate the provider type (in decimal format).

Entries under the HKEY_CURRENT_USER\...\Providers key contain the name of the current user
default CSP for each provider type. These entries are created/modified by the CryptSetProvider
function. Note that these entries are also organized under subkeys whose names indicate the
provider type.

Data Types and ConstantsThis section describes some of the data types and constants that are used by the functions in
CryptoAPI.

ALG_ID
The ALG_ID data type is used to specify algorithm identifiers. Parameters of this data type are
passed to most of the functions in CryptoAPI. This data type is defined in the WINCRYPT.H
header file as:typedef unsigned int ALG_ID;The following table lists the algorithm identifiers that are currently defined. Authors of custom
CSPs can define new values.

Constant Description

CALG_MD2 * MD2 hashing algorithm
CALG_MD4 MD4 hashing algorithm
CALG_MD5 * MD5 hashing algorithm
CALG_SHA * SHA hashing algorithm
CALG_MAC * MAC keyed hash algorithm
CALG_RSA_SIGN * RSA public-key signature algorithm
CALG_DSS_SIGN DSA public-key signature algorithm
CALG_RSA_KEYX * RSA public-key key exchange algorithm
CALG_DES DES encryption algorithm
CALG_RC2 * RC2 block encryption algorithm
CALG_RC4 * RC4 stream encryption algorithm
CALG_SEAL SEAL encryption algorithm

The algorithms with an asterisk (*) are supported by the Microsoft RSA Base Provider.

HCRYPTHASH
The HCRYPTHASH data type is used to represent handles to a hash object. These handles are
used to indicate to the CSP module which hash is being used in a particular operation. The CSP
module does not allow direct manipulation of the hash values. Instead, the user manipulates the
hash values through the hash handle.

HCRYPTHASH is defined in the WINCRYPT.H header file as:typedef unsigned long HCRYPTHASH;

HCRYPTKEY
The HCRYPTKEY data type is used to represent handles to cryptographic keys. These handles
are used to indicate to the CSP module which key is being used in a specific operation. The CSP
module does not allow direct access to the key values. Instead, the user performs functions using
the key value through the key handle.

HCRYPTKEY is defined in the WINCRYPT.H header file as:typedef unsigned long HCRYPTKEY;

HCRYPTPROV
The HCRYPTPROV data type is used to represent handles to CSPs. These handles are used to
indicate which CSP module should perform the specific operation.

HCRYPTPROV is defined in the WINCRYPT.H header file as:typedef unsigned long HCRYPTPROV;

MAXUIDLEN
MAXUIDLEN is a numeric constant that specifies the maximum size for CSP names and key
container names. No CSP or key container name can be longer than MAXUIDLEN characters,
including the terminating zero.

MAXUIDLEN is defined in the WINCRYPT.H header file as:#define MAXUIDLEN 64

MS_DEF_PROV
MS_DEF_PROV is a string constant set to the name of the Microsoft RSA Base Provider. This
constant is used with the CryptAcquireContext CryptSetProvider functions.

MS_DEF_PROV is defined in the WINCRYPT.H header file as:#define MS_DEF_PROV TEXT("Microsoft Base Cryptographic Provider v1.0")

Interoperability with RSA CSPsThis chapter describes the implementation details to which all PROV_RSA_FULL and
PROV_RSA_SIG providers must conform. Because the PROV_RSA_SIG provider type is a
subset of PROV_RSA_FULL, not all of the material in this chapter is applicable to
PROV_RSA_SIG providers.

The information in this chapter is included primarily for use by persons writing their own CSP, but
may be of interest to some advanced application developers as well.

This chapter contains topics in five major areas:

· Supported algorithms. A minimum set of algorithms must be supported by all
PROV_RSA_FULL and PROV_RSA_SIG providers.

· Key blob formats. A standard encoding scheme is defined for key blobs. This enables
session keys and public keys to be exchanged between CSPs, even if the CSPs come from
different vendors.

· Deriving session keys. The procedure whereby session keys are derived from hash
values is defined, so that given the same base data, every CSP will be able to generate
exactly the same session key from it.

· Hashing session keys. The procedure whereby session keys are hashed is defined, so
that given the same session key, every CSP will be able to generate exactly the same hash
value from it.

· Digital signature mechanics. The mechanics of digital signatures (as well as the signature
format) are defined, so that different CSPs can verify each other's signatures correctly.

Supported Algorithms
Every CSP of type PROV_RSA_FULL or PROV_RSA_SIG must support a minimum set of
algorithms. Additional algorithms can be implemented as well, although this is kind of
discouraged.

Public-Key Algorithm Support
All PROV_RSA_FULL and PROV_RSA_SIG providers use the RSA Public-Key Cipher for both
digital signatures and key exchange. Two public/private key pairs are defined: the signature key
pair and the exchange key pair. The exchange key pair can be used both to exchange session
keys and to perform/verify digital signatures.

Although the Microsoft RSA Base Provider uses 512-bit public/private keys, this is not a
requirement. Your CSP is perfectly free to use larger keys, although this may make it subject to
export control (see Chapter 4).

The CPVerifySignature function of all CSPs must be able to verify signatures of up to 2048 bits,
regardless of the size of the signatures produced by CPSignHash. This ensures that the CSP will
be able to validate all compatible certificates, even those signed with very large keys. This
requirement may be difficult for CSPs implemented in hardware packages with limited memory, so
it may be necessary for some hardware CSPs to implement a signature verification algorithm
within the primary DLL.

Symmetric Encryption Algorithm Support
Every CSP of type PROV_RSA_FULL or PROV_RSA_SIG must provide an implementation of the
RC2 block cipher and the RC4 stream cipher. These algorithms are used by the session keys to
perform the encryption and decryption of bulk data.

The Microsoft RSA Base Provider uses 40-bit session keys, with 88 bits of salt (128 bits total).
Your CSP is free to use larger keys, although this can make exporting your CSP rather difficult
(see Chapter 4).

If your CSP does use session keys larger than 40-bits, this will tend to make key exchange
between your CSP and the Microsoft RSA Base Provider rather difficult, unless your CSP is
willing to "dumb down."

Hashing Algorithm Support
Every CSP of type PROV_RSA_FULL or PROV_RSA_SIG must provide implementations of both
the MD5 and the SHA hash functions. In addition, having your CSP support the MD2 algorithm
might be a good idea, if compatibility is important to you.

Key Blob Formats
Key blobs are the data structures that store keys when they are not inside of a CSP. Every key
blob consists of one or more fixed-length header structures, followed by the key data itself. This
key data is variable in length, and often encrypted.

Each key blob consists of binary data. The size of a key blob will vary depending on the blob type
and the key size.

Unless stated otherwise, all multibyte numbers are stored in little-endian format, meaning that the
first byte of a number is the least significant and the last byte is the most significant. This is the
most common format for computers running Windows.

The BLOBHEADER Structure
The BLOBHEADER structure is located at the front of every key blob. This isn't limited to the key
blobs generated by the PROV_RSA_BASE and PROV_RSA_SIG provider types; any additional
key blob types that get defined should also specify that each key blob start with this structure.

This structure contains fields that indicate the key blob type and the algorithm that the key uses.typedef struct _BLOBHEADER {
BYTE bType;
BYTE bVersion;
WORD Reserved;
ALG_ID aiKeyAlg;

} BLOBHEADER;The following table describes each of the fields in the BLOBHEADER structure.

Field Description

bType Key blob type. The only blob types currently defined
are the PUBLICKEYBLOB, PRIVATEKEYBLOB, and
SIMPLEBLOB blob types. Other key blob types will be
defined as needed.
PUBLICKEYBLOBs are used to transport RSA public
keys, PRIVATEKEYBLOBs are used to transport RSA
public/private key pairs, and SIMPLEBLOBs are used
to transport session keys.

bVersion Version number of the key blob format. This currently
must always have a value of "0x02".

Reserved These 2 bytes are reserved for future use, and should
be zero.

aiKeyAlg Algorithm identifier for the key contained by the key
blob. Some examples are CALG_RSA_SIGN,
CALG_RSA_KEYX, CALG_RC2, and CALG_RC4.
Not all algorithm identifiers are valid with all blob
types. For example, you would never export an RC4
key into a PUBLICKEYBLOB.

Public Key Blob Format
Public key blobs (type PUBLICKEYBLOB) are used to store RSA public keys. They have the
following format:BLOBHEADER blobheader;
RSAPUBKEY rsapubkey;
BYTE modulus[rsapubkey.bitlen/8];Notice that PUBLICKEYBLOBs are not encrypted, but contain public keys in plaintext form.

The RSAPUBKEY structure contains information specific to the particular public key contained in
the key blob. It is defined as follows:typedef struct _RSAPUBKEY {

DWORD magic;
DWORD bitlen;
DWORD pubexp;

} RSAPUBKEY;The following table describes each of the fields in the RSAPUBKEY structure.

Field Description

magic This must always be set to 0x31415352. Notice that
this is just an ASCII encoding of "RSA1."

bitlen Number of bits in the modulus. In practice, this must
always be a multiple of 8.

pubexp The public exponent.

The public key modulus data is located directly after the RSAPUBKEY structure. The size of
this data will vary depending on the size of the public key. The number of bytes can be
determined by dividing the value of RSAPUBKEY's bitlen field by 8.

Sample Public Key Blob
The following hex dump shows a sample public key blob, generated by the Microsoft RSA Base
Provider. This contains a key exchange public key.0x00000000 06 02 00 00 00 a4 00 00
0x00000008 52 53 41 31 00 02 00 00 RSA1....
0x00000010 01 00 01 00 e1 94 84 7az
0x00000018 27 4c 7b da db c5 99 dd 'L{.....
0x00000020 ed 20 1a b8 66 44 21 dc . ..fD!.
0x00000028 10 e5 ee 48 62 39 ae 8f ...Hb9..
0x00000030 cf 17 81 f0 37 8b b5 467..F
0x00000038 a9 65 b7 4e 75 83 84 4e .e.Nu..N
0x00000040 4f ce f1 f2 ad a0 b1 22 O......"
0x00000048 09 ec c2 30 96 f8 27 2b ...0..'+
0x00000050 33 cf a4 be 3...Notice that the BLOBHEADER and RSAPUBKEY structures have been assigned the following

values, and the last 64 bytes of the blob contain the public key's modulus data.blobheader.bType = PUBLICKEYBLOB; // 0x06
blobheader.bVersion = CUR_BLOB_VERSION; // 0x02
blobheader.Reserved = 0; // 0x0000
blobheader.aiKeyAlg = CALG_RSA_KEYX; // 0x0000a400
rsapubkey.magic= 0x31415352; // "RSA1"
rsapubkey.bitlen = 512; // 0x00000200
rsapubkey.pubexp = 65537; // 0x00010001When filling in the BLOBHEADER structure, your code should place zero in the Reserved field.

Private Key Blob Format
Private key blobs (type PRIVATEKEYBLOB) are used to store RSA public/private key pairs. They
have the following format:BLOBHEADER blobheader;
RSAPUBKEY rsapubkey;
BYTE modulus[rsapubkey.bitlen/8];
BYTE prime1[rsapubkey.bitlen/16];
BYTE prime2[rsapubkey.bitlen/16];
BYTE exponent1[rsapubkey.bitlen/16];
BYTE exponent2[rsapubkey.bitlen/16];
BYTE coefficient[rsapubkey.bitlen/16];
BYTE privateExponent[rsapubkey.bitlen/8];If the key blob is encrypted, then everything but the BLOBHEADER portion of the blob is

encrypted. Note that the encryption algorithm and encryption key parameters are not stored along
with the private key blob. It is the responsibility of the application to manage this information.

The following table describes each private key blob component. Note that these fields largely
correspond to the ones described in section 7.2 of PKCS #1: RSA Encryption Standard.

Field Description

blobheader A BLOBHEADER structure as described in a
previous section. The bType field must always have
a value of PRIVATEKEYBLOB.

rsapubkey A RSAPUBKEY structure as described in a previous
section. The magic field must always have a value of
0x32415352 ("RSA2").

modulus The modulus. This has a value of "prime1 * prime2"
and is often known as "n".

prime1 Prime number 1, often known as "p".
prime2 Prime number 2, often known as "q".
exponent1 Exponent 1. This has a numeric value of "d mod (p -

1)".
exponent2 Exponent 2. This has a numeric value of "d mod (q -

1)".
coefficient Coefficient. This has a numeric value of "(inverse of

q) mod p".
privateExponent Private exponent, often known as "d".

Sample Private Key Blob
The following hex dump shows a sample private key blob, generated by the Microsoft RSA Base
Provider. This contains a key exchange public/private key pair. Note that this sample contains a
public key that is different than the one discussed in a previous section.0x00000000 07 02 00 00 00 a4 00 00
0x00000008 52 53 41 32 00 02 00 00 RSA2....
0x00000010 01 00 01 00 6b df 51 efk.Q.
0x00000018 db 6f 10 5c 32 bf 87 1c .o.\2...
0x00000020 d1 4c 24 7e e7 2a 14 10 .L$~.*..
0x00000028 6d eb 2c d5 8c 0b 95 7b m.,....{
0x00000030 c7 5d c6 87 12 ea a9 cd .]......
0x00000038 57 7d 3e cb e9 6a 46 d0 W}>..jF.
0x00000040 e1 ae 2f 86 d9 50 f9 98 ../..P..
0x00000048 71 dd 39 fc 0e 60 a9 d3 q.9..`..
0x00000050 f2 38 bb 8d 5d 2c bc 1e .8..],..
0x00000058 c3 38 fe 00 5e ca cf cd .8..^...
0x00000060 b4 13 89 16 d2 07 bc 9b
0x00000068 e1 20 31 0b 81 28 17 0c . 1..(..
0x00000070 c7 73 94 ee 67 be 7b 78 .s..g.{x
0x00000078 4e c7 91 73 a8 34 5a 24 N..s.4Z$
0x00000080 9d 92 0d e8 91 61 24 dca$.
0x00000088 b5 eb df 71 66 dc e1 77 ...qf..w
0x00000090 d4 78 14 98 79 44 b0 19 .x..yD..
0x00000098 f6 f0 7d 63 cf 62 67 78 ..}c.bgx
0x000000a0 d0 7b 10 ae 6b db 40 b3 .{..k.@.
0x000000a8 b2 eb 2e 9f 31 34 2d cb14-.
0x000000b0 bf a2 6a a6 1f e9 03 42 ..j....B
0x000000b8 f2 63 9b b7 33 d0 fe 20 .c..3..
0x000000c0 83 26 1f 56 a8 24 f5 6d .&.V.$.m
0x000000c8 19 51 a5 92 31 e4 2b bc .Q..1.+.
0x000000d0 11 c8 26 75 a0 51 e9 83 ..&u.Q..
0x000000d8 ca ee 4b f0 59 eb a4 81 ..K.Y...
0x000000e0 d6 1f 49 42 2b 75 89 a7 ..IB+u..
0x000000e8 9f 84 7f 1f c3 8f 70 b6p.
0x000000f0 7e 06 5e 8b c9 53 65 80 ~.^..Se.
0x000000f8 b7 16 f2 5e 5e de 0b 57 ...^^..W
0x00000100 47 43 86 85 8a fb 37 ac GC....7.
0x00000108 66 34 ba 09 1a b1 21 0b f4....!.
0x00000110 aa fa 6c b7 75 a7 3e 23 ..l.u.>#
0x00000118 18 58 95 90 b5 29 a4 1e .X...)..
0x00000120 15 76 52 56 bb 3d 6b 1d .vRV.=k.
0x00000128 2a d1 9f 5c 8a c0 55 ea *..\..U.
0x00000130 c3 29 a2 1e .)..Notice that the BLOBHEADER and RSAPUBKEY structures have been assigned the following

values:blobheader.bType = PRIVATEKEYBLOB;// 0x07
blobheader.bVersion = CUR_BLOB_VERSION; // 0x02
blobheader.Reserved = 0; // 0x0000
blobheader.aiKeyAlg = CALG_RSA_KEYX; // 0x0000a400
rsapubkey.magic= 0x32415352; // "RSA2"
rsapubkey.bitlen = 512; // 0x00000200
rsapubkey.pubexp = 65537; // 0x00010001The following table shows the numeric values of each of the large numeric fields contained by the

sample private key blob. As with all of the numbers in the public and private key blobs, these are
in little endian byte order.

Field Name Value

Modulus
6b df 51 ef db 6f 10 5c 32 bf 87 1c
d1 4c 24 7e
e7 2a 14 10 6d eb 2c d5 8c 0b 95 7b
c7 5d c6 87
12 ea a9 cd 57 7d 3e cb e9 6a 46 d0
e1 ae 2f 86
d9 50 f9 98 71 dd 39 fc 0e 60 a9 d3
f2 38 bb 8d

Prime #1
5d 2c bc 1e c3 38 fe 00 5e ca cf cd
b4 13 89 16
d2 07 bc 9b e1 20 31 0b 81 28 17 0c
c7 73 94 ee

Prime #2
67 be 7b 78 4e c7 91 73 a8 34 5a 24
9d 92 0d e8
91 61 24 dc b5 eb df 71 66 dc e1 77
d4 78 14 98

Exponent #1
79 44 b0 19 f6 f0 7d 63 cf 62 67 78
d0 7b 10 ae
6b db 40 b3 b2 eb 2e 9f 31 34 2d cb
bf a2 6a a6

Exponent #2
1f e9 03 42 f2 63 9b b7 33 d0 fe 20
83 26 1f 56
a8 24 f5 6d 19 51 a5 92 31 e4 2b bc
11 c8 26 75

Coefficient
a0 51 e9 83 ca ee 4b f0 59 eb a4 81
d6 1f 49 42
2b 75 89 a7 9f 84 7f 1f c3 8f 70 b6
7e 06 5e 8b

Private Exponent
c9 53 65 80 b7 16 f2 5e 5e de 0b 57
47 43 86 85
8a fb 37 ac 66 34 ba 09 1a b1 21 0b
aa fa 6c b7
75 a7 3e 23 18 58 95 90 b5 29 a4 1e
15 76 52 56
bb 3d 6b 1d 2a d1 9f 5c 8a c0 55 ea
c3 29 a2 1e

Simple Key Blob Format
Simple key blobs (type SIMPLEBLOB) are used to store and transport session keys. These are
always encrypted with a key exchange public key. They have the following format:BLOBHEADER blobheader;
ALG_ID algid;
BYTE encryptedkey[rsapubkey.bitlen/8];The algorithm identifier that immediately follows the BLOBHEADER structure specifies the

encryption algorithm that was used to encrypt the session key data. This typically has a value of
CALG_RSA_KEYX, indicating that the session key data was encrypted with a key exchange
public key, using the RSA Public-Key algorithm.

The encrypted session key data is in the form of a PKCS #1, type 2 encryption block. For details
on this data format, see The Public-Key Cryptography Standards (PKCS), published by RSA Data
Security, Inc.

This data is always the same size as the public key's modulus. For example, public keys
generated by the Microsoft RSA Base Provider are always 512 bits (64 bytes) in length, so the
encrypted session key data is also always 64 bytes.

Building a Simple Key Blob
Two data items are required before a SIMPLEBLOB data structure can be built: the session key
that is to be transported and the public key to be used to encrypt it. For the purposes of this
example, we will use a 40-bit RC4 session key and the public key from the previous section. The
actual value of the session key material is:0x00000000 74 4f 06 35 3f tO.5?The first step is building the PKCS #1, type 2 encryption block. This is always the same size as
the public key's modulus (64 bytes) and contains the following fields:

Bytes Description

5 Session key material. The size of this field will vary,
depending on the size of the session key.
As you can see from comparing the hex dump of the
session key above and the hex dump of the encryption
block below, the bytes in the session key data are reversed
before they are placed in the encryption block. This is
because Windows NT formats data in little endian format,
and the encryption block must be built in big endian format.

1 Zero value.
56 Random padding data. The size of this field is adjusted as

necessary so that the encryption block's overall length is
correct. None of these bytes are allowed to be zero.

1 The PKCS block type (0x02).
1 Zero value.

You may notice that the order of this table is reversed from the diagram found in the PKCS
documentation. This is because we are building the encryption block in big endian on a
little endian computer.

Once the encryption block has been built, it looks something like this:0x00000000 3f 35 06 4f 74 00 c9 db ?5.Ot...
0x00000008 b1 74 b0 de 8e d4 aa c5 .t......
0x00000010 99 8a 4d 19 4f 0f ed 24 ..M.O..$
0x00000018 b0 2e 93 fe e9 f4 d4 93
0x00000020 dc ac 9e 9f 3a 62 be f1:b..
0x00000028 e4 1d 44 5c 33 e5 2f 4f ..D\3./O
0x00000030 58 01 95 16 36 f7 86 65 X...6..e
0x00000038 68 6c 2a 28 79 55 02 00 hl*(yU..The next step is to encrypt the block with the appropriate public key. Once this is done, the

encryption block looks like gibberish:0x00000000 e3 c1 78 62 c4 1f 51 4f ..xb..QO
0x00000008 e9 50 89 fd 0d 58 bd 9d .P...X..
0x00000010 74 c7 54 19 bd 97 3b a0 t.T...;.
0x00000018 f0 6c ee 86 05 74 16 62 .l...t.b
0x00000020 27 a5 99 63 c4 6f 95 ed '..c.o..
0x00000028 3e 93 ba 9a ea 36 cc 96 >....6..
0x00000030 92 e8 aa 15 2c 50 a1 3c,P.<
0x00000038 d3 1f 08 e2 82 cd 90 2b+Finally, the BLOBHEADER structure and the algorithm identifier are tacked onto the front of the

encryption block, resulting in a complete SIMPLEBLOB data structure:0x00000000 01 02 00 00 01 68 00 00h..
0x00000008 00 a4 00 00 e3 c1 78 62xb
0x00000010 c4 1f 51 4f e9 50 89 fd ..QO.P..
0x00000018 0d 58 bd 9d 74 c7 54 19 .X..t.T.
0x00000020 bd 97 3b a0 f0 6c ee 86 ..;..l..
0x00000028 05 74 16 62 27 a5 99 63 .t.b'..c
0x00000030 c4 6f 95 ed 3e 93 ba 9a .o..>...
0x00000038 ea 36 cc 96 92 e8 aa 15 .6......
0x00000040 2c 50 a1 3c d3 1f 08 e2 ,P.<....
0x00000048 82 cd 90 2b ...+Notice that the BLOBHEADER structure and the algorithm identifier have been assigned the

following values:blobheader.bType = SIMPLEBLOB; // 0x01
blobheader.bVersion = CUR_BLOB_VERSION; // 0x02
blobheader.Reserved = 0; // 0x0000
blobheader.aiKeyAlg = CALG_RC4; // 0x00006801
algid= CALG_RSA_KEYX; // 0x0000a400When filling in the BLOBHEADER structure, your code should place zero in the Reserved field.

Deriving Session Keys
Applications derive session keys from hash values by using the CryptDeriveKey function. The
underlying mechanism is very simple. The first few bytes of the hash value (however many are
required) are used as the session key material. If the CRYPT_CREATE_SALT flag is specified,
then the next few bytes are used as the salt value. The remaining bytes of the hash value are not
used.

For example, if you have an SHA hash value (160 bits) and want to create a 40-bit session key
(with 88 bits of salt) from it, the first five bytes would be used as the session key material and the
next 11 bytes would be used as the salt. The last 4 bytes would be unused.

Note that hash values and session keys are considered here to be blocks of data, not large
integers. Byte ordering (big endian vs. little endian) is thus not relevant.

Key Derivation Sample
This data was generated using the Microsoft RSA Base Provider. Your session key length and
salt length may be different, but the basic process should be the same.

Let's assume that an application has a password ("1134-kelp") that it wants to derive a session
key from. It would first hash the password with the CryptHashData function, in this case
specifying the MD5 hash algorithm. The following hash value is generated and held internal to the
CSP.0x00000000 73 40 e6 e2 74 b8 ea 39 s@..t..9
0x00000008 93 95 aa 29 d6 38 b5 2a ...).8.*The application would then call the CryptDeriveKey function in order to create a session key, in

this case an RC4 stream cipher key. The CSP uses the first five bytes of the above hash value as
the key itself:0x00000000 73 40 e6 e2 74 s@..tBecause the CRYPT_CREATE_HASH flag was not specified, the key is given a salt value of zero.

If the session key is used to encrypt the following plaintext buffer:0x00000000 00 01 02 03 04 05 06 07
0x00000008 08 09 0a 0b 0c 0d 0e 0f
0x00000010 10 11 12 13 14 15 16 17
0x00000018 18 19 1a 1b 1c 1d 1e 1fThe following ciphertext data is generated:0x00000000 26 59 de 24 44 fa 36 9c &Y.$D.6.
0x00000008 11 0c bb 9d b6 a2 bd 24$
0x00000010 04 2e e3 ba 72 76 f3 27rv.'
0x00000018 8d d5 b4 2f 56 cf f8 c9 .../V...If the application does specify the CRYPT_CREATE_HASH flag during the CryptDeriveKey

function call, then the key is given the following 11 byte salt value:0x00000000 b8 ea 39 93 95 aa 29 d6 ..9...).
0x00000008 38 b5 2a 8.*In this case, the following ciphertext data is generated when the above plaintext buffer is

encrypted:0x00000000 47 f4 5d e2 cc 3b 87 1b G.]..;..
0x00000008 95 bc fc 39 fb 86 d3 05 ...9....
0x00000010 da a2 91 fb 80 f1 2a 22*"
0x00000018 c3 b9 ec 91 dd 9f af 50P

Hashing Session Keys
When an application uses the CryptHashSessionKey function to hash a session key, only the
base key material should be hashed. For a 40-bit key, this will be 5 bytes of data.

The key should be hashed in big endian byte order. For example, if the RSA Base Cryptographic
Provider were used to create and hash a session key that had a value of "4a 3a ee 77 37", then
the bytes would need to be reversed before the hashing operation is performed. In this example,
the following hash values would be produced:MD5: 0b 15 55 0a a0 03 f9 3f 75 82 f7 e7 91 32 bc 8c
SHA: 3c 37 72 93 53 ff 2a 4f ef 12 54 18 5b 3a c4 63 03 fd 07 5d

Digital Signature Mechanics
Applications sign/verify hash values by using the CryptSignHash and CryptVerifySignature
functions. The application often specifies a description string, which must added to the hash
object before it is signed/verified.

The signature process typically goes something like this:

1. The application creates a hash object using CryptCreateHash.
2. The application adds data to the hash object using CryptHashData and/or

CryptHashSessionKey.
3. The application calls the CryptSignHash function to sign the hash value, specifying a

description string.
4. The operating system layer accepts the CryptSignHash invocation, converts the

description string to Unicode (if it isn't Unicode already) and then hands off the task to the
CSP via the CPSignHash function.

5. The CSP adds the Unicode description string to the hash object, via the CPHashData
function. The terminating null character is not hashed in.

6. The CSP completes the hash and obtains the hash value to be signed using the
CPGetHashParam function.

7. The CSP takes the hash value, pads it out to the size of the public key modulus, and
encrypts it using the signature private key.
The padding around the hash value must be in the format specified by the Public-Key
Cryptography Standards (PKCS), available from RSA Data Security. The hash algorithm used
must be encoded as described in PKCS #1, section 6.3.

8. The signature block is then returned to the application, via the operating system layer.

Signature Sample
This section steps through the signature process. This sample starts with the hash value used in
the previous sample; that is, an MD5 hash of the "1134-kelp" string. This hash value is shown
below:0x00000000 73 40 e6 e2 74 b8 ea 39 s@..t..9
0x00000008 93 95 aa 29 d6 38 b5 2a ...).8.*This example assumes that the application specified "Test Signature" as the description string.

The first thing that the CSP does is to add this string to the hash object that is being signed. Of
course, the description string is received by the CSP in Unicode format, as shown below:0x00000000 54 00 65 00 73 00 74 00 T.e.s.t.
0x00000008 20 00 53 00 69 00 67 00 .S.i.g.
0x00000010 6e 00 61 00 74 00 75 00 n.a.t.u.
0x00000018 72 00 65 00 r.e.Once the description string has been hashed in, the hash value is extracted:0x00000000 a8 2b df c2 c9 f1 bb 62 .+.....b
0x00000008 38 78 d4 60 fa ce 5c 2a 8x.`..*The next step is building a PKCS signature block. This is always the same size as the public key's

modulus (64 bytes) and contains the following fields:

Bytes Description

16 Hash of data to be signed. The size of this field will vary,
depending on the hash algorithm used.
As you can see from comparing the hex dump of the hash
value above and the hex dump of the following encryption
block, the bytes in the hash value are reversed before they
are placed in the encryption block. This is because
Windows NT formats data in little endian format, and the
encryption block must be built in big endian format.

18 ASN.1 encoded hash algorithm specifier. The size of this
field will vary, depending on the hash algorithm used. Note
that this data is also reversed.
A description of ASN.1 is beyond the scope of this
document, but a table of common ASN.1 strings is
provided in the next section. For more information on ASN.
1, see the PKCS documentation.

1 Zero value.
27 Padding data (0xff's). The size of this field is adjusted as

necessary so that the signature block's overall length is
correct.

1 The PKCS block type (0x01).
1 Zero value.

You may notice that the order of this table is reversed from the diagram found in the PKCS
documentation. This is because we are building the signature block in big endian on a little
endian computer.

Once the signature block has been built, it looks something like this:0x00000000 2a 5c ce fa 60 d4 78 38 *\..`.x8
0x00000008 62 bb f1 c9 c2 df 2b a8 b.....+.
0x00000010 10 04 00 05 05 02 0d f7
0x00000018 86 48 86 2a 08 06 0c 30 .H.*...0
0x00000020 20 30 00 ff ff ff ff ff 0......
0x00000028 ff ff ff ff ff ff ff ff
0x00000030 ff ff ff ff ff ff ff ff
0x00000038 ff ff ff ff ff ff 01 00The next step is to encrypt the block with the appropriate private key. In this example, the private

key used is the one corresponding to the public key used in the previous section Public Key Blob
Format. This results in a completed digital signature:0x00000000 64 f6 46 3a 97 2e 83 38 d.F:...8
0x00000008 09 57 43 cb ca 41 59 0d .WC..AY.
0x00000010 03 35 d6 e4 36 6f 2c fc .5..6o,.
0x00000018 63 43 95 c4 fd e2 c4 ed cC......
0x00000020 06 da 9a 21 98 fc 0a 6e ...!...n
0x00000028 3f 1c ad 3a db 7c 83 2f ?..:.|./
0x00000030 14 d0 58 80 02 df dc 96 ..X.....
0x00000038 70 09 00 e3 5b bd 2b 45 p...[.+E

PKCS Hash Algorithm Encodings
All RSA digital signature blocks contain an ASN.1 encoded hash algorithm identification string.
This is mentioned in the previous section. The following table lists the encodings for the
algorithms supported by the Microsoft RSA Base Provider, as well as by most other RSA CSPs.

Algorithm Encoding

MD2 0x00000000 10 04 00 05 02 02 0d f7
0x00000008 86 48 86 2a 08 06 0c 30 .H.*...0

0x00000010 20 30 0

MD4 0x00000000 10 04 00 05 04 02 0d f7
0x00000008 86 48 86 2a 08 06 0c 30 .H.*...0

0x00000010 20 30 0

MD5 0x00000000 10 04 00 05 05 02 0d f7
0x00000008 86 48 86 2a 08 06 0c 30 .H.*...0

0x00000010 20 30 0

SHA 0x00000000 14 04 00 05 12 02 03 0e

0x00000008 2b 05 06 09 30 21 30+...0!0

ServicesMicrosoft® Windows NT® supports an application type known as a service. A Win32-based service
conforms to the interface rules of the Service Control Manager (SCM). It can be started
automatically at system boot, by a user through the Services control panel applet, or by a Win32-
based application that uses the service functions included in the Microsoft® Win32® application
programming interface (API). Services can execute even when no user is logged on to the
system.

Windows NT also supports a driver service, which conforms to the device driver protocols for
Windows NT. It is similar to the Win32-based service, but it does not interact with the SCM. For
simplicity, the term service refers to a Win32-based service in this overview.

Note Windows 95 supports a subset of the functionality provided by the Windows NT SCM.
For more information, see Windows 95 Service Control Manager.

About Services
The Service Control Manager (SCM) maintains a database of installed services and driver
services, and provides a unified and secure means of controlling them. The database includes
information on how each service or driver service should be started. It also enables system
administrators to customize security requirements for each service and thereby control access to
the service.

Three types of programs use the functions provided by the SCM:

Type Description

Service
Programs

A program that provides executable code for one or
more services. Service programs use functions that
connect to the SCM and send status information to the
SCM.

Service
Configuration
Program

A program that queries or modifies the services
database. Service configuration programs use
functions that open the database, install or delete
services in the database, and query or modify the
configuration and security parameters for installed
services. Service configuration programs manage both
services and driver services.

Service
Control
Program

A program that starts and controls services and driver
services. Service control programs use functions that
send requests to the SCM, which carries out the
request.

This overview discusses the following topics:

· Service Control Manager
· Service Programs
· Service Configuration Programs
· Service Control Programs
· Service Security
· Interactive Services
· Debugging a Service

Service Control Manager
The service control manager (SCM) is started by Windows NT at system boot. It is a remote
procedure call (RPC) server, so that service configuration and service control programs can
manipulate services on remote machines.

The Win32 API includes a set of functions that provide an interface for the following tasks
performed by the SCM:

· Maintaining the database of installed services.
· Starting services and driver services either upon system startup or upon demand.
· Enumerating installed services and driver services.
· Maintaining status information for running services and driver services.
· Transmitting control requests to running services.
· Locking and unlocking the service database.
The following sections describe the SCM in more detail.
· Database of Installed Services
· Automatically Starting Services
· Starting Services on Demand
· Service Record List
· SCM Handles

Database of Installed Services
The SCM maintains a database of installed services in the registry. The database is used by the
SCM and programs that add, modify, or configure services. The following is the registry key for
this database.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

This key contains a subkey for each installed service and driver service. The name of the subkey
is the name of the service, as specified by the CreateService function when the service was
installed by a service configuration program.

An initial copy of the database is created during setup of Windows NT, which contains entries for
the device drivers required during system boot. The database includes the following information
about each installed service and driver service:

· The service type. This indicates whether the service executes in its own process or
shares a process with other services. For driver services, this indicates whether the service is
a kernel driver or a file system driver.

· The start type. This indicates whether the service or driver service is started automatically
at system startup (auto-start service) or whether the SCM starts it when requested by a
service control program (demand-start service). The start type can also indicate that the
service or driver service is disabled, in which case it cannot be started.

· The error control level. This specifies the severity of the error if the service or driver
service fails to start during system startup and determines the action that the startup program
will take.

· The fully qualified path of the executable file. The filename extension is .EXE for services
and .SYS for driver services.

· Optional dependency information used to determine the proper order for starting services
or driver services. For services, this information can include a list of services that the SCM
must start before it can start the specified service, the name of a load ordering group that the
service is part of, and a tag identifier that indicates the start order of the service in its load
ordering group. For driver services, this information includes a list of drivers that must be
started before the specified driver.

· For services, an optional account name and password. The service program runs in the
context of this account. If no account is specified, the service executes in the context of the
LocalSystem account.

· For driver services, an optional driver object name (for example, \FileSystem\Rdr or \
Driver\Xns), used by the I/O system to load the device driver. If no name is specified, the I/O
system creates a default name based on the driver service name.

Note This database is also known as the ServicesActive database or the SCM database. You
must use the functions provided by the SCM, instead of modifying the database directly.

Automatically Starting Services
During system boot, the SCM starts all auto-start services and the services on which they depend.
For example, if an auto-start service depends on a demand-start service, the demand-start service
is also started automatically. When the boot is complete, the system executes the boot verification
program specified by BootVerificationProgram value of the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

By default, this value is not set. The system simply reports that the boot was successful after the
first user has logged on. You can supply a boot verification program that checks the system for
problems and reports the boot status to the SCM using the NotifyBootConfigStatus function.

After a successful boot, the system saves a clone of the database in the last-known-good (LKG)
configuration. The system can restore this copy of the database if changes made to the active
database cause the system reboot to fail. The following is the registry key for this database,

HKEY_LOCAL_MACHINE\SYSTEM\ControlSetXXX\Services

where XXX is the value saved in the following registry key value: HKEY_LOCAL_MACHINE\
System\Select\LastKnownGood.

If an auto-start service with a SERVICE_ERROR_CRITICAL error control level fails to start, the
SCM reboots the machine using the LKG configuration. If the LKG configuration is already being
used, the boot fails.

Starting Services on Demand
The user can start a service with the Services control panel applet. A service control program can
start a service with the StartService function. When the service is started, the SCM performs the
following steps:

· Retrieve the account information stored in the database.
· Log on the service account.
· Create the service in the suspended state.
· Assign the logon token to the process.
· Allow the process to execute.

Service Record List
As each service entry is read from the database of installed services, the SCM creates a service
record for the service. A service record includes:

· Service name
· Start type (auto-start or demand-start)
· Service status (see the SERVICE_STATUS structure)

· Type
· Current state
· Acceptable control codes
· Exit code
· Wait hint

· Pointer to dependency list
The user name and password of an account are specified at the time the service is installed. The
SCM stores the user name in the registry and the password in a secure portion of the Local
Security Authority (LSA). The system administrator can create accounts with passwords that
never expire. Alternatively, the system administrator can create accounts with passwords that
expire and manage the accounts by changing the passwords periodically.

The SCM updates the service status when a service sends it status notifications using the
SetServiceStatus function. The SCM maintains the status of a driver service by querying the I/O
system, instead of receiving status notifications, as it does from a service.

A service can register additional type information by calling the SetServiceBits function. The
NetServerGetInfo and NetServerEnum functions obtain the supported service types.

SCM Handles
The SCM supports handle types to allow access to the following objects.

· The database of installed services.
· A service.
· The database lock.

An SCManager object represents the database of installed services. It is a container object that
holds service objects. The OpenSCManager function returns a handle to an SCManager object
on a specified computer. This handle is used when installing, deleting, opening, and enumerating
services and when locking the services database.

A service object represents an installed service. The CreateService and OpenService functions
return handles to installed services.

The OpenSCManager, CreateService, and OpenService functions can request different types of
access to SCManager and service objects. The requested access is granted or denied depending
on the access token of the calling process and the security descriptor associated with the
SCManager or service object.

The CloseServiceHandle function closes handles to SCManager and service objects. When you
no longer need these handles, be sure to close them.

A lock object is created during SCM initialization to serialize access to the database of installed
services. The SCM acquires the lock before starting a service or driver service. Service
configuration programs use the LockServiceDatabase function to acquire the lock before
reconfiguring a service and use the UnlockServiceDatabase function to release the lock.

Service Programs
A service program contains executable code for one or more services. A service created with the
type SERVICE_WIN32_OWN_PROCESS only contains the code for one service. The service can
be configured to execute in the context of a user account from either the built-in (local), primary, or
trusted domain. A service created with the type SERVICE_WIN32_SHARE_PROCESS contains
code for more than one service. The services must all execute in the context of the LocalSystem
account. For more information, see CreateService.

The following sections describe the interface requirements of the SCM that a service program
must include. These sections do not apply to driver services.

· The main Function
· The ServiceMain Function
· The Control Handler Function

The main Function
Service programs are generally written as console applications. The entry point of a console
application is the main function. The main function receives arguments from the ImagePath value
from the registry key for the service.

When the SCM starts a service program, it waits for it to call the StartServiceCtrlDispatcher
function. Use the following guidelines.

· A service of type SERVICE_WIN32_OWN_PROCESS should call
StartServiceCtrlDispatcher immediately, from its main thread. You can perform any
initialization after the service starts, as described in The ServiceMain Function.

· If the service type is SERVICE_WIN32_SHARE_PROCESS and there is common
initialization for all services in the program, you can perform the initialization in the main
thread before calling StartServiceCtrlDispatcher, as long as it takes less than 30 seconds.
Otherwise, you must create another thread to do the common initialization, while the main
thread calls StartServiceCtrlDispatcher. You should still perform any service-specific
initialization as described in The ServiceMain Function.

The StartServiceCtrlDispatcher function takes a SERVICE_TABLE_ENTRY structure for each
service contained in the process. Each structure specifies the service name and the entry point for
the service.

If StartServiceCtrlDispatcher succeeds, the calling thread does not return until all running
services in the process have terminated. The SCM sends control requests to this thread through a
named pipe. The thread acts as a control dispatcher, performing the following tasks:

· Create a new thread to call the appropriate entry point when a new service is started.
· Call the appropriate Handler function to handle service control requests.

For more information, see Writing a Service Program's main Function.

The ServiceMain Function
The ServiceMain function is the entry point for a service.

When a service control program requests that a new service run, the SCM starts the service and
sends a start request to the control dispatcher. The control dispatcher creates a new thread to
execute the ServiceMain function for the service.

The ServiceMain function should perform the following tasks:

1. Call the RegisterServiceCtrlHandler function immediately to register a Handler function
to handle control requests for the service. The return value of RegisterServiceCtrlHandler is
a service status handle that will be used in calls to notify the SCM of the service status.

2. Perform initialization. If the execution time of the initialization code is expected to be very
short (less than one second), initialization can be performed directly in ServiceMain.
If the initialization time is expected to be longer than one second, call the SetServiceStatus
function, specifying the SERVICE_START_PENDING service state in the SERVICE_STATUS
structure. As initialization continues, the service should make additional calls to
SetServiceStatus to report progress. Sending multiple SetServiceStatus calls is useful for
debugging services.

3. When initialization is complete, call SetServiceStatus, specifying the
SERVICE_RUNNING state in the SERVICE_STATUS structure.

4. Perform the service tasks, or, if there are no pending tasks, return. Any change in the
state of the service warrants a call to SetServiceStatus to report new status information.

5. If an error occurs while the service is initializing or running, the service should call
SetServiceStatus, specifying the SERVICE_STOP_PENDING state in the
SERVICE_STATUS structure, if cleanup will be lengthy. Once cleanup is complete, call
SetServiceStatus from the last thread to terminate, specifying SERVICE_STOPPED in the
SERVICE_STATUS structure. Be sure to set the dwServiceSpecificExitCode and
dwWin32ExitCode members of the SERVICE_STATUS structure to identify the error.

For more information, see Writing a ServiceMain Function.

The Control Handler Function
Each service has a control handler, the Handler function, that is invoked by the control dispatcher
when the service process receives a control request from a service control program. Therefore,
this function executes in the context of the control dispatcher.

Whenever the Handler function is invoked, the service must call the SetServiceStatus function to
report its status to the SCM. This must be done regardless of whether the status changed.

The service control program send control requests using the ControlService function. All services
must accept and process the SERVICE_CONTROL_INTERROGATE control code. You can
enable or disable acceptance of the other standard control codes by calling SetServiceStatus.
Services can also handle additional user-defined control codes.

The control handler must return within 30 seconds, or the SCM will return an error. If a service
needs to do lengthy processing when the service is executing the control handler, it should create
a secondary thread to perform the lengthy processing, then return. This prevents the service from
tying up the control dispatcher. For example, when handling the stop request for a service that will
take a long time, create another thread to handle the stop process. The control handler should
simply call SetServiceStatus with the SERVICE_STOP_PENDING message and return.

When the user shuts down the system, all control handlers receive the
SERVICE_CONTROL_SHUTDOWN control code. They are notified in the order that they appear
in the database of installed services. By default, a service has approximately 20 seconds to
perform cleanup tasks before the system shuts down. However, if the system is left in the
shutdown state (not restarted or powered down) the service continues to run. You can change the
time the system will wait for service shutdown by modifying the WaitToKillServiceTimeout value
in the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control

For more information, see Writing a Control Handler Function.

Service Configuration Programs
Programmers and system administrators use service configuration programs to modify or query
the database of installed services. The database can also be accessed by using the registry
functions. However, you should only use the SCM configuration functions, which ensure that the
service is properly installed and configured.

The SCM configuration functions require either a handle to an SCManager object or a handle to a
service object. To obtain these handles, the service configuration program must:

1. Use the OpenSCManager function to obtain a handle to the SCM database on a
specified machine. For more information, see Opening an SCManager Database.

2. Use the OpenService or CreateService function to obtain a handle to the service object.

Service Installation, Removal, and Enumeration
A configuration program uses the CreateService function to install a new service in the SCM
database. This function specifies the name of the service and provides configuration information
that is stored in the database. For a description of the information stored in the database for each
service, see Database of Installed Services. For sample code, see Installing a Service.

A configuration program uses the DeleteService function to remove an installed service from the
database. For more information, see Deleting a Service.

To obtain the service name, call the GetServiceKeyName function. The service display name,
used in the Services control panel applet, can be obtained by calling the
GetServiceDisplayName function.

A service configuration program can use the EnumServicesStatus function to enumerate all
services and their statuses. It can also use the EnumDependentServices function to enumerate
which services are dependent on a specified service object.

Service Configuration
To modify the configuration information for a service object, a configuration program uses the
ChangeServiceConfig function. For more information, see Changing a Service Configuration.

To retrieve the configuration information for a service object, the configuration program uses the
QueryServiceConfig function. For more information, see Querying a Service's Configuration.

To modify the security descriptor for either an SCManager object or a service object, a
configuration program uses the SetServiceObjectSecurity function. To retrieve a copy of the
security descriptor, the configuration program uses the QueryServiceObjectSecurity function.

Before using either ChangeServiceConfig or SetServiceObjectSecurity to reconfigure a service
object, you should use the LockServiceDatabase function. This function tries to acquire a lock on
the database and, if successful, prevents the SCM from starting a service while the database is
being reconfigured. Failure to acquire a lock does not prevent a configuration program from
successfully reconfiguring a service object. To release the lock on the database when the
reconfiguration is complete, use the UnlockServiceDatabase function. To determine whether the
database is locked, use the QueryServiceLockStatus function.

Configuring a Service Using SC
The Win32 SDK contains a command-line utility, SC.EXE, that can be used to query or modify the
database of installed services. Its commands correspond to the functions provided by the SCM.
The syntax is:

sc ServerName [command] ServiceName

ServerName

Optional server name. Use the form \\ServerName.
Command

query
config
qc
delete
create
GetDisplayName
GetKeyName
EnumDepend

ServiceName

The name of the service, as specified when it was installed.

Service Control Programs
A service control program performs the following actions:

· Starts a service or driver service, if the start type is SERVICE_DEMAND_START.
· Sends control requests to a running service.
· Queries the current status of a running service.

These actions require an open handle to the service object. To obtain the handle, the service
control program must:

1. Use the OpenSCManager function to obtain a handle to the SCM database on a
specified machine.

2. Use the OpenService or CreateService function to obtain a handle to the service object.

Service Startup
To start a service or driver service, the service control program uses the StartService function.
The StartService function fails if the database is locked. If this occurs, the service control
program should wait a few seconds and call StartService again. It can check the current lock
status of the database by calling the QueryServiceLockStatus function.

If the service control program is starting a service, it can use the StartService function to specify
an array of arguments to be passed to the service's ServiceMain function. The StartService
function returns after a new thread has been created to execute the ServiceMain function. The
service control program can retrieve the status of the newly started service in a
SERVICE_STATUS structure by calling the QueryServiceStatus function. During initialization,
the dwCurrentState member should be SERVICE_START_PENDING. The dwWaitHint member
is a time interval, in milliseconds, that indicates how long the service control program should wait
before calling QueryServiceStatus again. When the initialization is complete, the service
changes dwCurrentState to SERVICE_RUNNING.

If the program is starting a driver service, StartService returns after the device driver has
completed its initialization.

For more information, see Starting a Service.

Service Control Requests
To send control requests to a running service, a service control program uses the ControlService
function. This function specifies a control value that is passed to the Handler function of the
specified service. This control value can be a user-defined code, or it can be one of the standard
codes that enable the calling program to perform the following actions:

· Stop a service (SERVICE_CONTROL_STOP).
· Pause a service (SERVICE_CONTROL_PAUSE).
· Resume executing a paused service (SERVICE_CONTROL_CONTINUE).
· Retrieve updated status information from a service

(SERVICE_CONTROL_INTERROGATE).
For more information, see Sending Control Requests to a Service.

Each service specifies the control values that it will accept and process. To determine which of the
standard control values are accepted by a service, use the QueryServiceStatus function or
specify the SERVICE_CONTROL_INTERROGATE control value in a call to the ControlService
function. The dwControlsAccepted member of the SERVICE_STATUS structure returned by
these functions indicates whether the service can be stopped, paused, or resumed. All services
accept the SERVICE_CONTROL_INTERROGATE control value.

Note The QueryServiceStatus function reports the most recent status for a specified service,
but does not get an updated status from the service itself. Using the
SERVICE_CONTROL_INTERROGATE control value in a call to ControlService ensures that
the status information returned is current.

Controlling a Service Using SC
The Win32 SDK contains a command-line utility, SC.EXE, that can be used to control a service.
Its commands correspond to the functions provided by the SCM. The syntax is:

sc ServerName [command] ServiceName

ServerName

Optional server name. Use the form \\ServerName.
Command

start
pause
interrogate
continue
stop
control

ServiceName

The name of the service, as specified when it was installed.

Service Security
When a process uses the OpenSCManager function to open a handle to a database of installed
services, it can request different types of access. The system performs a security check before
granting the requested access. All processes are permitted the following access to the database:

· SC_MANAGER_CONNECT
· SC_MANAGER_ENUMERATE_SERVICE
· SC_MANAGER_QUERY_LOCK_STATUS

This enables any process to open a handle to the SCManager object that it can use in calls to the
OpenService, EnumServicesStatus, and QueryServiceLockStatus functions. Only processes
with Administrator privileges are able to open handles to the SCManager object that can be used
by the CreateService and LockServiceDatabase functions.

When a process uses the OpenService function, the system performs an access check. The type
of access permitted to different users depends on the SECURITY_DESCRIPTOR structure
associated with the service object. The SCM creates a service object's security descriptor when
the service is installed by the CreateService function. You can use the
QueryServiceObjectSecurity and SetServiceObjectSecurity functions to query and set the
security descriptor of a service object. The default security descriptor of a service object permits
the following access:

· All users have SERVICE_QUERY_CONFIG, SERVICE_QUERY_STATUS,
SERVICE_ENUMERATE_DEPENDENTS, SERVICE_INTERROGATE, and
SERVICE_USER_DEFINED_CONTROL access.

· Members of the Power Users group and the LocalSystem account have
SERVICE_START, SERVICE_PAUSE_CONTINUE, and SERVICE_STOP access, plus the
access rights granted to all users.

· Members of the Administrators and System Operators groups have
SERVICE_ALL_ACCESS access.

Service User Accounts
Each service executes in the security context of a user account. The user name and password of
an account are specified by the CreateService function at the time the service is installed. The
user name and password can be changed by using the ChangeServiceConfig function. You can
use the QueryServiceConfig function to get the user name (but not the password) associated
with a service object.

When starting a service, the SCM logs on to the account associated with the service. If the log on
is successful, the system produces an access token and attaches it to the new service process.
This token identifies the service process in all subsequent interactions with securable objects
(objects that have a security descriptor associated with them). For example, if the service tries to
open a handle to a pipe, the system compares the service's access token to the pipe's security
descriptor before granting access.

The SCM does not maintain the passwords of service user accounts. If a password is expired, the
logon fails and the service fails to start. The system administrator who assigns accounts to
services can create accounts with passwords that never expire. The administrator can also
manage accounts with passwords that expire by using a service configuration program to
periodically change the passwords.

If a service needs to recognize another service before sharing its information, the second service
can either use the same account as the first service, or it can run in an account belonging to an
alias that is recognized by the first service. Services that need to run in a distributed manner
across the network should run in domain-wide accounts.

The LocalSystem Account
The LocalSystem account is a predefined local account used by system processes. The name of
the account is .\System. This account does not have a password. If you specify the LocalSystem
account in a call to the CreateService function, any password information you supply is ignored.

A service that runs in the context of the LocalSystem account inherits the security context of the
SCM. It is not associated with any logged-on user account and does not have credentials (domain
name, user name, and password) to be used for verification. This has several implications:

· The service cannot open the registry key HKEY_CURRENT_USER.
· The service can open the registry key HKEY_LOCAL_MACHINE\SECURITY.
· The service has limited access to network resources, such as shares and pipes, because

it has no credentials and must connect using a null session. The following registry key
contains the NullSessionPipes and NullSessionShares values, which are used to specify
the pipes and shares to which null sessions may connect:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

LanmanServer\Parameters
Alternatively, you could add the REG_DWORD value RestrictNullSessAccess to the key
and set it to 0 to allow all null sessions to access all pipes and shares created on that
machine.

· The service cannot share objects with other applications, unless they are opened using a
DACL which allows a user or group of users access or NULL DACL, which allows everyone
access. Specifying a NULL DACL is not the same as specifying NULL, which means that
access is only granted to applications with the same security context. For more information,
see Allowing Access.

· If the service opens a command window and runs a batch file, the user could hit CTRL+C to
terminate the batch file and gain access to a command window with LocalSystem
permissions.

Interactive Services
An interactive service is a service that can interact with the application desktop. Other desktops
do not receive user input. For more information, see Window Stations and Desktops.

An interactive service must run in the context of the LocalSystem account and be configured to
run interactively. Services are configured to run interactively when the dwServiceType parameter
in a CreateService call is set to include the SERVICE_INTERACTIVE_PROCESS flag. However,
the following registry key contains a value, NoInteractiveServices, that controls the effect of the
SERVICE_INTERACTIVE_PROCESS flag:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Windows

The NoInteractiveServices value defaults to 0, which means that services marked with the
SERVICE_INTERACTIVE_PROCESS flag will be allowed to run interactively. When the
NoInteractiveServices value is set to a nonzero value, no service started thereafter, regardless
of whether it has been configured with SERVICE_INTERACTIVE_PROCESS, will be allowed to
run interactively.

Note It is possible to display a message box from a service, even if it is not running in the
LocalSystem account or not configured to run interactively. Simply call the MessageBox
function using the MB_SERVICE_NOTIFICATION flag. Do not call MessageBox during
service initialization or from the Handler routine, unless you call it from a separate thread, so
that you return to the SCM in a timely manner.

It is also possible to interact with the desktop from a non-interactive service by modifying the
DACLs on the interface window station and desktop or by impersonating the logged-on user
and opening the interactive window station and desktop directly. For more information, see
Interacting with the User by a Win32 Service.

Debugging a Service
You can use the following methods to debug your service.

· Many debuggers allow you to debug a running service. First, obtain the process identifier
(PID) of the service process. This information is available from the PView application. After
you have obtained the PID, attach to the running process. For syntax information, see the
documentation included with your debugger.

· Call the DebugBreak function to invoke the debugger for just-in-time debugging.
· Windows NT also allows you to specify a debugger to use when starting a program.

Create a key called Image File Execution Options in the following registry location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

Create a subkey with the same name as your service (for example, MYSERV.EXE). To this
subkey, add a value of type REG_SZ, named Debugger. Use the full path to the debugger as
the string value. In the Services control panel applet, select your service, click Startup and
check Allow Service to Interact with Desktop.

Note To debug the initialization code of an auto-start service, you will have to temporarily install
and run the service as a demand-start service.

Using Services
· Writing a service program's main function
· Writing a ServiceMain function
· Writing a control handler function
· Opening an SCManager database
· Installing a service
· Deleting a service
· Changing a service configuration
· Querying a service's configuration
· Starting a service
· Sending control requests to a service

Writing a Service Program's main Function
The main function of a service program calls the StartServiceCtrlDispatcher function to connect
to the SCM and start the control dispatcher thread. The dispatcher thread loops, waiting for
incoming control requests for the services specified in the dispatch table. This thread does not
return until there is an error or all of the services in the process have terminated. When all
services in a process have terminated, the SCM sends a control request to the dispatcher thread
telling it to shut down. The thread can then return from the StartServiceCtrlDispatcher call and
the process can terminate.

The following example is a service process that supports only one service. It takes two
parameters: a string that can contain one formatted output character and a numeric value to be
used as the formatted character. The SvcDebugOut function prints informational messages and
errors to the debugger.SERVICE_STATUSMyServiceStatus;
SERVICE_STATUS_HANDLE MyServiceStatusHandle;
VOID MyServiceStart (DWORD argc, LPTSTR *argv);
VOID MyServiceCtrlHandler (DWORD opcode);
DWORD MyServiceInitialization (DWORD argc, LPTSTR *argv,

DWORD *specificError);
VOID _CRTAPI1 main()
{

SERVICE_TABLE_ENTRY DispatchTable[] =
{
{ TEXT("MyService"), MyServiceStart },
{ NULL, NULL }
};
if (!StartServiceCtrlDispatcher(DispatchTable))
{
SvcDebugOut(" [MY_SERVICE] StartServiceCtrlDispatcher error =
%d\n", GetLastError());
}

}
VOID SvcDebugOut(LPSTR String, DWORD Status)
{

CHAR Buffer[1024];
if (strlen(String) < 1000)
{
sprintf(Buffer, String, Status);
OutputDebugStringA(Buffer);
}

}If your service program supports multiple services, the implementation of the main function will
differ slightly. The names of the additional services should be added to the dispatch table so they
can be monitored by the dispatcher thread.

Writing a ServiceMain Function
The MyServiceStart function in the following example is the entry point for the service.
MyServiceStart has access to the command-line arguments, in the way that the main function of a
console application does. The first parameter contains the number of arguments being passed to
the service. There will always be at least one argument. The second parameter is a pointer to an
array of string pointers. The first item in the array always points to the service name.

The MyServiceStart function first fills in the SERVICE_STATUS structure including the control
codes that it accepts. Although this service accepts SERVICE_CONTROL_PAUSE and
SERVICE_CONTROL_CONTINUE, it does nothing significant when told to pause. The flags
SERVICE_ACCEPT_PAUSE_CONTINUE was included for illustration purposes only; if pausing
does not add value to your service, do not support it.

The MyServiceStart function then calls the RegisterServiceCtrlHandler function to register
MyService as the service's Handler function and begin initialization. The following sample
initialization function, MyServiceInitialization, is included for illustration purposes; it does not
perform any initialization tasks such as creating additional threads. If your service's initialization
performs tasks that are expected to take longer than one second, your code must call the
SetServiceStatus function periodically to send out wait hints and check points indicating that
progress is being made.

When initialization has completed successfully, the example calls SetServiceStatus with a status
of SERVICE_RUNNING and the service continues with its work. If an error has occurred in
initialization, MyServiceStart reports SERVICE_STOPPED with the SetServiceStatus function
and returns.

Because this sample service does not complete any real tasks, MyServiceStart simply returns
control to the caller. However, your service should use this thread to complete whatever tasks it
was designed to do. If a service does not need a thread to do its work (such as a service that only
processes RPC requests), its ServiceMain function should return control to the caller. It is
important for the function to return, rather than call the ExitThread function, because returning
allows for cleanup of the memory allocated for the arguments.

To output debugging information, MyServiceStart calls SvcDebugOut. The source code for
SvcDebugOut is given in Writing a Service Program's main Function.void MyServiceStart (DWORD argc, LPTSTR *argv)
{

DWORD status;
DWORD specificError;
MyServiceStatus.dwServiceType = SERVICE_WIN32;
MyServiceStatus.dwCurrentState = SERVICE_START_PENDING;
MyServiceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP |
SERVICE_ACCEPT_PAUSE_CONTINUE;
MyServiceStatus.dwWin32ExitCode = 0;
MyServiceStatus.dwServiceSpecificExitCode = 0;
MyServiceStatus.dwCheckPoint = 0;
MyServiceStatus.dwWaitHint = 0;
MyServiceStatusHandle = RegisterServiceCtrlHandler(
TEXT("MyService"),
MyServiceCtrlHandler);
if (MyServiceStatusHandle == (SERVICE_STATUS_HANDLE)0)
{
SvcDebugOut(" [MY_SERVICE] RegisterServiceCtrlHandler
failed %d\n", GetLastError());
return;
}
// Initialization code goes here.
status = MyServiceInitialization(argc,argv, &specificError);
// Handle error condition
if (status != NO_ERROR)
{
MyServiceStatus.dwCurrentState = SERVICE_STOPPED;
MyServiceStatus.dwCheckPoint = 0;
MyServiceStatus.dwWaitHint = 0;
MyServiceStatus.dwWin32ExitCode = status;
MyServiceStatus.dwServiceSpecificExitCode = specificError;
SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus);
return;
}
// Initialization complete - report running status.
MyServiceStatus.dwCurrentState = SERVICE_RUNNING;
MyServiceStatus.dwCheckPoint = 0;
MyServiceStatus.dwWaitHint = 0;
if (!SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus))
{
status = GetLastError();
SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
%ld\n",status);
}
// This is where the service does its work.
SvcDebugOut(" [MY_SERVICE] Returning the Main Thread \n",0);
return;

}
// Stub initialization function.
DWORD MyServiceInitialization(DWORD argc, LPTSTR *argv,

DWORD *specificError)
{

argv;
argc;
specificError;
return(0);

}

Writing a Control Handler Function
The MyServiceCtrlHandler function in the following example is the Handler function. When this
function is called by the dispatcher thread, it handles the control code passed in the Opcode
parameter and then calls the SetServiceStatus function to update the service's status. Every time
a Handler function receives a control code, it is appropriate to return status with a call to
SetServiceStatus regardless of whether the service acts on the control.

When the pause control is received, MyServiceCtrlHandler simply sets the dwCurrentState field in
the SERVICE_STATUS structure to SERVICE_PAUSED. Likewise, when the continue control is
received, the state is set to SERVICE_RUNNING. Therefore, MyServiceCtrlHandler is not a good
example of how to handle the pause and continue controls. Because MyServiceCtrlHandler is a
template for a Handler function, code for the pause and continue controls is included for
completeness. A service that supports either the pause or continue control should handle these
controls in a way that makes sense. Many services support neither the pause or continue control.
If the service indicates that it does not support pause or continue with the dwControlsAccepted
parameter, then the SCM will not send pause or continue controls to the service's Handler
function.

To output debugging information, MyServiceCtrlHandler calls SvcDebugOut. The source code
SvcDebugOut is listed in Writing a Service Program's main Function.VOID MyServiceCtrlHandler (DWORD Opcode)
{

DWORD status;
switch(Opcode)
{
case SERVICE_CONTROL_PAUSE:
// Do whatever it takes to pause here.
MyServiceStatus.dwCurrentState = SERVICE_PAUSED;
break;
case SERVICE_CONTROL_CONTINUE:
// Do whatever it takes to continue here.
MyServiceStatus.dwCurrentState = SERVICE_RUNNING;
break;
case SERVICE_CONTROL_STOP:
// Do whatever it takes to stop here.
MyServiceStatus.dwWin32ExitCode = 0;
MyServiceStatus.dwCurrentState = SERVICE_STOPPED_PENDING;
MyServiceStatus.dwCheckPoint = 0;
MyServiceStatus.dwWaitHint = 0;
if (!SetServiceStatus (MyServiceStatusHandle,
&MyServiceStatus))
{
status = GetLastError();
SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
%ld\n",status);
}
SvcDebugOut(" [MY_SERVICE] Leaving MyService \n",0);
return;
case SERVICE_CONTROL_INTERROGATE:
// Fall through to send current status.
break;
default:
SvcDebugOut(" [MY_SERVICE] Unrecognized opcode %ld\n",
Opcode);

}
// Send current status.
if (!SetServiceStatus (MyServiceStatusHandle, &MyServiceStatus))
{
status = GetLastError();
SvcDebugOut(" [MY_SERVICE] SetServiceStatus error
%ld\n",status);
}
return;

}

Opening an SCManager Database
Many operations require an open handle to an SCManager object. The following example
demonstrates how to obtain the handle.

Different operations on the SCM database require different levels of access, and you should only
request the minimum access required. If SC_MANAGER_ALL_ACCESS is requested, the
OpenSCManager function fails if the calling process does not have administrator privileges. The
following example shows how to request full access to the ServicesActive database on the local
machine.// Open a handle to the SC Manager database.
schSCManager = OpenSCManager(

NULL,// local machine
NULL,// ServicesActive database
SC_MANAGER_ALL_ACCESS); // full access rights

if (schSCManager == NULL)
MyErrorExit("OpenSCManager");

Installing a Service
A service configuration program uses the CreateService function to install a service in a SCM
database. The application-defined schSCManager handle must have
SC_MANAGER_CREATE_SERVICE access to the SCManager object. The following example
shows how to install a service.VOID CreateSampleService()
{

LPCTSTR lpszBinaryPathName =
TEXT("%SystemRoot%\\system\\testserv.exe");
schService = CreateService(
schSCManager, // SCManager database
TEXT("Sample_Srv"), // name of service
lpszDisplayName, // service name to display
SERVICE_ALL_ACCESS, // desired access
SERVICE_WIN32_OWN_PROCESS, // service type
SERVICE_DEMAND_START, // start type
SERVICE_ERROR_NORMAL, // error control type
lpszBinaryPathName, // service's binary
NULL, // no load ordering group
NULL, // no tag identifier
NULL, // no dependencies
NULL, // LocalSystem account
NULL); // no password
if (schService == NULL)
MyErrorExit("CreateService");
else
printf("CreateService SUCCESS\n");
CloseServiceHandle(schService);

}

Deleting a Service
In the following example, a service configuration program uses the OpenService function to get a
handle with DELETE access to an installed service object. The program then uses the service
object handle in the DeleteService function to remove the service from the SCM database.VOID DeleteSampleService()
{

schService = OpenService(
schSCManager, // SCManager database
TEXT("Sample_Srv"), // name of service
DELETE); // only need DELETE access
if (schService == NULL)
MyErrorExit("OpenService");
if (! DeleteService(schService))
MyErrorExit("DeleteService");
else
printf("DeleteService SUCCESS\n");
CloseServiceHandle(schService);

}

Changing a Service Configuration
In the following example, a service configuration program uses the ChangeServiceConfig
function to change the configuration parameters of an installed service. The program first tries to
lock the database, to prevent the SCM from starting a service while it is being reconfigured. If it
successfully locks the database, the program opens a handle to the service object, modifies its
configuration, unlocks the database, and then closes the service object handle. If the program
does not successfully in lock the database, it uses the QueryServiceLockStatus function to
retrieve information about the lock.VOID ReconfigureSampleService(BOOL fDisable)
{

SC_LOCK sclLock;
LPQUERY_SERVICE_LOCK_STATUS lpqslsBuf;
DWORD dwBytesNeeded, dwStartType;
// Need to acquire database lock before reconfiguring.
sclLock = LockServiceDatabase(schSCManager);
// If the database cannot be locked, report the details.
if (sclLock == NULL)
{
// Exit if the database is not locked by another process.
if (GetLastError() != ERROR_SERVICE_DATABASE_LOCKED)
MyErrorExit("LockServiceDatabase");
// Allocate a buffer to get details about the lock.
lpqslsBuf = (LPQUERY_SERVICE_LOCK_STATUS) LocalAlloc(
LPTR, sizeof(QUERY_SERVICE_LOCK_STATUS)+256);
if (lpqslsBuf == NULL)
MyErrorExit("LocalAlloc");
// Get and print the lock status information.
if (!QueryServiceLockStatus(
schSCManager,
lpqslsBuf,
sizeof(QUERY_SERVICE_LOCK_STATUS)+256,
&dwBytesNeeded))
MyErrorExit("QueryServiceLockStatus");
if (lpqslsBuf->fIsLocked)
printf("Locked by: %s, duration: %d seconds\n",
lpqslsBuf->lpLockOwner,
lpqslsBuf->dwLockDuration);
else
printf("No longer locked\n");
LocalFree(lpqslsBuf);
MyErrorExit("Could not lock database");
}
// The database is locked, so it is safe to make changes.
// Open a handle to the service.
schService = OpenService(
schSCManager, // SCManager database
TEXT("Sample_Srv"),// name of service
SERVICE_CHANGE_CONFIG); // need CHANGE access
if (schService == NULL)
MyErrorExit("OpenService");
dwStartType = (fDisable) ? SERVICE_DISABLED :
SERVICE_DEMAND_START;
if (! ChangeServiceConfig(
schService, // handle of service
SERVICE_NO_CHANGE, // service type: no change
dwStartType, // change service start type
SERVICE_NO_CHANGE, // error control: no change
NULL, // binary path: no change
NULL, // load order group: no change
NULL, // tag ID: no change
NULL, // dependencies: no change
NULL, // account name: no change
NULL)) // password: no change
{
MyErrorExit("ChangeServiceConfig");
}
else
printf("ChangeServiceConfig SUCCESS\n");
// Release the database lock.
UnlockServiceDatabase(sclLock);
// Close the handle to the service.
CloseServiceHandle(schService);

}

Querying a Service's Configuration
In the following example, a service configuration program uses the OpenService function to get a
handle with SERVICE_QUERY_CONFIG access to an installed service object. Then the program
uses the service object handle in the QueryServiceConfig function to retrieve the current
configuration of the service.VOID GetSampleServiceConfig()
{

LPQUERY_SERVICE_CONFIG lpqscBuf;
DWORD dwBytesNeeded;
// Open a handle to the service.
schService = OpenService(
schSCManager, // SCManager database
TEXT("Sample_Srv"),// name of service
SERVICE_QUERY_CONFIG); // need QUERY access
if (schService == NULL)
MyErrorExit("OpenService");
// Allocate a buffer for the information configuration.
lpqscBuf = (LPQUERY_SERVICE_CONFIG) LocalAlloc(
LPTR, 4096);
if (lpqscBuf == NULL)
MyErrorExit("LocalAlloc");
// Get and print the information configuration.
if (! QueryServiceConfig(
schService,
lpqscBuf,
4096,
&dwBytesNeeded))
{
MyErrorExit("QueryServiceConfig");
}
printf("\nSample_Srv configuration: \n");
printf(" Type: 0x%x\n", lpqscBuf->dwServiceType);
printf(" Start Type: 0x%x\n", lpqscBuf->dwStartType);
printf(" Err Control: 0x%x\n", lpqscBuf->dwErrorControl);
printf(" Binary path: %s\n", lpqscBuf->lpBinaryPathName);
if (lpqscBuf->lpLoadOrderGroup != NULL)
printf(" Load order group: %s\n",
lpqscBuf->lpLoadOrderGroup);
if (lpqscBuf->dwTagId != 0)
printf(" Tag ID: %d\n", lpqscBuf->dwTagId);
if (lpqscBuf->lpDependencies != NULL)
printf(" Dependencies: %s\n", lpqscBuf->lpDependencies);
if (lpqscBuf->lpServiceStartName != NULL)
printf(" Start Name: %s\n",
lpqscBuf->lpServiceStartName);
LocalFree(lpqscBuf);

}

Starting a Service
To start a service, the following example opens a handle to an installed database and then
specifies the handle in a call to the StartService function. It can be used to start either a service
or a driver service, but this example assumes that a service is being started. After starting the
service, the program uses the members of the SERVICE_STATUS structure returned by the
QueryServiceStatus function to track the progress of the service.VOID StartSampleService()
{

SERVICE_STATUS ssStatus;
DWORD dwOldCheckPoint;
schService = OpenService(
schSCManager,// SCM database
TEXT("Sample_Srv"), // service name
SERVICE_ALL_ACCESS);
if (schService == NULL)
MyErrorExit("OpenService");
if (!StartService(

schService, // handle to service
0, // number of arguments
NULL)) // no arguments
{
MyErrorExit("StartService");
}
else
printf("Service start pending\n");
// Check the status until the service is running.
if (!QueryServiceStatus(

schService, // handle to service
&ssStatus)) // address of status information
MyErrorExit("QueryServiceStatus");
while (ssStatus.dwCurrentState != SERVICE_RUNNING)
{
// Save the current checkpoint.
dwOldCheckPoint = ssStatus.dwCheckPoint;
// Wait for the specified interval.
Sleep(ssStatus.dwWaitHint);
// Check the status again.
if (!QueryServiceStatus(

schService, // handle to service
&ssStatus)) // address of status information
break;
// Break if the checkpoint has not been incremented.
if (dwOldCheckPoint >= ssStatus.dwCheckPoint)
break;
}
if (ssStatus.dwCurrentState == SERVICE_RUNNING)
printf("StartService SUCCESS\n");
else
{
printf("\nService not started: \n");
printf(" Current State: %d\n",
ssStatus.dwCurrentState);
printf(" Exit Code: %d\n", ssStatus.dwWin32ExitCode);
printf(" Service Specific Exit Code: %d\n",
ssStatus.dwServiceSpecificExitCode);
printf(" Check Point: %d\n", ssStatus.dwCheckPoint);
printf(" Wait Hint: %d\n", ssStatus.dwWaitHint);
}
CloseServiceHandle(schService);

}

Sending Control Requests to a Service
The following example uses the ControlService function to send a control value to a running
service. Different control values require different levels of access to the service object. For
example, a service object handle must have SERVICE_STOP access to send the
SERVICE_CONTROL_STOP code. When ControlService returns, a SERVICE_STATUS
structure contains the latest status information for the service.VOID ControlSampleService(DWORD fdwControl)
{

SERVICE_STATUS ssStatus;
DWORD fdwAccess;
// The required service object access depends on the control.
switch (fdwControl)
{
case SERVICE_CONTROL_STOP:
fdwAccess = SERVICE_STOP;
break;
case SERVICE_CONTROL_PAUSE:
case SERVICE_CONTROL_CONTINUE:
fdwAccess = SERVICE_PAUSE_CONTINUE;
break;
case SERVICE_CONTROL_INTERROGATE:
fdwAccess = SERVICE_INTERROGATE;
break;
default:
fdwAccess = SERVICE_INTERROGATE;
}
// Open a handle to the service.
schService = OpenService(
schSCManager, // SCManager database
TEXT("Sample_Srv"), // name of service
fdwAccess);// specify access
if (schService == NULL)
MyErrorExit("OpenService");
// Send a control value to the service.
if (! ControlService(

schService, // handle of service
fdwControl, // control value to send
&ssStatus)) // address of status info
{
MyErrorExit("ControlService");
}
// Print the service status.
printf("\nStatus of Sample_Srv: \n");
printf(" Service Type: 0x%x\n", ssStatus.dwServiceType);
printf(" Current State: 0x%x\n", ssStatus.dwCurrentState);
printf(" Controls Accepted: 0x%x\n",
ssStatus.dwControlsAccepted);
printf(" Exit Code: %d\n", ssStatus.dwWin32ExitCode);
printf(" Service Specific Exit Code: %d\n",
ssStatus.dwServiceSpecificExitCode);
printf(" Check Point: %d\n", ssStatus.dwCheckPoint);
printf(" Wait Hint: %d\n", ssStatus.dwWaitHint);
return;

}

Service Reference
The following functions and structures are used with services.

Service Functions
The following functions are used by services and by programs that control or configure services.
ChangeServiceConfig
CloseServiceHandle
ControlService
CreateService
DeleteService
EnumDependentServices
EnumServicesStatus
GetServiceDisplayName
GetServiceKeyName
Handler
LockServiceDatabase
NotifyBootConfigStatus
OpenSCManager
OpenService
QueryServiceConfig
QueryServiceLockStatus
QueryServiceObjectSecurity
QueryServiceStatus
RegisterServiceCtrlHandler
ServiceMain
SetServiceBits
SetServiceObjectSecurity
SetServiceStatus
StartService
StartServiceCtrlDispatcher

UnlockServiceDatabase

Service Structures
The following structures are used with services.
ENUM_SERVICE_STATUS
NS_SERVICE_INFO
QUERY_SERVICE_CONFIG
QUERY_SERVICE_LOCK_STATUS
SERVICE_STATUS

SERVICE_TABLE_ENTRY

String ManipulationThe overview describes the string manipulation functions and explains how to use them in your
Win32-based applications.

About String Manipulation
The string manipulation functions give applications developed for the Microsoft® Win32®
application programming interface (API) the means to copy, compare, sort, format, and convert
character strings as well as the means to determine the character type of each character in a
string. All the string manipulation functions support the single-byte, double-byte, and Unicode
character sets if these character sets are supported by the operating system on which the
application is run.

String Manipulation in Windows
Many Windows functions duplicate or enhance familiar string-manipulation functions from the
standard C library. Many of the enhancements enable Windows functions to work with Unicode or
extended character sets. For example, the Windows functions in the following table are identical
to standard C functions except that the Windows functions are enhanced for use with Unicode.

Windows functionStandard C function

lstrcat strcat
lstrcmp strcmp
lstrcmpi strcmpi
lstrcpy strcpy
lstrlen strlen

The strlen standard C function, for example, always returns the number of bytes in a string, but
the lstrlen function returns the number of characters, regardless of whether the characters are 1
or 2 bytes wide.

The following Windows functions differ from standard C functions such as tolower and toupper in
that they operate on any character in a character set. By using the CharLower function, for
example, a Windows-based application can convert an uppercase U with an umlaut (Ü) to
lowercase (ü). For more information about character sets, see Single-byte Character Sets.

Function Description

CharLower Converts a character or string to lowercase.
CharLowerBuff Converts a character string to lowercase.
CharNext Moves to the next character in a string.
CharPrev Moves to the preceding character in a string.
CharUpper Converts a character or string to uppercase.
CharUpperBuff Converts a string to uppercase.

The following Windows functions make determinations about a character based on the
semantics of the language selected by the user. These functions are Unicode enabled.

Function Description

IsCharAlpha Determines whether a character is alphabetic.
IsCharAlphaNumericDetermines whether a character is

alphanumeric.
IsCharLower Determines whether a character is lowercase.
IsCharUpper Determines whether a character is uppercase.

The wsprintf and wvsprintf functions are extensions to the standard C functions sprintf and
vsprintf. The Windows versions support format specifications unique to Unicode.

String Resources
An application that maintains character strings in resources can be translated into new languages
with minimum effort. Instead of searching for strings in the source modules, a developer can
simply translate the strings in the resource file and relink the application. In addition, using string
resources simplifies creation of Unicode and non-Unicode versions of the application from the
same source files.

The LoadString function loads a string resource from an application's executable file. The
FormatMessage function loads a string resource and interprets formatting options that may be
embedded in the string.

Windows 32-bit resources in binary form are stored in Unicode format. When loading resources,
applications can use the Unicode version of the resource functions (LoadStringW, for example)
to obtain resources as Unicode data.

Obsolete Functions
The AnsiLower function is obsolete. Win32-based applications should use the CharLower
function.

The AnsiLowerBuff function is obsolete. Win32-based applications should use the
CharLowerBuff function.

The AnsiNext function is obsolete. Win32-based applications should use the CharNext function.

The AnsiPrev function is obsolete. Win32-based applications should use the CharPrev function.

The AnsiUpper function is obsolete. Win32-based applications should use the CharUpper
function.

The AnsiUpperBuff function is obsolete. Win32-based applications should use the
CharUpperBuff function.
OemToAnsi

OemToAnsiBuff

String Manipulation Reference
This section provides detailed reference information for the string manipulation functions,
structures, and messages.

String Manipulation Functions
Following are the functions used with string manipulation.
CharLower
CharLowerBuff
CharNext
CharNextExA
CharPrev
CharPrevExA
CharToOem
CharToOemBuff
CharUpper
CharUpperBuff
CompareString
ConvertDefaultLocale
EnumCalendarInfo
EnumCalendarInfoProc
EnumCodePagesProc
EnumDateFormats
EnumDateFormatsProc
EnumLocalesProc
EnumSystemCodePages
EnumSystemLocales
EnumTimeFormats
EnumTimeFormatsProc
FoldString
FormatMessage
GetACP
GetCPInfo
GetCurrencyFormat
GetDateFormat
GetLocaleInfo
GetNumberFormat
GetOEMCP
GetStringTypeA
GetStringTypeEx
GetStringTypeW
GetSystemDefaultLangID
GetSystemDefaultLCID
GetThreadLocale
GetTimeFormat
GetUserDefaultLangID
GetUserDefaultLCID
IsCharAlpha
IsCharAlphaNumeric
IsCharLower
IsCharUpper
IsDBCSLeadByte
IsTextUnicode
IsValidCodePage
IsValidLocale
LCMapString
LoadString
lstrcat
lstrcmp
lstrcmpi
lstrcpy
lstrcpyn
lstrlen
MultiByteToWideChar
OemToChar
OemToCharBuff
SetLocaleInfo
SetThreadLocale

WideCharToMultiByte
wsprintf

wvsprintf

String Manipulation Structures
The following structures are used with string maniupulation.
CPINFO
CURRENCYFMT

NUMBERFMT

String Manipulation Constants
This section describes the constants used with the string manipulation functions.

Character Type Information Values
The character-type bits are divided into several levels. The information for one level can be
retrieved by a single call to this function. Each level is limited to 16 bits of information so that the
other mapping routines limited to 16 bits of representation per character can return character-type
information.

The character types supported by this function include the following.

Ctype 1: These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A
combination of these values is returned in the array pointed to by the lpCharType parameter when
the fdwInfoType parameter is set to CT_CTYPE1.

Name Value Meaning

C1_UPPER 0x0001 Uppercase
C1_LOWER 0x0002 Lowercase
C1_DIGIT 0x0004 Decimal digits
C1_SPACE 0x0008 Space characters
C1_PUNCT 0x0010 Punctuation
C1_CNTRL 0x0020 Control characters
C1_BLANK 0x0040 Blank characters
C1_XDIGIT 0x0080 Hexadecimal digits
C1_ALPHA 0x0100 Any letter

The following character types are either constant or computable from basic types and do
not need to be supported by this function.

Type Description

Alphanumeric Alphabetic characters and digits
Printable Graphic characters and blank

Ctype 2: These types support proper layout of Unicode™ text. The direction attributes are
assigned so that the bidirectional layout algorithm standardized by Unicode produces accurate
results. These types are mutually exclusive. For more information about the use of these
attributes, see The Unicode Standard: Worldwide Character Encoding, Volumes 1 and 2, Addison
Wesley Publishing Company: 1991, 1992, ISBN 0201567881.

Name Value Meaning

Strong:
C2_LEFTTORIGHT 0x1 Left to right
C2_RIGHTTOLEFT 0x2 Right to left
Weak:
C2_EUROPENUMBER 0x3 European number, European

digit
C2_EUROPESEPARATOR0x4 European numeric separator
C2_EUROPETERMINATOR0x5 European numeric terminator
C2_ARABICNUMBER 0x6 Arabic number
C2_COMMONSEPARATOR0x7 Common numeric separator
Neutral:
C2_BLOCKSEPARATOR 0x8 Block separator
C2_SEGMENTSEPARATOR0x9 Segment separator
C2_WHITESPACE 0xA White space
C2_OTHERNEUTRAL 0xB Other neutrals
Not applicable:
C2_NOTAPPLICABLE 0x0 No implicit directionality (for

example, control codes)

Ctype 3: These types are intended to be placeholders for extensions to the POSIX types required
for general text processing or for the standard C library functions. These types are supported in
the current version of Microsoft® Windows NT®. A combination of these values is returned when
fdwInfoType is set to CT_CTYPE3.

Name Value Meaning

C3_NONSPACING 0x1 Nonspacing mark
C3_DIACRITIC 0x2 Diacritic nonspacing mark
C3_VOWELMARK 0x4 Vowel nonspacing mark
C3_SYMBOL 0x8 Symbol
C3_KATAKANA 0x10 Katakana character
C3_HIRAGANA 0x20 Hiragana character
C3_HALFWIDTH 0x40 Half Width character
C3_FULLWIDTH 0x80 Full Width character
C3_IDEOGRAPH 0x100 Ideographic character
C3_KASHIDA 0x200 Arabic Kashida character
C3_ALPHA 0x8000 All linguistic characters (alphabetic,

syllabary and ideographic)
Not applicable:
C3_NOTAPPLICABLE0x0 Not applicable

Format Specifications
%[-][#][0][width][.precision]type

Format specifications always begin with a percent sign (%). Each field is a single character or a
number signifying a particular format option. The simplest format specification contains only the
percent sign and a type character (for example, %s). The optional fields control other aspects of
the formatting.

%
Required. Marks the beginning of the format specification. If the percent sign is followed by a
character that has no meaning as a format field, the character is not formatted (for example,
%% produces a single percent-sign character).

-
Optional. Pads the output with blanks or zeros to the right to fill the field width, justifying output
to the left. If this field is omitted, the output is padded to the left, justifying it to the right.

#
Optional. Prefix hexadecimal values with 0x (lowercase) or 0X (uppercase).

0
Optional. Pad the output value with zeros to fill the field width. If this field is omitted, the output
value is padded with blank spaces.

width
Optional. Copy the specified minimum number of characters to the output buffer. The width
field is a nonnegative integer. The width specification never causes a value to be truncated; if
the number of characters in the output value is greater than the specified width, or if the width
field is not present, all characters of the value are printed, subject to the precision
specification.

.precision
Optional. For numbers, copy the specified minimum number of digits to the output buffer. If
the number of digits in the argument is less than the specified precision, the output value is
padded on the left with zeros. The value is not truncated when the number of digits exceeds
the specified precision. If the specified precision is 0 or omitted entirely, or if the period (.)
appears without a number following it, the precision is set to 1.
For strings, copy the specified maximum number of characters to the output buffer.

type
Required. Determines whether the associated argument is interpreted as a character, a string,
or a number. Can be one of these character sequences:

c A single character. The functions ignore character
arguments with a numeric value of zero. This
sequence is interpreted as type WCHAR when the
calling application uses the #define UNICODE
compile flag and as type CHAR otherwise.

C A single character. This sequence is interpreted as
type CHAR when the calling application uses the
#define UNICODE compile flag and as type WCHAR
otherwise.

d A signed decimal integer argument. This sequence is
equivalent to the i sequence.

hc, hC A single character. The functions ignore character
arguments with a numeric value of zero. This
sequence is always interpreted as type CHAR, even
when the calling application uses the #define
UNICODE compile flag.

hs, hS A string. This sequence is always interpreted as type
LPSTR, even when the calling application uses the
#define UNICODE compile flag.

i A signed decimal integer. This sequence is equivalent
to the d sequence.

lc, lC A single character. The functions ignore character
arguments with a numeric value of zero. This
sequence is always interpreted as type WCHAR, even
when the calling application does not use the #define
UNICODE compile flag.

ld A long signed decimal integer. This sequence is
equivalent to the li sequence.

li A long signed decimal integer. This sequence is
equivalent to the ld sequence.

ls, lS A string. This sequence is always interpreted as type
LPWSTR, even when the calling application does not
use the #define UNICODE compile flag. This
sequence is equivalent to the ws sequence.

lu A long unsigned integer.
lx, lX A long unsigned hexadecimal integer in lowercase or

uppercase.
s A string. This sequence is interpreted as type

LPWSTR when the calling application uses the
#define UNICODE compile flag and as type LPSTR
otherwise.

S A string. This sequence is interpreted as type LPSTR
when the calling application uses the #define
UNICODE compile flag and as type LPWSTR
otherwise.

u An unsigned integer argument.
x, X An unsigned hexadecimal integer in lowercase or

uppercase.

Structured Exception HandlingAn exception is an event that occurs during the execution of a program, and that requires the
execution of software outside the normal flow of control. Hardware exceptions can result from the
execution of certain instruction sequences, such as division by zero or an attempt to access an
invalid memory address. A software routine can also initiate an exception explicitly.

The Microsoft® Win32® application programming interface (API) supports structured exception
handling, a mechanism for handling hardware- and software-generated exceptions.

About Structured Exception Handling
Structured exception handling gives developers complete control over the handling of exceptions,
provides support for debuggers, and is usable across all programming languages and machines.

The Win32 API also supports termination handling, which enables developers to ensure that
whenever a guarded body of code is executed, a specified block of termination code is also
executed. The termination code is executed regardless of how the flow of control leaves the
guarded body. For example, a termination handler can guarantee that clean-up tasks are
performed even if an exception or some other error occurs while the guarded body of code is
being executed.

Structured exception and termination handling is an integral part of the Win32 API; it enables a
robust implementation of the system software. Developers can use these mechanisms to create
consistently robust and reliable applications.

Structured exception handling is made available to developers primarily through compiler support.
For example, the Microsoft compilers provided with the Win32 software development kit support
the try keyword that identifies a guarded body of code, and the except and finally keywords that
identify an exception handler and a termination handler, respectively. Although this topic uses
examples from the support available in Microsoft compilers, other compiler vendors can provide
this support as well.

Exception Handling
Exceptions can be initiated by hardware or software, and can occur in kernel-mode as well as
user-mode code. Win32-based structured exception handling provides a single mechanism for the
handling of kernel-mode and user-mode exceptions, both hardware- and software-generated.

The execution of certain instruction sequences can result in exceptions that are initiated by
hardware. For example, an access violation is generated by the hardware when a process
attempts to read from or write to a virtual address to which it does not have the appropriate
access.

Events that require exception handling may also occur during execution of a software routine (for
example, when an invalid parameter value is specified). When this happens, a thread can initiate
an exception explicitly by calling the RaiseException function. This function enables the calling
thread to specify information that describes the exception.

Exception Dispatching
When a hardware or software exception occurs, the processor stops execution at the point at
which the exception occurred and transfers control to the system. First, the system saves both the
machine state of the current thread and information that describes the exception. The system then
attempts to find an exception handler to handle the exception.

The machine state of the thread in which the exception occurred is saved in a CONTEXT
structure. This information (called the context record) enables the system to continue execution at
the point of the exception if the exception is successfully handled. The description of the exception
(called the exception record) is saved in an EXCEPTION_RECORD structure. Because it stores
the machine-dependent information of the context record separately from the machine-
independent information of the exception record, the exception-handling mechanism is portable to
different platforms. The information in both the context and exception records is available by
means of the GetExceptionInformation function, and can be made available to any exception
handlers that are executed as a result of the exception. The exception record includes the
following information.

· An exception code that identifies the type of exception.
· Flags indicating whether the exception is continuable. Any attempt to continue execution

after a noncontinuable exception generates another exception.
· A pointer to another exception record. This facilitates creation of a linked list of exceptions

if nested exceptions occur.
· The address at which the exception occurred.
· An array of 32-bit arguments that provide additional information about the exception.

When an exception occurs in user-mode code, the system goes through the following search for
an exception handler:

1. The system first attempts to notify the process's debugger, if any.
2. If the process is not being debugged, or if the associated debugger does not handle the

exception, the system attempts to locate a frame-based exception handler by searching the
stack frames of the thread in which the exception occurred. The system searches the current
stack frame first, then proceeds backward through preceding stack frames.

3. If no frame-based handler can be found, or no frame-based handler handles the
exception, the system makes a second attempt to notify the process's debugger.

4. If the process is not being debugged, or if the associated debugger does not handle the
exception, the system provides default handling based on the exception type. For most
exceptions, the default action is to call the ExitProcess function.

When an exception occurs in kernel-mode code, the system searches the stack frames of the
kernel stack in an attempt to locate an exception handler. If a handler cannot be located or no
handler handles the exception, the system is shut down as if the ExitWindows function had been
called.

Debugger Support
The system's handling of user-mode exceptions provides support for sophisticated debuggers. If
the process in which an exception occurs is being debugged, the system generates a debug
event. If the debugger is using the WaitForDebugEvent function, the debug event causes that
function to return with a pointer to a DEBUG_EVENT structure. This structure contains the
process and thread identifiers that the debugger can use to access the thread's context record.
The structure also contains an EXCEPTION_DEBUG_INFO structure that includes a copy of the
exception record.

The system's search for an exception handler includes two attempts to notify a process's
debugger. The first notification attempt provides the debugger with an opportunity to handle
breakpoint or single-step exceptions. The user can then issue debugger commands to manipulate
the process's environment before any exception handlers are executed. The second attempt to
notify the debugger occurs only if the system is unable to find a frame-based exception handler
that handles the exception.

At each notification attempt, the debugger uses the ContinueDebugEvent function to return
control to the system. Before returning control, the debugger can handle the exception and modify
the thread state as appropriate, or it can choose not to handle the exception. Using
ContinueDebugEvent, the debugger can indicate that it has handled the exception, in which
case the machine state is restored and thread execution is continued at the point at which the
exception occurred. The debugger can also indicate that it did not handle the exception, which
causes the system to continue its search for an exception handler.

Frame-based Exception Handling
A frame-based exception handler is a mechanism by which a developer deals with the possibility
that an exception may occur in a certain sequence of code. A frame-based exception handler
consists of the following elements.

· A guarded body of code
· A filter expression
· An exception-handler block

Frame-based exception handlers are declared in language-specific syntax. For example, in the
Microsoft® C Optimizing Compiler, they are implemented by the try-except statement. For more
information about the Microsoft C exception-handling syntax, see Syntax.

The guarded body of code is a set of one or more statements for which the filter expression and
the exception-handler block provide exception-handling protection. The guarded body can be a
block of code, a set of nested blocks, or an entire procedure or function. In Microsoft C, a guarded
body is enclosed by braces ({}) following the try keyword.

The filter expression of a frame-based exception handler is an expression that is evaluated by the
system when an exception occurs within the guarded body. This evaluation results in one of the
following actions by the system.

· The system stops its search for an exception handler, restores the machine state, and
continues thread execution at the point at which the exception occurred.

· The system continues its search for an exception handler.
· The system transfers control to the exception handler, and thread execution continues

sequentially in the stack frame in which the exception handler is found. If the handler is not in
the stack frame in which the exception occurred, the system unwinds the stack, leaving the
current stack frame and any other stack frames until it is back to the exception handler's stack
frame. Before an exception handler is executed, termination handlers are executed for any
guarded bodies of code that terminated as a result of the transfer of control to the exception
handler. For more information about termination handlers, refer to Termination Handling.

The filter expression can be a simple expression, or it can invoke a filter function that attempts to
handle the exception. You can call the GetExceptionCode and GetExceptionInformation
functions from within a filter expression to get information about the exception being filtered.
GetExceptionCode returns a code that identifies the type of exception, and
GetExceptionInformation returns a pointer to an EXCEPTION_POINTERS structure that
contains pointers to CONTEXT and EXCEPTION_RECORD structures.

These functions cannot be called from within a filter function, but their return values can be
passed as parameters to a filter function. GetExceptionCode can be used within the exception-
handler block, but GetExceptionInformation cannot because the information it points to is
typically on the stack and is destroyed when control is transferred to an exception handler.
However, an application can copy the information to safe storage to make it available to the
exception handler.

The advantage of a filter function is that it can handle an exception and return a value that causes
the system to continue execution from the point at which the exception occurred. With an
exception-handler block, in contrast, execution continues sequentially from the exception handler
rather than from the point of the exception.

Handling an exception may be as simple as noting an error and setting a flag that will be
examined later, printing a warning or error message, or taking some other limited action. If
execution can be continued, it may also be necessary to change the machine state by modifying
the context record. For an example of a filter function that handles a page fault exception, see
Memory Management.

The UnhandledExceptionFilter function can be used as a filter function in a filter expression. It
returns EXCEPTION_EXECUTE_HANDLER unless the process is being debugged, in which case
it returns EXCEPTION_CONTINUE_SEARCH.

Termination Handling
A termination handler is a mechanism by which a developer ensures that a specific block of code
is executed whenever flow of control leaves a particular guarded body of code. A termination
handler consists of the following elements.

· A guarded body of code
· A block of termination code to be executed when the flow of control leaves the guarded

body
Termination handlers are declared in language-specific syntax. In Microsoft C, they are
implemented by the try-finally statement. For more information about the Microsoft C exception-
handling syntax, see Syntax.

The guarded body of code can be a block of code, a set of nested blocks, or an entire procedure
or function. Whenever the guarded body is executed, the block of termination code will be
executed. The only exception to this is when the thread terminates during execution of the
guarded body (for example, if the ExitThread or ExitProcess function is called from within the
guarded body).

The termination block is executed when the flow of control leaves the guarded body, regardless of
whether the guarded body terminated normally or abnormally. The guarded body is considered to
have terminated normally when the last statement in the block is executed and control proceeds
sequentially into the termination block. Abnormal termination occurs when the flow of control
leaves the guarded body due to an exception, or due to a control statement such as return, goto,
break, or continue. The AbnormalTermination function can be called from within the termination
block to determine whether the guarded body terminated normally.

Syntax
This section describes the syntax and usage of structured exception handling as implemented in
Microsoft C. The following keywords are interpreted by the Microsoft C compiler as part of the
structured exception-handling mechanism.

Keyword Description

try Begins a guarded body of code. Used with the except
keyword to construct an exception handler, or with the
finally keyword to construct a termination handler.

except Begins a block of code that is executed only when an
exception occurs within its associated try block.

finally Begins a block of code that is executed whenever the
flow of control leaves its associated try block.

The compiler also interprets the GetExceptionCode, GetExceptionInformation, and
AbnormalTermination functions as keywords, and their use outside the appropriate exception-
handling syntax generates a compiler error. Following are brief descriptions of these functions.

Function Description

GetExceptionCode Returns a code that identifies the type of
exception. This function can be called only
from within the filter expression or exception-
handler block of a try-except exception
handler.

GetExceptionInformationReturns a pointer to an
EXCEPTION_POINTERS structure
containing pointers to the context record and
the exception record. This function can be
called only from within the filter expression of
a try-except exception handler.

AbnormalTermination Indicates whether the flow of control left the
associated try block sequentially after
executing the last statement in the block.
This function can be called only from within
the finally block of a try-finally termination
handler.

Exception-Handler Syntax
The try and except keywords are used to construct a frame-based exception handler. The
following example shows the structure of a try-except exception handler.try {

// guarded body of code
}
except (filter-expression) {

// exception-handler block
}Note that the try block and the exception-handler block require braces ({}). Using a goto

statement to jump into the body of a try block or into an exception-handler block is not permitted.
This rule applies to both try-except and try-finally statements.

The try block contains the guarded body of code that the exception handler protects. A function
can have any number of try-except statements, and these exception-handling statements can be
nested within the same function or in different functions. If an exception occurs within the try
block, the system takes control and begins the search for an exception handler. For a detailed
description of this search, see Exception Handling.

The exception handler receives only exceptions that occur within a single thread. This means that
if a try block contains a call to the CreateProcess or CreateThread function, exceptions that
occur within the new process or thread are not dispatched to this handler.

The system evaluates the filter expression of each exception handler guarding the code in which
the exception occurred until either the exception is handled or there are no more handlers. A filter
expression must be evaluated as one of the three following values.

Value Meaning

EXCEPTION_EXECUTE_HANDLER
The system transfers control to the exception handler, and
execution continues in the stack frame in which the handler
is found.

EXCEPTION_CONTINUE_SEARCH
The system continues to search for a handler.

EXCEPTION_CONTINUE_EXECUTION
The system stops its search for a handler and returns
control to the point at which the exception occurred. If the
exception is noncontinuable, this results in a
EXCEPTION_NONCONTINUABLE_EXCEPTION
exception.

The filter expression is evaluated in the context of the function in which the try-except
statement is located, even though the exception may have occurred in a different function. This
means that the filter expression can access the function's local variables. Similarly, the exception-
handler block can access the local variables of the function in which it is located.

For more information about filter expressions and filter functions, see Frame-based Exception
Handling.

Termination-Handler Syntax
The try and finally keywords are used to construct a termination handler. The following example
shows the structure of a try-finally termination handler.try {

// guarded body of code
}
finally {

// finally block
}As with the try-except statement, both the try block and the finally block require braces ({}), and

using a goto statement to jump into either block is not permitted.

The try block contains the guarded body of code that is protected by the termination handler. A
function can have any number of try-finally statements, and these termination handling structures
can be nested within the same function or in different functions.

The finally block is executed whenever the flow of control leaves the try block. However, the
finally block is not executed if either the ExitProcess or ExitThread function is called from within
the try block.

If execution of the try block terminates because of an exception that invokes the exception-
handling block of a frame-based exception handler, the finally block is executed before the
exception-handling block is executed. Similarly, a call to the standard C longjmp function from the
try block causes execution of the finally block before execution resumes at the target of the
longjmp operation. If try block execution terminates due to a normal control statement (return,
break, continue, or goto), the finally block is executed.

The AbnormalTermination function can be used within the finally block to determine whether
the try block terminated sequentially ¾ that is, whether it reached the closing brace (}). Leaving
the try block because of a call to longjmp, a jump to an exception handler, or a return, break,
continue, or goto statement, is considered an abnormal termination. Note that failure to terminate
sequentially causes the system to search backward through all stack frames to determine whether
any termination handlers must be called. This can result in performance degradation due to the
execution of hundreds of instructions.

Execution of the finally block can terminate by any of the following means.

· Execution of the last statement in the block and continuation to the next instruction
· Use of a normal control statement (return, break, continue, or goto)
· Use of longjmp or a jump to an exception handler

The finally block is executed in the context of the function in which the try-finally statement is
located. This means that the finally block can access that function's local variables.

Using Structured Exception Handling
· Using an exception handler
· Using a termination handler

Using an Exception Handler
The following example shows a version of the standard C strcpy function that can handle an
invalid pointer and return NULL if one is encountered.

Note that this exception handler is intended to handle an access-violation exception, but is
inappropriate if some other type of exception occurs. Therefore, the filter expression in the
example uses the GetExceptionCode function to check the exception type before executing the
handler. This enables the system to continue its search for an appropriate handler if some other
type of exception occurs.

Note also that there is no problem with using a return statement in the try block of a try-except
statement. This differs from the use of return in the try block of a try-finally statement, which
causes an abnormal termination of the try block.LPTSTR SafeStrcpy(LPTSTR lpszString1, LPTSTR lpszString2) {

try {
return strcpy(string1, string2);
}
except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH) {
return NULL;
}

}The following example shows the interaction of nested try-finally and try-except statements. The
RaiseException function causes an exception in the guarded body of a try-finally termination
handler that is inside the guarded body of a try-except exception handler. The exception causes
the system to evaluate the FilterFunction function, whose return value in turn causes the
exception handler to be invoked. However, before the exception-handler block is executed, the
finally block of the termination handler is executed because the flow of control has left the try
block of the termination handler.DWORD FilterFunction() {

printf("1 "); // printed first
return EXCEPTION_EXECUTE_HANDLER;

}
VOID main(VOID) {

try {
try {
RaiseException(1, // exception code
0,// continuable exception
0, NULL); // no arguments
}
finally {
printf("2 ") // this is printed second
}
}
except (FilterFunction()) {
printf("3\n"); // this is printed last
}

}

Using a Termination Handler
The following example shows how a try-finally statement is used to ensure that resources are
released when execution of a guarded body of code terminates. In this case, a thread uses the
EnterCriticalSection function to wait for ownership of a critical section object. When the thread is
finished executing the code that is protected by the critical section, it must call the
LeaveCriticalSection function to make the critical section object available to other threads. Using
a try-finally statement guarantees that this will happen.

For more information about critical section objects, see Synchronization.LPTSTR lpBuffer = NULL;
CRITICAL_SECTION csCriticalSection;
try {
// EnterCriticalSection synchronizes code
// with other threads.

EnterCriticalSection(&CriticalSection);
// Perform a task that may cause an exception.
lpBuffer = (LPTSTR) LocalAlloc(LPTR, 10);
strcpy(lpBuffer,"Hello"); // possible access violation
printf("%s\n",lpBuffer);
LocalFree(lpBuffer);

}
// LeaveCriticalSection is called even if
// an exception occurred.
finally {

LeaveCriticalSection(&CriticalSection);
}

Structured Exception Handling Reference
The following functions and structures are used with structured exception handling.

Structured Exception Handling Functions
Following are the functions used in structured exception handling.
AbnormalTermination
GetExceptionCode
GetExceptionInformation
RaiseException
SetUnhandledExceptionFilter

UnhandledExceptionFilter

Structured Exception Handling Structures
The following structures are used with structured exception handling.
EXCEPTION_POINTERS
EXCEPTION_RECORD

SynchronizationThe Microsoft® Win32® application programming interface (API) provides a variety of ways to
coordinate multiple threads of execution.

About Synchronization
The functions described in this overview provide mechanisms that threads can use to synchronize
access to a resource.

The first method involves the use of synchronization objects in wait functions. The state of a
synchronization object is either signaled or nonsignaled. The wait functions allow a thread to block
its own execution until a specified nonsignaled object is set to the signaled state.

The following are other synchronization mechanisms:

· overlapped input and output
· asynchronous procedure calls
· critical section objects
· interlocked variable access

Wait Functions
The Win32 API provides a set of wait functions to allow a thread to block its own execution. There
are three types of wait functions:

· single-object
· multiple-object
· alertable

The wait functions do not return until the specified criteria have been met. The type of wait
function determines the set of criteria used. When a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not been met, the calling thread enters an efficient
wait state, consuming very little processor time while waiting for the criteria to be met.

Single-object Wait Functions
The SignalObjectAndWait, WaitForSingleObject, and WaitForSingleObjectEx functions
require a handle of one synchronization object. These functions return when one of the following
occurs:

· The specified object is in the signaled state.
· The time-out interval elapses. The time-out interval can be set to INFINITE to specify that

the wait will not time out.
The SignalObjectAndWait function enables the calling thread to atomically set the state of an
object to signaled and wait for the state of another object to be set to signaled.

Multiple-object Wait Functions
The WaitForMultipleObjects, WaitForMultipleObjectsEx, MsgWaitForMultipleObjects, and
MsgWaitForMultipleObjectsEx functions enable the calling thread to specify an array containing
one or more synchronization object handles. These functions return when one of the following
occurs:

· The state of any one of the specified objects is set to signaled or the states of all objects
have been set to signaled. You control whether one or all of the states will be used in the
function call.

· The time-out interval elapses. The time-out interval can be set to INFINITE to specify that
the wait will not time out.

The MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx function allow you to
specify input event objects in the object handle array. This is done when you specify the type of
input to wait for in the thread's input queue.

For example, a thread could use MsgWaitForMultipleObjects to block its execution until the
state of a specified object has been set to signaled and there is mouse input available in the
thread's input queue. The thread can use the GetMessage or PeekMessage function to retrieve
the input.

When waiting for the states of all objects to be set to signaled, these multiple-object functions do
not modify the states of the specified objects until the states of all objects have been set signaled.
For example, the state of a mutex object can be signaled, but the calling thread does not get
ownership until the states of the other objects specified in the array have also been set to
signaled. In the meantime, some other thread may get ownership of the mutex object, thereby
setting its state to nonsignaled.

Alertable Wait Functions
The MsgWaitForMultipleObjectsEx, SignalObjectAndWait, WaitForMultipleObjectsEx, and
WaitForSingleObjectEx functions differ from the other wait functions in that they can optionally
perform an alertable wait operation. In an alertable wait operation, the function can return when
the specified conditions are met, but it can also return if the system queues an I/O completion
routine or an APC for execution by the waiting thread. For more information about alertable wait
operations and I/O completion routines, see Synchronization and Overlapped Input and Output.
For more information about APCs, see Asynchronous Procedure Calls.

Wait Functions and Synchronization Objects
Before returning, a wait function can modify the states of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. A wait function can modify the states of synchronization objects as follows:

· The count of a semaphore object decreases by one, and the state of the semaphore is set
to nonsignaled if its count is zero.

· The states of mutex, auto-reset event, and change-notification objects are set to
nonsignaled.

· The state of a synchronization timer is set to nonsignaled.
· The states of manual-reset event, manual-reset timer, process, thread, and console input

objects are not affected by a wait function.
Wait Functions and DDE
You have to be careful when using the wait functions and DDE. If a thread creates any windows, it
must process messages. DDE sends messages to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have
a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than the other wait functions.

Synchronization Objects
A synchronization object is an object whose handle can be specified in one of the wait functions to
coordinate the execution of multiple threads. More than one process can have a handle to the
same synchronization object, making interprocess synchronization possible.

The following object types are provided exclusively for synchronization.

Type Description

Event Notifies one or more waiting threads that an event has
occurred. For more information, see Event Objects.

Mutex Can be owned by only one thread at a time, enabling
threads to coordinate mutually exclusive access to a
shared resource. For more information, see Mutex
Objects.

Semaphore Maintains a count between zero and some maximum
value, limiting the number of threads that are
simultaneously accessing a shared resource. For more
information, see Semaphore Objects.

Timer Notifies one or more waiting threads that a specified
time has arrived. For more information, see Waitable
Timer Objects.

Though available for other uses, the following objects can also be used for
synchronization.

Object Description

Change notification Created by the FindFirstChangeNotification
function, its state is set to signaled when a
specified type of change occurs within a specified
directory or directory tree. For more information,
see Files.

Console input Created when a console is created. The handle
to console input is returned by the CreateFile
function when CONIN$ is specified, or by the
GetStdHandle function. Its state is set to
signaled when there is unread input in the
console's input buffer, and nonsignaled when the
input buffer is empty. For more information about
consoles, see Consoles and Character-Mode
Support.

Process Created when a new process is created by
calling the CreateProcess function. Its state is
set to nonsignaled while the process is running,
and signaled when the process terminates. For
more information about processes, see
Processes and Threads.

Thread Created when a new thread is created by calling
the CreateProcess, CreateThread, or
CreateRemoteThread function. Its state is set to
nonsignaled while the thread is running, and
signaled when the thread terminates. For more
information about threads, see Processes and
Threads.

In some circumstances, you can also use a file, named pipe, or communications device as
a synchronization object; however, their use for this purpose is discouraged. For
additional information about I/O operations on files, named pipes, or communications, see
Synchronization and Overlapped Input and Output.

Event Objects
An event object is a synchronization object whose state can be explicitly set to signaled by use of
the SetEvent or PulseEvent function. Following are the two types of event object.

Object Description

Manual-reset eventAn event object whose state remains signaled
until it is explicitly reset to nonsignaled by the
ResetEvent function. While it is signaled, any
number of waiting threads, or threads that
subsequently specify the same event object in
one of the wait functions, can be released.

Auto-reset event An event object whose state remains signaled
until a single waiting thread is released, at which
time the system automatically sets the state to
nonsignaled. If no threads are waiting, the event
object's state remains signaled.

The event object is useful in sending a signal to a thread indicating that a particular event
has occurred. For example, in overlapped input and output, the system sets a specified
event object to the signaled state when the overlapped operation has been completed. A
single thread can specify different event objects in several simultaneous overlapped
operations, then use one of the multiple-object wait functions to wait for the state of any one
of the event objects to be signaled.

A thread uses the CreateEvent function to create an event object. The creating thread specifies
the initial state of the object and whether it is a manual-reset or auto-reset event object. The
creating thread can also specify a name for the event object. Threads in other processes can
open a handle of an existing event object by specifying its name in a call to the OpenEvent
function. For additional information about names for mutex, event, semaphore, and timer objects,
see Interprocess Synchronization.

A thread can use the PulseEvent function to set the state of an event object to signaled and then
reset it to nonsignaled after releasing the appropriate number of waiting threads. For a manual-
reset event object, all waiting threads are released. For an auto-reset event object, the function
releases only a single waiting thread, even if multiple threads are waiting. If no threads are
waiting, PulseEvent simply sets the state of the event object to nonsignaled and returns.

Mutex Objects
A mutex object is a synchronization object whose state is set to signaled when it is not owned by
any thread, and nonsignaled when it is owned. Only one thread at a time can own a mutex object,
whose name comes from the fact that it is useful in coordinating mutually exclusive access to a
shared resource. For example, to prevent two threads from writing to shared memory at the same
time, each thread waits for ownership of a mutex object before executing the code that accesses
the memory. After writing to the shared memory, the thread releases the mutex object.

A thread uses the CreateMutex function to create a mutex object. The creating thread can
request immediate ownership of the mutex object and can also specify a name for the mutex
object. Threads in other processes can open a handle to an existing mutex object by specifying its
name in a call to the OpenMutex function. For additional information about names for mutex,
event, semaphore, and timer objects, see Interprocess Synchronization.

Any thread with a handle of a mutex object can use one of the wait functions to request ownership
of the mutex object. If the mutex object is owned by another thread, the wait function blocks the
requesting thread until the owning thread releases the mutex object using the ReleaseMutex
function. The return value of the wait function indicates whether the function returned for some
reason other than the state of the mutex being set to signaled.

Once a thread owns a mutex, it can specify the same mutex in repeated calls to one of the wait-
functions without blocking its execution. This prevents a thread from deadlocking itself while
waiting for a mutex that it already owns. To release its ownership under such circumstances, the
thread must call ReleaseMutex once for each time that the mutex satisfied the conditions of a
wait function.

If a thread terminates without releasing its ownership of a mutex object, the mutex object is
considered to be abandoned. A waiting thread can acquire ownership of an abandoned mutex
object, but the wait function's return value indicates that the mutex object is abandoned. It is best
to assume that an abandoned mutex object indicates that an error has occurred and that any
shared resource being protected by the mutex object is in an undefined state. If the thread
proceeds as though the mutex object had not been abandoned, its "abandoned" flag is cleared
when the thread releases its ownership. This restores normal behavior if a handle to the mutex
object is subsequently specified in a wait function.

Semaphore Objects
A semaphore object is a synchronization object that maintains a count between zero and a
specified maximum value. The count is decremented each time a thread completes a wait for the
semaphore object and incremented each time a thread releases the semaphore. When the count
reaches zero, no more threads can successfully wait for the semaphore object state to become
signaled. The state of a semaphore is set to signaled when its count is greater than zero, and
nonsignaled when its count is zero.

The semaphore object is useful in controlling a shared resource that can support a limited number
of users. It acts as a gate that limits the number of threads sharing the resource to a specified
maximum number. For example, an application might place a limit on the number of windows that
it creates. It uses a semaphore with a maximum count equal to the window limit, decrementing the
count whenever a window is created and incrementing it whenever a window is closed. The
application specifies the semaphore object in call to one of the wait functions before each window
is created. When the count is zero ¾ indicating that the window limit has been reached ¾ the wait
function blocks execution of the window-creation code.

A thread uses the CreateSemaphore function to create a semaphore object. The creating thread
specifies the initial count and the maximum value of the count for the object. The initial count must
be neither less than zero nor greater than the maximum value. The creating thread can also
specify a name for the semaphore object. Threads in other processes can open a handle of an
existing semaphore object by specifying its name in a call to the OpenSemaphore function. For
additional information about names for mutex, event, semaphore, and timer objects, see
Interprocess Synchronization.

Each time one of the wait functions returns because the state of a semaphore was set to signaled,
the count of the semaphore is decreased by one. The ReleaseSemaphore function increases a
semaphore's count by a specified amount. The count can never be less than zero or greater than
the maximum value.

The initial count of a semaphore is typically set to the maximum value. The count is then
decremented from that level as the protected resource is consumed. Alternatively, you can create
a semaphore with an initial count of zero to block access to the protected resource while the
application is being initialized. After initialization, you can use ReleaseSemaphore to increment
the count to the maximum value.

Threads do not acquire ownership of semaphore objects as they do with mutex objects. A thread
that owns a mutex object can wait repeatedly for the same mutex object to become signaled
without its execution becoming blocked. A thread that waits repeatedly for the same semaphore
object, however, decrements the semaphore's count each time a wait operation is completed; the
thread is blocked when the count gets to zero. Similarly, only the thread that owns a mutex can
successfully call the ReleaseMutex function, though any thread can use ReleaseSemaphore to
increase the count of a semaphore object.

A thread can decrement a semaphore's count more than once by repeatedly specifying the same
semaphore object in calls to any of the wait functions. However, calling one of the multiple-object
wait functions with an array that contains multiple handles of the same semaphore does not result
in multiple decrements.

Waitable Timer Objects
A "waitable" timer object is a synchronization object whose state is set to signaled when the
specified due time arrives. There are two types of waitable timers that can be created: manual-
reset and synchronization. A timer of either type can also be a periodic timer.

Object Description

manual-reset timer A timer whose state remains signaled until
SetWaitableTimer is called to establish a new
due time.

synchronization timer A timer whose state remains signaled until a
thread completes a wait operation on the timer
object.

periodic timer A timer that is reactivated each time the
specified period expires, until the timer is reset
or canceled. A periodic timer is either a periodic
manual-reset timer or a periodic synchronization
timer.

A thread uses the CreateWaitableTimer function to create a timer object. Specify TRUE for the
bManualReset parameter to create a manual-reset timer and FALSE to create a synchronization
timer. The creating thread can specify a name for the timer object in the lpTimerName parameter.
Threads in other processes can open a handle to an existing timer by specifying its name in a call
to the OpenWaitableTimer function. Any thread with a handle to a timer object can use one of the
wait functions to wait for the timer state to be set to signaled.

· The thread calls the SetWaitableTimer function to activate the timer. Note the use of the
following parameters for SetWaitableTimer:

· Use the lpDueTime parameter to specify the time at which the timer is to be set to the
signaled state. When a manual-reset timer is set to the signaled state, it remains in this state
until SetWaitableTimer establishes a new due time. When a synchronization timer is set to
the signaled state, it remains in this state until a thread completes a wait operation on the
timer object.

· Use the lPeriod parameter of the SetWaitableTimer function to specify the timer period. If
the period is not zero, the timer is a periodic timer; it is reactivated each time the period
expires, until the timer is reset or canceled. If the period is zero, the timer is not a periodic
timer; it is signaled once and then deactivated.

A thread can use the CancelWaitableTimer function to set the timer to the inactive state. To reset
the timer, call SetWaitableTimer. When you are finished with the timer object, call CloseHandle
to close the handle to the timer object.

Interprocess Synchronization
Multiple processes can have handles to the same event, mutex, semaphore, or timer object, so
these objects can be used to accomplish interprocess synchronization. The process that creates
an object can use the handle returned by the creation function (CreateEvent, CreateMutex,
CreateSemaphore, or CreateWaitableTimer). Other processes can open a handle to the object
by using its name, or through inheritance or duplication.

Object Names
Named objects provide an easy way for processes to share object handles. The name specified
by the creating process is limited to MAX_PATH characters, and can include any character except
the backslash path-separator character (\). Once a process has created a named event, mutex,
semaphore, or timer object, other processes can use the name to call the appropriate function
(OpenEvent, OpenMutex, OpenSemaphore, or OpenWaitableTimer) to open a handle to the
object. Name comparison is case sensitive.

The names of event, mutex, semaphore, timer, and file-mapping objects share the same name
space. If you specify a name that is in use by an object of another type when creating an object,
the function succeeds, but GetLastError returns ERROR_ALREADY_EXISTS. Therefore, when
creating named objects, use unique names and be sure to check function return values for
duplicate-name errors.

For example, if the name specified in a call to the CreateMutex function matches the name of an
existing mutex object, the function returns a handle of the existing object. In this case, the call to
CreateMutex is equivalent to a call to the OpenMutex function. Having multiple processes use
CreateMutex for the same mutex is therefore equivalent to having one process that calls
CreateMutex while the other processes call OpenMutex, except that it eliminates the need to
ensure that the creating process is started first. When using this technique for mutex objects,
however, none of the calling processes should request immediate ownership of the mutex. If
multiple processes do request immediate ownership, it can be difficult to predict which process
actually gets the initial ownership.

Object Inheritance
When you create a process with the CreateProcess function, you can specify that the process
inherit handles to mutex, event, semaphore, or timer objects using the SECURITY_ATTRIBUTES
structure. The handle inherited by the process has the same access to the object as the original
handle. The inherited handle appears in the handle table of the created process, but you must
communicate the handle value to the created process. You can do this by specifying the value as
a command-line argument when you call CreateProcess. The created process then uses the
GetCommandLine function to retrieve the command-line string and convert the handle argument
into a usable handle. For more information about object inheritance, see Processes and Threads.

Object Duplication
The DuplicateHandle function creates a duplicate handle that can be used by another specified
process. This method of sharing object handles is more complex than using named objects or
inheritance. It requires communication between the creating process and the process into which
the handle is duplicated. The necessary information (the handle value and process identifier) can
be communicated by any of the interprocess communication methods, such as named pipes or
named shared memory. For more information about object duplication, see Processes and
Threads.

Synchronization and Overlapped Input and Output
The Win32 API supports both synchronous and asynchronous (or overlapped) I/O operations on
files, named pipes, and serial communications devices. The WriteFile, ReadFile,
DeviceIoControl, WaitCommEvent, ConnectNamedPipe, and TransactNamedPipe functions
can be performed either synchronously or asynchronously. The ReadFileEx and WriteFileEx
functions can be performed asynchronously only.

When a function is executed synchronously, it does not return until the operation has been
completed. This means that the execution of the calling thread can be blocked for an indefinite
period while it waits for a time-consuming operation to finish. Functions called for overlapped
operation can return immediately, even though the operation has not been completed. This
enables a time-consuming I/O operation to be executed in the background while the calling thread
is free to perform other tasks. For example, a single thread can perform simultaneous I/O
operations on different handles, or even simultaneous read and write operations on the same
handle.

To synchronize its execution with the completion of the overlapped operation, the calling thread
uses the GetOverlappedResult function or one of the wait functions to determine when the
overlapped operation has been completed. You can also use the HasOverlappedIoCompleted
macro to poll for completion.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle.

Overlapped operations require a file, named pipe, or communications device that was created
with the FILE_FLAG_OVERLAPPED flag. To call a function to perform an overlapped operation,
the calling thread must specify a pointer to an OVERLAPPED structure. If this pointer is NULL,
the function return value may incorrectly indicate that the operation completed. The
OVERLAPPED structure must contain a handle to a manual-reset ¾ not an auto-reset ¾ event
object. The system sets the state of the event object to nonsignaled when a call to the I/O function
returns before the operation has been completed. The system sets the state of the event object to
signaled when the operation has been completed.

When a function is called to perform an overlapped operation, it is possible that the operation will
be completed before the function returns. When this happens, the results are handled as if the
operation had been performed synchronously. If the operation was not completed, however, the
function's return value is FALSE, and the GetLastError function returns ERROR_IO_PENDING.

A thread can manage overlapped operations by either of two methods:

· Use the GetOverlappedResult function to wait for the overlapped operation to be
completed.

· Specify a handle to the OVERLAPPED structure's manual-reset event object in one of the
wait functions and then call GetOverlappedResult after the wait function returns. The
GetOverlappedResult function returns the results of the completed overlapped operation,
and for functions in which such information is appropriate, it reports the actual number of
bytes that were transferred.

When performing multiple simultaneous overlapped operations, the calling thread must specify an
OVERLAPPED structure with a different manual-reset event object for each operation. To wait for
any one of the overlapped operations to be completed, the thread specifies all the manual-reset
event handles as wait criteria in one of the multiple-object wait functions. The return value of the
multiple-object wait function indicates which manual-reset event object was signaled, so the
thread can determine which overlapped operation caused the wait operation to be completed.

If no event object is specified in the OVERLAPPED structure, the system signals the state of the
file, named pipe, or communications device when the overlapped operation has been completed.
Thus, you can specify these handles as synchronization objects in a wait function, though their
use for this purpose can be difficult to manage. When performing simultaneous overlapped
operations on the same file, named pipe, or communications device, there is no way to know
which operation caused the object's state to be signaled. It is safer to use a separate event object
for each overlapped operation.

For examples that illustrate the use of overlapped operations, completion routines, and the
GetOverlappedResult function, see Using Pipes.

Asynchronous Procedure Calls
An asynchronous procedure call (APC) is a function that executes asynchronously in the context
of a particular thread. When an APC is queued to a thread, the system issues a software interrupt.
The next time the thread is scheduled, it will run the APC function. APCs made by the system are
called "kernel-mode APCs." APCs made by an application are called "user-mode APCs." A thread
must be in an alertable state to run a user-mode APC.

Each thread has its own APC queue. An application queues an APC to a thread by calling the
QueueUserAPC function. The calling thread specifies the address of an APC function in the call
to QueueUserAPC. The queuing of an APC is a request for the thread to call the APC function.

When a user-mode APC is queued, the thread to which it is queued is not directed to call the APC
function unless it is in an alertable state. A thread enters an alertable state when it calls the
SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx, WaitForMultipleObjectsEx,
or WaitForSingleObjectEx function.

Note that the ReadFileEx and WriteFileEx functions are implemented using an APC as the
completion notification callback mechanism.

Critical Section Objects
Critical section objects provide synchronization similar to that provided by mutex objects, except
that critical section objects can be used only by the threads of a single process. Event, mutex, and
semaphore objects can also be used in a single-process application, but critical section objects
provide a slightly faster, more efficient mechanism for mutual-exclusion synchronization. Like a
mutex object, a critical section object can be owned by only one thread at a time, which makes it
useful for protecting a shared resource from simultaneous access. For example, a process could
use a critical section object to prevent more than one thread at a time from modifying a global
data structure.

The process is responsible for allocating the memory used by a critical section. Typically, this is
done by simply declaring a variable of type CRITICAL_SECTION. Before the threads of the
process can use it, the critical section must be initialized by using the InitializeCriticalSection
function.

A thread uses the EnterCriticalSection or TryEnterCriticalSection function to request
ownership of a critical section. It uses the LeaveCriticalSection function to release ownership of
a critical section. If the critical section object is currently owned by another thread,
EnterCriticalSection waits indefinitely for ownership. In contrast, when a mutex object is used for
mutual exclusion, the wait functions accept a specified time-out interval. The
TryEnterCriticalSection function attempts to enter a critical section without blocking the calling
thread.

Once a thread owns a critical section, it can make additional calls to EnterCriticalSection or
TryEnterCriticalSection without blocking its execution. This prevents a thread from deadlocking
itself while waiting for a critical section that it already owns. To release its ownership, the thread
must call LeaveCriticalSection once for each time that it entered the critical section.

Any thread of the process can use the DeleteCriticalSection function to release the system
resources that were allocated when the critical section object was initialized. After this function
has been called, the critical section object can no longer be used for synchronization.

When a critical section object is owned, the only other threads affected are those waiting for
ownership in a call to EnterCriticalSection. Threads that are not waiting are free to continue
running.

Interlocked Variable Access
The functions InterlockedCompareExchange, InterlockedExchangeAdd,
InterlockedDecrement, InterlockedExchange, and InterlockedIncrement provide a simple
mechanism for synchronizing access to a variable that is shared by multiple threads. The threads
of different processes can use this mechanism if the variable is in shared memory.

The InterlockedIncrement and InterlockedDecrement functions combine the operations of
incrementing or decrementing the variable and checking the resulting value. This atomic operation
is useful in a multitasking operating system, in which the system can interrupt one thread's
execution to grant a slice of processor time to another thread. Without such synchronization, one
thread could increment a variable but be interrupted by the system before it can check the
resulting value of the variable. A second thread could then increment the same variable. When the
first thread receives its next timeslice, it will check the value of the variable, which has now been
incremented not once but twice. The interlocked variable-access functions protect against this
kind of error.

The InterlockedExchange function atomically exchanges the values of the specified variables.
The InterlockedExchangeAdd function combines two operations: adding two variables together
and storing the result in one of the variables.

The InterlockedCompareExchange function combines two operations: comparing two values
and storing a third value in one of the variables, based on the outcome of the comparison.

Using Synchronization
· Using named objects
· Waiting for multiple objects
· Waiting in a message loop
· Using mutex objects
· Using semaphore objects
· Using event objects
· Using critical section objects

Using Named Objects
The following examples illustrate the use of object names by creating and opening named objects.

Mutex
The first process uses the CreateMutex function to create the mutex object. Note that the function
succeeds even if there is an existing object with the same name.// One process creates the mutex object.
HANDLE hMutex;
DWORD dwErr;
hMutex = CreateMutex(

NULL, // no security descriptor
FALSE, // mutex not owned
"NameOfMutexObject"); // object name

if (hMutex == NULL)
printf("CreateMutex error: %d\n", GetLastError());

else
if (GetLastError() == ERROR_ALREADY_EXISTS)
printf("CreateMutex opened existing mutex\n");
else
printf("CreateMutex created new mutex\n");The second process uses the OpenMutex function to open a handle of the existing mutex. This

function fails if a mutex object with the specified name does not exist. The access parameter
requests full access to the mutex object, which is necessary for the handle to be used in any of
the wait functions.// Another process opens a handle of the existing mutex.
HANDLE hMutex;
hMutex = OpenMutex(

MUTEX_ALL_ACCESS, // request full access
FALSE, // handle not inheritable
"NameOfMutexObject"); // object name

if (hMutex == NULL)
printf("OpenMutex error: %d\n", GetLastError());Semaphore

The following example uses the CreateSemaphore function to illustrate a named-object creation
operation that fails if the object already exists.HANDLE CreateNewSemaphore(LPSECURITY_ATTRIBUTES lpsa,

LONG cInitial, LONG cMax, LPTSTR lpszName)
{

HANDLE hSem;
// Create or open a named semaphore.

hSem = CreateSemaphore(
lpsa, // security attributes
cInitial,// initial count
cMax, // maximum count
lpszName); // semaphore name

// Close handle, and return NULL if existing semaphore opened.
if (hSem != NULL && GetLastError() == ERROR_ALREADY_EXISTS)
{
CloseHandle(hSem);
return NULL;
}

// If new semaphore was created, return the handle.
return hSem;

}

Waiting for Multiple Objects
The following example uses the CreateEvent function to create two event objects. It then uses
the WaitForMultipleObjects function to wait for the state of one of the objects to be set to
signaled.HANDLE hEvents[2];
DWORD i, dwEvent;
// Create two event objects.
for (i = 0; i < 2; i++)
{

hEvents[i] = CreateEvent(
NULL, // no security attributes
FALSE, // auto-reset event object
FALSE, // initial state is nonsignaled
NULL); // unnamed object
if (hEvents[i] == NULL) {
printf("CreateEvent error: %d\n", GetLastError());
ExitProcess(0);
}

}
// The creating thread waits for other threads or processes
// to signal the event objects.
dwEvent = WaitForMultipleObjects(

2, // number of objects in array
hEvents,// array of objects
FALSE, // wait for any
INFINITE); // indefinite wait

// Return value indicates which event is signaled.
switch (dwEvent) {

// hEvent[0] was signaled.
case WAIT_OBJECT_0 + 0:
// Perform tasks required by this event.
break;
// hEvent[1] was signaled.
case WAIT_OBJECT_0 + 1:
// Perform tasks required by this event.
break;
// Return value is invalid.
default:
printf("Wait error: %d\n", GetLastError());
ExitProcess(0);

}

Waiting in a Message Loop
The following code fragment illustrates the use of the MsgWaitForMultipleObjects function in a
message loop.int MessageLoop (

HANDLE* lphObjects, // handles that need to be waited on
intcObjects// number of handles to wait on

)
{

// The message loop lasts until we get a WM_QUIT message,
// upon which we shall return from the function.
while (TRUE)
{
// block-local variable
DWORD result ;
// Wait for any message sent or posted to this queue
// or for one of the passed handles be set to signaled.
result = MsgWaitForMultipleObjects(cObjects, lphObjects,
FALSE, INFINITE, QS_ALLINPUT);
// The result tells us the type of event we have.
if (result == (WAIT_OBJECT_0 + cObjects))
{
// block-local variable
MSG msg ;
// Read all of the messages in this next loop,
// removing each message as we read it.
while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
// If it's a quit message, we're out of here.
if (msg.message == WM_QUIT)
return 1;
// Otherwise, dispatch the message.
DispatchMessage(&msg);
} // End of PeekMessage while loop.
}
else {
// One of the handles became signaled.
DoStuff (result - WAIT_OBJECT_0) ;
} // End of else clause.
} // End of the always while loop.

} // End of function.

Using Mutex Objects
You can use a mutex object to protect a shared resource from simultaneous access by multiple
threads or processes. Each thread must wait for ownership of the mutex before it can execute the
code that accesses the shared resource. For example, if several threads share access to a
database, the threads can use a mutex object to permit only one thread at a time to write to the
database.

In the following example, a process uses the CreateMutex function to create a named mutex
object or open a handle of an existing mutex object.HANDLE hMutex;
// Create a mutex with no initial owner.
hMutex = CreateMutex(

NULL, // no security attributes
FALSE, // initially not owned
"MutexToProtectDatabase"); // name of mutex

if (hMutex == NULL)
{

// Check for error.
}When a thread of this process writes to the database, as in the next example, it first requests

ownership of the mutex. If it gets ownership, the thread writes to the database and then releases
its ownership.

The example uses the try-finally structured exception-handling syntax to ensure that the thread
properly releases the mutex object. The finally block of code is executed no matter how the try
block terminates (unless the try block includes a call to the TerminateThread function). This
prevents the mutex object from being abandoned inadvertently.BOOL FunctionToWriteToDatabase(HANDLE hMutex)
{

DWORD dwWaitResult;
// Request ownership of mutex.
dwWaitResult = WaitForSingleObject(
hMutex, // handle of mutex
5000L); // five-second time-out interval
switch (dwWaitResult)
{
// The thread got mutex ownership.
case WAIT_OBJECT_0:
try {
// Write to the database.
}
finally {
// Release ownership of the mutex object.
if (! ReleaseMutex(hMutex)) {
// Deal with error.
}
break;
}
// Cannot get mutex ownership due to time-out.
case WAIT_TIMEOUT:
return FALSE;
// Got ownership of the abandoned mutex object.
case WAIT_ABANDONED:
return FALSE;
}
return TRUE;

}

Using Semaphore Objects
In the following example, a process uses a semaphore object to limit the number of windows it
creates. First, it uses the CreateSemaphore function to create the semaphore and to specify
initial and maximum counts.HANDLE hSemaphore;
LONG cMax = 10;
LONG cPreviousCount;
// Create a semaphore with initial and max. counts of 10.
hSemaphore = CreateSemaphore(

NULL, // no security attributes
cMax, // initial count
cMax, // maximum count
NULL); // unnamed semaphore

if (hSemaphore == NULL)
{

// Check for error.
}Before any thread of the process creates a new window, it uses the WaitForSingleObject

function to determine whether the semaphore's current count permits the creation of additional
windows. The wait function's time-out parameter is set to zero, so the function returns immediately
if the semaphore is nonsignaled.DWORD dwWaitResult;
// Try to enter the semaphore gate.
dwWaitResult = WaitForSingleObject(

hSemaphore, // handle of semaphore
0L);// zero-second time-out interval

switch (dwWaitResult) {
// The semaphore object was signaled.
case WAIT_OBJECT_0:
// OK to open another window.
break;
// Semaphore was nonsignaled, so a time-out occurred.
case WAIT_TIMEOUT:
// Cannot open another window.
break;

}When a thread closes a window, it uses the ReleaseSemaphore function to increment the
semaphore's count.// Increment the count of the semaphore.
if (!ReleaseSemaphore(

hSemaphore, // handle of semaphore
1, // increase count by one
NULL)) // not interested in previous count

{
// Deal with the error.

}

Using Event Objects
Win32-based applications use event objects in a number of situations to notify a waiting thread of
the occurrence of an event. For example, overlapped I/O operations on files, named pipes, and
communications devices use an event object to signal their completion. For more information
about the use of event objects in overlapped I/O operations, see Synchronization and Overlapped
Input and Output.

In the following example, an application uses event objects to prevent several threads from
reading from a shared memory buffer while a master thread is writing to that buffer. First, the
master thread uses the CreateEvent function to create a manual-reset event object. The master
thread sets the event object to nonsignaled when it is writing to the buffer and then resets the
object to signaled when it has finished writing. Then it creates several reader threads and an auto-
reset event object for each thread. Each reader thread sets its event object to signaled when it is
not reading from the buffer.#define NUMTHREADS 4
HANDLE hGlobalWriteEvent;
void CreateEventsAndThreads(void)
{

HANDLE hReadEvents[NUMTHREADS], hThread;
DWORD i, IDThread;
// Create a manual-reset event object. The master thread sets
// this to nonsignaled when it writes to the shared buffer.
hGlobalWriteEvent = CreateEvent(
NULL, // no security attributes
TRUE, // manual-reset event
TRUE, // initial state is signaled
"WriteEvent" // object name
);
if (hGlobalWriteEvent == NULL) {
// error exit
}
// Create multiple threads and an auto-reset event object
// for each thread. Each thread sets its event object to
// signaled when it is not reading from the shared buffer.
for(i = 1; i <= NUMTHREADS; i++)
{
// Create the auto-reset event.
hReadEvents[i] = CreateEvent(
NULL,// no security attributes
FALSE, // auto-reset event
TRUE,// initial state is signaled
NULL); // object not named
if (hReadEvents[i] == NULL)
{
// Error exit.
}
hThread = CreateThread(NULL, 0,
(LPTHREAD_START_ROUTINE) ThreadFunction,
&hReadEvents[i], // pass event handle
0, &IDThread);
if (hThread == NULL)
{
// Error exit.
}
}

}Before the master thread writes to the shared buffer, it uses the ResetEvent function to set the
state of hGlobalWriteEvent (an application-defined global variable) to nonsignaled. This blocks the
reader threads from starting a read operation. The master then uses the WaitForMultipleObjects
function to wait for all reader threads to finish any current read operations. When
WaitForMultipleObjects returns, the master thread can safely write to the buffer. After it has
finished, it sets hGlobalWriteEvent and all the reader-thread events to signaled, enabling the
reader threads to resume their read operations.VOID WriteToBuffer(VOID)
{

DWORD dwWaitResult, i;
// Reset hGlobalWriteEvent to nonsignaled, to block readers.
if (! ResetEvent(hGlobalWriteEvent))
{
// Error exit.
}
// Wait for all reading threads to finish reading.
dwWaitResult = WaitForMultipleObjects(
NUMTHREADS, // number of handles in array
hReadEvents, // array of read-event handles
TRUE, // wait until all are signaled
INFINITE); // indefinite wait
switch (dwWaitResult)
{
// All read-event objects were signaled.
case WAIT_OBJECT_0:
// Write to the shared buffer.
break;
// An error occurred.
default:
printf("Wait error: %d\n", GetLastError());
ExitProcess(0);
}
// Set hGlobalWriteEvent to signaled.
if (! SetEvent(hGlobalWriteEvent))
{
// Error exit.
}
// Set all read events to signaled.
for(i = 1; i <= NUMTHREADS; i++)
if (! SetEvent(hReadEvents[i])) {
// Error exit.
}

}Before starting a read operation, each reader thread uses WaitForMultipleObjects to wait for the
application-defined global variable hGlobalWriteEvent and its own read event to be signaled.
When WaitForMultipleObjects returns, the reader thread's auto-reset event has been reset to
nonsignaled. This blocks the master thread from writing to the buffer until the reader thread uses
the SetEvent function to set the event's state back to signaled.VOID ThreadFunction(LPVOID lpParam)
{

DWORD dwWaitResult, i;
HANDLE hEvents[2];
hEvents[0] = (HANDLE) *lpParam; // thread's read event
hEvents[1] = hGlobalWriteEvent;
dwWaitResult = WaitForMultipleObjects(
2, // number of handles in array
hEvents, // array of event handles
TRUE, // wait till all are signaled
INFINITE); // indefinite wait
switch (dwWaitResult)
{
// Both event objects were signaled.
case WAIT_OBJECT_0:
// Read from the shared buffer.
break;
// An error occurred.
default:
printf("Wait error: %d\n", GetLastError());
ExitThread(0);
}
// Set the read event to signaled.
if (! SetEvent(hEvents[0]))
{
// Error exit.
}

}

Using Critical Section Objects
The following example shows how a thread initializes, enters, and leaves a critical section. As with
the mutex example (see Using Mutex Objects), this example uses the try-finally structured
exception-handling syntax to ensure that the thread calls the LeaveCriticalSection function to
release its ownership of the critical section object.CRITICAL_SECTION GlobalCriticalSection;
// Initialize the critical section.
InitializeCriticalSection(&GlobalCriticalSection);
// Request ownership of the critical section.
try
{

EnterCriticalSection(&GlobalCriticalSection);
// Access the shared resource.

}
finally
{

// Release ownership of the critical section.
LeaveCriticalSection(&GlobalCriticalSection);

}

Synchronization Reference
The following functions, structures, and macros are used with synchronization.

Synchronization Functions
The following functions are used in synchronization.
CancelWaitableTimer
CreateEvent
CreateMutex
CreateSemaphore
CreateWaitableTimer
DeleteCriticalSection
EnterCriticalSection
GetOverlappedResult
InitializeCriticalSection
InterlockedCompareExchange
InterlockedDecrement
InterlockedExchange
InterlockedExchangeAdd
InterlockedIncrement
LeaveCriticalSection
MsgWaitForMultipleObjects
MsgWaitForMultipleObjectsEx
OpenEvent
OpenMutex
OpenSemaphore
OpenWaitableTimer
PulseEvent
QueueUserAPC
ReleaseMutex
ReleaseSemaphore
ResetEvent
SetEvent
SetWaitableTimer
SignalObjectAndWait
TryEnterCriticalSection
WaitForMultipleObjects
WaitForMultipleObjectsEx
WaitForSingleObject

WaitForSingleObjectEx

Synchronization Structures
The following structure is used with synchronization.

OVERLAPPED

Synchronization Macros
The following macro is used with synchronization.

HasOverlappedIoCompleted

System InformationThe Microsoft® Win32® application programming interface (API) includes functions that describe
the current system configuration.

About System Information
The functions described in this overview retrieve a variety of data, such as the computer name,
user name, settings of environment variables, processor type, system colors, and so on. The
Win32 API also includes functions that can change the system configuration, shut down the
system, and start the Microsoft® Windows™ Help application.

System Configuration
Several of the functions in the Win32 API are specifically intended to describe or change the
system configuration. At startup, for example, a computer is assigned the name listed in the
registry. An application can retrieve this name by using the GetComputerName function and can
change the name by using the SetComputerName function. SetComputerName changes the
registry, not the current computer name. As a result, the new name is not assigned until the
computer is restarted. For more information about the registry, see Registry.

The GetUserName function retrieves the name of the user currently logged onto the system. The
user name is either the logon name or the user's full name, if the latter is included in the registry.

The GetSystemInfo function retrieves processor and memory information, such as the page size,
original equipment manufacturer (OEM) identifier, number and type of processors, application
address range, and so on. The GetVersionEx function retrieves the major and minor revision
numbers of the installed version of Microsoft Windows. The GetKeyboardType function retrieves
such information as the type of keyboard and the number of function keys on the current
keyboard.

The SystemParametersInfo function retrieves or sets various system attributes, such as double-
click time, screen saver time-out, window border width, and desktop pattern. When an application
uses SystemParametersInfo to set a parameter, the change takes place immediately. This
function also enables applications to update the user profile, so changes to the system will be
preserved when the system is restarted.

The GetThreadDesktop function retrieves a handle of the desktop for a given thread. This handle
can be used in calls to functions that retrieve and set security attributes.

The Windows directory is the directory that contains Windows-based applications, initialization
files, and Help files. The GetWindowsDirectory function retrieves the path to this directory.
Applications that create files should do so in the Windows directory. This is the only directory
guaranteed to be private to a user running a shared version of Windows.

The system directory is the directory that contains Windows libraries, drivers, and font files. The
GetSystemDirectory function retrieves the path to this directory.

An environment variable is a symbolic variable that represents some element of the system, such
as a path, a filename, or other literal data. For example, the environment variable PATH
represents the directories in which to search for executable files. When a user logs on, the system
initializes environment variables based on the environment section of the registry. The
ExpandEnvironmentStrings function retrieves the values of specified environment variables.

System metrics are the dimensions of various Windows display elements. (Display elements are
the parts of a window and the Windows display that appear on the system display screen.) Typical
system metrics include the window border width, icon height, and so on. System metrics also
describe other aspects of the system, such as whether a mouse is installed, double-byte
characters are supported, or a debugging version of Windows is installed. The
GetSystemMetrics function retrieves a specified system metric.

Applications can also retrieve and set the color of window elements such as menus, scroll bars,
and buttons by using the GetSysColor and SetSysColors functions, respectively.

Using System Information
· Getting system configuration information
· Getting the system version
· Getting hardware information
· Changing the colors of window elements

Getting System Configuration Information
The following example uses the GetComputerName, GetUserName, GetSystemDirectory,
GetWindowsDirectory, and ExpandEnvironmentStrings functions to get information that
describes the system configuration. This example displays the information in a window's client
area.LPTSTR lpszSystemInfo;// pointer to system information string
DWORD cchBuff = 256; // size of computer or user name
TCHAR tchBuffer2[BUFFER]; // buffer for concatenated string
DWORD dwResult; // function return value
SYSTEM_INFO siSysInfo;// structure for hardware information
int aTabs[1] = {260}; // tab stop for TabbedTextOut
TCHAR tchBuffer[BUFFER]; // buffer for expanded string
int nSize; // size of string
lpszSystemInfo = tchBuffer2;
// Get and display the name of the computer.
GetComputerName(lpszSystemInfo, &cchBuff);
nSize = sprintf(tchBuffer, "Computer name: %s",

lpszSystemInfo);
TextOut(hdc, 15, 20, tchBuffer, nSize);
// Get and display the user name.
GetUserName(lpszSystemInfo, &cchBuff);
nSize = sprintf(tchBuffer, "User name: %s",

lpszSystemInfo);
TextOut(hdc, 15, 40, tchBuffer, nSize);
// Get and display the system directory.
nSize = GetSystemDirectory(lpszSystemInfo, MAX_PATH);
nSize = sprintf(tchBuffer, "System directory: %s",

lpszSystemInfo);
TextOut(hdc, 15, 60, tchBuffer, nSize);
// Get and display the Windows directory.
nSize = GetWindowsDirectory(lpszSystemInfo, MAX_PATH);
nSize = sprintf(tchBuffer, "Windows directory: %s",

lpszSystemInfo);
TextOut(hdc, 15, 80, tchBuffer, nSize);
// Display the "environment variables" header.
nSize = sprintf(tchBuffer,

"Environment variables (partial list):");
TextOut(hdc, 15, 105, tchBuffer, nSize);
// Expand the OS and NTVERSION environment variables.
dwResult = ExpandEnvironmentStrings(
"OS=%OS%NTVERSION=%NTVERSION%",
lpszSystemInfo,
BUFFER);
TextOut(hdc, 25, 120, (LPCTSTR) lpszSystemInfo,

dwResult - 1);
// Expand the PATH environment variable.
dwResult = ExpandEnvironmentStrings(
"PATH=%PATH%",
lpszSystemInfo,
BUFFER);
TextOut(hdc, 25, 135, (LPCTSTR) lpszSystemInfo,

dwResult - 1);
// Expand the LIBPATH environment variable.
dwResult = ExpandEnvironmentStrings(
"LIBPATH=%LIBPATH%",
lpszSystemInfo,
BUFFER);
TextOut(hdc, 25, 150, (LPCTSTR) lpszSystemInfo,

dwResult - 1);
// Expand the TMP environment variable.
dwResult = ExpandEnvironmentStrings(
"TMP=%TMP%",
lpszSystemInfo,
BUFFER);
TextOut(hdc, 25, 165, (LPCTSTR) lpszSystemInfo,

dwResult - 1);

Getting the System Version
The following example uses the GetVersionEx function to obtain the current version of Windows
and then displays the version number in a message box.OSVERSIONINFO osvi;
char szVersion [80];
memset(&osvi, 0, sizeof(OSVERSIONINFO));
osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
GetVersionEx (&osvi);
if (osvi.dwPlatformId == VER_PLATFORM_WIN32s)

wsprintf (szVersion, "Microsoft Win32s %d.%d (Build %d)",
osvi.dwMajorVersion,
osvi.dwMinorVersion,
osvi.dwBuildNumber & 0xFFFF);

else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS)
wsprintf (szVersion, "Microsoft Windows 95 %d.%d (Build %d)",osvi.dwMajorVersion,
osvi.dwMinorVersion,
osvi.dwBuildNumber & 0xFFFF);

else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT)
wsprintf (szVersion, "Microsoft Windows NT %d.%d (Build %d)",
osvi.dwMajorVersion,
osvi.dwMinorVersion,
osvi.dwBuildNumber & 0xFFFF);

MessageBox(NULL, szVersion, "Version Check", MB_OK);

Getting Hardware Information
The following example uses the GetSystemInfo function to obtain hardware information such as
the OEM identifier, processor type, page size, and so on. The example displays the information in
a window's client area.SYSTEM_INFO siSysInfo; // struct. for hardware information
int aTabs[1] = {260}; // tab stop for TabbedTextOut
TCHAR tchBuffer[BUFFER]; // buffer for expanded string
int nSize;// size of string
// Display the "hardware information" header.
nSize = sprintf(tchBuffer,

"Hardware information:");
TextOut(hdc, 15, 20, tchBuffer, nSize);
// Copy the hardware information to the SYSTEM_INFO structure.
GetSystemInfo(&siSysInfo);
// Display the contents of the SYSTEM_INFO structure.
nSize = sprintf(tchBuffer,

"OEM ID: %u\tNumber of Processors: %u",
siSysInfo.dwOemId,
siSysInfo.dwNumberOfProcessors);

TabbedTextOut(hdc, 25, 40, tchBuffer,
nSize, 1, aTabs, 25);

nSize = sprintf(tchBuffer,
"Page size: %u\tProcessor Type: %u",
siSysInfo.dwPageSize,
siSysInfo.dwProcessorType);

TabbedTextOut(hdc, 25, 60, tchBuffer,
nSize, 1, aTabs, 25);

nSize = sprintf(tchBuffer,
"Minimum app address: %lx\tMaximum app address: %lx",
siSysInfo.lpMinimumApplicationAddress,
siSysInfo.lpMaximumApplicationAddress);

TabbedTextOut(hdc, 25, 80, tchBuffer,
nSize, 1, aTabs, 25);

nSize = sprintf(tchBuffer,
"Active processor mask: %u",
siSysInfo.dwActiveProcessorMask);

TextOut(hdc, 25, 100, tchBuffer, nSize);The following example uses the GetSystemMetrics function to determine whether a mouse is
installed and whether the mouse buttons are swapped. The example also uses the
SystemParametersInfo function to retrieve the mouse threshold and speed. It displays the
information in a message box.TCHAR tchBuffer[BUFFER]; // buffer for expanded string
int nSize;// size of string
BOOL fResult; // system shutdown flag
int aMouseInfo[3]; // array for mouse information
// Is there a mouse?
fResult = GetSystemMetrics(SM_MOUSEPRESENT);
if (fResult == 0)
{

// Indicate if there is no mouse.
nSize = sprintf(tchBuffer, "No mouse installed.");

}
else
{

// If there is a mouse, determine whether its buttons are swapped.
fResult = GetSystemMetrics(SM_SWAPBUTTON);
if (fResult == 0)
{
nSize = sprintf(tchBuffer, "Buttons not swapped.\r");
}
else
{
nSize = sprintf(tchBuffer, "Buttons swapped.\r");
}
// Get the mouse speed and the threshold values.
SystemParametersInfo(SPI_GETMOUSE, // get mouse information
NULL, // not used
&aMouseInfo, // holds mouse information
NULL);// not used
nSize += sprintf(tchBuffer + nSize,
"Speed: %d\r", aMouseInfo[2]);
sprintf(tchBuffer + nSize,
"Threshold (x,y): %d,%d",
aMouseInfo[0], aMouseInfo[1]);

}
// Display the mouse information.
MessageBox(NULL, tchBuffer, "Mouse information",

MB_ICONINFORMATION);This next example uses SystemParametersInfo to double the mouse speed and update the
MouseSpeed value in the WIN.INI file.TCHAR tchBuffer[BUFFER]; // buffer for expanded string
int nSize;// size of string
int aMouseInfo[3]; // array for mouse information
// Get the current mouse speed.
SystemParametersInfo(SPI_GETMOUSE, // get mouse information

NULL, // not used
&aMouseInfo, // holds mouse information
NULL);// not used

// Double it.
aMouseInfo[2] = 2 * aMouseInfo[2];
// Change the mouse speed to the new value and update WIN.INI.
SystemParametersInfo(SPI_SETMOUSE, // set mouse information

NULL, // not used
aMouseInfo,// mouse information
SPIF_UPDATEINIFILE); // update win.ini

Changing the Colors of Window Elements
The following example uses the SetSysColors function to change the color of active window
borders to dark purple, of active title bars to dark cyan, and of the window background to light
gray.// window elements to change
int aiElements[3] = {COLOR_ACTIVEBORDER,
COLOR_ACTIVECAPTION,
COLOR_WINDOW};
// array of RGB values
DWORD aColors[3];
// Define the new colors.
aColors[0] = RGB(0x80, 0x00, 0x80); // dark purple
aColors[1] = RGB(0x00, 0x80, 0x80); // dark cyan
aColors[2] = RGB(0xC0, 0xC0, 0xC0); // light gray
// Set the window elements in aiElements to the colors
// specified in aColors.
SetSysColors(3, aiElements, aColors);The next example uses the GetSysColor function to retrieve the color of the window background

and displays the red, green, blue (RGB) value, in hexadecimal notation, in a message box.DWORD dwResult; // function return value
TCHAR tchBuffer[BUFFER]; // buffer for expanded string
int nSize; // size of string
// Get the color of the window background.
dwResult = GetSysColor(COLOR_WINDOW);
nSize = sprintf(tchBuffer,

"Window color: {%x, %x, %x}",
GetRValue(dwResult),
GetGValue(dwResult),
GetBValue(dwResult));

MessageBox(NULL, tchBuffer, "GetSysColor", MB_ICONINFORMATION);

System Information Reference
The following functions and structures are used with system information.

System Information Functions
The following functions are used to retrieve or set system information.
ExpandEnvironmentStrings
GetComputerName
GetCurrentHwProfile
GetKeyboardType
GetSysColor
GetSystemDirectory
GetSystemInfo
GetSystemMetrics
GetThreadDesktop
GetUserName
GetVersionEx
GetWindowsDirectory
IsProcessorFeaturePresent
SetComputerName
SetSysColors

SystemParametersInfo

Obsolete Functions
GetVersion

System Information Structures
The following structures are used with system information.
ANIMATIONINFO
HW_PROFILE_INFO
MINIMIZEDMETRICS
NONCLIENTMETRICS
OSVERSIONINFO

SYSTEM_INFO

System MessagesSystem messages provide the way to uniformly notify all applications and other components in the
system of changes that may affect their operation and access to resources. Applications and other
components use and process system messages to take advantage of new resources when they
become available and to prevent loss of data when existing resources become unavailable.

About System Messages
The Windows operating system provides two predefined classes of system messages: device
messages and power messages. Device messages notify applications and installable drivers of
device change events; power messages notify these of power management events. Applications
and other components can also define and use their own system messages to provide for
notification of other types of events.

This overview describes system messages, system-message broadcasts, and the specific class of
system messages called device messages. For more information about power messages, see
Power Management.

System Messages and System-Message Broadcasts
Each system message consists of a message identifier and two 32-bit parameters, wParam and
lParam. The message identifier is a unique value that specifies the message purpose. The
parameters provide additional information that is message-specific, but the wParam parameter is
often a notification value that further specifies the message purpose.

A system-message broadcast is simply the sending of a system message to components in the
system. You broadcast a system message by using the BroadcastSystemMessage function and
specifying the recipients of the message. Rather than specify individual recipients, you must
specify one or more types of recipients. These types are applications, installable drivers,
Windows-based network drivers, and system-level device drivers. BroadcastSystemMessage
sends messages to all members of each type you specify.

Most applications do not broadcast system messages. Instead, they process system messages
sent by other components. The operating system typically broadcasts system messages in
response to changes that usually take place within system-level device drivers. The device driver
or related component generates the system message and broadcasts it to applications and other
components to notify them of the change. For example, the subsystem responsible for disk drives
generates and broadcasts a system message whenever the device driver for the floppy disk drive
detects a change of media such as when the user inserts a disk in the drive.

Applications receive system messages through the window procedure of their top-level windows.
System messages are not sent to child windows. The action an application takes in response to a
system message depends on the message. Some system messages, called query messages,
require the application to respond by returning either TRUE or BROADCAST_QUERY_DENY to
indicate whether the system should continue to broadcast the message to other recipients.

Custom System Messages
You can create your own system messages and use them to coordinate activities between
applications and other components in the system. This is especially useful if you have created
your own installable drivers or system-level device drivers. Your custom system messages can
carry information to and from your driver and the applications that use the driver.

You broadcast custom system messages using the BroadcastSystemMessage function.
(System-level device drivers use a related, system-level function.) The function sends the
messages to the recipients in this order: system-level device drivers, Windows-based network
drivers, installable drivers, and applications. This means that system-level device drivers, if
chosen as recipients, always get the first opportunity to respond to a system message. Within a
given recipient type, no driver is guaranteed to receive a given message before any other driver.
This means that a system message intended for a specific driver must have a globally-unique
message identifier so that no other driver unintentionally processes it.

Query messages are a useful way to poll recipients for permission to carry out a given action. You
can generate your own query messages by setting the BSF_QUERY value in the dwFlags
parameter when calling BroadcastSystemMessage. Each recipient of the query message must
return TRUE for the function to send the message to the next recipient. If any recipient returns
BROADCAST_QUERY_DENY, the broadcast ends immediately and the function returns 0.

You can create installable drivers that broadcast and process system messages. An installable
driver is a dynamic-link library (DLL) that exports a DriverProc function. The driver receives
system messages through its DriverProc function and can broadcast messages using
BroadcastSystemMessage. Installable drivers are typically used to support multimedia devices,
such as sound boards, but can be used for other devices and purposes too.

Windows-based network drivers are dynamic-link libraries that provide the underlying support for
applications that use the Windows network functions to connect to and browse network resources.
System-level device drivers are operating-system-specific executable components that provide
direct access to and management of the hardware devices of the computer. The details regarding
how these components process system messages is beyond the scope of this book.

Device Messages and Device Change Events
Device messages are system messages that notify applications and other components of device
change events. These events occur whenever the system detects a change to the system
hardware such as when the user docks or undocks a laptop computer, or inserts or removes a
device such as a PCMCIA card. Change events can occur while the system is running or when
the system resumes operation after temporarily being suspended.

To help ensure that applications and installable drivers do not lose data when devices become
unavailable, the operating system monitors the hardware configuration and sends device
message to the applications and installable drivers to notify them of the changes and to give them
the opportunity to prepare for the changes before they occur.

For each event, the system broadcasts a WM_DEVICECHANGE message to all applications and
installable drivers. In this message, the wParam parameter identifies the event type and the
lParam parameter is usually the address of event-specific data.

The event-specific data identifies the device and provides additional detail about the event. The
format of this data depends on the device type, but the first few bytes always has the same format
as the DEV_BROADCAST_HDR structure. This means you can always check the
dbch_devicetype member in the data to determine the device type.

The system sends a DBT_DEVICEARRIVAL message (that is, a WM_DEVICECHANGE message
with wParam set to DBT_DEVICEARRIVAL) whenever a device has been inserted and is
available for use. Applications typically check the device type and begin using the device
immediately if appropriate.

The system sends a DBT_DEVICEQUERYREMOVE message to request permission to remove a
device. If an application determines that it needs the device, it can deny this request and cancel
the removal by returning BROADCAST_QUERY_DENY. To determine whether it needs the
device, an application can display a dialog box to prompt the user for instructions. If the
application does not need the device, it must return TRUE. The system immediately sends a
DBT_DEVICEQUERYREMOVEFAILED message if any application or driver canceled a previous
request to remove a device.

The system sends a DBT_DEVICEREMOVEPENDING message as a last warning before a
device is removed. At this point, the application cannot cancel the removal, so if it is using the
device it must prepare for its removal to prevent loss of data. This is especially important when a
network connection is being removed. The application must determine whether any of its open
files or pipes are on that connection. It can do this by comparing the network resource identifier in
the event-specific data of the message with the resource identifiers previously obtained for the
files and pipes. The system sends a DBT_DEVICEREMOVECOMPLETE message when a device
has been removed and is no longer available.

The system sends a DBT_QUERYCHANGECONFIG message to request permission to change
the current configuration (dock or undock). Any application can return
BROADCAST_QUERY_DENY to deny the request and cancel the change. If an application
denies the request, the system sends a DBT_CONFIGCHANGECANCELED message. If the
current configuration has changed, due to a dock or undock, the system sends a
DBT_CONFIGCHANGED message.

The system sends DBT_DEVICETYPESPECIFIC message whenever a device-specific event
occurs.

Using System Messages
· Processing a request to remove a device

Processing a Request to Remove a Device
An application receives a DBT_DEVICEQUERYREMOVE message when a component in the
system has decided to remove a given device. When the application receives this message, it
should determine whether it is using the given device and either cancel or prepare for the
removal. In the following example, the application processes the message by checking the type of
device that is to be removed.PDEV_BROADCAST_HDR pdbch;
PDEV_BROADCAST_VOLUME pdbcv;
case WM_DEVICECHANGE:

pdbch = (PDEV_BROADCAST_HDR) lParam;
switch (pdbch->dbch_devicetype) {
case DBT_DEVTYP_VOLUME:
pdbcv = (PDEV_BROADCAST_VOLUME) pdbch;
if (pdbcv->dbcv_flags == DBTF_MEDIA)
// pdbcv->dbcv_unitmask identifies which logical drive
}
return TRUE;
default:
return TRUE;
}

System Messages Reference
This section describes the functions, messages, and structures that support system messages.

System Message Functions
This section describes the functions that support system messages.

BroadcastSystemMessage

System Message Messages
This section describes the device messages.
DBT_CONFIGCHANGECANCELED
DBT_CONFIGCHANGED
DBT_DEVICEARRIVAL
DBT_DEVICEQUERYREMOVE
DBT_DEVICEQUERYREMOVEFAILED
DBT_DEVICEREMOVECOMPLETE
DBT_DEVICEREMOVEPENDING
DBT_DEVICETYPESPECIFIC
DBT_QUERYCHANGECONFIG
DBT_USERDEFINED

WM_DEVICECHANGE

System Message Structures
This section describes the structures associated with device messages.
DEV_BROADCAST_HDR
DEV_BROADCAST_OEM
DEV_BROADCAST_PORT
DEV_BROADCAST_USERDEFINED

DEV_BROADCAST_VOLUME

System ShutdownThe Win32 application programming interface (API) includes functions and messages that allow
applications to log off the current user or shut down the system.

About System Shutdown
System shutdown brings the system to a condition in which it is safe to turn off the computer. All
file-system buffers are flushed to the disk, then a message box is displayed informing the user
that the computer can be turned off. There is also a reboot option that will restart the computer,
rather than display this system shutdown message box.

Logging off stops all processes associated with the security context of the process that called the
exit function, logs the current user off the system, and displays the logon dialog box.

How to Log Off the Current User
Applications can use the ExitWindows or ExitWindowsEx function to log off the current user.

By default, when an application uses ExitWindows or ExitWindowsEx to log off, the system
sends the WM_QUERYENDSESSION message to each window. Applications agree to terminate
by returning TRUE when they receive this message. If any application returns FALSE, the log-off
operation is canceled.

Windows NT: When an application returns TRUE for this message, it receives the
WM_ENDSESSION message and it is terminated, regardless of how the other applications
respond to the WM_QUERYENDSESSION message.

Windows 95: After all applications return TRUE for this message, they receive the
WM_ENDSESSION and they are terminated.

To force all application to terminate, use ExitWindowsEx, and specify the EXW_FORCE flag.
This prevents the system from sending WM_QUERYENDSESSION messages.

The system also sends the CTRL_LOGOFF_EVENT control signal to every process during a log-
off operation. A console application can register a HandlerRoutine to process these messages.

How to Shut Down the System
The Win32 API provides two ways for an application to shut down local or remote computers:

· Shut down the system.
· Shut down the system and restart it.

Windows NT: The calling process must have the SE_SHUTDOWN_NAME privilege to shut down
the system.

An application can use the ExitWindowsEx function to shut down the system. The system sends
the WM_QUERYENDSESSION message to each window, unless ExitWindowsEx is called with
the EXW_FORCE flag. While processing WM_QUERYENDSESSION, the applications perform
any cleanup and return TRUE to indicate that they can be terminated. If EXW_FORCE is used,
applications may lose data. For more information, see Shutting Down.

Windows NT: The InitiateSystemShutdown function starts a timer and displays a dialog box
that prompts the user to log off. While the dialog box is displayed, the AbortSystemShutdown
function can stop the timer and prevent the computer from shutting down. However, if the timer
expires, the computer is shut down. InitiateSystemShutdown can also restart the computer
following a shutdown operation. For more information, see Displaying the Shutdown Dialog Box.

Using System Shutdown
· Logging Off
· Shutting Down
· Displaying the Shutdown Dialog Box

Logging Off
The ExitWindows function logs off the current user. All applications must agree to terminate
before the user logs off. If any application returns FALSE when it processes the
WM_QUERYENDSESSION message, the user is not logged off. If your application handles the
WM_QUERYENDSESSION message, you can allow the user to cancel the log-off operation, even
if another application or Windows originated the end-session request.

The following example logs off the current user, unless the user clicks the No button in the
message box displayed when the application receives the WM_QUERYENDSESSION message.// Log off the current user.
ExitWindows(0, 0);

// Process the message in the application's window procedure.
case WM_QUERYENDSESSION:
{

int r;
r = MessageBox(NULL, "Shut down?","WM_QUERYENDSESSION", MB_YESNO);
// Return TRUE to allow shutdown, FALSE to stop.
return r == IDYES;
break;

}

Shutting Down
You can use the ExitWindowsEx function to shut down the system. Shutting down flushes file
buffers to disk and brings the system to a condition in which it is safe to turn off the computer.

Windows NT: The following example enables the SE_SHUTDOWN_NAME privilege and then
shuts down the system.HANDLE hToken;
TOKEN_PRIVILEGES tkp;
// Get a token for this process.
if (!OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken))
error("OpenProcessToken");

// Get the LUID for the shutdown privilege.
LookupPrivilegeValue(NULL, SE_SHUTDOWN_NAME,

&tkp.Privileges[0].Luid);
tkp.PrivilegeCount = 1; // one privilege to set
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
// Get the shutdown privilege for this process.
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,

(PTOKEN_PRIVILEGES)NULL, 0);
// Cannot test the return value of AdjustTokenPrivileges.
if (GetLastError() != ERROR_SUCCESS)

error("AdjustTokenPrivileges");
// Shut down the system and force all applications to close.
if (!ExitWindowsEx(EWX_SHUTDOWN | EWX_FORCE, 0))

error("ExitWindowsEx");For more information about setting security privileges, see Security.

Displaying the Shutdown Dialog Box
Windows NT only

The following example uses the InitiateSystemShutdown function to begin the system shutdown
process on the computer on which is user is logged on. The application must first enable the
SE_SHUTDOWN_NAME privilege.HANDLE hToken; // handle to process token
TOKEN_PRIVILEGES tkp; // pointer to token structure
BOOL fResult;// system shutdown flag
// Get the current process token handle so we can get shutdown
// privilege.
if (!OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken))
ErrorHandler("OpenProcessToken failed.");

// Get the LUID for shutdown privilege.
LookupPrivilegeValue(NULL, SE_SHUTDOWN_NAME,

&tkp.Privileges[0].Luid);
tkp.PrivilegeCount = 1; // one privilege to set
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
// Get shutdown privilege for this process.
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,

(PTOKEN_PRIVILEGES) NULL, 0);
// Cannot test the return value of AdjustTokenPrivileges.
if (GetLastError() != ERROR_SUCCESS)

ErrorHandler("AdjustTokenPrivileges enable failed.");
// Display the shutdown dialog box and start the time-out countdown.
fResult = InitiateSystemShutdown(

NULL, // shut down local computer
"Click on the main window and press \

the Escape key to cancel shutdown.", // message to user
20, // time-out period
FALSE, // ask user to close apps
TRUE); // reboot after shutdown

if (!fResult)
{

ErrorHandler("InitiateSystemShutdown failed.");
}
// Disable shutdown privilege.
tkp.Privileges[0].Attributes = 0;
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,

(PTOKEN_PRIVILEGES) NULL, 0);
if (GetLastError() != ERROR_SUCCESS)
{

ErrorHandler("AdjustTokenPrivileges disable failed.");
}If the AbortSystemShutdown function is executed in the time-out period specified by

InitiateSystemShutdown, the system does not shut down. In this example, the user can prevent
the system from shutting down by clicking on the application's main window and pressing the ESC
key. The example processes the keystroke by calling AbortSystemShutdown.HANDLE hToken; // handle to process token
TOKEN_PRIVILEGES tkp; // pointer to token structure
BOOL fResult;// system shutdown flag
case WM_KEYDOWN:

// Process only the Escape key.
if (wParam != VK_ESCAPE)
{
break;
}
// Get the current process token handle so we can get shutdown
// privilege.
if (!OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken))
{
ErrorHandler("OpenProcessToken failed.");
}
// Get the LUID for shutdown privilege.
LookupPrivilegeValue(NULL, SE_SHUTDOWN_NAME,

&tkp.Privileges[0].Luid);
tkp.PrivilegeCount = 1; // one privilege to set
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
// Get shutdown privilege for this process.
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,
(PTOKEN_PRIVILEGES)NULL, 0);
// Cannot test the return value of AdjustTokenPrivileges.
if (GetLastError() != ERROR_SUCCESS)
{
ErrorHandler("AdjustTokenPrivileges enable failed.");
}
// Prevent the system from shutting down.
fResult = AbortSystemShutdown(NULL);
if (!fResult)
{
ErrorHandler("AbortSystemShutdown failed.");
}
// Disable shutdown privilege.
tkp.Privileges[0].Attributes = 0;
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0,
(PTOKEN_PRIVILEGES) NULL, 0);
if (GetLastError() != ERROR_SUCCESS)
{
ErrorHandler("AdjustTokenPrivileges disable failed.");
}
break;

System Shutdown Reference
The following functions and messages are used with system shutdown.

System Shutdown Functions
The following functions are used with system shutdown.
AbortSystemShutdown
ExitWindows
ExitWindowsEx

InitiateSystemShutdown

System Shutdown Messages
The following messages are used with system shutdown.
WM_ENDSESSION

WM_QUERYENDSESSION

Tape BackupThe tape functions provided in the Microsoft® Win32® application programming interface (API)
enable backup applications to read from and write to a tape, initialize a tape, and retrieve tape or
tape drive information.

About Tape Backup
In Microsoft® Windows™, a tape volume consists of a recording medium and its physical carrier.
The entire length of tape in a volume is not available for recording data. Short sections at the
beginning and the end of the tape are reserved for attaching the tape to the hubs in the carrier.
The first position on the tape where data can be recorded is the called the beginning-of-medium
marker, and the last position is called the end-of-medium marker.

Every tape volume has one or more partitions. A partition is a portion of the volume, containing its
own beginning and ending points, that does not overlap with any other portion of the volume.
Each partition has three predefined positions. The first position in a partition where you can record
data is called the beginning-of-partition marker, and the last is called end-of-partition marker. The
early-warning position is located immediately before the end-of-partition marker. The early-
warning position notifies tape applications to transfer buffered data to the tape before reaching the
end-of-partition marker.

The area between a partition's beginning and ending points is typically divided into sections by
filemarks or setmarks. Filemarks and setmarks are special recorded elements that do not contain
user data; they simply divide the partition into smaller areas to provide an address scheme.
Filemarks and setmarks serve similar purposes, but setmarks provide faster positioning on high-
capacity tape drives.

Typically, tape devices support filemarks and setmarks. Support of both enables tape data to be
formatted such that setmarks separate data from different disk volumes and filemarks separate
data from individual files on a disk volume.

Another recorded element that denotes locations on the tape is an erase gap, an area of erased
tape or a pattern that the device does not recognize as a mark or as user data.

There are three types of filemarks. A short filemark contains a short erase gap that cannot be
overwritten unless the write operation is performed from the beginning of the partition or from an
earlier long filemark. A long filemark contains a long erase gap that enables an application to
position the tape at the beginning of the filemark and to overwrite the filemark and the erase gap.
A normal filemark does not contain an erase gap. Tape devices that use filemarks support either
short and long filemarks or normal filemarks, but not all three.

The area on a partition between setmarks or filemarks is available for recording data. A unit of
data written to or read from a tape is referred to as a block.

Tape Initialization
An application must use the CreateFile function to create a handle of a tape device. This handle
is used in subsequent operations on the tape in the device.

Before an application writes to a tape, the tape must be formatted according to the needs of the
application and the capabilities of the tape drive being used. The CreateTapePartition function
reformats a tape, creating on it a given number of partitions of a specified size.

The PrepareTape function prepares a tape to be accessed or removed. This function can load,
unload, lock, or unlock a tape. This function can also tension the tape by moving the tape to the
end of the tape and back to the beginning.

To retrieve and set information about a tape and tape drive, an application uses the
GetTapeParameters, SetTapeParameters, and GetTapeStatus functions.

GetTapeParameters retrieves information that describes a tape or a tape drive. The tape
information includes the tape's type, density, and block size; the number of partitions on the tape;
the amount of tape remaining; and so on. The tape drive information includes the drive's default
block size, the maximum partition count, and the features that are supported.

SetTapeParameters either sets the tape block size or sets the tape drive flags that indicate
whether the drive supports hardware error correction, data compression, data padding, or any
combination of the three.

GetTapeStatus indicates whether the tape drive is ready to process tape commands.

Tape Input and Output
The Win32 API provides several functions that applications can use to perform input and output (I/
O) on a tape drive. Tape I/O is similar to I/O performed on a communications device.

When performing tape I/O, some tape drives store tape firmware information in the first few blocks
on a tape, typically using some portion of the first 100 blocks. Applications should not use those
blocks. More specific information on this subject is available from individual tape system
manufacturers. In general, an application that skips the first 100 blocks on a tape will avoid tape
drive idiosyncracies.

The GetTapePosition and SetTapePosition functions retrieve and move the current tape
position. The WriteTapemark function writes a specified number of setmarks, filemarks, short
filemarks, and long filemarks. The EraseTape function erases all or part of a tape.

The ReadFile and WriteFile functions read and write file data from and to the tape. The data is
read and written in complete blocks. If the tape's block size is 512 bytes, all read and write
operations must use buffers that are simple integer multiples of that block size: 512, 1024, 1536,
2048, and so on. Most, if not all, drives only allow a write operation after the tape is rewound or
after a read operation produces an end-of-data error message.

If ReadFile encounters a filemark, the data up to the filemark is read and the function fails. (The
GetLastError function returns an error code indicating the type of filemark that was encountered.
) To continue reading beyond the filemark, an application must move the tape past the filemark
and call ReadFile again.

ReadFile and WriteFile read and write only the data stream. The BackupRead and
BackupWrite functions read and write all the streams associated with a file. These include data,
extended attributes, security, and alternative data streams. The security and alternate data
streams are relevant only on the new technology file system (NTFS) partition.

The BackupSeek function seeks forward in a file initially accessed by BackupRead or
BackupWrite. This function enables an application to skip information that causes access errors.

If an application needs to access only the file data, it should use ReadFile and WriteFile. These
functions can also read alternative data streams if the streams were created by using the
CreateFile function.

A tape-backup application must use BackupRead and BackupWrite to copy all information
pertaining to a file. However, these functions do not read or write file characteristics such as
attributes, file creation time, and so on. Applications must use the file input and output functions,
such as GetFileAttributes and SetFileAttributes, to retrieve and set those values.

Using Tape Backup
· Creating a backup application
· Backing up and restoring POSIX file links

Creating a Backup Application
To perform any input or output on a tape, a backup application must first obtain a handle of the
tape device. The following code sample shows how to use the CreateFile function to open a tape
device.HANDLE hTape; /* handle to tape device */
hTape = CreateFile(

"\\\\.\\TAPE0",/* name of tape device to open */
GENERIC_READ | GENERIC_WRITE, /* read-write access */
0,/* not used */
0,/* not used */
OPEN_EXISTING, /* required for tape devices */
0,/* not used */
NULL); /* not used */To back up a directory tree to a tape, an application must use the FindFirstFile and FindNextFile

functions to traverse the directory tree. Each time a file is found, the application should get the
file's attributes by using the GetFileAttributes function. If there are hard links, the application
should determine the number of links and save the file's unique identifier in a table for future
comparisons. The first time a file is found, the application should use CreateFile to open the file
and the BackupRead function to begin the backup. Then it can use the WriteFile function
repeatedly to transfer all the information in the buffer filled by BackupRead to the tape. The
second time a file is found (checked against the table of file identifiers when there are hard links),
the application can simply write the general file information to the tape, followed by a stream
whose identifier is BACKUP_LINK.

When restoring files from tape to disk, an application must use the CreateFile, BackupWrite, and
ReadFile functions. For each file on the tape, the application should use CreateFile to create a
new file on disk and BackupWrite to begin restoring the file. Then it should use ReadFile
repeatedly until all the information for the file has been read from the tape into the buffer filled by
BackupWrite. If one of the streams in the BackupWrite buffer has a BACKUP_LINK stream
identifier, the application must establish a hard link. If the data needed to establish the link does
not exist, BackupWrite fails. The application can use a preexisting catalog to locate and restore
the original data, or it can notify the user that the file data to be restored is in a different location.

Backing Up and Restoring POSIX File Links
A backup application can use the BackupWrite function to recreate POSIX file links.

The BackupRead function does not return POSIX file link data. A backup application must
maintain the link information itself. The following pseudocode presents algorithms for backing up
and restoring POSIX file link data along with other file information.

PseudoCode Algorithm for Backing Up POSIX File Links1. Initialize and empty a list of known links.
2. While there are more files to back up
3.Read the disk and get the next file.
4.Open the file for read.
5.Call GetFileInformationByHandle() to get the
NumberOfLinks and the FileIndex.
6.If the NumberOfLinks is greater than 1
7. Search the list of know links looking for

the same FileIndex.
8. If a match is NOT found
9. add the full path of the file and the

FileIndex to the list.
10. Call BackupRead() to copy all data to

your backup media.
10.Else
11. Mark the data as a LINK on your backup media
11. store the full path from the list

to your backup media.
12.Endif
13. Else
14. Call BackupRead() to copy all data to your

backup media.
15. Endif
16. EndWhilePseudoCode Algorithm for Restoring POSIX File Links1. While there are more files to restore
2.If the file is a LINK
3. use the full path which was saved as data

to open the file.
4. Initialize a WIN32_STREAM_ID structure with

dwStreamId equal to BACKUP_LINK.
5. Initialize the dwStreamAttributes to 0.
6. Initialize the dwStreamNameSize to 0.
7. Initialize a buffer containing the full path

of the file you are restoring in UNICODE.
8. Initialize the dwStreamSizeHigh to 0.
9. Initialize the dwStreamSizeLow to the size

in bytes of the buffercontaining the full path.
10. Call BackupWrite() with the WIN32_STREAM_ID
11. Call BackupWrite() with the buffer containing

the full path.
13.Else
14. Call BackupWrite() with the data stored on

your backup media.
15. Endif
16. EndWhile

Tape Backup Reference
The following functions and structures are used with tape backup.

Tape Backup Functions
Following are the functions used for tape backup.
BackupRead
BackupSeek
BackupWrite
CreateTapePartition
EraseTape
GetTapeParameters
GetTapePosition
GetTapeStatus
PrepareTape
SetTapeParameters
SetTapePosition

WriteTapemark

Tape Backup Structures
The following structures are used with tape backup.
TAPE_ERASE
TAPE_GET_DRIVE_PARAMETERS
TAPE_GET_MEDIA_PARAMETERS
TAPE_GET_POSITION
TAPE_PREPARE
TAPE_SET_DRIVE_PARAMETERS
TAPE_SET_MEDIA_PARAMETERS
TAPE_SET_POSITION
TAPE_WRITE_MARKS

WIN32_STREAM_ID

TimeThe Microsoft® Win32® application programming interface (API) provides a variety of date and
time functions, structures, and messages to retrieve and set the date and time for the system,
files, and the local time zone.

About Time
This overview describes various functions, structures, and messages and explains how to use
them to examine and modify dates and times.

For information about related topics, see the following overviews:

· Files
· File Systems

System Time
System time is the current date and time of day. Windows keeps system time so that your
applications have ready access to accurate time. When Windows first starts, it sets the system
time to a value based on the real-time clock of the computer and thereafter regularly updates the
time.

Windows bases system time on coordinated universal time (UTC). UTC-based time is loosely
defined as the current date and time of day in Greenwich, England. You can retrieve the system
time by using the GetSystemTime function. GetSystemTime copies the time to a SYSTEMTIME
structure that contains individual members for month, day, year, weekday, hour, minute, second,
and milliseconds.

Because system time is UTC-based, the time copied to the SYSTEMTIME structure may not be
the same as the local time ¾ the date and time of day for your time zone. You can retrieve the
local time by using the GetLocalTime function. GetLocalTime converts the system time to a local
time based on the current time-zone settings and copies the result to a SYSTEMTIME structure.
To convert a UTC time stored in a SYSTEMTIME structure to a local time, use the
SystemTimeToTzSpecificLocalTime function.

The current time-zone settings control how Windows converts between UTC and local time. You
can retrieve the current time-zone settings by using the GetTimeZoneInformation function. The
function copies the setting to a TIME_ZONE_INFORMATION structure and returns a value
indicating whether local time is currently in standard or daylight-savings time. You can set the
time-zone settings by using the SetTimeZoneInformation function.

You can set the system time by using the SetSystemTime or SetLocalTime function.
SetSystemTime assumes you have specified a UTC-based time; SetLocalTime assumes local
time and converts to UTC before setting the system time. If you change the system time, you
should send the WM_TIMECHANGE message to all top-level windows by using the
SendMessage function.

The GetSystemTimeAdjustment and SetSystemTimeAdjustment functions support algorithms
that synchronize the time-of-day clock with another time source using a periodic time adjustment
applied at each clock interrupt.

Windows Time
Windows time is the number of milliseconds elapsed since Windows started running. To ensure
that applications designed for earlier versions of Windows continue to run successfully, the
GetTickCount function returns the current Windows time. However, if your application requires
the current date and time of day, you should use the GetSystemTime or GetLocalTime function
whenever possible.

You typically use GetTickCount to compare the current Windows time with the time returned by
the GetMessageTime function. GetMessageTime returns the Windows time when the given
message was created.

Windows time is stored as a 32-bit value, which means Windows can record no more than 2^32
millisecond intervals before the 32-bit value overflows to zero. This is approximately 49.7 days. If
you use Windows time, check for the overflow condition when comparing times.

File Times
A file time represents the specific date and time at which a given file was created, last accessed,
or last written to. Windows records file times whenever applications create, access, and write to
files. Windows records the times using a 64-bit value specifying the number of 100-nanosecond
intervals that have elapsed since 12:00 A.M. January 1, 1601 (UTC). Writing to a file changes the
last write time; writing to or reading from the file (including running an executable file) changes the
last access time.
Note Not all file systems can record creation and last access time. In particular, the file allocation
table (FAT) file system records only last-write times.
You can retrieve the file times for a given file by using the GetFileTime function. GetFileTime
copies the creation, last access, and last write times to individual FILETIME structures. Each
structure consists of two 32-bit values that combine to form the single 64-bit value. You can also
retrieve the file times by using the FindFirstFile and FindNextFile functions. These functions
copy the times to FILETIME structures in a WIN32_FIND_DATA structure.

You can set the file times for a file by using the SetFileTime function. This function lets you
modify creation, last access, and last write times without changing the content of the file. You can
compare the times of different files by using the CompareFileTime function. The function
compares two file times and returns a value indicating which time is greater or returns zero if the
times are equal.

To make a file time more meaningful to a user, you can extract the month, day, year, and time of
day from a file time by using the FileTimeToSystemTime function. FileTimeToSystemTime
converts the file time and copies the individual values for date and time of day to a SYSTEMTIME
structure.

Windows records all file times in UTC-based times, but you can convert a file time to the local time
for your time zone by using the FileTimeToLocalFileTime function. Before displaying a file time
to a user, applications typically convert the file time to local time, then extract the month, day, year
and time of day using FileTimeToSystemTime.

If you plan to modify file times for given files, you can convert a date and time of day to a file time
by using the SystemTimeToFileTime function. You can also obtain the system time FILETIME
structure by calling the GetSystemTimeAsFileTime function.

If the original date and time of day are given in the local time for your time zone, you can convert
the resulting file time to UTC by using the LocalFileTimeToFileTime function. Always make sure
the file times you set using SetFileTime are valid UTC-based times.

MS-DOS Date and Time
MS-DOS date and MS-DOS time are packed 16-bit values that specify the month, day, year, and
time of day an MS-DOS file was last written to. MS-DOS records the date and time whenever an
MS-DOS application creates or writes to a file. MS-DOS applications retrieve this date and time
using MS-DOS functions. When you use the GetFileTime function to retrieve the file times for
files that were created by MS-DOS, GetFileTime automatically converts MS-DOS dates and
times to UTC-based times.

If you encounter an MS-DOS date and time that has not been converted, you can convert it to a
UTC-based time by using the DosDateTimeToFileTime function. This function copies the
converted date and time to a FILETIME structure. You can convert the value back to an MS-DOS
date and time by using the FileTimeToDosDateTime function.

Using Time
· Retrieving the last-write time
· Changing a file time to the current time
· Setting the system time

Retrieving the Last-Write Time
The following example retrieves the last-write time for a file, converts it to local time based on the
current time-zone settings, and creates a date and time string that can be shown to the user.// GetLastWriteTime - retrieves the last-write time and converts the
// time to a string
// Return value - TRUE if successful, FALSE otherwise
// hFile - must be a valid file handle
// lpszString - address of buffer to receive string
BOOL GetLastWriteTime(HANDLE hFile, LPSTR lpszString)
{

FILETIME ftCreate, ftAccess, ftWrite, ftLocal;
SYSTEMTIME stCreate;
// Retrieve the file times for the file.
if (!GetFileTime(hFile, &ftCreate, &ftAccess, &ftWrite))
return FALSE;
// Convert the last-write time to local time.
if (!FileTimeToLocalFileTime(&ftWrite, &ftLocal))
return FALSE;
// Convert the local file time from UTC to system time.
FileTimeToSystemTime(&ftLocal, &stCreate);
// Build a string showing the date and time.
wsprintf(lpszString, "%02d/%02d/%d %02d:%02d",
stCreate.wDay, stCreate.wMonth, stCreate.wYear,
stCreate.wHour, stCreate.wMinute);
return TRUE;

}

Changing a File Time to the Current Time
The following example sets the last-write time for a file to the current system time.// SetFileToCurrentTime - sets last write time to current system time
// Return value - TRUE if successful, FALSE otherwise
// hFile - must be a valid file handle
BOOL SetFileToCurrentTime(HANDLE hFile)
{

FILETIME ft;
SYSTEMTIME st;
BOOL f;
GetSystemTime(&st); // gets current time
SystemTimeToFileTime(&st, &ft); // converts to file time format
f = SetFileTime(hf, // sets last-write time for file
(LPFILETIME) NULL, (LPFILETIME) NULL, &ft);
return f;

}

Setting the System Time
The following example sets the system time.// SetNewTime - sets system time
// Return value - TRUE if successful, FALSE otherwise
// hour- new hour (0-23)
// minutes - new minutes (0-59)
BOOL SetNewTime(WORD hour, WORD minutes)
{

SYSTEMTIME st;
char *pc;
GetSystemTime(&st); // gets current time
st.wHour = hour;// adjusts hours
st.wMinute = minutes;// and minutes
if (!SetSystemTime(&st)) // sets system time
return FALSE;
return TRUE;

}

Time Reference
The following functions, structures and messages are used with time.

Time Functions
Following are the functions used with time formats.
CompareFileTime
DosDateTimeToFileTime
FileTimeToDosDateTime
FileTimeToLocalFileTime
FileTimeToSystemTime
GetFileTime
GetLocalTime
GetSystemTime
GetSystemTimeAdjustment
GetSystemTimeAsFileTime
GetTickCount
GetTimeZoneInformation
LocalFileTimeToFileTime
SetFileTime
SetLocalTime
SetSystemTime
SetSystemTimeAdjustment
SetTimeZoneInformation
SystemTimeToFileTime

SystemTimeToTzSpecificLocalTime

Obsolete Functions
GetCurrentTime

Time Structures
The following structures are used with time.
FILETIME
SYSTEMTIME

TIME_ZONE_INFORMATION

Time Messages
The following message is used with time.

WM_TIMECHANGE

Window Stations and DesktopsThis overview describes the new window station and desktop functionality, and is primarily
intended for developers of Win32 services. Developers of typical applications that will be run by
the logged-on user do not need to be concerned about window stations and desktops.

About Window Stations and Desktops
Beginning with Microsoft® Windows NT® version 3.5, the Microsoft Win32® application
programming interface (API) provides new window station and desktop functionality that enables
Win32 services to call USER32 and GDI32 functions regardless of the logon account in which the
service is running. This new functionality enables Win32 services to make these calls while
maintaining the security of applications running in the account of the logged-on interactive user.

For more information on how Win32 services use the window station and desktop support, see
Interactive Services.

Window Stations
A window station is a secure object that contains a clipboard, a set of global atoms and a group of
desktop objects. The interactive window station assigned to the logon session of the interactive
user also contains the keyboard, mouse, and display device. The interactive window station is
visible to the user and can receive input from the user. All other window stations are
noninteractive, which means that they cannot be made visible to the user, and cannot receive
user input.

Applications can use the following functions for manipulating window station objects:

Function Description

CloseWindowStation Closes a specified window station.
CreateWindowStation Creates a new window station.
EnumWindowStations Enumerates the window stations in the

system by repeatedly calling an
application-defined
EnumWindowStationProc callback
function.

GetProcessWindowStationReturns a handle of the window station
assigned to the calling process.

GetUserObjectInformationGets information about a window station
or desktop object.

GetUserObjectSecurity Gets security information for a window
station or desktop object.

OpenWindowStation Opens a handle of an existing window
station.

SetProcessWindowStationAssigns a specified window station to
the calling process.

SetUserObjectInformationSets information about a window station
or desktop object.

SetUserObjectSecurity Sets security information for a window
station or desktop object.

Desktops
A desktop is a secure object contained within a window station. A desktop has a logical display
surface and contains windows, menus, and hooks. A window station can have multiple desktops.
Only the desktops of the interactive window station can be visible and receive user input. On the
interactive window station, only one desktop at a time is active. This active desktop, also known
as the input desktop, is the one that is currently visible to the user and that receives user input.
Applications can use the OpenInputDesktop function to get a handle of the input desktop.
Applications that have the necessary access can use the SwitchDesktop function to specify a
different input desktop.

Invisible, noninteractive window stations enable Win32 services that do not have access to the
interactive window station to start GUI applications. Applications running in a noninteractive
window station cannot receive input or be visible. For example, the schedule service could use
this support to start a GUI backup application on a remote computer on which the interactive
window station was not accessible. For more information, see Interactive Services.

Applications can use the following functions for manipulating desktop objects:

Function Description

CloseDesktop Closes a specified desktop.
CreateDesktop Creates a new desktop on a specified

window station.
EnumDesktops Enumerates the desktops on a specified

window station by repeatedly calling an
application-defined EnumDesktopProc
callback function.

EnumDesktopWindowsEnumerates the windows on a specified
desktop by repeatedly calling an
application-defined EnumWindowsProc
callback function.

GetThreadDesktop Returns a handle of the desktop
assigned to the calling thread.

GetUserObjectInformationGets information about a window station
or desktop object.

GetUserObjectSecurity Gets security information for a window
station or desktop object.

OpenDesktop Opens a handle of an existing desktop.
SetThreadDesktop Assigns a specified desktop to the calling

thread.
SetUserObjectInformationSets information about a window station

or desktop object.
SetUserObjectSecurity Sets security information for a window

station or desktop object.

Window Station and Desktop Creation
The system automatically creates the interactive window station. When an interactive user logs
on, the system associates the interactive window station with the user's logon session. The
system also creates the default input desktop for the interactive window station.

When a noninteractive process such as a Win32 service attempts to connect to Win32 and no
window station exists for the process' logon session, Win32 attempts to create a window station
and desktop for the session. The name of the created window station is based on the logon
session identifier, and the desktop is named "Default." The discretionary access control lists
(DACLs) for the window station and desktop grant the following accesses to the service's user
account:

Window Station: WINSTA_READATTRIBUTES | WINSTA_ACCESSCLIPBOARD |
WINSTA_CREATEDESKTOP | WINSTA_ACCESSGLOBALATOMS |
WINSTA_EXITWINDOWS | STANDARD_RIGHTS_REQUIRED

Desktop: DESKTOP_READOBJECTS | DESKTOP_WRITEOBJECTS |
DESKTOP_CREATEWINDOW | DESKTOP_CREATEMENU |
DESKTOP_HOOKCONTROL | DESKTOP_ENUMERATE |
STANDARD_RIGHTS_REQUIRED

A process can use the CreateWindowStation function to create a new window station, and the
CreateDesktop function to create a new desktop.

Process Connection to a Window Station
A process automatically establishes a connection to a window station and desktop when it first
calls a USER32 or GDI32 function (other than the window station or desktop functions) that must
go to the Win32 server. The Win32 server determines the window station to which a process
connects according to the following rules:

1. If the process has called the SetProcessWindowStation function, it connects to the
window station specified in that call.

2. If the process did not call SetProcessWindowStation, it connects to the window station
inherited from the parent process.

3. If the process did not call SetProcessWindowStation and did not inherit a window
station, the Win32 server attempts to open for MAXIMUM_ALLOWED access and connect to
a window station as follows:
a. If a window station name was specified in the lpDesktop member of the STARTUPINFO

structure that was passed to the CreateProcess function when the process was created,
the process connects to the specified window station.

b. Otherwise, if the process is running in the logon session of the interactive user, the
process connects to the interactive window station.

c. If the process is running in a noninteractive logon session, the window station name is
formed based on the logon session identifier and an attempt is made to open that window
station. If the open operation fails because this window station does not exist, Win32 tries
to create the window station and a default desktop.

Thread Connection to a Desktop
After a process connects to a window station, the Win32 server assigns a desktop to the thread
making the connection to Win32. The desktop assigned during this connection process cannot be
closed by calling the CloseDesktop function. The Win32 server determines the desktop to assign
to the thread according to the following rules:

1. If the thread has called the SetThreadDesktop function, it connects to the specified
desktop.

2. If the thread did not call SetThreadDesktop, it connects to the desktop inherited from the
parent process.

3. If the thread did not call SetThreadDesktop and did not inherit a desktop, the Win32
server attempts to open for MAXIMUM_ALLOWED access and connect to a desktop as
follows:
a. If a desktop name was specified in the lpDesktop member of the STARTUPINFO

structure that was passed to the CreateProcess function when the process was created,
the thread connects to the specified desktop.

b. Otherwise, the thread connects to the default desktop of the window station to which the
process connected.

The desktop assigned during this connection process cannot be closed by calling the
CloseDesktop function.

Inherited Handles
When a process is connecting to a window station or desktop, the Win32 server searches the
process's handle table for inherited handles. The Win32 server uses the first window station and
desktop handles that it finds. If you want a child process to connect to a particular inherited
window station or desktop, you must ensure that the only the desired handles are marked
inheritable. If a child process inherits multiple window station or multiple desktop handles, the
results of the window station and desktop connection are undefined.

Handles to a window station and desktop that the Win32 server opens while connecting a process
to a window station or desktop are not inheritable.

Logoff Events
A logoff event occurs when a process calls the ExitWindows or ExitWindowsEx function. The
logoff event is identified by the window station of the process calling ExitWindowsEx.

When a logoff event occurs, the system notifies all processes in the system as follows:

· All windows of processes in the logon session being logged off receive the
WM_QUERYENDSESSION and WM_ENDSESSION messages. All windows on the desktops
of the window station being logged off receive these messages, even if the windows belong to
processes running in another logon session.

· Every process in the system receives the CTRL_LOGOFF_EVENT control signal. This
signal does not indicate which session is being logged off. The system sends this signal after
sending the window messages. For more information on control signals, see the
SetConsoleCtrlHandler function.

If the process that called ExitWindowsEx is running in the logon session of the interactive user,
all processes in the logon session are terminated. If the process calling ExitWindowsEx is in
some other logon session, only the notifications are made; no processes are terminated.

Using Window Stations and Desktops
· Creating an interactive process
· Interacting with the user by a win32 service
· Handling logoff events

Creating an Interactive Process
The following code fragment shows how a Win32 service process could use the STARTUPINFO
structure in a CreateProcess call to create a process that has access to the user's interactive
window station and default desktop. A noninteractive Win32 service could use this technique to
interact with the logged on user. The new process could then use a named pipe or some other
means of interprocess communication to communicate with the Win32 service.

To create an interactive process as shown in this example, a Win32 service must be logged in to
the LocalSystem account.#include <windows.h>
STARTUPINFO si;
PROCESS_INFORMATION ProcessInformation;
si.cb = sizeof(STARTUPINFO);
si.lpReserved = NULL;
si.lpTitle = NULL;
si.lpDesktop = "WinSta0\\Default";
si.dwX = si.dwY = si.dwXSize = si.dwYSize = 0L;
si.dwFlags = 0;;
si.wShowWindow = SW_SHOW;
si.lpReserved2 = NULL;
si.cbReserved2 = 0;
if (CreateProcess(NULL, lpszCmdLine, NULL, NULL, FALSE,

0, NULL, NULL, &si, &ProcessInformation)) {
CloseHandle(ProcessInformation.hProcess);
CloseHandle(ProcessInformation.hThread);

}

Interacting with the User by a Win32 Service
For a noninteractive Win32 service to interact with the user, it must open the user's window station
("WinSta0") and desktop ("Default"). By default, only the logged-on user and Win 32 services
running in the LocalSystem account are granted access to the user's window station and desktop.
This means that services running in other accounts must either impersonate the user when
opening the interactive window station and desktop, or have access granted to those accounts by
the user.

For compatibility with future versions of Windows NT that may support multiple users and/or
multiple desktops per user, the user's window station and desktop names should not be hard-
coded. Client applications should pass the names of their window station and desktop to the
service as part of the request to the service.

This code sample displays a message on the user's desktop in response to an RPC request from
one of the user's applications. Note that a global variable dwGuiThreadId in this example is also
used in the logoff handling example. If the thread that displays the message box terminates after it
is done with the message box, it is not necessary to save and restore the thread's desktop. It is
necessary to restore the process's window station.DWORD dwGuiThreadId = 0;
int
UserMessageBox(

RPC_BINDING_HANDLE h,
LPSTR lpszWindowStation,
LPSTR lpszDesktop,
LPSTR lpszText,
LPSTR lpszTitle,
UINT fuStyle)

{
DWORD dwThreadId;
HWINSTA hwinstaSave;
HDESK hdeskSave;
HWINSTA hwinstaUser;
HDESK hdeskUser;
int result;
/*

* Ensure connection to service window station and desktop, and
* save their handles.
*/

GetDesktopWindow();
hwinstaSave = GetProcessWindowStation();
dwThreadId = GetCurrentThreadId();
hdeskSave = GetThreadDesktop(dwThreadId);
/*

* Impersonate the client and connect to the User's
* window station and desktop.
*/

RpcImpersonateClient(h);
hwinstaUser = OpenWindowStation(lpszWindowStation, FALSE,

MAXIMUM_ALLOWED);
if (hwinstaUser == NULL) {
RpcRevertToSelf();
return 0;
}
SetProcessWindowStation(hwinstaUser);
hdeskUser = OpenDesktop(lpszDesktop, 0, FALSE, MAXIMUM_ALLOWED);
RpcRevertToSelf();
if (hdeskUser == NULL) {
SetProcessWindowStation(hwinstaSave);
CloseWindowStation(hwinstaUser);
return 0;
}
SetThreadDesktop(hdeskUser);
/*

* Display message box.
*/

dwGuiThreadId = dwThreadId;
result = MessageBox(NULL, lpszText, lpszTitle, fuStyle);
dwGuiThreadId = 0;
/*

* Restore window station and desktop.
*/

SetThreadDesktop(hdeskSave);
SetProcessWindowStation(hwinstaSave);
CloseDesktop(hdeskUser);
CloseWindowStation(hwinstaUser);
return result;

}

Handling Logoff Events
Win32 services that interact with the user should be prepared to handle logoff events. When a
logoff event occurs, the Win32 service must close all handles to the user's window station and
desktop.

This sample demonstrates how the message box in the interaction example code should be
dismissed at logoff. The ConsoleCtrlHandler function in this example is a HandlerRoutine that
was specified by a call to the SetConsoleCtrlHandler function.BOOL CALLBACK EnumProc(

HWND hwnd,
LPARAM lParam)

{
/*

* Send a WM_CLOSE to destroy the window, because DestroyWindow does
* not work across threads.
*/

SendMessage(hwnd, WM_CLOSE, 0, 0);
return TRUE;

}
BOOL ConsoleCtrlHandler(

DWORD dwCtrlType)
{

if (dwCtrlType == CTRL_LOGOFF_EVENT && dwGuiThreadId != 0) {
SetThreadDesktop(GetThreadDesktop(dwGuiThreadId));
EnumThreadWindows(dwGuiThreadId, EnumProc, 0);
}
return FALSE;

}

Window Station and Desktop Reference
The following functions and structures are associated with window station and desktop features.

Window Station and Desktop Functions
Use the following functions to implement window station and desktop features:
CloseDesktop
CloseWindowStation
CreateDesktop
CreateWindowStation
EnumDesktopProc
EnumDesktops
EnumDesktopWindows
EnumWindowStationProc
EnumWindowStations
GetProcessWindowStation
GetThreadDesktop
GetUserObjectInformation
GetUserObjectSecurity
OpenDesktop
OpenInputDesktop
OpenWindowStation
SetProcessWindowStation
SetThreadDesktop
SetUserObjectInformation
SetUserObjectSecurity

SwitchDesktop

Window Station and Desktop Structures
Use the following structure to manipulate window station and desktop objects:

USEROBJECTFLAGS

End-User-Defined CharactersEnd-user-defined characters (EUDC) are customized characters that users install for viewing and
printing documents.

This overview discusses the TrueType fonts that support end-user-defined characters and
describes the functions used to access and manage these characters in Win32-based
applications.

About End-User-Defined Characters
End-user-defined characters give users a way to form names and other words using characters
that are not available in standard screen and printer fonts.

End-user-defined characters are available only in Asian-language versions of the Microsoft
Windows operating system.

Character Sets and Fonts
An end-user-defined character is always associated with a double-byte character set (DBCS) and
a TrueType font. Applications identify the specified character by using the character's assigned
DBCS character value, and the operating system uses this value to locate shape and style
information in a corresponding TrueType font. The shape and style information specifies how the
character is drawn on the screen or printed page.

The DBCS character values that can be assigned depend on the specified character set. Each set
has at least one range of reserved values for use as end-user-defined characters. The system or
applications explicitly define these ranges by setting appropriate values under the
EUDCCodeRange key in the registry. In the registry, each character set is identified by a unique
code-page number.

To create an end-user-defined character, the user chooses a character value that is within the
specified range and adds the shape and style information to the TrueType font in the entry that
corresponds to that character value. Users create the shape and style information using an EUDC
editor or by purchasing end-user-defined font packages from font vendors. Any DBCS TrueType
font can contain end-user-defined characters. The font is called a "separate" EUDC font if it
contains only end-user-defined characters. The font is an "integrated" EUDC font if it contains
standard characters as well as end-user-defined characters.

Separate EUDC fonts are said to be either "typeface-aware" or "typeface-unaware." A typeface-
unaware font is designed to be a general purpose font that can be used with fonts of different
typeface styles and of different implementations, such as GDI raster, WIFE, device, and TrueType
fonts. A typeface-aware font is designed for use with a specific TrueType font.

The system default EUDC font is a typeface-unaware font that the system automatically
associates with all DBCS fonts except those TrueType fonts that have explicitly associated
typeface-aware fonts. Applications set the system default EUDC font by setting the value of the
SystemDefaultEUDCFont name under the EUDC key in the registry. Similarly, applications can
associate typeface-aware fonts with corresponding TrueType fonts by specifying a typeface name
and associated font file under the EUDC key. Separate EUDC fonts cannot be associated with
integrated EUDC fonts.

The system "hides" the system default EUDC and typeface-aware fonts. This means applications
cannot enumerate or otherwise examine these fonts using GDI functions. Applications, such as
EUDC editors and Control Panel, must use the registry entries to add, modify, and delete EUDC
fonts.

End-user-defined characters can also be used in Unicode-enabled applications. The reserved
ranges for each character set are mapped to corresponding values in the Unicode private use
area (values 0xE000 and higher). There are mappings for both Japanese and Chinese character
sets. For a list of these mappings, see Japanese EUDC Ranges and Chinese EUDC Ranges.

Writing, Mapping, and Sorting Characters
Applications write end-user-defined characters to the screen or printer the same way as writing
other characters, by using output functions such as TextOut and ExtTextOut. These functions
automatically retrieve character information from EUDC fonts if EUDC is enabled. When writing
end-user-defined characters, the action of the text output function depends on the currently
selected font. If the selected font is an integrated EUDC font, the function retrieves character
information from that font. If the selected font is a DBCS TrueType font that has an associated
typeface-aware EUDC font, the function retrieves information from the specified typeface-aware
font. If the selected font does not have an associated typeface-aware font, the function retrieves
information from the system default EUDC font. If the character is not in the system default EUDC
font or there is no system default EUDC font, the function writes the default character defined by
the selected font.

Applications can map end-user-defined characters to and from Unicode by using the
MultiByteToWideChar and WideCharToMultiByte functions. The MultiByteToWideChar
function maps an end-user-defined character to a character position in the Unicode private use
area. The WideCharToMultiByte function maps a character in the private use area to its
multibyte character counterpart, if such a mapping exists. The code page specified in this function
must contain an EUDC code range for the mapping to occur. If it does not, the function returns the
default character for any characters in the Unicode private use area.

Both MultiByteToWideChar and WideCharToMultiByte preserve the "round trip" mapping of
end-user-defined characters from a code page to Unicode and back to the original code page. But
these functions do not necessarily preserve mapping to other code pages. For example, if a
character from code page 932 is mapped to Unicode, then mapped from Unicode to another code
page with an EUDC range, it is likely that the original character will be mapped to a different end-
user-defined character in the destination code page. Similarly, mapping a Unicode string to a code
page that has an EUDC range may have unintended results. If the Unicode string contains a
private-use code point, that code point may be mapped to an end-user-defined character whether
or not the code point actually represents such a character.

Applications can compare strings that contain end-user-defined characters by using the
CompareStringA function. The function maps the characters to the Unicode end user zone
before comparing character values. Applications can create a sort key for the string by using the
LCMapStringA function and the LCMAP_SORTKEY value. This function maps characters to
Unicode first. All characters in the private use area are sorted after all other Unicode characters.
Within the area, characters are sorted in numerical order. If an application attempts to retrieve
CTYPE ifnormation for an end-user-defined character by using the GetStringTypeA function, the
function returns NULL for each character.

End-User-Defined Character Reference
This section provides reference information on:

· Registry entries.
· End-user-defined character constants.

Registry Entries
The following registry information shows the appropriate entries for use with end-user-defined
characters.

EUDCCodeRangeEUDCCodeRange

CodePage=FromTo[,FromTo]

The EUDCCodeRange registry entry contains entries that define end-user-defined characters
(EUDC) code ranges for the various code pages (character sets).EUDCCodeRange KeyThe EUDCCodeRange key has the following location in the registry:HKEY_LOCAL_MACHINE\ System\CurrentControlSet\Control\NLS\CodePage\
EUDCCodeRangeThe key contains one or more values specifying the range of character values within a codepage

that are available for end-user-defined characters. Under this key, a value name is one of these
code-page values:

Value Meaning

932 Japan
936 Simplified Chinese
949 Unified Hangeul Code (Hangeul TongHabHyung

Code)
950 Traditional Chinese
1361 Johab
The value associated with each name is a string consisting of one or more pairs of 4-digit
hexadecimal numbers, with the numbers in each pair separated by a hyphen (-) and each
pair separated from any preceding pair by a comma (,). The following example illustrates
this format:HKEY_LOCAL_MACHINE\

System\CurrentControlSet\Control\NLS\CodePage\EUDCCodeRange
923=F040-F9FC
950=FA40-FEFE, 8E40-A0FE, 8140-8DFE, C6A1-C8FECodePage

A user-defined value name that identifies the code page. It must be the letters "CP" followed
by 5 decimal digits specifying the code page.

FromTo
A string value consisting of a pair of 4-digit hexadecimal values separated by a hyphen (-).
Multiple FromTo values may be specified, but each must be separated from the previous by a
comma (,).

The following examples show possible EUDC ranges for code pages 923 and 950:CP00923=F040-F9FC
CP00950=FA40-FEFE,8E40-A0FE,8140-8DFE,C6A1-C8FE

EUDCEUDC
SystemDefaultEUDCFont=TrueTypeEUDCFontFileName

TrueTypeFontTypeface=TrueTypeEUDCFontFileNameEUDC KeyThe EUDC registry key has the following location in the registry:HKEY_CURRENT_USER\EUDCThe EUDC key contains one or more subkeys with each subkey containing values defining the
fonts associated with end-user-defined characters for a given code page. Under the EUDC, a
subkey name can be one of these code-page numbers:

Value Meaning

932 Japan
936 Simplified Chinese
949 Unified Hangeul Code (Hangeul TongHabHyung

Code)
950 Traditional Chinese
1361 Johab

One value under the subkey has the name SystemDefaultEUDCFont. Other values, if any,
have names that identify a typeface. The values associated with these names are strings
specifying the name of TrueType font file containing the given font. The following example shows
the EUDC key for code page 932:HKEY_CURRENT_USER\EUDC\932
SystemDefaultEUDCFont=EUDC.TTF
MS Mincho=MINEUDC.TTF
MS Gothic=GTEUDC.TTFSystemDefaultEUDCFont

Predefined value name used to set the system default font. The corresponding value must be
a string that identifies a typeface-unaware EUDC font. There is no system default EUDC font
unless this entry is explicitly specified.

TrueTypeFontTypeface
A user-defined value name that identifies the typeface name associated with a TrueType font.
The corresponding value must be a string that identifies a typeface-aware EUDC font.

TrueTypeEUDCFontFileName
A string value consisting of the filename of a "separate" EUDC font file.

The following example sets the system default EUDC font to be EUDC.TTF and associates the
typeface-aware fonts, MINEUDC.TTF and GOTEUDC.TTF, with the typeface names "MS Mincho"
and "MS Gothic":SystemDefaultEUDCFont=EUDC.TTF
MS Mincho=MINEUDC.TTF
MS Gothic=GOTEUDC.TTF

End-User-Defined Character Constants
The following constants are used with end-user-defined characters in the following Far Eastern
languages.

Japanese EUDC Ranges
The following table shows the mapping between the Japanese Microsoft Standard Character Set
(ShiftJIS) and Unicode.

Shift JIS Unicode

F040 U+E000
F041 U+E001
F042 U+E002

: :
F9FA U+E755
F9FB U+E756
F9FC U+E757

Chinese EUDC Ranges
The following table shows the mapping between the Chinese character sets (BIG-5 and GB 2312-
80) and Unicode.

BIG-5 Unicode

FA40 - FEFE U+E000 - U+E310
8E40 - A0FE U+E311 - U+EEB7
8140 - 8DFE U+EEB8 - U+F6B0
C6A1 - C8FE U+F6B1 - U+F8FF

GB 2312-80 Unicode
F8A1 - FEFE U+E000 - U+E29F
AAA1 - AFFE U+E2A0 - U+E4DF

Korean EUDC Ranges
The following table shows the mapping from Korean EUDC characters (Unified Hangeul Code)
and Unicode.
Unified
Hangeul

Unicode

C9A1 - C9FE U+E000 - U+E05D
FEA1 - FEFE U+E05E - U+E0BB

Input Method EditorThe input method editor (IME), available in Asian versions of the Microsoft Windows operating
system, helps minimize the effort needed by users to enter text containing characters from
Unicode and double-byte character sets.

This overview describes the IME and explains how to use the input method manager functions to
create and manage IME windows.

About Input Method Editor
The input method editor relieves users of the need to remember all possible character values.
Instead, the IME monitors the user's keystrokes, anticipates the characters the user may want,
and presents a list of candidate characters from which to choose.

By default, the IME provides an IME window through which users enter keystrokes and view and
select candidates. Applications developed for the Win32 application programming interface (API)
can use the input method manager (IMM) functions and messages to create and manage their
own IME windows, providing a custom interface while using the conversion capabilities of the IME.

Status, Composition, and Candidates Windows
The status, composition, and candidates windows form the user interface for the IME. The status
window indicates that the IME is open and provides the user the means to set the conversion
modes. The composition window appears when the user enters text and, depending on the
conversion mode, either displays the text as entered or displays converted text. The candidates
window appears in conjunction with the composition window. It contains a list of "candidates"
(alternative characters) for the selected character or characters in the composition window. The
user can scroll through the candidates list and select the desired character(s), then return to the
composition window. The user can compose the desired text in this way until the composition
string is finalized and the window is closed. The IME sends the composed characters to the
application in the form of WM_IME_CHAR or WM_IME_COMPOSITION/GCS_RESULT
messages. If the application does not process these messages, the DefWindowProc function
translates them into one or more WM_CHAR messages.

By default, the system automatically creates and manages status, composition, and candidates
windows for all windows that require text input. For many applications, this default processing is
sufficient. These applications rely entirely on the system for IME support and are said to be IME-
unaware because they are unaware of the many tasks the system carries out to manage the IME
windows.

An IME-aware application, on the other hand, participates in the creation and management of IME
windows. Such applications control the operation, position, and appearance of the default
windows by sending messages to and by intercepting and processing messages intended for
these windows. In some cases, applications create their own IME windows and provide complete
processing for their custom status, composition and candidates windows.

IME Window Class
The "IME" window class is a predefined system global class that defines the appearance and
behavior of the standard IME windows. The class is similar to common control classes in that you
create a window of this class by using the CreateWindowEx function. Like static controls, an IME
window does not respond to user input by itself. Instead, it notifies the IME of user input actions
and processes control messages sent to it by the IME or applications to carry out a response to
the user action.

IME-aware applications sometimes create their own IME windows using the IME class. This
allows the application to take advantage of the default processing of the IME window while having
control of the positioning of the window.

IME Messages
The system sends IME window messages to the window procedure of the application when
certain event occur that affect the IME windows. For example, the system sends the
WM_IME_SETCONTEXT message to the application when a window is activated. IME-unaware
application pass these messages to the DefWindowProc function which sends them to the
corresponding default IME window. IME-aware applications either process these messages or
forward them the their own IME windows.

You can direct an IME window to carry out an action, such as change the position of composition
window, by using the WM_IME_CONTROL message. The IME notifies the application about
changes to the composition string by using the WM_IME_COMPOSITION message and about
general changes to the status of the IME windows by sending the WM_IME_NOTIFY message.

Input Context
An input context is an internal structure, maintained by the IME, that contains information about
the status of the IME and is used by IME windows. By default, the system creates and assigns an
input context to each thread. Within the thread, this default input context is a shared resource and
is associated with each newly created window.

To retrieve or set information in the IME, an application must first retrieve a handle to the input
context associated with a given window. You retrieve the handle by using the ImmGetContext
function. You can use the retrieved handle in subsequent calls to the input method manager
functions to retrieve and set IME values, such as the composition window style, the composition
style, and the status window position. Once you have finished using the context, you must release
it using the ImmReleaseContext function.

Because the default input context is a shared resource, any changes you make to it apply to all
windows in the thread. However, you can override this default behavior by creating and
associating your own input context to one or more window of the thread. The changes you make
to your own input context apply only to the windows with which it is associated.

You can create an input context by using the ImmCreateContext function. You assign the context
to a window by using the ImmAssociateContext function. This function returns the handle of the
previously associated input context. If you have not associated an input context with the window
before, the returned handle is for the default input context. You should save this handle and later
reassociate with the window if you no longer want to use your own input context.

Once an input context is associated with a window, the system automatically selects that context
when the window is activated and receives the input focus. The style and other information in the
input context affects subsequent keyboard input for that window, determining whether and how
the IME operates.

You must destroy any input context you create before terminating your application. You destroy
an input context by using the ImmDestroyContext function. Before destroying it, you must
remove the input context from any association it has with windows in the thread by using the
ImmAssociateContext function.

Composition String
The composition string is the current text in the composition window. This is the text that the IME
converts to final characters. Each composition string consists of one or more clauses, where a
clause is the smallest combination of characters that the IME can convert to a final character. You
can get and set the composition string and get and set the composition string by using the
ImmGetCompositionString and ImmSetCompositionString functions.

As the user enters text in the composition window, the IME tracks the status of the composition
string. This status includes attribute information, clause information, typing information, and cursor
position. You can retrieve the composition status by using the ImmGetCompositionString
function.

In the attribute information array, all characters of one clause must have the same attribute. The
attribute information is an array of 8-bit values that specifies the status of characters in the
composition string. There is one value for each byte in the string, including one byte each for the
lead and second bytes of any double-byte characters in the string. For each value in the array,
bits 0 through 3 can be one combination of these values:

ATTR_INPUT
Character being entered by the user. It is yet to be
converted by the IME.

ATTR_INPUT_ERROR
Character is the error character and cannot be converted by
the IME.

ATTR_TARGET_CONVERTED
Character converted by the IME. The user has selected this
character and the IME has converted it.

ATTR_CONVERTED
A converted character. The IME has already converted this
character.

ATTR_TARGET_NOTCONVERTED
Character being converted. The user has selected this
character but the IME has not yet converted it.

All other values are reserved. In Japanese, any unconverted character having the ATTR_INPUT
attribute is a Hiragana, Katakana, or alphanumeric character. In Korean, this character is a
Hangeul character that is not converted by IME yet. In Traditional and Simplified Chinese, each
IME may limit its character in some range.

You can retrieve the composition status by using the ImmGetCompositionString function.

The clause information is an array of 32-bit values that specify the positions of the clauses in the
composition string. There is one value for each clause and a final value that specifies the length of
the full string. Each value in the array specifies the offset, in bytes, from the beginning of the string
to the clause. The first value is always 0 because the first clause always starts at the beginning of
the string. For example, if a string has two clauses, the clause information has three values: the
first value is 0, the second value is the offset of the second clause, and the third value is the
length of the string.

The typing information a null-terminated character string representing the characters entered at
the keyboard.

The cursor position is a value indicating the position of the cursor relative to the characters in the
composition string. The value is the offset, in bytes, from the beginning of the string. If this value is
0, the cursor is immediately before the first character in the string. If the value is equal to the
length of the string, the cursor is immediately after the last character. If -1, the cursor is not
present.

You can set the composition string or elements of the composition status by using the
ImmSetCompositionString function. To ensure that the composition window updates it
appearance based on these changes, the function allows for generating a notification message to
be sent to the window. Applications that set a combination of composition status elements

typically set the fNotify parameter to FALSE for all but the last call to this function so that only one
notification message is generated for the composition window.

Candidate Lists
A candidate list is a CANDIDATELIST structure consisting of an array of strings that specify the
characters or character strings that the user may choose from. You can retrieve the candidate lists
by using the ImmGetCandidateListCount and ImmGetCandidateList functions.

Hot Keys
Hot keys give the user a way to quickly change the input mode of the IME or to switch to another
IME. Although applications cannot add hot keys to the system, they can initiate the same action
as a hot key by using the ImmSimulateHotKey function.

Using Input Method Editor
· Processing the WM_IME_COMPOSITION message

Processing the WM_IME_COMPOSITION Message
Applications that process the WM_IME_COMPOSITION message test the bits in lParam
parameter and call the ImmGetCompositionString function to retrieve the indicated string or
data. The following example checks for the result string, allocates sufficient memory for the string,
and retrieves the result string from the IME:HIMC hIMC;
HWND hWnd;
DWORD dwSize;
HGLOBAL hstr;
LPSTR lpstr;
case WM_IME_COMPOSITION:

if (lParam & GCS_RESULTSTR) {
hIMC = ImmGetContext(hWnd);
If (!hIMC)
MyError(ERROR_NULLCONTEXT);
// Get the size of the result string.
dwSize = ImmGetCompositionString(hIMC, GCS_RESULTSTR, NULL, 0);
// increase buffer size for NULL terminator,
// maybe it is in UNICODE
dwSize += sizeof(WCHAR);
hstr = GlobalAlloc(GHND,dwSize);
if (hstr == NULL)
MyError(ERROR_GLOBALALLOC);
lpstr = GlobalLock(hstr);
if (lpstr == NULL)
MyError(ERROR_GLOBALLOCK);
// Get the result strings that is generated by IME into lpstr.
ImmGetCompositionString(hIMC, GCS_RESULTSTR, lpstr, dwSize);
ImmReleaseContext(hWnd, hIMC);
// add this string into text buffer of application
GlobalUnlock(hstr);
GlobalFree(hstr);
}

Input Method Editor Reference
This section contains an alphabetical list of the input method editor functions, messages, and
structures.

Input Method Editor Functions
This section describes the input method editor functions.
EnableEUDC
EnumRegisterWordProc
ImmAssociateContext
ImmConfigureIME
ImmCreateContext
ImmDestroyContext
ImmEnumRegisterWord
ImmEscape
ImmGetCandidateList
ImmGetCandidateListCount
ImmGetCandidateWindow
ImmGetCompositionFont
ImmGetCompositionString
ImmGetCompositionWindow
ImmGetContext
ImmGetConversionList
ImmGetConversionStatus
ImmGetDefaultIMEWnd
ImmGetDescription
ImmGetGuideLine
ImmGetIMEFileName
ImmGetOpenStatus
ImmGetProperty
ImmGetRegisterWordStyle
ImmGetStatusWindowPos
ImmGetVirtualKey
ImmInstallIME
ImmIsIME
ImmIsUIMessage
ImmNotifyIME
ImmRegisterWord
ImmReleaseContext
ImmSetCandidateWindow
ImmSetCompositionFont
ImmSetCompositionString
ImmSetCompositionWindow
ImmSetConversionStatus
ImmSetOpenStatus
ImmSetStatusWindowPos
ImmSimulateHotKey

ImmUnregisterWord

Input Method Editor Messages
This section describes the input method editor messages.
IMC_GETCANDIDATEPOS
IMC_CLOSESTATUSWINDOW
IMC_GETCOMPOSITIONFONT
IMC_GETCOMPOSITIONWINDOW
IMC_GETCONVERSIONMODE
IMC_GETOPENSTATUS
IMC_GETSENTENCEMODE
IMC_GETSTATUSWINDOWPOS
IMC_OPENSTATUSWINDOW
IMC_SETCANDIDATEPOS
IMC_SETCOMPOSITIONFONT
IMC_SETCOMPOSITIONWINDOW
IMC_SETCONVERSIONMODE
IMC_SETOPENSTATUS
IMC_SETSENTENCEMODE
IMC_SETSTATUSWINDOWPOS
IMN_CHANGECANDIDATE
IMN_CLOSECANDIDATE
IMN_CLOSESTATUSWINDOW
IMN_GUIDELINE
IMN_OPENCANDIDATE
IMN_OPENSTATUSWINDOW
IMN_SETCANDIDATEPOS
IMN_SETCOMPOSITIONFONT
IMN_SETCOMPOSITIONWINDOW
IMN_SETCONVERSIONMODE
IMN_SETOPENSTATUS
IMN_SETSENTENCEMODE
IMN_SETSTATUSWINDOWPOS
WM_IME_CHAR
WM_IME_COMPOSITION
WM_IME_COMPOSITIONFULL
WM_IME_CONTROL
WM_IME_ENDCOMPOSITION
WM_IME_KEYDOWN
WM_IME_KEYUP
WM_IME_NOTIFY
WM_IME_SELECT
WM_IME_SETCONTEXT

WM_IME_STARTCOMPOSITION

Input Method Editor Structures
This section describes the structures used with input method editor functions and messages.
CANDIDATEFORM
CANDIDATELIST
COMPOSITIONFORM
REGISTERWORD

STYLEBUF

Input Method Editor Constants
This section describes the constants used by the input method editor functions and messages.

IME Conversion Mode Values
Bit Meaning
IME_CMODE_CHARCODE Set to 1 if character code input

mode; 0 if not.
IME_CMODE_EUDC Set to 1 if EUDC conversion

mode; 0 if not.
IME_CMODE_FULLSHAPE Set to 1 if full shape mode; 0 if half

shape mode.
IME_CMODE_HANJACONVERT Set to 1 if HANJA convert mode; 0

if not.
IME_CMODE_KATAKANA Set to 1 if KATAKANA mode; 0 if

HIRAGANA mode.
IME_CMODE_NATIVE Set to 1 if NATIVE mode; 0 if

ALPHANUMERIC mode.
IME_CMODE_NOCONVERSION Set to 1 to prevent processing of

conversions by IME; 0 if not.
IME_CMODE_ROMAN Set to 1 if ROMAN input mode; 0 if

not.
IME_CMODE_SOFTKBD Set to 1 if Soft Keyboard mode; 0

if not.

All other bits are reserved.

IME Composition String Values
Value Description
GCR_ERRORSTR Retrieves or updates the error string.
GCR_INFORMATIONSTR Retrieves or updates the information

string.
GCS_COMPATTR Retrieves or updates the attribute of the

composition string.
GCS_COMPCLAUSE Retrieves or updates clause information of

the composition string.
GCS_COMPREADATTR Retrieves or updates the attributes of the

reading string of the current composition.
GCS_COMPREADCLAUSERetrieves or updates the clause

information of the reading string of the
composition string.

GCS_COMPREADSTR Retrieves or updates the reading string of
the current composition.

GCS_COMPSTR Retrieves or updates the current
composition string.

GCS_CURSORPOS Retrieves or updates the cursor position in
composition string.

GCS_DELTASTART Retrieves or updates the starting position
of any changes in composition string.

GCS_RESULTCLAUSE Retrieves or updates clause information of
the result string.

GCS_RESULTREADCLAUSERetrieves or updates clause information of
the reading string.

GCS_RESULTREADSTR Retrieves or updates the reading string.
GCS_RESULTSTR Retrieves or updates the string of the

composition result.
GCS_TYPINGINFO Retrieves or updates the typing

information of reading string. In contrast to
reading information, this shows raw key
strokes that the end user types.

IME Hot Key Identifiers
IME_CHOTKEY_IME_NONIME_TOGGLE(Simplified Chinese) Toggles

between IME and non-IME
operation.

IME_CHOTKEY_SHAPE_TOGGLE (Simplified Chinese) Toggles the
shape conversion mode of IME.

IME_CHOTKEY_SYMBOL_TOGGLE(Simplified Chinese) Toggles the
symbol conversion mode of IME.
Symbol mode indicates that the
user can input Chinese
punctuation and symbols by
mapping to the punctuation and
symbols on the keyboard.

IME_JHOTKEY_CLOSE_OPEN (Japanese) Alternately opens and
closes the IME.

IME_KHOTKEY_ENGLISH (Korean) Switches to English.
IME_KHOTKEY_SHAPE_TOGGLE (Korean) Toggles the shape

conversion mode of IME.
IME_KHOTKEY_HANJACONVERT (Korean) Switches to Hanja

converision.
IME_THOTKEY_IME_NONIME_TOGGLE(Traditional Chinese) Toggles

between IME and non-IME
operation.

IME_THOTKEY_SHAPE_TOGGLE (Traditional Chinese) Toggles the
shape conversion mode of IME.

IME_THOTKEY_SYMBOL_TOGGLE(Traditional Chinese) Toggles the
symbol conversion mode of IME.

IME Sentence Mode Values
Constant Definition
IME_SMODE_AUTOMATIC The IME carries out conversion

processing in automatic mode.
IME_SMODE_NONE No information for sentence.
IME_SMODE_PHRASEPREDICT The IME uses phrase information

to predict the next character.
IME_SMODE_PLURALCLAUSE The IME uses plural clause

information to carry out conversion
processing.

IME_SMODE_SINGLECONVERT The IME carries out conversion
processing in single character
mode.

Bits 16 through 31 are reserved for IME use.

IME Escapes
Escape Description
IME_ESC_GET_EUDC_DICTIONARYRetrieves the path of the EUDC

dictionary file. On input, the lpData
parameter must be the pointer to
the buffer to receive the path. This
buffer must be no less than 80
characters in length. On return,
the buffer contains the null-
terminated string specifying the full
path. For use by the Chinese
EUDC editor; do not use in other
applications.

IME_ESC_HANJA_MODE Converts from Hangeul to Hanja.
On input, lpData must be the
pointer to the buffer that contains
the Hangeul character to convert;
on output, it receives the
converted Hanja as a null-
terminated string. For use by the
Korean editor; do not use in other
applications.

IME_ESC_IME_NAME Retrieves the name of the IME. On
input, the lpData parameter must
be the pointer to the buffer to
receive the name. This buffer must
be no less than 64 characters in
length. On return, the buffer
contains the null-terminated string
specifying the IME name. For use
by the Chinese EUDC editor; do
not use in other applications.

IME_ESC_MAX_KEY Returns the maximum number of
key stokes for an EUDC character.
For use by the Chinese EUDC
editor; do not use in other
applications.

IME_ESC_QUERY_SUPPORT Checks for implementation.
Returns zero if the escape is not
implemented.

IME_ESC_SEQUENCE_TO_INTERNALReturns the character code that
matches the given sequence
code. On input, the lpData
parameter is the pointer to a 32-
bit variable that contains the
sequence code. For use by the
Chinese EUDC editor; do not use
in other applications. Normally, the
Chinese IME will encode its
reading character codes into
sequence 1 to n.

IME_ESC_SET_EUDC_DICTIONARYSets the EUDC dictionary file. On
input, the lpData parameter is the
pointer to a null-terminated string
specifying the full path. For use by
the Chinese EUDC editor; do not
use in other applications.

The system reserves the escapes in the range IME_ESC_RESERVED_FIRST to
IME_ESC_RESERVED_LAST for its own use.

The system reserves the escapes in the range IME_ESC_PRIVATE_FIRST to
IME_ESC_PRIVATE_LAST for private use by IMEs.

National Language SupportNational language support functions help applications developed for the Win32 application
programming interface (API) adapt to the differing language- and location-specific needs of users
around the world.

This overview describes the national language support functions and explains how to use them in
your Win32-based applications.

About National Language Support
The national language support functions let applications set the locale for the user, identifying the
language in which the user carries out work, and retrieve strings, representing times, dates and
other information, that are correctly formatted for the given language and location of the world.

National language support also includes support for keyboard layouts and language-specific fonts.
For more information about these topics, see Keyboard Input and Fonts and Text.

Locales
A locale is a collection of language-related, user preference information represented as a list of
values. Each system has at least one installed locale and usually has many locales from which
the user may choose. Each locale has a unique locale identifier (LCID), a 32-bit value that
consists in part of a language identifier. The language identifier is a standard international numeric
abbreviation for a country or geographical region.

The system assigns a locale to each thread. Initially, the system assigns the system default locale
to the thread. This default locale is set by the user when the system is installed or through the
International applet of the Control Panel. If a thread is run in a process belonging to a user, the
system assigns the user default locale to the thread. An application can override either default by
using the the SetThreadLocale function to explicitly set the locale for a thread.

There are two predefined locale identifiers: LOCALE_SYSTEM_DEFAULT, which identifies the
system default locale, and LOCALE_USER_DEFAULT, which identifies the locale of the current
user. An application can retrieve the current locale identifiers by using the
GetSystemDefaultLCID and GetUserDefaultLCID functions. Similarly, an application can
retrieve the current language identifiers by using the GetSystemDefaultLangID and
GetUserDefaultLangID functions.

An application can retrieve specific information about any available language or locale. This can
be important for handling language- and locale-specific strings. An application can retrieve
information about a locale by using the GetLocaleInfo function. Each element of locale
information has a unique LCTYPE value that identifies a specific information type. Applications
use these values to retrieve the information they need.

All LCTYPE values are mutually-exclusive, so only one type of information can be retrieved at a
time. An exception is the LOCALE_NOUSEROVERRIDE which can be used to bypasses user
overrides and retrieve the system default values for the requested locale.

Locale information is always stored and manipulated as a null-terminated string. No binary data is
allowed; any numeric values must be specified as text. Each type of information has a particular
format. Also, several of types are linked together, such that changing one changes the value of
the other as well.

Although a given locale identifier may be supported, it is not available for use by an application
unless it is also installed.

Time and Date
You can retrieve strings for any given time or date in a format that is appropriate for the current
locale by using the GetTimeFormat and GetDateFormat functions.

For GetTimeFormat, the time values in the SYSTEMTIME structure pointed to by lpTime must be
valid. The function checks each of the time values to determine that it is within the appropriate
range of values. If any of the time values are outside the correct range, the function fails, and sets
the last-error to ERROR_INVALID_PARAMETER.

The function ignores the date portions of the SYSTEMTIME structure pointed to by lpTime:
wYear, wMonth, wDayOfWeek, and wDay.

If a time marker exists and the TIME_NOTIMEMARKER flag is not set, the function localizes the
time marker based on the specified locale identifier. Examples of time markers are "AM" and "PM"
for US English, "de." and "du." for Mexican Spanish.

If TIME_NOMINUTESORSECONDS or TIME_NOSECONDS is specified, the function removes
the separator(s) preceding the minutes and/or seconds element(s).

If TIME_NOTIMEMARKER is specified, the function removes the separator(s) preceding and
following the time marker.

If TIME_FORCE24HOURFORMAT is specified, the function displays any existing time marker,
unless the TIME_NOTIMEMARKER flag is also set.

The function does not include milliseconds as part of the formatted time string.

To use the LOCALE_NOUSEROVERRIDE flag, lpFormat must be NULL.

No errors are returned for a bad format string. The function simply forms the best time string that it
can. If more than two hour, minute, second, or time marker format pictures are passed in, then the
function defaults to two. For example, the only time marker pictures that are valid are L"t" and L"tt"
(the 'L' indicates a Unicode (16-bit characters) string). If L"ttt" is passed in, the function assumes
L"tt".

For GetDateFormat, the date values in the SYSTEMTIME structure pointed to by lpDate must be
valid. The function checks each of the date values: year, month, day, and day of week. If the day
of the week is incorrect, the function uses the correct value, and returns no error. If any of the
other date values are outside the correct range, the function fails, and sets the last-error to
ERROR_INVALID_PARAMETER.

The day name, abbreviated day name, month name, and abbreviated month name are all
localized based on the given locale identifier. The function ignores the time portions of the
SYSTEMTIME structure pointed to by lpDate: wHour, wMinute, wSecond, and wMilliseconds.

The flag DATE_USE_ALT_CALENDAR will always use the format defined as the default format
for that alternate calendar, rather than using any user overrides. The user overrides will only be
used in the event that there is no default format for the alternate calendar specified.

The DATE_SHORTDATE and DATE_LONGDATE flag options are mutually exclusive. If neither
one is specified and lpFormat is NULL, then DATE_SHORTDATE is the default.

If the lpFormat parameter is not NULL, the dwFlags parameter must be zero. None of the flags
make sense when the format string is specified.

No errors are returned for a bad format string. The function simply forms the best date string that it
can. For example, the only year pictures that are valid are L"yyyy" and L"yy" (the 'L' indicates a
Unicode (16-bit characters) string). If L"y" is passed in, the function assumes L"yy". If L"yyy" is
passed in, the function assumes L"yyyy". If more than 4 date (L"dddd") or 4 month (L"MMMM")
pictures are passed in, then the function defaults to L"dddd" or L"MMMM".

Any text that should remain in its exact form in the date string should be enclosed within single
quotes in the date format picture. The single quote may also be used as an escape character to
allow the single quote itself to be displayed in the date string. However, the escape sequence
must be enclosed within two single quotes. For example, to display the date as "May '93", the
format string would be: L"MMMM ''''yy " The first and last single quotes are the enclosing quotes.

The second and third single quotes are the escape sequence to allow the single quote to be
displayed before the century.

Date and Calendar
Most locales use the standard Gregorian calendar and a set number of date formats. These
"default choices" for date formats are available for display by using the EnumDateFormats
function. There are other locales which require special considerations when creating a complete
list of format choices. Some of these require text strings to be inserted within the date format
string, others require a completely different method of computation of the values. These special
requirements are addressed by the addition of new LCTYPE and CALTYPE values.

Each locale identifier has a default calendar type associated with it. A locale identifier can also
have an alternate calendar type, which can be set using the LOCALE_IOPTIONALCALENDAR
type for this locale.

Localization and the Shell Font
Windows NT is available in localized editions of many different languages, but the U.S. English
edition can also be used to run applications written in other languages. This is true even when the
base character sets are different, such as when applications are written in the Central and Eastern
European languages, or in Greek. These applications require a user interface (UI) with dialog
boxes, icons, and applets that provide information in the application's language, which may be
different than the language being used in the current Windows NT UI.

To enable the U.S. English Windows NT user interface, as well as characters outside the
Windows character set for the US and Western Europe (code page 1252), to display correctly
within applications and in system edit controls, Windows NT uses intelligent font switching based
on the currently selected locale. This allows currently shipping localized applications to run on the
U.S. English version of Windows NT without modifying the application in any way.

An example of the problem being addressed here is that the U.S. English Windows NT shell font
is MS Sans Serif but the shell font for Greek Windows 3.1 is MS Sans Serif Greek. These
character sets cannot be directly mapped to each other so simply replacing the MS Sans Serif
font with the MS Sans Serif Greek font when the locale is set to Greek does not allow existing
applications with this kind of difference to run adequately or to display Greek characters in system
menus, dialogs and edit controls. To resolve this problem at run time, Microsoft has defined a new
font face name, MS Shell Dlg. It is mapped by an entry in the registry to the appropriate shell font
for the currently active locale.

MS Shell Dlg
MS Shell Dlg is a mapping mechanism that enables U.S. English Windows NT to support non-
code page 1252 locales. It is not a font but only a face name for a nonexistent font. It can be
specified in either the Windows NT Setup file during the installation process or when customizing
a local system by double-clicking on the Control Panel's International icon. When you double-click
on the icon, select the appropriate Country and Language in the International dialog box, and then
reboot the system, the appropriate change occurs in the Registry under the following key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Current Version\FontSubstitutes

An added benefit of this new means of font mapping in the registry is that you can change the font
for the entire shell by simply changing one .inf file entry. For example, Far East localization is
much easier because you can change the .inf file entry, instead of changing every instance of MS
Sans Serif in every .rc and .dlg file, and the change is complete without rebuilding any binaries.

Windows NT applications can also take advantage of this feature. It is very helpful when your
application contains multiple language resources that cross character-set boundaries. It is also
useful when you have an English application in which supporting multiple languages and
character sets is important.

Windows 95 and MS Shell Dlg
Windows 95 does not support the concept of switching Windows character sets so the role of MS
Shell Dlg is more limited. It does, however, facilitate localization in that Windows 95 is equipped
with a static entry to replace the standard system font. For example, the system font, MS San
Serif, is easily replaced with MS San Serif Greek or another language. This also ensures
compatibility with the applets provided with Windows NT.

When MS Shell Dlg Should Not Be Used
At this time, MS Shell Dlg is not intended for use when you are working with a static, non-English
UI application that you want to run when the user has chosen a locale with a different Windows
base character set. This is because the application's UI language may not be supported with the
font that is substituted for MS Shell Dlg. For example, if you are using a German localized version
of Windows NT and want to install a non-Unicode, Greek application, you can use the Control
Panel's International applet to change the locale to Greek. This will reset MS Shell Dlg to be a
Greek font but this font does not contain all of the glyphs necessary to display German. Therefore,
any non-ASCII characters in your German UI will not be displayed properly. To support this
scenario, you would have to set MS Shell Dlg to a font that contains both the Western European
and the Greek glyphs.

National Language Support Reference
This section provides detailed reference information for the national language support functions,
structures, and messages. The information is separated into the following functional groups.

National Language Support Functions
This section describes the national language support functions. Many national language support
functions generate extended error information on errors. Use the GetLastError function to get this
information.

SetLocaleInfo

National Language Support Macros
This section describes the macros used with the national language support functions.
LANGIDFROMLCID
MAKELANGID
MAKELCID
PRIMARYLANGID
SORTIDFROMLCID

SUBLANGID

National Language Support Constants
This section describes the constants used with the national language support functions.

Locale Information
LOCALE_ILANGUAGE

Language identifier indicating the language. The maximum number of characters allowed for
this string is 5.

LOCALE_SLANGUAGE
Full localized name of the language.

LOCALE_SENGLANGUAGE
Full English name of the language from the International Organization for Standardization
(ISO) Standard 639. This is always restricted to characters mappable into the ASCII 127-
character subset.

LOCALE_SABBREVLANGNAME
Abbreviated name of the language, created by taking the 2-letter language abbreviation from
the ISO Standard 639 and adding a third letter, as appropriate, to indicate the sublanguage.

LOCALE_SNATIVELANGNAME
Native name of the language.

LOCALE_ICOUNTRY
Country code, based on international phone codes, also referred to as IBM country codes.
The maximum number of characters allowed for this string is 6.

LOCALE_SCOUNTRY
Full localized name of the country.

LOCALE_SENGCOUNTRY
Full English name of the country. This is always restricted to characters mappable into the
ASCII 127-character subset.

LOCALE_SABBREVCTRYNAME
Abbreviated name of the country from the ISO Standard 3166.

LOCALE_SNATIVECTRYNAME
Native name of the country.

LOCALE_IDEFAULTLANGUAGE
Language identifier for the principal language spoken in this locale. This is provided so that
partially specified locales can be completed with default values. The maximum number of
characters allowed for this string is 5.

LOCALE_IDEFAULTCOUNTRY
Country code for the principal country in this locale. This is provided so that partially specified
locales can be completed with default values. The maximum number of characters allowed for
this string is 6.

LOCALE_IDEFAULTANSICODEPAGE
American National Standards Institute (ANSI) code page associated with this locale. The
maximum number of characters allowed for this string is 6.

LOCALE_IDEFAULTOEMCODEPAGE
Original equipment manufacturer (OEM) code page associated with the locale. The maximum
number of characters allowed for this string is 6.

LOCALE_IDEFAULTCODEPAGE
Original equipment manufacturer (OEM) code page associated with the country. The
maximum number of characters allowed for this string is 6.

LOCALE_SLIST
Character(s) used to separate list items. For example, a comma is used in many locales.

LOCALE_IMEASURE
System of measurement. This value is 0 if the metric system (Systéme International d'Unités,
or S.I.) is used and 1 if the U.S. system is used. The maximum number of characters allowed
for this string is 2.

LOCALE_SDECIMAL
Character(s) used as the decimal separator.

LOCALE_STHOUSAND
Character(s) used to separate groups of digits to the left of the decimal.

LOCALE_SGROUPING
Sizes for each group of digits to the left of the decimal. An explicit size is needed for each
group; sizes are separated by semicolons. If the last value is zero, the preceding value is
repeated. To group thousands, specify 3;0, for example.

LOCALE_IDIGITS
Number of fractional digits. The maximum number of characters allowed for this string is 3.

LOCALE_ILZERO

Specifier for leading zeros in decimal fields. The maximum number of characters allowed for
this string is 2. The specifier can be one of the following values:

0 No leading zeros
1 Leading zeros

LOCALE_INEGNUMBER
Negative number mode. The mode can be one of these values:

0 (1.1)
1 -1.1
2 - 1.1
3 1.1-
4 1.1 -

LOCALE_SNATIVEDIGITS
Native equivalents to ASCII 0 through 9.

LOCALE_SCURRENCY
String used as the local monetary symbol.

LOCALE_SINTLSYMBOL
Three characters of the international monetary symbol specified in ISO 4217, "Codes for the
Representation of Currencies and Funds," followed by the character separating this string
from the amount.

LOCALE_SMONDECIMALSEP
Character(s) used as the monetary decimal separator.

LOCALE_SMONTHOUSANDSEP
Character(s) used as the monetary separator between groups of digits to the left of the
decimal.

LOCALE_SMONGROUPING
Sizes for each group of monetary digits to the left of the decimal. An explicit size is needed for
each group; sizes are separated by semicolons. If the last value is zero, the preceding value
is repeated. To group thousands, specify 3;0, for example.

LOCALE_ICURRDIGITS
Number of fractional digits for the local monetary format. The maximum number of characters
allowed for this string is 3.

LOCALE_IINTLCURRDIGITS
Number of fractional digits for the international monetary format. The maximum number of
characters allowed for this string is 3.

LOCALE_ICURRENCY
Positive currency mode. The maximum number of characters allowed for this string is 2. The
mode can be one of the following values:

0 Prefix, no separation
1 Suffix, no separation
2 Prefix, 1-char. separation
3 Suffix, 1-char. separation

LOCALE_INEGCURR
Negative currency mode. The maximum number of characters allowed for this string is 3. The
mode can be one of the following values:

0 ($1.1)
1 - $1.1
2 $- 1.1
3 $1.1-
4 (1.1$)
5 - 1.1$
6 1.1- $
7 1.1$-
8 - 1.1 $ (space before $)
9 - $ 1.1 (space after $)

10 1.1 $- (space before $)
11 $ 1.1- (space after $)
12 $ - 1.1 (space after $)
13 1.1- $ (space before $)
14 ($ 1.1) (space after $)
15 (1.1 $) (space before $)

LOCALE_SDATE
Character(s) for the date separator.

LOCALE_STIME
Character(s) for the time separator.

LOCALE_STIMEFORMAT
Time formatting strings for this locale. The string can consist of a combination of the hour,
minute, and second format pictures defined in in the Hour, Minute, and Second Format
Pictures table in National Language Support Constants.

LOCALE_SSHORTDATE
Short date formatting string for this locale. The string can consist of a combination of day,
month, and year format pictures defined in in Day, Month, Year, and Era Format Pictures
table in National Language Support Constants.

LOCALE_SLONGDATE
Long date formatting string for this locale. The string can consist of a combination of day,
month, and year format pictures defined in in the Day, Month, Year, and Era Format Pictures
table in National Language Support Constantsand any string of characters enclosed in single
quotes. Characters in single quotes remain as given.

LOCALE_IDATE
Short date format-ordering specifier. The maximum number of characters allowed for this
string is 2. The specifier can be one of the following values:

0 Month-Day-Year
1 Day-Month-Year
2 Year-Month-Day

LOCALE_ILDATE
Long date format-ordering specifier. The maximum number of characters allowed for this
string is 2. The specifier can be one of the following values:

0 Month-Day-Year
1 Day-Month-Year
2 Year-Month-Day

LOCALE_ITIME
Time format specifier. The maximum number of characters allowed for this string is 2. The
specifier can be one of the following values:

0 AM / PM 12-hour format
1 24-hour format

LOCALE_ICENTURY
Specifier for full 4-digit century. The maximum number of characters allowed for this string is
2. The specifier can be one of the following values:

0 Abbreviated 2-digit century
1 Full 4-digit century

LOCALE_ITLZERO
Specifier for leading zeros in time fields. The maximum number of characters allowed for this
string is 2. The specifier can be one of the following values:

0 No leading zeros for hours
1 Leading zeros for hours

LOCALE_IDAYLZERO

Specifier for leading zeros in day fields. The maximum number of characters allowed for this
string is 2. The specifier can be one of the following values:

0 No leading zeros for days
1 Leading zeros for days

LOCALE_IMONLZERO
Specifier for leading zeros in month fields. The maximum number of characters allowed for
this string is 2. The specifier can be one of the following values:

0 No leading zeros for months
1 Leading zeros for months

LOCALE_S1159
String for the AM designator.

LOCALE_S2359
String for the PM designator.

LOCALE_ICALENDARTYPE
Current calendar type. This type can be one of these values:

1 Gregorian (as in United States)
2 Gregorian (English strings always)
3 Era: Year of the Emperor (Japan)
4 Era: Year of the Republic of China
5 Tangun Era (Korea)

LOCALE_IOPTIONALCALENDAR
Additional calendar types. This can be a zero-separated list of one or more of these calendars
type values:

0 No additional types valid
1 Gregorian (as in United States)
2 Gregorian (English strings always)
3 Era: Year of the Emperor (Japan)
4 Era: Year of the Republic of China
5 Tangun Era (Korea)

LOCALE_IFIRSTDAYOFWEEK
Specifier for the first day in a week. The specifier can be one of these values:

0 LOCALE_SDAYNAME1
1 LOCALE_SDAYNAME2
2 LOCALE_SDAYNAME3
3 LOCALE_SDAYNAME4
4 LOCALE_SDAYNAME5
5 LOCALE_SDAYNAME6
6 LOCALE_SDAYNAME7

LOCALE_IFIRSTWEEKOFYEAR
Specifier for the first week of the year. The specifier can be one of these values:

0 Week containing 1/1 is the first week of that year.
1 First full week following 1/1 is the first week of that year.
2 First week containing at least 4 days is the first week of that

year.

LOCALE_SDAYNAME1
Native long name for Monday.

LOCALE_SDAYNAME2
Native long name for Tuesday.

LOCALE_SDAYNAME3
Native long name for Wednesday.

LOCALE_SDAYNAME4
Native long name for Thursday.

LOCALE_SDAYNAME5
Native long name for Friday.

LOCALE_SDAYNAME6
Native long name for Saturday.

LOCALE_SDAYNAME7
Native long name for Sunday.

LOCALE_SABBREVDAYNAME1
Native abbreviated name for Monday.

LOCALE_SABBREVDAYNAME2
Native abbreviated name for Tuesday.

LOCALE_SABBREVDAYNAME3
Native abbreviated name for Wednesday.

LOCALE_SABBREVDAYNAME4
Native abbreviated name for Thursday.

LOCALE_SABBREVDAYNAME5
Native abbreviated name for Friday.

LOCALE_SABBREVDAYNAME6
Native abbreviated name for Saturday.

LOCALE_SABBREVDAYNAME7
Native abbreviated name for Sunday.

LOCALE_SMONTHNAME1
Native long name for January.

LOCALE_SMONTHNAME2
Native long name for February.

LOCALE_SMONTHNAME3
Native long name for March.

LOCALE_SMONTHNAME4
Native long name for April.

LOCALE_SMONTHNAME5
Native long name for May.

LOCALE_SMONTHNAME6
Native long name for June.

LOCALE_SMONTHNAME7
Native long name for July.

LOCALE_SMONTHNAME8
Native long name for August.

LOCALE_SMONTHNAME9
Native long name for September.

LOCALE_SMONTHNAME10
Native long name for October.

LOCALE_SMONTHNAME11
Native long name for November.

LOCALE_SMONTHNAME12
Native long name for December.

LOCALE_SMONTHNAME13
Native name for 13th month, if exists.

LOCALE_SABBREVMONTHNAME1
Native abbreviated name for January.

LOCALE_SABBREVMONTHNAME2
Native abbreviated name for February.

LOCALE_SABBREVMONTHNAME3
Native abbreviated name for March.

LOCALE_SABBREVMONTHNAME4
Native abbreviated name for April.

LOCALE_SABBREVMONTHNAME5
Native abbreviated name for May.

LOCALE_SABBREVMONTHNAME6
Native abbreviated name for June.

LOCALE_SABBREVMONTHNAME7
Native abbreviated name for July.

LOCALE_SABBREVMONTHNAME8
Native abbreviated name for August.

LOCALE_SABBREVMONTHNAME9
Native abbreviated name for September.

LOCALE_SABBREVMONTHNAME10
Native abbreviated name for October.

LOCALE_SABBREVMONTHNAME11
Native abbreviated name for November.

LOCALE_SABBREVMONTHNAME12
Native abbreviated name for December.

LOCALE_SABBREVMONTHNAME13
Native abbreviated name for 13th month, if exists.

LOCALE_SPOSITIVESIGN
String value for the positive sign.

LOCALE_SNEGATIVESIGN
String value for the negative sign.

LOCALE_IPOSSIGNPOSN
Formatting index for positive values. The maximum number of characters allowed for this
string is 2. The index can be one of the following values:

0 Parentheses surround the amount and the monetary
symbol.

1 The sign string precedes the amount and the monetary
symbol.

2 The sign string succeeds the amount and the monetary
symbol.

3 The sign string immediately precedes the monetary
symbol.

4 The sign string immediately succeeds the monetary
symbol.

LOCALE_INEGSIGNPOSN
Formatting index for negative values. This index uses the same values as
LOCALE_IPOSSIGNPOSN. The maximum number of characters allowed for this string is 2.

LOCALE_IPOSSYMPRECEDES
Position of monetary symbol in a positive monetary value. This value is 1 if the monetary
symbol precedes the positive amount, 0 if it follows it. The maximum number of characters
allowed for this string is 2.

LOCALE_IPOSSEPBYSPACE
Separation of monetary symbol in a positive monetary value. This value is 1 if the monetary
symbol is separated by a space from a positive amount, 0 if it is not. The maximum number of
characters allowed for this string is 2.

LOCALE_INEGSYMPRECEDES
Position of monetary symbol in a negative monetary value. This value is 1 if the monetary
symbol precedes the negative amount, 0 if it follows it. The maximum number of characters
allowed for this string is 2.

LOCALE_INEGSEPBYSPACE
Separation of monetary symbol in a negative monetary value. This value is 1 if the monetary
symbol is separated by a space from the negative amount, 0 if it is not. The maximum number
of characters allowed for this string is 2.

LOCALE_NOUSEROVERRIDE
Can be combined with other LOCALE values to bypass any user override and return the
system default value for the given locale information.

Many of the locale types listed above are closely related, such that changing one affects the value
of others. The following shows the relationships between these types.

LOCALE_ICURRENCY

LOCALE_IPOSSEPBYSPACE, LOCALE_IPOSSYMPRECEDES
LOCALE_INEGCURR

LOCALE_INEGSEPBYSPACE, LOCALE_INEGSYMPRECEDES,
LOCALE_INEGSIGNPOSN, LOCALE_IPOSSIGNPOSN

LOCALE_SSHORTDATE
LOCALE_SDATE, LOCALE_IDATE

LOCALE_SLONGDATE
LOCALE_ILDATE

LOCALE_STIMEFORMAT
LOCALE_STIME, LOCALE_ITIME, LOCALE_ITLZERO

Day, Month, Year, and Era Format Pictures
The format picture for a date string consists of a combination of null-terminated strings.

Day
d Day of the month as digits without leading zeros for single

digit days.
dd Day of the month as digits with leading zeros for single

digit days
ddd Day of the week as a 3-letter abbreviation as given by a

LOCALE_SABBREVDAYNAME value.
dddd Day of the week as given by a LOCALE_SDAYNAME

value.
Month
M Month as digits without leading zeros for single digit

months.
MM Month as digits with leading zeros for single digit months
MMM Month as a three letter abbreviation as given by a

LOCALE_SABBREVMONTHNAME value.
MMMM Month as given by a LOCALE_SMONTHNAME value.
Year
y Year represented only be the last digit.
yy Year represented only be the last two digits.
yyyy Year represented by the full 4 digits.
Period/Era
gg Period/era string as given by the CAL_SERASTRING

value.

The "gg" format picture in a date string is ignored if there is no associated era string.

Hour, Minute, and Second Format Pictures
The format picture for a time string consists of a combination of one string from each of these
format types:

Hours
h Hours without leading zeros for single digit hours

(12 hour clock)
hh Hours with leading zeros for single digit hours (12

hour clock)
H Hours without leading zeros for single digit hours

(24 hour clock)
HH Hours with leading zeros for single digit hours (24

hour clock)
Minutes
m Minutes without leading zeros for single digit

minutes
mm Minutes with leading zeros for single digit minutes
Seconds
s Seconds without leading zeros for single digit

seconds
ss Seconds with leading zeros for single digit seconds
Time Marker
t One character time marker string
tt Multi-character time marker string

Primary Language Identifiers
0x00 Neutral
0x36 Afrikaans
0x1c Albanian
0x01 Arabic
0x2d Basque
0x02 Bulgarian
0x23 Byelorussian
0x03 Catalan
0x04 Chinese
0x05 Czech
0x06 Danish
0x13 Dutch
0x09 English
0x25 Estonian
0x29 Farsi
0x0b Finnish
0x0c French
0x07 German
0x08 Greek
0x0d Hebrew
0x0e Hungarian
0x0f Icelandic
0x21 Indonesian
0x10 Italian
0x11 Japanese
0x2c Kampuchean
0x12 Korean
0x2b Laotian
0x26 Latvian
0x27 Lithuanian
0x2f Macedonian
0x28 Maori
0x14 Norwegian
0x15 Polish
0x16 Portuguese
0x17 Rhaeto Roman
0x18 Romanian
0x19 Russian
0x1a Serbo Croatian
0x1b Slovak
0x24 Slovenian
0x2e Sorbian
0x0a Spanish
0x30 Sutu
0x1d Swedish
0x1e Thai
0x31 Tsonga
0x32 Tswana
0x1f Turkish
0x22 Ukrainian
0x20 Urdu
0x33 Venda
0x2a Vietnamese

0x34 Xhosa
0x35 Zulu

Secondary Language Identifiers
0x00 Neutral
0x01 Default
0x02 System Default
0x01 Arabic (Saudi Arabia)
0x02 Arabic (Iraq)
0x03 Arabic (Egypt)
0x04 Arabic (Libya)
0x05 Arabic (Algeria)
0x06 Arabic (Morocco)
0x07 Arabic (Tunisia)
0x08 Arabic (Oman)
0x09 Arabic (Yemen)
0x10 Arabic (Syria)
0x11 Arabic (Jordan)
0x12 Arabic (Lebanon)
0x13 Arabic (Kuwait)
0x14 Arabic (U.A.E.)
0x15 Arabic (Bahrain)
0x16 Arabic (Qatar)
0x01 Chinese (Taiwan)
0x02 Chinese (PRC)
0x03 Chinese (Hong Kong)
0x04 Chinese (Singapore)
0x01 Dutch
0x02 Dutch (Belgian)
0x01 English (US)
0x02 English (UK)
0x03 English (Australian)
0x04 English (Canadian)
0x05 English (New Zealand)
0x06 English (Ireland)
0x01 French
0x02 French (Belgian)
0x03 French (Canadian)
0x04 French (Swiss)
0x05 French (Luxembourg)
0x01 German
0x02 German (Swiss)
0x03 German (Austrian)
0x04 German (Luxembourg)
0x05 German (Liechtenstein)
0x04 Hebrew (Israel)
0x01 Italian
0x02 Italian (Swiss)
0x01 Norwegian (Bokmal)
0x02 Norwegian (Nynorsk)
0x01 Portuguese (Brazilian)
0x02 Portuguese
0x01 Serbo Croatian (Latin)
0x02 Serbo Croatian (Cyrillic)
0x01 Spanish (Traditional Sort)
0x02 Spanish (Mexican)
0x03 Spanish (Modern Sort)

Language Identifiers
Identifier Locale
0x0000 Language Neutral
0x0400 Process Default Language
0x0401 Arabic (Saudi Arabia)
0x0801 Arabic (Iraq)
0x0c01 Arabic (Egypt)
0x1001 Arabic (Libya)
0x1401 Arabic (Algeria)
0x1801 Arabic (Morocco)
0x1c01 Arabic (Tunisia)
0x2001 Arabic (Oman)
0x2401 Arabic (Yemen)
0x2801 Arabic (Syria)
0x2c01 Arabic (Jordan)
0x3001 Arabic (Lebanon)
0x3401 Arabic (Kuwait)
0x3801 Arabic (U.A.E.)
0x3c01 Arabic (Bahrain)
0x4001 Arabic (Qatar)
0x0402 Bulgarian
0x0403 Catalan
0x0404 Chinese (Taiwan)
0x0804 Chinese (PRC)
0x0c04 Chinese (Hong Kong)
0x1004 Chinese (Singapore)
0x0405 Czech
0x0406 Danish
0x0407 German (Standard)
0x0807 German (Swiss)
0x0c07 German (Austrian)
0x1007 German (Luxembourg)
0x1407 German (Liechtenstein)
0x0408 Greek
0x0409 English (United States)
0x0809 English (United Kingdom)
0x0c09 English (Australian)
0x1009 English (Canadian)
0x1409 English (New Zealand)
0x1809 English (Ireland)
0x1c09 English (South Africa)
0x2009 English (Jamaica)
0x2409 English (Caribbean)
0x2809 English (Belize)
0x2c09 English (Trinidad)
0x040a Spanish (Traditional Sort)
0x080a Spanish (Mexican)
0x0c0a Spanish (Modern Sort)
0x100a Spanish (Guatemala)
0x140a Spanish (Costa Rica)
0x180a Spanish (Panama)
0x1c0a Spanish (Dominican Republic)
0x200a Spanish (Venezuela)
0x240a Spanish (Colombia)

0x280a Spanish (Peru)
0x2c0a Spanish (Argentina)
0x300a Spanish (Ecuador)
0x340a Spanish (Chile)
0x380a Spanish (Uruguay)
0x3c0a Spanish (Paraguay)
0x400a Spanish (Bolivia)
0x440a Spanish (El Salvador)
0x480a Spanish (Honduras)
0x4c0a Spanish (Nicaragua)
0x500a Spanish (Puerto Rico)
0x040b Finnish
0x040c French (Standard)
0x080c French (Belgian)
0x0c0c French (Canadian)
0x100c French (Swiss)
0x140c French (Luxembourg)
0x040d Hebrew
0x040e Hungarian
0x040f Icelandic
0x0410 Italian (Standard)
0x0810 Italian (Swiss)
0x0411 Japanese
0x0412 Korean
0x0812 Korean (JoHab)
0x0413 Dutch (Standard)
0x0813 Dutch (Belgian)
0x0414 Norwegian (Bokmal)
0x0814 Norwegian (Nynorsk)
0x0415 Polish
0x0416 Portuguese (Brazilian)
0x0816 Portuguese (Standard)
0x0418 Romanian
0x0419 Russian
0x041a Croatian
0x0c1a Serbian
0x041b Slovak
0x041c Albanian
0x041d Swedish
0x081d Swedish (Finland)
0x041e Thai
0x041f Turkish
0x0421 Indonesian
0x0422 Ukrainian
0x0423 Belarusian
0x0424 Slovenian
0x0425 Estonian
0x0426 Latvian
0x0427 Lithuanian
0x081a Serbian
0x0429 Farsi
0x042d Basque

0x0436 Afrikaans
0x0438 Faeroese

Calendar Type Information
CAL_ICALINTVALUE

An integer value indicating the calendar type of the alternate calendar.
CAL_IYEAROFFSETRANGE

One or more null-terminated strings that specify the year offsets for each of the era ranges.
The last string has an extra terminating null character.

CAL_SABBREVDAYNAME1
Abbreviated native name of the first day of the week.

CAL_SABBREVDAYNAME2
Abbreviated native name of the second day of the week.

CAL_SABBREVDAYNAME3
Abbreviated native name of the third day of the week.

CAL_SABBREVDAYNAME4
Abbreviated native name of the fourth day of the week.

CAL_SABBREVDAYNAME5
Abbreviated native name of the fifth day of the week.

CAL_SABBREVDAYNAME6
Abbreviated native name of the sixth day of the week.

CAL_SABBREVDAYNAME7
Abbreviated native name of the seventh day of the week.

CAL_SABBREVMONTHNAME1
Abbreviated native name of the first month of the year.

CAL_SABBREVMONTHNAME2
Abbreviated native name of the second month of the year.

CAL_SABBREVMONTHNAME3
Abbreviated native name of the third month of the year.

CAL_SABBREVMONTHNAME4
Abbreviated native name of the fourth month of the year.

CAL_SABBREVMONTHNAME5
Abbreviated native name of the fifth month of the year.

CAL_SABBREVMONTHNAME6
Abbreviated native name of the sixth month of the year.

CAL_SABBREVMONTHNAME7
Abbreviated native name of the seventh month of the year.

CAL_SABBREVMONTHNAME8
Abbreviated native name of the eighth month of the year.

CAL_SABBREVMONTHNAME9
Abbreviated native name of the ninth month of the year.

CAL_SABBREVMONTHNAME10
Abbreviated native name of the tenth month of the year.

CAL_SABBREVMONTHNAME11
Abbreviated native name of the eleventh month of the year.

CAL_SABBREVMONTHNAME12
Abbreviated native name of the twelfth month of the year.

CAL_SABBREVMONTHNAME13
Abbreviated native name of the thirteenth month of the year, if it exists.

CAL_SCALNAME
The native name of the alternate calendar.

CAL_SDAYNAME1
Native name of the first day of the week.

CAL_SDAYNAME2
Native name of the second day of the week.

CAL_SDAYNAME3
Native name of the third day of the week.

CAL_SDAYNAME4
Native name of the fourth day of the week.

CAL_SDAYNAME5
Native name of the fifth day of the week.

CAL_SDAYNAME6
Native name of the sixth day of the week.

CAL_SDAYNAME7
Native name of the seventh day of the week.

CAL_SERASTRING
One or more null-terminated strings that specify each of the Unicode codepoints specifying
the era associated with the given CAL_IYEAROFFSETRANGE. The last string has an extra
terminating null character. See example below.

CAL_SLONGDATE
Long date formats for this calendar type.

CAL_SMONTHNAME1
Native name of the first month of the year.

CAL_SMONTHNAME2
Native name of the second month of the year.

CAL_SMONTHNAME3
Native name of the fifth month of the year.

CAL_SMONTHNAME4
Native name of the fourth month of the year.

CAL_SMONTHNAME5
Native name of the fifth month of the year.

CAL_SMONTHNAME6
Native name of the sixth month of the year.

CAL_SMONTHNAME7
Native name of the seventh month of the year.

CAL_SMONTHNAME8
Native name of the eighth month of the year.

CAL_SMONTHNAME9
Native name of the ninth month of the year.

CAL_SMONTHNAME10
Native name of the tenth month of the year.

CAL_SMONTHNAME11
Native name of the eleventh month of the year.

CAL_SMONTHNAME12
Native name of the twelfth month of the year.

CAL_SMONTHNAME13
Native name of the thirteenth month of the year, if it exists.

CAL_SSHORTDATE
Short date formats for this calendar type.

If the native name for the day of the week or for a month is an empty string, that name is identical
to the name given in the corresponding locale information and therefore is not duplicated here.

The CAL_IYEAROFFSETRANGE and CAL_SERASTRING values vary in format depending on
the type of optional calendar. The following example shows the values for these types (for each
supported alternate calendar type) along with the formula for how to use the
CAL_IYEAROFFSETRANGE value to compute the correct year given the Gregorian current year
value Y:CAL_ICALINTVALUE = "1"
CAL_IYEAROFFSETRANGE = ""
CAL_SERASTRING = ""
CAL_ICALINTVALUE = "2"
CAL_IYEAROFFSETRANGE = ""
CAL_SERASTRING = ""
CAL_ICALINTVALUE = "3"
CAL_IYEAROFFSETRANGE = "1989\01926\01912\01868\0"
CAL_SERASTRING = "Ux337B\0Ux337C\0Ux337D\0Ux337E\0"
if (Y>=1989) { Y = (Y-1989)+1; }
if (Y>=1926 && Y<1989) { Y = (Y-1926)+1; }
if (Y>=1912 && Y<1926) { Y = (Y-1912)+1; }
if (Y>=1868 && Y<1912) { Y = (Y-1868)+1; }
if (Y<1868) { Y = Y; }
CAL_ICALINTVALUE = "4"
CAL_IYEAROFFSETRANGE = "1912\0"
CAL_SERASTRING = "Ux4E2D\0Ux83EF\0Ux6C11\0Ux570B\0"
if (Y>=1912) { Y = (Y-1912)+1; }
if (Y<1912) { Y = Y; }
CAL_ICALINTVALUE = "5"
CAL_IYEAROFFSETRANGE = "2333\0"
CAL_SERASTRING = ""
Y = Y+2333;

Language Code and Scripts
Language/Locale Code Script
Greek ELL Other
Russian RUS Cyrillic
Turkish TRK Latin 2
Polish PLK Latin 2
Czech CSY Latin 2
Slovak SKY Latin 2
Hungarian HUN Latin 2
Danish DAN Latin 1
Dutch (Standard) NLD Latin 1
Belgian (Flemish) NLB Latin 1
English (American) ENU Latin 1
English (British) ENG Latin 1
English (Australian) ENA Latin 1
English (Canadian) ENC Latin 1
English (New Zealand) ENZ Latin 1
English (Ireland) ENI Latin 1
Finnish FIN Latin 1
French (Standard) FRA Latin 1
French (Belgian) FRB Latin 1
French (Canadian) FRC Latin 1
French (Swiss) FRS Latin 1
German (Standard) DEU Latin 1
German (Swiss) DES Latin 1
German (Austrian) DEA Latin 1
Icelandic ISL Latin 1
Italian (Standard) ITA Latin 1
Italian (Swiss) ITS Latin 1
Norwegian (Bokmal) NOR Latin 1
Norwegian (Nynorsk) NON Latin 1
Portuguese (Brazilian) PTB Latin 1
Portuguese (Standard) PTG Latin 1
Swedish SVE Latin 1
Spanish (Standard/Traditional) ESP Latin 1
Spanish (Mexican) ESM Latin 1
Spanish (Modern) ESN Latin 1

Unicode and Character SetsUnicode and traditional character sets give the Microsoft Windows operating system the means to
support the many different written languages of the international marketplace. Unicode is a
worldwide character-encoding standard that uses 16-bit character values to represent all the
characters used in modern computing, including technical symbols and special characters used in
publishing. Traditional character sets are previous character-encoding standards, such as the
Windows ANSI character set, that use 8-bit character values or combinations of 8-bit values to
represent the characters used in a specific language or geographical region.

This overview describes the character set functions and explains how to use them in your Win32-
based applications.

About Unicode and Character Sets
Because the world's character-based data has been developed using both Unicode and traditional
characters sets, the Win32 application programming interface (API) provides character set
functions that help Win32-based applications convert the character-based data from its original
character set to Unicode or another traditional character set. Because not all operating systems
support Unicode, these character set functions also help Win32-based applications create
character-based data that may be transferred to and used on any operating system.

For details about Unicode beyond the scope of this overview, see The Unicode™ Standard:
Worldwide Character Encoding, Version 1.0, Volumes 1 and 2, Addison-Wesley Publishing
Company: 1991, 1992, ISBN 0201567881.

Unicode and Character Set Reference
This section provides detailed reference information for the character set functions, structures,
and messages. The information is separated into the following functional groups.

Character Sets
A character set is a mapping of characters to their identifying numeric values. Most of the
character sets commonly used in computers are single-byte character sets in which each
character is identified by a value one byte wide. The large number of characters in Asian
languages led to the development of multibyte character sets, in particular the double-byte
character set (DBCS). Microsoft® Windows NT® incorporates a new global standard for character
encoding: Unicode.

Single-byte Character Sets
A single-byte character set is a mapping of 256 individual characters to their identifying numeric
values. The character codes 0x20 through 0x7E represent standardized displayable characters,
but the characters represented by the remaining codes vary among character sets. The ASCII
character set covers the range 0x00 through 0x7F.

In Windows, the ANSI character set is used in window manager and graphics device interface
(GDI), but the MS-DOS file allocation table (FAT) file system uses a character set called the
original equipment manufacturer (OEM) character set. Variations on the character sets, called
code pages, include different special characters, typically customized for a language or group of
languages. The OEM code page generally used in the United States is code page 437.

Applications that use the Microsoft® Win32® application programming interface (API) can use
Unicode to avoid the inconsistencies of varied code pages and as an aid in developing easily
localized applications.

An application can use the GetACP function to retrieve the ANSI code-page identifier for the
system or use the GetOEMCP function to retrieve the OEM code-page identifier.

The OemToChar and OemToCharBuff functions allow an application to convert a character or
string from the OEM code page to either the ANSI code page or Unicode. To convert in the other
direction, you can use either the CharToOem or CharToOemBuff function. In addition, an
application can use the MultiByteToWideChar and WideCharToMultiByte functions to map
single-byte character set (SBCS) strings to Unicode and Unicode strings to SBCS strings.

The GetCPInfo function fills a CPINFO structure with information that includes the size, in bytes,
of the largest character in the code page and the default character used when a character code is
entered that has no corresponding entry in the code page.

Double-byte Character Sets
The double-byte character set (DBCS) is called an expanded 8-bit character set because its
smallest unit is a byte. It can be thought of as the ANSI character set for some Asian versions of
Windows (particularly the Japanese version). Win32 functions for the Japanese version of
Windows accept DBCS strings for the ANSI versions of the functions. However, unlike the
handling of Unicode, DBCS character handling requires detailed changes in the character-
processing algorithms throughout an application's source code.

An application can use the IsDBCSLeadByte function to determine whether a given character is
the first byte in a 2-byte character; this helps identify double-byte character sets. In addition, an
application can use the MultiByteToWideChar and WideCharToMultiByte functions to map
DBCS strings to Unicode and Unicode strings to DBCS strings.

Unicode
Unicode is a worldwide character-encoding standard. Windows uses it exclusively at the system
level for character and string manipulation. Unicode simplifies localization of software and
improves multilingual text processing. By implementing it in an application, a developer can
enable the application with universal data exchange capabilities for global marketing, using a
single binary file for every possible character code.

Unicode defines semantics for each character, standardizes script behavior, provides a standard
algorithm for bidirectional text, and defines cross-mappings to other standards. Among the scripts
supported by Unicode are Latin, Greek, Han, Hiragana, and Katakana. Supported languages
include, but are not limited to, German, French, English, Greek, Chinese, and Japanese.

Unicode can represent all the world's characters in modern computer use, including technical
symbols and special characters used in publishing. Because each Unicode character is 16 bits
wide, it is possible to have separate values for up to 65,536 characters. Unicode-enabled
functions are often referred to as "wide-character" functions.

Win32 functions support applications that use either Unicode or the regular ANSI character set.
Mixed use in the same application is also possible. Adding Unicode support to an application is
easy, and a developer can even maintain a single set of sources from which to compile an
application that supports either Unicode or the Windows ANSI character set.

Win32 functions support Unicode by assigning its strings a specific data type and providing a
separate set of entry points and messages to support this new data type. A series of macros and
naming conventions make transparent migration to Unicode, or even compiling both non-Unicode
and Unicode versions of an application from the same set of sources, a straightforward matter.

Implementing Unicode as a separate data type also enables the compiler's type checking to
ensure that only Unicode parameters are used with functions expecting Unicode strings.

Unicode in Windows
Win32 API elements that use characters are generally implemented in one of three formats:

· A generic version that can be compiled for either ANSI or Unicode
· An ANSI version
· A Unicode version

This overview discusses Unicode data types and how they are used in functions and messages;
the use of resources, filenames, and command-line arguments; and methods of translating
between different types of strings.

Data Types
Most string operations for Unicode can be written by using the same logic used for handling the
Windows ANSI character set, except that the basic unit of operation is a 16-bit character instead
of an 8-bit byte. The header files provide a number of type definitions that make it easy to create
sources that can be compiled for Unicode or for the ANSI character set.

The following example shows the method used in the Win32 header files to define three sets of
data types: a set of generic type definitions that can compile for either ANSI or Unicode, and two
sets of specific type definitions. The first set of specific type definitions is for use with the existing
Windows (ANSI) character set, and the other is for use with Unicode (or wide) characters./* Generic types */
#ifdef UNICODE
typedef wchar_t TCHAR;
#else
typedef unsigned char TCHAR;
#endif
typedef TCHAR * LPTSTR, *LPTCH;
/* 8-bit character specific */
typedef unsigned char CHAR;
typedef CHAR *LPSTR, *LPCH;
/* Unicode specific (wide characters) */
typedef unsigned wchar_t WCHAR;
typedef WCHAR *LPWSTR, *LPWCH;The letter T preceding a type definition designates a generic type that can be compiled for either

ANSI or Unicode. The letter W preceding a type definition designates a wide-character (Unicode)
type. For the actual implementation of this method, see the WINNT.H header file.

An application using generic data types can be compiled for Unicode simply by defining
UNICODE before the include statements for the header files. To compile the code for ANSI, omit
the UNICODE definition.

Developers are encouraged to use the generic data types, but the specific types exist for
applications that require mixed-type control.

Function Prototypes
Function prototypes are also provided in generic, ANSI, and Unicode varieties, as shown below.
The generic function prototype consists of the standard function name implemented as a macro.
The preprocessor expands each macro into one of the specific function prototypes, depending on
whether UNICODE is defined. The letters A (ANSI) and W (wide) are added at the end of the
function names in the specific function prototypes. In this example, the generic prototype uses the
generic type LPTSTR for the text parameter, but the A and W prototypes use the LPCSTR and
LPCWSTR character types, respectively.SetWindowText(HWND hwnd, LPTSTR lpText);
SetWindowTextA(HWND hwnd, LPCSTR lpText);
SetWindowTextW(HWND hwnd, LPCWSTR lpText);An application can use the generic function and make Unicode dependent on whether the

UNICODE option is used to compile the code, or it can make mixed calls by using the explicit
function names ending with A and W.

This three-prototype approach applies to all functions with text arguments. Always use a generic
function prototype with the generic string and character types. All function names that end with an
uppercase W take wide-character arguments.

Some functions exist only in wide-character versions and can be used only with the appropriate
data type.

The reference material for each Unicode-enabled function is labeled with a Unicode icon. If the
function exists as a macro that the preprocessor must expand into an ANSI or Unicode form, only
the macro form is documented.
Note Whenever a function has a length parameter for a character string, the length should be
given as a count of characters (TCHAR units) in the string. However, functions that require or
return pointers to untyped memory blocks, such as the GlobalAlloc function, are exceptions.

Message Translation
Although applications generally use the same window class, messages between windows of
different classes are transparently translated by the system.

Even though a window function is implemented to receive messages in Unicode or ANSI format,
the window procedure can still send messages or call functions of either type.

The following messages have text arguments and are subject to automatic text translation. (For
information about automatic translation, see Subclassing and Automatic Message Translation.)

CB_ADDSTRING WM_ASKCBFORMATNAME

CB_DIR WM_CHAR
CB_FINDSTRING WM_CHARTOITEM
CB_GETLBTEXT WM_CREATE
CB_INSERTSTRING WM_DEADCHAR
CB_SELECTSTRING WM_DEVMODECHANGE

WM_GETTEXT
EM_GETLINE WM_MDICREATE
EM_REPLACESEL WM_MENUCHAR
EM_SETPASSWORDCHARWM_NCCREATE

WM_SETTEXT
LB_ADDFILE WM_SYSCHAR
LB_ADDSTRING WM_SYSDEADCHAR
LB_DIR WM_WININICHANGE
LB_FINDSTRING
LB_GETTEXT
LB_INSERTSTRING
LB_SELECTSTRING

String Functions
All of the string functions listed in this section exist in ANSI and Unicode implementations to
support ANSI and Unicode arguments. There are, however, subtle differences among some of
them.

The following string functions do not require special comment; their ANSI and Unicode
implementations work identically.
CharNext
CharPrev
lstrcat
lstrcpy

lstrlen

The value returned by the lstrlen function is always the number of characters, regardless of
whether the ANSI or Unicode form is used.

The following string functions are sensitive to the locale of the current thread (as derived from the
locale the user selects in Control Panel). The lstrcmp and lstrcmpi functions do not perform byte
comparisons like their ANSI C namesakes; they compare strings according to the rules of the
selected locale.
CharLower
CharLowerBuff
CharUpper
CharUpperBuff
lstrcmp

lstrcmpi

The following functions convert between the OEM character set and either ANSI or Unicode,
depending on which version is used.
CharToOem
CharToOemBuff
OemToChar

OemToCharBuff

The print function wsprintf supports Unicode by providing the following new and changed data
types in its format specifications. These format specifications affect the way the wsprintf function
interprets the corresponding passed-in parameter.

Format
specification

ANSI version Unicode version

c CHAR WCHAR
C WCHAR CHAR
hc, hC CHAR CHAR
hs, hS LPSTR LPSTR
lc, lC WCHAR WCHAR
ls, lS LPWSTR LPWSTR
s LPSTR LPWSTR
S LPWSTR LPSTR

The data type for the output text always depends on the version of the function. Where the
data type of the passed-in parameter and of the output text do not agree, wsprintf will
perform a conversion from Unicode to ANSI, or vice versa, as required.

For the Unicode version of wsprintf, the format string is Unicode, as is the output text.

Standard C Functions
The standard C libraries contain wide-character versions of the ANSI string functions that begin
with the letters str. The wide-character versions of the functions start with the letters wcs (or
sometimes _wcs). The Unicode data type is compatible with the wide-character data type
wchar_t in ANSI C; this allows access to the wide-character string functions.

Generic functions exist for all standard C string functions. They start with the letters _tcs and are
listed in the TCHAR.H header file. These functions use the generic data types TCHAR and
TCHAR*

An application must add the following lines to its program in order to use the generic
functions and compile for Unicode:#define _UNICODE
#include <tchar.h>
#include <wchar.h>Note that both the TCHAR.H and WCHAR.H are required, and that the leading underscore on the

_UNICODE variable is also required.

The wcstombs and mbstowcs functions can convert from the character set supported by the
standard C library to Unicode and back, with some limitations. For more information about
translating strings to and from Unicode, see Translation Between String Types.

The printf function defined in TCHAR.H supports the same format specifications as wsprintf; for
details, see String Functions. Similarly, TCHAR.H contains a wprintf function, in which the format
string itself is a Unicode string.

Filenames
In Windows, the ANSI character set is used in window manager and GDI; the MS-DOS FAT file
system uses the OEM character set. Windows applications that create MS-DOS files have
sometimes had to use the CharToOem and OemToChar functions to translate between these
character sets. However, the New Technology file system (NTFS) is capable of storing filenames
in Unicode; no translation is necessary with NTFS.

With Unicode implementations of the file-system functions, it is not necessary to perform
translations to and from ANSI and OEM character sets. Instead, a developer can use a single
source file to compile non-Unicode versions of an application by providing macros for functions
that are not invoked when compiling for Unicode, such as CharToOem and OemToChar.

The special filename characters in MS-DOS are unchanged in Unicode filenames:

"\," "/," ".," "?," "*."

These special characters are in the ASCII range of characters (0x00 through 0x7F) and their
Unicode equivalents are simply the same values in a 2-byte form: 0x0000 through 0x007F.

Translation Between String Types
The following Win32 functions translate character strings from one string type to another.

Function Description

FoldString Translates one character string to another.
LCMapString Maps a character string by locale.
ToUnicode Translates a virtual-key code into a Unicode

character.
MultiByteToWideCharMaps a multibyte string into a wide-character

string.
WideCharToMultiByteMaps a wide-character string into a multibyte

string.

The WideCharToMultiByte and MultiByteToWideChar functions are particularly useful for
applications that support several string types. ANSI C also defines the conversion functions
wcstombs and mbstowcs, but they can only convert to and from the character set supported by
the standard C library.

Command-line Arguments
An application can use the GetCommandLine function to retrieve Unicode command-line
arguments by calling it as a Unicode function.

Using Strings and Unicode
· Using generic data types
· Registering window classes
· Subclassing and automatic message translation
· Using special characters in Unicode
· Using functions that have no Unicode equivalents

Using Generic Data Types
If you use generic data types in your code, it can be compiled for Unicode simply by defining
UNICODE before the include statements for the header files. To compile the code for ANSI, omit
the UNICODE definition.

To convert code that processes strings so it can be compiled for either ANSI or Unicode, follow
these steps.

1. Change all character and string types used for text to TCHAR, LPTSTR, or LPTCH.
2. Be sure that pointers to nontext data buffers or binary byte arrays are coded with the

LPBYTE type and not mistakenly with the LPTSTR or LPTCH type. Declare pointers of
indeterminate type explicitly as void pointers by using LPVOID, as appropriate.

3. Make pointer arithmetic type-independent. Using units of TCHAR size yields variables
that are two bytes if UNICODE is defined, and one byte if UNICODE is not defined. Using
pointer arithmetic always returns the number of elements pointed to by the pointer, whether
the elements are one or two bytes in size. The following expression always returns the
number of elements, regardless of whether UNICODE is defined:cCount = lpEnd - lpStart;The following expression determines the number of bytes used:cByteCount = (lpEnd - lpStart) * sizeof(TCHAR);There is no need to change a statement like the following one, because the pointer increment
points to the next character element.chNext = *++lpText;4. Replace literal strings and manifest character constants with macros. Change expressions
like the following one.while(*lpFileName++ != '\\') {

/* .
/* .
/* .
}Use the TEXT macro as follows in this expression.while(*lpFileName++ != TEXT('\\')) {
./*
./*
./*
}Precede a literal string in the Unicode form of a function by the letter L. The TEXT macro

causes strings to be evaluated as L"string" when UNICODE is defined, and to "string"
otherwise. The following call to the Unicode version of lstrlen demonstrates the use of the L
identifier.cch == lstrlenW(L"hello world");For easier management, move literal strings into resources, especially if they contain
characters outside the ASCII range (that is, 0x00 through 0x7F).

5. Call only the Unicode versions of the standard C library string functions, as listed in
Standard C Functions.

6. Change any code that relies on 255 as the largest value for a character.
When you compile code that you have changed as outlined above, the compiler creates the same
binary file as it did before you made the changes. When you compile the code using the
UNICODE option, however, it is compiled as a Unicode application.

Registering Window Classes
A window class is supported by a window procedure. You can register a window class by using
either the RegisterClassA or RegisterClassW function. If you register the window class by using
RegisterClassA, the application tells the system that the windows of the created class expect
messages with text or character parameters to use the ANSI character set; if you register it by
using RegisterClassW, the application requests that the system pass text parameters of
messages as Unicode. The IsWindowUnicode function enables applications to query the nature
of each window.

The following example shows how to register an ANSI window class and a Unicode window class
and how to write the window procedures for both cases. For the purposes of this example, all
functions and structures are shown with the specific A or W data types. Using the techniques
explained in Using Generic Data Types, you could alternatively write this example by using
generic data types, so that it could be compiled as either ANSI or Unicode, depending on whether
UNICODE is defined./* Register an ANSI window class. */
WNDCLASSA AnsiWndCls;
AnsiWndCls.style = CS_DBLCLKS | CS_PARENTDC;
AnsiWndCls.lpfnWndProc = (WNDPROC)AnsiWndProc;
AnsiWndCls.cbClsExtra = 0;
AnsiWndCls.cbWndExtra = 0;
AnsiWndCls.hInstance= hmodUser;
AnsiWndCls.hIcon = NULL;
AnsiWndCls.hCursor = LoadCursor(NULL, (LPTSTR)IDC_IBEAM);
AnsiWndCls.hbrBackground = NULL;
AnsiWndCls.lpszMenuName = NULL;
AnsiWndCls.lpszClassName = "TestAnsi";
RegisterClassA(&AnsiWndCls);
/* Register a Unicode window class. */
WNDCLASSW UnicodeWndCls;
UnicodeWndCls.style = CS_DBLCLKS | CS_PARENTDC;
UnicodeWndCls.lpfnWndProc = (WNDPROC)UniWndProc;
UnicodeWndCls.cbClsExtra = 0;
UnicodeWndCls.cbWndExtra = 0;
UnicodeWndCls.hInstance= hmodUser;
UnicodeWndCls.hIcon = NULL;
UnicodeWndCls.hCursor = LoadCursor(NULL,(LPTSTR)IDC_IBEAM);
UnicodeWndCls.hbrBackground = NULL;
UnicodeWndCls.lpszMenuName = NULL;
UnicodeWndCls.lpszClassName = L"TestUnicode";
RegisterClassW(&UnicodeWndCls);The following example shows the difference between handling the WM_CHAR message in an

ANSI window procedure and a Unicode window procedure./* ANSI Window Procedure */
LONG AnsiWndProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
/* Dispatch the messages that can be received. */
switch (message) {
case WM_CHAR:
/*
* wParam - the value of the key
* lParam - (not used in this example)
*/
if (lstrcmpA("Q", (LPCSTR) wParam)) {
/*.
/*.
/*.
}
else {
./*
/*.
/*.
}
break;
./*
./* process other messages */
./*
}

}
/* Unicode Window Procedure */
LONG UniWndProc(HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)
{

/* Dispatch the messages that can be received. */
switch (message) {
case WM_CHAR:
/*
* wParam - the value of the key
* lParam - (not used in this example)
*/
if (lstrcmpW(L"Q", (LPCWSTR) wParam)) {
/*.
/*.
/*.
}
else {
/*.
/* .
/* .
}
break;
/* .
/* process other messages */
/* .
}

}All text in messages received by AnsiWndProc will be composed of ANSI characters, and all text
in messages received by UniWndProc will be composed of Unicode characters.

Subclassing and Automatic Message Translation
Subclassing is a technique that allows an application to intercept and process messages sent or
posted to a particular window before the window has a chance to process them. The system
automatically translates messages into ANSI or Unicode form, depending on the form of the
function that subclassed the window procedure.

The following call to the SetWindowLongA function subclasses the current window procedure
associated with the window identified by the hwnd parameter. The new window procedure,
NewWndProc, will receive messages with text in ANSI format.OldWndProc = (WNDPROC) SetWindowLongA(hwnd,

GWL_WNDPROC, (LONG)NewWndProc);When NewWndProc has finished processing a message, it uses the CallWindowProc function as
follows to pass the message to OldWndProc.CallWindowProc(OldWndProc, hwnd, uMessage, wParam, lParam);If OldWndProc was created with a class style of UNICODE, messages will be translated from the
ANSI form received by NewWndProc into Unicode.

Similarly, a call to the SetWindowLongW function would subclass the current window procedure
with a window procedure that expects Unicode text messages. Message translation, if necessary,
is performed during the processing of the CallWindowProc function.

For more information about subclassing, see Window Procedures.

Using Special Characters in Unicode
There are a few special characters and characters with unusual meanings in Unicode text strings.
To avoid unexpected problems with these characters, use the rules provided in the following
topics.

· Null-terminated strings
· Byte-order mark
· Escape sequences and control characters
· Line and paragraph separators
· ASCII control codes 0x000D and 0x000A
· Nonspacing characters and diacritics

Null-terminated Strings
Always cast zero to TCHAR when using null-terminated strings. The code 0x0000 is the Unicode
string terminator for null-terminated strings. A single null byte is not sufficient for this code,
because many Unicode characters contain null bytes as either the high or the low byte. An
example is the letter A, for which the character code is 0x0041.

Byte-order Mark
Always prefix a Unicode plain text file with a byte-order mark. Because Unicode plain text is a
sequence of 16-bit codes, it is sensitive to the byte ordering used when the text was written.

A byte-order mark is not a control character that selects the byte order of the text; it simply informs
an application receiving the file that the file is byte ordered.

Ideally, all Unicode text would follow only one set of byte-ordering rules. This is not possible,
however, because microprocessors differ in the position of the least significant byte: Intel® and
MIPS® processors have the least significant byte first; Motorola processors (and byte-reversed
Unicode files) have it last. With only a single set of byte-ordering rules, users of one type of
microprocessor would be forced to swap the byte order every time a plain text file is read from or
written to, even if the file is never transferred to another system based on a different
microprocessor.

The preferred place to specify byte order is in a file header, but text files do not have headers.
Therefore, Unicode has defined a character (0xFEFF) and a noncharacter (0xFFFE) as byte-
order marks. They are mirror byte-images of each other.

Since the sequence 0xFEFF is exceedingly rare at the outset of regular non-Unicode text files, it
can serve as an implicit marker or signature to identify the file as a Unicode file. Applications
written to read both Unicode and non-Unicode text files should use the presence of this sequence
as a near-certain indicator that the file is a Unicode file. (Compare this technique to using the MS-
DOS EOF marker to terminate text files.)

When an application finds 0xFEFF at the beginning of a text file, it typically processes the file as
though it were a Unicode file, although it may also perform further heuristic checks to verify that
this is true. Such a check could be as simple as a test of whether the variation in the low-order
bytes is much higher than the variation in the high-order bytes. For example, if ASCII text is
converted to Unicode text, every second byte is zero. Also, checking both for the linefeed and
carriage-return characters (0x000A and 0x000D) and for even or odd file size can provide a strong
indicator of the nature of the file.

When an application finds 0xFFFE at the beginning of a text file, it interprets it to mean the file is a
byte-reversed Unicode file. The application can either swap the order of the bytes or alert the user
that an error has occurred.

The Unicode byte-order mark character is not found in any code page, so it disappears if data is
converted to ANSI. Unlike other Unicode characters, it is not replaced by a default character when
it is converted. If a byte-order mark is found in the middle of a file, it is not interpreted as a
Unicode character and has no effect on text output.

The Unicode value 0xFFFF is illegal in plain text files and cannot be passed between Windows
functions. The value 0xFFFF is reserved for an application's private use.

Escape Sequences and Control Characters
Translate escape sequences character by character into Unicode. When an ASCII plain text file is
converted to Unicode, there is a chance that it will subsequently be converted back to ASCII.
Converting escape sequences into Unicode on a character-by-character basis, rather than as a
single 2-byte characters makes it possible to perform the reverse conversion without recognizing
and parsing the escape sequences as such. For example, ESC+A should become 0x001B (ESC),
0x0041 (A), rather than 0x411B.

The first 32 sixteen-bit characters in Unicode are intended for the 32 control characters. This
approach supports the existing use of control characters for formatting purposes ¾ that is,
Unicode applications can treat these control characters in exactly the same way as they treat their
ASCII equivalents.

Line and Paragraph Separators
Use the line-separator character (0x2028) and the paragraph-separator character (0x2029) to
divide plain text. A new line is begun after each line separator. A new paragraph is begun after
each paragraph separator.

Because these are separator codes, it is not necessary to start the first line or paragraph in the file
with them, or to end the last line or paragraph with them. (Doing so would indicate that there is an
empty line or paragraph in that location.)

The line separator can be used to indicate an unconditional end of line. However, line separators
do not correspond to the carriage-return and linefeed characters, or to the carriage-return-
linefeed character combination; they must be processed separately from carriage return and
linefeed characters.

The paragraph separator can be inserted between paragraphs of text. This allows plain text files
to be created that can be formatted with different line widths on different systems. The receiving
system can ignore any line breaks and break paragraphs only at the paragraph separators.

ASCII Control Codes 0x000D and 0x000A
The Unicode standard does not prescribe a specific meaning for the control codes 0x000D
(carriage return) and 0x000A (linefeed). There is no requirement that these codes be used in
combination, and if used individually, either code may represent either itself only or both codes
together. It is entirely up to the application to determine what these codes represent. (Applications
have always had to interpret these control codes in ASCII; the Unicode policy is not a change in
their use.)

Nonspacing Characters and Diacritics
When breaking lines or otherwise separating text, be sure to keep nonspacing characters with
their base characters. Many scripts contain characters that visually combine with other characters
on output ¾ for example, the diacritical marks (or "floating accents"). In Unicode, nonspacing
characters follow their base character.

Using Functions That Have No Unicode Equivalents
Windows functions that have not been exported in a Unicode version have typically been replaced
by more powerful or extended functions that do support Unicode. If you are porting code that calls
the OpenFile function, for example, you can support Unicode by using the CreateFile or
CreateFileEx function instead.

If a function has no Unicode equivalent, you can map characters to and from 8-bit character sets
before and after the function call. For example, the number-formatting functions atoi and itoa use
only the digits 0 through 9. Normally, mapping Unicode to 8-bit characters could cause loss of
data, but you can avoid this by making your code type independent and conditionalizing the
expressions. For example, the following statements are type dependent and should be changed to
support Unicode.char str[4];

num = atoi(str);These statements could be rewritten as follows to make them type independent.TCHAR tstr[4];
CHAR strTmp[SIZE];
#ifdef UNICODE
wcstombs(strTmp, (const wchar_t *) tstr, sizeof(strTmp));
num = atoi(strTmp);
#else
num = atoi(tstr);
#endifIn this example, the wcstombs function is the standard C function that translates Unicode to

ASCII. The example relies on the fact that the digits 0 through 9 can always be translated from
Unicode to ASCII, even if some of the surrounding text cannot. The atoi function stops at any
character that is not a digit. You can use the LCMapString function if you need to process text
that includes the native digits provided for some of the scripts in Unicode.

Unicode and Character Set Functions
This section describes the character set functions. On errors, some of these functions set an
extended error value. Use the GetLastError function to retrieve this value.
GetTextCharset
GetTextCharsetInfo
IsDBCSLeadByteEx
TranslateCharsetInfo

WideCharToMultiByte

Obsolete Unicode Functions
The AnsiToOem function is obsolete. Use the CharToOem function.

The AnsiToOemBuff function is obsolete. Use the CharToOemBuff function.

The OemToAnsi function is obsolete. Use the OemToChar function.

The OemToAnsiBuff function is obsolete. Use the OemToCharBuff function.

Unicode and Character Set Structures
This section describes the structures used by the character set functions.
CHARSETINFO
FONTSIGNATURE

LOCALESIGNATURE

Unicode and Character Set Constants
This section describes the constants used with the character set functions.

ANSI Code-Page Identifiers
Identifier Meaning
874 Thai
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1200 Unicode (BMP of ISO 10646)
1250 Windows 3.1 Eastern European
1251 Windows 3.1 Cyrillic
1252 Windows 3.1 Latin 1 (US, Western Europe)
1253 Windows 3.1 Greek
1254 Windows 3.1 Turkish
1255 Hebrew
1256 Arabic
1257 Baltic

OEM Code-Page Identifiers
Identifier Meaning
437 MS-DOS United States
708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
720 Arabic (Transparent ASMO)
737 Greek (formerly 437G)
775 Baltic
850 MS-DOS Multilingual (Latin I)
852 MS-DOS Slavic (Latin II)
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish
860 MS-DOS Portuguese
861 MS-DOS Icelandic
862 Hebrew
863 MS-DOS Canadian-French
864 Arabic
865 MS-DOS Nordic
866 MS-DOS Russian (former USSR)
869 IBM Modern Greek
874 Thai
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1361 Korean (Johab)

Code-Page Identifiers
Identifier Meaning
037 EBCDIC
437 MS-DOS United States
500 EBCDIC "500V1"
708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
720 Arabic (Transparent ASMO)
737 Greek (formerly 437G)
775 Baltic
850 MS-DOS Multilingual (Latin I)
852 MS-DOS Slavic (Latin II)
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish
860 MS-DOS Portuguese
861 MS-DOS Icelandic
862 Hebrew
863 MS-DOS Canadian-French
864 Arabic
865 MS-DOS Nordic
866 MS-DOS Russian
869 IBM Modern Greek
874 Thai
875 EBCDIC
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1026 EBCDIC
1200 Unicode (BMP of ISO 10646)
1250 Windows 3.1 Eastern European
1251 Windows 3.1 Cyrillic
1252 Windows 3.1 US (ANSI)
1253 Windows 3.1 Greek
1254 Windows 3.1 Turkish
1255 Hebrew
1256 Arabic
1257 Baltic
1361 Korean (Johab)
10000 Macintosh Roman
10001 Macintosh Japanese
10006 Macintosh Greek I
10007 Macintosh Cyrillic
10029 Macintosh Latin 2
10079 Macintosh Icelandic
10081 Macintosh Turkish

Code-Page Bitfields
Bit Code pageDescription
ANSI
0 1252 Latin 1
1 1250 Latin 2: Eastern Europe
2 1251 Cyrillic
3 1253 Greek
4 1254 Turkish
5 1255 Hebrew
6 1256 Arabic
7 1257 Baltic
8 - 16 Reserved for ANSI
ANSI and OEM
17 874 Thai
18 932 JIS/Japan
19 936 Chinese: Simplified chars--PRC and Singapore
20 949 Korean Unified Hangeul Code (Hangeul

TongHabHyung Code)
21 950 Chinese: Traditional chars--Taiwan and Hong

Kong
22 - 29 Reserved for alternate ANSI and OEM
30 - 31 Reserved by system.
OEM
32 - 47 Reserved for OEM
48 869 IBM Greek
49 866 MS-DOS Russian
50 865 MS-DOS Nordic
51 864 Arabic
52 863 MS-DOS Canadian French
53 862 Hebrew
54 861 MS-DOS Icelandic
55 860 MS-DOS Portuguese
56 857 IBM Turkish
57 855 IBM Cyrillic; primarily Russian
58 852 Latin 2
59 775 Baltic
60 737 Greek; former 437 G
61 708 Arabic; ASMO 708
62 850 WE/Latin 1
63 437 US

Windows Networking (WNet)An application written for Microsoft® Windows® can use the Windows networking (WNet) functions
in the Microsoft® Win32® application programming interface (API) to implement networking
capabilities without making allowances for a particular network provider or physical network
implementation. The reason is that the WNet functions are network independent.

About Windows Networking
Applications can use the Windows networking functions to add and cancel network connections
and to retrieve information about the current configuration of the network.

The following figure shows the structure of a typical network.

ewc msdncd, EWGraphic, bsd23506 0 /a "SDK_01.BMP"

In the preceding figure, the hierarchy for Microsoft Windows NT Server resources is given in detail
as Network provider #1. Network resources from other providers have different hierarchical
systems. An application does not need information about the hierarchy before it begins to work
with a network. It can proceed from the network root (that is, the topmost container resource) and
retrieve information about the network's resources as the information is required.

Network resources that contain other resources are called containers. Container resources are in
boxes in the preceding figure.

Resources that do not contain other resources are objects. Sharepoint #1 and Sharepoint #2 in
the figure are objects. A sharepoint is an object that is accessible across the network, such as a
printer or a shared directory.

WNet Functions
The following functions are used in Windows networking:Connection FunctionsWNetAddConnection
WNetAddConnection2
WNetAddConnection3
WNetCancelConnection
WNetCancelConnection2
WNetConnectionDialog
WNetDisconnectDialog
WNetGetConnection

WNetGetUniversalNameEnumeration FunctionsWNetCloseEnum
WNetEnumResource
WNetOpenEnum

WNetGetLastErrorUser FunctionsWNetGetUser
Many of these functions use a NETRESOURCE structure.

The WNetAddConnection and WNetCancelConnection functions are supported for
compatibility with Windows for Workgroups. However, new applications should use
WNetAddConnection2 or WNetAddConnection3 and WNetCancelConnection2.

Windows Networking Operations
An application can use the WNet functions to browse, add, or cancel network connections
anywhere in the hierarchy. A persistent connection is a network connection that Windows
automatically restores when the user logs on. You can use the WNetAddConnection2 and
WNetCancelConnection2 functions to control whether a network connection is persistent from
one session to the next.

To find the default user name or the user name used to establish a network connection, use the
WNetGetUser function.

In addition to using the WNet functions, processes can also use mailslots and named pipes to
communicate with one another. For more information about these subjects, see Mailslots and
Pipes.

Using Windows Networking
The WNet functions enable your application to query and control network connections directly or
to give direct control of the network connections to the user. To use these functions, you must link
to the multiple-provider router library (MPR.LIB). This section discusses how to use the network
functions in your application.

· Using the connections dialog box
· Enumerating network resources
· Adding a network connection
· Retrieving the connection name
· Retrieving the user name
· Canceling a network connection
· Retrieving network errors

Using the Connections Dialog Box
The WNetConnectionDialog function creates a dialog box that allows the user to browse and
connect to network resources. Conversely, the WNetDisconnectDialog function creates a dialog
box that allows the user to disconnect from them.

The following example shows how to use the WNetConnectionDialog function to create a dialog
box that displays disk resources.DWORD dwResult;
dwResult = WNetConnectionDialog(hwnd, RESOURCETYPE_DISK);
if(dwResult != NO_ERROR)
{

// An application-defined error handler is demonstrated in the
// section titled "Retrieving Network Errors."
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetConnectionDialog");
return FALSE;

}

Enumerating Network Resources
To enumerate a network container resource, your application should pass the address of a
NETRESOURCE structure to the WNetOpenEnum function. WNetOpenEnum creates a handle
to the resource described by the NETRESOURCE structure. The application then passes this
handle to the WNetEnumResource function, which returns information about the resource in the
form of an array of NETRESOURCE structures. When the handle is no longer needed, the
application can close it by calling the WNetCloseEnum function.

Your application can continue enumerating any container resource described in the array of
NETRESOURCE structures retrieved by WNetEnumResource. If the dwUsage member of the
NETRESOURCE structure is RESOURCEUSAGE_CONTAINER, the application can pass the
address of that structure to WNetOpenEnum to open the container and continue the
enumeration. If dwUsage is RESOURCEUSAGE_CONNECTABLE, the application can pass the
structure's address to the WNetAddConnection2 function.

The following example illustrates an application-defined function (EnumerateFunc) that
enumerates all the resources on a network. When calling this function, specify NULL for the
pointer to the NETRESOURCE structure. When WNetOpenEnum receives the NULL pointer, it
retrieves a handle to the root of the network. Whenever a NETRESOURCE structure retrieved by
WNetEnumResource is RESOURCEUSAGE_CONTAINER, the EnumerateFunc function calls
itself and uses a pointer to that structure in its call to WNetOpenEnum.BOOL WINAPI EnumerateFunc(HWND hwnd,
HDC hdc,
LPNETRESOURCE lpnr)
{

DWORD dwResult, dwResultEnum;
HANDLE hEnum;
DWORD cbBuffer = 16384; // 16K is a good size
DWORD cEntries = 0xFFFFFFFF; // enumerate all possible entries
LPNETRESOURCE lpnrLocal;// pointer to enumerated structures
DWORD i;
dwResult = WNetOpenEnum(RESOURCE_GLOBALNET,
RESOURCETYPE_ANY,
0, // enumerate all resources
lpnr, // NULL first time this function is called
&hEnum); // handle to resource
if (dwResult != NO_ERROR) {
// An application-defined error handler is demonstrated in the
// section titled "Retrieving Network Errors."
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetOpenEnum");
return FALSE;
}
do {
// Allocate memory for NETRESOURCE structures.
lpnrLocal = (LPNETRESOURCE) GlobalAlloc(GPTR, cbBuffer);
dwResultEnum = WNetEnumResource(hEnum, // resource handle
&cEntries,// defined locally as 0xFFFFFFFF
lpnrLocal,// LPNETRESOURCE
&cbBuffer); // buffer size
if (dwResultEnum == NO_ERROR) {
for(i = 0; i < cEntries; i++)
{
// Following is an application-defined function for
// displaying contents of NETRESOURCE structures.
DisplayStruct(hdc, &lpnrLocal[i]);
//
// If this NETRESOURCE is a container, call the function
// recursively.
if(RESOURCEUSAGE_CONTAINER ==

(lpnrLocal[i].dwUsage & RESOURCEUSAGE_CONTAINER))
if(!EnumerateFunc(hwnd, hdc, &lpnrLocal[i]))

TextOut(hdc, 10, 10,
"EnumerateFunc returned FALSE.", 29);
}
}
else if (dwResultEnum != ERROR_NO_MORE_ITEMS) {
NetErrorHandler(hwnd, dwResultEnum, (LPSTR)"WNetEnumResource");
break;
}
}
while(dwResultEnum != ERROR_NO_MORE_ITEMS);
GlobalFree((HGLOBAL) lpnrLocal);
dwResult = WNetCloseEnum(hEnum);
if(dwResult != NO_ERROR) {
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetCloseEnum");
return FALSE;
}
return TRUE;

}

Adding a Network Connection
To make a connection to a network resource described by a NETRESOURCE structure, an
application can call the WNetAddConnection2 function, as shown in the following example.DWORD dwResult;
NETRESOURCE nr;
dwResult = WNetAddConnection2(&nr, // NETRESOURCE from enumeration

(LPSTR) NULL, // no password
(LPSTR) NULL, // logged-in user
CONNECT_UPDATE_PROFILE); // update profile with connect info

if (dwResult == ERROR_ALREADY_ASSIGNED)
{

TextOut(hdc, 10, 10, "Already connected to specified resource.",
40);

return FALSE;
}
else if (dwResult == ERROR_DEVICE_ALREADY_REMEMBERED)
{

TextOut(hdc, 10, 10,
"Attempted reassignment of remembered device.", 44);
return FALSE;

}
else if(dwResult != NO_ERROR)
{

// An application-defined error handler is demonstrated in the
// section titled "Retrieving Network Errors."
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetAddConnection2");
return FALSE;

}
TextOut(hdc, 10, 10, "Connected to specified resource.", 32);The WNetAddConnection function is supported for compatibility with earlier versions of Windows

for Workgroups. For new applications, use WNetAddConnection2 or WNetAddConnection3.

Retrieving the Connection Name
To retrieve the name of the network resource associated with a local device, an application can
use the WNetGetConnection function, as shown in the following example.CHAR szDeviceName[80];
DWORD dwResult, cchBuff = sizeof(szDeviceName);
dwResult = WNetGetConnection("z:",

(LPSTR) szDeviceName,
&cchBuff);

switch (dwResult) {
case NO_ERROR:
TextOut(hdc, 10, 10, (LPSTR) szDeviceName,
lstrlen((LPSTR) szDeviceName));
break;
case ERROR_NOT_CONNECTED:
TextOut(hdc, 10, 10, "Device z: not connected.", 24);
case ERROR_CONNECTION_UNAVAIL:
/* A connection is remembered but not connected. */
TextOut(hdc, 10, 10, "Connection unavailable.", 23);
default:
/*
* An application-defined error handler is demonstrated in the
* section titled "Retrieving Network Errors."
*/
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetGetConnection");
return FALSE;

}

Retrieving the User Name
To retrieve the name of the user associated either with a local device connected to a network
resource or with the name of a network, an application can call the WNetGetUser function. The
following example uses the device name to retrieve the name of the user.CHAR szUserName[80];
DWORD dwResult, cchBuff = 80;
dwResult = WNetGetUser("z:",

(LPSTR) szUserName,
&cchBuff);

if(dwResult == NO_ERROR)
TextOut(hdc, 10, 10,
(LPSTR) szUserName,
lstrlen((LPSTR) szUserName));

else {
// An application-defined error handler is demonstrated in the
// section titled "Retrieving Network Errors."
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetGetUser");
return FALSE;

}

Canceling a Network Connection
To cancel a connection to a network resource, an application can call the
WNetCancelConnection2 function, as shown in the following example.DWORD dwResult;
dwResult = WNetCancelConnection2("z:",

CONNECT_UPDATE_PROFILE, // remove connection from profile
FALSE); //fail if open files or jobs

if (dwResult == ERROR_NOT_CONNECTED)
{

TextOut(hdc, 10, 10, "Drive z: not connected.", 23);
return FALSE;

}
else if(dwResult != NO_ERROR)
{

// An application-defined error handler is demonstrated in the
// section titled "Retrieving Network Errors."
NetErrorHandler(hwnd, dwResult, (LPSTR)"WNetCancelConnection2");
return FALSE;

}
TextOut(hdc, 10, 10, "Connection closed for z:.", 25);The WNetCancelConnection function is supported for compatibility with earlier versions of

Windows for Workgroups. For new applications, use WNetCancelConnection2.

Retrieving Network Errors
When one of the WNet functions returns WN_EXTENDED_ERROR, an application can call the
WNetGetLastError function to get more information about the error that occurred. This
information is usually specific to the network provider.

The following example illustrates an application-defined error-handling function (NetErrorHandler)
that takes three arguments: a window handle, the error code returned by one of the WNet
functions, and the name of the function that produced the error. If the error code is
WN_EXTENDED_ERROR, NetErrorHandler calls WNetGetLastError to get extended error
information.BOOL WINAPI NetErrorHandler(HWND hwnd,

DWORD dwErrorCode,
LPSTR lpszFunction)

{
DWORD dwWNetResult, dwLastError;
CHAR szError[256];
CHAR szCaption[256];
CHAR szDescription[256];
CHAR szProvider[256];
// The following code performs standard error-handling.
if (dwErrorCode != ERROR_EXTENDED_ERROR)
{
wsprintf((LPSTR) szError, "%s failed; \nResult is %ld",
lpszFunction, dwErrorCode);
wsprintf((LPSTR) szCaption, "%s error", lpszFunction);
MessageBox(hwnd, (LPSTR) szError, (LPSTR) szCaption, MB_OK);
return TRUE;
}
// The following code performs error-handling when the
// ERROR_EXTENDED_ERROR return value indicates that

WNetGetLastError
// can retrieve additional information.
else
{
dwWNetResult = WNetGetLastError(&dwLastError,
(LPSTR) szDescription, // buffer for error description
sizeof(szDescription),
(LPSTR) szProvider,// buffer for provider name
sizeof(szProvider));
if(dwWNetResult != NO_ERROR) {
wsprintf((LPSTR) szError,
"WNetGetLastError failed; error %ld", dwWNetResult);
MessageBox(hwnd, (LPSTR) szError,
"WNetGetLastError", MB_OK);
return FALSE;
}
wsprintf((LPSTR) szError,
"%s failed with code %ld;\n%s",
(LPSTR) szProvider, dwLastError, (LPSTR) szDescription);
wsprintf((LPSTR) szCaption, "%s error", lpszFunction);
MessageBox(hwnd, (LPSTR) szError, (LPSTR) szCaption, MB_OK);
return TRUE;
}

}

Windows Networking Reference
The following functions and structures are used with Windows networking.

Windows Networking Functions
The following functions are used in Windows networking.
WNetAddConnection
WNetAddConnection2
WNetAddConnection3
WNetCancelConnection
WNetCancelConnection2
WNetCloseEnum
WNetConnectionDialog
WNetDisconnectDialog
WNetEnumResource
WNetGetConnection
WNetGetLastError
WNetGetUniversalName
WNetGetUser

WNetOpenEnum

Windows Networking Structures
The following structures are used in Windows networking.
NETRESOURCE
REMOTE_NAME_INFO

UNIVERSAL_NAME_INFO

Ported LAN Manager FunctionsThe set of ported LAN Manager functions supported by Microsoft® Windows® is based on the set
of LAN Manager functions specified in the LAN Manager 2.x Programmer's Reference. They are
not a part of the Microsoft® Win32® application programming interface (API).

Certain LAN Manager functions are obsolete. Other LAN Manager functions have been
superseded. In addition, the Microsoft® Windows NT® operating system adds to the set of
networking functions introduced by LAN Manager.

About Ported LAN Manager Functions
For OS/2-based servers, the Microsoft® LAN Manager functions provided much of the functionality
required for a network operating system; this functionality was missing from the local operating
system. Windows NT has much of this network functionality built in. Therefore, some of the LAN
Manager functions are not supported. However, the set of LAN Manager functions is extended to
provide additional capability not included in Windows NT. In addition, you may use these functions
to monitor and administer OS/2-based LAN Manager servers.

The functions specified in this overview are designed to provide some of the API functionality that
was available in LAN Manager 2.x. They are not the base Windows networking functions.
Windows NT also provides a network-independent set of network functions (WNet functions) that
allow network functions to work across different network vendors' products. If a base function or
WNet function exists that could be used by your application, you should convert your code to use
the WNet equivalent. There are at least two reasons to make the change:

1. The WNet functions are network independent, while the ported LAN Manager functions
work only on LAN Manager networks.

2. Some of the Windows networking functions documented in this SDK may not be
supported in future releases of Windows or Windows NT if they have been superseded by
base functions or WNet functions. Microsoft does not plan to remove specific functions unless
equivalent or better functionality is available.

In this documentation, equivalent functions are listed that could be used in place of a ported LAN
Manager function. These are the functions your application should use if at all possible.

LAN Manager Data Types
The following sections discuss the buffers, data alignment, structures, and handles used by the
ported LAN Manager functions.

API Buffers
The RPC run-time allocates the buffers required to remote the ported LAN Manager functions.
This is a requirement for both efficiency and interoperability. Using the RPC run time to allocate
the API transmission buffers results in the two significant differences between a Windows
implementation and a LAN Manager 2.x implementation:

· For a set type function (data sent to the server) the function caller specifies a buffer
containing the information structure relevant to the function level but does not specify the
buffer length.

· For a get type function (data returned from the server) the caller does not preallocate a
buffer for the return information. The caller passes a LPBYTE * to the function on input. On
successful return the buffer pointer will contain a pointer to a buffer containing the return
information. When the caller has finished processing the returned information the
NetApiBufferFree function must be called. This simplifies the calling code, because the caller
does not need to guess at the size of the buffer required and will not need to resize and
reissue the function.

API Data Alignment
All structures specified for the ported LAN Manager functions must be 32-bit word aligned. The
base size for a structure element is a DWORD.

Enumeration Buffer Lengths
Enumeration functions take an advisory maximum data-length parameter, prefmaxlen, which
allows a control on the number of bytes returned from an enumeration call. The preferred length is
specified in units of 8-bit bytes. The actual function may return more than the preferred maximum
length.

An enumeration call will not return partial entries.

Embedded Strings
Information structures will not contain embedded strings. This improves the alignment of the
information structures and allows for OEM flexibility in the core functions. This does not change
the feel of the LAN Manager 2.x functions that support string pointers. Code porting merely
requires a pointer assignment rather than a string copy.

Any information field that is returned in an enumeration call that can be subsequently used as a
key for a GetInfo call is guaranteed to be present in the enumeration buffer. If the variable-length
information string that would specify the key field value will not fit, then the entire fixed-length
structure for the entry is not returned. Other variable-length fields will be returned as a NULL
pointer for the case in which the string does not fit as with LAN Manager 2.x.

Enumeration Resume Handles
Enumeration resume handles are identifiers for the actual resume key contained in the instance
data for the function. This is required for security, interoperabilty, and to simplify the caller code for
the function.

If a NULL is passed for the pointer to the resume handle, no handle is stored and the enumeration
search cannot be continued. This is useful in cases where the application does not want to
enumerate all the items.

If an error is returned from an enumeration call, the resume handle must be treated as invalid and
not used for any subsequent enumeration calls. For example, the enumeration should be
restarted from the beginning.

Function Status
The ported LAN Manager functions use the LAN Manager 2.x error reporting convention. For
example, a successful function call returns zero; a nonzero return code indicates an error in the
range of the LAN Manager 2.x function errors.

An extended error range has been added for Windows NT - specific errors.

Because the ported LAN Manager functions use RPC, the error definition has also been extended
to include RPC error codes.

NLS Support
Windows NT: The Lan Manager functions take Unicode strings as input and provide Unicode
strings on output. If your application generally works with ANSI strings, care must be taken to
convert to and from Unicode where appropriate.

Windows 95: Because Windows 95 does not support Unicode, the ported LAN Manager
functions require ANSI strings.

Parameter Error Reporting
The Add and SetInfo functions return an index for a parameter in error. The caller may pass a
NULL pointer for the parm_err parameter indicating that the field should not be set by the function.
For remoted functions to LAN Manager 2.x servers, this field is returned as
PARM_ERROR_UNKNOWN.

RPC Buffer Allocation Errors
Because the RPC run-time allocates memory for send and receive buffers, the function should
expect RPC allocation errors. In the event of an RPC allocation error, a resumable handle is
invalidated. This is a requirement because resumable functions are not rewindable.

Obsolete Information Fields
Many of the information fields in the core information structures will be obsolete in the Windows
implementation. These fields will remain in the information structure for compatibility with 16-bit
versions of Windows and will return an intelligent default on 32-bit Windows systems.

Ported LAN Manager Function Groups
Ported LAN Manager functions use the standard-call calling convention and return a DWORD
status value. The following modifiers are used in the function declarations:#define NET_API_STATUS DWORD
#define NET_API_FUNCTION __stdcallThe ported LAN Manager functions can be divided into the following groups:

· Access functions
· Alert functions
· ApiBuffer functions
· Audit functions
· Configuration functions
· Error Logging functions
· File functions
· Group functions
· Local Group functions
· Message functions
· Remote Utility functions
· Replicator functions
· Schedule functions
· Server functions
· Service functions
· Session functions
· Share functions
· Statistics functions
· Use functions
· User functions
· Workstation and workstation user functions

Access Functions
The access functions are obsolete on Windows NT. They work only when remoted to a LAN
Manager 2.x system. The Win32 API contains a full set of security functions for access
control. These should be used in place of the ported LAN Manager access functions.

Alert Functions
The alert functions notify network service programs and applications of network events. An event
is a particular instance of a process or state of hardware as defined by an application. The alert
functions allow applications to indicate when predefined events occur.

Other programs, network services, or internal network components use the NetAlertRaise
function to raise an alert, notifying various applications or users when a particular type of event
occurs. The Alert category functions, datatypes, structures, and constants are defined in the
LMCONS.H, LMERR.H, and LMALERT.H header files. A source program can gain access to
these definitions by defining the constants INCL_NETERRORS and INCL_NETALERT, and by
including the header file LM.H.

The LMALERT.H include file defines the following classes of events for which alerts are sent out:

· A network event requiring administrative assistance
· An entry is added to an error log file
· A user or application receives a broadcast message
· A print job completes
· A user accesses or uses certain applications or resources

You can define other classes of alerts for network applications as needed. For example, an
application on a server routinely writes large amounts of data to a disk drive, running the risk of
filling the disk. In this case, you might want the event ``no free disk space'' to trigger an alert that
notifies the application to pause or terminate the process that is filling the disk.

An application or network service program, also known as a client, registers a request to be
notified of an event (or class of events) by calling the NetAlertStart function. You can register the
client for several types of events by calling the NetAlertStart function multiple times. Each
registration adds an entry to an alert table. An application or network service program receives
alert messages through the use of a mailslot (registered as \mailslot\name). If a program requires
detailed information about an event, register it as a mailslot.

You can register an application or network service program for one type of event, or for several
types, by calling the NetAlertStart function multiple times. For a registered application or network
service program, use the NetAlertStop function to remove that application or network service
program entry from the alert table for the particular class of event.

The alert functions are:
NetAlertRaise

NetAlertRaiseEx

The NetAlertRaise function is used to indicate that an event has occurred.

The fixed-length header contains the standard alert structure, STD_ALERT.

Additional information is included in the following structures:
ADMIN_OTHER_INFO
ERRLOG_OTHER_INFO
PRINT_OTHER_INFO

USER_OTHER_INFO

ApiBuffer Functions
For remotable functions that return information to the caller, the RPC run time allocates the buffer
containing the return information. The ApiBuffer functions are used to manipulate the buffer. The
buffer manipulation functions are:
NetApiBufferAllocate
NetApiBufferFree
NetApiBufferReallocate

NetApiBufferSize

When the caller has finished processing the returned information, it must call the
NetApiBufferFree function to free the allocated buffer.

Audit Functions
The auditing functions are obsolete on Windows NT. Windows NT uses an integrated event
logging mechanism for reporting both audits and errors. The NetAudit and NetErrorLog functions
are provided to access LAN Manager 2.x logs. They will report ERROR_NOT_SUPPORTED if
called to a Windows NT system.

The auditing functions are:
NetAuditClear

NetAuditRead
Auditing functions control the audit log on a LAN Manager computer. Auditing functions monitor
operations on the specified server. If auditing is enabled, each monitored operation generates an
audit entry. For example, when a user establishes a connection to the server, a single audit entry
is generated.

Audit entries are stored in a binary file called an audit trail or audit log. All Auditing functions
perform their operations on this file. LAN Manager defines many types of audit entries.

NetAuditRead reads the audit log. NetAuditClear clears the audit log.Data StructuresAll audit entries include a fixed-length header used in conjunction with variable-length data
specific to the entry type. Because of the variable lengths and structures of the ae_data element
of the audit entry (it is possible for ae_data to be zero bytes), only the fixed header is defined in
the AUDIT_ENTRY structure.

The variable-length portion of the audit entry can contain an offset to a variable-length Unicode
string. The offset values are DWORDs. To determine the value of the pointer to this string, add
the offset value to the address of ae_data.

The following example illustrates this procedure. Assume that pAE points to a buffer that contains
a complete audit entry and that the ae_type member of the AUDIT_ENTRY structure contains the
value AE_CONNSTOP, which specifies the predefined AE_CONNSTOP structure. To point the
variable pszComputerName to the Unicode string that contains the name of the client whose
connection was stopped, an application would perform the following algorithm:

PAUDIT_ENTRY pAE; // Fixed part of audit entry
LPAE_CONNSTOP pAEvar;// Variable-length structure
LPWSTR pszComputerName; // Pointer to var-length string
// Calculate the offset to the variable-length structure.
pAEvar = (_LPAE_CONNSTOP) (((LPBYTE) pAE) + pAE->ae_data_offset);
// Calculate the offset to the computername.
pszComputerName = ((LPBYTE) pAEvar) + pAEvar->ae_cp_compname;

The following structures are specific to the audit entry type The structures follow the
AUDIT_ENTRY header, but they are not necessarily contiguous.

Configuration Functions
The configuration functions are obsolete on Windows NT. They are only for LAN Manager 2.x
support. Use the registry functions to retrieve configuration information for Windows NT
computers.

Configuration functions retrieve network configuration information. The functions in the
Configuration category retrieve information from the LANMAN.INI file. This is an ASCII file that
contains configuration information for LAN Manager services as well as network configuration
information for user-defined services and applications. It consists of component lines, entry lines,
and comment lines, in the following format.

· Component lines mark the start of a group of information, in this form: [component name]
· Entry (or parameter) lines contain a parameter and a value:

entry=value
The entry value can consist of any text. Configuration functions do not process the text, although
they do remove leading and trailing spaces. Interpretation of the values is left to the caller. If an
entry appears several times in a single component, the NetConfigGetAll function returns each
instance; the NetConfigGet function returns only the first instance. Using the same entry name in
different components does not affect the data returned by NetConfigGet. The configuration
functions are:
NetConfigGet
NetConfigGetAll

NetConfigSet

Configuration functions support the following information level:

CONFIG_INFO_0

Error Logging Functions
The error logging functions are obsolete on Windows NT. Windows NT uses an integrated event
logging mechanism for reporting both audits and errors. The NetAudit and NetErrorLog functions
are provided to access LAN Manager 2.x logs. They will report ERROR_NOT_SUPPORTED if
called to a Windows NT system.

The error logging functions are:
NetErrorLogClear

NetErrorLogRead

The NetErrorLogRead function reads entries from the error log; and NetErrorLogClear clears
the error log and, optionally, saves the entries in a backup file.

File Functions
The file functions provide a way to monitor and close the file, device, and pipe resources open on
a server. The file functions are:
NetFileClose
NetFileEnum

NetFileGetInfo

Use the NetFileClose function when the file cannot be closed by other means. This function
should be used with caution, however, because it does not write to the file the data cached on the
client system is obsolete.

The NetFileEnum function returns information about resources open on a server. A file can be
opened one or more times by one or more applications. Each file opening is uniquely identified.
The NetFileEnum function returns an entry for each file opening. The NetFileGetInfo function
returns information about one particular opening of a resource.

File information is available at the following levels.
FILE_INFO_2

FILE_INFO_3

Levels 0 and 1 are not supported. Level 2 returns only the identification number assigned to the
resource when it was opened. Level 3 returns the identification number, permissions, file locks,
and the name of the user who opened the resource.

Get Functions
The get functions retrieve information about a domain. Use these functions to retrieve information
concerning domains, such as local and global user accounts, and workstation and server user
accounts. These functions are:
MultinetGetConnectionPerformance
NetGetAnyDCName
NetGetDisplayInformationIndex

NetQueryDisplayInformation

The NetGetDCName function returns the name of the Primary Domain Controller (PDC) for the
specified domain, while the NetGetAnyDCName function gets the name of any domain controller
for a domain that is directly trusted by the server name. The NetGetDisplayInformationIndex
function gets the index of the first display information entry whose name begins with a specified
string. The NetQueryDisplayInformation function returns user, computer, or global group
account information.

The information returned by NetQueryDisplayInformation is available at the following levels:
NET_DISPLAY_GROUP
NET_DISPLAY_MACHINE

NET_DISPLAY_USER

Group Functions
The group functions control global groups. A global group contains a number of user accounts
from one domain that are grouped together under one group account name. A global group can
contain only members from the domain where the global group is created. A global group can
contain only user accounts; it cannot contain local groups or other global groups. The group
functions are:
NetGroupAdd
NetGroupAddUser
NetGroupDel
NetGroupDelUser
NetGroupEnum
NetGroupGetInfo
NetGroupGetUsers
NetGroupSetInfo

NetGroupSetUsers

To create a group, an application calls NetGroupAdd, supplying a group name. Initially, the
group has no members. To assign members to the group, call NetGroupSetUsers. To add a user
to an existing global group, call NetGroupAddUser. To set general information about the global
group, call NetGroupSetInfo.

The NetGroupDelUser function deletes a specified user name from a group, and NetGroupDel
destroys a group. The NetGroupDel function works whether or not the group has any members.

Three group functions retrieve information about the groups on a server: NetGroupEnum
produces a list of all groups; NetGroupGetUsers lists all members of a specified group; and
NetGroupGetInfo returns general information about the group. Each user account automatically
belongs to one of the special global groups Domain Users or None, according to the user's
security requirements. Membership of these groups is indirectly controlled by the NetUserAdd,
NetUserDel, and NetUserSetInfo functions.

Group account information is available at three levels:
GROUP_INFO_0
GROUP_INFO_1

GROUP_INFO_2

The groups to which a user belongs may be obtained at two information levels.
GROUP_USERS_INFO_0

GROUP_USERS_INFO_1

The following information levels are valid only for NetGroupSetInfo.
GROUP_INFO_1002

GROUP_INFO_1005

For NetGroupSetInfo, parmnum values refer to the members of the GROUP_INFO structure as
follows. These values are used when indicating an error in a specific parameter through parm_err.

parmnum value Member of GROUP_INFO
structure

GROUP_NAME_PARMNUM grpi_name
GROUP_COMMENT_PARMNUM grpi_comment
GROUP_ATTRIBUTES_PARMNUMgrpi_attributes

Handle Functions
The Handle functions allow an application to examine or change the communications parameters
for character-device handles and named-pipe handles, provided that the handles refer to devices
or pipes opened on a remote server. The Handle functions are:
NetHandleGetInfo
NetHandleSetInfo

The adjustable parameters are based on the LANMAN.INI file entries for chartime, the
amount of time the workstation collects data to send to a character device or named pipe, and
charcount, the number of characters the workstation stores before it sends data to a
character device. See the NET_HANDLE_INFO data structure to obtain the values for
chartime and charcount. ,which determine the workstation data structure elements. In
addition, you can use the NetHandleGetInfo function to identify the user of a named pipe,
provided the pipe has been opened from a remote server.

Local Group Functions
A local group is a set of users who share common permissions in the security database. A local
group can have members that are either users or global groups (global groups can contain only
users). The local group functions control members of local groups in a way that can only be used
locally on the system on which the local group is defined. On a Windows NT Workstation or a
Windows NT non-DC server, you can use only a local group defined on that system. On a
Windows NT Domain Controller, a local group defined on the Primary Domain Controller is
replicated to all other domain controllers in the domain; as such, you can use such a local group
on any domain controller in the domain.The local group functions create or delete local groups,
and review or adjust the memberships of local groups. The local group functions are:
NetLocalGroupAdd
NetLocalGroupAddMembers
NetLocalGroupDel
NetLocalGroupDelMember
NetLocalGroupDelMembers
NetLocalGroupEnum
NetLocalGroupGetInfo
NetLocalGroupGetMembers
NetLocalGroupSetInfo

NetLocalGroupSetMembers

A member can be added to a local group by specifying the security identifier (SID) of the
member. The LookupAccountName function can be used to translate a member account name
to a SID.

To create a local group, an application calls NetLocalGroupAdd, supplying a local group name.
Initially, the local group has no members. To assign members to the local group, call
NetLocalGroupSetMembers. To add a member to an existing local group, call
NetLocalGroupAddMembers. To set general information about the local group, call
NetLocalGroupSetInfo.

The NetLocalGroupDelMember function deletes a specified member from a local group, and
NetLocalGroupDel disbands a local group, deleting all existing members of the local group first.

Three local group functions retrieve information about the local groups on a server:
NetLocalGroupEnum produces a list of all local groups; NetLocalGroupGetMembers lists all
members of a specified local group; and NetLocalGroupGetInfo returns general information
about the local group.

Group account information is available at three levels:
LOCALGROUP_INFO_0
LOCALGROUP_INFO_1

LOCALGROUP_INFO_1002

Members of a local group can be identified at four information levels:
LOCALGROUP_MEMBERS_INFO_0
LOCALGROUP_MEMBERS_INFO_1
LOCALGROUP_MEMBERS_INFO_2

LOCALGROUP_MEMBERS_INFO_3

The users that belong to a local group can be obtained at one information level:

LOCALGROUP_USERS_INFO_0

For NetLocalGroupSetInfo, parmnum values refer to the members of the LOCALGROUP_INFO
structure as follows. These values are used when indicating an error in a specific parameter
through parm_err.

parmnum value Member in group_info
structure

LOCALGROUP_NAME_PARMNUM lgrpi_name
LOCALGROUP_COMMENT_PARMNUMlgrpi_comment

Message Functions
The message functions send and receive messages and manipulate message aliases. The
message functions are:
NetMessageBufferSend
NetMessageNameAdd
NetMessageNameDel
NetMessageNameEnum

NetMessageNameGetInfo
A message is a buffer of text data sent to a user or application on the network. To receive a
message, a user or application must register a message alias in a computer's table of message
names. This can be done by using NetMessageNameAdd. A message name table contains a list
of registered message aliases (users and applications) permitted to receive messages.

The messenger service must be running on the receiving computer, which will display a popup
message when the message is received. In addition, the Workstation service must be running on
the local computer. Netbios is the transport mechanism used between the sender and receiver.

The aliases registered in the message name table are case insensitive. NetMessageNameDel
deletes a specific message alias from the message name table. The NetMessageNameEnum
function lists all the aliases stored in the message name table. The NetMessageNameGetInfo
function retrieves information about a particular message alias in the message name table.

To send a message, an application calls NetMessageBufferSend.

Message functions are available at two information levels:
MSG_INFO_0

MSG_INFO_1

MSG_INFO_1 exists only for compatability. The Windows NT messenger will not forward names
or allow names to be forwarded to it.

Remote Utility Function
The remote utility function NetRemoteTOD enables applications to access the time-of-day
information on a remote server.

The remote time-of-day information is available at one information level:

TIME_OF_DAY_INFO

Replicator Functions
The replicator functions control how the Windows NT replicator service updates selective
directories from an export server to one or more clients. In addition to providing compatible LAN
Manager 2.x functionality in a well-defined manner, this new set of LAN Manager functions allow
for specific API (operation) security checking. There are three categories of replicator functions:

· Replicator configuration functions
· Replicator export directory functions
· Replicator import directory functions

If you are unable to replicate files, before using the replicator functions, check the Control Panel
Services application to make sure the replicator service is configured to log on using a specific
user account. This user account must be a member of the Replicator local group, and it must not
be disabled or lacking permission to access the import and export trees on the respective servers.
Failure specify the user account is the most common error in configuring the Replicator service.

The Windows NT Replicator service is intended to copy relatively small directory trees. If you are
attempting to replicate multimegabyte directory trees or trees containing thousands of directories
and files, you should consider some other means of doing so.

The change from the file system based control on LAN Manager 2.x to replicator function control
on Windows NT has the following implications:

· Applications can no longer delete a directory in the import path of a client to stop receiving
updates from its master.

· Applications can no longer use the REPL.INI file in each replicated directory on a master
to control the method of replication.

· Applications can no longer lock or unlock a directory on a master from being replicated by
creating or deleting the USERLOCK.* file(s).

· Applications can no longer lock or unlock a directory on a client from receiving updates
from its master by creating or deleting USERLOCK.* files.

· Applications that depend on the LAN Manager 2.x behavior of ignoring locks for file
integrity trees will need to be modified. (Windows NT policy differs from LAN Manager 2.x
policy; under Windows NT the locks are always respected.)

Each of the intended operations listed preceding can be specified to the Windows NT replicator
service through an appropriate function.

Any user or application logged on as a member of the administration group or the server operator
group on a local or remote export server can modify the parameters that control the replication
service.Replicator Configuration FunctionsThe configuration parameters of the replicator service can be examined and modified using the
replicator configuration functions. The replicator configuration functions are:
NetReplGetInfo

NetReplSetInfo

The configuration parameters of the replictor can be examined using NetReplGetInfo. They can
be modified using NetReplSetInfo.

The replicator configuration information structures are:
REPL_INFO_0
REPL_INFO_1000
REPL_INFO_1001
REPL_INFO_1002

REPL_INFO_1003Replicator Export Directory FunctionsThe replicator export directory functions control top-level directories under the export path on the
master. The replicator export directory functions are:
NetReplExportDirAdd
NetReplExportDirDel
NetReplExportDirEnum
NetReplExportDirGetInfo
NetReplExportDirLock
NetReplExportDirSetInfo

NetReplExportDirUnlock

A user can create a new directory under the export path and the Replicator service will
automatically replicate that directory. Or, a directory under the export path can be

registered using NetReplExportDirAdd. When adding a directory to be replicated using these
functions, the replication controls (integrity and extent) are specified using the
NetReplExportDirAdd function. If the directory is created in the file system and no replicator
functions are called, then the directory is treated as having file integrity and tree extent.

The integrity control determines when a master updates a client. When integrity is
REPL_INTEGRITY_FILE, the client gets a replica of a file within the directory when it is not in use
(being changed or replicated). When integrity is set to REPL_INTEGRITY_TREE, every file and
directory within the replicated directory must be stable for the amount of time specified by the
guardtime parameter before the client is updated. The extent control determines whether the
entire tree within the directory is replicated (REPL_EXTENT_TREE) or only the files in the first-
level directory is replicated (REPL_EXTENT_FILE).

The replication controls of each replicated directory can be examined using
NetReplExportDirGetInfo, and dynamically modified using NetReplExportDirSetInfo. These
control fields used to be specified in the REPL.INI file within each replicated directory on LAN
Manager 2.x, and they could not be dynamically set. On Windows NT, the REPL.INI file is not
used and will be ignored in the replication process.

The NetReplExportDirEnum function returns a list of directories that are currently replicated. The
NetReplExportDirDel function unregisters a directory so that it is no longer replicated.

The lock status information is returned in two fields: lockcount and locktime. The lockcount field
indicates the number of outstanding locks on a directory. The locktime field indicates the time (in
seconds since 1970, GMT) when the directory was first locked, or is 0 if the directory is not locked
at the present time.

The NetReplExportDirLock function locks a directory so that it is not replicated, by incrementing
a lock reference count for the directory. A lock on a directory can be unlocked using
NetReplExportDirUnlock. The replication does not resume unless all outstanding locks on that
directory are released, and the lock reference count is returned to 0. (The locktime field is
automatically set to 0 when lockcount is 0.)

The replicator export directory functions can be called regardless of whether the Replicator
service is running. If the Replicator service is running as a master, any modification to the
directory controls takes effect immediately, and is persistent after the Replicator service has been
stopped. If the Replicator service is not started, the controls for the directory is stored as
persistent information and will take effect when the Replicator service starts up.

The replicator export directory functions are available at the following information levels:
REPL_EDIR_INFO_0
REPL_EDIR_INFO_1
REPL_EDIR_INFO_2
REPL_EDIR_INFO_1000

REPL_EDIR_INFO_1001Replicator Import Directory FunctionsThe replicator import directory functions designate the top-level directories under the import path
to receive updates on. They also return status information about a replicated directory on the
client. On LAN Manager 2.x, a user must create a directory under the import path and the
Replicator service automatically replicates to it. The replicator import directory functions are:
NetReplImportDirAdd
NetReplImportDirDel
NetReplImportDirEnum
NetReplImportDirGetInfo
NetReplImportDirLock

NetReplImportDirUnlock

On Windows NT, import directories are automatically added if they are exported by an export
server from which importer is importing. Another way to register a directory in advance of it being
exported, is to use the NetReplImportDirAdd functions. This function does not create the
directory itself. This is useful if you wish to modify some of the properties of the import directory
(for example, to lock it) prior to it first beginning to import this directory.

The NetReplImportDirDel function unregisters a directory. This is used to clean up a directory
that is no longer being exported. It will not stop replication if there is an active exporter, since it will

be re-registered the next time the exporter tells the importer what directories it is exporting. If you
wish to prevent importing of an actively exported directory, use NetReplImportDirLock.

The NetReplImportDirEnum function lists all the directories that are replicated to a client, and
NetReplImportDirGetInfo returns the status of a specified directory.

The status information of a directory consists of the replication state, the UNC computer name of
the master (mastername), and the time (in seconds since 1970, GMT) when the directory was
last updated (last_update_time). If the state is REPL_STATE_OK, the directory currently has a
master, and is receiving regular update notices from it. If the state is
REPL_STATE_NO_MASTER, the directory is not supported by any master, and it is typically
empty. If the state is REPL_STATE_NO_SYNC, the directory has a master, but the master has
not sent any update notices within the interval time period. This may be due to a communication
failure, the master crashing, the directory being locked, files in the client directory being opened at
update time, or an unstable REPL_INTEGRITY_TREE integrity directory on the master. If the
client Replicator service is not started, the state is REPL_STATE_NEVER_REPLICATED,
mastername is a NULL string, and last_update_time is 0. The NetReplImportDirLock function
locks a directory so that it does not receive updates, by incrementing a lock reference count for
the directory. A lock on a directory can be unlocked using NetReplImportDirUnlock. The
directory is not updated unless all outstanding locks on that directory are released, and the lock
reference count is returned to 0.

The lock status information is returned in two fields: lockcount and locktime. The lockcount field
indicates the number of outstanding locks on a directory. The locktime field indicates the time (in
seconds since 1970, GMT) when the directory was first locked. (locktime is set to 0 whenever
lockcount goes to 0.)

The replicator import directory functions can be called whether the Replicator service is running or
not. If the Replicator service is running as a client, directory adds or deletes take effect
immediately, and is persistent after the Replicator service has been stopped. If the Replicator
service is not started, any added directory will receive updates when the Replicator service starts
up (if there exists a master that exports the directory).

The replicator import directory function are available at the following information levels:
REPL_IDIR_INFO_0

REPL_IDIR_INFO_1

Schedule Functions
The schedule service functions are used to submit and manage jobs to be executed at a specifed
computer at a specified time (or times) in the future. Jobs can be commands and programs. Jobs
can be managed at remote and local computers, provided schedule service is running at a
specified computer. The schedule service functions are:
NetScheduleJobAdd
NetScheduleJobDel
NetScheduleJobEnum

NetScheduleJobGetInfo

Schedule service functions are also known as "Job" and "AT command" functions.

Schedule service functions are job submittal (NetScheduleJobAdd), job cancellation
(NetScheduleJobDel), job enumeration (NetScheduleJobEnum) and retrieving information
about a particular job (NetScheduleJobGetInfo). In order for these functions to succeed, a caller
must have administrator's privilege at a computer where Schedule service is running.StructuresThe AT_INFO structure is used by NetScheduleJobAdd to specify a job to be added, and by
NetScheduleJobGetInfo to return information about an already submitted job. The AT_ENUM
structure is used by NetScheduleJobEnum to enumerate and return information about an entire
queue of already submitted jobs.

Server Functions
The server functions perform administrative tasks on a local or remote server. The server
functions are:

· NetServerDiskEnum retrieves a list of local disk drives on a server.
· NetServerEnum lists all visible servers of specified types in the specified domain.
· NetServerGetInfo retrieves information about a specified server.
· NetServerSetInfo sets the operating parameters for a server.

Any user or application with admin group membership on a local or remote server can perform
administrative tasks on that server to control its operation, user access, and resource sharing. The
low-level parameters that affect a server's operation can be examined and modified by calling
NetServerGetInfo and NetServerSetInfo.

You can examine and modify certain low-level parameters that affect a server's operation, defined
in the server's LANMAN.INI file by calling the NetServerGetInfo and NetServerSetInfo functions.
The NetServerEnum function lists all visible servers of specified types in the specified domains.
Most server category functions execute only on a remote server. The NetServerEnum function
can execute on either a local workstation or remote server, but all other server category functions
executed on a local workstation return NERR_RemoteOnly.

The LAN Manager 2.x server API included several fields that logically belong to other LAN
Manager services and core Windows NT components. For this reason, the server information
levels available in LAN Manager 2.x are no longer available in Windows networking functions. The
server-specific information is available at the following levels, starting at base level 100:
SERVER_INFO_100
SERVER_INFO_101
SERVER_INFO_102
SERVER_INFO_402
SERVER_INFO_403
SERVER_INFO_502
SERVER_INFO_503
SERVER_INFO_1501
SERVER_INFO_1502
SERVER_INFO_1503
SERVER_INFO_1506
SERVER_INFO_1509
SERVER_INFO_1510
SERVER_INFO_1511
SERVER_INFO_1512
SERVER_INFO_1513
SERVER_INFO_1515
SERVER_INFO_1516
SERVER_INFO_1518
SERVER_INFO_1523
SERVER_INFO_1528
SERVER_INFO_1529
SERVER_INFO_1530
SERVER_INFO_1533
SERVER_INFO_1534
SERVER_INFO_1535
SERVER_INFO_1536
SERVER_INFO_1538
SERVER_INFO_1539
SERVER_INFO_1540
SERVER_INFO_1541
SERVER_INFO_1542
SERVER_INFO_1544
SERVER_INFO_1550

SERVER_INFO_1552

The following structures are supported on LAN Manager 2.x systems as well:
SERVER_INFO_1005
SERVER_INFO_1010
SERVER_INFO_1016
SERVER_INFO_1017

SERVER_INFO_1018

SERVER_INFO_1107

For NetServerSetInfo, parmnum values refer to the members of the SERVER_INFO structures
as follows. These values are used when indicating an error in a specific parameter through
parm_err.

parmnum value Member of
SERVER_INFO structure

SV_NAME_PARMNUM sv_name
SV_VERSION_MAJOR_PARMNUM sv_version_major
SV_VERSION_MINOR_PARMNUM sv_version_minor
SV_TYPE_PARMNUM sv_type
SV_COMMENT_PARMNUM sv_comment
SV_USERS_PARMNUM sv_users
SV_DISC_PARMNUM sv_disc
SV_HIDDEN_PARMNUM sv_hidden
SV_ANNOUNCE_PARMNUM sv_announce
SV_ANNDELTA_PARMNUM sv_anndelta
SV_USERPATH_PARMNUM sv_userpath
SV_ULIST_MTIME_PARMNUM sv_ulist_mtime
SV_GLIST_MTIME_PARMNUM sv_glist_mtime
SV_ALIST_MTIME_PARMNUM sv_alist_mtime
SV_ALERTS_PARMNUM sv_alerts
SV_SECURITY_PARMNUM sv_security
SV_NUMADMIN_PARMNUM sv_numadmin
SV_LANMASK_PARMNUM sv_lanmask
SV_GUESTACC_PARMNUM sv_guestacc
SV_CHDEVS_PARMNUM sv_chdevs
SV_CHDEVQ_PARMNUM sv_chdevq
SV_CHDEVJOBS_PARMNUM sv_chdevjobs
SV_CONNECTIONS_PARMNUM sv_connections
SV_SHARES_PARMNUM sv_shares
SV_OPENFILES_PARMNUM sv_openfiles
SV_SESSOPENS_PARMNUM sv_sessopens
SV_SESSVCS_PARMNUM sv_sessvcs
SV_SESSREQS_PARMNUM sv_sessreqs
SV_OPENSEARCH_PARMNUM sv_opensearch
SV_ACTIVELOCKS_PARMNUM sv_activelocks
SV_NUMREQBUF_PARMNUM sv_numreqbuf
SV_SIZREQBUF_PARMNUM sv_sizreqbuf
SV_NUMBIGBUF_PARMNUM sv_numbigbuf
SV_NUMFILETASKS_PARMNUM sv_numfiletasks
SV_ALERTSCHED_PARMNUM sv_alertsched
SV_ERRORALERT_PARMNUM sv_erroralert
SV_LOGONALERT_PARMNUM sv_logonalert
SV_ACCESSALERT_PARMNUM sv_accessalert
SV_DISKALERT_PARMNUM sv_diskalert
SV_NETIOALERT_PARMNUM sv_netioalert
SV_MAXAUDITSZ_PARMNUM sv_maxauditsz
SV_SRVHEURISTICS_PARMNUM sv_srvheuristics
SV_AUDITEDEVENTS_PARMNUM sv_auditedevents
SV_AUTOPROFILE_PARMNUM sv_autoprofile
SV_MAXWORKITEMS_PARMNUM sv_maxworkitems
SV_RAWWORKITEMS_PARMNUM sv_rawworkitems
SV_IRPSTACKSIZE_PARMNUM sv_irpstacksize
SV_SESSUSERS_PARMNUM sv_sessusers
SV_SESSCONNS_PARMNUM sv_sessconns
SV_MAXNONPAGEDMEMORYUSAGE_PARMNUMsv_maxnonpagedmemoryusage

SV_MAXPAGEDMEMORYUSAGE_PARMNUM sv_maxpagedmmeoryusage
SV_ENABLEOFTCOMPAT_PARMNUM sv_enablesoftcompat

Server Transport Functions
The server transport functions handle binding and unbinding of transports to and from the server
and redirector, and also enumerate the transports used by a component. The server transport
functions are:
NetServerTransportAdd
NetServerTransportDel

NetServerTransportEnum
The server transport functions deal with transports managed by the server, and the workstation
transport functions deal with transports managed by the redirector. The NetServerTransportAdd
function allows the user to bind the transport to the server. The NetServerTransportDel function
allows the user to unbind the server from the transport.

The NetServerTransportAdd and NetServerTransportDel functions respectively bind or unbind
the transport to the server. File sharing between the transport device and the server has two
components: the server running on the computer that has the files, and an SMB client that
accesses the files. The client computer communicates to the server computer over a local area
network using a transport protocol (like TCP, NetBEUI , XNS.) and sends requests to the server
computer to retrieve bits and pieces of files. The piece of software on the client computer
generating the file requests is called the redirector because it is redirecting local file requests to
the server computer. The piece of software on the server computer receiving and acting on these
file requests is called the server because it is serving the clients. The format specific to these
requests is called the Server Message Block (SMB) protocol.

The NetServerTransportEnum function enumerates the transports that are managed by the
server.

The NetWkstaTransport functions perform equivalent operations for the workstation. The
workstation transport function are:
NetWkstaTransportAdd
NetWkstaTransportDel

NetWkstaTransportEnum

Server transport functions are available at one information level:
SERVER_TRANSPORT_INFO_0

Workstation transport functions are available at one information level:
WKSTA_TRANSPORT_INFO_0

Service Functions
A complete set of service functions are provided in the Win32 API. These should be used in place
of the NetService functions, unless you need to control services on a LAN Manager 2.x server.

The service functions control services. A service is an application that an administrator can control
using the Service Controller interfaces. The service functions are:
NetServiceControl
NetServiceEnum
NetServiceGetInfo

NetServiceInstall

Services allow administrators to control applications on the network and maintain the integrity of
users' data. On a typical network, applications are shared by many users. If an administrator
terminates an application running on a server, a user who has not finished working with that
application can lose important data. When an application is implemented as a service, the service
controller checks the status before changing the state of the service. Windows NT Networking
provides several standard services, such as the Workstation, Server, and Messenger services.

A service can be started using the service functions. At startup time, the service defines whether it
can be stopped, paused, and continued.

The NetServiceControl function controls the operations of network services, and it can provide
time hints to controlling applications. The NetServiceEnum function retrieves information about all
started services. The NetServiceGetInfo function retrieves information about a particular started
service. The NetServiceInstall function starts a network service.

The service functions provide service information at three levels:
SERVICE_INFO_0
SERVICE_INFO_1

SERVICE_INFO_2

Session Functions
The session functions control network sessions established between workstations and servers.
They require that the Server service be started on the specified server. The session functions are:
NetSessionDel
NetSessionEnum

NetSessionGetInfo

A session is a link between a workstation and a server. It is established the first time a workstation
makes a connection with a shared resource on the server. Until the session ends, all further
connections between the workstation and the server are part of this same session. To end a
session, an application on the server end of a connection calls NetSessionDel. This deletes all
current connections between the workstation and the server. The NetSessionEnum function
returns information about all sessions established for a server. The NetSessionGetInfo function
returns information about a particular session.

Per-user information is managed by the NetSession functions through the use of the username
parameter. Since there can be multiple users per session, this parameter is necessary to access
the user-specific information for the session.

Session functions are available at five information levels:
SESSION_INFO_0
SESSION_INFO_1
SESSION_INFO_2
SESSION_INFO_10

SESSION_INFO_502

Note that sesi_username cannot be NULL and sesi1_flags and sesi2_flags can take the
following bits:SESS_GUEST 0x00000001
SESS_NONENCRYPTION 0x00000002

Share Functions
The share functions control shared resources. A shared resource is a local resource on a server
(for example, a disk directory, print device, or named pipe) that can be accessed by users and
applications on the network. The share functions are:

NetShareAdd Shares a resource on a server.

NetShareCheck Queries whether a server is
sharing a device.

NetShareDel Deletes a share name from a
server's list of shared resources.

NetShareEnum Retrieves share information about
each shared resource on a server.

NetShareGetInfo Retrieves information about a
specified shared resource on a
server.

NetShareSetInfo Sets a shared resource's
parameters.

The WNetEnumResource function should be used instead of the NetShareEnum function, which
is obsolete.

The NetShareAdd function allows a user or application to share a resource of a specific type
using the specified share name. The NetShareAdd function requires the share name and local
device name to share the resource. A user or application must have an account on the server to
access the resource.

You may also specify a Security Descriptor to be associated with a share, which specifies which
users will be allowed to access files through this share, and with what type of access.

LAN Manager defines three types of special share names for interprocess communication (IPC)
and remote administration of the server:

· IPC$, reserved for interprocess communication.
· ADMIN$, reserved for remote administration.
· A$, B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk

devices.
Share functions are available at four information levels:
SHARE_INFO_0
SHARE_INFO_1
SHARE_INFO_2

SHARE_INFO_502

The following information levels are valid only for NetShareSetInfo:
SHARE_INFO_1004

SHARE_INFO_1006

The following is supported only on Windows NT:

SHARE_INFO_1501

For NetShareSetInfo, parmnum values refer to the members of the SHARE_INFO structure, as
follows. These values are used when indicating an error in a specific parameter through parm_err.

parmnum value Member of SHARE_INFO
structure

SHARE_NETNAME_PARMNUM shi_netname
SHARE_TYPE_PARMNUM shi_type
SHARE_REMARK_PARMNUM shi_remark
SHARE_PERMISSIONS_PARMNUMshi_permissions
SHARE_MAX_USES_PARMNUM shi_max_uses
SHARE_CURRENT_USES_PARMNUMshi_current_uses
SHARE_PATH_PARMNUM shi_path
SHARE_PASSWD_PARMNUM shi_passwd
SHARE_FILE_SD_PARMNUM shi_security_descriptor

Statistics Functions
Windows NT and LAN Manager accumulate a set of operating statistics for workstations and
servers from the time that the Workstation or Server service is started. The NetStatisticsGet2 is
called to get those statistics. Because Windows NT and LAN Manager 2.x workstations collect a
different set of statistics, the caller must know whether the server is Windows NT or LAN Manager
2.x (which can be discovered using the NetServerGetInfo function) and interpret the returned
buffer accordingly.

NetStatisticsGet2 returns a STAT_WORKSTATION_0 structure when workstation statistics are
requested; it returns a STAT_SERVER_0 structure when server statistics are requested.

Use Functions
The WNetAddConnection2, WNetCancelConnection2 WNetEnumResource,
WNetGetConnection functions should be used instead of the NetUse functions, which are
obsolete.

The use functions examine or control connections (uses) between workstations and servers. They
are:
NetUseAdd
NetUseDel
NetUseEnum

NetUseGetInfo

Connections are distinguished from sessions: a session is established the first time a workstation
makes a connection to a shared resource on the server; all further connections between the
workstation and the server are part of this same session until the session ends. Two types of
connections can be made: device-name connections (which can only be explicit) and universal-
naming convention (UNC) connections (which can be explicit or implicit).

Connections are made on a per-user basis. A connection made by a user is deleted when that
user logs off. For this reason the NetUse functions are local only, since a connection set up by a
remote user would not be accessible to any other users, even the user that was interactively
logged onto that computer.

The NetUseAdd function creates a device-name connection or an explicit UNC connection.
Implicit UNC connections are made by the function responsible for the connection.

The NetUseAdd function establishes an explicit connection between the local computer and a
resource shared on a server by redirecting a local device name to the share name of a remote
server resource (\\<servername>\<sharename>). Once a device-name connection is made, users
or applications can use the remote resource by specifying the local device name. To establish an
implicit UNC connection, an application passes the share name of a resource to any function that
accepts UNC paths. The function accepts the UNC name and makes a connection to the specified
share name. All further requests on this connection require the full share name.

The NetUseDel function ends a connection to a shared resource. The NetUseEnum function
enumerates all current connections between the local computer and resources on remote servers.
The NetUseGetInfo function returns information about a connection to a shared resource.

The use functions are available at three information levels:
USE_INFO_0

USE_INFO_1

Information level 2 is not available if the function is remoted to a LAN Manager 2.x system.
In that case, ERROR_NOT_SUPPORTED will be returned.

USE_INFO_2

User Functions
The user functions control a user's account in the security database. The user functions are:
NetUserAdd
NetUserChangePassword
NetUserDel
NetUserEnum
NetUserGetGroups
NetUserGetInfo
NetUserGetLocalGroups
NetUserSetGroups

NetUserSetInfo

Each user or application that accesses resources must have an account in the security
database. The Windows NT server directory services use this user account to verify that
the user or application has permission to use a resource. When a user or an application
requests access to a resource, the security system checks for an appropriate user account
or group account to permit the access.

The NetUserEnum can be used to list all user accounts in a domain. An application can verify the
groups to which a user belongs by calling NetUserGetGroups, which returns a list of global group
names. The NetUserGetLocalGroups function does the same for local groups. When a user
account is no longer needed, use NetUserDel to delete the account from the server. Once the
account is removed, the user can no longer access the server, except by using the guest account.
Because the user's password is confidential, it is not returned by NetUserEnum or
NetUserGetInfo. The password is initially assigned when NetUserAdd is called.
NetUserChangePassword function changes a user's password for a specified network server or
domain. The NetUserSetInfo function sets the password and other elements of a user account.

User account information is available at seven levels:
USER_INFO_0
USER_INFO_1
USER_INFO_2
USER_INFO_3
USER_INFO_10
USER_INFO_11

USER_INFO_20

The following information levels are valid only for NetUserSetInfo:
USER_INFO_1003
USER_INFO_1005
USER_INFO_1006
USER_INFO_1007
USER_INFO_1008
USER_INFO_1009
USER_INFO_1010
USER_INFO_1011
USER_INFO_1012
USER_INFO_1013
USER_INFO_1014
USER_INFO_1017
USER_INFO_1018
USER_INFO_1020
USER_INFO_1023
USER_INFO_1024
USER_INFO_1025
USER_INFO_1051
USER_INFO_1052

USER_INFO_1053

For NetUserSetInfo, parmnum values refer to the members of the USER_INFO structure, as
follows. These values are used when indicating an error in a specific parameter through parm_err.

parmnum value Member of user_info
structure

USER_NAME_PARMNUM usri_name

USER_PASSWORD_PARMNUM usri_password
USER_PASSWORD_AGE_PARMNUMusri_password_age
USER_PRIV_PARMNUM usri_priv
USER_HOME_DIR_PARMNUM usri_home_dir
USER_COMMENT_PARMNUM usri_comment
USER_FLAGS_PARMNUM usri_flags
USER_SCRIPT_PATH_PARMNUM usri_script_path
USER_AUTH_FLAGS_PARMNUM usri_auth_flags
USER_FULL_NAME_PARMNUM usri_full_name
USER_USR_COMMENT_PARMNUMusri_usr_comment
USER_PARMS_PARMNUM usri_parms
USER_WORKSTATIONS_PARMNUMusri_workstations
USER_LAST_LOGON_PARMNUM usri_last_logon
USER_LAST_LOGOFF_PARMNUM usri_last_logoff
USER_ACCT_EXPIRES_PARMNUMusri_acct_expires
USER_MAX_STORAGE_PARMNUMusri_max_storage
USER_UNITS_PER_WEEK_PARMNUMusri_units_per_week
USER_LOGON_HOURS_PARMNUMusri_logon_hours
USER_PAD_PW_COUNT_PARMNUMusri_bad_pw_count
USER_NUM_LOGONS_PARMNUM usri_num_logons
USER_LOGON_SERVER_PARMNUMusri_logon_server
USER_COUNTRY_CODE_PARMNUMusri_country_code
USER_CODE_PAGE_PARMNUM usri_code_page
USER_PRIMARY_GROUP_PARMNUMusri_primary_group_id
USER_PROFILE usri_profile
USER_HOME_DIR_DRIVE_PARMNUMusri_home_dir_drive

User Modal Functions
The user modal functions control the system-wide parameters that affect the Windows NT
Security system behavior. The user modal functions are:
NetUserModalsGet

NetUserModalsSet

The NetUserModalsGet and NetUserModalsSet functions examine and modify the modal
settings, which are global parameters that affect every account in the database (for example, the
minimum allowable password length). All modal settings can be altered by calling
NetUserModalsSet . Most of the modals can also be altered by using the net accounts command.
The NetUserModalsGet and NetUserModalsSet functions do not require the server to have
user-level security.

User modal information is available at four levels:
USER_MODALS_INFO_0
USER_MODALS_INFO_1
USER_MODALS_INFO_2

USER_MODALS_INFO_3

The following information levels are valid only for NetUserModalsSet and replace the older way
of passing in a Parmnum to set a specific field:
USER_MODALS_INFO_1001
USER_MODALS_INFO_1002
USER_MODALS_INFO_1003
USER_MODALS_INFO_1004
USER_MODALS_INFO_1005
USER_MODALS_INFO_1006

USER_MODALS_INFO_1007

For NetUserModalsSet, parmnum values refer to the members of the MODALS_INFO structure,
as follows. These values are used when indicating an error in a specific parameter through
parm_err.

parmnum value Member of modals_info
structure

MODALS_MIN_PASSWD_LEN_PARMNUMusrmod_min_passwd_len
MODALS_MAX_PASSWD_AGE_PARMNUMusrmod_max_passwd_age
MODALS_MIN_PASSWD_AGE_PARMNUMusrmod_min_passwd_age
MODALS_FORCE_LOGOFF_PARMNUM usrmod_force_logoff
MODALS_PASSWD_HIST_LIST_PARMNUMusrmod_passwd_hist_list
MODALS_ROLE_PARMNUM usrmod_role
MODALS_PRIMARY_PARMNUM usrmod_primary
MODALS_DOMAIN_NAME_PARMNUM usrmod_domain_name
MODALS_DOMAIN_ID_PARMNUM usrmod_domain_id

Workstation and Workstation User Functions
The workstation functions perform administrative tasks on a local or remote workstation. Any user
or application with admin group membership on a local or remote server can perform
administrative tasks on that workstation to control its operation, user access, and resource
sharing. The workstation functions are:
NetWkstaGetInfo

NetWkstaSetInfo

The workstation user functions allow access to user- specific information. The user-
specific information is separated from the workstation information because there can be
more than one user on a workstation. The workstation user functions are:
NetWkstaUserEnum
NetWkstaUserGetInfo

NetWkstaUserSetInfo

The low- level parameters that affect a workstation's operation can be examined and
modified by calling NetWkstaGetInfo and NetWkstaSetInfo.

The workstation API structures are restructured from those of LAN Man 2.x to allow the
information to be grouped by type and security accesses. The LAN Manager 2.x workstation
information format is discontinued due to the following problems:

· The base level (0 and 1) were not grouped by accessibility such that a non superset level
(level 10) was required to allow guest access to the information.

· Platform specific implementation information was included in the base levels such that
every platform had to return all information including a default for non-relevant fields. This
grew the size of the information structures unneccessarily, making the function cumbersome
to use.

The workstation functions allow access to two discrete groups of workstation information:

· System information.
· Platform specific information (Windows NT, OS/2, MS-DOS, and so on)

Within each group the fields are categorized by security access such that the guest accessible
fields are a subset of the user accessible fields that are a subset of the admin accessible fields.

The system information structure contains a platform base number that identifies the levels and
format of the platform-specific information structures.

The workstation function information structures are as follows:
WKSTA_INFO_100
WKSTA_INFO_101
WKSTA_INFO_102
WKSTA_INFO_302

WKSTA_INFO_402

The workstation user function information structures are:

WKSTA_USER_INFO_0WKSTA_USER_INFO_1WKSTA_USER_INFO_1101

For NetWkstaSetInfo, parmnum values refer to the members of the workstation info structure, as
follows. These values are used when indicating an error in a specific parameter through parm_err.

parmnum value Member of wksta_info
structure

WKSTA_PLATFORM_ID_PARMNUM wki_platform_id
WKSTA_COMPUTERNAME_PARMNUM wki_computername
WKSTA_LANGROUP_PARMNUM wki_langroup
WKSTA_OTH_DOMAINS_PARMNUM wki_oth_domains
WKSTA_VER_MAJOR_PARMNUM wki_ver_major
WKSTA_VER_MINOR_PARMNUM wki_ver_minor
WKSTA_LOGGED_ON_USERS_PARMNUM wki_logged_on_users
WKSTA_LANROOT_PARMNUM wki_lanroot
WKSTA_LOGON_DOMAIN_PARMNUM wki_logon_domain
WKSTA_LOGON_SERVER_PARMNUM wki_logon_server
WKSTA_CHARWAIT_PARMNUM wki_char_wait
WKSTA_CHARTIME_PARMNUM wki_collection_time

WKSTA_CHARCOUNT_PARMNUM wki_maximum_collection_count
WKSTA_KEEPCONN_PARMNUM wki_keep_conn
WKSTA_KEEPSEARCH_PARMNUM wki_keep_search
WKSTA_MAXCMDS_PARMNUM wki_max_cmds
WKSTA_NUMWORKBUF_PARMNUM wki_num_work_buf
WKSTA_MAXWRKCACHE_PARMNUM wki_max_wrk_cache
WKSTA_SESSTIMEOUT_PARMNUM wki_sess_timeout
WKSTA_SIZERROR_PARMNUM wki_siz_error
WKSTA_NUMALERTS_PRAMNUM wki_num_alerts
WKSTA_NUMSERVICES_PARMNUM wki_num_services
WKSTA_ERRLOGSZ_PARMNUM wki_errlog_sz
WKSTA_PRINTBUFTIME_PARMNUM wki_print_buf_time
WKSTA_NUMCHARBUF_PARMNUM wki_num_char_buf
WKSTA_SIZCHARBUF_PARMNUM wki_siz_char_buf
WKSTA_WRKHEURISTICS_PARMNUM wki_wrk_heuristics
WKSTA_MAILSLOTS_PRAMNUM wki_mailslots
WKSTA_MAXTHREADS_PARMNUM wki_max_threads
WKSTA_SIZWORKBUF_PARMNUM wki_siz_work_buf
WKSTA_DORMANTTIMEOUT_PARMNUM wki_dormant_timeout
WKSTA_LOCKQUOTA_PARMNUM wki_lock_quota
WKSTA_LOCKINCREMENT_PARMNUM wki_lock_increment
WKSTA_LOCKMAXIMUM_PARMNUM wki_lock_maximum
WKSTA_PIPEINCREMENT_PRAMNUM wki_pipe_increment
WKSTA_PIPEMAXIMUM_PARMNUM wki_pipe_maximum
WKSTA_RAWREADTHRESHOLD_PARMNUM wki_raw_read_threshold
WKSTA_USEOPLOCKING_PARMNUM wki_use_opportunistic_locking
WKSTA_USEOPBATCH_PARMNUM wki_use_op_batch
WKSTA_USEUNLOCKBEHIND_PARMNUM wki_use_unlock_behind
WKSTA_USECLOSEBEHIND_PARMNUM wki_use_close_behind
WKSTA_BUFNAMEDPIPES_PARMNUM wksta_buf_named_pipes
WKSTA_USELOCKANDREADANDUNLOCK
_PARMNUM

wki_use_lock_and_read_and
_unlock

WKSTA_UTILIZENTCACHING_PARMNUM wki_utilize_nt_caching
WKSTA_USERAWREAD_PARMNUM wki_use_raw_read
WKSTA_USEWRITERAWWITHDATA_PARMNUMwki_use_write_raw_with_data
WKSTA_USEENCRYPTION_PARMNUM wki_use_encryption
WKSTA_BUFFILESWITHDENYWRITE
_PARMNUM

wki_buf_files_with_deny_write

WKSTA_BUFREADONLYFILES_PRAMNUM wki_buf_read_only_files
WKSTA_FORCECORECREATEMODE_PARMNUMwki_force_core_create_mode
WKSTA_USE512BYTESMAXTRANSFER
_PARMNUM

wki_use_512_bytes_max_transfer

Platform Support
The ported LAN Manager functions are implemented on all Windows platforms. However, there
are implementation differences between the platforms. The following sections contain platform
specific information.

· Windows 95 support
· Functions that only have support for remoting to LAN Manager 2.x
· Requests from 16-bit LAN Manager clients
· Calling 16-bit LAN Manager servers

Windows 95 Support
The following ported LAN Manager functions are supported by Windows 95:
NetAccessAdd
NetAccessCheck
NetAccessDel
NetAccessEnum
NetAccessGetInfo
NetAccessGetUserPerms
NetAccessSetInfo
NetConnectionEnum
NetFileClose2
NetFileEnum
NetSecurityGetInfo
NetServerGetInfo
NetServerSetInfo
NetSessionDel
NetSessionEnum
NetSessionGetInfo
NetShareAdd
NetShareDel
NetShareEnum
NetShareGetInfo

NetShareSetInfo

Functions That Only Have Support for Remoting to LAN Manager 2.x
The following groups of functions only have support for remoting to a LAN Manager 2.x computer.

· Access functions
· Audit functions
· Configuration functions
· Error logging functions

Requests from 16-bit LAN Manager Clients
Windows NT provides support for most remote functions called from LAN Manager 2.x clients.
However, the following calls are not supported when remoted from a LAN Manager 2.x client to a
Windows NT server. In some of the following, there is a more current version of the function that is
supported.

· DosPrintDriverEnum
· DosPrintQProcessorEnum
· DosPrintPortEnum
· DosPrintDest
· NetAccessCheck
· NetAlertRaise
· NetAlertStart
· NetAlertStop
· NetAuditClear
· NetAuditOpen
· NetAuditRead
· NetAuditWrite
· NetConfigGet2
· NetConfigGetAll2
· NetConfigSet
· NetErrorLogOpen
· NetErrorLogClear
· NetFileClose
· NetFileEnum
· NetFileGetInfo
· NetHandleGetInfo
· NetHandleSetInfo
· NetMessageFileSend
· NetMessageLogFileSet
· NetMessageLogFileGet
· NetMessageNameFwd
· NetMessageNameUnFwd
· NetNetBiosEnum
· NetNetBiosGetInfo
· NetProfileSave
· NetProfileLoad
· NetServerAdminCommand
· NetServerEnum
· NetServiceStatus
· NetStatisticsGet
· NetStatisticsClear
· NetUseAdd
· NetUseDel
· NetUseEnum
· NetUseGetInfo
· NetUserAdd
· NetUserSetInfo
· NetUserValidate2
· NetWkstaSetUID

Calling 16-bit LAN Manager Servers
When an RPC-based function fails to connect to the appropriate interface, the client-side stub
may attempt to initiate a down-level function request to the server selected. For most of the
Windows networking functions specified in this document, and any API where the functionality and
data formats are changed only for 32-bit usage, the conversion is straightforward. For components
that offer new functionality the caller of the function should generally be aware of the destination
type. When the new function offers a superset of the functionality of the LAN Manager 2.x station
the same function is used for both destinations, but the new function members must have either a
reserved value of an associated field to inform the conversion layer the field may be ignored if
going LAN Manager 2.x systems. This is required so that a function caller is not misled as to the
action performed when the function was called.

Using Ported LAN Manager Functions
This section discusses how to use the ported LAN Manager functions in your application.

· How to look up a user's full name
· How to create a new computer account

How to Look Up a User's Full Name
Computers running Windows can be organized into a domain, which is a collection of computers
on a Windows NT Server network. The domain administrator maintains centralized user and
group account information.

To find the full name of a user, given the user name and domain name on Windows NT:

· Convert the user name and domain name to Unicode, if they are not already Unicode
strings.

· Look up the computer name of the domain controller (DC) by calling NetGetDCName.
· Look up the user name on the DC computer by calling NetUserGetInfo.
· Convert the full user name to ANSI, unless the program is expecting to work with Unicode

strings.
The following sample code is a function that takes a user name and a domain name in the first
two arguments and returns the user's full name in the third argument.#include <windows.h>
#include <lm.h>
#include <stdio.h>
BOOL GetFullName(char *UserName, char *Domain, char *dest)
{

WCHAR wszUserName[256];// Unicode user name
WCHAR wszDomain[256];
LPBYTE ComputerName;
struct _SERVER_INFO_100 *si100; // Server structure
struct _USER_INFO_2 *ui; // User structure

// Convert ANSI user name and domain to Unicode
MultiByteToWideChar(CP_ACP, 0, UserName,
strlen(UserName)+1, wszUserName, sizeof(wszUserName));
MultiByteTOWideChar(CP_ACP, 0, Domain,
strlen(Domain)+1, wszDomain, sizeof(wszDomain));

// Get the computer name of a DC for the domain.
NetGetDCName(NULL, wszDomain, &ComputerName);

// Look up the user on the DC.
if(NetUserGetInfo((LPWSTR) ComputerName,
(LPWSTR) &wszUserName, 2, (LPBYTE *) &ui))
{
printf("Error getting user information.\n");
return(FALSE);
}

// Convert the Unicode full name to ANSI.
WideCharToMultiByte(CP_ACP, 0, ui->usri2_full_name, -1,
dest, 256, NULL, NULL);
return (TRUE);

}

How to Create a New Computer Account
This section demonstrates how to create a new computer account in Windows NT.

The following are considerations for managing computer accounts:

· The computer account name should be all uppercase for consistency with Windows NT
account management utilities.

· A computer account name always has a trailing dollar sign ($). Any functions used to
manage computer accounts must build the computer name such that the last character of the
computer account name is a dollar sign ($). For interdomain trust, the account name is
TrustingDomainName$.

· The maximum computer name length is MAX_COMPUTERNAME_LENGTH (15). This
length does not include the trailing dollar sign ($).

· The password for a new computer account should be the lowercase representation of the
computer account name, without the trailing dollar sign ($). For interdomain trust, the
password can be an arbitrary value that matches the value specified on the trust side of the
relationship.

· The maximum password length is LM20_PWLEN (14). The password should be truncated
to this length if the computer account name exceeds this length.

· The password provided at computer-account-creation time is valid only until the computer
account becomes active on the domain. A new pasword is established during trust
relationship activation.#include <windows.h>

#include <lm.h>
BOOL AddMachineAccount(

LPWSTR wTargetComputer,
LPWSTR MachineAccount,
DWORD AccountType
)

{
LPWSTR wAccount;
LPWSTR wPassword;
USER_INFO_1 ui;
DWORD cbAccount;
DWORD cbLength;
DWORD dwError;
//
// Ensure a valid computer account type was passed.
//
if (AccountType != UF_WORKSTATION_TRUST_ACCOUNT &&
AccountType != UF_SERVER_TRUST_ACCOUNT &&
AccountType != UF_INTERDOMAIN_TRUST_ACCOUNT
)
{
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}

//
// Obtain number of chars in computer account name.
//
cbLength = cbAccount = lstrlenW(MachineAccount);

//
// Ensure computer name doesn't exceed maximum length.
//
if(cbLength > MAX_COMPUTERNAME_LENGTH) {
SetLastError(ERROR_INVALID_ACCOUNT_NAME);
return FALSE;
}

//
// Allocate storage to contain Unicode representation of
// computer account name + trailing $ + NULL.
//
wAccount=(LPWSTR)HeapAlloc(GetProcessHeap(), 0,
(cbAccount + 1 + 1) * sizeof(WCHAR) // Account + '$' + NULL
);

if(wAccount == NULL) return FALSE;

//
// Password is the computer account name converted to lowercase
// you will convert the passed MachineAccount in place.
//
wPassword = MachineAccount;

//
// Copy MachineAccount to the wAccount buffer allocated while
// converting computer account name to uppercase.
// convert password (inplace) to lowercase.
//
while(cbAccount--) {
wAccount[cbAccount] = towupper(MachineAccount[cbAccount]);
wPassword[cbAccount] = towlower(wPassword[cbAccount]);
}

//
// Computer account names have a trailing Unicode '$'.
//
wAccount[cbLength] = L'$';
wAccount[cbLength + 1] = L'\0'; // terminate the string

//
// If the password is greater than the max allowed, truncate.
//
if(cbLength > LM20_PWLEN) wPassword[LM20_PWLEN] = L'\0';

//
// Initialize USER_INFO_x structure.
//
ZeroMemory(&ui, sizeof(ui));

ui.usri1_name = wAccount;
ui.usri1_password = wPassword;

ui.usri1_flags = AccountType | UF_SCRIPT;
ui.usri1_priv = USER_PRIV_USER;

dwError=NetUserAdd(
wTargetComputer, // target computer name
1, // info level
(LPBYTE) &ui, // buffer
NULL
);

//
// Free allocated memory.
//
if(wAccount) HeapFree(GetProcessHeap(), 0, wAccount);

//
// Indicate whether the function was successful.
//
if(dwError == NO_ERROR)
return TRUE;
else {
SetLastError(dwError);
return FALSE;
}

}The user that calls the account management functions must have Administrator privilege on the
target computer. In the case of existing computer accounts, the creator of the account can
manage the account, regardless of administrative membership.

The SeMachineAccountPrivilege can be granted on the target computer to give specified users
the ability to create computer accounts. This gives non-administrators the ability to create
computer accounts. The caller needs to enable this privilege prior to adding the computer
account.

LAN Manager Reference
The following functions and structures are used with LAN Manager.

LAN Manager Functions
The following functions were ported from LAN Manager.Alert FunctionsNetAlertRaise

NetAlertRaiseExApiBuffer FunctionsNetApiBufferAllocate
NetApiBufferFree
NetApiBufferReallocate

NetApiBufferSizeFile FunctionsNetFileEnum

NetFileGetInfoGet FunctionsMultinetGetConnectionPerformance
NetGetAnyDCName
NetGetDCName
NetGetDisplayInformationIndex

NetQueryDisplayInformationGroup FunctionsNetGroupAdd
NetGroupAddUser
NetGroupDel
NetGroupDelUser
NetGroupEnum
NetGroupGetInfo
NetGroupGetUsers
NetGroupSetInfo

NetGroupSetUsersHandle FunctionsNetHandleGetInfo

NetHandleSetInfoLocal Group FunctionsNetLocalGroupAdd
NetLocalGroupAddMembers
NetLocalGroupDel
NetLocalGroupDelMembers
NetLocalGroupEnum
NetLocalGroupGetInfo
NetLocalGroupGetMembers
NetLocalGroupSetInfo

NetLocalGroupSetMembersMessage FunctionsNetMessageBufferSend
NetMessageNameAdd
NetMessageNameDel
NetMessageNameEnum

NetMessageNameGetInfoRemote Utility FunctionNetRemoteTODReplicator FunctionsNetReplExportDirAdd
NetReplExportDirDel
NetReplExportDirEnum
NetReplExportDirGetInfo
NetReplExportDirLock
NetReplExportDirSetInfo
NetReplExportDirUnlock
NetReplGetInfo
NetReplImportDirAdd
NetReplImportDirDel
NetReplImportDirEnum
NetReplImportDirGetInfo
NetReplImportDirLock
NetReplImportDirUnlock

NetReplSetInfoSchedule FunctionsNetScheduleJobAdd
NetScheduleJobDel
NetScheduleJobEnum

NetScheduleJobGetInfo

Server FunctionsNetServerDiskEnum
NetServerEnum
NetServerGetInfo
NetServerSetInfo
NetServerTransportAdd
NetServerTransportDel

NetServerTransportEnumSession FunctionsNetSessionDel
NetSessionEnum

NetSessionGetInfoShare FunctionsNetShareAdd
NetShareCheck
NetShareDel
NetShareGetInfo

NetShareSetInfoStatistics FunctionNetStatisticsGet2User FunctionsNetUserAdd
NetUserChangePassword
NetUserDel
NetUserEnum
NetUserGetGroups
NetUserGetInfo
NetUserGetLocalGroups
NetUserSetGroups
NetUserSetInfo
NetUserModalsGet

NetUserModalsSetWorkstation and Workstation User FunctionsNetWkstaGetInfo
NetWkstaSetInfo
NetWkstaTransportAdd
NetWkstaTransportDel
NetWkstaTransportEnum
NetWkstaUserGetInfo
NetWkstaUserSetInfo

NetWkstaUserEnumObsolete FunctionsNetAccessAdd
NetAccessCheck
NetAccessDel
NetAccessEnum
NetAccessGetInfo
NetAccessGetUserPerms
NetAccessSetInfo
NetAuditClear
NetAuditRead
NetConfigGet
NetConfigGetAll
NetConfigSet
NetConnectionEnum
NetErrorLogClear
NetErrorLogRead
NetFileClose
NetLocalGroupDelMember
NetServiceControl
NetServiceEnum
NetServiceGetInfo
NetServiceInstall
NetShareEnum
NetStatisticsGet
NetUseAdd
NetUseDel
NetUseEnum

NetUseGetInfo

LAN Manager Structures
The following structures were ported from LAN Manager.Alert StructuresSTD_ALERT
ADMIN_OTHER_INFO
ERRLOG_OTHER_INFO
PRINT_OTHER_INFO

USER_OTHER_INFOFile StructuresFILE_INFO_2

FILE_INFO_3Get StructuresNETCONNECTINFOSTRUCT
NET_DISPLAY_GROUP
NET_DISPLAY_MACHINE

NET_DISPLAY_USERGroup StructuresGROUP_INFO_0
GROUP_INFO_1
GROUP_INFO_2
GROUP_INFO_1002
GROUP_INFO_1005
GROUP_USERS_INFO_0

GROUP_USERS_INFO_1Handle StructureHANDLE_INFO_1Local Group StructuresLOCALGROUP_INFO_0
LOCALGROUP_INFO_1
LOCALGROUP_INFO_1002
LOCALGROUP_MEMBERS_INFO_0
LOCALGROUP_MEMBERS_INFO_1
LOCALGROUP_MEMBERS_INFO_2
LOCALGROUP_MEMBERS_INFO_3

LOCALGROUP_USERS_INFO_0Message StructuresMSG_INFO_0

MSG_INFO_1Remote Utility StructureTIME_OF_DAY_INFOReplicator StructuresREPL_EDIR_INFO_0
REPL_EDIR_INFO_1
REPL_EDIR_INFO_2
REPL_EDIR_INFO_1000
REPL_EDIR_INFO_1001
REPL_IDIR_INFO_0
REPL_IDIR_INFO_1
REPL_INFO_0
REPL_INFO_1000
REPL_INFO_1001
REPL_INFO_1002

REPL_INFO_1003Schedule StructuresAT_ENUM

AT_INFOServer StructuresSERVER_INFO_100
SERVER_INFO_101
SERVER_INFO_102
SERVER_INFO_402
SERVER_INFO_403
SERVER_INFO_502
SERVER_INFO_503
SERVER_INFO_1005
SERVER_INFO_1010
SERVER_INFO_1016
SERVER_INFO_1017
SERVER_INFO_1018
SERVER_INFO_1107
SERVER_INFO_1501
SERVER_INFO_1502
SERVER_INFO_1503

SERVER_INFO_1506
SERVER_INFO_1509
SERVER_INFO_1510
SERVER_INFO_1511
SERVER_INFO_1512
SERVER_INFO_1513
SERVER_INFO_1515
SERVER_INFO_1516
SERVER_INFO_1518
SERVER_INFO_1523
SERVER_INFO_1528
SERVER_INFO_1529
SERVER_INFO_1530
SERVER_INFO_1533
SERVER_INFO_1534
SERVER_INFO_1535
SERVER_INFO_1536
SERVER_INFO_1538
SERVER_INFO_1539
SERVER_INFO_1540
SERVER_INFO_1541
SERVER_INFO_1542
SERVER_INFO_1544
SERVER_INFO_1550
SERVER_INFO_1552

SERVER_TRANSPORT_INFO_0Session StructuresSESSION_INFO_0
SESSION_INFO_1
SESSION_INFO_2
SESSION_INFO_10

SESSION_INFO_502Share StructuresSHARE_INFO_0
SHARE_INFO_1
SHARE_INFO_2
SHARE_INFO_502
SHARE_INFO_1004
SHARE_INFO_1006

SHARE_INFO_1501Statistics StructureSTAT_SERVER_0

STAT_WORKSTATION_0User StructuresUSER_INFO_0
USER_INFO_1
USER_INFO_2
USER_INFO_3
USER_INFO_10
USER_INFO_11
USER_INFO_20
USER_INFO_21
USER_INFO_22
USER_INFO_1003
USER_INFO_1005
USER_INFO_1006
USER_INFO_1007
USER_INFO_1008
USER_INFO_1009
USER_INFO_1010
USER_INFO_1011
USER_INFO_1012
USER_INFO_1013
USER_INFO_1014
USER_INFO_1017
USER_INFO_1018
USER_INFO_1020

USER_INFO_1023
USER_INFO_1024
USER_INFO_1025
USER_INFO_1051
USER_INFO_1052
USER_INFO_1053
USER_MODALS_INFO_0
USER_MODALS_INFO_1
USER_MODALS_INFO_2
USER_MODALS_INFO_3
USER_MODALS_INFO_1001
USER_MODALS_INFO_1002
USER_MODALS_INFO_1003
USER_MODALS_INFO_1004
USER_MODALS_INFO_1005
USER_MODALS_INFO_1006

USER_MODALS_INFO_1007Workstation and Workstation User StructuresWKSTA_INFO_100
WKSTA_INFO_101
WKSTA_INFO_102
WKSTA_INFO_302
WKSTA_INFO_402
WKSTA_TRANSPORT_INFO_0
WKSTA_USER_INFO_0
WKSTA_USER_INFO_1

WKSTA_USER_INFO_1101Obsolete StructuresAUDIT_ENTRY
CONFIG_INFO_0
CONNECTION_INFO_0
CONNECTION_INFO_1
SERVICE_INFO_0
SERVICE_INFO_1
SERVICE_INFO_2
USE_INFO_0
USE_INFO_1

USE_INFO_2

The NetBIOS InterfaceAn application wrtten for Microsoft® Windows® can use the Network Basic Input/Output System
(NetBIOS) interface to communicate with applications on other computers in a network. The
NetBIOS interface is responsible for establishing logical names on the network, establishing
sessions between two logical names on the network, and supporting reliable data transfer
between computers that have established a session.

About the NetBIOS Interface
The Netbios function is provided primarily for applications that were written for the NetBIOS
interface and need to be ported to Windows. Applications not requiring compatibility with NetBIOS
can use other interfaces, such as mailslots or named pipes, to accomplish tasks similar to those
supported by NetBIOS.

The Netbios function takes one parameter, a pointer to a structure describing a network control
block (NCB). The NCB structure contains information about the network environment and a
pointer to a buffer that is used for messages or other network data.

Using the NetBIOS Interface
The Windows implementation of NetBIOS is based on the NetBIOS 3.0 specification. However,
the Windows implementation of the Netbios function includes the following enhancements that
are not part of the NetBIOS 3.0 specification:

· POST routines can be called from the C programming languages by means of the
ncb_post member of the NCB structure.

· Each asynchronous network control block can supply an event (in the ncb_event member
of the NCB structure) which is set to the signaled state when the NCB completes.

· An application can enumerate all available LAN adapters by using the NCBENUM
command in the ncb_command member of the NCB structure.

· The numbers of the network names (the ncb_num member of the NCB structure) are
assigned on a per-process basis.

· Requests for the status of the local adapter retrieve only the names that were added by
the process making the request.

· The value 1 for the ncb_lana_num member of the NCB structure is not exclusive when
the NCBRESET command is issued. All MS-DOS and 16-bit Windows-based applications also
share access to name number 1.

· The system does not monitor the number of outstanding NCB commands specified when
the NCBRESET command is issued. The memory quota limit for Windows is used to limit the
total resources an application can use.

· Asynchronous commands on invalid sessions are rejected when they are submitted.

NetBIOS Reference
The following functions and structures are used in NetBIOS.

NetBIOS Functions
The following function is used in NetBIOS.

Netbios

NetBIOS Structures
The following structures are used in NetBIOS.
ACTION_HEADER
ADAPTER_STATUS
FIND_NAME_BUFFER
FIND_NAME_HEADER
LANA_ENUM
NAME_BUFFER
NCB
SESSION_BUFFER

SESSION_HEADER

Network Dynamic Data ExchangeThe Microsoft® Win32® application programming interface (API) provides network dynamic data
exchange (network DDE) to let a process establish conversations with processes running on
different computers in a network.

About Network DDE
Network DDE is used to initiate and maintain the network connections needed for DDE
conversations between applications running on different computers in a network. A DDE
conversation is the interaction between client and server applications. You use network DDE
along with DDE and the DDE management library (DDEML) in your application.

DDE is a form of interprocess communication that uses shared memory to exchange data
between applications. Applications can use DDE for one time data transfers or for ongoing
exchanges and updating data. For more information on DDE, see Dynamic Data Exchange.

DDEML simplifies the task of adding DDE capability to a Win32-based application. Instead of
sending, posting, and processing DDE messages directly, an application uses the functions
provided by the DDEML to manage DDE conversations. For more information on DDEML, see
Dynamic Data Exchange Management Library.Network DDE FilesTo use the API elements of network DDE, you must include the NDDEAPI.H header file in your
source files and include NDDEAPI.LIB file on your link line. You must also make sure that the
NDDEAPI.DLL file is loaded.

Windows 95: Windows 95 includes a 16-bit NDDEAPI.DLL. However, Windows 95 does not
include a 32-bit NDDEAPI.DLL. Therefore, on Windows 95, Win32-based applications that
use network DDE functions need to thunk to the functions in the 16-bit NDDEAPI.DLL.

Win32s: The network DDE functions are not supported. Therefore, you will need to either use
the DDESHARE utility or thunk to the functions in the NDDEAPI.DLL provided with Windows
for Workgroups.

Network DDE Agent
The network DDE agent starts network DDE if it detects local network DDE activity. It does not
detect a remote client trying to connect. Therefore, before any client can successfully connect,
network DDE must be started on the server computer. Note that network DDE is not started by
default on Windows 95 or Windows NT. To start network DDE, run NETDDE.EXE. This file is
located in your Windows directory.

The network DDE agent also starts the applications necessary for network DDE. After network
DDE is started, DDE conversations are controlled through a network DDE window associated with
one of the network DDE applications. This application acts as a proxy. It communicates with all
local and remote DDE applications.

DDE Shares
DDE shares are a machine resource. They are similar to file shares because they are used to
control access to a resource. With file shares, the resource is a file. With DDE shares, the
resource is dynamically exchanged data. The type of data exchanged is determined by the
server application that supplies the data and the client application that requests the data.

The server calls the NDdeShareAdd function to create the DDE share, which is stored in the
DDE share database manager (DSDM).

The client starts the DDE conversation by connecting to the DDE share. The client must call the
DdeInitialize function to initialize DDEML and call the DdeConnect function to connect to the
DDE share. In the DdeConnect call, the client specifies the service name\\<ComputerName>\NDDE$where <ComputerName> is the name of the computer running the server application. The NDDE$
indicates that the topic provided to DdeConnect is the DDE share name on the remote
computer named <ComputerName>.

There are three types of DDE shares: old style, new style, and static. It is typical to support only
the static type. The names of static shares follow the convention <ShareName>$.

Trusted Shares and SecurityTrusted SharesWhen a client user connects to a DDE share from a remote computer, network DDE accepts the
request only if the following statements are true:

· The user who created the share has granted trusted status to the share by calling
NDdeSetTrustedShare. Only the creator of the share can grant trusted status to the share.
Not even an administrator can grant trusted status to a DDE share that was created by a
different user.

· The user who created the share is currently logged on to the server computer.
The process of granting trusted status to a share adds the share to the logged-on user's trusted
shares list in the DSDM. This creates a trust relationship between the server and its clients. Once
a DDE share has trusted status, clients can connect to it as long as the user that created the
share is logged on. When the client connects to the share from a remote computer, network DDE
accepts the request only if the share is listed in the logged-on user's trusted shares list in the
DSDM.SecurityNetwork DDE performs an additional security check when the client requests data or a link. It
checks that the server has granted the remote user the necessary permission for the operation.
The server controls access to the share through the pSD parameter of the NDdeShareAdd
function. This parameter specifies the security descriptor. If this parameter is NULL, the function
creates a default security descriptor that grants full access to the creator of the share and grants
read and link permission to all other users. To grant or deny additional permissions to individual
users or groups of users, create and use a security descriptor. For more information on security
descriptors, see the Security overview.

To obtain the security descriptor for an existing DDE share, call the NDdeGetShareSecurity
function. You can edit the information and then update the security descriptor for the share by
using the NDdeSetShareSecurity function.

Managing DDE Shares
Network DDE provides functions that allow you to delete a share, get or set share information, or
enumerate shares.

· Deleting a DDE Share A server can remove a DDE share by using the NDdeShareDel
function.

· Getting and Setting DDE Share Information You can retrieve information about a DDE
share by using the NDdeShareGetInfo function. You can also change information about the
share by using the NDdeShareSetInfo function.

· Enumerating DDE Shares You can enumerate the existing DDE shares for a computer
by using the NDdeShareEnum function. You can enumerate the trusted DDE shares by using
the NDdeTrustedShareEnum function.
You can enumerate the users connected to your DDE shares by using the NetSessionEnum
function.

· Changing the DDE Share Name To change the name of a DDE share, an application
must delete the old share and create a new share.

To change the share name
1. Retrieve the share information using NDdeShareGetInfo.
2. Remove the share using NDdeShareDel.
3. Change the lpszShareName member of the NDDESHAREINFO structure returned by

NDdeShareGetInfo.
4. Pass the modified NDDESHAREINFO structure to NDdeShareAdd.

Using Network DDE
The examples in this section demonstrate the following tasks:

· Creating a DDE share
· Granting trusted status to a DDE share
· Establishing a network DDE conversation
· Displaying errors to the user

Creating a DDE Share
The following topics describe two methods for creating DDE shares:

· Using NDdeShareAdd to Create a DDE Share
· Using DDESHARE to Create a DDE Share

Your server application should use NDdeShareAdd to create a DDE share. However, you may
wish to use DDESHARE on Win32s instead of thunking to the 16-bit NDdeShareAdd.

Using NDdeShareAdd to Create a DDE Share
The NDdeShareAdd function is used by a DDE server application to create a DDE share.

Before creating a DDE share, it is a good idea to verify that the proposed share name and topic
name are valid by using the NDdeIsValidShareName and NDdeIsValidAppTopicList functions.
These functions are also called by NDdeShareAdd.

The following example demonstrates how to create a DDE share. It uses a NULL discretionary
access control list (DACL) to grant write access to all users. Note that this is not the same as
specifying NULL in the pSD parameter of NDdeShareAdd.BOOL MyCreateDdeShare(LPTSTR lpszShareName, LPTSTR lpszTopicList)
{

NDDESHAREINFO ndsi;
PSECURITY_DESCRIPTOR pSD = NULL;

// Where lpszShareName is the share name.
if(NDdeIsValidShareName(lpszShareName) == FALSE)

return FALSE;
// Where lpszTopicList is a list of null-terminated strings terminated
// by another null character.

if(NDdeIsValidAppTopicList(lpszTopicList) == FALSE)
return FALSE;
// Fill in the NDDESHAREINFO structure.

ndsi.lRevision = 1;
ndsi.lpszShareName = lpszShareName;
ndsi.lShareType = SHARE_TYPE_STATIC;
ndsi.lpszAppTopicList = lpszTopicList;
ndsi.fSharedFlag = TRUE;
ndsi.fService = FALSE;
ndsi.fStartAppFlag = TRUE;
ndsi.nCmdShow = SW_SHOWNORMAL;
ndsi.cNumItems = 0;
ndsi.lpszItemList = "";

// Create a security descriptor to allow write access.
pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(

LPTR,
SECURITY_DESCRIPTOR_MIN_LENGTH);

InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION);
SetSecurityDescriptorDacl(pSD, TRUE, (PACL)NULL, FALSE);

// Delete possible old DDE share.
NDdeShareDel(

NULL,
lpszShareName,
0
);
// Create the DDE share.

NDdeShareAdd(
NULL,
2,
pSD,
(LPBYTE)&ndsi,
sizeof(NDDESHAREINFO)
);

LocalFree(pSD);
return TRUE;

}The following example shows how you could call the MyCreateDdeShare function to create the
share MyDdeShare$:char *TopicList = "\0\0MyApp|MyTopic\0\0";
MyCreateDdeShare("MyDdeShare$", TopicList);This share name ends with a dollar sign ($), indicating that it is a static DDE share. Topic strings

are provided only for the static-type DDE share.

Using DDESHARE to Create a DDE Share
Windows for Workgroups and Windows NT provide the DDESHARE utility so that users can
manage DDE shares. To run DDESHARE, go to File Manager, locate DDESHARE.EXE, and start
the application.

To create a DDE share
1. On the Shares menu, click DDE Shares. DDESHARE displays the following dialog box:

ewc msdncd, EWGraphic, bsd23507 0 /a "SDK.BMP"

2. Click the Add a Share button. DDESHARE displays the following dialog box:
ewc msdncd, EWGraphic, bsd23507 1 /a "SDK.BMP"

3. Fill in the Share Name, Application Name, and Topic Name text boxes, then click OK.

Granting Trusted Status To a DDE Share
The following topics describe two methods for granting trusted status to DDE shares:

· Using NDdeSetTrustedShare to Grant Trusted Status
· Using DDESHARE to Grant Trusted Status

Your server application should use NDdeSetTrustedShare to grant trusted status to a DDE
share. However, you may wish to use DDESHARE on Win32s instead of thunking to the 16-bit
NDdeSetTrustedShare.

Using NDdeSetTrustedShare to Grant Trusted Status
The NDdeSetTrustedShare function is used by a DDE server to grant trusted status to a DDE
share.

The following example demonstrates how to grant trusted status to a DDE share:BOOL MyTrustShare(LPSTR lpszShareName)
{
// Grant trusted status.

if(NDdeSetTrustedShare(NULL, lpszShareName,
NDDE_TRUST_SHARE_INIT | NDDE_TRUST_SHARE_START
) == NDDE_NO_ERROR)

return TRUE;
else return FALSE;

}The following example shows how you could call the MyTrustShare function to grant trusted
status to the existing share MyDdeShare$:MyTrustShare("MyDdeShare$");

Using DDESHARE to Grant Trusted Status
Windows for Workgroups and Windows NT provide the DDESHARE utility so that users can
manage DDE shares. To run DDESHARE, go to File Manager, locate DDESHARE.EXE, and start
the application.

To grant trusted status
1. On the Shares menu, click DDE Shares. DDESHARE displays the following dialog box:

ewc msdncd, EWGraphic, bsd23507 2 /a "SDK.BMP"

2. Click the Trust Share button. DDESHARE displays the following dialog box:
ewc msdncd, EWGraphic, bsd23507 3 /a "SDK.BMP"

3. Choose the options you want, click the Set button, and then click OK.

Establishing a Network DDE Conversation
Establishing a conversation between a client application and a server application on different
computers is similar to establishing a conversation between a client and server on the same
computer. The difference is that the client specifies a computer and a DDE share, rather than an
application and a topic.

The first step is for the server to register with the DDEML by calling the DdeInitialize function.
This call requires a pointer to the application-defined DDE callback function DdeCallback. The
server also registers the service name that the DDE server supports by calling the
DdeNameService function.DWORD g_idInst;
BOOL MyDdeShareInit(LPTSTR lpszServer, PFNCALLBACK DdeCallback)
{

HSZ hszService;
char ServerBuf[MAX_COMPUTERNAME_LENGTH+8];

// Register the server application.
if(DdeInitialize(

&g_idInst,
(PFNCALLBACK) DdeCallback,
APPCLASS_STANDARD | CBF_FAIL_SELFCONNECTIONS |
CBF_FAIL_REQUESTS | CBF_FAIL_EXECUTES,
0L
) != DMLERR_NO_ERROR)

return FALSE;
// Check if "\\server" or just "server" is specified.

if(lpszServer[0] == '\\')
wsprintf(ServerBuf, "%s\\NDDE$", lpszServer);
else wsprintf(ServerBuf, "\\\\%s\\NDDE$", lpszServer);

// Register the service names.
hszService = DdeCreateStringHandle(g_idInst, ServerBuf, 0);
DdeNameService(

g_idInst,
hszService,
0,
DNS_REGISTER
);

DdeFreeStringHandle(g_idInst, hszService);
return TRUE;

}The following example shows how you could call the MyConnect function to initialize DDEML for
the server application on computer ServerA:// Application-supplied callback function.
HDDEDATA CALLBACK DdeCallback(UINT iType, UINT iFmt, HCONV hConv,

HSZ hsz1, HSZ hsz2, HDDEDATA hData, DWORD dwData1, DWORD dwData2)
{

switch(iType)
{

case XTYP_CONNECT:
// Validate topic for connection.

...
return (HDDEDATA) TRUE;

...
default:

return (HDDEDATA) 0;
}

}
MyDdeShareInit("ServerA", DdeCallback);As with any DDE conversation, the client and server applications must cooperate to establish a

conversation. For network DDE, the client must have the computer name and the share name.
The client then uses the DdeConnect function to establish a network DDE conversation.HCONV g_hConv;
BOOL MyConnect(LPSTR lpszServer, LPTSTR lpszTopic)
{

HSZ hszServer, hszTopic;
char ServerBuf[MAX_COMPUTERNAME_LENGTH+8];

// Register the client application.
if(DdeInitialize(

&g_idInst,
(PFNCALLBACK) DdeCallback,
APPCLASS_STANDARD | CBF_FAIL_SELFCONNECTIONS |
CBF_FAIL_REQUESTS | CBF_FAIL_EXECUTES,
0L
) != DMLERR_NO_ERROR)

return FALSE;
// Check if "\\server" or just "server" is specified.

if(lpszServer[0] == '\\')
wsprintf(ServerBuf, "%s\\NDDE$", lpszServer);
else wsprintf(ServerBuf, "\\\\%s\\NDDE$", lpszServer);
hszServer = DdeCreateStringHandle(g_idInst, ServerBuf, 0);
hszTopic = DdeCreateStringHandle(g_idInst, lpszTopic, 0);
if((g_hConv = DdeConnect(g_idInst,

hszServer,
hszTopic,
NULL)
) == 0)

return FALSE;
DdeFreeStringHandle(g_idInst, hszServer);
DdeFreeStringHandle(g_idInst, hszTopic);
return TRUE;

}The following example shows how you could call this function to connect to the DDE share
MyDdeShare$ on computer ServerA:// Application-supplied callback function.
HDDEDATA CALLBACK DdeCallback(UINT iType, UINT iFmt, HCONV hConv,

HSZ hsz1, HSZ hsz2, HDDEDATA hData, DWORD dwData1, DWORD dwData2)
{

switch(iType)
{

...
default:

return (HDDEDATA) 0;
}

}
MyConnect("ServerA", "MyDdeShare$");

Displaying Errors to the User
Whenever a network DDE function returns an error value, you can retrieve an error message
suitable for displaying to a user by using the NDdeGetErrorString function.DisplayNDdeErrorString(UINT uCode, LPTSTR lpszTitle)
{

char buf[256];
NDdeGetErrorString(

uCode,
buf,
sizeof(buf)
);

MessageBox(NULL, buf, lpszTitle, MB_ICONEXCLAMATION | MB_OK);
}

Network DDE Reference
This section provides a listing of the network DDE functions and structures.

Network DDE Functions
The following functions are used with network DDE.
NDdeGetErrorString
NDdeGetShareSecurity
NDdeGetTrustedShare
NDdeIsValidAppTopicList
NDdeIsValidShareName
NDdeSetShareSecurity
NDdeSetTrustedShare
NDdeShareAdd
NDdeShareDel
NDdeShareEnum
NDdeShareGetInfo
NDdeShareSetInfo

NDdeTrustedShareEnum

Network DDE Structures
The following structure is used with network DDE.

NDDESHAREINFO

Remote Access ServiceRemote Access Service (RAS) lets users at remote locations work as if connected directly to a
computer network, accessing one or more RAS servers.

About Remote Access Service
The Microsoft® Win32® API enables RAS client applications to perform the following tasks.

· Display any of the RAS common dialog boxes. This includes the main Dial-Up
Networking dialog box, the Dial-Up Networking Monitor property sheet, and other dialog
boxes for creating, editing, copying, or dialing a phone-book entry.

· Start and end a RAS connection operation using the common dialog boxes or the low-
level dialing functions.

· Create, edit, or copy phone-book entries using the common dialog boxes or the low-level
phone-book functions.

· Work with entries in the RAS AutoDial mapping database, which maps network addresses
to the phone-book entry that can establish a connection to the address.

· Get RAS information, including information about existing RAS connections, information
about the RAS-capable devices configured on the local computer, and notifications when a
RAS connection begins or ends.

For Windows NT version 4.0, the Win32 API also provides support for RAS server administration
and for third-party extensions to RAS server security and connection management. Windows 95
does not provide RAS server support.

RAS Common Dialog Boxes
Windows NT version 4.0 provides a set of functions that display the RAS dialog boxes provided by
the system. These functions make it easy for applications to display a familiar user interface so
users can perform RAS tasks, such as establishing and monitoring connections, or working with
phone-book entries. Windows 95 does not currently support these functions.

The RasPhonebookDlg function displays the main Dial-Up Networking dialog box. From this
dialog box, the user can dial, edit, or delete a selected phone-book entry, create a new phone-
book entry, or specify user preferences. The RasPhonebookDlg function uses the RASPBDLG
structure to specify additional input and output parameters. For example, you can set members of
the structure to control the position of the dialog box on the screen. You can use the RASPBDLG
structure to specify a RasPBDlgFunc callback function that receives notifications of user activity
while the dialog box is open. For example, RAS calls your RasPBDlgFunc function if the user
dials, edits, creates, or deletes a phone-book entry.

You can use the RasDialDlg function to start a RAS connection operation without displaying the
main Dial-Up Networking dialog box. With RasDialDlg, you specify a phone number or phone-
book entry to call. The function displays a stream of dialog boxes that indicate the state of the
connection operation. The RasDialDlg function uses a RASDIALDLG structure to specify
additional input and output parameters, such as position of the dialog box and the phone-book
subentry to call.

To display the Dial-Up Networking Monitor property sheet, call the RasMonitorDlg function.
This dialog box enables the user to monitor the status of existing connections. The
RasMonitorDlg function uses a RASMONITORDLG structure to specify additional input and
output parameters, such as the position of the dialog box and the property sheet page to display
on top.

You can call the RasEntryDlg function to display a property sheet for creating, editing, or copying
a phone-book entry. The RasEntryDlg function uses a RASENTRYDLG structure to specify
additional input and output parameters, such as the position of the dialog box and the type of
phone book operation.

RAS Connection Operations
Windows NT version 4.0 provides the RasPhonebookDlg and RasDialDlg functions that display
the built-in user interface for starting a RAS connection operation. For most applications, this is
the preferred way to start a RAS connection operation. Windows 95 does not currently support
these functions.

The remainder of this section describes the low-level functions for starting a RAS connection.
These functions are available on both Windows NT and Windows 95.

A RAS client application uses the RasDial function to establish a connection to a RAS server. The
RasDial function starts the connection operation, which is then carried out by the Remote Access
Connection Manager.

The Remote Access Connection Manager is a service that handles the details of establishing the
connection to the remote server. This service also provides the client with status information
during the connection operation. The Remote Access Connection Manager starts automatically
when an application loads the RASAPI32.DLL.

The RasDial call specifies the following information when it starts a connection operation:

· The connection information that the Remote Access Connection Manager needs to
establish the connection.

· An optional notification handler that receives progress notifications during the connection
operation. If the RasDial call specifies a notification handler, the call is asynchronous;
otherwise, it is synchronous.

· An optional RASDIALEXTENSIONS structure to enable or disable extensions to the
RasDial operation. The extensions permit a RAS client to directly enable some modem
settings, to control whether RAS uses the prefixes and suffixes in a phonebook entry, and to
support paused states during the connection operation.

Synchronous Operations
When RasDial is invoked as a synchronous operation, the function does not return until the
connection has been established or an error occurs. Synchronous mode provides a simple way
for a RAS client to establish a connection. The client can simply call RasDial, wait for the function
to return, and then call the RasGetConnectStatus function to determine whether the connection
operation was successful. Once the connection has been established, the client application can
terminate without breaking the connection. If an error occurs, the client application must shut
down the connection operation before terminating.

The disadvantage of synchronous mode is that the client does not receive progress notifications
as the connection operation proceeds. As a workaround for this lack of progress notifications, a
synchronous mode client can use a separate thread that calls RasGetConnectStatus to poll for
and display the current state. However, for RAS clients that want to receive progress information,
the preferred technique is to invoke RasDial asynchronously.

Asynchronous Operations
When RasDial is invoked as an asynchronous operation, the function returns immediately. In
asynchronous mode, the RasDial call must specify a notification handler that the Remote Access
Connection Manager uses to inform the client whenever the connection operation changes states
or an error occurs.

The notification handler can be a window to receive messages, or a RasDialFunc,
RasDialFunc1, or RasDialFunc2 callback function. The Remote Access Connection Manager
makes its asynchronous notifications in the context of the thread that made the RasDial call. For
this reason, the calling thread must not terminate until the connection operation has been
successfully established or an error occurs. As in synchronous mode, the client application can
safely terminate once the connection has been established, and it must shut down the connection
operation if an error occurs.

Phonebook Files and Connection Information
A RasDial call must specify the information that the Remote Access Connection Manager needs
to establish the connection. Typically, the RasDial call provides the connection information by
specifying a phone-book entry. The connection information in a phonebook entry includes phone
numbers, bps rates, user authentication information, and other connection information.

A RAS client uses the parameters of the RasDial function to specify a phonebook file and an
entry in that file. The lpszPhonebookPath parameter can specify the name of a phonebook file, or
it can be NULL to indicate that the default phonebook file should be used. The lpRasDialParams
parameter points to a RASDIALPARAMS structure that specifies the name of the phonebook
entry to use.

To display a list of phonebook entries from which the user can select a connection, a RAS client
can call the RasEnumEntries function to enumerate the entries in a phonebook file.

To make a connection without using a phonebook entry, the RasDial call can specify an empty
string for the szEntryName member of the RASDIALPARAMS structure. The
RASDIALPARAMS.szPhoneNumber member must contain the number to call. In this case, the
Remote Access Connection Manager uses the first available modem port and default values for
all other settings.

User Authentication Information
The Remote Access Connection Manager service on the client computer sends a user name and
password to the RAS server on the remote computer. Before it will establish a connection, the
remote server uses this information to authenticate the user. By default, the Remote Access
Connection Manager sends the user name and password of the currently logged-on user. The
RAS client can use the RASDIALPARAMS structure specified in the RasDial call to specify a
different user name and password.

If the remote server cannot authenticate the user with the specified information, it can allow the
connection operation to enter a paused state to enable the RAS client to collect different
authentication data from the user.

Other Connection Information
The members of the RASDIALPARAMS structure can also specify the following connection
information:

· A phone number to override the number in the phonebook entry.
· A callback phone number that the remote server can call back to establish the connection.
· The name of the remote network domain on which the authentication is to occur.

For the callback number and the domain, the RASDIALPARAMS members can either indicate
that RAS should use the information in the phonebook entry, or it can provide information that
overrides the phonebook data.

A RAS client can use the lpRasDialExtensions parameter of the RasDial function to control
whether RAS uses a phone number prefix or suffix specified in a phonebook entry.

Connection States
During the process of connecting to a remote server, the Remote Access Connection Manager
and the RAS server on the remote computer perform several steps to establish the connection.
Each of these steps is identified by a connection state. The RASCONNSTATE enumeration is a
set of values that correspond to these connection states. The connection states can be divided
into the following three groups:

Running states The running states are the parts of the connection
operation that RAS handles automatically, such
as connecting to the necessary devices,
authenticating the user, and waiting for a callback
from the remote server. Unless an error occurs,
the RAS client need take no action other than to
pass the notification on to the user.

Paused states The paused states occur when the remote server
pauses the connection operation to get additional
input from the user. During a paused state, the
user can type a callback number, a different user
name and password if the user authentication
fails, or a new password if the old one has
expired.

Terminal states The terminal states occur when the connection
has been successfully established, the connection
operation has failed, or the connection has been
broken by a RasHangUp call.

There are several mechanisms that a RAS client can use to determine the current state of a
connection operation. When a RAS client executes the RasDial function asynchronously, the
Remote Access Connection Manager sends progress notifications to the client's notification
handler whenever the connection state changes. In addition, the client can use the
RasGetConnectStatus function to get the current state of any RAS connection operation.

Notification Handlers
An asynchronous RasDial call must specify a notification handler. During an asynchronous
connection operation, the Remote Access Connection Manager uses the notification handler to
inform the RAS client whenever the connection state changes or an error occurs.

The actions performed by a notification handler can be divided into the following categories:

· Handling errors_win32_Handling_RAS_errors.
· Providing feedback to the user as the connection operation proceeds through the various

connection states. See Informational Notifications.
· Handling paused states.
· Signaling the RAS client application when the connection operation has been completed.

See Completion Notifications.
There are three types of notification handlers, each of which receives the same basic information:
the current connection state and an error code that is nonzero only if an error has occurred.

RasDialFunc A callback function prototype that receives only
the current connection state and error code
information.

RasDialFunc1 A callback function prototype that receives the
HRASCONN connection handle and extended
error information in addition to the basic
information. The connection handle parameter
makes RasDialFunc1 useful for client
applications that support multiple simultaneous
connection operations. This allows the client to
specify the same callback function for all
operations, and enables the callback function to
determine which connection is changing states.

Window handle A window handle to which RAS sends
WM_RASDIALEVENT messages containing the
current connection state and error code
information. Use this method if your source code
must be compatible with 16-bit Windows, because
16-bit Windows does not support either of the
callback functions.

The Remote Access Connection Manager suspends the connection operation until the
notification handler returns. For this reason, the handler should return as soon as possible
unless an error has occurred.

The RasDial function should not be called from within a notification handler. The other remote
access functions (RasGetConnectStatus, RasEnumEntries, RasEnumConnections,
RasGetErrorString, and RasHangUp) can be called from within a handler.

Handling RAS Errors
When an error occurs, the Remote Access Connection Manager invokes the client's notification
handler. The notification indicates the connection state when the error occurred, and a code that
identifies the error. In these cases, the notification handler should call RasHangUp to end the
RAS connection.

The RAS client can use the RasGetErrorString function to get a display string describing the
error.

Informational Notifications
For the connection states known as running states, no action is required of the notification handler
unless an error occurs. Running states occur during the parts of the connection operation that
RAS handles automatically, such as connecting to the necessary devices, authenticating the user,
and waiting for a callback from the remote server. The notification is simply a progress report to
the client.

The client can choose to pass these informational notifications on to the user. In some running
states, the client may want to display additional information. For example, a notification handler
that receives a RASCS_ConnectDevice notification can call the RasGetConnectStatus function
to get the name and type of the device being connected to. Another example is when the client
receives a RASCS_Projected notification. This occurs when the RAS projection phase of the
connection operation has been completed. The client can call the RasGetProjectionInfo function
to get additional information about the projection. The client can use this information to notify the
user as to which network protocols can be used by this connection.

You should avoid writing code that depends on the order or occurrence of particular informational
states, because this may vary between platforms.

Completion Notifications
The Remote Access Connection Manager continues progress notifications until the connection
operation has been completed. This occurs in the following situations:

· The connection is established. The handler receives a RASCS_Connected notification.
The RAS client application can exit without breaking the connection.

· An error occurs. The handler receives a notification indicating the error and the
connection state when the error occurred.

· The connection operation is interrupted by a RasHangUp call.

Paused States
During a connection operation, there can be times when the remote server cannot proceed
without additional information from the local user. Beginning with Microsoft® Windows NT® version
3.5, the RasDial function supports paused states. A paused state allows the Remote Access
Connection Manager to suspend a connection operation so the RAS client application can collect
information from the user.

Paused states are useful in the following situations:

· When the user needs to provide a callback number.
· When the user authentication fails, the user can type in a different user name and

password.
· When the user's password has expired, the user can provide a new password.

By default, paused state support is disabled. RAS clients that want to support paused states must
set the RDEOPTS_PausedStates flag in the RASDIALEXTENSIONS structure passed as a
parameter to RasDial.

When a paused state occurs, the Remote Access Connection Manager invokes the client's
notification handler. If paused state support is disabled, the notification message indicates an
error, and the connection operation fails. If it is enabled, the Connection Manager pauses the
connection operation to wait for the RAS client's response. The RAS client can resume the
connection operation by a second RasDial call, or terminate it by calling the RasHangUp
function.

After getting the user's input, the RAS client restarts the connection operation by calling RasDial
again. This second RasDial call must specify the following information:

· The connection handle that was returned by the original RasDial call.
· The same notification handler as the original RasDial call.
· The user's input in the appropriate members of the RASDIALPARAMS structure. Other

members of the RASDIALPARAMS structure should have the same information as specified
in the original RasDial call.

The second RasDial call cannot be made from within the notification handler.

Callback Connections
RAS supports connections in which the remote server hangs up and then calls back to the client
to establish the connection.

For each user that can connect to a RAS server, the server stores a callback attribute that
controls how the connection is made. The default attribute is No Callback, which means that the
user can connect to the RAS server without a callback. Alternatively, the administrator of the RAS
server can assign to a user either the Preset or Set-By-Caller callback attribute.

For a user assigned the Preset restriction, the administrator specifies a phone number that the
RAS server must call back to establish a connection. The user cannot specify a different number,
and the connection cannot be made without a callback.

A Preset callback operation is handled automatically by the Remote Access Connection Manager
and the remote server. The RAS client application does not need to do anything other than
provide feedback to the user when the notification handler is called during the various states of
the callback operation.

A user assigned the Set By Caller privilege can choose to connect either with or without a
callback. The RasDial call uses the szCallBackNumber member of the RASDIALPARAMS
structure to indicate the choice.

The szCallBackNumber member can simply specify the callback number; or, to establish the
connection without a callback, szCallBackNumber can point to an empty string, "". In either of
these cases, the Remote Access Connection Manager handles the connection operation
automatically. As with a Preset callback operation, the RAS client does not need to perform any
action other than to provide feedback to the user.

If the RasDial call enables paused states, szCallBackNumber can point to an asterisk string, "*",
to indicate that the connection operation should enter a paused state to allow the user to type in
the callback number. In this case, the connection operation for a Set By Caller user enters a
paused state after the remote server has authenticated the user. During the paused state, the
RAS client gets the callback number input from the user. The client then resumes the connection
operation by making a second RasDial call in which szCallBackNumber specifies the number
supplied by the user.

Note that if paused states are not enabled there is a different meaning when szCallBackNumber
points to an asterisk string, "*". In this case, the asterisk indicates that the callback number is
stored in the phonebook file specified by the RasDial call.

Disconnecting
When a RAS client application starts a connection operation, the RasDial call receives an
HRASCONN connection handle to identify the connection. If the returned handle is not NULL, the
client must eventually call the RasHangUp function to end the connection. If an error occurs
during the connection operation, the client must call RasHangUp even though the connection was
never established.

The application that calls RasHangUp should not exit immediately, because the Remote Access
Connection Manager needs time to properly terminate the connection. Instead, the application
should wait until the RasGetConnectStatus function returns ERROR_INVALID_HANDLE,
indicating that the connection has been deleted.

A RAS client application might need to end a connection even though it does not have the handle
returned by RasDial. For example, the application that called RasDial might have exited once the
connection was successfully established. In this case, the disconnecting application can use the
RasEnumConnections function to get all the current connections. For each connection,
RasEnumConnections returns a RASCONN structure containing the HRASCONN connection
handle and the phonebook entry name or phone number specified when the connection operation
was started. This information can be used to display a list of connections from which the user can
select the connection to end.

RAS Phone Books
Phone books provide a standard way to collect and specify the information that the Remote
Access Connection Manager needs to establish a remote connection. Phone books associate
entry names with information such as phone numbers, COM ports, and modem settings. Each
phone-book entry contains the information needed to establish a RAS connection.

Windows NT: Phone books are stored in phone-book files, which are text files that contain the
entry names and associated information. RAS creates a phone-book file called RASPHONE.
PBK. The user can use the main Dial-Up Networking dialog box to create personal phone-book
files. The Win32 API does not currently provide support for creating a phone-book file. Some RAS
functions, such as the RasDial function, have a parameter that specifies a phone-book file. If the
caller does not specify a phone-book file, the function uses the default phone-book file, which is
the one selected by the user in the User Preferences property sheet of the Dial-Up Networking
dialog box.

Windows NT version 4.0 provides the RasPhonebookDlg and RasEntryDlg functions that
display the built-in RAS user interface that enable users to work with phone books and phone-
book entries.

Windows 95: Dial-up networking stores phonebook entries in the registry rather than in a
phonebook file. Windows 95 does not support personal phone-book files. Windows 95 does not
support the functions that display the built-in RAS dialog boxes.

Phone-book Entries
Phone-book entries contain the information necessary to establish a RAS connection. A user or
administrator can use the Dial-Up Networking dialog box to create, edit, and dial phone-book
entries.

Windows 95:
Windows 95 supports a limited set of the Win32 functions for working with phone-
book entries. You can use the RasCreatePhonebookEntry and RasEditPhonebookEntry
functions to create or edit a phone-book entry. These functions display a dialog box in which
the user can specify information about the phone-book entry. You can use the
RasGetEntryDialParams and RasSetEntryDialParams functions to set or retrieve the
connection parameters for a phone-book entry. The RasEnumEntries function retrieves an
array of RASENTRYNAME structures that contain the phone-book entry names.

Windows NT version 4.0 supports the functions described for Windows 95, as well as a number of
additional functions that an application can use to work with phone books and phone-book entries.

The RasEntryDlg function displays a property sheet that enables the user to create, edit, or copy
phone-book entries. The RasCreatePhonebookEntry and RasEditPhonebookEntry functions
call the RasEntryDlg function. You can use the RasRenameEntry function to rename a phone-
book entry, or the RasDeleteEntry to delete an entry. The RasValidateEntryName determines
whether a specified string has the correct format to be used as an entry name.

You can use the RasGetEntryProperties and RasSetEntryProperties to get and set additional
information about a phone-book entry. These functions use a RASENTRY structure.

The RasGetCredentials and RasSetCredentials functions get and set the user credentials
associated with a specified RAS phone-book entry. These functions use a RASCREDENTIALS
structure.

The RasGetCountryInfo function retrieves country-specific dialing information from the Windows
Telephony list of countries. RasGetCountryInfo uses the RASCTRYINFO structure.

Subentries and Multilink Connections
Windows NT version 4.0 provides support for phone-book subentries, which enable multilink
connections. A multilink connection combines the bandwidth of multiple connections to provide a
single connection with higher bandwidth.

A RAS phone-book entry can have zero or more subentries. The RasGetEntryProperties
function retrieves a RASENTRY structure that includes information about the subentries of a
phone-book entry. The dwSubEntries member of the RASENTRY structure indicates the number
of subentries. Phone-book entries initially have no subentries. To add subentries to a phone-book
entry, use the RasSetSubEntryProperties function.

The properties for each subentry include a phone number and the name and type of the TAPI
device to use when dialing the subentry. In addition, a subentry can include a list of alternate
phone numbers to dial if RAS cannot make a connection using the primary number. The
RasSetSubEntryProperties and RasGetSubEntryProperties functions use the
RASSUBENTRY structure to set and retrieve the properties of a specified phone-book subentry.
Subentries are identified by a one-based index.

You can call the RasSetEntryProperties function to configure a multilink RAS entry to connect all
subentries when it is first dialed. Alternatively, you can configure an entry to provide variable
bandwidth. In this case, RAS connects a single subentry initially, and then connects or
disconnects additional subentries as needed. For a variable-bandwidth multilink connection, you
can use the RASDIALPARAMS structure to specify the initial subentry to connect when you call
the RasDial function. When using the RasDialDlg function to connect a multilink entry, you can
use the RASDIALDLG structure to specify the initial subentry to connect.

For a variable-bandwidth multilink connection, use the RASENTRY structure with the
RasSetEntryProperties function to specify the parameters for connecting and disconnecting the
individual subentries. RAS connects an additional subentry when the bandwidth being used
exceeds a specified percentage of the available bandwidth for a specified interval.

If you call the RasDial function to establish a multilink connection, you can specify a
RasDialFunc2 callback function to receive notifications about the connection. RasDialFunc2 is
similar to the RasDialFunc1 callback function, except that it provides additional information for a
multilink connection, such as the index of the subentry that caused the notification. RAS calls your
RasDialFunc2 function when it connects or disconnects a subentry.

You can use an HRASCONN connection handle to hang up or retrieve information about a
multilink connection. You can get a connection handle for each of the subentry connections that
make up the multilink, as well as for the combined multilink connection. When you call the
RasDial function to establish a multilink connection, RasDial returns a handle to the combined
multilink connection. Similarly, RasEnumConnections returns the combined multilink handle
when you enumerate connections. To get a handle to one of the subentry connections in a
multilink connection, call the RasGetSubEntryHandle function.

You can use the combined multilink connection handle and the subentry connection handles in
the RasHangUp, RasGetConnectStatus, and RasGetProjectionInfo functions. Calling
RasHangUp with a combined multilink handle terminates the entire connection; calling it with a
subentry handle hangs up only that subentry connection. Similarly, RasGetConnectStatus
returns information for the combined or individual connection, depending on the handle specified.
The projection information returned by RasGetProjectionInfo for a multilink entry is the same for
each of the subentry connection handles as it is for the main connection handle.

RAS AutoDial
Windows NT version 4.0 supports a feature known as AutoDial. Windows 95 and Windows NT
version 3.51 and earlier do not support the AutoDial feature.

When an attempt to connect to a network address fails because the host cannot be reached, the
AutoDial feature can automatically start a dial-up connection operation. To do this, AutoDial
searches its database of network addresses to find a phone-book entry that it can use to establish
the connection.

AutoDial Mapping Database
The AutoDial mapping database maps network addresses to RAS phone-book entries. The
database can include IP addresses (for example, "127.95.1.4"), Internet host names (for example,
"www.microsoft.com"), or NetBIOS names (for example, "products1"). Associated with each
address in the AutoDial database is a set of one or more RASAUTODIALENTRY entries. Each of
these entries specifies a phone-book entry that RAS can dial to connect to the address from a
particular telephony application programming interface (TAPI) dialing location. For more
information about TAPI dialing locations, see the TAPI documentation.

AutoDial automatically creates entries in the AutoDial mapping database in two situations:

· When an attempt to connect to a network address fails
If there is no entry for the address in the mapping database, and the computer is not
connected to a network (either directly or through RAS), AutoDial prompts the user to specify
the information necessary to establish a dial-up connection. If the user provides the
information and the dial-up connection operation is successful, AutoDial stores the information
in the mapping database.

· When the computer is connected to a network through RAS
Whenever the user connects to a network address, AutoDial creates an entry in the database.
The entry maps the network address to the phonebook entry that was used to establish the
RAS connection.

You can use the RasSetAutodialAddress function to add an address to the AutoDial mapping
database, delete an address from the database, or change the AutoDial entries associated with
an existing address in the database. You can use the RasGetAutodialAddress function to
retrieve the AutoDial entries associated with a specified network address in the AutoDial mapping
database. The RasEnumAutodialAddresses function returns a list of all addresses in the
AutoDial mapping database.

AutoDial Connection Operations
When an attempt to connect to a network address fails because the host cannot be reached, the
system searches the AutoDial mapping database for the address. If the address is in the
database, the system initiates an AutoDial operation for the RASAUTODIALENTRY, if any, that
corresponds to the local TAPI dialing location.

The Win32 API provides functions that enable you to set and query AutoDial parameters that
control AutoDial connections. You can call the RasSetAutodialEnable function to enable or
disable the AutoDial feature for a specified TAPI dialing location. The RasGetAutodialEnable
function indicates whether the AutoDial feature is enabled for a specified TAPI dialing location.
For more information about TAPI dialing locations, see the TAPI documentation. You can call the
RasSetAutodialParam function to set other AutoDial connection parameters. For example, you
can disable AutoDial connections for the current logon session. Call the RasGetAutodialParam
function to determine the current value of the AutoDial connection parameters.

The system provides a default user interface for AutoDial dialing operations. However, you can
create an AutoDial dynamic-link library (DLL) to provide a custom user interface for AutoDial
dialing operations involving specified phone-book entries. Your AutoDial DLL must export both an
ANSI and a Unicode version of a RASADFunc AutoDial handler.

To enable your custom AutoDial handler for a phone-book entry, call the RasSetEntryProperties
function to set the properties for that entry. The szAutodialDll and szAutodialFunc members of
the RASENTRY structure passed to RasSetEntryProperties specify the name of your AutoDial
DLL and the name of your RASADFunc function, excluding the "A" or "W" suffix.

When the system starts an AutoDial operation for a phone-book entry with a custom AutoDial
handler, it calls the specified RASADFunc. The RASADFunc function receives a pointer to a
RASADPARAMS structure that indicates the location and parent window for the window of your
user interface. Your RASADFunc can start a thread to perform the custom dialing operation. The
RASADFunc function returns TRUE to indicate that it took over the dialing, or FALSE to allow the
system to perform the dialing. Your custom dialing operation must use the RasDial function to do
the actual dialing. When the dialing operation has been completed, the custom dialing operation
indicates success or failure by setting the variable pointed to by the lpdwRetCode parameter
passed to RASADFunc.

RAS Configuration and Connection Information
Applications running on Windows NT and Windows 95 can use the RasEnumConnections
function to get information about the existing connections on the local computer. The information
for each connection includes a connection handle and the name of the phone-book entry used to
establish the connection. You can use the connection handle in a call to the
RasGetConnectStatus function get the current status of the connection.

Windows NT version 4.0 provides two new functions for retrieving RAS information. Windows 95
does not support these functions.

The RasEnumDevices function returns the name and type of the RAS-capable devices that are
configured on the local computer.

You can use the RasConnectionNotification function to specify an event object that the system
signals when a RAS connection is created or terminated.

RAS Server Administration
Windows NT version 4.0 provides a set of functions for administering user permissions and ports
on Windows NT RAS servers. Windows 95 does not support these functions. Using these
functions, you can develop a RAS server administration application to perform the following tasks:

· Enumerate those users who have a specified set of RAS permissions
· Assign or revoke RAS permissions for a specified user
· Enumerate the configured ports on a RAS server
· Get information and statistics about a specified port on a RAS server
· Reset the statistics counters for a specified port
· Disconnect a specified port

You can also install a RAS server administration DLL for auditing user connections and assigning
IP addresses to dial-in users. The DLL exports a set of functions that the RAS server calls
whenever a user tries to connect or disconnect.

RAS User Account Administration
A Windows NT RAS server uses a user account database that contains information about a set of
user accounts. The information includes a user's RAS privileges, which are a set of bit flags that
determine how the RAS server responds when the user calls to connect. The RAS server
administration functions enable you to locate the user account database, and to get and set the
RAS privileges for user accounts.

A Windows NT RAS server can be part of a Windows NT domain, or it can be a stand-alone
Windows NT Server or Workstation that is not part of a domain. For a server that is part of a
domain, the user account database is stored on the Windows NT server that is the primary
domain controller (PDC). A stand-alone server stores its own local user account database. To get
the name of the server that stores the user account database used by a specified RAS server, you
can call the RasAdminGetUserAccountServer function. You can then use the name of the user
account server in a call to the NetQueryDisplayInformation function to enumerate the users in a
user account database. You can also use the server name in calls to the RasAdminUserGetInfo
and RasAdminUserSetInfo functions to get and set the RAS privileges for a specified user
account.

The RasAdminUserGetInfo and RasAdminUserSetInfo functions use the RAS_USER_0
structure to specify a user's RAS privileges and call-back phone number. The RAS privileges
indicate the following information:

· Whether the user can make a remote connection to the server or the domain to which the
server belongs.

· Whether the user can establish a connection through a call-back, in which the RAS server
hangs up and then calls back to the user to establish the connection.

Each user account specifies one of the following flags to indicate the user's call-back privilege.

Value Meaning

RASPRIV_NoCallback The RAS server will not call back the
user to establish a connection.

RASPRIV_AdminSetCallbackWhen the user calls, the RAS server
hangs up and calls a preset call-back
phone number stored in the user
account database. The
szPhoneNumber member of the
RAS_USER_0 structure contains the
user's call-back phone number.

RASPRIV_CallerSetCallback When the user calls, the RAS server
provides the option of specifying a call-
back phone number. The user can also
choose to connect immediately without
a call back. The szPhoneNumber
member contains a default number that
the user can override.

RAS Server and Port Administration
The RAS server administration functions enable you to get information about a specified RAS
server and its ports. These functions also enable you to terminate a connection on a specified
RAS server port.

The RasAdminServerGetInfo function returns a RAS_SERVER_0 structure that contains
information about the configuration of a RAS server. The returned information includes the
number of ports currently available for connection, the number of ports currently in use, and the
server version number.

The RasAdminPortEnum function retrieves an array of RAS_PORT_0 structures that contains
information for each of the ports configured on a RAS server. The information for each port
includes:

· The name of the port
· Information about the device attached to the port
· Whether the RAS server associated with the port is a Windows NT Server
· Whether the port is currently in use, and if it is, information about the connection

You can call the RasAdminPortGetInfo function to get additional information about a specified
port on a RAS server. This function returns a RAS_PORT_1 structure that contains a
RAS_PORT_0 structure and additional information about the current state of the port. The
RasAdminPortGetInfo function also returns an array of RAS_PARAMETERS structures that
describe the values of any media-specific keys associated with the port. A RAS_PARAMETERS
structure uses a value from the RAS_PARAMS_FORMAT enumeration to indicate the format of
the value for each media-specific key.

The RasAdminPortGetInfo function also returns a RAS_PORT_STATISTICS structure that
contains various statistic counters for the current connection, if any, on the port. For a port that is
part of a multilink connection, RasAdminPortGetInfo returns statistics for the individual port and
cumulative statistics for all ports involved in the connection. You can use the
RasAdminPortClearStatistics function to reset the statistic counters for the port. The
RasAdminPortDisconnect function disconnects a port that is in use.

Use the RasAdminFreeBuffer function to free memory allocated by the RasAdminPortEnum
and RasAdminPortGetInfo functions. Use the RasAdminGetErrorString function to get a string
that describes a RAS error code returned by one of the RAS server administration (RasAdmin)
functions.

RAS Administration DLL
Windows NT version 4.0 enables you to install a RAS administration DLL on a Windows NT RAS
server. The DLL exports functions that the RAS server calls whenever a user tries to connect or
disconnect. You can use the DLL to perform the following administrative functions:

· Decide whether to allow a user to connect to the server. This can provide a security check
in addition to the standard RAS user authentication.

· Record the time that each user connects to and disconnects from the server. This can be
useful for billing or auditing purposes.

· Assign an IP address to each user. This can be useful for security purposes to map a
user's connection to a specific computer.

The RasAdminAcceptNewConnection and RasAdminConnectionHangupNotification
functions enable the DLL to audit user connections to the server. A Windows NT RAS server calls
the DLL's RasAdminAcceptNewConnection function whenever a user tries to connect. The
function can prevent the user from connecting. You can also use the function to generate an entry
in a log for billing or auditing. When the user disconnects, the RAS server calls the DLL's
RasAdminConnectionHangupNotification function, which can log the time at which the user
disconnected.

After the RAS server has authenticated a caller, it calls the DLL's
RasAdminGetIpAddressForUser function to get an IP address for the dialed-in remote client.
The DLL can use this function to provide an alternate scheme for mapping an IP address to a dial-
in user. By default, a RAS server connects a remote user to an IP address selected from a static
pool of IP addresses, or one selected by a Dynamic Host Configuration Protocol (DHCP) server.
The RasAdminGetIpAddressForUser function allows the DLL to override the default IP address
and specify a particular IP address for each user. The RasAdminGetIpAddressForUser function
can set a flag that causes RAS to call the DLL's RasAdminReleaseIPAddress function when the
user disconnects. The DLL can use RasAdminReleaseIPAddress to update its user-to-IP-
address map.

Note that RAS executes the functions for assigning IP addresses in one process, and executes
the functions for connection and disconnection notifications in another process. Consequently, the
DLL should not depend on shared data between the two sets of functions.

The RAS server logs an error in the system event log if an error occurs when it tries to load a RAS
administration DLL or when it calls one of the DLL's functions. This can happen, for example, if
the DLL specified the wrong name for an exported function, or if it did not include the function
name in the .DEF file. The entry in the event log indicates the reason for the failure.

RAS Administration DLL Registry Setup
The setup program for a third-party RAS administration DLL must register the DLL with RAS by
providing information under the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
To register the DLL, set the following values under this key.

Value Name Value Data

DisplayName A REG_SZ string that contains the user-friendly
display name of the DLL.

DLLPath A REG_SZ string that contains the full path of the
DLL.

For example, the registry entry for a RAS Administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS Administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's registry
entries.

RAS Security Host Support
Windows NT version 4.0 provides a way for a third-party RAS security DLL to enhance the built-in
RAS security features. Windows 95 does not provide this support.

The Windows NT RAS server provides security mechanisms for validating the network access of
remote users. When a RAS server receives a call, it validates the user's credentials against the
local or domain account database. RAS also supports call-back security, in which the RAS server
hangs up and then calls back to the remote user to establish the connection. For networks in
which this level of security is not enough, you can install a third-party RAS security DLL. The
security DLL can then authenticate a remote user by reading security information from a database
other than the standard Windows NT user account database.

When the RAS server receives a call, it invokes the security DLL to authenticate the remote user.
The RAS security host support provides a mechanism for the security DLL to communicate with
the remote user through a terminal window on the remote computer. In a typical scenario, the
security DLL asks for the logon name of the remote user. The DLL then uses its private security
database to formulate a challenge to send to the remote terminal. For example, the challenge
could be a code that the user must provide as input to a cardkey reader. The cardkey reader then
displays a response that the remote user types in the terminal window. The security DLL then
validates the response against the user's information in the private security database.

If the security DLL authenticates the remote user, the RAS server performs its own authentication.
This ensures that RAS security always authenticates a remote user, even if a security DLL is
installed that grants access to all users.

Note that Windows NT currently provides RAS security host support only for asynchronous
connections; other media, such as ISDN, are not supported.

Registering a RAS Security DLL
The setup program for a RAS security DLL must register the DLL with the Windows NT RAS
server. Only one RAS security DLL can be registered; Windows NT does not support multiple
security DLLs. To register a RAS security DLL, set the DLLPath value under the following key in
the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\SecurityHost
Value Name Value Data
DLLPath A REG_SZ string that contains the path of the

DLL. This string should specify the full path unless
the DLL is in a directory listed in the system path.

The setup program for a RAS security DLL must also provide remove/uninstall
functionality. If a user removes the DLL, the setup program must delete the DLLPath value
from the registry. The RAS service will not start if the DLLPath value specifies a DLL that cannot
be found.

A RAS security DLL must export the RasSecurityDialogBegin and RasSecurityDialogEnd
functions.

RAS Server Security Authentication
When a Windows NT RAS server receives a call, it invokes the RasSecurityDialogBegin
function of the registered RAS security DLL, if there is one. This call notifies the security DLL to
begin its authentication of the remote user. The RAS server calls RasSecurityDialogBegin
before performing its PPP or RAS authentication.

The RasSecurityDialogBegin call passes the following information to the security DLL:

· A port handle to identify the connection
· Pointers to buffers to use when communicating with the remote user
· A pointer to a RasSecurityDialogComplete function to call when the authentication has

been completed
The port handle and buffer pointers are valid until the security DLL calls
RasSecurityDialogComplete to terminate the authentication transaction.

The RasSecurityDialogComplete notifies the RAS server of the results of the security DLL's
authentication of the remote user. If the security DLL reports success, the RAS server proceeds
with its PPP and RAS authentication of the remote user. If the security DLL reports that the
remote user failed the authentication, or that an error occurred, the RAS server hangs up and logs
the error or failed authentication in the Windows NT event log.

RAS Security DLL Authentication Transaction
The Windows NT RAS server calls the security DLL's RasSecurityDialogBegin function to begin
an authentication of a remote user. The RAS server is blocked and cannot accept any other calls
until RasSecurityDialogBegin returns. For this reason, RasSecurityDialogBegin should copy
the input parameters, create a thread to perform the authentication, and return as quickly as
possible.

The thread created by the security DLL uses the RasSecurityDialogSend and
RasSecurityDialogReceive functions to communicate with the remote computer. These functions
are not available for static import from any library. Instead, the security DLL must use the
LoadLibrary and GetProcAddress functions to dynamically link to these functions in RASMAN.
DLL.

During an authentication transaction, the RAS connection manager on the remote computer
displays a terminal window. The thread of the security DLL calls RasSecurityDialogSend to send
a message to display in the terminal window. The thread then calls RasSecurityDialogReceive
to receive the input that the remote user types in the terminal window. The thread can make any
number of RasSecurityDialogSend calls, with each call followed by a
RasSecurityDialogReceive call. After each call to RasSecurityDialogReceive, the thread must
call one of the wait functions, such as WaitForSingleObject, to wait for the asynchronous send
and receive operations to be completed. The RAS server signals an event object when the
receive operation has been completed or when an optional time-out interval has elapsed.

When the thread has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function. This call passes a SECURITY_MESSAGE structure
containing the results of the authentication transaction to the RAS server. The RAS server then
performs a cleanup sequence that includes a call to the DLL's RasSecurityDialogEnd function.
This gives the security DLL an opportunity to perform any necessary cleanup.

The security DLL can call the RasSecurityDialogGetInfo function to retrieve information about
the port associated with an authentication transaction. RasSecurityDialogGetInfo fills in a
RAS_SECURITY_INFO structure that indicates the state of the last RasSecurityDialogReceive
call for the port

Using Remote Access Service
The following topic explains how to use Remote Access Service features in an application.

· Linking to the remote access DLL

Linking to the Remote Access DLL
If an application links statically to the RASAPI32 DLL, the application will fail to load if Remote
Access Service is not installed. A RAS application can load when RAS is not installed by using
LoadLibrary to load the DLL, and GetProcAddress to obtain pointers to the RAS functions.

The Win32 RAS functions are in RASAPI32.DLL. The import library for these functions is
RASAPI32.LIB. To use the RAS functions, your programs must include the following files:

File Description

RAS.H Contains the RAS function prototypes, constants,
and structure definitions.

RASERROR.H Contains the RAS error codes.

Remote Access Service Reference
The following functions, strucures, messages, and enumeration types are associated with remote
access service.

Remote Access Service Functions
Use the following functions to implement Remote Access Service functionality:
ORASADFunc
RASADFunc
RasConnectionNotification
RasCreatePhonebookEntry
RasDeleteEntry
RasDial
RasDialFunc
RasDialFunc1
RasDialFunc2
RasDialDlg
RasEditPhonebookEntry
RasEntryDlg
RasEnumAutodialAddresses
RasEnumConnections
RasEnumDevices
RasEnumEntries
RasGetAutodialAddress
RasGetAutodialEnable
RasGetAutodialParam
RasGetConnectStatus
RasGetCountryInfo
RasGetCredentials
RasGetEntryDialParams
RasGetEntryProperties
RasGetErrorString
RasGetProjectionInfo
RasGetSubEntryHandle
RasGetSubEntryProperties
RasHangUp
RasMonitorDlg
RasPBDlgFunc
RasPhonebookDlg
RasRenameEntry
RasSetAutodialAddress
RasSetAutodialEnable
RasSetAutodialParam
RasSetCredentials
RasSetEntryDialParams
RasSetEntryProperties
RasSetSubEntryProperties

RasValidateEntryName

Remote Access Service Structures
Use the following structures to implement Remote Access Service functionality:
RASADPARAMS
RASAMB
RASAUTODIALENTRY
RASCONN
RASCONNSTATUS
RASCREDENTIALS
RASCTRYINFO
RASDEVINFO
RASDIALDLG
RASDIALEXTENSIONS
RASDIALPARAMS
RASENTRY
RASENTRYDLG
RASENTRYNAME
RASIPADDR
RASMONITORDLG
RASNOUSER
RASPBDLG
RASPPPIP
RASPPPIPX
RASPPPNBF
RASSLIP

RASSUBENTRY

Remote Access Service Messages
Use the following message to implement Remote Access Service functionality:

WM_RASDIALEVENT

Remote Access Service Enumeration Types
Use the following enumeration types to implement Remote Access Service functionality:
RASCONNSTATE

RASPROJECTION

RAS Server Administration ReferenceRAS Server Administration FunctionsUse the following functions with RAS Server Administration:
RasAdminAcceptNewConnection
RasAdminConnectionHangupNotification
RasAdminFreeBuffer
RasAdminGetErrorString
RasAdminGetIpAddressForUser
RasAdminGetUserAccountServer
RasAdminPortClearStatistics
RasAdminPortDisconnect
RasAdminPortEnum
RasAdminPortGetInfo
RasAdminReleaseIpAddress
RasAdminServerGetInfo
RasAdminUserGetInfo
RasAdminUserSetInfo
RasSecurityDialogBegin
RasSecurityDialogComplete
RasSecurityDialogEnd
RasSecurityDialogGetInfo
RasSecurityDialogReceive

RasSecurityDialogSendRAS Server Administration StructuresUse the following structures with RAS Server Administration:
RAS_PARAMETERS
RAS_PORT_0
RAS_PORT_1
RAS_PORT_STATISTICS
RAS_PPP_ATCP_RESULT
RAS_PPP_IPCP_RESULT
RAS_PPP_IPXCP_RESULT
RAS_PPP_NBFCP_RESULT
RAS_PPP_PROJECTION_RESULT
RAS_SECURITY_INFO
RAS_SERVER_0

RAS_USER_0SECURITY_MESSAGERAS Server Administration UnionUse the following union with RAS Server Administration:

RAS_PARAMS_VALUERAS Server Administration EnumerationUse the following enumeration with RAS Server Administration:

RAS_PARAMS_FORMAT

Simple Network Management Protocol(SNMP)The Simple Network Management Protocol (SNMP) is the Internet standard protocol for
exchanging management information between management consoles that use tools such as HP
Openview, Novell NMS, IBM NetView, or Sun Net Manager, and managed entities. The managed
entities can include hosts, routers, bridges, and hubs.

About SNMP
SNMP uses a distributed architecture consisting of management systems and agents. The SNMP
agent is responsible for retrieving and updating local management information based on the
requests of the management system. The SNMP agent also notifies registered management
systems when a significant event occurs.

A Windows NT management system is any computer that has loaded the TCP/IP or IPX transport
and is running third-party SNMP manager software. To use the Microsoft SNMP Service, you
need at least one management system. The primary function of a management system is to
request information from an agent. The management system initiates Get, Get Next, and Set
operations.

· The Get operation is a request for a specific value, such as the amount of hard disk space
available.

· The Get Next operation is a request for the value after a specified value in the conceptual
database of management information that the agent maintains.

· The Set operation changes a value.
The primary function of an agent is to perform the Get, Get Next, and Set operations requested
by a management system. The only operation initiated by an agent is the trap, which alerts
management systems to an extraordinary event, such as a password violation. The SNMP
Service performs the duties of an SNMP agent on a computer running Windows NT.

SNMP Service Features
The SNMP Service works with any computer running Windows NT and the TCP/IP protocol. With
the SNMP Service, a Windows NT computer can report its current status to an SNMP
management system on a TCP/IP or IPX network. The service sends status information to a host
in the following two cases:

1. When a management system requests such information.
2. When a significant event occurs on the Windows NT computer.

How SNMP Works
The following steps outline how the SNMP Service responds to management system requests:

1. The network management system uses host names or IP addresses to initiate requests.
2. The request contains a Get, Get Next, or Set command involving one or more objects.

The request also includes a community name and validating information.
3. The SNMP Service receives the request. It verifies the community name and the source

host name (or IP address) and selects the appropriate extension agent DLL to retrieve the
requested information.

4. The extension agent DLL retrieves the requested information and passes it back to the
SNMP Service.

5. The SNMP Service sends the completed request back to the SNMP manager.

The SNMP Management Information Base (MIB)
A Management Information Base (MIB) describes a set of managed objects on an SNMP agent. A
management system can manipulate the objects if the SNMP agent has associated an extension
agent DLL with that MIB.

The entry for each managed object has a unique identifier. The entry also contains a description
of the object's type (such as counter, string, gauge or address), the object's access type (such as
read or read/write), size restrictions, and range information.

The following MIBs ship with the Windows NT Resource Kit and the Microsoft Win32 Software
Development Kit (SDK): MIB II (based on RFC 1213), LAN Manager MIB II, DHCP, WINS, FTP,
HTTP, and Gopher. The extension agent DLLs for MIB II and for LAN Manager MIB II are installed
with the SNMP Service. The DLLs for the other MIBs are installed when their respective services
are installed. At service startup time, the SNMP Service loads all of the extension agent DLLs that
are listed in the Windows NT registry. Users can add or develop other extension agent DLLs that
implement other MIBs but they must remember to register the new MIB with the management
system of their choice. For more information, see the documentation included with your
management system.

MIB Name Tree
The name space for MIB object identifiers is hierarchical. It is structured so that each manageable
object can be assigned a globally unique name.

Authority for parts of the name space is assigned to individual organizations. This allows
organizations to assign names without consulting an Internet authority for each assignment. For
example, the name space assigned to Microsoft is 1.3.6.1.4.1.311. Microsoft has the authority to
assign names to objects anywhere below that name space.

The object identifier in the hierarchy is written as a sequence of labels beginning at the root and
ending at the object. Labels are separated with a period.

Note The object names and object numbers are defined in each of the *.MIB files in the
Win32 SDK. Refer to the Microsoft Windows Resource Kit for object names and numbers.

The following table shows the object identifier for each of the MIBs used in Windows NT.

MIB Contents

MIB_II.MIB Internet MIB II defines 171 objects essential for
either configuration or fault analysis. Internet MIB II
is defined in RFC 1213.

LMMIB2.MIB LAN Manager MIB II defines approximately 150
objects that include such items as statistical, share,
session, user, and logon information.

Relevant RFCs
TCP/IP standards are defined in Requests for Comments (RFCs), which are published by the
Internet Engineering Task Force (IETF). The RFCs that are relevant to SNMP features are listed
in the following table.

RFC
number Title

1155 Structure and identification of management information for
TCP/IP-based internets. It defines SMI.MIB.

1157 Simple network management protocol (SNMP). It defines
SNMP itself.

1213 Management Information Base for Network Management of
TCP/IP-based internets: MIB - II. It defines MIB_II.MIB.

Windows NT Files for SNMP
The following table describes the files that relate to the SNMP Service.

Filename Description

DHCPMIB.DLL DHCP SNMP agent (not in Windows NT 3.1).
Only installed on DHCP servers.

INETMIB2.DLL MIB II extension agent DLL.
LMMIB2.DLL LAN Manager MIB 2 extension agent DLL.
MGMTAPI.DLL SNMP component; Management API library.
WINSMIB.DLL WINS SNMP agent (not in Windows NT 3.1). Only

installed on WINS servers.
SNMP.EXE SNMP Agent Service; proxy agent that listens for

requests and hands them off to the appropriate
network provider.

SNMPTRAP.EXE Receives SNMP traps and forwards them to
MGMTAPI.DLL.

SNMPAPI.DLL SNMP Utilities DLL.
MIB.BIN SNMP component; SNMP Service.

For complete installation instructions, refer to the Microsoft Windows Resource Kit.

SNMP Utilities
The following table summarizes the SNMP utilities and files that are available on the Microsoft
Windows Resource Kit.

Filename Description

MIBCC.EXE SNMP MIB Compiler
PerfMIB SNMP to Performance Monitor
SNMPUTIL.EXE A very simple SNMP manager application that

implements Get, Get Next, Walk, and Trap
LMMIB2.MIB Defines approximately 150 objects that include

information on statistics, share, session, user,
and logon

MIB_II.MIB Defines 171 objects essential for either
configuration or fault analysis

Using SNMP
This section contains information primarily of interest to network administrators.

· Turning SNMP on and off
· SNMP service information
· Configuring SNMP
· Removing TCP/IP components

Turning SNMP On and Off
You can start and stop SNMP from the console window or the Services icon in Control Panel.
Since SNMP starts when the computer is started, you will usually not need to start or stop SNMP.
However, if you configure trap destinations or add a new community string, you will need to restart
SNMP.

You will also need to restart SNMP after you install a new extension agent DLL. From the console
window or from the Services application in Control Panel, type Net Stop Snmp and then Net
Start Snmp.

You will have to start the SNMP Trap Service if you want to receive traps. From the console
window or from the Services application in Control Panel, type Net Start Snmptrap to start the
SNMP Trap Service or Net Stop Snmptrap to disable trap reception.

Stopping a service cancels any network connections the service is using. You must have
administrative rights to stop the server service.

SNMP Service Information
On occasion, you may need to reconfigure SNMP (see Configuring SNMP). In these instances,
you need to know community names in your network, the trap destination for each community,
and IP addresses or computer names for SNMP management hosts before you use or reconfigure
SNMP services. You should always keep the following information available:

· Community names
· Host names and IP addresses
· Management systems and agents
· UDP and IPX protocols

Community Names
A community name identifies a collection of management systems and agents. The use of a
community name provides primitive security and context checking for both agents and
management systems that receive requests and initiate trap operations. An agent won't accept a
request from a management system outside the community.

Host Names and IP Addresses
If the Windows NT computer does not have access to a WINS server, the SNMP Service uses the
HOSTS file to resolve host names to IP addresses. The HOST file is merely a text file listing
explicit host names and IP addresses. If you use host names, be sure to add all host name and IP
address mappings of the participating systems.

UDP and IPX Protocols
The information in this topic pertains only to Windows NT Server. Although the Windows NT
Server for SNMP Service supports managing consoles over both the Internet Package Exchange
(IPX) protocol and User Datagram Protocol (UDP), SNMP must be installed in conjunction with
the other TCP/IP services.

Configuring SNMP
The SNMP Service is installed when you check the SNMP Service option in the Windows NT
TCP/IP Installation Options dialog box. After the SNMP Service software is installed on your
computer, you must configure it with valid information for SNMP to operate.

You must be logged on as a member of the Administrator group for the local computer to
configure SNMP.

The SNMP configuration information identifies communities and trap destinations.

· A community is a group of hosts to which a Windows NT computer running the SNMP
Service belongs. You can specify one or more communities to which the Windows NT
computer using SNMP will send traps. The community name is included when a trap is sent.
When the SNMP Service receives a request for information that does not contain the correct
community name and does not match an accepted host name for the Service, the SNMP
Service can send a trap to the trap destination(s), indicating that the request failed
authentication.

· Trap destinations are the names or IP addresses of hosts to which you want the SNMP
Service to send traps with the selected community name.

You might want to use SNMP for statistics, but you may not care about identifying communities or
traps. In this case, you can specify the "public" community name when you configure the SNMP
Service.

Configuring SNMP Security
SNMP security allows you to specify the communities and hosts from which a computer will
accept requests. It also allows you to specify whether to send an authentication trap when an
unauthorized community or host requests information.

For details on how to configure security, refer to the Microsoft Windows Resource Kit.

Configuring SNMP Agent Information
SNMP agent information allows you to specify comments about the user and the physical location
of the computer and to indicate the types of service to report. The types of service that can be
reported are based on the computer's configuration.

For details on how to configure SNMP Agent information, refer to the Microsoft Windows
Resource Kit.

Removing TCP/IP Components
If you want to remove the TCP/IP protocol or any of the services installed on a computer, use the
Network option in Control Panel to remove it.

When you remove network software, Windows NT warns you that the action permanently removes
that component. You cannot reinstall a component that has been removed until after you restart
the computer.

For details on how to remove TCP/IP components, refer to the Microsoft Windows Resource Kit.

Using SNMP with Other Windows NT Tools
The network administrator can monitor DHCP servers and use the performance monitor to look at
TCP/IP, FTP, and WINS counters.

The DHCP Manager and WINS Manager are added to the Network Administrator group in
Program Manager when you install DHCP and WINS servers. You can use these tools to view
and change information for DHCP and WINS servers. Similarly, you can use the FTP Server
service to configure FTP servers. The performance monitor can monitor WINS servers, FTP
Server service traffic, and each of the different elements that make up the TCP/IP protocol suite.

Some of the parameters for these functions cannot be changed except by using SNMP or by
editing the registry. You can set all of the WINS configuration parameters using SNMP. For
information about additional monitoring tools, refer to the Microsoft Windows Resource Kit.

Caution You can impair or disable Windows NT if you make incorrect changes in the Registry
while using the Registry Editor. Whenever possible, use WINS Manager or SNMP to make
configuration changes, rather than using the Registry Editor. If you make errors while
changing values with Registry Editor, you will not be warned, because the Registry Editor
does not recognize semantic errors.

SNMP Reference
This section lists the SNMP functions and structures. These elements support SNMP for Windows
NT.

These functions support the development of SNMP agent applications and SNMP manager
applications. An SNMP agent application is an SNMP application entity that responds to queries
from SNMP manager applications and generates traps to SNMP manager applications. An SNMP
manager application is an SNMP application entity that generates queries to SNMP agent
applications and receives traps from SNMP agent applications.

The Manager functions allow multiple manager applications to simultaneously coexist. ISV-
developed manager applications use the Manager functions to perform SNMP manager
operations. The SNMP Manager functions are implemented as a Win32 DLL and as a single
detached process. The DLL and the single detached process interact with one or more ISV-
developed manager applications. Miscellaneous utility functions are also available to assist with
comparing, copying, and freeing allocated data structures.

SNMP Functions
The SNMP functions are listed in three major categories.Agent FunctionsThe agent functions define the interface between the extensible agent and the ISV-developed
extension agent DLLs.
SnmpExtensionInit
SnmpExtensionInitEx
SnmpExtensionQuery

SnmpExtensionTrapManager FunctionsThe manager functions define the interface between ISV-developed manager applications and the
management function dynamic-link library MGMTAPI.DLL.
SnmpMgrClose
SnmpMgrGetTrap
SnmpMgrOidToStr
SnmpMgrOpen
SnmpMgrRequest
SnmpMgrStrToOid

SnmpMgrTrapListenUtility FunctionsThe utility functions simplify manipulation of SNMP data structures and perform other
miscellaneous operations.
SnmpUtilMemAlloc
SnmpUtilMemFree
SnmpUtilMemReAlloc
SnmpUtilOidAppend
SnmpUtilOidCmp
SnmpUtilOidCpy
SnmpUtilOidFree
SnmpUtilOidNCmp
SnmpUtilPrintAsnAny
SnmpUtilVarBindCpy
SnmpUtilVarBindListCpy
SnmpUtilVarBindFree

SnmpUtilVarBindListFree

SNMP Structures
The following structures are used with SNMP.
AsnAny
AsnObjectIdentifier
AsnOctetString
RFC1157VarBind

RFC1157VarBindList

_hread
The _hread function reads data from the specified file. This function is provided for compatibility
with 16-bit versions of Windows. Win32-based applications should use the ReadFile function.

long _hread(
HFILE hFile, // handle to file
LPVOID lpBuffer, // pointer to buffer for read data
long lBytes // length, in bytes, of data buffer

);ParametershFile
Identifies the specified file.

lpBuffer
Pointer to a buffer that contains the data read from the file.

lBytes
Specifies the number of bytes to be read from the file.

Return ValuesThe return value indicates the number of bytes actually read from the file. If the number of bytes
read is less than lBytes, the function has reached the end of file (EOF) before reading the
specified number of bytes.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See Also_hwrite, ReadFile

_hwrite
The _hwrite function writes data to the specified file. This function is provided for compatibility
with 16-bit versions of Windows. Win32-based applications should use the WriteFile function.

long _hwrite(
HFILE hFile, // handle to file
LPCSTR lpBuffer, // pointer to buffer for data to be written
long lBytes // number of bytes to write

);ParametershFile
Identifies the specified file.

lpBuffer
Pointer to a buffer that contains the data to be written to the file.

lBytes
Specifies the number of bytes to be written to the file.

Return ValuesIf the function succeeds, the return value indicates the number of bytes actually written to the file.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See Also_hread, WriteFile

_lclose
The _lclose function closes the specified file so that it is no longer available for reading or writing.
This function is provided for compatibility with 16-bit versions of Windows. Win32-based
applications should use the CloseHandle function.

HFILE _lclose(
HFILE hFile // handle to file to close

);ParametershFile
Identifies the file to be closed. This handle is returned by the function that created or last
opened the file.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See AlsoCloseHandle, CreateFile, _lopen

_lcreat
The _lcreat function creates or opens a specified file. This function is provided for compatibility
with 16-bit versions of Windows. Win32-based applications should use the CreateFile function.

HFILE _lcreat(
LPCSTR lpPathName, // pointer to name of file to open
int iAttribute // file attribute

);ParameterslpPathName
Pointer to a null-terminated string that names the file to be opened. The string must consist of
characters from the Windows ANSI character set.

iAttribute
Specifies the file attributes. This parameter must be one of the following values:

Value Meaning
0 Normal (can be read from or written to without restriction)

.
1 Read only (cannot be opened for write)
2 Hidden (not found by directory search)
4 System (not found by directory search)

Return ValuesIf the function succeeds, the return value is a file handle.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.RemarksIf the file does not exist, the _lcreat function creates a new file and opens it for writing. If the file
exists, _lcreat truncates the file size to zero and opens it for reading and writing. When the
function opens the file, the pointer is set to the beginning of the file.

The _lcreat function should be used carefully. It can open any file, even one already opened by
another function.See AlsoCreateFile, _lopen

_llseek
The _llseek function repositions the file pointer in a previously opened file. This function is
provided for compatibility with 16-bit versions of Windows. Win32-based applications should use
the SetFilePointer function.

LONG _llseek(
HFILE hFile, // handle to file
LONG lOffset, // number of bytes to move
int iOrigin // position to move from

);ParametershFile
Identifies the file.

lOffset
Specifies the number of bytes the file pointer is to be moved.

iOrigin
Specifies the starting position and direction of the file pointer. This parameter must be one of
the following values:

Value Meaning
FILE_BEGIN Moves the file pointer lOffset bytes from the beginning of

the file.
FILE_CURRENT Moves the file pointer lOffset bytes from its current

position.
FILE_END Moves the file pointer lOffset bytes from the end of the

file.
Return ValuesIf the function succeeds, the return value specifies the new offset of the pointer, in bytes, from the

beginning of the file.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.RemarksWhen a file is initially opened, the file pointer is set to the beginning of the file. The _llseek
function moves the pointer an arbitrary amount without reading data, which facilitates random
access to the file's contents.See Also_lopen, SetFilePointer

_lopen
The _lopen function opens an existing file and sets the file pointer to the beginning of the file. This
function is provided for compatibility with 16-bit versions of Windows. Win32-based applications
should use the CreateFile function.

HFILE _lopen(
LPCSTR lpPathName, // pointer to name of file to open
int iReadWrite // file access mode

);ParameterslpPathName
Pointer to a null-terminated string that names the file to open. The string must consist of
characters from the Windows ANSI character set.

iReadWrite
Specifies the modes in which to open the file. This parameter consists of one access mode
and an optional share mode. The access mode must be one of the following values:

Value Meaning
OF_READ Opens the file for reading only.
OF_READWRITE Opens the file for reading and writing.
OF_WRITE Opens the file for writing only.

The share mode can be one of the following values:
Value Meaning
OF_SHARE_COMPAT Opens the file in compatibility mode,

enabling any process on a given
computer to open the file any number
of times. If the file has been opened by
using any of the other share modes,
_lopen fails.

OF_SHARE_DENY_NONE Opens the file without denying other
processes read or write access to the
file. If the file has been opened in
compatibility mode by any other
process, _lopen fails.

OF_SHARE_DENY_READ Opens the file and denies other
processes read access to the file. If the
file has been opened in compatibility
mode or for read access by any other
process, _lopen fails.

OF_SHARE_DENY_WRITE Opens the file and denies other
processes write access to the file. If the
file has been opened in compatibility
mode or for write access by any other
process, _lopen fails.

OF_SHARE_EXCLUSIVE Opens the file in exclusive mode,
denying other processes both read and
write access to the file. If the file has
been opened in any other mode for
read or write access, even by the
current process, _lopen fails.

Return ValuesIf the function succeeds, the return value is a file handle.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See AlsoCreateFile

_lread
The _lread function reads data from the specified file. This function is provided for compatibility
with 16-bit versions of Windows. Win32-based applications should use the ReadFile function.

UINT _lread(
HFILE hFile, // handle to file
LPVOID lpBuffer, // pointer to buffer for read data
UINT uBytes // length, in bytes, of data buffer

);ParametershFile
Identifies the specified file.

lpBuffer
Pointer to a buffer that contains the data read from the file.

uBytes
Specifies the number of bytes to be read from the file.

Return ValuesThe return value indicates the number of bytes actually read from the file. If the number of bytes
read is less than uBytes, the function has reached the end of file (EOF) before reading the
specified number of bytes.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See Also_lwrite, ReadFile

_lwrite
The _lwrite function writes data to the specified file. This function is provided for compatibility with
16-bit versions of Windows. Win32-based applications should use the WriteFile function.

UINT _lwrite(
HFILE hFile, // handle to file
LPCSTR lpBuffer, // pointer to buffer for data to be written
UINT uBytes // number of bytes to write

);ParametershFile
Identifies the specified file.

lpBuffer
Pointer to a buffer that contains the data to write to the file.

uBytes
Specifies the number of bytes to be written to the file.

Return ValuesIf the function succeeds, the return value indicates the number of bytes actually written to the file.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.See Also_lread, WriteFile

AbnormalTermination
The AbnormalTermination function indicates whether the try block of a try-finally statement
terminated normally. The function can be called only from within the finally block of a try-finally
statement.

BOOL AbnormalTermination(VOID)ParametersThis function has no parameters.Return Values
If the try block of the try-finally statement terminated abnormally, the return value is nonzero.

If the try block of the try-finally statement terminated normally, the return value is zero.RemarksThe try block terminates normally only if execution leaves the block sequentially after executing
the last statement in the block. Statements (such as return, goto, continue, or break) that cause
execution to leave the try block result in abnormal termination of the block. This is the case even
if such a statement is the last statement in the try block.

Abnormal termination of a try block causes the system to search backward through all stack
frames to determine whether any termination handlers must be called. This can result in the
execution of hundreds of instructions, so it is important to avoid abnormal termination of a try
block due to a return, goto, continue, or break statement. Note that these statements do not
generate an exception, even though the termination is abnormal.

AbortDoc
The AbortDoc function stops the current print job and erases everything drawn since the last call
to the StartDoc function. This function replaces the ABORTDOC printer escape.

int AbortDoc(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context for the print job.

Return ValuesIf the function succeeds, the return value is greater than zero.

If the function fails, the return value is SP_ERROR. To get extended error information, call
GetLastError.RemarksApplications should call the AbortDoc function to stop a print job if an error occurs, or to stop a
print job after the user cancels that job. To end a successful print job, an application should call
the EndDoc function.

If Windows Print Manager was used to start the print job, calling AbortDoc erases the entire spool
job, so that the printer receives nothing. If Print Manager was not used to start the print job, the
data may already have been sent to the printer. In this case, the printer driver resets the printer
(when possible) and ends the print job.See AlsoEndDoc, SetAbortProc, StartDoc

AbortPath
The AbortPath function closes and discards any paths in the specified device context.

BOOL AbortPath(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context from which a path will be discarded.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf there is an open path bracket in the given device context, the path bracket is closed and the
path is discarded. If there is a closed path in the device context, the path is discarded.See AlsoBeginPath, EndPath

AbortPrinter
The AbortPrinter function deletes a printer's spool file if the printer is configured for spooling.

BOOL AbortPrinter(
HANDLE hPrinter // handle to printer object

);ParametershPrinter
Identifies the printer from which the spool file is deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the printer is not configured for spooling, the AbortPrinter function has no effect.

The printer handle identified by the hPrinter parameter is returned by the OpenPrinter function.See AlsoOpenPrinter

AbortProc
The AbortProc function is an application-defined callback function that is called when a print job
is to be canceled during spooling.

BOOL CALLBACK AbortProc(
HDC hdc, // handle to device context
int iError // error value

);Parametershdc
Identifies the device context for the print job.

iError
Specifies whether an error has occurred. This parameter is zero if no error has occurred; it is
SP_OUTOFDISK if Windows Print Manager is currently out of disk space and more disk
space will become available if the application waits.

Return ValuesThe callback function should return TRUE to continue the print job or FALSE to cancel the print
job.RemarksAn application installs this callback function by calling the SetAbortProc function. The AbortProc
function is a placeholder for the application-defined function name.

If the iError parameter is SP_OUTOFDISK, the application need not cancel the print job. If it does
not cancel the job, it must yield to Print Manager by calling the PeekMessage or GetMessage
function.See AlsoGetMessage, PeekMessage, SetAbortProc

AbortSystemShutdown
The AbortSystemShutdown function stops a system shutdown started by using the
InitiateSystemShutdown function.

BOOL AbortSystemShutdown(
LPTSTR lpMachineName // pointer to name of computer to stop shutting down

);ParameterslpMachineName
Pointer to the null-terminated string that specifies the network name of the computer where
the shutdown is to be stopped. If lpMachineName is NULL or points to an empty string, the
function stops the shutdown on the local computer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe InitiateSystemShutdown function displays a dialog box that notifies the user that the system
is shutting down. During the InitiateSystemShutdown time-out period, the
AbortSystemShutdown function can prevent the system from shutting down.

To stop the local computer from shutting down, the calling process must have the
SE_SHUTDOWN_NAME privilege. To stop a remote computer from shutting down, the calling
process must have the SE_REMOTE_SHUTDOWN_NAME privilege on the remote computer. By
default, users can enable the SE_SHUTDOWN_NAME privilege on the computer they are logged
onto, and administrators can enable the SE_REMOTE_SHUTDOWN_NAME privilege on remote
computers.

Failures of the AbortSystemShutdown function are typically due to an invalid computer name,
an inaccessible computer, or insufficient privilege.See AlsoInitiateSystemShutdown

AccessCheck
The AccessCheck function is used by a server application to check a client's access to an object
against the access control associated with the object.

BOOL AccessCheck(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // pointer to security descriptor
HANDLE ClientToken, // handle to client access token
DWORD DesiredAccess, // access mask to request
PGENERIC_MAPPING GenericMapping, // address of generic-mapping structure
PPRIVILEGE_SET PrivilegeSet, // address of privilege-set structure
LPDWORD PrivilegeSetLength, // size of privilege-set structure
LPDWORD GrantedAccess, // address of granted access mask
LPBOOL AccessStatus // address of flag indicating whether access granted

);ParameterspSecurityDescriptor
Pointer to a SECURITY_DESCRIPTOR structure against which access is checked.

ClientToken
Identifies an access token representing a client attempting to gain access.
This handle must be obtained from a communications session layer ¾ for instance, a named
pipe ¾ to prevent possible security policy violations.

DesiredAccess
Specifies the access mask to be requested. This mask must have been mapped by the
MapGenericMask function to contain no generic access rights.

GenericMapping
Pointer to the GENERIC_MAPPING structure associated with the object for which access is
being checked.

PrivilegeSet
Pointer to a PRIVILEGE_SET structure that the function fills with any privileges used to
perform the access validation. If no privileges were used, the buffer contains a privilege set
consisting of zero privileges.

PrivilegeSetLength
Specifies the size, in bytes, of the buffer pointed to by the PrivilegeSet parameter.

GrantedAccess
Pointer to a variable the function fills with an access mask indicating which access rights were
granted. If the function fails, this access mask is not supplied.

AccessStatus
Pointer to a flag indicating the success or failure of the access check. If AccessStatus is
TRUE, the access token has the requested access to the object. If AccessStatus is FALSE,
the access token does not have the requested access. When this parameter is FALSE, the
application can use the GetLastError function to get extended error information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe AccessCheck function compares the specified security descriptor with the specified access
token and indicates, in the AccessStatus parameter, whether access is granted or denied. If
access is granted, the requested access mask becomes the object's granted access mask.

Only the discretionary access-control list is examined during an access check.See AlsoAccessCheckAndAuditAlarm, AreAllAccessesGranted, AreAnyAccessesGranted,
GENERIC_MAPPING, MapGenericMask, PrivilegeCheck, PRIVILEGE_SET,
SECURITY_DESCRIPTOR

AccessCheckAndAuditAlarm
The AccessCheckAndAuditAlarm function performs an access validation and generates
corresponding audit messages. An application can also use this function to determine whether
necessary privileges are held by a client process. This function is generally used by a server
application impersonating a client process. Alarms are not supported in the current version of
Windows NT.

BOOL AccessCheckAndAuditAlarm(
LPCTSTR SubsystemName, // address of string for subsystem name
LPVOID HandleId, // address of handle identifier
LPTSTR ObjectTypeName, // address of string for object type
LPTSTR ObjectName, // address of string for object name
PSECURITY_DESCRIPTOR SecurityDescriptor, // address of security descriptor
DWORD DesiredAccess, // mask for requested access rights
PGENERIC_MAPPING GenericMapping, // address of GENERIC_MAPPING
BOOL ObjectCreation, // object-creation flag
LPDWORD GrantedAccess, // address of mask for granted rights
LPBOOL AccessStatus, // address of flag for results
LPBOOL pfGenerateOnClose // pointer to flag for audit generation

);ParametersSubsystemName
Pointer to a null-terminated string specifying the name of the subsystem calling the function ¾
for example, "DEBUG" or "WIN32."

HandleId
Points to a unique 32-bit value representing the client's handle to the object. If the access is
denied, this value is ignored and may be reused.

ObjectTypeName
Points to a null-terminated string specifying the type of object being created or accessed. This
string appears in the audit log for the object.

ObjectName
Points to a null-terminated string specifying the name of the object being created or accessed.
This string appears in the audit log for the object.

SecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure against which access is checked.

DesiredAccess
Specifies an access mask giving the requested access rights. This mask must have been
mapped to contain no generic access rights by the MapGenericMask function.

GenericMapping
Points to the GENERIC_MAPPING structure associated with the type of object being
examined.

ObjectCreation
Specifies a flag that determines whether the calling application will create a new object when
access is granted. If this flag is TRUE, the application creates a new object; if it is FALSE, the
application opens an existing object.

GrantedAccess
Points to a buffer that receives an access mask indicating which access rights were granted, if
the function succeeds.

AccessStatus
Points to a flag that the function sets to indicate the success or failure of the access check. If
access is granted, this flag is TRUE; otherwise, it is FALSE.

pfGenerateOnClose
Pointer to a flag set by the audit-generation routine when the function returns. This flag must
be passed to the ObjectCloseAuditAlarm function when the object handle is closed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe AccessCheckAndAuditAlarm function compares the specified security descriptor with the
impersonation access token of the calling process and indicates whether access is granted or
denied. If access is granted, the requested access mask becomes the granted access mask for
the object. This function also generates any necessary audit messages as a result of the access
attempt.

This function requires the calling process to have the SE_AUDIT_NAME privilege. The test for this
privilege is performed against the primary token of the calling process, not the impersonation
token of the thread.See AlsoAccessCheck, AreAllAccessesGranted, AreAnyAccessesGranted, GENERIC_MAPPING,
MapGenericMask, ObjectCloseAuditAlarm, ObjectOpenAuditAlarm,
ObjectPrivilegeAuditAlarm, PrivilegeCheck, PrivilegedServiceAuditAlarm,
SECURITY_DESCRIPTOR

AcsLan
The AcsLan function is used to communicate with other computers or network peripheral devices,
such as printers, using the data link control (DLC) protocol. The caller submits requests by filling
in a command control block (CCB) and then calling AcsLan.

Commands submitted through AcsLan can complete synchronously or asynchronously. The DLC
driver, not the caller, determines how a command completes. This is unlike the Netbios function,
for example, which has commands complete synchronously or asynchronously as requested by
the caller.

There are some differences between NT DLC and the CCB2 interface. The most notable
difference is that the buffer pool must be specified on an open adapter instance basis and not
specified per-SAP (service-access point). After an adapter has been opened using the DIR.
OPEN.ADAPTER command, a buffer pool must be given to the DLC driver using BUFFER.
CREATE.

ACSLAN_STATUS AcsLan(
PLLC_CCB pCcb, // pointer to command control block
PLLC_CCB *ppBadCcb // pointer to pointer for invalid CCB

);ParameterspCcb
Pointer to an LLC_CCB structure describing the function being performed. For information
about this structure, see documentation for IBM LAN.

ppBadCcb
Pointer to a pointer to an LLC_CCB structure. This parameter is used when a chain of
LLC_CCB structures is submitted. If the parameter is not NULL on input, this pointer will
contain a pointer to the first invalid LLC_CCB structure discovered in the chain.

Return ValuesThe function returns an ACSLAN_STATUS value. ACSLAN_STATUS is an enumerated type.
The following values are defined:

Value Meaning

ACSLAN_STATUS_COMMAND_ACCEPTEDThe request has been
processed and passed to
the DLC driver. The
command may or may not
have already completed,
depending on whether it is
a synchronous or
asynchronous command
and depending on other
timing considerations.
This value does not mean
that the command
completed successfully.
The caller must check the
uchDlcStatus member in
the LLC_CCB structure to
determine whether the
request succeeded or
failed.

ACSLAN_STATUS_INVALID_CCB_POINTERA pointer in the the
LLC_CCB structure, or
the parameter table is
invalid.

ACSLAN_STATUS_CCB_IN_ERROR A problem was detected
with the LLC_CCB
structure. The caller
should check the values in
the structure and resubmit
it.

ACSLAN_STATUS_CHAINED_CCB_IN_ERRORA problem was detected
with an LLC_CCB
structure in a chain of

LLC_CCB structures.
ACSLAN_STATUS_SYSTEM_ERROR This value is not used.
ACSLAN_STATUS_SYSTEM_STATUS This value is not used.
ACSLAN_STATUS_INVALID_COMMAND The command in the

uchDlcCommand
member of the LLC_CCB
structure is unrecognized.

See AlsoNetbios

ActivateKeyboardLayout
The implementations of ActivateKeyboardLayout in Windows 95 and Windows NT are
substantially different. To accommodate these differences, this reference page first presents the
Windows 95 implementation in its entirety, followed by the Windows NT version.

Windows 95:
The ActivateKeyboardLayout function sets the input language for the current thread. This
function accepts a keyboard layout handle that identifies a locale as well as the physical layout of
the keyboard.

HKL ActivateKeyboardLayout(
HKL hkl, // handle to keyboard layout
UINT Flags // keyboard layout flags

);Parametershkl
Handle to a keyboard layout or a zero-extended locale identifier. This parameter can be any
valid keyboard layout handle obtained using the LoadKeyboardLayout or
GetKeyboardLayoutList function or one of the following values:

Value Meaning
HKL_NEXT Selects the next layout in the keyboard layouts

list maintained by the system.
HKL_PREV Selects the previous layout in the keyboards

layout list maintained by the system.

Flags
Specifies the keyboard layout flags. The value of this parameter can be:

Value Meaning
KLF_REORDER Reorders the keyboard layouts list by

moving the given keyboard layout handle
to the head of the list. If this value is not
given, the list is rotated without a change
of order. For example, if a user had an
English layout active, as well as having
French, German and Spanish layouts
loaded (in that order), then activating the
German layout with the KLF_REORDER
bit set would produce the following order:
German, English, French, Spanish.
Activating the German layout without the
KLF_REORDER value set would
produce the following order: German,
Spanish, English, French.

Return ValuesIf the function succeeds, the return value is the previous keyboard layout handle. Otherwise, it is
zero. To get extended error information, use the GetLastError function.RemarksSeveral keyboard layouts can be loaded at any one time, but only one is active at a time. Loading
multiple keyboard layouts makes it possible to rapidly switch between layouts.

An application can create a valid keyboard layout handle by setting the high word to zero and the
low word to a locale identifier. Using such keyboard layout handles changes the input language
without affecting the physical layout.

When multiple input method editors (IMEs) are allowed for each locale, passing in a keyboard
layout handle in which the high word (the device handle) is zero activates the first IME in the list
"belonging" to the locale.See AlsoLoadKeyboardLayout, GetKeyboardLayoutName, UnloadKeyboardLayout

Windows NT:
The ActivateKeyboardLayout function activates a different keyboard layout and sets the active
keyboard layout for the entire system rather than the calling thread.

BOOL ActivateKeyboardLayout(
HKL hkl, // handle to keyboard layout
UINT Flags // keyboard layout flags

);Parametershkl
Identifies the keyboard layout to be activated. The layout must have been loaded by a
previous call to the LoadKeyboardLayout function. This parameter must be either the handle
to a keyboard layout or one of the following values:

Value Meaning
HKL_NEXT Selects the next layout in the circular list of

loaded layouts maintained by the system.
HKL_PREV Selects the previous layout in the circular list of

loaded layouts maintained by the system.

Flags
Specifies how the keyboard layout is to be activated. This parameter can be one of the
following values:

Value Meaning
KLF_REORDER If this bit is set, the system's circular list

of loaded keyboard layouts is reordered.
If this bit is not set, the list is rotated
without a change of order. For example,
if a user had an English layout active, as
well as having French, German and
Spanish layouts loaded (in that order),
then activating the German layout with
the KLF_REORDER bit set would
produce the following order: German,
English, French, Spanish. Activating the
German layout without the
KLF_REORDER bit set would produce
the following order: German, Spanish,
English, French.
If less than three keyboard layouts are
loaded, the value of this flag is irrelevant.

KLF_UNLOADPREVIOUS The previously active layout is unloaded.
Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksSeveral keyboard layouts can be loaded at any one time, but only one is active at a time. Loading
multiple keyboard layouts makes it possible to rapidly switch between layouts.See AlsoLoadKeyboardLayout, GetKeyboardLayoutName, UnloadKeyboardLayout

AddAccessAllowedAce
The AddAccessAllowedAce function adds an access-allowed ACE to an ACL. The access is
granted to a specified SID.

An ACE is an access-control entry. An ACL is an access-control list. A SID is a security identifier.

BOOL AddAccessAllowedAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceRevision, // ACL revision level
DWORD AccessMask, // access mask
PSID pSid // pointer to security identifier

);ParameterspAcl
Pointer to an ACL structure. This function adds an access-allowed ACE to this ACL. The ACE
is in the form of an ACCESS_ALLOWED_ACE structure.

dwAceRevision
Specifies the revision level of the ACL being modified. Currently, this value must be
ACL_REVISION.

AccessMask
Specifies the mask of access rights to be granted to the specified SID.

pSid
Pointer to the SID structure representing a process being granted access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe addition of an access-allowed ACE to an ACL is the most common form of ACL modification.

The ACE_HEADER structure placed in the ACE by the AddAccessAllowedAce function
specifies a type and size, but provides no inheritance and no ACE flags.See AlsoACCESS_ALLOWED_ACE, ACE_HEADER, ACL, AddAccessDeniedAce, AddAce,
AddAuditAccessAce, DeleteAce, GetAce

AddAccessDeniedAce
The AddAccessDeniedAce function adds an access-denied ACE to an ACL. The access is
denied to a specified SID.

An ACE is an access-control entry. An ACL is an access-control list. A SID is a security identifier.

BOOL AddAccessDeniedAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceRevision, // ACL revision level
DWORD AccessMask, // access mask
PSID pSid // pointer to security identifier

);ParameterspAcl
Pointer to an ACL structure. This function adds an access-denied ACE to this ACL. The ACE
is in the form of an ACCESS_DENIED_ACE structure.

dwAceRevision
Specifies the revision level of the ACL being modified. Currently, this value must be
ACL_REVISION.

AccessMask
Specifies the mask of access rights being denied to the specified SID.

pSid
Pointer to the SID structure representing the process being denied access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ACE_HEADER structure placed in the ACE by the AddAccessDeniedAce function specifies
a type and size, but provides no ACE flags.See AlsoACCESS_DENIED_ACE, ACE_HEADER, ACL, AddAccessAllowedAce, AddAce,
AddAuditAccessAce, DeleteAce, GetAce

AddAce
The AddAce function adds one or more ACEs to a specified ACL.

An ACE is an access-control entry. An ACL is an access-control list.

BOOL AddAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceRevision, // ACL revision level
DWORD dwStartingAceIndex, // index of ACE position in ACL
LPVOID pAceList, // pointer to one or more ACEs
DWORD nAceListLength // size of buffer for ACEs

);ParameterspAcl
Pointer to an ACL structure. This function adds an ACE to this ACL.

dwAceRevision
Specifies the revision level of the ACL being modified. Currently, this value must be
ACL_REVISION.

dwStartingAceIndex
Specifies the position in the ACL's list of ACEs at which to add new ACEs. A value of zero
inserts the ACEs at the beginning of the list. A value of MAXDWORD appends the ACEs to
the end of the list.

pAceList
Pointer to a list of one or more ACEs to be added to the specified ACL. The ACEs in the list
must be stored contiguously.

nAceListLength
Specifies the size, in bytes, of the input buffer pointed to by the pAceList parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksApplications frequently use the FindFirstFreeAce and GetAce functions when using the AddAce
function to manipulate an ACL. In addition, the ACL_SIZE_INFORMATION structure retrieved by
the GetAclInformation function contains the size of the ACL and the number of ACEs it contains.See AlsoACL, ACL_SIZE_INFORMATION, AddAccessAllowedAce, AddAccessDeniedAce,
AddAuditAccessAce, DeleteAce, FindFirstFreeAce, GetAce, GetAclInformation

AddAtom
The AddAtom function adds a character string to the local atom table and returns a unique value
(an atom) identifying the string.

ATOM AddAtom(
LPCTSTR lpString // pointer to string to add

);ParameterslpString
Pointer to the null-terminated string to be added. The string can have a maximum size of 255
bytes. Strings differing only in case are considered identical. The case of the first string added
is preserved and returned by the GetAtomName function.

Return ValuesIf the function succeeds, the return value is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe AddAtom function stores no more than one copy of a given string in the atom table. If the
string is already in the table, the function returns the existing atom and, in the case of a string
atom, increments the string's reference count.

The MAKEINTATOM macro can be used to convert a WORD value into a string that can be
added to the atom table by using the AddAtom function.

AddAtom returns a string atom whose value is in the range 0xC000 through 0xFFFF.

If lpString has the form "#1234", AddAtom returns an integer atom whose value is the 16-bit
representation of the decimal number specified in the string (0x04D2, in this example). If the
decimal value specified is 0x0000 or a value in the range 0xC000 through 0xFFFF, the return
value is zero, indicating an error. If lpString is in the range 0x0001 through 0xBFFF, the return
value is the low-order word of lpString.See AlsoDeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, GlobalDeleteAtom,
GlobalFindAtom, GlobalGetAtomName, MAKEINTATOM

AddAuditAccessAce
The AddAuditAccessAce function adds a system-audit ACE to a system ACL. The access of a
specified SID is audited.

An ACE is an access-control entry. An ACL is an access-control list. A SID is a security identifier.

BOOL AddAuditAccessAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceRevision, // ACL revision level
DWORD dwAccessMask, // access mask
PSID pSid, // pointer to security identifier
BOOL bAuditSuccess, // flag for auditing successful access
BOOL bAuditFailure // flag for auditing unsuccessful access attempts

);ParameterspAcl
Pointer to an ACL structure. This function adds a system-audit ACE to this ACL. The ACE is
in the form of an SYSTEM_AUDIT_ACE structure.

dwAceRevision
Specifies the revision level of the ACL being modified. Currently, this value must be
ACL_REVISION.

dwAccessMask
Specifies the mask of access rights to be audited for the specified SID.

pSid
Pointer to the SID structure representing the process whose access is being audited.

bAuditSuccess
Specifies whether successful access attempts are to be audited. Set this flag to TRUE to
enable auditing; otherwise, set it to FALSE.

bAuditFailure
Specifies whether unsuccessful access attempts are to be audited. Set this flag to TRUE to
enable auditing; otherwise, set it to FALSE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ACE_HEADER structure placed in the ACE by the AddAuditAccessAce function specifies a
type and size, but provides no ACE flags.See AlsoACE_HEADER, ACL, AddAccessAllowedAce, AddAccessDeniedAce, AddAce, DeleteAce,
GetAce, SID, SYSTEM_AUDIT_ACE

AddFontResource
The AddFontResource function adds the font resource from the specified file to the Windows
font table. The font can subsequently be used for text output by any Windows-based application.

int AddFontResource(
LPCTSTR lpszFilename // pointer to font-resource filename

);ParameterslpszFilename
Pointer to a null-terminated character string that contains a valid font file filename. The
filename may specify either a .FON font resource file, a .FNT raw bitmap font file, a .TTF raw
TrueType file, or a .FOT TrueType resource file.

Return ValuesIf the function succeeds, the return value specifies the number of fonts added.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAny application that adds or removes fonts from the Windows font table should notify other
windows of the change by sending a WM_FONTCHANGE message to all top-level windows in the
operating system. The application should send this message by calling the SendMessage
function and setting the hwnd parameter to HWND_BROADCAST.

When an application no longer needs a font resource that it loaded by calling the
AddFontResource function, it must remove the resource by calling the RemoveFontResource
function.See AlsoRemoveFontResource, SendMessage

AddForm
The AddForm function adds a form to the list of available forms that can be selected for the
specified printer.

BOOL AddForm(
HANDLE hPrinter, // handle to printer object
DWORD Level, // data-structure level
LPBYTE pForm // pointer to form info. data structure

);ParametershPrinter
Identifies the printer that supports printing with the specified form.

Level
Specifies the level of the structure to which pForm points. This value must be 1.

pForm
Pointer to a FORM_INFO_1 structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle identified by the hPrinter parameter is returned by the OpenPrinter function.

An application can determine which forms are available for a printer by calling the EnumForms
function.See AlsoEnumForms, FORM_INFO_1, OpenPrinter

AddJob
The AddJob function obtains a path string that specifies a file that you can use to store a spooled
print job.

BOOL AddJob(
HANDLE hPrinter, // specifies printer for the print job
DWORD Level, // specifies version of print job information data structure
LPBYTE pData, // pointer to buffer to receive print job information data
DWORD cbBuf, // specifies size of buffer pointed to by pData
LPDWORD pcbNeeded // pointer to variable to receive size of print job information data

);ParametershPrinter
Handle that specifies the printer for the print job. This must be a local printer that is configured
as a spooled printer. If hPrinter is a handle to a remote printer connection, or if the printer is
configured for direct printing, the AddJob function fails.

Level
Specifies the version of the print job information data structure that the function stores into the
buffer pointed to by pData. Set this parameter to one.

pData
Pointer to a buffer to receive an ADDJOB_INFO_1 data structure and a path string.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pData. The buffer needs to be large
enough to contain an ADDJOB_INFO_1 structure and a path string.

pcbNeeded
Pointer to a variable to receive the total size, in bytes, of the ADDJOB_INFO_1 data structure
plus the path string. If this value is less than or equal to cbBuf and the function succeeds, this
is the actual number of bytes written to the buffer pointed to by pData. If this number is greater
than cbBuf, the buffer is too small, and you must call the function again with a buffer size at
least as large as *pcbNeeded.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou can call the CreateFile function to open the spool file specified by the Path member of the
ADDJOB_INFO_1 structure, and then call the WriteFile function to write print job data to it. Once
that is done, call ScheduleJob to notify the print spooler that the print job can now be scheduled
by the spooler for printing.See AlsoADDJOB_INFO_1, CreateFile, OpenPrinter, ScheduleJob, WriteFile

AddMonitor
The AddMonitor function installs a local printer monitor and links the configuration, data, and
monitor files. Future releases of Windows NT may allow remote installation of printer monitors.

BOOL AddMonitor (
LPTSTR pName, // pointer to server name
DWORD Level, // monitor info. structure level
LPBYTE pMonitors // pointer to monitor info. structure

);ParameterspName
Pointer to a null-terminated string that specifies the name of the server on which the monitor
should be installed. For this release of Windows NT, monitors may only be installed locally, so
this string should be NULL.

Level
Specifies the version of the structure to which pMonitors points. This value must be 2.

pMonitors
Pointer to a MONITOR_INFO_2 structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore an application calls the AddMonitor function, all files required by the monitor must be
copied to the SYSTEM32 directory.

An application can determine which printer monitors are currently installed by calling the
EnumMonitors function.

A monitor added by AddMonitor may be removed by calling DeleteMonitor.See AlsoDeleteMonitor, EnumMonitors, MONITOR_INFO_2

AddPort
The AddPort function adds the name of a port to the list of supported ports. The AddPort
function is exported by the print monitor.

BOOL AddPort(
LPTSTR pName, // pointer to a server name
HWND hWnd, // handle to parent window
LPTSTR pMonitorName // pointer to a monitor name

);ParameterspName
Pointer to a zero-terminated string that specifies the name of the server to which the port is
connected. If this parameter is NULL, the port is local.

hWnd
Handle to the parent window of the AddPort dialog box.

pMonitorName
Pointer to a zero-terminated string that specifies the monitor associated with the port.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe AddPort function browses the network to find existing ports, and displays a dialog box for the
user. The AddPort function should validate the port name entered by the user by calling
EnumPorts to ensure that no duplicate names exist.

The caller of the AddPort function must have SERVER_ACCESS_ADMINISTER access to the
server to which the port is connected.See AlsoDeletePort EnumPorts SetPort

AddPrinter
The AddPrinter function adds a printer to the list of supported printers for a specified server.

HANDLE AddPrinter(
LPTSTR pName, // pointer to server name
DWORD Level, // printer info. structure level
LPBYTE pPrinter // pointer to structure

);ParameterspName
Pointer to a null-terminated string that specifies the name of the server on which the printer's
print processor should be installed. If this string is NULL, the print processor is installed
locally.

Level
Specifies the version of the structure to which pPrinter points. This value must be 2.

pPrinter
Pointer to a PRINTER_INFO_2 structure that contains information about the printer. You must
specify non-NULL values for the pPrinterName, pPortName, pDriverName, and
pPrintProcessor members of this structure before calling AddPrinter.

Return ValuesIf the function succeeds, the return value is the handle to a new printer object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe following list identifies the members of the PRINTER_INFO_2 structure that can be set before
the AddPrinter function is called.

Attributes pPrintProcessor

DefaultPriority Priority
pComment pSecurityDescriptor
pDatatype pSepFile
pDevMode pShareName
pLocation StartTime
pParameters UntilTime

The Status, cJobs, and AveragePPM members of the PRINTER_INFO_2 structure are reserved
for use by the GetPrinter function. They must not be set before calling AddPrinter.

If pSecurityDescriptor is NULL, the system assigns a default security descriptor to the printer.

After an application creates a printer object with the AddPrinter function, it must use the
PrinterProperties function to specify the correct settings for the printer driver associated with the
printer object.

The AddPrinter function returns an error if a printer object with the same name already exists,
unless that object is marked as pending deletion. In that case, the existing printer will not be
deleted, and the AddPrinter creation parameters will be used to change the existing printer
settings (as if the application had used the SetPrinter function).

Windows NT:The caller of the AddPrinter function must have SERVER_ACCESS_ADMINISTER
access to the server on which the printer is to be created. The handle returned by the function will
have PRINTER_ALL_ACCESS permission, and can be used to perform administrative operations
on the printer.

Windows 95: This access validation is not supported in Windows 95.

Use the EnumPrintProcessors function to enumerate the set of print processors installed on a
server. Use the EnumPrintProcessorDatatypes function to enumerate the set of datatypes that
a print processor supports.See AlsoClosePrinter, DeletePrinter, EnumPrintProcessors, EnumPrintProcessorDatatypes,
GetPrinter, PRINTER_INFO_2, PrinterProperties, SetPrinter

AddPrinterConnection
The AddPrinterConnection function adds a connection to the specified printer for the current
user.

BOOL AddPrinterConnection (
LPTSTR pName // pointer to printer name

);ParameterspName
Pointer to a null-terminated string that specifies the name of a printer that the current user
wishes to establish a connection to.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen Windows NT makes a connection to a printer, it may need to copy printer driver files to the
workstation. If the user does not have permission to copy files to the appropriate location, the
AddPrinterConnection function fails, and GetLastError returns ERROR_ACCESS_DENIED.

A printer connection established by calling AddPrinterConnection will be enumerated when
EnumPrinters is called with dwType set to PRINTER_ENUM_CONNECTION.See AlsoConnectToPrinterDlg, DeletePrinterConnection, EnumPrinters

AddPrinterDriver
The AddPrinterDriver function installs a local or remote printer driver and links the configuration,
data, and driver files.

BOOL AddPrinterDriver(
LPTSTR pName, // pointer to server name
DWORD Level, // printer info. structure level
LPBYTE pDriverInfo // pointer to printer info. structure

);ParameterspName
Pointer to a null-terminated string that specifies the name of the server on which the driver
should be installed.
If pName is NULL, the driver will be installed locally.

Level
Specifies the version of the structure to which pDriverInfo points.
This value can be either 2 or 3.

pDriverInfo
Pointer to either a DRIVER_INFO_2 structure or a DRIVER_INFO_3 structure. If Level is 2,
this parameter receives a DRIVER_INFO_2 structure. If Level is 3, this parameter receives a
DRIVER_INFO_3 structure.
If the pEnvironment member of the structure pointed to by pDriverInfo is NULL, the current
environment of the caller/client (not of the destination/server) is used.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore an application calls the AddPrinterDriver function, all files required by the driver must be
copied to the system's printer-driver directory. An application can retrieve the name of this
directory by calling the GetPrinterDriverDirectory function.

An application can determine which printer drivers are currently installed by calling the
EnumPrinterDrivers function.See AlsoDRIVER_INFO_2, DRIVER_INFO_3, EnumPrinterDrivers, GetPrinterDriverDirectory

AddPrintProcessor
The AddPrintProcessor function installs a print processor on the specified server and adds the
print-processor name to an internal list of supported print processors.

BOOL AddPrintProcessor(
LPTSTR pName, // pointer to server name
LPTSTR pEnvironment, // pointer to environment name
LPTSTR pPathName, // pointer to path
LPTSTR pPrintProcessorName // pointer to print-processor name

);ParameterspName
Pointer to a null-terminated string that specifies the name of the server on which the print
processor should be installed. If this parameter is NULL, the print processor is installed locally.

pEnvironment
Pointer to a null-terminated string that specifies the environment. For example, "Windows x86"
specifies Windows running on an Intel 80386 or 80486 processor. If this parameter is NULL,
the current environment of the caller/client (not of the destination/server) is used.

pPathName
Pointer to a null-terminated string that specifies the name of the file that contains the print
processor. This file must be in the system print-processor directory.

pPrintProcessorName
Pointer to a null-terminated string that specifies the name of the print processor.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore calling the AddPrintProcessor function, an application should verify that the file
containing the print processor is stored in the system print-processor directory. An application can
retrieve the name of the system print-processor directory by calling the
GetPrintProcessorDirectory function.

An application can determine the name of existing print processors by calling the
EnumPrintProcessors function.See AlsoEnumPrintProcessors, GetPrintProcessorDirectory

AddPrintProvidor
The AddPrintProvidor function installs a local printer provider and links the configuration, data,
and provider files. Future releases of Windows may allow remote installation of printer providers.

BOOL AddPrintProvidor (
LPTSTR pName, // pointer to server name
DWORD Level, // provider information structure level
LPBYTE pProvidorInfo // pointer to provider information structure

);ParameterspName
Pointer to a null-terminated string that specifies the name of the server on which the provider
should be installed. For this release of Windows 95 and Windows NT, providers may only be
installed locally, so this parameter should be NULL.

Level
Specifies the level of the structure to which pProvidorInfo points. This value must be 1.

pProvidorInfo
Pointer to a PROVIDOR_INFO_1 structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore an application calls the AddPrintProvidor function, all files required by the provider must
be copied to the SYSTEM32 directory.

A provider added by AddPrintProvidor may be removed by calling DeletePrintProvidor.See AlsoDeletePrintProvidor, PROVIDOR_INFO_1

AddPropSheetPageProc
The AddPropSheetPageProc function specifies an application-defined callback function that a
property sheet extension uses to add a page to a property sheet.

BOOL CALLBACK AddPropSheetPageProc(
HPROPSHEETPAGE hpage,
LPARAM lParam

);Parametershpage
Handle to a property sheet page.

lParam
Application-defined 32-bit value.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

AdjustTokenGroups
The AdjustTokenGroups function adjusts groups in the specified access token.
TOKEN_ADJUST_GROUPS access is required to enable or disable groups in an access token.

BOOL AdjustTokenGroups(
HANDLE TokenHandle, // handle to token that contains groups
BOOL ResetToDefault, // flag for default settings
PTOKEN_GROUPS NewState, // address of address of new group information
DWORD BufferLength, // size of buffer for previous information
PTOKEN_GROUPS PreviousState, // address of previous group information
PDWORD ReturnLength // address of required buffer size

);ParametersTokenHandle
Identifies the access token containing the groups to be modified.

ResetToDefault
Specifies whether the groups are to be set to their default enabled and disabled states. If this
value is TRUE, the groups are set to their default states and the NewState parameter is
ignored. If this value is FALSE, the groups are set according to the information pointed to by
the NewState parameter.

NewState
Points to a TOKEN_GROUPS structure containing the groups whose states are to be set. If
the ResetToDefault parameter is FALSE, the function sets each of the groups to the value of
that group's SE_GROUP_ENABLED flag in the TOKEN_GROUPS structure. If
ResetToDefault is TRUE, this parameter is ignored.

BufferLength
Specifies the size, in bytes, of the buffer pointed to by the PreviousState parameter. This
parameter can be NULL if the PreviousState parameter is NULL.

PreviousState
Points to a buffer receiving a TOKEN_GROUPS structure containing the previous state of any
groups the function modifies. The token must be open for TOKEN_QUERY access to use this
parameter. This parameter can be NULL.
If a buffer is specified but it does not contain enough space to receive the complete list of
modified groups, no group states are changed and the function fails. In this case, the function
sets the variable pointed to by the ReturnLength parameter to the number of bytes required to
hold the complete list of modified groups.

ReturnLength
Points to a variable set by the function that contains the actual number of bytes needed for the
buffer pointed to by the PreviousState parameter. This parameter can be NULL and is ignored
if PreviousState is NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe information retrieved in the PreviousState parameter is formatted as a TOKEN_GROUPS
structure. This means a pointer to the buffer can be passed as the NewState parameter in a
subsequent call to the AdjustTokenGroups function, restoring the original state of the groups.

The NewState parameter can list groups to be changed that are not present in the access token.
This does not affect the successful modification of the groups in the token.

Mandatory groups cannot be disabled. They are identified by the SE_GROUP_MANDATORY flag
in the TOKEN_GROUPS structure. If an attempt is made to disable any mandatory groups,
AdjustTokenGroups fails and leaves the state of all groups unchanged.See AlsoAdjustTokenPrivileges, GetTokenInformation, OpenProcessToken, OpenThreadToken,
SetTokenInformation, TOKEN_GROUPS

AdjustTokenPrivileges
The AdjustTokenPrivileges function enables or disables privileges in the specified access token.
Enabling or disabling privileges in an access token requires TOKEN_ADJUST_PRIVILEGES
access.

BOOL AdjustTokenPrivileges(
HANDLE TokenHandle, // handle to token that contains privileges
BOOL DisableAllPrivileges, // flag for disabling all privileges
PTOKEN_PRIVILEGES NewState, // pointer to new privilege information
DWORD BufferLength, // size, in bytes, of the PreviousState buffer
PTOKEN_PRIVILEGES PreviousState, // receives original state of changed privileges
PDWORD ReturnLength // receives required size of the PreviousState buffer

);ParametersTokenHandle
Identifies the access token that contains the privileges to be modified.

DisableAllPrivileges
Specifies whether the function disables all of the token's privileges. If this value is TRUE, the
function disables all privileges and ignores the NewState parameter. If it is FALSE, the
function modifies privileges based on the information pointed to by the NewState parameter.

NewState
Pointer to a TOKEN_PRIVILEGES structure that specifies an array of privileges and their
attributes. If the DisableAllPrivileges parameter is FALSE, AdjustTokenPrivileges enables or
disables these privileges for the token. If you set the SE_PRIVILEGE_ENABLED attribute for
a privilege, the function enables that privilege; otherwise, it disables the privilege.
If DisableAllPrivileges is TRUE, the function ignores this parameter.

BufferLength
Specifies the size, in bytes, of the buffer pointed to by the PreviousState parameter. This
parameter can be NULL if the PreviousState parameter is NULL.

PreviousState
Pointer to a buffer that the function fills with a TOKEN_PRIVILEGES structure containing the
previous state of any privileges the function modifies. The token must be open for
TOKEN_QUERY access to use this parameter. This parameter can be NULL.
If you specify a buffer that is too small to receive the complete list of modified privileges, the
function fails and does not adjust any privileges. In this case, the function sets the variable
pointed to by the ReturnLength parameter to the number of bytes required to hold the
complete list of modified privileges.

ReturnLength
Pointer to a variable that receives the required size, in bytes, of the buffer pointed to by the
PreviousState parameter. This parameter can be NULL if PreviousState is NULL.

Return ValuesIf the function succeeds, the return value is nonzero. To determine whether the function adjusted
all of the specified privileges, call GetLastError, which returns one of the following values when
the function succeeds:

Value Description

ERROR_SUCCESS The function adjusted all specified
privileges.

ERROR_NOT_ALL_ASSIGNED The token does not have one or
more of the privileges specified in
the NewState parameter. The
function may succeed with this
error value even if no privileges
were adjusted. The PreviousState
parameter indicates the privileges
that were adjusted.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.RemarksThe AdjustTokenPrivileges function cannot add new privileges to the access token. It can only
enable or disable the token's existing privileges. To determine the token's privileges, call the
GetTokenInformation function.

Note that the NewState parameter can specify privileges that the token does not have, without
causing the function to fail. In this case, the function adjusts the privileges that the token does
have, ignores the other privileges, and returns success. Call the GetLastError function to
determine whether the function adjusted all of the specified privileges. The PreviousState
parameter indicates the privileges that were adjusted.

The PreviousState parameter retrieves a TOKEN_PRIVILEGES structure containing the the
original state of the adjusted privileges. To restore the original state, pass the PreviousState
pointer as the NewState parameter in a subsequent call to the AdjustTokenPrivileges functionSee AlsoAdjustTokenGroups, GetTokenInformation, OpenProcessToken, OpenThreadToken,
SetTokenInformation, TOKEN_PRIVILEGES

AdjustWindowRect
The AdjustWindowRect function calculates the required size of the window rectangle based on
the desired client-rectangle size. The window rectangle can then be passed to the
CreateWindowEx function to create a window whose client area is the desired size.

BOOL AdjustWindowRect(
LPRECT lpRect, // pointer to client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu // menu-present flag

);ParameterslpRect
Pointer to a RECT structure that contains the coordinates of the top-left and bottom-right
corners of the desired client area. When the function returns, the structure contains the
coordinates of the top-left and bottom-right corners of the window to accommodate the
desired client area.

dwStyle
Specifies the window styles of the window whose required size is to be calculated.

bMenu
Specifies whether the window has a menu.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA client rectangle is the smallest rectangle that completely encloses a client area. A window
rectangle is the smallest rectangle that completely encloses a window.

The AdjustWindowRect function does not add extra space when a menu bar wraps to two or
more rows.See AlsoAdjustWindowRectEx, CreateWindowEx, RECT

AdjustWindowRectEx
The AdjustWindowRectEx function calculates the required size of the rectangle of a window with
extended style based on the desired client-rectangle size. The window rectangle can then be
passed to the CreateWindowEx function to create a window whose client area is the desired
size.

BOOL AdjustWindowRectEx(
LPRECT lpRect, // pointer to client-rectangle structure
DWORD dwStyle, // window styles
BOOL bMenu, // menu-present flag
DWORD dwExStyle // extended style

);ParameterslpRect
Pointer to a RECT structure that contains the coordinates of the top-left and bottom-right
corners of the desired client area. When the function returns, the structure contains the
coordinates of the top-left and bottom-right corners of the window to accommodate the
desired client area.

dwStyle
Specifies the window styles of the window whose required size is to be calculated.

bMenu
Specifies whether the window has a menu.

dwExStyle
Specifies the extended style of the window whose required size is to be calculated.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA client rectangle is the smallest rectangle that completely encloses a client area. A window
rectangle is the smallest rectangle that completely encloses a window.

The AdjustWindowRectEx function does not add extra space when a menu bar wraps to two or
more rows.See AlsoAdjustWindowRect, CreateWindowEx, RECT

AdvancedDocumentProperties
The AdvancedDocumentProperties function displays a printer-configuration dialog box for the
specified printer, allowing the user to configure that printer.

LONG AdvancedDocumentProperties(
HWND hWnd, // handle to dialog box's parent window
HANDLE hPrinter, // handle to printer object
LPTSTR pDeviceName, // pointer to driver name
PDEVMODE pDevModeOutput, // pointer to modified device mode structure
PDEVMODE pDevModeInput // pointer to original device mode structure

);ParametershWnd
Identifies the parent window of the printer-configuration dialog box.

hPrinter
Identifies a printer object.

pDeviceName
Pointer to a null-terminated string specifying the name of the device for which a printer-
configuration dialog box should be displayed.

pDevModeOutput
Pointer to a DEVMODE structure that will contain the configuration data specified by the user.
An application can retrieve the number of bytes required for this structure by calling the
AdvancedDocumentProperties function and setting pDevModeOutput to NULL.

pDevModeInput
Pointer to a DEVMODE structure that contains the configuration data used to initialize the
controls of the printer-configuration dialog box.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksAn application can obtain the printer handle identified by the hPrinter parameter by calling the
OpenPrinter or AddPrinter function.

An application can obtain the name pointed to by the pDeviceName parameter by calling the
GetPrinter function and then examining the pPrinterName member of the PRINTER_INFO_2
structure.See AlsoAddPrinter, DEVMODE, GetPrinter, OpenPrinter, PRINTER_INFO_2

AllocateAndInitializeSid
The AllocateAndInitializeSid function allocates and initializes a security identifier (SID) with up to
eight subauthorities.

BOOL AllocateAndInitializeSid(
PSID_IDENTIFIER_AUTHORITY pIdentifierAuthority, // pointer to identifier authority
BYTE nSubAuthorityCount, // count of subauthorities
DWORD dwSubAuthority0, // subauthority 0
DWORD dwSubAuthority1, // subauthority 1
DWORD dwSubAuthority2, // subauthority 2
DWORD dwSubAuthority3, // subauthority 3
DWORD dwSubAuthority4, // subauthority 4
DWORD dwSubAuthority5, // subauthority 5
DWORD dwSubAuthority6, // subauthority 6
DWORD dwSubAuthority7, // subauthority 7
PSID *pSid // pointer to pointer to SID

);ParameterspIdentifierAuthority
Pointer to an SID_IDENTIFIER_AUTHORITY structure, giving the top-level identifier authority
value to set in the SID.

nSubAuthorityCount
Specifies the number of subauthorities to place in the SID. This parameter also identifies how
many of the subauthority parameters have meaningful values. This parameter must contain a
value from 1 through 8.
For example, a value of 3 indicates that the subauthority values specified by the
dwSubAuthority0, dwSubAuthority1, and dwSubAuthority2 parameters have meaningful
values and to ignore the remainder.

dwSubAuthority0 through dwSubAuthority7
Specify subauthority values to place in the SID.

pSid
Pointer to a variable that receives the pointer to the allocated and initialized SID structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn SID allocated with the AllocateAndInitializeSid function must be freed by using the FreeSid
function.See AlsoFreeSid, GetSidIdentifierAuthority, InitializeSid, SID_IDENTIFIER_AUTHORITY

AllocateLocallyUniqueId
The AllocateLocallyUniqueId function allocates a locally unique identifier (LUID).

BOOL AllocateLocallyUniqueId(
PLUID Luid // address of locally unique identifier

);ParametersLuid
Points to a buffer that receives the allocated LUID.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn LUID is unique only within a single session. The same LUID value can be used on different
computers or on the same computer after it has been restarted.See AlsoLookupPrivilegeValue

AllocConsole
The AllocConsole function allocates a new console for the calling process.

BOOL AllocConsole(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA process can be associated with only one console, so the AllocConsole function fails if the
calling process already has a console. A process can use the FreeConsole function to detach
itself from its current console, and then it can call AllocConsole to create a new console. If the
calling process creates a child process, the child inherits the new console.

AllocConsole also sets up standard input, standard output, and standard error handles for the
new console. The standard input handle is a handle to the console's input buffer, and the standard
output and standard error handles are handles to the console's screen buffer. To retrieve these
handles, use the GetStdHandle function.

This function is primarily used by graphics applications to create a console window. Graphics
applications are initialized without a console. Console applications are normally initialized with a
console, unless they are created as detached processes (by calling the CreateProcess function
with the DETACHED_PROCESS flag).See AlsoCreateProcess, FreeConsole, GetStdHandle

AngleArc
The AngleArc function draws a line segment and an arc. The line segment is drawn from the
current position to the beginning of the arc. The arc is drawn along the perimeter of a circle with
the given radius and center. The length of the arc is defined by the given start and sweep angles.

BOOL AngleArc(
HDC hdc, // handle to device context
int X, // x-coordinate of circle's center
int Y, // y-coordinate of circle's center
DWORD dwRadius, // circle's radius
FLOAT eStartAngle, // arc's start angle
FLOAT eSweepAngle // arc's sweep angle

);Parametershdc
Identifies a device context.

X
Specifies the logical x-coordinate of the center of the circle.

Y
Specifies the logical y-coordinate of the center of the circle.

dwRadius
Specifies the radius, in logical units, of the circle. This value must be positive.

eStartAngle
Specifies the start angle, in degrees, relative to the x-axis.

eSweepAngle
Specifies the sweep angle, in degrees, relative to the starting angle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe AngleArc function moves the current position to the ending point of the arc.

The arc drawn by this function may appear to be elliptical, depending on the current
transformation and mapping mode. Before drawing the arc, AngleArc draws the line segment
from the current position to the beginning of the arc.

The arc is drawn by constructing an imaginary circle around the specified center point with the
specified radius. The starting point of the arc is determined by measuring counterclockwise from
the x-axis of the circle by the number of degrees in the start angle. The ending point is similarly
located by measuring counterclockwise from the starting point by the number of degrees in the
sweep angle.

If the sweep angle is greater than 360 degrees, the arc is swept multiple times.

This function draws lines by using the current pen. The figure is not filled.See AlsoArc, ArcTo, MoveToEx

AnimatePalette
The AnimatePalette function replaces entries in the specified logical palette.

BOOL AnimatePalette(
HPALETTE hpal, // handle to logical color palette
UINT iStartIndex, // first entry in logical palette
UINT cEntries, // count of entries in logical palette
CONST PALETTEENTRY *ppe // pointer to first replacement

);Parametershpal
Identifies the logical palette.

iStartIndex
Specifies the first logical palette entry to be replaced.

cEntries
Specifies the number of entries to be replaced.

ppe
Pointer to the first member of an array of PALETTEENTRY structures used to replace the
current entries.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

The AnimatePalette function only changes entries with the PC_RESERVED flag set in the
corresponding palPalEntry member of the LOGPALETTE structure.

If the given palette is associated with the active window, the colors in the palette are replaced
immediately.See AlsoCreatePalette, GetDeviceCaps, LOGPALETTE, PALETTEENTRY

AnsiLower
The AnsiLower function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharLower function, which should be used for new Win32-based applications.

AnsiLowerBuff
The AnsiLowerBuff function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharLowerBuff function, which should be used for new Win32-based applications.

AnsiNext
The AnsiNext function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharNext function, which should be used for new Win32-based applications.

AnsiPrev
The AnsiPrev function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharPrev function, which should be used for new Win32-based applications.

AnsiToOem
The AnsiToOem function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharToOem function, which should be used for new Win32-based applications.

AnsiToOemBuff
The AnsiToOemBuff function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharToOemBuff function, which should be used for new Win32-based applications.

AnsiUpper
The AnsiUpper function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharUpper function, which should be used for new Win32-based applications.

AnsiUpperBuff
The AnsiUpperBuff function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the CharUpperBuff function, which should be used for new Win32-based applications.

AnyPopup
The AnyPopup function indicates whether an owned, visible, top-level pop-up, or overlapped
window exists on the screen. The function searches the entire Windows screen, not just the
calling application's client area.

BOOL AnyPopup(VOID)ParametersThis function has no parameters.Return ValuesIf a pop-up window exists, the return value is nonzero, even if the pop-up window is completely
covered by other windows.

If a pop-up window does not exist, the return value is zero.RemarksAnyPopup is a Windows version 1.x function and is retained for compatibility purposes. It is
generally not useful.

This function does not detect unowned pop-up windows or windows that do not have the
WS_VISIBLE style bit set.See AlsoGetLastActivePopup, ShowOwnedPopups

AppendMenu
The AppendMenu function appends a new item to the end of the specified menu bar, drop-down
menu, submenu, or shortcut menu. You can use this function to specify the content, appearance,
and behavior of the menu item.

The AppendMenu function has been superseded by the InsertMenuItem function. You can still
use AppendMenu, however, if you do not need any of the extended features of InsertMenuItem.

BOOL AppendMenu(
HMENU hMenu, // handle to menu to be changed
UINT uFlags, // menu-item flags
UINT uIDNewItem, // menu-item identifier or handle of drop-down menu

or submenu
LPCTSTR lpNewItem // menu-item content

);ParametershMenu
Identifies the menu bar, drop-down menu, submenu, or shortcut menu to be changed.

uFlags
Specifies flags to control the appearance and behavior of the new menu item. This parameter
can be a combination of the values listed in the following Remarks section.

uIDNewItem
Specifies either the identifier of the new menu item or, if the uFlags parameter is set to
MF_POPUP, the handle to the drop-down menu or submenu.

lpNewItem
Specifies the content of the new menu item. The interpretation of lpNewItem depends on
whether the uFlags parameter includes the MF_BITMAP, MF_OWNERDRAW, or
MF_STRING flag, as follows:

Value Description
MF_BITMAP Contains a bitmap handle.
MF_OWNERDRAW Contains a 32-bit value supplied by the

application that can be used to maintain
additional data related to the menu item. The
value is in the itemData member of the
structure pointed to by the lparam parameter
of the WM_MEASURE or WM_DRAWITEM
message sent when the menu is created or its
appearance is updated.

MF_STRING Contains a pointer to a null-terminated string.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe application must call the DrawMenuBar function whenever a menu changes, whether or not
the menu is in a displayed window.

The following flags can be set in the uFlags parameter:

Value Description

MF_BITMAP Uses a bitmap as the menu item. The
lpNewItem parameter contains the handle to
the bitmap.

MF_CHECKED Places a check mark next to the menu item. If
the application provides check-mark bitmaps
(see SetMenuItemBitmaps), this flag displays
the check mark bitmap next to the menu item.

MF_DISABLED Disables the menu item so it cannot be
selected, but the flag does not gray it.

MF_ENABLED Enables the menu item so it can be selected,
and restores it from its grayed state.

MF_GRAYED Disables the menu item and grays it so it
cannot be selected.

MF_MENUBARBREAKFunctions the same as the MF_MENUBREAK
flag for a menu bar. For a drop-down menu,
submenu, or shortcut menu, the new column is
separated from the old column by a vertical
line.

MF_MENUBREAK Places the item on a new line (for a menu bar)
or in a new column (for a drop-down menu,
submenu, or shortcut menu) without
separating columns.

MF_OWNERDRAW Specifies that the item is an owner-drawn item.
Before the menu is displayed for the first time,
the window that owns the menu receives a
WM_MEASUREITEM message to retrieve the
width and height of the menu item. The
WM_DRAWITEM message is then sent to the
window procedure of the owner window
whenever the appearance of the menu item
must be updated.

MF_POPUP Specifies that the menu item opens a drop-
down menu or submenu. The uIDNewItem
parameter specifies the handle to the drop-
down menu or submenu. This flag is used to
add a menu name to a menu bar, or a menu
item that opens a submenu to a drop-down
menu, submenu, or shortcut menu.

MF_SEPARATOR Draws a horizontal dividing line. This flag is
used only in a drop-down menu, submenu, or
shortcut menu. The line cannot be grayed,
disabled, or highlighted. The lpNewItem and
uIDNewItem parameters are ignored.

MF_STRING Specifies that the menu item is a text string;
the lpNewItem parameter points to the string.

MF_UNCHECKED Does not place a check mark next to the item
(default). If the application supplies check-
mark bitmaps (see SetMenuItemBitmaps),
this flag displays the unchecked bitmap next to
the menu item.

The following groups of flags cannot be used together:

· MF_DISABLED, MF_ENABLED, and MF_GRAYED
· MF_BITMAP, MF_STRING, and MF_OWNERDRAW
· MF_MENUBARBREAK and MF_MENUBREAK
· MF_CHECKED and MF_UNCHECKED
See AlsoCreateMenu, DeleteMenu, DestroyMenu, DrawMenuBar, InsertMenu, InsertMenuItem,

ModifyMenu, RemoveMenu, SetMenuItemBitmaps

Arc
The Arc function draws an elliptical arc.

BOOL Arc(
HDC hdc, // handle to device context
int nLeftRect, // x-coordinate of bounding rectangle's upper-left corner
int nTopRect, // y-coordinate of bounding rectangle's upper-left corner
int nRightRect, // x-coordinate of bounding rectangle's lower-right corner
int nBottomRect, // y-coordinate of bounding rectangle's lower-right corner
int nXStartArc, // first radial ending point
int nYStartArc, // first radial ending point
int nXEndArc, // second radial ending point
int nYEndArc // second radial ending point

);Parametershdc
Identifies the device context where drawing takes place.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.
Windows 95: The sum of nLeftRect plus nRightRect must be less than 32768.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.
Windows 95: The sum of nTopRect plus nBottomRect must be less than 32768.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.
Windows 95: The sum of nLeftRect plus nRightRect must be less than 32768.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.
Windows 95: The sum of nTopRect plus nBottomRect must be less than 32768.

nXStartArc
Specifies the logical x-coordinate of the ending point of the radial line defining the starting
point of the arc.

nYStartArc
Specifies the logical y-coordinate of the ending point of the radial line defining the starting
point of the arc.

nXEndArc
Specifies the logical x-coordinate of the ending point of the radial line defining the ending point
of the arc.

nYEndArc
Specifies the logical y-coordinate of the ending point of the radial line defining the ending point
of the arc.

Return ValuesIf the arc is drawn, the return value is nonzero.

If the arc is not drawn, the return value is zero.RemarksThe points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends in the current drawing direction from the point where it intersects the radial from the
center of the bounding rectangle to the (nXStartArc, nYStartArc) point. The arc ends where it
intersects the radial from the center of the bounding rectangle to the (nXEndArc, nYEndArc) point.
If the starting point and ending point are the same, a complete ellipse is drawn.

The arc is drawn using the current pen; it is not filled.

The current position is neither used nor updated by Arc.

Windows 95: The drawing direction is always counterclockwise.

Windows NT: Use the GetArcDirection and SetArcDirection functions to get and set the
current drawing direction for a device context. The default drawing direction is counterclockwise.

Windows 95: The sum of the coordinates of the bounding rectangle cannot exceed 32,767. The
sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed 32,
767.

See AlsoAngleArc, ArcTo, Chord, Ellipse, GetArcDirection, Pie, SetArcDirection

ArcTo
The ArcTo function draws an elliptical arc.

BOOL ArcTo(
HDC hdc, // handle to device context
int nLeftRect, // x-coordinate of bounding rectangle's upper-left corner
int nTopRect, // y-coordinate of bounding rectangle's upper-left corner
int nRightRect, // x-coordinate of bounding rectangle's lower-right corner
int nBottomRect, // y-coordinate of bounding rectangle's lower-right corner
int nXRadial1, // x-coordinate of the first radial ending point
int nYRadial1, // y-coordinate of the first radial ending point
int nXRadial2, // x-coordinate of the second radial ending point
int nYRadial2 // y-coordinate of the second radial ending point

);Parametershdc
Identifies the device context where drawing takes place.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.

nXRadial1
Specifies the logical x-coordinate of the endpoint of the radial defining the starting point of the
arc.

nYRadial1
Specifies the logical y-coordinate of the endpoint of the radial defining the starting point of the
arc.

nXRadial2
Specifies the logical x-coordinate of the endpoint of the radial defining the ending point of the
arc.

nYRadial2
Specifies the logical y-coordinate of the endpoint of the radial defining the ending point of the
arc.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksArcTo is similar to the Arc function, except that the current position is updated.

The points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends counterclockwise from the point where it intersects the radial line from the center of the
bounding rectangle to the (nXRadial1, nYRadial1) point. The arc ends where it intersects the
radial line from the center of the bounding rectangle to the (nXRadial2, nYRadial2) point. If the
starting point and ending point are the same, a complete ellipse is drawn.

A line is drawn from the current position to the starting point of the arc. If no error occurs, the
current position is set to the ending point of the arc.

The arc is drawn using the current pen; it is not filled.See AlsoAngleArc, Arc, SetArcDirection

AreAllAccessesGranted
The AreAllAccessesGranted function checks whether a set of requested access rights has been
granted. The access rights are represented as bit flags in a 32-bit access mask.

BOOL AreAllAccessesGranted(
DWORD GrantedAccess, // access mask for granted access rights
DWORD DesiredAccess // access mask for requested access rights

);ParametersGrantedAccess
An access mask that specifies the access rights that have been granted.

DesiredAccess
An access mask that specifies the access rights that have been requested. This mask must
have been mapped from generic to specific and standard access rights, usually by calling the
MapGenericMask function.

Return ValuesIf all requested access rights have been granted, the return value is nonzero.

If not all requested access rights have been granted, the return value is zero.RemarksThe AreAllAccessesGranted function is commonly used by a server application to check the
access rights of a client attempting to gain access to an object. When the bits set in the
DesiredAccess parameter match the bits set in the GrantedAccess parameter, all requested rights
have been granted.See AlsoAccessCheck, AreAnyAccessesGranted, MapGenericMask

AreAnyAccessesGranted
The AreAnyAccessesGranted function tests whether any of a set of requested access rights has
been granted. The access rights are represented as bit flags in a 32-bit access mask.

BOOL AreAnyAccessesGranted(
DWORD GrantedAccess, // access mask for granted access rights
DWORD DesiredAccess // access mask for access rights requested

);ParametersGrantedAccess
Specifies the granted access mask.

DesiredAccess
Specifies the access mask to be requested. This mask must have been mapped from generic
to specific and standard access rights, usually by calling the MapGenericMask function.

Return ValuesIf any of the requested access rights have been granted, the return value is nonzero.

If none of the requested access rights have been granted, the return value is zero.RemarksThe AreAnyAccessesGranted function is often used by a server application to check the access
rights of a client attempting to gain access to an object. When any of the bits set in the
DesiredAccess parameter match the bits set in the GrantedAccess parameter, at least one of the
requested access rights has been granted.See AlsoAccessCheck, AreAllAccessesGranted, MapGenericMask

AreFileApisANSI
The AreFileApisANSI function determines whether a set of Win32 file functions is using the ANSI
or OEM character set code page. This function is useful for 8-bit console input and output
operations.

BOOL AreFileApisANSI (VOID)ParametersThis function has no parameters.Return ValuesIf the set of Win32 file functions is using the ANSI code page, the return value is nonzero.

If the set of Win32 file functions is using the OEM code page, the return value is zero.RemarksThe SetFileApisToOEM function causes a set of Win32 file functions to use the OEM code page.
The SetFileApisToANSI function causes the same set of Win32 file functions to use the ANSI
code page. Use the AreFileApisANSI function to determine which code page the set of file
functions is currently using. For a discussion of their usage, please refer to the Remarks sections
of SetFileApisToOEM and SetFileApisToANSI.

The following is the set of Win32 file functions whose code page is ascertained by the
AreFileApisANSI function:

_lopen GetDriveType LoadLibrary

CopyFile GetFileAttributes LoadLibraryEx
CreateDirectory GetFullPathName MoveFile
CreateFile GetModuleFileName MoveFileEx
CreateProcess GetModuleHandle OpenFile
DeleteFile GetSystemDirectory RemoveDirectory
FindFirstFile GetTempFileName SearchPath
FindNextFile GetTempPath SetCurrentDirectory
GetCurrentDirectoryGetVolumeInformationSetFileAttributes
GetDiskFreeSpace GetWindowsDirectory
See AlsoSetFileApisToANSI, SetFileApisToOEM

ArrangeIconicWindows
The ArrangeIconicWindows function arranges all the minimized (iconic) child windows of the
specified parent window.

UINT ArrangeIconicWindows(
HWND hWnd // handle to parent window

);ParametershWnd
Identifies the parent window.

Return ValuesIf the function succeeds, the return value is the height of one row of icons.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application that maintains its own minimized child windows can use the
ArrangeIconicWindows function to arrange icons in a parent window. This function can also
arrange icons on the desktop. To retrieve the window handle to the desktop window, use the
GetDesktopWindow function.

An application sends the WM_MDIICONARRANGE message to the multiple document interface
(MDI) client window to prompt the client window to arrange its minimized MDI child windows.See AlsoCloseWindow, GetDesktopWindow

AttachThreadInput
The AttachThreadInput function attaches the input processing mechanism of one thread to that
of another thread.

BOOL AttachThreadInput(
DWORD idAttach, // thread to attach
DWORD idAttachTo, // thread to attach to
BOOL fAttach // attach or detach

);ParametersidAttach
Specifies the identifier of the thread to be attached to another thread. The thread to be
attached cannot be a system thread.

idAttachTo
Specifies the identifier of the thread to be attached to. This thread cannot be a system thread.
A thread cannot attach to itself. Therefore, idAttachTo cannot equal idAttach.

fAttach
Specifies whether to attach or detach the threads. If this parameter is TRUE, the two threads
are attached. If the parameter is FALSE, the threads are detached.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. There is no extended error information available.RemarksWindows created in different threads typically process input independently of each other. That is,
they have their own input states (focus, active, capture windows, key state, queue status, and so
on), and they are not synchronized with the input processing of other threads. By using the
AttachThreadInput function, a thread can attach its input processing to another thread. This also
allows threads to share their input states, so they can call the SetFocus function to set the
keyboard focus to a window of a different thread. This also allows threads to get key-state
information. These capabilities are not generally possible.

The AttachThreadInput function fails if either of the specified threads does not have a message
queue. The system creates a thread's message queue when the thread makes its first call to one
of the Win32 USER or GDI functions. The AttachThreadInput function also fails if a journal
record hook is installed. Journal record hooks attach all input queues together.

Note that key state, which can be ascertained by calls to the GetKeyState or GetKeyboardState
function, is reset after a call to AttachThreadInput.

Windows NT: You cannot attach a thread to a thread in another desktop.See AlsoGetCurrentThreadId, GetKeyState, GetKeyboardState, GetWindowThreadProcessId,
SetFocus

BackupEventLog
The BackupEventLog function saves the specified event log to a backup file. The function does
not clear the event log.

BOOL BackupEventLog(
HANDLE hEventLog, // handle to event log
LPCTSTR lpBackupFileName // name of backup file

);ParametershEventLog
Identifies the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

lpBackupFileName
Pointer to a null-terminated string that names the backup file. The backup filename may
contain a server name to save the backup file on a remote server.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the backup filename specifies a remote server, the event log handle must identify a log on the
local computer. You cannot back up an event logfile from a remote server to a file on a remote
server (even if the backup file and the original log are on the same server).See AlsoOpenBackupEventLog, OpenEventLog

BackupRead
The BackupRead function reads data associated with a specified file or directory into a buffer.
You use this function to back up a file or directory.

BOOL BackupRead(
HANDLE hFile, // handle to file or directory
LPBYTE lpBuffer, // pointer to buffer to read to
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD lpNumberOfBytesRead, // pointer to variable to receive number of bytes read
BOOL bAbort, // termination type
BOOL bProcessSecurity, // process security flag
LPVOID *lpContext // pointer to pointer to internal context information

);ParametershFile
Handle to the file or directory being backed up. The function reads data associated with this
file. You obtain this handle by calling the CreateFile function.
The BackupRead function fails if CreateFile was called with the flag
FILE_FLAG_NO_BUFFERING. In this case, the GetLastError function returns the value
ERROR_INVALID_PARAMETER.

lpBuffer
Pointer to a buffer that the function writes data to.

nNumberOfBytesToRead
Specifies the length of the buffer. The buffer size must be greater than the size of a
WIN32_STREAM_ID structure.

lpNumberOfBytesRead
Pointer to a variable that, when the function returns, contains the number of bytes read.
If the function return value is TRUE, and the variable pointed to by lpNumberOfBytesRead is
zero, then all the data associated with the file handle has been read.

bAbort
Indicates whether BackupRead terminated abnormally. If this value is TRUE, the operation
terminates abnormally and all buffers are deallocated.

bProcessSecurity
Indicates whether the function will restore the access-control list (ACL) data for the file or
directory.
If bProcessSecurity is TRUE, the ACL data will be backed up.

lpContext
Pointer to a variable that receives and holds a pointer to an internal data structure used by
BackupRead to maintain context information during a backup operation.
You must set the variable pointed to by lpContext to NULL before the first call to BackupRead
for the specified file or directory. The function allocates memory for the data structure, and
then sets the variable to point to that structure. You must not change lpContext or the
variable that it points to between calls to BackupRead.
To release the memory used by the data structure, call BackupRead with the bAbort
parameter set to TRUE when the backup operation is complete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero, indicating that an I/O error occurred. To get extended
error information, call GetLastError.RemarksBackupRead processes all of the data pertaining to an opened object as a series of discrete byte
streams. Each stream is preceded by a 32-bit aligned WIN32_STREAM_ID structure.

Streams must be processed in the same order in which they were written to the tape. This
ordering enables applications to compare the data backed up against the data on the source
device. The data returned by BackupRead is to be used only as input to the BackupWrite
function. This data is returned as one large data stream divided into substreams. The substreams
are separated by WIN32_STREAM_ID headers.

If an error occurs while BackupRead is reading, the calling process can skip the bad data by
calling the BackupSeek function.See AlsoBackupWrite, BackupSeek, WIN32_STREAM_ID

BackupSeek
The BackupSeek function seeks forward in a data stream initially accessed by using the
BackupRead or BackupWrite function.

BOOL BackupSeek(
HANDLE hFile, // handle to open file
DWORD dwLowBytesToSeek, // low-order 32 bits of number of bytes
DWORD dwHighBytesToSeek, // high-order 32 bits of number of bytes
LPDWORD lpdwLowByteSeeked, // pointer to number of bytes function seeks
LPDWORD lpdwHighByteSeeked, // pointer to number of bytes function seeks
LPVOID *lpContext //pointer to internal context information

);ParametershFile
Identifies the file or directory being backed up. This handle is created by using the CreateFile
function.

dwLowBytesToSeek
Specifies the low-order 32 bits of the number of bytes to seek.

dwHighBytesToSeek
Specifies the high-order 32 bits of the number of bytes to seek.

lpdwLowByteSeeked
Pointer to a doubleword that, when the function returns, contains the low-order 32 bits of the
number of bytes the function actually seeks.

lpdwHighByteSeeked
Pointer to a doubleword that, when the function returns, contains the high-order 32 bits of the
number of bytes the function actually seeks.

lpContext
Pointer to an internal data structure used by the function. This structure must be the same
structure that was initialized by the BackupRead function. An application must not touch the
contents of this structure.

Return ValuesIf the function could seek the requested amount, the function returns nonzero.

If the function could not seek the requested amount, the function returns zero.RemarksApplications use the BackUpSeek function to skip portions of a data stream that cause errors.
This function does not seek across stream headers. If an application attempts to seek past the
end of a substream, the function fails, the lpdwLowByteSeeked and lpdwHighByteSeeked
parameters indicate the actual number of bytes the function seeks, and the file position is placed
at the start of the next stream header.See AlsoBackupRead, BackupWrite, CreateFile

BackupWrite
The BackupWrite function writes a stream of data from a buffer to a specified file or directory.
The data must be divided into substreams separated by WIN32_STREAM_ID structures. You use
this function to restore a file or directory that has been backed up.

BOOL BackupWrite(
HANDLE hFile, // handle to file or directory
LPBYTE lpBuffer, // pointer to buffer containing data to write
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPDWORD lpNumberOfBytesWritten, // pointer to variable to receive number of bytes written
BOOL bAbort, // termination type
BOOL bProcessSecurity, // process security
LPVOID *lpContext // pointer to pointer to internal context information

);ParametershFile
Handle to the file or directory being restored. The function writes data to this file. You obtain
this handle by calling the CreateFile function.
The BackupWrite function fails if CreateFile was called with the flag
FILE_FLAG_NO_BUFFERING. In this case, the GetLastError function returns the value
ERROR_INVALID_PARAMETER.

lpBuffer
Pointer to a buffer that the function writes data from.

nNumberOfBytesToWrite
Specifies the length of the buffer. The buffer size must be greater than the size of a
WIN32_STREAM_ID structure.

lpNumberOfBytesWritten
Pointer to a variable that, when the function returns, contains the number of bytes written.

bAbort
Specifies whether BackupWrite terminated abnormally. If this value is TRUE, the operation
terminated abnormally and all buffers were deallocated.

bProcessSecurity
Specifies whether the function will restore the access-control list (ACL) data for the file or
directory.
If bProcessSecurity is TRUE, you need to have specified WRITE_OWNER and WRITE_DAC
access when opening the file or directory handle. If the handle does not have those access
rights, the operating system denies access to the ACL data, and ACL data restoration will not
occur.

lpContext
Pointer to a variable that receives and holds a pointer to an internal data structure used by
BackupWrite to maintain context information during a restore operation.
You must set the variable pointed to by lpContext to NULL before the first call to
BackupWrite for the specified file or directory. The function allocates memory for the data
structure, and then sets the variable to point to that structure. You must not change lpContext
or the variable that it points to between calls to BackupWrite.
To release the memory used by the data structure, call BackupWrite with the bAbort
parameter set to TRUE when the restore operation is complete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero, indicating that an I/O error occurred. To get extended
error information, call GetLastError.RemarksThe BACKUP_LINK stream type lets you restore files with hard links.

Data obtained by the BackupRead function should only be used as input to the BackupWrite
function.See AlsoBackupRead, BackupSeek, CreateFile, WIN32_STREAM_ID

Beep
The Beep function generates simple tones on the speaker. The function is synchronous; it does
not return control to its caller until the sound finishes.

BOOL Beep(
DWORD dwFreq, // sound frequency, in hertz
DWORD dwDuration // sound duration, in milliseconds

);ParametersdwFreq
Windows NT:

Specifies the frequency, in hertz, of the sound. This parameter must be in the range 37
through 32,767 (0x25 through 0x7FFF).

Windows 95:
The parameter is ignored.

dwDuration
Windows NT:

Specifies the duration, in milliseconds, of the sound.
Windows 95:

The parameter is ignored.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows 95:
The Beep function ignores the dwFreq and dwDuration parameters. On computers with a
sound card, the function plays the default sound event. On computers without a sound card,
the function plays the standard system beep.See AlsoMessageBeep

BeginDeferWindowPos
The BeginDeferWindowPos function allocates memory for a multiple-window - position structure
and returns the handle to the structure.

HDWP BeginDeferWindowPos(
int nNumWindows // number of windows

);ParametersnNumWindows
Specifies the initial number of windows for which to store position information. The
DeferWindowPos function increases the size of the structure, if necessary.

Return ValuesIf the function succeeds, the return value identifies the multiple-window - position structure. If
insufficient system resources are available to allocate the structure, the return value is NULL.RemarksThe multiple-window - position structure is an internal structure; an application cannot access it
directly.

DeferWindowPos fills the multiple-window - position structure with information about the target
position for one or more windows about to be moved. The EndDeferWindowPos function accepts
the handle to this structure and repositions the windows by using the information stored in the
structure.

If any of the windows in the multiple-window - position structure have the SWP_HIDEWINDOW or
SWP_SHOWWINDOW flag set, none of the windows are repositioned.

If Windows must increase the size of the multiple-window - position structure beyond the initial
size specified by the nNumWindows parameter but cannot allocate enough memory to do so,
Windows fails the entire window positioning sequence (BeginDeferWindowPos,
DeferWindowPos, and EndDeferWindowPos). By specifying the maximum size needed, an
application can detect and process failure early in the process.See AlsoDeferWindowPos, EndDeferWindowPos, SetWindowPos

BeginPaint
The BeginPaint function prepares the specified window for painting and fills a PAINTSTRUCT
structure with information about the painting.

HDC BeginPaint(
HWND hwnd, // handle to window
LPPAINTSTRUCT lpPaint // pointer to structure for paint information

);Parametershwnd
Identifies the window to be repainted.

lpPaint
Pointer to the PAINTSTRUCT structure that will receive painting information.

Return ValuesIf the function succeeds, the return value is the handle to a display device context for the specified
window.

If the function fails, the return value is NULL, indicating that no display device context is available.RemarksThe BeginPaint function automatically sets the clipping region of the device context to exclude
any area outside the update region. The update region is set by the InvalidateRect or
InvalidateRgn function and by the system after sizing, moving, creating, scrolling, or any other
operation that affects the client area. If the update region is marked for erasing, BeginPaint sends
a WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_PAINT message. Each
call to BeginPaint must have a corresponding call to the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to prevent it from
being erased.

If the window's class has a background brush, BeginPaint uses that brush to erase the
background of the update region before returning.See AlsoEndPaint, InvalidateRect, InvalidateRgn, PAINTSTRUCT, ValidateRect, ValidateRgn

BeginPath
The BeginPath function opens a path bracket in the specified device context.

BOOL BeginPath(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter a path bracket is open, an application can begin calling GDI drawing functions to define the
points that lie in the path. An application can close an open path bracket by calling the EndPath
function.

When an application calls BeginPath for a device context, any previous paths are discarded from
that device context.

Windows NT:
The following drawing functions define points in a path:
AngleArc LineTo Polyline
Arc MoveToEx PolylineTo
ArcTo Pie PolyPolygon
Chord PolyBezier PolyPolyline
CloseFigure PolyBezierTo Rectangle
Ellipse PolyDraw RoundRect
ExtTextOut Polygon TextOut

Windows 95:
When constructing a path, only the CloseFigure, ExtTextOut, LineTo, MoveToEx,
PolyBezier, PolyBezierTo, Polygon, Polyline, PolylineTo, PolyPolygon, PolyPolyline,
and TextOut functions are recorded.See AlsoEndPath, FillPath, PathToRegion, SelectClipPath, StrokeAndFillPath, StrokePath,

WidenPath

BeginUpdateResource
The BeginUpdateResource function returns a handle that can be used by the UpdateResource
function to add, delete, or replace resources in an executable file.

HANDLE BeginUpdateResource(
LPCTSTR pFileName, // pointer to file in which to update resources
BOOL bDeleteExistingResources // deletion option

);ParameterspFileName
Pointer to a null-terminated string that specifies a Windows executable file in which to update
resources. An application must be able to obtain write access to this file; it cannot be currently
executing. If pFileName does not specify a full path, Windows searches for the file in the
current directory.

bDeleteExistingResources
Specifies whether to delete the pFileName parameter's existing resources. If this parameter is
TRUE, existing resources are deleted and the updated executable file includes only resources
added with the UpdateResource function. If this parameter is FALSE, the updated executable
file includes existing resources unless they are explicitly deleted or replaced by using
UpdateResource.

Return ValuesIf the function succeeds, the return value is a handle that can be used by the UpdateResource
and EndUpdateResource functions. The return value is NULL if the specified file is not an
executable file, the executable file is already loaded, the file does not exist, or the file cannot be
opened for writing. To get extended error information, call GetLastError.See AlsoEndUpdateResource, UpdateResource

BitBlt
The BitBlt function performs a bit-block transfer of the color data corresponding to a rectangle of
pixels from the specified source device context into a destination device context.

BOOL BitBlt(
HDC hdcDest, // handle to destination device context
int nXDest, // x-coordinate of destination rectangle's upper-left corner
int nYDest, // y-coordinate of destination rectangle's upper-left corner
int nWidth, // width of destination rectangle
int nHeight, // height of destination rectangle
HDC hdcSrc, // handle to source device context
int nXSrc, // x-coordinate of source rectangle's upper-left corner
int nYSrc, // y-coordinate of source rectangle's upper-left corner
DWORD dwRop // raster operation code

);ParametershdcDest
Identifies the destination device context.

nXDest
Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

nYDest
Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth
Specifies the logical width of the source and destination rectangles.

nHeight
Specifies the logical height of the source and the destination rectangles.

hdcSrc
Identifies the source device context.

nXSrc
Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nYSrc
Specifies the logical y-coordinate of the upper-left corner of the source rectangle.

dwRop
Specifies a raster-operation code. These codes define how the color data for the source
rectangle is to be combined with the color data for the destination rectangle to achieve the
final color.
The following list shows some common raster operation codes:

Value Description
BLACKNESS Fills the destination rectangle using the color

associated with index 0 in the physical palette.
(This color is black for the default physical
palette.)

DSTINVERT Inverts the destination rectangle.
MERGECOPY Merges the colors of the source rectangle with

the specified pattern by using the Boolean AND
operator.

MERGEPAINT Merges the colors of the inverted source
rectangle with the colors of the destination
rectangle by using the Boolean OR operator.

NOTSRCCOPY Copies the inverted source rectangle to the
destination.

NOTSRCERASE Combines the colors of the source and
destination rectangles by using the Boolean OR
operator and then inverts the resultant color.

PATCOPY Copies the specified pattern into the destination
bitmap.

PATINVERT Combines the colors of the specified pattern with
the colors of the destination rectangle by using
the Boolean XOR operator.

PATPAINT Combines the colors of the pattern with the
colors of the inverted source rectangle by using
the Boolean OR operator. The result of this
operation is combined with the colors of the
destination rectangle by using the Boolean OR
operator.

SRCAND Combines the colors of the source and
destination rectangles by using the Boolean
AND operator.

SRCCOPY Copies the source rectangle directly to the
destination rectangle.

SRCERASE Combines the inverted colors of the destination
rectangle with the colors of the source rectangle
by using the Boolean AND operator.

SRCINVERT Combines the colors of the source and
destination rectangles by using the Boolean
XOR operator.

SRCPAINT Combines the colors of the source and
destination rectangles by using the Boolean OR
operator.

WHITENESS Fills the destination rectangle using the color
associated with index 1 in the physical palette.
(This color is white for the default physical
palette.)

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a rotation or shear transformation is in effect in the source device context, BitBlt returns an
error. If other transformations exist in the source device context (and a matching transformation is
not in effect in the destination device context), the rectangle in the destination device context is
stretched, compressed, or rotated as necessary.

If the color formats of the source and destination device contexts do not match, the BitBlt function
converts the source color format to match the destination format.

When an enhanced metafile is being recorded, an error occurs if the source device context
identifies an enhanced-metafile device context.

Not all devices support the BitBlt function. For more information, see the RC_BITBLT raster
capability entry in GetDeviceCaps.

BitBlt returns an error if the source and destination device contexts represent different devices.See AlsoGetDeviceCaps, MaskBlt, PlgBlt, StretchBlt

BringWindowToTop
The BringWindowToTop function brings the specified window to the top of the Z order. If the
window is a top-level window, it is activated. If the window is a child window, the top-level parent
window associated with the child window is activated.

BOOL BringWindowToTop(
HWND hWnd // handle to window

);ParametershWnd
Identifies the window to bring to the top of the Z order.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksUse the BringWindowToTop function to uncover any window that is partially or completely
obscured by other windows.

Calling this function is similar to calling the SetWindowPos function to change a window's
position in the Z order. BringWindowToTop does not make a window a top-level window.

If an application is not in the foreground and wants to be in the foreground, it should call the
SetForegroundWindow function.See AlsoSetWindowPos, SetActiveWindow, SetForegroundWindow

BroadcastSystemMessage
[Now Supported on Windows NT]

The BroadcastSystemMessage function sends a message to the specified recipients. The
recipients can be applications, installable drivers, Windows-based network drivers, system-level
device drivers, or any combination of these system components.

long BroadcastSystemMessage(
DWORD dwFlags,
LPDWORD lpdwRecipients,
UINT uiMessage,
WPARAM wParam,
LPARAM lParam

);ParametersdwFlags
Option flags. Can be a combination of the following values:

Value Meaning
BSF_FLUSHDISK Flush the disk after each recipient

processes the message.
BSF_FORCEIFHUNG Continue to broadcast the message,

even if the time-out period elapses or
one of the recipients is hung..

BSF_IGNORECURRENTTASK Do not send the message to windows
that belong to the current task. This
prevents an application from receiving
its own message.

BSF_NOHANG Force a hung application to time out.
If one of the recipients times out, do
not continue broadcasting the
message.

BSF_NOTIMEOUTIFNOTHUNG Wait for a response to the message,
as long as the recipient is not hung.
Do not time out.

BSF_POSTMESSAGE Post the message. Do not use in
combination with BSF_QUERY.

BSF_QUERY Send the message to one recipient at
a time, sending to a subsequent
recipient only if the current recipient
returns TRUE.

lpdwRecipients
Pointer to a variable that contains and receives information about the recipients of the
message. The variable can be a combination of the following values:

Value Meaning
BSM_ALLCOMPONENTS Broadcast to all system components.
BSM_ALLDESKTOPS Windows NT only: Broadcast to all

desktops. Requires the
SE_TCB_NAME privilege.

BSM_APPLICATIONS Broadcast to applications.
BSM_INSTALLABLEDRIVERS Windows 95: Broadcast to installable

drivers.
Windows NT: This value is not
meaningful.

BSM_NETDRIVER Windows 95: Broadcast to Windows-
based network drivers.
Windows NT: This value is not
meaningful.

BSM_VXDS Windows 95: Broadcast to all system-

level device drivers.
Windows NT: This value is not
meaningful.

When the function returns, this variable receives a combination of these values
identifying which recipients actually received the message.
If this parameter is NULL, the function broadcasts to all components.

uiMessage
Identifier of the system message.

wParam
32-bit message-specific value.

lParam
32-bit message-specific value.

Return ValuesIf the function succeeds, the return value is a positive value.

If the function is unable to broadcast the message, the return value is - 1.

If the dwFlags parameter is BSF_QUERY and at least one recipient returned
BROADCAST_QUERY_DENY to the corresponding message, the return value is zero.RemarksIf BSF_QUERY is not specified, the function sends the specified message to all requested
recipients, ignoring values returned by those recipients.

BrowseCallbackProc
[Now Supported on Windows NT]

Specifies an application-defined callback function used with the SHBrowseForFolder function.
The browse dialog box calls this function to notify it about events. The BFFCALLBACK type
defines a pointer to this callback function.

int BrowseCallbackProc(
HWND hwnd,
UINT uMsg,
LPARAM lParam,
LPARAM lpData

);Parametershwnd
Handle to the browse dialog box. The callback function can send the following messages to
this window:

BFFM_ENABLEOK Enables the OK button if the wParam
parameter is nonzero or disables it if
wParam is zero.

BFFM_SETSELECTIONSelects the specified folder. The lParam
parameter is the PIDL of the folder to
select if wParam is FALSE, or it is the
path of the folder otherwise.

BFFM_SETSTATUSTEXTSets the status text to the null-terminated
string specified by the lParam parameter.

uMsg
Value identifying the event. This parameter can be one of the following values:

BFFM_INITIALIZED The browse dialog box has finished
initializing. lpData is NULL.

BFFM_SELCHANGED The selection has changed. lpData is a
pointer to the item identifier list for the
newly selected folder.

lParam
Message-specific value. For more information, see the description of uMsg.

lpData
Application-defined value that was specified in the lParam member of the BROWSEINFO
structure.

Return ValuesReturns zero.See AlsoBROWSEINFO

BuildCommDCB
The BuildCommDCB function fills a specified DCB structure with values specified in a device-
control string. The device-control string uses the syntax of the mode command.

BOOL BuildCommDCB(
LPCTSTR lpDef, // pointer to device-control string
LPDCB lpDCB // pointer to device-control block

);ParameterslpDef
Pointer to a null-terminated string that specifies device-control information. The string must
have the same form as the mode command's command-line arguments. For example, the
following string specifies a baud rate of 1200, no parity, 8 data bits, and 1 stop bit:
baud=1200 parity=N data=8 stop=1
The device name is ignored if it is included in the string, but it must specify a valid device, as
follows:COM1: baud=1200 parity=N data=8 stop=1For further information on mode command syntax, refer to the end-user documentation for
your operating system.

lpDCB
Pointer to a DCB structure to be filled in.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe BuildCommDCB function adjusts only those members of the DCB structure that are
specifically affected by the lpDef parameter, with the following exceptions:

· If the specified baud rate is 110, the function sets the stop bits to 2 to remain compatible
with the Windows NT or MS-DOS mode command.

· By default, BuildCommDCB disables XON/XOFF and hardware flow control. To enable
flow control, you must explicitly set the appropriate members of the DCB structure.

The BuildCommDCB function only fills in the members of the DCB structure. To apply these
settings to a serial port, use the SetCommState function.

There are older and newer forms of the mode command syntax. The BuildCommDCB function
supports both forms. However, you cannot mix the two forms together.

The newer form of the mode command syntax lets you explicitly set the values of the flow control
members of the DCB structure. If you use an older form of the mode syntax, the
BuildCommDCB function sets the flow control members of the DCB structure, as follows:

· For a string such as 96,n,8,1 or any other older-form mode string that doesn't end with an
x or a p:
fInX, fOutX,fOutXDsrFlow,and fOutXCtsFlow are all set to FALSE
fDtrControl is set to DTR_CONTROL_ENABLE
fRtsControl is set to RTS_CONTROL_ENABLE

· For a string such as 96,n,8,1,x or any other older-form mode string that finishes with an x:
fInX, fOutX are both set to TRUE
fOutXDsrFlow,fOutXCtsFlow are both set to FALSE.
fDtrControl is set to DTR_CONTROL_ENABLE
fRtsControl is set to RTS_CONTROL_ENABLE

· For a string such as 96,n,8,1,p or any other older-form mode string that finishes with a p:
fInX, fOutX are both set to FALSE
fOutXDsrFlow,fOutXCtsFlow are both set to TRUE.
fDtrControl is set to DTR_CONTROL_HANDSHAKE
fRtsControl is set to RTS_CONTROL_HANDSHAKE

See AlsoDCB, SetCommState

BuildCommDCBAndTimeouts
The BuildCommDCBAndTimeouts function translates a device-definition string into appropriate
device-control block codes and then places these codes into a device control block. The function
can also set up time-out values, including the possibility of no time-outs, for a device; the
function's behavior in this regard varies based on the contents of the device-definition string.

BOOL BuildCommDCBAndTimeouts(
LPCTSTR lpDef, // pointer to the device-control string
LPDCB lpDCB, // pointer to the device-control block
LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm. time-out structure

);ParameterslpDef
Pointer to a null-terminated string that specifies device-control information for the device. The
function takes this string, parses it, and then sets appropriate values in the DCB structure
pointed to by lpDCB.

lpDCB
Pointer to a DCB structure that the function fills with information from the device-control
information string pointed to by lpDef. This DCB structure defines the control settings for a
communications device.

lpCommTimeouts
Pointer to a COMMTIMEOUTS structure that the function can use to set device time-out
values.
The BuildCommDcbAndTimeouts function modifies its time-out setting behavior based on
the presence or absence of a "TO=xxx" substring in the string specified by lpDef:
· If that string contains the substring "TO=ON", the function sets up total read and write

time-out values for the device based on the time-out structure pointed to by
lpCommTimeouts.

· If that string contains the substring "TO=OFF", the function sets up the device with no
time-outs.

· If that string contains neither of the aforementioned "TO=xxx" substrings, the function
ignores the time-out structure pointed to by lpCommTimeouts. The time-out structure will
not be accessed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoBuildCommDCB, COMMTIMEOUTS, DCB, GetCommTimeouts, SetCommTimeouts

BuildExplicitAccessWithName
[New - Windows NT]

The BuildExplicitAccessWithName function initializes an EXPLICIT_ACCESS structure with
data specified by the caller. The trustee is identified by a name string.

VOID BuildExplicitAccessWithName(
PEXPLICIT_ACCESS pExplicitAccess, // pointer to the structure to initialize
LPTSTR pTrusteeName, // name of the trustee to put in the structure
DWORD AccessPermissions, // access mask to put in the structure
ACCESS_MODE AccessMode, // access mode to put in the structure
DWORD Inheritance // inheritance type to put in the structure

);ParameterspExplicitAccess
Pointer to an EXPLICIT_ACCESS structure to initialize. BuildExplicitAccessWithName
does not allocate any memory. If this parameter is NULL, the function does nothing.

pTrusteeName
Pointer to a null-terminated string that contains the name of the trustee for the ptstrName
member of the TRUSTEE structure. The BuildExplicitAccessWithName function sets the
other members of the TRUSTEE structure as follows:

Member Value
pMultipleTrustee NULL
MultipleTrusteeOperation NO_MULTIPLE_TRUSTEE
TrusteeForm TRUSTEE_IS_NAME
TrusteeType TRUSTEE_IS_UNKNOWN

AccessPermissions
Specifies an access mask for the grfAccessPermissions member of the
EXPLICIT_ACCESS structure. The mask is a set of bit flags that use the ACCESS_MASK
format to specify the access rights that an ACE allows, denies, or audits for the trustee. The
functions that use the EXPLICIT_ACCESS structure do not convert, interpret, or validate the
bits in this mask.

AccessMode
Specifies an access mode for the grfAccessMode member of the EXPLICIT_ACCESS
structure. The access mode indicates whether the ACE allows, denies, or audits the specified
rights. This parameter contains values from the ACCESS_MODE enumeration.

Inheritance
Specifies an inheritance type for the grfInheritance member of the EXPLICIT_ACCESS
structure. This value is a set of bit flags that determines whether other containers or objects
can inherit the ACE from the primary object to which the ACL is attached. The value of this
member corresponds to the inheritance portion (low-order byte) of the AceFlags member of
the ACE_HEADER structure. This parameter can be NO_INHERITANCE to indicate that the
ACE is not inheritable,or it can be a combination of the following values.

Value Meaning
CONTAINER_INHERIT_ACE

Other containers that are contained by the primary object
inherit the ACE.

INHERIT_ONLY_ACE
The ACE does not apply to the primary object to which
the ACL is attached, but objects contained by the primary
object inherit the ACE.

NO_PROPAGATE_INHERIT_ACE
The OBJECT_INHERIT_ACE and
CONTAINER_INHERIT_ACE flags are not propagated to
an inherited ACE.

OBJECT_INHERIT_ACE
Noncontainer objects contained by the primary object

inherit the ACE.
SUB_CONTAINERS_ONLY_INHERIT

Other containers that are contained by the primary object
inherit the ACE. This flag corresponds to the
CONTAINER_INHERIT_ACE flag.

SUB_OBJECTS_ONLY_INHERIT
Noncontainer objects contained by the primary object
inherit the ACE. This flag corresponds to the
OBJECT_INHERIT_ACE flag.

SUB_CONTAINERS_AND_OBJECTS_INHERIT
Both containers and noncontainer objects that are
contained by the primary object inherit the ACE. This flag
corresponds to the combination of the
CONTAINER_INHERIT_ACE and
OBJECT_INHERIT_ACE flags.

Return ValuesNone.See AlsoACE, ACL, EXPLICIT_ACCESS, GetExplicitEntriesFromAcl, SetEntriesInAcl, TRUSTEE

BuildImpersonateExplicitAccessWithName
[New - Windows NT]

The BuildImpersonateExplicitAccessWithName function is provided for future use. Do not call
it on Windows NT version 4.0.

BuildImpersonateTrustee
[New - Windows NT]

The BuildImpersonateTrustee function is provided for future use. Do not call it on Windows NT
version 4.0.

BuildSecurityDescriptor
[New - Windows NT]

The BuildSecurityDescriptor function allocates and initializes a new security descriptor. A
security descriptor is an opaque structure that contains the security information associated with an
object. The function can initialize the new security descriptor by merging specified security
information with the information in an existing security descriptor. If you don't specify an existing
security descriptor, the function initializes a new security descriptor based on the specified
security information.

BuildSecurityDescriptor creates a self-relative security descriptor, which means that the security
descriptor stores a SECURITY_DESCRIPTOR structure and associated security information in a
contiguous block of memory. The self-relative format makes the security descriptor suitable for
storing in a stream.

DWORD BuildSecurityDescriptor(
PTRUSTEE pOwner, // identifies owner for new security descriptor
PTRUSTEE pGroup, // identifies group for new security descriptor
ULONG cCountOfAccessEntries, // number of access-control entries in the list
PEXPLICIT_ACCESS pListOfAccessEntries, // pointer to list of access-control entries for DACL
ULONG cCountOfAuditEntries, // number of audit-control entries in the list
PEXPLICIT_ACCESS pListOfAuditEntries, // pointer to list of audit-control entries for SACL
PSECURITY_DESCRIPTOR pOldSD, // pointer to an existing security descriptor
PULONG pSizeNewSD, // pointer to the size of the new security descriptor
PSECURITY_DESCRIPTOR * pNewSD // pointer that receives the new security descriptor

);ParameterspOwner
Pointer to a TRUSTEE structure that identifies the owner for the new security descriptor. If the
structure uses the TRUSTEE_IS_NAME form, BuildSecurityDescriptor looks up the SID
associated with the specified trustee name.
If this parameter is NULL, the function uses the owner SID from the original security descriptor
pointed to by pOldSD. If pOldSD is NULL, or if the owner SID in pOldSD is NULL, the owner
SID is NULL in the new security descriptor.

pGroup
Pointer to a TRUSTEE structure that identifies the primary group SID for the new security
descriptor. If the structure uses the TRUSTEE_IS_NAME form, BuildSecurityDescriptor
looks up the SID associated with the specified trustee name.
If this parameter is NULL, the function uses the group SID from the original security descriptor
pointed to by pOldSD. If pOldSD is NULL, or if the group SID in pOldSD is NULL, the group
SID is NULL in the new security descriptor.

cCountOfAccessEntries
Specifies the number of EXPLICIT_ACCESS structures in the pListOfAccessEntries array.

pListOfAccessEntries
Pointer to an array of EXPLICIT_ACCESS structures that describe access control information
for the DACL of the new security descriptor. The function creates the new DACL by merging
the information in the array with the DACL in pOldSD, if any. If pOldSD is NULL, or if the
DACL in pOldSD is NULL, the function creates a new DACL based solely on the information
in the array. For a description of the rules for creating an ACL from an array of
EXPLICIT_ACCESS structures, see the SetEntriesInAcl function.
If pListOfAccessEntries is NULL, the new security descriptor gets the DACL from pOldSD. In
this case, if pOldSD is NULL, or if the DACL in pOldSD is NULL, the new DACL is NULL.

cCountOfAuditEntries
Specifies the number of EXPLICIT_ACCESS structures in the pListOfAuditEntries array.

pListOfAuditEntries
Pointer to an array of EXPLICIT_ACCESS structures that describe audit control information
for the SACL of the new security descriptor. The function creates the new SACL by merging
the information in the array with the SACL in pOldSD, if any. If pOldSD is NULL, or the SACL
in pOldSD is NULL, the function creates a new SACL based solely on the information in the
array.

If pListOfAuditEntries is NULL, the new security descriptor gets the SACL from pOldSD. In
this case, if pOldSD is NULL, or the SACL in pOldSD is NULL, the new SACL is NULL.

pOldSD
Pointer to an existing self-relative SECURITY_DESCRIPTOR structure and its associated
security information. The function builds the new security descriptor by merging the specified
owner, group, access-control, and audit-control information with the information in this security
descriptor. This parameter can be NULL.

pSizeNewSD
Pointer to a ULONG variable that receives the size, in bytes, of the returned security
descriptor.

pNewSD
Pointer to a variable that receives a pointer to the new security descriptor. The function
allocates memory for the new security descriptor. You must call the LocalFree function to free
the returned buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksThe BuildSecurityDescriptor function is intended for trusted servers that implement or expose
security on their own objects. The function uses self-relative security descriptors suitable for
serializing into a stream and storing to disk, as a trusted server might require.See AlsoACL, EXPLICIT_ACCESS, LocalFree, SECURITY_DESCRIPTOR, SetEntriesInAcl, SID,
TRUSTEE

BuildTrusteeWithName
[New - Windows NT]

The BuildTrusteeWithName function initializes a TRUSTEE structure. The caller specifies the
trustee name. The function sets other members of the structure to default values.

VOID BuildTrusteeWithName(
PTRUSTEE pTrustee, // pointer to the structure to initialize
LPTSTR pName // name of the trustee to put in the structure

);ParameterspTrustee
Pointer to a TRUSTEE structure to initialize. The BuildTrusteeWithName function does not
allocate any memory. If this parameter is NULL, the function does nothing.

pName
Pointer to a null-terminated string that contains the name of the trustee for the ptstrName
member of the TRUSTEE structure. The BuildTrusteeWithName function sets the other
members of the TRUSTEE structure as follows:

Member Value
pMultipleTrustee NULL
MultipleTrusteeOperation NO_MULTIPLE_TRUSTEE
TrusteeForm TRUSTEE_IS_NAME
TrusteeType TRUSTEE_IS_UNKNOWN

Return ValuesNone.See AlsoBuildTrusteeWithSid, TRUSTEE

BuildTrusteeWithSid
[New - Windows NT]

The BuildTrusteeWithSid function initializes a TRUSTEE structure. The caller specifies the
security identifier (SID) of the trustee. The function sets other members of the structure to default
values. The function does not look up the name associated with the SID.

VOID BuildTrusteeWithName(
PTRUSTEE pTrustee, // pointer to the structure to initialize
PSID pSid // name of the trustee to put in the structure

);ParameterspTrustee
Pointer to a TRUSTEE structure to initialize. The BuildTrusteeWithSid function does not
allocate any memory. If this parameter is NULL, the function does nothing.

pSid
Pointer to a SID that identifies the trustee. The BuildTrusteeWithSid function assigns this
pointer to the ptstrName member of the TRUSTEE structure. The function sets the other
members of the TRUSTEE structure as follows:

Member Value
pMultipleTrustee NULL
MultipleTrusteeOperation NO_MULTIPLE_TRUSTEE
TrusteeForm TRUSTEE_IS_SID
TrusteeType TRUSTEE_IS_UNKNOWN

Return ValuesNone.See AlsoBuildTrusteeWithName, TRUSTEE

CallMsgFilter
The CallMsgFilter function passes the specified message and hook code to the hook procedures
associated with the WH_SYSMSGFILTER and WH_MSGFILTER hooks. A WH_SYSMSGFILTER
or WH_MSGFILTER hook procedure is an application-defined callback function that examines
and, optionally, modifies messages for a dialog box, message box, menu, or scroll bar.

BOOL CallMsgFilter(
LPMSG lpMsg, // pointer to structure with message data
int nCode // hook code

);ParameterslpMsg
Pointer to an MSG structure that contains the message to be passed to the hook procedures.

nCode
Specifies an application-defined code used by the hook procedure to determine how to
process the message. The code must not have the same value as system-defined hook codes
(MSGF_ and HC_) associated with the WH_SYSMSGFILTER and WH_MSGFILTER hooks.

Return ValuesIf the application should process the message further, the return value is zero.

If the application should not process the message further, the return value is nonzero.RemarksWindows calls CallMsgFilter to enable applications to examine and control the flow of messages
during internal processing of dialog boxes, message boxes, menus, and scroll bars, or when the
user activates a different window by pressing the ALT+TAB key combination.

An application installs a hook procedure by using the SetWindowsHookEx function.See AlsoMessageProc, MSG, SetWindowsHookEx, SysMsgProc

CallNamedPipe
The CallNamedPipe function connects to a message-type pipe (and waits if an instance of the
pipe is not available), writes to and reads from the pipe, and then closes the pipe.

BOOL CallNamedPipe(
LPCTSTR lpNamedPipeName, // pointer to pipe name
LPVOID lpInBuffer, // pointer to write buffer
DWORD nInBufferSize, // size, in bytes, of write buffer
LPVOID lpOutBuffer, // pointer to read buffer
DWORD nOutBufferSize, // size, in bytes, of read buffer
LPDWORD lpBytesRead, // pointer to number of bytes read
DWORD nTimeOut // time-out time, in milliseconds

);ParameterslpNamedPipeName
Pointer to a null-terminated string specifying the pipe name.

lpInBuffer
Pointer to the buffer containing the data written to the pipe.

nInBufferSize
Specifies the size, in bytes, of the write buffer.

lpOutBuffer
Pointer to the buffer that receives the data read from the pipe.

nOutBufferSize
Specifies the size, in bytes, of the read buffer.

lpBytesRead
Pointer to a 32-bit variable that receives the number of bytes read from the pipe.

nTimeOut
Specifies the number of milliseconds to wait for the named pipe to be available. In addition to
numeric values, the following special values can be specified:

Value Meaning
NMPWAIT_NOWAIT Does not wait for the named

pipe. If the named pipe is not
available, the function returns an
error.

NMPWAIT_WAIT_FOREVER Waits indefinitely.
NMPWAIT_USE_DEFAULT_WAIT Uses the default time-out

specified in a call to the
CreateNamedPipe function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksCalling CallNamedPipe is equivalent to calling the CreateFile (or WaitNamedPipe, if CreateFile
cannot open the pipe immediately), TransactNamedPipe, and CloseHandle functions.
CreateFile is called with an access flag of GENERIC_READ | GENERIC_WRITE, an inherit
handle flag of FALSE, and a share mode of zero (indicating no sharing of this pipe instance).

If the message written to the pipe by the server process is longer than nOutBufferSize,
CallNamedPipe returns FALSE, and GetLastError returns ERROR_MORE_DATA. The
remainder of the message is discarded, because CallNamedPipe closes the handle to the pipe
before returning.

CallNamedPipe fails if the pipe is a byte-type pipe.See AlsoCloseHandle, CreateFile, CreateNamedPipe, TransactNamedPipe, WaitNamedPipe

CallNextHookEx
The CallNextHookEx function passes the hook information to the next hook procedure in the
current hook chain. This function supersedes the DefHookProc function.

LRESULT CallNextHookEx(
HHOOK hhk, // handle to current hook
int nCode, // hook code passed to hook procedure
WPARAM wParam, // value passed to hook procedure
LPARAM lParam // value passed to hook procedure

);Parametershhk
Identifies the current hook. An application receives this handle as a result of a previous call to
the SetWindowsHookEx function.

nCode
Specifies the hook code passed to the current hook procedure. The next hook procedure uses
this code to determine how to process the hook information.

wParam
Specifies the wParam value passed to the current hook procedure. The meaning of this
parameter depends on the type of hook associated with the current hook chain.

lParam
Specifies the lParam value passed to the current hook procedure. The meaning of this
parameter depends on the type of hook associated with the current hook chain.

Return ValuesIf the function succeeds, the return value is the value returned by the next hook procedure in the
chain. The current hook procedure must also return this value. The meaning of the return value
depends on the hook type. For more information, see the descriptions of the individual hook
procedures.RemarksHook procedures are installed in chains for particular hook types. CallNextHookEx calls the next
hook in the chain.

Calling CallNextHookEx is optional. A hook procedure can call this function either before or after
processing the hook information. If a hook procedure does not call CallNextHookEx, Windows
does not call the hook procedures installed before the current hook procedure was installed.See AlsoSetWindowsHook, SetWindowsHookEx, UnhookWindowsHook, UnhookWindowsHookEx

CallWindowProc
The CallWindowProc function passes message information to the specified window procedure.

LRESULT CallWindowProc(
WNDPROC lpPrevWndFunc, // pointer to previous procedure
HWND hWnd, // handle to window
UINT Msg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParameterslpPrevWndFunc
Pointer to the previous window procedure.
If this value is obtained by calling the GetWindowLong function with the nIndex parameter
set to GWL_WNDPROC or DWL_DLGPROC, it is actually either the address of a window or
dialog box procedure, or a handle representing that address.

hWnd
Identifies the window procedure to receive the message.

Msg
Specifies the message.

wParam
Specifies additional message-specific information. The contents of this parameter depend on
the value of the Msg parameter.

lParam
Specifies additional message-specific information. The contents of this parameter depend on
the value of the Msg parameter.

Return ValuesThe return value specifies the result of the message processing and depends on the message
sent.RemarksUse the CallWindowProc function for window subclassing. Usually, all windows with the same
class share one window procedure. A subclass is a window or set of windows with the same class
whose messages are intercepted and processed by another window procedure (or procedures)
before being passed to the window procedure of the class.

The SetWindowLong function creates the subclass by changing the window procedure
associated with a particular window, causing Windows to call the new window procedure instead
of the previous one. An application must pass any messages not processed by the new window
procedure to the previous window procedure by calling CallWindowProc. This allows the
application to create a chain of window procedures.

If STRICT is defined, the lpPrevWndFunc parameter has the data type WNDPROC. The
WNDPROC type is declared as follows:LRESULT (CALLBACK* WNDPROC) (HWND, UINT, WPARAM, LPARAM);If STRICT is not defined, the lpPrevWndFunc parameter has the data type FARPROC. The
FARPROC type is declared as follows:int (FAR WINAPI * FARPROC) ()In C, the FARPROC declaration indicates a callback function that has an unspecified parameter
list. In C++, however, the empty parameter list in the declaration indicates that a function has no
parameters. This subtle distinction can break careless code. Following is one way to handle this
situation:#ifdef STRICT

WNDPROC MyWindowProcedure
#else
FARPROC MyWindowProcedure

#endif
...

lResult = CallWindowProc(MyWindowProcedure, ...) ;For further information about functions declared with empty argument lists, refer to The C++
Programming Language, Second Edition, by Bjarne Stroustrup.

Windows NT: The CallWindowProc function handles Unicode-to-ANSI conversion. You don't get
the conversion if you call the window procedure directly.See AlsoFARPROC, GetWindowLong, SetClassLong, SetWindowLong, WNDPROC

CallWndProc
The CallWndProc hook procedure is an application-defined or library-defined callback function
that the system calls whenever the SendMessage function is called. Before passing the message
to the destination window procedure, the system passes the message to the hook procedure. The
hook procedure can examine the message; it cannot modify it.

CallWndProc is a placeholder for the application-defined or library-defined function name.

LRESULT CALLBACK CallWndProc(
int nCode, // hook code
WPARAM wParam, // current-process flag
LPARAM lParam // address of structure with message data

);ParametersnCode
Specifies whether the hook procedure must process the message. If nCode is HC_ACTION,
the hook procedure must process the message. If nCode is less than zero, the hook
procedure must pass the message to the CallNextHookEx function without further processing
and should return the value returned by CallNextHookEx.

wParam
Specifies whether the message is sent by the current process. If the message is sent by the
current process, it is nonzero; otherwise, it is NULL.

lParam
Pointer to a CWPSTRUCT structure that contains details about the message.

Return ValuesThe return value should be zero.RemarksThe CallWndProc hook procedure can examine the message, but it cannot modify it. After the
hook procedure returns control to the system, the message is passed to the window procedure.

An application installs the hook procedure by specifying the WH_CALLWNDPROC hook type and
the address of the hook procedure in a call to the SetWindowsHookEx function.

The WM_CALLWNDPROC hook is called in the context of the thread that calls SendMessage,
not the thread that receives the message.See AlsoCallNextHookEx, CWPSTRUCT, SendMessage, SetWindowsHookEx

CallWndRetProc
[Now Supported on Windows NT]

The CallWndRetProc hook procedure is an application-defined or library-defined callback
function the system calls after the SendMessage function is called. After passing the message to
the destination window procedure, the system passes the message to the hook procedure. The
hook procedure can examine the message; it cannot modify it.

LRESULT CALLBACK CallWndRetProc(
int nCode, // hook code
WPARAM wParam, // current-process flag
LPARAM lParam // address of structure with message data

);ParametersnCode
Specifies whether the hook procedure must process the message. If nCode is HC_ACTION,
the hook procedure must process the message. If nCode is less than zero, the hook
procedure must pass the message to the CallNextHookEx function without further processing
and should return the value returned by CallNextHookEx.

wParam
Specifies whether the message is sent by the current process. If the message is sent by the
current process, it is nonzero; otherwise, it is NULL.

lParam
Points to a CWPRETSTRUCT structure that contains details about the message.

Return ValuesThe return value should be zero.RemarksAn application installs the hook procedure by specifying the WH_CALLWNDPROCRET hook type
and the address of the hook procedure in a call to the SetWindowsHookEx function.

CallWndRetProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, CallWndProc, CWPRETSTRUCT, SendMessage, SetWindowsHookEx

CancelDC
The CancelDC function cancels any pending operation on the specified device context (DC).

BOOL CancelDC(
HDC hdc // handle to device context

);Parametershdc
Identifies the DC.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe CancelDC function is used by multithreaded applications to cancel lengthy drawing
operations. If thread A initiates a lengthy drawing operation, thread B may cancel that operation
by calling this function.

If an operation is canceled, the affected thread returns an error and the result of its drawing
operation is undefined. The results are also undefined if no drawing operation was in progress
when the function was called.See AlsoCreateThread, GetCurrentThread

CancelIO
[New - Windows NT]

The CancelIO function cancels all pending input and output (I/O) operations that were issued by
the calling thread for the specified file handle. The function does not cancel I/O operations issued
for the file handle by other threads.

BOOL CancelIO(
HANDLE hFile // file handle for which to cancel I/O

);ParametershFile
Handle to a file. The function cancels all pending I/O operations for this file handle.

Return ValuesIf the function succeeds, the return value is nonzero All pending I/O operations issued by the
calling thread for the file handle were successfully canceled.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf there are any I/O operations in progress for the specified file handle, and they were issued by
the calling thread, the CancelIO function cancels them.

Note that the I/O operations must have been issued as overlapped I/O. If they were not, the I/O
operations would not have returned to allow the thread to call the CancelIO function. Calling the
CancelIO function with a file handle that was not opened with FILE_FLAG_OVERLAPPED does
nothing.

All I/O operations that are canceled will complete with the error
ERROR_OPERATION_ABORTED. All completion notifications for the I/O operations will occur
normally.See AlsoCreateFile, DeviceIoControl, LockFileEx, ReadDirectoryChangesW, ReadFile, ReadFileEx,
WriteFile, WriteFileEx

CancelWaitableTimer
[New - Windows NT]

The CancelWaitableTimer function sets the specified "waitable" timer to the inactive state.

BOOL CancelWaitableTimer(
HANDLE hTimer // handle to a timer object

);ParametershTimer
Identifies the timer object. The CreateWaitableTimer or OpenWaitableTimer function returns
this handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CancelWaitableTimer function does not change the signaled state of the timer. It stops the
timer before it can be set to the signaled state. Therefore, threads performing a wait operation on
the timer remain waiting until they time out or the timer is reactivated and its state is set to
signaled.

To reactivate the timer, call the SetWaitableTimer function.See AlsoCreateWaitableTimer, OpenWaitableTimer, SetWaitableTimer

CascadeWindows
[Now Supported on Windows NT]

The CascadeWindows function cascades the specified windows or the child windows of the
specified parent window.

WORD WINAPI CascadeWindows(
HWND hwndParent, // handle to parent window
UINT wHow, // types of windows not to arrange
CONST RECT *lpRect, // rectangle to arrange windows in
UINT cKids, // number of windows to arrange
const HWND FAR *lpKids // array of window handles

);ParametershwndParent
Identifies the parent window. If this parameter is NULL, the desktop window is assumed.

wHow
Specifies a cascade flag. The only flag currently available, MDITILE_SKIPDISABLED,
prevents disabled MDI child windows from being cascaded.

lpRect
Pointer to a SMALL_RECT structure that specifies the rectangular area, in screen
coordinates, within which the windows are arranged. This parameter can be NULL, in which
case the client area of the parent window is used.

cKids
Specifies the number of elements in the array specified by the lpKids parameter. This
parameter is ignored if lpKids is NULL.

lpKids
Pointer to an array of window handles identifying the windows to arrange. If this parameter is
NULL, the child windows of the specified parent window (or of the desktop window) are
arranged.

Return ValuesIf the function succeeds, the return value is the number of windows arranged.

If the function fails, the return value is zero.See AlsoSMALL_RECT

CBTProc
The CBTProc hook procedure is an application-defined or library-defined callback function that
the system calls before activating, creating, destroying, minimizing, maximizing, moving, or sizing
a window; before completing a system command; before removing a mouse or keyboard event
from the system message queue; before setting the keyboard focus; or before synchronizing with
the system message queue. The value returned by the hook procedure determines whether
Windows allows or prevents one of these operations. A computer-based training (CBT) application
uses this hook procedure to receive useful notifications from the system.

LRESULT CALLBACK CBTProc(
int nCode, // hook code
WPARAM wParam, // depends on hook code
LPARAM lParam // depends on hook code

);ParametersnCode
Specifies a code that the hook procedure uses to determine how to process the message.
This parameter can be one of the following values:

Value Meaning
HCBT_ACTIVATE The system is about to activate a window.
HCBT_CLICKSKIPPED The system has removed a mouse

message from the system message
queue. Upon receiving this hook code, a
CBT application must install a
WH_JOURNALPLAYBACK hook
procedure in response to the mouse
message.

HCBT_CREATEWND A window is about to be created. The
system calls the hook procedure before
sending the WM_CREATE or
WM_NCCREATE message to the window.
If the hook procedure returns a nonzero
value, the system destroys the window;
the CreateWindow function returns NULL,
but the WM_DESTROY message is not
sent to the window. If the hook procedure
returns zero, the window is created
normally.
At the time of the HCBT_CREATEWND
notification, the window has been created,
but its final size and position may not have
been determined and its parent window
may not have been established. It is
possible to send messages to the newly
created window, although it has not yet
received WM_NCCREATE or
WM_CREATE messages. It is also
possible to change the position in the Z
order of the newly created window by
modifying the hwndInsertAfter member of
the CBT_CREATEWND structure.

HCBT_DESTROYWND A window is about to be destroyed.
HCBT_KEYSKIPPED The system has removed a keyboard

message from the system message
queue. Upon receiving this hook code, a
CBT application must install a
WH_JOURNALPLAYBACK_hook hook
procedure in response to the keyboard
message.

HCBT_MINMAX A window is about to be minimized or
maximized.

HCBT_MOVESIZE A window is about to be moved or sized.
HCBT_QS The system has retrieved a

WM_QUEUESYNC message from the
system message queue.

HCBT_SETFOCUS A window is about to receive the keyboard
focus.

HCBT_SYSCOMMAND A system command is about to be carried
out. This allows a CBT application to
prevent task switching by means of hot
keys.

If nCode is less than zero, the hook procedure must pass the message to the
CallNextHookEx function without further processing and should return the value returned by
CallNextHookEx.

wParam
Depends on the nCode parameter. For details, see the following Remarks section.

lParam
Depends on the nCode parameter. For details, see the following Remarks section.

Return ValuesFor operations corresponding to the following CBT hook codes, the return value must be 0 to
allow the operation, or 1 to prevent it:
HCBT_ACTIVATE
HCBT_CREATEWND
HCBT_DESTROYWND
HCBT_MINMAX
HCBT_MOVESIZE
HCBT_SETFOCUS

HCBT_SYSCOMMAND

For operations corresponding to the following CBT hook codes, the return value is ignored:
HCBT_CLICKSKIPPED
HCBT_KEYSKIPPED

HCBT_QSRemarksThe hook procedure should not install a WH_JOURNALPLAYBACK_hook hook procedure except
in the situations described in the preceding list of hook codes.

This hook procedure must be in a dynamic-link library (DLL). An application installs the hook
procedure by specifying the WH_CBT hook type and the address of the hook procedure in a call
to the SetWindowsHookEx function.

The following table describes the wParam and lParam parameters for each HCBT_ hook code:

Value wParam lParam

HCBT_ACTIVATE Specifies the
handle to the
window about to
be activated.

Specifies a long pointer to a
CBTACTIVATESTRUCT
structure containing the
handle to the active window
and specifies whether the
activation is changing
because of a mouse click.

HCBT_CLICKSKIPPEDIdentifies the
mouse message
removed from the
system message
queue.

Specifies a long pointer to a
MOUSEHOOKSTRUCT
structure containing the hit-
test code and the handle to
the window for which the
mouse message is intended.
The HCBT_CLICKSKIPPED
value is sent to a CBTProc
hook procedure only if a
WH_MOUSE hook is
installed. For a list of hit-test
codes, see
WM_NCHITTEST .

HCBT_CREATEWND Specifies the Specifies a long pointer to a

handle to the new
window.

CBT_CREATEWND
structure containing
initialization parameters for
the window. The parameters
include the coordinates and
dimensions of the window.
By changing these
parameters, a CBTProc
hook procedure can set the
initial size and position of the
window.

HCBT_DESTROYWND Specifies the
handle to the
window about to
be destroyed.

Is undefined and must be set
to zero.

HCBT_KEYSKIPPED Identifies the
virtual-key code.

Specifies the repeat count,
scan code, key-transition
code, previous key state,
and context code. The
HCBT_KEYSKIPPED value
is sent to a CBTProc hook
procedure only if a
WH_KEYBOARD hook is
installed. For more
information, see the
WM_KEYUP or
WM_KEYDOWN message.

HCBT_MINMAX Specifies the
handle to the
window being
minimized or
maximized.

Specifies, in the low-order
word, a show-window value
(SW_) specifying the
operation. For a list of show-
window values, see the
ShowWindow. The high-
order word is undefined.

HCBT_MOVESIZE Specifies the
handle to the
window to be
moved or sized.

Specifies a long pointer to a
RECT structure containing
the coordinates of the
window. By changing the
values in the structure, a
CBTProc hook procedure
can set the final coordinates
of the window.

HCBT_QS Is undefined and
must be zero.

Is undefined and must be
zero.

HCBT_SETFOCUS Specifies the
handle to the
window gaining
the keyboard
focus.

Specifies the handle to the
window losing the keyboard
focus.

HCBT_SYSCOMMANDSpecifies a
system-command
value (SC_)
specifying the
system command.
For more
information about
system-command
values, see
WM_SYSCOMMAND.

Contains the same data as
the lParam value of a
WM_SYSCOMMAND
message: If a system menu
command is chosen with the
mouse, the low-order word
contains the x-coordinate of
the cursor, in screen
coordinates, and the high-
order word contains the y-
coordinate; otherwise, the
parameter is not used.

CBTProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, CreateWindow, SetWindowsHookEx, WM_SYSCOMMAND

CCHookProc
A CCHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Color common dialog box. The hook procedure receives messages or
notifications intended for the default dialog box procedure.

UINT APIENTRY CCHookProc(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Color dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to a
CHOOSECOLOR structure containing the values specified when the dialog was created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the ChooseColor function to create a Color dialog box, you can provide a
CCHookProc hook procedure to process messages or notifications intended for the dialog box
procedure. To enable the hook procedure, use the CHOOSECOLOR structure that you passed to
the dialog creation function. Specify the address of the hook procedure in the lpfnHook member
and specify the CC_ENABLEHOOK flag in the Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

CCHookProc is a placeholder for the application-defined or library-defined function name. The
LPCCHOOKPROC type is a pointer to a CCHookProc hook procedure.See AlsoChooseColor, CHOOSECOLOR, EndDialog, PostMessage, WM_INITDIALOG,
WM_CTLCOLORDLG

CFHookProc
A CFHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Font common dialog box. The hook procedure receives messages or
notifications intended for the default dialog box procedure.

UINT APIENTRY CFHookProc(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Font dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to a
CHOOSEFONT structure containing the values specified when the common dialog box was
created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the ChooseFont function to create a Font dialog box, you can provide a
CFHookProc hook procedure to process messages or notifications intended for the dialog box
procedure. To enable the hook procedure, use the CHOOSEFONT structure that you passed to
the dialog creation function. Specify the address of the hook procedure in the lpfnHook member
and specify the CF_ENABLEHOOK flag in the Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

CFHookProc is a placeholder for the application-defined or library-defined function name. The
LPCFHOOKPROC type is a pointer to an CFHookProc hook procedure.See AlsoChooseFont, CHOOSEFONT, EndDialog, PostMessage, WM_INITDIALOG,
WM_CTLCOLORDLG

ChangeClipboardChain
The ChangeClipboardChain function removes a specified window from the chain of clipboard
viewers.

BOOL ChangeClipboardChain(
HWND hWndRemove, // handle to window to remove
HWND hWndNewNext // handle to next window

);ParametershWndRemove
Identifies the window to be removed from the chain. The handle must have been passed to
the SetClipboardViewer function.

hWndNewNext
Identifies the window that follows the hWndRemove window in the clipboard viewer chain.
(This is the handle returned by SetClipboardViewer, unless the sequence was changed in
response to a WM_CHANGECBCHAIN message.)

Return ValuesThe return value indicates the result of passing the WM_CHANGECBCHAIN message to the
windows in the clipboard viewer chain. Because a window in the chain typically returns FALSE
when it processes WM_CHANGECBCHAIN, the return value from ChangeClipboardChain is
typically FALSE. If there is only one window in the chain, the return value is typically TRUE.RemarksThe window identified by hWndNewNext replaces the hWndRemove window in the chain. The
SetClipboardViewer function sends a WM_CHANGECBCHAIN message to the first window in
the clipboard viewer chain.See AlsoSetClipboardViewer, WM_CHANGECBCHAIN

ChangeDisplaySettings
The ChangeDisplaySettings function changes the display settings to the specified graphics
mode.

LONG ChangeDisplaySettings(
LPDEVMODE lpDevMode,
DWORD dwflags

);ParameterslpDevMode
Pointer to a DEVMODE structure that describes the graphics mode to switch to. The dmSize
member must be initialized to the size, in bytes, of the DEVMODE structure. The following
fields in the DEVMODE structure are used:

Member Meaning
dmBitsPerPel Bits per pixel
dmPelsWidth Pixel width
dmPelsHeight Pixel height
dmDisplayFlags Mode flags
dmDisplayFrequency Mode frequency

In addition to setting a value in one or more of the preceding DEVMODE members, you
must also set the appropriate flags in the dmFields member. The flags indicate which
members of the DEVMODE structure are used for the display settings change. If the
appropriate bit is not set in dmFields, the display setting will not be changed. Set one or more
of the following flags:

Flag Meaning
DM_BITSPERPEL Use the dmBitsPerPel value.
DM_PELSWIDTH Use the dmPelsWidth value.
DM_PELSHEIGHT Use the dmPelsHeight value.
DM_DISPLAYFLAGS Use the dmDisplayFlags value.
DM_DISPLAYFREQENCY Use the dmDisplayFrequency

value.

If lpDevMode is NULL, all the values currently in the registry will be used for the display
setting. Passing NULL for the lpDevMode parameter is the easiest way to return to the default
mode after a dynamic mode change.

dwflags
Indicates how the graphics mode should be changed. May be one of the following:

Flag Meaning
0 The graphics mode for the current

screen will be changed
dynamically.

CDS_UPDATEREGISTRY The graphics mode for the current
screen will be changed
dynamically and the graphics
mode will be updated in the
registry. The mode information is
stored in the USER profile.

CDS_TEST The system tests if the requested
graphics mode could be set.

If CDS_UPDATEREGISTRY is specified and it is possible to change the graphics mode
dynamically, the information is stored in the registry and
DISP_CHANGE_SUCCESSFUL is returned. If it is not possible to change the graphics
mode dynamically, the information is stored in the registry and
DISP_CHANGE_RESTART is returned.
Windows NT: If the information could not be stored in the registry, the graphics mode is not
changed and DISP_CHANGE_NOTUPDATED is returned.

Specifying CDS_TEST allows an application to determine which graphics modes are actually
valid, without causing the system to change to that graphics mode.

Return ValuesReturns one of the following values:

Value Meaning

DISP_CHANGE_SUCCESSFUL The settings change was
successful.

DISP_CHANGE_RESTART The computer must be restarted in
order for the graphics mode to
work.

DISP_CHANGE_BADFLAGS An invalid set of flags was passed
in.

DISP_CHANGE_FAILED The display driver failed the
specified graphics mode.

DISP_CHANGE_BADMODE The graphics mode is not
supported.

DISP_CHANGE_NOTUPDATED Windows NT only: Unable to write
settings to the registry.

RemarksUsing the DEVMODE returned by the EnumDisplaySettings function ensures that the
DEVMODE passed to ChangeDisplaySettings is valid and contains only values supported by the
display driver.

When the display mode is changed dynamically, the WM_DISPLAYCHANGE message is sent to
all running applications with the following message parameters:

Parameters Meaning

wParam New bits per pixel
LOWORD(lParam) New pixel width
HIWORD(lParam) New pixel height
See AlsoCreateDC, DEVMODE, EnumDisplaySettings, WM_DISPLAYCHANGE

ChangeMenu
The ChangeMenu function has been replaced by the following specialized functions, which are
available on both Windows NT and Windows 95:

Function Description

AppendMenu Appends a menu item to the end of a menu.
InsertMenu Inserts a menu item into a menu.
ModifyMenu Modifies a menu item in a menu.
RemoveMenu Removes a menu item from a menu; if it is a pop-

up item, the corresponding pop-up menu is not
destroyed.

Windows 95:
Instead of using AppendMenu, InsertMenu, and ModifyMenu, applications written
exclusively for Window 95 should use the following new functions, which are available only on
Windows 95.

Function Description
GetMenuItemInfoGets information about a menu item.
InsertMenuItem Inserts a new menu item at the specified

position in a menu bar or pop-up menu.
SetMenuItemInfo Changes information about a menu item.

Applications written for versions earlier than Windows 3.0 can continue to call
ChangeMenu. Applications written for Windows versions 3.0 and later should call these new
functions.

ChangeServiceConfig
The ChangeServiceConfig function changes the configuration parameters of a service.

BOOL ChangeServiceConfig(
SC_HANDLE hService, // handle to service
DWORD dwServiceType, // type of service
DWORD dwStartType, // when to start service
DWORD dwErrorControl, // severity if service fails to start
LPCTSTR lpBinaryPathName, // pointer to service binary file name
LPCTSTR lpLoadOrderGroup, // pointer to load ordering group name
LPDWORD lpdwTagId, // pointer to variable to get tag identifier
LPCTSTR lpDependencies, // pointer to array of dependency names
LPCTSTR lpServiceStartName, // pointer to account name of service
LPCTSTR lpPassword, // pointer to password for service account
LPCTSTR lpDisplayName // pointer to display name

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function
and must have SERVICE_CHANGE_CONFIG access.

dwServiceType
A set of bit flags that specify the type of service. Specify SERVICE_NO_CHANGE if you are
not changing the existing service type; otherwise, specify one of the following service type
flags to indicate the service type. In addition, if you specify either of the SERVICE_WIN32
flags, you can also specify the SERVICE_INTERACTIVE_PROCESS flag to enable the
service process to interact with the desktop.

Value Meaning
SERVICE_WIN32_OWN_PROCESS A service type flag that specifies

a Win32 service that runs in its
own process.

SERVICE_WIN32_SHARE_PROCESSA service type flag that specifies
a Win32 service that shares a
process with other services.

SERVICE_KERNEL_DRIVER A service type flag that specifies
a Windows NT device driver.

SERVICE_FILE_SYSTEM_DRIVER A service type flag that specifies
a Windows NT file system
driver.

SERVICE_INTERACTIVE_PROCESSA flag that enables a Win32
service process to interact with
the desktop.

dwStartType
Specifies when to start the service. This value can be the service type
SERVICE_NO_CHANGE if the existing start type is not modified, or one of the following
values can be specified:

Value Meaning
SERVICE_BOOT_START Specifies a device driver started by

the operating system loader. This
value is valid only if the service type
is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_SYSTEM_START Specifies a device driver started by
the IoInitSystem function. This
value is valid only if the service type
is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_AUTO_START Specifies a device driver or Win32
service started by the service control
manager automatically during

system startup.
SERVICE_DEMAND_START Specifies a device driver or Win32

service started by the service control
manager when a process calls the
StartService function.

SERVICE_DISABLED Specifies a device driver or Win32
service that can no longer be
started.

dwErrorControl
Specifies the severity of the error if this service fails to start during startup, and determines the
action taken by the startup program if failure occurs. One of the following values can be
specified:

Value Meaning
SERVICE_ERROR_IGNORE The startup (boot) program logs the

error but continues the startup
operation.

SERVICE_ERROR_NORMAL The startup program logs the error
and puts up a message box pop-up
but continues the startup operation.

SERVICE_ERROR_SEVERE The startup program logs the error. If
the last-known-good configuration is
being started, the startup operation
continues. Otherwise, the system is
restarted with the last-known-good
configuration.

SERVICE_ERROR_CRITICAL The startup program logs the error, if
possible. If the last-known-good
configuration is being started, the
startup operation fails. Otherwise,
the system is restarted with the last-
known good configuration.

SERVICE_NO_CHANGE The existing StartType value is not to
be changed.

lpBinaryPathName
Pointer to a null-terminated string that contains the fully qualified path to the service binary
file. If the pointer is NULL, the path is not modified.

lpLoadOrderGroup
Pointer to a null-terminated string that names the load ordering group of which this service is a
member. If the pointer is NULL, the group is not modified. If it points to an empty string, the
service does not belong to a group.
The registry has a list of load ordering groups located at
HKEY_LOCAL_MACHINES\System\CurrentControlSet
\Control\ServiceGroupOrder.
The startup program uses this list to load groups of services in a specified order with respect
to the other groups in the list. You can place a service in a group so that another service can
depend on the group.
The order in which a service starts is determined by the following criteria:

1. The order of groups in the registry's load-ordering group list. Services in groups in the
load-ordering group list are started first, followed by services in groups not in the load-
ordering group list, and then services that do not belong to a group.

2. The service's dependencies listed in the lpDependencies parameter and the
dependencies of other services dependent on the service.

lpdwTagId
Pointer to a 32-bit variable that receives a unique tag value for this service in the group
specified in the lpLoadOrderGroup parameter. If no tag is requested, this parameter can be
NULL.
You can use a tag for ordering service startup within a load ordering group by specifying a tag
order vector in the registry located at

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control\GroupOrderList.
Tags are only evaluated for SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER type services that have SERVICE_BOOT_START or
SERVICE_SYSTEM_START start types.

lpDependencies
Pointer to an array of null-separated names of services or load ordering groups that must start
before this service. The array is double null-terminated. If the pointer is NULL, the
dependencies are not modified. If it points to an empty string, the service has no
dependencies. If a group name is specified, it must be prefixed by the
SC_GROUP_IDENTIFIER character (defined in the WINSVC.H files) to differentiate it from a
service name, because services and service groups share the same name space.
Dependency on a service means that this service can only run if the service it depends on is
running. Dependency on a group means that this service can run if at least one member of the
group is running after an attempt to start all members of the group.

lpServiceStartName
Pointer to a null-terminated string. If NULL is specified, the name is not modified. If the service
type is SERVICE_WIN32_OWN_PROCESS, this name is the account name in the form of
"DomainName\Username", which the service process will be logged on as when it runs. If the
account belongs to the built-in domain, ".\Username" can be specified. Services of type
SERVICE_WIN32_SHARE_PROCESS are not allowed to specify an account other than
LocalSystem.
If the service type is SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER,
this name is the Windows NT driver object name (that is, \FileSystem\Rdr or \Driver\Xns),
which the input and output (I/O) system uses to load the device driver. If NULL is specified,
the driver is run with a default object name created by the I/O system, based on the service
name.

lpPassword
Pointer to a null-terminated string that contains the password to the account name specified
by the lpServiceStartName parameter if the service type is
SERVICE_WIN32_OWN_PROCESS or SERVICE_WIN32_SHARE_PROCESS. If the pointer
is NULL, the password is not modified. If it points to an empty string, the service has no
password. If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, this parameter is ignored.

lpDisplayName
Pointer to a null-terminated string that is to be used by user interface programs to identify the
service. This string has a maximum length of 256 characters. The name is case-preserved in
the Service Control Manager. Display name comparisons are always case-insensitive.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with
SERVICE_CHANGE_CONFIG access.

ERROR_CIRCULAR_DEPENDENCY
A circular service dependency was specified.

ERROR_DUP_NAME
The display name already exists in the service controller's
database, either as a service name or as another display
name.

ERROR_INVALID_HANDLE
The specified handle is invalid.

ERROR_INVALID_PARAMETER
A parameter that was specified is invalid.

ERROR_INVALID_SERVICE_ACCOUNT
The account name does not exist, or a service is
specified to share the same binary file as an already
installed service but with an account name that is not

the same as the installed service.
ERROR_SERVICE_MARKED_FOR_DELETE

The service has been marked for deletion.
RemarksThe ChangeServiceConfig function changes the configuration information for the specified

service in the service control manager database. This configuration information is initially specified
by the CreateService function and can be queried (except for the password parameter) by using
the QueryServiceConfig function.

Any of the configuration parameters specified for this function can be left unchanged by specifying
NULL for a string parameter or SERVICE_NO_CHANGE for a doubleword parameter.

If the configuration is changed for a service that is running, with the exception of lpDisplayName,
the changes do not take effect until the service is stopped.See AlsoCreateService, OpenService, QueryServiceConfig, StartService

CharLower
The CharLower function converts a character string or a single character to lowercase. If the
operand is a character string, the function converts the characters in place. This function
supersedes the AnsiLower function.

LPTSTR CharLower(
LPTSTR lpsz // single character or pointer to string

);Parameterslpsz
Pointer to a null-terminated string or specifies a single character. If the high-order word of this
parameter is zero, the low-order word must contain a single character to be converted.

Return ValuesIf the operand is a character string, the function returns a pointer to the converted string. Since the
string is converted in place, the return value is equal to lpsz.

If the operand is a single character, the return value is a 32-bit value whose high-order word is
zero, and low-order word contains the converted character.

There is no indication of success or failure. Failure is rare.RemarksWindows NT: To make the conversion, the function uses the language driver for the current
language selected by the user at setup or by using the Control Panel. If no language has been
selected, Windows completes the conversion by using internal default mapping. The conversion is
made based on the code page associated with the process locale.

Windows 95: The function makes the conversion based on the information associated with the
user's default locale, which is the locale selected by the user at setup or by using the Control
Panel. Windows 95 does not have language drivers.See AlsoCharLowerBuff, CharUpper, CharUpperBuff

CharLowerBuff
The CharLowerBuff function converts uppercase characters in a buffer to lowercase characters.
The function converts the characters in place. The function supersedes the AnsiLowerBuff
function.

DWORD CharLowerBuff(
LPTSTR lpsz, // pointer to buffer containing characters to process
DWORD cchLength // number of bytes or characters to process

);Parameterslpsz
Pointer to a buffer containing one or more characters to process.

cchLength
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the buffer
pointed to by lpsz.
The function examines each character, and converts uppercase characters to lowercase
characters. The function examines the number of bytes or characters indicated by cchLength,
even if one or more characters are null characters.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) processed.

For example, if CharLowerBuff("Acme of Operating Systems", 10) succeeds, the return value is
10.RemarksWindows NT: To make the conversion, the function uses the language driver for the current
language selected by the user at setup or by using the Control Panel. If no language has been
selected, Windows completes the conversion by using internal default mapping. The conversion is
made based on the code page associated with the process locale.

Windows 95: The function makes the conversion based on the information associated with the
user's default locale, which is the locale selected by the user at setup or by using the Control
Panel. Windows 95 does not have language drivers.See AlsoCharLower, CharUpper, CharUpperBuff

CharNext
The CharNext function returns a pointer to the next character in a string. This function
supersedes the AnsiNext function.

LPTSTR CharNext(
LPCTSTR lpsz // pointer to current character

);Parameterslpsz
Pointer to a character in a null-terminated string.

Return ValuesIf the function succeeds, the return value is a pointer to the next character in the string, or to the
terminating null character if at the end of the string.

If lpsz points to the terminating null character, the return value is equal to lpsz.See AlsoCharNextExA, CharPrev

CharNextExA
[Now Supported on Windows NT]

The CharNextExA function retrieves the pointer to the next character in a string. This function can
handle strings consisting of either single- or multi-byte characters.

LPSTR CharNextExA(
WORD CodePage, // identifier of the code page
LPCSTR lpCurrentChar, // pointer to current character
DWORD dwFlags // reserved; must be zero

);ParametersCodePage
Identifier of the code page to use to check lead-byte ranges. Can be one of the code-page
values provided in the "Code-Page Identifiers" table in Unicode and Character Set Constants
or one of the following predefined values:

Value Meaning
0 Use system default ANSI code

page.
CP_ACP Use system default ANSI code

page.
CP_OEMCP Use system default OEM code

page.

lpCurrentChar
Pointer to a character in a null-terminated string.

dwFlags
Reserved; must be zero.

Return ValuesIf the function succeeds, the return value is a pointer to the next character in the string, or to the
terminating null character if at the end of the string.

If lpCurrentChar points to the terminating null character, the return value is equal to
lpCurrentChar.See AlsoCharNext, CharPrevExA

CharPrev
The CharPrev function returns a pointer to the preceding character in a string. This function
supersedes the AnsiPrev function.

LPTSTR CharPrev(
LPCTSTR lpszStart, // pointer to first character
LPCTSTR lpszCurrent // pointer to current character

);ParameterslpszStart
Pointer to the beginning of the string.

lpszCurrent
Pointer to a character in a null-terminated string.

Return ValuesIf the function succeeds, the return value is a pointer to the preceding character in the string, or to
the first character in the string if the lpszCurrent parameter equals the lpszStart parameter.See AlsoCharNext, CharPrevExA

CharPrevExA
[Now Supported on Windows NT]

The CharPrevExA function retrieves the pointer to the preceding character in a string. This
function can handle strings consisting of either single- or multi-byte characters.

LPSTR CharPrevExA(
WORD CodePage, // identifier of code page
LPCSTR lpStart, // pointer to first character
LPCSTR lpCurrentChar, // pointer to current character
DWORD dwFlags // reserved; must be zero

);ParametersCodePage
Identifier of the code page to use to check lead-byte ranges. Can be one of the code-page
values provided in the "Code-Page Identifiers" table in Unicode and Character Set Constants
or one of the following predefined values:

Value Meaning
0 Use system default ANSI code

page.
CP_ACP Use system default ANSI code

page.
CP_OEMCP Use system default OEM code

page.

lpStart
Pointer to the beginning of the string.

lpCurrentChar
Pointer to a character in a null-terminated string.

dwFlags
Reserved; must be zero.

Return ValuesIf the function succeeds, the return value is a pointer to the preceding character in the string, or to
the first character in the string if the lpCurrentChar parameter equals the lpStart parameter.See AlsoCharNextExA, CharPrev

CharToOem
The CharToOem function translates a string into the OEM-defined character set. (OEM stands for
original equipment manufacturer.) This function supersedes the AnsiToOem function.

BOOL CharToOem(
LPCTSTR lpszSrc, // pointer to string to translate
LPSTR lpszDst // pointer to translated string

);ParameterslpszSrc
Pointer to the null-terminated string to translate.

lpszDst
Pointer to the buffer for the translated string. If the CharToOem function is being used as an
ANSI function, the string can be translated in place by setting the lpszDst parameter to the
same address as the lpszSrc parameter. This cannot be done if CharToOem is being used as
a wide-character function.

Return ValuesThe return value is always nonzero.See AlsoCharToOemBuff, OemToChar, OemToCharBuff

CharToOemBuff
The CharToOemBuff function translates a specified number of characters in a string into the
OEM-defined character set. (OEM stands for original equipment manufacturer.) This function
supersedes the AnsiToOemBuff function.

BOOL CharToOemBuff(
LPCTSTR lpszSrc, // pointer to string to translate
LPSTR lpszDst, // pointer to translated string
DWORD cchDstLength // length of string to translate, in characters

);ParameterslpszSrc
Pointer to the null-terminated string to translate.

lpszDst
Pointer to the buffer for the translated string. If the CharToOemBuff function is being used as
an ANSI function, the string can be translated in place by setting the lpszDst parameter to the
same address as the lpszSrc parameter. This cannot be done if CharToOemBuff is being
used as a wide-character function.

cchDstLength
Specifies the number of characters to translate in the string identified by the lpszSrc
parameter.

Return ValuesThe return value is always nonzero.See AlsoCharToOem, OemToChar, OemToCharBuff

CharUpper
The CharUpper function converts a character string or a single character to uppercase. If the
operand is a character string, the function converts the characters in place. This function
supersedes the AnsiUpper function.

LPTSTR CharUpper(
LPTSTR lpsz // single character or pointer to string

);Parameterslpsz
Pointer to a null-terminated string or specifies a single character. If the high-order word of this
parameter is zero, the low-order word must contain a single character to be converted.

Return ValuesIf the operand is a character string, the function returns a pointer to the converted string. Since the
string is converted in place, the return value is equal to lpsz.

If the operand is a single character, the return value is a 32-bit value whose high-order word is
zero, and low-order word contains the converted character.

There is no indication of success or failure. Failure is rare.RemarksWindows NT: To make the conversion, the function uses the language driver for the current
language selected by the user at setup or by using the Control Panel. If no language has been
selected, Windows completes the conversion by using internal default mapping. The conversion is
made based on the code page associated with the process locale.

Windows 95: The function makes the conversion based on the information associated with the
user's default locale, which is the locale selected by the user at setup or by using the Control
Panel. Windows 95 does not have language drivers.See AlsoCharLower, CharLowerBuff, CharUpperBuff

CharUpperBuff
The CharUpperBuff function converts lowercase characters in a buffer to uppercase characters.
The function converts the characters in place. The function supersedes the AnsiUpperBuff
function.

DWORD CharUpperBuff(
LPTSTR lpsz, // pointer to buffer containing characters to process
DWORD cchLength // number of characters to process

);Parameterslpsz
Pointer to a buffer containing one or more characters to process.

cchLength
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the buffer
pointed to by lpsz.
The function examines each character, and converts lowercase characters to uppercase
characters. The function examines the number of bytes or characters indicated by cchLength,
even if one or more characters are null characters.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) processed.

For example, if CharUpperBuff("Zenith of API Sets", 10) succeeds, the return value is 10.RemarksWindows NT: To make the conversion, the function uses the language driver for the current
language selected by the user at setup or by using the Control Panel. If no language has been
selected, Windows completes the conversion by using internal default mapping. The conversion is
made based on the code page associated with the process locale.

Windows 95: The function makes the conversion based on the information associated with the
user's default locale, which is the locale selected by the user at setup or by using the Control
Panel. Windows 95 does not have language drivers.See AlsoCharLower, CharLowerBuff, CharUpper

CheckColorsInGamut
The CheckColorsInGamut function indicates whether the specified color values are within the
gamut of the specified device.

BOOL CheckColorsInGamut(
HDC hdc,
LPVOID lpaRGBQuad,
LPVOID lpResult,
DWORD nCount

);Parametershdc
Handle to a device context.

lpaRGBQuad
Pointer to an array of RGBQUAD structures that contains the color values to check.

lpResult
Pointer to an array of bytes that receives the results of the color checking.

nCount
Count of elements in the array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksFor each specified color value, CheckColorsInGamut sets the corresponding byte in the results
buffer to either CM_IN_GAMUT or CM_OUT_OF_GAMUT.See AlsoRGBQUAD

CheckDlgButton
The CheckDlgButton function changes the check state of a button control.

BOOL CheckDlgButton(
HWND hDlg, // handle to dialog box
int nIDButton, // button-control identifier
UINT uCheck // check state

);ParametershDlg
Identifies the dialog box that contains the button.

nIDButton
Identifies the button to modify.

uCheck
Specifies the check state of the button. This parameter can be one of the following values:

Value Meaning
BST_CHECKED Sets the button state to checked.
BST_INDETERMINATESets the button state to grayed, indicating an

indeterminate state. Use this value only if the
button has the BS_3STATE or
BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to unchecked
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CheckDlgButton function sends a BM_SETCHECK message to the specified button control
in the specified dialog box.See AlsoCheckRadioButton, IsDlgButtonChecked

CheckMenuItem
The CheckMenuItem function sets the state of the specified menu item's check mark attribute to
either checked or unchecked.

The CheckMenuItem function has been superseded by the SetMenuItemInfo function. You can
still use CheckMenuItem, however, if you do not need any of the extended features of
SetMenuItemInfo.

DWORD CheckMenuItem(
HMENU hmenu, // handle to menu
UINT uIDCheckItem, // menu item to check or uncheck
UINT uCheck // menu item flags

);Parametershmenu
Identifies the menu of interest.

uIDCheckItem
Specifies the menu item whose check-mark attribute is to be set, as determined by the
uCheck parameter.

uCheck
Specifies flags that control the interpretation of the uIDCheckItem parameter and the state of
the menu item's check-mark attribute. This parameter can be a combination of either
MF_BYCOMMAND, or MF_BYPOSITION and MF_CHECKED or MF_UNCHECKED.

Value Meaning
MF_BYCOMMAND Indicates that the uIDCheckItem parameter

gives the identifier of the menu item. The
MF_BYCOMMAND flag is the default, if
neither the MF_BYCOMMAND nor
MF_BYPOSITION flag is specified.

MF_BYPOSITION Indicates that the uIDCheckItem parameter
gives the zero-based relative position of the
menu item.

MF_CHECKED Sets the check-mark attribute to the checked
state.

MF_UNCHECKED Sets the check-mark attribute to the
unchecked state.

Return ValuesThe return value specifies the previous state of the menu item (either MF_CHECKED or
MF_UNCHECKED). If the menu item does not exist, the return value is 0xFFFFFFFF.RemarksAn item in a menu bar cannot have a check mark.

The uIDCheckItem parameter identifies a item that opens a submenu or a command item. For a
item that opens a submenu, the uIDCheckItem parameter must specify the position of the item.
For a command item, the uIDCheckItem parameter can specify either the item's position or its
identifier.See AlsoEnableMenuItem, GetMenuCheckMarkDimensions, GetMenuItemID, SetMenuItemBitmaps,
SetMenuItemInfo

CheckMenuRadioItem
[Now Supported on Windows NT]

The CheckMenuRadioItem function checks a specified menu item and makes it a radio item. At
the same time, the function unchecks all other menu items in the associated group and clears the
radio-item type flag for those items.

BOOL CheckMenuRadioItem(
HMENU hmenu,
UINT idFirst,
UINT idLast,
UINT idCheck,
UINT uFlags

);Parametershmenu
Handle to the menu that contains the group of menu items.

idFirst
Identifier or position of the first menu item in the group.

idLast
Identifier or position of the last menu item in the group.

idCheck
Identifier or position of the menu item to check.

uFlags
Value specifying the meaning of idFirst, idLast, and idCheck. If this parameter is
MF_BYCOMMAND, the other parameters specify menu item identifiers. If it is
MF_BYPOSITION, the other parameters specify the menu item positions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.RemarksThe CheckMenuRadioItem function sets the MFT_RADIOCHECK type flag and the
MFS_CHECKED state for the item specified by idCheck and, at the same time, clears both flags
for all other items in the group. The checked item is displayed using a bullet bitmap instead of a
check-mark bitmap.

For more information about menu item type and state flags, see the MENUITEMINFO structure.See AlsoMENUITEMINFO

CheckRadioButton
The CheckRadioButton function adds a check mark to (checks) a specified radio button in a
group and removes a check mark from (clears) all other radio buttons in the group.

BOOL CheckRadioButton(
HWND hDlg, // handle to dialog box
int nIDFirstButton, // identifier of first radio button in group
int nIDLastButton, // identifier of last radio button in group
int nIDCheckButton // identifier of radio button to select

);ParametershDlg
Identifies the dialog box that contains the radio button.

nIDFirstButton
Specifies the identifier of the first radio button in the group.

nIDLastButton
Specifies the identifier of the last radio button in the group.

nIDCheckButton
Specifies the identifier of the radio button to select.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CheckRadioButton function sends a BM_SETCHECK message to each of the radio buttons
in the indicated group.See AlsoBM_SETCHECK, CheckDlgButton, IsDlgButtonChecked

ChildWindowFromPoint
The ChildWindowFromPoint function determines which, if any, of the child windows belonging to
a parent window contains the specified point.

HWND ChildWindowFromPoint(
HWND hWndParent, // handle to parent window
POINT Point // structure with point coordinates

);ParametershWndParent
Identifies the parent window.

Point
Specifies a POINT structure that defines the client coordinates of the point to be checked.

Return ValuesIf the function succeeds, the return value is the handle of the child window that contains the point,
even if the child window is hidden or disabled. If the point lies outside the parent window, the
return value is NULL. If the point is within the parent window but not within any child window, the
return value is the handle to the parent window.RemarksWindows maintains an internal list, containing the handles of the child windows associated with a
parent window. The order of the handles in the list depends on the Z order of the child windows. If
more than one child window contains the specified point, Windows returns the handle of the first
window in the list that contains the point.See AlsoChildWindowFromPointEx, POINT, WindowFromPoint

ChildWindowFromPointEx
[Now Supported on Windows NT]

The ChildWindowFromPointEx function determines which, if any, of the child windows belonging
to the specified parent window contains the specified point. The function can ignore invisible,
disabled, and transparent child windows.

HWND ChildWindowFromPointEx(
HWND hwndParent, // handle to parent window
POINT pt, // structure with point coordinates
UINT uFlags // skipping flags

);ParametershwndParent
Identifies the parent window.

pt
Specifies a POINT structure that defines the client coordinates of the point to be checked.

uFlags
Specifies which child windows to skip. This parameter can be a combination of the following
values:

Value Meaning
CWP_ALL Do not skip any child windows
CWP_SKIPINVISIBLE Skip invisible child windows
CWP_SKIPDISABLED Skip disabled child windows
CWP_SKIPTRANSPARENTSkip transparent child windows

Return ValuesIf the function succeeds, the return value is the handle to the first child window that contains the
point and meets the criteria specified by uFlags. If the point is within the parent window but not
within any child window that meets the criteria, the return value is the handle to the parent
window. If the point lies outside the parent window or if the function fails, the return value is NULL.RemarksWindows maintains an internal list that contains the handles of the child windows associated with
a parent window. The order of the handles in the list depends on the Z order of the child windows.
If more than one child window contains the specified point, Windows returns the handle of the first
window in the list that contains the point and meets the criteria specified by uFlags.See AlsoChildWindowFromPoint, POINT, WindowFromPoint

ChooseColor
The ChooseColor function creates a Color common dialog box that enables the user to select a
color.

BOOL ChooseColor(
LPCHOOSECOLOR lpcc // pointer to structure with initialization data

);Parameterslpcc
Pointer to a CHOOSECOLOR structure that contains information used to initialize the dialog
box. When ChooseColor returns, this structure contains information about the user's color
selection.

Return ValuesIf the user clicks the OK button of the dialog box, the return value is nonzero. The rgbResult
member of the CHOOSECOLOR structure contains the RGB color value of the color selected by
the user.

If the user cancels or closes the Color dialog box or an error occurs, the return value is zero. To
get extended error information, call the CommDlgExtendedError function, which can return one
of the following values:

CDERR_FINDRESFAILURE CDERR_MEMLOCKFAILURE

CDERR_INITIALIZATION CDERR_NOHINSTANCE
CDERR_LOCKRESFAILURE CDERR_NOHOOK
CDERR_LOADRESFAILURE CDERR_NOTEMPLATE
CDERR_LOADSTRFAILURE CDERR_STRUCTSIZE
CDERR_MEMALLOCFAILURE
RemarksThe Color dialog box does not support palettes. The color choices offered by the dialog box are

limited to the system colors and dithered versions of those colors.

You can provide a CCHookProc hook procedure for a Color dialog box. The hook procedure can
process messages sent to the dialog box. To enable a hook procedure, set the
CC_ENABLEHOOK flag in the Flags member of the CHOOSECOLOR structure and specify the
address of the hook procedure in the lpfnHook member.See AlsoCCHookProc, CHOOSECOLOR, CommDlgExtendedError

ChooseFont
The ChooseFont function creates a Font common dialog box that enables the user to choose
attributes for a logical font. These attributes include a typeface name, style (bold, italic, or regular)
, point size, effects (underline, strikeout, and text color), and a script (or character set).

BOOL ChooseFont(
LPCHOOSEFONT lpcf // pointer to structure with initialization data

);Parameterslpcf
Pointer to a CHOOSEFONT structure that contains information used to initialize the dialog
box. When ChooseFont returns, this structure contains information about the user's font
selection.

Return ValuesIf the user clicks the OK button of the dialog box, the return value is nonzero. The members of the
CHOOSEFONT structure indicate the user's selections.

If the user cancels or closes the Font dialog box or an error occurs, the return value is zero. To
get extended error information, call the CommDlgExtendedError function, which can return one
of the following values:

CDERR_FINDRESFAILURE CDERR_NOHINSTANCE

CDERR_INITIALIZATION CDERR_NOHOOK
CDERR_LOCKRESFAILURE CDERR_NOTEMPLATE
CDERR_LOADRESFAILURE CDERR_STRUCTSIZE
CDERR_LOADSTRFAILURE CFERR_MAXLESSTHANMIN
CDERR_MEMALLOCFAILURE CFERR_NOFONTS
CDERR_MEMLOCKFAILURE
RemarksYou can provide a CFHookProc hook procedure for a Font dialog box. The hook procedure can

process messages sent to the dialog box. To enable a hook procedure, set the
CF_ENABLEHOOK flag in the Flags member of the CHOOSEFONT structure and specify the
address of the hook procedure in the lpfnHook member.

The hook procedure can send the WM_CHOOSEFONT_GETLOGFONT,
WM_CHOOSEFONT_SETFLAGS, and WM_CHOOSEFONT_SETLOGFONT messages to the
dialog box to get and set the current values and flags of the dialog box.See AlsoCFHookProc, CHOOSEFONT, CommDlgExtendedError, LOGFONT,
WM_CHOOSEFONT_GETLOGFONT, WM_CHOOSEFONT_SETFLAGS,
WM_CHOOSEFONT_SETLOGFONT

Chord
The Chord function draws a chord (a region bounded by the intersection of an ellipse and a line
segment, called a "secant"). The chord is outlined by using the current pen and filled by using the
current brush.

BOOL Chord(
HDC hdc, // handle to device context
int nLeftRect, // x-coordinate of the upper-left corner of the bounding rectangle
int nTopRect, // y-coordinate of the upper-left corner of the bounding rectangle
int nRightRect, // x-coordinate of the lower-right corner of the bounding rectangle
int nBottomRect, // y-coordinate of the lower-right corner of the bounding rectangle
int nXRadial1, // x-coordinate of the first radial's endpoint
int nYRadial1, // y-coordinate of the first radial's endpoint
int nXRadial2, // x-coordinate of the second radial's endpoint
int nYRadial2 // y-coordinate of the second radial's endpoint

);Parametershdc
Identifies the device context in which the chord appears.

nLeftRect
Specifies the x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect
Specifies the y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect
Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

nXRadial1
Specifies the x-coordinate of the endpoint of the radial defining the beginning of the chord.

nYRadial1
Specifies the y-coordinate of the endpoint of the radial defining the beginning of the chord.

nXRadial2
Specifies the x-coordinate of the endpoint of the radial defining the end of the chord.

nYRadial2
Specifies the y-coordinate of the endpoint of the radial defining the end of the chord.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe curve of the chord is defined by an ellipse that fits the specified bounding rectangle. The
curve begins at the point where the ellipse intersects the first radial and extends counterclockwise
to the point where the ellipse intersects the second radial. (A radial is a line segment drawn from
the center of the ellipse to a specified endpoint on the ellipse.) The chord is closed by drawing a
line from the intersection of the first radial and the curve to the intersection of the second radial
and the curve.

If the starting point and ending point of the curve are the same, a complete ellipse is drawn.

The current position is neither used nor updated by Chord.

Windows 95: The sum of the coordinates of the bounding rectangle cannot exceed 32,767. The
sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed 32,
767.See AlsoAngleArc, Arc, ArcTo, Pie

ClearCommBreak
The ClearCommBreak function restores character transmission for a specified communications
device and places the transmission line in a nonbreak state.

BOOL ClearCommBreak(
HANDLE hFile // handle to communications device

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA communications device is placed in a break state by the SetCommBreak or
EscapeCommFunction function. Character transmission is then suspended until the break state
is cleared by calling ClearCommBreak.See AlsoClearCommError, CreateFile, EscapeCommFunction, SetCommBreak

ClearCommError
The ClearCommError function retrieves information about a communications error and reports
the current status of a communications device. The function is called when a communications
error occurs, and it clears the device's error flag to enable additional input and output (I/O)
operations.

BOOL ClearCommError(
HANDLE hFile, // handle to communications device
LPDWORD lpErrors, // pointer to variable to receive error codes
LPCOMSTAT lpStat // pointer to buffer for communications status

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpErrors
Points to a 32-bit variable to be filled with a mask indicating the type of error. This parameter
can be one or more of the following error codes:

Value Meaning
CE_BREAK The hardware detected a break condition.
CE_DNS Windows 95 only: A parallel device is not

selected.
CE_FRAME The hardware detected a framing error.
CE_IOE An I/O error occurred during communications with

the device.
CE_MODE The requested mode is not supported, or the

hFile parameter is invalid. If this value is
specified, it is the only valid error.

CE_OOP Windows 95 only: A parallel device signaled that
it is out of paper.

CE_OVERRUN A character-buffer overrun has occurred. The
next character is lost.

CE_PTO Windows 95 only: A time-out occurred on a
parallel device.

CE_RXOVER An input buffer overflow has occurred. There is
either no room in the input buffer, or a character
was received after the end-of-file (EOF)
character.

CE_RXPARITY The hardware detected a parity error.
CE_TXFULL The application tried to transmit a character, but

the output buffer was full.

lpStat
Points to a COMSTAT structure in which the device's status information is returned. If lpStat is
NULL, no status information is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a communications port has been set up with a TRUE value for the fAbortOnError member of
the setup DCB structure, the communications software will terminate all read and write operations
on the communications port when a communications error occurs. No new read or write
operations will be accepted until the application acknowledges the communications error by
calling the ClearCommError function.

The ClearCommError function fills the status buffer pointed to by the lpStat parameter with the
current status of the communications device specified by the hFile parameter.See AlsoClearCommBreak, COMSTAT, CreateFile, DCB

ClearEventLog
The ClearEventLog function clears the specified event log, and optionally saves the current copy
of the logfile to a backup file.

BOOL ClearEventLog(
HANDLE hEventLog, // handle to event log
LPCTSTR lpBackupFileName // name of backup file

);ParametershEventLog
Identifies the event log to be cleared. This handle is returned by the OpenEventLog function.

lpBackupFileName
Points to the null-terminated string specifying the name of a file in which a current copy of the
event logfile will be placed. If this file already exists, the function fails.
The backup filename may contain a server name to save the backup file on a remote server.
If the lpBackupFileName parameter is NULL, the current event logfile is not backed up.

Return ValuesIf the function succeeds, the return value is nonzero. The specified event log has been backed up
(if lpBackupFileName is not NULL) and then cleared.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ClearEventLog function fails if the event log is empty.

After this function returns, any handles that reference the cleared event log cannot be used to
read the log.

If the backup filename specifies a remote server, the event log handle must identify a log on the
local computer. You cannot back up an event logfile from a remote server to a file on a remote
server (even if the backup file and the original log are on the same server).

The ClearEventLog function is used to optionally back up an existing logfile of the module
represented by hEventLog. The function backs up the logfile to another file, and then clears the
existing logfile. The caller must have write permission for the path specified, and must also have
permission to move the current logfile. If a file already exists with the same name as
lpBackupFileName, ClearEventLog fails.See AlsoOpenEventLog

ClientToScreen
The ClientToScreen function converts the client coordinates of a specified point to screen
coordinates.

BOOL ClientToScreen(
HWND hWnd, // window handle for source coordinates
LPPOINT lpPoint // pointer to structure containing screen coordinates

);ParametershWnd
Identifies the window whose client area is used for the conversion.

lpPoint
Points to a POINT structure that contains the client coordinates to be converted. The new
screen coordinates are copied into this structure if the function succeeds.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe ClientToScreen function replaces the client coordinates in the POINT structure with the
screen coordinates. The screen coordinates are relative to the upper-left corner of the screen.See AlsoMapWindowPoints, POINT, ScreenToClient

ClipCursor
The ClipCursor function confines the cursor to a rectangular area on the screen. If a subsequent
cursor position (set by the SetCursorPos function or the mouse) lies outside the rectangle,
Windows automatically adjusts the position to keep the cursor inside the rectangular area.

BOOL ClipCursor(
CONST RECT *lpRect // pointer to structure with rectangle

);Parameterslprc
Points to the RECT structure that contains the screen coordinates of the upper-left and lower-
right corners of the confining rectangle. If this parameter is NULL, the cursor is free to move
anywhere on the screen.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe cursor is a shared resource. If an application confines the cursor, it must release the cursor
by using ClipCursor before relinquishing control to another application.

The calling process must have WINSTA_WRITEATTRIBUTES access to the window station.See AlsoGetClipCursor, GetCursorPos, RECT, SetCursorPos

CloseClipboard
The CloseClipboard function closes the clipboard.

BOOL CloseClipboard(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen the window has finished examining or changing the clipboard, close the clipboard by calling
CloseClipboard. This enables other windows to access the clipboard.

Do not place an object on the clipboard after calling CloseClipboard.See AlsoGetOpenClipboardWindow, OpenClipboard

CloseDesktop
The CloseDesktop function closes an open handle to a desktop object. A desktop is a secure
object contained within a window station object. A desktop has a logical display surface and
contains windows, menus and hooks.

BOOL CloseDesktop(
HDESK hDesktop // handle to desktop to close

);ParametershDesktop
Identifies the desktop to be closed. This handle is returned by the CreateDesktop and
OpenDesktop functions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CloseDesktop function will fail if any thread in the calling process is using the specified
desktop handle or if the handle refers to the initial desktop of the calling process.See AlsoCreateDesktop, OpenDesktop

CloseEnhMetaFile
The CloseEnhMetaFile function closes an enhanced-metafile device context and returns a
handle that identifies an enhanced-format metafile.

HENHMETAFILE CloseEnhMetaFile(
HDC hdc // handle to an enhanced-metafile device context

);Parametershdc
Identifies an enhanced-metafile device context.

Return ValuesIf the function succeeds, the return value is a handle to an enhanced metafile.

If the function fails, the return value is NULL.RemarksAn application can use the enhanced-metafile handle returned by the CloseEnhMetaFile function
to perform the following tasks:

· Display a picture stored in an enhanced metafile
· Create copies of the enhanced metafile
· Enumerate, edit, or copy individual records in the enhanced metafile
· Retrieve an optional description of the metafile contents from the enhanced-metafile

header
· Retrieve a copy of the enhanced-metafile header
· Retrieve a binary copy of the enhanced metafile
· Enumerate the colors in the optional palette
· Convert an enhanced-format metafile into a Windows-format metafile

When the application no longer needs the enhanced metafile handle, it should release the handle
by calling the DeleteEnhMetaFile function.See AlsoCopyEnhMetaFile, CreateEnhMetaFile, DeleteEnhMetaFile, EnumEnhMetaFile,
GetEnhMetaFileBits, GetWinMetaFileBits, PlayEnhMetaFile

CloseEventLog
The CloseEventLog function closes the specified event log.

BOOL CloseEventLog(
HANDLE hEventLog // handle to event log

);ParametershEventLog
Identifies the event log to be closed. This handle is returned by the OpenEventLog function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoOpenEventLog

CloseFigure
The CloseFigure function closes an open figure in a path.

BOOL CloseFigure(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context in which the figure will be closed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CloseFigure function closes the figure by drawing a line from the current position to the first
point of the figure (usually, the point specified by the most recent call to the MoveToEx function)
and then connects the lines by using the line join style. If a figure is closed by using the LineTo
function instead of CloseFigure, end caps are used to create the corner instead of a join.

The CloseFigure function should only be called if there is an open path bracket in the specified
device context.

A figure in a path is open unless it is explicitly closed by using this function. (A figure can be open
even if the current point and the starting point of the figure are the same.)

After a call to CloseFigure, adding a line or curve to the path starts a new figure.See AlsoBeginPath, EndPath, ExtCreatePen, LineTo, MoveToEx

CloseHandle
The CloseHandle function closes an open object handle.

BOOL CloseHandle(
HANDLE hObject // handle to object to close

);ParametershObject
Identifies an open object handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CloseHandle function closes handles to the following objects:

· Console input or output
· Event file
· File mapping
· Mutex
· Named pipe
· Process
· Semaphore
· Thread
· Token (Windows NT only)

CloseHandle invalidates the specified object handle, decrements the object's handle count, and
performs object retention checks. Once the last handle to an object is closed, the object is
removed from the operating system.

This function does not close module objects.

Use CloseHandle to close handles returned by calls to the CreateFile function. Use FindClose
to close handles returned by calls to the FindFirstFile function.

Closing an invalid handle raises an exception. This includes closing a handle twice, not checking
the return value and closing an invalid handle, and using CloseHandle on a handle returned by
FindFirstFile.See AlsoCreateFile, DeleteFile, FindClose, FindFirstFile

CloseMetaFile
The CloseMetaFile function closes a metafile device context and returns a handle that identifies a
Windows-format metafile.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the CloseEnhMetaFile function.

HMETAFILE CloseMetaFile(
HDC hdc // handle to metafile device context

);Parametershdc
Identifies a metafile device context used to create a Windows-format metafile.

Return ValuesIf the function succeeds, the return value is a handle to a Windows-format metafile.

If the function fails, the return value is NULL.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should call the enhanced-
format metafile functions.

To convert a Windows-format metafile into a new enhanced-format metafile, use the
SetWinMetaFileBits function.

When an application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the DeleteMetaFile function.See AlsoBeginPath, CloseEnhMetaFile, CopyMetaFile, CreateMetaFile, DeleteMetaFile,
EnumMetaFile, GetMetaFileBitsEx, PlayMetaFile, PolyBezier, SetWinMetaFileBits,
SetWorldTransform

ClosePrinter
The ClosePrinter function closes the specified printer object.

BOOL ClosePrinter(
HANDLE hPrinter // handle to printer object

);ParametershPrinter
Handle to the printer object to be closed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen the ClosePrinter function returns, the handle hPrinter is invalid, regardless of whether the
function has succeeded or failed.See AlsoAddPrinter, OpenPrinter

CloseServiceHandle
The CloseServiceHandle function closes a handle to a service control manager database as
returned by the OpenSCManager function, or it closes a handle to a service object as returned by
either the OpenService or CreateService function.

BOOL CloseServiceHandle(
SC_HANDLE hSCObject // handle to service or service control manager database

);ParametershSCObject
Identifies the service control manager database or the service object to close.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error code may be set by the service control manager. Other error codes may be set
by registry functions that are called by the service control manager.

Value Meaning

ERROR_INVALID_HANDLEThe specified handle is invalid.
RemarksThe CloseServiceHandle function does not destroy the service control manager object referred

to by the handle. A service control manager object cannot be destroyed. A service object can be
destroyed by calling the DeleteService function.See AlsoCreateService, DeleteService, OpenSCManager, OpenService

CloseWindow
The CloseWindow function minimizes (but does not destroy) the specified window.

BOOL CloseWindow(
HWND hWnd // handle to window to minimize

);ParametershWnd
Identifies the window to be minimized.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe window is minimized by reducing it to the size of an icon and moving the window to the icon
area of the screen. Windows displays the window's icon instead of the window and draws the
window's title below the icon.

To destroy a window, an application must use the DestroyWindow function.See AlsoArrangeIconicWindows, DestroyWindow, IsIconic, OpenIcon

CloseWindowStation
The CloseWindowStation function closes an open window station handle.

BOOL CloseWindowStation(
HWINSTA hWinSta // handle to window station to close

);ParametershWinSta
Identifies the window station to be closed. This handle is returned by the
CreateWindowStation and OpenWindowStation functions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CloseWindowStation function will fail if the handle being closed is for the window station
assigned to the calling process.See AlsoSetProcessWindowStation

ColorMatchToTarget
The ColorMatchToTarget function enables or disables preview for the specified device context.
When preview is enabled, colors in subsequent output to the specified device context are
displayed as they would appear on the target device. This is useful for checking how well the
target maps the specified colors in an image. To enable preview, image color matching must be
enabled for both the target and the preview device context.

BOOL ColorMatchToTarget(
HDC hdc,
HDC hdcTarget,
DWORD uiAction

);Parametershdc
Handle to the device context to use for preview, typically the display.

hdcTarget
Handle to the target device context, typically a printer.

uiAction
This parameter can have one of the following values:

Value Meaning
CS_ENABLE Enable preview; start matching colors

through the target before displaying.
CS_DISABLE Disable preview; stop matching colors

through the target and restore the
previous method for the preview
device.

CS_DELETE_TRANSFORMDisable preview and delete the color
transformation used for previewing.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksIf you use the ColorMatchToTarget function to enable preview, your next call to this function
must be to disable preview; you must not nest calls to enable preview. While preview is enabled,
any changes you make to the color space or gamut matching method are temporarily ignored, but
take effect when preview is disabled.

This function creates a color transformation that translates colors for the target device first, then
translates colors for the preview device. You need not delete the color transformation using
CS_DELETE_TRANSFORM because the system deletes the transformation when either of the
devices is removed from the system, or when the color space is deleted. However, if the transform
is not going to be used again, an application can free up the space taken by it.

CombineRgn
The CombineRgn function combines two regions and stores the result in a third region. The two
regions are combined according to the specified mode.

int CombineRgn(
HRGN hrgnDest, // handle to destination region
HRGN hrgnSrc1, // handle to source region
HRGN hrgnSrc2, // handle to source region
int fnCombineMode // region combining mode

);ParametershrgnDest
Identifies a new region with dimensions defined by combining two other regions. (This region
must exist before CombineRgn is called.)

hrgnSrc1
Identifies the first of two regions to be combined.

hrgnSrc2
Identifies the second of two regions to be combined.

fnCombineMode
Specifies a mode indicating how the two regions will be combined. This parameter can be one
of the following values:

Value Description
RGN_AND Creates the intersection of the two combined

regions.
RGN_COPY Creates a copy of the region identified by hrgnSrc1.
RGN_DIFF Combines the parts of hrgnSrc1 that are not part of

hrgnSrc2.
RGN_OR Creates the union of two combined regions.
RGN_XOR Creates the union of two combined regions except

for any overlapping areas.
Return ValuesThe return value specifies the type of the resulting region. It can be one of the following values:

Value Meaning

NULLREGION The region is empty.
SIMPLEREGION The region is a single rectangle.
COMPLEXREGIONThe region is more than a single rectangle.
ERROR No region is created.
RemarksThe three regions need not be distinct. For example, the hrgnSrc1 parameter can equal the

hrgnDest parameter.See AlsoCreateEllipticRgn, CreateEllipticRgnIndirect, CreatePolygonRgn, CreatePolyPolygonRgn,
CreateRectRgn, CreateRectRgnIndirect, CreateRoundRectRgn

CombineTransform
The CombineTransform function concatenates two world-space to page-space transformations.

BOOL CombineTransform(
LPXFORM lpxformResult, // pointer to combined transformation
CONST XFORM *lpxform1, // pointer to first transformation
CONST XFORM *lpxform2 // pointer to second transformation

);ParameterslpxformResult
Points to an XFORM structure that receives the combined transformation.

lpxform1
Points to an XFORM structure that identifies the first transformation.

lpxform2
Points to an XFORM structure that identifies the second transformation.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksApplying the combined transformation has the same effect as applying the first transformation and
then applying the second transformation.

The three transformations need not be distinct. For example, lpxform1 can point to the same
XFORM structure as lpxformResult.See AlsoGetWorldTransform, ModifyWorldTransform, SetWorldTransform, XFORM

CommandLineToArgvW
The CommandLineToArgvW function parses a wide-character Unicode command-line string. It
returns a pointer to a set of wide-character Unicode argument strings and a count of arguments,
similar to the standard C run-time argv and argc values. The function provides a way to obtain a
Unicode set of argv and argc values from a Unicode command-line string.

LPWSTR * CommandLineToArgvW(
LPCWSTR lpCmdLine, // pointer to a command-line string
int *pNumArgs // pointer to a variable that receives the argument count

);ParameterslpCmdLine
Pointer to a null-terminated Unicode command-line string. An application will usually directly
pass on the value returned by a call to GetCommandLineW.

*pNumArgs
Pointer to an integer variable that the function sets to the count of arguments parsed.

Return ValuesIf the function succeeds, the return value is a non-NULL pointer to the constructed argument list,
which is a set of Unicode wide-character argument strings.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIt is the caller's responsibility to free the memory used by the argument list when it is no longer
needed. To free the memory, use a single call to either the GlobalFree or LocalFree function.See AlsoGetCommandLine, GlobalFree, LocalFree

CommConfigDialog
The CommConfigDialog function displays a driver-supplied configuration dialog box.

BOOL CommConfigDialog(
LPTSTR lpszName, // pointer to device name string
HWND hWnd, // handle to window
LPCOMMCONFIG lpCC // pointer to comm. configuration structure

);ParameterslpszName
Points to a null-terminated string specifying the name of the device for which a dialog box
should be displayed.

hWnd
Identifies the window that owns the dialog box. This parameter can be any valid window
handle, or it should be NULL if the dialog box is to have no owner.

lpCC
Points to a COMMCONFIG structure. This structure contains initial settings for the dialog box
before the call, and changed values after the call.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CommConfigDialog function requires a dynamic-link library (DLL) provided by the
communications hardware vendor.See AlsoCOMMCONFIG

CommDlgExtendedError
The CommDlgExtendedError function returns a common dialog box error code. This code
indicates the most recent error to occur during the execution of one of the following common
dialog box functions:

ChooseColor GetOpenFileName

ChooseFont GetSaveFileName
FindText PrintDlg
ReplaceText PageSetupDlg

DWORD CommDlgExtendedError(VOID)ParametersThis function has no parameters.Return Values
If the most recent call to a common dialog box function succeeded, the return value is undefined.

If the common dialog box function returned FALSE because the user closed or canceled the
dialog box, the return value is zero. Otherwise, the return value is a nonzero error code. For more
information, see the following Remarks section.RemarksThe CommDlgExtendedError function can return general error codes for any of the common
dialog box functions. In addition, there are error codes that are returned only for a specific
common dialog box. The error codes returned by CommDlgExtendedError are defined in the
CDERR.H file.

The following general error codes can be returned for any of the common dialog box functions:

Value Meaning

CDERR_DIALOGFAILURE The dialog box could not be created.
The common dialog box function's
call to the DialogBox function failed.
For example, this error occurs if the
common dialog box call specifies an
invalid window handle.

CDERR_FINDRESFAILURE The common dialog box function
failed to find a specified resource.

CDERR_INITIALIZATION The common dialog box function
failed during initialization. This error
often occurs when sufficient memory
is not available.

CDERR_LOADRESFAILURE The common dialog box function
failed to load a specified resource.

CDERR_LOADSTRFAILURE The common dialog box function
failed to load a specified string.

CDERR_LOCKRESFAILURE The common dialog box function
failed to lock a specified resource.

CDERR_MEMALLOCFAILURE The common dialog box function was
unable to allocate memory for internal
structures.

CDERR_MEMLOCKFAILURE The common dialog box function was
unable to lock the memory associated
with a handle.

CDERR_NOHINSTANCE The ENABLETEMPLATE flag was set
in the Flags member of the
initialization structure for the
corresponding common dialog box,
but you failed to provide a
corresponding instance handle.

CDERR_NOHOOK The ENABLEHOOK flag was set in
the Flags member of the initialization
structure for the corresponding
common dialog box, but you failed to
provide a pointer to a corresponding

hook procedure.
CDERR_NOTEMPLATE The ENABLETEMPLATE flag was set

in the Flags member of the
initialization structure for the
corresponding common dialog box,
but you failed to provide a
corresponding template.

CDERR_REGISTERMSGFAIL The RegisterWindowMessage
function returned an error code when
it was called by the common dialog
box function.

CDERR_STRUCTSIZE The lStructSize member of the
initialization structure for the
corresponding common dialog box is
invalid.

The following error codes can be returned for the PrintDlg function:

Value Meaning

PDERR_CREATEICFAILURE The PrintDlg function failed when it
attempted to create an information
context.

PDERR_DEFAULTDIFFERENT You called the PrintDlg function with
the DN_DEFAULTPRN flag specified
in the wDefault member of the
DEVNAMES structure, but the printer
described by the other structure
members did not match the current
default printer. (This error occurs
when you store the DEVNAMES
structure and the user changes the
default printer by using the Control
Panel.)
To use the printer described by the
DEVNAMES structure, clear the
DN_DEFAULTPRN flag and call
PrintDlg again.
To use the default printer, replace the
DEVNAMES structure (and the
DEVMODE structure, if one exists)
with NULL; and call PrintDlg again.

PDERR_DNDMMISMATCH The data in the DEVMODE and
DEVNAMES structures describes two
different printers.

PDERR_GETDEVMODEFAIL The printer driver failed to initialize a
DEVMODE structure. (This error code
applies only to printer drivers written
for Windows versions 3.0 and later.)

PDERR_INITFAILURE The PrintDlg function failed during
initialization, and there is no more
specific extended error code to
describe the failure. This is the
generic default error code for the
function.

PDERR_LOADDRVFAILURE The PrintDlg function failed to load
the device driver for the specified
printer.

PDERR_NODEFAULTPRN A default printer does not exist.
PDERR_NODEVICES No printer drivers were found.
PDERR_PARSEFAILURE The PrintDlg function failed to parse

the strings in the [devices] section of

the WIN.INI file.
PDERR_PRINTERNOTFOUND The [devices] section of the WIN.INI

file did not contain an entry for the
requested printer.

PDERR_RETDEFFAILURE The PD_RETURNDEFAULT flag was
specified in the Flags member of the
PRINTDLG structure, but the
hDevMode or hDevNames member
was not NULL.

PDERR_SETUPFAILURE The PrintDlg function failed to load
the required resources.

The following error codes can be returned for the ChooseFont function:

Value Meaning

CFERR_MAXLESSTHANMIN The size specified in the nSizeMax
member of the CHOOSEFONT
structure is less than the size
specified in the nSizeMin member.

CFERR_NOFONTS No fonts exist.

The following error codes can be returned for the GetOpenFileName and GetSaveFileName
functions:

Value Meaning

FNERR_BUFFERTOOSMALL The buffer pointed to by the lpstrFile
member of the OPENFILENAME
structure is too small for the filename
specified by the user. The first two
bytes of the lpstrFile buffer contain
an integer value specifying the size, in
bytes (ANSI version) or characters
(Unicode version), required to receive
the full name.

FNERR_INVALIDFILENAME A filename is invalid.
FNERR_SUBCLASSFAILURE An attempt to subclass a list box

failed because sufficient memory was
not available.

The following error code can be returned for the FindText and ReplaceText functions:

Value Meaning

FRERR_BUFFERLENGTHZEROA member of the FINDREPLACE
structure points to an invalid buffer.

See AlsoChooseColor, CHOOSECOLOR, ChooseFont, CHOOSEFONT, DEVMODE, DEVNAMES,
DialogBox, FINDREPLACE, FindText, GetOpenFileName, GetSaveFileName,
OPENFILENAME, PageSetupDlg, PAGESETUPDLG, PrintDlg, PRINTDLG,
RegisterWindowMessage, ReplaceText

CompareFileTime
The CompareFileTime function compares two 64-bit file times.

LONG CompareFileTime(
CONST FILETIME *lpFileTime1, // pointer to first file time
CONST FILETIME *lpFileTime2 // pointer to second file time

);ParameterslpFileTime1
Points to a FILETIME structure that specifies the first 64-bit file time.

lpFileTime2
Points to a FILETIME structure that specifies the second 64-bit file time.

Return ValuesIf the function succeeds, the return value is one of the following values:

Value Meaning

- 1 First file time is less than second file time.
0 First file time is equal to second file time.
+1 First file time is greater than second file time.
See AlsoGetFileTime, FILETIME

CompareString
The CompareString function compares two character strings, using the locale specified by the
given identifier as the basis for the comparison.

int CompareString(
LCID Locale, // locale identifier
DWORD dwCmpFlags, // comparison-style options
LPCTSTR lpString1, // pointer to first string
int cchCount1, // size, in bytes or characters, of first string
LPCTSTR lpString2, // pointer to second string
int cchCount2 // size, in bytes or characters, of second string

);ParametersLocale
Specifies the locale used for the comparison. This parameter can be one of the following
predefined locale identifiers:

Value Meaning
LOCALE_SYSTEM_DEFAULTThe system's default locale.
LOCALE_USER_DEFAULT The current user's default locale.

This parameter can also be a locale identifier created by the MAKELCID macro.
dwCmpFlags

A set of flags that indicate how the function compares the two strings. By default, these flags
are not set. This parameter can specify zero to get the default behavior, or it can be any
combination of the following values:

Value Meaning
NORM_IGNORECASE Ignore case.
NORM_IGNOREKANATYPE Do not differentiate between Hiragana

and Katakana characters.
Corresponding Hiragana and Katakana
characters compare as equal.

NORM_IGNORENONSPACE Ignore nonspacing characters.
NORM_IGNORESYMBOLS Ignore symbols.
NORM_IGNOREWIDTH Do not differentiate between a single-

byte character and the same character
as a double-byte character.

SORT_STRINGSORT Treat punctuation the same as
symbols.

lpString1
Points to the first string to be compared.

cchCount1
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the string
pointed to by the lpString1 parameter. If this parameter is - 1, the string is assumed to be null
terminated and the length is calculated automatically.

lpString2
Points to the second string to be compared.

cchCount2
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the string
pointed to by the lpString2 parameter. If this parameter is - 1, the string is assumed to be null
terminated and the length is calculated automatically.

Return ValuesIf the function succeeds, the return value is one of the following values:

Value Meaning

1 The string pointed to by the lpString1 parameter is less in
lexical value than the string pointed to by the lpString2
parameter.

2 The string pointed to by lpString1 is equal in lexical value to
the string pointed to by lpString2.

3 The string pointed to by lpString1 is greater in lexical value

than the string pointed to by lpString2.

If the function fails, the return value is zero. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
RemarksNotice that if the return value is 2, the two strings are "equal" in the collation sense, though not

necessarily identical.

To maintain the C run-time convention of comparing strings, the value 2 can be subtracted from a
nonzero return value. The meaning of < 0, ==0 and > 0 is then consistent with the C run times.

If the two strings are of different lengths, they are compared up to the length of the shortest one. If
they are equal to that point, then the return value will indicate that the longer string is greater. For
more information about locale identifiers, see Locale Identifiers.

Typically, strings are compared using what is called a "word sort" technique. In a word sort, all
punctuation marks and other nonalphanumeric characters, except for the hyphen and the
apostrophe, come before any alphanumeric character. The hyphen and the apostrophe are
treated differently than the other nonalphanumeric symbols, in order to ensure that words such as
"coop" and "co-op" stay together within a sorted list.

If the SORT_STRINGSORT flag is specified, strings are compared using what is called a "string
sort" technique. In a string sort, the hyphen and apostrophe are treated just like any other
nonalphanumeric symbols: they come before the alphanumeric symbols.

The following table shows a list of words sorted both ways:

Word Sort String Sort Word Sort String Sort

billet bill's t-ant t-ant
bills billet tanya t-aria
bill's bills t-aria tanya
cannot can't sued sue's
cant cannot sues sued
can't cant sue's sues
con co-op went we're
coop con were went
co-op coop we're were

The lstrcmp and lstrcmpi functions use a word sort. The CompareString and LCMapString
functions default to using a word sort, but use a string sort if their caller sets the
SORT_STRINGSORT flag.

The CompareString function is optimized to run at the highest speed when dwCmpFlags is set to
0 or NORM_IGNORECASE, and cchCount1 and cchCount2 have the value -1.

The CompareString function ignores Arabic Kashidas during the comparison. Thus, if two strings
are identical save for the presence of Kashidas, CompareString returns a value of 2; the strings
are considered "equal" in the collation sense, though they are not necessarily identical.See AlsoFoldString, GetSystemDefaultLCID, GetUserDefaultLCID, LCMapString, lstrcmp, lstrcmpi,
MAKELCID

ConfigurePort
The ConfigurePort function displays the port-configuration dialog box for a port on the specified
server.

BOOL ConfigurePort(
LPTSTR pName, // pointer to server name
HWND hWnd, // handle to parent window of the dialog box
LPTSTR pPortName // pointer to port name

);ParameterspName
Points to a null-terminated string that specifies the name of the server on which the specified
port exists. If this parameter is NULL, the port is local.

hWnd
Identifies the parent window of the port-configuration dialog box.

pPortName
Points to a null-terminated string that specifies the name of the port to be configured.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore calling the ConfigurePort function, an application should call the EnumPorts function to
determine valid port names.See AlsoEnumPorts

ConnectNamedPipe
The ConnectNamedPipe function enables a named pipe server process to wait for a client
process to connect to an instance of a named pipe. A client process connects by calling either the
CreateFile or CallNamedPipe function.

BOOL ConnectNamedPipe(
HANDLE hNamedPipe, // handle to named pipe to connect
LPOVERLAPPED lpOverlapped // pointer to overlapped structure

);ParametershNamedPipe
Identifies the server end of a named pipe instance. This handle is returned by the
CreateNamedPipe function.

lpOverlapped
Points to an OVERLAPPED structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA named pipe server process can use ConnectNamedPipe with a newly created pipe instance. It
can also be used with an instance that was previously connected to another client process; in this
case, the server process must first call the DisconnectNamedPipe function to disconnect the
handle from the previous client before the handle can be reconnected to a new client. Otherwise,
ConnectNamedPipe returns FALSE, and GetLastError returns ERROR_NO_DATA if the
previous client has closed its handle or ERROR_PIPE_CONNECTED if it has not closed its
handle.

The behavior of ConnectNamedPipe depends on two conditions: whether the pipe handle's wait
mode is set to blocking or nonblocking and whether the function is set to execute synchronously
or in overlapped mode. A server initially specifies a pipe handle's wait mode in the
CreateNamedPipe function, and it can be changed by using the SetNamedPipeHandleState
function.

If hNamedPipe was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must
not be NULL. It must point to a valid OVERLAPPED structure. If hNamedPipe was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report that
the connect operation is complete.

If hNamedPipe was created with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the
OVERLAPPED structure pointed to by lpOverlapped must contain a handle to a manual-reset
event object (which the server can create by using the CreateEvent function).

If hNamedPipe was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the
function does not return until a client is connected or an error occurs. Successful synchronous
operations result in the function returning TRUE if a client connects after the function is called. If a
client connects before the function is called, the function returns FALSE and GetLastError returns
ERROR_PIPE_CONNECTED. This can happen if a client connects in the interval between the
call to CreateNamedPipe and the call to ConnectNamedPipe. In this situation, there is a good
connection between client and server, even though the function returns FALSE.

If hNamedPipe was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL,
the operation executes asynchronously. The function returns immediately with a return value of
FALSE. If a client process connects before the function is called, GetLastError returns
ERROR_PIPE_CONNECTED. Otherwise, GetLastError returns ERROR_IO_PENDING, which
indicates that the operation is executing in the background. When this happens, the event object
in the OVERLAPPED structure is set to the nonsignaled state before ConnectNamedPipe
returns, and it is set to the signaled state when a client connects to this instance of the pipe.

The server process can use any of the wait functions or SleepEx ¾ to determine when the state
of the event object is signaled, and it can then use the GetOverlappedResult function to
determine the results of the ConnectNamedPipe operation.

If the specified pipe handle is in nonblocking mode, ConnectNamedPipe always returns
immediately. In nonblocking mode, ConnectNamedPipe returns TRUE the first time it is called for
a pipe instance that is disconnected from a previous client. This indicates that the pipe is now
available to be connected to a new client process. In all other situations when the pipe handle is in
nonblocking mode, ConnectNamedPipe returns FALSE. In these situations, GetLastError

returns ERROR_PIPE_LISTENING if no client is connected, ERROR_PIPE_CONNECTED if a
client is connected, and ERROR_NO_DATA if a previous client has closed its pipe handle but the
server has not disconnected. Note that a good connection between client and server exists only
after the ERROR_PIPE_CONNECTED error is received.

Note that nonblocking mode is supported for compatibility with Microsoft LAN Manager version 2.
0, and it should not be used to achieve asynchronous input and output (I/O) with named pipes.See AlsoCallNamedPipe, CreateEvent, CreateFile, CreateNamedPipe, DisconnectNamedPipe,
GetOverlappedResult, SetNamedPipeHandleState, SleepEx, OVERLAPPED

ConnectToPrinterDlg
The ConnectToPrinterDlg function displays a dialog box that lets users browse and connect to
printers on a network. If the user selects a printer, the function attempts to create a connection to
it; if a suitable driver is not installed on the server, the user is given the option of creating a printer
locally.

HANDLE ConnectToPrinterDlg (
HWND hwnd, // handle to parent window of dialog box
DWORD Flags // reserved for future use, must be zero

);Parametershwnd
Specifies the parent window of the dialog box.

Flags
This parameter is reserved for future use. Set it to zero.

Return ValuesIf the function succeeds and the user selects a printer, the return value is a handle to the selected
printer.

If the function fails, or the user cancels the dialog box without selecting a printer, the return value
is NULL.RemarksThe ConnectToPrinterDlg function attempts to create a connection to the selected printer.
However, if the server on which the printer resides does not have a suitable driver installed, the
function offers the user the option of creating a printer locally. A calling application can determine
whether the function has created a printer locally by calling GetPrinter with a PRINTER_INFO_2
structure, then examining that structure's Attributes member.

An application should call DeletePrinter to delete a local printer. An application should call
DeletePrinterConnection to delete a connection to a printer.See AlsoAddPrinterConnection, ClosePrinter, DeletePrinter, DeletePrinterConnection, GetPrinter,
PRINTER_INFO_2

ContinueDebugEvent
The ContinueDebugEvent function enables a debugger to continue a thread that previously
reported a debugging event.

BOOL ContinueDebugEvent(
DWORD dwProcessId, // process to continue
DWORD dwThreadId, // thread to continue
DWORD dwContinueStatus // continuation status

);ParametersdwProcessId
Identifies the process to continue.

dwThreadId
Identifies the thread to continue. The combination of process identifier and thread identifier
must identify a thread that has previously reported a debugging event.

dwContinueStatus
Specifies how to continue the thread that reported the debugging event.
If the DBG_CONTINUE flag is specified for this parameter and the thread specified by the
dwThreadId parameter previously reported an EXCEPTION_DEBUG_EVENT debugging
event, the function stops all exception processing and continues the thread. For any other
debugging event, this flag simply continues the thread.
If the DBG_EXCEPTION_NOT_HANDLED flag is specified for this parameter and the thread
specified by dwThreadId previously reported an EXCEPTION_DEBUG_EVENT debugging
event, the function continues exception processing. If this is a first-chance exception event,
the search and dispatch logic of the structured exception handler is used; otherwise, the
process is terminated. For any other debugging event, this flag simply continues the thread.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOnly the thread that created dwProcessId with the CreateProcess function can call
ContinueDebugEvent.

After the ContinueDebugEvent function succeeds, the specified thread continues. Depending on
the debugging event previously reported by the thread, different actions occur. If the continued
thread previously reported an EXIT_THREAD_DEBUG_EVENT debugging event,
ContinueDebugEvent closes the handle the debugger has to the thread. If the continued thread
previously reported an EXIT_PROCESS_DEBUG_EVENT debugging event,
ContinueDebugEvent closes the handles the debugger has to the process and to the thread.See AlsoCreateProcess

ControlService
The ControlService function sends a control code to a Win32 service.

BOOL ControlService(
SC_HANDLE hService, // handle to service
DWORD dwControl, // control code
LPSERVICE_STATUS lpServiceStatus // pointer to service status structure

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function.
The access required for this handle depends on the dwControl code requested.

dwControl
Specifies the requested control code. This value can be one of the standard control codes in
the table, or it can be a user-defined control code in the range of 128 to 255, inclusive. For
user-defined control codes, the hService handle must have
SERVICE_USER_DEFINED_CONTROL access, and the service defines the action
associated with the control code.

Value Meaning
SERVICE_CONTROL_STOP

Requests the service to stop. The hService handle must
have SERVICE_STOP access.

SERVICE_CONTROL_PAUSE
Requests the service to pause. The hService handle
must have SERVICE_PAUSE_CONTINUE access.

SERVICE_CONTROL_CONTINUE
Requests the paused service to resume. The hService
handle must have SERVICE_PAUSE_CONTINUE
access.

SERVICE_CONTROL_INTERROGATE
Requests the service to update immediately its current
status information to the service control manager. The
hService handle must have SERVICE_INTERROGATE
access.

SERVICE_CONTROL_SHUTDOWN
The ControlService function fails if this control code is
specified.

lpServiceStatus
Points to a SERVICE_STATUS structure where the latest status information of the service is
returned. The information returned reflects the most recent status reported by the service to
the service control manager.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with the necessary
access.

ERROR_DEPENDENT_SERVICES_RUNNING
The service cannot be stopped because other running
services are dependent on it.

ERROR_INVALID_SERVICE_CONTROL
The requested control code is not valid, or it is
unacceptable to the service.

ERROR_SERVICE_CANNOT_ACCEPT_CTRL
The requested control code cannot be sent to the service

because the state of the service is SERVICE_STOPPED,
SERVICE_START_PENDING, or
SERVICE_STOP_PENDING.

ERROR_SERVICE_NOT_ACTIVE
The service has not been started.

ERROR_SERVICE_REQUEST_TIMEOUT
The service did not respond to the start request in a timely
fashion.

RemarksThe ControlService function asks the service control manager to send the requested control
code to the service. The service control manager sends the code if the service accepts the control
and if the service is in a controllable state. The QueryServiceStatus or ControlService function
returns a SERVICE_STATUS structure whose dwCurrentState and dwControlsAccepted
members indicate the current state and controls accepted by a running Win32 service.

All running services accept the SERVICE_CONTROL_INTERROGATE control code by default.
Each service specifies the other control codes that it accepts when it calls the SetServiceStatus
function to report its status.

The following table shows the action of the service control manager in each of the possible
service states:

Service state Stop Other controls

STOPPED (c) (c)
STOP_PENDING (b) (b)
START_PENDING (a) (b)
RUNNING (a) (a)
CONTINUE_PENDING(a) (a)
PAUSE_PENDING (a) (a)
PAUSED (a) (a)

(a) If the service accepts this control code, send the request to the
service; otherwise, ControlService returns FALSE and GetLastError returns
ERROR_INVALID_SERVICE_CONTROL.
(b) The service is not in a controllable state, so ControlService returns FALSE
and GetLastError returns ERROR_SERVICE_CANNOT_ACCEPT_CTRL.
(c) The service is not in a controllable state, so ControlService returns FALSE
and GetLastError returns ERROR_SERVICE_NOT_ACTIVE.
See AlsoCreateService, OpenService, QueryServiceStatus, SetServiceStatus, SERVICE_STATUS

ConvertDefaultLocale
The ConvertDefaultLocale function converts a special default locale value to an actual locale
identifier.

LCID ConvertDefaultLocale(
LCID Locale // special default locale value to be converted

);ParametersLocale
A special default locale value that the function converts to an actual locale identifier.
The following list shows the special default locale values:

Value Description
LOCALE_SYSTEM_DEFAULTThe system's default locale.
LOCALE_USER_DEFAULT The current user's default locale.
zero The language-neutral default locale.

This is equivalent to the locale
identifier created by calling the
MAKELCID macro with a language
identifier consisting of the
LANG_NEUTRAL and
SUBLANG_NEUTRAL values.

Any sublanguage neutral
default locale

A locale identifier constructed by
calling MAKELCID with a language
identifier consisting of a primary
language value, such as
LANG_ENGLISH, and the
SUBLANG_NEUTRAL value.

Return ValuesIf the function succeeds, the return value is the appropriate actual locale identifier.

If the function fails, the return value is the Locale parameter. The function fails when Locale is not
one of the special default locale values listed above.RemarksA call to ConvertDefaultLocale(LOCALE_SYSTEM_DEFAULT) is equivalent to a call to
GetSystemDefaultLCID. A call to ConvertDefaultLocale(LOCALE_USER_DEFAULT) is
equivalent to a call to GetUserDefaultLCID.

For more information about locale identifiers, see Locales and Language Identifiers.See AlsoGetSystemDefaultLCID, GetUserDefaultLCID

ConvertThreadToFiber
The ConvertTheadToFiber function converts the current thread into a fiber. You must convert a
thread into a fiber before you can schedule other fibers.

LPVOID ConvertThreadToFiber(
LPVOID lpParameter // fiber data for new fiber

);ParameterslpParameter
Specifies a single variable that is passed to the fiber. The fiber can retrieve this value by using
the GetFiberData function.

Return ValuesIf the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksOnly fibers can execute other fibers. If a thread needs to execute a fiber, it must call
ConvertThreadToFiber to create an area in which to save fiber state information. The thread is
now the current fiber. The state information for this fiber includes the fiber data specified by
lpParameter.See AlsoGetFiberData

CopyAcceleratorTable
The CopyAcceleratorTable function copies the specified accelerator table. This function is used
to obtain the accelerator-table data that corresponds to an accelerator-table handle, or to
determine the size of the accelerator-table data.

int CopyAcceleratorTable(
HACCEL hAccelSrc, // handle to accelerator table to copy
LPACCEL lpAccelDst, // pointer to structure receiving copy
int cAccelEntries // number of entries in table being copied

);ParametershAccelSrc
Identifies the accelerator table to copy.

lpAccelDst
Points to an array of ACCEL structures where the accelerator-table information is to be
copied.

cAccelEntries
Specifies the number of ACCEL structures to copy to the buffer pointed to by the lpAccelDst
parameter.

Return ValuesIf lpAccelDst is NULL, the return value specifies the number of accelerator-table entries in the
original table. Otherwise, it specifies the number of accelerator-table entries that were copied.See AlsoACCEL, CreateAcceleratorTable, DestroyAcceleratorTable, LoadAccelerators,
TranslateAccelerator

CopyCursor
The CopyCursor function copies a cursor.

HCURSOR CopyCursor(
HCURSOR pcur // handle to cursor to copy

);Parameterspcur
Identifies the cursor to be copied.

Return ValuesIf the function succeeds, the return value is the handle to the duplicate cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksCopyCursor enables an application or dynamic-link library (DLL) to obtain the handle to a cursor
shape owned by another module. Then if the other module is freed, the application is still able to
use the cursor shape.See AlsoCopyIcon, GetCursor, SetCursor, ShowCursor

CopyEnhMetaFile
The CopyEnhMetaFile function copies the contents of an enhanced-format metafile to a specified
file.

HENHMETAFILE CopyEnhMetaFile(
HENHMETAFILE hemfSrc, // handle to an enhanced metafile
LPCTSTR lpszFile // pointer to a filename string

);ParametershemfSrc
Identifies the source-enhanced metafile.

lpszFile
Points to the name of the destination file. If this parameter is NULL, the source metafile is
copied to memory.

Return ValuesIf the function succeeds, the return value is a handle to the copy of the enhanced metafile.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWhere text arguments must use Unicode characters, use the CopyEnhMetaFile function as a
wide-character function. Where text arguments must use characters from the Windows 3.x
character set, use this function as an ANSI function.

Applications can use metafiles stored in memory for temporary operations.

When the application no longer needs the enhanced-metafile handle, it should delete the handle
by calling the DeleteEnhMetaFile function.See AlsoDeleteEnhMetaFile

CopyFile
The CopyFile function copies an existing file to a new file.

BOOL CopyFile(
LPCTSTR lpExistingFileName, // pointer to name of an existing file
LPCTSTR lpNewFileName, // pointer to filename to copy to
BOOL bFailIfExists // flag for operation if file exists

);ParameterslpExistingFileName
Points to a null-terminated string that specifies the name of an existing file.

lpNewFileName
Points to a null-terminated string that specifies the name of the new file.

bFailIfExists
Specifies how this operation is to proceed if a file of the same name as that specified by
lpNewFileName already exists. If this parameter is TRUE and the new file already exists, the
function fails. If this parameter is FALSE and the new file already exists, the function
overwrites the existing file and succeeds.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksSecurity attributes for the existing file are not copied to the new file.

File attributes (FILE_ATTRIBUTE_*) for the existing file are copied to the new file. For example, if
an existing file has the FILE_ATTRIBUTE_READONLY file attribute, a copy created through a call
to CopyFile will also have the FILE_ATTRIBUTE_READONLY file attribute. For further
information on file attributes, see CreateFile.See AlsoCreateFile, MoveFile

CopyFileEx
[New - Windows NT]

The CopyFileEx function copies an existing file to a new file. This function preserves extended
attributes, OLE structured storage, NTFS alternate data streams, and file attributes. Security
attributes for the existing file are not copied to the new file.

BOOL CopyFileEx(
LPCWSTR lpExistingFileName, // pointer to name of an existing file
LPCWSTR lpNewFileName, // pointer to filename to copy to
LPPROGRESS_ROUTINE lpProgressRoutine, // pointer to the callback function
LPVOID lpData, // to be passed to the callback function
LPBOOL pbCancel, // flag that can be used to cancel the operation
DWORD dwCopyFlags // flags that specify how the file is copied

);ParameterslpExistingFileName
Points to a null-terminated string that specifies the name of an existing file.

lpNewFileName
Points to a null-terminated string that specifies the name of the new file.

lpProgressRoutine
Specifies the address of a callback function of type LPPROGRESS_ROUTINE that is called
each time another portion of the file has been copied. This parameter can be NULL. For more
information on the progress callback function, see CopyProgressRoutine.

lpData
Specifies an argument to be passed to the callback function. This parameter can be NULL.

pbCancel
Points to a Boolean variable that can be used to cancel the operation. If this flag is set to
TRUE during the copy operation, the operation is canceled.

dwCopyFlags
Specifies how the file is to be copied. This parameter can be a combination of the following
values:

Value Meaning
COPY_FILE_FAIL_IF_EXISTSThe copy operation fails immediately

if the target file already exists.
COPY_FILE_RESTARTABLEProgress of the copy is tracked in

the target file in case the copy fails.
The failed copy can be restarted at a
later time by specifying the same
values for lpExistingFileName and
lpNewFileName as those used in the
call that failed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information call GetLastError.RemarksFor information on file attributes, see CreateFile.See AlsoCreateFile, CopyFile, CopyProgressRoutine, MoveFile

CopyIcon
The CopyIcon function copies the specified icon from another module to the current module.

HICON CopyIcon(
HICON hIcon // handle to icon to copy

);ParametershIcon
Identifies the icon to be copied.

Return ValuesIf the function succeeds, the return value is the handle to the duplicate icon.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe CopyIcon function enables an application or dynamic-link library (DLL) to get its own handle
to an icon owned by another module. If the other module is freed, the application icon will still be
able to use the icon.See AlsoCopyCursor, DrawIcon, DrawIconEx

CopyImage
The CopyImage function creates a new image (icon, cursor, or bitmap) and copies the attributes
of the specified image to the new one. If necessary, the function stretches the bits to fit the
desired size of the new image.

HANDLE CopyImage(
HANDLE hImage, // handle to the image to copy
UINT uType, // type of image to copy
int cxDesired, // desired width of new image
int cyDesired, // desired height of new image
UINT fuFlags // copy flags

);Parametershinst
Identifies an instance of the module that contains the image to be copied.

uType
Specifies the type of image to be copied. This parameter can be one of the following values:

Value Meaning
IMAGE_BITMAP Copies a bitmap.
IMAGE_CURSOR Copies a cursor.
IMAGE_ICON Copies an icon.

cxDesired
Specifies the desired width, in pixels, of the image.

cyDesired
Specifies the desired height, in pixels, of the image.

fuFlags
Specifies a combination of the following values:

Value Meaning
LR_COPYDELETEORG Deletes the original image after

creating the copy.
LR_COPYRETURNORG Creates an exact copy of the image,

ignoring the cxDesired and cyDesired
parameters.

LR_MONOCHROME Creates a new monochrome image.
LR_COPYFROMRESOURCETries to reload an icon or cursor

resource from the original resource
file rather than simply copying the
current image. This is useful for
creating a different-sized copy when
the resource file contains multiple
sizes of the resource. Without this
flag, CopyImage stretches the
original image to the new size. If this
flag is set, CopyImage uses the size
in the resource file closest to the
desired size.
This will succeed only if hImage was
loaded by LoadIcon or LoadCursor,
or by LoadImage with the
LR_SHARED flag.

Return ValuesIf the function succeeds, the return value is the handle to the newly created image.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoLoadImage

CopyLZFile
The CopyLZFile function is obsolete. It is provided only for compatibility with 16-bit versions of
Windows. For Win32-based applications, use the LZCopy function.

CopyMemory
The CopyMemory function copies a block of memory from one location to another.

VOID CopyMemory (
PVOID Destination, // address of copy destination
CONST VOID *Source, // address of block to copy
DWORD Length // size, in bytes, of block to copy

);ParametersDestination
Points to the starting address of the copied block's destination.

Source
Points to the starting address of the block of memory to copy.

Length
Specifies the size, in bytes, of the block of memory to copy.

Return ValuesThis function has no return value.RemarksIf the source and destination blocks overlap, the results are undefined. For overlapped blocks, use
the MoveMemory function.See AlsoFillMemory, MoveMemory, ZeroMemory

CopyMetaFile
The CopyMetaFile function copies the content of a Windows-format metafile to the specified file.

This function is provided for compatibility with 16-bit versions of Windows. Win32-based
applications should use the CopyEnhMetaFile function.

HMETAFILE CopyMetaFile(
HMETAFILE hmfSrc, // handle to a Windows-format metafile
LPCTSTR lpszFile // pointer to a filename string

);ParametershmfSrc
Identifies the source Windows-format metafile.

lpszFile
Points to the name of the destination file. If this parameter is NULL, the source metafile is
copied to memory.

Return ValuesIf the function succeeds, the return value is a handle to the copy of the Windows-format metafile.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe CopyMetaFile function supports only applications designed for Windows version 3.x. It does
not record or play back the new graphics device interface functions, such as PolyBezier.

Where text arguments must use Unicode characters, use this function as a wide-character
function. Where text arguments must use characters from the Windows 3.x character set, use this
function as an ANSI function.

When the application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the DeleteMetaFile function.See AlsoDeleteMetaFile

CopyProgressRoutine
[New - Windows NT]

The CopyProgressRoutine function is called when a portion of a copy operation started by
CopyFileEx is completed. This function is an application-defined callback routine.

DWORD WINAPI CopyProgressRoutine(
LARGE_INTEGER TotalFileSize, // total file size, in bytes
LARGE_INTEGER TotalBytesTransferred, // total number of bytes transferred
LARGE_INTEGER StreamSize, // total number of bytes for this stream
LARGE_INTEGER StreamBytesTransferred, // total number of bytes transferred for this stream
DWORD dwStreamNumber, // the current stream
DWORD dwCallbackReason, // reason for callback
HANDLE hSourceFile, // handle to the source file
HANDLE hDestinationFile, // handle to the destination file
LPVOID lpData // passed by CopyFileEx

);ParametersTotalFileSize
The total size of the file, in bytes.

TotalBytesTransferred
The total number of bytes transferred from the source file to the destination file since the copy
operation began.

StreamSize
The total size of the current file stream, in bytes.

StreamBytesTransferred
The total number of bytes in the current stream that have been transferred from the source file
to the destination file since the copy operation began.

dwStreamNumber
Identifies the current stream. The stream number is 1 the first time CopyProgressRoutine is
called.

dwCallbackReason
Specifies the reason that CopyProgressRoutine was called. This parameter can be one of
the following values:

Value Meaning
CALLBACK_CHUNK_FINISHEDAnother part of the data file was

copied.
CALLBACK_STREAM_SWITCHAnother stream was created and

is about to be copied. This is the
callback reason given when the
callback routine is first invoked.

hSourceFile
Identifies the source file.

hDestinationFile
Identifies the destination file

lpData
The argument passed to CopyProgressRoutine by the CopyFileEx function.

Return valuesThe CopyProgressRoutine function should return one of the following values:

Value Meaning

PROGRESS_CONTINUE Continue the copy operation.
PROGRESS_CANCEL Cancel the copy operation and delete

the destination file.
PROGRESS_STOP Stop the copy operation. It can be

restarted at a later time.
PROGRESS_QUIET Continue the copy operation, but stop

invoking CopyProgressRoutine to
report progress.

RemarksAn application can use this information to display a progress bar that shows the total number of
bytes copied as a percent of the total file size.

See AlsoCopyFileEx

CopyRect
The CopyRect function copies the coordinates of one rectangle to another.

BOOL CopyRect(
LPRECT lprcDst, // pointer to structure for destination rectangle
CONST RECT *lprcSrc // pointer to structure with source rectangle

);ParameterslprcDst
Points to the RECT structure that will receive the logical coordinates of the source rectangle.

lprcSrc
Points to the RECT structure whose coordinates are to be copied.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoRECT, SetRect, SetRectEmpty

CopySid
The CopySid function copies a security identifier (SID) to a buffer.

BOOL CopySid(
DWORD nDestinationSidLength, // size of buffer for copied SID
PSID pDestinationSid, // pointer to buffer for copied SID
PSID pSourceSid // pointer to source SID

);ParametersnDestinationSidLength
Specifies the length, in bytes, of the buffer receiving the copy of the SID.

pDestinationSid
Points to a buffer receiving a copy of the source SID structure.

pSourceSid
Points to a SID structure the function copies to the buffer pointed to by the pDestinationSid
parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can use the CopySid function to make a copy of a SID in an access token (in a
TOKEN_GROUPS structure, for instance) to use in an access-control entry.See AlsoAllocateAndInitializeSid, EqualSid, GetLengthSid, GetSidIdentifierAuthority,
GetSidLengthRequired, GetSidSubAuthority, GetSidSubAuthorityCount, InitializeSid,
IsValidSid, SID

CountClipboardFormats
The CountClipboardFormats function retrieves the number of different data formats currently on
the clipboard.

int CountClipboardFormats(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is the number of different data formats currently on the
clipboard.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoEnumClipboardFormats, RegisterClipboardFormat

CPlApplet
The CPlApplet function is a library-defined callback function that serves as the entry point for a
Control Panel application.

LONG APIENTRY CPlApplet(
HWND hwndCPl, // handle to Control Panel window
UINT uMsg, // message
LONG lParam1, // first message parameter
LONG lParam2 // second message parameter

);ParametershwndCPl
Identifies the main window of the controlling application.

uMsg
Specifies the message being sent to the Control Panel application.

lParam1
Specifies additional message-specific information.

lParam2
Specifies additional message-specific information.

Return ValuesThe return value depends on the message. For more information, see the descriptions of the
individual Control Panel messages.RemarksUse the hwndCPl parameter for dialog boxes or other windows that require a handle to a parent
window.

CreateAcceleratorTable
The CreateAcceleratorTable function creates an accelerator table.

HACCEL CreateAcceleratorTable(
LPACCEL lpaccl, // pointer to structure array with accelerator data
int cEntries // number of structures in the array

);Parameterslpaccl
Points to an array of ACCEL structures that describes the accelerator table.

cEntries
Specifies the number of ACCEL structures in the array.

Return ValuesIf the function succeeds, the return value is the handle to the created accelerator table; otherwise,
it is NULL.RemarksBefore an application closes, it must use the DestroyAcceleratorTable function to destroy each
accelerator table that it created by using the CreateAcceleratorTable function.See AlsoACCEL, CopyAcceleratorTable, DestroyAcceleratorTable, LoadAccelerators,
TranslateAccelerator

CreateBitmap
The CreateBitmap function creates a bitmap with the specified width, height, and color format
(color planes and bits per pixel).

HBITMAP CreateBitmap(
int nWidth, // bitmap width, in pixels
int nHeight, // bitmap height, in pixels
UINT cPlanes, // number of color planes used by device
UINT cBitsPerPel, // number of bits required to identify a color
CONST VOID *lpvBits // pointer to array containing color data

);ParametersnWidth
Specifies the bitmap width, in pixels.

nHeight
Specifies the bitmap height, in pixels.

cPlanes
Specifies the number of color planes used by the device.

cBitsPerPel
Specifies the number of bits required to identify the color of a single pixel.

lpvBits
Points to an array of color data used to set the colors in a rectangle of pixels. Each scan line
in the rectangle must be word aligned (scan lines that are not word aligned must be padded
with zeros). If this parameter is NULL, the new bitmap is undefined.

Return ValuesIf the function succeeds, the return value is a handle to a bitmap.

If the function fails, the return value is NULL.RemarksAfter a bitmap is created, it can be selected into a device context by calling the SelectObject
function.

While the CreateBitmap function can be used to create color bitmaps, for performance reasons
applications should use CreateBitmap to create monochrome bitmaps and
CreateCompatibleBitmap to create color bitmaps. When a color bitmap returned from
CreateBitmap is selected into a device context, Windows must ensure that the bitmap matches
the format of the device context it is being selected into. Since CreateCompatibleBitmap takes a
device context, it returns a bitmap that has the same format as the specified device context.
Because of this, subsequent calls to SelectObject are faster than with a color bitmap returned
from CreateBitmap.

If the bitmap is monochrome, zeros represent the foreground color and ones represent the
background color for the destination device context.

If an application sets the nWidth or nHeight parameters to zero, CreateBitmap returns the handle
of a 1- by 1-pixel, monochrome bitmap.

When you no longer need the bitmap, call the DeleteObject function to delete it.See AlsoCreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBitmap, DeleteObject,
GetBitmapBits, SelectObject, SetBitmapBits

CreateBitmapIndirect
The CreateBitmapIndirect function creates a bitmap with the specified width, height, and color
format (color planes and bits per pixel).

HBITMAP CreateBitmapIndirect(
CONST BITMAP *lpbm // pointer to the bitmap data

);Parameterslpbm
Points to a BITMAP structure that contains information about the bitmap. If an application sets
the bmWidth or bmHeight members to zero, CreateBitmapIndirect returns the handle of a
1- by 1-pixel, monochrome bitmap.

Return ValuesIf the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.RemarksAfter a bitmap is created, it can be selected into a device context by calling the SelectObject
function.

While the CreateBitmapIndirect function can be used to create color bitmaps, for performance
reasons applications should use CreateBitmapIndirect to create monochrome bitmaps and
CreateCompatibleBitmap to create color bitmaps. When a color bitmap returned from
CreateBitmapIndirect is selected into a device context, Windows must ensure that the bitmap
matches the format of the device context it is being selected into. Since
CreateCompatibleBitmap takes a device context, it returns a bitmap that has the same format as
the specified device context. Because of this, subsequent calls to SelectObject are faster than
with a color bitmap returned from CreateBitmapIndirect.

If the bitmap is monochrome, zeros represent the foreground color and ones represent the
background color for the destination device context.

When you no longer need the bitmap, call the DeleteObject function to delete it.See AlsoBitBlt, BITMAP, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap, DeleteObject,
SelectObject

CreateBrushIndirect
The CreateBrushIndirect function creates a logical brush that has the specified style, color, and
pattern.

HBRUSH CreateBrushIndirect(
CONST LOGBRUSH *lplb // pointer to structure describing brush

);Parameterslplb
Points to a LOGBRUSH structure that contains information about the brush.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksA brush is a bitmap that Windows uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateBrushIndirect, it can select it into any
device context by calling the SelectObject function.

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) is drawn using
the current text and background colors. Pixels represented by a bit set to 0 are drawn with the
current text color; pixels represented by a bit set to 1 are drawn with the current background color.

If the lbStyle member of the LOGBRUSH structure pointed to by lplb is BS_PATTERN, the
bitmap pointed to by the lbHatch member of that structure cannot be a DIB section. A DIB section
is a bitmap created by CreateDibSection. If that bitmap is a DIB section, the
CreateBrushIndirect function fails.

When you no longer need the brush, call the DeleteObject function to delete it.See AlsoCreateDibSection, DeleteObject, GetBrushOrgEx, LOGBRUSH, SelectObject,
SetBrushOrgEx

CreateCaret
The CreateCaret function creates a new shape for the system caret and assigns ownership of the
caret to the specified window. The caret shape can be a line, a block, or a bitmap.

BOOL CreateCaret(
HWND hWnd, // handle to owner window
HBITMAP hBitmap, // handle to bitmap for caret shape
int nWidth, // caret width
int nHeight // caret height

);ParametershWnd
Identifies the window that owns the caret.

hBitmap
Identifies the bitmap that defines the caret shape. If this parameter is NULL, the caret is solid.
If this parameter is (HBITMAP) 1, the caret is gray. If this parameter is a bitmap handle, the
caret is the specified bitmap. The bitmap handle must have been created by the
CreateBitmap, CreateDIBitmap, or LoadBitmap function.
If hBitmap is a bitmap handle, CreateCaret ignores the nWidth and nHeight parameters; the
bitmap defines its own width and height.

nWidth
Specifies the width of the caret in logical units. If this parameter is zero, the width is set to the
system-defined window border width. If hBitmap is a bitmap handle, CreateCaret ignores this
parameter.

nHeight
Specifies the height, in logical units, of the caret. If this parameter is zero, the height is set to
the system-defined window border height. If hBitmap is a bitmap handle, CreateCaret ignores
this parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe nWidth and nHeight parameters specify the caret's width and height, in logical units; the exact
width and height, in pixels, depend on the window's mapping mode.

CreateCaret automatically destroys the previous caret shape, if any, regardless of the window
that owns the caret. The caret is hidden until the application calls the ShowCaret function to make
the caret visible.

The caret is a shared resource; there is only one caret in the system. A window should create a
caret only when it has the keyboard focus or is active. The window should destroy the caret before
losing the keyboard focus or becoming inactive.

You can retrieve the width or height of the system's window border by using the
GetSystemMetrics function, specifying the SM_CXBORDER and SM_CYBORDER values. Using
the window border width or height guarantees that the caret will be visible on a high-resolution
screen.See AlsoCreateBitmap, CreateDIBitmap, DestroyCaret, GetSystemMetrics, HideCaret, LoadBitmap,
ShowCaret

CreateColorSpace
The CreateColorSpace function creates a logical color space.

HCOLORSPACE CreateColorSpace(
LPLOGCOLORSPACE lpLogColorSpace

);ParameterslpLogColorSpace
Pointer to the LOGCOLORSPACE structure.

Return ValuesIf the function succeeds, the return value is a handle that identifies a logical color space.

If the function fails, the return value is NULL.RemarksWhen you no longer need the color space, call the DeleteObject function to delete it.See AlsoDeleteObject, LOGCOLORSPACE

CreateCompatibleBitmap
The CreateCompatibleBitmap function creates a bitmap compatible with the device that is
associated with the specified device context.

HBITMAP CreateCompatibleBitmap(
HDC hdc, // handle to device context
int nWidth, // width of bitmap, in pixels
int nHeight // height of bitmap, in pixels

);Parametershdc
Identifies a device context.

nWidth
Specifies the bitmap width, in pixels.

nHeight
Specifies the bitmap height, in pixels.

Return ValuesIf the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.RemarksThe color format of the bitmap created by the CreateCompatibleBitmap function matches the
color format of the device identified by the hdc parameter. This bitmap can be selected into any
memory device context that is compatible with the original device.

Because memory device contexts allow both color and monochrome bitmaps, the format of the
bitmap returned by the CreateCompatibleBitmap function differs when the specified device
context is a memory device context. However, a compatible bitmap that was created for a
nonmemory device context always possesses the same color format and uses the same color
palette as the specified device context.

If an application sets the nWidth or nHeight parameters to zero, CreateCompatibleBitmap
returns the handle of a 1- by 1-pixel, monochrome bitmap.

If a DIB section, which is a bitmap created by the CreateDIBSection function, is selected into the
device context identified by the hdc parameter, CreateCompatibleBitmap creates a DIB section.

When you no longer need the bitmap, call the DeleteObject function to delete it.See AlsoCreateDIBSection, DeleteObject, SelectObject

CreateCompatibleDC
The CreateCompatibleDC function creates a memory device context (DC) compatible with the
specified device.

HDC CreateCompatibleDC(
HDC hdc // handle to memory device context

);Parametershdc
Identifies the device context. If this handle is NULL, the function creates a memory device
context compatible with the application's current screen.

Return ValuesIf the function succeeds, the return value is the handle to a memory device context.

If the function fails, the return value is NULL.RemarksBefore an application can use a memory device context for drawing operations, it must select a
bitmap of the correct width and height into the device context. Once a bitmap has been selected,
the device context can be used to prepare images that will be copied to the screen or printed.

The CreateCompatibleDC function can only be used with devices that support raster operations.
An application can determine whether a device supports these operations by calling the
GetDeviceCaps function.

When you no longer need the memory device context, call the DeleteDC function to delete it.See AlsoCreateCompatibleBitmap, DeleteDC, GetDeviceCaps

CreateConsoleScreenBuffer
The CreateConsoleScreenBuffer function creates a console screen buffer and returns a handle
of it.

HANDLE CreateConsoleScreenBuffer(
DWORD dwDesiredAccess, // access flag
DWORD dwShareMode, // buffer share mode
LPSECURITY_ATTRIBUTES *lpSecurityAttributes, // pointer to security attributes
DWORD dwFlags, // type of buffer to create
LPVOID lpScreenBufferData // reserved

);ParametersdwDesiredAccess
Specifies the desired access to the console screen buffer. This parameter can be one or both
of the following values:

Value Meaning
GENERIC_READ Requests read access to the console screen

buffer, enabling the process to read data from
the buffer.

GENERIC_WRITE Requests write access to the console screen
buffer, enabling the process to write data to the
buffer.

dwShareMode
Specifies how this console screen buffer can be shared. This parameter can be zero,
indicating that the buffer cannot be shared, or it can be one or both of the following two
values:

Value Meaning
FILE_SHARE_READ Other open operations can be performed on

the console screen buffer for read access.
FILE_SHARE_WRITE Other open operations can be performed on

the console screen buffer for write access.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new console screen buffer. If lpSecurityAttributes is NULL, the console
screen buffer gets a default security descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

dwFlags
Specifies the type of console screen buffer to create. The only currently supported screen
buffer type is CONSOLE_TEXTMODE_BUFFER.

lpScreenBufferData
Reserved for possible future use; should be NULL.

Return ValuesIf the function succeeds, the return value is a handle to the new console screen buffer.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksA console can have multiple screen buffers but only one active screen buffer. Inactive screen
buffers can be accessed for reading and writing, but only the active screen buffer is displayed. To
make the new screen buffer the active screen buffer, use the SetConsoleActiveScreenBuffer
function.

The calling process can use the returned handle in any function that requires a handle of a
console screen buffer, subject to the limitations of access specified by the dwDesiredAccess
parameter.

The calling process can use the DuplicateHandle function to create a duplicate screen buffer
handle that has different access or inheritability from the original handle. However,

DuplicateHandle cannot be used to create a duplicate that is valid for a different process (except
through inheritance).

To close the screen buffer handle, use the CloseHandle function.See AlsoCloseHandle, DuplicateHandle, GetConsoleScreenBufferInfo, SECURITY_ATTRIBUTES,
SetConsoleActiveScreenBuffer, SetConsoleScreenBufferSize

CreateCursor
The CreateCursor function creates a cursor having the specified size, bit patterns, and hot spot.

HCURSOR CreateCursor(
HINSTANCE hInst, // handle to application instance
int xHotSpot, // horizontal position of hot spot
int yHotSpot, // vertical position of hot spot
int nWidth, // cursor width
int nHeight, // cursor height
CONST VOID *pvANDPlane, // pointer to AND bitmask array
CONST VOID *pvXORPlane // pointer to XOR bitmask array

);ParametershInst
Identifies the current instance of the application creating the cursor.

xHotSpot
Specifies the horizontal position of the cursor's hot spot.

yHotSpot
Specifies the vertical position of the cursor's hot spot.

nWidth
Specifies the width, in pixels, of the cursor.

nHeight
Specifies the height, in pixels, of the cursor.

pvANDplane
Points to an array of bytes that contains the bit values for the AND bitmask of the cursor, as in
a device-dependent monochrome bitmap.

pvXORplane
Points to an array of bytes that contains the bit values for the XOR bitmask of the cursor, as in
a device-dependent monochrome bitmap.

Return ValuesIf the function succeeds, the return value identifies the cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe nWidth and nHeight parameters must specify a width and height that are supported by the
current display driver, because the system cannot create cursors of other sizes. To determine the
width and height supported by the display driver, use the GetSystemMetrics function, specifying
the SM_CXCURSOR or SM_CYCURSOR value.

Before closing, an application must call the DestroyCursor function to free any system resources
associated with the cursor.See AlsoCreateIcon, DestroyCursor, GetModuleHandle, GetSystemMetrics, SetCursor

CreateDC
The CreateDC function creates a device context (DC) for a device by using the specified name.

HDC CreateDC(
LPCTSTR lpszDriver, // pointer to string specifying driver name
LPCTSTR lpszDevice, // pointer to string specifying device name
LPCTSTR lpszOutput, // do not use; set to NULL
CONST DEVMODE *lpInitData // pointer to optional printer data

);ParameterslpszDriver
Applications written for earlier versions of Windows used this parameter to specify the
filename (without extension) of the device driver.
Windows 95: In Win32-based applications, this parameter is ignored and should be NULL,
with one exception: You may obtain a display device context by specifying the null-terminated
string "DISPLAY". If this parameter is "DISPLAY", all other parameters must be NULL.
Windows NT: Points to a null-terminated character string that specifies either "DISPLAY" for
a display driver, or the name of a printer driver, which is usually "WINSPOOL".

lpszDevice
Points to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, "Epson FX-80"). It is not the
printer model name. The lpszDevice parameter must be used.

lpszOutput
This parameter is ignored. Do not use it in a Win32 application. Win32-based applications
should set this parameter to NULL. It exists to provide compatibility for applications written for
earlier versions of Windows. For more information, see the following Remarks section.

lpInitData
Points to a DEVMODE structure containing device-specific initialization data for the device
driver. The DocumentProperties function retrieves this structure filled in for a specified
device. The lpInitData parameter must be NULL if the device driver is to use the default
initialization (if any) specified by the user.

Return ValuesIf the function succeeds, the return value is the handle to a device context for the specified device.

If the function fails, the return value is NULL.RemarksApplications written for earlier versions of Windows used the lpszOutput parameter to specify a
port name or to print to a file. Win32-based applications do not need to specify a port name.
Win32-based applications can print to a file by calling the StartDoc function with a DOCINFO
structure whose lpszOutput member specifies the path of the output filename.

When you no longer need the device context, call the DeleteDC function to delete it.See AlsoDeleteDC, DEVMODE, DOCINFO, DocumentProperties, StartDoc

CreateDesktop
The CreateDesktop function creates a new desktop on the window station associated with the
calling process. It returns a handle that can be used to access the new desktop. The calling
process must have an associated window station, either assigned by the system at process
creation time or set by SetProcessWindowStation. A desktop is a secure object contained within
a window station object. A desktop has a logical display surface and contains windows, menus,
and hooks.

HDESK CreateDesktop(
LPCTSTR lpszDesktop, // name of the new desktop
LPCTSTR lpszDevice, // reserved; must be NULL.
LPDEVMODE pDevMode, // reserved; must be NULL
DWORD dwFlags, // flags to control interaction with other applications
DWORD dwDesiredAccess, // specifies access of returned handle
LPSECURITY_ATTRIBUTES lpsa // specifies security attributes of the desktop

);ParameterslpszDesktop
Points to a null-terminated string specifying the name of the desktop to be created. Desktop
names are case-insensitive and may not contain backslash characters (\).

lpszDevice
Reserved; must be NULL. The desktop uses the default display driver loaded at boot time.

pDevMode
Reserved; must be NULL.

dwFlags
A bit flag parameter that controls how the calling application will cooperate with other
applications on the desktop. This parameter can specify zero or the following value:

Value Description
DF_ALLOWOTHERACCOUNTHOOKAllows processes running in other accounts

on the desktop to set hooks in this process.

dwDesiredAccess
Specifies the type of access to the desktop. This parameter can be one or more of the
following values:

Value Description
DESKTOP_CREATEMENU Required to create a menu on the desktop.
DESKTOP_CREATEWINDOW Required to create a window on the desktop.
DESKTOP_ENUMERATE Required for the desktop to be enumerated.
DESKTOP_HOOKCONTROL Required to establish any of the window

hooks.
DESKTOP_JOURNALPLAYBACK Required to perform journal playback on the

desktop.
DESKTOP_JOURNALRECORD Required to perform journal recording on the

desktop.
DESKTOP_READOBJECTS Required to read objects on the desktop.
DESKTOP_SWITCHDESKTOP Required to activate the desktop using the

SwitchDesktop function.
DESKTOP_WRITEOBJECTS Required to write objects on the desktop.

lpsa
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpsa is NULL, the handle cannot be inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new desktop. If lpsa is NULL, the desktop inherits its security descriptor from
the parent window station.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

Return ValuesIf the function succeeds, the return value is a handle to the newly created desktop.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

RemarksThe CreateDesktop function returns a handle that can be used to access the desktop.See AlsoSECURITY_ATTRIBUTES, SetProcessWindowStation, SwitchDesktop

CreateDialog
The CreateDialog macro creates a modeless dialog box from a dialog box template resource.
The CreateDialog macro uses the CreateDialogParam function.

HWND CreateDialog(
HINSTANCE hInstance, // handle to application instance
LPCTSTR lpTemplate, // identifies dialog box template name
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc // pointer to dialog box procedure

);ParametershInstance
Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplate
Identifies the dialog box template. This parameter is either the pointer to a null-terminated
character string that specifies the name of the dialog box template or an integer value that
specifies the resource identifier of the dialog box template. If the parameter specifies a
resource identifier, its high-order word must be zero and its low-order word must contain the
identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc.

Return ValuesIf the function succeeds, the return value is the handle to the dialog box.

If the function fails, the return value is NULL.RemarksThe CreateDialog function uses the CreateWindowEx function to create the dialog box.
CreateDialog then sends a WM_INITDIALOG message (and a WM_SETFONT message if the
template specifies the DS_SETFONT style) to the dialog box procedure. The function displays the
dialog box if the template specifies the WS_VISIBLE style. Finally, CreateDialog returns the
window handle to the dialog box.

After CreateDialog returns, the application displays the dialog box (if it is not already displayed)
by using the ShowWindow function. The application destroys the dialog box by using the
DestroyWindow function.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam, CreateWindowEx,
DestroyWindow, DialogBox, DialogProc, ShowWindow, WM_INITDIALOG, WM_SETFONT

CreateDialogIndirect
The CreateDialogIndirect macro creates a modeless dialog box from a dialog box template in
memory. The CreateDialogIndirect macro uses the CreateDialogIndirectParam function.

HWND CreateDialogIndirect(
HINSTANCE hInstance, // handle to application instance
LPCDLGTEMPLATE lpTemplate, // pointer to dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc // pointer to dialog box procedure

);ParametershInstance
Identifies the instance of the module that creates the dialog box.

lpTemplate
Pointer to a global memory object containing a template that CreateDialogIndirect uses to
create the dialog box. A dialog box template consists of a header that describes the dialog
box, followed by one or more additional blocks of data that describe each of the controls in the
dialog box. The template can use either the standard format or the extended format.
In a standard template, the header is a DLGTEMPLATE structure followed by additional
variable-length arrays. The data for each control consists of a DLGITEMTEMPLATE structure
followed by additional variable-length arrays.
In an extended dialog box template, the header uses the DLGTEMPLATEEX format and the
control definitions use the DLGITEMTEMPLATEEX format.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc.

Return ValuesIf the function succeeds, the return value is the window handle to the dialog box.

If the function fails, the return value is NULL.RemarksThe CreateDialogIndirect macro uses the CreateWindowEx function to create the dialog box.
CreateDialogIndirect then sends a WM_INITDIALOG message to the dialog box procedure. If
the template specifies the DS_SETFONT style, the function also sends a WM_SETFONT
message to the dialog box procedure. The function displays the dialog box if the template
specifies the WS_VISIBLE style. Finally, CreateDialogIndirect returns the window handle to the
dialog box.

After CreateDialogIndirect returns, you can use the ShowWindow function to display the dialog
box (if it is not already visible). To destroy the dialog box, use the DestroyWindow function.

In a standard dialog box template, the DLGTEMPLATE structure and each of the
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation data
array that follows a DLGITEMTEMPLATE structure must also be aligned on a DWORD boundary.
All of the other variable-length arrays in the template must must be aligned on WORD boundaries.

In an extended dialog box template, the DLGTEMPLATEEX header and each of the
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. The
creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must also be aligned
on a DWORD boundary. All of the other variable-length arrays in the template must be aligned on
WORD boundaries.

All character strings in the dialog box template, such as titles for the dialog box and buttons, must
be Unicode strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateDialog, CreateDialogIndirectParam, CreateDialogParam, CreateWindowEx,
DestroyWindow, DialogProc, DLGITEMTEMPLATE, DLGITEMTEMPLATEEX,
DLGTEMPLATE, DLGTEMPLATEEX, MultiByteToWideChar, ShowWindow,
WM_INITDIALOG, WM_SETFONT

CreateDialogIndirectParam
The CreateDialogIndirectParam function creates a modeless dialog box from a dialog box
template in memory. Before displaying the dialog box, the function passes an application-defined
value to the dialog box procedure as the lParam parameter of the WM_INITDIALOG message. An
application can use this value to initialize dialog box controls.

HWND CreateDialogIndirectParam(
HINSTANCE hInstance, // handle to application instance
LPCDLGTEMPLATE lpTemplate, // pointer to dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc, // pointer to dialog box procedure
LPARAM lParamInit // initialization value

);ParametershInstance
Identifies the instance of the module that will create the dialog box.

lpTemplate
Pointer to a global memory object containing a template that CreateDialogIndirectParam
uses to create the dialog box. A dialog box template consists of a header that describes the
dialog box, followed by one or more additional blocks of data that describe each of the
controls in the dialog box. The template can use either the standard format or the extended
format.
In a standard template, the header is a DLGTEMPLATE structure followed by additional
variable-length arrays. The data for each control consists of a DLGITEMTEMPLATE structure
followed by additional variable-length arrays.
In an extended dialog box template, the header uses the DLGTEMPLATEEX format and the
control definitions use the DLGITEMTEMPLATEEX format.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc.

lParamInit
Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG
message.

Return ValuesIf the function succeeds, the return value is the window handle to the dialog box.

If the function fails, the return value is NULL.RemarksThe CreateDialogIndirectParam function uses the CreateWindowEx function to create the
dialog box. CreateDialogIndirectParam then sends a WM_INITDIALOG message to the dialog
box procedure. If the template specifies the DS_SETFONT style, the function also sends a
WM_SETFONT message to the dialog box procedure. The function displays the dialog box if the
template specifies the WS_VISIBLE style. Finally, CreateDialogIndirectParam returns the
window handle to the dialog box.

After CreateDialogIndirectParam returns, you can use the ShowWindow function to display the
dialog box (if it is not already visible). To destroy the dialog box, use the DestroyWindow
function.

In a standard dialog box template, the DLGTEMPLATE structure and each of the
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation data
array that follows a DLGITEMTEMPLATE structure must also be aligned on a DWORD boundary.
All of the other variable-length arrays in the template must must be aligned on WORD boundaries.

In an extended dialog box template, the DLGTEMPLATEEX header and each of the
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. The
creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must also be aligned
on a DWORD boundary. All of the other variable-length arrays in the template must be aligned on
WORD boundaries.

All character strings in the dialog box template, such as titles for the dialog box and buttons, must
be Unicode strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateDialog, CreateDialogIndirect, CreateDialogParam, CreateWindowEx, DestroyWindow,
DialogProc, DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATE,
DLGTEMPLATEEX, MultiByteToWideChar, ShowWindow, WM_INITDIALOG, WM_SETFONT

CreateDialogParam
The CreateDialogParam function creates a modeless dialog box from a dialog box template
resource. Before displaying the dialog box, the function passes an application-defined value to the
dialog box procedure as the lParam parameter of the the WM_INITDIALOG message. An
application can use this value to initialize dialog box controls.

HWND CreateDialogParam(
HINSTANCE hInstance, // handle to application instance
LPCTSTR lpTemplateName, // identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc, // pointer to dialog box procedure
LPARAM dwInitParam // initialization value

);ParametershInstance
Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplateName
Identifies the dialog box template. This parameter is either the pointer to a null-terminated
character string that specifies the name of the dialog box template or an integer value that
specifies the resource identifier of the dialog box template. If the parameter specifies a
resource identifier, its high-order word must be zero and low-order word must contain the
identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc .

dwInitParam
Specifies the value to pass to the dialog box procedure in the lParam parameter in the
WM_INITDIALOG message.

Return ValuesIf the function succeeds, the return value is the window handle to the dialog box.

If the function fails, the return value is NULL.RemarksThe CreateDialogParam function uses the CreateWindowEx function to create the dialog box.
CreateDialogParam then sends a WM_INITDIALOG message (and a WM_SETFONT message if
the template specifies the DS_SETFONT style) to the dialog box procedure. The function displays
the dialog box if the template specifies the WS_VISIBLE style. Finally, CreateDialogParam
returns the window handle of the dialog box.

After CreateDialogParam returns, the application displays the dialog box (if it is not already
displayed) by using the ShowWindow function. The application destroys the dialog box by using
the DestroyWindow function.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, CreateWindowEx,
DestroyWindow, DialogProc, MAKEINTRESOURCE, ShowWindow, WM_INITDIALOG,
WM_SETFONT

CreateDIBitmap
The CreateDIBitmap function creates a device-dependent bitmap (DDB) from a device-
independent bitmap (DIB) and, optionally, sets the bitmap bits.

HBITMAP CreateDIBitmap(
HDC hdc, // handle to device context
CONST BITMAPINFOHEADER *lpbmih, // pointer to bitmap size and format data
DWORD fdwInit, // initialization flag
CONST VOID *lpbInit, // pointer to initialization data
CONST BITMAPINFO *lpbmi, // pointer to bitmap color-format data
UINT fuUsage // color-data usage

);Parametershdc
Identifies a device context.

lpbmih
Points to a BITMAPINFOHEADER structure.
If fdwInit is CBM_INIT, the function uses the BITMAPINFOHEADER structure to obtain the
desired width and height of the bitmap as well as other information. Note that a positive value
for the height indicates a bottom-up DIB while a negative value for the height indicates a top-
down DIB. This scenario is compatible with the CreateDIBitmap function.

fdwInit
A set of bit flags that specify how the operating system initializes the bitmap's bits.
The following bit flag constant is defined:

Value Meaning
CBM_INIT If this flag is set, the operating system uses

the data pointed to by the lpbInit and lpbmi
parameters to initialize the bitmap's bits.
If this flag is clear, the data pointed to by those
parameters is not used.

If fdwInit is zero, the operating system does not initialize the bitmap's bits.
lpbInit

Points to an array of bytes containing the initial bitmap data. The format of the data depends
on the biBitCount member of the BITMAPINFO structure to which the lpbmi parameter
points.

lpbmi
Points to a BITMAPINFO structure that describes the dimensions and color format of the
array pointed to by the lpbInit parameter.

fuUsage
Specifies whether the bmiColors member of the BITMAPINFO structure was initialized and, if
so, whether bmiColors contains explicit red, green, blue (RGB) values or palette indices. The
fuUsage parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS A color table is provided and consists of an

array of 16-bit indices into the logical palette
of the device context into which the bitmap is
to be selected.

DIB_RGB_COLORS A color table is provided and contains
literal RGB values.

Return ValuesIf the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.RemarksThe CBM_CREATDIB flag for the fdwInit parameter is no longer supported.

When you no longer need the bitmap, call the DeleteObject function to delete it.See AlsoBITMAPINFOHEADER, BITMAPINFO, DeleteObject, GetDeviceCaps,
GetSystemPaletteEntries, SelectObject

CreateDIBPatternBrush
The CreateDIBPatternBrush function creates a logical brush that has the pattern specified by the
specified device-independent bitmap (DIB). The brush can subsequently be selected into any
device context that is associated with a device that supports raster operations.

This function is provided only for compatibility with applications written for versions of Windows
earlier than 3.0. For Win32-based applications, use the CreateDIBPatternBrushPt function.

HBRUSH CreateDIBPatternBrush(
HGLOBAL hglbDIBPacked, // handle to device-independent bitmap
UINT fuColorSpec // color table data

);ParametershglbDIBPacked
Identifies a global memory object containing a packed DIB, which consists of a BITMAPINFO
structure immediately followed by an array of bytes defining the pixels of the bitmap.
Windows 95: Creating brushes from bitmaps or DIBs larger than 8x8 pixels is not supported.
If a larger bitmap is specified, only a portion of the bitmap is used.

fuColorSpec
Specifies whether the bmiColors member of the BITMAPINFO structure is initialized and, if
so, whether this member contains explicit red, green, blue (RGB) values or indices into a
logical palette. The fuColorSpec parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS A color table is provided and consists of an

array of 16-bit indices into the logical palette
of the device context into which the brush is to
be selected.

DIB_RGB_COLORS A color table is provided and contains literal
RGB values.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksWhen an application selects a two-color DIB pattern brush into a monochrome device context,
Windows does not acknowledge the colors specified in the DIB; instead, it displays the pattern
brush using the current background and foreground colors of the device context. Pixels mapped to
the first color of the DIB (offset 0 in the DIB color table) are displayed using the foreground color;
pixels mapped to the second color (offset 1 in the color table) are displayed using the background
color.

When you no longer need the brush, call the DeleteObject function to delete it.See AlsoBITMAPINFO, CreateDIBPatternBrushPt, CreateHatchBrush, CreatePatternBrush,
CreateSolidBrush, DeleteObject, SetBkColor, SetTextColor

CreateDIBPatternBrushPt
The CreateDIBPatternBrushPt function creates a logical brush that has the pattern specified by
the device-independent bitmap (DIB).

HBRUSH CreateDIBPatternBrushPt(
CONST VOID *lpPackedDIB, // pointer to structure and bitmap bits
UINT iUsage // usage flags

);ParameterslpPackedDIB
Points to a packed DIB consisting of a BITMAPINFO structure immediately followed by an
array of bytes defining the pixels of the bitmap.
Windows 95: Creating brushes from bitmaps or DIBs larger than 8x8 pixels is not supported.
If a larger bitmap is specified, only a portion of the bitmap is used.

iUsage
Specifies whether the bmiColors member of the BITMAPINFO structure contains a valid
color table and, if so, whether the entries in this color table contain explicit red, green, blue
(RGB) values or palette indices. The iUsage parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS A color table is provided and consists of an

array of 16-bit indices into the logical palette
of the device context into which the brush is to
be selected.

DIB_RGB_COLORS A color table is provided and contains literal
RGB values.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksA brush is a bitmap that Windows uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateDIBPatternBrushPt, it can select that brush
into any device context by calling the SelectObject function.

When you no longer need the brush, call the DeleteObject function to delete it.See AlsoBITMAPINFO, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush,
CreateSolidBrush, DeleteObject, GetBrushOrgEx, SelectObject, SetBrushOrgEx

CreateDIBSection
The CreateDIBSection function creates a device-independent bitmap (DIB) that applications can
write to directly. The function gives you a pointer to the location of the bitmap's bit values. You can
supply a handle to a file mapping object that the function will use to create the bitmap, or you can
let the operating system allocate the memory for the bitmap.

HBITMAP CreateDIBSection(
HDC hdc, // handle to device context
CONST BITMAPINFO *pbmi, // pointer to structure containing bitmap size, format, and color data
UINT iUsage, // color data type indicator: RGB values or palette indices
VOID *ppvBits, // pointer to variable to receive a pointer to the bitmap's bit values
HANDLE hSection, // optional handle to a file mapping object
DWORD dwOffset // offset to the bitmap bit values within the file mapping object

);Parametershdc
Handle to a device context. If the value of iUsage is DIB_PAL_COLORS, the function uses
this device context's logical palette to initialize the device-independent bitmap's colors.

pbmi
Points to a BITMAPINFO structure that specifies various attributes of the device-independent
bitmap, including the bitmap's dimensions and colors.

iUsage
Specifies the type of data contained in the bmiColors array member of the BITMAPINFO
structure pointed to by pbmi: logical palette indices or literal RGB values. The following values
are defined:

Value Meaning
DIB_PAL_COLORS The bmiColors member is an

array of 16-bit indices into the
logical palette of the device
context specified by hdc.

DIB_RGB_COLORS The BITMAPINFO structure
contains an array of literal RGB
values.

ppvBits
Points to a variable that receives a pointer to the location of the device-independent bitmap's
bit values.

hSection
Handle to a file mapping object that the function will use to create the device-independent
bitmap. This parameter can be NULL.
If hSection is not NULL, it must be a handle to a file mapping object created by calling the
CreateFileMapping function. Handles created by other means will cause CreateDIBSection
to fail.
If hSection is not NULL, the CreateDIBSection function locates the bitmap's bit values at
offset dwOffset in the file mapping object referred to by hSection. An application can later
retrieve the hSection handle by calling the GetObject function with the HBITMAP returned by
CreateDIBSection.
If hSection is NULL, the operating system allocates memory for the device-independent
bitmap. In this case, the CreateDIBSection function ignores the dwOffset parameter. An
application cannot later obtain a handle to this memory: the dshSection member of the
DIBSECTION structure filled in by calling the GetObject function will be NULL.

dwOffset
Specifies the offset from the beginning of the file mapping object referenced by hSection
where storage for the bitmap's bit values is to begin. This value is ignored if hSection is NULL.
The bitmap's bit values are aligned on doubleword boundaries, so dwOffset must be a
multiple of the size of a DWORD.

Return ValuesIf the function succeeds, the return value is a handle to the newly created device-independent
bitmap, and *ppvBits points to the bitmap's bit values.

If the function fails, the return value is NULL, and *ppvBits is NULL. To get extended error
information, call GetLastError.

RemarksAs noted above, if hSection is NULL, the operating system allocates memory for the device-
independent bitmap. The operating system closes the handle to that memory when you later
delete the device-independent bitmap by calling the DeleteObject function. If hSection is not
NULL, you must close the hSection memory handle yourself after calling DeleteObject to delete
the bitmap.

Windows NT: You need to guarantee that the GDI subsystem has completed any drawing to a
bitmap created by CreateDIBSection before you draw to the bitmap yourself. Access to the
bitmap must be synchronized. Do this by calling the GdiFlush function. This applies to any use of
the pointer to the bitmap's bit values, including passing the pointer in calls to functions such as
SetDIBits.See AlsoBITMAPINFO, CreateFileMapping, DeleteObject, DIBSECTION, GetDIBColorTable,
GetObject, GdiFlush, HBITMAP, SetDIBits, SetDIBColorTable

CreateDirectory
The CreateDirectory function creates a new directory. If the underlying file system supports
security on files and directories, the function applies a specified security descriptor to the new
directory. Note that CreateDirectory does not have a template parameter, while
CreateDirectoryEx does.

BOOL CreateDirectory(
LPCTSTR lpPathName, // pointer to a directory path string
LPSECURITY_ATTRIBUTES lpSecurityAttributes // pointer to a security descriptor

);ParameterslpPathName
Points to a null-terminated string that specifies the path of the directory to be created.
There is a default string size limit for paths of MAX_PATH characters. This limit is related to
how the CreateDirectory function parses paths.
Windows NT: An application can transcend this limit and send in paths longer than
MAX_PATH characters by calling the wide (W) version of CreateDirectory and prepending "\\
?\" to the path. The "\\?\" tells the function to turn off path parsing; it lets paths longer than
MAX_PATH be used with CreateDirectoryW. This also works with UNC names. The "\\?\" is
ignored as part of the path. For example, "\\?\C:\myworld\private" is seen as "C:\myworld\private", and
"\\?\UNC\bill_g_1\hotstuff\coolapps" is seen as "\\bill_g_1\hotstuff\coolapps".

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new directory. If lpSecurityAttributes is NULL, the directory gets a default
security descriptor. The target file system must support security on files and directories for this
parameter to have an effect.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT: Some file systems, such as NTFS, support compression for individual files and
directories. On volumes formatted for such a file system, a new directory inherits the compression
attribute of its parent directory.

Windows NT: An application can obtain a handle to a directory by calling CreateFile with the
FILE_FLAG_BACKUP_SEMANTICS flag set. For a code example, see CreateFile.See AlsoCreateDirectoryEx, CreateFile, RemoveDirectory, SECURITY_ATTRIBUTES

CreateDirectoryEx
The CreateDirectoryEx function creates a new directory with a specified path that retains the
attributes of a specified template directory. If the underlying file system supports security on files
and directories, the function applies a specified security descriptor to the new directory. The new
directory retains the other attributes of the specified template directory. Note that
CreateDirectoryEx has a template parameter, while CreateDirectory does not.

BOOL CreateDirectoryEx(
LPCTSTR lpTemplateDirectory, // pointer to path string of template directory
LPCTSTR lpNewDirectory, // pointer to path string of directory to create
LPSECURITY_ATTRIBUTES lpSecurityAttributes // pointer to security descriptor

);ParameterslpTemplateDirectory
Points to a null-terminated string that specifies the path of the directory to use as a template
when creating the new directory.

lpNewDirectory
Points to a null-terminated string that specifies the path of the directory to be created.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new directory. If lpSecurityAttributes is NULL, the directory gets a default
security descriptor. The target file system must support security on files and directories for this
parameter to have an effect.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CreateDirectoryEx function allows you to create directories that inherit stream information
from other directories. This function is useful, for example, when dealing with Macintosh
directories, which have a resource stream that is needed to properly identify directory contents as
an attribute.

Windows NT:
Some file systems, such as NTFS, support compression for individual files and directories. On
volumes formatted for such a file system, a new directory inherits the compression attribute of
its parent directory.
You can obtain a handle to a directory by calling the CreateFile function with the
FILE_FLAG_BACKUP_SEMANTICS flag set. See CreateFile for a code example.See AlsoCreateDirectory, CreateFile, RemoveDirectory, SECURITY_ATTRIBUTES

CreateDiscardableBitmap
The CreateDiscardableBitmap function creates a discardable bitmap that is compatible with the
specified device. The bitmap has the same bits-per-pixel format and the same color palette as the
device. An application can select this bitmap as the current bitmap for a memory device that is
compatible with the specified device.

The CreateDiscardableBitmap function is included only for compatibility with earlier versions of
Windows. For Win32-based applications, use the CreateCompatibleBitmap function.

HBITMAP CreateDiscardableBitmap(
HDC hdc, // handle to device context
int nWidth, // bitmap width
int nHeight // bitmap height

);Parametershdc
Identifies a device context.

nWidth
Specifies the width, in bits, of the bitmap.

nHeight
Specifies the height, in bits, of the bitmap.

Return ValuesIf the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.RemarksWhen you no longer need the bitmap, call the DeleteObject function to delete it.See AlsoCreateCompatibleBitmap, DeleteObject

CreateEllipticRgn
The CreateEllipticRgn function creates an elliptical region.

HRGN CreateEllipticRgn(
int nLeftRect, // x-coordinate of the upper-left corner of the bounding rectangle
int nTopRect, // y-coordinate of the upper-left corner of the bounding rectangle
int nRightRect, // x-coordinate of the lower-right corner of the bounding rectangle
int nBottomRect // y-coordinate of the lower-right corner of the bounding rectangle

);ParametersnLeftRect
Specifies the x-coordinate of the upper-left corner of the bounding rectangle of the ellipse.

nTopRect
Specifies the y-coordinate of the upper-left corner of the bounding rectangle of the ellipse.

nRightRect
Specifies the x-coordinate of the lower-right corner of the bounding rectangle of the ellipse.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the bounding rectangle of the ellipse.

Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.RemarksA bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's major axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

The coordinates of the bounding rectangle are specified in logical units.See AlsoCreateEllipticRgnIndirect, DeleteObject, SelectObject

CreateEllipticRgnIndirect
The CreateEllipticRgnIndirect function creates an elliptical region.

HRGN CreateEllipticRgnIndirect(
CONST RECT *lprc // pointer to structure defining bounding rectangle

);Parameterslprc
Points to a RECT structure that contains the coordinates of the upper-left and lower-right
corners of the bounding rectangle of the ellipse.

Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.RemarksA bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's major axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

The coordinates of the bounding rectangle are specified in logical units.See AlsoCreateEllipticRgn, DeleteObject, RECT, SelectObject

CreateEnhMetaFile
The CreateEnhMetaFile function creates a device context for an enhanced-format metafile. This
device context can be used to store a device-independent picture.

HDC CreateEnhMetaFile(
HDC hdcRef, // handle to a reference device context
LPCTSTR lpFilename, // pointer to a filename string
CONST RECT *lpRect, // pointer to a bounding rectangle
LPCTSTR lpDescription // pointer to an optional description string

);ParametershdcRef
Identifies a reference device for the enhanced metafile.

lpFilename
Points to the filename for the enhanced metafile to be created. If this parameter is NULL, the
enhanced metafile is memory based and its contents are lost when it is deleted by using the
DeleteEnhMetaFile function.

lpRect
Points to a RECT structure that specifies the dimensions (in .01-millimeter units) of the picture
to be stored in the enhanced metafile.

lpDescription
Points to a string that specifies the name of the application that created the picture, as well as
the picture's title.

Return ValuesIf the function succeeds, the return value is a handle to the device context for the enhanced
metafile.

If the function fails, the return value is NULL.RemarksWhere text arguments must use Unicode characters, use the CreateEnhMetaFile function as a
wide-character function. Where text arguments must use characters from the Windows 3.x
character set, use this function as an ANSI function.

Windows uses the reference device identified by the hdcRef parameter to record the resolution
and units of the device on which a picture originally appeared. If the hdcRef parameter is NULL, it
uses the current display device for reference.

The left and top members of the RECT structure pointed to by the lpRect parameter must be less
than the right and bottom members, respectively. Points along the edges of the rectangle are
included in the picture. If lpRect is NULL, the graphics device interface (GDI) computes the
dimensions of the smallest rectangle that surrounds the picture drawn by the application. The
lpRect parameter should be provided where possible.

The string pointed to by the lpDescription parameter must contain a null character between the
application name and the picture name and must terminate with two null characters ¾ for
example, "XYZ Graphics Editor\0Bald Eagle\0\0", where \0 represents the null character. If
lpDescription is NULL, there is no corresponding entry in the enhanced-metafile header.

Applications use the device context created by this function to store a graphics picture in an
enhanced metafile. The handle identifying this device context can be passed to any GDI function.

After an application stores a picture in an enhanced metafile, it can display the picture on any
output device by calling the PlayEnhMetaFile function. When displaying the picture, Windows
uses the rectangle pointed to by the lpRect parameter and the resolution data from the reference
device to position and scale the picture.

The device context returned by this function contains the same default attributes associated with
any new device context.

Applications must use the GetWinMetaFileBits function to convert an enhanced metafile to the
older Windows metafile format.

The filename for the enhanced metafile should use the .EMF extension.See AlsoCloseEnhMetaFile, DeleteEnhMetaFile, GetEnhMetaFileDescription, GetEnhMetaFileHeader,
GetWinMetaFileBits, PlayEnhMetaFile, RECT

CreateEvent
The CreateEvent function creates a named or unnamed event object.

HANDLE CreateEvent(
LPSECURITY_ATTRIBUTES lpEventAttributes, // pointer to security attributes
BOOL bManualReset, // flag for manual-reset event
BOOL bInitialState, // flag for initial state
LPCTSTR lpName // pointer to event-object name

);ParameterslpEventAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpEventAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new event. If lpEventAttributes is NULL, the event gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

bManualReset
Specifies whether a manual-reset or auto-reset event object is created. If TRUE, then you
must use the ResetEvent function to manually reset the state to nonsignaled. If FALSE,
Windows automatically resets the state to nonsignaled after a single waiting thread has been
released.

bInitialState
Specifies the initial state of the event object. If TRUE, the initial state is signaled; otherwise, it
is nonsignaled.

lpName
Points to a null-terminated string specifying the name of the event object. The name is limited
to MAX_PATH characters and can contain any character except the backslash path-
separator character (\). Name comparison is case sensitive.
If lpName matches the name of an existing named event object, this function requests
EVENT_ALL_ACCESS access to the existing object. In this case, the bManualReset and
bInitialState parameters are ignored because they have already been set by the creating
process. If the lpEventAttributes parameter is not NULL, it determines whether the handle can
be inherited, but its security-descriptor member is ignored.
If lpName is NULL, the event object is created without a name.
If lpName matches the name of an existing semaphore, mutex, or file-mapping object, the
function fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and file-mapping objects share the same name space.

Return ValuesIf the function succeeds, the return value is a handle to the event object. If the named event object
existed before the function call, the GetLastError function returns ERROR_ALREADY_EXISTS.
Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle returned by CreateEvent has EVENT_ALL_ACCESS access to the new event object
and can be used in any function that requires a handle to an event object.

Any thread of the calling process can specify the event-object handle in a call to one of the wait
functions. The single-object wait functions return when the state of the specified object is signaled.
The multiple-object wait functions can be instructed to return either when any one or when all of
the specified objects are signaled. When a wait function returns, the waiting thread is released to
continue its execution.

The initial state of the event object is specified by the bInitialState parameter. Use the SetEvent
function to set the state of an event object to signaled. Use the ResetEvent function to reset the
state of an event object to nonsignaled.

When the state of a manual-reset event object is signaled, it remains signaled until it is explicitly
reset to nonsignaled by the ResetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object, can be released while the
object's state is signaled.

When the state of an auto-reset event object is signaled, it remains signaled until a single waiting
thread is released; the system then automatically resets the state to nonsignaled. If no threads are
waiting, the event object's state remains signaled.

Multiple processes can have handles of the same event object, enabling use of the object for
interprocess synchronization. The following object-sharing mechanisms are available:

· A child process created by the CreateProcess function can inherit a handle to an event
object if the lpEventAttributes parameter of CreateEvent enabled inheritance.

· A process can specify the event-object handle in a call to the DuplicateHandle function to
create a duplicate handle that can be used by another process.

· A process can specify the name of an event object in a call to the OpenEvent or
CreateEvent function.

Use the CloseHandle function to close the handle. The system closes the handle automatically
when the process terminates. The event object is destroyed when its last handle has been closed.See AlsoCloseHandle, CreateProcess, DuplicateHandle, OpenEvent, ResetEvent,
SECURITY_ATTRIBUTES, SetEvent

CreateFiber
The CreateFiber function allocates a fiber object, assigns it a stack, and sets up execution to
begin at the specified start address, typically the fiber function. This function does not schedule
the fiber.

LPVOID CreateFiber(
DWORD dwStackSize, // initial thread stack size, in bytes
LPFIBER_START_ROUTINE lpStartAddress, // pointer to fiber function
LPVOID lpParameter // argument for new fiber

);ParametersdwStackSize
Specifies the size, in bytes, of the stack for the new fiber. If zero is specified, the stack size
defaults to the same size as that of the main thread. The function fails if it cannot commit
dwStackSize bytes. Note that the system increases the stack size dynamically, if necessary.
The stack is freed when the thread terminates.

lpStartAddress
Points to the application-supplied function to be executed by the fiber and represents the
starting address of the fiber. The function accepts a single argument and does not return a
value. Execution of the newly created fiber does not begin until another fiber calls the
SwitchToFiber function with this address.

lpParameter
Specifies a single argument that is passed to the fiber. This value can be retrieved by the fiber
using the GetFiberData function.

Return ValuesIf the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksBefore a thread can schedule a fiber using the SwitchToFiber function, it must call the
ConvertThreadToFiber function so there is a fiber associated with the thread.

The fiber function is of type FIBER_START_ROUTINE. It accepts a single value of type PVOID
(fiber data) and does not return a value. The prototype for this function is as follows:VOID WINAPI FiberFunc(PVOID lpParameter);
See AlsoConvertThreadToFiber, GetFiberData, SwitchToFiber

CreateFile
The CreateFile function creates or opens the following objects and returns a handle that can be
used to access the object:

· files
· pipes
· mailslots
· communications resources
· disk devices (Windows NT only)
· consoles
· directories (open only)
HANDLE CreateFile(
LPCTSTR lpFileName, // pointer to name of the file
DWORD dwDesiredAccess, // access (read-write) mode
DWORD dwShareMode, // share mode
LPSECURITY_ATTRIBUTES lpSecurityAttributes, // pointer to security attributes
DWORD dwCreationDistribution, // how to create
DWORD dwFlagsAndAttributes, // file attributes
HANDLE hTemplateFile // handle to file with attributes to copy

);ParameterslpFileName
Points to a null-terminated string that specifies the name of the object (file, pipe, mailslot,
communications resource, disk device, console, or directory) to create or open.
If *lpFileName is a path, there is a default string size limit of MAX_PATH characters. This limit
is related to how the CreateFile function parses paths.
Windows NT: You can use paths longer than MAX_PATH characters by calling the wide (W)
version of CreateFile and prepending "\\?\" to the path. The "\\?\" tells the function to turn off
path parsing. This lets you use paths that are nearly 32,000 Unicode characters long. You
must use fully-qualified paths with this technique. This also works with UNC names. The "\\?\"
is ignored as part of the path. For example, "\\?\C:\myworld\private" is seen as "C:\myworld\
private", and "\\?\UNC\tom_1\hotstuff\coolapps" is seen as "\\tom_1\hotstuff\coolapps".

dwDesiredAccess
Specifies the type of access to the object. An application can obtain read access, write
access, read-write access, or device query access. This parameter can be any combination of
the following values.

Value Meaning
0 Specifies device query access to the object. An

application can query device attributes without
accessing the device.

GENERIC_READ Specifies read access to the object. Data can
be read from the file and the file pointer can be
moved. Combine with GENERIC_WRITE for
read-write access.

GENERIC_WRITE Specifies write access to the object. Data can
be written to the file and the file pointer can be
moved. Combine with GENERIC_READ for
read-write access.

dwShareMode
Set of bit flags that specifies how the object can be shared. If dwShareMode is 0, the object
cannot be shared. Subsequent open operations on the object will fail, until the handle is
closed.
To share the object, use a combination of one or more of the following values:

Value Meaning
FILE_SHARE_DELETE Windows NT only: Subsequent open

operations on the object will succeed only if
delete access is requested.

FILE_SHARE_READ Subsequent open operations on the object

will succeed only if read access is requested.
FILE_SHARE_WRITE Subsequent open operations on the object

will succeed only if write access is
requested.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the object. If lpSecurityAttributes is NULL, the object gets a default security
descriptor. The target file system must support security on files and directories for this
parameter to have an effect on files.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

dwCreationDistribution
Specifies which action to take on files that exist, and which action to take when files do not
exist. For more information about this parameter, see the Remarks section. This parameter
must be one of the following values:

Value Meaning
CREATE_NEW Creates a new file. The function fails if the

specified file already exists.
CREATE_ALWAYS Creates a new file. The function overwrites

the file if it exists.
OPEN_EXISTING Opens the file. The function fails if the file

does not exist.
See the Remarks section for a discussion
of why you should use the
OPEN_EXISTING flag if you are using the
CreateFile function for devices, including
the console.

OPEN_ALWAYS Opens the file, if it exists. If the file does
not exist, the function creates the file as if
dwCreationDistribution were
CREATE_NEW.

TRUNCATE_EXISTING Opens the file. Once opened, the file is
truncated so that its size is zero bytes. The
calling process must open the file with at
least GENERIC_WRITE access. The
function fails if the file does not exist.

dwFlagsAndAttributes
Specifies the file attributes and flags for the file.
Any combination of the following attributes is acceptable, except all other file attributes
override FILE_ATTRIBUTE_NORMAL.

Attribute Meaning
FILE_ATTRIBUTE_ARCHIVE The file should be archived.

Applications use this attribute to
mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is
compressed. For a file, this
means that all of the data in the
file is compressed. For a
directory, this means that
compression is the default for
newly created files and
subdirectories.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be
included in an ordinary directory
listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes

set. This attribute is valid only if
used alone.

FILE_ATTRIBUTE_OFFLINE The data of the file is not
immediately available. Indicates
that the file data has been
physically moved to offline
storage.

FILE_ATTRIBUTE_READONLY The file is read only. Applications
can read the file but cannot write
to it or delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of or is used
exclusively by the operating
system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for
temporary storage. File systems
attempt to keep all of the data in
memory for quicker access
rather than flushing the data
back to mass storage. A
temporary file should be deleted
by the application as soon as it is
no longer needed.

Any combination of the following flags is acceptable.

Flag Meaning

FILE_FLAG_WRITE_THROUGH
Instructs the operating system to write through any
intermediate cache and go directly to disk. The
operating system can still cache write operations, but
cannot lazily flush them.

FILE_FLAG_OVERLAPPED
Instructs the operating system to initialize the object,
so ReadFile, WriteFile, ConnectNamedPipe, and
TransactNamedPipe operations that take a significant
amount of time to process return ERROR_IO_PENDING.
When the operation is finished, an event is set to the
signaled state.
When you specify FILE_FLAG_OVERLAPPED, the
ReadFile and WriteFile functions must specify an
OVERLAPPED structure. That is, when
FILE_FLAG_OVERLAPPED is specified, an application
must perform overlapped reading and writing.
When FILE_FLAG_OVERLAPPED is specified, the
operating system does not maintain the file pointer. The
file position must be passed as part of the lpOverlapped
parameter (pointing to an OVERLAPPED structure) to the
ReadFile and WriteFile functions.
This flag also enables more than one operation to be
performed simultaneously with the handle (a simultaneous
read and write operation, for example).

FILE_FLAG_NO_BUFFERING
Instructs the operating system to open the file with no
intermediate buffering or caching. This can provide
performance gains in some situations.
An application must meet certain requirements when
working with files opened with
FILE_FLAG_NO_BUFFERING:

· File access must begin at byte offsets within the
file that are integer multiples of the volume's sector
size.

· File access must be for numbers of bytes that are
integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application
can request reads and writes of 512, 1024, or 2048
bytes, but not of 335, 981, or 7171 bytes.

· Buffer addresses for read and write operations
must be aligned on addresses in memory that are
integer multiples of the volume's sector size.

One way to align buffers on integer multiples of the
volume sector size is to use VirtualAlloc to allocate the
buffers. It allocates memory that is aligned on addresses
that are integer multiples of the operating system's
memory page size. Since both memory page and volume
sector sizes are powers of 2, this memory is also aligned
on addresses that are integer multiples of a volume's
sector size.
An application can determine a volume's sector size by
calling the GetDiskFreeSpace function.

FILE_FLAG_RANDOM_ACCESS
Indicates that the file is accessed randomly. Windows
can use this as a hint to optimize file caching.

FILE_FLAG_SEQUENTIAL_SCAN
Indicates that the file is to be accessed sequentially
from beginning to end. Windows can use this as a
hint to optimize file caching. If an application moves
the file pointer for random access, optimum caching
may not occur; however, correct operation is still
guaranteed.
Specifying this flag can increase performance for
applications that read large files using sequential
access. Performance gains can be even more
noticeable for applications that read large files mostly
sequentially, but occasionally skip over small ranges
of bytes.

FILE_FLAG_DELETE_ON_CLOSE
Indicates that the operating system is to delete the file
immediately after all of its handles have been closed,
not just the handle for which you specified
FILE_FLAG_DELETE_ON_CLOSE.
Subsequent open requests for the file will fail, unless
FILE_SHARE_DELETE is used.

FILE_FLAG_BACKUP_SEMANTICS
Windows NT only: Indicates that the file is being opened
or created for a backup or restore operation. The
operating system ensures that the calling process
overrides file security checks, provided it has the
necessary permission to do so. The relevant permissions
are SE_BACKUP_NAME and SE_RESTORE_NAME.
You can also set this flag to obtain a handle to a directory.
A directory handle can be passed to some Win32
functions in place of a file handle.

FILE_FLAG_POSIX_SEMANTICS
Indicates that the file is to be accessed according to
POSIX rules. This includes allowing multiple files with
names, differing only in case, for file systems that support
such naming. Use care when using this option because
files created with this flag may not be accessible by
applications written for MS-DOS, Windows, or Windows
NT.

If the CreateFile function opens the client side of a named pipe, the dwFlagsAndAttributes
parameter can also contain Security Quality of Service information. When the calling
application specifies the SECURITY_SQOS_PRESENT flag, the dwFlagsAndAttributes
parameter can contain one or more of the following values:

Value Meaning
SECURITY_ANONYMOUS Specifies to impersonate the

client at the Anonymous
impersonation level.

SECURITY_IDENTIFICATION Specifies to impersonate the
client at the Identification
impersonation level.

SECURITY_IMPERSONATION Specifies to impersonate the
client at the Impersonation
impersonation level.

SECURITY_DELEGATION Specifies to impersonate the
client at the Delegation
impersonation level.

SECURITY_CONTEXT_TRACKINGSpecifies that the security
tracking mode is dynamic. If this
flag is not specified, Security
Tracking Mode is static.

SECURITY_EFFECTIVE_ONLY Specifies that only the enabled
aspects of the client's security
context are available to the
server. If you do not specify this
flag, all aspects of the client's
security context are available.
This flag allows the client to limit
the groups and privileges that a
server can use while
impersonating the client.

For more information, see Security.
hTemplateFile

Specifies a handle with GENERIC_READ access to a template file. The template file supplies
file attributes and extended attributes for the file being created.
Windows 95: This value must be NULL. If you supply a handle under Windows 95, the call
fails and GetLastError returns ERROR_NOT_SUPPORTED.

Return ValuesIf the function succeeds, the return value is an open handle to the specified file. If the specified file
exists before the function call and dwCreationDistribution is CREATE_ALWAYS or
OPEN_ALWAYS, a call to GetLastError returns ERROR_ALREADY_EXISTS (even though the
function has succeeded). If the file does not exist before the call, GetLastError returns zero.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksUse the CloseHandle function to close an object handle returned by CreateFile.

As noted above, specifying zero for dwDesiredAccess allows an application to query device
attributes without actually accessing the device. This type of querying is useful, for example, if an
application wants to determine the size of a floppy disk drive and the formats it supports without
having a floppy in the drive.FilesWhen creating a new file, the CreateFile function performs the following actions:

· Combines the file attributes and flags specified by dwFlagsAndAttributes with
FILE_ATTRIBUTE_ARCHIVE.

· Sets the file length to zero.
· Copies the extended attributes supplied by the template file to the new file if the

hTemplateFile parameter is specified.
When opening an existing file, CreateFile performs the following actions:

· Combines the file flags specified by dwFlagsAndAttributes with existing file attributes.
CreateFile ignores the file attributes specified by dwFlagsAndAttributes.

· Sets the file length according to the value of dwCreationDistribution.
· Ignores the hTemplateFile parameter.

· Ignores the lpSecurityDescriptor member of the SECURITY_ATTRIBUTES structure if
the lpSecurityAttributes parameter is not NULL. The other structure members are used. The
bInheritHandle member is the only way to indicate whether the file handle can be inherited.

If you are attempting to create a file on a floppy drive that does not have a floppy disk or a CD-
ROM drive that does not have a CD, the system displays a message box asking the user to insert
a disk or a CD, respectively. To prevent the system from displaying this message box, call the
SetErrorMode function with SEM_FAILCRITICALERRORS.PipesIf CreateFile opens the client end of a named pipe, the function uses any instance of the named
pipe that is in the listening state. The opening process can duplicate the handle as many times as
required but, once opened, the named pipe instance cannot be opened by another client. The
access specified when a pipe is opened must be compatible with the access specified in the
dwOpenMode parameter of the CreateNamedPipe function. For more information about pipes,
see Pipes.MailslotsIf CreateFile opens the client end of a mailslot, the function returns INVALID_HANDLE_VALUE if
the mailslot client attempts to open a local mailslot before the mailslot server has created it with
the CreateMailSlot function. For more information about mailslots, see Mailslots.Communications ResourcesThe CreateFile function can create a handle to a communications resource, such as the serial
port COM1. For communications resources, the dwCreationDistribution parameter must be
OPEN_EXISTING, and the hTemplate parameter must be NULL. Read, write, or read-write
access can be specified, and the handle can be opened for overlapped I/O. For more information
about communications, see Communications.

Disk Devices

Windows NT: You can use the CreateFile function to open a disk drive or a partition on a disk
drive. The function returns a handle to the disk device; that handle can be used with the
DeviceIOControl function. The following requirements must be met in order for such a call to
succeed:

· The caller must have administrative privileges for the operation to succeed on a hard disk
drive.

· The lpFileName string should be of the form \\.\PHYSICALDRIVEx to open the hard disk
x. Hard disk numbers start at zero. For example:

String Meaning
\\.\PHYSICALDRIVE2 Obtains a handle to the third physical drive

on the user's computer.

· The lpFileName string should be \\.\x: to open a floppy drive x or a partition x on a hard
disk. For example:

String Meaning
\\.\A: Obtains a handle to drive A on the user's computer.
\\.\C: Obtains a handle to drive C on the user's computer.

Windows 95: This technique does not work for opening a logical drive. In Windows 95, specifying
a string in this form causes CreateFile to return an error.

· The dwCreationDistribution parameter must have the OPEN_EXISTING value.
· When opening a floppy disk or a partition on a hard disk, you must set the

FILE_SHARE_WRITE flag in the dwShareMode parameter.
ConsolesThe CreateFile function can create a handle to console input (CONIN$). If the process has an
open handle to it as a result of inheritance or duplication, it can also create a handle to the active
screen buffer (CONOUT$). The calling process must be attached to an inherited console or one
allocated by the AllocConsole function. For console handles, set the CreateFile parameters as
follows:

Parameters Value

lpFileName Use the CONIN$ value to specify console
input and the CONOUT$ value to specify
console output.
CONIN$ gets a handle to the console's input
buffer, even if the SetStdHandle function
redirected the standard input handle. To get
the standard input handle, use the
GetStdHandle function.
CONOUT$ gets a handle to the active screen

buffer, even if SetStdHandle redirected the
standard output handle. To get the standard
output handle, use GetStdHandle.

dwDesiredAccess GENERIC_READ | GENERIC_WRITE is
preferred, but either one can limit access.

dwShareMode If the calling process inherited the console or if
a child process should be able to access the
console, this parameter must be
FILE_SHARE_READ | FILE_SHARE_WRITE.

lpSecurityAttributes If you want the console to be inherited, the
bInheritHandle member of the
SECURITY_ATTRIBUTES structure must be
TRUE.

dwCreationDistribution You should specify OPEN_EXISTING when
using CreateFile to open the console.

dwFlagsAndAttributes Ignored.
hTemplateFile Ignored.

The following list shows the effects of various settings of fwdAccess and lpFileName.

lpFileName fwdAccess Result

CON GENERIC_READ Opens console for input.
CON GENERIC_WRITE Opens console for output.
CON GENERIC_READ\

GENERIC_WRITE
Windows 95: Causes
CreateFile to fail;
GetLastError returns
ERROR_PATH_NOT_FOUND.
Windows NT: Causes
CreateFile to fail;
GetLastError returns
ERROR_FILE_NOT_FOUND.

DirectoriesAn application cannot create a directory with CreateFile; it must call CreateDirectory or
CreateDirectoryEx to create a directory.

Windows NT:
You can obtain a handle to a directory by setting the FILE_FLAG_BACKUP_SEMANTICS
flag. A directory handle can be passed to some Win32 functions in place of a file handle.
Some file systems, such as NTFS, support compression for individual files and directories. On
volumes formatted for such a file system, a new directory inherits the compression attribute of
its parent directory.See AlsoAllocConsole, CloseHandle, ConnectNamedPipe, CreateDirectory, CreateDirectoryEx,

CreateNamedPipe, DeviceIOControl, GetDiskFreeSpace, GetOverlappedResult,
GetStdHandle, OpenFile, OVERLAPPED, ReadFile, SECURITY_ATTRIBUTES,
SetErrorMode, SetStdHandle TransactNamedPipe, VirtualAlloc, WriteFile

CreateFileMapping
The CreateFileMapping function creates a named or unnamed file-mapping object for the
specified file.

HANDLE CreateFileMapping(
HANDLE hFile, // handle to file to map
LPSECURITY_ATTRIBUTES lpFileMappingAttributes, // optional security attributes
DWORD flProtect, // protection for mapping object
DWORD dwMaximumSizeHigh, // high-order 32 bits of object size
DWORD dwMaximumSizeLow, // low-order 32 bits of object size
LPCTSTR lpName // name of file-mapping object

);ParametershFile
Identifies the file from which to create a mapping object. The file must be opened with an
access mode compatible with the protection flags specified by the flProtect parameter. It is
recommended, though not required, that files you intend to map be opened for exclusive
access.
If hFile is (HANDLE)0xFFFFFFFF, the calling process must also specify a mapping object size
in the dwMaximumSizeHigh and dwMaximumSizeLow parameters. The function creates a file-
mapping object of the specified size backed by the operating-system paging file rather than by
a named file in the file system. The file-mapping object can be shared through duplication,
through inheritance, or by name.

lpFileMappingAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpFileMappingAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new file-mapping object. If lpFileMappingAttributes is NULL, the file-
mapping object gets a default security descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

flProtect
Specifies the protection desired for the file view, when the file is mapped. This parameter can
be one of the following values:

Value Description
PAGE_READONLY Gives read-only access to the committed

region of pages. An attempt to write to or
execute the committed region results in an
access violation. The file specified by the
hFile parameter must have been created with
GENERIC_READ access.

PAGE_READWRITE Gives read-write access to the committed
region of pages. The file specified by hFile
must have been created with
GENERIC_READ and GENERIC_WRITE
access.

PAGE_WRITECOPY Gives copy on write access to the committed
region of pages. The files specified by the
hFile parameter must have been created with
GENERIC_READ and GENERIC_WRITE
access.

In addition, an application can specify certain section attributes by combining (using
the bitwise OR operator) one or more of the following section attribute values with one
of the preceding page protection values:

Value Description
SEC_COMMIT Allocates physical storage in memory or in the

paging file on disk for all pages of a section. This
is the default setting.

SEC_IMAGE The file specified for a section's file mapping is

an executable image file. Because the mapping
information and file protection are taken from the
image file, no other attributes are valid with
SEC_IMAGE.

SEC_NOCACHE All pages of a section are to be set as non-
cacheable. This attribute is intended for
architectures requiring various locking structures
to be in memory that is never fetched into the
processor's. On 80x86 and MIPS machines,
using the cache for these structures only slows
down the performance as the hardware keeps
the caches coherent. Some device drivers
require noncached data so that programs can
write through to the physical memory.
SEC_NOCACHE requires either the
SEC_RESERVE or SEC_COMMIT to also be
set.

SEC_RESERVE Reserves all pages of a section without
allocating physical storage. The reserved range
of pages cannot be used by any other allocation
operations until it is released. Reserved pages
can be committed in subsequent calls to the
VirtualAlloc function. This attribute is valid only
if the hFile parameter is (HANDLE)
0xFFFFFFFF; that is, a file mapping object
backed by the operating sytem paging file.

dwMaximumSizeHigh
Specifies the high-order 32 bits of the maximum size of the file-mapping object.

dwMaximumSizeLow
Specifies the low-order 32 bits of the maximum size of the file-mapping object. If this
parameter and dwMaximumSizeHig are zero, the maximum size of the file-mapping object is
equal to the current size of the file identified by hFile.

lpName
Points to a null-terminated string specifying the name of the mapping object. The name can
contain any character except the backslash character (\).
If this parameter matches the name of an existing named mapping object, the function
requests access to the mapping object with the protection specified by flProtect.
If this parameter is NULL, the mapping object is created without a name.

Return ValuesIf the function succeeds, the return value is a handle to the file-mapping object. If the object
existed before the function call, the GetLastError function returns ERROR_ALREADY_EXISTS,
and the return value is a valid handle to the existing file-mapping object (with its current size, not
the new specified size. If the mapping object did not exist, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksAfter a file-mapping object has been created, the size of the file must not exceed the size of the
file-mapping object; if it does, not all of the file's contents will be available for sharing.

If an application specifies a size for the file-mapping object that is larger than the size of the actual
named file on disk, the file on disk is grown to match the specified size of the file-mapping object.

The handle that CreateFileMapping returns has full access to the new file-mapping object. It can
be used with any function that requires a handle to a file-mapping object. File-mapping objects
can be shared either through process creation, through handle duplication, or by name. For
information on duplicating handles, see DuplicateHandle. For information on opening a file-
mapping object by name, see OpenFileMapping.

Windows 95: File handles that have been used to create file-mapping objects must not be used
in subsequent calls to file I/O functions, such as ReadFile and WriteFile. In general, if a file
handle has been used in a successful call to the CreateFileMapping function, do not use that
handle unless you first close the corresponding file-mapping object.

Creating a file-mapping object creates the potential for mapping a view of the file but does not

map the view. The MapViewOfFile and MapViewOfFileEx functions map a view of a file into a
process's address space.

With one important exception, file views derived from a single file-mapping object are coherent, or
identical, at a given time. If multiple processes have handles of the same file-mapping object, they
see a coherent view of the data when they map a view of the file.

The exception has to do with remote files. Although CreateFileMapping works with remote files, it
does not keep them coherent. For example, if two computers both map a file as writable, and both
change the same page, each computer will only see its own writes to the page. When the data
gets updated on the disk, it is not merged.

A mapped file and a file accessed by means of the input and output (I/O) functions (ReadFile and
WriteFile) are not necessarily coherent.

To fully close a file mapping object, an application must unmap all mapped views of the file
mapping object by calling UnmapViewOfFile, and close the file mapping object handle by calling
CloseHandle. The order in which these functions are called does not matter. The call to
UnmapViewOfFile is necessary because mapped views of a file mapping object maintain internal
open handles to the object, and a file mapping object will not close until all open handles to it are
closed.ExampleTo implement a mapping-object creation function that fails if the object already exists, an
application can use the following code.hMap = CreateFileMapping(...);
if (hMap != NULL && GetLastError() == ERROR_ALREADY_EXISTS) {

CloseHandle(hMap);
hMap = NULL;

}
return hMap;
See AlsoCloseHandle, DuplicateHandle, MapViewOfFile, MapViewOfFileEx, OpenFileMapping,

ReadFile, SECURITY_ATTRIBUTES, UnmapViewOfFile, VirtualAlloc, WriteFile

CreateFont
The CreateFont function creates a logical font that has specific characteristics. The logical font
can subsequently be selected as the font for any device.

HFONT CreateFont(
int nHeight, // logical height of font
int nWidth, // logical average character width
int nEscapement, // angle of escapement
int nOrientation, // base-line orientation angle
int fnWeight, // font weight
DWORD fdwItalic, // italic attribute flag
DWORD fdwUnderline, // underline attribute flag
DWORD fdwStrikeOut, // strikeout attribute flag
DWORD fdwCharSet, // character set identifier
DWORD fdwOutputPrecision, // output precision
DWORD fdwClipPrecision, // clipping precision
DWORD fdwQuality, // output quality
DWORD fdwPitchAndFamily, // pitch and family
LPCTSTR lpszFace // pointer to typeface name string

);ParametersnHeight
Specifies the height, in logical units, of the font's character cell or character. The character
height value (also known as the em height) is the character cell height value minus the
internal-leading value. The font mapper interprets the value specified in nHeight in the
following manner:

Value Meaning
> 0 The font mapper transforms this value into device units

and matches it against the cell height of the available
fonts.

0 The font mapper uses a default height value when it
searches for a match.

< 0 The font mapper transforms this value into device units
and matches its absolute value against the character
height of the available fonts.

For all height comparisons, the font mapper looks for the largest font that does not
exceed the requested size.
This mapping occurs when the font is used for the first time.
For the MM_TEXT mapping mode, you can use the following formula to specify a height
for a font with a specified point size:
nHeight = -MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72);nWidth
Specifies the average width, in logical units, of characters in the requested font. If this value is
zero, the font mapper chooses a "closest match" value. The "closest match" value is
determined by comparing the absolute values of the difference between the current device's
aspect ratio and the digitized aspect ratio of available fonts.

nEscapement
Specifies the angle, in tenths of degrees, between the escapement vector and the x-axis of
the device. The escapement vector is parallel to the base line of a row of text.
Windows NT:

When the graphics mode is set to GM_ADVANCED, you can specify the escapement
angle of the string independently of the orientation angle of the string's characters.
When the graphics mode is set to GM_COMPATIBLE, nEscapement specifies both the
escapement and orientation. You should set nEscapement and nOrientation to the same
value.

Windows 95:
The nEscapement parameter specifies both the escapement and orientation. You should
set nEscapement and nOrientation to the same value.

nOrientation
Specifies the angle, in tenths of degrees, between each character's base line and the x-axis of
the device.

fnWeight

Specifies the weight of the font in the range 0 through 1000. For example, 400 is normal and
700 is bold. If this value is zero, a default weight is used.
The following values are defined for convenience:

Value Weight
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_HEAVY 900

FW_BLACK 900

fdwItalic
Specifies an italic font if set to TRUE.

fdwUnderline
Specifies an underlined font if set to TRUE.

fdwStrikeOut
Specifies a strikeout font if set to TRUE.

fdwCharSet
Specifies the character set. The following values are predefined:

ANSI_CHARSET
DEFAULT_CHARSET
SYMBOL_CHARSET
SHIFTJIS_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
CHINESEBIG5_CHARSET
OEM_CHARSET

Windows 95 only:
JOHAB_CHARSET
HEBREW_CHARSET
ARABIC_CHARSET
GREEK_CHARSET
TURKISH_CHARSET
THAI_CHARSET
EASTEUROPE_CHARSET
RUSSIAN_CHARSET
MAC_CHARSET
BALTIC_CHARSET

The OEM_CHARSET value specifies a character set that is operating-system dependent.
You can use the DEFAULT_CHARSET value to allow the name and size of a font to fully
describe the logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font, so you should use DEFAULT_CHARSET
sparingly to avoid unexpected results.
Fonts with other character sets may exist in the operating system. If an application uses a font
with an unknown character set, it should not attempt to translate or interpret strings that are
rendered with that font.
This parameter is important in the font mapping process. To ensure consistent results, specify
a specific character set. If you specify a typeface name in the lpszFace parameter, make sure
that the fdwCharSet value matches the character set of the typeface specified in lpszFace.

fdwOutputPrecision
Specifies the output precision. The output precision defines how closely the output must
match the requested font's height, width, character orientation, escapement, pitch, and font
type. It can be one of the following values:

Value Meaning
OUT_CHARACTER_PRECISNot used.
OUT_DEFAULT_PRECIS Specifies the default font mapper

behavior.
OUT_DEVICE_PRECIS Instructs the font mapper to choose a

Device font when the system contains
multiple fonts with the same name.

OUT_OUTLINE_PRECIS Windows NT: This value instructs the
font mapper to choose from TrueType
and other outline-based fonts.
Windows 95: This value is not used.

OUT_RASTER_PRECIS Instructs the font mapper to choose a
raster font when the system contains
multiple fonts with the same name.

OUT_STRING_PRECIS This value is not used by the font
mapper, but it is returned when raster
fonts are enumerated.

OUT_STROKE_PRECIS Windows NT: This value is not used by
the font mapper, but it is returned when
TrueType, other outline-based fonts,
and vector fonts are enumerated.
Windows 95: This value is used to map
vector fonts, and is returned when
TrueType or vector fonts are
enumerated.

OUT_TT_ONLY_PRECIS Instructs the font mapper to choose
from only TrueType fonts. If there are no
TrueType fonts installed in the system,
the font mapper returns to default
behavior.

OUT_TT_PRECIS Instructs the font mapper to choose a
TrueType font when the system
contains multiple fonts with the same
name.

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and
OUT_TT_PRECIS values to control how the font mapper chooses a font when the
operating system contains more than one font with a specified name. For example, if an
operating system contains a font named Symbol in raster and TrueType form,
specifying OUT_TT_PRECIS forces the font mapper to choose the TrueType version.
Specifying OUT_TT_ONLY_PRECIS forces the font mapper to choose a TrueType font,
even if it must substitute a TrueType font of another name.

fdwClipPrecision
Specifies the clipping precision. The clipping precision defines how to clip characters that are
partially outside the clipping region. It can be one or more of the following values:

Value Meaning
CLIP_DEFAULT_PRECIS Specifies default clipping behavior.
CLIP_CHARACTER_PRECISNot used.
CLIP_STROKE_PRECIS Not used by the font mapper, but is

returned when raster, vector, or
TrueType fonts are enumerated.
Windows NT: For compatibility, this
value is always returned when
enumerating fonts.

CLIP_MASK Not used.

CLIP_EMBEDDED You must specify this flag to use an
embedded read-only font.

CLIP_LH_ANGLES When this value is used, the rotation for
all fonts depends on whether the
orientation of the coordinate system is
left-handed or right-handed.
If not used, device fonts always rotate
counterclockwise, but the rotation of
other fonts is dependent on the
orientation of the coordinate system.
For more information about the
orientation of coordinate systems, see
the description of the nOrientation
parameter

CLIP_TT_ALWAYS Not used.

fdwQuality
Specifies the output quality. The output quality defines how carefully GDI must attempt to
match the logical-font attributes to those of an actual physical font. It can be one of the
following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important

than when the PROOF_QUALITY value is
used. For GDI raster fonts, scaling is
enabled, which means that more font sizes
are available, but the quality may be lower.
Bold, italic, underline, and strikeout fonts are
synthesized if necessary.

PROOF_QUALITY Character quality of the font is more
important than exact matching of the logical-
font attributes. For GDI raster fonts, scaling
is disabled and the font closest in size is
chosen. Although the chosen font size may
not be mapped exactly when
PROOF_QUALITY is used, the quality of the
font is high and there is no distortion of
appearance. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

fdwPitchAndFamily
Specifies the pitch and family of the font. The two low-order bits specify the pitch of the font
and can be one of the following values:
DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH
The four high-order bits specify the font family and can be one of the following values:

Value Description
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or

without serifs. Pica, Elite, and Courier New®
are examples.

FF_ROMAN Fonts with variable stroke width and with serifs.
MS® Serif is an example.

FF_SCRIPT Fonts designed to look like handwriting. Script
and Cursive are examples.

FF_SWISS Fonts with variable stroke width and without
serifs. MS Sans Serif is an example.

An application can specify a value for the fdwPitchAndFamily parameter by using the
Boolean OR operator to join a pitch constant with a family constant.
Font families describe the look of a font in a general way. They are intended for specifying
fonts when the exact typeface requested is not available.

lpszFace
Points to a null-terminated string that specifies the typeface name of the font. The length of
this string must not exceed 32 characters, including the null terminator. The
EnumFontFamilies function can be used to enumerate the typeface names of all currently
available fonts.
If lpszFace is NULL or points to an empty string, GDI uses the first font that matches the other
specified attributes.

Return ValuesIf the function succeeds, the return value is a handle to a logical font.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWhen you no longer need the font, call the DeleteObject function to delete it.

To help protect the copyrights of vendors who provide fonts for Windows operating systems,
applications should always report the exact name of a selected font. Because available fonts can
vary from system to system, do not assume that the selected font is always the same as the
requested font. For example, if you request a font named "Palatino," but no such font is available
on the system, the font mapper will substitute a font that has similar attributes but a different
name. Always report the name of the selected font to the user.See AlsoDeleteObject, SelectObject, EnumFontFamilies

CreateFontIndirect
The CreateFontIndirect function creates a logical font that has the characteristics specified in the
specified structure. The font can subsequently be selected as the current font for any device
context.

HFONT CreateFontIndirect(
CONST LOGFONT *lplf // pointer to logical font structure

);Parameterslplf
Points to a LOGFONT structure that defines the characteristics of the logical font.

Return ValuesIf the function succeeds, the return value is a handle to a logical font.

If the function fails, the return value is NULL.RemarksThe CreateFontIndirect function creates a logical font with the characteristics specified in the
LOGFONT structure. When this font is selected by using the SelectObject function, GDI's font
mapper attempts to match the logical font with an existing physical font. If it fails to find an exact
match, it provides an alternative whose characteristics match as many of the requested
characteristics as possible.

When you no longer need the font, call the DeleteObject function to delete it.See AlsoDeleteObject, LOGFONT, SelectObject

CreateHalftonePalette
The CreateHalftonePalette function creates a halftone palette for the specified device context.

HPALETTE CreateHalftonePalette(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value identifies a logical halftone palette.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application should create a halftone palette when the stretching mode of a device context is
set to HALFTONE. The logical halftone palette returned by CreateHalftonePalette should then be
selected and realized into the device context before the StretchBlt or StretchDIBits function is
called.

When you no longer need the palette, call the DeleteObject function to delete it.See AlsoDeleteObject, RealizePalette, SelectPalette, SetStretchBltMode, StretchDIBits, StretchBlt

CreateHatchBrush
The CreateHatchBrush function creates a logical brush that has the specified hatch pattern and
color.

HBRUSH CreateHatchBrush(
int fnStyle, // hatch style
COLORREF clrref // color value

);ParametersfnStyle
Specifies the hatch style of the brush. This parameter can be any one of the following values:

Value Meaning
HS_BDIAGONAL 45-degree downward left-to-right hatch
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree upward left-to-right hatch
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

clrref
Specifies the foreground color of the brush that is used for the hatches.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksA brush is a bitmap that Windows uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateHatchBrush, it can select that brush into
any device context by calling the SelectObject function.

If an application uses a hatch brush to fill the backgrounds of both a parent and a child window
with matching color, it may be necessary to set the brush origin before painting the background of
the child window. You can do this by having your application call the SetBrushOrgEx function.
Your application can retrieve the current brush origin by calling the GetBrushOrgEx function.

When you no longer need the brush, call the DeleteObject function to delete it.See AlsoCreateDIBPatternBrush, CreateDIBPatternBrushPt, CreatePatternBrush, CreateSolidBrush,
DeleteObject, GetBrushOrgEx, SelectObject, SetBrushOrgEx

CreateIC
The CreateIC function creates an information context for the specified device. The information
context provides a fast way to get information about the device without creating a device context.

HDC CreateIC(
LPCTSTR lpszDriver, // pointer to string specifying driver name
LPCTSTR lpszDevice, // pointer to string specifying device name
LPCTSTR lpszOutput, // pointer to string specifying port or file name
CONST DEVMODE *lpdvmInit // pointer to optional initialization data

);ParameterslpszDriver
Points to a null-terminated character string that specifies the name of the device driver (for
example, "Epson").

lpszDevice
Points to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, "Epson FX-80"). It is not the
printer model name. The lpszDevice parameter must be used.

lpszOutput
Points to a null-terminated character string that specifies the file or device name for the
physical output medium (file or output port). This parameter is ignored; it is present only to
keep the function prototype identical with Windows version 3.1.

lpdvmInit
Points to a DEVMODE structure containing device-specific initialization data for the device
driver. The DocumentProperties function retrieves this structure filled in for a specified
device. The lpdvmInit parameter must be NULL if the device driver is to use the default
initialization (if any) specified by the user.

Return ValuesIf the function succeeds, the return value is the handle to an information context.

If the function fails, the return value is NULL.RemarksAn error occurs if an application calls a GDI drawing function and supplies a handle identifying an
information context.

When you no longer need the information device context, call the DeleteDC function to delete it.See AlsoDeleteDC, DocumentProperties, DEVMODE, GetDeviceCaps

CreateIcon
The CreateIcon function creates an icon that has the specified size, colors, and bit patterns.

HICON CreateIcon(
HINSTANCE hInstance, // handle to application instance
int nWidth, // icon width
int nHeight, // icon height
BYTE cPlanes, // number of planes in XOR bitmask
BYTE cBitsPixel, // number of bits per pixel in XOR bitmask
CONST BYTE *lpbANDbits, // pointer to AND bitmask array
CONST BYTE *lpbXORbits // pointer to XOR bitmask array

);ParametershInstance
Identifies the instance of the module creating the icon.

nWidth
Specifies the width, in pixels, of the icon.

nHeight
Specifies the height, in pixels, of the icon.

cPlanes
Specifies the number of planes in the XOR bitmask of the icon.

cBitsPixel
Specifies the number of bits per pixel in the XOR bitmask of the icon.

lpbANDbits
Points to an array of bytes that contains the bit values for the AND bitmask of the icon. This
bitmask describes a monochrome bitmap.

lpbXORbits
Points to an array of bytes that contains the bit values for the XOR bitmask of the icon. This
bitmask describes a monochrome or device-dependent color bitmap.

Return ValuesIf the function succeeds, the return value is the handle to an icon.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe nWidth and nHeight parameters must specify a width and height supported by the current
display driver, because the system cannot create icons of other sizes. To determine the width and
height supported by the display driver, use the GetSystemMetrics function, specifying the
SM_CXICON or SM_CYICON value.

CreateIcon applies the following truth table to the AND and XOR bitmasks:

AND bitmask XOR bitmask Display

0 0 Black
0 1 White
1 0 Screen
1 1 Reverse screen
See AlsoGetSystemMetrics

CreateIconFromResource
The CreateIconFromResource function creates an icon or cursor from resource bits describing
the icon.

HICON CreateIconFromResource(
PBYTE presbits, // pointer to icon or cursor bits
DWORD dwResSize, // number of bytes in bit buffer
BOOL fIcon, // icon or cursor flag
DWORD dwVer // Windows format version

);Parameterspresbits
Points to a buffer containing the icon or cursor resource bits. These bits are typically loaded
by calls to the LookupIconIdFromDirectory (in Windows 95 you can also call
LookupIconIdFromDirectoryEx) and LoadResource functions.

dwResSize
Specifies the size, in bytes, of the set of bits pointed to by the presbits parameter.

fIcon
Specifies whether an icon or a cursor is to be created. If this parameter is TRUE, an icon is to
be created. If it is FALSE, a cursor is to be created.

dwVer
Specifies the version number of the icon or cursor format for the resource bits pointed to by
the presbits parameter. This parameter can be one of the following values:

Format dwVer
Windows 2.x 0x00020000
Windows 3.x 0x00030000

All Microsoft Win32-based applications use the Windows 3.x format for icons and
cursors.

Return ValuesIf the function succeeds, the return value is the handle to the icon or cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe CreateIconFromResource, CreateIconIndirect, GetIconInfo, and
LookupIconIdFromDirectory functions (and in Windows 95 the CreateIconFromResourceEx
and LookupIconIdFromDirectoryEx functions) allow shell applications and icon browsers to
examine and use resources from throughout the system.See AlsoCreateIconFromResource, CreateIconFromResourceEx, CreateIconIndirect, GetIconInfo,
LoadResource, LookupIconIdFromDirectory, LookupIconIdFromDirectoryEx

CreateIconFromResourceEx
[Now Supported on Windows NT]

The CreateIconFromResourceEx function creates an icon or cursor from resource bits
describing the icon.

HICON CreateIconFromResourceEx(
PBYTE pbIconBits, // pointer to icon or cursor bits
DWORD cbIconBits, // number of bytes in bit buffer
BOOL fIcon, // icon or cursor flag
DWORD dwVersion, // Windows format version
int cxDesired, // desired width of icon or cursor
int cyDesired, // desired height of icon or cursor
UINT uFlags // load resource flags

);ParameterspbIconBits
Points to a buffer containing the icon or cursor resource bits. These bits are typically loaded
by calls to the LookupIconIdFromDirectoryEx and LoadResource functions.

cbIconBits
Specifies the size, in bytes, of the set of bits pointed to by the pbIconBits parameter.

fIcon
Specifies whether an icon or a cursor is to be created. If this parameter is TRUE, an icon is to
be created. If it is FALSE, a cursor is to be created.

dwVersion
Specifies the version number of the icon or cursor format for the resource bits pointed to by
the pbIconBits parameter. This parameter can be one of the following values:

Format dwVersion
Windows 2.x 0x00020000
Windows 3.x 0x00030000

All Win32-based applications use the Windows 3.x format for icons and cursors.
cxDesired

Specifies the desired width, in pixels, of the icon or cursor. If this parameter is zero, the
function uses the SM_CXICON or SM_CXCURSOR system metric value to set the width.

cyDesired
Specifies the desired height, in pixels, of the icon or cursor. If this parameter is zero, the
function uses the SM_CYICON or SM_CYCURSOR system metric value to set the height.

uFlags
Specifies a combination of the following values:

Value Meaning
LR_DEFAULTCOLORUses the default color format.
LR_MONOCHROME Creates a monochrome icon or cursor.

Return ValuesIf the function succeeds, the return value is the handle to the icon or cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe CreateIconFromResourceEx, CreateIconFromResource, CreateIconIndirect,
GetIconInfo, and LookupIconIdFromDirectoryEx functions allow shell applications and icon
browsers to examine and use resources from throughout the system.See AlsoBITMAPINFOHEADER, CreateIconFromResource, CreateIconIndirect, GetIconInfo,
LoadResource, LookupIconIdFromDirectoryEx

CreateIconIndirect
The CreateIconIndirect function creates an icon or cursor from an ICONINFO structure.

HICON CreateIconIndirect(
PICONINFO piconinfo // pointer to icon information structure

);Parameterspiconinfo
Points to an ICONINFO structure the function uses to create the icon or cursor.

Return ValuesIf the function succeeds, the return value is the handle to the icon or cursor that is created.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe system copies the bitmaps in the ICONINFO structure before creating the icon or cursor. The
application must continue to manage the original bitmaps and delete them when they are no
longer necessary.

When you are finished using the icon, destroy it using the DestroyIcon function.See AlsoDestroyIcon, ICONINFO

CreateIoCompletionPort
The CreateIoCompletionPort function can associate an instance of an opened file with a newly
created or an existing input/output completion port; or it can create an input/output completion port
without associating it with a file.

Associating an instance of an opened file with an input/output completion port lets an application
receive notification of the completion of asynchronous input/output operations involving that file.

HANDLE CreateIoCompletionPort (
HANDLE FileHandle, // file handle to associate with I/O completion port
HANDLE ExistingCompletionPort, // optional handle to existing I/O completion port
DWORD CompletionKey, // per-file completion key for I/O completion packets
DWORD NumberOfConcurrentThreads // number of threads allowed to execute concurrently

);ParametersFileHandle
Handle to a file opened for overlapped input/output completion. You must specify the
FILE_FLAG_OVERLAPPED flag when using the CreateFile function to obtain such a handle.
Once an instance of an open file is associated with an I/O completion port, it cannot be used
in ReadFileEx or WriteFileEx operations.
It is best not to share such an associated file through either handle inheritance or a call to the
DuplicateHandle function. Input/output operations done with such duplicate handles will
generate completion notifications.
If FileHandle specifies INVALID_HANDLE_VALUE, CreateIoCompletionPort creates an
input/output completion port without associating it with a file. In this case, the
ExistingCompletionPort parameter must be NULL, and the CompletionKey parameter is
ignored.

ExistingCompletionPort
Handle to an existing I/O completion port. This parameter can be NULL.
If this parameter is not NULL, it specifies an existing completion port that the function is to
associate with the file specified by FileHandle.
If this parameter is NULL, the function creates a new input/output completion port that it
associates with the specified file.

CompletionKey
Specifies a per-file completion key that will be included in every input/output completion
packet for the specified file.

NumberOfConcurrentThreads
Specifies the number of threads that are allowed to execute concurrently.
If one of the threads enters a wait state, then another thread is allowed to proceed. There may
be brief periods when the number of active threads exceeds the specified value, but the
operating system quickly brings the number back down.
A value of 0 for this parameter tells the operating system to allow as many threads as there
are processors in the system.

Return ValuesIf the function succeeds, the return value is the handle to the I/O completion port that is
associated with the specified file. This return value is not NULL.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe Win32 I/O system can be instructed to send I/O completion notification packets to input/
output completion ports, where they are queued up. The CreateIoCompletionPort function
provides a mechanism for this.

When you perform an input/output operation with a file handle that has an associated input/output
completion port, the I/O system sends a completion notification packet to the completion port
when the I/O operation completes. The I/O completion port places the completion packet in a first-
in-first-out queue. Use the GetQueuedCompletionStatus function to retrieve these queued I/O
completion packets.

Threads in the same process can use the PostQueuedCompletionStatus function to place I/O
completion notification packets in a completion port's queue. This allows you to use the port to
receive communications from other threads of the process, in addition to receiving I/O completion
notification packets from the Win32 I/O system.

See AlsoGetQueuedCompletionStatus, PostQueuedCompletionStatus

CreateMailslot
The CreateMailslot function creates a mailslot with the specified name and returns a handle that
a mailslot server can use to perform operations on the mailslot. The mailslot is local to the
computer that creates it. An error occurs if a mailslot with the specified name already exists.

HANDLE CreateMailslot(
LPCTSTR lpName, // pointer to string for mailslot name
DWORD nMaxMessageSize, // maximum message size
DWORD lReadTimeout, // milliseconds before read time-out
LPSECURITY_ATTRIBUTES lpSecurityAttributes // pointer to security structure

);ParameterslpName
Points to a null-terminated string specifying the name of the mailslot. This name must have
the following form:

\\.\mailslot\[path]name

The name field must be unique. The name may include multiple levels of pseudodirectories
separated by backslashes. For example, both \\.\mailslot\example_mailslot_name and \\.\
mailslot\abc\def\ghi are valid names.

nMaxMessageSize
Specifies the maximum size, in bytes, of a single message that can be written to the mailslots.
To specify that the message can be of any size, set this value to zero.

lReadTimeout
Specifies the amount of time, in milliseconds, a read operation can wait for a message to be
written to the mailslot before a time-out occurs. The following values have special meanings:

Value Meaning
0 Returns immediately if no message is

present. (The system does not treat
an immediate return as an error.)

MAILSLOT_WAIT_FOREVER Waits forever for a message.

This time-out value applies to all subsequent read operations and all inherited mailslot
handles.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new mailslot. If lpSecurityAttributes is NULL, the mailslot gets a default
security descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

Return ValuesIf the function succeeds, the return value is a handle to the mailslot, for use in server mailslot
operations.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksThe mailslot exists until one of the following conditions is true:

· The last (possibly inherited or duplicated) handle to it is closed using the CloseHandle
function.

· The process owning the last (possibly inherited or duplicated) handle exits.
Both Windows NT and Windows 95 use the second method to destroy mailslots.

To write a message to a mailslot, a process uses the CreateFile function, specifying the mailslot
name by using one of the following formats:

Format Usage

\\.\mailslot\name Retrieves a client handle to a local
mailslot.

\\computername\mailslot\
name

Retrieves a client handle to a remote
mailslot.

\\domainname\mailslot\name Retrieves a client handle to all

mailslots with the specified name in
the specified domain.

*\mailslot\name Retrieves a client handle to all
mailslots with the specified name in
the system's primary domain.

If CreateFile specifies a domain or uses the asterisk format to specify the system's primary
domain, the application cannot write more than 400 bytes at a time to the mailslot. If the
application attempts to do so, the WriteFile function fails and GetLastError returns
ERROR_BAD_NETPATH.

An application must specify the FILE_SHARE_READ flag when using CreateFile to retrieve a
client handle to a mailslot.See AlsoCloseHandle, CreateFile, GetMailslotInfo, SECURITY_ATTRIBUTES, SetMailslotInfo,
WriteFile

CreateMappedBitmap
The CreateMappedBitmap function creates a bitmap for use in a toolbar.

HBITMAP CreateMappedBitmap(
HINSTANCE hInstance,
int idBitmap,
UINT wFlags,
LPCOLORMAP lpColorMap,
int iNumMaps

);ParametershInstance
Handle to the module instance with the executable file that contains the bitmap resource.

idBitmap
Resource identifier of the bitmap resource.

wFlags
Bitmap flag. This parameter can be zero or the following value:

Value Meaning
CMB_MASKED Uses a bitmap as a mask.

lpColorMap
Pointer to a COLORMAP structure that contains the color information needed to map the
bitmaps. If this parameter is NULL, the function uses the default color map.

iNumMaps
Number of color maps pointed to by lpColorMap.

Return ValuesIf the function succeeds, the return value is the handle to the bitmap.

If the function fails, the return value is NULL.RemarksThe function creates a new bitmap using the bitmap data and colors specified by the specified
bitmap resource and the color mapping information.See AlsoCOLORMAP

CreateMDIWindow
The CreateMDIWindow function creates a multiple document interface (MDI) child window.

HWND CreateMDIWindow(
LPTSTR lpClassName, // pointer to registered child class name
LPTSTR lpWindowName, // pointer to window name
DWORD dwStyle, // window style
int X, // horizontal position of window
int Y, // vertical position of window
int nWidth, // width of window
int nHeight, // height of window
HWND hWndParent, // handle to parent window (MDI client)
HINSTANCE hInstance, // handle to application instance
LPARAM lParam // application-defined value

);ParameterslpClassName
Points to a null-terminated string specifying the window class of the MDI child window. The
class name must have been registered by a call to the RegisterClass function.

lpWindowName
Points to a null-terminated string that represents the window name. Windows displays the
name in the title bar of the child window.

dwStyle
Specifies the style of the MDI child window. If the MDI client window is created with the
MDIS_ALLCHILDSTYLES window style, this parameter can be any combination of the
window styles listed in the description of the CreateWindow function. Otherwise, this
parameter can be one or more of the following values:

Value Meaning
WS_MINIMIZE Creates an MDI child window that is initially

minimized.
WS_MAXIMIZE Creates an MDI child window that is initially

maximized.
WS_HSCROLL Creates an MDI child window that has a

horizontal scroll bar.
WS_VSCROLL Creates an MDI child window that has a vertical

scroll bar.

X
Specifies the initial horizontal position, in client coordinates, of the MDI child window. If this
parameter is CW_USEDEFAULT, the MDI child window is assigned the default horizontal
position.

Y
Specifies the initial vertical position, in client coordinates, of the MDI child window. If this
parameter is CW_USEDEFAULT, the MDI child window is assigned the default vertical
position.

nWidth
Specifies the initial width, in device units, of the MDI child window. If this parameter is
CW_USEDEFAULT, the MDI child window is assigned the default width.

nHeight
Specifies the initial height, in device units, of the MDI child window. If this parameter is set to
CW_USEDEFAULT, the MDI child window is assigned the default height.

hWndParent
Identifies the MDI client window that will be the parent of the new MDI child window.

hInstance
Identifies the instance of the application creating the MDI child window.

lParam
Specifies an application-defined value.

Return ValuesIf the function succeeds, the return value is the handle to the created window.

If the function fails, the return value is NULL.

RemarksUsing the CreateMDIWindow function is similar to sending the WM_MDICREATE message to an
MDI client window, except that the function can create an MDI child window in a different thread,
while the message cannot.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateWindow, RegisterClass, WM_MDICREATE

CreateMenu
The CreateMenu function creates a menu. The menu is initially empty, but it can be filled with
menu items by using the InsertMenuItem, AppendMenu, and InsertMenu functions.

HMENU CreateMenu(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is the handle to the newly created menu.

If the function fails, the return value is NULL.RemarksResources associated with a menu that is assigned to a window are freed automatically. If the
menu is not assigned to a window, an application must free system resources associated with the
menu before closing. An application frees menu resources by calling the DestroyMenu function.

Windows 95: The system can support a maximum of 16,364 menu handles.See AlsoAppendMenu, CreatePopupMenu, DestroyMenu, InsertMenu, SetMenu, InsertMenuItem

CreateMetaFile
The CreateMetaFile function creates a device context for a Windows-format metafile.

This function is provided for compatibility with earlier 16-bit versions of Microsoft Windows. Win32-
based applications should use the CreateEnhMetaFile function.

HDC CreateMetaFile(
LPCTSTR lpszFile // pointer to filename string

);ParameterslpszFile
Points to the filename for the Windows-format metafile to be created. If this parameter is
NULL, the Windows-format metafile is memory based and its contents are lost when it is
deleted by using the DeleteMetaFile function.

Return ValuesIf the function succeeds, the return value is a handle to the device context for the Windows-
format metafile.

If the function fails, the return value is NULL.RemarksWhere text arguments must use Unicode characters, use the CreateMetaFile function as a wide-
character function. Where text arguments must use characters from the Windows 3.x character
set, use this function as an ANSI function.

CreateMetaFile is a Windows-format metafile function. This function supports only applications
designed for Microsoft Windows version 3.x. It does not record or play back the new Win32
graphics device interface (GDI) functions such as PolyBezier.

The device context created by this function can be used to record GDI output functions in a
Windows-format metafile. It cannot be used with GDI query functions such as GetTextColor.
When the device context is used with a GDI output function, the return value of that function
becomes TRUE if the function is recorded and FALSE otherwise. When an object is selected by
using the SelectObject function, only a copy of the object is recorded. The object still belongs to
the application.

To create a scalable Windows-format metafile, record the graphics output in the
MM_ANISOTROPIC mapping mode. The file cannot contain functions that modify the viewport
origin and extents, nor can it contain device-dependent functions such as the SelectClipRgn
function. Once created, the Windows metafile can be scaled and rendered to any output device-
format by defining the viewport origin and extents of the picture before playing it.See AlsoCloseMetaFile, CreateEnhMetaFile, DeleteMetaFile, GetTextColor, PolyBezier,
SelectClipRgn, SelectObject

CreateMutex
The CreateMutex function creates a named or unnamed mutex object.

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpMutexAttributes, // pointer to security attributes
BOOL bInitialOwner, // flag for initial ownership
LPCTSTR lpName // pointer to mutex-object name

);ParameterslpMutexAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpMutexAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new mutex. If lpMutexAttributes is NULL, the mutex gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

bInitialOwner
Specifies the initial owner of the mutex object. If TRUE, the calling thread requests immediate
ownership of the mutex object. Otherwise, the mutex is not owned.

lpName
Points to a null-terminated string specifying the name of the mutex object. The name is limited
to MAX_PATH characters and can contain any character except the backslash path-
separator character (\). Name comparison is case sensitive.
If lpName matches the name of an existing named mutex object, this function requests
MUTEX_ALL_ACCESS access to the existing object. In this case, the bInitialOwner
parameter is ignored because it has already been set by the creating process. If the
lpMutexAttributes parameter is not NULL, it determines whether the handle can be inherited,
but its security-descriptor member is ignored.
If lpName is NULL, the mutex object is created without a name.
If lpName matches the name of an existing event, semaphore, or file-mapping object, the
function fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and file-mapping objects share the same name space.

Return ValuesIf the function succeeds, the return value is a handle to the mutex object. If the named mutex
object existed before the function call, the GetLastError function returns
ERROR_ALREADY_EXISTS. Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle returned by CreateMutex has MUTEX_ALL_ACCESS access to the new mutex
object and can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handle in a call to one of the wait
functions. The single-object wait functions return when the state of the specified object is signaled.
The multiple-object wait functions can be instructed to return either when any one or when all of
the specified objects are signaled. When a wait function returns, the waiting thread is released to
continue its execution.

The state of a mutex object is signaled when it is not owned by any thread. The creating thread
can use the bInitialOwner flag to request immediate ownership of the mutex. Otherwise, a thread
must use one of the wait functions to request ownership. When the mutex's state is signaled, one
waiting thread is granted ownership, the mutex's state changes to nonsignaled, and the wait
function returns. Only one thread can own a mutex at any given time. The owning thread uses the
ReleaseMutex function to release its ownership.

The thread that owns a mutex can specify the same mutex in repeated wait function calls without
blocking its execution. Typically, you would not wait repeatedly for the same mutex, but this
mechanism prevents a thread from deadlocking itself while waiting for a mutex that it already
owns. However, to release its ownership, the thread must call ReleaseMutex once for each time
that the mutex satisfied a wait.

Two or more processes can call CreateMutex to create the same named mutex. The first process
actually creates the mutex, and subsequent processes open a handle to the existing mutex. This
enables multiple processes to get handles of the same mutex, while relieving the user of the

responsibility of ensuring that the creating process is started first. When using this technique, you
should set the bInitialOwner flag to FALSE; otherwise, it can be difficult to be certain which
process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for
interprocess synchronization. The following object-sharing mechanisms are available:

· A child process created by the CreateProcess function can inherit a handle to a mutex
object if the lpMutexAttributes parameter of CreateMutex enabled inheritance.

· A process can specify the mutex-object handle in a call to the DuplicateHandle function
to create a duplicate handle that can be used by another process.

· A process can specify the name of a mutex object in a call to the OpenMutex or
CreateMutex function.

Use the CloseHandle function to close the handle. The system closes the handle automatically
when the process terminates. The mutex object is destroyed when its last handle has been
closed.See AlsoCloseHandle, CreateProcess, DuplicateHandle, OpenMutex, ReleaseMutex,
SECURITY_ATTRIBUTES

CreateNamedPipe
The CreateNamedPipe function creates an instance of a named pipe and returns a handle for
subsequent pipe operations. A named pipe server process uses this function either to create the
first instance of a specific named pipe and establish its basic attributes or to create a new instance
of an existing named pipe.

HANDLE CreateNamedPipe(
LPCTSTR lpName, // pointer to pipe name
DWORD dwOpenMode, // pipe open mode
DWORD dwPipeMode, // pipe-specific modes
DWORD nMaxInstances, // maximum number of instances
DWORD nOutBufferSize, // output buffer size, in bytes
DWORD nInBufferSize, // input buffer size, in bytes
DWORD nDefaultTimeOut, // time-out time, in milliseconds
LPSECURITY_ATTRIBUTES lpSecurityAttributes // pointer to security attributes structure

);ParameterslpName
Points to the null-terminated string that uniquely identifies the pipe. The string must have the
following form:

\\.\pipe\pipename

The pipename part of the name can include any character other than a backslash, including
numbers and special characters. The entire pipe name string can be up to 256 characters
long. Pipe names are not case sensitive.

dwOpenMode
Specifies the pipe access mode, the overlapped mode, the write-through mode, and the
security access mode of the pipe handle.
This parameter must specify one of the following pipe access mode flags. The same mode
must be specified for each instance of the pipe:

Mode Description
PIPE_ACCESS_DUPLEX The pipe is bidirectional; both server

and client processes can read from and
write to the pipe. This mode gives the
server the equivalent of
GENERIC_READ | GENERIC_WRITE
access to the pipe. The client can
specify GENERIC_READ or
GENERIC_WRITE, or both, when it
connects to the pipe using the
CreateFile function.

PIPE_ACCESS_INBOUND The flow of data in the pipe goes from
client to server only. This mode gives
the server the equivalent of
GENERIC_READ access to the pipe.
The client must specify
GENERIC_WRITE access when
connecting to the pipe.

PIPE_ACCESS_OUTBOUNDThe flow of data in the pipe goes from
server to client only. This mode gives
the server the equivalent of
GENERIC_WRITE access to the pipe.
The client must specify
GENERIC_READ access when
connecting to the pipe.

This parameter can also include either or both of the following flags, which enable
write-through mode and overlapped mode. These modes can be different for different
instances of the same pipe.

Mode Description
FILE_FLAG_WRITE_THROUGH

Write-through mode is enabled. This mode
affects only write operations on byte-type
pipes and, then, only when the client and
server processes are on different computers.
If this mode is enabled, functions writing to a
named pipe do not return until the data written
is transmitted across the network and is in the
pipe's buffer on the remote computer. If this
mode is not enabled, the system enhances the
efficiency of network operations by buffering
data until a minimum number of bytes
accumulate or until a maximum time elapses.

FILE_FLAG_OVERLAPPED
Overlapped mode is enabled. If this mode is
enabled, functions performing read, write, and
connect operations that may take a significant
time to be completed can return immediately.
This mode enables the thread that started the
operation to perform other operations while
the time-consuming operation executes in the
background. For example, in overlapped
mode, a thread can handle simultaneous input
and output (I/O) operations on multiple
instances of a pipe or perform simultaneous
read and write operations on the same pipe
handle. If overlapped mode is not enabled,
functions performing read, write, and connect
operations on the pipe handle do not return
until the operation is finished. The ReadFileEx
and WriteFileEx functions can only be used with
a pipe handle in overlapped mode. The ReadFile,
WriteFile, ConnectNamedPipe, and
TransactNamedPipe functions can execute
either synchronously or as overlapped operations.

This parameter can include any combination of the following security access mode
flags. These modes can be different for different instances of the same pipe. They can
be specified without concern for what other dwOpenMode modes have been specified.

Mode Description
WRITE_DAC The caller will have write access to

the named pipe's discretionary
access control list (ACL).

WRITE_OWNER The caller will have write access to
the named pipe's owner.

ACCESS_SYSTEM_SECURITYThe caller will have write access to
the named pipe's system ACL.

dwPipeMode
Specifies the type, read, and wait modes of the pipe handle.
One of the following type mode flags can be specified. The same type mode must be
specified for each instance of the pipe. If you specify zero, the parameter defaults to byte-
type mode.

Mode Description
PIPE_TYPE_BYTE Data is written to the pipe as a stream of

bytes. This mode cannot be used with
PIPE_READMODE_MESSAGE.

PIPE_TYPE_MESSAGE Data is written to the pipe as a stream of
messages. This mode can be used with
either PIPE_READMODE_MESSAGE
or PIPE_READMODE_BYTE.

One of the following read mode flags can be specified. Different instances of the same
pipe can specify different read modes. If you specify zero, the parameter defaults to
byte-read mode.

Mode Description
PIPE_READMODE_BYTE Data is read from the pipe as a

stream of bytes. This mode can be
used with either
PIPE_TYPE_MESSAGE or
PIPE_TYPE_BYTE.

PIPE_READMODE_MESSAGE Data is read from the pipe as a
stream of messages. This mode can
be only used if
PIPE_TYPE_MESSAGE is also
specified.

One of the following wait mode flags can be specified. Different instances of the same
pipe can specify different wait modes. If you specify zero, the parameter defaults to
blocking mode.

Mode Description
PIPE_WAIT Blocking mode is enabled. When the pipe handle is

specified in the ReadFile, WriteFile, or
ConnectNamedPipe function, the operations are
not completed until there is data to read, all data is
written, or a client is connected. Use of this mode
can mean waiting indefinitely in some situations for
a client process to perform an action.

PIPE_NOWAIT Nonblocking mode is enabled. In this mode,
ReadFile, WriteFile, and ConnectNamedPipe
always return immediately. Note that nonblocking
mode is supported for compatibility with Microsoft
LAN Manager version 2.0 and should not be used
to achieve asynchronous I/O with named pipes.

nMaxInstances
Specifies the maximum number of instances that can be created for this pipe. The same
number must be specified for all instances. Acceptable values are in the range 1 through
PIPE_UNLIMITED_INSTANCES. If this parameter is PIPE_UNLIMITED_INSTANCES, the
number of pipe instances that can be created is limited only by the availability of system
resources.

nOutBufferSize
Specifies the number of bytes to reserve for the output buffer. For a discussion on sizing
named pipe buffers, see the following Remarks section.

nInBufferSize
Specifies the number of bytes to reserve for the input buffer. For a discussion on sizing
named pipe buffers, see the following Remarks section.

nDefaultTimeOut
Specifies the default time-out value, in milliseconds, if the WaitNamedPipe function specifies
NMPWAIT_USE_DEFAULT_WAIT. Each instance of a named pipe must specify the same
value.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new named pipe and determines whether child processes can inherit the returned handle. If
lpSecurityAttributes is NULL, the named pipe gets a default security descriptor and the handle
cannot be inherited.

Return ValuesIf the function succeeds, the return value is a handle to the server end of a named pipe instance.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError. The return value is ERROR_INVALID_PARAMETER if
nMaxInstances is greater than PIPE_UNLIMITED_INSTANCES.RemarksTo create an instance of a named pipe by using CreateNamedPipe, the user must have
FILE_CREATE_PIPE_INSTANCE access to the named pipe object. If a new named pipe is being
created, the access control list (ACL) from the security attributes parameter defines the
discretionary access control for the named pipe.

All instances of a named pipe must specify the same pipe type (byte-type or message-type), pipe
access (duplex, inbound, or outbound), instance count, and time-out value. If different values are
used, this function fails and GetLastError returns ERROR_ACCESS_DENIED.

The input and output buffer sizes are advisory. The actual buffer size reserved for each end of the
named pipe is either the system default, the system minimum or maximum, or the specified size
rounded up to the next allocation boundary.

An instance of a named pipe is always deleted when the last handle to the instance of the named
pipe is closed.See AlsoConnectNamedPipe, CreateFile, ReadFile, ReadFileEx, SECURITY_ATTRIBUTES,
TransactNamedPipe, WaitNamedPipe, WriteFile, WriteFileEx

CreatePalette
The CreatePalette function creates a logical color palette.

HPALETTE CreatePalette(
CONST LOGPALETTE *lplgpl // pointer to logical color palette

);Parameterslplgpl
Points to a LOGPALETTE structure that contains information about the colors in the logical
palette.

Return ValuesIf the function succeeds, the return value is a handle that identifies a logical palette.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

Once an application creates a logical palette, it can select that palette into a device context by
calling the SelectPalette function. A palette selected into a device context can be realized by
calling the RealizePalette function.

When you no longer need the palette, call the DeleteObject function to delete it.See AlsoDeleteObject, GetDeviceCaps, LOGPALETTE, RealizePalette, SelectPalette

CreatePatternBrush
The CreatePatternBrush function creates a logical brush with the specified bitmap pattern. The
bitmap cannot be a DIB section bitmap, which is created by the CreateDIBSection function.

HBRUSH CreatePatternBrush(
HBITMAP hbmp // handle to bitmap

);Parametershbmp
Identifies the bitmap to be used to create the logical brush.
Windows 95: Creating brushes from bitmaps or DIBs larger than 8x8 pixels is not supported.
If a larger bitmap is specified, only a portion of the bitmap is used.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksA pattern brush is a bitmap that Windows uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreatePatternBrush, it can select that brush into
any device context by calling the SelectObject function.

You can delete a pattern brush without affecting the associated bitmap by using the DeleteObject
function. Therefore, you can then use this bitmap to create any number of pattern brushes.

A brush created by using a monochrome (1 bit per pixel) bitmap has the text and background
colors of the device context to which it is drawn. Pixels represented by a 0 bit are drawn with the
current text color; pixels represented by a 1 bit are drawn with the current background color.

The bitmap identified by hbmp cannot be a DIB section, which is a bitmap created by the
CreateDIBSection function. If the bitmap is a DIB section, the CreatePatternBrush function fails.See AlsoCreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBPatternBrush,
CreateDIBPatternBrushPt, CreateDIBSection, CreateHatchBrush, DeleteObject,
GetBrushOrgEx, LoadBitmap, SelectObject, SetBrushOrgEx

CreatePen
The CreatePen function creates a logical pen that has the specified style, width, and color. The
pen can subsequently be selected into a device context and used to draw lines and curves.

HPEN CreatePen(
int fnPenStyle, // pen style
int nWidth, // pen width
COLORREF crColor // pen color

);ParametersfnPenStyle
Specifies the pen style. It can be any one of the following values:

Style Description
PS_SOLID Pen is solid.
PS_DASH Pen is dashed. This style is valid only when

the pen width is one or less in device units.
PS_DOT Pen is dotted. This style is valid only when the

pen width is one or less in device units.
PS_DASHDOT Pen has alternating dashes and dots. This

style is valid only when the pen width is one
or less in device units.

PS_DASHDOTDOT Pen has alternating dashes and double dots.
This style is valid only when the pen width is
one or less in device units.

PS_NULL Pen is invisible.
PS_INSIDEFRAME Pen is solid. When this pen is used in any

graphics device interface (GDI) drawing
function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it
fits entirely in the bounding rectangle, taking
into account the width of the pen. This applies
only to geometric pens.

nWidth
Specifies the width of the pen, in logical units. If nWidth is zero, the pen is a single pixel wide,
regardless of the current transformation.

crColor
Specifies a color reference for the pen color.

Return ValuesIf the function succeeds, the return value is a handle that identifies a logical pen.

If the function fails, the return value is NULL.RemarksAfter an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If the value specified by the nWidth parameter is zero, a line drawn with the created pen will
always be a single pixel wide regardless of the current transformation.

If the value specified by nWidth is greater than 1, the fnPenStyle parameter must be PS_NULL,
PS_SOLID, or PS_INSIDEFRAME.

If the value specified by nWidth is greater than 1 and fnPenStyle is PS_INSIDEFRAME, the line
associated with the pen is drawn inside the frame of all primitives except polygons and polylines.

If the value specified by nWidth is greater than 1, fnPenStyle is PS_INSIDEFRAME, and the color
specified by the crColor parameter does not match one of the entries in the logical palette,
Windows draws lines by using a dithered color. Dithered colors are not available with solid pens.

When you no longer need the pen, call the DeleteObject function to delete it.See AlsoCreatePenIndirect, DeleteObject, ExtCreatePen, GetObject, RGB, SelectObject

CreatePenIndirect
The CreatePenIndirect function creates a logical cosmetic pen that has the style, width, and color
specified in a structure.

HPEN CreatePenIndirect(
CONST LOGPEN *lplgpn // pointer to LOGPEN structure

);Parameterslplgpn
Points to the LOGPEN structure that specifies the pen's style, width, and color.

Return ValuesIf the function succeeds, the return value is a handle that identifies a logical cosmetic pen.

If the function fails, the return value is NULL.RemarksAfter an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

When you no longer need the pen, call the DeleteObject function to delete it.See AlsoCreatePen, DeleteObject, ExtCreatePen, GetObject, LOGPEN, RGB, SelectObject

CreatePipe
The CreatePipe function creates an anonymous pipe, and returns handles to the read and write
ends of the pipe.

BOOL CreatePipe(
PHANDLE hReadPipe, // address of variable for read handle
PHANDLE hWritePipe, // address of variable for write handle
LPSECURITY_ATTRIBUTES lpPipeAttributes, // pointer to security attributes
DWORD nSize // number of bytes reserved for pipe

);ParametershReadPipe
Points to the variable that receives the read handle for the pipe.

hWritePipe
Points to the variable that receives the write handle for the pipe.

lpPipeAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpPipeAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new pipe. If lpPipeAttributes is NULL, the pipe gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

nSize
Specifies the buffer size for the pipe. The size is only a suggestion; the system uses the value
to calculate an appropriate buffering mechanism. If this parameter is zero, the system uses
the default buffer size.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksCreatePipe creates the pipe, assigning the specified pipe size to the storage buffer. CreatePipe
also creates handles that the process uses to read from and write to the buffer in subsequent calls
to the ReadFile and WriteFile functions.

To read from the pipe, a process uses the read handle in a call to the ReadFile function.
ReadFile returns when one of the following is true: a write operation completes on the write end of
the pipe, the number of bytes requested has been read, or an error occurs.

When a process uses WriteFile to write to an anonymous pipe, the write operation is not
completed until all bytes are written. If the pipe buffer is full before all bytes are written, WriteFile
does not return until another process or thread uses ReadFile to make more buffer space
available.See AlsoReadFile, SECURITY_ATTRIBUTES, WriteFile

CreatePolygonRgn
The CreatePolygonRgn function creates a polygonal region.

HRGN CreatePolygonRgn(
CONST POINT *lppt, // pointer to array of points
int cPoints, // number of points in array
int fnPolyFillMode // polygon-filling mode

);Parameterslppt
Points to an array of POINT structures that define the vertices of the polygon. The polygon is
presumed closed. Each vertex can be specified only once.

cPoints
Specifies the number of points in the array.

fnPolyFillMode
Specifies the fill mode used to determine which pixels are in the region. This parameter can
be one of the following values:

Value Meaning
ALTERNATE Selects alternate mode (fills area between odd-

numbered and even-numbered polygon sides on
each scan line).

WINDING Selects winding mode (fills any region with a
nonzero winding value).

For more information about these modes, see the SetPolyFillMode function.
Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.See AlsoCreatePolyPolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillMode

CreatePolyPolygonRgn
The CreatePolyPolygonRgn function creates a region consisting of a series of polygons. The
polygons can overlap.

HRGN CreatePolyPolygonRgn(
CONST POINT *lppt, // pointer to array of points
CONST INT *lpPolyCounts, // pointer to array that contains vertex counts
int nCount, // number of integers in array of vertex counts
int fnPolyFillMode // polygon fill mode

);Parameterslppt
Points to an array of POINT structures that define the vertices of the polygons. The polygons
are specified consecutively. Each polygon is presumed closed and each vertex is specified
only once.

lpPolyCounts
Points to an array of integers, each of which specifies the number of points in one of the
polygons in the array pointed to by lppt.

nCount
Specifies the total number of integers in the array pointed to by lpPolyCounts.

fnPolyFillMode
Specifies the fill mode used to determine which pixels are in the region. This parameter can
be one of the following values:

Value Meaning
ALTERNATE Selects alternate mode (fills area between odd-

numbered and even-numbered polygon sides on
each scan line).

WINDING Selects winding mode (fills any region with a
nonzero winding value).

For more information about these modes, see the SetPolyFillMode function.
Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is zero.See AlsoCreatePolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillMode

CreatePopupMenu
The CreatePopupMenu function creates a drop-down menu, submenu, or shortcut menu. The
menu is initially empty. You can insert or append menu items by using the InsertMenuItem
function. You can also use the InsertMenu function to insert menu items and the AppendMenu
function to append menu items.

HMENU CreatePopupMenu(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle to the newly created menu.

If the function fails, the return value is NULL.RemarksThe application can add the new menu to an existing menu, or it can display a shortcut menu by
calling the TrackPopupMenuEx or TrackPopupMenu functions.

Resources associated with a menu that is assigned to a window are freed automatically. If the
menu is not assigned to a window, an application must free system resources associated with the
menu before closing. An application frees menu resources by calling the DestroyMenu function.

Windows 95: The system can support a maximum of 16,364 menu handles.See AlsoAppendMenu, CreateMenu, DestroyMenu, InsertMenu, SetMenu, TrackPopupMenu,
TrackPopupMenuEx, InsertMenuItem

CreatePrivateObjectSecurity
The CreatePrivateObjectSecurity function allocates and initializes a self-relative security
descriptor for a new protected server's object. This function is called when a new protected server
object is being created.

BOOL CreatePrivateObjectSecurity(
PSECURITY_DESCRIPTOR ParentDescriptor, // pointer to parent directory SD
PSECURITY_DESCRIPTOR CreatorDescriptor, // pointer to creator SD
PSECURITY_DESCRIPTOR *NewDescriptor, // pointer to pointer to new SD
BOOL IsDirectoryObject, // container flag for new SD
HANDLE Token, // handle to client's access token
PGENERIC_MAPPING GenericMapping // pointer to access-rights structure

);ParametersParentDescriptor
Points to the security descriptor for the parent directory in which a new object is being
created. If there is no parent directory, this parameter can be NULL.

CreatorDescriptor
Points to a security descriptor provided by the creator of the object. If the object's creator does
not explicitly pass security information for the new object, this parameter is intended to be
NULL.

lppsdNew
Points to a pointer to the newly allocated security descriptor created when the function
returns.

IsDirectoryObject
Specifies whether the new object is a container. A value of TRUE indicates the object
contains other objects, such as a directory.

Token
Identifies the access token for the client process on whose behalf the object is being created.
If this is an impersonation token, it must be at SecurityIdentification level or higher. For a full
description of the SecurityIdentification impersonation level, see the
SECURITY_IMPERSONATION_LEVEL enumerated type
A client token is used to retrieve default security information for the new object, such as its
default owner, primary group, and discretionary access-control list. The token must be open
for TOKEN_QUERY access.

GenericMapping
Points to a GENERIC_MAPPING structure that specifies the mapping from each generic right
to specific rights for the object.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a system access-control list, or SACL, is specified in the SECURITY_DESCRIPTOR specified
by CreatorDescriptor, Token must have the SE_SECURITY_NAME privilege enabled, and the
caller's token must have the SE_AUDIT_NAME privilege enabled. The
CreatePrivateObjectSecurity function performs access/privilege checks to ensure this, and may
generate audits during the process.See AlsoDestroyPrivateObjectSecurity, GENERIC_MAPPING, GetPrivateObjectSecurity,
GetTokenInformation, OpenProcessToken, SECURITY_DESCRIPTOR,
SECURITY_IMPERSONATION_LEVEL, SetPrivateObjectSecurity

CreateProcess
The CreateProcess function creates a new process and its primary thread. The new process
executes the specified executable file.

BOOL CreateProcess(
LPCTSTR lpApplicationName, // pointer to name of executable module
LPTSTR lpCommandLine, // pointer to command line string
LPSECURITY_ATTRIBUTES lpProcessAttributes, // pointer to process security attributes
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security attributes
BOOL bInheritHandles, // handle inheritance flag
DWORD dwCreationFlags, // creation flags
LPVOID lpEnvironment, // pointer to new environment block
LPCTSTR lpCurrentDirectory, // pointer to current directory name
LPSTARTUPINFO lpStartupInfo, // pointer to STARTUPINFO
LPPROCESS_INFORMATION lpProcessInformation // pointer to PROCESS_INFORMATION

);ParameterslpApplicationName
Pointer to a null-terminated string that specifies the module to execute.
The string can specify the full path and filename of the module to execute.
The string can specify a partial name. In that case, the function uses the current drive and
current directory to complete the specification.
The lpApplicationName parameter can be NULL. In that case, the module name must be the
first white space-delimited token in the lpCommandLine string.
The specified module can be a Win32-based application. It can be some other type of module
(for example, MS-DOS or OS/2) if the appropriate subsystem is available on the local
computer.
Windows NT: If the executable module is a 16-bit application, lpApplicationName should be
NULL, and the string pointed to by lpCommandLine should specify the executable module. A
16-bit application is one that executes as a VDM or WOW process.

lpCommandLine
Pointer to a null-terminated string that specifies the command line to execute.
The lpCommandLine parameter can be NULL. In that case, the function uses the string
pointed to by lpApplicationName as the command line.
If both lpApplicationName and lpCommandLine are non-NULL, *lpApplicationName specifies
the module to execute, and *lpCommandLine specifies the command line. The new process
can use GetCommandLine to retrieve the entire command line. C runtime processes can use
the argc and argv arguments.
If lpApplicationName is NULL, the first white space-delimited token of the command line
specifies the module name. If the filename does not contain an extension, .EXE is assumed. If
the filename ends in a period (.) with no extension, or the filename contains a path, .EXE is
not appended. If the filename does not contain a directory path, Windows searches for the
executable file in the following sequence:
1. The directory from which the application loaded.
2. The current directory for the parent process.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
If the process to be created is an MS-DOS - based or Windows-based application,
lpCommandLine should be a full command line in which the first element is the application
name. Because this also works well for Win32-based applications, it is the most robust way to
set lpCommandLine.

lpProcessAttributes

Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpProcessAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new process. If lpProcessAttributes is NULL, the process gets a default
security descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

lpThreadAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpThreadAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the main thread. If lpThreadAttributes is NULL, the thread gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

bInheritHandles
Indicates whether the new process inherits handles from the calling process. If TRUE, each
inheritable open handle in the calling process is inherited by the new process. Inherited
handles have the same value and access privileges as the original handles.

dwCreationFlags
Specifies additional flags that control the priority class and the creation of the process. The
following creation flags can be specified in any combination, except as noted:

Value Meaning
CREATE_DEFAULT_ERROR_MODE

The new process does not inherit the error
mode of the calling process. Instead,
CreateProcess gives the new process the
current default error mode. An application sets
the current default error mode by calling
SetErrorMode.
This flag is particularly useful for multi-threaded
shell applications that run with hard errors
disabled.
The default behavior for CreateProcess is for the
new process to inherit the error mode of the
caller. Setting this flag changes that default
behavior.

CREATE_NEW_CONSOLE
The new process has a new console, instead
of inheriting the parent's console. This flag
cannot be used with the
DETACHED_PROCESS flag.

CREATE_NEW_PROCESS_GROUP
The new process is the root process of a new
process group. The process group includes
all processes that are descendants of this
root process. The process identifier of the
new process group is the same as the
process identifier, which is returned in the
lpProcessInformation parameter. Process
groups are used by the
GenerateConsoleCtrlEvent function to enable
sending a CTRL+C or CTRL+BREAK signal to a group
of console processes.

CREATE_SEPARATE_WOW_VDM
Windows NT only: This flag is valid only when
starting a 16-bit Windows-based application. If
set, the new process is run in a private Virtual
DOS Machine (VDM). By default, all 16-bit
Windows-based applications are run as threads

in a single, shared VDM. The advantage of
running separately is that a crash only kills the
single VDM; any other programs running in
distinct VDMs continue to function normally. Also,
16-bit Windows-based applications that are run in
separate VDMs have separate input queues. That
means that if one application hangs momentarily,
applications in separate VDMs continue to
receive input.

CREATE_SHARED_WOW_VDM
Windows NT only: The flag is valid only when
starting a 16-bit Windows-based application. If
the DefaultSeparateVDM switch in the Windows
section of WIN.INI is TRUE, this flag causes the
CreateProcess function to override the switch
and run the new process in the shared Virtual
DOS Machine.

CREATE_SUSPENDED
The primary thread of the new process is
created in a suspended state, and does not
run until the ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT
If set, the environment block pointed to by
lpEnvironment uses Unicode characters. If clear,
the environment block uses ANSI characters.

DEBUG_PROCESS
If this flag is set, the calling process is treated
as a debugger, and the new process is a
process being debugged. The system notifies
the debugger of all debug events that occur in
the process being debugged.
If you create a process with this flag set, only
the calling thread (the thread that called
CreateProcess) can call the
WaitForDebugEvent function.

DEBUG_ONLY_THIS_PROCESS
If not set and the calling process is being
debugged, the new process becomes another
process being debugged by the calling
process's debugger. If the calling process is
not a process being debugged, no debugging-
related actions occur.

DETACHED_PROCESS
For console processes, the new process does
not have access to the console of the parent
process. The new process can call the
AllocConsole function at a later time to create a
new console. This flag cannot be used with the
CREATE_NEW_CONSOLE flag.

The dwCreationFlags parameter also controls the new process's priority class, which is used
in determining the scheduling priorities of the process's threads. If none of the following
priority class flags is specified, the priority class defaults to NORMAL_PRIORITY_CLASS
unless the priority class of the creating process is IDLE_PRIORITY_CLASS. In this case the
default priority class of the child process is IDLE_PRIORITY_CLASS. One of the following
flags can be specified:

Priority Meaning
HIGH_PRIORITY_CLASS Indicates a process that performs

time-critical tasks that must be
executed immediately for it to run
correctly. The threads of a high-

priority class process preempt the
threads of normal-priority or idle-
priority class processes. An example
is Windows Task List, which must
respond quickly when called by the
user, regardless of the load on the
operating system. Use extreme care
when using the high-priority class,
because a high-priority class CPU-
bound application can use nearly all
available cycles.

IDLE_PRIORITY_CLASS Indicates a process whose threads
run only when the system is idle and
are preempted by the threads of any
process running in a higher priority
class. An example is a screen saver.
The idle priority class is inherited by
child processes.

NORMAL_PRIORITY_CLASS Indicates a normal process with no
special scheduling needs.

REALTIME_PRIORITY_CLASS Indicates a process that has the
highest possible priority. The
threads of a real-time priority class
process preempt the threads of all
other processes, including operating
system processes performing
important tasks. For example, a real-
time process that executes for more
than a very brief interval can cause
disk caches not to flush or cause the
mouse to be unresponsive.

lpEnvironment
Points to an environment block for the new process. If this parameter is NULL, the new
process uses the environment of the calling process.
An environment block consists of a null-terminated block of null-terminated strings. Each
string is in the form:name=valueBecause the equal sign is used as a separator, it must not be used in the name of an
environment variable.
If an application provides an environment block, rather than passing NULL for this parameter,
the current directory information of the system drives is not automatically propagated to the
new process. For a discussion of this situation and how to handle it, see the following
Remarks section.
An environment block can contain Unicode or ANSI characters. If the environment block
pointed to by lpEnvironment contains Unicode characters, the dwCreationFlags field's
CREATE_UNICODE_ENVIRONMENT flag will be set. If the block contains ANSI characters,
that flag will be clear.
Note that an ANSI environment block is terminated by two zero bytes: one for the last string,
one more to terminate the block. A Unicode environment block is terminated by four zero
bytes: two for the last string, two more to terminate the block.

lpCurrentDirectory
Points to a null-terminated string that specifies the current drive and directory for the child
process. The string must be a full path and filename that includes a drive letter. If this
parameter is NULL, the new process is created with the same current drive and directory as
the calling process. This option is provided primarily for shells that need to start an application
and specify its initial drive and working directory.

lpStartupInfo
Points to a STARTUPINFO structure that specifies how the main window for the new process
should appear.

lpProcessInformation
Points to a PROCESS_INFORMATION structure that receives identification information about
the new process.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

RemarksThe CreateProcess function is used to run a new program. The WinExec and LoadModule
functions are still available, but they are implemented as calls to CreateProcess.

In addition to creating a process, CreateProcess also creates a thread object. The thread is
created with an initial stack whose size is described in the image header of the specified
program's executable file. The thread begins execution at the image's entry point.

The new process and the new thread handles are created with full access rights. For either
handle, if a security descriptor is not provided, the handle can be used in any function that
requires an object handle of that type. When a security descriptor is provided, an access check is
performed on all subsequent uses of the handle before access is granted. If the access check
denies access, the requesting process is not able to use the handle to gain access to the thread.

The process is assigned a 32-bit process identifier. The identifier is valid until the process
terminates. It can be used to identify the process, or specified in the OpenProcess function to
open a handle to the process. The initial thread in the process is also assigned a 32-bit thread
identifier. The identifier is valid until the thread terminates and can be used to uniquely identify the
thread within the system. These identifiers are returned in the PROCESS_INFORMATION
structure.

When specifying an application name in the lpApplicationName or lpCommandLine strings, it
doesn't matter whether the application name includes the filename extension, with one exception:
an MS-DOS - based or Windows-based application whose filename extension is .COM must
include the .COM extension.

The calling thread can use the WaitForInputIdle function to wait until the new process has
finished its initialization and is waiting for user input with no input pending. This can be useful for
synchronization between parent and child processes, because CreateProcess returns without
waiting for the new process to finish its initialization. For example, the creating process would use
WaitForInputIdle before trying to find a window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function, because this
function notifies all dynamic-link libraries (DLLs) attached to the process of the approaching
termination. Other means of shutting down a process do not notify the attached DLLs. Note that
when a thread calls ExitProcess, other threads of the process are terminated without an
opportunity to execute any additional code (including the thread termination code of attached
DLLs).

ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and a process that is starting
(as the result of a call by CreateProcess) are serialized between each other within a process.
Only one of these events can happen in an address space at a time. This means the following
restrictions hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· The ExitProcess function does not return until no threads are in their DLL initialization or

detach routines.
The created process remains in the system until all threads within the process have terminated
and all handles to the process and any of its threads have been closed through calls to
CloseHandle. The handles for both the process and the main thread must be closed through calls
to CloseHandle. If these handles are not needed, it is best to close them immediately after the
process is created.

When the last thread in a process terminates, the following events occur:

· All objects opened by the process are implicitly closed.
· The process's termination status (which is returned by GetExitCodeProcess) changes

from its initial value of STILL_ACTIVE to the termination status of the last thread to terminate.
· The thread object of the main thread is set to the signaled state, satisfying any threads

that were waiting on the object.
· The process object is set to the signaled state, satisfying any threads that were waiting on

the object.
If the current directory on drive C is \MSVC\MFC, there is an environment variable called =C:
whose value is C:\MSVC\MFC. As noted in the previous description of lpEnvironment, such
current directory information for a system's drives does not automatically propagate to a new

process when the CreateProcess function's lpEnvironment parameter is non-NULL. An
application must manually pass the current directory information to the new process. To do so, the
application must explicitly create the =X environment variable strings, get them into alphabetical
order (because Windows NT and Windows 95 use a sorted environment), and then put them into
the environment block specified by lpEnvironment. Typically, they will go at the front of the
environment block, due to the previously mentioned environment block sorting.

One way to obtain the current directory variable for a drive X is to call GetFullPathName("X:",. .).
That avoids an application having to scan the environment block. If the full path returned is X:\,
there is no need to pass that value on as environment data, since the root directory is the default
current directory for drive X of a new process.

The handle returned by the CreateProcess function has PROCESS_ALL_ACCESS access to the
process object.

The current directory specified by the lpcurrentDirectory parameter is the current directory for the
child process. The current directory specified in item 2 under the lpCommandLine parameter is
the current directory for the parent process.

Windows NT: When a process is created with CREATE_NEW_PROCESS_GROUP specified, an
implicit call to SetConsoleCtrlHandler(NULL,TRUE) is made on behalf of the new process; this
means that the new process has CTRL+C disabled. This lets good shells handle CTRL+C
themselves, and selectively pass that signal on to sub-processes. CTRL+BREAK is not disabled,
and may be used to interrupt the process/process group.See AlsoAllocConsole, CloseHandle, CreateRemoteThread, CreateThread, ExitProcess, ExitThread,
GenerateConsoleCtrlEvent, GetCommandLine, GetEnvironmentStrings,
GetExitCodeProcess, GetFullPathName, GetStartupInfo, GetSystemDirectory,
GetWindowsDirectory, LoadModule, OpenProcess, PROCESS_INFORMATION,
ResumeThread, SECURITY_ATTRIBUTES, SetConsoleCtrlHandler, SetErrorMode,
STARTUPINFO, TerminateProcess, WaitForInputIdle, WaitForDebugEvent, WinExec

CreateProcessAsUser
The CreateProcessAsUser function creates a new process and its primary thread. The new
process then executes a specified executable file. The CreateProcessAsUser function is similar
to the CreateProcess function, except that the new process runs in the security context of the
user represented by the hToken parameter. By default, the new process is non-interactive, that is,
it runs on a desktop that is not visible and cannot receive user input. Also, by default, the new
process inherits the environment of the calling process, rather than the environment associated
with the specified user.

BOOL CreateProcessAsUser(
HANDLE hToken, // handle to a token that represents a logged-on user
LPCTSTR lpApplicationName, // pointer to name of executable module
LPTSTR lpCommandLine, // pointer to command line string
LPSECURITY_ATTRIBUTES lpProcessAttributes, // pointer to process security attributes
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security attributes
BOOL bInheritHandles, // new process inherits handles
DWORD dwCreationFlags, // creation flags
LPVOID lpEnvironment, // pointer to new environment block
LPCTSTR lpCurrentDirectory, // pointer to current directory name
LPSTARTUPINFO lpStartupInfo, // pointer to STARTUPINFO
LPPROCESS_INFORMATION lpProcessInformation // pointer to PROCESS_INFORMATION

);ParametershToken
Handle to a primary token that represents a user. The user represented by the token must
have read and execute access to the application specified by the lpApplicationName or the
lpCommandLine parameter.
If your process has the SE_TCB_NAME privilege, it can call the LogonUser function to get a
primary token that represents a specified user.
Alternatively, you can call the DuplicateTokenEx function to convert an impersonation token
into a primary token. This allows a server application that is impersonating a client to create a
process that has the security context of the client.
The other parameters of the CreateProcessAsUser function behave just like the analogous
parameters of the CreateProcess function.

lpApplicationName
Points to a null-terminated string specifying the full path and filename of the module to
execute. If a partial name is specified, the current drive and current directory are used by
default. If this parameter is NULL, the module name must be the first white space-delimited
token in the lpCommandLine string. The specified module can be a Win32-based application,
or it can be some other type of module (for example, MS-DOS or OS/2) if the appropriate
subsystem is available on the local computer.

lpCommandLine
Points to a null-terminated string specifying the command line for the application to be
executed. If this parameter is NULL, the lpApplicationName string is used as the command
line. If both lpApplicationName and lpCommandLine are non-NULL, lpApplicationName
specifies the module to execute and lpCommandLine is used as the command line. The new
process can use GetCommandLine to retrieve the entire command line; or C runtime
processes can use the argc/argv mechanism.
If lpApplicationName is NULL, the first white space-delimited token of the command line
specifies the module name. If the filename does not contain an extension, .EXE is assumed. If
the filename ends in a period (.) with no extension, or the filename contains a path, .EXE is
not appended. If the filename does not contain a directory path, Windows searches for the
executable file in the following sequence:
1. The directory from which the application loaded.
2. The current directory.
3. The 32-bit Windows system directory. Use the GetSystemDirectory function to get the

path of this directory. The name of this directory is SYSTEM32.
4. The 16-bit Windows system directory. There is no Win32 function that obtains the path of

this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
If the process to be created is an MS-DOS - based or 16-bit Windows-based application,
lpCommandLine should be a full command line in which the first element is the application
name. Because this also works well for Win32-based applications, it is the most robust way to
set lpCommandLine.

lpProcessAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new process and determines whether child processes can inherit the returned handle. If
lpProcessAttributes is NULL, the process gets a default security descriptor and the handle
cannot be inherited.

lpThreadAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new process and determines whether child processes can inherit the returned handle. If
lpThreadAttributes is NULL, the thread gets a default security descriptor and the handle
cannot be inherited.

bInheritHandles
Indicates whether the new process inherits handles from the calling process. If TRUE, each
inheritable open handle in the calling process is inherited by the new process. Inherited
handles have the same value and access privileges as the original handles.

dwCreationFlags
Specifies additional flags that control the priority class and the creation of the process. The
following creation flags can be specified in any combination, except as noted:

Value Meaning
CREATE_DEFAULT_ERROR_MODE

The new process does not inherit the error
mode of the calling process. Instead,
CreateProcessAsUser gives the new process
the current default error mode. An application
sets the current default error mode by calling
SetErrorMode.
This flag is particularly useful for multi-threaded
shell applications that run with hard errors
disabled.
The default behavior for CreateProcessAsUser
is for the new process to inherit the error mode of
the caller. Setting this flag changes that default
behavior.

CREATE_NEW_CONSOLE
The new process has a new console, instead
of inheriting the parent's console. This flag
cannot be used with the
DETACHED_PROCESS flag.

CREATE_NEW_PROCESS_GROUP
The new process is the root process of a new
process group. The process group includes
all processes that are descendants of this root
process. The process identifier of the new
process group is the same as the process
identifier, which is returned in the
lpProcessInformation parameter. Process
groups are used by the
GenerateConsoleCtrlEvent function to enable
sending a CTRL+C or CTRL+BREAK signal to a group
of console processes.

CREATE_SEPARATE_WOW_VDM
This flag is only valid only starting a 16-bit
Windows program. If set, the new process is
run in a private Virtual DOS Machine (VDM).
By default, all 16-bit Windows programs are

run in a single, shared VDM. The advantage
of running separately is that a crash only kills
the single VDM; any other programs running
in distinct VDMs continue to function
normally. Also, 16-bit Windows applications
that are run in separate VDMs have separate
input queues. That means that if one
application hangs momentarily, applications
in separate VDMs continue to receive input.

CREATE_SUSPENDED
The primary thread of the new process is
created in a suspended state, and does not
run until the ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT
If set, the environment block pointed to by
lpEnvironment uses Unicode characters. If clear,
the environment block uses ANSI characters.

DEBUG_PROCESS
If set, the calling process is treated as a
debugger, and the new process is a process
being debugged. The system notifies the
debugger of all debug events that occur in the
process being debugged.

DEBUG_ONLY_THIS_PROCESS
If not set and the calling process is being
debugged, the new process becomes another
process being debugged by the calling
process's debugger. If the calling process is
not a process being debugged, no debugging-
related actions occur.

DETACHED_PROCESS
For console processes, the new process does
not have access to the console of the parent
process. The new process can call the
AllocConsole function at a later time to create a
new console. This flag cannot be used with the
CREATE_NEW_CONSOLE flag.

The dwCreationFlags parameter also controls the new process's priority class, which is used
in determining the scheduling priorities of the process's threads. If none of the following
priority class flags is specified, the priority class defaults to NORMAL_PRIORITY_CLASS
unless the priority class of the creating process is IDLE_PRIORITY_CLASS. In this case the
default priority class of the child process is IDLE_PRIORITY_CLASS. One of the following
flags can be specified:

Priority Meaning
HIGH_PRIORITY_CLASS Indicates a process that performs

time-critical tasks that must be
executed immediately for it to run
correctly. The threads of a high-
priority class process preempt the
threads of normal-priority or idle-
priority class processes. An example
is Windows Task List, which must
respond quickly when called by the
user, regardless of the load on the
operating system. Use extreme care
when using the high-priority class,
because a high-priority class CPU-
bound application can use nearly all
available cycles.

IDLE_PRIORITY_CLASS Indicates a process whose threads

run only when the system is idle and
are preempted by the threads of any
process running in a higher priority
class. An example is a screen saver.
The idle priority class is inherited by
child processes.

NORMAL_PRIORITY_CLASS Indicates a normal process with no
special scheduling needs.

REALTIME_PRIORITY_CLASS Indicates a process that has the
highest possible priority. The
threads of a real-time priority class
process preempt the threads of all
other processes, including operating
system processes performing
important tasks. For example, a real-
time process that executes for more
than a very brief interval can cause
disk caches not to flush or cause the
mouse to be unresponsive.

lpEnvironment
Points to an environment block for the new process. If this parameter is NULL, the new
process uses the environment of the calling process.
An environment block consists of a null-terminated block of null-terminated strings. Each
string is in the form:name=valueBecause the equal sign is used as a separator, it must not be used in the name of an
environment variable.
If an application provides an environment block, rather than passing NULL for this parameter,
the current directory information of the system drives is not automatically propagated to the
new process. For a discussion of this situation and how to handle it, see the following
Remarks section.
An environment block can contain Unicode or ANSI characters. If the environment block
pointed to by lpEnvironment contains Unicode characters, the dwCreationFlags field's
CREATE_UNICODE_ENVIRONMENT flag will be set. If the block contains ANSI characters,
that flag will be clear.
Note that an ANSI environment block is terminated by two zero bytes: one for the last string,
one more to terminate the block. A Unicode environment block is terminated by four zero
bytes: two for the last string, two more to terminate the block.

lpCurrentDirectory
Points to a null-terminated string that specifies the current drive and directory for the new
process. The string must be a full path and filename that includes a drive letter. If this
parameter is NULL, the new process is created with the same current drive and directory as
the calling process. This option is provided primarily for shells that need to start an application
and specify its initial drive and working directory.

lpStartupInfo
Points to a STARTUPINFO structure that specifies how the main window for the new process
should appear.

lpProcessInformation
Points to a PROCESS_INFORMATION structure that receives identification information about
the new process.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CreateProcessAsUser function requires the SE_ASSIGNPRIMARYTOKEN_NAME and
SE_INCREASE_QUOTA_NAME privileges. If they are not already enabled,
CreateProcessAsUser enables them for the duration of the call.

By default, CreateProcessAsUser creates the new process on a noninteractive window station
with a desktop that is not visible and cannot receive user input. To enable user interaction with the
new process, you must specify the name of the default interactive window station and desktop,
"winsta0\default", in the lpDesktop member of the STARTUPINFO structure. In addition, before
calling CreateProcessAsUser, you must change the discretionary access control list (DACL) of
both the default interactive window station and the default desktop. The DACLs for the window
station and desktop must grant access to the user represented by the hToken parameter.

CreateProcessAsUser does not load the specified user's profile into the HKEY_USERS registry
key. This means that access to information in the HKEY_CURRENT_USER registry key may not
produce results consistent with a normal interactive logon. It is your responsibility to load the
user's registry hive into HKEY_USERS before calling CreateProcessAsUser.

If the lpEnvironment parameter is NULL, the new process inherits the environment of the calling
process. CreateProcessAsUser does not automatically modify the environment block to include
environment variables specific to the user represented by hToken. For example, the USERNAME
and USERDOMAIN variables are inherited from the calling process if lpEnvironment is NULL. It is
your responsibility to prepare the environment block for the new process and specify it in
lpEnvironment.

CreateProcessAsUser allows you to access the specified directory and executable image in the
security context of the caller or the target user. By default, CreateProcessAsUser accesses the
directory and executable image in the security context of the caller. In this case, if the caller does
not have access to the directory and executable image, the function fails. To access the directory
and executable image using the security context of the target user, specify hToken in a call to the
ImpersonateLoggedOnUser function before calling CreateProcessAsUser.

The new process and the new thread handles are created with full access rights
(PROCESS_ALL_ACCESS and THREAD_ALL_ACCESS). For either handle, if a security
descriptor is not provided, the handle can be used in any function that requires an object handle of
that type. When a security descriptor is provided, an access check is performed on all subsequent
uses of the handle before access is granted. If the access check denies access, the requesting
process is not able to use the handle to gain access to the process or thread.

If the lpProcessAttributes parameter is NULL, the default security descriptor for the user
referenced in the hToken parameter will be used. This security descriptor may not allow access
for the caller, in which case the process may not be opened again once it is run. The handle
returned in the PROCESS_INFORMATION structure is valid and will continue to have all access.
This is also true for thread attributes.

Handles in PROCESS_INFORMATION must be closed with CloseHandle when they are no
longer needed.

The process is assigned a process identifier. The identifier is valid until the process terminates. It
can be used to identify the process, or specified in the OpenProcess function to open a handle to
the process. The initial thread in the process is also assigned a thread identifier. The identifier is
valid until the thread terminates and can be used to uniquely identify the thread within the system.
These identifiers are returned in the PROCESS_INFORMATION structure.

When specifying an application name in the lpApplicationName or lpCommandLine strings, it
doesn't matter whether the application name includes the filename extension, with one exception:
an MS-DOS - based or Windows-based application whose filename extension is .COM must
include the .COM extension.

The calling thread can use the WaitForInputIdle function to wait until the new process has
finished its initialization and is waiting for user input with no input pending. This can be useful for
synchronization between parent and child processes, because CreateProcessAsUser returns
without waiting for the new process to finish its initialization. For example, the creating process
would use WaitForInputIdle before trying to find a window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function, because this
function notifies all dynamic-link libraries (DLLs) attached to the process of the approaching
termination. Other means of shutting down a process do not notify the attached DLLs. Note that
when a thread calls ExitProcess, other threads of the process are terminated without an
opportunity to execute any additional code (including the thread termination code of attached
DLLs).

ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and a process that is starting
(as the result of a call by CreateProcessAsUser) are serialized between each other within a
process. Only one of these events can happen at a time. This means the following restrictions
hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· The ExitProcess function does not return until no threads are executing DLL initialization

or detach routines.
See AlsoAllocConsole, CloseHandle, CreateProcess, CreateRemoteThread, CreateThread,

DuplicateTokenEx, ExitProcess, ExitThread, GenerateConsoleCtrlEvent, GetCommandLine,
GetEnvironmentStrings, GetExitCodeProcess, GetFullPathName, GetStartupInfo,
GetSystemDirectory, GetWindowsDirectory, ImpersonateLoggedOnUser, LoadModule,
LogonUser, OpenProcess, PROCESS_INFORMATION, ResumeThread,
SECURITY_ATTRIBUTES, SetConsoleCtrlHandler, SetErrorMode, STARTUPINFO,
TerminateProcess, WaitForInputIdle, WinExec

CreatePropertySheetPage
The CreatePropertySheetPage function creates a new page for a property sheet.

HPROPSHEETPAGE CreatePropertySheetPage(
LPCPROPSHEETPAGE lppsp

);Parameterslppsp
Pointer to a PROPSHEETPAGE structure that defines a page to be included in a property
sheet.

Return ValuesIf the function succeeds, the return value is the handle to the new property sheet.

If the function fails, the return value is NULL.RemarksAn application uses the PropertySheet function to create a property sheet that includes the new
page or uses the PSM_ADDPAGE message to add the new page to an existing property sheet.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoPropertySheet, PROPSHEETPAGE, PSM_ADDPAGE

CreateRectRgn
The CreateRectRgn function creates a rectangular region.

HRGN CreateRectRgn(
int nLeftRect, // x-coordinate of region's upper-left corner
int nTopRect, // y-coordinate of region's upper-left corner
int nRightRect, // x-coordinate of region's lower-right corner
int nBottomRect // y-coordinate of region's lower-right corner

);ParametersnLeftRect
Specifies the x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the x-coordinate of the lower-right corner of the region.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the region.

Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.RemarksThe region will be exclusive of the bottom and right edges.See AlsoCreateRectRgnIndirect, CreateRoundRectRgn, DeleteObject, SelectObject

CreateRectRgnIndirect
The CreateRectRgnIndirect function creates a rectangular region.

HRGN CreateRectRgnIndirect(
CONST RECT *lprc // pointer to the rectangle

);Parameterslprc
Points to a RECT structure that contains the coordinates of the upper-left and lower-right
corners of the rectangle that defines the region.

Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.RemarksThe region will be exclusive of the bottom and right edges.See AlsoCreateRectRgn, CreateRoundRectRgn, DeleteObject, RECT, SelectObject

CreateRemoteThread
The CreateRemoteThread function creates a thread that runs in the address space of another
process.

HANDLE CreateRemoteThread(
HANDLE hProcess, // handle to process to create thread in
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security attributes
DWORD dwStackSize, // initial thread stack size, in bytes
LPTHREAD_START_ROUTINE lpStartAddress, // pointer to thread function
LPVOID lpParameter, // pointer to argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId // pointer to returned thread identifier

);ParametershProcess
Identifies the process in which the thread is to be created.
Windows NT: The handle must have PROCESS_CREATE_THREAD access. For more
information, see Process Objects.

lpThreadAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new thread and determines whether child processes can inherit the returned handle. If
lpThreadAttributes is NULL, the thread gets a default security descriptor and the handle
cannot be inherited.

dwStackSize
Specifies the size, in bytes, of the stack for the new thread. If this value is zero, the stack size
defaults to the same size as that of the primary thread of the process. The stack is allocated
automatically in the memory space of the process and is freed when the thread terminates.
Note that the stack size grows as necessary.

lpStartAddress
Points to the starting address of the new thread. This is typically the address of a function
declared with the WINAPI calling convention that never returns and that accepts a single 32-
bit pointer as an argument.

lpParameter
Points to a single 32-bit value passed to the thread.

dwCreationFlags
Specifies additional flags that control the creation of the thread. If the CREATE_SUSPENDED
flag is specified, the thread is created in a suspended state and will not run until the
ResumeThread function is called. If this value is zero, the thread runs immediately after
creation.

lpThreadId
Points to a 32-bit variable that receives the thread identifier.

Return ValuesIf the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe CreateRemoteThread function causes a new thread of execution to begin in the address
space of the specified process. The thread has access to all objects opened by the process.

The new thread handle is created with full access to the new thread. If a security descriptor is not
provided, the handle may be used in any function that requires a thread object handle. When a
security descriptor is provided, an access check is performed on all subsequent uses of the
handle before access is granted. If the access check denies access, the requesting process
cannot use the handle to gain access to the thread.

The thread execution begins at the function specified by the lpStartAddress parameter. If this
function returns, the results are unspecified.

CreateRemoteThread may succeed even if lpStartAddress points to data, code, or is not
accessible. If the start address is invalid when the thread runs, an exception occurs, and the
thread terminates. Thread termination due to a invalid start address is handled as an error exit for
the thread's process. This behavior is similar to the asynchronous nature of CreateProcess,
where the process is created even if it refers to invalid or missing dynamic-link libraries (DLLs).

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the
GetThreadPriority and SetThreadPriority functions to get and set the priority value of a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads that
were waiting for the object.

The thread object remains in the system until the thread has terminated and all handles to it have
been closed through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process
that is starting (as the result of a CreateProcess call) are serialized between each other within a
process. Only one of these events can happen in an address space at a time. This means the
following restrictions hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· ExitProcess does not return until no threads are in their DLL initialization or detach

routines.
See AlsoCloseHandle, CreateProcess, CreateThread, ExitProcess, ExitThread, GetThreadPriority,

ResumeThread, SECURITY_ATTRIBUTES, SetThreadPriority

CreateRoundRectRgn
The CreateRoundRectRgn function creates a rectangular region with rounded corners.

HRGN CreateRoundRectRgn(
int nLeftRect, // x-coordinate of the region's upper-left corner
int nTopRect, // y-coordinate of the region's upper-left corner
int nRightRect, // x-coordinate of the region's lower-right corner
int nBottomRect, // y-coordinate of the region's lower-right corner
int nWidthEllipse, // height of ellipse for rounded corners
int nHeightEllipse // width of ellipse for rounded corners

);ParametersnLeftRect
Specifies the x-coordinate of the upper-left corner of the region.

nTopRect
Specifies the y-coordinate of the upper-left corner of the region.

nRightRect
Specifies the x-coordinate of the lower-right corner of the region.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the region.

nWidthEllipse
Specifies the width of the ellipse used to create the rounded corners.

nHeightEllipse
Specifies the height of the ellipse used to create the rounded corners.

Return ValuesIf the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.See AlsoCreateRectRgn, CreateRectRgnIndirect, DeleteObject, SelectObject

CreateScalableFontResource
The CreateScalableFontResource function creates a font resource file for a scalable font.

BOOL CreateScalableFontResource(
DWORD fdwHidden, // flag for read-only embedded font
LPCTSTR lpszFontRes, // pointer to filename for font resource
LPCTSTR lpszFontFile, // pointer to filename for scalable font
LPCTSTR lpszCurrentPath // pointer to path to font file

);ParametersfdwHidden
Specifies whether the font is a read-only embedded font. This parameter can be one of the
following values:

Value Meaning
0 The font has read-write permission.
1 The font has read-only permission and should be hidden

from other applications in the system. When this flag is
set, the font is not enumerated by the EnumFonts or
EnumFontFamilies function.

lpszFontRes
Points to a null-terminated string specifying the name of the font resource file that this function
creates.

lpszFontFile
Points to a null-terminated string specifying the name of the scalable font file that this function
uses to create the font resource file.

lpszCurrentPath
Points to a null-terminated string specifying the path to the scalable font file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe CreateScalableFontResource function is used by applications that install TrueType fonts.
An application uses the CreateScalableFontResource function to create a font resource file
(typically with a .FOT filename extension) and then uses the AddFontResource function to install
the font. The TrueType font file (typically with a .TTF filename extension) must be in the SYSTEM
subdirectory of the WINDOWS directory to be used by the AddFontResource function.

The CreateScalableFontResource function currently supports only TrueType-technology
scalable fonts.

When the lpszFontFile parameter specifies only a filename and extension, the lpszCurrentPath
parameter must specify a path. When the lpszFontFile parameter specifies a full path, the
lpszCurrentPath parameter must be NULL or a pointer to NULL.

When only a filename and extension are specified in the lpszFontFile parameter and a path is
specified in the lpszCurrentPath parameter, the string in lpszFontFile is copied into the .FOT file
as the .TTF file that belongs to this resource. When the AddFontResource function is called, the
operating system assumes that the .TTF file has been copied into the SYSTEM directory (or into
the main Windows directory in the case of a network installation). The .TTF file need not be in this
directory when the CreateScalableFontResource function is called, because the lpszCurrentPath
parameter contains the directory information. A resource created in this manner does not contain
absolute path information and can be used in any Windows installation.

When a path is specified in the lpszFontFile parameter and NULL is specified in the
lpszCurrentPath parameter, the string in lpszFontFile is copied into the .FOT file. In this case,
when the AddFontResource function is called, the .TTF file must be at the location specified in
the lpszFontFile parameter when the CreateScalableFontResource function was called; the
lpszCurrentPath parameter is not needed. A resource created in this manner contains absolute
references to paths and drives and does not work if the .TTF file is moved to a different location.See AlsoAddFontResource, EnumFonts, EnumFontFamilies

CreateSemaphore
The CreateSemaphore function creates a named or unnamed semaphore object.

HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // pointer to security attributes
LONG lInitialCount, // initial count
LONG lMaximumCount, // maximum count
LPCTSTR lpName // pointer to semaphore-object name

);ParameterslpSemaphoreAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSemaphoreAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new semaphore. If lpSemaphoreAttributes is NULL, the semaphore gets a
default security descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

lInitialCount
Specifies an initial count for the semaphore object. This value must be greater than or equal
to zero and less than or equal to lMaximumCount. The state of a semaphore is signaled when
its count is greater than zero and nonsignaled when it is zero. The count is decreased by one
whenever a wait function releases a thread that was waiting for the semaphore. The count is
increased by a specified amount by calling the ReleaseSemaphore function.

lMaximumCount
Specifies the maximum count for the semaphore object. This value must be greater than zero.

lpName
Points to a null-terminated string specifying the name of the semaphore object. The name is
limited to MAX_PATH characters, and can contain any character except the backslash path-
separator character (\). Name comparison is case sensitive.
If lpName matches the name of an existing named semaphore object, this function requests
SEMAPHORE_ALL_ACCESS access to the existing object. In this case, the lInitialCount and
lMaximumCount parameters are ignored because they have already been set by the creating
process. If the lpSemaphoreAttributes parameter is not NULL, it determines whether the
handle can be inherited, but its security-descriptor member is ignored.
If lpName is NULL, the semaphore object is created without a name.
If lpName matches the name of an existing event, mutex, or file-mapping object, the function
fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because
event, mutex, semaphore, and file-mapping objects share the same name space.

Return ValuesIf the function succeeds, the return value is a handle to the semaphore object. If the named
semaphore object existed before the function call, the GetLastError function returns
ERROR_ALREADY_EXISTS. Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle returned by CreateSemaphore has SEMAPHORE_ALL_ACCESS access to the new
semaphore object and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in a call to one of the
wait functions. The single-object wait functions return when the state of the specified object is
signaled. The multiple-object wait functions can be instructed to return either when any one or
when all of the specified objects are signaled. When a wait function returns, the waiting thread is
released to continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and nonsignaled
when its count is equal to zero. The lInitialCount parameter specifies the initial count. Each time a
waiting thread is released because of the semaphore's signaled state, the count of the semaphore
is decreased by one. Use the ReleaseSemaphore function to increment a semaphore's count by
a specified amount. The count can never be less than zero or greater than the value specified in
the lMaximumCount parameter.

Multiple processes can have handles of the same semaphore object, enabling use of the object
for interprocess synchronization. The following object-sharing mechanisms are available:

· A child process created by the CreateProcess function can inherit a handle to a
semaphore object if the lpSemaphoreAttributes parameter of CreateSemaphore enabled
inheritance.

· A process can specify the semaphore-object handle in a call to the DuplicateHandle
function to create a duplicate handle that can be used by another process.

· A process can specify the name of a semaphore object in a call to the OpenSemaphore
or CreateSemaphore function.

Use the CloseHandle function to close the handle. The system closes the handle automatically
when the process terminates. The semaphore object is destroyed when its last handle has been
closed.See AlsoCloseHandle, CreateProcess, DuplicateHandle, OpenSemaphore, ReleaseSemaphore,
SECURITY_ATTRIBUTES

CreateService
The CreateService function creates a service object and adds it to the specified service control
manager database.

SC_HANDLE CreateService(
SC_HANDLE hSCManager, // handle to service control manager database
LPCTSTR lpServiceName, // pointer to name of service to start
LPCTSTR lpDisplayName, // pointer to display name
DWORD dwDesiredAccess, // type of access to service
DWORD dwServiceType, // type of service
DWORD dwStartType, // when to start service
DWORD dwErrorControl, // severity if service fails to start
LPCTSTR lpBinaryPathName, // pointer to name of binary file
LPCTSTR lpLoadOrderGroup, // pointer to name of load ordering group
LPDWORD lpdwTagId, // pointer to variable to get tag identifier
LPCTSTR lpDependencies, // pointer to array of dependency names
LPCTSTR lpServiceStartName, // pointer to account name of service
LPCTSTR lpPassword // pointer to password for service account

);ParametershSCManager
Identifies the service control manager database. This handle must have be opened using the
OpenSCManager with SC_MANAGER_CREATE_SERVICE access.

lpServiceName
Points to a null-terminated string that names the service to install. The maximum string length
is 256 characters. The service control manager database preserves the case of the
characters, but service name comparisons are always case insensitive. Forward-slash (/) and
back-slash (\) are invalid service name characters.

lpDisplayName
Points to a null-terminated string that is to be used by user interface programs to identify the
service. This string has a maximum length of 256 characters. The name is case-preserved in
the service control manager. Display name comparisons are always case-insensitive.

dwDesiredAccess
Specifies the access to the service. Before granting the requested access, the system checks
the access token of the calling process. Any or all of the following service object access types
can be specified:

Access Description
SERVICE_ALL_ACCESS Includes

STANDARD_RIGHTS_REQUIRED
in addition to all of the
access types listed in this
table.

SERVICE_CHANGE_CONFIG Enables calling of the
ChangeServiceConfig
function to change the
service configuration.

SERVICE_ENUMERATE_DEPENDENTSEnables calling of the
EnumDependentServices
function to enumerate all
the services dependent on
the service.

SERVICE_INTERROGATE Enables calling of the
ControlService function to
ask the service to report its
status immediately.

SERVICE_PAUSE_CONTINUE Enables calling of the
ControlService function to
pause or continue the
service.

SERVICE_QUERY_CONFIG Enables calling of the
QueryServiceConfig

function to query the
service configuration.

SERVICE_QUERY_STATUS Enables calling of the
QueryServiceStatus
function to ask the service
control manager about the
status of the service.

SERVICE_START Enables calling of the
StartService function to
start the service.

SERVICE_STOP Enables calling of the
ControlService function to
stop the service.

SERVICE_USER_DEFINED_CONTROL Enables calling of the
ControlService function to
specify a user-defined
control code.

The STANDARD_RIGHTS_REQUIRED constant (defined in the WINNT.H file) enables
the following service object access types:

Standard rights Description
DELETE Enables calling of the DeleteService

function to delete the service.
READ_CONTROL Enables calling of the

QueryServiceObjectSecurity
function to query the security
descriptor of the service object.

WRITE_DAC|WRITE_OWNER Enables calling of the
SetServiceObjectSecurity function
to modify the security descriptor of
the service object.

The dwDesiredAccess parameter can specify any or all of the following generic access
types:

Generic access Service access
GENERIC_READ Combines the following accesses:

STANDARD_RIGHTS_READ,
SERVICE_QUERY_CONFIG,
SERVICE_QUERY_STATUS, and
SERVICE_ENUMERATE_DEPENDENTS.

GENERIC_WRITE Combines the following accesses:
STANDARD_RIGHTS_WRITE and
SERVICE_CHANGE_CONFIG.

GENERIC_EXECUTE Combines the following accesses:
STANDARD_RIGHTS_EXECUTE,
SERVICE_START, SERVICE_STOP,
SERVICE_PAUSE_CONTINUE,
SERVICE_INTERROGATE, and
SERVICE_USER_DEFINED_CONTROL.

dwServiceType
A set of bit flags that specify the type of service. You must specify one of the following service
type flags to indicate the service type. In addition, if you specify either of the
SERVICE_WIN32 flags, you can also specify the SERVICE_INTERACTIVE_PROCESS flag
to enable the service process to interact with the desktop.

Value Meaning
SERVICE_WIN32_OWN_PROCESS A service-type flag that

specifies a Win32 service that
runs in its own process.

SERVICE_WIN32_SHARE_PROCESSA service-type flag that

specifies a Win32 service that
shares a process with other
services.

SERVICE_KERNEL_DRIVER A service-type flag that
specifies a Windows NT device
driver.

SERVICE_FILE_SYSTEM_DRIVER A service-type flag that
specifies a Windows NT file
system driver.

SERVICE_INTERACTIVE_PROCESSA flag that enables a Win32
service process to interact with
the desktop.

dwStartType
Specifies when to start the service. This member can be one of the following values:

Value Meaning
SERVICE_BOOT_START Specifies a device driver started by

the operating system loader. This
value is valid only if the service type is
SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_SYSTEM_START Specifies a device driver started by
the I/O system after boot devices such
as the boot file system and disk driver
have been initialized. The device
driver started using this flag is not
critical to the system boot. This value
is valid only if the service type is
SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_AUTO_START Specifies a device driver or service
started by the service control manager
automatically during system startup.

SERVICE_DEMAND_START Specifies a device driver or service
started by the service control manager
when a process calls the
StartService function.

SERVICE_DISABLED Specifies a device driver or Win32
service that can no longer be started.

dwErrorControl
Specifies the severity of the error if this service fails to start during startup, and determines the
action taken by the startup program if failure occurs. One of the following values can be
specified:

Value Meaning
SERVICE_ERROR_IGNORE The startup (boot) program logs the

error but continues the startup
operation.

SERVICE_ERROR_NORMAL The startup program logs the error
and displays a message but
continues the startup operation.

SERVICE_ERROR_SEVERE The startup program logs the error.
If the last-known-good
configuration is being started, the
startup operation continues.
Otherwise, the system is restarted
with the last-known-good
configuration.

SERVICE_ERROR_CRITICAL The startup program logs the error,
if possible. If the last-known-good
configuration is being started, the

startup operation fails. Otherwise,
the system is restarted with the
last-known-good configuration.

lpBinaryPathName
Points to a null-terminated string that contains the fully qualified path to the service binary file.

lpLoadOrderGroup
Points to a null-terminated string that names the load ordering group of which this service is a
member. If the pointer is NULL or if it points to an empty string, the service does not belong to
a group. The registry has a list of load ordering groups located at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\ServiceGroupOrder.
The startup program uses this list to load groups of services in a specified order with respect
to the other groups in the list. You can place a service in a group so that another service can
depend on the group.
The order in which a service starts is determined by the following criteria:
1. The order of groups in the registry's load-ordering group list. Services in groups in the

load-ordering group list are started first, followed by services in groups not in the load-
ordering group list and then services that do not belong to a group.

2. The service's dependencies listed in the lpDependencies parameter and the
dependencies of other services dependent on the service.

lpdwTagId
Points to a 32-bit variable that receives a unique tag value for this service in the group
specified in the lpLoadOrderGroup parameter. If no tag is requested, this parameter can be
NULL.
You can use a tag for ordering service startup in a load ordering group by specifying a tag
order vector in the registry located at:
HKEY_LOCAL_MACHINE\System\ CurrentControlSet
\Control\GroupOrderList.
Tags are only evaluated for SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER type services that have SERVICE_BOOT_START or
SERVICE_SYSTEM_START start types.

lpDependencies
Points to an array of null-separated names of services or load ordering groups that must start
before this service. The array is double null-terminated. If the pointer is NULL or if it points to
an empty string, the service has no dependencies. If a group name is specified, it must be
prefixed by the SC_GROUP_IDENTIFIER character (defined in the WINSVC.H file) to
differentiate it from a service name, because services and service groups share the same
name space. Dependency on a service means that this service can only run if the service it
depends on is running. Dependency on a group means that this service can run if at least one
member of the group is running after an attempt to start all members of the group.

lpServiceStartName
Points to a null-terminated string. If the service type is SERVICE_WIN32_OWN_PROCESS,
this name is the account name in the form of "DomainName\Username", which the service
process will be logged on as when it runs. If the account belongs to the built-in domain, ".\
Username" can be specified. Services of type SERVICE_WIN32_SHARE_PROCESS are not
allowed to specify an account other than LocalSystem. If NULL is specified, the service will be
logged on as the "LocalSystem" account, in which case, the lpPassword parameter must be
NULL.
If the service type is SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER,
this name is the Windows NT driver object name (that is, \FileSystem\Rdr or \Driver\Xns),
which the input and output (I/O) system uses to load the device driver. If NULL is specified,
the driver is run with a default object name created by the I/O system, based on the service
name.

lpPassword
Points to a null-terminated string that contains the password to the account name specified by
the lpServiceStartName parameter, if the service type is SERVICE_WIN32_OWN_PROCESS
or SERVICE_WIN32_SHARE_PROCESS. If the pointer is NULL or if it points to an empty
string, the service has no password. If the service type is SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER, this parameter is ignored.

Return ValuesIf the function succeeds, the return value is a handle to the service.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.ErrorsThe following error codes can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The handle to the specified
service control manager
database does not have
SC_MANAGER_CREATE_SERVICE
access.

ERROR_CIRCULAR_DEPENDENCY A circular service dependency
was specified.

ERROR_DUP_NAME The display name already
exists in the service control
manager database either as a
service name or as another
display name.

ERROR_INVALID_HANDLE The handle to the specified
service control manager
database is invalid.

ERROR_INVALID_NAME The specified service name is
invalid.

ERROR_INVALID_PARAMETER A parameter that was
specified is invalid.

ERROR_INVALID_SERVICE_ACCOUNTThe user account name
specified in the
lpServiceStartName
parameter does not exist.

ERROR_SERVICE_EXISTS The specified service already
exists in this database.

RemarksThe CreateService function creates a service object and installs it in the service control manager
database by creating a service name key in the registry with the following form:
HKEY_LOCAL_MACHINE\System\CurrentControlSet

\Services\lpServiceName

where lpServiceName is the service name specified for this function. Information specified for this
function is saved as values under this key. Setup programs and the service itself can create any
subkey under this service name key for any service specific information.

If the appropriate access rights are enabled, the calling process can use the returned handle to
identify the newly created service in the following functions:

ChangeServiceConfig, ControlService, DeleteService, QueryServiceConfig,
QueryServiceObjectSecurity, QueryServiceStatus, SetServiceObjectSecurity, StartService

The returned handle is only valid for the process that called CreateService. It can be closed by
calling the CloseServiceHandle function.See AlsoChangeServiceConfig, CloseServiceHandle, ControlService, DeleteService,
EnumDependentServices, OpenSCManager, QueryServiceConfig,
QueryServiceObjectSecurity, QueryServiceStatus, SetServiceObjectSecurity, StartService

CreateSolidBrush
The CreateSolidBrush function creates a logical brush that has the specified solid color.

HBRUSH CreateSolidBrush(
COLORREF crColor // brush color value

);ParameterscrColor
Specifies the color of the brush.

Return ValuesIf the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.RemarksA solid brush is a bitmap that Windows uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateSolidBrush, it can select that brush into any
device context by calling the SelectObject function.See AlsoCreateDIBPatternBrush, CreateDIBPatternBrushPt, CreateHatchBrush,
CreatePatternBrush, DeleteObject, SelectObject

CreateStatusWindow
The CreateStatusWindow function creates a status window, which is typically used to display the
status of an application. The window generally appears at the bottom of the parent window, and it
contains the specified text.

HWND CreateStatusWindow(
LONG style,
LPCTSTR lpszText,
HWND hwndParent,
UINT wID

);Parametersstyle
Window styles for the status window. This parameter must include the WS_CHILD style and
should also include the WS_VISIBLE style.

lpszText
Pointer to a null-terminated string that specifies the status text for the first part.

hwndParent
Handle to the parent window.

wID
Control identifier for the status window. The window procedure uses this value to identify
messages it sends to the parent window.

Return ValuesIf the function succeeds, the return value is the handle for the status window.

If the function fails, the return value is NULL.RemarksThe CreateStatusWindow function calls the CreateWindow function to create the window. It
passes the parameters to CreateWindow without modification and sets the position, width, and
height parameters to default values.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateWindow

CreateTapePartition
The CreateTapePartition function reformats a tape.

DWORD CreateTapePartition(
HANDLE hDevice, // handle to open device
DWORD dwPartitionMethod, // type of new partition
DWORD dwCount, // number of new partitions to create
DWORD dwSize // size of new partition, in megabytes

);ParametershDevice
Identifies the device where the new partition is to be created. This handle is created by using
the CreateFile function.

dwPartitionMethod
Specifies the type of partition to create. To determine what type of partitions your device
supports, see the documentation for your hardware. This parameter can have one of the
following values:

Value Description
TAPE_FIXED_PARTITIONS Partitions the tape based on the

device's default definition of
partitions. The dwCount and
dwSize parameters are ignored.

TAPE_INITIATOR_PARTITIONS Partitions the tape into the number
and size of partitions specified by
dwCount and dwSize, respectively,
except for the last partition. The
size of the last partition is the
remainder of the tape.

TAPE_SELECT_PARTITIONS Partitions the tape into the number
of partitions specified by dwCount.
The dwSize parameter is ignored.
The size of the partitions is
determined by the device's default
partition size. For more specific
information, refer to the
documentation for your tape
device.

dwCount
Specifies the number of partitions to create. The GetTapeParameters function provides the
maximum number of partitions a tape can support.

dwSize
Specifies the size, in megabytes, of each partition. This value is ignored if the
dwPartitionMethod parameter is TAPE_SELECT_PARTITIONS.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, it may return one of the following error codes:

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksCreating partitions reformats the tape. All previous information recorded on the tape is destroyed.See AlsoCreateFile, GetTapeParameters

CreateToolbarEx
The CreateToolbarEx function creates a toolbar window and adds the specified buttons to the
toolbar.

HWND CreateToolbarEx(
HWND hwnd,
DWORD ws,
UINT wID,
int nBitmaps,
HINSTANCE hBMInst,
UINT wBMID,
LPCTBBUTTON lpButtons,
int iNumButtons,
int dxButton,
int dyButton,
int dxBitmap,
int dyBitmap,
UINT uStructSize

);Parametershwnd
Handle to the parent window for the toolbar.

ws
Window styles for the toolbar. This parameter must specify at least the WS_CHILD style. It
can also include a combination of styles as discussed in Toolbars and related topics.

wID
Control identifier for the toolbar.

nBitmaps
Number of button images contained in the bitmap specified by hBMInst and wBMID.

hBMInst
Module instance with the executable file that contains the bitmap resource.

wBMID
Resource identifier for the bitmap resource. If hBMInst is NULL, this parameter must be a
valid bitmap handle.

lpButtons
Pointer to an array of TBBUTTON structures that contains information about the buttons to
add to the toolbar.

iNumButtons
Number of buttons to add to the toolbar.

dxButton
Width, in pixels, of the buttons to add to the toolbar.

dyButton
Height, in pixels, of the buttons to add to the toolbar.

dxBitmap
Width, in pixels, of the button images to add to the buttons in the toolbar.

dyBitmap
Height, in pixels, of the button images to add to the buttons in the toolbar.

uStructSize
Size of a TBBUTTON structure.

Return ValuesIf the function succeeds, the return value is the window handle to the toolbarl

If the function fails, the return value is NULL.RemarksWindows 95: The system can support a maximum of 16,364 window handles.See AlsoTBBUTTON

CreateThread
The CreateThread function creates a thread to execute within the address space of the calling
process.

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security attributes
DWORD dwStackSize, // initial thread stack size, in bytes
LPTHREAD_START_ROUTINE lpStartAddress, // pointer to thread function
LPVOID lpParameter, // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId // pointer to returned thread identifier

);ParameterslpThreadAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpThreadAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new thread. If lpThreadAttributes is NULL, the thread gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

dwStackSize
Specifies the size, in bytes, of the stack for the new thread. If 0 is specified, the stack size
defaults to the same size as that of the primary thread of the process. The stack is allocated
automatically in the memory space of the process and it is freed when the thread terminates.
Note that the stack size grows, if necessary.
CreateThread tries to commit the number of bytes specified by dwStackSize, and fails if the
size exceeds available memory.

lpStartAddress
The starting address of the new thread. This is typically the address of a function declared
with the WINAPI calling convention that accepts a single 32-bit pointer as an argument and
returns a 32-bit exit code. Its prototype is:

DWORD WINAPI ThreadFunc(LPVOID);
lpParameter

Specifies a single 32-bit parameter value passed to the thread.
dwCreationFlags

Specifies additional flags that control the creation of the thread. If the CREATE_SUSPENDED
flag is specified, the thread is created in a suspended state, and will not run until the
ResumeThread function is called. If this value is zero, the thread runs immediately after
creation. At this time, no other values are supported.

lpThreadId
Points to a 32-bit variable that receives the thread identifier.

Return ValuesIf the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Windows 95: CreateThread succeeds only when it is called in the context of a 32-bit program. A
32-bit DLL cannot create an additional thread when that DLL is being called by a 16-bit program.RemarksThe new thread handle is created with full access to the new thread. If a security descriptor is not
provided, the handle can be used in any function that requires a thread object handle. When a
security descriptor is provided, an access check is performed on all subsequent uses of the
handle before access is granted. If the access check denies access, the requesting process
cannot use the handle to gain access to the thread.

The thread execution begins at the function specified by the lpStartAddress parameter. If this
function returns, the DWORD return value is used to terminate the thread in an implicit call to the
ExitThread function. Use the GetExitCodeThread function to get the thread's return value.

The CreateThread function may succeed even if lpStartAddress points to data, code, or is not
accessible. If the start address is invalid when the thread runs, an exception occurs, and the
thread terminates. Thread termination due to a invalid start address is handled as an error exit for

the thread's process. This behavior is similar to the asynchronous nature of CreateProcess,
where the process is created even if it refers to invalid or missing dynamic-link libraries (DLLs).

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the
GetThreadPriority and SetThreadPriority functions to get and set the priority value of a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads that
were waiting on the object.

The thread object remains in the system until the thread has terminated and all handles to it have
been closed through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process
that is starting (as the result of a call by CreateProcess) are serialized between each other within
a process. Only one of these events can happen in an address space at a time. This means that
the following restrictions hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· ExitProcess does not return until no threads are in their DLL initialization or detach

routines.
A thread that uses functions from the C run-time libraries should use the beginthread and
endthread C run-time functions for thread management rather than CreateThread and
ExitThread. Failure to do so results in small memory leaks when ExitThread is called.See AlsoCloseHandle, CreateProcess, CreateRemoteThread, ExitProcess, ExitThread,
GetExitCodeThread, GetThreadPriority, ResumeThread, SetThreadPriority,
SECURITY_ATTRIBUTES

CreateUpDownControl
The CreateUpDownControl function creates an up-down control.

HWND CreateUpDownControl(
DWORD dwStyle,
int x,
int y,
int cx,
int cy,
HWND hParent,
int nID,
HINSTANCE hInst
HWND hBuddy,
int nUpper,
int nLower,
int nPos

);ParametersdwStyle
Window styles for the control. This parameter should include the WS_CHILD, WS_BORDER,
and WS_VISIBLE styles, and it may include any of the window styles specific to the up-down
control.

x
Horizontal coordinate, in client coordinates, of the upper-left corner of the control.

y
Vertical coordinate, in client coordinates, of the upper-left corner of the control.

cx
Width, in pixels, of the up-down control.

cy
Height, in pixels, of the up-down control.

hParent
Handle to the parent window of the up-down control

nID
Identifier for the up-down control.

hInst
Handle to the module instance of the application creating the up-down control.

hBuddy
Handle to the window associated with the up-down control. If this parameter is NULL, the
control has no buddy window.

nUpper
Upper limit (range) of the up-down control.

nLower
Lower limit (range) of the up-down control.

nPos
Position of the control.

Return ValuesIf the function succeeds, the return value is the window handle to the up-down control.

If the function fails, the return value is NULL.RemarksWindows 95: The system can support a maximum of 16,364 window handles.

CreateWaitableTimer
[New - Windows NT]

The CreateWaitableTimer function creates a "waitable" timer object.

HANDLE CreateWaitableTimer(
LPSECURITY_ATTRIBUTES lpTimerAttributes, // pointer to security attributes
BOOL bManualReset, // flag for manual reset state
LPCTSTR lpTimerName // pointer to timer object name

);ParameterslpTimerAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new timer object and determines whether child processes can inherit the returned handle. If
lpTimerAttributes is NULL, the timer object gets a default security descriptor and the handle
cannot be inherited.

bManualReset
Specifies the timer type. If bManualReset is TRUE, the timer is a manual-reset notification
timer. Otherwise, the timer is a synchronization timer.

lpTimerName
Points to a null-terminated string specifying the name of the timer object. The name is limited
to MAX_PATH characters and can contain any character except the backslash path-
separator character (\). Name comparison is case sensitive.
If the string specified in the lpTimerName parameter matches the name of an existing named
timer object, the call returns successfully and the GetLastError function returns
ERROR_ALREADY_EXISTS.
If lpTimerName is NULL, the timer object is created without a name.
If lpTimerName matches the name of an existing event, semaphore, mutex, or file-mapping
object, the function fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs
because event, semaphore, mutex, file-mapping, and waitable-timer objects share the same
name space.

Return ValuesIf the function succeeds, the return value is a handle to the timer object. If the named timer object
exists before the function call, GetLastError returns ERROR_ALREADY_EXISTS. Otherwise,
GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle returned by CreateWaitableTimer is created with the TIMER_ALL_ACCESS access
right. This handle can be used in any function that requires a handle to a timer object.

Any thread of the calling process can specify the timer object handle in a call to one of the wait
functions.

Multiple processes can have handles to the same timer object, enabling use of the object for
interprocess synchronization.

· A process created by the CreateProcess function can inherit a handle to a timer object if
the lpTimerAttributes parameter of CreateWaitableTimer enables inheritance.

· A process can specify the timer object handle in a call to the DuplicateHandle function.
The resulting handle can be used by another process.

· A process can specify the name of a timer object in a call to the OpenWaitableTimer or
CreateWaitableTimer function.

Use the CloseHandle function to close the handle. The system closes the handle automatically
when the process terminates. The timer object is destroyed when its last handle has been closed.See AlsoCancelWaitableTimer, CloseHandle, CreateProcess, DuplicateHandle, FILETIME,
OpenWaitableTimer, SECURITY_ATTRIBUTES, SetWaitableTimer

CreateWindow
The CreateWindow function creates an overlapped, pop-up, or child window. It specifies the
window class, window title, window style, and (optionally) the initial position and size of the
window. The function also specifies the window's parent or owner, if any, and the window's menu.

HWND CreateWindow(
LPCTSTR lpClassName, // pointer to registered class name
LPCTSTR lpWindowName, // pointer to window name
DWORD dwStyle, // window style
int x, // horizontal position of window
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner window
HMENU hMenu, // handle to menu or child-window identifier
HANDLE hInstance, // handle to application instance
LPVOID lpParam // pointer to window-creation data

);ParameterslpClassName
Points to a null-terminated string or is an integer atom. If this parameter is an atom, it must be
a global atom created by a previous call to the GlobalAddAtom function. The atom, a 16-bit
value less than 0xC000, must be in the low-order word of lpClassName; the high-order word
must be zero.
If lpClassName is a string, it specifies the window class name. The class name can be any
name registered with the RegisterClass function or any of the predefined control-class
names. For a complete list, see the following Remarks section.

lpWindowName
Points to a null-terminated string that specifies the window name.

dwStyle
Specifies the style of the window being created. This parameter can be a combination of the
window styles and control styles listed in the following Remarks section.

x
Specifies the initial horizontal position of the window. For an overlapped or pop-up window,
the x parameter is the initial x-coordinate of the window's upper-left corner, in screen
coordinates. For a child window, x is the x-coordinate of the upper-left corner of the window
relative to the upper-left corner of the parent window's client area.
If this parameter is set to CW_USEDEFAULT, Windows selects the default position for the
window's upper-left corner and ignores the y parameter. CW_USEDEFAULT is valid only for
overlapped windows; if it is specified for a pop-up or child window, the x and y parameters are
set to zero.

y
Specifies the initial vertical position of the window. For an overlapped or pop-up window, the y
parameter is the initial y-coordinate of the window's upper-left corner, in screen coordinates.
For a child window, y is the initial y-coordinate of the upper-left corner of the child window
relative to the upper-left corner of the parent window's client area. For a list box, y is the initial
y-coordinate of the upper-left corner of the list box's client area relative to the upper-left corner
of the parent window's client area.
If an overlapped window is created with the WS_VISIBLE style bit set and the x parameter is
set to CW_USEDEFAULT, Windows ignores the y parameter.

nWidth
Specifies the width, in device units, of the window. For overlapped windows, nWidth is either
the window's width, in screen coordinates, or CW_USEDEFAULT. If nWidth is
CW_USEDEFAULT, Windows selects a default width and height for the window; the default
width extends from the initial x-coordinate to the right edge of the screen, and the default
height extends from the initial y-coordinate to the top of the icon area. CW_USEDEFAULT is
valid only for overlapped windows; if CW_USEDEFAULT is specified for a pop-up or child
window, nWidth and nHeight are set to zero.

nHeight
Specifies the height, in device units, of the window. For overlapped windows, nHeight is the

window's height, in screen coordinates. If nWidth is set to CW_USEDEFAULT, Windows
ignores nHeight.

hWndParent
Identifies the parent or owner window of the window being created. A valid window handle
must be supplied when a child window or an owned window is created. A child window is
confined to the client area of its parent window. An owned window is an overlapped window
that is destroyed when its owner window is destroyed or hidden when its owner is minimized;
it is always displayed on top of its owner window. Although this parameter must specify a valid
handle if the dwStyle parameter includes the WS_CHILD style, it is optional if dwStyle
includes the WS_POPUP style.

hMenu
Identifies a menu, or specifies a child-window identifier depending on the window style. For an
overlapped or pop-up window, hMenu identifies the menu to be used with the window; it can
be NULL if the class menu is to be used. For a child window, hMenu specifies the child-
window identifier, an integer value used by a dialog box control to notify its parent about
events. The application determines the child-window identifier; it must be unique for all child
windows with the same parent window.

hInstance
Identifies the instance of the module to be associated with the window.

lpParam
Points to a value passed to the window through the CREATESTRUCT structure referenced by
the lParam parameter of the WM_CREATE message. If an application calls CreateWindow to
create a multiple document interface (MDI) client window, lpParam must point to a
CLIENTCREATESTRUCT structure.

Return ValuesIf the function succeeds, the return value is the handle to the new window.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksBefore returning, CreateWindow sends a WM_CREATE message to the window procedure.

For overlapped, pop-up, and child windows, CreateWindow sends WM_CREATE,
WM_GETMINMAXINFO, and WM_NCCREATE messages to the window. The lParam parameter
of the WM_CREATE message contains a pointer to a CREATESTRUCT structure. If the
WS_VISIBLE style is specified, CreateWindow sends the window all the messages required to
activate and show the window.

If the window style specifies a title bar, the window title pointed to by lpWindowName is displayed
in the title bar. When using CreateWindow to create controls, such as buttons, check boxes, and
static controls, use lpWindowName to specify the text of the control.

If you specify Windows version 4.x when linking your application, its windows cannot have caption
buttons unless they also have window menus. This is not a requirement for applications that you
linked specifying Windows version 3.x.

The following predefined control classes can be specified in the lpClassName parameter:

Class Meaning

BUTTON Designates a small rectangular child window that
represents a button the user can click to turn it on or
off. Button controls can be used alone or in groups,
and they can either be labeled or appear without text.
Button controls typically change appearance when the
user clicks them.

COMBOBOX Designates a control consisting of a list box and a
selection field similar to an edit control. When using
this style, an application should either display the list
box at all times or enable a drop-down list box.
Depending on the style of the combo box, the user
can or cannot edit the contents of the selection field. If
the list box is visible, typing characters into the
selection field highlights the first list box entry that
matches the characters typed. Conversely, selecting
an item in the list box displays the selected text in the
selection field.

EDIT Designates a rectangular child window into which the

user can type text from the keyboard. The user
selects the control and gives it the keyboard focus by
clicking it or moving to it by pressing the TAB key. The
user can type text when the edit control displays a
flashing caret; use the mouse to move the cursor,
select characters to be replaced, or position the
cursor for inserting characters; or use the BACKSPACE
key to delete characters.
Edit controls use the variable-pitch system font and
display characters from the ANSI character set. The
WM_SETFONT message can also be sent to the edit
control to change the default font.
Edit controls expand tab characters into as many
space characters as are required to move the caret to
the next tab stop. Tab stops are assumed to be at
every eighth character position.

LISTBOX Designates a list of character strings. Specify this
control whenever an application must present a list of
names, such as filenames, from which the user can
choose. The user can select a string by clicking it. A
selected string is highlighted, and a notification
message is passed to the parent window. Use a
vertical or horizontal scroll bar with a list box to scroll
lists that are too long for the control window. The list
box automatically hides or shows the scroll bar, as
needed.

MDICLIENT Designates an MDI client window. This window
receives messages that control the MDI application's
child windows. The recommended style bits are
WS_CLIPCHILDREN and WS_CHILD. Specify the
WS_HSCROLL and WS_VSCROLL styles to create
an MDI client window that allows the user to scroll
MDI child windows into view.

SCROLLBAR Designates a rectangle that contains a scroll box and
has direction arrows at both ends. The scroll bar
sends a notification message to its parent window
whenever the user clicks the control. The parent
window is responsible for updating the position of the
scroll box, if necessary. Scroll bar controls have the
same appearance and function as scroll bars used in
ordinary windows. Unlike scroll bars, however, scroll
bar controls can be positioned anywhere in a window
for use whenever scrolling input is needed for a
window.
The scroll bar class also includes size box controls. A
size box is a small rectangle the user can expand to
change the size of the window.

STATIC Designates a simple text field, box, or rectangle used
to label, box, or separate other controls. Static
controls take no input and provide no output.

The following window styles can be specified in the dwStyle parameter:

Style Meaning

WS_BORDER Creates a window that has a thin-line
border.

WS_CAPTION Creates a window that has a title bar
(includes the WS_BORDER style).

WS_CHILD Creates a child window. This style
cannot be used with the WS_POPUP
style.

WS_CHILDWINDOW Same as the WS_CHILD style.

WS_CLIPCHILDREN Excludes the area occupied by child
windows when drawing occurs within
the parent window. This style is used
when creating the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each
other; that is, when a particular child
window receives a WM_PAINT
message, the WS_CLIPSIBLINGS style
clips all other overlapping child
windows out of the region of the child
window to be updated. If
WS_CLIPSIBLINGS is not specified
and child windows overlap, it is
possible, when drawing within the client
area of a child window, to draw within
the client area of a neighboring child
window.

WS_DISABLED Creates a window that is initially
disabled. A disabled window cannot
receive input from the user.

WS_DLGFRAME Creates a window that has a border of
a style typically used with dialog boxes.
A window with this style cannot have a
title bar.

WS_GROUP Specifies the first control of a group of
controls. The group consists of this first
control and all controls defined after it,
up to the next control with the
WS_GROUP style. The first control in
each group usually has the
WS_TABSTOP style so that the user
can move from group to group. The
user can subsequently change the
keyboard focus from one control in the
group to the next control in the group
by using the direction keys.

WS_HSCROLL Creates a window that has a horizontal
scroll bar.

WS_ICONIC Creates a window that is initially
minimized. Same as the WS_MINIMIZE
style.

WS_MAXIMIZE Creates a window that is initially
maximized.

WS_MAXIMIZEBOX Creates a window that has a Maximize
button. Cannot be combined with the
WS_EX_CONTEXTHELP style. The
WS_SYSMENU style must also be
specified.

WS_MINIMIZE Creates a window that is initially
minimized. Same as the WS_ICONIC
style.

WS_MINIMIZEBOX Creates a window that has a Minimize
button. Cannot be combined with the
WS_EX_CONTEXTHELP style. The
WS_SYSMENU style must also be
specified.

WS_OVERLAPPED Creates an overlapped window. An
overlapped window has a title bar and a
border. Same as the WS_TILED style.

WS_OVERLAPPEDWINDOWCreates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,

WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles. Same as
the WS_TILEDWINDOW style.

WS_POPUP Creates a pop-up window. This style
cannot be used with the WS_CHILD
style.

WS_POPUPWINDOW Creates a pop-up window with
WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The
WS_CAPTION and
WS_POPUPWINDOW styles must be
combined to make the window menu
visible.

WS_SIZEBOX Creates a window that has a sizing
border. Same as the
WS_THICKFRAME style.

WS_SYSMENU Creates a window that has a window-
menu on its title bar. The
WS_CAPTION style must also be
specified.

WS_TABSTOP Specifies a control that can receive the
keyboard focus when the user presses
the TAB key. Pressing the TAB key
changes the keyboard focus to the next
control with the WS_TABSTOP style.

WS_THICKFRAME Creates a window that has a sizing
border. Same as the WS_SIZEBOX
style.

WS_TILED Creates an overlapped window. An
overlapped window has a title bar and a
border. Same as the
WS_OVERLAPPED style.

WS_TILEDWINDOW Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles. Same as
the WS_OVERLAPPEDWINDOW style.

WS_VISIBLE Creates a window that is initially visible.
WS_VSCROLL Creates a window that has a vertical

scroll bar.

The following button styles (in the BUTTON class) can be specified in the dwStyle
parameter:

Style Meaning

BS_3STATE Creates a button that is the same as a
check box, except that the box can be
grayed as well as checked or unchecked.
Use the grayed state to show that the
state of the check box is not determined.

BS_AUTO3STATE Creates a button that is the same as a
three-state check box, except that the box
changes its state when the user selects it.
The state cycles through checked, grayed,
and unchecked.

BS_AUTOCHECKBOX Creates a button that is the same as a
check box, except that the check state
automatically toggles between checked
and unchecked each time the user selects
the check box.

BS_AUTORADIOBUTTONCreates a button that is the same as a
radio button, except that when the user
selects it, Windows automatically sets the
button's check state to checked and
automatically sets the check state for all
other buttons in the same group to
unchecked.

BS_CHECKBOX Creates a small, empty check box with
text. By default, the text is displayed to the
right of the check box. To display the text
to the left of the check box, combine this
flag with the BS_LEFTTEXT style (or with
the equivalent BS_RIGHTBUTTON style).

BS_DEFPUSHBUTTON Creates a push button that behaves like a
BS_PUSHBUTTON style button, but also
has a heavy black border. If the button is
in a dialog box, the user can select the
button by pressing the ENTER key, even
when the button does not have the input
focus. This style is useful for enabling the
user to quickly select the most likely
(default) option.

BS_GROUPBOX Creates a rectangle in which other controls
can be grouped. Any text associated with
this style is displayed in the rectangle's
upper left corner.

BS_LEFTTEXT Places text on the left side of the radio
button or check box when combined with a
radio button or check box style. Same as
the BS_RIGHTBUTTON style.

BS_OWNERDRAW Creates an owner-drawn button. The
owner window receives a
WM_MEASUREITEM message when the
button is created and a WM_DRAWITEM
message when a visual aspect of the
button has changed. Do not combine the
BS_OWNERDRAW style with any other
button styles.

BS_PUSHBUTTON Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.

BS_RADIOBUTTON Creates a small circle with text. By default,
the text is displayed to the right of the
circle. To display the text to the left of the
circle, combine this flag with the
BS_LEFTTEXT style (or with the
equivalent BS_RIGHTBUTTON style). Use
radio buttons for groups of related, but
mutually exclusive choices.

BS_USERBUTTON Obsolete, but provided for compatibility
with 16-bit versions of Windows. Win32-
based applications should use
BS_OWNERDRAW instead.

BS_BITMAP Specifies that the button displays a
bitmap.

BS_BOTTOM Places text at the bottom of the button
rectangle.

BS_CENTER Centers text horizontally in the button
rectangle.

BS_ICON Specifies that the button displays an icon.
BS_LEFT Left-justifies the text in the button

rectangle. However, if the button is a
check box or radio button that does not
have the BS_RIGHTBUTTON style, the
text is left justified on the right side of the
check box or radio button.

BS_MULTILINE Wraps the button text to multiple lines if
the text string is too long to fit on a single
line in the button rectangle.

BS_NOTIFY Enables a button to send BN_DBLCLK,
BN_KILLFOCUS, and BN_SETFOCUS
notification messages to its parent
window. Note that buttons send the
BN_CLICKED notification message
regardless of whether it has this style.

BS_PUSHLIKE Makes a button (such as a check box,
three-state check box, or radio button)
look and act like a push button. The button
looks raised when it isn't pushed or
checked, and sunken when it is pushed or
checked.

BS_RIGHT Right-justifies text in the button rectangle.
However, if the button is a check box or
radio button that does not have the
BS_RIGHTBUTTON style, the text is right
justified on the right side of the check box
or radio button.

BS_RIGHTBUTTON Positions a radio button's circle or a check
box's square on the right side of the button
rectangle. Same as the BS_LEFTTEXT
style.

BS_TEXT Specifies that the button displays text.
BS_TOP Places text at the top of the button

rectangle.
BS_VCENTER Places text in the middle (vertically) of the

button rectangle.

The following combo box styles (in the COMBOBOX class) can be specified in the dwStyle
parameter:

Style Meaning

CBS_AUTOHSCROLL Automatically scrolls the text in an edit
control to the right when the user
types a character at the end of the
line. If this style is not set, only text
that fits within the rectangular
boundary is allowed.

CBS_DISABLENOSCROLL Shows a disabled vertical scroll bar in
the list box when the box does not
contain enough items to scroll.
Without this style, the scroll bar is
hidden when the list box does not
contain enough items.

CBS_DROPDOWN Similar to CBS_SIMPLE, except that
the list box is not displayed unless the
user selects an icon next to the edit
control.

CBS_DROPDOWNLIST Similar to CBS_DROPDOWN, except
that the edit control is replaced by a
static text item that displays the
current selection in the list box.

CBS_HASSTRINGS Specifies that an owner-drawn combo

box contains items consisting of
strings. The combo box maintains the
memory and address for the strings,
so the application can use the
CB_GETLBTEXT message to retrieve
the text for a particular item.

CBS_LOWERCASE Converts to lowercase any uppercase
characters entered into the edit control
of a combo box.

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo
box is exactly the size specified by the
application when it created the combo
box. Normally, Windows sizes a
combo box so that it does not display
partial items.

CBS_OEMCONVERT Converts text entered in the combo
box edit control. The text is converted
from the Windows character set to the
OEM character set and then back to
the Windows set. This ensures proper
character conversion when the
application calls the CharToOem
function to convert a Windows string in
the combo box to OEM characters.
This style is most useful for combo
boxes that contain filenames and
applies only to combo boxes created
with the CBS_SIMPLE or
CBS_DROPDOWN style.

CBS_OWNERDRAWFIXED Specifies that the owner of the list box
is responsible for drawing its contents
and that the items in the list box are all
the same height. The owner window
receives a WM_MEASUREITEM
message when the combo box is
created and a WM_DRAWITEM
message when a visual aspect of the
combo box has changed.

CBS_OWNERDRAWVARIABLESpecifies that the owner of the list box
is responsible for drawing its contents
and that the items in the list box are
variable in height. The owner window
receives a WM_MEASUREITEM
message for each item in the combo
box when you create the combo box;
the owner window receives a
WM_DRAWITEM message when a
visual aspect of the combo box has
changed.

CBS_SIMPLE Displays the list box at all times. The
current selection in the list box is
displayed in the edit control.

CBS_SORT Automatically sorts strings entered
into the list box.

CBS_UPPERCASE Converts to uppercase any lowercase
characters entered into the edit control
of a combo box.

The following edit control styles (in the EDIT class) can be specified in the dwStyle
parameter:

Style Meaning

ES_AUTOHSCROLLAutomatically scrolls text to the right by 10
characters when the user types a character at
the end of the line. When the user presses the
ENTER key, the control scrolls all text back to
position zero.

ES_AUTOVSCROLLAutomatically scrolls text up one page when the
user presses the ENTER key on the last line.

ES_CENTER Centers text in a multiline edit control.
ES_LEFT Left-aligns text.
ES_LOWERCASE Converts all characters to lowercase as they are

typed into the edit control.
ES_MULTILINE Designates a multiline edit control. The default

is single-line edit control.
When the multiline edit control is in a dialog box,
the default response to pressing the ENTER key
is to activate the default button. To use the
ENTER key as a carriage return, use the
ES_WANTRETURN style.
When the multiline edit control is not in a dialog
box and the ES_AUTOVSCROLL style is
specified, the edit control shows as many lines
as possible and scrolls vertically when the user
presses the ENTER key. If you do not specify
ES_AUTOVSCROLL, the edit control shows as
many lines as possible and beeps if the user
presses the ENTER key when no more lines can
be displayed.
If you specify the ES_AUTOHSCROLL style,
the multiline edit control automatically scrolls
horizontally when the caret goes past the right
edge of the control. To start a new line, the user
must press the ENTER key. If you do not specify
ES_AUTOHSCROLL, the control automatically
wraps words to the beginning of the next line
when necessary. A new line is also started if the
user presses the ENTER key. The window size
determines the position of the word wrap. If the
window size changes, the word wrapping
position changes and the text is redisplayed.
Multiline edit controls can have scroll bars. An
edit control with scroll bars processes its own
scroll bar messages. Note that edit controls
without scroll bars scroll as described in the
previous paragraphs and process any scroll
messages sent by the parent window.

ES_NOHIDESEL Negates the default behavior for an edit control.
The default behavior hides the selection when
the control loses the input focus and inverts the
selection when the control receives the input
focus. If you specify ES_NOHIDESEL, the
selected text is inverted, even if the control does
not have the focus.

ES_NUMBER Allows only digits to be entered into the edit
control.

ES_OEMCONVERT Converts text entered in the edit control. The
text is converted from the Windows character
set to the OEM character set and then back to
the Windows set. This ensures proper character
conversion when the application calls the
CharToOem function to convert a Windows
string in the edit control to OEM characters. This
style is most useful for edit controls that contain

filenames.
ES_PASSWORD Displays an asterisk (*) for each character typed

into the edit control. You can use the
EM_SETPASSWORDCHAR message to
change the character that is displayed.

ES_READONLY Prevents the user from typing or editing text in
the edit control.

ES_RIGHT Right-aligns text in a multiline edit control.
ES_UPPERCASE Converts all characters to uppercase as they

are typed into the edit control.
ES_WANTRETURN Specifies that a carriage return be inserted

when the user presses the ENTER key while
entering text into a multiline edit control in a
dialog box. If you do not specify this style,
pressing the ENTER key has the same effect as
pressing the dialog box's default push button.
This style has no effect on a single-line edit
control.

The following list box control styles (in the LISTBOX class) can be specified in the dwStyle
parameter:

Style Meaning

LBS_DISABLENOSCROLL Shows a disabled vertical scroll bar for
the list box when the box does not
contain enough items to scroll. If you
do not specify this style, the scroll bar
is hidden when the list box does not
contain enough items.

LBS_EXTENDEDSEL Allows multiple items to be selected by
using the SHIFT key and the mouse or
special key combinations.

LBS_HASSTRINGS Specifies that a list box contains items
consisting of strings. The list box
maintains the memory and addresses
for the strings so the application can
use the LB_GETTEXT message to
retrieve the text for a particular item.
By default, all list boxes except owner-
drawn list boxes have this style. You
can create an owner-drawn list box
either with or without this style.

LBS_MULTICOLUMN Specifies a multicolumn list box that is
scrolled horizontally. The
LB_SETCOLUMNWIDTH message
sets the width of the columns.

LBS_MULTIPLESEL Turns string selection on or off each
time the user clicks or double-clicks a
string in the list box. The user can
select any number of strings.

LBS_NODATA Specifies a no-data list box. Specify
this style when the count of items in
the list box will exceed one thousand.
A no-data list box must also have the
LBS_OWNERDRAWFIXED style, but
must not have the LBS_SORT or
LBS_HASSTRINGS style.
A no-data list box resembles an
owner-drawn list box except that it
contains no string or bitmap data for
an item. Commands to add, insert, or

delete an item always ignore any
given item data; requests to find a
string within the list box always fail.
Windows sends the WM_DRAWITEM
message to the owner window when
an item must be drawn. The itemID
member of the DRAWITEMSTRUCT
structure passed with the
WM_DRAWITEM message specifies
the line number of the item to be
drawn. A no-data list box does not
send a WM_DELETEITEM message.

LBS_NOINTEGRALHEIGHT Specifies that the size of the list box is
exactly the size specified by the
application when it created the list
box. Normally, Windows sizes a list
box so that the list box does not
display partial items.

LBS_NOREDRAW Specifies that the list box's
appearance is not updated when
changes are made. You can change
this style at any time by sending a
WM_SETREDRAW message.

LBS_NOSEL Specifies that the list box contains
items that can be viewed but not
selected.

LBS_NOTIFY Notifies the parent window with an
input message whenever the user
clicks or double-clicks a string in the
list box.

LBS_OWNERDRAWFIXED Specifies that the owner of the list box
is responsible for drawing its contents
and that the items in the list box are
the same height. The owner window
receives a WM_MEASUREITEM
message when the list box is created
and a WM_DRAWITEM message
when a visual aspect of the list box
has changed.

LBS_OWNERDRAWVARIABLESpecifies that the owner of the list box
is responsible for drawing its contents
and that the items in the list box are
variable in height. The owner window
receives a WM_MEASUREITEM
message for each item in the combo
box when the combo box is created
and a WM_DRAWITEM message
when a visual aspect of the combo
box has changed.

LBS_SORT Sorts strings in the list box
alphabetically.

LBS_STANDARD Sorts strings in the list box
alphabetically. The parent window
receives an input message whenever
the user clicks or double-clicks a
string. The list box has borders on all
sides.

LBS_USETABSTOPS Enables a list box to recognize and
expand tab characters when drawing
its strings. The default tab positions
are 32 dialog box units. A dialog box
unit is a horizontal or vertical distance.

One horizontal dialog box unit is equal
to one-fourth of the current dialog box
base-width unit. Windows calculates
these units based on the height and
width of the current system font. The
GetDialogBaseUnits function returns
the current dialog box base units in
pixels.

LBS_WANTKEYBOARDINPUTSpecifies that the owner of the list box
receives WM_VKEYTOITEM
messages whenever the user presses
a key and the list box has the input
focus. This enables an application to
perform special processing on the
keyboard input.

The following scroll bar styles (in the SCROLLBAR class) can be specified in the dwStyle
parameter:

Style Meaning

SBS_BOTTOMALIGN Aligns the bottom edge of the
scroll bar with the bottom edge
of the rectangle defined by the
parameters x, y, nWidth, and
nHeight. The scroll bar has the
default height for system scroll
bars. Use this style with the
SBS_HORZ style.

SBS_HORZ Designates a horizontal scroll
bar. If neither the
SBS_BOTTOMALIGN nor
SBS_TOPALIGN style is
specified, the scroll bar has the
height, width, and position
defined by x, y, nWidth, and
nHeight.

SBS_LEFTALIGN Aligns the left edge of the scroll
bar with the left edge of the
rectangle defined by the
parameters x, y, nWidth, and
nHeight. The scroll bar has the
default width for system scroll
bars. Use this style with the
SBS_VERT style.

SBS_RIGHTALIGN Aligns the right edge of the
scroll bar with the right edge of
the rectangle defined by the
parameters x, y, nWidth, and
nHeight. The scroll bar has the
default width for system scroll
bars. Use this style with the
SBS_VERT style.

SBS_SIZEBOX Designates a size box. If you
specify neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN
nor the
SBS_SIZEBOXTOPLEFTALIGN
style, the size box has the
height, width, and position
specified by the parameters x, y,
nWidth, and nHeight.

SBS_SIZEBOXBOTTOMRIGHTALIGNAligns the lower-right corner of
the size box with the lower-right

corner of the rectangle specified
by the parameters x, y, nWidth,
and nHeight. The size box has
the default size for system size
boxes. Use this style with the
SBS_SIZEBOX style.

SBS_SIZEBOXTOPLEFTALIGN Aligns the upper-left corner of
the size box with the upper-left
corner of the rectangle specified
by the parameters x, y, nWidth,
and nHeight. The size box has
the default size for system size
boxes. Use this style with the
SBS_SIZEBOX style.

SBS_SIZEGRIP Same as SBS_SIZEBOX, but
with a raised edge.

SBS_TOPALIGN Aligns the top edge of the scroll
bar with the top edge of the
rectangle defined by the
parameters x, y, nWidth, and
nHeight. The scroll bar has the
default height for system scroll
bars. Use this style with the
SBS_HORZ style.

SBS_VERT Designates a vertical scroll bar.
If you specify neither the
SBS_RIGHTALIGN nor the
SBS_LEFTALIGN style, the
scroll bar has the height, width,
and position specified by the
parameters x, y, nWidth, and
nHeight.

The following static control styles (in the STATIC class) can be specified in the dwStyle
parameter. A static control can have only one of these styles:

Style Description

SS_BITMAP Specifies a bitmap is to be displayed in the
static control. The error code text is the
name of a bitmap (not a filename) defined
elsewhere in the resource file. The style
ignores the nWidth and nHeight
parameters; the control automatically sizes
itself to accommodate the bitmap.

SS_BLACKFRAME Specifies a box with a frame drawn in the
same color as the window frames. This
color is black in the default Windows color
scheme.

SS_BLACKRECT Specifies a rectangle filled with the current
window frame color. This color is black in
the default Windows color scheme.

SS_CENTER Specifies a simple rectangle and centers
the error code text in the rectangle. The
text is formatted before it is displayed.
Words that extend past the end of a line
are automatically wrapped to the beginning
of the next centered line.

SS_CENTERIMAGE Specifies that the midpoint of a static
control with the SS_BITMAP or SS_ICON
style is to remain fixed when the control is
resized. The four sides are adjusted to
accommodate a new bitmap or icon.

If a static control has the SS_BITMAP style
and the bitmap is smaller than the control's
client area, the client area is filled with the
color of the pixel in the upper-left corner of
the bitmap. If a static control has the
SS_ICON style, the icon does not appear
to paint the client area.

SS_GRAYFRAME Specifies a box with a frame drawn with the
same color as the screen background
(desktop). This color is gray in the default
Windows color scheme.

SS_GRAYRECT Specifies a rectangle filled with the current
screen background color. This color is gray
in the default Windows color scheme.

SS_ICON Specifies an icon displayed in the dialog
box. The given text is the name of an icon
(not a filename) defined elsewhere in the
resource file. The style ignores the nWidth
and nHeight parameters; the icon
automatically sizes itself.

SS_LEFT Specifies a simple rectangle and left-aligns
the given text in the rectangle. The text is
formatted before it is displayed. Words that
extend past the end of a line are
automatically wrapped to the beginning of
the next left-aligned line.

SS_LEFTNOWORDWRAPSpecifies a simple rectangle and left-aligns
the given text in the rectangle. Tabs are
expanded but words are not wrapped. Text
that extends past the end of a line is
clipped.

SS_METAPICT Specifies a metafile picture is to be
displayed in the static control. The given
text is the name of a metafile picture (not a
filename) defined elsewhere in the
resource file. A metafile static control has a
fixed size; the metafile picture is scaled to
fit the static control's client area.

SS_NOPREFIX Prevents interpretation of any ampersand
(&) characters in the control's text as
accelerator prefix characters. These are
displayed with the ampersand removed
and the next character in the string
underlined. This static control style may be
included with any of the defined static
controls.
An application can combine
SS_NOPREFIX with other styles by using
the bitwise OR (|) operator. This can be
useful when filenames or other strings that
may contain an ampersand (&) must be
displayed in a static control in a dialog box.

SS_NOTIFY Sends the parent window STN_CLICKED
and STN_DBLCLK notification messages
when the user clicks or double clicks the
control.

SS_RIGHT Specifies a simple rectangle and right-
aligns the given text in the rectangle. The
text is formatted before it is displayed.
Words that extend past the end of a line
are automatically wrapped to the beginning
of the next right-aligned line.

SS_RIGHTIMAGE Specifies that the bottom-right corner of a
static control with the SS_BITMAP or
SS_ICON style is to remain fixed when the
control is resized. Only the top and left
sides are adjusted to accommodate a new
bitmap or icon.

SS_SIMPLE Specifies a simple rectangle and displays a
single line of left-aligned text in the
rectangle. The text line cannot be
shortened or altered in any way. The
control's parent window or dialog box must
not process the WM_CTLCOLORSTATIC
message.

SS_WHITEFRAME Specifies a box with a frame drawn with the
same color as the window backgrounds.
This color is white in the default Windows
color scheme.

SS_WHITERECT Specifies a rectangle filled with the current
window background color. This color is
white in the default Windows color scheme.

The following dialog box styles can be specified in the dwStyle parameter:

Style Meaning

DS_3DLOOK Gives the dialog box a nonbold font and
draws three-dimensional borders around
control windows in the dialog box.
The DS_3DLOOK style is required only by
Win32-based applications compiled for
versions of Windows earlier than Windows 95
or Windows NT 4.0. The system automatically
applies the three-dimensional look to dialog
boxes created by applications compiled for
current versions of Windows.

DS_ABSALIGN Indicates that the coordinates of the dialog
box are screen coordinates; otherwise,
Windows assumes they are client
coordinates.

DS_CENTER Centers the dialog box in the working area;
that is, the area not obscured by the tray.

DS_CENTERMOUSE Centers the mouse cursor in the dialog box.
DS_CONTEXTHELP Includes a question mark in the title bar of the

dialog box. When the user clicks the question
mark, the cursor changes to a question mark
with a pointer. If the user then clicks a control
in the dialog box, the control receives a
WM_HELP message. The control should
pass the message to the dialog procedure,
which should call the WinHelp function using
the HELP_WM_HELP command. The Help
application displays a pop-up window that
typically contains help for the control.
Note that DS_CONTEXTHELP is just a
placeholder. When the dialog box is created,
the system checks for DS_CONTEXTHELP
and, if it is there, adds
WS_EX_CONTEXTHELP to the extended
style of the dialog box.
WS_EX_CONTEXTHELP cannot be used
with the WS_MAXIMIZEBOX or
WS_MINIMIZEBOX styles.

DS_CONTROL Creates a dialog box that works well as a

child window of another dialog box, much like
a page in a property sheet. This style allows
the user to tab among the control windows of
a child dialog box, use its accelerator keys,
and so on.

DS_FIXEDSYS Use SYSTEM_FIXED_FONT instead of
SYSTEM_FONT.

DS_LOCALEDIT Applies to 16-bit applications only. This style
directs edit controls in the dialog box to
allocate memory from the application's data
segment. Otherwise, edit controls allocate
storage from a global memory object.

DS_MODALFRAME Creates a dialog box with a modal dialog-box
frame that can be combined with a title bar
and window menu by specifying the
WS_CAPTION and WS_SYSMENU styles.

DS_NOFAILCREATE Creates the dialog box even if errors occur ¾
for example, if a child window cannot be
created or if the system cannot create a
special data segment for an edit control.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that
Windows would otherwise send to the owner
of the dialog box while the dialog box is
displayed.

DS_RECURSE Dialog box style for control-like dialog boxes.
DS_SETFONT Indicates that the dialog box template (the

DLGTEMPLATE structure) contains two
additional members specifying a font name
and point size. The corresponding font is
used to display text within the dialog box
client area and within the dialog box controls.
Windows passes the handle of the font to the
dialog box and to each control by sending
them the WM_SETFONT message.

DS_SETFOREGROUNDDoes not apply to 16-bit versions of Microsoft
Windows. This style brings the dialog box to
the foreground. Internally, Windows calls the
SetForegroundWindow function for the
dialog box.

DS_SYSMODAL Creates a system-modal dialog box. This
style causes the dialog box to have the
WS_EX_TOPMOST style, but otherwise has
no effect on the dialog box or the behavior of
other windows in the system when the dialog
box is displayed.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCharToOem, CLIENTCREATESTRUCT, CreateDialog, CREATESTRUCT, CreateWindowEx,
DialogBox, DLGTEMPLATE, DRAWITEMSTRUCT, GetDialogBaseUnits, GlobalAddAtom,
LB_GETTEXT, LB_SETCOLUMNWIDTH, MessageBox, RegisterClass,
SetForegroundWindow, WM_COMMAND, WM_CREATE, WM_DELETEITEM,
WM_DRAWITEM, WM_ENTERIDLE, WM_GETMINMAXINFO, WM_MEASUREITEM,
WM_NCCREATE, WM_PAINT, WM_SETFONT, WM_SETREDRAW, WM_VKEYTOITEM

CreateWindowEx
The CreateWindowEx function creates an overlapped, pop-up, or child window with an extended
style; otherwise, this function is identical to the CreateWindow function. For more information
about creating a window and for full descriptions of the other parameters of CreateWindowEx,
see CreateWindow.

HWND CreateWindowEx(
DWORD dwExStyle, // extended window style
LPCTSTR lpClassName, // pointer to registered class name
LPCTSTR lpWindowName, // pointer to window name
DWORD dwStyle, // window style
int x, // horizontal position of window
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner window
HMENU hMenu, // handle to menu, or child-window identifier
HINSTANCE hInstance, // handle to application instance
LPVOID lpParam // pointer to window-creation data

);ParametersdwExStyle
Specifies the extended style of the window. This parameter can be one of the following
values:

Style Meaning
WS_EX_ACCEPTFILES Specifies that a window created

with this style accepts drag-drop
files.

WS_EX_APPWINDOW Forces a top-level window onto the
taskbar when the window is
minimized.

WS_EX_CLIENTEDGE Specifies that a window has a
border with a sunken edge.

WS_EX_CONTEXTHELP Includes a question mark in the
title bar of the window. When the
user clicks the question mark, the
cursor changes to a question mark
with a pointer. If the user then
clicks a child window, the child
receives a WM_HELP message.
The child window should pass the
message to the parent window
procedure, which should call the
WinHelp function using the
HELP_WM_HELP command. The
Help application displays a pop-
up window that typically contains
help for the child window.
WS_EX_CONTEXTHELP cannot
be used with the
WS_MAXIMIZEBOX or
WS_MINIMIZEBOX styles.

WS_EX_CONTROLPARENT Allows the user to navigate among
the child windows of the window
by using the TAB key.

WS_EX_DLGMODALFRAME Creates a window that has a
double border; the window can,
optionally, be created with a title
bar by specifying the
WS_CAPTION style in the dwStyle
parameter.

WS_EX_LEFT Window has generic "left-aligned"
properties. This is the default.

WS_EX_LEFTSCROLLBAR If the shell language is Hebrew,
Arabic, or another language that
supports reading order alignment,
the vertical scroll bar (if present) is
to the left of the client area. For
other languages, the style is
ignored and not treated as an
error.

WS_EX_LTRREADING The window text is displayed using
Left to Right reading-order
properties. This is the default.

WS_EX_MDICHILD Creates an MDI child window.
WS_EX_NOPARENTNOTIFY Specifies that a child window

created with this style does not
send the WM_PARENTNOTIFY
message to its parent window
when it is created or destroyed.

WS_EX_OVERLAPPEDWINDOWCombines the
WS_EX_CLIENTEDGE and
WS_EX_WINDOWEDGE styles.

WS_EX_PALETTEWINDOW Combines the
WS_EX_WINDOWEDGE,
WS_EX_TOOLWINDOW, and
WS_EX_TOPMOST styles.

WS_EX_RIGHT Window has generic "right-
aligned" properties. This depends
on the window class. This style
has an effect only if the shell
language is Hebrew, Arabic, or
another language that supports
reading order alignment;
otherwise, the style is ignored and
not treated as an error.

WS_EX_RIGHTSCROLLBAR Vertical scroll bar (if present) is to
the right of the client area. This is
the default.

WS_EX_RTLREADING If the shell language is Hebrew,
Arabic, or another language that
supports reading order alignment,
the window text is displayed using
Right to Left reading-order
properties. For other languages,
the style is ignored and not treated
as an error.

WS_EX_STATICEDGE Creates a window with a three-
dimensional border style intended
to be used for items that do not
accept user input.

WS_EX_TOOLWINDOW Creates a tool window; that is, a
window intended to be used as a
floating toolbar. A tool window has
a title bar that is shorter than a
normal title bar, and the window
title is drawn using a smaller font.
A tool window does not appear in
the taskbar or in the dialog that
appears when the user presses
ALT+TAB.

WS_EX_TOPMOST Specifies that a window created
with this style should be placed

above all non-topmost windows
and should stay above them, even
when the window is deactivated.
To add or remove this style, use
the SetWindowPos function.

WS_EX_TRANSPARENT Specifies that a window created
with this style is to be transparent.
That is, any windows that are
beneath the window are not
obscured by the window. A
window created with this style
receives WM_PAINT messages
only after all sibling windows
beneath it have been updated.

WS_EX_WINDOWEDGE Specifies that a window has a
border with a raised edge.

Using the WS_EX_RIGHT style for static or edit controls has the same effect as using
the SS_RIGHT or ES_RIGHT style, respectively. Using this style with button controls
has the same effect as using BS_RIGHT and BS_RIGHTBUTTON styles.

lpClassName
Points to a null-terminated string or is an integer atom. If lpClassName is an atom, it must be a
global atom created by a previous call to GlobalAddAtom. The atom, a 16-bit value less than
0xC000, must be in the low-order word of lpClassName; the high-order word must be zero.
If lpClassName is a string, it specifies the window class name. The class name can be any
name registered with the RegisterClass function or any of the predefined control-class
names.

lpWindowName
Points to a null-terminated string that specifies the window name.

dwStyle
Specifies the style of the window being created. For a list of the window styles that can be
specified in dwStyle, see CreateWindow.

x
Specifies the initial horizontal position of the window. For an overlapped or pop-up window,
the x parameter is the initial x-coordinate of the window's upper-left corner, in screen
coordinates. For a child window, x is the x-coordinate of the upper-left corner of the window
relative to the upper-left corner of the parent window's client area.
If x is set to CW_USEDEFAULT, Windows selects the default position for the window's upper-
left corner and ignores the y parameter. CW_USEDEFAULT is valid only for overlapped
windows; if it is specified for a pop-up or child window, the x and y parameters are set to zero.

y
Specifies the initial vertical position of the window. For an overlapped or pop-up window, the y
parameter is the initial y-coordinate of the window's upper-left corner, in screen coordinates.
For a child window, y is the initial y-coordinate of the upper-left corner of the child window
relative to the upper-left corner of the parent window's client area. For a list box, y is the initial
y-coordinate of the upper-left corner of the list box's client area relative to the upper-left corner
of the parent window's client area.
If an overlapped window is created with the WS_VISIBLE style bit set and the x parameter is
set to CW_USEDEFAULT, Windows ignores the y parameter.

nWidth
Specifies the width, in device units, of the window. For overlapped windows, nWidth is the
window's width, in screen coordinates, or CW_USEDEFAULT. If nWidth is
CW_USEDEFAULT, Windows selects a default width and height for the window; the default
width extends from the initial x-coordinates to the right edge of the screen; the default height
extends from the initial y-coordinate to the top of the icon area. CW_USEDEFAULT is valid
only for overlapped windows; if CW_USEDEFAULT is specified for a pop-up or child window,
the nWidth and nHeight parameter are set to zero.

nHeight
Specifies the height, in device units, of the window. For overlapped windows, nHeight is the
window's height, in screen coordinates. If the nWidth parameter is set to CW_USEDEFAULT,
Windows ignores nHeight.

hWndParent
Identifies the parent or owner window of the window being created. A valid window handle
must be supplied when a child window or an owned window is created. A child window is
confined to the client area of its parent window. An owned window is an overlapped window
that is destroyed when its owner window is destroyed or hidden when its owner is minimized;
it is always displayed on top of its owner window. Although this parameter must specify a valid
handle if the dwStyle parameter includes the WS_CHILD style, it is optional if dwStyle
includes the WS_POPUP style.

hMenu
Identifies a menu, or specifies a child-window identifier, depending on the window style. For
an overlapped or pop-up window, hMenu identifies the menu to be used with the window; it
can be NULL if the class menu is to be used. For a child window, hMenu specifies the child-
window identifier, an integer value used by a dialog box control to notify its parent about
events. The application determines the child-window identifier; it must be unique for all child
windows with the same parent window.

hInstance
Identifies the instance of the module to be associated with the window.

lpParam
Points to a value passed to the window through the CREATESTRUCT structure referenced by
the lParam parameter of the WM_CREATE message. If an application calls CreateWindow to
create a multiple document interface client window, lpParam must point to a
CLIENTCREATESTRUCT structure.

Return ValuesIf the function succeeds, the return value is the handle to the new window.

If the function fails, the return value is NULL.RemarksThe CreateWindowEx function sends WM_NCCREATE, WM_NCCALCSIZE, and WM_CREATE
messages to the window being created.

For information about the window control classes, window styles, and control styles used with this
function, see the description of the CreateWindow function.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCLIENTCREATESTRUCT, CREATESTRUCT, CreateWindow, GlobalAddAtom,
RegisterClass, SetWindowPos, WM_CREATE, WM_NCCALCSIZE, WM_NCCREATE,
WM_PAINT, WM_PARENTNOTIFY

CreateWindowStation
The CreateWindowStation function creates a window station object. It returns a handle that can
be used to access the window station. A window station is a secure object that contains a set of
global atoms, a clipboard, and a set of desktop objects.

HWINSTA CreateWindowStation(
LPTSTR lpwinsta, // name of the new window station
DWORD dwReserved, // reserved; must be NULL
DWORD dwDesiredAccess, // specifies access of returned handle
LPSECURITY_ATTRIBUTES lpsa // specifies security attributes of the window station

);Parameterslpwinsta
Optionally points to a null-terminated string specifying the name of the window station to be
created. Window station names are case-insensitive and cannot contain backslash characters
(\). Only members of the Administrators group are allowed to specify a name. If lpwinsta is
NULL, the system forms a window station name using the logon session identifier for the
calling process. To get this name, call the GetUserObjectInformation function.

dwReserved
Reserved; must be NULL.

dwDesiredAccess
Specifies the type of access to the window station. This parameter can be one or more of the
following values:

Value Description
WINSTA_ACCESSCLIPBOARD Required to use the clipboard.
WINSTA_ACCESSGLOBALATOMSRequired to manipulate global atoms.
WINSTA_CREATEDESKTOP Required to create new desktop objects on

the window station.
WINSTA_ENUMDESKTOPS Required to enumerate existing desktop

objects.
WINSTA_ENUMERATE Required for the window station to be

enumerated.
WINSTA_EXITWINDOWS Required to successfully call the

ExitWindows or ExitWindowsEx functions.
WINSTA_READATTRIBUTES Required to read the attributes of a window

station object.
WINSTA_READSCREEN Required to access screen contents.
WINSTA_WRITEATTRIBUTES Required to modify the attributes of a window

station object.

lpsa
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpsa is NULL, the handle cannot be inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new window station. If lpsa is NULL, the window station (and any desktops
created within the window) gets a security descriptor that grants GENERIC_ALL access to all
users.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

Return ValuesIf the function succeeds, the return value is the handle to the newly created window station.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoGetUserObjectInformation, OpenWindowStation

CryptAcquireContext
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptAcquireContext function is used to acquire a handle to a particular key container
within a particular CSP. This returned handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the characteristics
described in the dwProvType and pszProvider parameters. If the CSP is found, then the function
attempts to find a key container within the CSP matching the name specified by the pszContainer
parameter.

This function can also be used to create and destroy key containers, depending on the value of
the dwFlags parameter.

BOOL CRYPTFUNC CryptAcquireContext(
HCRYPTPROV *phProv,
LPCTSTR pszContainer,
LPCTSTR pszProvider,
DWORD dwProvType,
DWORD dwFlags

);ParametersphProv
[out] The address to which the function copies a handle to the CSP.

pszContainer
[in] The key container name. This is a zero-terminated string that identifies the key container
to the CSP. This name is independent of the method used to store the keys. Some CSPs will
store their key containers internally (in hardware), some will use the system Registry, and
others will use the file system.
If this parameter is NULL, then a default key container name will be used. For example, if the
Microsoft RSA Base Provider is being used, then the current user's logon name will be used
as the name of the key container. Other CSPs may also have default key containers that can
be acquired in this way.
An application can obtain the name of the acquired key container at a later time by reading
the PP_CONTAINER parameter from the CryptGetProvParam function.

pszProvider
[in] The provider name. This is a zero-terminated string that specifies the CSP to be used.
If this parameter is NULL then the user default provider is used. This situation is discussed in
detail in the section Interfacing with a Cryptographic Service Provider (CSP).
An application can obtain the name of the acquired CSP at a later time by reading the
PP_NAME parameter from the CryptGetProvParam function.

dwProvType
[in] The type of provider to acquire. The following provider types are predefined. These are
discussed in detail in the section Interfacing with a Cryptographic Service Provider (CSP).
· PROV_RSA_FULL
· PROV_RSA_SIG
· PROV_DSS
· PROV_FORTEZZA
· PROV_MS_MAIL

dwFlags
[in] The flag values. This parameter is normally set to zero, but some applications will set one
(and only one) of the following flags:
CRYPT_VERIFYCONTEXT

If this flag is set, then the application will have no access to the key container's private
keys. In fact, if pszContainer is NULL and no default key container is present, the
application will have no access to a key container at all.
This option is intended to be used by applications whose only cryptographic need is to

verify digital signatures. The only operations normally needed in this case are public key
import, hashing, and signature verification.
When CryptAcquireContext is called, many CSPs will require input from the owning user
before granting access to the private keys in the key container. For example, the private
keys may be encrypted, requiring a password from the user before they can be used.
However, if the CRYPT_VERIFYCONTEXT flag is specified, access to the private keys is
not required and the user interface can be bypassed.

CRYPT_NEWKEYSET
If this flag is set, then a new key container will be created with the name specified by
pszContainer. If pszContainer is NULL, then a key container with the default name will be
created.
Note That when key containers are created, most CSPs will not automatically create any
public/private key pairs. These keys must be created as a separate step with the
CryptGenKey function.
Important This flag should only be set by administrative applications. Normal applications
should not create key containers.

CRYPT_DELETEKEYSET
If this flag is set, then the key container specified by pszContainer is deleted. If
pszContainer is NULL, then the key container with the default name is deleted. All key pairs
in the key container are also destroyed.
When the CRYPT_DELETEKEYSET flag is set, the value returned in phProv is undefined
and, thus, the CryptReleaseContext function need not be called afterwards.
Important This flag should only be set by administrative applications. Normal applications
should not destroy key containers.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.

Error Description

ERROR_INVALID_PARAMETER One of the parameters contains an invalid
value. This is most often an illegal pointer.

ERROR_NOT_ENOUGH_MEMORYThe operating system ran out of memory
during the operation.

NTE_BAD_FLAGS The dwFlags parameter has an illegal
value.

NTE_BAD_KEYSET The Registry entry for the key container
could not be opened and may not exist.

NTE_BAD_KEYSET_PARAM The pszContainer or pszProvider
parameter is set to an illegal value.

NTE_BAD_PROV_TYPE The value of the dwProvType parameter is
out of range. All provider types must be
from 1 to 999, inclusive.

NTE_BAD_SIGNATURE The provider DLL signature did not verify
correctly. Either the DLL or the digital
signature has been tampered with.

NTE_EXISTS The dwFlags parameter is
CRYPT_NEWKEYSET, but the key
container already exists.

NTE_KEYSET_ENTRY_BAD The Registry entry for the pszContainer
key container was found (in the
HKEY_CURRENT_USER window), but is
corrupt. See the section System
Administration for details about
CryptoAPI's Registry usage.

NTE_KEYSET_NOT_DEF No Registry entry exists in the
HKEY_CURRENT_USER window for the
key container specified by pszContainer.

NTE_NO_MEMORY The CSP ran out of memory during the
operation.

NTE_PROV_DLL_NOT_FOUND The provider DLL file does not exist or is

not on the current path.
NTE_PROV_TYPE_ENTRY_BAD The Registry entry for the provider type

specified by dwProvType is corrupt. This
error may relate to either the user default
CSP list or the machine default CSP list.
See the section System Administration for
details about CryptoAPI's Registry usage.

NTE_PROV_TYPE_NO_MATCH The provider type specified by
dwProvType does not match the provider
type found in the Registry. Note that this
error can only occur when pszProvider
specifies an actual CSP name.

NTE_PROV_TYPE_NOT_DEF No Registry entry exists for the provider
type specified by dwProvType.

NTE_PROVIDER_DLL_FAIL The provider DLL file could not be loaded,
and may not exist. If it exists, then the file
is not a valid DLL.

NTE_SIGNATURE_FILE_BAD An error occurred while loading the DLL
file image, prior to verifying its signature.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
BYTE pbData[1000];
DWORD dwDataLen;
// Get handle to the default PROV_RSA_FULL provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
return;

}
// Read the name of the default CSP.
dwDataLen = 1000;
if(!CryptGetProvParam(hProv, PP_NAME, pbData, &dwDataLen, 0)) {

printf("Error %x reading CSP name!\n", GetLastError());return;
}
printf("Provider name:%s\n", pbData);
// Read the name of the default key container.
dwDataLen = 1000;
if(!CryptGetProvParam(hProv, PP_CONTAINER, pbData, &dwDataLen, 0)) {

printf("Error %x reading key container name!\n", GetLastError());
return;

}
printf("Key Container name:%s\n", pbData);
// Perform cryptographic operations.
...
// Release provider handle.
if(!CryptReleaseContext(hProv, 0)) {

printf("Error %x during CryptReleaseContext!\n", GetLastError());
return;

}
// **
// Get handle to the Microsoft RSA Base Provider and the
// "Foo" key container.
if(!CryptAcquireContext(&hProv, TEXT("Foo"), MS_DEF_PROV,

PROV_RSA_FULL, 0)) {
printf("Error %x during CryptAcquireContext!\n", GetLastError());
return;

}
// Perform cryptographic operations.
...
// Release provider handle.
if(!CryptReleaseContext(hProv, 0)) {

printf("Error %x during CryptReleaseContext!\n", GetLastError());
return;

}
// **
// Get handle to the default provider. Create a new key container
// named "Bar". Note that this key container will be empty until keys
// are explicitly created with the CryptGenKey function.
lstrcpy(szProv,);
lstrcpy(szContainer,);
if(!CryptAcquireContext(&hProv, TEXT("Bar"), NULL, PROV_RSA_FULL,

CRYPT_NEWKEYSET)) {
printf("Error %x during CryptAcquireContext!\n", GetLastError());
return;

}
// Perform cryptographic operations.
...
// Release provider handle.
if(!CryptReleaseContext(hProv, 0)) {

printf("Error %x during CryptReleaseContext!\n", GetLastError());
return;

}
See AlsoCryptGenKey, CryptGetProvParam, CryptReleaseContext

CryptCreateHash
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptCreateHash function is used to initiate the hashing of a stream of data. It returns to the
caller a handle to a CSP hash object. This handle can also be used in subsequent calls to
CryptHashData and CryptHashSessionKey in order to hash streams of data and session keys.

BOOL CRYPTFUNC CryptCreateHash(
HCRYPTPROV hProv,
ALG_ID Algid,
HCRYPTKEY hKey,
DWORD dwFlags,
HCRYPTHASH *phHash

);ParametershProv
[in] A handle to the CSP to use. An application obtains this handle using the
CryptAcquireContext function.

Algid
[in] An algorithm identifier of the hash algorithm to use.
The valid values for this parameter will vary, depending on the CSP that is used. See the
"Remarks" section for the list of default algorithms.

hKey
[in] If the type of hash algorithm is a keyed hash, such as a MAC algorithm, the key for the
hash should be passed in this parameter. For nonkeyed algorithms, this parameter should be
set to zero.
The key must be to a block cipher, such as RC2, with a cipher mode of CBC.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

phHash
[out] The address to which the function copies a handle to the new hash object.

RemarksThe Microsoft RSA Base Provider defines the following hashing algorithms:

Constant Description

CALG_MAC Message Authentication Code
CALG_MD2 MD2
CALG_MD5 MD5
CALG_SHA US DSA Secure Hash Algorithm

The computation of the actual hash is done with the CryptHashData and
CryptHashSessionKey functions. These require a handle to the hash object. Once all the data
has been added to the hash object, exactly one of the following operations can be performed:

· The hash value can be retrieved using CryptGetHashParam.
· A session key can be derived using CryptDeriveKey.
· The hash can be signed using CryptSignHash.
· A signature can be verified using CryptVerifySignature.

Once one of the functions from this list has been called, the only hashing function that can be
used with the same hash handle is CryptDestroyHash.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETER One of the parameters contains an invalid
value. This is most often an illegal pointer.

ERROR_NOT_ENOUGH_MEMORYThe operating system ran out of memory
during the operation.

NTE_BAD_ALGID The Algid parameter specifies an algorithm
that this CSP does not support.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_KEY A keyed hash algorithm (such as

CALG_MAC) is specified by Algid and the
hKey parameter is either zero or it
specifies an invalid key handle. This error
code will also be returned if the key is to a
stream cipher, or if the cipher mode is
anything other than CBC.

NTE_NO_MEMORY The CSP ran out of memory during the
operation.

ExampleSee the "Example" section in the CryptSignHash function.See AlsoCryptAcquireContext, CryptDeriveKey, CryptDestroyHash, CryptGetHashParam,
CryptHashData, CryptHashSessionKey, CryptSignHash, CryptVerifySignature

CryptDecrypt
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptDecrypt function is used to decrypt data that was previously encrypted via the
CryptEncrypt function.

BOOL CRYPTFUNC CryptDecrypt(
HCRYPTKEY hKey,
HCRYPTHASH hHash,
BOOL Final,
DWORD dwFlags,
BYTE *pbData,
DWORD *pdwDataLen

);ParametershKey
[in] A handle to the key to use for the decryption. An application obtains this handle by using
either the CryptGenKey or CryptImportKey function.
This key specifies the decryption algorithm that is used.

hHash
[in] A handle to a hash object. This parameter is only used if a hash of the data is to be
computed. See the "Remarks" section for more information.
If no hash is to be done, this parameter must be zero.

Final
[in] The Boolean value that specifies whether this is the last section in a series being
decrypted. This will be TRUE if this is the last or only block. If it is not, then it will be FALSE.
See the "Remarks" section for more information.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

pbData
[in/out] The buffer holding the data to be decrypted. Once that decryption has been
performed, the plaintext is placed back in this same buffer.
The number of encrypted bytes in this buffer is specified by pdwDataLen.

pdwDataLen
[in/out] The address of the data length. Before calling this function, the caller should set this
parameter to the number of bytes to be decrypted. Upon return, this address will contain the
number of bytes of plaintext generated.
When a block cipher is used, this data length must be a multiple of the block size, unless this
is the final section of data to be decrypted and the Final flag is TRUE.

RemarksIf data is to be decrypted and hashed simultaneously, a handle to a hash object can be passed in
the hHash parameter. The hash value will be updated with the decrypted plaintext. This option is
useful when simultaneously decrypting and verifying a signature.

Prior to calling CryptDecrypt, the application should obtain a handle to the hash object by calling
the CryptCreateHash function. Once the decryption is complete, the hash value can be obtained
(through CryptGetHashParam) or it can be signed (through CryptSignHash), or it can be used
to verify a digital signature (through CryptVerifySignature).

When a large amount of data needs to be decrypted, it can be done in sections. This is done by
calling CryptDecrypt repeatedly. The Final parameter should be set to TRUE only on the last
invocation of CryptDecrypt, so the decryption engine can properly finish the decryption process.
The following extra actions are performed when Final is TRUE:

· If the key is a block cipher key, the data will be padded to a multiple of the block size of
the cipher. To find the block size of a cipher, use CryptGetKeyParam to get the
KP_BLOCKLEN parameter of the key.

· If the cipher is operating in a chaining mode, the next CryptDecrypt operation will reset
the cipher's feedback register to the KP_IV value of the key.

· If the cipher is a stream cipher, the next CryptDecrypt call will reset the cipher to its initial
state.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_ALGID The hKey session key specifies an algorithm
that this CSP does not support.

NTE_BAD_DATA The data to be decrypted is invalid. For
example, when a block cipher is used and the
Final flag FALSE, the value specified by
pdwDataLen must be a multiple of the block
size. This error can also be returned when the
padding is found to be invalid.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hHash parameter contains an invalid

handle.
NTE_BAD_KEY The hKey parameter does not contain a valid

handle to a key.
NTE_BAD_LEN The size of the output buffer is too small to

hold the generated plaintext.
NTE_BAD_UID The CSP context that was specified when the

key was created cannot be found.
NTE_DOUBLE_ENCRYPT The application attempted to decrypt the same

data twice.
NTE_FAIL The function failed in some unexpected way.
ExampleSee "Decryption Example" in the section Encrypting and Decrypting Data.See AlsoCryptCreateHash, CryptEncrypt, CryptGenKey, CryptGetKeyParam, CryptGetHashParam,

CryptImportKey, CryptSignHash, CryptVerifySignature

CryptDeriveKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptDeriveKey function generates cryptographic keys derived from base data. This function
guarantees that all keys generated from the same base data will be identical, provided the same
CSP and algorithms are used. The base data can be a password or any other user data.

This function is the same as CryptGenKey, except that the generated session keys are derived
from base data instead of being random. Another difference is that the CryptDeriveKey function
cannot be used to generate public/private key pairs.

A handle to the session key is returned in phKey. This handle can then be used as needed with
any of the other CryptoAPI functions that require key handles.

BOOL CRYPTFUNC CryptDeriveKey(

HCRYPTPROV hProv,
ALG_ID Algid,
HCRYPTHASH hBaseData,
DWORD dwFlags,
HCRYPTKEY *phKey

);ParametershProv
[in] A handle to the application's CSP. An application obtains this handle using the
CryptAcquireContext function.

Algid
[in] The identifier for the algorithm for which the key is to be generated.
The valid values for this parameter will vary, depending on the CSP that is used. See the
"Remarks" section for a list of possible algorithm identifiers.

hBaseData
[in] A handle to a hash object that has been fed exactly the base data.
To obtain this handle, an application must first create a hash object with CryptCreateHash
and then add the base data to the hash object with CryptHashData. This process is
described in detail in the section Hashes and Digital Signatures.

dwFlags
[in] The flags specifying the type of key generated. This parameter can be zero, or you can
specify one or more of the following flags, using the binary OR operator to combine them.
CRYPT_EXPORTABLE

If this flag is set, then the session key can be transferred out of the CSP into a key blob
through the CryptExportKey function. Because keys generally must be exportable, this
flag should usually be set.
If this flag is not set, then the session key will not be exportable. This means the key will
only be available within the current session and only the application that created it will be
able to use it.
This flag does not apply to public/private key pairs.

CRYPT_CREATE_SALT
Typically, when a session key is made from a hash value, there are a number of leftover
bits. For example, if the hash value is 128 bits and the session key is 40 bits, there will be
88 bits leftover.
If this flag is set, then the key will be assigned a salt value based on the unused hash value
bits. You can retrieve this salt value using the CryptGetKeyParam function with the
dwParam parameter set to KP_SALT.
If this flag is not set, then the key will be given a salt value of zero.
When keys with nonzero salt values are exported (using CryptExportKey), the salt value
must also be obtained and kept with the key blob.

CRYPT_USER_PROTECTED

If this flag is set, then the user will be notified through a dialog box or another method when
certain actions are attempted using this key. The precise behavior is specified by the CSP
being used.
The Microsoft RSA Base Provider ignores this flag.

CRYPT_UPDATE_KEY
Some CSPs use session keys that are derived from multiple hash values. When this is the
case, CryptDeriveKey must be called multiple times.
If this flag is set, a new session key is not generated. Instead, the key specified by phKey is
modified. The precise behavior of this flag is dependent on the type of key being generated
and on the particular CSP being used.
The Microsoft RSA Base Provider ignores this flag.

phKey
[in/out] The address to which the function copies the handle of the newly generated key.

RemarksTo generate a key for a symmetric encryption algorithm, use the Algid parameter to specify the
algorithm. The algorithms available will most likely be different for each CSP. If you are using the
Microsoft RSA Base Provider, use one of the following values to specify the algorithm:

· CALG_RC2 ¾ RC2 block cipher
· CALG_RC4 ¾ RC4 stream cipher

When keys are generated for symmetric block ciphers, the key by default will be set up in cipher
block chaining (CBC) mode with an initialization vector of zero. This cipher mode provides a good
default method for bulk encrypting data. To change these parameters, use the
CryptSetKeyParam function.

Once the CryptDeriveKey function has been called, no more data can be added to the hash
object. The CryptDestroyHash function should be called at this point to destroy the hash object.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_ALGID The Algid parameter specifies an
algorithm that this CSP does not support.

NTE_BAD_FLAGS The dwFlags parameter contains an
invalid value.

NTE_BAD_HASH The hBaseData parameter does not
contain a valid handle to a hash object.

NTE_BAD_UID The hProv parameter does not contain a
valid context handle.

NTE_FAIL The function failed in some unexpected
way.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
HCRYPTHASH hHash = 0;
CHAR szPassword[] = "apple-camshaft";
DWORD dwLength;
// Get handle to user default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create hash object.

if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {
printf("Error %x during CryptCreateHash!\n", GetLastError());goto done;

}
// Hash password string.
dwLength = strlen(szPassword);
if(!CryptHashData(hHash, (BYTE *)szPassword, dwLength, 0)) {

printf("Error %x during CryptHashData!\n", GetLastError());
goto done;

}
// Create block cipher session key based on hash of the password.
if(!CryptDeriveKey(hProv, CALG_RC2, hHash, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptDeriveKey!\n", GetLastError());
goto done;

}
// Use 'hKey' to do something.
...
done:
// Destroy hash object.
if(hHash != 0) CryptDestroyHash(hHash);
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptAcquireContext, CryptCreateHash, CryptDestroyHash, CryptDestroyKey,

CryptExportKey, CryptGenKey, CryptGetKeyParam, CryptHashData, CryptSetKeyParam

CryptDestroyHash
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptDestroyHash function destroys the hash object referenced by the hHash parameter.
Once a hash object has been destroyed, it can no longer be used and its handle is useless from
then on.

All hash objects should be destroyed with the CryptDestroyHash function when the application is
finished with them.

BOOL CRYPTFUNC CryptDestroyHash(

HCRYPTHASH hHash
);ParametershHash

[in] A handle to the hash object to be destroyed.
RemarksWhen a hash object is destroyed, the many CSPs will scrub the memory in the CSP where the

hash object was held. The CSP memory is then freed.

There should be a one-to-one correspondence between calls to CryptCreateHash and
CryptDestroyHash.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_BUSY The hash object specified by hHash is
currently being used by another process.

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_ALGID The hHash handle specifies an algorithm
that this CSP does not support.

NTE_BAD_HASH The hash object specified by the hHash
parameter is invalid.

NTE_BAD_UID The CSP context that was specified when
the hash object was created cannot be
found.

ExampleSee the "Example" section in the CryptSignHash function.See AlsoCryptCreateHash, CryptHashData, CryptSignHash

CryptDestroyKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptDestroyKey function releases the handle referenced by the hKey parameter. Once a
key handle has been released, it becomes invalid and cannot be used again.

If the handle refers to a session key, or to a public key that has been imported into the CSP
through CryptImportKey, this function destroys the key and frees the memory that the key
occupied. Many CSPs will scrub the memory where the key was held before freeing it.

On the other hand, if the handle refers to a public/private key pair (obtained from
CryptGetUserKey), the underlying key pair is not destroyed by this function. Only the handle is
destroyed.

BOOL CRYPTFUNC CryptDestroyKey(

HCRYPTKEY hKey
);ParametershKey

[in] A handle to the key to be destroyed.
RemarksKeys take up memory in both the operating system's memory space and the CSP's memory

space. Some CSPs will be implemented in hardware with very limited memory resources. For this
reason, it is important that applications destroy all keys with the CryptDestroyKey function when
they are finished with them.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_KEY The hKey parameter does not contain a
valid handle to a key.

NTE_BAD_UID The CSP context that was specified when
the key was created cannot be found.

ExampleSee the "Example" section in the CryptGenKey function.See AlsoCryptDeriveKey, CryptGenKey, CryptGetUserKey, CryptImportKey

CryptEncrypt
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptEncrypt function is used to encrypt data. The algorithm used to encrypt the data is
designated by the key held by the CSP module, which is referenced by the hKey parameter.

BOOL CRYPTFUNC CryptEncrypt(

HCRYPTKEY hKey,
HCRYPTHASH hHash,
BOOL Final,
DWORD dwFlags,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwBufLen

);ParametershKey
[in] A handle to the key to use for the encryption. An application obtains this handle by using
either the CryptGenKey or the CryptImportKey function.
This key specifies the encryption algorithm that is used.

hHash
[in] A handle to a hash object. This parameter is used only if a hash of the data is to be
computed at the same time the encryption is being performed. See the "Remarks" section for
more information.
If no hash is to be done, this parameter must be zero.

Final
[in] The Boolean value that specifies whether this is the last section in a series being
encrypted. This should be TRUE if this is the last or only block, and FALSE if it is not. See the
"Remarks" section for more information.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

pbData
[in/out] The buffer holding the data to be encrypted. Once the encryption has been performed,
the encrypted data is placed back in this same buffer.
The size of this buffer is specified by dwBufLen. The number of bytes of data to be encrypted
is specified by pdwDataLen.
This parameter can be NULL if all you are doing is determining the number of bytes required
for the returned data.

pdwDataLen
[in/out] The address of the data length. Before calling this function, the caller should set this
parameter to the number of bytes to be encrypted. Upon return, this address will contain the
number of bytes of encrypted data.
If the buffer specified by pbData is not large enough to hold the data, the function returns the
ERROR_MORE_DATA error code (through GetLastError) and stores the required buffer
size, in bytes, into the variable pointed to by pdwDataLen.
If pbData is NULL, then no error is returned, and the function stores the size of the data, in
bytes, in the variable pointed to be pdwDataLen. This lets an application determine the correct
buffer size unambiguously.
When a block cipher is used, this data length must be a multiple of the block size, unless this
is the final section of data to be encrypted and the Final flag is TRUE.

dwBufLen
[in] The number of bytes in the pbData buffer.
Note that, depending on the algorithm used, the encrypted text can be slightly larger than the
original plaintext. In this case, the pbData buffer needs to be sized accordingly.
As a rule, if a stream cipher is used the ciphertext will be the same size as the plaintext. If a
block cipher is used, the ciphertext will be up to a "block length" larger than the plaintext.

RemarksIf data is to be hashed and encrypted simultaneously, a handle to a hash object can be passed in
the hHash parameter. The hash value will be updated with the plaintext passed in. This option is
useful when generating signed and encrypted text.

Prior to calling CryptEncrypt, the application should obtain a handle to the hash object by calling
the CryptCreateHash function. Once the encryption is complete, the hash value can be obtained
through the CryptGetHashParam function or the hash can be signed using the CryptSignHash
function.

When a large amount of data needs to be encrypted, it can be done in sections. This is done by
calling CryptEncrypt repeatedly. The Final parameter should be set to TRUE only on the last
invocation of CryptEncrypt, so the encryption engine can properly finish the encryption process.
The following extra actions are performed when Final is TRUE:

· If the key is a block cipher key, the data will be padded to a multiple of the block size of
the cipher. To find the block size of a cipher, use CryptGetKeyParam to get the
KP_BLOCKLEN parameter of the key.

· If the cipher is operating in a chaining mode, the next CryptEncrypt operation will reset
the cipher's feedback register to the KP_IV value of the key.

· If the cipher is a stream cipher, the next CryptEncrypt will reset the cipher to its initial
state.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_ALGID The hKey session key specifies an
algorithm that this CSP does not support.

NTE_BAD_DATA The data to be encrypted is invalid. For
example, when a block cipher is used and
the Final flag is FALSE, the value specified
by pdwDataLen must be a multiple of the
block size.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hHash parameter contains an invalid

handle.
NTE_BAD_KEY The hKey parameter does not contain a

valid handle to a key.
NTE_BAD_LEN The size of the output buffer is too small to

hold the generated ciphertext.
NTE_BAD_UID The CSP context that was specified when

the key was created cannot be found.
NTE_DOUBLE_ENCRYPT The application attempted to encrypt the

same data twice.
NTE_FAIL The function failed in some unexpected

way.
NTE_NO_MEMORY The CSP ran out of memory during the

operation.
ExampleSee "Encryption Example" in the section Encrypting and Decrypting Data.See AlsoCryptCreateHash, CryptDecrypt, CryptGenKey, CryptGetHashParam, CryptImportKey,

CryptSignHash

CryptExportKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptExportKey function is used to export cryptographic keys out of a cryptographic service
provider in a secure manner.

A handle to the key to be exported is passed into the function and the function returns a key blob
to the caller. This key blob can be sent over a nonsecure transport or stored in a nonsecure
storage location. The key blob is useless until the intended recipient uses the CryptImportKey
function on it, which will then import the key into the recipient's CSP.

BOOL CRYPTFUNC CryptExportKey(

HCRYPTKEY hKey,
HCRYPTKEY hExpKey,
DWORD dwBlobType,
DWORD dwFlags,
BYTE *pbData,
DWORD *pdwDataLen

);ParametershKey
[in] A handle to the key to be exported.

hExpKey
[in] A handle to a cryptographic key belonging to the destination user. The key data within the
key blob created is encrypted using this key. This ensures that only the destination user will
be able to make use of the key blob.
Most often, this will be the key exchange public key of the destination user. However, certain
protocols require that a session key belonging to the destination user be used for this
purpose.
If the key blob type specified by dwBlobType is PUBLICKEYBLOB, then this parameter is
unused and should be set to zero.
If the key blob specified by dwBlobType is PRIVATEKEYBLOB, then this is typically a handle
to a session key that is to be used to encrypt the key blob. Some CSPs allow this parameter
to be zero, in which case the application should encrypt the private key blob manually so as to
protect it.

dwBlobType
[in] The type of key blob to be exported. This must currently be one of the following constants.
These constants are discussed in the section Exchanging Cryptographic Keys.
· SIMPLEBLOB
· PUBLICKEYBLOB
· PRIVATEKEYBLOB

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

pbData
[out] The buffer that the function places the key blob in. The required size for this buffer can
be determined by calling CryptExportKey with NULL for this parameter.
As a rule, SIMPLEBLOBs will be 256 bytes or less, PUBLICKEYBLOBs will be 1000 bytes or
less, and PRIVATEKEYBLOBS will be 5000 bytes or less.

pdwDataLen
[in/out] The address of the key blob data length. Before calling this function, the caller should
set this parameter to the length, in bytes, of the pbData buffer. Upon return, this address will
contain the number of bytes taken up by the key blob.
If the buffer specified by pbData is not large enough to hold the data, the function returns the
ERROR_MORE_DATA error code (through GetLastError) and stores the required buffer
size, in bytes, into the variable pointed to by pdwDataLen.
If pbData is NULL, then no error is returned and the function stores the size of the data, in
bytes, in the variable pointed to by pdwDataLen.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_KEY One or both of the keys specified by hKey

and hExpKey are invalid.
NTE_BAD_KEY_STATE You do not have permission to export the

key. That is, when the hKey key was
created, the CRYPT_EXPORTABLE flag
was not specified.

NTE_BAD_PUBLIC_KEY The key blob type specified by
dwBlobType is PUBLICKEYBLOB, but
hExpKey does not contain a public key
handle.

NTE_BAD_TYPE The dwBlobType parameter specifies an
unknown blob type.

NTE_BAD_UID The CSP context that was specified when
the hKey key was created cannot be
found.

NTE_NO_KEY A session key is being exported and the
hExpKey parameter does not specify a
public key.

Example#include <wincrypt.h>
HCRYPTPROV hProv; // Handle to CSP
HCRYPTKEY hKey; // Handle to session key
HCRYPTKEY hXchgKey; // Handle to receiver's exchange public key
BYTE *pbKeyBlob = NULL;
DWORD dwBlobLen;
...
// Determine size of key blob and allocate memory.
if(!CryptExportKey(hKey, hXchgKey, SIMPLEBLOB, 0, NULL, &dwBlobLen)) {

printf("Error %x computing blob length!\n", GetLastError());
...

}
if((pbKeyBlob = malloc(dwBlobLen)) == NULL) {printf("Out of memory!\n");

...
}
// Export key into a simple key blob.
if(!CryptExportKey(hKey, hXchgKey, SIMPLEBLOB, 0, pbKeyBlob,
&dwBlobLen)) {

printf("Error %x during CryptExportKey!\n", GetLastError());
...

}
See AlsoCryptImportKey

CryptGenKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGenKey function generates random cryptographic keys for use with the CSP module. A
handle to the key is returned in phKey. This handle can then be used as needed with any of the
other CryptoAPI functions requiring key handles.

The calling application is required to specify the algorithm when calling this function. Because this
algorithm type is kept bundled with the key, the application does not need to specify the algorithm
later when the actual cryptographic operations are performed.

BOOL CRYPTFUNC CryptGenKey(

HCRYPTPROV hProv,
ALG_ID Algid,
DWORD dwFlags,
HCRYPTKEY *phKey

);ParametershProv
[in] A handle to the application's CSP. An application obtains this handle using the
CryptAcquireContext function.

Algid
[in] The identifier for the algorithm for which the key is to be generated.
The valid values for this parameter will vary, depending on the CSP that is used. See the
"Remarks" section for a list of possible algorithm identifiers.

dwFlags
[in] The flags specifying the type of key generated. This parameter can be zero, or you can
specify one or more of the following flags, using the binary OR operator to combine them.
CRYPT_EXPORTABLE

If this flag is set, then the key can be transferred out of the CSP into a key blob using the
CryptExportKey function. Because session keys generally must be exportable, this flag
should usually be set when they are created.
If this flag is not set, then the key will not be exportable. For a session key, this means that
the key will only be available within the current session and only the application that
created it will be able to use it. For a public/private key pair, this means that the private key
cannot be transported or backed up.
This flag only applies to session key and private key blobs. It does not apply to public keys,
which are always exportable.

CRYPT_CREATE_SALT
If this flag is set, then the key will be assigned a random salt value automatically. You can
retrieve this salt value using the CryptGetKeyParam function with the dwParam parameter
set to KP_SALT.
If this flag is not set, then the key will be given a salt value of zero.
When keys with non-zero salt values are exported (through CryptExportKey), then the salt
value must also be obtained and kept with the key blob.

CRYPT_USER_PROTECTED
If this flag is set, then the user will be notified through a dialog box or another method when
certain actions are attempted using this key. The precise behavior is specified by the CSP
being used.
The Microsoft RSA Base Provider ignores this flag.

phKey
[out] The address that the function copies the handle of the newly generated key to.

RemarksTo generate a key to be used with a symmetric encryption algorithm (that is, a session key), use
the Algid parameter to specify the algorithm. The algorithms available will most likely be different
for each CSP. If you are using the Microsoft RSA Base Provider, one of the following values can
be used to specify the algorithm:

· CALG_RC2 ¾ RC2 block cipher

· CALG_RC4 ¾ RC4 stream cipher
When keys are generated for symmetric block ciphers, the key by default will be set up in cipher
block chaining (CBC) mode with an initialization vector of zero. This cipher mode provides a good
default method for bulk encrypting data. To change these parameters, use the
CryptSetKeyParam function.

In addition to generating keys for symmetric algorithms, the CryptGenKey function can also
generate keys for public-key algorithms. The use of public-key algorithms is restricted to key
exchange and digital signatures. Each CryptoAPI client generally possesses one key pair for each
of these operations. To generate one of these key pairs, set the Algid parameter to one of the
following values:

· AT_KEYEXCHANGE ¾ Key exchange
· AT_SIGNATURE ¾ Digital signature
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_ALGID The Algid parameter specifies an algorithm
that this CSP does not support.

NTE_BAD_FLAGS The dwFlags parameter contains an
invalid value.

NTE_BAD_UID The hProv parameter does not contain a
valid context handle.

NTE_FAIL The function failed in some unexpected
way.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
// Get handle to user default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create block cipher session key.
if(!CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptGenKey!\n", GetLastError());
goto done;

}
// Use 'hKey' to do something....
done:
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptAcquireContext, CryptDestroyKey, CryptExportKey, CryptGetKeyParam,

CryptImportKey, CryptSetKeyParam

CryptGenRandom
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGenRandom function fills a buffer with random bytes.

BOOL CRYPTFUNC CryptGenRandom(

HCRYPTPROV hProv,
DWORD dwLen,
BYTE *pbBuffer

);ParametershProv
[in] A handle to the application's CSP. An application obtains this handle using the
CryptAcquireContext function.

dwLen
[in] The number of bytes of random data to be generated.

pbBuffer
[in/out] The buffer the function is to copy the random data to. This buffer must be at least
dwLen bytes in length.
Optionally, the application can fill this buffer with data to use as an auxiliary random seed.
This is explained further in the "Remarks" section.

RemarksThe data produced by this function is "cryptographically random." It is far more random than the
data generated by the typical random number generator such as the one shipped with your "C"
compiler.

This function is often used to generate random initialization vectors and salt values.

Seeding the Random Number Generator
All software random number generators work in fundamentally the same way. They start with one
truly random number, known as the "seed," and then use an algorithm to generate a pseudo-
random sequence of bits based on it. The most difficult part of this process is to get a seed that is
truly random. This is usually based on user input latency, or the jitter from one or more hardware
components.

If your application has access to a good random source, then it can fill the pbBuffer buffer with
some amount of random data before calling CryptGenRandom. The CSP will then use this data
to further randomize its internal seed. Failing to initialize the pbBuffer buffer before calling
CryptGenRandom is acceptable.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_UID The hProv parameter does not contain a
valid context handle.

NTE_FAIL The function failed in some unexpected
way.

ExampleSee the "Example" section in the CryptSetKeyParam function.See AlsoCryptAcquireContext, CryptGenRandom, CryptSetKeyParam

CryptGetHashParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGetHashParam function lets applications retrieve data that governs of the operations of
a hash object. The actual hash value can also be retrieved using this function.

BOOL CRYPTFUNC CryptGetHashParam(

HCRYPTHASH hHash,
DWORD dwParam,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwFlags

);ParametershHash
[in] A handle to the hash object on which to query parameters.

dwParam
[in] The parameter number. See the "Remarks" section for a list of valid parameters.

pbData
[out] The parameter data buffer. The function copies the specified parameter data to this
buffer. The form of this data will vary, depending on the parameter number.
This parameter can be NULL if all you are doing is determining the number of bytes required
for the returned parameter data.

pdwDataLen
[in/out] The address of the parameter data length. Before calling this function, the caller
should set this parameter to the length, in bytes, of the pbData buffer. Upon return, this
address will contain the number of bytes of parameter data copied to the buffer.
If the buffer specified by pbData is not large enough to hold the data, the function returns the
ERROR_MORE_DATA error code (through GetLastError), and stores the required buffer
size, in bytes, in the variable pointed to by pdwDataLen.
If pbData is NULL, then no error is returned and the function stores the size of the data, in
bytes, in the variable pointed to by pdwDataLen.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

RemarksThe dwParam value can be set to one of the following hash parameter types:

HP_ALGID
The hash algorithm. The pbData buffer will contain a ALG_ID value indicating the algorithm
that was specified when the hash object was created. See the CryptCreateHash function for
a list of hash algorithms.

HP_HASHSIZE
The hash value size. The pbData buffer will contain a DWORD value indicating the number of
bytes in the hash value. This value will usually be 16 or 20, depending on the hash algorithm.
Applications should retrieve this parameter just before the HP_HASHVAL parameter so the
correct amount of memory can be allocated.

HP_HASHVAL
The hash value. The pbData buffer will contain the hash value or message digest for the hash
object specified by hHash. This value is generated based on the data supplied earlier to the
hash object through the CryptHashData and CryptHashSessionKey functions.
Once this parameter has been retrieved, the hash object is marked "finished" and no more
data can be added to it.

Note that some CSPs may add additional parameters that can be queried through this function.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes tat prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an invalid
handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an invalid
value. This is most often an illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hash object specified by the hHash

parameter is invalid.
NTE_BAD_TYPE The dwParam parameter specifies an

unknown parameter number.
NTE_BAD_UID The CSP context that was specified when

the hash was created cannot be found.
Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTHASH hHash = 0;
BYTE *pbHash = NULL;
DWORD dwHashLen;
#define BUFFER_SIZE 256
BYTE pbBuffer[BUFFER_SIZE];
DWORD dwCount;
DWORD i;
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create hash object.
if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {

printf("Error %x during CryptBeginHash!\n", GetLastError());goto done;
}
// Fill buffer with test data.
for(i = 0 ; i < BUFFER_SIZE ; i++) {

pbBuffer[i] = (BYTE)i;
}
// Hash in buffer.
if(!CryptHashData(hHash, pbBuffer, BUFFER_SIZE, 0)) {

printf("Error %x during CryptHashData!\n", GetLastError());
goto done;

}
// Read hash value size and allocate memory.
dwCount = sizeof(DWORD);
if(!CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)&dwHashLen,
&dwCount, 0)) {
printf("Error %x during reading hash size!\n", GetLastError());
goto done;

}
if((pbHash = malloc(dwHashLen)) == NULL) {

printf("Out of memory!\n");
goto done;

}
// Read hash value.
if(!CryptGetHashParam(hHash, HP_HASHVAL, pbHash, &dwHashLen, 0)) {

printf("Error %x during reading hash value!\n", GetLastError());
goto done;

}
// Print hash value.
for(i = 0 ; i < dwHashLen ; i++) {

printf("%2.2x ",pbHash[i]);
}
printf("\n");
done:
// Free memory.
if(pbHash !=NULL) free(pbHash);
// Destroy hash object.
if(hHash) CryptDestroyHash(hHash);
// Release CSP handle.
if(hProv) CryptReleaseContext(hProv,0);
See AlsoCryptCreateHash, CryptGetKeyParam, CryptHashData, CryptHashSessionKey,

CryptSetHashParam

CryptGetKeyParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGetKeyParam function lets applications retrieve data that governs of the operations of
a key. Note that the base keying material is not obtainable by this function or any other function.

BOOL CRYPTFUNC CryptGetKeyParam(

HCRYPTKEY hKey,
DWORD dwParam,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwFlags

);ParametershKey
[in] A handle to the key on which to query parameters.

dwParam
[in] The parameter number. See the "Remarks" section for a list of valid parameters.

pbData
[out] The parameter data buffer. The function will copy the specified parameter data to this
buffer. The form of this data will vary, depending on the parameter number.
This parameter can be NULL if all you are doing is determining the number of bytes required
for the returned parameter data.

pdwDataLen
[in/out] The address of the parameter data length. Before calling this function, the caller
should set this parameter to the length, in bytes, of the pbData buffer. Upon return, this
address will contain the number of bytes of parameter data copied to the buffer.
If the buffer specified by pbData is not large enough to hold the data, the function returns the
ERROR_MORE_DATA error code (through GetLastError) and stores the required buffer
size, in bytes, into the variable pointed to by pdwDataLen.
If pbData is NULL, then no error is returned and the function stores the size of the data, in
bytes, in the variable pointed to by pdwDataLen.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

RemarksFor all key types, the dwParam value can be set to one of the following key parameter types:

Parameter Description

KP_ALGID Key algorithm. The pbData buffer will contain an
ALG_ID value indicating that the algorithm was
specified when the key was created.

KP_BLOCKLEN If a session key is specified by hKey, this
parameter returns the block length, in bits, of the
cipher. The pbData buffer will contain a DWORD
value indicating the block length. For stream
ciphers, this value will always be zero.
If a public/private key pair is specified by hKey,
this parameter returns the key pair's encryption
granularity in bits. For example, the Microsoft
RSA Base Provider generates 512-bit RSA key
pairs, so a value of 512 is returned for these
keys. If the public-key algorithm does not
support encryption, the value returned by this
parameter is undefined.

KP_SALT The salt value. The pbData buffer will contain a
BYTE array indicating the current salt value.
The size of the salt value will vary depending on
the CSP and algorithm being used. Before
setting this parameter, it should be read using
CryptGetKeyParam in order to determine the

size.
Salt values do not apply to public/private key
pairs.

KP_PERMISSIONS Key permissions. The pbData buffer will contain
a DWORD value with zero or more permission
flags set. Refer to the table at the end of this
section for a description of each of these flags.

If a block cipher session key is specified by hKey, the dwParam value can also be set to one
of the following parameter types.

Parameter Description

KP_IV The initialization vector. The pbData buffer will
contain a BYTE array indicating the current
initialization vector. This array contains <block
length>/8 elements. For example, if the block
length is 64 bits, the initialization vector will
consist of 8 bytes.

KP_PADDING The padding mode. The pbData buffer will
contain a DWORD value indicating the padding
method used by the cipher. Following are the
padding modes currently defined:
PKCS5_PADDING ¾ PKCS 5 (sec 6.2) padding
method.

KP_MODE The cipher mode. The pbData buffer will contain
a DWORD value indicating the mode of the
cipher. Refer to the following table for a list of
valid cipher modes.

KP_MODE_BITS The number of bits to feed back. The pbData
buffer will contain a DWORD value indicating
the number of bits that are processed per cycle
when the OFB or CFB cipher modes are used.

The following table lists the possible values for the KP_MODE parameter. These cipher
modes are discussed in the section Encrypting and Decrypting Data.

Cipher Mode Description

CRYPT_MODE_ECB Electronic codebook.
CRYPT_MODE_CBC Cipher block chaining.
CRYPT_MODE_OFB Output feedback mode.
CRYPT_MODE_CFB Cipher feedback mode.

The following table lists the flags in the bit field that are obtained when the
KP_PERMISSIONS parameter is read. These permission flags are ignored by the Microsoft
RSA Base Provider. However, custom CSPs can use these flags to restrict operations on
keys.

Permission Flag Description

CRYPT_ENCRYPT Allow encryption.
CRYPT_DECRYPT Allow decryption.
CRYPT_EXPORT Allow key to be exported.
CRYPT_READ Allow parameters to be read.
CRYPT_WRITE Allow parameters to be set.
CRYPT_MAC Allow MACs to be used with key.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_KEY or
NTE_NO_KEY

The key specified by the hKey
parameter is invalid.

NTE_BAD_TYPE The dwParam parameter specifies
an unknown parameter number.

NTE_BAD_UID The CSP context that was specified
when the key was created cannot be
found.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
DWORD dwMode;
BYTE pbData[16];
DWORD dwCount;
DWORD i;
// Get handle to user default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create random block cipher session key.
if(!CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptGenKey!\n", GetLastError());goto done;
}
// Read the cipher mode.
dwCount = sizeof(DWORD);
if(!CryptGetKeyParam(hKey, KP_MODE, &dwMode, &dwCount, 0)) {

printf("Error %x during CryptGetKeyParam!\n", GetLastError());
goto done;

}
assert(dwCount==sizeof(BYTE));
// Print out cipher mode.
printf("Default cipher mode:%d\n", dwMode);
// Read initialization vector.
dwCount = 16;
if(!CryptGetKeyParam(hKey, KP_IV, pbData, &dwCount, 0)) {

printf("Error %x during CryptGetKeyParam!\n", GetLastError());
goto done;

}
// Print out initialization vector.
printf("Default IV:");
for(i=0;i<dwCount;i++) printf("%2.2x ",pbData[i]);
printf("\n");
done:
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptSetKeyParam

CryptGetProvParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGetProvParam function lets applications retrieve parameters that govern the
operations of a CSP.

BOOL CRYPTFUNC CryptGetProvParam(

HCRYPTPROV hProv,
DWORD dwParam,
BYTE *pbData,
DWORD *pdwDataLen,
DWORD dwFlags

);ParametershProv
[in] A handle to the CSP on which to query parameters.

dwParam
[in] The parameter number. See the "Remarks" section for a list of valid parameters.

pbData
[out] The parameter data buffer. The function will copy the specified parameter data to this
buffer. The form of this data will vary, depending on the parameter number.
This parameter can be NULL if all you are doing is determining the number of bytes required
for the returned parameter data.

pdwDataLen
[in/out] The address of the parameter data length. Before calling this function, the caller
should set this parameter to the length, in bytes, of the pbData buffer. Upon return, this
address will contain the number of bytes of parameter data copied to the buffer.
If the buffer specified by pbData is not large enough to hold the data, the function returns the
ERROR_MORE_DATA error code through the GetLastError function, and stores the required
buffer size in bytes into the variable pointed to by pdwDataLen.
If pbData is NULL, then no error is returned and the function stores the size of the data in
bytes in the variable pointed to by pdwDataLen.
Note When one of the enumeration parameters (PP_ENUMALGS or
PP_ENUMCONTAINERS) is being read, the pdwDataLen parameter works somewhat
differently. If pbData is NULL or the value pointed to pdwDataLen is too small, the value
returned in this parameter is the size of the largest item in the enumeration list instead of the
size of the item currently being read.
When one of the enumeration parameters is read and the pbData parameter is NULL, the
CRYPT_FIRST flag must be specified in order for the size information to be correctly
retrieved.

dwFlags
[in] The flag values. This parameter is normally set to zero.
When one of the enumeration parameters (PP_ENUMALGS or PP_ENUMCONTAINERS) is
being read, then the CRYPT_FIRST flag can be specified. When this flag is set, the first item
in the enumeration list is returned. If this flag is not set, then the next item in the list is
returned.

Remarks
Parameter Numbers
The dwParam parameter can be set to one of the following values:

PP_CONTAINER
The key container name. When this parameter is specified, the function fills the pbData buffer
with the name of the current key container. This name is in the form of a zero-terminated
CHAR string.
This string is exactly the same as the one passed in the pszContainer parameter of the
CryptAcquireContext function in order to specify that the current key container be used. This
parameter is often read in order to determine the name of the default key container.

PP_ENUMALGS

The algorithm information. When this parameter is specified, the function fills the pbData
buffer with information about one of the algorithms supported by the CSP. The
PP_ENUMALGS parameter must be read repeatedly to enumerate all the supported
algorithms. The algorithms are not enumerated in any particular order.
The first time that the PP_ENUMALGS parameter is read, the CRYPT_FIRST flag should be
specified. This will ensure that information about the "first" algorithm in the enumeration list is
returned. The PP_ENUMALGS parameter can then be repeatedly read in order to retrieve the
information about the rest of the algorithms. When the CryptGetProvParam function fails with
the ERROR_NO_MORE_ITEMS, then the end of the enumeration list has been reached. A
code sample illustrating this is located in the "Example" section.
The following code fragment indicates the format of the data that the function returns in the
pbData buffer.ALG_ID aiAlgid;
DWORD dwBits;
DWORD dwNameLen;
CHAR szName[dwNameLen];The following table defines each of these fields.

Field Description
aiAlgid The algorithm identifier. This is the value that is

passed to the CryptGenKey, CryptDeriveKey, or
CryptCreateHash functions in order to specify that
a particular algorithm be used.

dwBits The number of bits in the keys used by the
algorithm.
If this is a hash algorithm, this value indicates the
number of bits in the hash values generated by this
algorithm.

dwNameLen The number of characters in the algorithm name,
including the terminating zero.

szName The zero-terminated name of the algorithm.

PP_ENUMCONTAINERS
The key container names. When this parameter is specified, the function fills the
pbData buffer with the name of one of the key containers maintained by the CSP. This name
is in the form of a zero-terminated CHAR string. The PP_ENUMCONTAINERS parameter
must be read repeatedly to enumerate all the container names.
These container names are enumerated in the same way as are the CSP's supported
algorithms. Refer to the PP_ENUMALGS for more information.

PP_IMPTYPE
The CSP implementation type. The pbData buffer will contain a DWORD value that indicates
how the CSP is implemented. Possible values are:
· CRYPT_IMPL_HARDWARE
· CRYPT_IMPL_SOFTWARE
· CRYPT_IMPL_MIXED
· CRYPT_IMPL_UNKNOWN (the CSP isn't telling)

PP_NAME
The CSP name. When this parameter is specified, the function fills the pbData buffer with the
name of the CSP. This name is in the form of a zero-terminated CHAR string.
This string is identical to the one passed in the pszProvider parameter of the
CryptAcquireContext function in order to specify that the current CSP be used. For example,
the Microsoft RSA Base Provider will return "Microsoft Base Cryptographic Provider v1.0"
when this parameter is read.

PP_VERSION
The CSP version number. The pbData buffer will contain a DWORD value that indicates the
version number of the CSP. The least significant byte contains the minor version number and
the next most significant byte the major version number. For example, version 1.0 would be
represented here as 0x00000100.

Algorithm Identifiers
When enumerating algorithms, your application may need to determine the class of a particular
algorithm. For example, you may want to display a list of encryption algorithms to the user and
disregard the rest. This can be done with the GET_ALG_CLASS(x) macro. This macro takes an
algorithm identifier as an argument and returns a code indicating the general class of algorithm
that the identifier belongs to. Possible return values include:

· ALG_CLASS_DATA_ENCRYPT
· ALG_CLASS_HASH
· ALG_CLASS_KEY_EXCHANGE
· ALG_CLASS_SIGNATURE

The following table lists the algorithms supported by the Microsoft RSA Base Provider along with
the class of each algorithm.

Name Identifier Class

"MD2" CALG_MD2 ALG_CLASS_HASH
"MD5" CALG_MD5 ALG_CLASS_HASH
"SHA" CALG_SHA ALG_CLASS_HASH
"MAC" CALG_MAC ALG_CLASS_HASH
"RSA_SIGN" CALG_RSA_SIGN ALG_CLASS_SIGNATURE
"RSA_KEYX" CALG_RSA_KEYX ALG_CLASS_KEY_EXCHANGE
"RC2" CALG_RC2 ALG_CLASS_DATA_ENCRYPT
"RC4" CALG_RC4 ALG_CLASS_DATA_ENCRYPT

If your application does not recognize an algorithm identifier, it is not recommended that it
use the algorithm. Making use of an unknown cryptographic algorithm can sometimes
produce unpredictable results.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

ERROR_NO_MORE_ITEMS The end of the enumeration list has
been reached. No valid data has
been placed in the pbData buffer.
This error is only returned when
dwParam equals PP_ENUMALGS
or PP_ENUMCONTAINERS.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_TYPE The dwParam parameter specifies

an unknown parameter number.
NTE_BAD_UID The CSP context specified by hProv

is invalid.
ExampleThis example shows how the list of algorithms supported by a particular CSP is accessed by an

application.HCRYPTPROV hProv; // Handle to CSP
DWORD dwAlgCount;
BYTE *ptr = NULL;
DWORD i;
ALG_ID aiAlgid;
DWORD dwBits;
DWORD dwNameLen;
CHAR szName[100]; // Often allocated dynamically.
BYTE pbData[1000]; // Often allocated dynamically.
DWORD dwDataLen;
DWORD dwFlags;
CHAR *pszAlgType = NULL;
// Enumerate the supported algorithms.
for(i=0 ; ; i++) {

// Set the CRYPT_FIRST flag the first time through the loop.
if(i == 0) {
dwFlags = CRYPT_FIRST;
} else {
dwFlags = 0;
}
// Retrieve information about an algorithm.
dwDataLen = 1000;
if(!CryptGetProvParam(hProv, PP_ENUMALGS, pbData, &dwDataLen, 0)) {
if(GetLastError() == ERROR_NO_MORE_ITEMS) {
// Exit the loop.
break;
} else {
printf("Error %x reading algorithm!\n", GetLastError());
return;
}
}
// Extract algorithm information from 'pbData' buffer.
ptr = pbData;
aiAlgid = *(ALG_ID *)ptr;
ptr += sizeof(ALG_ID);
dwBits = *(DWORD *)ptr;
ptr += sizeof(DWORD);
dwNameLen = *(DWORD *)ptr;
ptr += sizeof(DWORD);
strncpy(szName, ptr,dwNameLen);
// Determine algorithm type.
switch(GET_ALG_CLASS(aiAlgid)) {
case ALG_CLASS_DATA_ENCRYPT: pszAlgType = "Encrypt ";
break;
case ALG_CLASS_HASH: pszAlgType = "Hash";
break;
case ALG_CLASS_KEY_EXCHANGE: pszAlgType = "Exchange ";
break;
case ALG_CLASS_SIGNATURE: pszAlgType = "Signature";
break;
default: pszAlgType = "Unknown ";
}
// Print information about algorithm.
printf("Algid:%8.8xh, Bits:%-4d, Type:%s, NameLen:%-2d, Name:%s\

n",
aiAlgid, dwBits, pszAlgType, dwNameLen, szName
);

}
See AlsoCryptAcquireContext, CryptCreateHash, CryptDeriveKey, CryptGenKey,

CryptGetKeyParam, CryptSetProvParam

CryptGetUserKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptGetUserKey function retrieves a handle to a permanent user key pair, such as the
user's signature key pair.

BOOL CRYPTFUNC CryptGetUserKey(

HCRYPTPROV hProv,
DWORD dwKeySpec,
HCRYPTKEY *phUserKey

);ParametershProv
[in] A handle to the application's CSP. An application obtains this handle using the
CryptAcquireContext function.

dwKeySpec
[in] The specification of the key to retrieve. The following keys are retrievable from almost all
providers:
· AT_KEYEXCHANGE ¾ Exchange public key
· AT_SIGNATURE ¾ Signature public key
Additionally, some providers allow access to other user specific keys through this function.
See the documentation on the specific provider for details.

phUserKey
[out] The address that the function copies the handle of the retrieved key to.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_KEY The dwKeySpec parameter contains
an invalid value.

NTE_BAD_UID The hProv parameter does not
contain a valid context handle.

NTE_NO_KEY The key requested by the
dwKeySpec parameter does not
exist.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTKEY hSignKey = 0;
HCRYPTKEY hXchgKey = 0;
// Get handle to user default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Get handle to signature key.
if(!CryptGetUserKey(hProv, AT_SIGNATURE, &hSignKey)) {

printf("Error %x during CryptGetUserKey!\n", GetLastError());
goto done;

}// Get handle to key exchange key.
if(!CryptGetUserKey(hProv, AT_KEYEXCHANGE, &hXchgKey)) {

printf("Error %x during CryptGetUserKey!\n", GetLastError());
goto done;

}
// Do something with 'hSignKey' and 'hXchgKey'.
...
done:
// Destroy signature key handle.
if(hSignKey != 0) CryptDestroyKey(hSignKey);
// Destroy key exchange key handle.
if(hXchgKey != 0) CryptDestroyKey(hXchgKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptAcquireContext, CryptDestroyKey, CryptGenKey

CryptHashData
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptHashData function is used to compute the cryptographic hash on a stream of data. This
function and CryptHashSessionKey can be called multiple times to compute the hash on long
streams or on discontinuous streams.

Before calling this function, the CryptCreateHash function must be called to get a handle to a
hash object.

BOOL CRYPTFUNC CryptHashData(

HCRYPTHASH hHash,
BYTE *pbData,
DWORD dwDataLen,
DWORD dwFlags

);ParametershHash
[in] A handle to the hash object. An application obtains this handle using the
CryptCreateHash function.

pbData
[in] The address of the data to be hashed.

dwDataLen
[in] The number of bytes of data to be hashed. This must be zero if the CRYPT_USERDATA
flag is set.

dwFlags
[in] The flag values. The following values are currently defined:
· CRYPT_USERDATA

When this flag is set, the CSP will prompt the user to input some data directly. This is then
added to the hash. The application is not allowed access to the data. For example, this flag
can be used to allow the user to enter a PIN into the system.

The Microsoft RSA Base Provider ignores this parameter.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_ALGID The hHash handle specifies an
algorithm that this CSP does not
support.

NTE_BAD_FLAGS The dwFlags parameter contains an
invalid value.

NTE_BAD_HASH The hash object specified by the
hHash parameter is invalid.

NTE_BAD_HASH_STATE An attempt was made to add data to
a hash object that is already marked
"finished."

NTE_BAD_KEY A keyed hash algorithm is being
used, but the session key is no
longer valid. This error will be

generated if the session key is
destroyed before the hashing
operating is complete.

NTE_BAD_LEN The CRYPT_USERDATA flag is set
and the dwDataLen parameter has a
nonzero value.

NTE_BAD_UID The CSP context that was specified
when the hash object was created
cannot be found.

NTE_FAIL The function failed in some
unexpected way.

NTE_NO_MEMORY The CSP ran out of memory during
the operation.

ExampleSee the "Example" section in the CryptSignHash function.See AlsoCryptCreateHash, CryptHashSessionKey, CryptSignHash

CryptHashSessionKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptHashSessionKey function is used to compute the cryptographic hash on a key object.
This function can be called multiple times with the same hash handle to compute the hash on
multiple keys. Calls to CryptHashSessionKey can be interspersed with calls to CryptHashData.

Before calling this function the CryptCreateHash function must be called to get a handle to a
hash object.

BOOL CRYPTFUNC CryptHashSessionKey(

HCRYPTHASH hHash,
HCRYPTKEY hKey,
DWORD dwFlags

);ParametershHash
[in] A handle to the hash object. An application obtains this handle using the
CryptCreateHash function.

hKey
[in] A handle to the key object to be hashed.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_ALGID The hHash handle specifies an
algorithm that this CSP does not
support.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hash object specified by the

hHash parameter is invalid.
NTE_BAD_HASH_STATE An attempt was made to add data to

a hash object that is already marked
"finished."

NTE_BAD_KEY A keyed hash algorithm is being
used, but the session key is no
longer valid. This error will be
generated if the session key is
destroyed before the hashing
operating is complete.

NTE_BAD_UID The CSP context that was specified
when the hash object was created
cannot be found.

NTE_FAIL The function failed in some
unexpected way.

Example#include <wincrypt.h>

HCRYPTPROV hProv = 0;
HCRYPTHASH hHash = 0;
HCRYPTKEY hKey = 0;
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create hash object.
if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {

printf("Error %x during CryptBeginHash!\n", GetLastError());
goto done;

}
// Create random session key.if(!CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptGenKey!\n", GetLastError());
goto done;

}
// Hash session key.
if(!CryptHashSessionKey(hHash, hKey, 0)) {

printf("Error %x during CryptHashSessionKey!\n", GetLastError());
goto done;

}
// Use the hash object for something.
...
done:
// Destroy hash object.
if(hHash) CryptDestroyHash(hHash);
// Destroy session key.
if(hKey) CryptDestroyKey(hKey);
// Release CSP handle.
if(hProv) CryptReleaseContext(hProv,0);
See AlsoCryptCreateHash, CryptGenKey, CryptHashData

CryptImportKey
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptImportKey function is used to transfer a cryptographic key from a key blob to the CSP.

BOOL CRYPTFUNC CryptImportKey(

HCRYPTPROV hProv,
BYTE *pbData,
DWORD dwDataLen,
HCRYPTKEY hImpKey,
DWORD dwFlags,
HCRYPTKEY *phKey

);ParametershProv
[in] A handle to the application's CSP. An application obtains this handle using the
CryptAcquireContext function.

pbData
[in] The buffer containing the key blob. This key blob was generated by the CryptExportKey
function, either by this same application or by another application running on a distant
computer.
This key blob consists of a standard header followed by the encrypted key.

dwDataLen
[in] The length, in bytes, of the key blob.

hImpKey
[in] The meaning of this parameter differs, depending on the CSP type and the type of key
blob being imported.
If the key blob is not encrypted (for example, a PUBLICKEYBLOB) or if the key blob is
encrypted with the key exchange key pair (for example, a SIMPLEBLOB), then this parameter
is not used, and should be zero.
If a signed key blob is being imported, this key is used to validate the signature of the key
blob. In this case, this parameter should contain a handle to the key exchange public key of
the party that created the key blob.
If the key blob is encrypted with a session key (for example, an encrypted
PRIVATEKEYBLOB), then this parameter should contain a handle to this session key.

dwFlags
[in] The flag values. This parameter is currently only used when a public/private key pair is
being imported into the CSP (in the form of a PRIVATEKEYBLOB). In this case, if the
CRYPT_EXPORTABLE flag is set then subsequent applications will be permitted to export
the private key back out of the CSP.

phKey
[out] The address to which the function copies a handle to the key that was imported.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_ALGID The simple key blob you are trying to
import is not encrypted with the
expected key exchange algorithm.

NTE_BAD_DATA The algorithm that works with the
public key you are trying to import is
not supported by this CSP.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_TYPE The key blob type is not supported

by this CSP and is possibly invalid.
NTE_BAD_UID The hProv parameter does not

contain a valid context handle.
NTE_BAD_VER The key blob's version number does

not match the CSP version. This
usually indicates that the CSP needs
to be upgraded.

Example#include <wincrypt.h>
FILE *hSourceFile = NULL;
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;
BYTE *pbKeyBlob = NULL;
DWORD dwBlobLen;
// Open file, getting file handle 'hSourceFile'.
...
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Read key blob length from file and allocate memory.
fread(&dwBlobLen, sizeof(DWORD), 1, hSourceFile);pbKeyBlob = malloc(dwBlobLen);
// Read key blob from file.
fread(pbKeyBlob, 1, dwBlobLen, hSourceFile);
// Import key blob into CSP.
if(!CryptImportKey(hProv, pbKeyBlob, dwBlobLen, 0, 0, &hKey)) {

printf("Error %x during CryptImportKey!\n", GetLastError());
free(pbKeyBlob);
goto done;

}
// Free memory.
free(pbKeyBlob);
// Use 'hKey' to perform cryptographic operations.
...
done:
// Destroy session key.
if(hKey) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv) CryptReleaseContext(hProv, 0);See AlsoCryptAcquireContext, CryptDestroyKey, CryptExportKey

CryptReleaseContext
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptReleaseContext function is used to release a handle to a CSP and a key container.

This should be performed when the application is finished using the CSP. Once this function is
called, the CSP handle specified by the hProv parameter will no longer be valid. Neither the key
container nor any key pairs are destroyed by this function.

BOOL CRYPTFUNC CryptReleaseContext(

HCRYPTPROV hProv,
DWORD dwFlags

);ParametershProv
[in] A handle to the application's CSP. This is the handle the application obtained using the
CryptAcquireContext function.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

RemarksOnce this function has been called, the "session" is over, and all existing session keys and hash
objects that were created using the hProv handle become invalid. In practice, all of these objects
should be destroyed (with the CryptDestroyKey and CryptDestroyHash functions) before the
CryptReleaseContext function is called.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_BUSY The CSP context specified by hProv
is currently being used by another
process.

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_UID The hProv parameter does not

contain a valid context handle.
ExampleSee the "Example" section in the CryptAcquireContext function.See AlsoCryptAcquireContext, CryptDestroyKey and CryptDestroyHash

CryptSetHashParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptSetHashParam function, in theory, allows applications to customize the operations of a
hash object. Currently, only a single parameter is defined for this function.

BOOL CRYPTFUNC CryptSetHashParam(

HCRYPTHASH hHash,
DWORD dwParam,
BYTE *pbData,
DWORD dwFlags

);ParametershHash
[in] A handle to the hash object on which to set parameters.

dwParam
[in] The parameter number. See the "Remarks" section for a list of valid parameters.

pbData
[in] The parameter data buffer. Place the parameter data in this buffer before calling
CryptSetHashParam. The form of this data will vary, depending on the parameter number.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

RemarksThe dwParam parameter can be set to one of the following values:

HP_HASHVAL
Hash value. The pbData buffer should contain a byte array containing a hash value to place
directly into the hash object. Before setting this parameter, the size of the hash value should
be determined by reading the HP_HASHSIZE parameter with the CryptGetHashParam
function.
Normal applications should never set this parameter. In fact, some CSPs may not even
support this capability. Occasionally though, it is convenient to sign a hash value that has
been generated elsewhere. This is the usual sequence of operations:
1. The application creates a hash object with CryptCreateHash.
2. It specifies a hash value by setting the HP_HASHVAL parameter.
3. It signs the hash value using CryptSignHash, obtaining a digital signature block.

Because the binding between the hashed data and the signature is fairly tenuous, no
description string can be passed into CryptSignHash in this situation.

4. It destroys the hash object using CryptDestroyHash.
Note that some CSP types may add additional parameters that can be set with this function.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_BUSY The CSP context is currently being
used by another process.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero
or the pbData buffer contains an
invalid value.

NTE_BAD_HASH The hash object specified by the

hHash parameter is invalid.
NTE_BAD_TYPE The dwParam parameter specifies

an unknown parameter.
NTE_BAD_UID The CSP context that was specified

when the hKey key was created
cannot be found.

NTE_FAIL The function failed in some
unexpected way.

ExampleThis function is used in a way similar to the CryptSetKeyParam function.See AlsoCryptCreateHash, CryptDestroyHash, CryptGetHashParam, CryptSetKeyParam,
CryptSignHash

CryptSetKeyParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptSetKeyParam function lets applications customize various aspects of a key's
operations.

Generally, this function is used to set session-specific parameters on symmetric keys. Note that
the base keying material is not accessible by this function.

The Microsoft RSA Base Provider has no settable parameters on key exchange or signature keys.
However, custom providers may define parameters that can be set on these keys.

BOOL CRYPTFUNC CryptSetKeyParam(

HCRYPTKEY hKey,
DWORD dwParam,
BYTE *pbData,
DWORD dwFlags

);ParametershKey
[in] A handle to the key on which to set parameters.

dwParam
[in] The parameter number. See the "Remarks" section for a list of valid parameters.

pbData
[in] The parameter data buffer. Place the parameter data in this buffer before calling
CryptSetKeyParam. The form of this data will vary, depending on the parameter number.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

RemarksFor all session key types, the dwParam value can be set to one of the following key parameter
types;

Parameter Description

KP_SALT The salt value. The pbData buffer should
contain a BYTE array specifying a new salt
value. This value is made part of the session
key. The size of the salt value will vary
depending on the CSP being used so, before
setting this parameter, it should be read using
CryptGetKeyParam in order to determine its
size.
When it is suspected that the base data used
for derived keys is less than ideal, salt values
are often used to make the session keys more
unique. This makes dictionary attacks more
difficult.
When using the Microsoft RSA Base Provider,
this parameter defaults to zero.

KP_PERMISSIONS The key permissions flags. The pbData buffer
should contain a DWORD value specifying
zero or more permission flags. Refer to the
CryptGetKeyParam function for a description
of these flags.
When using the Microsoft RSA Base Provider,
this parameter defaults to 0xFFFFFFFF.

If a block cipher session key is specified by hKey, the dwParam value can also be set to one
of the following parameter types.

Parameter Description

KP_IV The initialization vector. The pbData buffer
should contain a BYTE array specifying the
initialization vector. This array should contain
<block length>/8 elements. For example, if the
block length is 64 bits, the initialization vector
will consist of 8 bytes.
When using the Microsoft RSA Base Provider,
this parameter defaults to zero.

KP_PADDING The padding mode. The pbData buffer should
contain a DWORD value specifying the
padding method to be used by the cipher.
Following are the padding modes currently
defined:
PKCS5_PADDING ¾ PKCS 5 (sec 6.2)
padding method.
When using the Microsoft RSA Base Provider,
this parameter defaults to PKCS5_PADDING.

KP_MODE The cipher mode. The pbData buffer should
contain a DWORD value specifying the cipher
mode to be used. Refer to the
CryptGetKeyParam function for a list
of the defined cipher modes.

When using the Microsoft RSA Base Provider,
this parameter defaults to
CRYPT_MODE_CBC.

KP_MODE_BITS The number of bits to feed back. The pbData
buffer contains a DWORD value indicating the
number of bits that are processed per cycle
when the OFB or CFB cipher modes are used.
When using the Microsoft RSA Base Provider,
this parameter defaults to 8.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_BUSY The CSP context is currently being
used by another process.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero
or the pbData buffer contains an
invalid value.

NTE_BAD_TYPE The dwParam parameter specifies
an unknown parameter.

NTE_BAD_UID The CSP context that was specified
when the hKey key was created
cannot be found.

NTE_FAIL The function failed in some
unexpected way.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
HCRYPTKEY hKey = 0;

DWORD dwMode;
BYTE pbData[16];
DWORD dwCount;
DWORD i;
// Get handle to user default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Create random block cipher session key.
if(!CryptGenKey(hProv, CALG_RC2, CRYPT_EXPORTABLE, &hKey)) {

printf("Error %x during CryptGenKey!\n", GetLastError());goto done;
}
// Set the cipher mode.
dwMode = CRYPT_MODE_ECB;
if(!CryptSetKeyParam(hKey, KP_MODE, &dwMode, 0)) {

printf("Error %x during CryptSetKeyParam!\n", GetLastError());
goto done;

}
// Generate random initialization vector.
if(!CryptGenRandom(hProv, 8, pbData)) {

printf("Error %x during CryptGenRandom!\n", GetLastError());
goto done;

}
// Set initialization vector.
if(!CryptSetKeyParam(hKey, KP_IV, pbData, 0)) {

printf("Error %x during CryptGetKeyParam!\n", GetLastError());
goto done;

}
// Do something with 'hKey'.
...
done:
// Destroy session key.
if(hKey != 0) CryptDestroyKey(hKey);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptGenKey, CryptGetKeyParam

CryptSetProvider
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptSetProvider function is used to specify the current user default CSP.

After this function has been called, any calls this user subsequently makes to
CryptAcquireContext specifying the dwProvType provider type but not a provider name, will
result in the pszProvName provider being used.

Note Typical applications will not use this function. It is intended for sole use by administrative
applications.
BOOL CRYPTFUNC CryptSetProvider(

LPCTSTR pszProvName,
DWORD dwProvType

);ParameterspszProvName
[in] The name of the new default CSP. This CSP should have already been installed on the
computer.

dwProvType
[in] The provider type of the CSP specified by the pszProvName parameter.

RemarksWell-behaved applications do not usually specify a CSP name when calling the
CryptAcquireContext function. This gives the users a certain amount of freedom in that they can
select a CSP that has an appropriate level of security.

This means that a call to CryptSetProvider will often determine the CSP of a given type used by
all applications that run from that point on. With this being the case, the CryptSetProvider
function should never be called without the user's consent.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETER One of the parameters contains an
invalid value. This is most often an
illegal pointer.

ERROR_NOT_ENOUGH_MEMORYThe operating system ran out of
memory during the operation.

Error codes returned from the
RegCreateKeyEx function.

See RegCreateKeyEx.

Error codes returned from the
RegSetValueEx function.

See RegSetValueEx.

ExampleHCRYPTPROV hProv = 0;
// Specify the default PROV_RSA_SIG provider. Note that this assumes
// that a CSP with a type of PROV_RSA_SIG and named "Joe's Provider"
// has already been installed.
if(!CryptSetProvider(TEXT("Joe's Provider"), PROV_RSA_SIG)) {

printf("Error %x during CryptSetProvider!\n", GetLastError());
return;

}
// Get handle to the provider that we just made default.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_SIG, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());return;
}
...
// Release provider handle.
if(!CryptReleaseContext(hProv, 0)) {

printf("Error %x during CryptReleaseContext!\n", GetLastError());
return;

}
See AlsoCryptAcquireContext

CryptSetProvParam
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptSetProvParam function lets applications customize the operations of a CSP.

BOOL CRYPTFUNC CryptSetProvParam(

HCRYPTPROV hProv,
DWORD dwParam,
BYTE *pbData,
DWORD dwFlags

);ParametershProv
[in] A handle to the CSP on which to set parameters.

dwParam
[in] The parameter number to set.
When this parameter is set to PP_CLIENT_HWND, the pbData buffer should contain a
DWORD value specifiying the window handle that the provider is to use when interacting
directly with the user. When setting this parameter, applications should call the
CryptSetProvParam function before calling CryptAcquireContext. This is necessary
because many CSPs will display a user interface during the CryptAcquireContext function.
Note that CSPs that do not ever display a user interface will ignore the value of this
parameter.

pbData
[in] The parameter data buffer. Place the parameter data in this buffer before calling
CryptSetProvParam. The form of this data will vary, depending on the parameter number.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_BUSY The CSP context is currently being
used by another process.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero
or the pbData buffer contains an
invalid value.

NTE_BAD_TYPE The dwParam parameter specifies
an unknown parameter.

NTE_BAD_UID The CSP context that was specified
when the hKey key was created
cannot be found.

NTE_FAIL The function failed in some
unexpected way.

See AlsoCryptAcquireContext, CryptGetProvParam, CryptSetKeyParam

CryptSignHash
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptSignHash function is used to sign a piece of data. Because all signature algorithms are
asymmetric and thus incredibly slow, CryptoAPI will not let data be signed directly. Instead, you
must first hash the data and then use CryptSignHash to sign the hash value.

BOOL CRYPTFUNC CryptSignHash(

HCRYPTHASH hHash,
DWORD dwKeySpec,
LPCTSTR sDescription,
DWORD dwFlags,
BYTE *pbSignature,
DWORD *pdwSigLen

);ParametershHash
[in] A handle to the hash object to be signed.

dwKeySpec
[in] The key pair to use to sign the hash. The following keys can be specified:
· AT_KEYEXCHANGE ¾ Exchange private key
· AT_SIGNATURE ¾ Signature private key
The signature algorithm used is specified when the key pair was originally created.
The only signature algorithm that the Microsoft RSA Base Provider supports is the RSA
Public-Key algorithm.

sDescription
[in] The string describing the data to sign. This description text is added to the hash object
before the signature is generated. Whenever the signature is authenticated (with
CryptVerifySignature), the exact same description string must be supplied. This ensures that
both the signer and the authenticator agree on what is being signed or authenticated.
Some CSPs (not the Microsoft RSA Base Provider) will display this description string to the
user. This lets the user confirm what he or she is signing. This protects the user from
unscrupulous applications and also reduces misunderstandings.
This parameter can be NULL if no description string is to included in the signature. Usually,
this is only the case when the signature is performed using a signature key that is not legally
bound to the user. For example, when a signature operation is performed with the key
exchange private key as part of a key exchange protocol, no description string is typically
specified.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

pbSignature
[out] The buffer in which the function places the signature data.
This parameter can be NULL if all you are doing is determining the number of bytes required
for the returned signature data.

pdwSigLen
[in/out] The address of the signature data length. Before calling this function, the caller should
set this parameter to the length, in bytes, of the pbSignature buffer. Upon return, this address
will contain the number of bytes in the signature data.
If the buffer specified by pbSignature is not large enough to hold the data, the function returns
the ERROR_MORE_DATA error code (through GetLastError) and stores the required buffer
size, in bytes, into the variable pointed to by pdwSigLen.
If pbSignature is NULL, then no error is returned and the function stores the size of the data,
in bytes, in the variable pointed to by pdwSigLen.

RemarksBefore calling this function, the CryptCreateHash function must be called to get a handle to a
hash object. The CryptHashData or CryptHashSessionKey function is then used to add the
data or session keys to the hash object.

Once this function has been completed, the only hash function that can be called using the hHash
handle is the CryptDestroyHash function.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Error Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_ALGID The hHash handle specifies an
algorithm that this CSP does not
support.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hash object specified by the

hHash parameter is invalid.
NTE_BAD_UID The CSP context that was specified

when the hash object was created
cannot be found.

NTE_NO_KEY The private key specified by
dwKeySpec does not exist.

NTE_NO_MEMORY The CSP ran out of memory during
the operation.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
#define BUFFER_SIZE 256
BYTE pbBuffer[BUFFER_SIZE];
HCRYPTHASH hHash = 0;
BYTE *pbSignature = NULL;
DWORD dwSigLen;
LPTSTR szDescription = TEXT("Test Data");
DWORD i;
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Fill buffer with test data.
for(i = 0 ; i < BUFFER_SIZE ; i++) {pbBuffer[i] = (BYTE)i;
}
// Create hash object.
if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {

printf("Error %x during CryptCreateHash!\n", GetLastError());
goto done;

}
// Hash buffer.
if(!CryptHashData(hHash, pbBuffer, BUFFER_SIZE, 0)) {

printf("Error %x during CryptHashData!\n", GetLastError());
goto done;

}
// Determine size of signature and allocate memory.
dwSigLen = 0;
if(!CryptSignHash(hHash, AT_SIGNATURE, TEXT(""), 0, NULL, &dwSigLen)) {

printf("Error %x during CryptSignHash!\n", GetLastError());
if(GetLastError()!=NTE_BAD_LEN) goto done;

}
if((pbSignature = malloc(dwSigLen)) == NULL) {

printf("Out of memory!\n");
goto done;

}
// Sign hash object.
if(!CryptSignHash(hHash, AT_SIGNATURE, szDescription, 0, pbSignature,
&dwSigLen)) {

printf("Error %x during CryptSignHash!\n", GetLastError());
goto done;

}
// Store or transmit the signature, test buffer, and description
string.
...
done:
// Free memory used to store signature.
if(pbSignature != NULL) free(pbSignature);
// Destroy hash object.
if(hHash != 0) CryptDestroyHash(hHash);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptCreateHash, CryptDestroyHash, CryptHashData, CryptHashSessionKey,

CryptVerifySignature

CryptVerifySignature
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The CryptVerifySignature function is used to verify a signature against a hash object.

Before calling this function, the CryptCreateHash function must be called to get a handle to a
hash object. The CryptHashData and/or CryptHashSessionKey functions are then used to add
the data and/or session keys to the hash object.

Once this function has been completed, the only hash function that can be called using the hHash
handle is the CryptDestroyHash function.

BOOL CRYPTFUNC CryptVerifySignature(
HCRYPTHASH hHash,
BYTE *pbSignature,
DWORD dwSigLen,
HCRYPTKEY hPubKey,
LPCTSTR sDescription,
DWORD dwFlags

);ParametershHash
[in] A handle to the hash object to verify against.

pbSignature
[in] The address of the signature data to be verified.

dwSigLen
[in] The number of bytes in the pbSignature signature data.

hPubKey
[in] A handle to the public key to use to authenticate the signature. This public key must
belong to the key pair that was originally used to create the digital signature.

sDescription
[in] String describing the signed data. This must be exactly the same string that was passed in
to the CryptSignHash function when the signature was created. If this string does not match,
the signature verification will fail.
When this function is called, some CSPs (not the Microsoft RSA Base Provider) will display
this description string to the user, together with an indication of whether the signature verified
correctly. This provides the user with the verification results in a way that is completely
independent of the application.

dwFlags
[in] The flag values. This parameter is reserved for future use and should always be zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To retrieve extended error information, use the
GetLastError function.

The following table lists the error codes most commonly returned by the GetLastError function.
The error codes prefaced by "NTE" are generated by the particular CSP you are using.

Description

ERROR_INVALID_HANDLE One of the parameters specifies an
invalid handle.

ERROR_INVALID_PARAMETEROne of the parameters contains an
invalid value. This is most often an
illegal pointer.

NTE_BAD_FLAGS The dwFlags parameter is nonzero.
NTE_BAD_HASH The hash object specified by the

hHash parameter is invalid.
NTE_BAD_KEY The hPubKey parameter does not

contain a handle to a valid public
key.

NTE_BAD_SIGNATURE The signature failed to verify. This

could be because the data itself has
changed, the description string did
not match, or the wrong public key
was specified by hPubKey.
This error can also be returned if the
hashing or signature algorithms do
not match the ones used to create
the signature.

NTE_BAD_UID The CSP context that was specified
when the hash object was created
cannot be found.

NTE_NO_MEMORY The CSP ran out of memory during
the operation.

Example#include <wincrypt.h>
HCRYPTPROV hProv = 0;
#define BUFFER_SIZE 256
BYTE pbBuffer[BUFFER_SIZE];
HCRYPTHASH hHash = 0;
HCRYPTKEY hPubKey = 0;
BYTE *pbSignature = NULL;
DWORD dwSigLen;
LPTSTR szDescription = NULL;
// Get handle to the default provider.
if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {

printf("Error %x during CryptAcquireContext!\n", GetLastError());
goto done;

}
// Load 'pbBuffer' with 'BUFFER_SIZE' bytes of test data. This must// be the same data that was originally signed.
...
// Point 'pbSignature' at the signature created by a previous call
// to CryptSignHash. Set 'dwSigLen' to the number of bytes in the
// signature.
...
// Point 'szDescription' at some text describing the data being
// signed. This must be the same description text that was originally
// passed to CryptSignHash.
...
// Get public key of the user that created the digital signature
// and import it into the CSP using CryptImportKey. This will return
// a handle to the public key in 'hPubKey'.
...
// Create hash object.
if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {

printf("Error %x during CryptCreateHash!\n", GetLastError());
goto done;

}
// Hash buffer.
if(!CryptHashData(hHash, pbBuffer, BUFFER_SIZE, 0)) {

printf("Error %x during CryptHashData!\n", GetLastError());
goto done;

}
// Validate digital signature.
if(!CryptVerifySignature(hHash, pbSignature, dwSigLen, hPubKey,
szDescription, 0)) {

if(GetLastError() == NTE_BAD_SIGNATURE) {
printf("Signature failed to validate!\n");
} else {
printf("Error %x during CryptSignHash!\n", GetLastError());
}

} else {
printf("Signature validated OK\n");

}
done:
...
// Release public key.
if(hPubKey != 0) CryptDestroyKey(hPubKey);
// Destroy hash object.
if(hHash != 0) CryptDestroyHash(hHash);
// Release provider handle.
if(hProv != 0) CryptReleaseContext(hProv, 0);
See AlsoCryptCreateHash, CryptDestroyHash, CryptHashData, CryptHashSessionKey,

CryptSignHash

DdeAbandonTransaction
The DdeAbandonTransaction function abandons the specified asynchronous transaction and
releases all resources associated with the transaction.

BOOL DdeAbandonTransaction(
DWORD idInst, // instance identifier
HCONV hConv, // handle to conversation
DWORD idTransaction // transaction identifier

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hConv
Identifies the conversation in which the transaction was initiated. If this parameter is 0L, all
transactions are abandoned (that is, the idTransaction parameter is ignored).

idTransaction
Specifies the identifier of the transaction to abandon. If this parameter is 0L, all active
transactions in the specified conversation are abandoned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

DMLERR_UNFOUND_QUEUE_IDRemarksOnly a dynamic data exchange (DDE) client application should call DdeAbandonTransaction. If
the server application responds to the transaction after the client has called
DdeAbandonTransaction, the system discards the transaction results. This function has no
effect on synchronous transactions.See AlsoDdeClientTransaction, DdeInitialize, DdeQueryConvInfo

DdeAccessData
The DdeAccessData function provides access to the data in the specified dynamic data
exchange (DDE) object. An application must call the DdeUnaccessData function when it has
finished accessing the data in the object.

LPBYTE DdeAccessData(
HDDEDATA hData, // handle to DDE object
LPDWORD pcbDataSize // pointer to variable that receives data length

);ParametershData
Identifies the DDE object to access.

pcbDataSize
Points to a variable that receives the size, in bytes, of the DDE object identified by the hData
parameter. If this parameter is NULL, no size information is returned.

Return ValuesIf the function succeeds, the return value is a pointer to the first byte of data in the DDE object.

If the function fails, the return value is NULL.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORRemarksIf the hData parameter has not been passed to a Dynamic Data Exchange Management Library
(DDEML) function, an application can use the pointer returned by DdeAccessData for read-write
access to the DDE object. If hData has already been passed to a DDEML function, the pointer
should be used only for read access to the memory object.See AlsoDdeAddData, DdeCreateDataHandle, DdeFreeDataHandle, DdeUnaccessData

DdeAddData
The DdeAddData function adds data to the specified dynamic data exchange (DDE) object. An
application can add data starting at any offset from the beginning of the object. If new data
overlaps data already in the object, the new data overwrites the old data in the bytes where the
overlap occurs. The contents of locations in the object that have not been written to are undefined.

HDDEDATA DdeAddData(
HDDEDATA hData, // handle to DDE data object
LPBYTE pSrc, // pointer to source buffer
DWORD cb, // length of data
DWORD cbOff // offset within DDE data object

);ParametershData
Identifies the DDE object that receives additional data.

pSrc
Points to a buffer containing the data to add to the DDE object.

cb
Specifies the length, in bytes, of the data to be added to the DDE object.

cbOff
Specifies an offset, in bytes, from the beginning of the DDE object. The additional data is
copied to the object beginning at this offset.

Return ValuesIf the function succeeds, the return value is a new handle to the DDE object. The new handle is
used in all references to the object.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR

DMLERR_NO_ERRORRemarksAfter a data handle has been used as a parameter in another Dynamic Data Exchange
Management Library function or has been returned by a DDE callback function, the handle may
be used only for read access to the DDE object identified by the handle.

If the amount of memory originally allocated is less than is needed to hold the added data,
DdeAddData reallocates a global memory object of the appropriate size.See AlsoDdeAccessData, DdeCreateDataHandle, DdeUnaccessData

DdeCallback
The DdeCallback function is an application-defined callback function that processes dynamic
data exchange (DDE) transactions sent to the function in response to Dynamic Data Exchange
Management Library (DDEML) calls by other applications.

HDDEDATA CALLBACK DdeCallback(
UINT uType, // transaction type
UINT uFmt, // clipboard data format
HCONV hconv, // handle to the conversation
HSZ hsz1, // handle to a string
HSZ hsz2, // handle to a string
HDDEDATA hdata, // handle to a global memory object
DWORD dwData1, // transaction-specific data
DWORD dwData2 // transaction-specific data

);ParametersuType
Specifies the type of the current transaction. This parameter consists of a combination of
transaction class flags and transaction type flags. The following table describes each of the
transaction classes and provides a list of the transaction types in each class. For information
about a specific transaction type, see the individual description of that type.

Class Meaning
XCLASS_BOOL A DDE callback function should return

TRUE or FALSE when it finishes
processing a transaction that belongs to
this class. The XCLASS_BOOL
transaction class consists of the
following types:

XTYP_ADVSTART
XTYP_CONNECT

XCLASS_DATA A DDE callback function should return a
DDE handle, the CBR_BLOCK return
code, or NULL when it finishes
processing a transaction that belongs to
this class. The XCLASS_DATA
transaction class consists of the
following types:

XTYP_ADVREQ
XTYP_REQUEST
XTYP_WILDCONNECT

XCLASS_FLAGS A DDE callback function should return
DDE_FACK, DDE_FBUSY, or
DDE_FNOTPROCESSED when it
finishes processing a transaction that
belongs to this class. The
XCLASS_FLAGS transaction class
consists of the following types:

XTYP_ADVDATA
XTYP_EXECUTE
XTYP_POKE

XCLASS_NOTIFICATION The transaction types that belong to this
class are for notification purposes only.
The return value from the callback
function is ignored. The
XCLASS_NOTIFICATION transaction

class consists of the following types:
XTYP_ADVSTOP
XTYP_CONNECT_CONFIRM
XTYP_DISCONNECT
XTYP_ERROR
XTYP_MONITOR
XTYP_REGISTER
XTYP_XACT_COMPLETE
XTYP_UNREGISTER

uFmt
Specifies the format in which data is sent or received.

hconv
Identifies the conversation associated with the current transaction.

hsz1
Identifies a string. The meaning of this parameter depends on the type of the current
transaction. For the meaning of this parameter, see the description of the transaction type.

hsz2
Identifies a string. The meaning of this parameter depends on the type of the current
transaction. For the meaning of this parameter, see the description of the transaction type.

hdata
Identifies DDE data. The meaning of this parameter depends on the type of the current
transaction. For the meaning of this parameter, see the description of the transaction type.

dwData1
Specifies transaction-specific data. For the meaning of this parameter, see the description of
the transaction type.

dwData2
Specifies transaction-specific data. For the meaning of this parameter, see the description of
the transaction type.

Return ValuesThe return value depends on the transaction class. For more information about the return values,
see descriptions of the individual transaction types.RemarksThe callback function is called asynchronously for transactions that do not involve the creation or
termination of conversations. An application that does not frequently accept incoming messages
will have reduced DDE performance because the DDEML uses messages to initiate transactions.

An application must register the callback function by specifying a pointer to the function in a call to
the DdeInitialize function.

DdeCallback is a placeholder for the application-defined or library-defined function name.See AlsoDdeEnableCallback, DdeInitialize

DdeClientTransaction
The DdeClientTransaction function begins a data transaction between a client and a server.
Only a dynamic data exchange (DDE) client application can call this function, and the application
can use it only after establishing a conversation with the server.

HDDEDATA DdeClientTransaction(
LPBYTE pData, // pointer to data to pass to server
DWORD cbData, // length of data
HCONV hConv, // handle to conversation
HSZ hszItem, // handle to item name string
UINT wFmt, // clipboard data format
UINT wType, // transaction type
DWORD dwTimeout, // time-out duration
LPDWORD pdwResult // pointer to transaction result

);ParameterspData
Points to the beginning of the data the client must pass to the server.
Optionally, an application can specify the data handle (HDDEDATA) to pass to the server and
in that case the cbData parameter should be set to 0xFFFFFFFF. This parameter is required
only if the wType parameter is XTYP_EXECUTE or XTYP_POKE. Otherwise, this parameter
should be NULL.
For the optional usage of this parameter, XTYP_POKE transactions where pData is a data
handle, the handle must have been created by a previous call to the DdeCreateDataHandle
function, employing the same data format specified in the wFmt parameter.

cbData
Specifies the length, in bytes, of the data pointed to by the pData parameter. A value of
0xFFFFFFFF indicates that pData is a data handle that identifies the data being sent.

hConv
Identifies the conversation in which the transaction is to take place.

hszItem
Identifies the data item for which data is being exchanged during the transaction. This handle
must have been created by a previous call to the DdeCreateStringHandle function. This
parameter is ignored (and should be set to 0L) if the wType parameter is XTYP_EXECUTE.

wFmt
Specifies the standard clipboard format in which the data item is being submitted or
requested.
If the transaction specified by the wType parameter does not pass data or is
XTYP_EXECUTE, this parameter should be zero.
If the transaction specified by the wType parameter references non-execute DDE data
(XTYP_POKE, XTYP_ADVSTART, XTYP_ADVSTOP, XTYP_REQUEST), the wFmt value
must be either a valid predefined (CF_) DDE format or a valid registered clipboard format.

wType
Specifies the transaction type. This parameter can be one of the following types:

Type Meaning
XTYP_ADVSTART Begins an advise loop. Any number of distinct

advise loops can exist within a conversation.
An application can alter the advise loop type
by combining the XTYP_ADVSTART
transaction type with one or more of the
following flags:

Flag Meaning
XTYPF_NODATAInstructs the server to

notify the client of any
data changes without
actually sending the
data. This flag gives the
client the option of
ignoring the notification

or requesting the
changed data from the
server.

XTYPF_ACKREQInstructs the server to
wait until the client
acknowledges that it
received the previous
data item before
sending the next data
item. This flag prevents
a fast server from
sending data faster
than the client can
process it.

XTYP_ADVSTOP Ends an advise loop.
XTYP_EXECUTE Begins an execute

transaction.
XTYP_POKE Begins a poke

transaction.
XTYP_REQUEST Begins a request

transaction.

dwTimeout
Specifies the maximum length of time, in milliseconds, that the client will wait for a response
from the server application in a synchronous transaction. This parameter should be
TIMEOUT_ASYNC for asynchronous transactions.

pdwResult
Points to a variable that receives the result of the transaction. An application that does not
check the result can use NULL for this value. For synchronous transactions, the low-order
word of this variable contains any applicable DDE_ flags resulting from the transaction. This
provides support for applications dependent on DDE_APPSTATUS bits. It is, however,
recommended that applications no longer use these bits because they may not be supported
in future versions of the Dynamic Data Exchange Management Library (DDEML). For
asynchronous transactions, this variable is filled with a unique transaction identifier for use
with the DdeAbandonTransaction function and the XTYP_XACT_COMPLETE transaction.

Return ValuesIf the function succeeds, the return value is a data handle that identifies the data for successful
synchronous transactions in which the client expects data from the server. The return value is
nonzero for successful asynchronous transactions and for synchronous transactions in which the
client does not expect data. The return value is zero for all unsuccessful transactions.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_ADVACKTIMEOUT
DMLERR_BUSY
DMLERR_DATAACKTIMEOUT
DMLERR_DLL_NOT_INITIALIZED
DMLERR_EXECACKTIMEOUT
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR
DMLERR_NOTPROCESSED
DMLERR_POKEACKTIMEOUT
DMLERR_POSTMSG_FAILED
DMLERR_REENTRANCY
DMLERR_SERVER_DIED

DMLERR_UNADVACKTIMEOUTRemarksWhen an application has finished using the data handle returned by DdeClientTransaction, the
application should free the handle by calling the DdeFreeDataHandle function.

Transactions can be synchronous or asynchronous. During a synchronous transaction,
DdeClientTransaction does not return until the transaction either completes successfully or fails.
Synchronous transactions cause a client to enter a modal loop while waiting for various
asynchronous events. Because of this, a client application can still respond to user input while
waiting on a synchronous transaction, but the application cannot begin a second synchronous

transaction because of the activity associated with the first. DdeClientTransaction fails if any
instance of the same task has a synchronous transaction already in progress.

During an asynchronous transaction, DdeClientTransaction returns after the transaction has
begun, passing a transaction identifier for reference. When the server's DDE callback function
finishes processing an asynchronous transaction, the system sends an XTYP_XACT_COMPLETE
transaction to the client. This transaction provides the client with the results of the asynchronous
transaction that it initiated by calling DdeClientTransaction. A client application can choose to
abandon an asynchronous transaction by calling the DdeAbandonTransaction function.See AlsoDdeAbandonTransaction, DdeAccessData, DdeConnect, DdeConnectList,
DdeCreateDataHandle, DdeCreateStringHandle, DdeFreeDataHandle, XTYP_ADVSTART,
XTYP_ADVSTOP, XTYP_EXECUTE, XTYP_POKE, XTYP_REQUEST

DdeCmpStringHandles
The DdeCmpStringHandles function compares the values of two string handles. The value of a
string handle is not related to the case of the associated string.

int DdeCmpStringHandles(
HSZ hsz1, // handle to first string
HSZ hsz2 // handle to second string

);Parametershsz1
Identifies the first string.

hsz2
Identifies the second string.

Return ValuesThe return value can be one of the following values:

Value Meaning

- 1 The value of hsz1 is either 0 or less than the value of hsz2.
0 The values of hsz1 and hsz2 are equal (both can be 0).
1 The value of hsz2 is either 0 or less than the value of hsz1.
RemarksAn application that must do a case-sensitive comparison of two string handles should compare

the string handles directly. An application should use DdeCmpStringHandles for all other
comparisons to preserve the case-insensitive nature of dynamic data exchange (DDE).

DdeCmpStringHandles cannot be used to sort string handles alphabetically.See AlsoDdeAccessData, DdeCreateStringHandle, DdeFreeStringHandle

DdeConnect
The DdeConnect function establishes a conversation with a server application that supports the
specified service name and topic name pair. If more than one such server exists, the system
selects only one.

HCONV DdeConnect(
DWORD idInst, // instance identifier
HSZ hszService, // handle to service name string
HSZ hszTopic, // handle to topic name string
PCONVCONTEXT pCC // pointer to structure with context data

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hszService
Identifies the string that specifies the service name of the server application with which a
conversation is to be established. This handle must have been created by a previous call to
the DdeCreateStringHandle function. If this parameter is 0L, a conversation is established
with any available server.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation is to be
established. This handle must have been created by a previous call to
DdeCreateStringHandle. If this parameter is 0L, a conversation on any topic supported by
the selected server is established.

pCC
Points to the CONVCONTEXT structure that contains conversation context information. If this
parameter is NULL, the server receives the default CONVCONTEXT structure during the
XTYP_CONNECT or XTYP_WILDCONNECT transaction.

Return ValuesIf the function succeeds, the return value is the handle to the established conversation.

If the function fails, the return value is 0L.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED

DMLERR_NO_ERRORRemarksThe client application cannot make assumptions regarding the server selected. If an instance-
specific name is specified in the hszService parameter, a conversation is established with only the
specified instance. Instance-specific service names are passed to an application's dynamic data
exchange (DDE) callback function during the XTYP_REGISTER and XTYP_UNREGISTER
transactions.

All members of the default CONVCONTEXT structure are set to zero except cb, which specifies
the size of the structure, and iCodePage, which specifies CP_WINANSI (the default code page)
or CP_WINUNICODE, depending on whether the ANSI or Unicode version of the DdeInitialize
function was called by the client application.See AlsoCONVCONTEXT, DdeConnectList, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, DdeInitialize, XTYP_REGISTER, XTYP_UNREGISTER

DdeConnectList
The DdeConnectList function establishes a conversation with all server applications that support
the specified service name and topic name pair. An application can also use this function to obtain
a list of conversation handles by passing the function an existing conversation handle. The
Dynamic Data Exchange Management Library removes the handles of any terminated
conversations from the conversation list. The resulting conversation list contains the handles of all
currently established conversations that support the specified service name and topic name.

HCONVLIST DdeConnectList(
DWORD idInst, // instance identifier
HSZ hszService, // handle to service name string
HSZ hszTopic, // handle to topic name string
HCONVLIST hConvList, // handle to conversation list
PCONVCONTEXT pCC // pointer to structure with context data

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hszService
Identifies the string that specifies the service name of the server application with which a
conversation is to be established. If this parameter is 0L, the system attempts to establish
conversations with all available servers that support the specified topic name.

hszTopic
Identifies the string that specifies the name of the topic on which a conversation is to be
established. This handle must have been created by a previous call to the
DdeCreateStringHandle function. If this parameter is 0L, the system will attempt to establish
conversations on all topics supported by the selected server (or servers).

hConvList
Identifies the conversation list to be enumerated. This parameter should be 0L if a new
conversation list is to be established.

pCC
Points to the CONVCONTEXT structure that contains conversation-context information. If this
parameter is NULL, the server receives the default CONVCONTEXT structure during the
XTYP_CONNECT or XTYP_WILDCONNECT transaction.

Return ValuesIf the function succeeds, the return value is the handle to a new conversation list.

If the function fails, the return value is 0L. The handle to the old conversation list is no longer valid.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALID_PARAMETER
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

DMLERR_SYS_ERRORRemarksAn application must free the conversation list handle returned by the DdeConnectList function,
regardless of whether any conversation handles within the list are active. To free the handle, an
application can call DdeDisconnectList.

All members of the default CONVCONTEXT structure are set to zero except cb, specifying the
size of the structure, and iCodePage, specifying CP_WINANSI (the default code page) or
CP_WINUNICODE, depending on whether the ANSI or Unicode version of the DdeInitialize
function was called by the client application.See AlsoCONVCONTEXT, DdeConnect, DdeCreateStringHandle, DdeDisconnect,
DdeDisconnectList, DdeInitialize, DdeQueryNextServer

DdeCreateDataHandle
The DdeCreateDataHandle function creates a dynamic data exchange (DDE) object and fills the
object with data from the specified buffer. A DDE application uses this function during transactions
that involve passing data to the partner application.

HDDEDATA DdeCreateDataHandle(
DWORD idInst, // instance identifier
LPBYTE pSrc, // pointer to source buffer
DWORD cb, // length of DDE object
DWORD cbOff, // offset from beginning of source buffer
HSZ hszItem, // handle to item name string
UINT wFmt, // clipboard data format
UINT afCmd // creation flags

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

pSrc
Points to a buffer that contains data to be copied to the DDE object. If this parameter is NULL,
no data is copied to the object.

cb
Specifies the amount of memory, in bytes, to copy from the buffer pointed to by pSrc. If this
parameter is zero, the pSrc parameter is ignored.

cbOff
Specifies an offset, in bytes, from the beginning of the buffer pointed to by the pSrc
parameter. The data beginning at this offset is copied from the buffer to the DDE object.

hszItem
Identifies the string that specifies the data item corresponding to the DDE object. This handle
must have been created by a previous call to the DdeCreateStringHandle function. If the
data handle is to be used in an XTYP_EXECUTE transaction, this parameter must be 0L.

wFmt
Specifies the standard clipboard format of the data.

afCmd
Specifies the creation flags. This parameter can be HDATA_APPOWNED, which specifies
that the server application calling the DdeCreateDataHandle function owns the data handle
this function creates. This flag enables the application to share the data handle with other
Dynamic Data Exchange Management Library (DDEML) applications rather than creating a
separate handle to pass to each application. If this flag is specified, the application must
eventually free the shared memory object associated with the handle by using the
DdeFreeDataHandle function. If this flag is not specified, the handle becomes invalid in the
application that created the handle after the data handle is returned by the application's DDE
callback function or is used as a parameter in another DDEML function.

Return ValuesIf the function succeeds, the return value is a data handle.

If the function fails, the return value is 0L.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_MEMORY_ERROR

DMLERR_NO_ERRORRemarksAny unfilled locations in the DDE object are undefined.

After a data handle has been used as a parameter in another DDEML function or has been
returned by a DDE callback function, the handle may be used only for read access to the DDE
object identified by the handle.See AlsoDdeAccessData, DdeCreateStringHandle, DdeFreeDataHandle, DdeGetData, DdeInitialize

DdeCreateStringHandle
The DdeCreateStringHandle function creates a handle that identifies the string pointed to by the
psz parameter. A dynamic data exchange (DDE) client or server application can pass the string
handle as a parameter to other Dynamic Data Exchange Management Library (DDEML) functions.

HSZ DdeCreateStringHandle(
DWORD idInst, // instance identifier
LPTSTR psz, // pointer to null-terminated string
int iCodePage // code page identifier

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

psz
Points to a buffer that contains the null-terminated string for which a handle is to be created.
This string may be up to 255 characters. The reason for this limit is that DDEML string
management functions are implemented using global atoms.

iCodePage
Specifies the code page used to render the string. This value should be either CP_WINANSI
(the default code page) or CP_WINUNICODE, depending on whether the ANSI or Unicode
version of DdeInitialize was called by the client application.

Return ValuesIf the function succeeds, the return value is a string handle.

If the function fails, the return value is 0L.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

DMLERR_SYS_ERRORRemarksThe value of a string handle is not related to the case of the string it identifies.

When an application either creates a string handle or receives one in the callback function and
then uses the DdeKeepStringHandle function to keep it, the application must free that string
handle when it is no longer needed.

An instance-specific string handle cannot be mapped from string handle to string and back to
string handle. This is shown in the following example, in which the DdeQueryString function
creates a string from a string handle and DdeCreateStringHandle creates a string handle from
that string, but the two handles are not the same:DWORD idInst;
DWORD cb;
HSZ hszInst, hszNew;
PSZ pszInst;
DdeQueryString(idInst, hszInst, pszInst, cb, CP_WINANSI);
hszNew = DdeCreateStringHandle(idInst, pszInst, CP_WINANSI);
// hszNew != hszInst !
See AlsoDdeAccessData, DdeCmpStringHandles, DdeFreeStringHandle, DdeInitialize,

DdeKeepStringHandle, DdeQueryString

DdeDisconnect
The DdeDisconnect function terminates a conversation started by either the DdeConnect or
DdeConnectList function and invalidates the specified conversation handle.

BOOL DdeDisconnect(
HCONV hConv // handle to conversation

);ParametershConv
Identifies the active conversation to be terminated.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED

DMLERR_NO_ERRORRemarksAny incomplete transactions started before calling DdeDisconnect are immediately abandoned.
The XTYP_DISCONNECT transaction is sent to the dynamic data exchange (DDE) callback
function of the partner in the conversation. Generally, only client applications must terminate
conversations.See AlsoDdeConnect, DdeConnectList, DdeDisconnectList, XTYP_DISCONNECT

DdeDisconnectList
The DdeDisconnectList function destroys the specified conversation list and terminates all
conversations associated with the list.

BOOL DdeDisconnectList(
HCONVLIST hConvList // handle to conversation list

);ParametershConvList
Identifies the conversation list. This handle must have been created by a previous call to the
DdeConnectList function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORRemarksAn application can use the DdeDisconnect function to terminate individual conversations in the
list.See AlsoDdeConnect, DdeConnectList, DdeDisconnect

DdeEnableCallback
The DdeEnableCallback function enables or disables transactions for a specific conversation or
for all conversations currently established by the calling application.

After disabling transactions for a conversation, the operating system places the transactions for
that conversation in a transaction queue associated with the application. The application should
reenable the conversation as soon as possible to avoid losing queued transactions.

BOOL DdeEnableCallback(
DWORD idInst, // instance identifier
HCONV hConv, // handle to conversation
UINT wCmd // enable or disable function code

);ParametersidInst
Specifies the application-instance identifier obtained by a previous call to the DdeInitialize
function.

hConv
Identifies the conversation to enable or disable. If this parameter is NULL, the function affects
all conversations.

wCmd
Specifies the function code. This parameter can be one of the following values:

Value Meaning
EC_ENABLEALL Enables all transactions for the specified

conversation.
EC_ENABLEONE Enables one transaction for the specified

conversation.
EC_DISABLE Disables all blockable transactions for the

specified conversation.
A server application can disable the
following transactions:
XTYP_ADVSTART
XTYP_ADVSTOP
XTYP_EXECUTE
XTYP_POKE
XTYP_REQUEST
A client application can disable the following
transactions:
XTYP_ADVDATA
XTYP_XACT_COMPLETE

EC_QUERYWAITING Determines whether any transactions are in
the queue for the specified conversation.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

If the wCmd parameter is EC_QUERYWAITING, and the application transaction queue contains
one or more unprocessed transactions that are not being processed, the return value is TRUE;
otherwise, it is FALSE.ErrorsUse the DdeGetLastError function to retrieve the error code, which may be one of the following:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_ERROR

DMLERR_INVALIDPARAMETERRemarksAn application can disable transactions for a specific conversation by returning the CBR_BLOCK
return code from its dynamic data exchange (DDE) callback function. When you reenable the
conversation by using the DdeEnableCallback function, the operating system generates the
same transaction that was in process when the conversation was disabled.

Using the EC_QUERYWAITING flag does not change the enable state of the conversation and
does not cause transactions to be issued within the context of the call to DdeEnableCallback.

If DdeEnableCallback is called with EC_QUERYWAITING and the return value is TRUE, an
application should try to quickly allow message processing, return from its callback, or enable
callbacks. Such a result does not guarantee that subsequent callbacks will be made. Calling
DdeEnableCallback with EC_QUERYWAITING lets an application with blocked callbacks
determine whether there are any transactions pending on the blocked conversation. Of course,
even if such a call returns false, an application should always process messages in a timely
manner.See AlsoDdeConnect, DdeConnectList, DdeDisconnect, DdeInitialize

DdeFreeDataHandle
The DdeFreeDataHandle function frees a dynamic data exchange (DDE) object and deletes the
data handle associated with the object.

BOOL DdeFreeDataHandle(
HDDEDATA hData // handle to DDE object

);ParametershData
Identifies the DDE object to be freed. This handle must have been created by a previous call
to the DdeCreateDataHandle function or returned by the DdeClientTransaction function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORRemarksAn application must call DdeFreeDataHandle under the following circumstances:

· To free a DDE object that the application allocated by calling the DdeCreateDataHandle
function if the object's data handle was never passed by the application to another Dynamic
Data Exchange Management Library (DDEML) function

· To free a DDE object that the application allocated by specifying the
HDATA_APPOWNED flag in a call to DdeCreateDataHandle

· To free a DDE object whose handle the application received from the
DdeClientTransaction function

The system automatically frees an unowned object when its handle is returned by a DDE callback
function or is used as a parameter in a DDEML function.See AlsoDdeAccessData, DdeCreateDataHandle, DdeClientTransaction

DdeFreeStringHandle
The DdeFreeStringHandle function frees a string handle in the calling application.

BOOL DdeFreeStringHandle(
DWORD idInst, // instance identifier
HSZ hsz // handle to string

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hsz
Identifies the string handle to be freed. This handle must have been created by a previous call
to the DdeCreateStringHandle function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn application can free string handles it creates with DdeCreateStringHandle but should not free
those that the system passed to the application's dynamic data exchange (DDE) callback function
or those returned in the CONVINFO structure by the DdeQueryConvInfo function.See AlsoCONVINFO, DdeCmpStringHandles, DdeCreateStringHandle, DdeInitialize,
DdeKeepStringHandle, DdeQueryConvInfo, DdeQueryString

DdeGetData
The DdeGetData function copies data from the specified dynamic data exchange (DDE) object to
the specified local buffer.

DWORD DdeGetData(
HDDEDATA hData, // handle to DDE object
LPBYTE pDst, // pointer to destination buffer
DWORD cbMax, // amount of data to copy
DWORD cbOff // offset to beginning of data

);ParametershData
Identifies the DDE object that contains the data to copy.

pDst
Points to the buffer that receives the data. If this parameter is NULL, the DdeGetData function
returns the amount of data, in bytes, that would be copied to the buffer.

cbMax
Specifies the maximum amount of data, in bytes, to copy to the buffer pointed to by the pDst
parameter. Typically, this parameter specifies the length of the buffer pointed to by pDst.

cbOff
Specifies an offset within the DDE object. Data is copied from the object beginning at this
offset.

Return ValuesIf the pDst parameter points to a buffer, the return value is the size, in bytes, of the memory object
associated with the data handle or the size specified in the cbMax parameter, whichever is lower.

If the pDst parameter is NULL, the return value is the size, in bytes, of the memory object
associated with the data handle.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORSee AlsoDdeAccessData, DdeCreateDataHandle, DdeFreeDataHandle

DdeGetLastError
The DdeGetLastError function returns the most recent error code set by the failure of a Dynamic
Data Exchange Management Library (DDEML) function and resets the error code to
DMLERR_NO_ERROR.

UINT DdeGetLastError(
DWORD idInst // instance identifier

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

Return ValuesIf the function succeeds, the return value is the last error code. Following are the possible DDEML
error codes:

Value Meaning

DMLERR_ADVACKTIMEOUT A request for a synchronous advise
transaction has timed out.

DMLERR_BUSY The response to the transaction
caused the DDE_FBUSY flag to be
set.

DMLERR_DATAACKTIMEOUT A request for a synchronous data
transaction has timed out.

DMLERR_DLL_NOT_INITIALIZEDA DDEML function was called
without first calling the DdeInitialize
function, or an invalid instance
identifier was passed to a DDEML
function.

DMLERR_DLL_USAGE An application initialized as
APPCLASS_MONITOR has
attempted to perform a dynamic
data exchange (DDE) transaction,
or an application initialized as
APPCMD_CLIENTONLY has
attempted to perform server
transactions.

DMLERR_EXECACKTIMEOUT A request for a synchronous
execute transaction has timed out.

DMLERR_INVALIDPARAMETER A parameter failed to be validated
by the DDEML. Some of the
possible causes follow:
The application used a data handle
initialized with a different item name
handle than was required by the
transaction.
The application used a data handle
that was initialized with a different
clipboard data format than was
required by the transaction.
The application used a client-side
conversation handle with a server-
side function or vice versa.
The application used a freed data
handle or string handle.
More than one instance of the
application used the same object.

DMLERR_LOW_MEMORY A DDEML application has created a
prolonged race condition (in which
the server application outruns the
client), causing large amounts of
memory to be consumed.

DMLERR_MEMORY_ERROR A memory allocation has failed.
DMLERR_NO_CONV_ESTABLISHEDA client's attempt to establish a

conversation has failed.
DMLERR_NOTPROCESSED A transaction has failed.
DMLERR_POKEACKTIMEOUT A request for a synchronous poke

transaction has timed out.
DMLERR_POSTMSG_FAILED An internal call to the

PostMessage function has failed.
DMLERR_REENTRANCY An application instance with a

synchronous transaction already in
progress attempted to initiate
another synchronous transaction, or
the DdeEnableCallback function
was called from within a DDEML
callback function.

DMLERR_SERVER_DIED A server-side transaction was
attempted on a conversation
terminated by the client, or the
server terminated before
completing a transaction.

DMLERR_SYS_ERROR An internal error has occurred in the
DDEML.

DMLERR_UNADVACKTIMEOUT A request to end an advise
transaction has timed out.

DMLERR_UNFOUND_QUEUE_IDAn invalid transaction identifier was
passed to a DDEML function. Once
the application has returned from
an XTYP_XACT_COMPLETE
callback, the transaction identifier
for that callback function is no
longer valid.

See AlsoDdeEnableCallback, DdeInitialize, PostMessage

DdeImpersonateClient
The DdeImpersonateClient function impersonates a dynamic data exchange (DDE) client
application in a DDE client conversation.

BOOL DdeImpersonateClient(
HCONV hConv // handle to DDE conversation

);ParametershConv
Identifies the DDE client conversation to be impersonated.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksImpersonation is the ability of a process to take on the security attributes of another process.
When a client in a DDE conversation requests information from a DDE server, the server
impersonates the client. When the server requests access to an object, the system verifies the
access against the client's security attributes.

When the impersonation is complete, the server normally calls the RevertToSelf function.See AlsoImpersonateNamedPipeClient, RevertToSelf

DdeInitialize
The DdeInitialize function registers an application with the Dynamic Data Exchange Management
Library (DDEML). An application must call this function before calling any other DDEML function.

UINT DdeInitialize(
LPDWORD pidInst, // pointer to instance identifier
PFNCALLBACK pfnCallback, // pointer to callback function
DWORD afCmd, // set of command and filter flags
DWORD ulRes // reserved

);ParameterspidInst
Points to the application instance identifier. At initialization, this parameter should point to 0. If
the function succeeds, this parameter points to the instance identifier for the application. This
value should be passed as the idInst parameter in all other DDEML functions that require it. If
an application uses multiple instances of the DDEML dynamic-link library (DLL), the
application should provide a different callback function for each instance.
If pidInst points to a nonzero value, reinitialization of the DDEML is implied. In this case,
pidInst must point to a valid application-instance identifier.

pfnCallback
Points to the application-defined dynamic data exchange (DDE) callback function. This
function processes DDE transactions sent by the system. For more information, see the
DdeCallback callback function.

afCmd
Specifies a set of APPCMD_, CBF_, and MF_ flags. The APPCMD_ flags provide special
instructions to DdeInitialize. The CBF_ flags specify filters that prevent specific types of
transactions from reaching the callback function. The MF_ flags specify the types of DDE
activity that a DDE monitoring application monitors. Using these flags enhances the
performance of a DDE application by eliminating unnecessary calls to the callback function.
This parameter can be a combination of the following filter flags:

Flag Meaning
APPCLASS_MONITOR Makes it possible for the

application to monitor DDE
activity in the system. This flag is
for use by DDE monitoring
applications. The application
specifies the types of DDE
activity to monitor by combining
one or more monitor flags with
the APPCLASS_MONITOR flag.
For details, see the following
Remarks section.

APPCLASS_STANDARD Registers the application as a
standard (nonmonitoring)
DDEML application.

APPCMD_CLIENTONLY Prevents the application from
becoming a server in a DDE
conversation. The application can
only be a client. This flag reduces
consumption of resources by the
DDEML. It includes the
functionality of the
CBF_FAIL_ALLSVRXACTIONS
flag.

APPCMD_FILTERINITS Prevents the DDEML from
sending XTYP_CONNECT and
XTYP_WILDCONNECT
transactions to the application
until the application has created
its string handles and registered
its service names or has turned

off filtering by a subsequent call
to the DdeNameService or
DdeInitialize function. This flag
is always in effect when an
application calls DdeInitialize for
the first time, regardless of
whether the application specifies
the flag. On subsequent calls to
DdeInitialize, not specifying this
flag turns off the application's
service-name filters, but
specifying it turns on the
application's service name filters.

CBF_FAIL_ALLSVRXACTIONS Prevents the callback function
from receiving server
transactions. The system returns
DDE_FNOTPROCESSED to
each client that sends a
transaction to this application.
This flag is equivalent to
combining all CBF_FAIL_ flags.

CBF_FAIL_ADVISES Prevents the callback function
from receiving
XTYP_ADVSTART and
XTYP_ADVSTOP transactions.
The system returns
DDE_FNOTPROCESSED to
each client that sends an
XTYP_ADVSTART or
XTYP_ADVSTOP transaction to
the server.

CBF_FAIL_CONNECTIONS Prevents the callback function
from receiving XTYP_CONNECT
and XTYP_WILDCONNECT
transactions.

CBF_FAIL_EXECUTES Prevents the callback function
from receiving XTYP_EXECUTE
transactions. The system returns
DDE_FNOTPROCESSED to a
client that sends an
XTYP_EXECUTE transaction to
the server.

CBF_FAIL_POKES Prevents the callback function
from receiving XTYP_POKE
transactions. The system returns
DDE_FNOTPROCESSED to a
client that sends an XTYP_POKE
transaction to the server.

CBF_FAIL_REQUESTS Prevents the callback function
from receiving XTYP_REQUEST
transactions. The system returns
DDE_FNOTPROCESSED to a
client that sends an
XTYP_REQUEST transaction to
the server.

CBF_FAIL_SELFCONNECTIONS Prevents the callback function
from receiving XTYP_CONNECT
transactions from the
application's own instance. This
flag prevents an application from
establishing a DDE conversation
with its own instance. An
application should use this flag if

it needs to communicate with
other instances of itself but not
with itself.

CBF_SKIP_ALLNOTIFICATIONS Prevents the callback function
from receiving any notifications.
This flag is equivalent to
combining all CBF_SKIP_ flags.

CBF_SKIP_CONNECT_CONFIRMSPrevents the callback function
from receiving
XTYP_CONNECT_CONFIRM
notifications.

CBF_SKIP_DISCONNECTS Prevents the callback function
from receiving
XTYP_DISCONNECT
notifications.

CBF_SKIP_REGISTRATIONS Prevents the callback function
from receiving XTYP_REGISTER
notifications.

CBF_SKIP_UNREGISTRATIONS Prevents the callback function
from receiving
XTYP_UNREGISTER
notifications.

MF_CALLBACKS Notifies the callback function
whenever a transaction is sent to
any DDE callback function in the
system.

MF_CONV Notifies the callback function
whenever a conversation is
established or terminated.

MF_ERRORS Notifies the callback function
whenever a DDE error occurs.

MF_HSZ_INFO Notifies the callback function
whenever a DDE application
creates, frees, or increments the
usage count of a string handle or
whenever a string handle is freed
as a result of a call to the
DdeUninitialize function.

MF_LINKS Notifies the callback function
whenever an advise loop is
started or ended.

MF_POSTMSGS Notifies the callback function
whenever the system or an
application posts a DDE
message.

MF_SENDMSGS Notifies the callback function
whenever the system or an
application sends a DDE
message.

ulRes
Reserved; must be set to zero.

Return ValuesIf the function succeeds, the return value is DMLERR_NO_ERROR.

If the function fails, the return value is one of the following values:
DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER

DMLERR_SYS_ERRORRemarksAn application that uses multiple instances of the DDEML must not pass DDEML objects between
instances.

A DDE monitoring application should not attempt to perform DDE operations (establish
conversations, issue transactions, and so on) within the context of the same application instance.

A synchronous transaction fails with a DMLERR_REENTRANCY error if any instance of the same
task has a synchronous transaction already in progress.

The CBF_FAIL_ALLSVRACTIONS flag causes the DDEML to filter all server transactions and can
be changed by a subsequent call to DdeInitialize. The APPCMD_CLIENTONLY flag prevents the
DDEML from creating key resources for the server and cannot be changed by a subsequent call
to DdeInitialize.

There is an ANSI version and a Unicode version of DdeInitialize. The version called determines
the type of the window procedures used to control DDE conversations (ANSI or Unicode), and the
default value for the iCodePage member of the CONVCONTXT structure (CP_WINANSI or
CP_WINUNICODE).See AlsoDdeClientTransaction, DdeConnect, DdeCreateDataHandle, DdeEnableCallback,
DdeNameService, DdePostAdvise, DdeUninitialize XTYP_ADVSTART, XTYP_ADVSTOP,
XTYP_CONNECT, XTYP_CONNECT_CONFIRM, XTYP_DISCONNECT, XTYP_EXECUTE,
XTYP_POKE, XTYP_REGISTER, XTYP_REQUEST, XTYP_WILDCONNECT

DdeKeepStringHandle
The DdeKeepStringHandle function increments the usage count associated with the specified
handle. This function enables an application to save a string handle passed to the application's
dynamic data exchange (DDE) callback function. Otherwise, a string handle passed to the
callback function is deleted when the callback function returns. This function should also be used
to keep a copy of a string handle referenced by the CONVINFO structure returned by the
DdeQueryConvInfo function.

BOOL DdeKeepStringHandle(
DWORD idInst, // instance identifier
HSZ hsz // handle to string

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hsz
Identifies the string handle to be saved.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoCONVINFO, DdeCreateStringHandle, DdeFreeStringHandle, DdeInitialize,
DdeQueryConvInfo, DdeQueryString

DdeNameService
The DdeNameService function registers or unregisters the service names a dynamic data
exchange (DDE) server supports. This function causes the system to send XTYP_REGISTER or
XTYP_UNREGISTER transactions to other running Dynamic Data Exchange Management Library
(DDEML) client applications.

A server application should call this function to register each service name that it supports and to
unregister names it previously registered but no longer supports. A server should also call this
function to unregister its service names just before terminating.

HDDEDATA DdeNameService(
DWORD idInst, // instance identifier
HSZ hsz1, // handle to service name string
HSZ hsz2, // reserved
UINT afCmd // service name flags

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hsz1
Identifies the string that specifies the service name the server is registering or unregistering.
An application that is unregistering all of its service names should set this parameter to 0L.

hsz2
Reserved; should be set to 0L.

afCmd
Specifies the service name flags. This parameter can be one of the following flags:

Flag Meaning
DNS_REGISTER Registers the error code service name.
DNS_UNREGISTER Unregisters the error code service name. If

the hsz1 parameter is 0L, all service names
registered by the server will be unregistered.

DNS_FILTERON Turns on service name initiation filtering. The
filter prevents a server from receiving
XTYP_CONNECT transactions for service
names it has not registered. This is the default
setting for this filter.
If a server application does not register any
service names, the application cannot receive
XTYP_WILDCONNECT transactions.

DNS_FILTEROFF Turns off service name initiation filtering. If
this flag is specified, the server receives an
XTYP_CONNECT transaction whenever
another DDE application calls the
DdeConnect function, regardless of the
service name.

Return ValuesIf the funcion succeeds, it returns a nonzero value. That value is not a true HDDEDATA value,
merely a Boolean indicator of success. The function is typed HDDEDATA to allow for possible
future expansion of the function and a more sophisticated return value.

If the function fails, the return value is 0L.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORRemarksThe service name identified by the hsz1 parameter should be a base name (that is, the name
should contain no instance-specific information). The system generates an instance-specific name
and sends it along with the base name during the XTYP_REGISTER and XTYP_UNREGISTER
transactions. The receiving applications can then connect to the specific application instance.

See AlsoDdeConnect, DdeConnectList, DdeInitialize, XTYP_REGISTER, XTYP_UNREGISTER

DdePostAdvise
The DdePostAdvise function causes the system to send an XTYP_ADVREQ transaction to the
calling (server) application's dynamic data exchange (DDE) callback function for each client with
an active advise loop on the specified topic and item. A server application should call this function
whenever the data associated with the topic name or item name pair changes.

BOOL DdePostAdvise(
DWORD idInst, // instance identifier
HSZ hszTopic, // handle to topic name string
HSZ hszItem // handle to item name string

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hszTopic
Identifies a string that specifies the topic name. To send notifications for all topics with active
advise loops, an application can set this parameter to 0L.

hszItem
Identifies a string that specifies the item name. To send notifications for all items with active
advise loops, an application can set this parameter to 0L.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_DLL_USAGE

DMLERR_NO_ERRORRemarksA server that has nonenumerable topics or items should set the hszTopic and hszItem parameters
to NULL so that the system generates transactions for all active advise loops. The server's DDE
callback function returns NULL for any advise loops that must not be updated.

If a server calls DdePostAdvise with a topic, item, and format name set that includes the set
currently being handled in an XTYP_ADVREQ callback, a stack overflow may result.See AlsoDdeInitialize, XTYP_ADVREQ

DdeQueryConvInfo
The DdeQueryConvInfo function obtains information about a dynamic data exchange (DDE)
transaction and about the conversation in which the transaction takes place.

UINT DdeQueryConvInfo(
HCONV hConv, // handle to conversation
DWORD idTransaction, // transaction identifier
PCONVINFO pConvInfo // pointer to structure with conversation data

);ParametershConv
Identifies the conversation.

idTransaction
Specifies the transaction. For asynchronous transactions, this parameter should be a
transaction identifier returned by the DdeClientTransaction function. For synchronous
transactions, this parameter should be QID_SYNC.

pConvInfo
Points to the CONVINFO structure that receives information about the transaction and
conversation. The cb member of the CONVINFO structure must specify the length of the
buffer allocated for the structure.

Return ValuesIf the function succeeds, the return value is the number of bytes copied into the CONVINFO
structure.

If the function fails, the return value is FALSE.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_NO_CONV_ESTABLISHED
DMLERR_NO_ERROR

DMLERR_UNFOUND_QUEUE_IDRemarksAn application should not free a string handle referenced by the CONVINFO structure. If an
application must use one of these string handles, it should call the DdeKeepStringHandle
function to create a copy of the handle.

If the idTransaction parameter is set to QID_SYNC, the hUser member of the CONVINFO
structure is associated with the conversation and can be used to hold data associated with the
conversation. If idTransaction is the identifier of an asynchronous transaction, the hUser member
is associated only with the current transaction and is valid only for the duration of the transaction.See AlsoCONVINFO, DdeClientTransaction, DdeConnect, DdeConnectList, DdeKeepStringHandle,
DdeQueryNextServer

DdeQueryNextServer
The DdeQueryNextServer function obtains the next conversation handle in the specified
conversation list.

HCONV DdeQueryNextServer(
HCONVLIST hConvList, // handle to conversation list
HCONV hConvPrev // previous conversation handle

);ParametershConvList
Identifies the conversation list. This handle must have been created by a previous call to the
DdeConnectList function.

hConvPrev
Identifies the conversation handle previously returned by this function. If this parameter is 0L,
the function returns the first conversation handle in the list.

Return ValuesIf the list contains any more conversation handles, the return value is the next conversation
handle in the list; otherwise, it is 0L.See AlsoDdeConnectList, DdeDisconnectList

DdeQueryString
The DdeQueryString function copies text associated with a string handle into a buffer.

DWORD DdeQueryString(
DWORD idInst, // instance identifier
HSZ hsz, // handle to string
LPTSTR psz, // pointer to destination buffer
DWORD cchMax, // length of buffer
int iCodePage // code page identifier

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

hsz
Identifies the string to copy. This handle must have been created by a previous call to the
DdeCreateStringHandle function.

psz
Points to a buffer that receives the string. To obtain the length of the string, this parameter
should be set to NULL.

cchMax
Specifies the length, in characters, of the buffer pointed to by the psz parameter. If the string
is longer than (cchMax - 1), it will be truncated. If the psz parameter is set to NULL, this
parameter is ignored.

iCodePage
Specifies the code page used to render the string. This value should be either CP_WINANSI
or CP_WINUNICODE.

Return ValuesIf the psz parameter specified a valid pointer, the return value is the length, in characters, of the
returned text (not including the terminating null character). If the psz parameter specified a NULL
pointer, the return value is the length of the text associated with the hsz parameter (not including
the terminating null character). If an error occurs, the return value is 0L.RemarksThe string returned in the buffer is always null-terminated. If the string is longer than (cchMax - 1)
, only the first (cchMax - 1) characters of the string are copied.

If the psz parameter is NULL, the DdeQueryString function obtains the length, in bytes, of the
string associated with the string handle. The length does not include the terminating null
character.See AlsoDdeCmpStringHandles, DdeCreateStringHandle, DdeFreeStringHandle, DdeInitialize

DdeReconnect
The DdeReconnect function allows a client Dynamic Data Exchange Management Library
(DDEML) application to attempt to reestablish a conversation with a service that has terminated a
conversation with the client. When the conversation is reestablished, the DDEML attempts to
reestablish any preexisting advise loops.

HCONV DdeReconnect(
HCONV hConv // handle to conversation to reestablish

);ParametershConv
Identifies the conversation to be reestablished. A client must have obtained the conversation
handle by a previous call to the DdeConnect function or from an XTYP_DISCONNECT
transaction.

Return ValuesIf the function succeeds, the return value is the handle to the reestablished conversation.

If the function fails, the return value is 0L.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_CONV_ESTABLISHED

DMLERR_NO_ERRORSee AlsoDdeConnect, DdeDisconnect

DdeSetQualityOfService
The DdeSetQualityOfService function specifies the quality of service a raw DDE application
desires for future DDE conversations it initiates. The specified quality of service applies to any
conversations started while those settings are in place. A DDE conversation's quality of service
lasts for the duration of the conversation; calls to the DdeSetQualityOfService function during a
given conversation do not affect that conversation's quality of service.

BOOL DdeSetQualityOfService(
HWND hwndClient, // handle to DDE client window that will start DDE conversations
CONST SECURITY_QUALITY_OF_SERVICE *pqosNew, // desired quality of service
PSECURITY_QUALITY_OF_SERVICE pqosPrev // prior quality of service

);ParametershwndClient
Identifies the DDE client window that specifies the source of WM_DDE_INITIATE messages a
client will send to start DDE conversations.

pqosNew
Points to a SECURITY_QUALITY_OF_SERVICE structure for the desired quality of service
values.

pqosPrev
Points to a SECURITY_QUALITY_OF_SERVICE structure that the function will fill with the
previous quality of service values associated with the window identified by hwndClient.
This parameter is optional. If an application has no interest in hwndClient's previous qos
values, it should set pqosPrev to NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a quality of service has not been specified for a given client window, hwndClient, prior to
sending a WM_DDE_INITIATE with the wParam set to hwndClient, the system uses the following
default quality of service values for the client window:{

Length = sizeof(SECURITY_QUALITY_OF_SERVICE);
ImpersonationLevel = SecurityImpersonation;
ContextTrackingMode = SECURITY_STATIC_TRACKING;
EffectiveOnly = TRUE;

}Use the DdeSetQualityOfService function to associate a different quality of service with the client
window. Once you change the quality of service, the new settings affect any subsequent
conversations that are started. Once an application starts a DDE conversation using a particular
quality of service value, it must terminate the conversation and restart the conversation in order to
have a different value take effect.See AlsoSECURITY_QUALITY_OF_SERVICE, WM_DDE_INITIATE

DdeSetUserHandle
The DdeSetUserHandle function associates an application-defined 32-bit value with a
conversation handle or a transaction identifier. This is useful for simplifying the processing of
asynchronous transactions. An application can use the DdeQueryConvInfo function to retrieve
this value.

BOOL DdeSetUserHandle(
HCONV hConv, // handle to conversation
DWORD id, // transaction identifier
DWORD hUser // handle to application-defined value

);ParametershConv
Identifies the conversation.

id
Specifies the transaction identifier to associate with the value specified by the hUser
parameter. An application should set this parameter to QID_SYNC to associate hUser with
the conversation identified by the hConv parameter.

hUser
Identifies the value to associate with the conversation handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER
DMLERR_NO_ERROR

DMLERR_UNFOUND_QUEUE_IDSee AlsoDdeQueryConvInfo

DdeUnaccessData
The DdeUnaccessData function unaccesses a dynamic data exchange (DDE) object. An
application must call this function after it has finished accessing the object.

BOOL DdeUnaccessData(
HDDEDATA hData // handle to DDE object

);ParametershData
Identifies the DDE object.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.ErrorsThe DdeGetLastError function can be used to get the error code, which may be one of the
following values:
DMLERR_DLL_NOT_INITIALIZED
DMLERR_INVALIDPARAMETER

DMLERR_NO_ERRORSee AlsoDdeAccessData, DdeAddData, DdeCreateDataHandle, DdeFreeDataHandle

DdeUninitialize
The DdeUninitialize function frees all Dynamic Data Exchange Management Library (DDEML)
resources associated with the calling application.

BOOL DdeUninitialize(
DWORD idInst // instance identifier

);ParametersidInst
Specifies the application instance identifier obtained by a previous call to the DdeInitialize
function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksDdeUninitialize terminates any conversations currently open for the application.See AlsoDdeDisconnect, DdeDisconnectList, DdeInitialize

DebugActiveProcess
The DebugActiveProcess function allows a debugger to attach to an active process and then
debug it.

BOOL DebugActiveProcess(
DWORD dwProcessId // process to be debugged

);ParametersdwProcessId
Specifies the identifier for the process to be debugged. The debugger gets debugging access
to the process as if it created the process with the DEBUG_ONLY_THIS_PROCESS flag.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe debugger must have appropriate access to the target process; it must be able to open the
process for PROCESS_ALL_ACCESS access. In the Win32 application programming interface
(API) for Windows 95, this is always true if the process identifier is valid. However, in the Win32
API for Windows NT, DebugActiveProcess can fail if the target process was created with a
security descriptor that denies the debugger appropriate access.

After the system checks the process identifier and determines that a valid debugging attachment
is being made, the function returns TRUE. The debugger is then expected to wait for debugging
events by using the WaitForDebugEvent function. The system suspends all threads in the
process and sends the debugger events representing the current state of the process.

The system sends the debugger a single CREATE_PROCESS_DEBUG_EVENT debugging event
representing the process specified by the dwProcessId parameter. The lpStartAddress member
of the CREATE_PROCESS_DEBUG_INFO structure is NULL.

For each thread currently part of the process, the system sends a
CREATE_THREAD_DEBUG_EVENT debugging event. The lpStartAddress member of the
CREATE_THREAD_DEBUG_INFO structure is NULL.

For each dynamic-link library (DLL) currently loaded into the address space of the target process,
the system sends a LOAD_DLL_DEBUG_EVENT debugging event. The system arranges for the
first thread in the process to execute a breakpoint instruction after it resumes. Continuing this
thread causes it to return to whatever it was doing before the debugger was attached.

After all of this has been done, the system resumes all threads in the process. When the first
thread in the process resumes, it executes a breakpoint instruction that causes an
EXCEPTION_DEBUG_EVENT debugging event to be sent to the debugger. All future debugging
events are sent to the debugger by using the normal mechanism and rules.See AlsoCreateProcess, CREATE_PROCESS_DEBUG_INFO, CREATE_THREAD_DEBUG_INFO,
WaitForDebugEvent

DebugBreak
The DebugBreak function causes a breakpoint exception to occur in the current process so that
the calling thread can signal the debugger and force it to take some action. If the process is not
being debugged, the search logic of a standard exception handler is used. In most cases, this
causes the calling process to terminate because of an unhandled breakpoint exception.

VOID DebugBreak(VOID)ParametersThis function has no parameters.Return ValuesThis function does not return a value.See AlsoDebugActiveProcess

DebugProc
The DebugProc hook procedure is an application-defined or library-defined callback function that
Windows calls before calling the hook procedures associated with any other type of hook. The
system passes information about the hook to be called to the DebugProc hook procedure, which
examines the information and determines whether to allow the hook to be called.

LRESULT CALLBACK DebugProc(
int nCode, // hook code
WPARAM wParam, // type of hook about to be called
LPARAM lParam // address of structure with debugging information

);ParametersnCode
Specifies whether the hook procedure must process the message. If nCode is HC_ACTION,
the hook procedure must process the message. If nCode is less than zero, the hook
procedure must pass the message to the CallNextHookEx function without further processing
and should return the value returned by CallNextHookEx.

wParam
Specifies the type of hook about to be called. This parameter can be one of the following
values:

Value Description
WH_CALLWNDPROC Installs a hook procedure that monitors

messages sent to a window procedure.
For more information, see the
description of the CallWndProc hook
procedure.

WH_CALLWNDPROCRET Installs a hook procedure that monitors
messages that have just been
processed by a window procedure. For
more information, see the description
of the CallWndRetProc hook
procedure.

WH_CBT Installs a hook procedure that receives
notifications useful to a computer-
based training (CBT) application. For
more information, see the description
of the CBTProc hook procedure.

WH_DEBUG Installs a hook procedure useful for
debugging other hook procedures. For
more information, see the description
of the DebugProc hook procedure.

WH_GETMESSAGE Installs a hook procedure that monitors
messages posted to a message queue.
For more information, see the
description of the GetMsgProc hook
procedure.

WH_JOURNALPLAYBACK Installs a hook procedure that posts
messages previously recorded by a
WH_JOURNALRECORD hook
procedure. For more information, see
the description of the
JournalPlaybackProc hook
procedure.

WH_JOURNALRECORD Installs a hook procedure that records
input messages posted to the system
message queue. This hook is useful for
recording macros. For more
information, see the description of the
JournalRecordProc hook procedure.

WH_KEYBOARD Installs a hook procedure that monitors
keystroke messages. For more

information, see the description of the
KeyboardProc hook procedure.

WH_MOUSE Installs a hook procedure that monitors
mouse messages. For more
information, see the description of the
MouseProc hook procedure.

WH_MSGFILTER Installs a hook procedure that monitors
messages generated as a result of an
input event in a dialog box, message
box, menu, or scroll bar. The hook
procedure monitors these messages
only for the application that installed
the hook procedure. For more
information, see the description of the
MessageProc hook procedure.

WH_SHELL Installs a hook procedure that receives
notifications useful to a shell
application. For more information, see
the description of the ShellProc hook
procedure.

WH_SYSMSGFILTER Installs a hook procedure that monitors
messages generated as a result of an
input event in a dialog box, message
box, menu, or scroll bar. The hook
procedure monitors these messages
for all applications in the system. For
more information, see the description
of the SysMsgProc hook procedure.

lParam
Points to a DEBUGHOOKINFO structure that contains the parameters to be passed to the
destination hook procedure.Return ValuesTo prevent the system from calling the hook, the return value must be a nonzero value.

Otherwise, the hook procedure must pass the hook information to the CallNextHookEx function.RemarksAn application installs this hook procedure by specifying the WH_DEBUG hook type and the
pointer to the hook procedure in a call to the SetWindowsHookEx function.

CallWndProc and CallWndRetProc are placeholders for the application-defined or library-
defined function names.See AlsoCallNextHookEx, CallWndProc, CallWndRetProc, CBTProc, DEBUGHOOKINFO,
GetMsgProc, JournalPlaybackProc, JournalRecordProc, KeyboardProc, MessageProc,
MouseProc, SetWindowsHookEx, ShellProc, SysMsgProc

DefDlgProc
The DefDlgProc function carries out default message processing for a window procedure
belonging to an application-defined dialog box class.

LRESULT DefDlgProc(
HWND hDlg, // handle to dialog box
UINT Msg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershDlg
Identifies the dialog box.

Msg
Specifies the message number.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message
sent.RemarksThe DefDlgProc function is the window procedure for the predefined class of dialog box. This
procedure provides internal processing for the dialog box by forwarding messages to the dialog
box procedure and carrying out default processing for any messages that the dialog box
procedure returns as FALSE. Applications that create custom window procedures for their custom
dialog boxes often use DefDlgProc instead of the DefWindowProc function to carry out default
message processing.

Applications create custom dialog box classes by filling a WNDCLASS structure with appropriate
information and registering the class with the RegisterClass function. Some applications fill the
structure by using the GetClassInfo function, specifying the name of the predefined dialog box. In
such cases, the applications modify at least the lpszClassName member before registering. In all
cases, the cbWndExtra member of WNDCLASS for a custom dialog box class must be set to at
least DLGWINDOWEXTRA.

The DefDlgProc function must not be called by a dialog box procedure; doing so results in
recursive execution.See AlsoDefWindowProc, GetClassInfo, RegisterClass, WNDCLASS

DeferWindowPos
The DeferWindowPos function updates the specified multiple-window - position structure for the
specified window. The function then returns the handle to the updated structure. The
EndDeferWindowPos function uses the information in this structure to change the position and
size of a number of windows simultaneously. The BeginDeferWindowPos function creates the
structure.

HDWP DeferWindowPos(
HDWP hWinPosInfo, // handle to internal structure
HWND hWnd, // handle to window to position
HWND hWndInsertAfter, // placement-order handle
int x, // horizontal position
int y, // vertical position
int cx, // width
int cy, // height
UINT uFlags // window-positioning flags

);ParametershWinPosInfo
Identifies a multiple-window - position structure that contains size and position information for
one or more windows. This structure is returned by BeginDeferWindowPos or by the most
recent call to DeferWindowPos.

hWnd
Identifies the window for which update information is stored in the structure.

hWndInsertAfter
Identifies the window that precedes the positioned window in the Z order. This parameter
must be a window handle or one of the following values:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z

order. If the hWnd parameter identifies a
topmost window, the window loses its
topmost status and is placed at the bottom
of all other windows.

HWND_NOTOPMOST Places the window above all non-topmost
windows (that is, behind all topmost
windows). This flag has no effect if the
window is already a non-topmost window.

HWND_TOP Places the window at the top of the Z order.
HWND_TOPMOST Places the window above all non-topmost

windows. The window maintains its
topmost position even when it is
deactivated.

This parameter is ignored if the SWP_NOZORDER flag is set in the uFlags parameter.
x

Specifies the x-coordinate of the window's upper-left corner.
y

Specifies the y-coordinate of the window's upper-left corner.
cx

Specifies the window's new width, in pixels.
cy

Specifies the window's new height, in pixels.
uFlags

Specifies a combination of the following values that affect the size and position of the window:
Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the window's

class description) around the window.
SWP_FRAMECHANGED Sends a WM_NCCALCSIZE message to

the window, even if the window's size is

not being changed. If this flag is not
specified, WM_NCCALCSIZE is sent only
when the window's size is being
changed.

SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window. If this flag

is not set, the window is activated and
moved to the top of either the topmost or
non-topmost group (depending on the
setting of the hWndInsertAfter parameter)
.

SWP_NOCOPYBITS Discards the entire contents of the client
area. If this flag is not specified, the valid
contents of the client area are saved and
copied back into the client area after the
window is sized or repositioned.

SWP_NOMOVE Retains the current position (ignores the
X and Y parameters).

SWP_NOOWNERZORDER Does not change the owner window's
position in the Z order.

SWP_NOREDRAW Does not redraw changes. If this flag is
set, no repainting of any kind occurs. This
applies to the client area, the nonclient
area (including the title bar and scroll
bars), and any part of the parent window
uncovered as a result of the window
being moved. When this flag is set, the
application must explicitly invalidate or
redraw any parts of the window and
parent window that need redrawing.

SWP_NOREPOSITION Same as the SWP_NOOWNERZORDER
flag.

SWP_NOSENDCHANGING Prevents the window from receiving the
WM_WINDOWPOSCHANGING
message.

SWP_NOSIZE Retains the current size (ignores the cx
and cy parameters).

SWP_NOZORDER Retains the current Z order (ignores the
hWndInsertAfter parameter).

SWP_SHOWWINDOW Displays the window.
Return ValuesThe return value identifies the updated multiple-window - position structure. The handle returned

by this function may differ from the handle passed to the function. The new handle that this
function returns should be passed during the next call to the DeferWindowPos or
EndDeferWindowPos function.

If insufficient system resources are available for the function to succeed, the return value is NULL.RemarksIf a call to DeferWindowPos fails, the application should abandon the window-positioning
operation and not call EndDeferWindowPos.

If SWP_NOZORDER is not specified, Windows places the window identified by the hWnd
parameter in the position following the window identified by the hWndInsertAfter parameter. If
hWndInsertAfter is NULL or HWND_TOP, Windows places the hWnd window at the top of the Z
order. If hWndInsertAfter is set to HWND_BOTTOM, Windows places the hWnd window at the
bottom of the Z order.

All coordinates for child windows are relative to the upper-left corner of the parent window's client
area.

A window can be made a topmost window either by setting hWndInsertAfter to the
HWND_TOPMOST flag and ensuring that the SWP_NOZORDER flag is not set, or by setting the
window's position in the Z order so that it is above any existing topmost windows. When a non-
topmost window is made topmost, its owned windows are also made topmost. Its owners,
however, are not changed.

If neither the SWP_NOACTIVATE nor SWP_NOZORDER flag is specified (that is, when the
application requests that a window be simultaneously activated and its position in the Z order
changed), the value specified in hWndInsertAfter is used only in the following circumstances:

· Neither the HWND_TOPMOST nor HWND_NOTOPMOST flag is specified in
hWndInsertAfter.

· The window identified by hWnd is not the active window.
An application cannot activate an inactive window without also bringing it to the top of the Z order.
An application can change an activated window's position in the Z order without restrictions, or it
can activate a window and then move it to the top of the topmost or non-topmost windows.

A topmost window is no longer topmost if it is repositioned to the bottom (HWND_BOTTOM) of the
Z order or after any non-topmost window. When a topmost window is made non-topmost, its
owners and its owned windows are also made non-topmost windows.

A non-topmost window may own a topmost window, but not vice versa. Any window (for example,
a dialog box) owned by a topmost window is itself made a topmost window to ensure that all
owned windows stay above their owner.See AlsoBeginDeferWindowPos, EndDeferWindowPos, ShowWindow

DefFrameProc
The DefFrameProc function provides default processing for any window messages that the
window procedure of a multiple document interface (MDI) frame window does not process. All
window messages that are not explicitly processed by the window procedure must be passed to
the DefFrameProc function, not the DefWindowProc function.

LRESULT DefFrameProc(
HWND hWnd, // handle to MDI frame window
HWND hWndMDIClient, // handle to MDI client window
UINT uMsg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the MDI frame window.

hWndMDIClient
Identifies the MDI client window.

uMsg
Specifies the message to be processed.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message. If
the hWndMDIClient parameter is NULL, the return value is the same as for the DefWindowProc
function.RemarksWhen an application's window procedure does not handle a message, it typically passes the
message to the DefWindowProc function to process the message. MDI applications use the
DefFrameProc and DefMDIChildProc functions instead of DefWindowProc to provide default
message processing. All messages that an application would usually pass to DefWindowProc
(such as nonclient messages and the WM_SETTEXT message) should be passed to
DefFrameProc instead. The DefFrameProc function also handles the following messages:

Message Response

WM_COMMAND Activates the MDI child window that the user
chooses. This message is sent when the user
chooses an MDI child window from the Window
menu of the MDI frame window. The window
identifier accompanying this message identifies
the MDI child window to be activated.

WM_MENUCHAR Opens the window menu of the active MDI child
window when the user presses the ALT+ -
(minus) key combination.

WM_SETFOCUS Passes the keyboard focus to the MDI client
window, which in turn passes it to the active MDI
child window.

WM_SIZE Resizes the MDI client window to fit in the new
frame window's client area. If the frame window
procedure sizes the MDI client window to a
different size, it should not pass the message to
the DefWindowProc function.

See AlsoDefMDIChildProc, DefWindowProc, WM_SETTEXT

DefHookProc
The DefHookProc function is obsolete. It is provided only for compatibility with 16-bit versions of
Windows. Win32-based applications should use the CallNextHookEx function.

DefineDosDevice
The DefineDosDevice function lets an application define, redefine, or delete MS-DOS device
names.

MS-DOS device names are stored as symbolic links in the object name space in 32-bit versions of
Windows. The code that converts an MS-DOS path into a corresponding path in 32-bit versions of
Windows uses these symbolic links to map MS-DOS devices and drive letters. The
DefineDosDevice function provides a mechanism whereby a Win32-based application can modify
the symbolic links used to implement the MS-DOS device name space.

BOOL DefineDosDevice(
DWORD dwFlags, // flags specifying aspects of device definition
LPCTSTR lpDeviceName, // pointer to MS-DOS device name string
LPCTSTR lpTargetPath // pointer to MS-DOS or path string for 32-bit Windows

);ParametersdwFlags
Specifies several controllable aspects of the DefineDosDevice function. One or more of the
following values can be used:

Value Meaning
DDD_RAW_TARGET_PATH If this value is specified, the

function does not convert the
lpTargetPath string from an
MS-DOS path to a path for a
32-bit version of Windows, but
takes it as is.

DDD_REMOVE_DEFINITION If this value is specified, the
function removes the specified
definition for the specified
device. To determine which
definition to remove, the
function walks the list of
mappings for the device,
looking for a match of
lpTargetPath against a prefix
of each mapping associated
with this device. The first
mapping that matches is the
one removed, and then the
function returns.
If lpTargetPath is NULL or a
pointer to a NULL string, the
function will remove the first
mapping associated with the
device and pop the most
recent one pushed. If there is
nothing left to pop, the device
name will be removed.
If this value is NOT specified,
the string pointed to by the
lpTargetPath parameter will
become the new mapping for
this device.

DDD_EXACT_MATCH_ON_REMOVE If this value is specified along
with
DDD_REMOVE_DEFINITION,
the function will use an exact
match to determine which
mapping to remove. Use this
value to insure that you do not
delete something that you did
not define.

lpDeviceName
Points to an MS-DOS device name string specifying the device the function is defining,
redefining, or deleting. The device name string must not have a trailing colon, unless a drive
letter (C or D, for example) is being defined, redefined, or deleted.

lpTargetPath
Points to a path string that will implement this device. Points to an MS-DOS path string unless
the DDD_RAW_TARGET_PATH flag is specified, in which case this parameter points to a
path string for a 32-bit version of Windows.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAs stated in this function's introductory summary, the DefineDosDevice function provides a
means whereby a Win32-based application can create and modify the symbolic links used to
implement the MS-DOS device namespace. To retrieve the current mapping for a particular MS-
DOS device name or to obtain a list of all MS-DOS devices known to the system, use the
QueryDosDevice function.

MS-DOS Device names are global. Once defined, an MS-DOS device name remains visible to all
processes until either it is explicitly removed or the system reboots.

Note that drive letters and device names defined at system boot time are protected from
redefinition and deletion unless a user is running in administrative mode (ADMIN).See AlsoQueryDosDevice

DefineHandleTable
The DefineHandleTable function is obsolete. It is provided as a macro to simplify porting of 16-
bit Windows-based applications. It expands to TRUE after evaluating its argument. It has no other
effect.

DefMDIChildProc
The DefMDIChildProc function provides default processing for any window message that the
window procedure of a multiple document interface (MDI) child window does not process. A
window message not processed by the window procedure must be passed to the
DefMDIChildProc function, not to the DefWindowProc function.

LRESULT DefMDIChildProc(
HWND hWnd, // handle to MDI child window
UINT uMsg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the MDI child window.

uMsg
Specifies the message to be processed.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message.RemarksThe DefMDIChildProc function assumes that the parent window of the MDI child window
identified by the hWnd parameter was created with the MDICLIENT class.

When an application's window procedure does not handle a message, it typically passes the
message to the DefWindowProc function to process the message. MDI applications use the
DefFrameProc and DefMDIChildProc functions instead of DefWindowProc to provide default
message processing. All messages that an application would usually pass to DefWindowProc
(such as nonclient messages and the WM_SETTEXT message) should be passed to
DefMDIChildProc instead. In addition, DefMDIChildProc also handles the following messages:

Message Response

WM_CHILDACTIVATE Performs activation processing when MDI
child windows are sized, moved, or
displayed. This message must be passed.

WM_GETMINMAXINFO Calculates the size of a maximized MDI
child window, based on the current size of
the MDI client window.

WM_MENUCHAR Passes the message to the MDI frame
window.

WM_MOVE Recalculates MDI client scroll bars if they
are present.

WM_SETFOCUS Activates the child window if it is not the
active MDI child window.

WM_SIZE Performs operations necessary for
changing the size of a window, especially
for maximizing or restoring an MDI child
window. Failing to pass this message to the
DefMDIChildProc function produces highly
undesirable results.

WM_SYSCOMMAND Handles window menu commands:
SC_NEXTWINDOW, SC_PREVWINDOW,
SC_MOVE, SC_SIZE, and SC_MAXIMIZE.

See AlsoDefFrameProc, DefWindowProc, WM_CHILDACTIVATE, WM_GETMINMAXINFO,
WM_MENUCHAR, WM_MOVE, WM_SETFOCUS, WM_SETTEXT, WM_SIZE,
WM_SYSCOMMAND

DefScreenSaverProc
The DefScreenSaverProc function provides default processing for any messages that a screen
saver application does not process.

LONG DefScreenSaverProc(
HWND hWnd, // handle to screen saver window
UINT msg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the screen saver window.

msg
Specifies the message to be processed. The DefScreenSaverProc function responds to
messages that affect the screen saver's operation, as detailed in the Remarks section.
If a screen saver application must perform a different action in response to any of these
messages, the application's ScreenSaverProc window procedure should process the
message.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message
sent.RemarksA screen saver application's ScreenSaverProc window procedure should use
DefScreenSaverProc instead of the DefWindowProc function to provide default message
processing. The DefScreenSaverProc function passes any messages that do not affect screen
saver operation to DefWindowProc.

The following table describes how the DefScreenSaverProc processes a variety of window
messages:

Message Action

WM_ACTIVATE,
WM_ACTIVATEAPP,
WM_NCACTIVATE

Closes the screen saver if the
wParam parameter is FALSE. A
wParam value of FALSE indicates
that the screen saver is losing the
input focus. The screen saver is
closed by sending a WM_CLOSE
message.

WM_SETCURSOR Removes the cursor from the
screen by setting the cursor to
NULL.

WM_LBUTTONDOWN,
WM_RBUTTONDOWN,
WM_MBUTTONDOWN,
WM_KEYDOWN, WM_KEYUP,
WM_MOUSEMOVE

Calls the PostQuitMessage
function to close the screen saver.

WM_DESTROY Posts a WM_CLOSE message to
close the screen saver window.

WM_SYSCOMMAND Returns FALSE if the wParam
parameter of
WM_SYSCOMMAND is either
SC_CLOSE or
SC_SCREENSAVE.

See AlsoDefWindowProc, PostQuitMessage, ScreenSaverProc, WM_ACTIVATE, WM_ACTIVATEAPP,
WM_CLOSE, WM_DESTROY, WM_KEYDOWN, WM_KEYUP, WM_LBUTTONDOWN,
WM_MBUTTONDOWN, WM_MOUSEMOVE, WM_NCACTIVATE, WM_RBUTTONDOWN,
WM_SETCURSOR, WM_SYSCOMMAND

DefWindowProc
The DefWindowProc function calls the default window procedure to provide default processing
for any window messages that an application does not process. This function ensures that every
message is processed. DefWindowProc is called with the same parameters received by the
window procedure.

LRESULT DefWindowProc(
HWND hWnd, // handle to window
UINT Msg, // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the window procedure that received the message.

Msg
Specifies the message.

wParam
Specifies additional message information. The content of this parameter depends on the value
of the Msg parameter.

lParam
Specifies additional message information. The content of this parameter depends on the value
of the Msg parameter.

Return ValuesThe return value is the result of the message processing and depends on the message.See AlsoCallWindowProc, DefDlgProc, WindowProc

DeleteAce
The DeleteAce function deletes an ACE from an ACL.

An ACE is an access-control entry. An ACL is an access-control list.

BOOL DeleteAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceIndex // index of ACE position in ACL

);ParameterspAcl
Points to an ACL structure. The ACE specified by the dwAceIndex parameter is removed from
this ACL.

dwAceIndex
Specifies the ACE to delete. A value of 0 corresponds to the first ACE in the ACL, 1 to the
second ACE, and so on.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can use the ACL_SIZE_INFORMATION structure retrieved by the
GetAclInformation function to discover the size of the ACL and the number of ACEs it contains.
The GetAce function retrieves information about an individual ACE.See AlsoACL, ACL_SIZE_INFORMATION, AddAccessAllowedAce, AddAccessDeniedAce, AddAce,
AddAuditAccessAce, GetAce, GetAclInformation

DeleteAtom
The DeleteAtom function decrements the reference count of a local string atom. If the atom's
reference count is reduced to zero, DeleteAtom removes the string associated with the atom from
the local atom table.

ATOM DeleteAtom(
ATOM nAtom // atom to delete

);ParametersnAtom
Identifies the atom and character string to be deleted.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is the nAtom parameter. To get extended error information,
call GetLastError.RemarksA string atom's reference count specifies the number of times the atom has been added to or
removed from the atom table. The AddAtom function increments the count on each call. The
DeleteAtom function decrements the count on each call but removes the string only if the atom's
reference count is zero.

The only way to ensure that an atom has been deleted from the atom table is to call this function
repeatedly until it fails. When the reference count is reduced to zero, the next call to the
FindAtom or DeleteAtom function fails.

The DeleteAtom function has no effect on an integer atom (an atom created by using the
MAKEINTATOM macro). The function always returns zero for an integer atom.See AlsoAddAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom,
MAKEINTATOM

DeleteColorSpace
The DeleteColorSpace function deletes the specified color space, freeing all internal resources
associated with it.

BOOL DeleteColorSpace(
HCOLORSPACE hColorSpace

);ParametershColorSpace
Handle to the color space to delete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

DeleteCriticalSection
The DeleteCriticalSection function releases all resources used by an unowned critical section
object.

VOID DeleteCriticalSection(
LPCRITICAL_SECTION lpCriticalSection // pointer to critical section object

);ParameterslpCriticalSection
Points to the critical section object.

Return ValuesThis function does not return a value.RemarksDeleting a critical section object releases all system resources used by the object. Once deleted,
the critical section object cannot be specified in the EnterCriticalSection,
TryEnterCriticalSection, or LeaveCriticalSection function.See AlsoEnterCriticalSection, InitializeCriticalSection, LeaveCriticalSection TryEnterCriticalSection

DeleteDC
The DeleteDC function deletes the specified device context (DC).

BOOL DeleteDC(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn application must not delete a device context whose handle was obtained by calling the GetDC
function. Instead, it must call the ReleaseDC function to free the device context.See AlsoCreateDC, GetDC, ReleaseDC

DeleteEnhMetaFile
The DeleteEnhMetaFile function deletes an enhanced-format metafile or an enhanced-format
metafile handle.

BOOL DeleteEnhMetaFile(
HENHMETAFILE hemf // handle to an enhanced metafile

);Parametershemf
Identifies an enhanced metafile.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksIf the hemf parameter identifies an enhanced metafile stored in memory, the DeleteEnhMetaFile
function deletes the metafile. If hemf identifies a metafile stored on a disk, the function deletes the
metafile handle but does not destroy the actual metafile. An application can retrieve the file by
calling the GetEnhMetaFile function.See AlsoCopyEnhMetaFile, CreateEnhMetaFile, GetEnhMetaFile

DeleteFiber
The DeleteFiber function deletes an existing fiber.

VOID DeleteFiber(
LPVOID lpFiber // pointer to the fiber to delete

);ParameterslpFiber
Specifies the address of the fiber to delete.

Return ValuesThis function does not return a value.RemarksThe DeleteFiber function deletes all data associated with the fiber. This data includes the stack, a
subset of the registers, and the fiber data. If the currently running fiber calls DeleteFiber, the
ExitThread function is called and the thread terminates. If the currently running fiber is deleted by
another thread, the thread associated with the fiber is likely to terminate abnormally because the
fiber stack has been freed.See AlsoExitThread

DeleteFile
The DeleteFile function deletes an existing file.

BOOL DeleteFile(
LPCTSTR lpFileName // pointer to name of file to delete

);ParameterslpFileName
Points to a null-terminated string that specifies the file to be deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf an application attempts to delete a file that does not exist, the DeleteFile function fails.

Windows 95: The DeleteFile function deletes a file even if it is open for normal I/O or as a
memory-mapped file. To prevent loss of data, close files before attempting to delete them.

Windows NT: The DeleteFile function fails if an application attempts to delete a file that is open
for normal I/O or as a memory-mapped file.

To close an open file, use the CloseHandle function.See AlsoCloseHandle, CreateFile

DeleteForm
The DeleteForm function removes a form name from the list of supported forms.

BOOL DeleteForm(
HANDLE hPrinter, // handle to printer object
LPTSTR pFormName // pointer to form name

);ParametershPrinter
Indicates the open printer handle that this function is to be performed upon.

pFormName
Points to the form name to be removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle is obtained by calling the OpenPrinter function. DeleteForm can only delete
form names that were added by using the AddForm function.See AlsoAddForm, OpenPrinter

DeleteMenu
The DeleteMenu function deletes an item from the specified menu. If the menu item opens a
menu or submenu, this function destroys the handle to the menu or submenu and frees the
memory used by the menu or submenu.

BOOL DeleteMenu(
HMENU hMenu, // handle to menu
UINT uPosition, // menu item identifier or position
UINT uFlags // menu item flag

);ParametershMenu
Identifies the menu to be changed.

uPosition
Specifies the menu item to be deleted, as determined by the uFlags parameter.

uFlags
Specifies how the uPosition parameter is interpreted. This parameter must be one of the
following values:

Value Meaning
MF_BYCOMMAND Indicates that uPosition gives the identifier

of the menu item. The MF_BYCOMMAND
flag is the default flag if neither the
MF_BYCOMMAND nor MF_BYPOSITION
flag is specified.

MF_BYPOSITION Indicates that uPosition gives the zero-
based relative position of the menu item.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe application must call the DrawMenuBar function whenever a menu changes, whether or not
the menu is in a displayed window.See AlsoDrawMenuBar, RemoveMenu

DeleteMetaFile
The DeleteMetaFile function deletes a Windows-format metafile or Windows-format metafile
handle.

This function is provided for compatibility with 16-bit versions of Windows. Win32-based
applications should use the DeleteEnhMetaFile function.

BOOL DeleteMetaFile(
HMETAFILE hmf // handle to Windows-format metafile

);Parametershmf
Identifies a Windows-format metafile.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should use the enhanced
format metafile functions.

If the metafile identified by the hmf parameter is stored in memory (rather than on a disk), its
content is lost when it is deleted by using the DeleteMetaFile function.See AlsoBeginPath, CopyMetaFile, CreateMetaFile, DeleteEnhMetaFile, GetMetaFile, PolyBezier,
SetWorldTransform

DeleteMonitor
The DeleteMonitor function removes a printer monitor added by the AddMonitor function.

BOOL DeleteMonitor(
LPTSTR pName, // pointer to server name
LPTSTR pEnvironment, // pointer to environment string
LPTSTR pMonitorName // pointer to monitor name

);ParameterspName
Points to a null-terminated string that specifies the name of the server from which the monitor
is to be removed. If this parameter is NULL, the printer monitor is removed locally.

pEnvironment
Points to a null-terminated string that specifies the environment from which the monitor is to
be removed (for example, "Windows NT x86", "Windows NT R4000", "Windows NT
Alpha_AXP", or "Windows 4.0"). If this parameter is NULL, the monitor is removed from the
current environment of the calling application and client machine (not of the destination
application and print server).

pMonitorName
Points to a null-terminated string that specifies the name of the monitor to be removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddMonitor

DeleteObject
The DeleteObject function deletes a logical pen, brush, font, bitmap, region, or palette, freeing all
system resources associated with the object. After the object is deleted, the specified handle is no
longer valid.

BOOL DeleteObject(
HGDIOBJ hObject // handle to graphic object

);ParametershObject
Identifies a logical pen, brush, font, bitmap, region, or palette.

Return ValuesIf the function succeeds, the return value is nonzero.

If the specified handle is not valid or is currently selected into a device context, the return value is
zero.RemarksDo not delete a drawing object (pen or brush) while it is still selected into a device context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap
must be deleted independently.See AlsoSelectObject

DeletePort
The DeletePort function displays a dialog box that allows the user to delete a port name.

BOOL DeletePort(
LPTSTR pName, // pointer to server name
HWND hWnd, // handle to window that displays dialog box
LPTSTR pPortName // pointer to port name

);ParameterspName
Pointer to a zero-terminated string that specifies the name of the server for which the port
should be deleted. If this parameter is NULL, a local port is deleted.

hWnd
Handle to the parent window of the port-deletion dialog box.

pPortName
Pointer to a zero-terminated string that specifies the name of the port that should be deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can retrieve the names of valid ports by calling the EnumPorts function.

The DeletePort function returns an error if a printer is currently connected to the specified port.

The caller of the AddPort function must have SERVER_ACCESS_ADMINISTER access to the
server to which the port is connected.See AlsoAddPort, EnumPorts

DeletePrinter
The DeletePrinter function deletes the specified printer object.

BOOL DeletePrinter(
HANDLE hPrinter // handle to printer object

);ParametershPrinter
Identifies a printer object that will be deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle hPrinter is obtained by calling the OpenPrinter or AddPrinter function. Most
users will use OpenPrinter.

If there are print jobs remaining to be processed for the specified printer, DeletePrinter marks the
printer for pending deletion, and then deletes it when all the print jobs have been printed. No print
jobs can be added to a printer that is marked for pending deletion.

A printer marked for pending deletion cannot be held, but its print jobs can be held, resumed, and
restarted. If the printer is held and there are jobs for the printer, DeletePrinter fails with an
InvalidState error.See AlsoAddPrinter, EnumPrinters, OpenPrinter

DeletePrinterConnection
The DeletePrinterConnection function deletes a connection to a printer that was established by
a call to AddPrinterConnection or ConnectToPrinterDlg.

BOOL DeletePrinterConnection (
LPTSTR pName // pointer to printer name

);ParameterspName
Points to a null-terminated string that specifies the name of the printer connection to delete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DeletePrinterConnection function does not delete any printer drivers copied to the server on
which the printer resides when the printer connection was established.See AlsoAddPrinterConnection, ConnectToPrinterDlg

DeletePrinterData
[New - Windows NT]

The DeletePrinterData function deletes specified configuration data for a printer.

A printer's configuration data consists of a set of named and typed values. The
DeletePrinterData function deletes one of these values, specified by its value name.

DWORD DeletePrinterData(
HANDLE hPrinter, // handle to printer of interest
LPTSTR pValueName, // pointer to null-terminated value name string

);

Parameters
hPrinter

Handle to the printer whose configuration data is to be deleted.
You obtain this printer handle by calling the OpenPrinter function.

pValueName
Pointer to the null-terminated name of the configuration data value to be deleted.

Return Value
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error value.See AlsoEnumPrinterData, GetPrinterData, OpenPrinter, SetPrinter, SetPrinterData

DeletePrinterDriver
The DeletePrinterDriver function removes the specified printer-driver name from the list of names
of supported drivers for a server.

BOOL DeletePrinterDriver(
LPTSTR pName, // pointer to server name
LPTSTR pEnvironment, // pointer to environment
LPTSTR pDriverName // pointer to driver name

);ParameterspName
Points to a null-terminated string that specifies the name of the server from which the driver is
to be deleted. If this parameter is NULL, the printer-driver name will be removed locally.

pEnvironment
Points to a null-terminated string that specifies the environment from which the driver is to be
deleted (for example, "Windows NT x86", "Windows NT R4000", "Windows NT Alpha_AXP",
or "Windows 4.0"). If this parameter is NULL, the driver name is deleted from the current
environment of the calling application and client machine (not of the destination application
and print server).

pDriverName
Points to a null-terminated string specifying the name of the driver that should be deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DeletePrinterDriver function does not delete the associated files, it merely removes the
driver name from the list returned by the EnumPrinterDrivers function.See AlsoEnumPrinterDrivers

DeletePrintProcessor
The DeletePrintProcessor function removes a printer processor added by the
AddPrintProcessor function.

BOOL DeletePrintProcessor(
LPTSTR pName, // pointer to server name
LPTSTR pEnvironment, // pointer to environment string
LPTSTR pPrintProcessorName // pointer to processor name

);ParameterspName
Points to a null-terminated string that specifies the name of the server from which the
processor is to be removed. If this parameter is NULL, the printer processor is removed
locally.

pEnvironment
Points to a null-terminated string that specifies the environment from which the processor is to
be removed (for example, "Windows NT x86", "Windows NT R4000", "Windows NT
Alpha_AXP", or "Windows 4.0"). If this parameter is NULL, the processor is removed from the
current environment of the calling application and client machine (not of the destination
application and print server). NULL is the recommended value, as it provides maximum
portability.

pPrintProcessorName
Points to a null-terminated string that specifies the name of the processor to be removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrintProcessor

DeletePrintProvidor
The DeletePrintProvidor function removes a printer provider added by the AddPrintProvidor
function.

BOOL DeletePrintProvidor(
LPTSTR pName, // pointer to server name
LPTSTR pEnvironment, // pointer to environment string
LPTSTR pPrintProvidorName // pointer to provider name

);ParameterspName
Points to a null-terminated string that specifies the name of the server from which the provider
is to be removed. If this parameter is NULL, the printer provider is removed locally.

pEnvironment
Points to a null-terminated string that specifies the environment from which the provider is to
be removed (for example, "Windows NT x86", "Windows NT R4000", "Windows NT
Alpha_AXP", or "Windows 4.0"). If this parameter is NULL, the provider is removed from the
current environment of the calling application and client machine (not of the destination
application and print server). NULL is the recommended value because it provides maximum
portability.

pPrintProvidorName
Points to a null-terminated string that specifies the name of the provider to be removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrintProvidor

DeleteService
The DeleteService function marks the specified service for deletion from the service control
manager database.

BOOL DeleteService(
SC_HANDLE hService // handle to service

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function,
and it must have DELETE access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Others may be set by the
registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was
not opened with DELETE
access.

ERROR_INVALID_HANDLE The specified handle is
invalid.

ERROR_SERVICE_MARKED_FOR_DELETEThe specified service has
already been marked for
deletion.

RemarksThe DeleteService function marks a service for deletion from the service control manager
database. The database entry is not removed until all open handles to the service have been
closed by calls to the CloseServiceHandle function, and the service is not running. A running
service is stopped by a call to the ControlService function with the SERVICE_CONTROL_STOP
control code. If the service cannot be stopped, the database entry is removed when the system is
restarted.

The service control manager deletes the service by deleting the service key and its subkeys from
the registry.See AlsoCloseServiceHandle, ControlService, CreateService, OpenService

DeregisterEventSource
The DeregisterEventSource function closes a handle returned by the RegisterEventSource
function.

BOOL DeregisterEventSource(
HANDLE hEventLog // handle to event log

);ParametershEventLog
Identifies the event log whose handle was returned by RegisterEventSource.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoRegisterEventSource

DestroyAcceleratorTable
The DestroyAcceleratorTable function destroys an accelerator table. Before an application
closes, it must use this function to destroy each accelerator table that it created by using the
CreateAcceleratorTable function.

BOOL DestroyAcceleratorTable(
HACCEL hAccel // handle to accelerator table

);ParametershAccel
Identifies the accelerator table to destroy. This handle must have been created by a call to the
CreateAcceleratorTable function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCopyAcceleratorTable, CreateAcceleratorTable, LoadAccelerators, TranslateAccelerator

DestroyCaret
The DestroyCaret function destroys the caret's current shape, frees the caret from the window,
and removes the caret from the screen.

If the caret shape is based on a bitmap, DestroyCaret does not free the bitmap.
BOOL DestroyCaret(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksDestroyCaret destroys the caret only if a window in the current task owns the caret. If a window
that is not in the current task owns the caret, DestroyCaret does nothing and returns FALSE.

The caret is a shared resource; there is only one caret in the system. A window should create a
caret only when it has the keyboard focus or is active. The window should destroy the caret before
losing the keyboard focus or becoming inactive.See AlsoCreateCaret, HideCaret, ShowCaret

DestroyCursor
The DestroyCursor function destroys a cursor created by the CreateCursor function and frees
any memory the cursor occupied. Do not use this function to destroy a cursor that was not created
with the CreateCursor function.

BOOL DestroyCursor(
HCURSOR hCursor // handle to cursor to destroy

);ParametershCursor
Identifies the cursor to be destroyed. The cursor must not be in use.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateCursor

DestroyIcon
The DestroyIcon function destroys an icon and frees any memory the icon occupied.

BOOL DestroyIcon(
HICON hIcon // handle to icon to destroy

);ParametershIcon
Identifies the icon to be destroyed. The icon must not be in use.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIt is only necessary to call DestroyIcon for icons created with the CreateIconIndirect function.See AlsoCreateIconIndirect

DestroyMenu
The DestroyMenu function destroys the specified menu and frees any memory that the menu
occupies.

BOOL DestroyMenu(
HMENU hMenu // handle to menu to destroy

);ParametershMenu
Identifies the menu to be destroyed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore closing, an application must use the DestroyMenu function to destroy a menu not
assigned to a window. A menu that is assigned to a window is automatically destroyed when the
application closes.See AlsoCreateMenu, DeleteMenu, RemoveMenu

DestroyPrivateObjectSecurity
The DestroyPrivateObjectSecurity function deletes a protected server object's security
descriptor. This security descriptor must have been created by a call to the
CreatePrivateObjectSecurity function.

BOOL DestroyPrivateObjectSecurity(
PSECURITY_DESCRIPTOR *ObjectDescriptor // address of pointer to SECURITY_DESCRIPTOR

);ParametersObjectDescriptor
Points to a pointer to the SECURITY_DESCRIPTOR structure to be deleted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreatePrivateObjectSecurity, GetPrivateObjectSecurity, SECURITY_DESCRIPTOR,
SetPrivateObjectSecurity

DestroyPropertySheetPage
The DestroyPropertySheetPage function destroys a property sheet page. An application must
call this function for pages that have not been passed to the PropertySheet function.

BOOL DestroyPropertySheetPage(
HPROPSHEETPAGE hPSPage

);ParametershPSPage
Handle to the property sheet page to delete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoPropertySheet

DestroyWindow
The DestroyWindow function destroys the specified window. The function sends WM_DESTROY
and WM_NCDESTROY messages to the window to deactivate it and remove the keyboard focus
from it. The function also destroys the window's menu, flushes the thread message queue,
destroys timers, removes clipboard ownership, and breaks the clipboard viewer chain (if the
window is at the top of the viewer chain).

If the specified window is a parent or owner window, DestroyWindow automatically destroys the
associated child or owned windows when it destroys the parent or owner window. The function
first destroys child or owned windows, and then it destroys the parent or owner window.

DestroyWindow also destroys modeless dialog boxes created by the CreateDialog function.

BOOL DestroyWindow(
HWND hWnd // handle to window to destroy

);ParametershWnd
Identifies the window to be destroyed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA thread cannot use DestroyWindow to destroy a window created by a different thread.

If the window being destroyed is a child window that does not have the
WS_EX_NOPARENTNOTIFY style, a WM_PARENTNOTIFY message is sent to the parent.See AlsoCreateDialog, CreateWindow, CreateWindowEx, WM_DESTROY, WM_NCDESTROY,
WM_PARENTNOTIFY

DeviceCapabilities
The DeviceCapabilities function retrieves the capabilities of a printer device driver.

DWORD DeviceCapabilities(
LPCTSTR pDevice, // pointer to a printer-name string
LPCTSTR pPort, // pointer to a port-name string
WORD fwCapability, // device capability to query
LPTSTR pOutput, // pointer to the output
CONST DEVMODE *pDevMode // pointer to structure with device data

);ParameterspDevice
Pointer to a null-terminated string that contains the name of the printer. Note that this is the
name of the printer, not of the printer driver.

pPort
Pointer to a null-terminated string that contains the name of the port to which the device is
connected, such as "LPT1".

fwCapability
Specifies the capabilities to query. This parameter can be one of the following values:

Value Meaning
DC_BINADJUST Windows 95 only: Retrieves the page

positioning for the paper source
specified in the DEVMODE structure
pointed to by pdevMode. The return
value can be one of the following:

DCBA_FACEUPNONE
DCBA_FACEUPCENTER
DCBA_FACEUPLEFT
DCBA_FACEUPRIGHT
DCBA_FACEDOWNNONE
DCBA_FACEDOWNCENTER
DCBA_FACEDOWNLEFT
DCBA_FACEDOWNRIGHT

DC_BINNAMES Copies an array containing a list of the
names of the paper bins. This array is in
the form char PaperNames[cBinMax]
[cchBinName] where cchBinName is 24.
If the pOutput parameter is NULL, the
return value is the number of bin entries
required. Otherwise, the return value is
the number of bins copied.

DC_BINS Retrieves a list of available bins. The
function copies the list to the pOutput
parameter as a WORD array. If pOutput
is NULL, the function returns the
number of supported bins to allow the
application the opportunity to allocate a
buffer with the correct size. For more
information about these bins, see the
description of the dmDefaultSource
member of the DEVMODE structure.

DC_COPIES Returns the number of copies the
device can print.

DC_DRIVER Returns the version number of the
printer driver.

DC_DATATYPE_PRODUCEDWindows 95 only: The return value is
the number of datatypes supported by
the printer driver. If the function returns -
1, the driver understands the "RAW"

datatype only. The names of the
supported datatypes are copied to an
array. Use the names in the DOCINFO
structure when calling the StartDoc
function to specify the datatype.

DC_DUPLEX Returns the level of duplex support. The
function returns 1 if the printer is
capable of duplex printing. Otherwise,
the return value is zero.

DC_EMF_COMPLIANT Windows 95 only: Determines if a
printer driver supports enhanced
metafile (EMF). A return value of 1
means the driver supports EMF. A
return value of -1 means that the driver
does not support EMF

DC_ENUMRESOLUTIONS Returns a list of available resolutions. If
pOutput is NULL, the function returns
the number of available resolution
configurations. Resolutions are
represented by pairs of LONG integers
representing the horizontal and vertical
resolutions (specified in dots per inch).

DC_EXTRA Returns the number of bytes required
for the device-specific portion of the
DEVMODE structure for the printer
driver.

DC_FIELDS Returns the dmFields member of the
printer driver's DEVMODE structure.
The dmFields member indicates which
members in the device-independent
portion of the structure are supported by
the printer driver.

DC_FILEDEPENDENCIES Returns a list of files that also need to
be loaded when a driver is installed. If
the pOutput parameter is NULL, the
function returns the number of files.
Otherwise, pOutput points to an array of
filenames in the form char
[chFileName, 64]. Each filename is a
null-terminated string.

DC_MAXEXTENT Returns a POINTS structure that
contains the maximum paper size that
the dmPaperLength and
dmPaperWidth members of the printer
driver's DEVMODE structure can
specify. The x member of the POINTS
structure contains the maximum
dmPaperWidth value, and the y
member contains the maximum
dmPaperLength value.

DC_MINEXTENT Returns a POINTS structure that
contains the minimum paper size that
the dmPaperLength and
dmPaperWidth members of the printer
driver's DEVMODE structure can
specify. The x member of the POINTS
structure contains the minimum
dmPaperWidth value, and the y
member contains the minimum
dmPaperLength value.

DC_ORIENTATION Returns the relationship between
portrait and landscape orientations for a

device, in terms of the number of
degrees that portrait orientation is
rotated counterclockwise to produce
landscape orientation. The return value
can be one of the following:

ValueMeaning
0 No landscape orientation.
90 Portrait is rotated 90

degrees to produce
landscape. (For example,
Hewlett-Packard PCL
printers.)

270Portrait is rotated 270
degrees to produce
landscape. (For example,
dot-matrix printers.)

DC_PAPERNAMES Retrieves a list of supported paper
names (for example, Letter or Legal).
If the pOutput parameter is NULL, the
function returns the number of paper
sizes available. Otherwise, pOutput
points to an array for the paper names in
the form char[cPaperNames, 64]. Each
paper name is a null-terminated string.

DC_PAPERS Retrieves a list of supported paper
sizes. The function copies the list to
pOutput as a WORD array and returns
the number of entries in the array. If
pOutput is NULL, the function returns
the number of supported paper sizes to
allow the application the opportunity to
allocate a buffer with the correct size.
For more information on paper sizes,
see the description of the dmPaperSize
member of the DEVMODE structure.

DC_PAPERSIZE Copies the dimensions of all supported
paper sizes, in tenths of a millimeter, to
an array of POINT structures pointed to
by the pOutput parameter. The width (x-
dimension) and length (y-dimension) of
a paper size are returned as if the paper
were in the DMORIENT_PORTRAIT
orientation.

DC_SIZE Returns the dmSize member of the
printer driver's DEVMODE structure.

DC_TRUETYPE Retrieves the abilities of the driver to
use TrueType fonts. For
DC_TRUETYPE, the pOutput parameter
should be NULL. The return value can
be one or more of the following:

Value Meaning
DCTT_BITMAP Device can print

TrueType fonts
as graphics. (For
example, dot-
matrix and PCL
printers.)

DCTT_DOWNLOADDevice can

download
TrueType fonts.
(For example,
PCL and
PostScript
printers.)

DCTT_DOWNLOAD_
OUTLINE

Windows 95
only: Device can
download outline
TrueType fonts.

DCTT_SUBDEV Device can
substitute device
fonts for
TrueType fonts.
(For example,
PostScript
printers.)

DC_VERSION Returns the specification version to
which the printer driver conforms.

pOutput
Pointer to an array of bytes. The format of the array depends on the setting of the fwCapability
parameter. If pOutput is zero, DeviceCapabilities returns the number of bytes required for
the output data.

pDevMode
Pointer to a DEVMODE structure. If this parameter is NULL, DeviceCapabilities retrieves the
current default initialization values for the specified printer driver. Otherwise, the function
retrieves the values contained in the structure to which pDevMode points.

Return ValuesIf the function succeeds, the return value depends on the setting of the fwCapability parameter.

If the function fails, the return value is - 1.RemarksIn previous versions of Windows, the DeviceCapabilities function was implemented in the printer
driver and you needed to call the LoadLibrary and GetProcAddress functions to get a pointer to
the function. This is no longer necessary since DeviceCapabilities is part of the Win32 API and
you can call it directly. You should not call LoadLibrary on the printer driver.

The DEVMODE structure pointed to by the pDevMode parameter may be obtained by calling the
DocumentProperties function.See AlsoDEVMODE, DocumentProperties, GetDeviceCaps, GetProcAddress, LoadLibrary, POINT

DeviceIoControl
The DeviceIoControl function sends a control code directly to a specified device driver, causing
the corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for asynchronous operation

);ParametershDevice
Handle to the device that is to perform the operation. Call the CreateFile function to obtain a
device handle.

dwIoControlCode
Specifies the control code for the operation. This value identifies the specific operation to be
performed and the type of device on which the operation is to be performed. The following
values are defined:

Value Meaning
FSCTL_DISMOUNT_VOLUME Dismounts a volume.
FSCTL_GET_COMPRESSION Obtains the compression

state of a file or directory
FSCTL_LOCK_VOLUME Locks a volume.
FSCTL_READ_COMPRESSION Reserved for future use.
FSCTL_SET_COMPRESSION Sets the compression state

of a file or directory.
FSCTL_UNLOCK_VOLUME Unlocks a volume.
FSCTL_WRITE_COMPRESSION Reserved for future use.
IOCTL_DISK_CHECK_VERIFY Obsolete. Use

IOCTL_STORAGE_CHECK_VERIFY
IOCTL_DISK_EJECT_MEDIA Obsolete. Use

IOCTL_STORAGE_EJECT_MEDIA
IOCTL_DISK_FORMAT_TRACKS Formats a contiguous set

of disk tracks.
IOCTL_DISK_GET_DRIVE_GEOMETRYObtains information on the

physical disk's geometry.
IOCTL_DISK_GET_DRIVE_LAYOUTProvides information about

each partition on a disk.
IOCTL_DISK_GET_MEDIA_TYPES Obsolete. Use

IOCTL_STORAGE_GET_MEDIA_TYPES
IOCTL_DISK_GET_PARTITION_INFOObtains disk partition

information.
IOCTL_DISK_LOAD_MEDIA Obsolete. Use

IOCTL_STORAGE_LOAD_MEDIA
IOCTL_DISK_MEDIA_REMOVAL Obsolete. Use

IOCTL_STORAGE_MEDIA_REMOVAL
IOCTL_DISK_PERFORMANCE Provides disk performance

information.
IOCTL_DISK_REASSIGN_BLOCKSMaps disk blocks to spare-

block pool.
IOCTL_DISK_SET_DRIVE_LAYOUTPartitions a disk.
IOCTL_DISK_SET_PARTITION_INFOSets the disk partition type.
IOCTL_DISK_VERIFY Performs logical format of

a disk extent.

IOCTL_SERIAL_LSRMST_INSERT Enables or disables
placement of a line and
modem status data into the
data stream.

IOCTL_STORAGE_CHECK_VERIFYChecks for change in a
removable-media device.

IOCTL_STORAGE_EJECT_MEDIA Ejects media from a SCSI
device.

IOCTL_STORAGE_GET_MEDIA_TYPESObtains information about
media support.

IOCTL_STORAGE_LOAD_MEDIA Loads media into a device.
IOCTL_STORAGE_MEDIA_REMOVALEnables or disables the

media eject mechanism.

For more detailed information on each control code, see its topic. In particular, each
topic provides details on the usage of the lpInBuffer, nInBufferSize, lpOutBuffer,
nOutBufferSize, and lpBytesReturned parameters.

lpInBuffer
Pointer to a buffer that contains the data required to perform the operation.
This parameter can be NULL if the dwIoControlCode parameter specifies an operation that
does not require input data.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer
Pointer to a buffer that receives the operation's output data.
This parameter can be NULL if the dwIoControlCode parameter specifies an operation that
does not produce output data.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned
Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed
to by lpOutBuffer.
If lpOverlapped is NULL, lpBytesReturned cannot be NULL. Even when an operation
produces no output data, and lpOutBuffer can be NULL, the DeviceIoControl function makes
use of the variable pointed to by lpBytesReturned. After such an operation, the value of the
variable is without meaning.
If lpOverlapped is not NULL, lpBytesReturned can be NULL. If this is an overlapped operation,
you can get the number of bytes returned by calling GetOverlappedResult. If hDevice is
associated with an I/O completion port, you can get the number of bytes returned by calling
GetQueuedCompletionStatus.

lpOverlapped
Pointer to an OVERLAPPED structure.
If hDevice was opened with the FILE_FLAG_OVERLAPPED flag, this parameter must point to
a valid OVERLAPPED structure. In this case, DeviceIoControl is performed as an
overlapped (asynchronous) operation. If the device was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function fails in unpredictable
ways.
If hDevice was opened without specifying the FILE_FLAG_OVERLAPPED flag, this parameter
is ignored and the DeviceIoControl function does not return until the operation has been
completed, or an error occurs.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf hDevice was opened with FILE_FLAG_OVERLAPPED and the lpOverlapped parameter points
to an OVERLAPPED structure, DeviceIoControl is performed as an overlapped (asynchronous)
operation. In this case, the OVERLAPPED structure must contain a handle to a manual-reset
event object created by a call to the CreateEvent function. For more information on manual-reset
event objects, see Synchronization.

If the overlapped operation cannot be completed immediately, the function returns FALSE, and
GetLastError returns ERROR_IO_PENDING, indicating that the operation is executing in the
background. When this happens, the operating system sets the event object in the

OVERLAPPED structure to the nonsignaled state before DeviceIoControl returns. The system
then sets the event object to the signaled state when the operation has been completed. The
calling thread can use any of the wait functions to wait for the event object to be signaled, and
then use the GetOverlappedResult function to determine the results of the operation. The
GetOverlappedResult function reports the success or failure of the operation and the number of
bytes returned in the lpOutBuffer buffer.See AlsoCreateEvent, CreateFile, GetOverlappedResult, GetQueuedCompletionStatus,
OVERLAPPED

DialogBox
The DialogBox macro creates a modal dialog box from a dialog box template resource.
DialogBox does not return control until the specified callback function terminates the modal
dialog box by calling the EndDialog function. The DialogBox macro uses the DialogBoxParam
function.

int DialogBox(
HINSTANCE hInstance, // handle to application instance
LPCTSTR lpTemplate, // identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc // pointer to dialog box procedure

);ParametershInstance
Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplate
Identifies the dialog box template. This parameter is either the pointer to a null-terminated
character string that specifies the name of the dialog box template or an integer value that
specifies the resource identifier of the dialog box template. If the parameter specifies a
resource identifier, its high-order word must be zero and its low-order word must contain the
identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
the DialogProc callback function.

Return ValuesIf the function succeeds, the return value is the nResult parameter in the call to the EndDialog
function used to terminate the dialog box.

If the function fails, the return value is - 1.RemarksThe DialogBox macro uses the CreateWindowEx function to create the dialog box. DialogBox
then sends a WM_INITDIALOG message (and a WM_SETFONT message if the template
specifies the DS_SETFONT style) to the dialog box procedure. The function displays the dialog
box (regardless of whether the template specifies the WS_VISIBLE style), disables the owner
window, and starts its own message loop to retrieve and dispatch messages for the dialog box.

When the dialog box procedure calls the EndDialog function, DialogBox destroys the dialog box,
ends the message loop, enables the owner window (if previously enabled), and returns the
nResult parameter specified by the dialog box procedure when it called EndDialog.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateDialog, CreateWindowEx, DialogBoxIndirect, DialogBoxIndirectParam,
DialogBoxParam, DialogProc, EndDialog, MAKEINTRESOURCE, WM_INITDIALOG,
WM_SETFONT

DialogBoxIndirect
The DialogBoxIndirect macro creates a modal dialog box from a dialog box template in memory.
DialogBoxIndirect does not return control until the specified callback function terminates the
modal dialog box by calling the EndDialog function. The DialogBoxIndirect macro uses the
DialogBoxIndirectParam function.

int DialogBoxIndirect(
HINSTANCE hInstance, // handle to application instance
LPDLGTEMPLATE lpTemplate, // identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc // pointer to dialog box procedure

);ParametershInstance
Identifies the instance of the module that creates the dialog box.

lpTemplate
Pointer to a global memory object containing a template that DialogBoxIndirect uses to
create the dialog box. A dialog box template consists of a header that describes the dialog
box, followed by one or more additional blocks of data that describe each of the controls in the
dialog box. The template can use either the standard format or the extended format.
In a standard template for a dialog box, the header is a DLGTEMPLATE structure followed by
additional variable-length arrays. The data for each control consists of a
DLGITEMTEMPLATE structure followed by additional variable-length arrays.
In an extended template for a dialog box, the header uses the DLGTEMPLATEEX format and
the control definitions use the DLGITEMTEMPLATEEX format.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Pointer to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc.

Return ValuesIf the function succeeds, the return value is the nResult parameter specified in the call to the
EndDialog function that was used to terminate the dialog box.

If the function fails, the return value is - 1.RemarksThe DialogBoxIndirect macro uses the CreateWindowEx function to create the dialog box.
DialogBoxIndirect then sends a WM_INITDIALOG message to the dialog box procedure. If the
template specifies the DS_SETFONT style, the function also sends a WM_SETFONT message to
the dialog box procedure. The function displays the dialog box (regardless of whether the
template specifies the WS_VISIBLE style), disables the owner window, and starts its own
message loop to retrieve and dispatch messages for the dialog box.

When the dialog box procedure calls the EndDialog function, DialogBoxIndirect destroys the
dialog box, ends the message loop, enables the owner window (if previously enabled), and
returns the nResult parameter specified by the dialog box procedure when it called EndDialog.

In a standard dialog box template, the DLGTEMPLATE structure and each of the
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation data
array that follows a DLGITEMTEMPLATE structure must also be aligned on a DWORD boundary.
All of the other variable-length arrays in the template must must be aligned on WORD boundaries.

In an extended dialog box template, the DLGTEMPLATEEX header and each of the
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. The
creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must also be aligned
on a DWORD boundary. All of the other variable-length arrays in the template must be aligned on
WORD boundaries.

All character strings in the dialog box template, such as titles for the dialog box and buttons, must
be Unicode strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateWindowEx, DialogBox, DialogBoxIndirectParam, DialogBoxParam, DialogProc,
DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATE, DLGTEMPLATEEX,
EndDialog, MultiByteToWideChar, WM_INITDIALOG, WM_SETFONT

DialogBoxIndirectParam
The DialogBoxIndirectParam function creates a modal dialog box from a dialog box template in
memory. Before displaying the dialog box, the function passes an application-defined value to the
dialog box procedure as the lParam parameter of the WM_INITDIALOG message. An application
can use this value to initialize dialog box controls.

int DialogBoxIndirectParam(
HINSTANCE hInstance, // handle to application instance
LPCDLGTEMPLATE hDialogTemplate, // identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc, // pointer to dialog box procedure
LPARAM dwInitParam // initialization value

);ParametershInstance
Identifies the instance of the module that creates the dialog box.

hDialogTemplate
Pointer to a global memory object containing a template that DialogBoxIndirectParam uses
to create the dialog box. A dialog box template consists of a header that describes the dialog
box, followed by one or more additional blocks of data that describe each of the controls in the
dialog box. The template can use either the standard format or the extended format.
In a standard template for a dialog box, the header is a DLGTEMPLATE structure followed by
additional variable-length arrays. The data for each control consists of a
DLGITEMTEMPLATE structure followed by additional variable-length arrays.
In an extended template for a dialog box, the header uses the DLGTEMPLATEEX format and
the control definitions use the DLGITEMTEMPLATEEX format.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Pointer to the dialog box procedure. For more information about the dialog box procedure, see
DialogProc.

dwInitParam
Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG
message.

Return ValuesIf the function succeeds, the return value is the nResult parameter specified in the call to the
EndDialog function that was used to terminate the dialog box.

If the function fails, the return value is - 1.RemarksThe DialogBoxIndirectParam function uses the CreateWindowEx function to create the dialog
box. DialogBoxIndirectParam then sends a WM_INITDIALOG message to the dialog box
procedure. If the template specifies the DS_SETFONT style, the function also sends a
WM_SETFONT message to the dialog box procedure. The function displays the dialog box
(regardless of whether the template specifies the WS_VISIBLE style), disables the owner window,
and starts its own message loop to retrieve and dispatch messages for the dialog box.

When the dialog box procedure calls the EndDialog function, DialogBoxIndirectParam destroys
the dialog box, ends the message loop, enables the owner window (if previously enabled), and
returns the nResult parameter specified by the dialog box procedure when it called EndDialog.

In a standard dialog box template, the DLGTEMPLATE structure and each of the
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation data
array that follows a DLGITEMTEMPLATE structure must also be aligned on a DWORD boundary.
All of the other variable-length arrays in the template must must be aligned on WORD boundaries.

In an extended dialog box template, the DLGTEMPLATEEX header and each of the
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. The
creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must also be aligned
on a DWORD boundary. All of the other variable-length arrays in the template must be aligned on
WORD boundaries.

All character strings in the dialog box template, such as titles for the dialog box and buttons, must
be Unicode strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateWindowEx, DialogBox, DialogBoxIndirect, DialogBoxParam, DialogProc,
DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATE, DLGTEMPLATEEX,
EndDialog, MultiByteToWideChar, WM_INITDIALOG, WM_SETFONT

DialogBoxParam
The DialogBoxParam function creates a modal dialog box from a dialog box template resource.
Before displaying the dialog box, the function passes an application-defined value to the dialog
box procedure as the lParam parameter of the WM_INITDIALOG message. An application can
use this value to initialize dialog box controls.

int DialogBoxParam(
HINSTANCE hInstance, // handle to application instance
LPCTSTR lpTemplateName, // identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc, // pointer to dialog box procedure
LPARAM dwInitParam // initialization value

);ParametershInstance
Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplateName
Identifies the dialog box template. This parameter is either the pointer to a null-terminated
character string that specifies the name of the dialog box template or an integer value that
specifies the resource identifier of the dialog box template. If the parameter specifies a
resource identifier, its high-order word must be zero and its low-order word must contain the
identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
Identifies the window that owns the dialog box.

lpDialogFunc
Points to the dialog box procedure. For more information about the dialog box procedure, see
the DialogProc callback function.

dwInitParam
Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG
message.

Return ValuesIf the function succeeds, the return value is the value of the nResult parameter specified in the call
to the EndDialog function used to terminate the dialog box.

If the function fails, the return value is - 1.RemarksThe DialogBoxParam function uses the CreateWindowEx function to create the dialog box.
DialogBoxParam then sends a WM_INITDIALOG message (and a WM_SETFONT message if
the template specifies the DS_SETFONT style) to the dialog box procedure. The function displays
the dialog box (regardless of whether the template specifies the WS_VISIBLE style), disables the
owner window, and starts its own message loop to retrieve and dispatch messages for the dialog
box.

When the dialog box procedure calls the EndDialog function, DialogBoxParam destroys the
dialog box, ends the message loop, enables the owner window (if previously enabled), and
returns the nResult parameter specified by the dialog box procedure when it called EndDialog.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoCreateWindowEx, DialogBox, DialogBoxIndirect, DialogBoxIndirectParam, DialogProc,
EndDialog, MAKEINTRESOURCE, WM_INITDIALOG, WM_SETFONT

DialogProc
The DialogProc function is an application-defined callback function that processes messages
sent to a modal or modeless dialog box.

BOOL CALLBACK DialogProc(
HWND hwndDlg, // handle to dialog box
UINT uMsg, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershwndDlg
Identifies the dialog box.

uMsg
Specifies the message.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesExcept in response to the WM_INITDIALOG message, the dialog box procedure should return
nonzero if it processes the message, and zero if it does not. In response to a WM_INITDIALOG
message, the dialog box procedure should return zero if it calls the SetFocus function to set the
focus to one of the controls in the dialog box. Otherwise, it should return nonzero, in which case
the system sets the focus to the first control in the dialog box that can be given the focus.RemarksYou should use the dialog box procedure only if you use the dialog box class for the dialog box.
This is the default class and is used when no explicit class is specified in the dialog box template.
Although the dialog box procedure is similar to a window procedure, it must not call the
DefWindowProc function to process unwanted messages. Unwanted messages are processed
internally by the dialog box window procedure.

DialogProc is a placeholder for the application-defined function name.See AlsoCreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam,
DefWindowProc, DialogBox, DialogBoxIndirect, DialogBoxIndirectParam, DialogBoxParam,
SetFocus, WM_INITDIALOG

DisableThreadLibraryCalls
The DisableThreadLibraryCalls function disables the DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications for the dynamic-link library (DLL) specified by hLibModule.
This can reduce the size of the working code set for some applications.

BOOL DisableThreadLibraryCalls(
HMODULE hLibModule // dynamic-link library for which calls are to be disabled

);ParametershLibModule
Specifies the dynamic-link library module for which the DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications are to be disabled.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The DisableThreadLibraryCalls function fails if the
DLL specified by hLibModule has active static thread local storage, or if hLibModule is an invalid
module handle. To get extended error information, call GetLastError.RemarksThe DisableThreadLibraryCalls function lets a DLL disable the DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notification calls. This can be a useful optimization for multithreaded
applications that have many DLLs, frequently create and delete threads, and whose DLLs do not
need these thread-level notifications of attachment/detachment. A remote procedure call (RPC)
server application is an example of such an application. In these sorts of applications, DLL
initialization routines often remain in memory to service DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications. By disabling the notifications, the DLL initialization code is
not paged in because a thread is created or deleted, thus reducing the size of the application's
working code set. To implement the optimization, modify a DLL's DLL_PROCESS_ATTACH code
to call DisableThreadLibraryCalls.See AlsoFreeLibraryAndExitThread

DisconnectNamedPipe
The DisconnectNamedPipe function disconnects the server end of a named pipe instance from a
client process.

BOOL DisconnectNamedPipe(
HANDLE hNamedPipe // handle to named pipe

);ParametershNamedPipe
Identifies an instance of a named pipe. This handle must be created by the
CreateNamedPipe function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the client end of the named pipe is open, the DisconnectNamedPipe function forces that end of
the named pipe closed. The client receives an error the next time it attempts to access the pipe. A
client that is forced off a pipe by DisconnectNamedPipe must still use the CloseHandle function
to close its end of the pipe.

When the server process disconnects a pipe instance, any unread data in the pipe is discarded.
Before disconnecting, the server can make sure data is not lost by calling the FlushFileBuffers
function, which does not return until the client process has read all the data.

The server process must call DisconnectNamedPipe to disconnect a pipe handle from its
previous client before the handle can be connected to another client by using the
ConnectNamedPipe function.See AlsoCloseHandle, ConnectNamedPipe, CreateNamedPipe, FlushFileBuffers

DispatchMessage
The DispatchMessage function dispatches a message to a window procedure. It is typically used
to dispatch a message retrieved by the GetMessage function.

LONG DispatchMessage(
CONST MSG *lpmsg // pointer to structure with message

);Parameterslpmsg
Points to an MSG structure that contains the message.

Return ValuesThe return value specifies the value returned by the window procedure. Although its meaning
depends on the message being dispatched, the return value generally is ignored.RemarksThe MSG structure must contain valid message values. If the lpmsg parameter points to a
WM_TIMER message and the lParam parameter of the WM_TIMER message is not NULL,
lParam points to a function that is called instead of the window procedure.See AlsoGetMessage, MSG, PeekMessage, PostAppMessage, PostMessage, TranslateMessage,
WM_TIMER

DlgDirList
The DlgDirList function fills the specified list box with the names of all files matching the specified
path or filename.

int DlgDirList(
HWND hDlg, // handle to dialog box with list box
LPTSTR lpPathSpec, // pointer to path or filename string
int nIDListBox, // identifier of list box
int nIDStaticPath, // identifier of static control
UINT uFileType // file attributes to display

);ParametershDlg
Identifies the dialog box that contains the list box.

lpPathSpec
Points to a null-terminated string that contains the path or filename. DlgDirList modifies this
string, which should be long enough to contain the modifications. For more information about
this parameter, see the Remarks section.

nIDListBox
Specifies the identifier of a list box. If this parameter is zero, DlgDirList assumes that no list
box exists and does not attempt to fill one.

nIDStaticPath
Specifies the identifier of the static control used for displaying the current drive and directory.
If this parameter is zero, DlgDirList assumes that no such control is present.

uFileType
Specifies attributes of the filenames to be displayed. This parameter must be one or more of
the following values:
Value Description
DDL_ARCHIVE Includes archived files.
DDL_DIRECTORY Includes subdirectories. Subdirectory names

are enclosed in square brackets ([]).
DDL_DRIVES Includes drives. Drives are listed in the form [-

x-], where x is the drive letter.
DDL_EXCLUSIVE Includes only files with the specified attributes.

By default, read-write files are listed even if
DDL_READWRITE is not specified.

DDL_HIDDEN Includes hidden files.
DDL_READONLY Includes read-only files.
DDL_READWRITE Includes read-write files with no additional

attributes.
DDL_SYSTEM Includes system files.
DDL_POSTMSGS Posts messages to the application's message

queue. By default, DlgDirList sends
messages directly to the dialog box
procedure.

Return ValuesIf a listing is made ¾ even an empty listing ¾ the return value is nonzero. If the input string does
not contain a valid search path, the return value is zero.RemarksIf you specify a zero-length string for the lpPathSpec parameter or if you specify only a directory
name with no filename, the string will be changed to *.*

The lpPathSpec parameter has the following form:

[drive:] [[\u]directory[\idirectory]\u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and filename is a valid
filename that must contain at least one wildcard (? or *).

If lpPathSpec includes a drive or directory name, or both, the current drive and directory are
changed to the specified drive and directory before the list box is filled. The static control identified
by the nIDStaticPath parameter is also updated with the new drive or directory name, or both.

After the list box is filled, DlgDirList updates lpPathSpec by removing the drive or directory
portion, or both, of the path and filename.

DlgDirList sends the LB_RESETCONTENT and LB_DIR messages to the list box.See AlsoDlgDirListComboBox, DlgDirSelectComboBoxEx, DlgDirSelectEx

DlgDirListComboBox
The DlgDirListComboBox function fills the specified combo box with a directory listing. It fills the
list with the names of all files, drives, and subdirectories that match the specified attributes and
path string.

int DlgDirListComboBox(
HWND hDlg, // handle to dialog box with combo box
LPTSTR lpPathSpec, // pointer to path or filename string
int nIDComboBox, // identifier of combo box
int nIDStaticPath, // identifier of static control
UINT uFiletype // file attributes to display

);ParametershDlg
Identifies the dialog box that contains the combo box.

lpPathSpec
Points to a null-terminated string of the following form:
[drive:][\]][directory\[...]][filename]
If the specified string includes a drive or directory path, the DlgDirListComboBox function
changes the current drive and directory before filling the list. After the list is filled, the drive
and directory path are removed from the string specified by the lpPathSpec parameter.

nIDComboBox
Specifies the identifier of a combo box control in a dialog box. If nIDComboBox is zero, the
DlgDirListComboBox function assumes no combo box exists and does not attempt to fill it.

nIDStaticPath
Specifies the identifier of the static text control in which the DlgDirListComboBox function is
to display the current directory. If nIDStaticPath is zero, DlgDirListComboBox assumes no
such control is present.

uFiletype
Specifies the attributes of the files to be displayed. It can be any combination of the following
values:

Value Meaning
DDL_ARCHIVE Includes archived files.
DDL_DIRECTORY Includes subdirectories. Subdirectory names

are enclosed in square brackets ([]).
DDL_DRIVES Includes drives. Drives are listed in the form [-

x-], where x is the drive letter.
DDL_EXCLUSIVE Includes only files with the specified attributes.

By default, read-write files are listed even if
DDL_READWRITE is not specified.

DDL_HIDDEN Includes hidden files.
DDL_READONLY Includes read-only files.
DDL_READWRITE Includes read-write files with no additional

attributes.
DDL_SYSTEM Includes system files.
DDL_POSTMSGS Posts messages to the application's message

queue. By default, the DlgDirList function
sends messages directly to the dialog box
procedure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. For example, if the string specified by lpPathSpec is
not a valid path, the function fails. To get extended error information, call GetLastError.RemarksIf the lpszPathSpec parameter points to a zero-length string or to a string specifying a drive,
directory, or both ¾ but no filename ¾ the filename *.* (wildcards) is assumed.

Windows NT:
The directory listing displays long filenames, if any.

Windows 95:

The directory listing displays short filenames (the 8.3 form). You can use the SHGetFileInfo
or GetFullPathName functions to get the corresponding long filename.See AlsoDlgDirList, DlgDirSelectComboBoxEx, GetFullPathName, SHGetFileInfo

DlgDirSelectComboBoxEx
The DlgDirSelectComboBoxEx function retrieves the current selection from a combo box filled
by using the DlgDirListComboBox function. The selection is interpreted as a drive letter, a file, or
a directory name.

BOOL DlgDirSelectComboBoxEx(
HWND hDlg, // handle to dialog box with list box
LPTSTR lpString, // pointer to buffer for path string
int nCount, // number of characters in path string
int nIDComboBox // identifier of combo box

);ParametershDlg
Identifies the dialog box that contains the combo box.

lpString
Points to the buffer that is to receive the selected path.

nCount
Specifies the length, in characters, of the buffer pointed to by the lpString parameter.

nIDComboBox
Specifies the integer identifier of the combo box control in the dialog box.

Return ValuesIf the current selection is a directory name, the return value is nonzero.

If the current selection is not a directory name, the return value is zero. To get extended error
information, call GetLastError.RemarksIf the current selection specifies a directory name or drive letter, the DlgDirSelectComboBoxEx
function removes the enclosing square brackets (and hyphens for drive letters) so the name or
letter is ready to be inserted into a new path or filename. If there is no selection, the contents of
the buffer pointed to by lpString do not change.

The DlgDirSelectComboBox function does not allow more than one filename to be returned from
a combo box.

DlgDirSelectComboBoxEx sends CB_GETCURSEL and CB_GETLBTEXT messages to the
combo box.

In the Win32 API, you can use this function with all three types of combo boxes (CBS_SIMPLE,
CBS_DROPDOWN, and CBS_DROPDOWNLIST).See AlsoCB_GETCURSEL, CB_GETLBTEXT, DlgDirListComboBox, DlgDirSelectEx

DlgDirSelectEx
The DlgDirSelectEx function retrieves the current selection from a single-selection list box. It
assumes that the list box has been filled by the DlgDirList function and that the selection is a
drive letter, filename, or directory name.

BOOL DlgDirSelectEx(
HWND hDlg, // handle to dialog box with list box
LPTSTR lpString, // pointer to buffer for path string
int nCount, // number of characters in path string
int nIDListBox // identifier of list box

);ParametershDlg
Identifies the dialog box that contains the list box.

lpString
Points to a buffer that is to receive the selected path.

nCount
Specifies the length, in characters, of the buffer pointed to by lpString.

nIDListBox
Specifies the integer identifier of a list box in the dialog box.

Return ValuesIf the current selection is a directory name, the return value is nonzero.

If the current selection is not a directory name, the return value is zero. To get extended error
information, call GetLastError.RemarksThe DlgDirSelectEx function copies the selection to the buffer pointed to by the lpString
parameter. If the current selection is a directory name or drive letter, DlgDirSelectEx removes the
enclosing square brackets (and hyphens, for drive letters), so that the name or letter is ready to be
inserted into a new path. If there is no selection, lpString does not change.

DlgDirSelectEx sends LB_GETCURSEL and LB_GETTEXT messages to the list box. The
function does not allow more than one filename to be returned from a list box. The list box must
not be a multiple-selection list box. If it is, this function does not return a zero value and lpString
remains unchanged.See AlsoDlgDirList, DlgDirListComboBox, DlgDirSelectComboBoxEx, LB_GETCURSEL,
LB_GETTEXT

DllEntryPoint
The DllEntryPoint function is an optional method of entry into a dynamic-link library (DLL). If the
function is used, it is called by the system when processes and threads are initialized and
terminated, or upon calls to the LoadLibrary and FreeLibrary functions. DllEntryPoint is a
placeholder for the library-defined function name. The actual name must be specified at build
time. For more information, see the documentation included with your development tools.

BOOL WINAPI DllEntryPoint(
HINSTANCE hinstDLL, // handle to DLL module
DWORD fdwReason, // reason for calling function
LPVOID lpvReserved // reserved

);ParametershinstDLL
A handle to the DLL. The value is the base address of the DLL. The HINSTANCE of a DLL is
the same as the HMODULE of the DLL, so hinstDLL can be used in subsequent calls to the
GetModuleFileName function and other functions that require a module handle.

fdwReason
Specifies a flag indicating why the DLL entry-point function is being called. This parameter can
be one of the following values:

Value Meaning
DLL_PROCESS_ATTACH

Indicates that the DLL is attaching to the
address space of the current process as a
result of the process starting up or as a result
of a call to LoadLibrary. DLLs can use this
opportunity to initialize any instance data or to
use the TlsAlloc function to allocate a thread
local storage (TLS) index.
During initial process startup or after a call to
LoadLibrary, the operating system scans the list
of loaded DLLs for the process. For each DLL
that has not already been called with the
DLL_PROCESS_ATTACH value, the system
calls the DLL's entry-point function. This call is
made in the context of the thread that caused the
process address space to change, such as the
primary thread of the process or the thread that
called LoadLibrary.

DLL_THREAD_ATTACH
Indicates that the current process is creating
a new thread. When this occurs, the system
calls the entry-point function of all DLLs
currently attached to the process. The call is
made in the context of the new thread. DLLs
can use this opportunity to initialize a TLS
slot for the thread. A thread calling the DLL
entry-point function with the
DLL_PROCESS_ATTACH value does not call
the DLL entry-point function with the
DLL_THREAD_ATTACH value.
Note that a DLL's entry-point function is
called with this value only by threads created
after the DLL is attached to the process. When
a DLL is attached by LoadLibrary, existing
threads do not call the entry-point function of the
newly loaded DLL.

DLL_THREAD_DETACH
Indicates that a thread is exiting cleanly. If the
DLL has stored a pointer to allocated memory
in a TLS slot, it uses this opportunity to free

the memory. The operating system calls the
entry-point function of all currently loaded
DLLs with this value. The call is made in the
context of the exiting thread. There are cases
in which the entry-point function is called for
a terminating thread even if the DLL never
attached to the thread ¾ for example, the entry-
point function was never called with the
DLL_THREAD_ATTACH value in the context of
the thread in either of these two situations:

· The thread was the initial thread in the
process, so the system called the entry-point
function with the DLL_PROCESS_ATTACH
value.

· The thread was already running when a
call to the LoadLibrary function was made,
so the system never called the entry-point
function for it.

DLL_PROCESS_DETACH
Indicates that the DLL is detaching from the
address space of the calling process as a
result of either a clean process exit or of a call
to FreeLibrary. The DLL can use this opportunity
to call the TlsFree function to free any TLS
indices allocated by using TlsAlloc and to free
any thread local data. When a DLL detaches from
a process as a result of process termination or as
a result of a call to FreeLibrary, the operating
system does not call the DLL's entry-point
function with the DLL_THREAD_DETACH value
for the individual threads of the process. The DLL
is only given DLL_PROCESS_DETACH
notification. DLLs can take this opportunity to
clean up all resources for all threads attached
and known to the DLL.

lpvReserved
Specifies further aspects of DLL initialization and cleanup.
If fdwReason is DLL_PROCESS_ATTACH, lpvReserved is NULL for dynamic loads and non-
NULL for static loads.
If fdwReason is DLL_PROCESS_DETACH, lpvReserved is NULL if DllEntryPoint has been
called by using FreeLibrary and non-NULL if DllEntryPoint has been called during process
termination.

Return ValuesWhen the system calls the DllEntryPoint function with the DLL_PROCESS_ATTACH value, the
function returns TRUE if it succeeds or FALSE if initialization fails. If the return value is FALSE
when DllEntryPoint is called because the process uses the LoadLibrary function, LoadLibrary
returns NULL. If the return value is FALSE when DllEntryPoint is called during process
initialization, the process terminates with an error. To get extended error information, call
GetLastError.

When the system calls the DllEntryPoint function with any value other than
DLL_PROCESS_ATTACH, the return value is ignored.See AlsoFreeLibrary, GetModuleFileName, LoadLibrary, TlsAlloc, TlsFree

DocumentProperties
The DocumentProperties function retrieves or modifies printer initialization information or
displays a printer-configuration dialog box for the specified printer.

LONG DocumentProperties(
HWND hWnd, // handle to window that displays dialog box
HANDLE hPrinter, // handle to printer object
LPTSTR pDeviceName, // pointer to device name
PDEVMODE pDevModeOutput, // pointer to modified device mode structure
PDEVMODE pDevModeInput, // pointer to original device mode structure
DWORD fMode // mode flag

);ParametershWnd
Identifies the parent window of the printer-configuration dialog box.

hPrinter
Identifies a printer object.

pDeviceName
Points to a null-terminated string that specifies the name of the device for which the printer-
configuration dialog box should be displayed.

pDevModeOutput
Points to a DEVMODE structure that receives the printer configuration data specified by the
user.

pDevModeInput
Pointer to a DEVMODE structure that the operating system uses to initialize the dialog box
controls.
This parameter is only used if the DM_IN_BUFFER flag is set in the fMode parameter. If
DM_IN_BUFFER is not set, the operating system uses the printer's default DEVMODE.

fMode
Specifies a mask of values that determines the operations the function performs. If this
parameter is zero, the DocumentProperties function returns the number of bytes required by
the printer driver's DEVMODE data structure. Otherwise, use one or more of the following
constants to construct a value for this parameter; note, however, that in order to change the
print settings, an application must specify at least one input value and one output value:

Value Meaning
DM_IN_BUFFER Input value. Before prompting, copying, or

updating, the function merges the printer
driver's current print settings with the settings
in the DEVMODE structure specified by the
pDevModeInput parameter. The function
updates the structure only for those members
specified by the DEVMODE structure's
dmFields member. This value is also defined
as DM_MODIFY. In cases of conflict during
the merge, the settings in the DEVMODE
structure specified by pDevModeInput
override the printer driver's current print
settings.

DM_IN_PROMPT Input value. The function presents the printer
driver's Print Setup dialog box and then
changes the settings in the printer's
DEVMODE data structure to those values
specified by the user. This value is also
defined as DM_PROMPT.

DM_OUT_BUFFER Output value. The function writes the printer
driver's current print settings, including private
data, to the DEVMODE data structure
specified by the pDevModeOutput parameter.
The caller must allocate a buffer sufficiently
large to contain the information. If the bit
DM_OUT_BUFFER sets is clear, the

pDevModeOutput parameter can be NULL.
This value is also defined as DM_COPY.

Return ValuesIf the fMode parameter is zero, the return value is the size of the buffer required to contain the
printer driver initialization data. Note that this buffer can be larger than a DEVMODE structure if
the printer driver appends private data to the structure.

If the function displays the initialization dialog box, the return value is either IDOK or IDCANCEL,
depending on which button the user selects.

If the function does not display the dialog box and is successful, the return value is IDOK.

If the function fails, the return value is less than zero.RemarksThe printer object handle identified by the hPrinter parameter can be obtained by calling the
OpenPrinter function.

The string pointed to by the pDeviceName parameter can be obtained by calling the GetPrinter
function.

Note that the DEVMODE structure actually used by a printer driver contains the device-
independent part (as defined above) followed by a driver-specific part that varies in size and
content with each driver and driver version. Because of this driver dependence, it is very important
for applications to query the driver for the correct size of the DEVMODE structure before
allocating a buffer for it.

To make changes to print settings that are local to an application, an application should follow
these steps:

1. Get the number of bytes required for the full DEVMODE structure by calling
DocumentProperties and specifying zero in the fMode parameter.

2. Allocate memory for the full DEVMODE structure.
3. Get the current printer settings by calling DocumentProperties. Pass a pointer to the

DEVMODE structure allocated in Step 2 as the pDevModeOutput parameter and specify the
DM_OUT_BUFFER value.

4. Modify the appropriate members of the returned DEVMODE structure and indicate which
members were changed by setting the corresponding bits in the dmFields member of the
DEVMODE.

5. Call DocumentProperties and pass the modified DEVMODE structure back as both the
pDevModeInput and pDevModeOutput parameters and specify both the DM_IN_BUFFER and
DM_OUT_BUFFER values (which are combined using the OR operator).

The DEVMODE structure returned by the third call to DocumentProperties can be used as an
argument in a call to the CreateDC function.

To create a handle to a printer-device context using the current printer settings, you only need to
call DocumentProperties twice, as described above. The first call gets the size of the full
DEVMODE and the second call initializes the DEVMODE with the current printer settings. Pass
the initialized DEVMODE to CreateDC to obtain the handle to the printer device context.See AlsoAdvancedDocumentProperties, CreateDC, DEVMODE, GetPrinter, OpenPrinter

DosDateTimeToFileTime
The DosDateTimeToFileTime function converts MS-DOS date and time values to a 64-bit file
time.

BOOL DosDateTimeToFileTime(
WORD wFatDate, // 16-bit MS-DOS date
WORD wFatTime, // 16-bit MS-DOS time
LPFILETIME lpFileTime // pointer to buffer for 64-bit file time

);ParameterswFatDate
Specifies the MS-DOS date. The date is a packed 16-bit value with the following format:

Bits Contents
0- 4 Day of the month (1 - 31)
5- 8 Month (1 = January, 2 = February, and so on)
9- 15 Year offset from 1980 (add 1980 to get actual year)

wFatTime
Specifies the MS-DOS time. The time is a packed 16-bit value with the following format:

Bits Contents
0- 4 Second divided by 2
5- 10 Minute (0 - 59)
11- 15 Hour (0 - 23 on a 24-hour clock)

lpFileTime
Points to a FILETIME structure to receive the converted 64-bit file time.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoFILETIME, FileTimeToDosDateTime, FileTimeToSystemTime, SystemTimeToFileTime

DPtoLP
The DPtoLP function converts device coordinates into logical coordinates. The conversion
depends on the mapping mode of the device context, the settings of the origins and extents for
the window and viewport, and the world transformation.

BOOL DPtoLP(
HDC hdc, // handle to device context
LPPOINT lpPoints, // pointer to array of points
int nCount // count of points

);Parametershdc
Identifies the device context.

lpPoints
Points to an array of POINT structures. The x- and y-coordinates contained in each POINT
structure will be transformed.

nCount
Specifies the number of points in the array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe DPtoLP function fails if the device coordinates exceed 27 bits, or if the converted logical
coordinates exceed 32 bits. In the case of such an overflow, the results for all the points are
undefined.See AlsoLPtoDP, POINT

DragAcceptFiles
The DragAcceptFiles function registers whether a window accepts dropped files.

VOID DragAcceptFiles(
HWND hWnd, // handle to the registering window
BOOL fAccept // acceptance option

);ParametershWnd
Identifies the window registering whether it accepts dropped files.

fAccept
Specifies whether the window identified by the hWnd parameter accepts dropped files. This
value is TRUE to accept dropped files; it is FALSE to discontinue accepting dropped files.

Return ValuesThis function does not return a value.RemarksAn application that calls DragAcceptFiles with the fAccept parameter set to TRUE has identified
itself as able to process the WM_DROPFILES message from File Manager.See AlsoWM_DROPFILES

DragDetect
[Now Supported on Windows NT]

The DragDetect function captures the mouse and tracks its movement until the user releases the
left button, presses the ESC key, or moves the mouse outside the "drag rectangle" around the
specified point. The width and height of the drag rectangle are specified by the SM_CXDRAG and
SM_CYDRAG values returned by the GetSystemMetrics function.

BOOL DragDetect(
HWND hwnd,
POINT pt

);Parametershwnd
Handle to the window receiving mouse input.

pt
Initial position of the mouse, in screen coordinates. The function determines the coordinates
of the drag rectangle by using this point.

Return ValuesIf the user moved the mouse outside of the drag rectangle while holding the left button down, the
return value is nonzero.

If the user did not move the mouse outside of the drag rectangle while holding the left button
down, the return value is zero.RemarksThe system metrics for the drag rectangle are configurable, allowing for larger or smaller drag
rectangles.See AlsoGetSystemMetrics

DragFinish
The DragFinish function releases memory that Windows allocated for use in transferring
filenames to the application.

VOID DragFinish(
HDROP hDrop // handle to memory to free

);ParametershDrop
Identifies the structure describing dropped files. This handle is retrieved from the wParam
parameter of the WM_DROPFILES message.

Return ValuesThis function does not return a value.See AlsoWM_DROPFILES

DragQueryFile
The DragQueryFile function retrieves the filenames of dropped files.

UINT DragQueryFile(
HDROP hDrop, // handle to structure for dropped files
UINT iFile, // index of file to query
LPTSTR lpszFile, // buffer for returned filename
UINT cch // size of buffer for filename

);ParametershDrop
Identifies the structure containing the filenames of the dropped files.

iFile
Specifies the index of the file to query. If the value of the iFile parameter is 0xFFFFFFFF,
DragQueryFile returns a count of the files dropped. If the value of the iFile parameter is
between zero and the total number of files dropped, DragQueryFile copies the filename with
the corresponding value to the buffer pointed to by the lpszFile parameter.

lpszFile
Points to a buffer to receive the filename of a dropped file when the function returns. This
filename is a null-terminated string. If this parameter is NULL, DragQueryFile returns the
required size, in characters, of the buffer.

cch
Specifies the size, in characters, of the lpszFile buffer.

Return ValuesWhen the function copies a filename to the buffer, the return value is a count of the characters
copied, not including the terminating null character.

If the index value is 0xFFFFFFFF, the return value is a count of the dropped files.

If the index value is between zero and the total number of dropped files and the lpszFile buffer
address is NULL, the return value is the required size, in characters, of the buffer, not including
the terminating null character.See AlsoDragQueryPoint

DragQueryPoint
The DragQueryPoint function retrieves the position of the mouse pointer at the time a file was
dropped.

BOOL DragQueryPoint(
HDROP hDrop, // handle to structure for dropped file
LPPOINT lppt // pointer to structure for mouse coordinates

);ParametershDrop
Identifies the structure describing the dropped file.

lppt
Points to a POINT structure that the function fills with the coordinates of the mouse pointer at
the time the file was dropped.

Return ValuesIf the drop occurred in the client area of the window, the return value is nonzero.

If the drop did not occur in the client area of the window, the return value is zero.RemarksThe DragQueryPoint function fills the POINT structure with the coordinates of the mouse pointer
at the time the user released the left mouse button. The window for which coordinates are
returned is the window that received the WM_DROPFILES message.See AlsoDragQueryFile, POINT, WM_DROPFILES

DrawAnimatedRects
[Now Supported on Windows NT]

The DrawAnimatedRects function draws a wire-frame rectangle and animates it to indicate the
opening of an icon or the minimizing or maximizing of a window.

BOOL WINAPI DrawAnimatedRects(
HWND hwnd, // handle to clipping window
int idAni, // type of animation
CONST RECT *lprcFrom, // pointer to rectangle coordinates (minimized)
CONST RECT *lprcTo // pointer to rectangle coordinates (restored)

);Parametershwnd
Handle to the window to which the rectangle is clipped. If this parameter is NULL, the working
area of the screen is used.

idAni
This parameter is reserved and must be zero.

lprcFrom
Points to a SMALL_RECT structure specifying the location and size of the icon or minimized
window. Coordinates are relative to the rectangle specified by the lprcClip parameter.

lprcTo
Points to a SMALL_RECT structure specifying the location and size of the restored window.
Coordinates are relative to the rectangle specified by the lprcClip parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoSMALL_RECT

DrawCaption
[Now Supported on Windows NT]

The DrawCaption function draws a window caption.

BOOL WINAPI DrawCaption(
HWND hwnd, // handle to window to get text and icon from
HDC hdc, // handle to device context to draw into
LPCRECT lprc, // pointer to rectangle to draw into
UINT uFlags, // set of drawing option flags

);Parametershwnd
Handle to a window that supplies text and an icon for the window caption.

hdc
Handle to a device context. The function draws the window caption into this device context.

lprc
Pointer to a RECT structure that specifies the bounding rectangle for the window caption.

uFlags
A set of bit flags that specify drawing options. You can set zero or more of the following flags:

Value Meaning
DC_ACTIVE The function uses the colors that denote an

active caption.
DC_ICON The function draws the icon when drawing the

caption text.
DC_INBUTTON The function draws the caption as a button.
DC_SMALLCAP The function draws a small caption, using the

current small caption font.
DC_TEXT The function draws the caption text when

drawing the caption.

If DC_SMALLCAP is specified, the function draws a normal window caption.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoRECT

DrawEdge
The DrawEdge function draws one or more edges of rectangle.

BOOL DrawEdge(
HDC hdc, // handle to device context
LPRECT qrc, // pointer to rectangle coordinates
UINT edge, // type of inner and outer edge to draw
UINT grfFlags // type of border

);Parametershdc
Identifies the device context.

qrc
Points to a RECT structure that contains the logical coordinates of the rectangle.edge
Specifies the type of inner and outer edge to draw. This parameter must be a combination of
one inner-border flag and one outer-border flag. The inner-border flags are as follows:

Value Meaning
BDR_RAISEDINNER Raised inner edge.
BDR_SUNKENINNER Sunken inner edge.

The outer-border flags are as follows:
Value Meaning
BDR_RAISEDOUTER Raised outer edge.
BDR_SUNKENOUTER Sunken outer edge.

Alternatively, the edge parameter can specify one of the following flags:
Value Meaning
EDGE_BUMP Combination of BDR_RAISEDOUTER

and BDR_SUNKENINNER.
EDGE_ETCHED Combination of BDR_SUNKENOUTER

and BDR_RAISEDINNER.
EDGE_RAISED Combination of BDR_RAISEDOUTER

and BDR_RAISEDINNER.
EDGE_SUNKEN Combination of BDR_SUNKENOUTER

and BDR_SUNKENINNER.

grfFlags
Specifies the type of border. This parameter can be a combination of these values:

Value Meaning
BF_ADJUST Rectangle to be adjusted to leave

space for client area.
BF_BOTTOM Bottom of border rectangle.
BF_BOTTOMLEFT Bottom and left side of border

rectangle.
BF_BOTTOMRIGHT Bottom and right side of border

rectangle.
BF_DIAGONAL Diagonal border.
BF_DIAGONAL_ENDBOTTOMLEFTDiagonal border. The end point is

the bottom-left corner of the
rectangle; the origin is top-right
corner.

BF_DIAGONAL_ENDBOTTOMRIGHTDiagonal border. The end point is
the bottom-right corner of the
rectangle; the origin is top-left
corner.

BF_DIAGONAL_ENDTOPLEFT Diagonal border. The end point is
the top-left corner of the

rectangle; the origin is bottom-
right corner.

BF_DIAGONAL_ENDTOPRIGHTDiagonal border. The end point is
the top-right corner of the
rectangle; the origin is bottom-left
corner.

BF_FLAT Flat border.
BF_LEFT Left side of border rectangle.
BF_MIDDLE Interior of rectangle to be filled.
BF_MONO One-dimensional border.
BF_RECT Entire border rectangle.
BF_RIGHT Right side of border rectangle.
BF_SOFT Soft buttons instead of tiles.
BF_TOP Top of border rectangle.
BF_TOPLEFT Top and left side of border

rectangle.
BF_TOPRIGHT Top and right side of border

rectangle.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoRECT

DrawEscape
The DrawEscape function accesses drawing capabilities of a video display that are not directly
available through the graphics device interface (GDI).

int DrawEscape(
HDC hdc, // handle to device context
int nEscape, // specifies escape function
int cbInput, // size of structure for input
LPCSTR lpszInData // pointer to structure for input

);Parametershdc
Identifies the device context for the specified video display.

nEscape
Specifies the escape function to be performed.

cbInput
Specifies the number of bytes of data pointed to by the lpszInData parameter.

lpszInData
Points to the input structure required for the specified escape.

Return ValuesThe return value specifies the outcome of the function. It is greater than zero if the function is
successful, except for the QUERYESCSUPPORT draw escape, which checks for implementation
only. The return value is zero if the escape is not implemented. The return value is less than zero
if an error occurred. To get extended error information, call GetLastError.RemarksWhen an application calls the DrawEscape function, the data identified by cbInput and lpszInData
is passed directly to the specified display driver.

DrawFocusRect
The DrawFocusRect function draws a rectangle in the style used to indicate that the rectangle
has the focus.

BOOL DrawFocusRect(
HDC hDC, // handle to device context
CONST RECT *lprc // pointer to structure for rectangle

);ParametershDC
Identifies the device context.

lprc
Points to a RECT structure that specifies the logical coordinates of the rectangle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBecause DrawFocusRect is an XOR function, calling it a second time with the same rectangle
removes the rectangle from the screen.

This function draws a rectangle that cannot be scrolled. To scroll an area containing a rectangle
drawn by this function, call DrawFocusRect to remove the rectangle from the screen, scroll the
area, and then call DrawFocusRect again to draw the rectangle in the new position.See AlsoFrameRect, RECT

DrawFrameControl
The DrawFrameControl function draws a frame control of the specified type and style.

BOOL DrawFrameControl(

HDC hdc,
// handle to device context

LPRECT lprc, // pointer to bounding rectangle
UINT uType, // frame-control type
UINT uState // frame-control state

);
Parametershdc

Identifies the device context of the window in which to draw the control.
lprc

Points to a RECT structure that contains the logical coordinates of the bounding rectangle for
frame control.

uType

Specifies the type of frame control to draw. This parameter can be one of the following values:
Value Meaning
DFC_BUTTON Standard button
DFC_CAPTION Title bar
DCF_MENU Menu
DFC_SCROLL Scroll bar

uState

Specifies the initial state of the frame control. If uType is DFC_BUTTON, uState can be one of
the following values:

Value Meaning
DFCS_BUTTON3STATE Three-state button
DFCS_BUTTONCHECK Check box
DFCS_BUTTONPUSH Push button
DFCS_BUTTONRADIO Radio button
DFCS_BUTTONRADIOIMAGE Image for radio button (nonsquare

needs image)
DFCS_BUTTONRADIOMASK Mask for radio button (nonsquare

needs mask)

If uType is DFC_CAPTION, uState can be one of the following values:
Value Meaning
DFCS_CAPTIONCLOSE Close button
DFCS_CAPTIONHELP Windows 95 only: Help button
DFCS_CAPTIONMAX Maximize button
DFCS_CAPTIONMIN Minimize button
DFCS_CAPTIONRESTORE Restore button

If uType is DFC_MENU, uState can be one of the following values:
Value Meaning
DFCS_MENUARROW Submenu arrow
DFCS_MENUBULLET Bullet
DFCS_MENUCHECK Check mark

If uType is DFC_SCROLL, uState can be one of the following values:
Value Meaning
DFCS_SCROLLCOMBOBOX Combo box scroll bar
DFCS_SCROLLDOWN Down arrow of scroll bar
DFCS_SCROLLLEFT Left arrow of scroll bar
DFCS_SCROLLRIGHT Right arrow of scroll bar
DFCS_SCROLLSIZEGRIP Size grip in bottom-right corner of

window
DFCS_SCROLLUP Up arrow of scroll bar

The following style can be used to adjust the bounding rectangle of the push button:
Value Meaning
DFCS_ADJUSTRECT Bounding rectangle is adjusted to

exclude the surrounding edge of
the push button.

One or more of the following values can be used to set the state of the control to be
drawn:

Value Meaning
DFCS_CHECKED Button is checked.
DFCS_FLAT Button has a flat border.
DFCS_INACTIVE Button is inactive (grayed).
DFCS_MONO Button has a monochrome border.
DFCS_PUSHED Button is pushed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoRECT

DrawIcon
The DrawIcon function draws an icon in the client area of the window of the specified device
context.

BOOL DrawIcon(

HDC hDC,
// handle to device context

int X, // x-coordinate of upper-left corner
int Y, // y-coordinate of upper-left corner
HICON hIcon // handle to icon to draw

);
ParametershDC

Identifies the device context for a window.
X

Specifies the logical x-coordinate of the upper-left corner of the icon.
Y

Specifies the logical y-coordinate of the upper-left corner of the icon.
hIcon

Identifies the icon to be drawn.
Windows NT: The icon resource must have been previously loaded by using the LoadIcon
function.
Windows 95: The icon resource must have been previously loaded by using the LoadIcon or
LoadImage functions.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksDrawIcon places the icon's upper-left corner at the location specified by the X and Y parameters.
The location is subject to the current mapping mode of the device context.See AlsoCreateIcon, DrawIconEx, LoadIcon

DrawIconEx
The DrawIconEx function draws an icon or cursor in the client area of the window of the specified
device context, performing the specified raster operations, and stretching or compressing the icon
or cursor as specified.

BOOL DrawIconEx(

HDC hdc,
// handle to device context

int xLeft, // x-coordinate of upper left corner
int yTop, // y-coordinate of upper left corner
HICON hIcon, // handle to icon to draw
int cxWidth, // width of the icon
int cyWidth, // height of the icon
UINT istepIfAniCur, // index of frame in animated cursor
HBRUSH hbrFlickerFreeDraw, // handle to background brush
UINT diFlags // icon-drawing flags

);
Parametershdc

Identifies the device context for a window.
xLeft

Specifies the logical x-coordinate of the upper-left corner of the icon or cursor.
yTop

Specifies the logical y-coordinate of the upper-left corner of the icon or cursor.
hIcon

Identifies the icon or cursor to be drawn. This parameter can identify an animated cursor. The
icon or cursor resource must have been previously loaded by using the LoadImage function.

cxWidth

Specifies the logical width of the icon or cursor. If this parameter is zero and the diFlags
parameter is DI_DEFAULTSIZE, the function uses the SM_CXICON or SM_CXCURSOR
system metric value to set the width. If this parameter is zero and DI_DEFAULTSIZE is not
used, the function uses the actual resource width.

cyWidth

Specifies the logical height of the icon or cursor. If this parameter is zero and the diFlags
parameter is DI_DEFAULTSIZE, the function uses the SM_CYICON or SM_CYCURSOR
system metric value to set the width. If this parameter is zero and DI_DEFAULTSIZE is not
used, the function uses the actual resource height.

istepIfAniCur

Specifies the index of the frame to draw, if hIcon identifies an animated cursor. This
parameter is ignored if hIcon does not identify an animated cursor.

hbrFlickerFreeDraw

Identifies a brush that the system uses for flicker-free drawing. If hbrBkgnd is a valid brush
handle, the system creates an offscreen bitmap using the specified brush for the background
color, draws the icon or cursor into the bitmap, and then copies the bitmap into the device
context identified by hdc. If hbrBkgnd is NULL, the system draws the icon or cursor directly
into the device context.

diFlags

Specifies the drawing flags. This parameter can be one of the following values:
Value Meaning
DI_COMPAT Draws the icon or cursor using the system

default image rather than the user-
specified image.

DI_DEFAULTSIZE Draws the icon or cursor using the width

and height specified by the system metric
values for cursors or icons, if the cxWidth
and cyWidth parameters are set to zero. If
this flag is not specified and cxWidth and
cyWidth are set to zero, the function uses
the actual resource size.

DI_IMAGE Performs the raster operation specified by
ropImage.

DI_MASK Performs the raster operation specified by
ropMask.

DI_NORMAL Combination of DI_IMAGE and DI_MASK.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DrawIconEx function places the icon's upper-left corner at the location specified by the xLeft
and yTop parameters. The location is subject to the current mapping mode of the device context.See AlsoCopyImage, DrawIcon, LoadImage

DrawInsert
The DrawInsert function draws the insert icon in the parent window of the specified drag list box.

void DrawInsert(

HWND handParent,
HWND hLB,
int nItem

);
ParametershandParent

Handle to the parent window of the drag list box.
hLB

Handle to the drag list box.
nItem

Identifier of the icon item to be drawn.Return ValuesThis function does not return a value.

DrawMenuBar
The DrawMenuBar function redraws the menu bar of the specified window. If the menu bar
changes after Windows has created the window, this function must be called to draw the changed
menu bar.

BOOL DrawMenuBar(

HWND hWnd
// handle to window with menu bar to redraw

);
ParametershWnd

Identifies the window whose menu bar needs redrawing.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoDeleteMenu, InsertMenuItem, RemoveMenu, SetMenuItemInfo

DrawState
[Now Supported on Windows NT]

The DrawState function displays an image and applies a visual effect to indicate a state, such as
a disabled or default state.

BOOL WINAPI DrawState(

HDC hdc,
// handle to device context

HBRUSH hbr, // handle to brush
DRAWSTATEPROC lpOutputFunc, // pointer to callback function
LPARAM lData, // image information
WPARAM wData, // more image information
int x, // horizontal location of image
int y, // vertical location of image
int cx, // width of image
int cy, // height of image
UINT fuFlags // image type and state

);
Parametershdc

Identifies the device context to draw in.
hbr

Identifies the brush used to draw the image, if the state specified by the fuFlags parameter is
DSS_MONO. This parameter is ignored for other states.

lpOutputFunc

Points to an application-defined callback function used to render the image. This parameter is
required if the image type in fuFlags is DST_COMPLEX. It is optional and can be NULL if the
image type is DST_TEXT. For all other image types, this parameter is ignored. For more
information about the callback function, see the DrawStateProc function.

lData

Specifies information about the image. The meaning of this parameter depends on the image
type.

wData

Specifies information about the image. The meaning of this parameter depends on the image
type. It is, however, zero extended for use with the DrawStateProc function.

x

Specifies the horizontal location at which to draw the image.
y

Specifies the vertical location at which to draw the image.
cx

Specifies the width of the image, in device units. This parameter is required if the image type
is DST_COMPLEX. Otherwise, it can be zero to calculate the width of the image.

cy

Specifies the height of the image, in device units. This parameter is required if the image type
is DST_COMPLEX. Otherwise, it can be zero to calculate the height of the image.

fuFlags

Specifies the image type and state. The type can be one of these values:
Value (type) Meaning
DST_BITMAP The image is a bitmap. The low-order word of

the lData parameter is the bitmap handle.
DST_COMPLEX The image is application defined. To render

the image, DrawState calls the callback
function specified by the lpOutputFunc
parameter.

DST_ICON The image is an icon. The low-order word of
lData is the icon handle.

DST_PREFIXTEXTThe image is text that may contain an
accelerator mnemonic. DrawState interprets
the ampersand (&) prefix character as a
directive to underscore the character that
follows. The lData parameter specifies the
address of the string, and the wData
parameter specifies the length. If wData is
zero, the string must be null-terminated.

DST_TEXT The image is text. The lData parameter
specifies the address of the string, and the
wData parameter specifies the length. If
wData is zero, the string must be null-
terminated.

The state can be one of these values:
Value (state) Meaning
DSS_NORMAL Draws the image without any modification.
DSS_UNION Dithers the image.
DSS_DISABLED Embosses the image.
DSS_MONO Draws the image using the brush specified by

the hbr parameter.

For all states except DSS_NORMAL, the image is converted to monochrome before the
visual effect is applied.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoDrawStateProc

DrawStateProc
[Now Supported on Windows NT]

The DrawStateProc function is an application-defined callback function that renders a complex
image for the DrawState function.

BOOL CALLBACK DrawStateProc(

HDC hdc,
// handle to device context

LPARAM lData, // image information
WPARAM wData, // more image information
int cx, // width of image
int cy // height of image

);
Parametershdc

Identifies the device context to draw in. The device context is a memory device context with a
bitmap selected, the dimensions of which are at least as great as those specified by the cx
and cy parameters.

lData

Specifies information about the image, which the application passed to DrawState.
wData

Specifies information about the image, which the application passed to DrawState.
cx

Specifies the image width, in device units, as specified by the call to DrawState.
cy

Specifies the image height, in device units, as specified by the call to DrawState.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.See AlsoDrawState

DrawStatusText
The DrawStatusText function draws the specified text in the style of a status window with
borders.

void DrawStatusText(

HDC hdc,
LPRECT lprc,
LPCTSTR pszText,
UINT uFlags

);
Parametershdc

Handle to the display context for the window.
lprc

Pointer to a RECT structure that contains the position, in client coordinates, of the rectangle in
which the text is drawn. The function draws the borders just inside of the edges of the
specified rectangle.

pszText

Pointer to a null-terminated string that specifies the text to display. Tab characters in the string
determine whether the string is left-aligned, right-aligned, or centered.

uFlags

Text drawing flags. This parameter can be a combination of these values:
Value Meaning
SBT_NOBORDERSPrevents borders from being drawn around

the specified text.
SBT_POPOUT Draws highlighted borders that make the text

stand out.
SBT_RTLREADINGWindows 95 only: Displays text using right-

to-left reading order on Hebrew or Arabic
systems.

Return ValuesThis function does not return a value.See AlsoRECT

DrawText
The DrawText function draws formatted text in the specified rectangle. It formats the text
according to the specified method (expanding tabs, justifying characters, breaking lines, and so
forth).

int DrawText(

HDC hDC,
// handle to device context

LPCTSTR lpString, // pointer to string to draw
int nCount, // string length, in characters
LPRECT lpRect, // pointer to structure with formatting dimensions
UINT uFormat // text-drawing flags

);
ParametershDC

Identifies the device context.
lpString

Points to the string to be drawn. If the nCount parameter is - 1, the string must be null-
terminated.

nCount

Specifies the number of characters in the string. If nCount is - 1, then the lpString parameter is
assumed to be a pointer to a null-terminated string and DrawText computes the character
count automatically.

lpRect

Points to a RECT structure that contains the rectangle (in logical coordinates) in which the text
is to be formatted.

uFormat

Specifies the method of formatting the text. It can be any combination of the following values:
Value Description
DT_BOTTOM Justifies the text to the bottom of the

rectangle. This value must be combined
with DT_SINGLELINE.

DT_CALCRECT Determines the width and height of the
rectangle. If there are multiple lines of
text, DrawText uses the width of the
rectangle pointed to by the lpRect
parameter and extends the base of the
rectangle to bound the last line of text. If
there is only one line of text, DrawText
modifies the right side of the rectangle
so that it bounds the last character in the
line. In either case, DrawText returns
the height of the formatted text but does
not draw the text.

DT_CENTER Centers text horizontally in the rectangle.
DT_EDITCONTROL Duplicates the text-displaying

characteristics of a multiline edit control.
Specifically, the average character width
is calculated in the same manner as for
an edit control, and the function does not
display a partially visible last line.

DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS

Replaces part of the given string with
ellipses, if necessary, so that the result
fits in the specified rectangle. The given
string is not modified unless the
DT_MODIFYSTRING flag is specified.

You can specify DT_END_ELLIPSIS to
replace characters at the end of the
string, or DT_PATH_ELLIPSIS to
replace characters in the middle of the
string. If the string contains backslash (\
) characters, DT_PATH_ELLIPSIS
preserves as much as possible of the
text after the last backslash.

DT_EXPANDTABS Expands tab characters. The default
number of characters per tab is eight.

DT_EXTERNALLEADING Includes the font external leading in line
height. Normally, external leading is not
included in the height of a line of text.

DT_LEFT Aligns text to the left.
DT_MODIFYSTRING Modifies the given string to match the

displayed text. This flag has no effect
unless the DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS flag is specified.

DT_NOCLIP Draws without clipping. DrawText is
somewhat faster when DT_NOCLIP is
used.

DT_NOPREFIX Turns off processing of prefix characters.
Normally, DrawText interprets the
mnemonic-prefix character & as a
directive to underscore the character
that follows, and the mnemonic-prefix
characters && as a directive to print a
single &. By specifying DT_NOPREFIX,
this processing is turned off.

DT_RIGHT Aligns text to the right.
DT_RTLREADING Layout in right to left reading order for bi-

directional text when the font selected
into the hdc is a Hebrew or Arabic font.
The default reading order for all text is
left to right.

DT_SINGLELINE Displays text on a single line only.
Carriage returns and linefeeds do not
break the line.

DT_TABSTOP Sets tab stops. Bits 15- 8 (high-order
byte of the low-order word) of the
uFormat parameter specify the number
of characters for each tab. The default
number of characters per tab is eight.

DT_TOP Top-justifies text (single line only).
DT_VCENTER Centers text vertically (single line only).
DT_WORDBREAK Breaks words. Lines are automatically

broken between words if a word would
extend past the edge of the rectangle
specified by the lpRect parameter. A
carriage return-linefeed sequence also
breaks the line.

Note that the DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL, DT_NOCLIP,
and DT_NOPREFIX values cannot be used with the DT_TABSTOP value.Return ValuesIf the function succeeds, the return value is the height of the text.RemarksThe DrawText function uses the device context's selected font, text color, and background color

to draw the text. Unless the DT_NOCLIP format is used, DrawText clips the text so that it does
not appear outside the specified rectangle. All formatting is assumed to have multiple lines unless
the DT_SINGLELINE format is specified.

If the selected font is too large for the specified rectangle, the DrawText function does not attempt
to substitute a smaller font.

See AlsoGrayString, TabbedTextOut, TextOut, RECT

DrawTextEx
[Now Supported on Windows NT]

The DrawTextEx function draws formatted text in the specified rectangle.

int DrawTextEx(

HDC hdc,
// handle to device context

LPTSTR lpchText, // pointer to string to draw
int cchText, // length of string to draw
LPRECT lprc, // pointer to rectangle coordinates
UINT dwDTFormat, // formatting options
LPDRAWTEXTPARAMS lpDTParams // pointer to structure for more options

);
Parametershdc

Identifies the device context to draw in.
lpchText

Points to the string to draw. The string must be null-terminated if the cchText parameter is -
1.

cchText

Specifies the length, in characters, of the string specified by the lpchText parameter. If the
string is null-terminated, this parameter can be - 1 to calculate the length.

lprc

Points to a RECT structure that contains the rectangle, in logical coordinates, in which the text
is to be formatted.

dwDTFormat

Specifies formatting options. This parameter can be one or more of these values:
Value Meaning
DT_BOTTOM Justifies the text to the bottom of the

rectangle. This value must be combined
with DT_SINGLELINE.

DT_CALCRECT Determines the width and height of the
rectangle. If there are multiple lines of
text, DrawTextEx uses the width of the
rectangle pointed to by the lprc parameter
and extends the base of the rectangle to
bound the last line of text. If there is only
one line of text, DrawTextEx modifies the
right side of the rectangle so that it
bounds the last character in the line. In
either case, DrawTextEx returns the
height of the formatted text, but does not
draw the text.

DT_CENTER Centers text horizontally in the rectangle.
DT_EDITCONTROL Duplicates the text-displaying

characteristics of a multiline edit control.
Specifically, the average character width
is calculated in the same manner as for
an edit control, and the function does not
display a partially visible last line.

DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS

Replaces part of the given string with
ellipses, if necessary, so that the result fits
in the specified rectangle. The given
string is not modified unless the
DT_MODIFYSTRING flag is specified.

You can specify DT_END_ELLIPSIS to
replace characters at the end of the string,
or DT_PATH_ELLIPSIS to replace
characters in the middle of the string. If
the string contains backslash (\)
characters, DT_PATH_ELLIPSIS
preserves as much as possible of the text
after the last backslash.

DT_EXPANDTABS Expands tab characters. The default
number of characters per tab is eight.

DT_EXTERNALLEADINGIncludes the font external leading in line
height. Normally, external leading is not
included in the height of a line of text.

DT_LEFT Aligns text to the left.
DT_MODIFYSTRING Modifies the given string to match the

displayed text. This flag has no effect
unless the DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS flag is specified.

DT_NOCLIP Draws without clipping. DrawTextEx is
somewhat faster when DT_NOCLIP is
used.

DT_NOPREFIX Turns off processing of prefix characters.
Normally, DrawTextEx interprets the
ampersand (&) mnemonic-prefix character
as a directive to underscore the character
that follows, and the double ampersand
(&&) mnemonic-prefix characters as a
directive to print a single ampersand. By
specifying DT_NOPREFIX, this
processing is turned off.

DT_RIGHT Aligns text to the right.
DT_RTLREADING Layout in right to left reading order for bi-

directional text when the font selected into
the hdc is a Hebrew or Arabic font. The
default reading order for all text is left to
right.

DT_SINGLELINE Displays text on a single line only.
Carriage returns and linefeeds do not
break the line.

DT_TABSTOP Sets tab stops. The
DRAWTEXTPARAMS structure pointed
to by the lpDTParams parameter specifies
the number of average character widths
per tab stop.

DT_TOP Top justifies text (single line only).
DT_VCENTER Centers text vertically (single line only).
DT_WORDBREAK Breaks words. Lines are automatically

broken between words if a word extends
past the edge of the rectangle specified
by the lprc parameter. A carriage return-
linefeed sequence also breaks the line.

dwDTParams

Points to a DRAWTEXTPARAMS structure that specifies additional formatting options. This
parameter can be NULL.Return ValuesIf the function succeeds, the return value is the text height.

If the function fails, the return value is zero.See AlsoDrawText, DRAWTEXTPARAMS

DuplicateHandle
The DuplicateHandle function duplicates an object handle.

BOOL DuplicateHandle(

HANDLE hSourceProcessHandle,
// handle to process with handle to duplicate

HANDLE hSourceHandle, // handle to duplicate
HANDLE hTargetProcessHandle, // handle to process to duplicate to
LPHANDLE lpTargetHandle, // pointer to duplicate handle
DWORD dwDesiredAccess, // access for duplicate handle
BOOL bInheritHandle, // handle inheritance flag
DWORD dwOptions // optional actions

);
ParametershSourceProcessHandle

Identifies the process containing the handle to duplicate. The handle must have
PROCESS_DUP_HANDLE access. For more information, see Process Objects.

hSourceHandle

Identifies the handle to duplicate. This is an open object handle that is valid in the context of
the source process. For a list of objects whose handles can be duplicated, see the following
Remarks section.

hTargetProcessHandle

Identifies the process that is to receive the duplicated handle. The handle must have
PROCESS_DUP_HANDLE access.

lpTargetHandle

Points to a variable receiving the value of the duplicate handle. This handle value is valid in
the context of the target process. If lpTargetHandle is NULL, the function duplicates the
handle, but does not return the duplicate handle value to the caller.

dwDesiredAccess

Specifies the access requested for the new handle. This parameter is ignored if the dwOptions
parameter specifies the DUPLICATE_SAME_ACCESS flag. Otherwise, the flags that can be
specified depend on the type of object whose handle is being duplicated. For the flags that
can be specified for each object type, see the following Remarks section. Note that the new
handle can have more access than the original handle.

bInheritHandle

Indicates whether the handle is inheritable. If TRUE, the duplicate handle can be inherited by
new processes created by the target process. If FALSE, the new handle cannot be inherited.

dwOptions

Specifies optional actions. This parameter can be zero, or any combination of the following
flags:

Value Meaning
DUPLICATE_CLOSE_SOURCE Closes the source handle. This

occurs regardless of any error
status returned.

DUPLICATE_SAME_ACCESS Ignores the dwDesiredAccess
parameter. The duplicate handle
has the same access as the source
handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksDuplicateHandle can be called by either the source process or the target process. It can also be
invoked where the source and target process are the same. For example, a process can use
DuplicateHandle to create a noninheritable duplicate of an inheritable handle, or a handle with
different access than the original handle.

The duplicating process uses the GetCurrentProcess function to get a handle of itself. To get the
other process handle, it may be necessary to use some form of interprocess communication (for
example, named pipe or shared memory) to communicate the process identifier to the duplicating
process. This identifier is then used in the OpenProcess function to open a handle.

If the process that calls DuplicateHandle is not the target process, the duplicating process must
use interprocess communication to pass the value of the duplicate handle to the target process.

The duplicate handle is the same object handle as the source handle. This means that the state of
the object is the same for both handles. For example, the current file mark for a file handle is
always the same for both handles.

DuplicateHandle can duplicate handles to the following types of objects:

Object Description

Console input The handle is returned by the
CreateFile function when CONIN$
is specified, or by the
GetStdHandle function when
STD_INPUT_HANDLE is specified.
Console handles can be duplicated
for use only in the same process.

Console screen buffer The handle is returned by the
CreateFile function when
CONOUT$ is specified, or by the
GetStdHandle function when
STD_OUTPUT_HANDLE is
specified. Console handles can be
duplicated for use only in the same
process.

Event The handle is returned by the
CreateEvent or OpenEvent
function.

File or communications device The handle is returned by the
CreateFile function.

File mapping The handle is returned by the
CreateFileMapping function.

Mutex The handle is returned by the
CreateMutex or OpenMutex
function.

Pipe A named pipe handle is returned by
the CreateNamedPipe or
CreateFile function. An anonymous
pipe handle is returned by the
CreatePipe function.

Process The handle is returned by the
CreateProcess,
GetCurrentProcess, or
OpenProcess function.

Registry key The handle is returned by the
RegCreateKey, RegCreateKeyEx,
RegOpenKey, or RegOpenKeyEx
function. Note that registry key
handles returned by the
RegConnectRegistry function
cannot be used in a call to
DuplicateHandle.

Semaphore The handle is returned by the
CreateSemaphore or
OpenSemaphore function.

Thread The handle is returned by the
CreateProcess, CreateThread,
CreateRemoteThread, or

GetCurrentThread function

In addition to STANDARD_RIGHTS_REQUIRED, the following access flags can be specified
in the dwDesiredAccess parameter for the different object types. Note that the new handle can
have more access than the original handle. However, in some cases DuplicateHandle cannot
create a duplicate handle with more access permission than the original handle. For example, a
file handle created with GENERIC_READ access cannot be duplicated so that it has both
GENERIC_READ and GENERIC_WRITE access.

Any combination of the following access flags is valid for handles to communications devices,
console input, console screen buffers, files, and pipes:

Access Description

GENERIC_READ Enables read access.
GENERIC_WRITE Enables write access.

Any combination of the following access flags is valid for file-mapping objects:

Access Description

FILE_MAP_ALL_ACCESS Specifies all possible access flags
for the file-mapping object.

FILE_MAP_READ Enables mapping the object into
memory that permits read access.

FILE_MAP_WRITE Enables mapping the object into
memory that permits write access.
For write access,
PAGE_READWRITE protection
must have been specified when the
file-mapping object was created by
the CreateFileMapping function.

Any combination of the following access flags is valid for mutex objects:

Access Description

MUTEX_ALL_ACCESS Specifies all possible access flags
for the mutex object.

SYNCHRONIZE Windows NT only: Enables use of
the mutex handle in any of the wait
functions to acquire ownership of
the mutex, or in the ReleaseMutex
function to release ownership.

Any combination of the following access flags is valid for semaphore objects:

Access Description

SEMAPHORE_ALL_ACCESS Specifies all possible access flags
for the semaphore object.

SEMAPHORE_MODIFY_STATE Enables use of the semaphore
handle in the ReleaseSemaphore
function to modify the semaphore's
count.

SYNCHRONIZE Windows NT only: Enables use of
the semaphore handle in any of the
wait functions to wait for the
semaphore's state to be signaled.

Any combination of the following access flags is valid for event objects:

Access Description

EVENT_ALL_ACCESS Specifies all possible access flags
for the event object.

EVENT_MODIFY_STATE Enables use of the event handle in
the SetEvent and ResetEvent
functions to modify the event's
state.

SYNCHRONIZE Windows NT only: Enables use of
the event handle in any of the wait
functions to wait for the event's
state to be signaled.

Any combination of the following access flags is valid for handles to registry keys:

Value Meaning

KEY_ALL_ACCESS Specifies all possible flags for the
registry key.

KEY_CREATE_LINK Enables using the handle to create
a link to a registry-key object.

KEY_CREATE_SUB_KEY Enables using the handle to create
a subkey of a registry-key object.

KEY_ENUMERATE_SUB_KEYS Enables using the handle to
enumerate the subkeys of a
registry-key object.

KEY_EXECUTE Equivalent to KEY_READ.
KEY_NOTIFY Enables using the handle to request

change notifications for a registry
key or for subkeys of a registry key.

KEY_QUERY_VALUE Enables using the handle to query a
value of a registry-key object.

KEY_READ Combines the
STANDARD_RIGHTS_READ,
KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,
and KEY_NOTIFY values.

KEY_SET_VALUE Enables using the handle to create
or set a value of a registry-key
object.

KEY_WRITE Combines the
STANDARD_RIGHTS_WRITE,
KEY_SET_VALUE, and
KEY_CREATE_SUB_KEY values.

Any combination of the following access flags is valid for process objects:

Access Description

PROCESS_ALL_ACCESS Specifies all possible access flags
for the process object.

PROCESS_CREATE_PROCESS Used internally.
PROCESS_CREATE_THREAD Enables using the process handle

in the CreateRemoteThread
function to create a thread in the
process.

PROCESS_DUP_HANDLE Enables using the process handle
as either the source or target
process in the DuplicateHandle
function to duplicate a handle.

PROCESS_QUERY_INFORMATIONEnables using the process handle

in the GetExitCodeProcess and
GetPriorityClass functions to read
information from the process object.

PROCESS_SET_INFORMATION Enables using the process handle
in the SetPriorityClass function to
set the process's priority class.

PROCESS_TERMINATE Enables using the process handle
in the TerminateProcess function
to terminate the process.

PROCESS_VM_OPERATION Enables using the process handle
in the VirtualProtectEx and
WriteProcessMemory functions to
modify the virtual memory of the
process.

PROCESS_VM_READ Enables using the process handle
in the ReadProcessMemory
function to read from the virtual
memory of the process.

PROCESS_VM_WRITE Enables using the process handle
in the WriteProcessMemory
function to write to the virtual
memory of the process.

SYNCHRONIZE Windows NT only: Enables using
the process handle in any of the
wait functions to wait for the
process to terminate.

Any combination of the following access flags is valid for thread objects:

Access Description

SYNCHRONIZE Windows NT only: Enables using
the thread handle in any of the wait
functions to wait for the thread to
terminate.

THREAD_ALL_ACCESS Specifies all possible access flags
for the thread object.

THREAD_DIRECT_IMPERSONATIONUsed internally.
THREAD_GET_CONTEXT Enables using the thread handle in

the GetThreadContext function to
read the thread's context.

THREAD_IMPERSONATE Used internally.
THREAD_QUERY_INFORMATIONEnables using the thread handle in

the GetExitCodeThread,
GetThreadPriority, and
GetThreadSelectorEntry functions
to read information from the thread
object.

THREAD_SET_CONTEXT Enables using the thread handle in
the SetThreadContext function to
set the thread's context.

THREAD_SET_INFORMATION Enables using the thread handle in
the SetThreadPriority function to
set the thread's priority.

THREAD_SET_THREAD_TOKENUsed internally.
THREAD_SUSPEND_RESUME Enables using the thread handle in

the SuspendThread or
ResumeThread functions to
suspend or resume a thread.

THREAD_TERMINATE Enables using the thread handle in
the TerminateThread function to

terminate the thread.
See AlsoCloseHandle, CreateEvent, CreateFile, CreateFileMapping, CreateMutex, CreateNamedPipe,

CreatePipe, CreateProcess, CreateRemoteThread, CreateSemaphore, CreateThread,
GetCurrentProcess, GetExitCodeProcess, GetExitCodeThread, GetPriorityClass,
GetStdHandle, GetThreadContext, GetThreadPriority, GetThreadSelectorEntry, OpenEvent,
OpenMutex, OpenProcess, OpenSemaphore, ReadProcessMemory, RegConnectRegistry,
RegCreateKey, RegCreateKeyEx, RegOpenKey, RegOpenKeyEx, ReleaseMutex,
ReleaseSemaphore, ResetEvent, ResumeThread, SetEvent, SetPriorityClass,
SetThreadContext, SetThreadPriority, SuspendThread, TerminateProcess,
TerminateThread, VirtualProtectEx, WriteProcessMemory

DuplicateToken
The DuplicateToken function creates a new access token that duplicates one already in
existence.

BOOL DuplicateToken(

HANDLE ExistingTokenHandle,
// handle to token to duplicate

SECURITY_IMPERSONATION_LEVEL ImpersonationLevel, // impersonation level
PHANDLE DuplicateTokenHandle // handle to duplicated token

);
ParametersExistingTokenHandle

Identifies an access token opened with TOKEN_DUPLICATE access.
ImpersonationLevel

Specifies a SECURITY_IMPERSONATION_LEVEL enumerated type that supplies the
impersonation level of the new token.

DuplicateTokenHandle

Pointer to a variable that receives the handle of the duplicate token. This handle has
TOKEN_IMPERSONATE and TOKEN_QUERY access to the new token.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DuplicateToken function creates an impersonation token, which you can use in functions
such as SetThreadToken and ImpersonateLoggedOnUser. The token created by
DuplicateToken cannot be used in the CreateProcessAsUser function, which requires a primary
token. To create a token that you can pass to CreateProcessAsUser, use the
DuplicateTokenEx function.See AlsoCreateProcessAsUser, DuplicateTokenEx, ImpersonateLoggedOnUser,
SECURITY_IMPERSONATION_LEVEL, SetThreadToken

DuplicateTokenEx
[New - Windows NT]

The DuplicateTokenEx function creates a new access token that duplicates an existing token.
This function can create either a primary token or an impersonation token.

BOOL DuplicateTokenEx(

HANDLE hExistingToken,
// handle to token to duplicate

DWORD dwDesiredAccess, // access rights of new token
LPSECURITY_ATTRIBUTES lpTokenAttributes, // security attributes of the new token
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel, // impersonation level of new token
TOKEN_TYPE TokenType, // primary or impersonation token
PHANDLE phNewToken // handle to duplicated token

);
ParametershExistingToken

Identifies an access token opened with TOKEN_DUPLICATE access.
dwDesiredAccess

Specifies the requested access rights for the new token. The DuplicateTokenEx function
compares the requested access rights with the existing token's discretionary access-control
list (ACL) to determine which rights are granted or denied. To request the same access rights
as the existing token, specify zero. To request all access rights that are valid for the caller,
specify MAXIMUM_ALLOWED. Otherwise, specify a combination of the following access
rights.

Value Meaning
TOKEN_ADJUST_DEFAULT Required to change the default

ACL, primary group, or owner of
an access token.

TOKEN_ADJUST_GROUPS Required to change the groups
specified in an access token.

TOKEN_ADJUST_PRIVILEGESRequired to change the privileges
specified in an access token.

TOKEN_ALL_ACCESS Combines the
STANDARD_RIGHTS_REQUIRED
standard access rights and all
individual access rights for tokens.

TOKEN_ASSIGN_PRIMARY Required to attach a primary token
to a process in addition to the
SE_CREATE_TOKEN_NAME
privilege.

TOKEN_DUPLICATE Required to duplicate an access
token.

TOKEN_EXECUTE Combines the
STANDARD_RIGHTS_EXECUTE
standard access rights and the
TOKEN_IMPERSONATE access
right.

TOKEN_IMPERSONATE Required to attach an
impersonation access token to a
process.

TOKEN_QUERY Required to query the contents of
an access token.

TOKEN_QUERY_SOURCE Required to query the source of an
access token.

TOKEN_READ Combines the
STANDARD_RIGHTS_READ
standard access rights and the

TOKEN_QUERY access right.
TOKEN_WRITE Combines the

STANDARD_RIGHTS_WRITE
standard access rights and the
TOKEN_ADJUST_PRIVILEGES,
TOKEN_ADJUST_GROUPS, and
TOKEN_ADJUST_DEFAULT
access rights.

lpTokenAttributes

Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the
new token and determines whether child processes can inherit the token. If lpTokenAttributes
is NULL, the token gets a default security descriptor and the handle cannot be inherited.

ImpersonationLevel

Specifies a value from the SECURITY_IMPERSONATION_LEVEL enumeration that indicates
the impersonation level of the new token.

TokenType

Specifies one of the following values from the TOKEN_TYPE enumeration.
Value Meaning
TokenPrimary The new token is a primary token that you

can use in the CreateProcessAsUser
function.

TokenImpersonation The new token is an impersonation token.

phNewToken

Pointer to a HANDLE variable that receives the new token.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DuplicateTokenEx function allows you to create a primary token that you can use in the
CreateProcessAsUser function. This allows a server application that is impersonating a client to
create a process that has the security context of the client. Note that the DuplicateToken function
can create only impersonation tokens, which are not valid for CreateProcessAsUser.

The following is a typical scenario for using DuplicateTokenEx to create a primary token. A
server application creates a thread that calls one of the impersonation functions, such as
ImpersonateNamedPipeClient, to impersonate a client. The impersonating thread then calls the
OpenThreadToken function to get its own token, which is an impersonation token that has the
security context of the client. The thread specifies this impersonation token in a call to
DuplicateTokenEx, specifying the TokenPrimary flag. DuplicateTokenEx creates a primary
token that has the security context of the client.

When you have finished using the new token, call the CloseHandle function to close the token
handle.See AlsoCloseHandle, CreateProcessAsUser, DdeImpersonateClient, DuplicateToken,
ImpersonateNamedPipeClient, OpenThreadToken, RevertToSelf, RpcImpersonateClient,
SECURITY_ATTRIBUTES, SECURITY_IMPERSONATION_LEVEL

EditWordBreakProc
An EditWordBreakProc function is an application-defined callback function. A value of type
EDITWORDBREAKPROC is a pointer to such a function.

Windows NT: A multiline edit control calls an EditWordBreakProc function whenever the control
must break a line of text.

Windows 95: A multiline edit control or a rich edit control calls an EditWordBreakProc function
whenever the control must break a line of text.

int CALLBACK EditWordBreakProc(

LPTSTR lpch,
// pointer to edit text

int ichCurrent, // index of starting point
int cch, // length in characters of edit text
int code // action to take

);
Parameterslpch

Points to the text of the edit control.
ichCurrent

Specifies an index to a character position in the buffer of text that identifies the point at which
the function should begin checking for a word break.

cch

Specifies the number of characters in the edit control text.
code

Specifies the action to be taken by the callback function. This parameter can be one of the
following values:
Value Action
WB_ISDELIMITER Checks whether the character at the current

position is a delimiter.
WB_LEFT Looks for the beginning of a word to the left of

the current position.
WB_RIGHT Looks for the beginning of a word to the right

of the current position. (This is useful in right-
aligned edit controls.)

Windows 95: Additional values for the code parameter are defined for rich edit controls. For a
list of these values, see the description of the EM_FINDWORDBREAK message.Return ValuesIf the code parameter specifies WB_ISDELIMITER, the return value is nonzero (TRUE) if the

character at the current position is a delimiter, or zero if it is not. Otherwise, the return value is an
index to the beginning of a word in the buffer of text.RemarksA carriage return followed by a linefeed must be treated as a single word by the callback function.
Two carriage returns followed by a linefeed also must be treated as a single word.

An application must install the callback function by specifying the address of the callback function
in an EM_SETWORDBREAKPROC message.

EditWordBreakProc is a placeholder for an application-defined function name.See AlsoSendMessage, EM_FINDWORDBREAK, EM_SETWORDBREAKPROC

EditWordBreakProcEx
[Now Supported on Windows NT]

An application-supplied callback function that determines the character index of the word break, or
the character class and word break flags of the characters in the specified text.

LONG EditWordBreakProcEx(

char *pchText,
LONG cchText,
BYTE bCharSet,
INT code

);
ParameterspchText

Pointer to the text at the current position. If code specifies movement to the left, the text is in
the elements pchText[-1] through pchText[-cchText] and pchText[0] is undefined. For all other
actions, the text is in the elements pchText[0] through pchText[cchText - 1].

cchText

Number of characters in the buffer in the direction specified by code.
bCharSet

Character set of the text.
code

Wordbreak action to take. Can be one of the values described for the code parameter in the
EM_FINDWORDBREAK message.Return ValuesReturns the character index of the word break, unless the code parameter is the WB_CLASSIFY

or WB_ISDELIMITER value.See AlsoEM_FINDWORDBREAK

Ellipse
The Ellipse function draws an ellipse. The center of the ellipse is the center of the specified
bounding rectangle. The ellipse is outlined by using the current pen and is filled by using the
current brush.

BOOL Ellipse(

HDC hdc,
// handle to device context

int nLeftRect, // x-coord. of bounding rectangle's upper-left corner
int nTopRect, // y-coord. of bounding rectangle's upper-left corner
int nRightRect, // x-coord. of bounding rectangle's lower-right corner
int nBottomRect // y-coord. bounding rectangle's f lower-right corner

);
Parametershdc

Identifies the device context.
nLeftRect

Specifies the x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect

Specifies the y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect

Specifies the x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect

Specifies the y-coordinate of the lower-right corner of the bounding rectangle.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe current position is neither used nor updated by Ellipse.

Windows 95: The sum of the coordinates of the bounding rectangle cannot exceed 32,767. The
sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed 32,
767.See AlsoArc, ArcTo

EmptyClipboard
The EmptyClipboard function empties the clipboard and frees handles to data in the clipboard.
The function then assigns ownership of the clipboard to the window that currently has the
clipboard open.

BOOL EmptyClipboard(VOID)

ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBefore calling EmptyClipboard, an application must open the clipboard by using the
OpenClipboard function. If the application specifies a NULL window handle when opening the
clipboard, EmptyClipboard succeeds but sets the clipboard owner to NULL.See AlsoOpenClipboard, SetClipboardData, WM_DESTROYCLIPBOARD

EnableEUDC
[Now Supported on Windows NT]

The EnableEUDC function enables or disables end-user-defined characters (EUDC). Enabling
EUDC allows text output functions to retrieve information about end-user-defined characters from
EUDC fonts. Disabling EUDC prevents output functions from accessing these fonts.

BOOL EnableEUDC(

BOOL fEnableEUDC
);
ParametersfEnableEUDC

Action flag. Can be TRUE to enable EUDC or FALSE to disable it.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksApplications call the EnableEUDC function before and after adding, modifying, or deleting EUDC
fonts. An application must disable EUDC before modifying a EUDC font or before adding or
deleting a font from the registry. Application must enable EUDC after these changes to allow
functions access to them.See AlsoImmRegisterWord, ImmUnregisterWord

EnableMenuItem
The EnableMenuItem function enables, disables, or grays the specified menu item.

BOOL EnableMenuItem(

HMENU hMenu,
// handle to menu

UINT uIDEnableItem, // menu item to enable, disable, or gray
UINT uEnable // menu item flags

);
ParametershMenu

Identifies the menu.
uIDEnableItem

Specifies the menu item to be enabled, disabled, or grayed, as determined by the uEnable
parameter. This parameter specifies an item in a menu bar, menu, or submenu.

uEnable

Specifies flags that control the interpretation of the uIDEnableItem parameter and indicate
whether the menu item is enabled, disabled, or grayed. This parameter must be a combination
of either MF_BYCOMMAND or MF_BYPOSITION and MF_ENABLED, MF_DISABLED, or
MF_GRAYED.

Value Meaning
MF_BYCOMMAND Indicates that uIDEnableItem gives the

identifier of the menu item. If neither the
MF_BYCOMMAND nor MF_BYPOSITION
flag is specified, the MF_BYCOMMAND
flag is the default flag.

MF_BYPOSITION Indicates that uIDEnableItem gives the
zero-based relative position of the menu
item.

MF_DISABLED Indicates that the menu item is disabled,
but not grayed, so it cannot be selected.

MF_ENABLED Indicates that the menu item is enabled
and restored from a grayed state so that it
can be selected.

MF_GRAYED Indicates that the menu item is disabled
and grayed so that it cannot be selected.

Return ValuesThe return value specifies the previous state of the menu item (it is either MF_DISABLED,
MF_ENABLED, or MF_GRAYED). If the menu item does not exist, the return value is
0xFFFFFFFF.RemarksAn application must use the MF_BYPOSITION flag to specify the correct menu handle. If the
menu handle to the menu bar is specified, the top-level menu item (an item in the menu bar) is
affected. To set the state of an item in a drop-down menu or submenu by position, an application
must specify the handle to the drop-down menu or submenu.

When an application specifies the MF_BYCOMMAND flag, Windows checks all items that open
submenus in the menu identified by the specified menu handle. Therefore, unless duplicate menu
items are present, specifying the menu handle to the menu bar is sufficient.

The CreateMenu, InsertMenu, InsertMenuItem, LoadMenuIndirect, ModifyMenu, and
SetMenuItemInfo functions can also set the state (enabled, disabled, or grayed) of a menu item.See AlsoCreateMenu, GetMenuItemID, InsertMenu, InsertMenuItem, LoadMenuIndirect, ModifyMenu,
SetMenuItemInfo, WM_SYSCOMMAND

EnableScrollBar
The EnableScrollBar function enables or disables one or both scroll bar arrows.

BOOL EnableScrollBar(

HWND hWnd,
// handle to window or scroll bar

UINT wSBflags, // scroll bar type flag
UINT wArrows // scroll bar arrow flag

);
ParametershWnd

Identifies a window or a scroll bar control, depending on the value of the wSBflags parameter.
wSBflags

Specifies the scroll bar type. This parameter can be one of the following values:
Value Meaning
SB_BOTH Enables or disables the arrows on the horizontal and

vertical scroll bars associated with the specified
window. The hWnd parameter must be the handle to
the window.

SB_CTL Identifies the scroll bar as a scroll bar control. The
hWnd parameter must be the handle to the scroll bar
control.

SB_HORZ Enables or disables the arrows on the horizontal
scroll bar associated with the specified window. The
hWnd parameter must be the handle to the window.

SB_VERT Enables or disables the arrows on the vertical scroll
bar associated with the specified window. The hWnd
parameter must be the handle to the window.

wArrows

Specifies whether the scroll bar arrows are enabled or disabled and indicates which arrows
are enabled or disabled. This parameter can be one of the following values:

Value Meaning
ESB_DISABLE_BOTH Disables both arrows on a scroll bar.
ESB_DISABLE_DOWN Disables the down arrow on a vertical scroll

bar.
ESB_DISABLE_LEFT Disables the left arrow on a horizontal scroll

bar.
ESB_DISABLE_LTUP Disables the left arrow on a horizontal scroll

bar or the up arrow of a vertical scroll bar.
ESB_DISABLE_RIGHT Disables the right arrow on a horizontal

scroll bar.
ESB_DISABLE_RTDN Disables the right arrow on a horizontal

scroll bar or the down arrow of a vertical
scroll bar.

ESB_DISABLE_UP Disables the up arrow on a vertical scroll
bar.

ESB_ENABLE_BOTH Enables both arrows on a scroll bar.
Return ValuesIf the arrows are enabled or disabled as specified, the return value is nonzero.

If the arrows are already in the requested state or an error occurs, the return value is zero.See AlsoShowScrollBar

EnableWindow
The EnableWindow function enables or disables mouse and keyboard input to the specified
window or control. When input is disabled, the window does not receive input such as mouse
clicks and key presses. When input is enabled, the window receives all input.

BOOL EnableWindow(

HWND hWnd,
// handle to window

BOOL bEnable // flag for enabling or disabling input
);
ParametershWnd

Identifies the window to be enabled or disabled.
bEnable

Specifies whether to enable or disable the window. If this parameter is TRUE, the window is
enabled. If the parameter is FALSE, the window is disabled.Return ValuesIf the window was previously disabled, the return value is nonzero.

If the window was not previously disabled, the return value is zero. To get extended error
information, call GetLastError.RemarksIf the enabled state of a window is changing, a WM_ENABLE message is sent before the
EnableWindow function returns. If a window is already disabled, all its child windows are implicitly
disabled, although they are not sent a WM_ENABLE message.

A window must be enabled before it can be activated. For example, if an application is displaying
a modeless dialog box and has disabled its main window, the application must enable the main
window before destroying the dialog box. Otherwise, another window will receive the keyboard
focus and be activated. If a child window is disabled, it is ignored when Windows tries to
determine which window should receive mouse messages.

By default, a window is enabled when it is created. To create a window that is initially disabled, an
application can specify the WS_DISABLED style in the CreateWindow or CreateWindowEx
function. After a window has been created, an application can use EnableWindow to enable or
disable the window.

An application can use this function to enable or disable a control in a dialog box. A disabled
control cannot receive the keyboard focus, nor can a user gain access to it.See AlsoCreateWindow, CreateWindowEx, IsWindowEnabled, WM_ENABLE

EndDeferWindowPos
The EndDeferWindowPos function simultaneously updates the position and size of one or more
windows in a single screen-refreshing cycle.

BOOL EndDeferWindowPos(
HDWP hWinPosInfo // handle to internal structure

);ParametershWinPosInfo
Identifies a multiple-window - position structure that contains size and position information for
one or more windows. This internal structure is returned by the BeginDeferWindowPos
function or by the most recent call to the DeferWindowPos function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EndDeferWindowPos function sends the WM_WINDOWPOSCHANGING and
WM_WINDOWPOSCHANGED messages to each window identified in the internal structure.See AlsoBeginDeferWindowPos, DeferWindowPos, WM_WINDOWPOSCHANGED,
WM_WINDOWPOSCHANGING

EndDialog
The EndDialog function destroys a modal dialog box, causing the system to end any processing
for the dialog box.

BOOL EndDialog(
HWND hDlg, // handle to dialog box
int nResult // value to return

);ParametershDlg
Identifies the dialog box to be destroyed.

nResult
Specifies the value to be returned to the application from the function that created the dialog
box.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksDialog boxes created by the DialogBox, DialogBoxParam, DialogBoxIndirect, and
DialogBoxIndirectParam functions must be destroyed using the EndDialog function. An
application calls EndDialog from within the dialog box procedure; the function must not be used
for any other purpose.

A dialog box procedure can call EndDialog at any time, even during the processing of the
WM_INITDIALOG message. If your application calls the function while WM_INITDIALOG is being
processed, the dialog box is destroyed before it is shown and before the input focus is set.

EndDialog does not destroy the dialog box immediately. Instead, it sets a flag and allows the
dialog box procedure to return control to the system. The system checks the flag before
attempting to retrieve the next message from the application queue. If the flag is set, the system
ends the message loop, destroys the dialog box, and uses the value in nResult as the return value
from the function that created the dialog box.See AlsoDialogBox, DialogBoxIndirect, DialogBoxIndirectParam, DialogBoxParam, WM_INITDIALOG

EndDoc
The EndDoc function ends a print job. This function replaces the ENDDOC printer escape.

int EndDoc(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context for the print job.

Return ValuesIf the function succeeds, the return value is greater than zero.

If the function fails, the return value is less than or equal to zero. To get extended error
information, call GetLastError.RemarksApplications should call EndDoc immediately after finishing a print job.See AlsoStartDoc

EndDocPrinter
The EndDocPrinter function ends a print job for the specified printer.

BOOL EndDocPrinter(
HANDLE hPrinter // handle to printer object

);ParametershPrinter
Identifies a printer for which the print job should be ended.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EndDocPrinter function returns an error if the print job was not started by calling the
StartDocPrinter function.See AlsoStartDocPrinter

EndPage
The EndPage function informs the device that the application has finished writing to a page. This
function is typically used to direct the device driver to advance to a new page. This function
replaces the NEWFRAME printer escape.

int EndPage(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context for the print job.

Return ValuesIf the function succeeds, the return value is greater than zero.

If the function fails, the return value is less than or equal to zero. To get extended error
information, call GetLastError.RemarksUse the ResetDC function to change the device mode, if necessary, after calling the EndPage
function. Note that a call to ResetDC resets all device context attributes back to default values.

Windows 3.x: EndPage resets the device context attributes back to default values. You must re-
select objects and set up the mapping mode again before printing the next page.

Windows 95: EndPage does not reset the device context attributes. However, the next
StartPage call does reset the device context attributes to default values. At that time, you must re-
select objects and set up the mapping mode again before printing the next page.

Windows NT: Beginning with Windows NT Version 3.5, neither EndPage or StartPage resets the
device context attributes. Device context attributes remain constant across subsequent pages.
You do not need to re-select objects and set up the mapping mode again before printing the next
page; however, doing so will produce the same results and reduce code differences between
Windows 95 and Windows NT.See AlsoResetDC, StartPage

EndPagePrinter
The EndPagePrinter function indicates the end of one page and the beginning of the next page
for the specified printer.

BOOL EndPagePrinter(
HANDLE hPrinter // handle to printer object

);ParametershPrinter
Identifies the printer for which the page will be concluded.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer-object handle hPrinter is obtained by calling the OpenPrinter function.

Each page in a print job begins with a StartPagePrinter function call and ends with an
EndPagePrinter function call. The data for each page is written to the print file by using the
WritePrinter function.See AlsoOpenPrinter, StartPagePrinter, WritePrinter

EndPaint
The EndPaint function marks the end of painting in the specified window. This function is required
for each call to the BeginPaint function, but only after painting is complete.

BOOL EndPaint(
HWND hWnd, // handle to window
CONST PAINTSTRUCT *lpPaint // pointer to structure for paint data

);ParametershWnd
Identifies the window that has been repainted.

lpPaint
Points to a PAINTSTRUCT structure that contains the painting information retrieved by
BeginPaint.

Return ValuesThe return value is always nonzero.RemarksIf the caret was hidden by BeginPaint, EndPaint restores the caret to the screen.See AlsoBeginPaint, PAINTSTRUCT

EndPath
The EndPath function closes a path bracket and selects the path defined by the bracket into the
specified device context.

BOOL EndPath(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context into which the new path is selected.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE

ERROR_INVALID_PARAMETERSee AlsoBeginPath

EndUpdateResource
The EndUpdateResource function ends a resource update in an executable file.

BOOL EndUpdateResource(
HANDLE hUpdate, // update-file handle
BOOL fDiscard // write flag

);ParametershUpdate
Specifies an update handle. This handle is returned by the BeginUpdateResource function.

fDiscard
Specifies whether to write resource updates to an executable file. If this parameter is TRUE,
no changes are made to the executable file. If it is FALSE, the changes are made.

Return ValuesIf the function succeeds and the accumulated resource modifications specified by calls to the
UpdateResource function are written to the specified executable file, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoBeginUpdateResource, UpdateResource

EnhMetaFileProc
The EnhMetaFileProc function is an application-defined callback function that processes
enhanced-format metafile records. This function is called by the EnumEnhMetaFile function.

int CALLBACK EnhMetaFileProc(
HDC hDC, // handle to device context
HANDLETABLE FAR *lpHTable, // pointer to metafile handle table
ENHMETARECORD FAR *lpEMFR, // pointer to metafile record
int nObj, // count of objects
LPARAM lpData // pointer to optional data

);ParametershDC
Identifies the device context passed to EnumEnhMetaFile.

lpHTable
Points to a table of handles associated with the graphics objects (pens, brushes, and so on) in
the metafile. The first entry contains the enhanced-metafile handle.

lpEMFR
Points to one of the records in the metafile. This record should not be modified. (If
modification is necessary, it should be performed on a copy of the record.)

nObj
Specifies the number of objects with associated handles in the handle table.

lpData
Points to any application-supplied data.

Return ValuesThis function must return a nonzero value to continue enumeration; to stop enumeration, it must
return zero.RemarksAn application must register the callback function by passing its address to the
EnumEnhMetaFile function.

EnhMetaFileProc is a placeholder for the application-supplied function name.See AlsoEnumEnhMetaFile

EnterCriticalSection
The EnterCriticalSection function waits for ownership of the specified critical section object. The
function returns when the calling thread is granted ownership.

VOID EnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection // pointer to critical section object

);ParameterslpCriticalSection
Points to the critical section object.

Return ValuesThis function does not return a value.RemarksThe threads of a single process can use a critical section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical section
object, which it can do by declaring a variable of type CRITICAL_SECTION. Before using a critical
section, some thread of the process must call the InitializeCriticalSection function to initialize the
object.

To enable mutually exclusive access to a shared resource, each thread calls the
EnterCriticalSection or TryEnterCriticalSection function to request ownership of the critical
section before executing any section of code that accesses the protected resource. The difference
is that TryEnterCriticalSection returns immediately, regardless of whether it obtained ownership
of the critical section, while EnterCriticalSection blocks until the thread can take ownership of the
critical section. When it has finished executing the protected code, the thread uses the
LeaveCriticalSection function to relinquish ownership, enabling another thread to become owner
and access the protected resource. The thread must call LeaveCriticalSection once for each
time that it entered the critical section. The thread enters the critical section each time
EnterCriticalSection and TryEnterCriticalSection succeed.

Once a thread has ownership of a critical section, it can make additional calls to
EnterCriticalSection or TryEnterCriticalSection without blocking its execution. This prevents a
thread from deadlocking itself while waiting for a critical section that it already owns.

Any thread of the process can use the DeleteCriticalSection function to release the system
resources that were allocated when the critical section object was initialized. After this function
has been called, the critical section object can no longer be used for synchronization.See AlsoDeleteCriticalSection, InitializeCriticalSection, LeaveCriticalSection TryEnterCriticalSection

EnumCalendarInfo
The EnumCalendarInfo function enumerates calendar information for a specified locale. The
CalType parameter specifies the type of calendar information to enumerate. The function returns
the specified calendar information for all applicable calendars for the locale, or for a single
requested calendar, depending on the value of the Calendar parameter.

The EnumCalendarInfo function enumerates the calendar information by calling an application-
defined callback function. It passes the callback function a pointer to a string buffer containing the
requested calendar information. This continues until either the last applicable calendar is found or
the callback function returns FALSE.

BOOL EnumCalendarInfo(
CALINFO_ENUMPROC lpCalInfoEnumProc, // pointer to enumeration callback function
LCID Locale, // locale whose calendar information is of interest
CALID Calendar, // calendar whose information is of interest
CALTYPE CalType // type of calendar information of interest

);ParameterslpCalInfoEnumProc
Points to an application-defined callback function. For more information, see the
EnumCalendarInfoProc callback function.

Locale
Specifies the locale to retrieve calendar information for. This parameter can be a locale
identifier created by the MAKELCID macro, or one of the following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

Calendar
Specifies the calendar for which information is requested. The following values are defined:

Value Meaning
ENUM_ALL_CALENDARSEnumerate all applicable calendars for

the locale specified by Locale.
1 Gregorian (localized)
2 Gregorian (English strings always)
3 Japanese era
4 Year of the Republic of China
5 Tangun Era (Korea)

CalType
Indicates the type of calendar information to be returned. Note that only one CALTYPE value
can be specified per call of this function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_BADDB
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERSee AlsoEnumCalendarInfoProc, EnumDateFormats

EnumCalendarInfoProc
An EnumCalendarInfoProc function is an application-defined callback function. It is called as a
result of a call to the EnumCalendarInfo function, and receives a pointer to a string buffer
containing a calendar information string.

BOOL CALLBACK EnumCalendarInfoProc(
LPTSTR lpCalendarInfoString // pointer to calendar information string

);ParameterslpCalendarInfoString
Pointer to a string buffer containing a null-terminated calendar information string. This string is
formatted according to the CALTYPE value passed to EnumCalendarInfo. Note that
lpCalendarInfoString should be an LPWSTR for the Unicode (W) version of
EnumCalendarInfo, and an LPSTR for the ANSI (A) version of EnumCalendarInfo.

Return ValuesTo continue enumeration, the callback function should return TRUE.

To stop enumeration, the callback function should return FALSE.RemarksEnumCalendarInfoProc is a placeholder for an application-defined function name.

An EnumCalendarInfoProc function can carry out any desired task.

An application registers an EnumCalendarInfoProc function by passing its address to the
EnumCalendarInfo function.

A value of type CALINFO_ENUMPROC is a pointer to an EnumCalendarInfoProc function.See AlsoEnumCalendarInfo

EnumChildProc
The EnumChildProc function is an application-defined callback function that receives child
window handles as a result of a call to the EnumChildWindows function.

BOOL CALLBACK EnumChildProc(
HWND hwnd, // handle to child window
LPARAM lParam // application-defined value

);Parametershwnd
Identifies a child window of the parent window specified in EnumChildWindows.

lParam
Specifies the application-defined value given in EnumChildWindows.

Return ValuesTo continue enumeration, the callback function must return TRUE; to stop enumeration, it must
return FALSE.RemarksThe callback function can carry out any desired task.

An application must register this callback function by passing its address to EnumChildWindows.
EnumChildProc is a placeholder for the application-defined function name.See AlsoEnumChildWindows

EnumChildWindows
The EnumChildWindows function enumerates the child windows that belong to the specified
parent window by passing the handle of each child window, in turn, to an application-defined
callback function. EnumChildWindows continues until the last child window is enumerated or the
callback function returns FALSE.

BOOL EnumChildWindows(
HWND hWndParent, // handle to parent window
WNDENUMPROC lpEnumFunc, // pointer to callback function
LPARAM lParam // application-defined value

);ParametershWndParent
Identifies the parent window whose child windows are to be enumerated.

lpEnumFunc
Points to an application-defined callback function. For more information about the callback
function, see the EnumChildProc callback function.

lParam
Specifies a 32-bit, application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe EnumChildWindows function does not enumerate top-level windows owned by the specified
window, nor does it enumerate any other owned windows.

If a child window has created child windows of its own, this function enumerates those windows as
well.

A child window that is moved or repositioned in the Z order during the enumeration process will be
properly enumerated. The function does not enumerate a child window that is destroyed before
being enumerated or that is created during the enumeration process.

This function is more reliable than calling the GetWindow function in a loop. An application that
calls GetWindow to perform this task risks being caught in an infinite loop or referencing a handle
to a window that has been destroyed.See AlsoEnumChildProc, EnumThreadWindows, EnumWindows, GetWindow

EnumClipboardFormats
The EnumClipboardFormats function lets you enumerate the data formats that are currently
available on the clipboard.

Clipboard data formats are stored in an ordered list. To perform an enumeration of clipboard data
formats, you make a series of calls to the EnumClipboardFormats function. For each call, the
format parameter specifies an available clipboard format, and the function returns the next
available clipboard format.

UINT EnumClipboardFormats(
UINT format // specifies a known available clipboard format

);Parametersformat
Specifies a clipboard format that is known to be available.
To start an enumeration of clipboard formats, set format to zero. When format is zero, the
function retrieves the first available clipboard format. For subsequent calls during an
enumeration, set format to the result of the previous EnumClipboardFormat call.

Return ValuesIf the function succeeds, the return value is the clipboard format that follows the specified format.
In other words, the next available clipboard format.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
If the clipboard is not open, the function fails.

If there are no more clipboard formats to enumerate, the return value is zero. In this case, the
GetLastError function returns the value NO_ERROR. This lets you distinguish between function
failure and the end of enumeration.RemarksYou must open the clipboard before enumerating its formats. Use the OpenClipboard function to
open the clipboard. The EnumClipboardFormats function fails if the clipboard is not open.

The EnumClipboardFormats function enumerates formats in the order that they were placed on
the clipboard. If you are copying information to the clipboard, add clipboard objects in order from
the most descriptive clipboard format to the least descriptive clipboard format. If you are pasting
information from the clipboard, retrieve the first clipboard format that you can handle. That will be
the most descriptive clipboard format that you can handle.

The operating system provides automatic type conversions for certain clipboard formats. In the
case of such a format, this function enumerates the specified format, then enumerates the formats
to which it can be converted. For more information about clipboard formats and automatic
clipboard format type conversions, see the GetClipboardData and SetClipboardData functions.See AlsoCountClipboardFormats, GetClipboardData, OpenClipboard, RegisterClipboardFormat,
SetClipboardData

EnumCodePagesProc
An EnumCodePagesProc function is an application-defined callback function. It is called as a
result of a call to the EnumSystemCodePages function, and receives a pointer to a string buffer
containing a code page identifier.

BOOL CALLBACK EnumCodePagesProc(
LPTSTR lpCodePageString // pointer to code page identifier string

);ParameterslpCodePageString
Pointer to a string buffer containing a null-terminated code page identifier string.

Return ValuesTo continue enumeration, the callback function should return TRUE.

To stop enumeration, the callback function should return FALSE.RemarksEnumCodePagesProc is a placeholder for an application-defined function name.

An EnumCodePagesProc function can carry out any desired task.

An application registers an EnumCodePagesProc function by passing its address to the
EnumSystemCodePages function.

A value of type CODEPAGE_ENUMPROC is a pointer to an EnumCodePagesProc function.See AlsoEnumSystemCodePages

EnumDateFormats
The EnumDateFormats function enumerates the long or short date formats that are available for
a specified locale, including date formats for any alternate calendars. The value of the dwFlags
parameter determines whether the long or short date formats are enumerated. The function
enumerates the date formats by passing date format string pointers, one at a time, to the specified
application-defined callback function. This continues until the last date format is found or the
callback function returns FALSE.

BOOL EnumDateFormats(
DATEFMT_ENUMPROC lpDateFmtEnumProc, // pointer to enumeration callback function
LCID Locale, // locale whose date formats are of interest
DWORD dwFlags // date formats to enumerate

);ParameterslpDateFmtEnumProc
Points to an application-defined callback function. The EnumDateFormats function
enumerates date formats by making repeated calls to this callback function. For more
information, see the EnumDateFormatsProc callback function.

Locale
Specifies the locale to retrieve date format information for. This parameter can be a locale
identifier created by the MAKELCID macro, or one of the following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
Specifies the date formats that are of interest. Use one of the following values:

Value Meaning
DATE_SHORTDATE Return short date formats.
DATE_LONGDATE Return long date formats.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_PARAMETER
ERROR_BADDB

ERROR_INVALID FLAGSRemarksThe DATE_SHORTDATE and DATE_LONGDATE flags are mutually exclusive. Use one or the
other, but not both.See AlsoEnumDateFormatsProc, EnumCalendarInfo, EnumTimeFormats

EnumDateFormatsProc
An EnumDateFormatsProc function is an application-defined callback function. It is called as a
result of a call to the EnumDateFormats function, and receives a pointer to a string buffer
containing a date format string.

BOOL CALLBACK EnumDateFormatsProc(
LPTSTR lpDateFormatString // pointer to date format string

);ParameterslpDateFormatString
Pointer to a string buffer containing a null-terminated date format string. This string is a long or
short date format, depending on the value of the dwFlags parameter passed to
EnumDateFormats. Note that lpDateFormatString should be an LPWSTR for the Unicode
(W) version of EnumDateFormats, and an LPSTR for the ANSI (A) version of
EnumDateFormats.

Return ValuesTo continue enumeration, the callback function should return TRUE.

To stop enumeration, the callback function should return FALSE.RemarksEnumDateFormatsProc is a placeholder for an application-defined function name.

An EnumDateFormatsProc function can carry out any desired task.

An application registers an EnumDateFormatsProc function by passing its address to the
EnumDateFormats function.

A value of type DATEFMT_ENUMPROC is a pointer to an EnumDateFormatsProc function.See AlsoEnumDateFormats

EnumDependentServices
The EnumDependentServices function enumerates services that depend on another specified
service; that is, the specified service must be running before the enumerated services can run.
The name and status of each dependent service are provided.

BOOL EnumDependentServices(
SC_HANDLE hService, // handle to service
DWORD dwServiceState, // state of services to enumerate
LPENUM_SERVICE_STATUS lpServices, // pointer to service status buffer
DWORD cbBufSize, // size of service status buffer
LPDWORD pcbBytesNeeded, // pointer to variable for bytes needed
LPDWORD lpServicesReturned // pointer to variable for number returned

);ParametershService
Handle that identifies the service. This handle is returned by the OpenService or
CreateService function, and it must have SERVICE_ENUMERATE_DEPENDENTS access.

dwServiceState
Specifies the services to enumerate based on their running state. It must be one or both of the
following values:

Value Meaning
SERVICE_ACTIVE Enumerates services that are in the following

states: SERVICE_START_PENDING,
SERVICE_STOP_PENDING,
SERVICE_RUNNING,
SERVICE_CONTINUE_PENDING,
SERVICE_PAUSE_PENDING, and
SERVICE_PAUSED.

SERVICE_INACTIVE Enumerates services that are in the
SERVICE_STOPPED state.

lpServices
Pointer to an array of ENUM_SERVICE_STATUS structures. Each structure receives name
and service status information for a dependent service. The order of the services in this array
is the reverse of the start order of the services. In other words, the first dependent service in
the array is the one that would be started last, and the last service in the array is the one that
would be started first.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServices parameter.

pcbBytesNeeded
Pointer to a variable that receives the number of bytes needed to store the array of service
entries. The variable only receives this value if the buffer pointed to by lpServices is too small,
indicated by function failure and the ERROR_MORE_DATA error; otherwise, the contents of *
pcbBytesNeeded are undefined.

lpServicesReturned
Pointer to a variable that receives the number of service entries returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with
SERVICE_ENUMERATE_DEPENDENTS access.

ERROR_INVALID_HANDLE
The specified handle is invalid.

ERROR_INVALID_PARAMETER
A parameter that was specified is invalid.

ERROR_MORE_DATA

The buffer pointed to by lpServices is not large enough. The
function sets the variable pointed to by lpServicesReturned
to the actual number of service entries stored into the
buffer. The function sets the variable pointed to by
pcbBytesNeeded to the number of bytes required to store
all of the service entries.

RemarksThe returned services entries are ordered in the reverse order of the start order, with group order
taken into account. If you need to stop the dependent services, you can use the order of entries
written to the lpServices buffer to stop the dependent services in the proper order.See AlsoCreateService, ENUM_SERVICE_STATUS, EnumServicesStatus, OpenService

EnumDesktopProc
The EnumDesktopProc function is an application-defined callback function that receives a
desktop name as a result of a call to the EnumDesktops function.

BOOL CALLBACK EnumDesktopProc(
LPTSTR lpszDesktop, // name of a desktop
LPARAM lParam // value specified in EnumDesktops call

);ParameterslpszDesktop
Points to the null-terminated name of a desktop.

lParam
Specifies the application-defined value given in the EnumDesktops function.

Return ValuesTo continue enumeration, the callback function must return TRUE. To stop enumeration, it must
return FALSE.RemarksThe EnumDesktopProc function is a placeholder for the application-defined function name. The
DESKTOPENUMPROC type is a pointer to an EnumDesktopProc function.See AlsoEnumDesktops

EnumDesktops
The EnumDesktops function enumerates all desktops in the window station assigned to the
calling process. The function does so by passing the name of each desktop, in turn, to an
application-defined callback function.

BOOL EnumDesktops(
HWINSTA hwinsta, // handle to window station to enumerate
DESKTOPENUMPROC lpEnumFunc, // points to application's callback function
LPARAM lParam // 32-bit value to pass to the callback function

);Parametershwinsta
Specifies the handle to the window station whose desktops are to be enumerated. The
CreateWindowStation, GetProcessWindowStation, and OpenWindowStation functions
return a window station handle.

lpEnumFunc
Points to an application-defined EnumDesktopProc callback function.

dwDesiredAccess
Specifies a 32-bit application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe calling process must have WINSTA_ENUMDESKTOPS access to the window station. The
EnumDesktops function enumerates only those desktops for which the calling process has
DESKTOP_ENUMERATE access.

The EnumDesktops function repeatedly invokes the lpEnumFunc callback function until the last
desktop is enumerated or the callback function returns FALSE.See AlsoCreateWindowStation, EnumDesktopProc, GetProcessWindowStation,
OpenWindowStation

EnumDesktopWindows
The EnumDesktopWindows function enumerates all windows in a desktop by passing the
handle of each window, in turn, to an application-defined callback function.

BOOL EnumDesktopWindows(
HDESK hDesktop, // handle to desktop to enumerate
WNDENUMPROC lpfn, // points to application's callback function
LPARAM lParam // 32-bit value to pass to the callback function

);ParametershDesktop
Specifies the handle to the desktop whose windows are to be enumerated. The
CreateDesktop, OpenDesktop, and GetThreadDesktop functions return a desktop handle.

lpfn
Points to an application-defined EnumWindowsProc callback function.

lParam
Specifies a 32-bit application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumDesktopWindows function repeatedly invokes the lpfn callback function until the last
window is enumerated or the callback function returns FALSE.See AlsoCreateDesktop, EnumWindowsProc, GetThreadDesktop, OpenDesktop

EnumDisplaySettings
The EnumDisplaySettings function obtains information about one of a display device's graphics
modes. You can obtain information for all of a display device's graphics modes by making a series
of calls to this function.

BOOL EnumDisplaySettings(
LPCTSTR lpszDeviceName, // specifies the display device
DWORD iModeNum, // specifies the graphics mode
LPDEVMODE lpDevMode // points to structure to receive settings

);ParameterslpszDeviceName
Pointer to a null-terminated string that specifies the display device whose graphics mode the
function will obtain information about.
This parameter can be NULL. A NULL value specifies the current display device on the
computer that the calling thread is running on.
If lpszDeviceName is not NULL, the string must be of the form \\.\DisplayX, where X can have
the values 1, 2, or 3.
Windows 95: lpszDeviceName must be NULL.

iModeNum
Index value that specifies the graphics mode for which information is to be obtained.
Graphics mode indexes start at zero. To obtain information for all of a display device's
graphics modes, make a series of calls to EnumDisplaySettings, as follows: Set iModeNum
to zero for the first call, and increment iModeNum by one for each subsequent call. Continue
calling the function until the return value is FALSE.
When you call EnumDisplaySettings with iModeNum set to zero, the operating system
initializes and caches information about the display device. When you call
EnumDisplaySettings with iModeNum set to a non-zero value, the function returns the
information that was cached the last time the function was called with iModeNum set to zero.

lpDevMode
Pointer to a DEVMODE structure into which the function stores information about the specified
graphics mode.
The EnumDisplaySettings function sets values for the following five DEVMODE members:

dmBitsPerPel
dmPelsWidth
dmPelsHeight
dmDisplayFlags
dmDisplayFrequency

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

The function fails if iModeNum is greater than the index of the display device's last graphics mode.
As noted in the description of the iModeNum parameter, you can use this behavior to enumerate
all of a display device's graphics modes.See AlsoChangeDisplaySettings, CreateDC, CreateDesktop, DEVMODE

EnumEnhMetaFile
The EnumEnhMetaFile function enumerates the records within an enhanced-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

BOOL EnumEnhMetaFile(
HDC hdc, // handle to device context
HENHMETAFILE hemf, // handle to enhanced metafile
ENHMFENUMPROC lpEnhMetaFunc, // pointer to callback function
LPVOID lpData, // pointer to callback-function data
CONST RECT *lpRect // pointer to bounding rectangle

);Parametershdc
Identifies a device context. This handle is passed to the callback function.

hemf
Identifies an enhanced metafile.

lpEnhMetaFunc
Points to the application-supplied callback function. For more information, see the
EnhMetaFileProc function.

lpData
Points to optional callback-function data.

lpRect
Points to a RECT structure that specifies the coordinates of the picture's upper-left and lower-
right corners. The dimensions of this rectangle are specified in logical units.

Return ValuesIf the callback function successfully enumerates all the records in the enhanced metafile, the
return value is nonzero.

If the callback function does not successfully enumerate all the records in the enhanced metafile,
the return value is zero.RemarksPoints along the edge of the rectangle pointed to by the lpRect parameter are included in the
picture. If the hdc parameter is NULL, Windows ignores lpRect.

If the callback function calls the PlayEnhMetaFileRecord function, hdc must identify a valid
device context. Windows uses the device context's transformation and mapping mode to
transform the picture displayed by the PlayEnhMetaFileRecord function.

You can use the EnumEnhMetaFile function to embed one enhanced-metafile within another.See AlsoEnhMetaFileProc, PlayEnhMetaFile, PlayEnhMetaFileRecord, RECT

EnumFontFamExProc
[Now Supported on Windows NT]

The EnumFontFamExProc function is an application-supplied callback function that processes
the fonts enumerated by the EnumFontFamiliesEx function. The system calls this callback
function once for each enumerated font.

int CALLBACK EnumFontFamExProc(
ENUMLOGFONTEX *lpelfe, // pointer to logical-font data
NEWTEXTMETRICEX *lpntme, // pointer to physical-font data
int FontType, // type of font
LPARAM lParam // application-defined data

);Parameterslpelfe
Points to an ENUMLOGFONTEX structure that contains information about the logical
attributes of the font.

lpntme
Points to a structure that contains information about the physical attributes of a font. The
function uses the NEWTEXTMETRICEX structure for TrueType fonts; and the TEXTMETRIC
structure for other fonts.
Windows 95: The NEWTEXTMETRICEX structure is not implemented. Use
NEWTEXTMETRIC instead.

FontType
Specifies the type of the font. This parameter can be a combination of these values:
DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lParam
Specifies the application-defined data passed by the EnumFontFamiliesEx function.

Return ValuesThe return value must be a nonzero value to continue enumeration; to stop enumeration, the
return value must be zero.RemarksUnlike the EnumFontFamProc callback function, EnumFontFamExProc receives extended
information about a font. The ENUMLOGFONTEX structure includes the localized name of the
script (character set) and the NEWTEXTMETRICEX structure includes a font-coverage signature.See AlsoEnumFontFamiliesEx, EnumFontFamProc, ENUMLOGFONTEX, NEWTEXTMETRICEX,
TEXTMETRIC

EnumFontFamilies
The EnumFontFamilies function enumerates the fonts in a specified font family that are available
on a specified device. This function supersedes the EnumFonts function.

int EnumFontFamilies(
HDC hdc, // handle to device control
LPCTSTR lpszFamily, // pointer to family-name string
FONTENUMPROC lpEnumFontFamProc, // pointer to callback function
LPARAM lParam // address of application-supplied data

);Parametershdc
Identifies the device context.

lpszFamily
Points to a null-terminated string that specifies the family name of the desired fonts. If
lpszFamily is NULL, EnumFontFamilies randomly selects and enumerates one font of each
available type family.

lpEnumFontFamProc
Specifies the procedure-instance address of the application-defined callback function. For
information about the callback function, see the EnumFontFamProc function.

lParam
Points to application-supplied data. The data is passed to the callback function along with the
font information.

Return ValuesIf the function succeeds, the return value is the last value returned by the callback function. Its
meaning is implementation specific.RemarksThe EnumFontFamilies function differs from the EnumFonts function in that it retrieves the style
names associated with a TrueType font. With EnumFontFamilies, information can be retrieved
about unusual font styles (for example, Outline) that could not be enumerated by using the
EnumFonts function. Win32-based applications should use EnumFontFamilies instead of
EnumFonts.

For each font having the typeface name specified by the lpszFamily parameter, the
EnumFontFamilies function retrieves information about that font and passes it to the function
pointed to by the lpEnumFontFamProc parameter. The application-defined callback function can
process the font information as desired. Enumeration continues until there are no more fonts or
the callback function returns zero.See AlsoEnumFontFamProc, EnumFonts

EnumFontFamiliesEx
[Now Supported on Windows NT]

The EnumFontFamiliesEx function enumerates all fonts in the system that match the font
characteristics specified by the LOGFONT structure. EnumFontFamiliesEx enumerates fonts
based on typeface name, character set, or both. It is recommended that Win32-based applications
use this function rather than EnumFontFamilies to enumerate fonts.

int EnumFontFamiliesEx(
HDC hdc, // handle to device context
LPLOGFONT lpLogfont, // pointer to logical font information
FONTENUMPROC lpEnumFontFamExProc, // pointer to callback function
LPARAM lParam, // application-supplied data
DWORD dwFlags // reserved; must be zero
);Parametershdc

Identifies the device context.
lpLogfont

Points to a LOGFONT structure that contains information about the fonts to enumerate. The
function examines these members:

Member Description
lfCharset If set to DEFAULT_CHARSET, the function

enumerates all fonts in all character sets. If set
to a valid character set value, the function
enumerates only fonts in the specified
character set.

lfFaceName If set to an empty string, the function
enumerates one font in each available typeface
name. If set to a valid typeface name, the
function enumerates all fonts with the specified
name.

lfPitchAndFamily Must be set to zero for all language versions of
the operating system except Hebrew and
Arabic. For these languages, set
IfPitchAndFamily to MONO_FONT to
enumerate only fonts that provide all codepage
characters within the font.

lpEnumFontFamExProc
Points to the application-defined callback function. For more information about the callback
function, see the EnumFontFamExProc function.

lParam
Specifies a 32-bit application-defined value. The function passes this value to the callback
function along with font information.

dwFlags
Reserved; must be zero.

Return ValuesIf the function succeeds, the return value is the last value returned by the callback function. This
value depends on which font families are available for the specified device.RemarksEnumFontFamiliesEx does not use "tagged" typeface names to identify character sets. Instead,
it always passes the correct typeface name and a separate character set value to the callback
function. The function enumerates fonts based on the the values of the lfCharset and
lfFacename members in the LOGFONT structure.

If lfCharset is DEFAULT_CHARSET and lfFaceName is an empty string, the function
enumerates one font in every face in every character set. If lfFaceName is not empty, the function
enumerates every font in the specified typeface regardless of character set.

If lfCharset is a valid character set value and lfFaceName is an empty string, the function
enumerates every font in the specified character set. If lfFaceName is not empty, the function
enumerates every font having the specified typeface and character set.See AlsoEnumFontFamilies, EnumFontFamExProc, LOGFONT

EnumFontFamProc
The EnumFontFamProc function is an application-defined callback function that retrieves data
describing available fonts.

int CALLBACK EnumFontFamProc(
ENUMLOGFONT FAR *lpelf, // pointer to logical-font data
NEWTEXTMETRIC FAR *lpntm, // pointer to physical-font data
int FontType, // type of font
LPARAM lParam // address of application-defined data

);Parameterslpelf
Points to an ENUMLOGFONT structure that contains information about the logical attributes
of the font. This structure is locally defined.

lpntm
Points to a NEWTEXTMETRIC structure that contains information about the physical
attributes of the font, if the font is a TrueType font. If the font is not a TrueType font, this
parameter points to a TEXTMETRIC structure.

FontType
Specifies the type of the font. This parameter can be a combination of the following values:
DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lParam
Points to the application-defined data passed by the EnumFontFamilies function.

Return ValuesThe return value must be a nonzero value to continue enumeration; to stop enumeration, it must
return zero.RemarksAn application must register this callback function by passing its address to the
EnumFontFamilies function.

The EnumFontFamProc function is a placeholder for the application-defined function name.

The AND (&) operator can be used with the RASTER_FONTTYPE, DEVICE_FONTTYPE, and
TRUETYPE_FONTTYPE constants to determine the font type. If the RASTER_FONTTYPE bit is
set, the font is a raster font. If the TRUETYPE_FONTTYPE bit is set, the font is a TrueType font. If
neither bit is set, the font is a vector font. DEVICE_FONTTYPE is set when a device (for example,
a laser printer) supports downloading TrueType fonts or when the font is a device-resident font; it
is zero if the device is a display adapter, dot-matrix printer, or other raster device. An application
can also use DEVICE_FONTTYPE to distinguish graphics device interface (GDI)-supplied raster
fonts from device-supplied fonts. GDI can simulate bold, italic, underline, and strikeout attributes
for GDI-supplied raster fonts, but not for device-supplied fonts.See AlsoEnumFontFamilies, EnumFontFamProc, EnumFonts, ENUMLOGFONT, NEWTEXTMETRIC,
TEXTMETRIC

EnumFonts
The EnumFonts function enumerates the fonts available on a specified device. For each font with
the specified typeface name, the EnumFonts function retrieves information about that font and
passes it to the application-defined callback function. This callback function can process the font
information as desired. Enumeration continues until there are no more fonts or the callback
function returns zero.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the EnumFontFamilies function.

int EnumFonts(
HDC hdc, // handle to device context
LPCTSTR lpFaceName, // pointer to font typeface name string
FONTENUMPROC lpFontFunc, // pointer to callback function
LPARAM lParam // address of application-supplied data

);Parametershdc
Identifies the device context.

lpFaceName
Points to a null-terminated character string that specifies the typeface name of the desired
fonts. If lpFaceName is NULL, EnumFonts randomly selects and enumerates one font of
each available typeface.

lpFontFunc
Points to the application-defined callback function. For more information about the callback
function, see the EnumFontsProc function.

lParam
Points to any application-defined data. The data is passed to the callback function along with
the font information.

Return ValuesIf the function succeeds, the return value is the last value returned by the callback function. Its
meaning is defined by the application.RemarksUse EnumFontFamilies instead of EnumFonts. The EnumFontFamilies function differs from
the EnumFonts function in that it retrieves the style names associated with a TrueType font. With
EnumFontFamilies, you can retrieve information about unusual font styles (for example, Outline)
that cannot be enumerated using the EnumFonts function.See AlsoEnumFontFamilies, EnumFontsProc, GetDeviceCaps

EnumFontsProc
The EnumFontsProc function is an application-defined callback function that processes font data
from the EnumFonts function.

int CALLBACK EnumFontsProc(
lplf lplf, // pointer to logical-font data
lptm lptm, // pointer to physical-font data
DWORD dwType, // font type
LPARAM lpData // pointer to application-defined data

);Parameterslplf
Points to a LOGFONT structure that contains information about the logical attributes of the
font.

lptm
Points to a TEXTMETRIC structure that contains information about the physical attributes of
the font.

dwType
Specifies the type of the font. This parameter can be a combination of the following values:
DEVICE_FONTTYPE
RASTER_FONTTYPE
TRUETYPE_FONTTYPE

lpData
Points to the application-defined data passed by EnumFonts.

Return ValuesThe return value must be a nonzero value to continue enumeration; to stop enumeration, it must
be zero.RemarksThe AND (&) operator can be used with the RASTER_FONTTYPE and DEVICE_FONTTYPE
constants to determine the font type. The RASTER_FONTTYPE bit of the FontType parameter
specifies whether the font is a raster or vector font. If the bit is one, the font is a raster font; if zero,
it is a vector font. The DEVICE_FONTTYPE bit of FontType specifies whether the font is a device-
based or graphics device interface (GDI)-based font. If the bit is one, the font is a device-based
font; if zero, it is a GDI-based font.

If the device is capable of text transformations (scaling, italicizing, and so on) only the base font is
enumerated. The user must inquire into the device's text-transformation abilities to determine
which additional fonts are available directly from the device.

An application must register the EnumFontsProc function by passing its address to the
EnumFonts function.

EnumFontsProc is a placeholder for the application-defined function name.See AlsoEnumFonts, LOGFONT, TEXTMETRIC

EnumForms
The EnumForms function enumerates the forms supported by the specified printer.

BOOL EnumForms(
HANDLE hPrinter, // handle to printer object
DWORD Level, // data-structure level
LPBYTE pForm, // points to buffer that receives form info. structure array
DWORD cbBuf, // count of bytes in buffer
LPDWORD pcbNeeded, // points to variable to receive count of bytes copied or required
LPDWORD pcReturned // points to variable to receive count of structures copied

);ParametershPrinter
Identifies the printer for which the forms should be enumerated.

Level
Specifies the version of the structure to which pForm points. This value must be 1.

pForm
Points to a FORM_INFO_1 structure.

cbBuf
Specifies the size, in bytes, of the buffer to which pForm points.

pcbNeeded
Points to a variable that receives the number of bytes copied to or the number of bytes
required for the array to which pForm points. If cbBuf is too small, this value specifies the
number of bytes required; otherwise, this value specifies the number of bytes copied.

pcReturned
Points to a variable that receives the number of FORM_INFO_1 structures copied into the
array to which pForm points.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer-object handle hPrinter is normally obtained by calling the OpenPrinter function. The
AddPrinter function can also be used.See AlsoAddPrinter, FORM_INFO_1, OpenPrinter

EnumICMProfiles
The EnumICMProfiles function enumerates the different color profiles that the system supports
for the specified device context.

int EnumICMProfiles(
HDC hdc,
ICMENUMPROC lpICMEnumFunc,
LPARAM lParam

);Parametershdc
Handle to the device context.

lpICMEnumFunc
Pointer to the application-defined callback function. For more information, see the
EnumICMProfilesProc function.

lParam
Application-supplied data. The data is passed to the callback function along with the color
profile information.

Return ValuesReturns - 1 if there are no color profiles to enumerate or image color matching is not enabled.
Otherwise, it returns the last value returned by the callback function, which may be zero if the
callback interrupted the enumeration.See AlsoEnumICMProfilesProc

EnumICMProfilesProc
The EnumICMProfilesProc function is an application-defined callback function that processes
color profile data from the EnumICMProfiles function.

int CALLBACK EnumICMProfilesProc(
LPTSTR lpszFilename,
LPARAM lParam

);ParameterslpszFilename
Pointer to a null-terminated string specifying the name of the color profile file.

lParam
Application-supplied data passed by the EnumICMProfiles function.

Return ValuesReturns a positive value to continue enumeration, or 0 to stop enumeration. The function must not
return a negative value.See AlsoEnumICMProfiles

EnumJobs
The EnumJobs function initializes an array of either JOB_INFO_1 or JOB_INFO_2 structures
with data describing the specified print jobs for the specified printer.

BOOL EnumJobs(
HANDLE hPrinter, // handle to printer object
DWORD FirstJob, // location of first job in print queue to enumerate
DWORD NoJobs, // number of jobs to enumerate
DWORD Level, // structure level
LPBYTE pJob, // pointer to structure array
DWORD cbBuf, // size of array, in bytes
LPDWORD pcbNeeded, // addr. of variable with no. of bytes copied (or required)
LPDWORD pcReturned // addr. of variable with no. of job info. structures copied

);ParametershPrinter
Handle to the printer object whose print jobs the function will enumerate.

FirstJob
Specifies the zero-based position within the print queue of the first print job to enumerate. For
example, a value of 0 specifies that enumeration should begin at the first print job in the print
queue; a value of 9 specifies that enumeration should begin at the tenth print job in the print
queue.

NoJobs
Specifies the total number of print jobs to enumerate.

Level
Specifies whether the function should use JOB_INFO_1 or JOB_INFO_2 structures to store
data for the enumerated jobs. A value of 1 specifies that the JOB_INFO_1 structure should be
used; a value of 2 specifies that the JOB_INFO_2 structure should be used.

pJob
Points to an array of either JOB_INFO_1 or JOB_INFO_2 structures.

cbBuf
Specifies the size, in bytes, of the array pJob.

pcbNeeded
Points to a variable that receives the number of bytes copied if the function succeeds. If the
function fails, the variable receives the number of bytes required.

pcReturned
Points to a variable that receives the number of JOB_INFO_1 or JOB_INFO_2 structures that
were initialized.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe handle hPrinter is obtained by calling the OpenPrinter function.

The JOB_INFO_1 structure contains general print-job information; the JOB_INFO_2 structure has
much more detailed information.See AlsoGetJob, JOB_INFO_1, JOB_INFO_2, OpenPrinter, SetJob

EnumLocalesProc
An EnumLocalesProc function is an application-defined callback function. It is called as a result
of a call to the EnumSystemLocales function, and receives a pointer to a string buffer containing
a locale identifier.

BOOL CALLBACK EnumLocalesProc(
LPTSTR lpLocaleString // pointer to locale identifier string

);ParameterslpLocaleString
Pointer to a string buffer containing a null-terminated locale identifier string. Note that
lpLocaleString should be an LPWSTR for the Unicode (W) version of EnumLocalesProc, and
an LPSTR for the ANSI (A) version of EnumLocalesProc.

Return ValuesTo continue enumeration, the callback function should return TRUE.

To stop enumeration, the callback function should return FALSE.RemarksEnumLocalesProc is a placeholder for an application-defined function name.

An application registers an EnumLocalesProc function by passing its address to the
EnumSystemLocales function.

A value of type LOCALE_ENUMPROC is a pointer to an EnumLocalesProc function.See AlsoEnumSystemLocales

EnumMetaFile
The EnumMetaFile function enumerates the records within a Windows-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the EnumEnhMetaFile function.

BOOL EnumMetaFile(
HDC hdc, // handle to device context
HMETAFILE hmf, // handle to Windows-format metafile
MFENUMPROC lpMetaFunc, // pointer to callback function
LPARAM lParam // address of callback function data

);Parametershdc
Identifies a device context. This handle is passed to the callback function.

hmf
Identifies a Windows-format metafile.

lpMetaFunc
Points to an application-supplied callback function. For more information, see the
EnumMetaFileProc callback function.

lParam
Points to optional callback-function data.

Return ValuesIf the callback function successfully enumerates all the records in the Windows-format metafile,
the return value is nonzero.

If the callback function does not successfully enumerate all the records in the Windows-format
metafile, the return value is zero.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should use the enhanced-
format metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the
SetWinMetaFileBits function.

You can use the EnumMetaFile function to embed one Windows-format metafile within another.See AlsoBeginPath, EnumEnhMetaFile, EnumMetaFileProc, PlayMetaFile, PlayMetaFileRecord,
PolyBezier, SetWinMetaFileBits, SetWorldTransform

EnumMetaFileProc
The EnumMetaFileProc function is an application-defined callback function that processes
Windows-format metafile records. This function is called by the EnumMetaFile function.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the EnhMetaFileProc and EnumEnhMetaFile functions.

int CALLBACK EnumMetaFileProc(
HDC hDC, // handle to device context
HANDLETABLE FAR *lpHTable, // pointer to metafile handle table
METARECORD FAR *lpMFR, // pointer to metafile record
int nObj, // count of objects
LPARAM lpClientData // pointer to optional data

);ParametershDC
Identifies the device context passed to EnumMetaFile.

lpHTable
Points to a table of handles associated with the graphics objects (pens, brushes, and so on) in
the metafile.

lpMFR
Points to one of the records in the metafile. This record should not be modified. (If
modification is necessary, it should be performed on a copy of the record.)

nObj
Specifies the number of objects with associated handles in the handle table.

lpClientData
Points to any application-supplied data.

Return ValuesThis function must return a nonzero value to continue enumeration; to stop enumeration, it must
return zero.RemarksAn application must register the callback function by passing its address to the EnumMetaFile
function.

EnumMetaFileProc is a placeholder for the application-supplied function name.See AlsoEnhMetaFileProc, EnumEnhMetaFile, EnumMetaFile

EnumMonitors
The EnumMonitors function initializes an array of structures with data describing the monitors for
the specified server.

BOOL EnumMonitors(
LPTSTR pName, // pointer to server name
DWORD Level, // structure level
LPBYTE pMonitors, // pointer to structure array
DWORD cbBuf, // size, in bytes, of buffer
LPDWORD pcbNeeded, // addr. of variable with no. of bytes copied (or required)
LPDWORD pcReturned // addr. of variable with no. of job info. structures copied

);ParameterspName
Points to a null-terminated string that specifies the name of the server on which the monitors
reside. If this parameter is NULL, the local monitors are enumerated.

Level
Specifies the version of the structure pointed to by pMonitors.

pMonitors
Points to an array of MONITOR_INFO_1 or MONITOR_INFO_2 structures.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pMonitors.

pcbNeeded
Points to a variable that receives the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

pcReturned
Points to a variable that receives the number of structures that were returned in the buffer
pointed to by pMonitors.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoMONITOR_INFO_1, MONITOR_INFO_2

EnumObjects
The EnumObjects function enumerates the pens or brushes available for the specified device
context. This function calls the application-defined callback function once for each available
object, supplying data describing that object. EnumObjects continues calling the callback function
until the callback function returns zero or until all of the objects have been enumerated.

int EnumObjects(
HDC hdc, // handle to device context
int nObjectType, // object-type identifier
GOBJENUMPROC lpObjectFunc, // pointer to callback function
LPARAM lParam // pointer to application-supplied data

);Parametershdc
Identifies the device context.

nObjectType
Specifies the object type. This parameter can be OBJ_BRUSH or OBJ_PEN.

lpObjectFunc
The pointer to the application-defined callback function. For more information about the
callback function, see the EnumObjectsProc function.

lParam
Points to the application-defined data. The data is passed to the callback function along with
the object information.

Return ValuesThe return value specifies the last value returned by the callback function. Its meaning is user-
defined. The return value is -1 if there are too many objects to enumerate. In this case, the
callback function is not called.See AlsoEnumObjectsProc, GetObject

EnumObjectsProc
The EnumObjectsProc function is an application-defined callback function that processes object
data supplied by the EnumObjects function.

VOID CALLBACK EnumObjectsProc(
LPVOID lpLogObject,

// pointer to graphic-object structure

LPARAM lpData
// pointer to application-defined data

);
ParameterslpLogObject

Points to a LOGPEN or LOGBRUSH structure describing the attributes of the object.
lpData

Points to the application-defined data passed by the EnumObjects function.
Return ValuesThis function does not return a value.RemarksAn application must register this function by passing its address to the EnumObjects function.

EnumObjectsProc is a placeholder for the application-defined function name.See AlsoEnumObjects, GlobalAlloc, GlobalLock, LOGPEN, LOGBRUSH

EnumPorts
The EnumPorts function enumerates the ports that are available for printing on a specified
server.

BOOL EnumPorts(
LPTSTR pName,

// pointer to server name

DWORD Level,
// specifies type of port info structure

LPBYTE pPorts,
// pointer to buffer to receive array of port info. structures

DWORD cbBuf,
// specifies size, in bytes, of buffer

LPDWORD pcbNeeded,
// pointer to number of bytes stored into buffer (or required
// buffer size)

LPDWORD pcReturned
// pointer to number of PORT_INFO_*. structures stored into buffer

);
ParameterspName

Pointer to a null-terminated string that specifies the name of the server whose printer ports
you wish to enumerate.
If pName is NULL, the function enumerates the local machine's printer ports.

Level
Specifies the type of data structures pointed to by pPorts.
This value can be 1 or 2.

pPorts
Pointer to a buffer that receives an array of PORT_INFO_1 or PORT_INFO_2 structures.
Each structure contains data that describes an available printer port. The value of Level
specifies the type of structure. A Level value of 1 specifies PORT_INFO_1 structures. A Level
value of 2 specifies PORT_INFO_2 structures.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pPorts.

pcbNeeded
Pointer to a variable that the function sets to the size, in bytes, of the data that enumerates
the printer ports. If cbBuf is smaller than this value, EnumPorts fails, GetLastError returns
ERROR_INSUFFICIENT_BUFFER, and the variable pointed to by pcbNeeded represents the
required buffer size. If cbBuf is equal to or greater than this value, the variable pointed to by
pcbNeeded represents the number of bytes stored into the buffer.

pcReturned
Pointer to a variable that the function sets to the number of PORT_INFO_* structures that it
stores into the buffer pointed to by pPorts. This is the number of printer ports that are
available on the specified server.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumPorts function can succeed even if the server specified by pName does not have a
printer defined.See AlsoAddPort, DeletePort, PORT_INFO_1, PORT_INFO_2

EnumPrinterData
[New - Windows NT]

The EnumPrinterData function enumerates configuration data for a specified printer.

A printer's configuration data consists of a set of named and typed values. The
EnumPrinterData function obtains one of these values, and its name and a type code, each
time you call it. Call the EnumPrinterData function several times in succession to obtain all
of a printer's configuration data values.

Printer configuration data is stored in the registry. While enumerating printer configuration
data, you should avoid calling registry functions that might change that data.

DWORD EnumPrinterData(
HANDLE hPrinter,

// handle to printer of interest

DWORD dwIndex,
// index of value to retrieve

LPTSTR pValueName,
// pointer to buffer to receive value name

DWORD cbValueName,
// size in bytes of value name buffer

LPDWORD pcbValueName,
// pointer to variable to receive number of bytes stored into
value name buffer

LPDWORD pType,
// pointer to variable to receive value type code

LPBYTE pData,
// pointer to buffer to receive value data

DWORD cbData,
// size in bytes of value data buffer

LPDWORD pcbData
// pointer to variable to receive number of bytes stored into
value data buffer

);
Parameters

hPrinter
Handle to the printer whose configuration data is to be obtained.
You obtain this printer handle by calling the OpenPrinter function.

dwIndex
An index value that specifies the configuration data value to retrieve.
Set this parameter to zero for the first call to EnumPrinterData for a given printer handle.
Then increment the parameter by one for subsequent calls involving the same printer, until the
function returns ERROR_NO_MORE_ITEMS. See the following Remarks section for further
information.
Note: If you use the technique mentioned in the descriptions of the cbValueName and cbData
parameters to obtain adequate buffer size values, setting both those parameters to zero in a
first call to EnumPrinterData for a given printer handle, the value of dwIndex does not matter
for that call. Set dwIndex to zero in the next call to EnumPrinterData to start the actual
enumeration process.
Configuration data values are not ordered. New values will have an arbitrary index. This
means that the EnumPrinterData function may return values in any order.

pValueName
Pointer to a buffer that receives the name of the configuration data value, including a
terminating null character.

cbValueName
Specifies the size, in bytes, of the buffer pointed to by pValueName.
If you want to have the operating system supply an adequate buffer size, set both this
parameter and the cbData parameter to zero for the first call to EnumPrinterData for a given
printer handle. When the function returns, the variable pointed to by pcbValueName will
contain a buffer size that is large enough to successfully enumerate all of the printer's
configuration data value names.

pcbValueName
Pointer to a variable that receives the number of bytes stored into the buffer pointed to by
pValueName.

pType
Pointer to a variable that receives a type code for the value specified by dwIndex. The type
code can be one of the following values:

Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIANA 32-bit number in little-endian

format. This is equivalent to
REG_DWORD.
In little-endian format, a multi-
byte value is stored in memory
from the lowest byte (the "little
end") to the highest byte. For
example, the value 0x12345678
is stored as (0x78 0x56 0x34
0x12) in little-endian format.
Windows NT and Windows 95 are
designed to run on little-endian
computer architectures. A user
may connect to computers that
have big-endian architectures,
such as some UNIX systems.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format.
In big-endian format, a multi-byte
value is stored in memory from
the highest byte (the "big end") to
the lowest byte. For example, the
value 0x12345678 is stored as
(0x12 0x34 0x56 0x78) in big-
endian format.
Windows NT and Windows 95 are
designed to run on little-endian
computer architectures. A user
may connect to computers that
have big-endian architectures,
such as some UNIX systems.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references
to environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string
depending on whether you use
the Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated

strings, terminated by two null
characters.

REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be

a Unicode or ANSI string,
depending on whether you use
the Unicode or ANSI functions.

The pType parameter can be NULL if the type code is not required.
pData

Pointer to a buffer that receives the configuration data value.
This parameter can be NULL if the configuration data value is not required.

cbData
Specifies the size, in bytes, of the buffer pointed to by pData.
If you want to have the operating system supply an adequate buffer size, set both this
parameter and the cbValueName parameter to zero for the first call to EnumPrinterData for a
given printer handle. When the function returns, the variable pointed to by pcbData will
contain a buffer size that is large enough to successfully enumerate all of the printer's
configuration data value names.

pcbData

Pointer to a variable that receives the number of bytes stored into the buffer pointed to by
pData.
This parameter can be NULL if pData is NULL.

Return Values
If the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a Win32 error value.

The function returns ERROR_NO_MORE_ITEMS when there are no more configuration data
values to retrieve for a given printer handle.

Remarks
EnumPrinterData retrieves printer configuration data set by the SetPrinterData function.

If you want to have the operating system supply an adequate buffer size, first call
EnumPrinterData with both the cbValueName and cbData parameters set to zero, as noted
earlier in the Parameters section. The value of dwIndex does not matter for this call. When
the function returns, *pcbValueName and *pcbData will contain buffer sizes that are large
enough to enumerate all of the printer's configuration data value names and values. On the
next call, allocate value name and data buffers, set cbValueName and cbData to the sizes in
bytes of the allocated buffers, and set dwIndex to zero. Thereafter, continue to call the
EnumPrinterData function, incrementing dwIndex by one each time, until the function returns
ERROR_NO_MORE_ITEMS.See AlsoDeletePrinterData, GetPrinterData, OpenPrinter, SetPrinter, SetPrinterData

EnumPrinterDrivers
The EnumPrinterDrivers function enumerates all of the printer drivers installed on the specified
printer server.

BOOL EnumPrinterDrivers(
LPTSTR pName,

// pointer to server name

LPTSTR pEnvironment,
// pointer to environment name

DWORD Level,
// structure level

LPBYTE pDriverInfo,
// pointer to an array of structures

DWORD cbBuf,
// size, in bytes, of array

LPDWORD pcbNeeded,
// pointer to number of bytes copied (or required)

LPDWORD pcReturned
// pointer to number of DRIVER_INFO. structures

);
ParameterspName

Pointer to a null-terminated string that specifies the name of the server on which the printer
drivers should be enumerated.
If pName is NULL, the function enumerates the local machine's printer drivers.

pEnvironment
Pointer to a null-terminated string that specifies the environment. For example, "Windows NT
x86" specifies Windows NT running on an Intel 80386 or 80486 processor. If this parameter is
NULL, the function uses the current environment of the caller/client (not of the destination/
server).

Level
Specifies the type of structures pointed to by pDriverInfo. This value must be 1, 2, or 3.

pDriverInfo
Pointer to a buffer that receives an array of DRIVER_INFO_1, DRIVER_INFO_2, or
DRIVER_INFO_3 structures. Each structure contains data that describes an available printer
driver.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pDriverInfo.

pcbNeeded
Pointer to a value that the function sets to the size in bytes of the data that enumerates the
printer drivers. If cbBuf is smaller than this value, EnumPrinterDrivers fails, and the variable
pointed to by pcbNeeded represents the required buffer size. If cbBuf is equal to or greater
than this value, the variable pointed to by pcbNeeded represents the number of bytes stored
into the buffer.

pcReturned
Pointer to a value that specifies the number of structures that it stores into the buffer pointed
to by pDriverInfo. This is the number of printer drivers installed on the specified print server.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrinterDriver, DRIVER_INFO_1, DRIVER_INFO_2, DRIVER_INFO_3, GetPrinterDriver

EnumPrinters
The EnumPrinters function enumerates available printers, print servers, domains, or print
providers.

BOOL EnumPrinters(
DWORD Flags,

// types of printer objects to enumerate

LPTSTR Name,
// name of printer object

DWORD Level,
// specifies type of printer info structure

LPBYTE pPrinterEnum,
// pointer to buffer to receive printer info structures

DWORD cbBuf,
// size, in bytes, of array

LPDWORD pcbNeeded,
// pointer to variable with no. of bytes copied (or required)

LPDWORD pcReturned
// pointer to variable with no. of printer info. structures copied

);
ParametersFlags

Specifies the types of print objects that the function should enumerate. This value can be a
combination of the following constants:
Value Meaning
PRINTER_ENUM_LOCAL The function ignores the

Name parameter, and
enumerates the locally
installed printers.
Windows 95: The function
will also enumerate network
printers because they are
handled by the local print
provider.

PRINTER_ENUM_NAME The function enumerates the
printer identified by Name.
This can be a server, a
domain, or a print provider. If
Name is NULL, the function
enumerates available print
providers.

PRINTER_ENUM_SHARED The function enumerates
printers that have the shared
attribute. Cannot be used in
isolation; use an OR
operation to combine with
another PRINTER_ENUM
type.

PRINTER_ENUM_DEFAULT Windows 95 only: The
function returns information
about the default printer.

PRINTER_ENUM_CONNECTIONSWindows NT only: The
function enumerates the list of
printers to which the user has
made previous connections.

PRINTER_ENUM_NETWORK Windows NT only: The
function enumerates network
printers in the computer's
domain. This value is valid
only if Level is 1.

PRINTER_ENUM_REMOTE Windows NT only: The
function enumerates network
printers and print servers in
the computer's domain. This
value is valid only if Level is
1.

If Level is 4, you can only use the PRINTER_ENUM_CONNECTIONS and
PRINTER_ENUM_LOCAL constants.

Name

If Level is 1, Flags contains PRINTER_ENUM_NAME, and Name is non-NULL, Name points
to a null-terminated string that specifies the name of the object to enumerate. This string can
be the name of a server, a domain, or a print provider.
If Level is 1, Flags contains PRINTER_ENUM_NAME, and Name is NULL, the function
enumerates the available print providers.
If Level is 1, Flags contains PRINTER_ENUM_REMOTE, and Name is NULL, the function
enumerates the printers in the user's domain.
If Level is 2 or 5, Name points to a null-terminated string that specifies the name of a server
whose printers are to be enumerated. If this string is NULL, the function enumerates the
printers installed on the local machine.
If Level is 4, Name should be NULL. The function always queries on the local machine.
When Name is NULL, it enumerates printers that are installed on the local machine. These
printers include those that are physically attached to the local machine as well as remote
printers to which it has a network connection.

Level
Specifies the type of data structures pointed to by pPrinterEnum. Valid values are 1, 2, 4, and
5, which correspond to the PRINTER_INFO_1, PRINTER_INFO_2, PRINTER_INFO_4, and
PRINTER_INFO_5 data structures.
Windows 95: The value can be 1, 2, or 5.
Windows NT: This value can be 1, 2, 4, or 5.

pPrinterEnum
Pointer to a buffer that receives an array of PRINTER_INFO_1, PRINTER_INFO_2,
PRINTER_INFO_4, or PRINTER_INFO_5 structures. Each structure contains data that
describes an available print object. If Level is 1, the array contains PRINTER_INFO_1
structures. If Level is 2, the array contains PRINTER_INFO_2 structures. If Level is 4, the
array contains PRINTER_INFO_4 structures. If Level is 5, the array contains
PRINTER_INFO_5 structures.
Windows 95: The buffer cannot receive PRINTER_INFO_4 structures. It can receive any of
the other types.

cbBuf
Specifies the size, in bytes, of the array pointed to by pPrinterEnum.

pcbNeeded
Pointer to a value that receives the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

pcReturned
Pointer to a value that receives the number of PRINTER_INFO_1, PRINTER_INFO_2,
PRINTER_INFO_4, or PRINTER_INFO_5 structures that the function returns in the array to
which pPrinterEnum points.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf EnumPrinters returns a PRINTER_INFO_1 structure in which PRINTER_ENUM_CONTAINER
is specified, this indicates that there is a hierarchy of printer objects. An application can
enumerate the hierarchy by calling EnumPrinters again, setting Name to the value of the
PRINTER_INFO_1 structure's pName member.

The EnumPrinters function does not retrieve security information. If PRINTER_INFO_2
structures are returned in the array pointed to by pPrinterEnum, their pSecurityDescriptor
members will be set to NULL.

To get information about the default printer, call the GetProfileString function with the section
name string set to "windows" and the key name string set to "device". The returned string contains
the name of the default printer, the name of the printer DRV file, and the port to which the printer
is attached.

Windows NT:
The PRINTER_INFO_4 structure provides an easy and extremely fast way to retrieve the
names of the printers installed on a local machine, as well as the remote connections that a
user has established. When EnumPrinters is called with a PRINTER_INFO_4 data structure,
that function queries the registry for the specified information, then returns immediately. This
differs from the behavior of EnumPrinters when called with other levels of PRINTER_INFO_*
data structures. In particular, when EnumPrinters is called with a level 2 (PRINTER_INFO_2)
data structure, it performs an OpenPrinter call on each remote connection. If a remote
connection is down, or the remote server no longer exists, or the remote printer no longer

exists, the function must wait for RPC to time out and consequently fail the OpenPrinter call.
This can take a while. Passing a PRINTER_INFO_4 structure lets an application retrieve a
bare minimium of required information; if more detailed information is desired, a subsequent
EnumPrinter level 2 call can be made.

Windows 95:
To quickly enumerate local and network printers, use the PRINTER_INFO_5 structure. This
causes EnumPrinters to query the registry rather than make remote calls, and is similar to
using the PRINTER_INFO_4 structure on Windows NT as described in the preceding
paragraph.ExamplesThe following table shows the EnumPrinters output for various Flags values when the Level

parameter is set to 1.

In the Name parameter column of the table, you should substitute an appropriate name for Print
Provider, Domain, and Machine. For example, for Print Provider, you could use the name of the
Windows NT network print provider: "Windows NT Remote Printers", or the name of the Windows
95 local print provider: "Windows 95 Local Print Provider". To get print provider names, call
EnumPrinters with Name set to NULL.

Flags parameter Name parameter Result

PRINTER_ENUM_LOCAL The Name parameter is
ignored.

All local printers.
Windows 95: Also
enumerates
network printers
because they are
installed locally.

PRINTER_ENUM_NAME "Print Provider" All domain names
PRINTER_ENUM_NAME Windows NT only:

"Print Provider!Domain"
All printers and
print servers in the
computer's domain

PRINTER_ENUM_NAME Windows NT only:
"Print Provider!!\\Machine"

All printers shared
at \\Machine

PRINTER_ENUM_NAME Windows NT: An empty
string, ""
Windows 95: The name of
the local machine or the
local print provider.

All local printers.
Windows 95: Also
enumerates
network printers
because they are
installed locally.

PRINTER_ENUM_NAME NULL All print providers
in the computer's
domain

Windows NT only:
PRINTER_ENUM_CONNECTIONS

The Name parameter is
ignored.

All connected
remote printers

Windows NT only:
PRINTER_ENUM_NETWORK

The Name parameter is
ignored.

All printers in the
computer's domain

Windows NT only:
PRINTER_ENUM_REMOTE

An empty string, "" All printers and
print servers in the
computer's domain

Windows NT only:
PRINTER_ENUM_REMOTE

"Print Provider" Same as
PRINTER_ENUM_NAME

Windows NT only:
PRINTER_ENUM_REMOTE

"Print Provider!Domain" All printers and
print servers in
computer's
domain, regardless
of Domain
specified.

See AlsoAddPrinter, DeletePrinter, GetPrinter, GetProfileString, PRINTER_INFO_1,
PRINTER_INFO_2, PRINTER_INFO_4, PRINTER_INFO_5, SetPrinter

EnumPrintProcessorDatatypes
The EnumPrintProcessorDatatypes function enumerates the data types that a specifed print
processor supports.

BOOL EnumPrintProcessorDatatypes(
LPTSTR pName,

// points to server name string

LPTSTR pPrintProcessorName,
// points to print processor name string

DWORD Level,
// specifies version of print processor data type structures

LPBYTE pDatatypes,
// points to buffer to receive print processor data type structures

DWORD cbBuf,
// specifies size, in bytes, of buffer

LPDWORD pcbNeeded,
// points to number of bytes copied (or required)

LPDWORD pcReturned
// points to number of data structures obtained

);
ParameterspName

Points to a null-terminated string that specifies the name of the server on which the print
processor resides. If this parameter is NULL, the data types for the local print processor are
enumerated.

pPrintProcessorName
Points to a null-terminated string that specifies the name of the print processor whose data
types are to be enumerated.

Level
Specifies the version of the print-processor data type structures to be stored in the buffer
pointed to by pDatatypes. This parameter must be 1.

pDatatypes
Points to an array of DATATYPES_INFO_1 structures. One structure is created for each
available data type.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pDatatypes.

pcbNeeded
Points to a variable to receive the total size, in bytes, of the array of DATATYPES_INFO_1
structures.
If this value is less than or equal to cbBuf and the function succeeds, this is the number of
bytes stored in the buffer pointed to by pDatatypes. If this number is greater than cbBuf, the
buffer is too small, and you must call the function again with a buffer size at least as large as *
pcbNeeded.

pcReturned
Points to a variable that the function sets to the number of data structures stored in the buffer
pointed to by pDatatypes.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoDATATYPES_INFO_1, EnumPrintProcessors

EnumPrintProcessors
The EnumPrintProcessors function enumerates the print processors installed on the specified
server.

BOOL EnumPrintProcessors(
LPTSTR pName,

// points to server name

LPTSTR pEnvironment,
// points to environment name

DWORD Level,
// structure level

LPBYTE pPrintProcessorInfo,
// points to structure array

DWORD cbBuf,
// array length in bytes

LPDWORD pcbNeeded,
// points to number of bytes copied (or required)

LPDWORD pcReturned
// points to number of job info. structures copied

);
ParameterspName

Points to a null-terminated string that specifies the name of the server on which the print
processors reside. If this parameter is NULL, the local print processors are enumerated.

pEnvironment
Points to a null-terminated string that specifies the environment. For example, "Windows NT
x86" specifies Windows NT running on an Intel 80386 or 80486 processor. If this parameter is
NULL, the current environment of the calling application and client machine (not of the
destination application and print server) is used.

Level
Specifies the version of the structure to which pPrintProcessorInfo points. This value must be
1.

pPrintProcessorInfo
Points to an array of PRINTPROCESSOR_INFO_1 structures. One structure is created for
each available print processor.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pPrintProcessorInfo.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

pcReturned
Points to a value that specifies the number of PRINTPROCESSOR_INFO_1 structures that
returned in the array to which pPrintProcessorInfo points.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrintProcessor, EnumPrintProcessorDatatypes, PRINTPROCESSOR_INFO_1

EnumProps
The EnumProps function enumerates all entries in the property list of a window by passing them,
one by one, to the specified callback function. EnumProps continues until the last entry is
enumerated or the callback function returns FALSE.

int EnumProps(
HWND hWnd,

// handle to window

PROPENUMPROC lpEnumFunc
// pointer to callback function

);
ParametershWnd

Identifies the window whose property list is to be enumerated.
lpEnumFunc

Points to the callback function. For more information about the callback function, see the
PropEnumProc function.

Return ValuesThe return value specifies the last value returned by the callback function. It is -1 if the function did
not find a property for enumeration.RemarksAn application can remove only those properties it has added. It must not remove properties
added by other applications or by Windows itself.See AlsoEnumPropsEx, GetProp, PropEnumProc, RemoveProp, SetProp

EnumPropsEx
The EnumPropsEx function enumerates all entries in the property list of a window by passing
them, one by one, to the specified callback function. EnumPropsEx continues until the last entry
is enumerated or the callback function returns FALSE.

int EnumPropsEx(
HWND hWnd,

// handle to window

PROPENUMPROCEX lpEnumFunc,
// pointer to callback function

LPARAM lParam
// application-defined data

);
ParametershWnd

Identifies the window whose property list is to be enumerated.
lpEnumFunc

Points to the callback function. For more information about the callback function, see the
PropEnumProcEx function.

lParam
Contains application-defined data to be passed to the callback function.

Return ValuesThe return value specifies the last value returned by the callback function. It is -1 if the function did
not find a property for enumeration.RemarksAn application can remove only those properties it has added. It must not remove properties
added by other applications or by Windows itself.See AlsoEnumProps, GetProp, PropEnumProcEx, RemoveProp, SetProp

EnumRegisterWordProc
The EnumRegisterWordProc function is an application-defined callback function that process
data of register string from the ImmEnumRegisterWord function.

UINT CALLBACK EnumRegisterWordProc(
LPCTSTR lpReading,
DWORD dwStyle,
LPCTSTR lpszString,
LPVOID lpData);
ParameterslpszReading

Pointer to a null-terminated string specifying the matched reading string.
dwStyle

Style of register string.
lpszString

Pointer to a null-terminated string specifying the matched register string.
lpData

Application-supplied data.
Return ValuesReturns a nonzero value to continue enumeration; zero to stop enumeration.See AlsoImmEnumRegisterWord

EnumResLangProc
The EnumResLangProc function is an application-defined callback function that receives
resource languages as a result of a call to the EnumResourceLanguages function.

BOOL CALLBACK EnumResLangProc(
HANDLE hModule,

// resource-module handle

LPCTSTR lpszType,
// pointer to resource type

LPCTSTR lpszName,
// pointer to resource name

WORD wIDLanguage,
// resource language identifier

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the languages
are being enumerated. If this parameter is NULL, the function enumerates the resource
languages in the module used to create the current process.

lpszType
Points to a null-terminated string specifying the type name of the resource for which the
language is being enumerated. For standard resource types, this parameter should be one of
the following values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpszName
Points to a null-terminated string specifying the name of the resource for which the language
is being enumerated.

wIDLanguage
Specifies the language identifier for the resource for which the language is being enumerated.
The EnumResourceLanguages function provides this value. For a list of the primary
language identifiers and sublanguage identifiers that constitute a language identifier, see the
MAKELANGID macro.

lParam
Specifies the application-defined parameter passed to the EnumResourceLanguages
function. This parameter can be used in error checking.

Return ValuesThis callback function should return TRUE to continue enumeration; otherwise, it should return
FALSE to stop enumeration.RemarksThe EnumResLangProc function is a placeholder for the application-defined or library-defined
function name.See AlsoEnumResourceLanguages, MAKELANGID

EnumResNameProc
The EnumResNameProc function is an application-defined callback function that receives
resource names as a result of a call to the EnumResourceNames function.

BOOL CALLBACK EnumResNameProc(
HANDLE hModule,

// resource-module handle

LPCTSTR lpszType,
// pointer to resource type

LPTSTR lpszName,
// pointer to resource name

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the names are
being enumerated. If this parameter is NULL, the function enumerates the resource names in
the module used to create the current process.

lpszType
Points to a null-terminated string specifying the type name of the resource for which the name
is being enumerated. For standard resource types, this parameter should be one of the
following values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpszName
Points to a null-terminated string specifying the name of the resource for which the name is
being enumerated.

lParam
Specifies the application-defined parameter passed to the EnumResourceNames function.
This parameter can be used in error checking.

Return ValuesThis callback function should return TRUE to continue enumeration; otherwise, it should return
FALSE to stop enumeration.RemarksThe EnumResNameProc function is a placeholder for the application-defined or library-defined
function name.See AlsoEnumResourceNames

EnumResourceLanguages
The EnumResourceLanguages function searches a module for each resource of the specified
type and name and passes the language of each resource it locates to a defined callback
function.

BOOL EnumResourceLanguages(
HMODULE hModule,

// resource-module handle

LPCTSTR lpType,
// pointer to resource type

LPCTSTR lpName,
// pointer to resource name

ENUMRESLANGPROC lpEnumFunc,
// pointer to callback function

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the languages
are to be enumerated. If this parameter is NULL, the function enumerates the resource
languages in the module used to create the current process.

lpType
Points to a null-terminated string specifying the type of the resource for which the language is
being enumerated. For standard resource types, this parameter can be one of the following
values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpName
Points to a null-terminated string specifying the name of the resource for which the language
is being enumerated.

lpEnumFunc
Points to the callback function to be called for each enumerated resource language. For more
information, see the EnumResLangProc function.

lParam
Specifies an application-defined value passed to the callback function. This parameter may be
used in error checking.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumResourceLanguages function continues to enumerate resource languages until the
callback function returns FALSE or all resource languages have been enumerated.See AlsoEnumResLangProc, EnumResourceNames, EnumResourceTypes

EnumResourceNames
The EnumResourceNames function searches a module for each resource of the specified type
and passes the name of each resource it locates to an application-defined callback function.

BOOL EnumResourceNames(
HINSTANCE hModule,

// resource-module handling

LPCTSTR lpszType,
// pointer to resource type

ENUMRESNAMEPROC lpEnumFunc,
// pointer to callback function

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the names are to
be enumerated. If this parameter is NULL, the function enumerates the resource names in the
module used to create the current process.

lpszType
Points to a null-terminated string specifying the type name of the resource for which the name
is being enumerated. For standard resource types, this parameter can be one of the following
values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpEnumFunc
Points to the callback function to be called for each enumerated resource name. For more
information, see the EnumResNameProc function.

lParam
Specifies an application-defined value passed to the callback function. This parameter can be
used in error checking.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumResourceNames function continues to enumerate resource names until the callback
function returns FALSE or all resource names have been enumerated.See AlsoEnumResNameProc, EnumResourceLanguages, EnumResourceTypes

EnumResourceTypes
The EnumResourceTypes function searches a module for resources and passes each resource
type it finds to an application-defined callback function.

BOOL EnumResourceTypes(
HMODULE hModule,

// resource-module handle

ENUMRESTYPEPROC lpEnumFunc,
// pointer to callback function

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the types are to
be enumerated. If this parameter is NULL, the function enumerates the resource types in the
module used to create the current process.

lpEnumFunc
Points to the callback function to be called for each enumerated resource type. For more
information, see the EnumResTypeProc function.

lParam
Specifies an application-defined value passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumResourceTypes function continues to enumerate resource types until the callback
function returns FALSE or all resource types have been enumerated.See AlsoEnumResourceLanguages, EnumResourceNames, EnumResTypeProc

EnumResTypeProc
The EnumResTypeProc function is an application-defined callback function that receives
resource types as a result of a call to the EnumResourceTypes function.

BOOL CALLBACK EnumResTypeProc(
HANDLE hModule,

// resource-module handle

LPTSTR lpszType,
// pointer to resource type

LONG lParam
// application-defined parameter

);
ParametershModule

Identifies the module whose executable file contains the resources for which the types are to
be enumerated. If this parameter is NULL, the function enumerates the resource types in the
module used to create the current process.

lpszType
Points to a null-terminated string specifying the type name of the resource for which the type
is being enumerated. For standard resource types, this parameter can be one of the following
values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lParam
Specifies the application-defined parameter passed to the EnumResourceTypes function.
This parameter can be used in error checking.

Return ValuesThe callback function should return TRUE to continue enumeration; otherwise, it should return
FALSE to stop enumeration.RemarksThe EnumResTypeProc function is a placeholder for the application-defined or library-defined
function name.See AlsoEnumResourceTypes

EnumServicesStatus
The EnumServicesStatus function enumerates services in the specified service control manager
database. The name and status of each service are provided.

BOOL EnumServicesStatus(
SC_HANDLE hSCManager,

// handle to service control manager database

DWORD dwServiceType,
// type of services to enumerate

DWORD dwServiceState,
// state of services to enumerate

LPENUM_SERVICE_STATUS lpServices,
// pointer to service status buffer

DWORD cbBufSize,
// size of service status buffer

LPDWORD pcbBytesNeeded,
// pointer to variable for bytes needed

LPDWORD lpServicesReturned,
// pointer to variable for number returned

LPDWORD lpResumeHandle
// pointer to variable for next entry

);
ParametershSCManager

Identifies the service control manager database. The OpenSCManager function returns this
handle which must have SC_MANAGER_ENUMERATE_SERVICE access.

dwServiceType
Specifies the type of services to enumerate. It must be one or both of the following values:

Value Meaning
SERVICE_WIN32 Enumerates services of type

SERVICE_WIN32_OWN_PROCESS and
SERVICE_WIN32_SHARE_PROCESS.

SERVICE_DRIVER Enumerates services of type
SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER.

dwServiceState
Specifies the services to enumerate based on their running state. It must be one or both of the
following values:

Value Meaning
SERVICE_ACTIVE Enumerates services that are in the following

states: SERVICE_START_PENDING,
SERVICE_STOP_PENDING,
SERVICE_RUNNING,
SERVICE_CONTINUE_PENDING,
SERVICE_PAUSE_PENDING, and
SERVICE_PAUSED.

SERVICE_INACTIVE Enumerates services that are in the
SERVICE_STOPPED state.

lpServices
Points to an array of ENUM_SERVICE_STATUS structures in which the name and service
status information for each service in the database is returned.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServices parameter.

pcbBytesNeeded
Points to a variable that receives the number of bytes needed to return the remaining service
entries.

lpServicesReturned
Points to a variable that receives the number of service entries returned.

lpResumeHandle
Points to a 32-bit variable that, on input, specifies the starting point of enumeration. The first
time this function is called, the variable's value is set to zero. On output, the variable's value is
zero if the function succeeds. If the function returns FALSE and the GetLastError function
returns ERROR_MORE_DATA, the variable's value is used to indicate the next unread
service entry when the function is called again to retrieve the additional data.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with
SC_MANAGER_ENUMERATE_SERVICE access.

ERROR_INVALID_HANDLE
The specified handle is invalid.

ERROR_INVALID_PARAMETER
A parameter that was specified is invalid.

ERROR_MORE_DATA
There are more service entries than would fit into the
lpServices buffer. The actual number of service entries
written to lpServices is returned in the lpServicesReturned
parameter. The number of bytes required to get the
remaining entries is returned in the pcbBytesNeeded
parameter. The remaining services can be enumerated by
additional calls to EnumServicesStatus with the
lpResumeHandle parameter indicating the next service to
read.

See AlsoEnumDependentServices, ENUM_SERVICE_STATUS, OpenSCManager

EnumSystemCodePages
The EnumSystemCodePages function enumerates the code pages that are either installed on or
supported by a system. The dwFlags parameter determines whether the function enumerates
installed or supported code pages. The function enumerates the code pages by passing code
page identifiers, one at a time, to the specified application-defined callback function. This
continues until all of the installed or supported code page identifiers have been passed to the
callback function, or the callback function returns FALSE.

BOOL EnumSystemCodePages(
CODEPAGE_ENUMPROC lpCodePageEnumProc,

// pointer to enumeration callback function

DWORD dwFlags
// indicates which code pages to enumerate

);
ParameterslpCodePageEnumProc

Points to an application-defined callback function. The EnumSystemCodePages function
enumerates code pages by making repeated calls to this callback function. For more
information, see the EnumCodePagesProc callback function.

dwFlags
Specifies the code pages to enumerate. This parameter can be one of the following values:

Value Meaning
CP_INSTALLED Enumerate only installed code pages.
CP_SUPPORTED Enumerate all supported code pages.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_PARAMETER
ERROR_BADDB

ERROR_INVALID FLAGSRemarksThe CP_INSTALLED and CP_SUPPORTED flags are mutually exclusive.See AlsoEnumCodePagesProc

EnumSystemLocales
The EnumSystemLocales function enumerates the locales that are either installed on or
supported by a system. The dwFlags parameter determines whether the function enumerates
installed or supported system locales. The function enumerates locales by passing locale
identifiers, one at a time, to the specified application-defined callback function. This continues until
all of the installed or supported locale identifiers have been passed to the callback function or the
callback function returns FALSE.

BOOL EnumSystemLocales(
LOCALE_ENUMPROC lpLocaleEnumProc,

// pointer to enumeration callback function

DWORD dwFlags
// indicates which locales to enumerate

);
ParameterslpLocaleEnumProc

Points to an application-defined callback function. The EnumSystemLocales function
enumerates locales by making repeated calls to this callback function. For more information,
see the EnumLocalesProc callback function.

dwFlags
Specifies the locale identifiers to enumerate. This parameter can be one of the following
values:

Value Meaning
LCID_INSTALLED Enumerate only installed locale identifiers.
LCID_SUPPORTED Enumerate all supported locale identifiers.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_PARAMETER
ERROR_BADDB

ERROR_INVALID FLAGSRemarksThe LCID_INSTALLED and LCID_SUPPORTED flags are mutually exclusive.See AlsoEnumLocalesProc

EnumTaskWindows
The EnumTaskWindows function is obsolete. It has been superseded by the
EnumThreadWindows function.

To maintain compatibility for 16-bit applications, EnumTaskWindows has been replaced with a
macro that calls EnumThreadWindows. Earlier applications can continue to call
EnumTaskWindows as previously documented, but new applications should use
EnumThreadWindows.

EnumThreadWindows
The EnumThreadWindows function enumerates all nonchild windows associated with a thread
by passing the handle of each window, in turn, to an application-defined callback function.
EnumThreadWindows continues until the last window is enumerated or the callback function
returns FALSE. To enumerate child windows of a particular window, use the
EnumChildWindows function. This function supersedes the EnumTaskWindows function.

BOOL EnumThreadWindows(
DWORD dwThreadId, // thread identifier
WNDENUMPROC lpfn, // pointer to callback function
LPARAM lParam // application-defined value

);ParametersdwThreadId
Identifies the thread whose windows are to be enumerated.

lpfn
Points to an application-defined callback function. For more information about the callback
function, see the EnumThreadWndProc callback function.

lParam
Specifies a 32-bit, application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoEnumChildWindows, EnumThreadWndProc, EnumWindows

EnumThreadWndProc
The EnumThreadWndProc function is an application-defined callback function that receives the
window handles associated with a thread as a result of a call to the EnumThreadWindows
function.

BOOL CALLBACK EnumThreadWndProc(
HWND hwnd, // handle to window
LPARAM lParam // application-defined value

);Parametershwnd
Identifies a window associated with the thread specified in the EnumThreadWindows
function.

lParam
Specifies the application-defined value given in the EnumThreadWindows function.

Return ValuesTo continue enumeration, the callback function must return TRUE; to stop enumeration, it must
return FALSE.RemarksThe callback function can perform any desired task.

An application must register this callback function by passing its address to the
EnumThreadWindows function. EnumThreadWndProc is a placeholder for the application-
defined function name.See AlsoEnumThreadWindows

EnumTimeFormats
The EnumTimeFormats function enumerates the time formats that are available for a specified
locale. The function enumerates the time formats by passing a pointer to a string buffer containing
a time format to an application-defined callback function. It continues to do so until the last time
format is found or the callback function returns FALSE.

BOOL EnumTimeFormats(
TIMEFMT_ENUMPROC lpTimeFmtEnumProc, // pointer to enumeration callback function
LCID Locale, // locale whose time formats are of interest
DWORD dwFlags // currently unused

);ParameterslpTimeFmtEnumProc
Points to an application-defined callback function. See the EnumTimeFormatsProc callback
function for further details.

Locale
Specifies the locale to retrieve time format information for. This parameter can be a locale
identifier created by the MAKELCID macro, or one of the following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
Currently unused. Must be zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_PARAMETER
ERROR_BADDB

ERROR_INVALID FLAGSSee AlsoEnumTimeFormatsProc, EnumCalendarInfo, EnumDateFormats

EnumTimeFormatsProc
An EnumTimeFormatsProc function is an application-defined callback function. It is called as a
result of a call to the EnumTimeFormats function, and receives a pointer to a string buffer
containing a time format string.

BOOL CALLBACK EnumTimeFormatsProc(
LPTSTR lpTimeFormatString // pointer to time format string

);ParameterslpTimeFormatString
Pointer to a string buffer containing a null-terminated time format string. Note that
lpTimeFormatString should be an LPWSTR for the Unicode (W) version of
EnumTimeFormatsProc, and an LPSTR for the ANSI (A) version of
EnumTimeFormatsProc.

Return ValuesTo continue enumeration, the callback function should return TRUE.

To stop enumeration, the callback function should return FALSE.RemarksEnumTimeFormatsProc is a placeholder for an application-defined function name.

An EnumTimeFormatsProc function can carry out any task

An application registers an EnumTimeFormatsProc function by passing its address to the
EnumTimeFormats function.

A value of type TIMEFMT_ENUMPROC is a pointer to an EnumTimeFormatsProc function.See AlsoEnumTimeFormats

EnumWindows
The EnumWindows function enumerates all top-level windows on the screen by passing the
handle of each window, in turn, to an application-defined callback function. EnumWindows
continues until the last top-level window is enumerated or the callback function returns FALSE.

BOOL EnumWindows(
WNDENUMPROC lpEnumFunc, // pointer to callback function
LPARAM lParam // application-defined value

);ParameterslpEnumFunc
Points to an application-defined callback function. For more information, see the
EnumWindowsProc callback function.

lParam
Specifies a 32-bit, application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe EnumWindows function does not enumerate child windows.

This function is more reliable than calling the GetWindow function in a loop. An application that
calls GetWindow to perform this task risks being caught in an infinite loop or referencing a handle
to a window that has been destroyed.See AlsoEnumChildWindows, EnumWindowsProc, GetWindow

EnumWindowsProc
The EnumWindowsProc function is an application-defined callback function that receives top-
level window handles as a result of a call to the EnumWindows or EnumDesktopWindows
function.

BOOL CALLBACK EnumWindowsProc(
HWND hwnd, // handle to parent window
LPARAM lParam // application-defined value

);Parametershwnd
Identifies a top-level window.

lParam
Specifies the application-defined value given in EnumWindows or EnumDesktopWindows.

Return ValuesTo continue enumeration, the callback function must return TRUE; to stop enumeration, it must
return FALSE.RemarksThe callback function can perform any desired task.

An application must register this callback function by passing its address to EnumWindows or
EnumDesktopWindows. EnumWindowsProc is a placeholder for the application-defined
function name. The WNDENUMPROC type is a pointer to an EnumWindowsProc function.See AlsoEnumWindows, EnumDesktopWindows

EnumWindowStationProc
The EnumWindowStationProc function is an application-defined callback function that receives
a window station name as a result of a call to the EnumWindowStations function.

BOOL EnumWindowStationProc(
LPTSTR lpszWindowStation // name of a window station
LPARAM lParam // value specified in EnumWindowStations call

);ParameterslpszWindowStation
Points to the null-terminated name of a window station.

lParam
Specifies the application-defined value given in the EnumWindowStations function.

Return ValuesTo continue enumeration, the callback function must return TRUE. To stop enumeration, it must
return FALSE.RemarksEnumWindowStationProc is a placeholder for the application-defined function name. The
WINSTAENUMPROC type is a pointer to an EnumWindowStationProc function.See AlsoEnumWindowStations

EnumWindowStations
The EnumWindowStations function enumerates all windowstations in the system by passing the
name of each window station, in turn, to an application-defined callback function.

BOOL EnumWindowStations(
WINSTAENUMPROC lpEnumFunc, // points to application's callback function
LPARAM lParam // 32-bit value to pass to the callback function

);ParameterslpEnumFunc
Points to an application-defined EnumWindowStationProc callback function.

lParam
Specifies a 32-bit application-defined value to be passed to the callback function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe EnumWindowStations function enumerates only those window stations for which the calling
process has WINSTA_ENUMERATE access.

EnumWindowStations repeatedly invokes the lpEnumFunc callback function until the last
window station is enumerated or the callback function returns FALSE.See AlsoEnumWindowStationProc

EqualPrefixSid
The EqualPrefixSid function tests two security-identifier (SID) prefix values for equality. A SID
prefix is the entire SID except for the last subauthority value.

BOOL EqualPrefixSid(
PSID pSid1, // pointer to first SID to compare
PSID pSid2 // pointer to second SID to compare

);ParameterspSid1
Points to the first SID structure to compare. This structure is assumed to be valid.

pSid2
Points to the second SID structure to compare. It also is assumed to be valid.

Return ValuesIf the SID prefixes are equal, the return value is nonzero.

If the SID prefixes are not equal, the return value is zero. To get extended error information, call
GetLastError.RemarksThe EqualPrefixSid function enables a server application in one domain to verify an attempt by a
user to log on to another domain. For example, if a user attempts to log on to RemoteDomain
from a workstation in LocalDomain, the server for LocalDomain can request the SIDs for the user
and the user's groups from RemoteDomain. The domain controller for RemoteDomain responds
with the relevant SIDs.

All SIDs for a specified domain necessarily have the same prefix. When the server receives the
user's SIDs, it can call the EqualPrefixSid function for each SID, comparing the user or group
SID against the SID for RemoteDomain. If any of the SID prefixes are not equal, the server
refuses the logon attempt.

It is advisable to modify the SID for a domain before comparing it with a group or user SID. If the
SID for RemoteDomain is S-1- 1234 - 8, each group or user SID for that domain will have S-1-
1234 - 8 as its prefix. To compare the SIDs by using the EqualPrefixSid function, an application
copies the domain SID and adds any subauthority (RID) value to the copy, thereby creating a SID
in the form S-1- 1234 - 8- 0. The application then uses the modified domain SID as a template
against which the group and user SIDs are compared.See AlsoCopySid, EqualSid, IsValidSid, SID

EqualRect
The EqualRect function determines whether the two specified rectangles are equal by comparing
the coordinates of their upper-left and lower-right corners.

BOOL EqualRect(
CONST RECT *lprc1, // pointer to structure with first rectangle
CONST RECT *lprc2 // pointer to structure with second rectangle

);Parameterslprc1
Points to a RECT structure that contains the logical coordinates of the first rectangle.

lprc2
Points to a RECT structure that contains the logical coordinates of the second rectangle.

Return ValuesIf the two rectangles are identical, the return value is nonzero.

If the two rectangles are not identical, the return value is zero. To get extended error information,
call GetLastError.See AlsoIsRectEmpty, PtInRect, RECT

EqualRgn
The EqualRgn function checks the two specified regions to determine whether they are identical.
The function considers two regions identical if they are equal in size and shape.

BOOL EqualRgn(
HRGN hSrcRgn1, // handle to first region
HRGN hSrcRgn2 // handle to second region

);ParametershSrcRgn1
Identifies a region.

hSrcRgn2
Identifies a region.

Return ValuesIf the two regions are equal, the return value is nonzero.

If the two regions are not equal, the return value is zero. A return value of ERROR means at least
one of the region handles is invalid.See AlsoCreateRectRgn, CreateRectRgnIndirect

EqualSid
The EqualSid function tests two security identifier (SID) values for equality. Two SIDs must match
exactly to be considered equal.

BOOL EqualSid(
PSID pSid1, // pointer to first SID to compare
PSID pSid2 // pointer to second SID to compare

);ParameterspSid1
Points to the first SID structure to compare. This structure is assumed to be valid.

pSid2
Points to the second SID structure to compare. It also is assumed to be valid.

Return ValuesIf the SID structures are equal, the return value is nonzero.

If the SID structures are not equal, the return value is zero. To get extended error information, call
GetLastError.

If either SID structure is invalid, the return value is undefined.See AlsoEqualPrefixSid, IsValidSid, SID

EraseTape
The EraseTape function erases all or part of a tape.

DWORD EraseTape(
HANDLE hDevice, // handle to open device
DWORD dwEraseType, // type of erasure to perform
BOOL bImmediate // return after erase operation begins

);ParametershDevice
Identifies the device where the tape is to be erased. This handle is created by using the
CreateFile function.

dwEraseType
Specifies the erasing technique. This parameter can be one of the following values:

Value Description
TAPE_ERASE_LONG Erases the tape from the current position to

the end of the current partition.
TAPE_ERASE_SHORT Writes an erase gap or end-of-data marker

at the current position.

bImmediate
Specifies whether to return as soon as the erase operation begins. If this parameter is TRUE,
the function returns immediately; if it is FALSE, the function does not return until the erase
operation has been completed.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.

ERROR_WRITE_PROTECT The media is write protected.
RemarksSome tape devices do not support certain tape operations. To determine your tape device's

capabilities, see your tape device documentation and use the GetTapeParameters function.See AlsoCreateFile, GetTapeParameters

Escape
The Escape function allows applications to access capabilities of a particular device not directly
available through GDI. Escape calls made by an application are translated and sent to the driver.

int Escape(
HDC hdc, // handle to device context
int nEscape, // escape function
int cbInput, // number of bytes in input structure
LPCSTR lpvInData, // pointer to input structure
LPVOID lpvOutData // pointer to output structure

);Parametershdc
Identifies the device context.

nEscape
Specifies the escape function to be performed. This parameter must be one of the predefined
escape values. Use the ExtEscape function if your application defines a private escape value.

cbInput
Specifies the number of bytes of data pointed to by the lpvInData parameter.

lpvInData
Points to the input structure required for the specified escape.

lpvOutData
Points to the structure that receives output from this escape. This parameter should be NULL
if no data is returned.

Return ValuesIf the function succeeds, the return value is greater than zero, except with the
QUERYESCSUPPORT printer escape, which checks for implementation only. If the escape is not
implemented, the return value is zero.

If the function fails, the return value is an error. To get extended error information, call
GetLastError.ErrorsIf the function fails, the return value is one of the following values.

Value Meaning

SP_ERROR General error. If SP_ERROR is returned,
Escape may set the last error code to:
ERROR_INVALID_PARAMETER
ERROR_DISK_FULL
ERROR_NOT_ENOUGH_MEMORY
ERROR_PRINT_CANCELLED

SP_OUTOFDISK Not enough disk space is currently available for
spooling, and no more space will become
available.

SP_OUTOFMEMORYNot enough memory is available for spooling.
SP_USERABORT The user terminated the job through Windows

Print Manager.
RemarksThe Win32 API provides six new functions that supersede some printer escapes:

Function Description

AbortDoc Terminates a print job. Supersedes the ABORTDOC
escape.

EndDoc Ends a print job. Supersedes the ENDDOC escape.
EndPage Ends a page. Supersedes the NEWFRAME escape.

Unlike NEWFRAME, this function is always called
after printing a page.

SetAbortProc Sets the abort function for a print job. Supersedes the
SETABORTPROC escape.

StartDoc Starts a print job. Supersedes the STARTDOC
escape.

StartPage Prepares printer driver to receive data.

The Win32 API provides six new indexes for the GetDeviceCaps function that supersede
some printer escapes:

Index Description

PHYSICALWIDTH For printing devices: the width of the physical
page, in device units. For example, a printer set
to print at 600 dpi on 8.5"x11" paper has a
physical width value of 5100 device units. Note
that the physical page is almost always greater
than the printable area of the page, and never
smaller.

PHYSICALHEIGHT For printing devices: the height of the physical
page, in device units. For example, a printer set
to print at 600 dpi on 8.5"x11" paper has a
physical height value of 6600 device units. Note
that the physical page is almost always greater
than the printable area of the page, and never
smaller.

PHYSICALOFFSETX For printing devices: the distance from the left
edge of the physical page to the left edge of the
printable area, in device units. For example, a
printer set to print at 600 dpi on 8.5"x11" paper,
that cannot print on the leftmost 0.25" of paper,
has a horizontal physical offset of 150 device
units.

PHYSICALOFFSETY For printing devices: the distance from the top
edge of the physical page to the top edge of the
printable area, in device units. For example, a
printer set to print at 600 dpi on 8.5"x11" paper,
that cannot print on the topmost 0.5" of paper,
has a vertical physical offset of 300 device units.

Of the original printer escapes, only the following can be used by Win32-based application:

Escape Description

QUERYYESCSUPPORTDetermines whether a particular escape is
implemented by the device driver.

Following is a list of the obsolete printer escapes that are supported only for compatibility
with 16-bit versions of Windows:

Escape Description

ABORTDOC Stops the current print job and erases
everything the application has written to the
device since the last ENDDOC escape.

ENDDOC Ends a print job started by the STARTDOC
escape.

GETPHYSPAGESIZE Retrieves the physical page size and copies it
to the specified location.

GETPRINTINGOFFSETRetrieves the offset from the upper-left corner
of the physical page where the actual printing
or drawing begins.

GETSCALINGFACTORRetrieves the scaling factors for the x-axis
and the y-axis of a printer.

NEWFRAME Informs the printer that the application has
finished writing to a page.

NEXTBAND Informs the printer that the application has
finished writing to a band.

PASSTHROUGH Allows the application to send data directly to
a printer.

SETABORTPROC Sets the Abort function for a print job.

STARTDOC Informs a printer driver that a new print job is
starting.

See AlsoAbortDoc, EndDoc, EndPage, ExtEscape, SetAbortProc, StartDoc, StartPage, ResetDC

EscapeCommFunction
The EscapeCommFunction function directs a specified communications device to perform an
extended function.

BOOL EscapeCommFunction(
HANDLE hFile, // handle to communications device
DWORD dwFunc // extended function to perform

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

dwFunc
Specifies the code of the extended function to perform. This parameter can be one of the
following values:

Value Meaning
CLRDTR Clears the DTR (data-terminal-ready) signal.
CLRRTS Clears the RTS (request-to-send) signal.
SETDTR Sends the DTR (data-terminal-ready) signal.
SETRTS Sends the RTS (request-to-send) signal.
SETXOFF Causes transmission to act as if an XOFF character

has been received.
SETXON Causes transmission to act as if an XON character

has been received.
SETBREAK Suspends character transmission and places the

transmission line in a break state until the
ClearCommBreak function is called (or
EscapeCommFunction is called with the
CLRBREAK extended function code). The
SETBREAK extended function code is identical to
the SetCommBreak function. Note that this
extended function does not flush data that has not
been transmitted.

CLRBREAK Restores character transmission and places the
transmission line in a nonbreak state. The
CLRBREAK extended function code is identical to
the ClearCommBreak function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoClearCommBreak, CreateFile, SetCommBreak

ExcludeClipRect
The ExcludeClipRect function creates a new clipping region that consists of the existing clipping
region minus the specified rectangle.

int ExcludeClipRect(
HDC hdc, // handle to device context
int nLeftRect, // x-coordinate of upper-left corner of rectangle
int nTopRect, // y-coordinate of upper-left corner of rectangle
int nRightRect, // x-coordinate of lower-right corner of rectangle
int nBottomRect // y-coordinate of lower-right corner of rectangle

);Parametershdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Return ValuesIf the function succeeds, the return value specifies the new clipping region's complexity and can
be any one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR No region was created.
RemarksThe lower and right edges of the specified rectangle are not excluded from the clipping region.See AlsoIntersectClipRect

ExcludeUpdateRgn
The ExcludeUpdateRgn function prevents drawing within invalid areas of a window by excluding
an updated region in the window from a clipping region.

int ExcludeUpdateRgn(
HDC hDC, // handle to device context
HWND hWnd // handle to window

);ParametershDC
Identifies the device context associated with the clipping region.

hWnd
Identifies the window to update.

Return ValuesThe return value specifies the complexity of the excluded region; it can be any one of the following
values:

Value Meaning

COMPLEXREGIONRegion consists of more than one rectangle.
ERROR An error occurred.
NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
See AlsoBeginPaint, GetUpdateRect, GetUpdateRgn, UpdateWindow

ExitProcess
The ExitProcess function ends a process and all its threads.

VOID ExitProcess(
UINT uExitCode // exit code for all threads

);ParametersuExitCode
Specifies the exit code for the process, and for all threads that are terminated as a result of
this call. Use the GetExitCodeProcess function to retrieve the process's exit value. Use the
GetExitCodeThread function to retrieve a thread's exit value.

Return ValuesThis function does not return a value.RemarksExitProcess is the preferred method of ending a process. This function provides a clean process
shutdown. This includes calling the entry-point function of all attached dynamic-link libraries
(DLLs) with a value indicating that the process is detaching from the DLL. If a process terminates
by calling TerminateProcess, the DLLs that the process is attached to are not notified of the
process termination.

After all attached DLLs have executed any process termination value, this function terminates the
current process.

Terminating a process causes the following:

1. All of the object handles opened by the process are closed.
2. All of the threads in the process terminate their execution.
3. The state of the process object becomes signaled, satisfying any threads that had been

waiting for the process to terminate.
4. The states of all threads of the process become signaled, satisfying any threads that had

been waiting for the threads to terminate.
5. The termination status of the process changes from STILL_ACTIVE to the exit value of

the process.
Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the operating system.
A process object is deleted when the last handle to the process is closed.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process
that is starting (as the result of a call by CreateProcess) are serialized between each other within
a process. Only one of these events can happen in an address space at a time. This means the
following restrictions hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· ExitProcess does not return until no threads are in their DLL initialization or detach

routines.
See AlsoCreateProcess, CreateRemoteThread, CreateThread, ExitThread, GetExitCodeProcess,

GetExitCodeThread, OpenProcess, TerminateProcess

ExitThread
The ExitThread function ends a thread.

VOID ExitThread(
DWORD dwExitCode // exit code for this thread

);ParametersdwExitCode
Specifies the exit code for the calling thread. Use the GetExitCodeThread function to retrieve
a thread's exit code.

Return ValuesThis function does not return a value.RemarksExitThread is the preferred method of exiting a thread. When this function is called (either
explicitly or by returning from a thread procedure), the current thread's stack is deallocated and
the thread terminates. The entry-point function of all attached dynamic-link libraries (DLLs) is
invoked with a value indicating that the thread is detaching from the DLL.

If the thread is the last thread in the process when this function is called, the thread's process is
also terminated.

The state of the thread object becomes signaled, releasing any other threads that had been
waiting for the thread to terminate. The thread's termination status changes from STILL_ACTIVE
to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the operating system. A
thread object is deleted when the last handle to the thread is closed.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process
that is starting (as the result of a CreateProcess call) are serialized between each other within a
process. Only one of these events can happen in an address space at a time. This means the
following restrictions hold:

· During process startup and DLL initialization routines, new threads can be created, but
they do not begin execution until DLL initialization is done for the process.

· Only one thread in a process can be in a DLL initialization or detach routine at a time.
· ExitProcess does not return until no threads are in their DLL initialization or detach

routines.
A thread that uses functions from the C run-time libraries should use the _beginthread and
_endthread C run-time functions for thread management rather than CreateThread and
ExitThread. Failure to do so results in small memory leaks when ExitThread is called.See AlsoCreateProcess, CreateRemoteThread, CreateThread, ExitProcess,
FreeLibraryAndExitThread, GetExitCodeThread, TerminateThread

ExitWindows
The ExitWindows function logs the current user off.

BOOL ExitWindows(
DWORD dwReserved, // reserved
UINT uReserved // reserved

);ParametersdwReserved
Reserved; must be zero.

uReserved
Reserved; must be zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT: The ExitWindows function asks applications if they want to terminate by sending
the WM_QUERYENDSESSION message to the main window of all running applications.

Windows 95: The ExitWindows function sends the WM_QUERYENDSESSION message to all
applications except the one that called ExitWindows.

An application agrees to terminate by returning TRUE when it receives this message (or by
allowing the DefWindowProc function to process the message). If any application returns FALSE
when it receives the WM_QUERYENDSESSION message, the shutdown is canceled.

After Windows processes the results of the WM_QUERYENDSESSION message, it sends the
WM_ENDSESSION message with the wParam parameter set to TRUE if the system is shutting
down and to FALSE if it is not.

Windows does not allow new applications to start up during the shutdown process.See AlsoDefWindowProc, ExitWindowsEx

ExitWindowsEx
The ExitWindowsEx function either logs off, shuts down, or shuts down and restarts the system.

BOOL ExitWindowsEx(
UINT uFlags, // shutdown operation
DWORD dwReserved // reserved

);ParametersuFlags
Specifies the type of shutdown. This parameter must be some combination of the following
values:

Value Meaning
EWX_FORCE Forces processes to terminate. When this flag

is set, Windows does not send the messages
WM_QUERYENDSESSION and
WM_ENDSESSION to the applications
currently running in the system. This can
cause the applications to lose data.
Therefore, you should only use this flag in an
emergency.

EWX_LOGOFF Shuts down all processes running in the
security context of the process that called the
ExitWindowsEx function. Then it logs the
user off.

EWX_POWEROFF Shuts down the system and turns off the
power. The system must support the power-
off feature.
Windows NT: The calling process must have
the SE_SHUTDOWN_NAME privilege. For
more information, see the following Remarks
section.
Windows 95: Security privileges are not
supported or required.

EWX_REBOOT Shuts down the system and then restarts the
system.
Windows NT: The calling process must have
the SE_SHUTDOWN_NAME privilege. For
more information, see the following Remarks
section.
Windows 95: Security privileges are not
supported or required.

EWX_SHUTDOWN Shuts down the system to a point at which it
is safe to turn off the power. All file buffers
have been flushed to disk, and all running
processes have stopped.
Windows NT: The calling process must have
the SE_SHUTDOWN_NAME privilege. For
more information, see the following Remarks
section.
Windows 95: Security privileges are not
supported or required.

dwReserved
Reserved; this parameter is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ExitWindowsEx function returns as soon as it has initiated the shutdown. The shutdown or
logoff then proceeds asynchronously.

During a shutdown or log-off operation, applications that are shut down are allowed a specific
amount of time to respond to the shutdown request. If the time expires, Windows displays a dialog

box that allows the user to forcibly shut down the application, to retry the shutdown, or to cancel
the shutdown request. If the EWX_FORCE value is specified, Windows always forces applications
to close and does not display the dialog box.

The ExitWindowsEx function sends a separate notification message,
CTRL_SHUTDOWN_EVENT or CTRL_LOGOFF_EVENT as the situation warrants, to console
processes. A console process routes these messages to its HandlerRoutine functions, which are
added and removed by calls to the SetConsoleCtrlHandler function. ExitWindowsEx sends
these notification messages asynchronously; thus, an application cannot assume that the console
notification messages have been handled when a call to ExitWindowsEx returns.

Windows NT: To shut down or restart the system, the calling process must use the
AdjustTokenPrivileges function to enable the SE_SHUTDOWN_NAME privilege. For more
information about security privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoAdjustTokenPrivileges, ExitWindows, HandlerRoutine, SetConsoleCtrlHandler

ExpandEnvironmentStrings
The ExpandEnvironmentStrings function expands environment-variable strings and replaces
them with their defined values.

DWORD ExpandEnvironmentStrings(
LPCTSTR lpSrc, // pointer to string with environment variables
LPTSTR lpDst, // pointer to string with expanded environment variables
DWORD nSize // maximum characters in expanded string

);ParameterslpSrc
Points to a null-terminated string that might contain references to environment-variable strings
of the form:%variableName%For each such reference, the %variableName% portion is replaced with the current value of
that environment variable.
The replacement rules are the same as those used by the command interpreter. Case is
ignored when looking up the environment-variable name. If the name is not found, the
%variableName% portion is left undisturbed.

lpDst
Points to a buffer to receive a copy of the source buffer, after all environment-variable name
substitutions have been performed.

nSize
Specifies the maximum number of characters that can be stored in the buffer pointed to by the
lpDst parameter, including the terminating null character.

Return ValuesIf the function succeeds, the return value is the number of characters stored in the destination
buffer. If the number of characters is greater than the size of the destination buffer, the return
value is the size of the buffer required to hold the expanded strings.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

ExtCreatePen
The ExtCreatePen function creates a logical cosmetic or geometric pen that has the specified
style, width, and brush attributes.

HPEN ExtCreatePen(
DWORD dwPenStyle, // pen style
DWORD dwWidth, // pen width
CONST LOGBRUSH *lplb, // pointer to structure for brush attributes
DWORD dwStyleCount, // length of array containing custom style bits
CONST DWORD *lpStyle // optional array of custom style bits

);ParametersdwPenStyle
Specifies a combination of type, style, end cap, and join attributes. The values from each
category are combined by using the bitwise OR operator (|).
The pen type can be one of the following values:

Type Description
PS_GEOMETRIC Pen is geometric.
PS_COSMETIC Pen is cosmetic.

The pen style can be any one of the following values:
Style Description
PS_ALTERNATE Windows NT: Pen sets every other pixel.

(This style is applicable only for cosmetic
pens.)
Windows 95: Not supported.

PS_SOLID Pen is solid.
PS_DASH Pen is dashed.

Windows 95: This style is not supported
for geometric lines.

PS_DOT Pen is dotted.
Windows 95: This style is not supported
for geometric lines.

PS_DASHDOT Pen has alternating dashes and dots.
Windows 95: This style is not supported
for geometric lines.

PS_DASHDOTDOT Pen has alternating dashes and double
dots.
Windows 95: This style is not supported
for geometric lines.

PS_NULL Pen is invisible.
PS_USERSTYLE Windows NT: Pen uses a styling array

supplied by the user.
Windows 95: Not supported.

PS_INSIDEFRAME Pen is solid. When this pen is used in any
graphics device interface (GDI) drawing
function that takes a bounding rectangle,
the dimensions of the figure are shrunk so
that it fits entirely in the bounding
rectangle, taking into account the width of
the pen. This applies only to geometric
pens.

The end cap is only specified for geometric pens. The end cap can be one of the
following values:

End cap Description
PS_ENDCAP_ROUND End caps are round.

PS_ENDCAP_SQUARE End caps are square.
PS_ENDCAP_FLAT End caps are flat.

The join is only specified for geometric pens. The join can be one of the following
values:

Line join Description
PS_JOIN_BEVEL Joins are beveled.
PS_JOIN_MITER Joins are mitered when they are within the

current limit set by the SetMiterLimit
function. If it exceeds this limit, the join is
beveled.

PS_JOIN_ROUND Joins are round.

Windows 95: The PS_ENDCAP_ROUND, PS_ENDCAP_SQUARE, PS_ENDCAP_FLAT,
PS_JOIN_BEVEL, PS_JOIN_MITER, and PS_JOIN_ROUND styles are supported only for
geometric pens when used to draw paths.

dwWidth
Specifies the width of the pen. If the dwPenStyle parameter is PS_GEOMETRIC, the width is
given in logical units. If dwPenStyle is PS_COSMETIC, the width must be set to 1.

lplb
Points to a LOGBRUSH structure. If dwPenStyle is PS_COSMETIC, the lbColor member
specifies the color of the pen and the lbStyle member must be set to BS_SOLID. If
dwPenStyle is PS_GEOMETRIC, all members must be used to specify the brush attributes of
the pen.

dwStyleCount
Specifies the length, in doubleword units, of the lpStyle array. This value must be zero if
dwPenStyle is not PS_USERSTYLE.

lpStyle
Points to an array of doubleword values. The first value specifies the length of the first dash in
a user-defined style, the second value specifies the length of the first space, and so on. This
pointer must be NULL if dwPenStyle is not PS_USERSTYLE.

Return ValuesIf the function succeeds, the return value is a handle that identifies a logical pen.

If the function fails, the return value is zero.RemarksA geometric pen can have any width and can have any of the attributes of a brush, such as
dithers and patterns. A cosmetic pen can only be a single pixel wide and must be a solid color, but
cosmetic pens are generally faster than geometric pens.

The width of a geometric pen is always specified in world units. The width of a cosmetic pen is
always 1.

End cap and join are only specified for geometric pens.

After an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If dwPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the lpStyle array specify
lengths of dashes and spaces in style units. A style unit is defined by the device where the pen is
used to draw a line.

If dwPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the lpStyle array specify
lengths of dashes and spaces in logical units.

If dwPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel is set.

If the lbStyle member of the LOGBRUSH structure pointed to by lplb is BS_PATTERN, the
bitmap pointed to by the lbHatch member of that structure cannot be a dib section. A dib section
is a bitmap created by CreateDibSection. If that bitmap is a dib section, the ExtCreatePen
function fails.

When an application no longer requires a specified pen, it should call the DeleteObject function to
delete the pen.See AlsoCreatePen, CreateDibSection, CreatePenIndirect, DeleteObject, GetObject, LOGBRUSH,
SelectObject, SetMiterLimit

ExtCreateRegion
The ExtCreateRegion function creates a region from the specified region and transformation
data.

HRGN ExtCreateRegion(
CONST XFORM *lpXform, // pointer to transformation data
DWORD nCount, // size of structure containing region data
CONST RGNDATA *lpRgnData // pointer to region data

);ParameterslpXform
Points to an XFORM structure that defines the transformation to be performed on the region.
If this pointer is NULL, the identity transformation is used.

nCount
Specifies the number of bytes pointed to by lpRgnData.

lpRgnData
Points to a RGNDATA structure that contains the region data.

Return ValuesIf the function succeeds, the return value is the value of the region.

If the function fails, the return value is NULL.RemarksAn application can retrieve data for a region by calling the GetRegionData function.

Windows 95: Regions are no longer limited to the 64K heap.

Windows 95: World transforms that involve either shearing or rotations are not supported.
ExtCreateRegion fails if the transformation matrix is anything other than a scaling or translation
of the region.See AlsoGetRegionData, RGNDATA, XFORM

ExtensionPropSheetPageProc
The ExtensionPropSheetPageProc function specifies an application-defined callback function
that receives the address of the AddPropSheetPageProc function, which resides in the module
that creates a property sheet. A property sheet extension must export the
ExtensionPropSheetPageProc function.

BOOL CALLBACK ExtensionPropSheetPageProc(
LPVOID lpv,
LPFNADDPROPSHEETPAGE lpfnAddPropSheetPageProc,
LPARAM lParam

);Parameterslpv
Pointer to an application-defined value that describes an item for which a property sheet page
is to be created. This parameter can be NULL.

lpfnAddPropSheetPageProc
Pointer to the AddPropSheetPageProc function. The extension dynamic-link library (DLL)
calls this function to add a page to the property sheet.

lParam
Application-defined 32-bit value.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.See AlsoAddPropSheetPageProc

ExtEscape
The ExtEscape function allows applications to access capabilities of a particular device that are
not available through GDI.

int ExtEscape(
HDC hdc, // handle to device context
int nEscape, // escape function
int cbInput, // number of bytes in input structure
LPCSTR lpszInData, // pointer to input structure
int cbOutput, // number of bytes in output structure
LPSTR lpszOutData // pointer to output structure

);Parametershdc
Identifies the device context.

nEscape
Specifies the escape function to be performed.

cbInput
Specifies the number of bytes of data pointed to by the lpszInData parameter.

lpszInData
Points to the input structure required for the specified escape.

cbOutput
Specifies the number of bytes of data pointed to by the lpszOutData parameter.

lpszOutData
Points to the structure that receives output from this escape. This parameter must not be
NULL if ExtEscape is called as a query function. If no data is to be returned in this structure,
set cbOutput to 0.

Return ValuesThe return value specifies the outcome of the function. It is greater than zero if the function is
successful, except for the QUERYESCSUPPORT printer escape, which checks for
implementation only. The return value is zero if the escape is not implemented. A return value less
than zero indicates an error. To get extended error information, call GetLastError.RemarksUse this function to pass a driver-defined escape value to a device.

Use the Escape function to pass one of the escape values defined by Windows to a device.
ExtEscape might not work properly with the escapes defined by Windows. In particular, escapes
in which lpszInData points to a structure that contains a member that is a pointer will fail.See AlsoEscape, GetDeviceCaps

ExtFloodFill
The ExtFloodFill function fills an area of the display surface with the current brush.

BOOL ExtFloodFill(
HDC hdc, // handle to device context
int nXStart, // x-coordinate where filling begins
int nYStart, // y-coordinate where filling begins
COLORREF crColor, // fill color
UINT fuFillType // fill type

);Parametershdc
Identifies a device context.

nXStart
Specifies the logical x-coordinate of the point where filling is to begin.

nYStart
Specifies the logical y-coordinate of the point where filling is to begin.

crColor
Specifies the color of the boundary or of the area to be filled. The interpretation of crColor
depends on the value of the fuFillType parameter.

fuFillType
Specifies the type of fill operation to be performed. It must be one of the following values:

Value Meaning
FLOODFILLBORDER The fill area is bounded by the color

specified by the crColor parameter. This
style is identical to the filling performed by
the FloodFill function.

FLOODFILLSURFACE The fill area is defined by the color that is
specified by crColor. Filling continues
outward in all directions as long as the color
is encountered. This style is useful for filling
areas with multicolored boundaries.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFollowing are some of the reasons this function might fail:

· The filling could not be completed.
· The specified point has the boundary color specified by the crColor parameter (if

FLOODFILLBORDER was requested).
· The specified point does not have the color specified by crColor (if FLOODFILLSURFACE

was requested).
· The point is outside the clipping region ¾ that is, it is not visible on the device.

If the fuFillType parameter is FLOODFILLBORDER, Windows assumes that the area to be filled is
completely bounded by the color specified by the crColor parameter. The function begins filling at
the point specified by the nXStart and nYStart parameters and continues in all directions until it
reaches the boundary.

If fuFillType is FLOODFILLSURFACE, Windows assumes that the area to be filled is a single
color. The function begins to fill the area at the point specified by nXStart and nYStart and
continues in all directions, filling all adjacent regions containing the color specified by crColor.

Only memory device contexts and devices that support raster-display operations support the
ExtFloodFill function. To determine whether a device supports this technology, use the
GetDeviceCaps function.See AlsoFloodFill, GetDeviceCaps

ExtractAssociatedIcon
The ExtractAssociatedIcon function returns the handle of an indexed icon found in a file or an
icon found in an associated executable file.

HICON ExtractAssociatedIcon(
HINSTANCE hInst, // application instance handle
LPTSTR lpIconPath, // path and filename of file for which icon is wanted
LPWORD lpiIcon // pointer to icon index

);ParametershInst
Specifies the instance of the application calling the function.

lpIconPath
Points to a string that specifies the full path and filename of the file for which an icon is
desired. The function extracts the icon handle from that file, or from an executable file
associated with that file.
If the icon handle is obtained from an executable file, the function stores the full path and
filename of that executable in the string pointed to by lpIconPath.

lpiIcon
Points to a WORD that specifies the index of the icon whose handle is to be obtained.
If the icon handle is obtained from an executable file, the function stores the icon's identifier in
the WORD pointed to by lpiIcon.

Return ValuesIf the function succeeds, the return value is an icon handle. If the icon is extracted from an
associated executable file, the function stores the full path and filename of the executable file in
the string pointed to by lpIconPath, and stores the icon's identifier in the WORD pointed to by
lpiIcon.

If the function fails, the return value is NULL.RemarksThe ExtractAssociatedIcon function first looks for the indexed icon in the file specified by
lpIconPath. If the function cannot obtain the icon handle from that file, and the file has an
associated executable file, it looks in that executable file for an icon. Associations with executable
files are based on filename extensions, are stored in the per-user part of the registry, and can be
defined using File Manager's Associate command.See AlsoExtractIcon

ExtractIcon
The ExtractIcon function retrieves the handle of an icon from the specified executable file,
dynamic-link library (DLL), or icon file.

HICON ExtractIcon(
HINSTANCE hInst, // instance handle
LPCTSTR lpszExeFileName, // filename of file with icon
UINT nIconIndex // index of icon to extract

);ParametershInst
Identifies the instance of the application calling the function.

lpszExeFileName
Points to a null-terminated string specifying the name of an executable file, DLL, or icon file.

nIconIndex
Specifies the index of the icon to retrieve. If this value is 0, the function returns the handle of
the first icon in the specified file. If this value is - 1, the function returns the total number of
icons in the specified file.

Return ValuesIf the function succeeds, the return value is the handle to an icon. If the file specified was not an
executable file, DLL, or icon file, the return is 1. If no icons were found in the file, the return value
is NULL.

ExtractIconEx
The ExtractIconEx function retrieves the handle of an icon from the specified executable file,
dynamic-link library (DLL), or icon file.

HICON ExtractIconEx(
LPCSTR lpszFile,
int nIconIndex,
HICON FAR * phiconLarge,
HICON FAR * phiconSmall,
UINT nIcons

);ParameterslpszFile
Pointer to a null-terminated string specifying the name of an executable file, DLL, or icon file.

nIconIndex
Specifies the index of the icon to retrieve. If this value is 0, the function returns the handle of
the first icon in the specified file. If this value is - 1 and phIconLargeand phiconSmall are both
NULL, the function returns the total number of icons in the specified file.

phiconLarge
Pointer to an array of handles of large icons returned. This parameter can be NULL.

phiconSmall
Pointer to an array of handles of small icons returned. This parameter can be NULL.

nIcons
Specifies the count of the number of icons to extract.

Return ValuesIf the function succeeds, the return value is the handle to an icon. If the file specified was not an
executable file, DLL, or icon file, the return value is 1. If no icons were found in the file, the return
value is NULL.See AlsoExtractIcon

ExtSelectClipRgn
The ExtSelectClipRgn function combines the specified region with the current clipping region by
using the specified mode.

int ExtSelectClipRgn(
HDC hdc, // handle to device context
HRGN hrgn, // handle to region
int fnMode // region-selection mode

);Parametershdc
Identifies the device context.

hrgn
Identifies the region to be selected. This handle can only be NULL when the RGN_COPY
mode is specified.

fnMode
Specifies the operation to be performed. It must be one of the following values:

Value Meaning
RGN_AND The new clipping region combines the overlapping

areas of the current clipping region and the region
identified by hrgn.

RGN_COPY The new clipping region is a copy of the region
identified by hrgn. This is identical to
SelectClipRgn. If the region identified by hrgn is
NULL, the new clipping region is the default clipping
region (the default clipping region is a null region).

RGN_DIFF The new clipping region combines the areas of the
current clipping region with those areas excluded
from the region identified by hrgn.

RGN_OR The new clipping region combines the current
clipping region and the region identified by hrgn.

RGN_XOR The new clipping region combines the current
clipping region and the region identified by hrgn but
excludes any overlapping areas.

Return ValuesIf the function succeeds, the return value specifies the new clipping region's complexity and can
be any one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred.
RemarksIf an error occurs when this function is called, the previous clipping region for the specified device

context is not affected.

The ExtSelectClipRgn function assumes that the coordinates for the specified region are
specified in device units.

Only a copy of the region identified by the hrgn parameter is used. The region itself can be reused
after this call or it can be deleted.See AlsoSelectClipRgn

ExtTextOut
The ExtTextOut function draws a character string by using the currently selected font. An optional
rectangle may be provided, to be used for clipping, opaquing, or both.

BOOL ExtTextOut(
HDC hdc, // handle to device context
int X, // x-coordinate of reference point
int Y, // y-coordinate of reference point
UINT fuOptions, // text-output options
CONST RECT *lprc, // optional clipping and/or opaquing rectangle
LPCTSTR lpString, // points to string
UINT cbCount, // number of characters in string
CONST INT *lpDx // pointer to array of intercharacter spacing values

);Parametershdc
Identifies the device context.

X
Specifies the logical x-coordinate of the reference point used to position the string.

Y
Specifies the logical y-coordinate of the reference point used to position the string.

fuOptions
Specifies how to use the application-defined rectangle. This parameter can be a combination
of the following values:

Value Meaning
ETO_CLIPPED The text will be clipped to the rectangle.
ETO_GLYPH_INDEXWindows 95 only: The lpString array refers to an

array returned from GetCharacterPlacement and
should be parsed directly by GDI as no further
language-specific processing is required. Glyph
indexing only applies to TrueType fonts, but the
flag can be used for Windows bitmap and vector
fonts to indicate no further language processing is
necessary and GDI should process the string
directly. Note that all glyph indices are 16-bit
values even though the string is assumed to be
an array of 8-bit values for raster fonts.

ETO_OPAQUE The current background color should be used to
fill the rectangle.

ETO_RTLREADING Windows 95 only: If this value is specified and a
Hebrew or Arabic font is selected into the device
context, the string is output using right-to-left
reading order. If this value is not specified, the
string is output in left- to-right order. The same
effect can be achieved by setting the
TA_RTLREADING value in SetTextAlign. This
value is preserved for backward compatability.

The ETO_GLYPH_INDEX and ETO_RTLREADING values cannot be used together.
Because ETO_GLYPH_INDEX implies that all language processing has been
completed, the function ignores the ETO_RTLREADING flag if also specified.

lprc
Points to an optional RECT structure that specifies the dimensions of a rectangle that is used
for clipping, opaquing, or both.

lpString
Points to the character string to be drawn. The string does not need to be zero-terminated,
since cbCount specifies the length of the string.

cbCount
Specifies the number of characters in the string.

lpDx

Points to an optional array of values that indicate the distance between origins of adjacent
character cells. For example, lpDx[i] logical units separate the origins of character cell i and
character cell i + 1.

Return ValuesIf the string is drawn, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe current text-alignment settings for the specified device context determine how the reference
point is used to position the text. The text-alignment settings are retrieved by calling the
GetTextAlign function. The text-alignment settings are altered by calling the SetTextAlign
function.

If the lpDx parameter is NULL, the ExtTextOut function uses the default spacing between
characters. The character-cell origins and the contents of the array pointed to by the lpDx
parameter are given in logical units. A character-cell origin is defined as the upper-left corner of
the character cell.

By default, the current position is not used or updated by this function. However, an application
can call the SetTextAlign function with the fMode parameter set to TA_UPDATECP to permit
Windows to use and update the current position each time the application calls ExtTextOut for a
specified device context. When this flag is set, Windows ignores the X and Y parameters on
subsequent ExtTextOut calls.See AlsoGetTextAlign, RECT, SetTextAlign

FatalAppExit
The FatalAppExit function displays a message box and terminates the application when the
message box is closed. If Windows is running with a kernel debugger, the message box gives the
user the opportunity to terminate the application or to cancel the message box and return to the
application that called FatalAppExit.

VOID FatalAppExit(
UINT uAction, // reserved
LPCTSTR lpMessageText // pointer to string to display in message box

);ParametersuAction
Reserved; must be zero.

lpMessageText
Points to a null-terminated string that is displayed in the message box. The message is
displayed on a single line. To accommodate low-resolution screens, the string should be no
more than 35 characters in length.

Return ValuesThis function does not return a value.RemarksAn application calls FatalAppExit only when it is not capable of terminating any other way.
FatalAppExit may not always free an application's memory or close its files, and it may cause a
general failure of Windows. An application that encounters an unexpected error should terminate
by freeing all its memory and returning from its main message loop.See AlsoFatalExit

FatalExit
The FatalExit function transfers execution control to the debugger. The behavior of the debugger
thereafter is specific to the type of debugger used.

VOID FatalExit(
int ExitCode // error code

);ParametersExitCode
Specifies the error code associated with the exit.

Return ValuesThis function does not return a value.RemarksAn application should only use FatalExit for debugging purposes. It should not call the function in
a retail version of the application because doing so will terminate the application.See AlsoFatalAppExit

FileIOCompletionRoutine
The FileIOCompletionRoutine function is called when an asynchronous input and output (I/O)
function (ReadFileEx or WriteFileEx) is completed and the calling thread is in an alertable wait
(using the SleepEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx function with the
fAlertable flag set to TRUE).

VOID WINAPI FileIOCompletionRoutine(
DWORD dwErrorCode, // completion code
DWORD dwNumberOfBytesTransfered, // number of bytes transferred
LPOVERLAPPED lpOverlapped // pointer to structure with I/O information

);ParametersdwErrorCode
Specifies the I/O completion status. This parameter may be one of the following values:

Value Meaning
0 The I/O was successful.
ERROR_HANDLE_EOF The ReadFileEx function tried to read past

the end of the file.

dwNumberOfBytesTransfered
Specifies the number of bytes transferred. If an error occurs, this parameter is zero.

lpOverlapped
Points to the OVERLAPPED structure specified by the asynchronous I/O function.
Windows does not use the hEvent member of the OVERLAPPED structure; the calling
application may use this member to pass information to the completion routine. Windows does
not use the OVERLAPPED structure after the completion routine is called, so the completion
routine can deallocate the memory used by the overlapped structure.

Return ValuesThis function does not return a value.RemarksThe FileIOCompletionRoutine function is a placeholder for an application-defined or library-
defined function name.

Returning from this function allows another pending I/O completion routine to be called. All waiting
completion routines are called before the alertable thread's wait is satisfied with a return code of
WAIT_IO_COMPLETION. Windows may call the waiting completion routines in any order. They
may or may not be called in the order the I/O functions are completed.

Each time Windows calls a completion routine, it uses some of the application's stack. If the
completion routine does additional asynchronous I/O and alertable waits, the stack may grow.See AlsoOVERLAPPED, ReadFileEx, SleepEx, WaitForMultipleObjectsEx, WaitForSingleObjectEx,
WriteFileEx

FileTimeToDosDateTime
The FileTimeToDosDateTime function converts a 64-bit file time to MS-DOS date and time
values.

BOOL FileTimeToDosDateTime(
CONST FILETIME *lpFileTime, // pointer to 64-bit file time
LPWORD lpFatDate, // pointer to variable for MS-DOS date
LPWORD lpFatTime // pointer to variable for MS-DOS time

);ParameterslpFileTime
Points to a FILETIME structure containing the 64-bit file time to convert to MS-DOS date and
time format. The FILETIME structure has the following form:typedef struct _FILETIME { // ft

DWORD dwLowDateTime;
DWORD dwHighDateTime;

} FILETIME;lpFatDate
Points to a variable to receive the MS-DOS date. The date is a packed 16-bit value with the
following format:

Bits Contents
0- 4 Day of the month (1 - 31)
5- 8 Month (1 = January, 2 = February, etc.)
9- 15 Year offset from 1980 (add 1980 to get actual year)

lpFatTime
Points to a variable to receive the MS-DOS time. The time is a packed 16-bit value with the
following format:

Bits Contents
0- 4 Second divided by 2
5- 10 Minute (0 - 59)
11- 15 Hour (0 - 23 on a 24-hour clock)

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe MS-DOS date format can represent only dates between 1/1/1980 and 12/31/2107; this
conversion fails if the input file time is outside this range.See AlsoDosDateTimeToFileTime, FileTimeToSystemTime, SystemTimeToFileTime

FileTimeToLocalFileTime
The FileTimeToLocalFileTime function converts a file time based on the Coordinated Universal
Time (UTC) to a local file time.

BOOL FileTimeToLocalFileTime(
CONST FILETIME *lpFileTime, // pointer to UTC file time to convert
LPFILETIME lpLocalFileTime // pointer to converted file time

);ParameterslpFileTime
Points to a FILETIME structure containing the UTC-based file time to be converted into a local
file time.

lpLocalFileTime
Points to a FILETIME structure to receive the converted local file time. This parameter cannot
be the same as the lpFileTime parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoFILETIME, LocalFileTimeToFileTime

FileTimeToSystemTime
The FileTimeToSystemTime function converts a 64-bit file time to system time format.

BOOL FileTimeToSystemTime(
CONST FILETIME *lpFileTime, // pointer to file time to convert
LPSYSTEMTIME lpSystemTime // pointer to structure to receive system time

);ParameterslpFileTime
Pointer to a FILETIME structure containing the file time to convert to system date and time
format.
The FileTimeToSystemTime function only works with FILETIME values that are less than
0x8000000000000000. The function fails with values equal to or greater than that.

lpSystemTime
Pointer to a SYSTEMTIME structure to receive the converted file time.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAs noted above, the function fails for FILETIME values that are equal to or greater than
0x8000000000000000.See AlsoDosDateTimeToFileTime, FILETIME, FileTimeToDosDateTime, SYSTEMTIME,
SystemTimeToFileTime

FillConsoleOutputAttribute
The FillConsoleOutputAttribute function sets the text and background color attributes for a
specified number of character cells, beginning at the specified coordinates in a screen buffer.

BOOL FillConsoleOutputAttribute(
HANDLE hConsoleOutput, // handle to screen buffer
WORD wAttribute, // color attribute to write
DWORD nLength, // number of character cells to write to
COORD dwWriteCoord, // x- and y-coordinates of first cell
LPDWORD lpNumberOfAttrsWritten // pointer to number of cells written to

);ParametershConsoleOutput
Identifies a screen buffer. The handle must have GENERIC_WRITE access.

wAttribute
Specifies the foreground and background color attributes to write to the screen buffer. Any
combination of the following values can be specified: FOREGROUND_BLUE,
FOREGROUND_GREEN, FOREGROUND_RED, FOREGROUND_INTENSITY,
BACKGROUND_BLUE, BACKGROUND_GREEN, BACKGROUND_RED, and
BACKGROUND_INTENSITY. For example, the following combination of values produces
white text on a black background:FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUEnLength
Specifies the number of character cells to be set to the specified color attributes.

dwWriteCoord
Specifies a COORD structure containing the screen buffer coordinates of the first cell whose
attributes are to be set.

lpNumberOfAttrsWritten
Points to the variable that receives the number of character cells whose attributes were
actually set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of character cells whose attributes are to be set extends beyond the end of the
specified row in the screen buffer, the cells of the next row are set. If the number of cells to write
to extends beyond the end of the screen buffer, the cells are written up to the end of the screen
buffer.

The character values at the positions written to are not changed.See AlsoCOORD, FillConsoleOutputCharacter, SetConsoleTextAttribute,
WriteConsoleOutputAttribute

FillConsoleOutputCharacter
The FillConsoleOutputCharacter function writes a character to the screen buffer a specified
number of times, beginning at the specified coordinates.

BOOL FillConsoleOutputCharacter(
HANDLE hConsoleOutput, // handle to screen buffer
TCHAR cCharacter, // character to write
DWORD nLength, // number of character cells to write to
COORD dwWriteCoord, // x- and y-coordinates of first cell
LPDWORD lpNumberOfCharsWritten // pointer to number of cells written to

);ParametershConsoleOutput
Identifies a screen buffer. The handle must have GENERIC_WRITE access.

cCharacter
Specifies the character to write to the screen buffer.

nLength
Specifies the number of character cells to write the character to.

dwWriteCoord
Specifies a COORD structure containing the screen buffer coordinates of the first cell to write
the character to.

lpNumberOfCharsWritten
Points to the variable that receives the number of characters actually written to the screen
buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of characters to write to extends beyond the end of the specified row in the screen
buffer, characters are written to the next row. If the number of characters to write to extends
beyond the end of the screen buffer, the characters are written up to the end of the screen buffer.

The attribute values at the positions written are not changed.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoCOORD, FillConsoleOutputAttribute, SetConsoleCP, SetConsoleOutputCP,
WriteConsoleOutputCharacter

FillMemory
The FillMemory function fills a block of memory with a specified value.

VOID FillMemory (
PVOID Destination, // pointer to block to fill
DWORD Length, // size, in bytes, of block to fill
BYTE Fill // the byte value with which to fill

);ParametersDestination
Points to the starting address of the block of memory to fill.

Length
Specifies the size, in bytes, of the block of memory to fill.

Fill
Specifies the byte value with which to fill the memory block.

Return ValuesThis function has no return value.See AlsoCopyMemory, MoveMemory, ZeroMemory

FillPath
The FillPath function closes any open figures in the current path and fills the path's interior by
using the current brush and polygon-filling mode.

BOOL FillPath(
HDC hdc // handle to device context

);Parametershdc
Identifies a device context (DC) that contains a valid path.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksAfter its interior is filled, the path is discarded from the DC identified by the hdc parameter.See AlsoBeginPath, SetPolyFillMode, StrokeAndFillPath, StrokePath

FillRect
The FillRect function fills a rectangle by using the specified brush. This function includes the left
and top borders, but excludes the right and bottom borders of the rectangle.

int FillRect(
HDC hDC, // handle to device context
CONST RECT *lprc, // pointer to structure with rectangle
HBRUSH hbr // handle to brush

);ParametershDC
Identifies the device context.

lprc
Points to a RECT structure that contains the logical coordinates of the rectangle to be filled.

hbr
Identifies the brush used to fill the rectangle.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksThe brush identified by the hbr parameter may be either a handle to a logical brush or a color
value. If specifying a handle to a logical brush, call one of the following functions to obtain the
handle: CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush. Additionally, you may
retrieve a handle to one of the stock brushes by using the GetStockObject function. If specifying
a color value for the hbr parameter, it must be one of the standard system colors (the value 1
must be added to the chosen color). For example:

FillRect(hdc, &rect, (HBRUSH) (COLOR_ENDCOLORS+1));For a list of all the standard system colors, see GetSysColor.

When filling the specified rectangle, FillRect does not include the rectangle's right and bottom
sides. GDI fills a rectangle up to, but not including, the right column and bottom row, regardless of
the current mapping mode.See AlsoCreateHatchBrush, CreatePatternBrush, CreateSolidBrush, GetStockObject, RECT

FillRgn
The FillRgn function fills a region by using the specified brush.

BOOL FillRgn(
HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be filled
HBRUSH hbr // handle to brush used to fill the region

);Parametershdc
Identifies the device context.

hrgn
Identifies the region to be filled. The region's coordinates are presumed to be in logical units.

hbr
Identifies the brush to be used to fill the region.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoCreateBrushIndirect, CreateDIBPatternBrush, CreateHatchBrush, CreatePatternBrush,
CreateSolidBrush, PaintRgn

FindAtom
The FindAtom function searches the local atom table for the specified character string and
retrieves the atom associated with that string.

ATOM FindAtom(
LPCTSTR lpString // pointer to string to find

);ParameterslpString
Points to the null-terminated character string to search for.

Return ValuesIf the function succeeds, the return value is the atom associated with the given string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEven though Windows preserves the case of a string in an atom table, the search performed by
the FindAtom function is not case sensitive.See AlsoAddAtom, DeleteAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom

FindClose
The FindClose function closes the specified search handle. The FindFirstFile and FindNextFile
functions use the search handle to locate files with names that match a given name.

BOOL FindClose(
HANDLE hFindFile // file search handle

);ParametershFindFile
Identifies the search handle. This handle must have been previously opened by the
FindFirstFile function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter the FindClose function is called, the handle specified by the hFindFile parameter cannot be
used in subsequent calls to either the FindNextFile or FindClose function.See AlsoFindFirstFile, FindNextFile

FindCloseChangeNotification
The FindCloseChangeNotification function stops change notification handle monitoring.

BOOL FindCloseChangeNotification(
HANDLE hChangeHandle // handle to change notification to close

);ParametershChangeHandle
Identifies a change notification handle created by the FindFirstChangeNotification function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter the FindCloseChangeNotification function is called, the handle specified by the
hChangeHandle parameter cannot be used in subsequent calls to either the
FindNextChangeNotification or FindCloseChangeNotification function.

Change notifications can also be used in the wait functions.See AlsoFindFirstChangeNotification, FindNextChangeNotification

FindClosePrinterChangeNotification
The FindClosePrinterChangeNotification function closes a change notification object created by
calling the FindFirstPrinterChangeNotification function. The printer or print server associated
with the change notification object will no longer be monitored by that object.

BOOL FindClosePrinterChangeNotification(
HANDLE hChange // handle to change notification object to close

);ParametershChange
Handle to the change notification object to be closed. This is a handle created by calling the
FindFirstPrinterChangeNotification function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter calling the FindClosePrinterChangeNotification function, you cannot use the hChange
handle in subsequent calls to either FindFirstPrinterChangeNotification or
FindNextPrinterChangeNotification.

The three Find*PrinterChangeNotification functions, in combination with the wait functions,
provide an asynchronous, more resource-efficient alternative to the WaitForPrinterChange
function.See AlsoFindFirstPrinterChangeNotification, FindNextPrinterChangeNotification,
WaitForPrinterChange

FindExecutable
The FindExecutable function retrieves the name and handle to the executable (.EXE) file
associated with the specified filename.

HINSTANCE FindExecutable(
LPCTSTR lpFile, // pointer to string for filename
LPCTSTR lpDirectory, // pointer to string for default directory
LPTSTR lpResult // pointer to buffer for string for executable file on return

);ParameterslpFile
Pointer to a null-terminated string specifying a filename. This can be a document or
executable file.

lpDirectory
Pointer to a null-terminated string specifying the default directory.

lpResult
Pointer to a buffer to receive the filename when the function returns. This filename is a null-
terminated string specifying the executable file started when an "open" association is run on
the file specified in the lpFile parameter.

Return ValuesIf the function succeeds, the return value is greater than 32.

If the function fails, the return value is less than or equal to 32. The following table lists the
possible error values:

Value Meaning

0 The system is out of memory or
resources.

31 There is no association for the specified
file type.

ERROR_FILE_NOT_FOUNDThe specified file was not found.
ERROR_PATH_NOT_FOUNDThe specified path was not found.
ERROR_BAD_FORMAT The .EXE file is invalid (non-Win32 .

EXE or error in .EXE image).
RemarksWhen FindExecutable returns, the lpResult parameter may contain the path to the DDE server

started if no server responds to a request to initiate a DDE conversation.See AlsoShellExecute

FindFirstChangeNotification
The FindFirstChangeNotification function creates a change notification handle and sets up
initial change notification filter conditions. A wait on a notification handle succeeds when a change
matching the filter conditions occurs in the specified directory or subtree.

HANDLE FindFirstChangeNotification(
LPCTSTR lpPathName, // pointer to name of directory to watch
BOOL bWatchSubtree, // flag for monitoring directory or directory tree
DWORD dwNotifyFilter // filter conditions to watch for

);ParameterslpPathName
Points to a null-terminated string that specifies the path of the directory to watch.

bWatchSubtree
Specifies whether the function will monitor the directory or the directory tree. If this parameter
is TRUE, the function monitors the directory tree rooted at the specified directory; if it is
FALSE, it monitors only the specified directory.

dwNotifyFilter
Specifies the filter conditions that satisfy a change notification wait. This parameter can be
one or more of the following values:

Value Meaning
FILE_NOTIFY_CHANGE_FILE_NAME

Any filename change in the watched directory
or subtree causes a change notification wait
operation to return. Changes include
renaming, creating, or deleting a filename.

FILE_NOTIFY_CHANGE_DIR_NAME
Any directory-name change in the watched
directory or subtree causes a change
notification wait operation to return. Changes
include creating or deleting a directory.

FILE_NOTIFY_CHANGE_ATTRIBUTES
Any attribute change in the watched directory
or subtree causes a change notification wait
operation to return.

FILE_NOTIFY_CHANGE_SIZE
Any file-size change in the watched directory
or subtree causes a change notification wait
operation to return. The operating system
detects a change in file size only when the file
is written to the disk. For operating systems
that use extensive caching, detection occurs
only when the cache is sufficiently flushed.

FILE_NOTIFY_CHANGE_LAST_WRITE
Any change to the last write-time of files in the
watched directory or subtree causes a change
notification wait operation to return. The
operating system detects a change to the last
write-time only when the file is written to the
disk. For operating systems that use
extensive caching, detection occurs only
when the cache is sufficiently flushed.

FILE_NOTIFY_CHANGE_SECURITY
Any security-descriptor change in the
watched directory or subtree causes a change
notification wait operation to return.

Return ValuesIf the function succeeds, the return value is a handle to a find change notification object.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksThe wait functions can monitor the specified directory or subtree by using the handle returned by
the FindFirstChangeNotification function. A wait is satisfied when one of the filter conditions
occurs in the monitored directory or subtree.

After the wait has been satisfied, the application can respond to this condition and continue
monitoring the directory by calling the FindNextChangeNotification function and the appropriate
wait function. When the handle is no longer needed, it can be closed by using the
FindCloseChangeNotification function.See AlsoFindCloseChangeNotification, FindNextChangeNotification

FindFirstFile
The FindFirstFile function searches a directory for a file whose name matches the specified
filename. FindFirstFile examines subdirectory names as well as filenames.

HANDLE FindFirstFile(
LPCTSTR lpFileName, // pointer to name of file to search for
LPWIN32_FIND_DATA lpFindFileData // pointer to returned information

);ParameterslpFileName
Windows 95: Points to a null-terminated string that specifies a valid directory or path and
filename, which can contain wildcard characters (* and ?). This string must not exceed
MAX_PATH characters.
Windows NT: Points to a null-terminated string that specifies a valid directory or path and
filename, which can contain wildcard characters (* and ?).
There is a default string size limit for paths of MAX_PATH characters. This limit is related to
how the FindFirstFile function parses paths. An application can transcend this limit and send
in paths longer than MAX_PATH characters by calling the wide (W) version of FindFirstFile
and prepending "\\?\" to the path. The "\\?\" tells the function to turn off path parsing; it lets
paths longer than MAX_PATH be used with FindFirstFileW. This also works with UNC
names. The "\\?\" is ignored as part of the path. For example, "\\?\C:\myworld\private" is seen as
"C:\myworld\private", and "\\?\UNC\bill_g_1\hotstuff\coolapps" is seen as "\\bill_g_1\hotstuff\coolapps".

lpFindFileData
Points to the WIN32_FIND_DATA structure that receives information about the found file or
subdirectory. The structure can be used in subsequent calls to the FindNextFile or
FindClose function to refer to the file or subdirectory.

Return ValuesIf the function succeeds, the return value is a search handle used in a subsequent call to
FindNextFile or FindClose.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksThe FindFirstFile function opens a search handle and returns information about the first file
whose name matches the specified pattern. Once the search handle is established, you can use
the FindNextFile function to search for other files that match the same pattern. When the search
handle is no longer needed, close it by using the FindClose function.

This function searches for files by name only; it cannot be used for attribute-based searches.See AlsoFindClose, FindNextFile, GetFileAttributes, SetFileAttributes, WIN32_FIND_DATA

FindFirstFileEx
[New - Windows NT]

The FindFirstFileEx function searches a directory for a file whose name and attributes match
those specified in the function call.

HANDLE FindFirstFileEx(
LPCTSTR lpFileName, // pointer to the name of the file to search for
FINDEX_INFO_LEVELS fInfoLevelId, // information level of the returned data
LPVOID lpFindFileData, // pointer to the returned information
FINDEX_SEARCH_OPS fSearchOp, // type of filtering to perform
LPVOID lpSearchFilter, // pointer to search criteria
DWORD dwAdditionalFlags // additional search control flags

);ParameterslpFileName
Points to a null-terminated string that specifies a valid directory or path and filename, which
can contain wildcard characters (* and ?).

fInfoLevelId
Specifies the information level of the returned data. If the FindExInfoStandard constant is
used, the lpFindFileData pointer is the standard WIN32_FIND_DATA structure used with
FindFirstFile. At this time, no other information levels are supported.

lpFindFileData
Pointer to the file data. The pointer type is determined by the level of information specified in
the fInfoLevelId parameter.

fSearchOp
Specifies the type of filtering to perform beyond wildcard matching. For more details, see the
Remarks section later in this topic.

lpSearchFilter
If the specified fSearchOp needs structured search information, lpSearchFilter points to the
search criteria. At this time, none of the supported fSearchOp values require extended search
information. Therefore, this pointer must be NULL.

dwAdditionalFlags
Specifies additional flags for controlling the search. You can use the
FIND_FIRST_EX_CASE_SENSITIVE flag for case-sensitive searches. The default search is
case insensitive. At this time, no other flags are defined.

Return ValueIf the function succeeds, the return value is a search handle that can be used in a subsequent call
to the FindNextFile or FindClose functions.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksThe FindFirstFileEx function is provided to open a search handle and return information about
the first file whose name matches the specified pattern and attributes.

The way additional filtering is done depends on the value of fSearchOp. The fSearchOp
parameter can be one of the following values:

Value Meaning

FindExSearchNameMatch Search for a file that matches the
specified filename. Note that
lpSearchFilter must be NULL when this
search operation is used.

FindExSearchLimitToDevices Only device names are returned.
Device names are generally accessible
through the \\.\<name> convention. The
dwAdditionalFlags parameter cannot
be
FIND_FIRST_EX_CASE_SENSITIVE
when this search operation is used.

FindExSearchLimitToDirectoriesThis is an advisory flag.
If the file system supports directory
filtering, the function searches for a
"file" that matches the specified

filename and that is a directory.
If the file system does not support
directory filtering, this flag is silently
ignored.
The lpSearchFilter parameter must be
NULL when this search operation is
used.
If you want directory filtering, use this
flag on all file systems, but be sure to
examine the file attribute data stored
into *lpFindFileData to determine
whether the function has indeed
returned a handle to a directory.

If the underlying file system does not support a particular type of filtering, other than
directory filtering, FindFirstFileEx fails with the error ERROR_NOT_SUPPORTED. The
application has to use type FileExSearchNameMatch and perform its own filtering.

Once established, the search handle can be used in the FindNextFile function to search for other
files that match the same pattern with the same filtering being performed. When the search handle
is no longer needed, it should be closed using the FindClose function.

The callFindFirstFileEx(lpFileName,
FindExInfoStandard,
lpFindData,
FindExSearchNameMatch,
NULL,
0);is equivalent to the callFindFirstFile(lpFileName, lpFindData);

See AlsoFindFirstFile, FindNextFile, FindClose, WIN32_FIND_DATA

FindFirstFreeAce
The FindFirstFreeAce function retrieves a pointer to the first free byte in an access-control list
(ACL).

BOOL FindFirstFreeAce(
PACL pAcl, // pointer to access-control list
LPVOID *pAce // pointer to pointer to first free byte

);ParameterspAcl
Points to an ACL structure.

pAce
Points to a pointer to the first free position in the ACL created when the function returns. If the
ACL is invalid, this parameter is NULL. If the ACL is full, this parameter points to the byte
immediately following the ACL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, GetAce, GetAclInformation

FindFirstPrinterChangeNotification
The FindFirstPrinterChangeNotification function creates a change notification object and
returns a handle to the object. You can then use this handle in a call to one of the wait functions to
monitor changes to the printer or print server.

The FindFirstPrinterChangeNotification call specifies the type of changes to be monitored. You
can specify a set of conditions to monitor for changes, a set of printer information fields to monitor,
or both.

A wait operation on the change notification handle succeeds when one of the specified changes
occurs in the specified printer or print server. You then call the
FindNextPrinterChangeNotification function to retrieve information about the change, and to
reset the change notification object for use in the next wait operation.

HANDLE FindFirstPrinterChangeNotification(
HANDLE hPrinter, // handle to printer or print server to monitor for changes
DWORD fdwFlags, // flags that specify the conditions to monitor
DWORD fdwOptions, // reserved, must be zero
LPVOID pPrinterNotifyOptions // pointer to structure specifying printer information to monitor

);ParametershPrinter
Handle to the printer or print server that you want to monitor. This handle is obtained by
calling the OpenPrinter function.

fdwFlags
A set of bit flags that specify the conditions that will cause the change notification object to
enter a signaled state. A change notification occurs when one or more of the specified
conditions are met. The fdwFlags parameter can be zero if pPrinterNotifyOptions is non-
NULL.
You can set one or more of the following change notification constants:

Value Meaning
PRINTER_CHANGE_FORM

Notify of any changes to a form. You can set this
general flag or one or more of the following
specific flags:
PRINTER_CHANGE_ADD_FORM
PRINTER_CHANGE_SET_FORM
PRINTER_CHANGE_DELETE_FORM

PRINTER_CHANGE_JOB
Notify of any changes to a job. You can set this
general flag or one or more of the following
specific flags:
PRINTER_CHANGE_ADD_JOB
PRINTER_CHANGE_SET_JOB
PRINTER_CHANGE_DELETE_JOB
PRINTER_CHANGE_WRITE_JOB

PRINTER_CHANGE_PORT
Notify of any changes to a port. You can set this
general flag or one or more of the following
specific flags:
PRINTER_CHANGE_ADD_PORT
PRINTER_CHANGE_CONFIGURE_PORT
PRINTER_CHANGE_DELETE_PORT

PRINTER_CHANGE_PRINT_PROCESSOR
Notify of any changes to a print processor. You
can set this general flag or one or more of the
following specific flags:
PRINTER_CHANGE_ADD_PRINT_PROCESSOR
PRINTER_CHANGE_DELETE_PRINT_PROCESSOR

PRINTER_CHANGE_PRINTER
Notify of any changes to a printer. You can set

this general flag or one or more of the following
specific flags:
PRINTER_CHANGE_ADD_PRINTER
PRINTER_CHANGE_SET_PRINTER
PRINTER_CHANGE_DELETE_PRINTER
PRINTER_CHANGE_FAILED_CONNECTION_PRINTER

PRINTER_CHANGE_PRINTER_DRIVER
Notify of any changes to a printer driver. You
can set this general flag or one or more of the
following specific flags:
PRINTER_CHANGE_ADD_PRINTER_DRIVER
PRINTER_CHANGE_SET_PRINTER_DRIVER
PRINTER_CHANGE_DELETE_PRINTER_DRIVER

PRINTER_CHANGE_ALL
Notify if any of the preceding changes occur.

For descriptions of the more specific flags in the preceding table, see the
FindNextPrinterChangeNotification function.

fdwOptions
Reserved; must be zero.

pPrinterNotifyOptions
Pointer to a PRINTER_NOTIFY_OPTIONS structure. The pTypes member of this structure
points to an array of one or more PRINTER_NOTIFY_OPTIONS_TYPE structures, each of
which specifies a printer information field to monitor. A change notification occurs when one or
more of the specified fields changes. When a change occurs, the
FindNextPrinterChangeNotification function can retrieve the new printer information. This
parameter can be NULL if fdwFlags is nonzero.
For a list of fields that can be monitored, see PRINTER_NOTIFY_OPTIONS_TYPE.

Return ValuesIf the function succeeds, the return value is a handle to a change notification object associated
with the specified printer or print server.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error
information, call GetLastError.RemarksTo monitor a printer or print server, call the FindFirstPrinterChangeNotification function, then
use the returned change notification object handle in a call to one of the wait functions. A wait
operation on a change notification object is satisfied when the change notification object enters
the signaled state. The system signals the object when one or more of the changes specified by
fdwFlags or pPrinterNotifyOptions occurs in the monitored printer or print server.

When you call FindFirstPrinterChangeNotification, either fdwFlags must be nonzero or
pPrinterNotifyOptions must be non-NULL. If both are specified, notifications will occur for both.

When a wait operation on a printer change notification object is satisfied, call the
FindNextPrinterChangeNotification function to determine the cause of the notification. For a
condition specified by fdwFlags, FindNextPrinterChangeNotification reports the condition or
conditions that changed. For a printer information field specified by pPrinterNotifyOptions ,
FindNextPrinterChangeNotification reports the field or fields that changed as well as the new
information for these fields. FindNextPrinterChangeNotification also resets the change
notification object to the nonsignaled state so you can use it in another wait operation to continue
monitoring the printer or print server.

Do not call the FindNextPrinterChangeNotification function if the change notification object is
not in the signaled state. If the wait function returns the value WAIT_TIMEOUT, the change object
is not in the signaled state. Call the FindNextPrinterChangeNotification function only if the wait
function succeeds without timing out.

When you no longer need the change notification object, close it by calling the
FindClosePrinterChangeNotification function.

The three Find*PrinterChangeNotification functions, in combination with the wait functions,
provide an asynchronous and resource-efficient alternative to the WaitForPrinterChange
function.See AlsoFindClosePrinterChangeNotification, FindNextPrinterChangeNotification, OpenPrinter,
PRINTER_NOTIFY_OPTIONS, PRINTER_NOTIFY_OPTIONS_TYPE, WaitForPrinterChange

FindNextChangeNotification
The FindNextChangeNotification function requests that the operating system signal a change
notification handle the next time it detects an appropriate change.

BOOL FindNextChangeNotification(
HANDLE hChangeHandle // handle to change notification to signal

);ParametershChangeHandle
Identifies a change notification handle created by the FindFirstChangeNotification function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter the FindNextChangeNotification function returns successfully, the application can wait for
notification that a change has occurred by using the wait functions.

If a change occurs after a call to FindFirstChangeNotification but before a call to
FindNextChangeNotification, the operating system records the change. When
FindNextChangeNotification is executed, the recorded change immediately satisfies a wait for
the change notification.

FindNextChangeNotification should not be used more than once on the same handle without
using one of the wait functions. An application may miss a change notification if it uses
FindNextChangeNotification when there is a change request outstanding.

When hChangeHandle is no longer needed, close it by using the FindCloseChangeNotification
function.See AlsoFindCloseChangeNotification, FindFirstChangeNotification

FindNextFile
The FindNextFile function continues a file search from a previous call to the FindFirstFile
function.

BOOL FindNextFile(
HANDLE hFindFile, // handle to search
LPWIN32_FIND_DATA lpFindFileData // pointer to structure for data on found file

);ParametershFindFile
Identifies a search handle returned by a previous call to the FindFirstFile function.

lpFindFileData
Points to the WIN32_FIND_DATA structure that receives information about the found file or
subdirectory. The structure can be used in subsequent calls to FindNextFile to refer to the
found file or directory.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
If no matching files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.RemarksThe FindNextFile function searches for files by name only; it cannot be used for attribute-based
searches.See AlsoFindClose, FindFirstFile, GetFileAttributes, SetFileAttributes, WIN32_FIND_DATA

FindNextPrinterChangeNotification
The FindNextPrinterChangeNotification function retrieves information about the most recent
change notification for a change notification object associated with a printer or print server. Call
this function when a wait operation on the change notification object is satisfied.

The function also resets the change notification object to the not-signaled state. You can then use
the object in another wait operation to continue monitoring the printer or print server. The
operating system will set the object to the signaled state the next time one of a specified set of
changes occurs to the printer or print server. The FindFirstPrinterChangeNotification function
creates the change notification object and specifies the set of changes to be monitored.

BOOL FindNextPrinterChangeNotification(
HANDLE hChange, // handle to change notification object of interest
PDWORD pdwChange, // pointer to a value that indicates the condition that changed
LPVOID pPrinterNotifyOptions, // pointer to a structure that specifies a refresh flag
LPVOID *ppPrinterNotifyInfo // pointer to a pointer that receives printer information buffer

);ParametershChange
Handle to a change notification object associated with a printer or print server. You obtain
such a handle by calling the FindFirstPrinterChangeNotification function. The operating
system sets this change notification object to the signaled state when it detects one of the
changes specified in the object's change notification filter.

pdwChange
Pointer to a doubleword variable whose bits are set to indicate the changes that occurred to
cause the most recent notification. The bit flags that might be set correspond to those
specified in the fdwFlags parameter of the FindFirstPrinterChangeNotification call. The
system sets one or more of the following bit flags:

Value Meaning
PRINTER_CHANGE_ADD_FORM

A form was added to the server.
PRINTER_CHANGE_ADD_JOB

A print job was sent to the printer.
PRINTER_CHANGE_ADD_PORT

A port or monitor was added to the server.
PRINTER_CHANGE_ADD_PRINT_PROCESSOR

A print processor was added to the server.
PRINTER_CHANGE_ADD_PRINTER

A printer was added to the server.
PRINTER_CHANGE_ADD_PRINTER_DRIVER

A printer driver was added to the server.
PRINTER_CHANGE_CONFIGURE_PORT

A port was configured on the server.
PRINTER_CHANGE_DELETE_FORM

A form was deleted from the server.
PRINTER_CHANGE_DELETE_JOB

A job was deleted.
PRINTER_CHANGE_DELETE_PORT

A port or monitor was deleted from the server.
PRINTER_CHANGE_DELETE_PRINT_PROCESSOR

A print processor was deleted from the server.
PRINTER_CHANGE_DELETE_PRINTER

A printer was deleted.
PRINTER_CHANGE_DELETE_PRINTER_DRIVER

A printer driver was deleted from the server.
PRINTER_CHANGE_FAILED_CONNECTION_PRINTER

A printer connection has failed.
PRINTER_CHANGE_SET_FORM

A form was set on the server.
PRINTER_CHANGE_SET_JOB

A job was set.
PRINTER_CHANGE_SET_PRINTER

A printer was set.
PRINTER_CHANGE_SET_PRINTER_DRIVER

A printer driver was set.
PRINTER_CHANGE_WRITE_JOB

Job data was written.

pPrinterNotifyOptions
Pointer to a PRINTER_NOTIFY_OPTIONS structure. Set the Flags member of this structure
to PRINTER_NOTIFY_OPTIONS_REFRESH, to cause the function to return the current data
for all monitored printer information fields. The function ignores all other members of the
structure. This parameter can be NULL.

ppPrinterNotifyInfo
Pointer to a pointer variable that receives the address of a system-allocated, read-only buffer.
Call the FreePrinterNotifyInfo function to free the buffer when you are finished with it. This
parameter can be NULL if no information is required.
The buffer contains a PRINTER_NOTIFY_INFO structure, which contains an array of
PRINTER_NOTIFY_INFO_DATA structures. Each element of the array contains information
about one of the fields specified in the pPrinterNotifyOptions parameter of the
FindFirstPrinterChangeNotification call. Typically, the function provides data only for the
fields that changed to cause the most recent notification. However, if the structure pointed to
by the pPrinterNotifyOptions parameter specifies PRINTER_NOTIFY_OPTIONS_REFRESH,
the function provides data for all monitored fields.
If the PRINTER_NOTIFY_INFO_DISCARDED bit is set in the Flags member of the
PRINTER_NOTIFY_INFO structure, an overflow or error occurred, and notifications may have
been lost. In this case, no additional notifications will be sent until you make a second
FindNextPrinterChangeNotification call that specifies
PRINTER_NOTIFY_OPTIONS_REFRESH.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksCall the FindNextPrinterChangeNotification function after a wait operation on a notification
object created by FindFirstPrinterChangeNotification has been satisfied. Calling
FindNextPrinterChangeNotification lets you obtain information about the change that satisfied
the wait operation, and resets the notification object so it can be signaled when the next change
occurs.

Do not call the FindNextPrinterChangeNotification function if the change notification object is
not in the signaled state. If a wait function returns the value WAIT_TIMEOUT, the change object is
not in the signaled state. Call the FindNextPrinterChangeNotification function only if the wait
function succeeds without timing out.

To continue monitoring the printer or print server for changes, repeat the cycle of calling one of
the wait functions, and then calling the FindNextPrinterChangeNotification function to examine
the change and reset the notification object.

FindNextPrinterChangeNotification may combine multiple changes to the same printer
information field into a single notification. When this occurs, the function typically collapses all
changes for the field into a single entry in the array of PRINTER_NOTIFY_INFO_DATA structures
in ppPrinterNotifyInfo; the single entry reports only the most current information. However, for
some job and printer information fields, the function can return multiple array entries for the same
field. In this case, the last array entry for the field reports the current data, and the earlier entries
contain the data for the intermediate stages.

When you no longer need the change notification object, close it by calling the
FindClosePrinterChangeNotification function.

The three Find*PrinterChangeNotification functions, in combination with the wait functions,

provide an asynchronous, more resource-efficient alternative to the WaitForPrinterChange
function.See AlsoFindClosePrinterChangeNotification, FindFirstPrinterChangeNotification,
PRINTER_NOTIFY_INFO, PRINTER_NOTIFY_INFO_DATA, PRINTER_NOTIFY_OPTIONS,
WaitForPrinterChange

FindResource
The FindResource function determines the location of a resource with the specified type and
name in the specified module.

HRSRC FindResource(
HMODULE hModule, // resource-module handle
LPCTSTR lpName, // pointer to resource name
LPCTSTR lpType // pointer to resource type

);ParametershModule
A handle to the module whose executable file contains the resource.
A value of NULL specifies the module handle associated with the image file that the operating
system used to create the current process.

lpName
Specifies the name of the resource. For more information, see the Remarks section.

lpType
Specifies the resource type. For more information, see the Remarks section. For standard
resource types, this parameter can be one of the following values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

Return ValuesIf the function succeeds, the return value is a handle to the specified resource's info block. To
obtain a handle to the resource, pass this handle to the LoadResource function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf the high-order word of the lpName or lpType parameter is zero, the low-order word specifies the
integer identifier of the name or type of the given resource. Otherwise, those parameters are long
pointers to null-terminated strings. If the first character of the string is a pound sign (#), the
remaining characters represent a decimal number that specifies the integer identifier of the
resource's name or type. For example, the string "#258" represents the integer identifier 258.

An application should reduce the amount of memory required for the resources by referring to
them by integer identifier instead of by name.

An application can use FindResource to find any type of resource, but this function should be
used only if the application must access the binary resource data when making subsequent calls
to LoadLibrary and LockResource.

To use a resource immediately, an application should use one of the following resource-specific
functions to find and load the resources in one call:

Function Action

FormatMessage Loads and formats a message-table entry.

LoadAccelerators Loads an accelerator table.
LoadBitmap Loads a bitmap resource.
LoadCursor Loads a cursor resource.
LoadIcon Loads an icon resource.
LoadMenu Loads a menu resource.
LoadString Loads a string-table entry.

For example, an application can use the LoadIcon function to load an icon for display on the
screen. However, the application should use FindResource and LoadResource if it is loading
the icon to copy its data to another application.See AlsoFindResourceEx, FormatMessage, LoadAccelerators, LoadBitmap, LoadCursor, LoadIcon,
LoadMenu, LoadResource, LoadString, LockResource, SizeofResource

FindResourceEx
The FindResourceEx function determines the location of the resource with the specified type,
name, and language in the specified module.

HRSRC FindResourceEx(
HMODULE hModule, // resource-module handle
LPCTSTR lpType, // pointer to resource type
LPCTSTR lpName, // pointer to resource name
WORD wLanguage // resource language

);ParametershModule
Identifies the module whose executable file contains the resource. If this parameter is NULL,
the function searches the module used to create the current process.

lpType
Points to a null-terminated string specifying the type name of the resource. For more
information, see the Remarks section. For standard resource types, this parameter can be
one of the following values:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpName
Points to a null-terminated string specifying the name of the resource. For more information,
see the Remarks section.

wLanguage
Specifies the language of the resource. If this parameter is MAKELANGID(LANG_NEUTRAL,
SUBLANG_NEUTRAL), the current language associated with the calling thread is used.
To specify a language other than the current language, use the MAKELANGID macro to
create this parameter. For more information, see the MAKELANGID macro.

Return ValuesIf the function succeeds, the return value is a handle to the specified resource's info block. To
obtain a handle to the resource, pass this handle to the LoadResource function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf the high-word of the lpType or lpName parameter is zero, the low-word specifies the integer
identifier of the type or name of the given resource. Otherwise, those parameters are pointers to
null-terminated strings. If the first character of the string is a pound sign (#), the remaining
characters represent a decimal number that specifies the integer identifier of the resource's name
or type. For example, the string "#258" represents the integer identifier 258.

Applications should reduce the amount of memory required for the resources by referring to them
by integer identifier instead of by name.

An application can use FindResource to find any type of resource, but this function should be

used only if the application must access the binary resource data when making subsequent calls
to the LoadLibrary and LockResource functions.

To use a resource immediately, an application should use the following resource-specific functions
to find and load the resources in one call:

Function Action

FormatMessage Loads and formats a message-table entry.
LoadAccelerators Loads an accelerator table.
LoadBitmap Loads a bitmap resource.
LoadCursor Loads a cursor resource.
LoadIcon Loads an icon resource.
LoadMenu Loads a menu resource.
LoadString Loads a string-table entry.

For example, an application can use the LoadIcon function to load an icon for display on the
screen. However, the application should use FindResource and LoadResource if it is loading
the icon to copy its data to another application.See AlsoFindResource, FormatMessage, LoadAccelerators, LoadBitmap, LoadCursor, LoadIcon,
LoadMenu, LoadString, LoadResource, MAKELANGID

FindText
The FindText function creates a system-defined modeless dialog box that lets the user specify a
string to search for and options to use when searching for text in a document.

HWND FindText(
LPFINDREPLACE lpfr // pointer to structure with initialization data

);Parameterslpfr
Pointer to a FINDREPLACE structure that contains information used to initialize the dialog
box. The dialog box uses this structure to send information about the user's input to your
application. For more information, see the following Remarks section.

Return ValuesIf the function succeeds, the return value is the window handle to the dialog box. You can use the
window handle to communicate with or to close the dialog box.

If the function fails, the return value is NULL. To get extended error information, call the
CommDlgExtendedError function. CommDlgExtendedError may return one of the following
error codes:

CDERR_FINDRESFAILURE CDERR_MEMLOCKFAILURE

CDERR_INITIALIZATION CDERR_NOHINSTANCE
CDERR_LOCKRESFAILURE CDERR_NOHOOK
CDERR_LOADRESFAILURE CDERR_NOTEMPLATE
CDERR_LOADSTRFAILURE CDERR_STRUCTSIZE
CDERR_MEMALLOCFAILURE FRERR_BUFFERLENGTHZERO
RemarksThe FindText function does not perform a search operation. Instead, the dialog box sends

FINDMSGSTRING registered messages to the window procedure of the owner window of the
dialog box. When you create the dialog box, the hwndOwner member of the FINDREPLACE
structure identifies the owner window.

Before calling FindText, you must call the RegisterWindowMessage function to get the identifier
for the FINDMSGSTRING message. The dialog box procedure uses this identifier to send
messages when the user clicks the Find Next button, or when the dialog box is closing. The
lParam parameter of the FINDMSGSTRING message contains a pointer to a FINDREPLACE
structure. The Flags member of this structure indicates the event that caused the message. Other
members of the structure indicate the user's input.

If you create a Find dialog box, you must also use the IsDialogMessage function in the main
message loop of your application to ensure that the dialog box correctly processes keyboard
input, such as the TAB and ESC keys. IsDialogMessage returns a value that indicates whether the
Find dialog box processed the message.

You can provide an FRHookProc hook procedure for a Find dialog box. The hook procedure can
process messages sent to the dialog box. To enable a hook procedure, set the
FR_ENABLEHOOK flag in the Flags member of the FINDREPLACE structure and specify the
address of the hook procedure in the lpfnHook member.See AlsoCommDlgExtendedError, FINDMSGSTRING, FINDREPLACE, FRHookProc,
IsDialogMessage, RegisterWindowMessage, ReplaceText

FindWindow
The FindWindow function retrieves the handle to the top-level window whose class name and
window name match the specified strings. This function does not search child windows.

HWND FindWindow(
LPCTSTR lpClassName, // pointer to class name
LPCTSTR lpWindowName // pointer to window name

);ParameterslpClassName
Points to a null-terminated string that specifies the class name or is an atom that identifies the
class-name string. If this parameter is an atom, it must be a global atom created by a previous
call to the GlobalAddAtom function. The atom, a 16-bit value, must be placed in the low-
order word of lpClassName; the high-order word must be zero.

lpWindowName
Points to a null-terminated string that specifies the window name (the window's title). If this
parameter is NULL, all window names match.

Return ValuesIf the function succeeds, the return value is the handle to the window that has the specified class
name and window name.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoEnumWindows, FindWindowEx, GetClassName, GlobalAddAtom

FindWindowEx
[Now Supported on Windows NT]

The FindWindowEx function retrieves the handle to a window whose class name and window
name match the specified strings. The function searches child windows, beginning with the one
following the given child window.

HWND FindWindowEx(
HWND hwndParent, // handle to parent window
HWND hwndChildAfter, // handle to a child window
LPCTSTR lpszClass, // pointer to class name
LPCTSTR lpszWindow // pointer to window name

);ParametershwndParent
Identifies the parent window whose child windows are to be searched.
If hwndParent is NULL, the function uses the desktop window as the parent window. The
function searches among windows that are child windows of the desktop.

hwndChildAfter
Identifies a child window. The search begins with the next child window in the Z order.
hwndChildAfter must be a direct child window of hwndParent, not just a descendant window.
If hwndChildAfter is NULL, the search begins with the first child window of hwndParent.
Note that if both hwndParent and hwndChildAfter are NULL, the function searches all top-
level windows.

lpszClass
Points to a null-terminated string that specifies the class name or is an atom that identifies the
class-name string. If this parameter is an atom, it must be a global atom created by a previous
call to the GlobalAddAtom function. The atom, a 16-bit value, must be placed in the low-
order word of lpszClass; the high-order word must be zero.

lpszWindow
Points to a null-terminated string that specifies the window name (the window's title). If this
parameter is NULL, all window names match.

Return ValuesIf the function succeeds, the return value is the handle to the window that has the specified class
and window names.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoEnumWindows, FindWindow, GetClassName, GlobalAddAtom

FixBrushOrgEx
The FixBrushOrgEx function is not implemented in the Win32 API. It is provided for compatibility
with Win32s. If called, the function does nothing, and returns FALSE.See AlsoGetBrushOrgEx, SetBrushOrgEx

FlashWindow
The FlashWindow function flashes the specified window once.

BOOL FlashWindow(
HWND hWnd, // handle to window to flash
BOOL bInvert // flash status

);ParametershWnd
Identifies the window to be flashed. The window can be either open or minimized (iconic).

bInvert
Specifies whether the window is to be flashed or returned to its original state. The window is
flashed from one state to the other if this parameter is TRUE. If it is FALSE, the window is
returned to its original state (either active or inactive). When an application is iconic, if this
parameter is TRUE, the taskbar window button flashes active/inactive. If it is FALSE, the
taskbar window button flashes inactive, meaning that it does not change colors. It flashes, as
if it were being redraw, but it does not provide the visual invert clue to the user.

Return ValuesThe return value specifies the window's state before the call to the FlashWindow function. If the
window was active before the call, the return value is nonzero.

If the window was not active before the call, the return value is zero.RemarksFlashing a window means changing the appearance of its caption bar as if the window were
changing from inactive to active status, or vice versa. (An inactive caption bar changes to an
active caption bar; an active caption bar changes to an inactive caption bar.)

Typically, a window is flashed to inform the user that the window requires attention but that it does
not currently have the keyboard focus.

The FlashWindow function flashes the window only once; for repeated flashing, the application
should create a system timer.

FlattenPath
The FlattenPath function transforms any curves in the path that is selected into the current device
context (DC), turning each curve into a sequence of lines.

BOOL FlattenPath(
HDC hdc // handle to device context

);Parametershdc
Identifies a DC that contains a valid path.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYSee AlsoWidenPath

FloodFill
The FloodFill function fills an area of the display surface with the current brush. The area is
assumed to be bounded as specified by the crFill parameter.

The FloodFill function is included only for compatibility with earlier versions of Windows. For
Win32-based applications, use the ExtFloodFill function with FLOODFILLBORDER specified.

BOOL FloodFill(
HDC hdc, // handle to device context
int nXStart, // x-coordinate, where fill begins
int nYStart, // y-coordinate, where fill begins
COLORREF crFill // fill color

);Parametershdc
Identifies a device context.

nXStart
Specifies the logical x-coordinate of the point where filling is to begin.

nYStart
Specifies the logical y-coordinate of the point where filling is to begin.

crFill
Specifies the color of the boundary or of the area to be filled.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFollowing are reasons this function might fail:

· The fill could not be completed.
· The given point has the boundary color specified by the crFill parameter.
· The given point lies outside the current clipping region ¾ that is, it is not visible on the

device.
See AlsoExtFloodFill

FlushConsoleInputBuffer
The FlushConsoleInputBuffer function flushes the console input buffer. All input records
currently in the input buffer are discarded.

BOOL FlushConsoleInputBuffer(
HANDLE hConsoleInput // handle to console input buffer

);ParametershConsoleInput
Identifies the console input buffer. The handle must have GENERIC_WRITE access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetNumberOfConsoleInputEvents, PeekConsoleInput, ReadConsoleInput,
WriteConsoleInput

FlushFileBuffers
The FlushFileBuffers function clears the buffers for the specified file and causes all buffered data
to be written to the file.

BOOL FlushFileBuffers(
HANDLE hFile // open handle to file whose buffers are to be flushed

);ParametershFile
An open file handle. The function flushes this file's buffers. The file handle must have
GENERIC_WRITE access to the file.
If hFile is a handle to a communications device, the function only flushes the transmit buffer.
If hFile is a handle to the server end of a named pipe, the function does not return until the
client has read all buffered data from the pipe.
Windows NT: The function fails if hFile is a handle to console output. That is because
console output is not buffered. The function returns FALSE, and GetLastError returns
ERROR_INVALID_HANDLE.
Windows 95: The function does nothing if hFile is a handle to console output. That is
because console output is not buffered. The function returns TRUE, but it does nothing.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe WriteFile and WriteFileEx functions typically write data to an internal buffer that the
operating system writes to disk on a regular basis. The FlushFileBuffers function writes all of the
buffered information for the specified file to disk.

You can pass the same file handle used with the _lread, _lwrite, _lcreat, and related functions to
FlushFileBuffers.See Also_lread, _lwrite, _lcreat, WriteFile, WriteFileEx

FlushInstructionCache
The FlushInstructionCache function flushes the instruction cache for the specified process.

BOOL FlushInstructionCache(
HANDLE hProcess, // handle to process with cache to flush
LPCVOID lpBaseAddress, // pointer to region to flush
DWORD dwSize // length of region to flush

);ParametershProcess
Identifies the process that has an instruction cache to flush.

lpBaseAddress
Points to the base of the region to be flushed. This parameter can be NULL.

dwSize
Specifies the length of the region to be flushed if the lpBaseAddress parameter is not NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Windows 95: The FlushInstructionCache function always returns TRUE. windows 95 supports
single-processor machines only.

FlushViewOfFile
The FlushViewOfFile function writes to the disk a byte range within a mapped view of a file.

BOOL FlushViewOfFile(
LPCVOID lpBaseAddress, // start address of byte range to flush
DWORD dwNumberOfBytesToFlush // number of bytes in range

);ParameterslpBaseAddress
Points to the base address of the byte range to be flushed to the disk representation of the
mapped file.

dwNumberOfBytesToFlush
Specifies the number of bytes to flush.
If dwNumberOfBytesToFlush is zero, the file is flushed from the base address to the end of
the mapping.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFlushing a range of a mapped view causes any dirty pages within that range to be written to the
disk. Dirty pages are those whose contents have changed since the file view was mapped.See AlsoMapViewOfFile, UnmapViewOfFile

FMExtensionProc
The FMExtensionProc function is an application-defined callback function that processes menu
commands and messages sent to a File Manager extension dynamic-link library (DLL).

LONG WINAPI FMExtensionProc(
HWND hwnd, // handle to extension window
WORD wEvent, // menu-item identifier, or message
LONG lParam // additional message information

);Parametershwnd
Identifies the File Manager window. An extension DLL should use this handle to specify the
owner for any dialog box or message box that the DLL may display and to send request
messages to File Manager.

wEvent
Specifies the message. This parameter can be one of the following values:

Value Meaning
1- 99 The user selected the menu item

identified by this number.
FMEVENT_INITMENU User selected the extension's menu.
FMEVENT_LOAD File Manager is loading the extension

DLL.
FMEVENT_SELCHANGE Selection changed in File Manager's

directory window or in Search Results
window.

FMEVENT_UNLOAD File Manager is unloading the
extension DLL.

FMEVENT_USER_REFRESHUser chose the Refresh command
from the Window menu.

lParam
Specifies 32 bits of additional message-specific information.

Return ValuesThe callback function should return the result of the message processing. The actual return value
depends on the message processed.RemarksWhenever File Manager calls the FMExtensionProc function, it waits to refresh its directory
windows (for changes in the file system) until after the function returns. This allows the extension
to perform large numbers of file operations without excessive repainting by File Manager. It is not
necessary for the extension to send the FM_REFRESH_WINDOWS message to notify File
Manager to repaint its windows.

FoldString
The FoldString function maps one string to another, performing a specified transformation option.

int FoldString(
DWORD dwMapFlags, // mapping transformation options
LPCTSTR lpSrcStr, // pointer to source string
int cchSrc, // size of source string, in bytes or characters
LPTSTR lpDestStr, // pointer to destination buffer
int cchDest // size of destination buffer, in bytes or characters

);ParametersdwMapFlags
A set of bit flags that indicate the type of transformation to be used during mapping. This value
can be a combination of the following bit-flag constants:

Option Meaning
MAP_FOLDCZONE Fold compatibility zone characters into

standard Unicode equivalents. For
information about compatibility zone
characters, see the following Remarks
section.

MAP_FOLDDIGITS Map all digits to Unicode characters 0
through 9.

MAP_PRECOMPOSED Map accented characters to precomposed
characters, in which the accent and base
character are combined into a single
character value. This value cannot be
combined with MAP_COMPOSITE.

MAP_COMPOSITE Map accented characters to composite
characters, in which the accent and base
character are represented by two character
values. This value cannot be combined
with MAP_PRECOMPOSED.

lpSrcStr
Points to the string to be mapped.

cchSrc
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the lpSrcStr
buffer. If cchSrc is - 1, lpSrcStr is assumed to be null-terminated, and the length is calculated
automatically.

lpDestStr
Points to the buffer to store the mapped string.

cchDest
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the lpDestStr
buffer. If cchDest is zero, the function returns the number of bytes or characters required to
hold the mapped string, and the buffer pointed to by lpDestStr is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the destination buffer, or if the cchDest parameter is zero, the number
of bytes or characters required to hold the mapped string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksThe mapped string is null-terminated if the source string is null-terminated.

The lpSrcStr and lpDestStr pointers must not be the same. If they are the same, the function fails
and GetLastError returns ERROR_INVALID_PARAMETER.

The compatibility zone in Unicode consists of characters in the range 0xF900 through 0xFFEF
that are assigned to characters from other character-encoding standards but are actually variants
of characters that are already in Unicode. The compatibility zone is used to support round-trip

mapping to these standards. Applications can use the MAP_FOLDCZONE flag to avoid
supporting the duplication of characters in the compatibility zone.See AlsoLCMapString, CompareString

ForegroundIdleProc
The ForegroundIdleProc hook procedure is an application-defined callback function the system
calls whenever the 32-bit foreground thread is about to become idle.

DWORD ForegroundIdleProc(
int code, // hook code
DWORD wParam, // not used
LONG lParam // not used

);Parameterscode
Specifies whether the hook procedure must process the message. If code is HC_ACTION, the
hook procedure must process the message. If code is less than zero, the hook procedure
must pass the message to the CallNextHookEx function without further processing and
should return the value returned by CallNextHookEx.

wParam
Not used.

lParam
Not used.

RemarksAn application installs this hook procedure by specifying the WH_FOREGROUNDIDLE hook type
and the pointer to the hook procedure in a call to the SetWindowsHookEx function.

ForegroundIdleProc is a placeholder for the application-defined function name.

This is a thread-specific hook.See AlsoCallNextHookEx, SetWindowsHookEx

FormatMessage
The FormatMessage function formats a message string. The function requires a message
definition as input. The message definition can come from a buffer passed into the function. It can
come from a message table resource in an already-loaded module. Or the caller can ask the
function to search the system's message table resource(s) for the message definition. The
function finds the message definition in a message table resource based on a message identifier
and a language identifier. The function copies the formatted message text to an output buffer,
processing any embedded insert sequences if requested.

DWORD FormatMessage(
DWORD dwFlags, // source and processing options
LPCVOID lpSource, // pointer to message source
DWORD dwMessageId, // requested message identifier
DWORD dwLanguageId, // language identifier for requested message
LPTSTR lpBuffer, // pointer to message buffer
DWORD nSize, // maximum size of message buffer
va_list *Arguments // address of array of message inserts

);ParametersdwFlags
Contains a set of bit flags that specify aspects of the formatting process and how to interpret
the lpSource parameter. The low-order byte of dwFlags specifies how the function handles
line breaks in the output buffer. The low-order byte can also specify the maximum width of a
formatted output line.
You can specify a combination of the following bit flags:

Value Meaning
FORMAT_MESSAGE_ALLOCATE_BUFFER

Specifies that the lpBuffer parameter is a pointer to a
PVOID pointer, and that the nSize parameter specifies
the minimum number of bytes (ANSI version) or
characters (Unicode version) to allocate for an output
message buffer. The function allocates a buffer large
enough to hold the formatted message, and places a
pointer to the allocated buffer at the address specified by
lpBuffer. The caller should use the LocalFree function to
free the buffer when it is no longer needed.

FORMAT_MESSAGE_IGNORE_INSERTS
Specifies that insert sequences in the message definition
are to be ignored and passed through to the output buffer
unchanged. This flag is useful for fetching a message for
later formatting. If this flag is set, the Arguments
parameter is ignored.

FORMAT_MESSAGE_FROM_STRING
Specifies that lpSource is a pointer to a null-terminated
message definition. The message definition may contain
insert sequences, just as the message text in a message
table resource may. Cannot be used with
FORMAT_MESSAGE_FROM_HMODULE or
FORMAT_MESSAGE_FROM_SYSTEM.

FORMAT_MESSAGE_FROM_HMODULE
Specifies that lpSource is a module handle containing
the message-table resource(s) to search. If this lpSource
handle is NULL, the current process's application image
file will be searched. Cannot be used with
FORMAT_MESSAGE_FROM_STRING.

FORMAT_MESSAGE_FROM_SYSTEM
Specifies that the function should search the system
message-table resource(s) for the requested message. If
this flag is specified with
FORMAT_MESSAGE_FROM_HMODULE, the function

searches the system message table if the message is
not found in the module specified by lpSource. Cannot
be used with FORMAT_MESSAGE_FROM_STRING.
If this flag is specified, an application can pass the result
of the GetLastError function to retrieve the message text
for a system-defined error.

FORMAT_MESSAGE_ARGUMENT_ARRAY
Specifies that the Arguments parameter is not a va_list
structure, but instead is just a pointer to an array of 32-
bit values that represent the arguments.

The low-order byte of dwFlags can specify the maximum width of a formatted output line.
Use the FORMAT_MESSAGE_MAX_WIDTH_MASK constant and bitwise Boolean operations
to set and retrieve this maximum width value.
The following table shows how FormatMessage interprets the value of the low-order byte.

Value Meaning
0 There are no output line

width restrictions. The
function stores line breaks
that are in the message
definition text into the
output buffer.

A nonzero value other than
FORMAT_MESSAGE_MAX_WIDTH_MASK

The nonzero value is the
maximum number of
characters in an output
line. The function ignores
regular line breaks in the
message definition text.
The function never splits a
string delimited by white
space across a line break.
The function stores hard-
coded line breaks in the
message definition text
into the output buffer.
Hard-coded line breaks
are coded with the %n
escape sequence.

FORMAT_MESSAGE_MAX_WIDTH_MASKThe function ignores
regular line breaks in the
message definition text.
The function stores hard-
coded line breaks in the
message definition text
into the output buffer. The
function generates no
new line breaks.

lpSource
Specifies the location of the message definition. The type of this parameter depends upon the
settings in the dwFlags parameter.

dwFlags Setting Parameter Type
FORMAT_MESSAGE_FROM_HMODULElpSource is an hModule of

the module that contains
the message table to
search.

FORMAT_MESSAGE_FROM_STRING lpSource is an LPTSTR that
points to unformatted
message text. It will be
scanned for inserts and
formatted accordingly.

If neither of these flags is set in dwFlags, then lpSource is ignored.
dwMessageId

Specifies the 32-bit message identifier for the requested message. This parameter is ignored
if dwFlags includes FORMAT_MESSAGE_FROM_STRING.

dwLanguageId
Specifies the 32-bit language identifier for the requested message. This parameter is ignored
if dwFlags includes FORMAT_MESSAGE_FROM_STRING.
If you pass a specific LANGID in this parameter, FormatMessage will return a message for
that LANGID only. If the function cannot find a message for that LANGID, it returns
ERROR_RESOURCE_LANG_NOT_FOUND. If you pass in zero, FormatMessage looks for a
message for LANGIDs in the following order:
1. Language neutral
2. Thread LANGID, based on the thread's locale value
3. User default LANGID, based on the user's default locale value
4. System default LANGID, based on the system default locale value
5. US English
If FormatMessage doesn't find a message for any of the above LANGIDs, it returns any
language message string that is present. If even that fails, it returns
ERROR_RESOURCE_LANG_NOT_FOUND.

lpBuffer
Points to a buffer for the formatted (and null-terminated) message. If dwFlags includes
FORMAT_MESSAGE_ALLOCATE_BUFFER, the function allocates a buffer using the
LocalAlloc function, and places the address of the buffer at the address specified in lpBuffer.

nSize
If the FORMAT_MESSAGE_ALLOCATE_BUFFER flag is not set, this parameter specifies the
maximum number of bytes (ANSI version) or characters (Unicode version) that can be stored
in the output buffer. If FORMAT_MESSAGE_ALLOCATE_BUFFER is set, this parameter
specifies the minimum number of bytes or characters to allocate for an output buffer.

Arguments
Points to an array of 32-bit values that are used as insert values in the formatted message.
%1 in the format string indicates the first value in the Arguments array; %2 indicates the
second argument; and so on.
The interpretation of each 32-bit value depends on the formatting information associated with
the insert in the message definition. The default is to treat each value as a pointer to a null-
terminated string.
By default, the Arguments parameter is of type va_list*, which is a language- and
implementation-specific data type for describing a variable number of arguments. If you do not
have a pointer of type va_list*, then specify the FORMAT_MESSAGE_ARGUMENT_ARRAY
flag and pass a pointer to an array of 32-bit values; those values are input to the message
formatted as the insert values. Each insert must have a corresponding element in the array.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) stored in the output buffer, excluding the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe FormatMessage function can be used to obtain error message strings for the system error
codes returned by GetLastError, as shown in the following sample code.LPVOID lpMsgBuf;
FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
0,
NULL

);
// Display the string.
MessageBox(NULL, lpMsgBuf, "GetLastError", MB_OK|MB_ICONINFORMATION)
;
// Free the buffer.
LocalFree(lpMsgBuf);Within the message text, several escape sequences are supported for dynamically formatting the

message. These escape sequences and their meanings are shown in the following table. All
escape sequences start with the percent character (%).

Escape Sequence Meaning

%0 Terminates a message text line without a
trailing newline character. This escape
sequence can be used to build up long lines or
to terminate the message itself without a
trailing newline character. It is useful for
prompt messages.

%n!printf format string!Identifies an insert. The value of n can be in
the range 1 through 99. The printf format
string (which must be bracketed by
exclamation marks) is optional and defaults to
!s! if not specified.
The printf format string can contain the *
specifier for either the precision or the width
component. If * is specified for one
component, the FormatMessage function
uses insert %n+1; it uses %n+2 if * is specified
for both components.
Floating-point printf format specifiers ¾ e, E,
f, and g ¾ are not supported. The
workaround is to to use the sprintf function to
format the floating-point number into a
temporary buffer, then use that buffer as the
insert string.

Any other nondigit character following a percent character is formatted in the output
message without the percent character. Following are some examples:

Format string Resulting output

%% A single percent sign in the formatted message text.
%n A hard line break when the format string occurs at the

end of a line. This format string is useful when
FormatMessage is supplying regular line breaks so
the message fits in a certain width.

%space A space in the formatted message text. This format
string can be used to ensure the appropriate number
of trailing spaces in a message text line.

%. A single period in the formatted message text. This
format string can be used to include a single period at
the beginning of a line without terminating the
message text definition.

%! A single exclamation point in the formatted message
text. This format string can be used to include an
exclamation point immediately after an insert without
its being mistaken for the beginning of a printf format
string.

See AlsoLoadString, LocalFree

FrameRect
The FrameRect function draws a border around the specified rectangle by using the specified
brush. The width and height of the border are always one logical unit.

int FrameRect(
HDC hDC, // handle to device context
CONST RECT *lprc, // pointer to rectangle coordinates
HBRUSH hbr // handle to brush

);ParametershDC
Identifies the device context in which the border is drawn.

lprc
Points to a RECT structure that contains the logical coordinates of the upper-left and lower-
right corners of the rectangle.

hbr
Identifies the brush used to draw the border.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksThe brush identified by the hbr parameter must have been created by using the
CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush function, or retrieved by using
the GetStockObject function.

If the bottom member of the RECT structure is less than or equal to the top member, or if the
right member is less than or equal to the left member, the function does not draw the rectangle.See AlsoCreateHatchBrush, CreatePatternBrush, CreateSolidBrush, GetStockObject, RECT

FrameRgn
The FrameRgn function draws a border around the specified region by using the specified brush.

BOOL FrameRgn(
HDC hdc, // handle to device context
HRGN hrgn, // handle to region to be framed
HBRUSH hbr, // handle to brush used to draw border
int nWidth, // width of region frame
int nHeight // height of region frame

);Parametershdc
Identifies the device context.

hrgn
Identifies the region to be enclosed in a border. The region's coordinates are presumed to be
in logical units.

hbr
Identifies the brush to be used to draw the border.

nWidth
Specifies the width, in logical units, of vertical brush strokes.

nHeight
Specifies the height, in logical units, of horizontal brush strokes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoFillRgn, PaintRgn

FreeConsole
The FreeConsole function detaches the calling process from its console.

BOOL FreeConsole(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf other processes share the console, the console is not destroyed, but the calling process cannot
refer to it.

A process can use FreeConsole to detach itself from its current console, and then it can call the
AllocConsole function to create a new console.See AlsoAllocConsole

FreeDDElParam
The FreeDDElParam function frees the memory specified by the lParam parameter of a posted
DDE message. An application receiving a posted DDE message should call this function after it
has used the UnpackDDElParam function to unpack the lParam value.

BOOL FreeDDElParam(
UINT msg, // posted DDE message
LONG lParam // lParam of message

);Parametersmsg
Specifies the posted DDE message.

lParam
Specifies the lParam parameter of the posted DDE message.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn application should call this function only for posted DDE messages.

This function frees the memory specified by the lParam parameter. It does not free the contents of
lParam.See AlsoPackDDElParam, ReuseDDElParam, UnpackDDElParam

FreeEnvironmentStrings
The FreeEnvironmentStrings function frees a block of environment strings.

BOOL FreeEnvironmentStrings(
LPTSTR lpszEnvironmentBlock // pointer to a block of environment strings

);ParameterslpszEnvironmentBlock
Pointer to a block of environment strings. The pointer to the block must be obtained by calling
the GetEnvironmentStrings function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero To get extended error information, call GetLastError.RemarksWhen GetEnvironmentStrings is called, it allocates memory for a block of environment strings.
When the block is no longer needed, it should be freed by calling FreeEnvironmentStrings.See AlsoGetEnvironmentStrings

FreeLibrary
The FreeLibrary function decrements the reference count of the loaded dynamic-link library (DLL)
module. When the reference count reaches zero, the module is unmapped from the address
space of the calling process and the handle is no longer valid. This function supersedes the
FreeModule function.

BOOL FreeLibrary(
HMODULE hLibModule // handle to loaded library module

);ParametershLibModule
Identifies the loaded library module. The LoadLibrary or GetModuleHandle function returns
this handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEach process maintains a reference count for each loaded library module. This reference count is
incremented each time LoadLibrary is called and is decremented each time FreeLibrary is
called. A DLL module loaded at process initialization due to load-time dynamic linking has a
reference count of one. This count is incremented if the same module is loaded by a call to
LoadLibrary.

Before unmapping a library module, the system enables the DLL to detach from the process by
calling the DLL's DllEntryPoint function, if it has one, with the DLL_PROCESS_DETACH value.
Doing so gives the DLL an opportunity to clean up resources allocated on behalf of the current
process. After the entry-point function returns, the library module is removed from the address
space of the current process.

Calling FreeLibrary does not affect other processes using the same library module.See AlsoDllEntryPoint, FreeLibraryAndExitThread, FreeModule, GetModuleHandle, LoadLibrary

FreeLibraryAndExitThread
The FreeLibraryAndExitThread function decrements the reference count of a loaded dynamic-
link library (DLL) by one, and then calls ExitThread to terminate the calling thread. The function
does not return.

The FreeLibraryAndExitThread function gives threads that are created and executed within a
dynamic-link library an opportunity to safely unload the DLL and terminate themselves.

VOID FreeLibraryAndExitThread(
HMODULE hLibModule, // dynamic-link library whose reference count is to decrement
DWORD dwExitCode // exit code for thread

);ParametershLibModule
Specifies the dynamic-link library module whose reference count the function decrements.

dwExitCode
Specifies the exit code for the calling thread.

Return ValuesThe function has no return value. The function does not return. Invalid hLibModule handles are
ignored.RemarksThe FreeLibraryAndExitThread function is implemented as:FreeLibrary(hLibModule);

ExitThread(dwExitCode);Refer to the reference pages for FreeLibrary and ExitThread for further information on those
functions.See AlsoFreeLibrary, ExitThread, DisableThreadLibraryCalls

FreeModule
The FreeModule function is obsolete.

This function is provided only for compatibility with 16-bit versions of Windows. Win32-based
applications should use the FreeLibrary function.

FreePrinterNotifyInfo
The FreePrinterNotifyInfo function frees a system-allocated buffer that was returned by the
FindNextPrinterChangeNotification function.

BOOL FreePrinterNotifyInfo(
PPRINTER_NOTIFY_INFO pPrinterNotifyInfo // pointer to a PRINTER_NOTIFY_INFO buffer

);ParameterspPrinterNotifyInfo
Pointer to a PRINTER_NOTIFY_INFO buffer returned from a call to the
FindNextPrinterChangeNotification function. FreePrinterNotifyInfo deallocates this buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoFindNextPrinterChangeNotification, PRINTER_NOTIFY_INFO

FreeProcInstance
The FreeProcInstance function is obsolete.

This function is provided only for compatibility with 16-bit versions of Windows. Win32-based
applications should not use this function; it has no meaning in the 32-bit environment.

FreeResource
The FreeResource function is obsolete. It is provided to simplify porting of 16-bit Windows-based
applications. It is not necessary for Win32-based applications to free resources loaded by using
the LoadResource function.See AlsoLoadResource, LockResource

FreeSid
The FreeSid function frees a security identifier (SID) previously allocated by using the
AllocateAndInitializeSid function.

PVOID FreeSid(
PSID pSid // pointer to SID to free

);ParameterspSid
Points to the SID structure to free.

Return ValuesThis function does not return a value.See AlsoAllocateAndInitializeSid, SID

FRHookProc
An FRHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Find and Replace common dialog boxes. The hook procedure receives
messages or notifications intended for the default dialog box procedure.

UINT APIENTRY FRHookProc(
HWND hdlg, // handle to the dialog box window
UINT uiMsg // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Find or Replace common dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to a
FINDREPLACE structure containing the values specified when the common dialog box was
created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the FindText or ReplaceText functions to create a Find or Replace common
dialog box, you can provide an FRHookProc hook procedure to process messages or
notifications intended for the dialog box procedure. To enable the hook procedure, use the
FINDREPLACE structure that you passed to the dialog creation function. Specify the address of
the hook procedure in the lpfnHook member and specify the FR_ENABLEHOOK flag in the
Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

FRHookProc is a placeholder for the application-defined or library-defined function name. The
LPFRHOOKPROC type is a pointer to an FRHookProc hook procedure.See AlsoEndDialog, FINDREPLACE, FindText, PostMessage, ReplaceText, WM_INITDIALOG,
WM_CTLCOLORDLG

FSCTL_DISMOUNT_VOLUME
The FSCTL_DISMOUNT_VOLUME DeviceIoControl operation dismounts a volume.dwIoControlCode = FSCTL_DISMOUNT_VOLUME; // operation code
lpInBuffer = NULL; // pointer to input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // pointer to output buffer; not used; must be NULL
nOutBufferSize ; // size of output buffer; not used; must be zero
lpBytesReturned ; // pointer to DWORD used by DeviceIoControl function
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Pointer to a DWORD. This value cannot be NULL. Although the
FSCTL_DISMOUNT_VOLUME operation produces no output data and lpOutBuffer should be
NULL, the DeviceIoControl function uses the variable pointed to by lpBytesReturned. After
the operation, the value of this variable is without meaning.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThe hDevice handle passed to DeviceIoControl must be a handle to a volume, opened for direct
access. An application can obtain such a handle by calling CreateFile with lpFileName set to a
string that looks like this:\\.\X:where X is a hard-drive partition letter, floppy disk drive, or CD-ROM drive. The application must
also specify the FILE_SHARE_READ and FILE_SHARE_WRITE flags in the dwShareMode
parameter of CreateFile.

If the specified volume is locked, the operation fails.

A dismounted volume has the following properties:

· There are no open files.
· The operating system does not "know" about the volume.

The operating system tries to mount an unmounted volume as soon as any attempt is made to
access it. For example, a call to GetLogicalDrives triggers the operating system to mount any
unmounted volumes.

Dismounting a volume is useful whenever a volume needs to disappear for a while. For example,
an application that changes a volume's file system from FAT to NTFS might follow these steps:

1. Open the volume
2. Lock the volume
3. Format the volume
4. Unlock the volume
5. Dismount the volume
6. Close the volume handle

A dismounting operation removes the volume from the FAT file system's "awareness." When the
operating system mounts the volume, it appears as an NTFS volume.See AlsoCreateFile, DeviceIoControl, ExitThread, GetLogicalDrives

FSCTL_GET_COMPRESSION
The FSCTL_GET_COMPRESSION DeviceIoControl operation obtains the current compression
state of a file or directory on a volume whose file system supports per-stream compression.dwIoControlCode = FSCTL_GET_COMPRESSION; // operation code
lpInBuffer = NULL; // pointer to input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // pointer to output buffer
nOutBufferSize ; // size of output buffer
lpBytesReturned ; // pointer to actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that receives a USHORT indicating the current compression state of the file
or directory.
The following values are defined:

Value Meaning
COMPRESSION_FORMAT_NONE The file or directory is not

compressed.
COMPRESSION_FORMAT_LZNT1 The file or directory is

compressed, using the LZNT1
compression format.

all other values Reserved for future use.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. The buffer must be large
enough to contain one USHORT value.

lpBytesReturned
Points to a DWORD value that receives the actual size, in bytes, of the data stored into the
buffer pointed to by lpOutBuffer.Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksOn this release, LZNT1 is the only compression algorithm implemented. Future releases may
have additional compression methods.

COMPRESSION_FORMAT_DEFAULT is not a compression state so it is not included in the table
under the lpOutBuffer parameter. This value is only used with the FSCTL_SET_COMPRESSION
operation

If the file system of the volume containing the specified file or directory does not support per-file or
per-directory compression, the FSCTL_GET_COMPRESSION operation fails.

Windows NT version 3.51 supports file compression on volumes formatted with NTFS.

You can set the compression state of a file or directory by using the
FSCTL_SET_COMPRESSION DeviceIoControl operation. You can also compress or
uncompress a file with that operation.

You can obtain the compression attribute of a file or directory by calling the GetFileAttributes
function. The compression attribute indicates whether a file or directory is compressed. The
compression state indicates whether a file or directory is compressed, and, if it is, the format of
the compressed data.See AlsoDeviceIoControl, FSCTL_SET_COMPRESSION, GetFileAttributes

FSCTL_LOCK_VOLUME
The FSCTL_LOCK_VOLUME DeviceIoControl operation locks a volume. A locked volume can
be accessed only through handles to the file object (*hDevice) that locks the volume.dwIoControlCode = FSCTL_LOCK_VOLUME; // operation code
lpInBuffer = NULL; // pointer to input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // pointer to output buffer; not used; must be NULL
nOutBufferSize ; // size of output buffer; not used; must be zero
lpBytesReturned ; // pointer to DWORD used by DeviceIoControl function
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Pointer to a DWORD. This value cannot be NULL. Although the FSCTL_LOCK_VOLUME
operation produces no output data and lpOutBuffer should be NULL, the DeviceIoControl
function uses the variable pointed to by lpBytesReturned. After the operation, the value of this
variable is without meaning.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThe hDevice handle passed to DeviceIoControl must be a handle to a volume, opened for direct
access. An application can obtain such a handle by calling CreateFile with lpFileName set to a
string that looks like this:\\.\X:where X is a hard-drive partition letter, floppy disk drive, or CD-ROM drive. The application must
also specify the FILE_SHARE_READ and FILE_SHARE_WRITE flags in the dwShareMode
parameter of CreateFile.

The FSCTL_LOCK_VOLUME operation fails if there are any open files on the volume.
Conversely, success of this operation indicates there are no open files.

The operation is useful for applications that need exclusive access to a volume for a period of
time ¾ for example, disk utility programs.

A locked volume remains locked until one of the following occurs:

· The application invokes the FSCTL_UNLOCK_VOLUME DeviceIoControl operation to
unlock the volume.

· The handle closes, either directly through CloseHandle, or indirectly when a process
terminates.

The system flushes all cached data to the volume before locking it. For example, any data held in
a lazy-write cache is written to the volume.See AlsoCloseHandle, CreateFile, DeviceIoControl, FSCTL_UNLOCK_VOLUME

FSCTL_SET_COMPRESSION
The FSCTL_SET_COMPRESSION DeviceIoControl operation sets the compression state of a
file or directory on a volume whose file system supports per-file and per-directory compression.
You can use this operation to compress or uncompress a file or directory on such a volume.dwIoControlCode = FSCTL_SET_COMPRESSION; // operation code
lpInBuffer ; // pointer to input buffer
nInBufferSize ;// size of input buffer
lpOutBuffer = NULL; // pointer to output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned ; // pointer to DWORD used by DeviceIoControl
function
ParameterslpInBuffer

Points to a buffer that contains a USHORT that specifies a new compression state for the file
or directory.
The following values are defined:

Value Meaning
COMPRESSION_FORMAT_NONE Uncompress the file or

directory.
COMPRESSION_FORMAT_DEFAULTCompress the file or directory,

using the default compression
format.

COMPRESSION_FORMAT_LZNT1 Compress the file or directory,
using the LZNT1 compression
format.

all other values Reserved for future use.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. The buffer must be large
enough to contain one USHORT value.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Pointer to a DWORD. This value cannot be NULL. Although the
FSCTL_SET_COMPRESSION operation produces no output data and lpOutBuffer should be
NULL, the DeviceIoControl function uses the variable pointed to by lpBytesReturned. After
the operation, the value of this variable is without meaning.Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksOn this release, LZNT1 is the only compression algorithm implemented. As a result, LZNT1 will be
used as the DEFAULT compression method. Future releases may have additional compression
methods which may be used as the DEFAULT.

If the file system of the volume containing the specified file or directory does not support per-file or
per-directory compression, the FSCTL_SET_COMPRESSION operation fails.

Windows NT release 3.51 supports file compression on volumes formatted with NTFS.

The compression state change of the file or directory occurs synchronously with the call to
DeviceIoControl.

You can obtain the compression state of a file or directory by using the
FSCTL_GET_COMPRESSION DeviceIoControl operation.

You can obtain the compression attribute of a file or directory by calling the GetFileAttributes
function. The compression attribute indicates whether a file or directory is compressed. The
compression state indicates whether a file or directory is compressed and, if it is, the format of the
compressed data.See AlsoDeviceIoControl, FSCTL_GET_COMPRESSION, GetFileAttributes

FSCTL_UNLOCK_VOLUME
The FSCTL_UNLOCK_VOLUME DeviceIoControl operation unlocks a volume.dwIoControlCode = FSCTL_UNLOCK_VOLUME; // operation code
lpInBuffer = NULL; // pointer to input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // pointer to output buffer; not used; must be NULL
nOutBufferSize ; // size of output buffer; not used; must be zero
lpBytesReturned ; // pointer to DWORD used by DeviceIoControl function
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Pointer to a DWORD. This value cannot be NULL. Although the FSCTL_UNLOCK_VOLUME
operation produces no output data and lpOutBuffer should be NULL, the DeviceIoControl
function uses the variable pointed to by lpBytesReturned. After the operation, the value of this
variable is without meaning.Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksAn application can call the FSCTL_LOCK_VOLUME DeviceIoControl operation to lock a
volume.

The hDevice handle passed to DeviceIoControl must be a handle to a volume, opened for direct
access. An application can obtain such a handle by calling CreateFile with lpFileName set to a
string that looks like this:\\.\X:where X is a hard-drive partition letter, floppy disk drive, or CD-ROM drive. The application must
also specify the FILE_SHARE_READ and FILE_SHARE_WRITE flags in the dwShareMode
parameter of CreateFile.See AlsoCreateFile, DeviceIoControl, FSCTL_LOCK_VOLUME

GdiComment
The GdiComment function copies a comment from a buffer into a specified enhanced-format
metafile.

BOOL GdiComment(
HDC hdc, // handle to a device context
UINT cbSize, // size of text buffer
CONST BYTE *lpData // pointer to text buffer

);Parametershdc
Identifies an enhanced-metafile device context.

cbSize
Specifies the length of the comment buffer, in bytes.

lpData
Points to the buffer that contains the comment.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA comment can include any kind of private information ¾ for example, the source of a picture and
the date it was created. A comment should begin with an application signature, followed by the
data.

Comments should not contain application-specific or position-specific data. Position-specific data
specifies the location of a record, and it should not be included because one metafile may be
embedded within another metafile.

A public comment is a comment that begins with the comment signature identifier
GDICOMMENT_IDENTIFIER. The following public comments are defined:

Comment Description

GDICOMMENT_WINDOWS_METAFILE
The GDICOMMENT_WINDOWS_METAFILE public
comment contains a Windows-format metafile that is
equivalent to an enhanced-format metafile. This
comment is written only by the SetWinMetaFileBits
function. The comment record, if given, follows the
ENHMETAHEADER metafile record. The comment has
the following form:DWORD ident; // This contains GDICOMMENT_IDENTIFIER.

DWORD iComment; // This contains GDICOMMENT_WINDOWS_METAFILE.
DWORD nVersion; // This contains the version number of the
// Windows-format metafile.
DWORD nChecksum;// This is the additive DWORD checksum for
// the enhanced metafile. The checksum
// for the enhanced metafile data including
// this comment record must be zero.
// Otherwise, the enhanced metafile has been
// modified and the Windows-format
// metafile is no longer valid.
DWORD fFlags; // This must be zero.
DWORD cbWinMetaFile; // This is the size, in bytes. of the
// Windows-format metafile data that follows.GDICOMMENT_BEGINGROUP

The GDICOMMENT_BEGINGROUP public comment identifies the
beginning of a group of drawing records. It identifies an object within an
enhanced metafile. The comment has the following form:DWORD ident; // This contains GDICOMMENT_IDENTIFIER.

DWORD iComment; // This contains GDICOMMENT_BEGINGROUP.
RECTL rclOutput;// This is the bounding rectangle for the

// object in logical coordinates.
DWORD nDescription; // This is the number of characters in the

// optional Unicode description string that
// follows. This is zero if there is no
// description string.GDICOMMENT_ENDGROUP

The GDICOMMENT_ENDGROUP public comment identifies the end of a
group of drawing records. The GDICOMMENT_BEGINGROUP comment
and the GDICOMMENT_ENDGROUP comment must be included in a pair
and may be nested. The comment has the following form:DWORD ident; // This contains GDICOMMENT_IDENTIFIER.

DWORD iComment; // This contains GDICOMMENT_ENDGROUP.GDICOMMENT_MULTIFORMATS
The GDICOMMENT_MULTIFORMATS public comment allows multiple
definitions of a picture to be included in an enhanced metafile. Using this
comment, for example, an application can include an encapsulated
PostScript definition as well as an enhanced metafile definition of a
picture. When the record is played back, GDI selects and renders the first
format recognized by the device. The comment has the following form:DWORD ident;// This contains GDICOMMENT_IDENTIFIER.

DWORD iComment; // This contains GDICOMMENT_MULTIFORMATS.
RECTL rclOutput; // This is the bounding rectangle for the

// picture in logical coordinates.
DWORD nFormats; // This contains the number of formats in

// the comment.
EMRFORMAT aemrformat[1];// This is an array of EMRFORMAT structures

// in the order of preference. The data
// for each format follows the last
// EMRFORMAT structure.The EMRFORMAT structure has the following form:typedef struct tagEMRFORMAT {
DWORD dSignature;
DWORD nVersion;
DWORD cbData;
DWORD offData;

} EMRFORMAT;
See AlsoCreateEnhMetaFile, EMRFORMAT, SetWinMetaFileBits

GdiFlush
The GdiFlush function flushes the calling thread's current batch.

BOOL GdiFlush(VOID)ParametersThis function has no parameters.Return ValuesIf all functions in the current batch succeed, the return value is nonzero.

If not all functions in the current batch succeed, the return value is zero, indicating that at least
one function returned an error.RemarksBatching enhances drawing performance by minimizing the amount of time needed to call GDI
drawing functions that return Boolean values. The system accumulates the parameters for calls to
these functions in the current batch and then calls the functions when the batch is flushed by any
of the following means:

· Calling the GdiFlush function
· Reaching or exceeding the batch limit set by the GdiSetBatchLimit function
· Filling the batching buffers
· Calling any GDI function that does not return a Boolean value

The return value for GdiFlush applies only to the functions in the batch at the time GdiFlush is
called. Errors that occur when the batch is flushed by any other means are never reported.

The GdiGetBatchLimit function returns the batch limit.

Note that the batch limit is maintained for each thread separately. In order to completely disable
batching, call GdiSetBatchLimit(1) during the initialization of each thread.

An application should call GdiFlush before a thread goes away if there is a possibility that there
are pending function calls in the graphics batch queue. The operating system does not execute
such batched functions when a thread goes away.

A multithreaded application that serializes access to GDI objects with a mutex must ensure
flushing the GDI batch queue by calling GdiFlush as each thread releases ownership of the GDI
object. This prevents collisions of the GDI objects (device contexts, metafiles, and so on).See AlsoGdiGetBatchLimit, GdiSetBatchLimit

GdiGetBatchLimit
The GdiGetBatchLimit function returns the maximum number of function calls that can be
accumulated in the calling thread's current batch. The system flushes the current batch whenever
this limit is exceeded.

DWORD GdiGetBatchLimit(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the batch limit.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe batch limit is set by using the GdiSetBatchLimit function. Setting the limit to 1 effectively
disables batching.

Only GDI drawing functions that return Boolean values can be batched; calls to any other GDI
functions immediately flush the current batch. Exceeding the batch limit or calling the GdiFlush
function also flushes the current batch.

When the system batches a function call, the function returns TRUE. The actual return value for
the function is reported only if GdiFlush is used to flush the batch.

Note that the batch limit is maintained for each thread separately. In order to completely disable
batching, call GdiSetBatchLimit(1) during the initialization of each thread.See AlsoGdiFlush, GdiSetBatchLimit

GdiSetBatchLimit
The GdiSetBatchLimit function sets the maximum number of functions that can be accumulated
in the calling thread's current batch. The system flushes the current batch whenever this limit is
exceeded.

DWORD GdiSetBatchLimit(
DWORD dwLimit // batch limit

);ParametersdwLimit
Specifies the batch limit to be set. A value of 0 sets the default limit. A value of 1 disables
batching.

Return ValuesIf the function succeeds, the return value is the previous batch limit.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOnly GDI drawing functions that return Boolean values can be accumulated in the current batch;
calls to any other GDI functions immediately flush the current batch. Exceeding the batch limit or
calling the GdiFlush function also flushes the current batch.

When the system accumulates a function, the function returns TRUE to indicate it is in the batch.
When the system flushes the current batch and executes the function for the second time, the
return value is either TRUE or FALSE, depending on whether the function succeeds. This second
return value is reported only if GdiFlush is used to flush the batch.

Note that the batch limit is maintained for each thread separately. In order to completely disable
batching, call GdiSetBatchLimit(1) during the initialization of each thread.See AlsoGdiFlush, GdiGetBatchLimit

GenerateConsoleCtrlEvent
The GenerateConsoleCtrlEvent function sends a specified signal to a console process group
that shares the console associated with the calling process.

BOOL GenerateConsoleCtrlEvent(
DWORD dwCtrlEvent, // signal to generate
DWORD dwProcessGroupId // process group to get signal

);ParametersdwCtrlEvent
Specifies the type of signal to generate. One of the following values is specified:

Value Meaning
CTRL_C_EVENT Generates a CTRL+C signal.
CTRL_BREAK_EVENT Generates a CTRL+BREAK signal.

dwProcessGroupId
Specifies the identifier of the process group that receives the signal. A process group is
created when the CREATE_NEW_PROCESS_GROUP flag is specified in a call to the
CreateProcess function. The process identifier of the new process is also the process group
identifier of a new process group. The process group includes all processes that are
descendants of the root process. Only those processes in the group that share the same
console as the calling process receive the signal. In other words, if a process in the group
creates a new console, that process does not receive the signal, nor do its descendants.
If this parameter is zero, the signal is generated in all processes that share the console of the
calling process.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksGenerateConsoleCtrlEvent causes the control handler functions of processes in the target group
to be called. All console processes have a default handler function that calls the ExitProcess
function. A console process can use the SetConsoleCtrlHandler function to install or remove
other handler functions.

SetConsoleCtrlHandler can also enable an inheritable attribute that causes the calling process
to ignore CTRL+C signals. If GenerateConsoleCtrlEvent sends a CTRL+C signal to a process for
which this attribute is enabled, the handler functions for that process are not called. CTRL+BREAK
signals always cause the handler functions to be called.See AlsoCreateProcess, ExitProcess, SetConsoleCtrlHandler

GetAce
The GetAce function obtains a pointer to an ACE in an ACL.

An ACE is an access control entry. An ACL is an access control list.

BOOL GetAce(
PACL pAcl, // pointer to access-control list
DWORD dwAceIndex, // index of ACE to retrieve
LPVOID *pAce // pointer to pointer to ACE

);ParameterspAcl
Points to an ACL structure containing the ACE to be retrieved.

dwAceIndex
Specifies the ACE to which a pointer is retrieved. A value of 0 corresponds to the first ACE in
the ACL, 1 to the second ACE, and so on.

pAce
Points to a pointer the function sets to the address of the ACE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, AddAccessAllowedAce, AddAccessDeniedAce, AddAce, AddAuditAccessAce,
GetAclInformation, InitializeAcl

GetAclInformation
The GetAclInformation function retrieves information about an access-control list (ACL).

BOOL GetAclInformation(
PACL pAcl, // pointer to access-control list
LPVOID pAclInformation, // pointer to ACL information
DWORD nAclInformationLength, // size of ACL information
ACL_INFORMATION_CLASS dwAclInformationClass // class of requested information

);ParameterspAcl
Points to an ACL structure. The function retrieves information about this ACL.

pAclInformation
Points to a buffer receiving the requested information. The structure put into the buffer
depends on the information class requested in the dwAclInformationClass parameter.

nAclInformationLength
Specifies the size, in bytes, of the buffer pointed to by the pAclInformation parameter.

dwAclInformationClass
Specifies an ACL_INFORMATION_CLASS enumerated type that gives the class of
information requested. This parameter can be one of two values from this enumerated type. If
the value is AclRevisionInformation, the function fills the buffer pointed to by the
pAclInformation parameter with an ACL_REVISION_INFORMATION structure.
If the value is AclSizeInformation, the function fills the buffer pointed to by the pAclInformation
parameter with an ACL_SIZE_INFORMATION structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, ACL_REVISION_INFORMATION, ACL_SIZE_INFORMATION, GetAce, InitializeAcl,
IsValidAcl, SetAclInformation

GetACP
The GetACP function retrieves the current ANSI code-page identifier for the system.

UINT GetACP(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the current ANSI code-page identifier for the system,
or a default identifier if no code page is current.RemarksFollowing are the ANSI code-page identifiers:

Identifier Meaning

874 Thai
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1200 Unicode (BMP of ISO 10646)
1250 Windows 3.1 Eastern European
1251 Windows 3.1 Cyrillic
1252 Windows 3.1 Latin 1 (US, Western Europe)
1253 Windows 3.1 Greek
1254 Windows 3.1 Turkish
1255 Hebrew
1256 Arabic
1257 Baltic
See AlsoGetCPInfo, GetOEMCP

GetActiveWindow
The GetActiveWindow function retrieves the window handle to the active window associated with
the thread that calls the function.

HWND GetActiveWindow(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle to the active window associated with the
thread that calls the function. If the calling thread does not have an active window, the return
value is NULL.See AlsoSetActiveWindow

GetArcDirection
The GetArcDirection function returns the current arc direction for the specified device context.
Arc and rectangle functions use the arc direction.

int GetArcDirection(
HDC hdc // handle to device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value specifies the current arc direction. Following are the
valid return values:

Value Meaning

AD_COUNTERCLOCKWISEArcs and rectangles are drawn
counterclockwise.

AD_CLOCKWISE Arcs and rectangles are drawn clockwise.

If an error occurs, the return value is zero.See AlsoSetArcDirection

GetAspectRatioFilterEx
The GetAspectRatioFilterEx function retrieves the setting for the current aspect-ratio filter.

BOOL GetAspectRatioFilterEx(
HDC hdc, // handle to device context
LPSIZE lpAspectRatio // pointer to aspect-ratio filter

);Parametershdc
Identifies a device context.

lpAspectRatio
Points to a SIZE structure that receives the current aspect-ratio filter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe aspect ratio is the ratio formed by the width and height of a pixel on a given device.

Windows provides a special filter, the aspect-ratio filter, to select fonts that were designed for a
particular device. An application can specify that Windows should only retrieve fonts matching the
specified aspect ratio by calling the SetMapperFlags function.See AlsoSetMapperFlags, SIZE

GetAsyncKeyState
The GetAsyncKeyState function determines whether a key is up or down at the time the function
is called, and whether the key was pressed after a previous call to GetAsyncKeyState.

SHORT GetAsyncKeyState(
int vKey // virtual-key code

);ParametersvKey
Specifies one of 256 possible virtual-key codes.
Windows NT: You can use left- and right-distinguishing constants to specify certain keys.
See the Remarks section for further information.
Windows 95: Windows 95 does not support the left- and right-distinguishing constants
available on Windows NT.

Return ValuesIf the function succeeds, the return value specifies whether the key was pressed since the last call
to GetAsyncKeyState, and whether the key is currently up or down. If the most significant bit is
set, the key is down, and if the least significant bit is set, the key was pressed after the previous
call to GetAsyncKeyState. The return value is zero if a window in another thread or process
currently has the keyboard focus.

Windows 95: Windows 95 does not support the left- and right-distinguishing constants. If you call
GetAsyncKeyState on the Windows 95 platform with these constants, the return value is zero.RemarksYou can use the virtual-key code constants VK_SHIFT, VK_CONTROL, and VK_MENU as values
for the vKey parameter. This gives the state of the SHIFT, CTRL, or ALT keys without distinguishing
between left and right.

Windows NT: You can use the following virtual-key code constants as values for vKey to
distinguish between the left and right instances of those keys:

VK_LSHIFT VK_RSHIFT

VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU

These left- and right-distinguishing constants are only available when you call the
GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, and MapVirtualKey
functions.

Windows 95: Windows 95 does not support the left- and right-distinguishing constants, and
returns 0 when you use these constants.

The GetAsyncKeyState function works with mouse buttons. However, it checks on the state of
the physical mouse buttons, not on the logical mouse buttons that the physical buttons are
mapped to. For example, the call GetAsyncKeyState(VK_LBUTTON) always returns the state of
the left physical mouse button, which may mapped to the left or right logical mouse button. You
can determine the system's current mapping of physical mouse buttons to logical mouse buttons
by callingGetSystemMetrics(SM_SWAPBUTTON)which returns TRUE if the mouse buttons have been swapped.See AlsoGetKeyboardState, GetKeyState, GetSystemMetrics, MapVirtualKey, SetKeyboardState

GetAtomName
The GetAtomName function retrieves a copy of the character string associated with the specified
local atom. This function replaces the GetAtomHandle function.

UINT GetAtomName(
ATOM nAtom, // atom identifying character string
LPTSTR lpBuffer, // address of buffer for atom string
int nSize // size of buffer

);ParametersnAtom
Specifies the local atom that identifies the character string to be retrieved.

lpBuffer
Points to the buffer for the character string.

nSize
Specifies the size, in characters, of the buffer.

Return ValuesIf the function succeeds, the return value is the length of the string copied to the buffer, in
characters, not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe string returned for an integer atom (an atom created by the MAKEINTATOM macro) is a null-
terminated string in which the first character is a pound sign (#) and the remaining characters
represent the unsigned integer originally passed to MAKEINTATOM.See AlsoAddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom,
GlobalGetAtomName, MAKEINTATOM

GetAuditedPermissionsFromAcl
[New - Windows NT]

The GetAuditedPermissionsFromAcl function returns the audited access rights for a specified
trustee. The audited rights are based on the access-control entries (ACEs) of a specified access-
control list (ACL). The audited access rights indicate the types of access attempts that cause the
system to generate an audit record in the system event log. The audited rights include those that
the ACL specifies for the trustee or for any groups of which the trustee is a member. In
determining the audited rights, the function does not consider the security privileges held by the
trustee.

DWORD GetAuditedPermissionsFromAcl(
PACL pacl, // ACL to get trustee's audited rights from
PTRUSTEE pTrustee, // trustee to get rights for
PACCESS_MASK pSuccessfulAuditedRights, // receives rights audited for successful access
PACCESS_MASK pFailedAuditRights // receives rights audited for failed access

);Parameterspacl
Pointer to an ACL from which to get the trustee's audited access rights.

pTrustee
Pointer to a TRUSTEE structure that identifies the trustee. A trustee can be a user, group, or
program (such as a Windows NT service). You can use a name or a security identifier (SID) to
identify a trustee.

pSuccessfulAuditedRights
Pointer to an ACCESS_MASK variable that receives a set of access rights. The system
generates an audit record when the trustee successfully uses any of these access rights.

pFailedAuditRights
Pointer to an ACCESS_MASK variable that receives a set of access rights based on the
access-control entries in the specified ACL. The system generates an audit record when the
trustee fails in an attempt to use any of these rights.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksThe GetAuditedPermissionsFromAcl function checks all system-audit ACEs in the ACL to
determine the audited rights for the trustee. For all ACEs that specify audited rights for a group,
GetAuditedPermissionsFromAcl enumerates the members of the group to determine whether
the trustee is a member. The function returns an error if it cannot enumerate the members of a
group.See AlsoACCESS_MASK, ACE, ACL, GetEffectiveRightsFromAcl, SID, SYSTEM_AUDIT_ACE,
TRUSTEE

GetBinaryType
The GetBinaryType function determines whether a file is executable, and if so, what type of
executable file it is. That last property determines which subsystem an executable file runs under.

BOOL GetBinaryType (
LPCTSTR lpApplicationName, // points to fully qualified path of file to test
LPDWORD lpBinaryType // points to variable to receive binary type information

);ParameterslpApplicationName
Points to a null-terminated string that contains the fully qualified path of the file whose binary
type the function shall determine.

lpBinaryType
Points to a variable to receive information about the executable type of the file specified by
lpApplicationName. The function adjusts a set of bit flags in this variable. The following bit flag
constants are defined:

Value Description
SCS_32BIT_BINARY A Win32-based application
SCS_DOS_BINARY An MS-DOS - based application
SCS_OS216_BINARY A 16-bit OS/2-based application
SCS_PIF_BINARY A PIF file that executes an MS-DOS -

based application
SCS_POSIX_BINARY A POSIX - based application
SCS_WOW_BINARY A 16-bit Windows-based application

Return ValuesIf the file is executable, the return value is nonzero. The function sets the variable pointed to by
lpBinaryType to indicate the file's executable type.

If the function is not executable, or if the function fails, the return value is zero.

GetBitmapBits
The GetBitmapBits function copies the bitmap bits of a specified bitmap into a buffer.

The GetBitmapBits function is not implemented in the Win32 API. This function is provided for
compatibility with 16-bit versions of Windows. Win32-based applications should use the GetDIBits
function.

GetBitmapDimensionEx
The GetBitmapDimensionEx function retrieves the dimensions of a bitmap. The retrieved
dimensions must have been set by the SetBitmapDimensionEx function. The
GetMapDimensionEx function replaces the GetMapDimension function.

BOOL GetBitmapDimensionEx(
HBITMAP hBitmap, // handle of bitmap
LPSIZE lpDimension // address of structure receiving dimensions

);ParametershBitmap
Identifies the bitmap.

lpDimension
Points to a SIZE structure to receive the bitmap dimensions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe function returns a data structure that contains fields for the height and width of the bitmap. If
those dimensions have not yet been set, the structure that is returned will have zeroes in those
fields.See AlsoSetBitmapDimensionEx, SIZE

GetBkColor
The GetBkColor function returns the current background color for the specified device context.

COLORREF GetBkColor(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context whose background color is to be returned.

Return ValuesIf the function succeeds, the return value is a COLORREF value for the current background color.

If the function fails, the return value is CLR_INVALID.See AlsoGetBkMode, SetBkColor

GetBkMode
The GetBkMode function returns the current background mix mode for a specified device context.
The background mix mode of a device context affects text, hatched brushes, and pen styles that
are not solid lines.

int GetBkMode(
HDC hdc // handle to device context of interest

);Parametershdc
Identifies the device context whose background mode is to be returned.

Return ValuesIf the function succeeds, the return value specifies the current background mix mode, either
OPAQUE or TRANSPARENT.

If the function fails, the return value is zero.See AlsoGetBkColor, SetBkMode

GetBoundsRect
The GetBoundsRect function obtains the current accumulated bounding rectangle for a specified
device context.

Windows maintains an accumulated bounding rectangle for each application. An application can
retrieve and set this rectangle.

UINT GetBoundsRect(
HDC hdc, // handle to device context of interest
LPRECT lprcBounds, // points to structure to receive bounding rectangle
UINT flags // specifies function options

);Parametershdc
Identifies the device context whose bounding rectangle the function will return.

lprcBounds
Points to the RECT structure that will receive the current bounding rectangle. The
application's rectangle is returned in logical coordinates, and the Windows rectangle is
returned in screen coordinates.

flags
Specifies aspects of how the GetBoundsRect function will operate on a given call. This
parameter can be the following value:

Value Meaning
DCB_RESET Clears the bounding rectangle after returning it. If

this flag is not set, the bounding rectangle will not
be cleared.

Return ValuesThe return value specifies the state of the accumulated bounding rectangle; it can be one of the
following values:

Value Meaning

0 An error occurred. The given device context handle
is invalid.

DCB_DISABLE Boundary accumulation is off.
DCB_ENABLE Boundary accumulation is on.
DCB_RESET The bounding rectangle is empty.
DCB_SET The bounding rectangle is not empty.
RemarksThe DCB_SET value is a combination of the bit values DCB_ACCUMULATE and DCB_RESET.

Applications that check the DCB_RESET bit to determine whether the bounding rectangle is
empty must also check the DCB_ACCUMULATE bit. The bounding rectangle is empty only if the
DCB_RESET bit is 1 and the DCB_ACCUMULATE bit is 0.See AlsoSetBoundsRect

GetBrushOrgEx
The GetBrushOrgEx function retrieves the current brush origin for the specified device context.
This function replaces the GetBrushOrg function.

BOOL GetBrushOrgEx(
HDC hdc, // handle of device context
LPPOINT lppt // address of structure of coordinates

);Parametershdc
Identifies the device context.

lppt
Points to a POINT structure that receives the brush origin, in device coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA brush is a bitmap that Windows uses to paint the interiors of filled shapes.

The brush origin is a set of coordinates with values between 0 and 7, specifying the location of
one pixel in the bitmap. The default brush origin coordinates are (0,0). For horizontal coordinates,
the value 0 corresponds to the leftmost column of pixels; the value 7 corresponds to the rightmost
column. For vertical coordinates, the value 0 corresponds to the uppermost row of pixels; value 7
corresponds to the lowermost row. When Windows positions the brush at the start of any painting
operation, it maps the origin of the brush to the location in the window's client area specified by
the brush origin. For example, if the origin is set to (2,3), Windows maps the origin of the brush (0,
0) to the location (2,3) on the window's client area.

If an application uses a brush to fill the backgrounds of both a parent and a child window with
matching colors, it may be necessary to set the brush origin after painting the parent window but
before painting the child window.

Windows NT: The operating system automatically tracks the origin of all window-managed device
contexts and adjusts their brushes as necessary to maintain an alignment of patterns on the
surface.

Windows 95: Automatic tracking of the brush origin is not supported. Applications must use the
UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align the brush before using it.See AlsoPOINT, SelectObject, SetBrushOrgEx, UnrealizeObject

GetCapture
The GetCapture function retrieves the handle of the window (if any) that has captured the mouse.
Only one window at a time can capture the mouse; this window receives mouse input whether or
not the cursor is within its borders.

HWND GetCapture(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the capture window associated with the
current thread. If no window in the thread has captured the mouse, the return value is NULL.RemarksA NULL return value does not mean no other thread or process in the system has captured the
mouse; it just means the current thread has not captured the mouse.See AlsoReleaseCapture, SetCapture

GetCaretBlinkTime
The GetCaretBlinkTime function returns the elapsed time, in milliseconds, required to invert the
caret's pixels. The user can set this value using the Control Panel.

UINT GetCaretBlinkTime(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the blink time, in milliseconds.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetCaretBlinkTime

GetCaretPos
The GetCaretPos function copies the caret's position, in client coordinates, to the specified
POINT structure.

BOOL GetCaretPos(
LPPOINT lpPoint // address of structure to receive coordinates

);ParameterslpPoint
Points to the POINT structure that is to receive the client coordinates of the caret.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe caret position is always given in the client coordinates of the window that contains the caret.See AlsoSetCaretPos, POINT

GetCharABCWidths
The GetCharABCWidths function retrieves the widths, in logical units, of consecutive characters
in a given range from the current TrueType font. This function succeeds only with TrueType fonts.

BOOL GetCharABCWidths(
HDC hdc, // handle of device context
UINT uFirstChar, // first character in range to query
UINT uLastChar, // last character in range to query
LPABC lpabc // address of character-width structure

);Parametershdc
Identifies the device context.

uFirstChar
Specifies the first character in the group of consecutive characters from the current font.

uLastChar
Specifies the last character in the group of consecutive characters from the current font.

lpabc
Points to an array of ABC structures that receive the character widths when the function
returns. This array must contain at least as many ABC structures as there are characters in
the range specified by the uFirstChar and uLastChar parameters.

Return ValuesIf the function succeeds, the return value is nonzero

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe TrueType rasterizer provides ABC character spacing after a specific point size has been
selected. "A" spacing is the distance added to the current position before placing the glyph. "B"
spacing is the width of the black part of the glyph. "C" spacing is the distance added to the current
position to provide white space to the right of the glyph. The total advanced width is given by A+
B+C.

When the GetCharABCWidths function retrieves negative "A" or "C" widths for a character, that
character includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should use the value stored in the
otmEMSquare member of a OUTLINETEXTMETRIC structure. This value can be retrieved by
calling the GetOutlineTextMetrics function.

The ABC widths of the default character are used for characters outside the range of the currently
selected font.

To retrieve the widths of characters in non-TrueType fonts, applications should use the
GetCharWidth function.See AlsoGetCharWidth, GetOutlineTextMetrics, OUTLINETEXTMETRIC, ABC

GetCharABCWidthsFloat
The GetCharABCWidthsFloat function retrieves the widths, in logical units, of consecutive
characters in a specified range from the current font.

BOOL GetCharABCWidthsFloat(
HDC hdc, // handle of device context
UINT iFirstChar, // first character in range to query
UINT iLastChar, // last character in range to query
LPABCFLOAT lpABCF // address of character-width structure

);Parametershdc
Identifies the device context.

iFirstChar
Specifies the code point of the first character in the group of consecutive characters where the
ABC widths are sought.

iLastChar
Specifies the code point of the last character in the group of consecutive characters where the
ABC widths are sought. This range is inclusive. An error is returned if the specified last
character precedes the specified first character.

lpABCF
Points to an application-defined buffer with an array of ABCFLOAT structures to receive the
character widths when the function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksUnlike the GetCharABCWidths function that returns widths only for TrueType fonts, the
GetCharABCWidthsFloat function retrieves widths for any font. The widths returned by this
function are in the IEEE floating-point format.

If the current world-to-device transformation is not identified, the returned widths may be
noninteger values, even if the corresponding values in the device space are integers.

"A" spacing is the distance added to the current position before placing the glyph. "B" spacing is
the width of the black part of the glyph. "C" spacing is the distance added to the current position to
provide white space to the right of the glyph. The total advanced width is given by A+B+C.

The ABC spaces are measured along the character base line of the selected font.

The ABC widths of the default character are used for characters outside the range of the currently
selected font.See AlsoABCFLOAT, GetCharABCWidths, GetCharWidth, GetCharWidthFloat

GetCharacterPlacement
[Now Supported on Windows NT]

The GetCharacterPlacement function retrieves information about a character string, such as
character widths, caret positioning, ordering within the string, and glyph rendering. The type of
information returned depends on the dwFlags parameter and is based on the currently selected
font in the given display context. The function copies the information to the specified
GCP_RESULTS structure or to one or more arrays specified by the structure.

DWORD GetCharacterPlacement(
HDC hdc, // handle to device context
LPCTSTR lpString, // pointer to string
int nCount, // number of characters in string
int nMaxExtent, // maximum extent for displayed string
LPGCP_RESULTS *lpResults, // pointer to buffer for placement result
DWORD dwFlags // placement flags

);Parametershdc
Identifies the device context.

lpString
Points to the character string to process.

nCount
Specifies the number of characters in the string.

nMaxExtent
Specifies the maximum extent (in logical units) to which the string is processed. Characters
that, if processed, would exceed this extent are ignored. Computations for any required
ordering or glyph arrays apply only to the included characters. This parameter is used only if
the GCP_MAXEXTENT value is given in the dwFlags parameter. As the function processes
the input string, each character and its extent is added to the output, extent, and other arrays
only if the total extent has not yet exceeded the maximum. Once the limit is reached,
processing will stop.

lpResults
Points to a GCP_RESULTS structure that receives the results of the function.

dwFlags
Specifies how to process the string into the required arrays. This parameter can be one or
more of the following values:

Value Meaning
GCP_CLASSIN Specifies that the lpClass array contains

preset classifications for characters. The
classifications may be the same as on
output. If the particular classification for a
character is not known, the
corresponding location in the array must
be set to zero. for more information about
the classifications, see GCP_RESULTS.
This is useful only if
GetFontLanguageInfo returned the
GCP_REORDER flag.

GCP_DIACRITIC Determines how diacritics in the string
are handled. If this value is not set,
diacritics are treated as zero-width
characters. For example, a Hebrew string
may contain diacritics, but you may not
want to display them.
Use GetFontLanguageInfo to determine
whether a font supports diacritics. If it
does, you can use or not use the
GCP_DIACRITIC flag in the call to
GetCharacterPlacement, depending on
the needs of your application.

GCP_DISPLAYZWG For languages that need reordering or
different glyph shapes depending on the
positions of the characters within a word,
nondisplayable characters often appear
in the codepage. For example, in the
Hebrew codepage, there are Left-To-
Right and Right-To-Left markers, to help
determine the final positioning of
characters within the output strings.
Normally these are not displayed and are
removed from the lpGlyphs and lpDx
arrays. You can use the
GCP_DISPLAYZWG flag to display these
characters.

GCP_GLYPHSHAPE Specifies that some or all characters in
the string are to be displayed using
shapes other than the standard shapes
defined in the currently selected font for
the current code page. Some languages,
such as Arabic, cannot support glyph
creation unless this value is given. As a
general rule, if GetFontLanguageInfo
returns this value for a string, this value
must be used with
GetCharacterPlacement.

GCP_JUSTIFY Adjusts the extents in the lpDx array so
that the string length is the same as
nMaxExtent. GCP_JUSTIFY may only be
used in conjunction with
GCP_MAXEXTENT.

GCP_JUSTIFYIN Specifies that the lpDx array contains
justification weights on input. Normally, a
justification weight can be either 0 or 1,
where 1 indicates that the width of the
given character can be adjusted for
justification. For languages in which
GetFontLanguageInfo returns the
GCP_KASHIDA flag, the justification
weight can be one of the
GCP_ARAJUST_* values.

GCP_KASHIDA Use Kashidas as well as, or instead of,
adjusted extents to modify the length of
the string so that it is equal to the value
given by nMaxExtent. In the lpDx array, a
Kashida is indicated by a negative
justification index. GCP_KASHIDA may
be used only in conjunction with
GCP_JUSTIFY and only if the font (and
language) support Kashidas. Use
GetFontLanguageInfo to determine
whether the current font supports
Kashidas.
Using Kashidas to justifiy the string can
result in the number of glyphs required
being greater than the number of
characters in the input string. Because of
this, when Kashidas are used, the
application cannot assume that setting
the arrays to be the size of the input
string will be sufficient. (The maximum
possible will be approximately
dxPageWidth/dxAveCharWidth, where
dxPageWidth is the width of the

document and dxAveCharWidth is the
average character width as returned from
a GetTextMetrics call).
Note that just because
GetFontLanguageInfo returns the
GCP_KASHIDA flag does not mean that
it has to be used in the call to
GetCharacterPlacement, just that the
option is available.

GCP_LIGATE Use ligations wherever characters ligate.
A ligation occurs where one glyph is used
for two or more characters. For example,
the letters "a" and "e" can ligate to "æ".
For this to be used, however , both the
language support and the font must
support the required glyphs (the example
given will NOT be processed by default in
English).
Use GetFontLanguageInfo to determine
whether the current font supports ligation.
If it does and a specific maximum is
required for the number of characters that
will ligate, set the number in the first
element of the lpGlyphs array. If normal
ligation is required, set this value to zero.
If GCP_LIGATE is not given, no ligation
will take place. See GCP_RESULTS for
more information.
If the GCP_REORDER value is usually
required for the character set but is not
given, the output will be meaningless
unless the string being passed in is
already in visual ordering (that is, the
result that gets put into lpGcpResults->
lpOutString in one call to
GetCharacterPlacement is the input
string of a second call).
Note that just because
GetFontLanguageInfo returns the
GCP_LIGATE flag does not mean that it
has to be used in the call to
GetCharacterPlacement, just that the
option is available.

GCP_MAXEXTENT Compute extents of the string only as
long as the resulting extent, in logical
units, does not exceed the values given
by the nMaxExtent parameter.

GCP_NEUTRALOVERRIDE Certain languages only. Override the
normal handling of neutrals and treat
them as strong characters that match the
strings reading order. Useful only with the
GCP_REORDER flag.

GCP_NUMERICOVERRIDE Certain languages only. Override the
normal handling of numerics and treat
them as strong characters that match the
strings reading order. Useful only with the
GCP_REORDER flag.

GCP_NUMERICSLATIN Arabic/Thai only. Use standard Latin
glyphs for numbers and override the
system default. To determine if this
option is available in the language of the
font, use GetStringTypeEx to see if the

language supports more than one
number format.

GCP_NUMERICSLOCAL Arabic/Thai only. Use local glyphs for
numeric characters and override the
system default. To determine if this
option is available in the language of the
font, use GetStringTypeEx to see if the
language supports more than one
number format.

GCP_REORDER Reorder the string. Use for languages
that are not SBCS and left-to-right
reading order. If this value is not given,
the string is assumed to be in display
order already.
If this flag is set for Semitic languages
and the lpClass array is used, the first
two elements of the array are used to
specify the reading order beyond the
bounds of the string.
GCP_CLASS_PREBOUNDRTL and
GCP_CLASS_PREBOUNDLTR can be
used to set the order. If no preset order is
required, set the values to zero. These
values can be combined with other
values if theGCPCLASSIN flag is set.
If the GCP_REORDER value is not
given, the lpString parameter is taken to
be visual ordered for languages where
this is used, and the lpOutString and
lpOrder fields are ignored.
Use GetFontLanguageInfo to determine
whether the current font supports
reordering.

GCP_SYMSWAPOFF Semitic languages only. Specifies that
swappable characters are not reset. For
example, in a right-to-left string, the '('
and ')' are not reversed.

GCP_USEKERNING Use kerning pairs in the font (if any) when
creating the widths arrays. Use
GetFontLanguageInfo to determine
whether the current font supports kerning
pairs.
Note that just because
GetFontLanguageInfo returns the
GCP_USEKERNING flag does not mean
that it has to be used in the call to
GetCharacterPlacement, just that the
option is available. Most TrueType fonts
have a kerning table, but you do not have
to use it.

It is recommended that an application use the GetFontLanguageInfo function to determine
whether the GCP_DIACRITIC, GCP_DBCS, GCP_USEKERNING, GCP_LIGATE,
GCP_REORDER, GCP_GLYPHSHAPE, and GCP_KASHIDA values are valid for the currently
selected font. If not valid, GetCharacterPlacement ignores the value.

The GCP_NODIACRITICS value is no longer defined and should not be used.Return ValuesIf the function succeeds, the return value is the same as the return value from
GetTextExtentPoint32, the width and height of the string.

If the function fails, the return value is zero.RemarksGetCharacterPlacement ensures that an application can correctly process text regardless of the
international setting and type of fonts available. Applications use this function before using the

ExtTextOut function and in place of the GetTextExtentPoint32 function (and occasionally in
place of the GetCharWidth32 and GetCharABCWidths functions).

Using GetCharacterPlacement to retrieve intercharacter spacing and index arrays is not always
necessary unless justification or kerning is required. For non-Latin fonts, applications can improve
the speed at which the ExtTextOut function renders text by using GetCharacterPlacement to
retrieve the intercharacter spacing and index arrays before calling ExtTextOut. This is especially
useful when rendering the same text repeatedly or when using intercharacter spacing to position
the caret. If the lpGlyphs output array is used in the call to ExtTextOut, the ETO_GLYPH_INDEX
flag must be set.

GetCharacterPlacement checks the lpOrder, lpDx, lpCaretPos, lpOutString, and lpGlyphs
members of the GCP_RESULTS structure and fills the corresponding arrays if these members
are not set to NULL. If GetCharacterPlacement cannot fill an array, it sets the corresponding
member to NULL. To ensure retrieval of valid information, the application is responsible for setting
the member to a valid address before calling the function and for checking the value of the
member after the call. If the GCP_JUSTIFY or GCP_USEKERNING values are given, the lpDx
and/or lpCaretPos members must have valid addresses. Also, the lpDx member must have a
valid address if GCP_JUSTIFYIN is given.

When computing justification, if the trailing characters in the string are spaces, the function
reduces the length of the string and removes the spaces prior to computing the justification. If the
array consists of only spaces, the function returns an error.See AlsoExtTextOut, GCP_RESULTS, GetCharABCWidths, GetCharWidth32, GetFontLanguageInfo,
GetStringTypeEx, GetTextExtentPoint32, GetTextMetrics

GetCharWidth
The GetCharWidth function retrieves the widths, in logical coordinates, of consecutive characters
in a specified range from the current font.

GetCharWidth is maintained for compatibility with 16-bit versions of Windows. Win32-based
applications should call the GetCharWidth32 function, which provides more accurate results.

BOOL GetCharWidth(
HDC hdc, // handle of device context
UINT iFirstChar, // first character in range to query
UINT iLastChar, // last character in range to query
LPINT lpBuffer // address of buffer for widths

);Parametershdc
Identifies the device context.

iFirstChar
Specifies the first character in the group of consecutive characters.

iLastChar
Specifies the last character in the group of consecutive characters, which must not precede
the specified first character.

lpBuffer
Points to a buffer to receive the widths.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe range is inclusive; that is, the returned widths include the widths of the characters specified
by the iFirstChar and iLastChar parameters.

If a character does not exist in the current font, it is assigned the width of the default character.See AlsoGetCharABCWidths, GetCharABCWidthsFloat, GetCharWidth32, GetCharWidthFloat

GetCharWidth32
The GetCharWidth32 function retrieves the widths, in logical coordinates, of consecutive
characters in a specified range from the current font. This function supersedes the GetCharWidth
function.

BOOL GetCharWidth32(
HDC hdc, // handle of device context
UINT iFirstChar, // first character in range to query
UINT iLastChar, // last character in range to query
LPINT lpBuffer // address of buffer for widths

);Parametershdc
Identifies the device context.

iFirstChar
Specifies the first character in the group of consecutive characters.

iLastChar
Specifies the last character in the group of consecutive characters, which must not precede
the specified first character.

lpBuffer
Points to a buffer to receive the widths.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe range is inclusive; that is, the returned widths include the widths of the characters specified
by the iFirstChar and iLastChar parameters.

If a character does not exist in the current font, it is assigned the width of the default character.See AlsoGetCharABCWidths, GetCharABCWidthsFloat, GetCharWidth, GetCharWidthFloat

GetCharWidthFloat
The GetCharWidthFloat function retrieves the fractional widths of consecutive characters in a
specified range from the current font.

BOOL GetCharWidthFloat(
HDC hdc, // handle of device context
UINT iFirstChar, // first-character code point
UINT iLastChar, // last-character code point
PFLOAT pxBuffer // address of buffer that receives width-values

);Parametershdc
Identifies the device context.

iFirstChar
Specifies the code point of the first character in the group of consecutive characters.

iLastChar
Specifies the code point of the last character in the group of consecutive characters.

pxBuffer
Points to a buffer to receive the character widths.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe returned widths are in the 32-bit IEEE floating-point format. (The widths are measured along
the base line of the characters.)

If the iFirstChar parameter identifies the letter a and the iLastChar parameter identifies the letter z,
GetCharWidthFloat retrieves the widths of all lowercase characters.

If a character does not exist in the current font, it is assigned the width of the default character.See AlsoGetCharABCWidths, GetCharABCWidthsFloat, GetCharWidth32

GetClassInfo
The GetClassInfo function retrieves information about a window class.

The GetClassInfo function has been superseded by the GetClassInfoEx function. You can still
use GetClassInfo, however, if you do not need information about the class small icon.

BOOL GetClassInfo(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpClassName, // address of class name string
LPWNDCLASS lpWndClass // address of structure for class data

);ParametershInstance
Identifies the instance of the application that created the class. To retrieve information about
classes defined by Windows (such as buttons or list boxes), set this parameter to NULL.

lpClassName
Points to a null-terminated string containing the class name. The name must be that of a
preregistered class or a class registered by a previous call to the RegisterClass function.
Alternatively, this parameter can be an integer atom. If so, it must be a global atom created by
a previous call to the GlobalAddAtom function. The atom, a 16-bit value less than 0xC000,
must be in the low-order word of lpClassName; the high-order word must be zero.

lpWndClass
Points to a WNDCLASS structure that receives the information about the class.

Return ValuesIf the function finds a matching class and successfully copies the data, the return value is
nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetClassInfoEx, GetClassLong, GetClassName, GetClassWord, GlobalAddAtom,
RegisterClass, WNDCLASS

GetClassInfoEx
The GetClassInfoEx function retrieves information about a window class, including the handle of
the small icon associated with the window class. The GetClassInfo function does not retrieve the
handle of the small icon.

BOOL GetClassInfoEx(
HINSTANCE hinst, // handle of application instance
LPCTSTR lpszClass, // address of class name string
LPWNDCLASSEX lpwcx // address of structure for class data

);Parametershinst
Identifies the instance of the application that created the class. To retrieve information about
classes defined by Windows (such as buttons or list boxes), set this parameter to NULL.

lpszClass
Points to a null-terminated string containing the class name. The name must be that of a
preregistered class or a class registered by a previous call to the RegisterClass function.
Alternatively, this parameter can be an integer atom. If this parameter is an integer atom, it
must be a global atom created by a previous call to the GlobalAddAtom function. The atom,
a 16-bit value less than 0xC000, must be in the low-order word of lpszClass; the high-order
word must be zero.

lpwcx
Points to a WNDCLASSEX structure that receives the information about the class.

Return ValuesIf the function finds a matching class and successfully copies the data, the return value is
nonzero.

If the function does not find a matching class and successfully copy the data, the return value is
zero. To get extended error information, call GetLastError.See AlsoGetClassLong, GetClassInfo, GetClassName, GetClassWord, GlobalAddAtom,
RegisterClassEx

GetClassLong
The GetClassLong function retrieves the specified 32-bit (long) value from the WNDCLASS
structure associated with the specified window.

DWORD GetClassLong(
HWND hWnd, // handle of window
int nIndex // offset of value to retrieve

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the 32-bit value to retrieve. To retrieve a 32-bit value from the extra class memory,
specify the positive, zero-based byte offset of the value to be retrieved. Valid values are in the
range zero through the number of bytes of extra class memory, minus four; for example, if you
specified 12 or more bytes of extra class memory, a value of 8 would be an index to the third
32-bit integer. To retrieve any other value from the WNDCLASS structure, specify one of the
following values:

Value Action
GCW_ATOM Retrieves an ATOM value that uniquely

identifies the window class. This is the
same atom that the RegisterClass
function returns.

GCL_CBCLSEXTRA Retrieves the size, in bytes, of the extra
memory associated with the class.

GCL_CBWNDEXTRA Retrieves the size, in bytes, of the extra
window memory associated with each
window in the class. For information on
how to access this memory, see
GetWindowLong and GetWindowWord
.

GCL_HBRBACKGROUND Retrieves the handle of the background
brush associated with the class.

GCL_HCURSOR Retrieves the handle of the cursor
associated with the class.

GCL_HICON Retrieves the handle of the icon
associated with the class.

GCL_HICONSM Retrieves the handle of the small icon
associated with the class.

GCL_HMODULE Retrieves the handle of the module that
registered the class.

GCL_MENUNAME Retrieves the address of the menu name
string. The string identifies the menu
resource associated with the class.

GCL_STYLE Retrieves the window-class style bits.
GCL_WNDPROC Retrieves the address of the window

procedure associated with the class.
Return ValuesIf the function succeeds, the return value is the requested 32-bit value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReserve extra class memory by specifying a nonzero value in the cbClsExtra member of the
WNDCLASS structure used with the RegisterClass function.See AlsoGetClassWord, GetWindowLong, GetWindowWord, RegisterClass, SetClassLong,
SetClassWord, WNDCLASS

GetClassName
The GetClassName function retrieves the name of the class to which the specified window
belongs.

int GetClassName(
HWND hWnd, // handle of window
LPTSTR lpClassName, // address of buffer for class name
int nMaxCount // size of buffer, in characters

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

lpClassName
Points to the buffer that is to receive the class name string.

nMaxCount
Specifies the length, in characters, of the buffer pointed to by the lpClassName parameter.
The class name string is truncated if it is longer than the buffer.

Return ValuesIf the function succeeds, the return value is the number of characters copied to the specified
buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoFindWindow, GetClassInfo, GetClassLong, GetClassWord

GetClassWord
The GetClassWord function retrieves the 16-bit (word) value at the specified offset into the extra
class memory for the window class to which the specified window belongs.

Other than GCW_ATOM and GCW_HICONSM, the GCW_ values are obsolete in the Win32 API.
You must use the GetClassLong function to retrieve the class values of a window.

WORD GetClassWord(
HWND hWnd, // handle of window
int nIndex // offset of value to retrieve

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the range
zero through the number of bytes of class memory, minus two; for example, if you specified
10 or more bytes of extra class memory, a value of eight would be an index to the fifth 16-bit
integer. There is an additional valid value:

Value Action
GCW_ATOM Retrieves an ATOM value that uniquely identifies

the window class. This is the same atom that the
RegisterClass function returns.

GCW_HICONSM Retrieves the handle of the small icon
associated with the window.

Return ValuesIf the function succeeds, the return value is the requested 16-bit value.

If the function fails, the return value is otherwise, it is zero. To get extended error information, call
GetLastError.RemarksReserve extra class memory by specifying a nonzero value in the cbClsExtra member of the
WNDCLASS structure used with the RegisterClass function.See AlsoGetClassLong, RegisterClass, SetClassLong, SetClassWord, WNDCLASS

GetClientRect
The GetClientRect function retrieves the coordinates of a window's client area. The client
coordinates specify the upper-left and lower-right corners of the client area. Because client
coordinates are relative to the upper-left corner of a window's client area, the coordinates of the
upper-left corner are (0,0).

BOOL GetClientRect(
HWND hWnd, // handle of window
LPRECT lpRect // address of structure for client coordinates

);ParametershWnd
Identifies the window whose client coordinates are to be retrieved.

lpRect
Points to a RECT structure that receives the client coordinates. The left and top members are
zero. The right and bottom members contain the width and height of the window.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetWindowRect, RECT

GetClipboardData
The GetClipboardData function retrieves data from the clipboard in a specified format. The
clipboard must have been opened previously.

HANDLE GetClipboardData(
UINT uFormat // clipboard format

);ParametersuFormat
Specifies a clipboard format. For a description of the clipboard formats, see the
SetClipboardData function.

Return ValuesIf the function succeeds, the return value is the handle of a clipboard object in the specified
format.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksAn application can enumerate the available formats in advance by using the
EnumClipboardFormats function.

The clipboard controls the handle that the GetClipboardData function returns, not the application.
The application should copy the data immediately. The application cannot rely on being able to
make long-term use of the handle. The application must not free the handle nor leave it locked.

The operating system performs implicit data format conversions between certain clipboard formats
when an application calls the GetClipboardData function. For example, if the CF_OEMTEXT
format is on the clipboard, a window can retrieve data in the CF_TEXT format. The format on the
clipboard is converted to the requested format on demand. The following table shows the
clipboard data type conversions that are available. Note that some of these automatic type
conversions are not available on all platforms.

Clipboard FormatConversion FormatPlatform Support

CF_BITMAP CF_DIB Windows NT, Windows 95
CF_DIB CF_BITMAP Windows NT, Windows 95
CF_DIB CF_PALETTE Windows NT, Windows 95
CF_ENHMETAFILECF_METAFILEPICTWindows NT, Windows 95
CF_METAFILEPICTCF_ENHMETAFILE Windows NT, Windows 95
CF_OEMTEXT CF_TEXT Windows NT, Windows 95
CF_OEMTEXT CF_UNICODETEXTWindows NT
CF_TEXT CF_OEMTEXT Windows NT, Windows 95
CF_TEXT CF_UNICODETEXTWindows NT
CF_UNICODETEXTCF_OEMTEXT Windows NT
CF_UNICODETEXTCF_TEXT Windows NT

If the operating system provides an automatic type conversion for a particular clipboard
format, there is no advantage to placing the conversion format(s) on the clipboard.

If the system provides an automatic type conversion for a particular clipboard format, and
you call EnumClipboardFormats to enumerate the clipboard data formats, the operating system
first enumerates the format that is on the clipboard, followed by the formats to which it can be
converted.

If the clipboard contains data in the CF_PALETTE format, the application should use the
SelectPalette and RealizePalette functions to realize any other data in the clipboard against that
logical palette.

See SetClipboardData for further information on specific clipboard data formats.See AlsoEnumClipboardFormats, SetClipboardData, RealizePalette, SelectPalette

GetClipboardFormatName
The GetClipboardFormatName function retrieves from the clipboard the name of the specified
registered format. The function copies the name to the specified buffer.

int GetClipboardFormatName(
UINT format, // clipboard format to retrieve
LPTSTR lpszFormatName, // address of buffer for name
int cchMaxCount // length of name string in characters

);Parametersformat
Specifies the type of format to be retrieved. This parameter must not specify any of the
predefined clipboard formats.

lpszFormatName
Points to the buffer that is to receive the format name.

cchMaxCount
Specifies the maximum length, in characters, of the string to be copied to the buffer. If the
name exceeds this limit, it is truncated.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to the
buffer.

If the function fails, the return value is zero, indicating that the requested format does not exist or
is predefined. To get extended error information, call GetLastError.See AlsoEnumClipboardFormats, RegisterClipboardFormat

GetClipboardOwner
The GetClipboardOwner function retrieves the window handle of the current owner of the
clipboard.

HWND GetClipboardOwner(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the window that owns the clipboard.

If the clipboard is not owned, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe clipboard can still contain data even if the clipboard is not currently owned.

In general, the clipboard owner is the window that last placed data in clipboard. The
EmptyClipboard function assigns clipboard ownership.See AlsoEmptyClipboard, GetClipboardViewer

GetClipboardViewer
The GetClipboardViewer function retrieves the handle of the first window in the clipboard viewer
chain.

HWND GetClipboardViewer(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the first window in the clipboard viewer
chain.

If there is no clipboard viewer, the return value is NULL. To get extended error information, call
GetLastError.See AlsoGetClipboardOwner, SetClipboardViewer

GetClipBox
The GetClipBox function retrieves the dimensions of the tightest bounding rectangle that can be
drawn around the current visible area on the device. The visible area is defined by the current
clipping region or clip path, as well as any overlapping windows.

int GetClipBox(
HDC hdc, // handle of the device context
LPRECT lprc // address of structure with rectangle

);Parametershdc
Identifies the device context.

lprc
Points to a RECT structure that is to receive the rectangle dimensions.

Return ValuesIf the function succeeds, the return value specifies the clipping box's complexity and can be any
one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred.

GetClipBox returns logical coordinates based on the given device context.See AlsoRECT

GetClipCursor
The GetClipCursor function retrieves the screen coordinates of the rectangular area to which the
cursor is confined.

BOOL GetClipCursor(
LPRECT lpRect // address of structure for rectangle

);ParameterslpRect
Points to a RECT structure that receives the screen coordinates of the confining rectangle.
The structure receives the dimensions of the screen if the cursor is not confined to a
rectangle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe cursor is a shared resource. If an application confines the cursor with the ClipCursor
function, it must later release the cursor by using ClipCursor before relinquishing control to
another application.

The calling process must have WINSTA_READATTRIBUTES access to the window station.See AlsoClipCursor, GetCursorPos, RECT

GetClipRgn
The GetClipRgn function retrieves a handle identifying the current application-defined clipping
region for the specified device context.

int GetClipRgn(
HDC hdc, // handle of device context
HRGN hrgn // handle of region

);Parametershdc
Identifies the device context.

hrgn
Identifies an existing region before the function is called. After the function returns, this
parameter identifies a copy of the current clipping region.

Return ValuesIf the function succeeds and there is no clipping region for the given device context, the return
value is zero. If the function succeeds and there is a clipping region for the given device context,
the return value is 1. If an error occurs, the return value is - 1.RemarksAn application-defined clipping region is a clipping region identified by the SelectClipRgn
function. It is not a clipping region created when the application calls the BeginPaint function.

If the function succeeds, the hrgn parameter identifies a copy of the current clipping region.
Subsequent changes to this copy will not affect the current clipping region.See AlsoBeginPaint, SelectClipRgn

GetColorAdjustment
The GetColorAdjustment function retrieves the color adjustment values for the specified device
context.

BOOL GetColorAdjustment(
HDC hdc, // handle of device context
LPCOLORADJUSTMENT lpca // address of COLORADJUSTMENT structure

);Parametershdc
Identifies the device context.

lpca
Points to a COLORADJUSTMENT structure that receives the color adjustment values.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetColorAdjustment, COLORADJUSTMENT

GetColorSpace
The GetColorSpace function retrieves the current handle to the logical color space from the
specified device context.

HANDLE GetColorSpace(
HDC hdc

);Parametershdc
Handle to a device context.

Return ValuesIf the function succeeds, the return value is the current handle to the logical color space.

If the function fails, the return value is NULL.See AlsoSetColorSpace

GetCommandLine
The GetCommandLine function returns a pointer to the command-line string for the current
process.

LPTSTR GetCommandLine(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a pointer to the command-line string for the current process.RemarksNon-Unicode console processes written in C can use the argc and argv arguments to access the
command-line arguments. The parameters of the command-line string, excluding the program
name, are also available to such non-Unicode applications as a parameter of the WinMain
function. The reason for the Unicode exclusion from these options is that WinMain, argc, and
argv use the LPSTR data type for parameters, not the LPTSTR datatype.See AlsoCreateProcess, WinMain

GetCommConfig
[Now Supported on Windows NT]

The GetCommConfig function gets the current configuration of a communications device.

BOOL GetCommConfig(
HANDLE hCommDev, // handle of communications service
LPCOMMCONFIG lpCC, // address of comm.configuration structure
LPDWORD lpdwSize // address of size of buffer

);ParametershCommDev
Identifies the open communications device.

lpCC
Points to the buffer that receives the COMMCONFIG structure.

lpdwSize
Points to a 32-bit variable that specifies the size, in bytes, of the buffer pointed to by lpCC.
When the function returns, the variable contains the number of bytes copied if the function
succeeds, or the number of bytes required if the buffer was too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoSetCommConfig, COMMCONFIG

GetCommMask
The GetCommMask function retrieves the value of the event mask for a specified
communications device.

BOOL GetCommMask(
HANDLE hFile, // handle of communications device
LPDWORD lpEvtMask // address of variable to get event mask

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpEvtMask
Points to the 32-bit variable to be filled with a mask of events that are currently enabled. This
parameter can be one or more of the following values:

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are

CE_FRAME, CE_OVERRUN, and
CE_RXPARITY.

EV_EVENT1 An event of the first provider-specific type
occured.

EV_EVENT2 An event of the second provider-specific type
occured.

EV_PERR A printer error occured.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal

changed state.
EV_RX80FULL The receive buffer is 80 percent full.
EV_RXCHAR A character was received and placed in the input

buffer.
EV_RXFLAG The event character was received and placed in

the input buffer. The event character is specified
in the device's DCB structure, which is applied to
a serial port by using the SetCommState
function.

EV_TXEMPTY The last character in the output buffer was sent.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetCommMask function uses a 32-bit mask variable to indicate the set of events that can be
monitored for a particular communications resource. A handle to the communications resource
can be specified in a call to the WaitCommEvent function, which waits for one of the events to
occur. To modify the event mask of a communications resource, use the SetCommMask function.See AlsoCreateFile, DCB, SetCommMask, WaitCommEvent,

GetCommModemStatus
The GetCommModemStatus function retrieves modem control-register values.

BOOL GetCommModemStatus(
HANDLE hFile, // handle of communications device
LPDWORD lpModemStat // address of control-register values

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpModemStat
Points to a 32-bit variable that specifies the current state of the modem control-register
values. This parameter can be a combination of the following values:

Value Meaning
MS_CTS_ON The CTS (clear-to-send) signal is on.
MS_DSR_ON The DSR (data-set-ready) signal is on.
MS_RING_ON The ring indicator signal is on.
MS_RLSD_ON The RLSD (receive-line-signal-detect) signal is

on.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetCommModemStatus function is useful when you are using the WaitCommEvent
function to monitor the CTS, RLSD, DSR, or ring indicator signals. To detect when these signals
change state, use WaitCommEvent and then use GetCommModemStatus to determine the
state after a change occurs.

The function fails if the hardware does not support the control-register values.See AlsoCreateFile, WaitCommEvent

GetCommProperties
The GetCommProperties function fills a buffer with information about the communications
properties for a specified communications device.

BOOL GetCommProperties(
HANDLE hFile, // handle of communications device
LPCOMMPROP lpCommProp // address of communications properties structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpCommProp
Points to a COMMPROP structure in which the communications properties information is
returned. This information can be used in subsequent calls to the SetCommState,
SetCommTimeouts, or SetupComm function to configure the communications device.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetCommProperties function returns information from a device driver about the
configuration settings that are supported by the driver.See AlsoCOMMPROP, CreateFile, SetCommState, SetCommTimeouts, SetupComm

GetCommState
The GetCommState function fills in a device-control block (a DCB structure) with the current
control settings for a specified communications device.

BOOL GetCommState(
HANDLE hFile, // handle of communications device
LPDCB lpDCB // address of device-control block structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpDCB
Points to the DCB structure in which the control settings information is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateFile, DCB, SetCommState

GetCommTimeouts
The GetCommTimeouts function retrieves the time-out parameters for all read and write
operations on a specified communications device.

BOOL GetCommTimeouts(
HANDLE hFile, // handle of communications device
LPCOMMTIMEOUTS lpCommTimeouts // address of comm. time-outs structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpCommTimeouts
Points to a COMMTIMEOUTS structure in which the time-out information is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFor more information about time-out values for communications devices, see the
SetCommTimeouts function.See AlsoCreateFile, COMMTIMEOUTS, SetCommTimeouts

GetCompressedFileSize
The GetCompressedFileSize function obtains the compressed size, in bytes, of a specified file.

The GetCompressedFileSize function obtains the actual number of bytes of disk storage used to
store a specified file. If the file is located on a volume that supports compression, and the file is
compressed, the value obtained is the compressed size of the specified file. If the file is not
located on a volume that supports compression, or if the file is not compressed, the value
obtained is the actual file size, the same as the value returned by a call to GetFileSize.

DWORD GetCompressedFileSize(
LPCTSTR lpFileName, // pointer to name of file
LPDWORD lpFileSizeHigh // pointer to DWORD to receive high-order doubleword of file size

);ParameterslpFileName
Pointer to a null-terminated string that specifies the name of the file.

lpFileSizeHigh
Pointer to a DWORD variable that the function sets to the high-order doubleword of the
compressed file size. The function's return value is the low-order doubleword of the
compressed file size.
This parameter can be NULL if the high-order doubleword of the compressed file size is not
needed. Files less than 4 gigabytes in size do not need the high-order doubleword.

Return ValuesIf the function succeeds, the return value is the low-order doubleword of the actual number of
bytes of disk storage used to store the specified file, and if lpFileSizeHigh is non-NULL, the
function puts the high-order doubleword of that actual value into the DWORD pointed to by that
parameter. This is the compressed file size for compressed files, the actual file size for
noncompressed files.

If the function fails, and lpFileSizeHigh is NULL, the return value is 0xFFFFFFFF. To get extended
error information, call GetLastError.

If the function fails, and lpFileSizeHigh is non-NULL, the return value is 0xFFFFFFFF, and
GetLastError returns a value other than NO_ERROR.RemarksCalling the GetCompressedFileSize function with the name of a nonseeking device, such as a
pipe or a communications device, has no meaning.

Note that if the return value is 0xFFFFFFFF and lpFileSizeHigh is non-NULL, an application must
call GetLastError to determine whether the function has succeeded or failed.

An application can determine whether a volume is compressed by calling
GetVolumeInformation, then checking the status of the FS_VOL_IS_COMPRESSED flag in the
DWORD pointed to by that function's lpFileSystemFlags parameter.

An application can determine whether a file is compressed by implementing the following
pseudocode:

call GetVolumeInformation on the file's volume
if the file's volume is compressed

call GetCompressedFileSize on the file
call GetFileSize on the file
if the sizes don't match
the file is compressedSee AlsoGetFileSize, GetVolumeInformation

GetComputerName
The GetComputerName function retrieves the computer name of the current system. This name
is established at system startup, when it is initialized from the registry.

BOOL GetComputerName(
LPTSTR lpBuffer, // address of name buffer
LPDWORD nSize // address of size of name buffer

);ParameterslpBuffer
Points to a buffer to receive the null-terminated character string containing the computer
name.

nSize
Points to a variable that specifies the maximum size, in characters, of the buffer. This value
should be large enough to contain MAX_COMPUTERNAME_LENGTH + 1 characters.

Return ValuesIf the function succeeds, the return value is nonzero and the variable represented by the nSize
parameter contains the number of characters copied to the destination buffer, not including the
terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetComputerName

GetConsoleCP
Windows NT: The GetConsoleCP function returns the identity of the input code page used by
the console associated with the calling process. A console uses its input code page to translate
keyboard input into the corresponding character value.

Windows 95: On Japanese and Korean implementations of Windows 95, the GetConsoleCP
function returns the VM code page, because the OEM code page can be either 437 or DBCS. On
all other implementations of Windows 95, the GetConsoleCP function returns the OEM code
page.

UINT GetConsoleCP(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a code that identifies the code page.RemarksA code page maps 256 character codes to individual characters. Different code pages include
different special characters, typically customized for a language or a group of languages.

To set a console's input code page, use the SetConsoleCP function. To set and query a
console's output code page, use the SetConsoleOutputCP and GetConsoleOutputCP
functions.See AlsoGetConsoleOutputCP, SetConsoleCP, SetConsoleOutputCP

GetConsoleCursorInfo
The GetConsoleCursorInfo function retrieves information about the size and visibility of the
cursor for the specified console screen buffer.

BOOL GetConsoleCursorInfo(
HANDLE hConsoleOutput, // handle of console screen buffer
PCONSOLE_CURSOR_INFO lpConsoleCursorInfo // address of cursor information

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_READ access.

lpConsoleCursorInfo
Points to a CONSOLE_CURSOR_INFO structure in which information about the console's
cursor is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCONSOLE_CURSOR_INFO, SetConsoleCursorInfo

GetConsoleMode
The GetConsoleMode function reports the current input mode of a console's input buffer or the
current output mode of a console screen buffer.

BOOL GetConsoleMode(
HANDLE hConsoleHandle, // handle of console input or screen buffer
LPDWORD lpMode // current mode flags

);ParametershConsoleHandle
Identifies a console input buffer or a screen buffer. The handle must have GENERIC_READ
access.

lpMode
Points to a 32-bit variable that indicates the current mode of the specified buffer.
If the hConsoleHandle parameter is an input handle, the mode can be a combination of the
following values. When a console is created, all input modes except
ENABLE_WINDOW_INPUT are enabled by default.

Value Meaning
ENABLE_LINE_INPUT The ReadFile or ReadConsole

function returns only when a carriage
return character is read. If this mode
is disabled, the functions return when
one or more characters are available.

ENABLE_ECHO_INPUT Characters read by the ReadFile or
ReadConsole function are written to
the active screen buffer as they are
read. This mode can be used only if
the ENABLE_LINE_INPUT mode is
also enabled.

ENABLE_PROCESSED_INPUTCTRL+C is processed by the system
and is not placed in the input buffer. If
the input buffer is being read by
ReadFile or ReadConsole, other
control keys are processed by the
system and are not returned in the
ReadFile or ReadConsole buffer. If
the ENABLE_LINE_INPUT mode is
also enabled, backspace, carriage
return, and linefeed characters are
handled by the system.

ENABLE_WINDOW_INPUT User interactions that change the
size of the console screen buffer are
reported in the console's input buffer.
Information about these events can
be read from the input buffer by
applications using the
ReadConsoleInput function, but not
by those using ReadFile or
ReadConsole.

ENABLE_MOUSE_INPUT If the mouse pointer is within the
borders of the console window and
the window has the keyboard focus,
mouse events generated by mouse
movement and button presses are
placed in the input buffer. These
events are discarded by ReadFile or
ReadConsole, even when this mode
is enabled.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be a combination

of the following values. When a screen buffer is created, both output modes are enabled by
default.

Value Meaning
ENABLE_PROCESSED_OUTPUT Characters written by the WriteFile

or WriteConsole function or
echoed by the ReadFile or
ReadConsole function are parsed
for ASCII control sequences, and
the correct action is performed.
Backspace, tab, bell, carriage
return, and linefeed characters are
processed.

ENABLE_WRAP_AT_EOL_OUTPUTWhen writing with WriteFile or
WriteConsole or echoing with
ReadFile or ReadConsole, the
cursor moves to the beginning of
the next row when it reaches the
end of the current row. This causes
the rows displayed in the console
window to scroll up automatically
when the cursor advances beyond
the last row in the window. It also
causes the contents of the screen
buffer to scroll up (discarding the
top row of the screen buffer) when
the cursor advances beyond the
last row in the screen buffer. If this
mode is disabled, the last character
in the row is overwritten with any
subsequent characters.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA console consists of an input buffer and one or more screen buffers. The mode of a console
buffer determines how the console behaves during input or output (I/O) operations. One set of flag
constants is used with input handles, and another set is used with screen buffer (output) handles.
Setting the output modes of one screen buffer does not affect the output modes of other screen
buffers.

The ENABLE_LINE_INPUT and ENABLE_ECHO_INPUT modes only affect processes that use
ReadFile or ReadConsole to read from the console's input buffer. Similarly, the
ENABLE_PROCESSED_INPUT mode primarily affects ReadFile and ReadConsole users,
except that it also determines whether CTRL+C input is reported in the input buffer (to be read by
the ReadConsoleInput function) or is passed to a function defined by the application.

The ENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUT modes determine whether user
interactions involving window resizing and mouse actions are reported in the input buffer or
discarded. These events can be read by ReadConsoleInput, but they are always filtered by
ReadFile and ReadConsole.

The ENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUT modes only
affect processes using ReadFile or ReadConsole and WriteFile or WriteConsole.

To change a console's I/O modes, call SetConsoleMode function.See AlsoReadConsole, ReadConsoleInput, ReadFile, SetConsoleMode, WriteConsole, WriteFile

GetConsoleOutputCP
Windows NT: The GetConsoleOutputCP function returns the identity of the output code page
used by the console associated with the calling process. A console uses its output code page to
translate the character values written by the various output functions into the images displayed in
the console window.

Windows 95: On Japanese and Korean implementations of Windows 95, the
GetConsoleOutputCP function returns the VM code page, because the OEM code page can be
either 437 or DBCS. On all other implementations of Windows 95, the GetConsoleOutputCP
function returns the OEM code page.

UINT GetConsoleOutputCP(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a code that identifies the code page.RemarksA code page maps 256 character codes to individual characters. Different code pages include
different special characters, typically customized for a language or a group of languages.

To set a console's output code page, use the SetConsoleOutputCP function. To set and query a
console's input code page, use the SetConsoleCP and GetConsoleCP functions.See AlsoGetConsoleCP, SetConsoleCP, SetConsoleOutputCP

GetConsoleScreenBufferInfo
The GetConsoleScreenBufferInfo function retrieves information about the specified console
screen buffer.

BOOL GetConsoleScreenBufferInfo(
HANDLE hConsoleOutput, // handle of console screen buffer
PCONSOLE_SCREEN_BUFFER_INFO lpConsoleScreenBufferInfo // address of screen buffer info.

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_READ access.

lpConsoleScreenBufferInfo
Points to a CONSOLE_SCREEN_BUFFER_INFO structure in which the screen buffer
information is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe rectangle returned in the srWindow member of the CONSOLE_SCREEN_BUFFER_INFO
structure can be modified and then passed to the SetConsoleWindowInfo function to scroll the
screen buffer in the window, to change the size of the window, or both.

All coordinates returned in the CONSOLE_SCREEN_BUFFER_INFO structure are in character-
cell coordinates, where the origin (0, 0) is at the upper-left corner of the screen buffer.See AlsoCONSOLE_SCREEN_BUFFER_INFO, GetLargestConsoleWindowSize,
SetConsoleCursorPosition, SetConsoleScreenBufferSize, SetConsoleWindowInfo

GetConsoleTitle
The GetConsoleTitle function retrieves the title bar string for the current console window.

DWORD GetConsoleTitle(
LPTSTR lpConsoleTitle, // address of buffer for title
DWORD nSize // size of the buffer

);ParameterslpConsoleTitle
Points to a buffer that receives a null-terminated string containing the text that appears in the
title bar of the console window.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpConsoleTitle parameter.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to the
buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo set the title bar string for a console window, use the SetConsoleTitle function.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoSetConsoleCP, SetConsoleOutputCP, SetConsoleTitle

GetCPInfo
The GetCPInfo function retrieves information about any valid installed or available code page.

BOOL GetCPInfo(
UINT CodePage, // code page identifier
LPCPINFO lpCPInfo // address of structure for information

);ParametersCodePage
Specifies the code page about which information is to be retrieved. You can specify the code
page identifier for any installed or available code page, or you can specify one of the following
predefined values:

Value Meaning
CP_ACP Use the system default ANSI code page
CP_MACCP Use the system default Macintosh code page
CP_OEMCP Use the system default OEM code page

lpCPInfo
Points to a CPINFO structure that receives information about the code page.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError .RemarksIf the specified code page is not installed or not available, GetCPInfo sets the last-error value to
ERROR_INVALID_PARAMETER.See AlsoGetACP, GetOEMCP, CPINFO

GetCurrencyFormat
The GetCurrencyFormat function formats a number string as a currency string for a specified
locale.

int GetCurrencyFormat(
LCID Locale, // locale for which currency string is to be formatted
DWORD dwFlags, // bit flag that controls the function's operation
LPCTSTR lpValue, // pointer to input number string
CONST CURRENCYFMT *lpFormat, // pointer to a formatting information structure
LPTSTR lpCurrencyStr, // pointer to output buffer
int cchCurrency // size of output buffer

);ParametersLocale
Specifies the locale for which the currency string is to be formatted. If lpFormat is NULL, the
function formats the string according to the currency format for this locale. If lpFormat is not
NULL, the function uses the locale only for formatting information not specified in the
CURRENCYFMT structure (for example, the locale's string value for the negative sign).
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
A bit flag that controls the operation of the function. If lpFormat is non-NULL, this parameter
must be zero.
If lpFormat is NULL, you can specify the LOCALE_NOUSEROVERRIDE flag to format the
string using the system default currency format for the specified locale; or you can specify
zero to format the string using any user overrides to the locale's default currency format.

lpValue
Points to a null-terminated string containing the number string to format.
This string can contain only the following characters:
· Characters '0' through '9'
· One decimal point (dot) if the number is a floating-point value
· A minus sign in the first character position if the number is a negative value
All other characters are invalid. The function returns an error if the string pointed to by lpValue
deviates from these rules.

lpFormat
Pointer to a CURRENCYFMT structure that contains currency formatting information. All
members in the structure pointed to by lpFormat must contain appropriate values.
If lpFormat is NULL, the function uses the currency format of the specified locale.

lpCurrencyStr
Points to a buffer to receive the formatted currency string.

cchCurrency
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the
lpCurrencyStr buffer. If cchCurrency is zero, the function returns the number of bytes or
characters required to hold the formatted currency string, and the buffer pointed to by
lpCurrencyStr is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the buffer pointed to by lpCurrencyStr, or if the cchCurrency
parameter is zero, the number of bytes or characters required to hold the formatted currency
string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID FLAGS

ERROR_INVALID_PARAMETERSee AlsoGetNumberFormat, CURRENCYFMT

GetCurrentDirectory
The GetCurrentDirectory function retrieves the current directory for the current process.

DWORD GetCurrentDirectory(
DWORD nBufferLength, // size, in characters, of directory buffer
LPTSTR lpBuffer // address of buffer for current directory

);ParametersnBufferLength
Specifies the length, in characters, of the buffer for the current directory string. The buffer
length must include room for a terminating null character.

lpBuffer
Points to the buffer for the current directory string. This null-terminated string specifies the
absolute path to the current directory.

Return ValuesIf the function succeeds, the return value specifies the number of characters written to the buffer,
not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the buffer pointed to by lpBuffer is not large enough, the return value specifies the required size
of the buffer, including the number of bytes necessary for a terminating null character.See AlsoCreateDirectory, GetSystemDirectory, GetWindowsDirectory, RemoveDirectory,
SetCurrentDirectory

GetCurrentFiber
The GetCurrentFiber function returns the address of the current fiber.

PVOID GetCurrentFiber(VOID)ParametersThis function has no parameters.Return ValuesThe return value is the address of the currently running fiber.RemarksThe CreateFiber and ConvertThreadToFiber functions return the fiber address when the fiber is
created. The GetCurrentFiber function allows you to retrieve the address at any other time.See AlsoCreateFiber, ConvertThreadToFiber

GetCurrentHwProfile
[New - Windows NT]

The GetCurrentHwProfile function retrieves information about the current hardware profile for the
local computer.

BOOL GetCurrentHwProfile(
LPHW_PROFILE_INFO lpHwProfileInfo // receives the hardware profile information

);ParameterslpHwProfileInfo
Pointer to an HW_PROFILE_INFO structure in which the function returns information about
the current hardware profile.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetCurrentHwProfile function retrieves the display name and globally unique identifier
(GUID) string for the hardware profile. The function also retrieves the reported docking state for
portable computers with docking stations.

The system generates a GUID for each hardware profile and stores it as a string in the registry.
You can use GetCurrentHwProfile to retrieve the GUID string to use as a registry subkey under
your application's configuration settings key in HKEY_CURRENT_USER. This enables you to
store each user's settings for each hardware profile. For example, the Colors control panel
application could use the subkey to store each user's color preferences for different hardware
profiles, such as profiles for the docked and undocked states. Applications that use this
functionality can check the current hardware profile when they start up, and update their settings
accordingly.

Windows 95: Applications can also update their settings when a system device message, such
as DBT_CONFIGCHANGED, indicates that the hardware profile has changed.Example#include <windows.h>
#include <stdio.h>
#include <tchar.h>
void main(void) {

HW_PROFILE_INFO HwProfInfo;
if (!GetCurrentHwProfile(&HwProfInfo)) {

_tprintf(TEXT("GetCurrentHwProfile failed with error %lx\n"),
GetLastError());
return;
}
_tprintf(TEXT("DockInfo = %d\n"), HwProfInfo.dwDockInfo);
_tprintf(TEXT("Profile Guid = %s\n"), HwProfInfo.szHwProfileGuid);
_tprintf(TEXT("Friendly Name = %s\n"), HwProfInfo.szHwProfileName);} // main

See AlsoDBT_CONFIGCHANGED, HW_PROFILE_INFO

GetCurrentObject
The GetCurrentObject function returns the currently selected object of the specified type.

HGDIOBJ GetCurrentObject(
HDC hdc, // handle of device context
UINT uObjectType // object-type identifier

);Parametershdc
Identifies the device context.

uObjectType
Specifies the object type to be queried. This parameter can be one of the following values:

Value Meaning
OBJ_PEN Returns the current selected pen.
OBJ_BRUSH Returns the current selected brush.
OBJ_PAL Returns the current selected palette.
OBJ_FONT Returns the current selected font.
OBJ_BITMAP Returns the current selected bitmap if hdc is a

memory device context.
Return ValuesIf the function succeeds, the return value is the handle of the specified object.

If the function fails, the return value is NULL.RemarksAn application can use the GetCurrentObject and GetObject functions to retrieve descriptions of
the graphic objects currently selected into the given device context.See AlsoDeleteObject, GetObject, SelectObject

GetCurrentPositionEx
The GetCurrentPositionEx function retrieves the current position in logical coordinates.

BOOL GetCurrentPositionEx(
HDC hdc, // handle of device context
LPPOINT lpPoint // address of structure receiving current position

);Parametershdc
Identifies the device context.

lpPoint
Points to a POINT structure that receives the coordinates of the current position.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoMoveToEx, POINT

GetCurrentProcess
The GetCurrentProcess function returns a pseudohandle for the current process.

HANDLE GetCurrentProcess(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a pseudohandle to the current process.RemarksA pseudohandle is a special constant that is interpreted as the current process handle. The calling
process can use this handle to specify its own process whenever a process handle is required.
Pseudohandles are not inherited by child processes.

This handle has the maximum possible access to the process object. For systems that support
security descriptors, this is the maximum access allowed by the security descriptor for the calling
process. For systems that do not support security descriptors, this is PROCESS_ALL_ACCESS.
For more information, see Process Objects.

A process can create a "real" handle to itself that is valid in the context of other processes, or that
can be inherited by other processes, by specifying the pseudohandle as the source handle in a
call to the DuplicateHandle function. A process can also use the OpenProcess function to open
a real handle to itself.

The pseudohandle need not be closed when it is no longer needed. Calling the CloseHandle
function with a pseudohandle has no effect. If the pseudohandle is duplicated by
DuplicateHandle, the duplicate handle must be closed.See AlsoCloseHandle, DuplicateHandle, GetCurrentProcessId, GetCurrentThread, OpenProcess

GetCurrentProcessId
The GetCurrentProcessId function returns the process identifier of the calling process.

DWORD GetCurrentProcessId(VOID)ParametersThis function has no parameters.Return ValuesThe return value is the process identifier of the calling process.RemarksUntil the process terminates, the process identifier uniquely identifies the process throughout the
system.See AlsoGetCurrentProcess, OpenProcess

GetCurrentThread
The GetCurrentThread function returns a pseudohandle for the current thread.

HANDLE GetCurrentThread(VOID)

ParametersThis function has no parameters.Return ValuesThe return value is a pseudohandle for the current thread.RemarksA pseudohandle is a special constant that is interpreted as the current thread handle. The calling
thread can use this handle to specify itself whenever a thread handle is required. Pseudohandles
are not inherited by child processes.

This handle has the maximum possible access to the thread object. For systems that support
security descriptors, this is the maximum access allowed by the security descriptor for the calling
process. For systems that do not support security descriptors, this is THREAD_ALL_ACCESS.

The function cannot be used by one thread to create a handle that can be used by other threads
to refer to the first thread. The handle is always interpreted as referring to the thread that is using
it. A thread can create a "real" handle of itself that can be used by other threads, or inherited by
other processes, by specifying the pseudohandle as the source handle in a call to the
DuplicateHandle function.

The pseudohandle need not be closed when it is no longer needed. Calling the CloseHandle
function with this handle has no effect. If the pseudohandle is duplicated by DuplicateHandle, the
duplicate handle must be closed.See AlsoCloseHandle, DuplicateHandle, GetCurrentProcess, GetCurrentThreadId

GetCurrentThreadId
The GetCurrentThreadId function returns the thread identifier of the calling thread.

DWORD GetCurrentThreadId(VOID)

ParametersThis function has no parameters.Return ValuesThe return value is the thread identifier of the calling thread.RemarksUntil the thread terminates, the thread identifier uniquely identifies the thread throughout the
system.See AlsoGetCurrentThread

GetCurrentTime
The GetCurrentTime is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. Win32-based applications should use the GetTickCount function or look up
the System Up Time counter in the performance data in the registry key
HKEY_PERFORMANCE_DATA.

GetCursor
The GetCursor function retrieves the handle of the current cursor.

HCURSOR GetCursor(VOID)

ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the current cursor.

If there is no cursor, the return value is NULL.See AlsoSetCursor

GetCursorPos
The GetCursorPos function retrieves the cursor's position, in screen coordinates.

BOOL GetCursorPos(

LPPOINT lpPoint
// address of structure for cursor position

);ParameterslpPoint
Points to a POINT structure that receives the screen coordinates of the cursor.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe cursor position is always given in screen coordinates and is not affected by the mapping
mode of the window that contains the cursor.

The calling process must have WINSTA_READATTRIBUTES access to the window station.See AlsoClipCursor, POINT, SetCursor, SetCursorPos, ShowCursor

GetDateFormat
The GetDateFormat function formats a date as a date string for a specified locale. The function
formats either a specified date or the local system date.

int GetDateFormat(

LCID Locale, // locale for which date is to be formatted

DWORD dwFlags, // flags specifying function options
CONST SYSTEMTIME *lpDate, // date to be formatted
LPCTSTR lpFormat, // date format string
LPTSTR lpDateStr, // buffer for storing formatted string
int cchDate // size of buffer

);ParametersLocale
Specifies the locale for which the date string is to be formatted. If lpFormat is NULL, the
function formats the string according to the date format for this locale. If lpFormat is not NULL,
the function uses the locale only for information not specified in the format picture string (for
example, the locale's day and month names).
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
A set of bit flags that specify various function options. If lpFormat is non-NULL, this parameter
must be zero.
If lpFormat is NULL, you can specify a combination of the following flags:

Flag Meaning
LOCALE_NOUSEROVERRIDEIf set, the function formats the string

using the system default date format
for the specified locale. If not set, the
function formats the string using any
user overrides to the locale's default
date format.

DATE_SHORTDATE Use the short date format. This is the
default. Cannot be used with
DATE_LONGDATE.

DATE_LONGDATE Use the long date format. Cannot be
used with DATE_SHORTDATE.

DATE_USE_ALT_CALENDAR Use the alternate calendar, if one
exists, to format the date string. If this
flag is set, the function uses the
default format for that alternate
calendar, rather than using any user
overrides. The user overrides will be
used only in the event that there is no
default format for the specified
alternate calendar.

lpDate
Pointer to a SYSTEMTIME structure that contains the date information to be formatted. If this
pointer is NULL, the function uses the current local system date.

lpFormat
Pointer to a format picture string to use to form the date string. If lpFormat is NULL, the
function uses the date format of the specified locale.
Use the following elements to construct a format picture string. If you use spaces to separate
the elements in the format string, these spaces will appear in the same location in the output
string. The letters must be in uppercase or lowercase as shown in the table (for example,

"MM" not "mm"). Characters in the format string that are enclosed in single quotation marks
will appear in the same location and unchanged in the output string.

Picture Meaning
d Day of month as digits with no leading zero for

single-digit days.
dd Day of month as digits with leading zero for

single-digit days.
ddd Day of week as a three-letter abbreviation. The

function uses the LOCALE_SABBREVDAYNAME
value associated with the specified locale.

dddd Day of week as its full name. The function uses
the LOCALE_SDAYNAME value associated with
the specified locale.

M Month as digits with no leading zero for single-
digit months.

MM Month as digits with leading zero for single-digit
months.

MMM Month as a three-letter abbreviation. The function
uses the LOCALE_SABBREVMONTHNAME
value associated with the specified locale.

MMMM Month as its full name. The function uses the
LOCALE_SMONTHNAME value associated with
the specified locale.

y Year as last two digits, but with no leading zero
for years less than 10.

yy Year as last two digits, but with leading zero for
years less than 10.

yyyy Year represented by full four digits.
gg Period/era string. The function uses the

CAL_SERASTRING value associated with the
specified locale. This element is ignored if the
date to be formatted does not have an associated
era or period string.

For example, to get the date string
"Wed, Aug 31 94"

use the following picture string:
"ddd',' MMM dd yy"

lpDateStr
Pointer to a buffer that receives the formatted date string.

cchDate
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the lpDateStr
buffer. If cchDate is zero, the function returns the number of bytes or characters required to
hold the formatted date string, and the buffer pointed to by lpDateStr is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the lpDateStr buffer, or if the cchDate parameter is zero, the number
of bytes or characters required to hold the formatted date string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
RemarksThe day name, abbreviated day name, month name, and abbreviated month name are all

localized based on the given locale identifier.

The date values in the SYSTEMTIME structure pointed to by lpDate must be valid. The function
checks each of the date values: year, month, day, and day of week. If the day of the week is
incorrect, the function uses the correct value, and returns no error. If any of the other date values

are outside the correct range, the function fails, and sets the last-error to
ERROR_INVALID_PARAMETER.

The function ignores the time portions of the SYSTEMTIME structure pointed to by lpDate:
wHour, wMinute, wSecond, and wMilliseconds.

The DATE_SHORTDATE and DATE_LONGDATE flag options are mutually exclusive. If neither
one is specified and lpFormat is NULL, then DATE_SHORTDATE is the default.

No errors are returned for a bad format string. The function simply forms the best date string that it
can. For example, the only year pictures that are valid are L"yyyy" and L"yy" (the 'L' indicates a
Unicode (16-bit characters) string). If L"y" is passed in, the function assumes L"yy". If L"yyy" is
passed in, the function assumes L"yyyy". If more than 4 date (L"dddd") or 4 month (L"MMMM")
pictures are passed in, then the function defaults to L"dddd" or L"MMMM".

Any text that should remain in its exact form in the date string should be enclosed within single
quotation marks in the date format picture. The single quotation mark may also be used as an
escape character to allow the single quotation mark itself to be displayed in the date string.
However, the escape sequence must be enclosed within two single quotation marks. For example,
to display the date as "May '93", the format string would be: L"MMMM ''''yy" The first and last
single quotation marks are the enclosing quotation marks. The second and third single quotation
marks are the escape sequence to allow the single quotation mark to be displayed before the
century.See AlsoGetTimeFormat, SYSTEMTIME

GetDC
The GetDC function retrieves a handle of a display device context (DC) for the client area of the
specified window. The display device context can be used in subsequent GDI functions to draw in
the client area of the window.

This function retrieves a common, class, or private device context depending on the class style
specified for the specified window. For common device contexts, GetDC assigns default attributes
to the device context each time it is retrieved. For class and private device contexts, GetDC
leaves the previously assigned attributes unchanged.

HDC GetDC(

HWND hWnd
// handle of window

);ParametershWnd
Identifies the window whose device context is to be retrieved.

Return ValuesIf the function succeeds, the return value identifies the device context for the given window's client
area.

If the function fails, the return value is NULL.RemarksAfter painting with a common device context, the ReleaseDC function must be called to release
the device context. Class and private device contexts do not have to be released. The number of
device contexts is limited only by available memory.See AlsoReleaseDC, GetWindowDC

GetDCEx
The GetDCEx function retrieves the handle of a display device (DC) context for the specified
window. The display device context can be used in subsequent GDI functions to draw in the client
area.

This function is an extension to the GetDC function that gives an application more control over
how and whether clipping occurs in the client area.

HDC GetDCEx(

HWND hWnd, // handle of window

HRGN hrgnClip, // handle of clip region
DWORD flags // device-context creation flags

);ParametershWnd
Identifies the window where drawing will occur.

hrgnClip
Specifies a clipping region that may be combined with the visible region of the client window.

flags
Specifies how the device context is created. This parameter can be a combination of the
following values:

Value Meaning
DCX_WINDOW Returns a device context

corresponding to the window
rectangle rather than the client
rectangle.

DCX_CACHE Returns a device context from the
cache, rather than the OWNDC or
CLASSDC window. Essentially
overrides CS_OWNDC and
CS_CLASSDC.

DCX_PARENTCLIP Uses the visible region of the parent
window. The parent's
WS_CLIPCHILDREN and
CS_PARENTDC style bits are
ignored. The device context origin is
set to the upper-left corner of the
window identified by hWnd.

DCX_CLIPSIBLINGS Excludes the visible regions of all
sibling windows above the window
identified by hWnd.

DCX_CLIPCHILDREN Excludes the visible regions of all
child windows below the window
identified by hWnd.

DCX_NORESETATTRS Does not reset the attributes of this
device context to the default
attributes when this device context
is released.

DCX_LOCKWINDOWUPDATE Allows drawing even if there is a
LockWindowUpdate call in effect
that would otherwise exclude this
window. Used for drawing during
tracking.

DCX_EXCLUDERGN The clipping region identified by
hrgnClip is excluded from the visible
region of the returned device
context.

DCX_INTERSECTRGN The clipping region identified by
hrgnClip is intersected with the

visible region of the returned device
context.

DCX_VALIDATE When specified with
DCX_INTERSECTUPDATE, causes
the device context to be completely
validated. Using this function with
both DCX_INTERSECTUPDATE
and DCX_VALIDATE is identical to
using the BeginPaint function.

Return ValuesIf the function succeeds, the return value is the handle of the device context for the given window.

If the function fails, the return value is NULL. An invalid value for the hWnd parameter will cause
the function to fail.RemarksUnless the display device context belongs to a window class, the ReleaseDC function must be
called to release the device context after painting. Because only five common device contexts are
available at any given time, failure to release a device context can prevent other applications from
accessing a device context.

A device context belonging to the window's class is returned by the GetDC function if
CS_CLASSDC, CS_OWNDC or CS_PARENTDC was specified as a style in the WNDCLASS
structure when the class was registered.See AlsoBeginPaint, GetDC, GetWindowDC, ReleaseDC, WNDCLASS

GetDCOrgEx
The GetDCOrgEx function obtains the final translation origin for a specified device context (DC).
The final translation origin specifies an offset that Windows uses to translate device coordinates
into client coordinates (for coordinates in an application's window). This function supersedes the
GetDCOrg function.

BOOL GetDCOrgEx(

HDC hdc, // device-context handle

LPPOINT lpPoint // address of structure that receives translation origin
);Parametershdc

Specifies the device context whose final translation origin is to be retrieved.
lpPoint

Points to a POINT structure that the function will set to the final translation origin, in device
coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe final translation origin is relative to the physical origin of the screen.See AlsoCreateIC, POINT

GetDefaultCommConfig
[Now Supported on Windows NT]

The GetDefaultCommConfig function gets the default configuration for a communications device.

BOOL GetDefaultCommConfig(

LPCSTR lpszName,
LPCOMMCONFIG lpCC,
LPDWORD lpdwSize

);ParameterslpszName
Points to a null-terminated string specifying the name of the device.

lpCC
Points to the buffer that receives the COMMCONFIG structure.

lpdwSize
Points to a 32-bit variable that specifies the size, in bytes, of the buffer pointed to by lpCC.
Upon return, the variable contains the number of bytes copied if the function succeeds, or the
number of bytes required if the buffer was too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoSetDefaultCommConfig, COMMCONFIG

GetDesktopWindow
The GetDesktopWindow function returns the handle of the Windows desktop window. The
desktop window covers the entire screen. The desktop window is the area on top of which all
icons and other windows are painted.

HWND GetDesktopWindow(VOID)

ParametersThis function has no parameters.Return ValuesThe return value is the handle of the desktop window.See AlsoGetWindow

GetDeviceCaps
The GetDeviceCaps function retrieves device-specific information about a specified device.

int GetDeviceCaps(

HDC hdc, // device-context handle

int nIndex // index of capability to query
);Parametershdc

Identifies the device context.
nIndex

Specifies the item to return. This parameter can be one of the following values:
Index Meaning
DRIVERVERSION The device driver version.
TECHNOLOGY Device technology. It can be any one of the

following values:

Value Meaning
DT_PLOTTER Vector plotter
DT_RASDISPLAYRaster display
DT_RASPRINTERRaster printer
DT_RASCAMERARaster camera
DT_CHARSTREAMCharacter stream
DT_METAFILE Metafile
DT_DISPFILE Display file

If the hdc parameter identifies the device
context of an enhanced metafile, the device
technology is that of the referenced device as
given to the CreateEnhMetaFile function. To
determine whether it is an enhanced metafile
device context, use the GetObjectType
function.

HORZSIZE Width, in millimeters, of the physical screen.
VERTSIZE Height, in millimeters, of the physical screen.
HORZRES Width, in pixels, of the screen.
VERTRES Height, in raster lines, of the screen.
LOGPIXELSX Number of pixels per logical inch along the

screen width.
LOGPIXELSY Number of pixels per logical inch along the

screen height.
BITSPIXEL Number of adjacent color bits for each pixel.
PLANES Number of color planes.
NUMBRUSHES Number of device-specific brushes.
NUMPENS Number of device-specific pens.
NUMFONTS Number of device-specific fonts.
NUMCOLORS Number of entries in the device's color table, if

the device has a color depth of no more than
8 bits per pixel. For devices with greater color
depths, -1 is returned.

ASPECTX Relative width of a device pixel used for line
drawing.

ASPECTY Relative height of a device pixel used for line
drawing.

ASPECTXY Diagonal width of the device pixel used for line

drawing.
PDEVICESIZE Reserved.
CLIPCAPS Flag that indicates the clipping capabilities of

the device. If the device can clip to a
rectangle, it is 1. Otherwise, it is 0.

SIZEPALETTE Number of entries in the system palette. This
index is valid only if the device driver sets the
RC_PALETTE bit in the RASTERCAPS index
and is available only if the driver is compatible
with Windows version 3.0 or later.

NUMRESERVED Number of reserved entries in the system
palette. This index is valid only if the device
driver sets the RC_PALETTE bit in the
RASTERCAPS index and is available only if
the driver is compatible with Windows version
3.0 or later.

COLORRES Actual color resolution of the device, in bits
per pixel. This index is valid only if the device
driver sets the RC_PALETTE bit in the
RASTERCAPS index and is available only if
the driver is compatible with Windows version
3.0 or later.

PHYSICALWIDTH For printing devices: the width of the physical
page, in device units. For example, a printer
set to print at 600 dpi on 8.5"x11" paper has a
physical width value of 5100 device units.
Note that the physical page is almost always
greater than the printable area of the page,
and never smaller.

PHYSICALHEIGHT For printing devices: the height of the physical
page, in device units. For example, a printer
set to print at 600 dpi on 8.5"x11" paper has a
physical height value of 6600 device units.
Note that the physical page is almost always
greater than the printable area of the page,
and never smaller.

PHYSICALOFFSETX For printing devices: the distance from the left
edge of the physical page to the left edge of
the printable area, in device units. For
example, a printer set to print at 600 dpi on 8.
5"x11" paper, that cannot print on the leftmost
0.25" of paper, has a horizontal physical offset
of 150 device units.

PHYSICALOFFSETY For printing devices: the distance from the
top edge of the physical page to the top edge
of the printable area, in device units. For
example, a printer set to print at 600 dpi on 8.
5"x11" paper, that cannot print on the topmost
0.5" of paper, has a vertical physical offset of
300 device units.

VREFRESH Windows NT only: For display devices: the
current vertical refresh rate of the device, in
cycles per second (Hz).
A vertical refresh rate value of 0 or 1
represents the display hardware's default
refresh rate. This default rate is typically set
by switches on a display card or computer
motherboard, or by a configuration program
that does not use Win32 display functions
such as ChangeDisplaySettings.

DESKTOPHORZRES Windows NT only: Width, in pixels, of the
virtual desktop. This value may be larger than

HORZRES if the device supports a virtual
desktop or multiple displays.

DESKTOPVERTRES Windows NT only: Height, in pixels, of the
virtual desktop. This value may be larger than
VERTRES if the device supports a virtual
desktop or multiple displays.

BLTALIGNMENT Windows NT only: Preferred horizontal
drawing alignment, expressed as a multiple of
pixels. For best drawing performance,
windows should be horizontally aligned to a
multiple of this value. A value of zero indicates
that the device is accelerated, and any
alignment may be used.

RASTERCAPS Value that indicates the raster capabilities of
the device, as shown in the following table:

Capability Meaning
RC_BANDING Requires banding

support.
RC_BITBLT Capable of transferring

bitmaps.
RC_BITMAP64 Capable of supporting

bitmaps larger than
64K.

RC_DI_BITMAP Capable of supporting
the SetDIBits and
GetDIBits functions.

RC_DIBTODEV Capable of supporting
the
SetDIBitsToDevice
function.

RC_FLOODFILL Capable of performing
flood fills.

RC_GDI20_OUTPUTCapable of supporting
features of Windows 2.
0.

RC_PALETTE Specifies a palette-
based device.

RC_SCALING Capable of scaling.
RC_STRETCHBLTCapable of performing

the StretchBlt
function.

RC_STRETCHDIBCapable of performing
the StretchDIBits
function.

CURVECAPS Value that indicates the curve capabilities
of the device, as shown in the following
table:

Value Meaning
CC_NONE Device does not support

curves.
CC_CIRCLES Device can draw circles.
CC_PIE Device can draw pie

wedges.
CC_CHORD Device can draw chord

arcs.
CC_ELLIPSES Device can draw

ellipses.
CC_WIDE Device can draw wide

borders.
CC_STYLED Device can draw styled

borders.
CC_WIDESTYLEDDevice can draw

borders that are wide
and styled.

CC_INTERIORSDevice can draw
interiors.

CC_ROUNDRECTDevice can draw
rounded rectangles.

LINECAPS Value that indicates the line capabilities of
the device, as shown in the following table:

Value Meaning
LC_NONE Device does not

support lines.
LC_POLYLINE Device can draw a

polyline.
LC_MARKER Device can draw a

marker.
LC_POLYMARKERDevice can draw

multiple markers.
LC_WIDE Device can draw wide

lines.
LC_STYLED Device can draw styled

lines.
LC_WIDESTYLEDDevice can draw lines

that are wide and
styled.

LC_INTERIORS Device can draw
interiors.

POLYGONALCAPS Value that indicates the polygon
capabilities of the device, as shown in the
following table:

Value Meaning
PC_NONE Device does not

support polygons.
PC_POLYGON Device can draw

alternate-fill polygons.
PC_RECTANGLE Device can draw

rectangles.
PC_WINDPOLYGONDevice can draw

winding-fill polygons.
PC_SCANLINE Device can draw a

single scanline.
PC_WIDE Device can draw wide

borders.
PC_STYLED Device can draw styled

borders.
PC_WIDESTYLEDDevice can draw

borders that are wide
and styled.

PC_INTERIORS Device can draw
interiors.

TEXTCAPS Value that indicates the text capabilities of
the device, as shown in the following table:

Bit Meaning
TC_OP_CHARACTERDevice is capable of

character output
precision.

TC_OP_STROKE Device is capable of
stroke output
precision.

TC_CP_STROKE Device is capable of
stroke clip precision.

TC_CR_90 Device is capable of
90-degree character
rotation.

TC_CR_ANY Device is capable of
any character
rotation.

TC_SF_X_YINDEPDevice can scale
independently in the
x- and y-directions.

TC_SA_DOUBLE Device is capable of
doubled character for
scaling.

TC_SA_INTEGER Device uses integer
multiples only for
character scaling.

TC_SA_CONTIN Device uses any
multiples for exact
character scaling.

TC_EA_DOUBLE Device can draw
double-weight
characters.

TC_IA_ABLE Device can italicize.
TC_UA_ABLE Device can underline.
TC_SO_ABLE Device can draw

strikeouts.
TC_RA_ABLE Device can draw

raster fonts.
TC_VA_ABLE Device can draw

vector fonts.
TC_RESERVED Reserved; must be

zero.
TC_SCROLLBLT Device cannot scroll

using a bit-block
transfer. Note that
this meaning may be
the opposite of what
you expect.

Return ValuesThe return value specifies the value of the desired item.See AlsoCreateEnhMetaFile, CreateIC, DeviceCapabilities, GetDIBits, GetObjectType, SetDIBits,
SetDIBitsToDevice, StretchBlt, StretchDIBits

GetDeviceGammaRamp
The GetDeviceGammaRamp function retrieves the gamma ramp on direct color display boards.

BOOL GetDeviceGammaRamp(

HDC hdc,
LPVOID lpRamp

);Parametershdc
Handle to the device context.

lpRamp
Pointer to a set of three arrays of 256-byte elements. These arrays are the mapping between
color values in the frame buffer and DAC values. The first array is red, the next is green, and
the final one is blue.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksDirect color display modes do not use color lookup tables. The direct color modes are usually 16-,
24-, or 32-bit. Not all direct color video boards support loadable gamma ramps. This function
succeeds only for those drivers that support loadable gamma ramps in hardware.See AlsoSetDeviceGammaRamp

GetDialogBaseUnits
The GetDialogBaseUnits function returns the dialog box base units used by Windows to create
dialog boxes. Both Windows and applications use these units to convert the width and height of
dialog boxes and controls from dialog units, as given in dialog box templates, to pixels, and vice
versa.

LONG GetDialogBaseUnits(VOID)

ParametersThis function has no parameters.Return ValuesThe return value is a 32-bit value that contains the dialog base units. The low-order word of the
return value contains the horizontal dialog box base unit, and the high-order word contains the
vertical dialog box base unit.RemarksThe horizontal base unit is equal to the average width, in pixels, of the characters in the system
font; the vertical base unit is equal to the height, in pixels, of the font. Furthermore, each
horizontal base unit is equal to 4 horizontal dialog units; each vertical base unit is equal to 8
vertical dialog units. Therefore, to convert dialog units to pixels, an application applies the
following formulas:pixelX = (dialogunitX * baseunitX) / 4
pixelY = (dialogunitY * baseunitY) / 8Similarly, to convert from pixels to dialog units, an application applies the following formulas:dialogunitX = (pixelX * 4) / baseunitX
dialogunitY = (pixelY * 8) / baseunitYThe multiplication is performed before the division to avoid rounding problems if base units are not

divisible by 4 or 8.See AlsoMapDialogRect

GetDIBColorTable
The GetDIBColorTable function retrieves RGB (red, green, blue) color values from a range of
entries in the color table of the DIB section bitmap that is currently selected into a specified device
context.

UINT GetDIBColorTable(

HDC hdc, // handle of device context whose DIB is of interest

UINT uStartIndex, // color table index of first entry to retrieve
UINT cEntries, // number of color table entries to retrieve
RGBQUAD *pColors // pointer to buffer that receives color table entries

);Parametershdc
Specifies a device context. A DIB section bitmap must be selected into this device context.

uStartIndex
A zero-based color table index that specifies the first color table entry to retrieve.

cEntries
Specifies the number of color table entries to retrieve.

pColors
Points to a buffer that receives an array of RGBQUAD data structures containing color
information from the DIB's color table. The buffer must be large enough to contain as many
RGBQUAD data structures as the value of cEntries.

Return ValuesIf the function succeeds, the return value is the number of color table entries that the function
retrieves.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetDIBColorTable function should be called to retrieve the color table for DIB section
bitmaps that use 1, 4, or 8 bits per pixel. The biBitCount member of a bitmap's associated
BITMAPINFOHEADER structure specifies the number of bits per pixel. DIB section bitmaps with
a biBitCount value greater than 8 do not have a color table, but they do have associated color
masks. Call the GetObject function to retrieve those color masks.See AlsoBITMAPINFOHEADER, CreateDIBSection, DIBSECTION, GetObject, RGBQUAD,
SetDIBColorTable

GetDIBits
The GetDIBits function retrieves the bits of the specified bitmap and copies them into a buffer
using the specified format.

int GetDIBits(

HDC hdc, // handle of device context

HBITMAP hbmp, // handle of bitmap
UINT uStartScan, // first scan line to set in destination bitmap
UINT cScanLines, // number of scan lines to copy
LPVOID lpvBits, // address of array for bitmap bits
LPBITMAPINFO lpbi, // address of structure with bitmap data
UINT uUsage // RGB or palette index

);Parametershdc
Identifies the device context.

hbmp
Identifies the bitmap.

uStartScan
Specifies the first scan line to retrieve.

cScanLines
Specifies the number of scan lines to retrieve.

lpvBits
Points to a buffer to receive the bitmap data. If this parameter is NULL, the function passes
the dimensions and format of the bitmap to the BITMAPINFO structure pointed to by the lpbi
parameter.

lpbi
Points to a BITMAPINFO structure that specifies the desired format for the device-
independent bitmap (DIB) data.

uUsage
Specifies the format of the bmiColors member of the BITMAPINFO structure. It must be one
of the following values:

Value Meaning
DIB_PAL_COLORS The color table should consist of an array of

16-bit indices into the current logical palette.
DIB_RGB_COLORS The color table should consist of literal red,

green, blue (RGB) values.
Return ValuesIf the lpvBits parameter is non-NULL and the function succeeds, the return value is the number of

scan lines copied from the bitmap.

Windows 95:
If the lpvBits parameter is NULL and GetDIBits successfully fills the BITMAPINFO structure,
the return value is the total number of scan lines in the bitmap.

Windows NT:
If the lpvBits parameter is NULL and GetDIBits successfully fills the BITMAPINFO structure,
the return value is non-zero.

If the function fails, the return value is zero.RemarksIf the requested format for the DIB matches its internal format, the RGB values for the bitmap are
copied. If the requested format doesn't match the internal format, a color table is synthesized. The
following table describes the color table synthesized for each format.

Value Meaning

1_BPP The color table consists of a black and a white entry.
4_BPP The color table consists of a mix of colors identical to the

standard VGA palette.
8_BPP The color table consists of a general mix of 256 colors

defined by GDI. (Included in these 256 colors are the 20
colors found in the default logical palette.)

24_BPP No color table is returned.

If the lpvBits parameter is a valid pointer, the first six members of the BITMAPINFOHEADER
structure must be initialized to specify the size and format of the DIB. Note that a bottom-up DIB is
specified by setting the height to a positive number, while a top-down DIB is specified by setting
the height to a negative number. The bitmap's color table will be appended to the BITMAPINFO
structure.

If lpvBits is NULL, GetDIBits examines the first member of the first structure pointed to by lpbi.
This member must specify the size, in bytes, of a BITMAPCOREHEADER or a
BITMAPINFOHEADER structure. The function uses the specified size to determine how the
remaining members should be initialized.

If lpvBits is NULL and the bit count member of BITMAPINFO is initialized to zero, GetDIBits fills
in BITMAPINFOHEADER or BITMAPCOREHEADER without the color table. This technique can
be used to query bitmap attributes.

The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

The origin for a bottom-up DIB is the lower-left corner of the bitmap; the origin for a top-down DIB
is the upper-left corner.See AlsoBITMAPCOREHEADER, BITMAPINFO, BITMAPINFOHEADER, SetDIBits

GetDiskFreeSpace
The GetDiskFreeSpace function retrieves information about the specified disk, including the
amount of free space on the disk.

BOOL GetDiskFreeSpace(

LPCTSTR lpRootPathName, // address of root path

LPDWORD lpSectorsPerCluster, // address of sectors per cluster
LPDWORD lpBytesPerSector, // address of bytes per sector
LPDWORD lpNumberOfFreeClusters, // address of number of free clusters
LPDWORD lpTotalNumberOfClusters // address of total number of clusters

);ParameterslpRootPathName
Points to a null-terminated string that specifies the root directory of the disk to return
information about. If lpRootPathName is NULL, the function uses the root of the current
directory.

lpSectorsPerCluster
Points to a variable for the number of sectors per cluster.

lpBytesPerSector
Points to a variable for the number of bytes per sector.

lpNumberOfFreeClusters
Points to a variable for the total number of free clusters on the disk.

lpTotalNumberOfClusters
Points to a variable for the total number of clusters on the disk.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows 95:

The GetDiskFreeSpace function returns incorrect values for volumes that are larger than 2
gigabytes. The function caps the values stored into *lpNumberOfFreeClusters and *
lpTotalNumberOfClusters so as to never report volume sizes that are greater than 2
gigabytes.

Even on volumes that are smaller than 2 gigabytes, the values stored into *
lpSectorsPerCluster, *lpNumberOfFreeClusters, and *lpTotalNumberOfClusters values may
be incorrect. That is because the operating system manipulates the values so that
computations with them yield the correct volume size.

Windows 95 OSR 2: The GetDiskFreeSpaceEx function is available on Windows 95 systems
beginning with OEM Service Release 2 (OSR 2). The GetDiskFreeSpaceEx function returns
correct values for all volumes, including those that are greater than 2 gigabytes.See AlsoGetDiskFreeSpaceEx, GetDriveType

GetDiskFreeSpaceEx
[New - Windows NT]

[New - Windows 95, OEM Service Release 2]

The GetDiskFreeSpaceEx function obtains information about the amount of space available on a
disk volume: the total amount of space, the total amount of free space, and the total amount of
free space available to the user associated with the calling thread.

Windows 95 OSR 2:

The GetDiskFreeSpaceEx function is available on Windows 95 systems beginning with OEM
Service Release 2 (OSR 2).

Use the GetVersionEx function to determine that a system is running OSR 2 or a later
release of the Windows 95 operating system. The GetVersionEx function fills in the members
of an OSVERSIONINFO data structure. If the dwPlatformId member of that structure is
VER_PLATFORM_WIN32_WINDOWS, and the low word of the dwBuildNumber member is
greater than 1000, the system is running OSR 2 or a later release.

Once you have determined that a system is running OSR 2, call the LoadLibrary or
LoadLibraryEx function to load the KERNEL32.DLL file, then call the GetProcAddress
function to obtain an address for the GetDiskFreeSpaceEx function. Use that address to call
the function.

BOOL GetDiskFreeSpaceEx(

LPCTSTR lpDirectoryName, // pointer to directory name on disk of interest

PULARGE_INTEGER lpFreeBytesAvailableToCaller, // pointer to variable to receive free bytes on disk available to the caller
PULARGE_INTEGER lpTotalNumberOfBytes, // pointer to variable to receive number of bytes on disk
PULARGE_INTEGER lpTotalNumberOfFreeBytes // pointer to variable to receive free bytes on disk

);ParameterslpDirectoryName
Pointer to a null-terminated string that specifies a directory on the disk of interest. This string
can be a UNC name.
If lpDirectoryName is NULL, the GetDiskFreeSpaceEx function obtains information about the
disk that contains the currect directory.
Note that lpDirectoryName does not have to specify the root directory on a disk. The function
accepts any directory on the disk.

lpFreeBytesAvailableToCaller
Pointer to a variable to receive the total number of free bytes on the disk that are available to
the user associated with the calling thread.
If the operating system implements per-user quotas, this value may be less than the total
number of free bytes on the disk.

lpTotalNumberOfBytes
Pointer to a variable to receive the total number of bytes on the disk.

lpTotalNumberOfFreeBytes
Pointer to a variable to receive the total number of free bytes on the disk.
This parameter can be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksNote that the values obtained by this function are of type ULARGE_INTEGER. Be careful not to
truncate these values to 32 bits.

The GetDiskFreeSpaceEx function lets you avoid the arithmetic required by the
GetDiskFreeSpace function.See AlsoGetDiskFreeSpace

GetDlgCtrlID
The GetDlgCtrlID function returns the identifier of the specified control.

int GetDlgCtrlID(

HWND hwndCtl
// handle of control

);ParametershwndCtl
Identifies the control.

Return ValuesIf the function succeeds, the return value is the identifier of the control.

If the function fails, the return value is NULL. An invalid value for the hwndCtl parameter, for
example, will cause the function to fail.RemarksGetDlgCtrlID accepts child window handles as well as handles of controls in dialog boxes. An
application sets the identifier for a child window when it creates the window by assigning the
identifier value to the hmenu parameter when calling the CreateWindow or CreateWindowEx
function.

Although GetDlgCtrlID may return a value if hwndCtl identifies a top-level window, top-level
windows cannot have identifiers and such a return value is never valid.See AlsoCreateWindow, CreateWindowEx, GetDlgItem

GetDlgItem
The GetDlgItem function retrieves the handle of a control in the specified dialog box.

HWND GetDlgItem(

HWND hDlg, // handle of dialog box

int nIDDlgItem // identifier of control
);ParametershDlg

Identifies the dialog box that contains the control.
nIDDlgItem

Specifies the identifier of the control to be retrieved.
Return ValuesIf the function succeeds, the return value is the window handle of the given control.

If the function fails, the return value is NULL, indicating an invalid dialog box handle or a
nonexistent control.RemarksYou can use the GetDlgItem function with any parent-child window pair, not just with dialog
boxes. As long as the hDlg parameter specifies a parent window and the child window has a
unique identifier (as specified by the hMenu parameter in the CreateWindow or
CreateWindowEx function that created the child window), GetDlgItem returns a valid handle to
the child window.See AlsoCreateWindow, CreateWindowEx, GetDlgItemInt, GetDlgItemText

GetDlgItemInt
The GetDlgItemInt function translates the text of a specified control in a dialog box into an integer
value.

UINT GetDlgItemInt(

HWND hDlg, // handle to dialog box

int nIDDlgItem, // control identifier
BOOL *lpTranslated, // points to variable to receive success/failure indicator
BOOL bSigned // specifies whether value is signed or unsigned

);ParametershDlg
Handle to the dialog box that contains the control of interest.

nIDDlgItem
Dialog item identifier that specifies the control whose text is to be translated.

lpTranslated
Points to a Boolean variable that receives a function success/failure value. TRUE indicates
success, FALSE indicates failure.
This parameter is optional: it can be NULL. In that case, the function returns no information
about success or failure.

bSigned
Specifies whether the function should examine the text for a minus sign at the beginning and
return a signed integer value if it finds one. TRUE specifies that this should be done, FALSE
that it should not.

Return ValuesIf the function succeeds, the variable pointed to by lpTranslated is set to TRUE, and the return
value is the translated value of the control text.

If the function fails, the variable pointed to by lpTranslated is set to FALSE, and the return value is
zero. Note that, since zero is a possible translated value, a return value of zero does not by itself
indicate failure.

If lpTranslated is NULL, the function returns no information about success or failure.

If the bSigned parameter is TRUE, specifying that the value to be retrieved is a signed integer
value, cast the return value to an int type.RemarksThe GetDlgItemInt function retrieves the text of the given control by sending the control a
WM_GETTEXT message. The function translates the retrieved text by stripping any extra spaces
at the beginning of the text and then converting the decimal digits. The function stops translating
when it reaches the end of the text or encounters a nonnumeric character.

If the bSigned parameter is TRUE, the GetDlgItemInt function checks for a minus sign (-) at the
beginning of the text and translates the text into a signed integer value. Otherwise, the function
creates an unsigned integer value.

The GetDlgItemInt function returns zero if the translated value is greater than INT_MAX (for
signed numbers) or UINT_MAX (for unsigned numbers).See AlsoGetDlgCtrlID, GetDlgItem, GetDlgItemText, SetDlgItemInt

GetDlgItemText
The GetDlgItemText function retrieves the title or text associated with a control in a dialog box.

UINT GetDlgItemText(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
LPTSTR lpString, // address of buffer for text
int nMaxCount // maximum size of string

);ParametershDlg
Identifies the dialog box that contains the control.

nIDDlgItem
Specifies the identifier of the control whose title or text is to be retrieved.

lpString
Points to the buffer to receive the title or text.

nMaxCount
Specifies the maximum length, in characters, of the string to be copied to the buffer pointed to
by lpString. If the length of the string exceeds the limit, the string is truncated.

Return ValuesIf the function succeeds, the return value specifies the number of characters copied to the buffer,
not including the terminating null character.

If the function fails, the return value is zero.RemarksThe GetDlgItemText function sends a WM_GETTEXT message to the control.See AlsoGetDlgItemInt, SetDlgItemInt, SetDlgItemText, WM_GETTEXT

GetDoubleClickTime
The GetDoubleClickTime function retrieves the current double-click time for the mouse. A
double-click is a series of two clicks of the mouse button, the second occurring within a specified
time after the first. The double-click time is the maximum number of milliseconds that may occur
between the first and second click of a double-click.

UINT GetDoubleClickTime(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value specifies the current double-click time, in milliseconds.See AlsoSetDoubleClickTime

GetDriveType
The GetDriveType function determines whether a disk drive is a removable, fixed, CD-ROM,
RAM disk, or network drive.

UINT GetDriveType(
LPCTSTR lpRootPathName // address of root path

);ParameterslpRootPathName
Points to a null-terminated string that specifies the root directory of the disk to return
information about. If lpRootPathName is NULL, the function uses the root of the current
directory.

Return ValuesThe return value specifies the type of drive. It can be one of the following values:

Value Meaning

0 The drive type cannot be determined.
1 The root directory does not exist.
DRIVE_REMOVABLEThe drive can be removed from the drive.
DRIVE_FIXED The disk cannot be removed from the drive.
DRIVE_REMOTE The drive is a remote (network) drive.
DRIVE_CDROM The drive is a CD-ROM drive.
DRIVE_RAMDISK The drive is a RAM disk.
See AlsoGetDiskFreeSpace

GetEffectiveClientRect
The GetEffectiveClientRect function calculates the dimensions of a rectangle in the client area.
This function has limited utility.

void GetEffectiveClientRect(
HWND hWnd,
LPRECT lprc,
LPINT lpInfo

);ParametershWnd
Handle to the window that has the client area to check.

lprc
Pointer to a RECT structure that receives the dimensions of the rectangle.

lpInfo
Pointer to an array of 16-bit control identifiers for controls in the client area. Each control
requires two array elements. The first element must be nonzero, and the second element
must be the control identifier. The last element in the array must be zero.

Return ValuesThis function does not return a value.See AlsoRECT

GetEffectiveRightsFromAcl
[New - Windows NT]

The GetEffectiveRightsFromAcl function retrieves the effective access rights that an ACL allows
for a specified trustee. The trustee's effective access rights are the access rights that the ACL
grants to the trustee or to any groups of which the trustee is a member. The function does not
consider the security privileges held by the trustee in determining the effective access rights.

DWORD GetEffectiveRightsFromAcl(
PACL pacl, // ACL to get trustee's rights from
PTRUSTEE pTrustee, // trustee to get rights for
PACCESS_MASK pAccessRights // receives trustee's access rights

);Parameterspacl
Pointer to an ACL from which to get the trustee's effective access rights.

pTrustee
Pointer to a TRUSTEE structure that identifies the trustee. A trustee can be a user, group, or
program (such as a Windows NT service). You can use a name or a security identifier (SID) to
identify a trustee.

pAccessRights
Pointer to an ACCESS_MASK variable that receives the effective access rights of the trustee.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksThe GetEffectiveRightsFromAcl function checks all access-allowed and access-denied ACEs in
the ACL to determine the effective rights for the trustee. For all ACEs that allow or deny rights to a
group, GetEffectiveRightsFromAcl enumerates the members of the group to determine whether
the trustee is a member. The function returns an error if it cannot enumerate the members of a
group.See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACCESS_MASK, ACE,
GetAuditedPermissionsFromAcl, SID, TRUSTEE

GetEnhMetaFile
The GetEnhMetaFile function creates a handle that identifies the enhanced-format metafile
stored in the specified file.

HENHMETAFILE GetEnhMetaFile(
LPCTSTR lpszMetaFile // address of metafile name

);ParameterslpszMetaFile
Points to the null-terminated string that specifies the name of an enhanced metafile.

Return ValuesIf the function succeeds, the return value is a handle of the enhanced metafile.

If the function fails, the return value is NULL.RemarksWhen the application no longer needs an enhanced-metafile handle, it should delete the handle
by calling the DeleteEnhMetaFile function.

A Windows-format metafile must be converted to the enhanced format before it can be processed
by the GetEnhMetaFile function. To convert the file, use the SetWinMetaFileBits function.

Where text arguments must use Unicode characters, use this function as a wide-character
function. Where text arguments must use characters from the Windows 3.x character set, use this
function as an ANSI function.

Windows 95: The maximum length of the description string for an enhanced metafile is 16,384
bytes.See AlsoDeleteEnhMetaFile, GetEnhMetaFile, SetWinMetaFileBits

GetEnhMetaFileBits
The GetEnhMetaFileBits function retrieves the contents of the specified enhanced-format
metafile and copies them into a buffer.

UINT GetEnhMetaFileBits(
HENHMETAFILE hemf, // handle of metafile
UINT cbBuffer, // size of data buffer, in bytes
LPBYTE lpbBuffer // address of data buffer

);Parametershemf
Identifies the enhanced metafile.

cbBuffer
Specifies the size, in bytes, of the buffer to receive the data.

lpbBuffer
Points to the buffer to receive the metafile data. The buffer must be sufficiently large to
contain the data. If lpbBuffer is NULL, the function returns the size necessary to hold the data.

Return ValuesIf the function succeeds and the buffer pointer is NULL, the return value is the size of the
enhanced metafile, in bytes.

If the function succeeds and the buffer pointer is a valid pointer, the return value is the number of
bytes copied to the buffer.

If the function fails, the return value is zero.RemarksAfter the enhanced-metafile bits are retrieved, they can be used to create a memory-based
metafile by calling the SetEnhMetaFileBits function.

The GetEnhMetaFileBits function does not invalidate the enhanced-metafile handle. The
application must call the DeleteEnhMetaFile function to delete the handle when it is no longer
needed.

The metafile contents retrieved by this function are in the enhanced format. To retrieve the
metafile contents in the Windows format, use the GetWinMetaFileBits function.See AlsoDeleteEnhMetaFile, GetWinMetaFileBits, SetEnhMetaFileBits

GetEnhMetaFileDescription
The GetEnhMetaFileDescription function retrieves an optional text description from an
enhanced-format metafile and copies the string to the specified buffer.

UINT GetEnhMetaFileDescription(
HENHMETAFILE hemf, // handle of enhanced metafile
UINT cchBuffer, // size of text buffer, in characters
LPTSTR lpszDescription // address of text buffer

);Parametershemf
Identifies the enhanced metafile.

cchBuffer
Specifies the size, in characters, of the buffer to receive the data. Only this many characters
will be copied.

lpszDescription
Points to the buffer to receive the optional text description.

Return ValuesIf the optional text description exists and the buffer pointer is NULL, the return value is the length
of the text string, in characters.

If the optional text description exists and the buffer pointer is a valid pointer, the return value is the
number of characters copied into the buffer.

If the optional text description does not exist, the return value is zero.

If the function fails, the return value is GDI_ERROR.RemarksThe optional text description contains two strings, the first identifying the application that created
the enhanced metafile and the second identifying the picture contained in the metafile. The strings
are separated by a null character and terminated with two null characters ¾ for example, "XYZ
Graphics Editor\0Bald Eagle\0\0" where \0 represents the null character.

Where text arguments must use Unicode characters, use this function as a wide-character
function. Where text arguments must use characters from the Windows 3.x character set, use this
function as an ANSI function.

Windows 95: The maximum length of the description string for an enhanced metafile is 16,384
bytes.See AlsoCreateEnhMetaFile

GetEnhMetaFileHeader
The GetEnhMetaFileHeader function retrieves the record containing the header for the specified
enhanced-format metafile.

UINT GetEnhMetaFileHeader(
HENHMETAFILE hemf, // handle of enhanced metafile
UINT cbBuffer, // size of buffer, in bytes
LPENHMETAHEADER lpemh // address of buffer to receive data

);Parametershemf
Identifies the enhanced metafile for which the header is to be retrieved.

cbBuffer
Specifies the size, in bytes, of the buffer to receive the data. Only this many bytes will be
copied.

lpemh
Points to an ENHMETAHEADER structure to receive the header record. If this parameter is
NULL, the function returns the size of the header record.

Return ValuesIf the function succeeds and the structure pointer is NULL, the return value is the size of the
record that contains the header; if the structure pointer is a valid pointer, the return value is the
number of bytes copied. Otherwise, it is zero.RemarksAn enhanced-metafile header contains such information as the metafile's size, in bytes; the
dimensions of the picture stored in the metafile; the number of records stored in the metafile; the
offset to the optional text description; the size of the optional palette, and the resolution of the
device on which the picture was created.

The record that contains the enhanced-metafile header is always the first record in the metafile.

Windows 95: The maximum length of the description string for an enhanced metafile is 16,384
bytes.See AlsoENHMETAHEADER, PlayEnhMetaFile

GetEnhMetaFilePaletteEntries
The GetEnhMetaFilePaletteEntries function retrieves optional palette entries from the specified
enhanced metafile.

UINT GetEnhMetaFilePaletteEntries(
HENHMETAFILE hemf, // handle of enhanced metafile
UINT cEntries, // count of palette entries
LPPALETTEENTRY lppe // address of palette-entry array

);Parametershemf
Identifies the enhanced metafile.

cEntries
Specifies the number of entries to be retrieved from the optional palette.

lppe
Points to an array of PALETTEENTRY structures to receive the palette colors. The array must
contain at least as many structures as there are entries specified by the cEntries parameter.

Return ValuesIf the array pointer is NULL and the enhanced metafile contains an optional palette, the return
value is the number of entries in the enhanced metafile's palette; if the array pointer is a valid
pointer and the enhanced metafile contains an optional palette, the return value is the number of
entries copied; if the metafile does not contain an optional palette, the return value is zero.
Otherwise, the return value is GDI_ERROR.RemarksAn application can store an optional palette in an enhanced metafile by calling the CreatePalette
and SetPaletteEntries functions before creating the picture and storing it in the metafile. By doing
this, the application can achieve consistent colors when the picture is displayed on a variety of
devices.

An application that displays a picture stored in an enhanced metafile can call the
GetEnhMetaFilePaletteEntries function to determine whether the optional palette exists. If it
does, the application can call the GetEnhMetaFilePaletteEntries function a second time to
retrieve the palette entries and then create a logical palette (by using the CreatePalette function),
select it into its device context (by using the SelectPalette function), and then realize it (by using
the RealizePalette function). After the logical palette has been realized, calling the
PlayEnhMetaFile function displays the picture using its original colors.See AlsoCreatePalette, PALETTEENTRY, PlayEnhMetaFile, RealizePalette, SelectPalette

GetEnvironmentStrings
The GetEnvironmentStrings function returns the address of the environment block for the
current process. This function replaces the GetDOSEnvironment function.

LPVOID GetEnvironmentStrings(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a pointer to an environment block for the current process.RemarksDo not use the return value of GetEnvironmentStrings to get or set environment variables.
Instead, use the GetEnvironmentVariable and SetEnvironmentVariable functions to access the
environment variables within this block. When the block is no longer needed, it should be freed by
calling FreeEnvironmentStrings.

A process can use this function's return value to specify the environment address used by the
CreateProcess function.See AlsoCreateProcess, GetEnvironmentVariable, SetEnvironmentVariable,
FreeEnvironmentStrings

GetEnvironmentVariable
The GetEnvironmentVariable function retrieves the value of the specified variable from the
environment block of the calling process. The value is in the form of a null-terminated string of
characters.

DWORD GetEnvironmentVariable(
LPCTSTR lpName, // address of environment variable name
LPTSTR lpBuffer, // address of buffer for variable value
DWORD nSize // size of buffer, in characters

);ParameterslpName
Points to a null-terminated string that specifies the environment variable.

lpBuffer
Points to a buffer to receive the value of the specified environment variable.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpBuffer parameter.

Return ValuesIf the function succeeds, the return value is the number of characters stored into the buffer pointed
to by lpBuffer, not including the terminating null character.

If the specified environment variable name was not found in the environment block for the current
process, the return value is zero.

If the buffer pointed to by lpBuffer is not large enough, the return value is the buffer size, in
characters, required to hold the value string and its terminating null character.See AlsoGetEnvironmentStrings, SetEnvironmentVariable

GetExceptionCode
The GetExceptionCode function retrieves a code that identifies the type of exception that
occurred. The function can be called only from within the filter expression or exception-handler
block of a try-except exception handler.

DWORD GetExceptionCode(VOID)ParametersThis function has no parameters.Return ValuesThe return value identifies the type of exception. Following are the exception codes likely to occur
due to common programming errors:

Value Meaning

EXCEPTION_ACCESS_VIOLATION
The thread attempted to read from or write to a virtual
address for which it does not have the appropriate access.

EXCEPTION_BREAKPOINT
A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT
The thread attempted to read or write data that is
misaligned on hardware that does not provide alignment.
For example, 16-bit values must be aligned on 2-byte
boundaries, 32-bit values on 4-byte boundaries, and so on.

EXCEPTION_SINGLE_STEP
A trace trap or other single-instruction mechanism signaled
that one instruction has been executed.

EXCEPTION_ARRAY_BOUNDS_EXCEEDED
The thread attempted to access an array element that is out
of bounds, and the underlying hardware supports bounds
checking.

EXCEPTION_FLT_DENORMAL_OPERAND
One of the operands in a floating-point operation is
denormal. A denormal value is one that is too small to
represent as a standard floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO
The thread attempted to divide a floating-point
value by a floating-point divisor of zero.

EXCEPTION_FLT_INEXACT_RESULT
The result of a floating-point operation cannot
be represented exactly as a decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION
This exception represents any floating-point
exception not included in this list.

EXCEPTION_FLT_OVERFLOW
The exponent of a floating-point operation is
greater than the magnitude allowed by the
corresponding type.

EXCEPTION_FLT_STACK_CHECK
The stack overflowed or underflowed as the
result of a floating-point operation.

EXCEPTION_FLT_UNDERFLOW
The exponent of a floating-point operation is
less than the magnitude allowed by the
corresponding type.

EXCEPTION_INT_DIVIDE_BY_ZERO
The thread attempted to divide an integer value
by an integer divisor of zero.

EXCEPTION_INT_OVERFLOW

The result of an integer operation caused a carry
out of the most significant bit of the result.

EXCEPTION_PRIV_INSTRUCTION
The thread attempted to execute an instruction
whose operation is not allowed in the current
machine mode.

EXCEPTION_NONCONTINUABLE_EXCEPTION
The thread attempted to continue execution
after a noncontinuable exception occurred.

RemarksThe GetExceptionCode function can be called only from within the filter expression or exception-
handler block of a try-except statement. The filter expression is evaluated if an exception occurs
during execution of the try block, and it determines whether the except block is executed. The
following example shows the structure of a try-except statement.try {

/* try block */
}
except (filter-expression) {

/* exception handler block */
}The filter expression can invoke a filter function. The filter function cannot call

GetExceptionCode. However, the return value of GetExceptionCode can be passed as a
parameter to a filter function. The return value of the GetExceptionInformation function can also
be passed as a parameter to a filter function. GetExceptionInformation returns a pointer to a
structure that includes the exception-code information.

In the case of nested try-except statements, each statement's filter expression is evaluated until
one is evaluated as EXCEPTION_EXECUTE_HANDLER or
EXCEPTION_CONTINUE_EXECUTION. Each filter expression can invoke GetExceptionCode to
get the exception code.

The exception code returned is the code generated by a hardware exception, or the code
specified in the RaiseException function for a software-generated exception.See AlsoGetExceptionInformation, RaiseException

GetExceptionInformation
The GetExceptionInformation function retrieves a machine-independent description of an
exception, and information about the machine state that existed for the thread when the exception
occurred. This function can be called only from within the filter expression of a try-except
exception handler.

LPEXCEPTION_POINTERS GetExceptionInformation(VOID)ParametersThis function has no parameters.Return ValuesThe return value is a pointer to an EXCEPTION_POINTERS structure that contains pointers to
two other structures: an EXCEPTION_RECORD structure containing a description of the
exception, and a CONTEXT structure containing the machine-state information.RemarksThe filter expression (from which the function is called) is evaluated if an exception occurs during
execution of the try block, and it determines whether the except block is executed. The following
example shows the structure of a try-except statement.try {

/* try block */
}
except (filter-expression) {

/* exception handler block */
}The filter expression can invoke a filter function. The filter function cannot call

GetExceptionInformation. However, the return value of GetExceptionInformation can be
passed as a parameter to a filter function.

To pass the EXCEPTION_POINTERS information to the exception-handler block, the filter
expression or filter function must copy the pointer or the data to safe storage that the handler can
later access.

In the case of nested try-except statements, each statement's filter expression is evaluated until
one is evaluated as EXCEPTION_EXECUTE_HANDLER or
EXCEPTION_CONTINUE_EXECUTION. Each filter expression can invoke
GetExceptionInformation to get exception information.See AlsoCONTEXT, EXCEPTION_POINTERS, EXCEPTION_RECORD, GetExceptionCode

GetExitCodeProcess
The GetExitCodeProcess function retrieves the termination status of the specified process.

BOOL GetExitCodeProcess(
HANDLE hProcess, // handle to the process
LPDWORD lpExitCode // address to receive termination status

);ParametershProcess
Identifies the process.
Windows NT: The handle must have PROCESS_QUERY_INFORMATION access. For more
information, see Process Objects.

lpExitCode
Points to a 32-bit variable to receive the process termination status.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the specified process has not terminated, the termination status returned is STILL_ACTIVE. If
the process has terminated, the termination status returned may be one of the following:

· The exit value specified in the ExitProcess or TerminateProcess function.
· The return value from the main or WinMain function of the process.
· The exception value for an unhandled exception that caused the process to terminate.
See AlsoExitProcess, ExitThread, TerminateProcess, WinMain

GetExitCodeThread
The GetExitCodeThread function retrieves the termination status of the specified thread.

BOOL GetExitCodeThread(
HANDLE hThread, // handle to the thread
LPDWORD lpExitCode // address to receive termination status

);ParametershThread
Identifies the thread.
Windows NT: The handle must have THREAD_QUERY_INFORMATION access. For more
information, see Thread Objects.

lpExitCode
Points to a 32-bit variable to receive the thread termination status.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the specified thread has not terminated, the termination status returned is STILL_ACTIVE. If the
thread has terminated, the termination status returned may be one of the following:

· The exit value specified in the ExitThread or TerminateThread function.
· The return value from the thread function.
· The exit value of the thread's process.
See AlsoExitThread, GetExitCodeProcess, TerminateThread

GetExpandedName
The GetExpandedName function retrieves the original name of a compressed file, if the file was
compressed by using the Microsoft File Compression Utility (COMPRESS.EXE) and the /r option
was specified.

INT GetExpandedName(
LPTSTR lpszSource, // address of name of compressed file
LPTSTR lpszBuffer // address of buffer for original filename

);ParameterslpszSource
Points to a string that specifies the name of a compressed file.

lpszBuffer
Points to a buffer that receives the name of the compressed file.

Return ValuesIf the function succeeds, the return value is 1.

If the function fails, the return value is LZERROR_BADVALUE.

Note that GetExpandedName calls neither SetLastError nor SetLastErrorEx; thus, its failure
does not affect a thread's last-error code.RemarksThe contents of the buffer pointed to by the lpszBuffer parameter is the original filename if the file
was compressed by using the /r option. If the /r option was not used, this function duplicates the
name in the lpszSource parameter into the lpszBuffer buffer.

GetExplicitEntriesFromAcl
[New - Windows NT]

The GetExplicitEntriesFromAcl function retrieves an array of EXPLICIT_ACCESS structures
that describe the access-control entries (ACEs) in an access-control list (ACL).

DWORD GetExplicitEntriesFromAcl(
PACL pacl, // pointer to the ACL from which to get entries
PULONG pcCountOfExplicitEntries, // receives number of entries in the list
PEXPLICIT_ACCESS * pListOfExplicitEntries // receives pointer to list of entries

);Parameterspacl
Pointer to an ACL from which to get ACE information.

pcCountOfExplicitEntries
Pointer to a variable that receives the number of EXPLICIT_ACCESS structures returned in
the pListOfExplicitEntries array.

pListOfExplicitEntries
Pointer to a variable that receives a pointer to an array of EXPLICIT_ACCESS structures that
describe the ACEs in the ACL. If the function succeeds, you must call the LocalFree function
to free the returned buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksEach entry in the array of EXPLICIT_ACCESS structures describes access control information
from an ACE for a trustee. A trustee can be a user, group, or program (such as a Windows NT
service).

Each EXPLICIT_ACCESS structure specifies a set of access rights and an access mode flag that
indicates whether the ACE allows, denies, or audits the specified rights.

For a discretionary ACL (DACL), the access mode flag can be one of the following values from the
ACCESS_MODE enumeration.

Value Meaning

SET_ACCESS Indicates that an access-allowed ACE for the
trustee allows the specified access rights.

DENY_ACCESS Indicates that an access-denied ACE for the
trustee denies the specified access rights.

For a system ACL (SACL), the access mode flag can be a combination of the following
values from the ACCESS_MODE enumeration.

Value Meaning

SET_AUDIT_SUCCESSIndicates that a system-audit ACE for the
trustee generates audit messages for
successful attempts to use the specified
access rights.

SET_AUDIT_FAILURE Indicates that a system-audit ACE for the
trustee generates audit messages for failed
attempts to use the specified access rights.

See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACE, ACL, EXPLICIT_ACCESS,
LocalFree, SYSTEM_AUDIT_ACE

GetFiberData
The GetFiberData function returns the fiber data associated with the current fiber.

PVOID GetFiberData(VOID)

ParametersThis function has no parameters.Return ValuesThe return value is the fiber data for the currently running fiber.RemarksThe fiber data is the value passed to the CreateFiber or ConvertThreadToFiber functions in the
lpParameter parameter. This value is also received as the parameter to the fiber function. It is
stored as part of the fiber state information.See AlsoCreateFiber, ConvertThreadToFiber

GetFileAttributes
The GetFileAttributes function returns attributes for a specified file or directory.

DWORD GetFileAttributes(
LPCTSTR lpFileName // address of the name of a file or directory

);ParameterslpFileName
Points to a null-terminated string that specifies the name of a file or directory.
Windows NT:

There is a default string size limit for paths of MAX_PATH characters. This limit is related to
how the GetFileAttributes function parses paths. An application can transcend this limit
and send in paths longer than MAX_PATH characters by calling the wide (W) version of
GetFileAttributes and prepending "\\?\" to the path. The "\\?\" tells the function to turn off
path parsing; it lets paths longer than MAX_PATH be used with GetFileAttributesW. This
also works with UNC names. The "\\?\" is ignored as part of the path. For example, "\\?\C:\
myworld\private" is seen as "C:\myworld\private", and "\\?\UNC\bill_g_1\hotstuff\coolapps" is seen as "\\
bill_g_1\hotstuff\coolapps".

Windows 95:
The lpFileName string must not exceed MAX_PATH characters. Windows 95 does not
support the "\\?\" prefix.

Return ValuesIf the function succeeds, the return value contains the attributes of the specified file or directory.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.

The attributes can be one or more of the following values:

Value Meaning

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive
file or directory. Applications use
this flag to mark files for backup or
removal.

FILE_ATTRIBUTE_COMPRESSEDThe file or directory is compressed.
For a file, this means that all of the
data in the file is compressed. For
a directory, this means that
compression is the default for
newly created files and
subdirectories.

FILE_ATTRIBUTE_DIRECTORY The "file or directory" is a directory.
FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is

not included in an ordinary
directory listing.

FILE_ATTRIBUTE_NORMAL The file or directory has no other
attributes set. This attribute is valid
only if used alone.

FILE_ATTRIBUTE_OFFLINE The data of the file is not
immediately available. Indicates
that the file data has been
physically moved to offline storage.

FILE_ATTRIBUTE_READONLY The file or directory is read-only.
Applications can read the file but
cannot write to it or delete it. In the
case of a directory, applications
cannot delete it.

FILE_ATTRIBUTE_SYSTEM The file or directory is part of, or is
used exclusively by, the operating
system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary
storage. File systems attempt to
keep all of the data in memory for

quicker access rather than flushing
the data back to mass storage. A
temporary file should be deleted by
the application as soon as it is no
longer needed.

See AlsoDeviceIOControl, FindFirstFile, FindNextFile, SetFileAttributes

GetFileAttributesEx
[New - Windows NT]

The GetFileAttributesEx function obtains attribute information about a specified file or directory.

This function is similar to the GetFileAttributes function. GetFileAttributes returns a set of FAT-
style attribute information. GetFileAttributesEx is designed to obtain other sets of file or directory
attribute information. Currently, GetFileAttributeEx obtains a set of standard attributes that is a
superset of the FAT-style attribute information.

BOOL GetFileAttributesEx(
LPCTSTR lpFileName, // pointer to string that specifies a file or directory
GET_FILEEX_INFO_LEVELS fInfoLevelId, // value that specifies the type of attribute information to obtain
LPVOID lpFileInformation // pointer to buffer to receive attribute information

);ParameterslpFileName
Pointer to a null-terminated string that specifies a file or directory.
By default, this string is limited to MAX_PATH characters. The limit is related to how the
GetFileAttributesEx function parses paths. An application can transcend this limit and send
in paths longer than MAX_PATH characters by calling the wide (W) version of
GetFileAttributesEx and prepending "\\?\" to the path. The "\\?\" tells the function to turn off
path parsing. This technique also works with UNC names. The "\\?\" is ignored as part of the
path. For example, "\\?\C:\myworld\private" is seen as "C:\myworld\private", and "\\?\UNC\peanuts\hotstuff\
coolapps" is seen as "\\peanuts\hotstuff\coolapps".

fInfoLevelId
Enumeration type value that specifies the set of attribute information to obtain.
You can use the following value for fInfoLevelId:

Value Meaning
GetFileExInfoStandard The function obtains a standard set of

attribute information. The data is returned in a
WIN32_FILE_ATTRIBUTE_DATA structure.

Future releases of Win32-based operating systems and extensions may define other
values for the GET_FILEEX_INFO_LEVELS enum type.

lpFileInformation
Pointer to a buffer that receives the attribute information.
The type of attribute information stored into this buffer is determined by the value of
fInfoLevelId, as follows:

Value of fInfoLevelId Structure Stored into *lpFileInformation
GetFileExInfoStandard WIN32_FILE_ATTRIBUTE_DATA.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetFileAttributes, SetFileAttributes, WIN32_FILE_ATTRIBUTE_DATA

GetFileInformationByHandle
The GetFileInformationByHandle function retrieves information about a specified file.

BOOL GetFileInformationByHandle(
HANDLE hFile, // handle of file
LPBY_HANDLE_FILE_INFORMATION lpFileInformation // address of structure

);ParametershFile
Handle to the file that you want to obtain information about.
This handle should not be a pipe handle. The GetFileInformationByHandle function does not
work with pipe handles.

lpFileInformation
Points to a BY_HANDLE_FILE_INFORMATION structure that receives the file information.
The structure can be used in subsequent calls to GetFileInformationByHandle to refer to the
information about the file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksDepending on the underlying network components of the operating system and the type of server
connected to, the GetFileInformationByHandle function may fail, return partial information, or full
information for the given file. In general, you should not use GetFileInformationByHandle unless
your application is intended to be run on a limited set of operating system configurations.See AlsoBY_HANDLE_FILE_INFORMATION

GetFileSecurity
The GetFileSecurity function obtains specified information about the security of a file or directory.
The information obtained is constrained by the caller's access rights and privileges.

BOOL GetFileSecurity(
LPCTSTR lpFileName, // address of string for file name
SECURITY_INFORMATION RequestedInformation, // requested information
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
DWORD nLength, // size of security descriptor buffer
LPDWORD lpnLengthNeeded // address of required size of buffer

);ParameterslpFileName
Points to a null-terminated string specifying the file or directory for which security information
is retrieved.

RequestedInformation
Specifies a SECURITY_INFORMATION structure that identifies the security information being
requested.

pSecurityDescriptor
Points to a buffer that receives a copy of the security descriptor of the object specified by the
lpFileName parameter. The calling process must have the right to view the specified aspects
of the object's security status. The SECURITY_DESCRIPTOR structure is returned in self-
relative format.

nLength
Specifies the size, in bytes, of the buffer pointed to by the pSecurityDescriptor parameter.

lpnLengthNeeded
Points to a variable the function sets to zero if the file descriptor is copied successfully. If the
buffer is too small for the security descriptor, this variable receives the number of bytes
required. If this variable's value is greater than that of the nLength parameter when the
function returns, none of the security descriptor is copied to the buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo read the security descriptor of a file or directory, the calling process must have
READ_CONTROL access or be the owner of the file or directory.

To read the system access-control list (SACL) of a file or directory, the SE_SECURITY_NAME
privilege must be enabled for the calling process.See AlsoGetKernelObjectSecurity, GetPrivateObjectSecurity, GetUserObjectSecurity,
SECURITY_DESCRIPTOR, SECURITY_INFORMATION, SetFileSecurity

GetFileSize
The GetFileSize function retrieves the size, in bytes, of the specified file.

DWORD GetFileSize(
HANDLE hFile, // handle of file to get size of
LPDWORD lpFileSizeHigh // address of high-order word for file size

);ParametershFile
Specifies an open handle of the file whose size is being returned. The handle must have been
created with either GENERIC_READ or GENERIC_WRITE access to the file.

lpFileSizeHigh
Points to the variable where the high-order word of the file size is returned. This parameter
can be NULL if the application does not require the high-order word.

Return ValuesIf the function succeeds, the return value is the low-order doubleword of the file size, and, if
lpFileSizeHigh is non-NULL, the function puts the high-order doubleword of the file size into the
variable pointed to by that parameter.

If the function fails and lpFileSizeHigh is NULL, the return value is 0xFFFFFFFF. To get extended
error information, call GetLastError.

If the function fails and lpFileSizeHigh is non-NULL, the return value is 0xFFFFFFFF and
GetLastError will return a value other than NO_ERROR.RemarksYou cannot use the GetFileSize function with a handle of a nonseeking device such as a pipe or
a communications device. To determine the file type for hFile, use the GetFileType function.

The GetFileSize function obtains the uncompressed size of a file. Use the
GetCompressedFileSize function to obtain the compressed size of a file.

Note that if the return value is 0xFFFFFFFF and lpFileSizeHigh is non-NULL, an application must
call GetLastError to determine whether the function has succeeded or failed. The following
sample code illustrates this point://
// Case One: calling the function with
// lpFileSizeHigh == NULL
// Try to obtain hFile's size
dwSize = GetFileSize (hFile, NULL) ;
// If we failed ...
if (dwSize == 0xFFFFFFFF) {

// Obtain the error code.
dwError = GetLastError() ;
// Deal with that failure.
.
.
.
} // End of error handler

//
// Case Two: calling the function with
// lpFileSizeHigh != NULL
// Try to obtain hFile's huge size.
dwSizeLow = GetFileSize (hFile, & dwSizeHigh) ;
// If we failed ...
if (dwSizeLow == 0xFFFFFFFF

&&
(dwError = GetLastError()) != NO_ERROR){
// Deal with that failure.
.
.
.
} // End of error handler.

See AlsoGetCompressedFileSize, GetFileType

GetFileTime
The GetFileTime function retrieves the date and time that a file was created, last accessed, and
last modified.

BOOL GetFileTime(
HANDLE hFile, // identifies the file
LPFILETIME lpCreationTime, // address of creation time
LPFILETIME lpLastAccessTime, // address of last access time
LPFILETIME lpLastWriteTime // address of last write time

);ParametershFile
Identifies the files for which to get dates and times. The file handle must have been created
with GENERIC_READ access to the file.

lpCreationTime
Points to a FILETIME structure to receive the date and time the file was created. This
parameter can be NULL if the application does not require this information.

lpLastAccessTime
Points to a FILETIME structure to receive the date and time the file was last accessed. The
last access time includes the last time the file was written to, read from, or, in the case of
executable files, run. This parameter can be NULL if the application does not require this
information.

lpLastWriteTime
Points to a FILETIME structure to receive the date and time the file was last written to. This
parameter can be NULL if the application does not require this information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe FAT and New Technology file systems support the file creation, last access, and last write
time values.

Windows 95: The precision of the time for a file in a FAT file system is 2 seconds. The time
precision for files in other file systems, such as those connected through a network depends on
the file system but may also be limited by the remote device.See AlsoFILETIME, GetFileSize, GetFileType, SetFileTime

GetFileTitle
The GetFileTitle function returns the name of the file identified by the lpszFile parameter.

short GetFileTitle(
LPCTSTR lpszFile, // pointer to full path and filename for file
LPTSTR lpszTitle, // pointer to buffer that receives filename
WORD cbBuf // length of buffer

);ParameterslpszFile
Pointer to the name and location of a file.

lpszTitle
Pointer to a buffer into which the function is to copy the name of the file.

cbBuf
Specifies the length, in characters, of the buffer pointed to by the lpszTitle parameter.

Return ValuesIf the function succeeds, the return value is zero.

If the filename is invalid, the return value is a negative number.

If the buffer pointed to by the lpszTitle parameter is too small, the return value is a positive integer
that specifies the required buffer size, in bytes (ANSI version) or characters (Unicode version).
The required buffer size includes the terminating null character.RemarksThe GetFileTitle function returns an error value if the buffer pointed to by the lpszFile parameter
contains any of the following elements:

· An empty string
· A string containing a wildcard (*), opening bracket ([), or closing bracket (])
· A string that ends with a colon (:), slash mark (/), or backslash (\)
· A string whose length exceeded the length of the buffer
· An invalid character (for example, a space or an unprintable character)

To get the buffer size needed for the name of a file, call the function with lpszTitle set to NULL and
cbBuf set to zero. The function will return the required size.

GetFileTitle returns the string that the system would use to display the filename to the user. The
display name includes an extension only if that is the user's preference for displaying filenames.
This means that the returned string may not accurately identify the file if it is used in calls to file
system functions.

If the lpszTitle buffer is too small, GetFileTitle returns the size required to hold the display name.
There is no guaranteed connection between the required size and the characters originally
specified in the lpszFile buffer. In porting applications to Windows 95 and Windows NT,
developers will need to update any code that relies on such behavior in previous versions of the
operating system. The most common case is code that deliberately calls GetFileTitle with
lpszTitle set to NULL and cbBuf set to zero, and then uses the return value as an index into the
lpszFile string. This technique is no longer supported. You can usually achieve similar results (and
superior performance) with run-time library functions such as strrchr, wcsrchr, and _mbsrchr.See AlsoGetOpenFileName, GetSaveFileName

GetFileType
The GetFileType function returns the type of the specified file.

DWORD GetFileType(
HANDLE hFile // file handle

);ParametershFile
Identifies an open file handle.

Return ValuesThe return value is one of the following values:

Value Meaning

FILE_TYPE_UNKNOWNThe type of the specified file is unknown.
FILE_TYPE_DISK The specified file is a disk file.
FILE_TYPE_CHAR The specified file is a character file, typically

an LPT device or a console.
FILE_TYPE_PIPE The specified file is either a named or

anonymous pipe.
See AlsoGetFileSize, GetFileTime

GetFileVersionInfo
The GetFileVersionInfo function returns version information about a specified file.

As with other file installation functions, GetFileVersionInfo works only with Win32 file images. It
does not work with 16-bit Windows file images.

BOOL GetFileVersionInfo(
LPTSTR lptstrFilename, // pointer to filename string
DWORD dwHandle, // ignored
DWORD dwLen, // size of buffer
LPVOID lpData // pointer to buffer to receive file-version info.

);ParameterslptstrFilename
Pointer to a null-terminated filename string that specifies the file of interest.

dwHandle
This parameter is ignored.

dwLen
Specifies the size, in bytes, of the buffer pointed to by lpData.
Call the GetFileVersionInfoSize function to determine the size in bytes of a file's version
information. dwLen should be equal to or greater than that value.
If the buffer pointed to by lpData is not large enough, the function truncates the file's-version
information to the size of the buffer.

lpData
Pointer to a buffer to receive file-version information.
You can use this value in a subsequent call to the VerQueryValue function.
The file version information is always in Unicode format.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetFileVersionInfoSize, VerQueryValue, VS_VERSION_INFO

GetFileVersionInfoSize
The GetFileVersionInfoSize function determines whether the operating system can obtain
version information about a specified file. If version information is available,
GetFileVersionInfoSize returns the size in bytes of that information.

As with other file installation functions, GetFileVersionInfo works only with Win32 file images. It
does not work with 16-bit Windows file images.

DWORD GetFileVersionInfoSize(
LPTSTR lptstrFilename, // pointer to filename string
LPDWORD lpdwHandle // pointer to variable to receive zero

);ParameterslptstrFilename
Pointer to a null-terminated filename string that specifies the file of interest.

lpdwHandle
Pointer to a variable that the function sets to zero.

Return ValuesIf the function succeeds, the return value is the size in bytes of the file's version information.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksCall the GetFileVersionInfoSize function before calling the GetFileVersionInfo function.See AlsoGetFileVersionInfo, VerQueryValue

GetFocus
The GetFocus function retrieves the handle of the window that has the keyboard focus, if the
window is associated with the calling thread's message queue.

HWND GetFocus(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the window with the keyboard focus. If
the calling thread's message queue does not have an associated window with the keyboard focus,
the return value is NULL.RemarksEven if GetFocus returns NULL, another thread's queue may be associated with a window that
has the keyboard focus.

Use the GetForegroundWindow function to retrieve the handle to the window with which the
user is currently working. You can associate your thread's message queue with the windows
owned by another thread by using the AttachThreadInput function.See AlsoAttachThreadInput, GetForegroundWindow, SetFocus, WM_KILLFOCUS, WM_SETFOCUS

GetFontData
The GetFontData function retrieves font metric data for a TrueType font.

DWORD GetFontData(
HDC hdc, // handle of device context
DWORD dwTable, // metric table to query
DWORD dwOffset, // offset into table being queried
LPVOID lpvBuffer, // address of buffer for returned data
DWORD cbData // length of data to query

);Parametershdc
Identifies the device context.

dwTable
Specifies the name of a font metric table from which the font data is to be retrieved. This
parameter can identify one of the metric tables documented in the TrueType Font Files
specification published by Microsoft Corporation. If this parameter is zero, the information is
retrieved starting at the beginning of the font file.

dwOffset
Specifies the offset from the beginning of the font metric table to the location where the
function should begin retrieving information. If this parameter is zero, the information is
retrieved starting at the beginning of the table specified by the dwTable parameter. If this
value is greater than or equal to the size of the table, an error occurs.

lpvBuffer
Points to a buffer to receive the font information. If this parameter is NULL, the function
returns the size of the buffer required for the font data.

cbData
Specifies the length, in bytes, of the information to be retrieved. If this parameter is zero,
GetFontData returns the size of the data specified in the dwTable parameter.

Return ValuesIf the function succeeds, the return value is the number of bytes returned.

If the function fails, the return value is GDI_ERROR.RemarksAn application can sometimes use the GetFontData function to save a TrueType font with a
document. To do this, the application determines whether the font can be embedded by checking
the otmfsType member of the OUTLINETEXTMETRIC structure. If bit 1 of otmfsType is set,
embedding is not permitted for the font. If bit 1 is clear, the font can be embedded. If bit 2 is set,
the embedding is read-only. If embedding is permitted, the application can retrieve the entire font
file, specifying zero for the dwTable, dwOffset, and cbData parameters.

If an application attempts to use this function to retrieve information for a non-TrueType font, an
error occurs.See AlsoGetTextMetrics, OUTLINETEXTMETRIC

GetFontLanguageInfo
[Now Supported on Windows NT]

The GetFontLanguageInfo function returns information about the currently selected font for the
specified display context. Applications typically use this information and the
GetCharacterPlacement function to prepare a character string for display.

DWORD GetFontLanguageInfo(
HDC hdc // handle to a device context

);Parametershdc
Handle to a display context.

Return ValuesThe return value identifies characteristics of the currently selected font. The function returns 0 if
the font is "normalized" and can be treated as a simple Latin font; it returns GCP_ERROR if an
error occurs. Otherwise, the function returns a combination of the following values:

Value Meaning

GCP_DBCS The character set is DBCS.
GCP_DIACRITIC The font/language contains diacritic glyphs
FLI_GLYPHS The font contains extra glyphs not normally

accessible using the codepage. Use
GetCharacterPlacement to access the
glyphs. This value is for information only and is
not intended to be passed to
GetCharacterPlacement.

GCP_GLYPHSHAPE The font/language contains multiple glyphs per
code point or per code point combination
(supports shaping and/or ligation), and the font
contains advanced glyph tables to provide
extra glyphs for the extra shapes. If this value
is given, the lpGlyphs array must be used with
the GetCharacterPlacement function and the
ETO_GLYPHINDEX value must be passed to
the ExtTextOut function when the string is
drawn.

GCP_KASHIDA The font/ language permits Kashidas.
GCP_LIGATE The font/language contains ligation glyphs

which can be substituted for specific character
combinations.

GCP_USEKERNING The font contains a kerning table which can be
used to provide better spacing between the
characters and glyphs.

GCP_REORDER The language requires reordering for display--
for example, Hebrew or Arabic.

The return value, when masked with FLI_MASK, can be passed directly to the
GetCharacterPlacement function.See AlsoExtTextOut, GetCharacterPlacement

GetForegroundWindow
The GetForegroundWindow function returns the handle of the foreground window (the window
with which the user is currently working). The system assigns a slightly higher priority to the
thread that creates the foreground window than it does to other threads.

HWND GetForegroundWindow(VOID)ParametersThis function has no parameters.Return ValuesThe return value is the handle of the foreground window.See AlsoSetForegroundWindow

GetForm
The GetForm function initializes a FORM_INFO_1 structure with data describing the specified
form for a printer.

BOOL GetForm(
HANDLE hPrinter, // handle of printer
LPTSTR pFormName, // address of form name
DWORD Level, // structure level
LPBYTE pForm, // address of structure array
DWORD cbBuf, // count of bytes in array
LPDWORD pcbNeeded // addr. of variable with count of bytes retrieved (or required)

);ParametershPrinter
Identifies the printer.

pFormName
Points to a null-terminated string that specifies the name of the form.

Level
Specifies the version of the structure to which pForm points. This value must be 1.

pForm
Points to an array of bytes that receives the initialized FORM_INFO_1 structure.

cbBuf
Specifies the size, in bytes, of the pForm array.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle hPrinter is obtained by calling the OpenPrinter function.See AlsoAddForm, DeleteForm, OpenPrinter, SetForm

GetFreeSpace
The GetFreeSpace function is obsolete. It is provided to simplify porting of 16-bit Windows-based
applications. Win32-based applications should use the GlobalMemoryStatus function.

GetFullPathName
The GetFullPathName function retrieves the full path and filename of a specified file.

DWORD GetFullPathName(
LPCTSTR lpFileName, // address of name of file to find path for
DWORD nBufferLength, // size, in characters, of path buffer
LPTSTR lpBuffer, // address of path buffer
LPTSTR *lpFilePart // address of filename in path

);ParameterslpFileName
Points to a null-terminated string that specifies a valid filename. This string can use either
short (the 8.3 form) or long filenames.

nBufferLength
Specifies the size, in characters, of the buffer for the drive and path.

lpBuffer
Points to a buffer that contains the null-terminated string for the name of the drive and path.

lpFilePart
Points to a variable that receives the address (in lpBuffer) of the final filename component in
the path. This filename component is the long filename, if any, rather than the 8.3 form of the
filename.

Return ValuesIf the GetFullPathName function succeeds, the return value is the length, in characters, of the
string copied to lpBuffer, not including the terminating null character.

If the lpBuffer buffer is too small, the return value is the size of the buffer, in characters, required
to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetFullPathName function merges the name of the current drive and directory with the
specified filename to determine the full path and filename of the specified file. It also calculates
the address of the filename portion of the full path and filename. This function does not verify that
the resulting path and filename are valid or that they refer to an existing file on the associated
volume.See AlsoGetShortPathName, GetTempPath, SearchPath

GetGlyphOutline
The GetGlyphOutline function retrieves the outline or bitmap for a character in the TrueType font
that is selected into the specified device context.

DWORD GetGlyphOutline(
HDC hdc, // handle of device context
UINT uChar, // character to query
UINT uFormat, // format of data to return
LPGLYPHMETRICS lpgm, // address of structure for metrics
DWORD cbBuffer, // size of buffer for data
LPVOID lpvBuffer, // address of buffer for data
CONST MAT2 *lpmat2 // address of transformation matrix structure

);Parametershdc
Identifies the device context.

uChar
Specifies the character for which data is to be returned.

uFormat
Specifies the format of the data that the function retrieves. Use one of the following values:

Value Meaning
GGO_BITMAP The function retrieves the glyph bitmap. For

information about memory allocation, see the
following Remarks section.

GGO_NATIVE The function retrieves the curve data points in
the rasterizer's native format and uses the
font's design units. When this value is
specified, any transformation specified in the
lpMatrix parameter is ignored.

GGO_METRICS The function only retrieves the
GLYPHMETRICS structure specified by lpgm.
The other buffers are ignored. This value
affects the meaning of the function's return
value upon failure; see the following Return
Value section.

GGO_GRAY2_BITMAPThe function retrieves a glyph bitmap that
contains 5 levels of gray.

GGO_GRAY4_BITMAPThe function retrieves a glyph bitmap that
contains 17 levels of gray.

GGO_GRAY8_BITMAPThe function retrieves a glyph bitmap that
contains 65 levels of gray.

Note that, for the GGO_GRAYn_BITMAP values, the function retrieves a glyph bitmap
that contains n^2+1 (n squared plus one) levels of gray.

lpgm
Points to the GLYPHMETRICS structure describing the placement of the glyph in the
character cell.

cbBuffer
Specifies the size of the buffer where the function is to copy information about the outline
character. If this value is zero, the function returns the required size of the buffer.

lpvBuffer
Points to the buffer where the function is to copy information about the outline character. If this
value is NULL, the function returns the required size of the buffer.

lpmat2
Points to a MAT2 structure specifying a transformation matrix for the character.

Return ValuesIf GGO_BITMAP, GGO_GRAY2_BITMAP, GGO_GRAY4_BITMAP, GGO_GRAY8_BITMAP, or
GGO_NATIVE is specified and the function succeeds, the return value is greater than zero;
otherwise, the return value is GDI_ERROR. If one of these flags is specified and the buffer size or
address is zero, the return value specifies the required buffer size, in bytes.

If GGO_METRICS is specified and the function fails, the return value is GDI_ERROR.

RemarksThe glyph outline returned by the GetGlyphOutline function is for a grid-fitted glyph. (A grid-fitted
glyph is a glyph that has been modified so that its bitmapped image conforms as closely as
possible to the original design of the glyph.) If an application needs an unmodified glyph outline, it
can request the glyph outline for a character in a font whose size is equal to the font's em unit.
The value for a font's em unit is stored in the otmEMSquare member of the
OUTLINETEXTMETRIC structure.

The glyph bitmap returned by GetGlyphOutline when GGO_BITMAP is specified is a
doubleword-aligned, row-oriented, monochrome bitmap. When GGO_GRAY2_BITMAP is
specified, the bitmap returned is a doubleword-aligned, row-oriented array of bytes whose values
range from 0 to 4. When GGO_GRAY4_BITMAP is specified, the bitmap returned is a
doubleword-aligned, row-oriented array of bytes whose values range from 0 to 16. When
GGO_GRAY8_BITMAP is specified, the bitmap returned is a doubleword-aligned, row-oriented
array of bytes whose values range from 0 to 255.

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2
transformation matrix in the lpMatrix parameter.See AlsoFORM_INFO_1, GetOutlineTextMetrics, GLYPHMETRICS, MAT2, OUTLINETEXTMETRIC,
POINT

GetGraphicsMode
The GetGraphicsMode function retrieves the current graphics mode for the specified device
context.

int GetGraphicsMode(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the current graphics mode. It can be one of the
following values:

Value Meaning

GM_COMPATIBLE The current graphics mode is the compatible
graphics mode, a mode that is compatible with
Windows version 3.1. In this graphics mode, an
application cannot set or modify the world
transformation for the specified device context.
The compatible graphics mode is the default
graphics mode.

GM_ADVANCED Windows NT: The current graphics mode is the
advanced graphics mode, a mode that allows
world transformations. In this graphics mode, an
application can set or modify the world
transformation for the specified device context.
Windows 95: The GM_ADVANCED value is not
supported.

Otherwise, the return value is zero.RemarksAn application can set the graphics mode for a device context by calling the SetGraphicsMode
function.See AlsoSetGraphicsMode

GetHandleInformation
The GetHandleInformation function obtains information about certain properties of an object
handle. The information is obtained as a set of bit flags.

BOOL GetHandleInformation (
HANDLE hObject, // handle to an object
LPDWORD lpdwFlags // points to variable to receive flags

);ParametershObject
Specifies a handle to an object. The GetHandleInformation function obtains information
about this object handle.

lpdwFlags
Points to a variable to receive a set of bit flags that specify properties of the object handle.
The following flags are defined:

Value Meaning
HANDLE_FLAG_INHERIT If this flag is set, a child

process created with the
bInheritHandles parameter of
CreateProcess set to TRUE
will inherit the object handle.

HANDLE_FLAG_PROTECT_FROM_CLOSEIf this flag is set, calling the
CloseHandle function will not
close the object handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCloseHandle, CreateProcess, SetHandleInformation

GetICMProfile
The GetICMProfile function retrieves the name of the color profile file for the device associated
with the specified device context.

BOOL GetICMProfile(
HDC hdc,
LPDWORD lpcbName,
LPTSTR lpszFilename

);Parametershdc
Handle to the device context.

lpcbName
Pointer to a DWORD that contains the size, in bytes or characters, of the buffer that receives
the filename, depending on whether the ANSI or Unicode version of the function is used.
If the buffer is too small, the function fails, and sets the DWORD pointed to by lpcbName to
the minimum required buffer size.

lpszFilename
Pointer to the buffer that receives the null-terminated string specifying the full path of the color
profile file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe function obtains the image color matching profile for the device context regardless of whether
image color matching (ICM) is enabled for the device context specified by hdc.See AlsoSetICMProfile

GetIconInfo
The GetIconInfo function retrieves information about the specified icon or cursor.

BOOL GetIconInfo(
HICON hIcon, // icon handle
PICONINFO piconinfo // address of icon structure

);ParametershIcon
Identifies the icon or cursor. To retrieve information about a standard icon or cursor, specify
one of the following values:

Value Meaning
IDC_ARROW Arrow cursor
IDC_IBEAM I-beam cursor
IDC_WAIT Hourglass cursor
IDC_CROSS Crosshair cursor
IDC_UPARROW Up arrow cursor
IDC_SIZENWSE Sizing cursor, points northwest and

southeast
IDC_SIZENESW Sizeing cursor, points northeast and

southwest
IDC_SIZEWE Sizing cursor, points west and east
IDC_SIZENS Sizing cursor, points north and south
IDC_SIZEALL Sizing cursor, points north, south, east, and

west
IDC_NO "No" cursor
IDC_APPSTARTING Application-starting cursor (arrow and

hourglass)
IDC_HELP Help cursor (arrow and question mark)
IDI_APPLICATION Application icon
IDI_HAND Stop sign icon
IDI_QUESTION Question-mark icon
IDI_EXCLAMATION Exclamation point icon
IDI_ASTERISK Asterisk icon (letter "i" in a circle)
IDI_WINLOGO Windows logo icon

piconinfo
Points to an ICONINFO structure. The function fills in the structure's members.

Return ValuesIf the function succeeds, the return value is nonzero and the function fills in the members of the
specified ICONINFO structure.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksGetIconInfo creates bitmaps for the hbmMask and hbmColor members of ICONINFO. The
calling application must manage these bitmaps and delete them when they are no longer
necessary.See AlsoCreateIcon, CreateIconFromResource, CreateIconIndirect, DestroyIcon, DrawIcon,
DrawIconEx, ICONINFO, LoadIcon, LookupIconIdFromDirectory

GetInputState
The GetInputState function determines whether there are mouse-button or keyboard messages
in the calling thread's message queue.

BOOL GetInputState(VOID)ParametersThis function has no parameters.Return ValuesIf the queue contains one or more new mouse-button or keyboard messages, the return value is
nonzero.

If the there are no new mouse-button or keyboard messages in the queue, the return value is
zero.See AlsoGetQueueStatus

GetJob
The GetJob function retrieves print-job data for the specified printer.

BOOL GetJob(
HANDLE hPrinter, // handle of printer
DWORD JobId, // job identifier value
DWORD Level, // data-structure level
LPBYTE pJob, // address of data-structure array
DWORD cbBuf, // count of bytes in array
LPDWORD pcbNeeded // address of value that contains count of bytes retrieved (or required)

);ParametershPrinter
Identifies the printer for which the print-job data is retrieved.

JobId
Identifies the print job for which data should be retrieved.

Level
Specifies the level of the structure to which pJob points. This value must be either 1 or 2.

pJob
Points to an array that contains either a JOB_INFO_1 or a JOB_INFO_2 structure. If Level is
1, this function stores the data in a JOB_INFO_1 structure; if Level is 2, this function stores
the data in a JOB_INFO_2 structure.

cbBuf
Specifies the size, in bytes, of the array.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddJob, JOB_INFO_1, JOB_INFO_2, ScheduleJob, SetJob

GetKBCodePage
The GetKBCodePage function is provided for compatibility with earlier versions of Windows. In
the Win32 application programming interface (API) it just calls the GetOEMCP function. New
applications should use the GetOEMCP function.

UINT GetKBCodePage(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is an OEM code-page identifier, or it is the default
identifier if the registry value is not readable. For a list of OEM code-page identifiers, see
GetOEMCP.See AlsoGetACP, GetOEMCP

GetKernelObjectSecurity
The GetKernelObjectSecurity function retrieves a copy of the security descriptor protecting a
kernel object.

BOOL GetKernelObjectSecurity(
HANDLE Handle, // handle of object to query
SECURITY_INFORMATION RequestedInformation, // requested information
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
DWORD nLength, // size of buffer for security descriptor
LPDWORD lpnLengthNeeded // address of required size of buffer

);ParametersHandle
Identifies a kernel object.

RequestedInformation
Specifies a SECURITY_INFORMATION structure that identifies the security information being
requested.

pSecurityDescriptor
Points to a buffer the function fills with a copy of the security descriptor of the specified object.
The calling process must have the right to view the specified aspects of the object's security
status. The SECURITY_DESCRIPTOR structure is returned in self-relative format.

nLength
Specifies the size, in bytes, of the buffer pointed to by the pSecurityDescriptor parameter.

lpnLengthNeeded
Points to a variable the function sets to zero if the descriptor is copied successfully. If the
buffer is too small for the security descriptor, this variable receives the number of bytes
required. If this variable's value is greater than the value of the nLength parameter when the
function returns, none of the security descriptor is copied to the buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo read the kernel object's security descriptor, the calling process must be either granted
READ_CONTROL access or be the object's owner. In addition, the calling process must have the
SE_SECURITY_NAME privilege to read the system access-control list.See AlsoGetFileSecurity, GetPrivateObjectSecurity, GetUserObjectSecurity,
SECURITY_DESCRIPTOR, SECURITY_INFORMATION, SetKernelObjectSecurity

GetKerningPairs
The GetKerningPairs function retrieves the character-kerning pairs for the currently selected font
for the specified device context.

DWORD GetKerningPairs(
HDC hdc, // handle of device context
DWORD nNumPairs, // number of kerning-pairs to be retrieved
LPKERNINGPAIR lpkrnpair // address of kerning-pair array

);Parametershdc
Identifies the device context.

nNumPairs
Specifies the number of pairs that fit in the lpkrnpair array. If the font has more than
nNumPairs kerning pairs, an error is returned.

lpkrnpair
Points to an array of KERNINGPAIR structures to receive the kerning pairs. The array must
contain at least as many structures as specified by the nNumPairs parameter. If this
parameter is NULL, the function returns the total number of kerning pairs for the font.

Return ValuesIf the function succeeds, the return value is the number of kerning pairs returned.

If the function fails, the return value is zero.See AlsoKERNINGPAIR

GetKeyboardLayout
[Now Supported on Windows NT]

The GetKeyboardLayout function retrieves the active keyboard layout for a specified thread. If
the dwLayout parameter is zero, the layout for the active thread is returned.

HKL GetKeyboardLayout(
DWORD dwLayout // thread identifier

);ParametersdwLayout
Identifies the thread to query or is zero for the current thread.

Return ValuesThe return value is the keyboard layout handle for the thread. The low word contains a locale
identifier identifying the input language and the high word contains a device handle identifying the
physical layout of the keyboard.See AlsoActivateKeyboardLayout, CreateThread, LoadKeyboardLayout

GetKeyboardLayoutList
[Now Supported on Windows NT]

The GetKeyboardLayoutList function retrieves the keyboard layout handles corresponding to the
current set of input locales in the system. The function copies the handles to the given buffer.

UINT GetKeyboardLayoutList(
int nBuff, // size of buffer in array element
HKL FAR *lpList // buffer for keyboard layout handles

);ParametersnBuff
Specifies the maximum number of handles that the buffer can hold.

lpList
Points to the buffer, an array, that receives the keyboard layout handles.

Return ValuesIf the function succeeds, the return value is the number of layout handles copied to the buffer or, if
nBuff is zero, the return value is the size, in array elements, of the buffer needed to receive all
current layout handles.See AlsoGetKeyboardLayout

GetKeyboardLayoutName
The GetKeyboardLayoutName function retrieves the name of the active keyboard layout.

BOOL GetKeyboardLayoutName(
LPTSTR pwszKLID // address of buffer for layout name

);ParameterspwszKLID
Points to the buffer of at least KL_NAMELENGTH characters that is to receive the name of
the keyboard layout, including the NULL terminator. This will be a copy of the string provided
to the LoadKeyboardLayout function, unless layout substitution took place.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT:
GetKeyboardLayoutName gets the name of the active keyboard layout for the system.

Windows 95:
GetKeyboardLayoutName gets the name of the active keyboard layout for the calling thread.See AlsoActivateKeyboardLayout, LoadKeyboardLayout, UnloadKeyboardLayout

GetKeyboardState
The GetKeyboardState function copies the status of the 256 virtual keys to the specified buffer.

BOOL GetKeyboardState(
PBYTE lpKeyState // address of array to receive status data

);ParameterslpKeyState
Points to the 256-byte array that will receive the status data for each virtual key.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can call this function to retrieve the current status of all the virtual keys. The status
changes as a thread removes keyboard messages from its message queue. The status does not
change as keyboard messages are posted to the message queue.

When the function returns, each member of the array pointed to by the lpKeyState parameter
contains status data for a virtual key. If the high-order bit is 1, the key is down; otherwise, it is up.
If the low-order bit is 1, the key is toggled. A key, such as the CAPS LOCK key, is toggled if it is
turned on. The key is off and untoggled if the low-order bit is 0. A toggle key's indicator light (if
any) on the keyboard will be on when the key is toggled, and off when the key is untoggled.

To retrieve status information for an individual key, use the GetKeyState function.

An application can use the virtual-key code constants VK_SHIFT, VK_CONTROL and VK_MENU
as indices into the array pointed to by lpKeyState. This gives the status of the SHIFT, CTRL, or ALT
keys without distinguishing between left and right. An application can also use the following
virtual-key code constants as indices to distinguish between the left and right instances of those
keys:

VK_LSHIFT VK_RSHIFT

VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU

These left- and right-distinguishing constants are available to an application only through the
GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, and MapVirtualKey
functions.See AlsoGetKeyState, GetAsyncKeyState, MapVirtualKey, SetKeyboardState

GetKeyboardType
The GetKeyboardType function retrieves information about the current keyboard.

int GetKeyboardType(
int nTypeFlag // type of information to retrieve

);ParametersnTypeFlag
Specifies the type of keyboard information to be retrieved. This parameter can be one of the
following values:

Value Meaning
0 Keyboard type
1 Keyboard subtype
2 Number of function keys on the keyboard

Return ValuesIf the function succeeds, the return value specifies the requested information.

If the function fails, the return value is zero.RemarksThe subtype is an original equipment manufacturer (OEM)-dependent value. The type may be one
of the following values:

Value Meaning

1 IBM PC/XT or compatible (83-key) keyboard
2 Olivetti "ICO" (102-key) keyboard
3 IBM PC/AT (84-key) or similar keyboard
4 IBM enhanced (101- or 102-key) keyboard
5 Nokia 1050 and similar keyboards
6 Nokia 9140 and similar keyboards
7 Japanese keyboard

The application can also determine the number of function keys on a keyboard from the
keyboard type. Following are the number of function keys for each keyboard type:

Type Number of function keys

1 10
2 12 (sometimes 18)
3 10
4 12
5 10
6 24
7 Hardware dependent and specified by the OEM

GetKeyNameText
The GetKeyNameText function retrieves a string that represents the name of a key.

int GetKeyNameText(
LONG lParam, // second parameter of keyboard message
LPTSTR lpString, // address of buffer for key name
int nSize // maximum length of key-name string length

);ParameterslParam
Specifies the second parameter of the keyboard message (such as WM_KEYDOWN) to be
processed. The function interprets the following portions of lParam:

Bits Meaning
16- 23 Scan code.
24 Extended-key flag. Distinguishes some keys on an

enhanced keyboard.
25 "Don't care" bit. The application calling this function sets

this bit to indicate that the function should not distinguish
between left and right CTRL and SHIFT keys, for example.

lpString
Points to a buffer that will receive the key name.

nSize
Specifies the maximum length, in characters, of the key name, including the terminating null
character. (This parameter should be equal to the size of the buffer pointed to by the lpString
parameter.)

Return ValuesIf the function succeeds, a null-terminated string is copied into the specified buffer, and the return
value is the length of the string, in characters, not counting the terminating null character.RemarksThe format of the key-name string depends on the current keyboard layout. The keyboard driver
maintains a list of names in the form of character strings for keys with names longer than a single
character. The key name is translated according to the layout of the currently installed keyboard.
The name of a character key is the character itself. The names of dead keys are spelled out in full.

GetKeyState
The GetKeyState function retrieves the status of the specified virtual key. The status specifies
whether the key is up, down, or toggled (on, off ¾ alternating each time the key is pressed).

SHORT GetKeyState(
int nVirtKey // virtual-key code

);ParametersnVirtKey
Specifies a virtual key. If the desired virtual key is a letter or digit (A through Z, a through z, or
0 through 9), nVirtKey must be set to the ASCII value of that character. For other keys, it must
be a virtual-key code.
If a non-English keyboard layout is used, virtual keys with values in the range ASCII A through
Z and 0 through 9 are used to specify most of the character keys. For example, for the
German keyboard layout, the virtual key of value ASCII O (0x4F) refers to the "o" key,
whereas VK_OEM_1 refers to the "o with umlaut" key.

Return ValuesIf the function succeeds, the return value specifies the status of the given virtual key. If the high-
order bit is 1, the key is down; otherwise, it is up. If the low-order bit is 1, the key is toggled. A key,
such as the CAPS LOCK key, is toggled if it is turned on. The key is off and untoggled if the low-
order bit is 0. A toggle key's indicator light (if any) on the keyboard will be on when the key is
toggled, and off when the key is untoggled.RemarksThe key status returned from this function changes as a given thread reads key messages from its
message queue. The status does not reflect the interrupt-level state associated with the hardware.
Use the GetAsyncKeyState function to retrieve that information.

An application calls GetKeyState in response to a keyboard-input message. This function
retrieves the state of the key when the input message was generated.

To retrieve state information for all the virtual keys, use the GetKeyboardState function.

An application can use the virtual-key code constants VK_SHIFT, VK_CONTROL, and VK_MENU
as values for the nVirtKey parameter. This gives the status of the SHIFT, CTRL, or ALT keys without
distinguishing between left and right. An application can also use the following virtual-key code
constants as values for nVirtKey to distinguish between the left and right instances of those keys:

VK_LSHIFT VK_RSHIFT

VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU

These left- and right-distinguishing constants are available to an application only through the
GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, and MapVirtualKey
functions.See AlsoGetAsyncKeyState, GetKeyboardState, MapVirtualKey, SetKeyboardState

GetLargestConsoleWindowSize
The GetLargestConsoleWindowSize function returns the size of the largest possible console
window, based on the current font and the size of the display.

COORD GetLargestConsoleWindowSize(
HANDLE hConsoleOutput // handle of console screen buffer

);ParametershConsoleOutput
Identifies a console screen buffer.

Return ValuesIf the function succeeds, the return value is a COORD structure that specifies the number of
character cell rows (X member) and columns (Y member) in the largest possible console window.
Otherwise, the members of the structure are zero.

To get extended error information, call GetLastError.RemarksThe function does not take into consideration the size of the screen buffer, which means that the
window size returned may be larger than the size of the screen buffer. The
GetConsoleScreenBufferInfo function can be used to determine the maximum size of the
console window, given the current screen buffer size, the current font, and the display size.See AlsoCOORD, GetConsoleScreenBufferInfo, SetConsoleWindowInfo

GetLastActivePopup
The GetLastActivePopup function determines which pop-up window owned by the specified
window was most recently active.

HWND GetLastActivePopup(
HWND hWnd // handle of owner window

);ParametershWnd
Identifies the owner window.

Return ValuesThe return value identifies the most recently active pop-up window. The return value is the same
as the hWnd parameter, if any of the following conditions are met:

· The window identified by hWnd was most recently active.
· The window identified by hWnd does not own any pop-up windows.
· The window identified by hWnd is not a top-level window or it is owned by another

window.
See AlsoAnyPopup, ShowOwnedPopups

GetLastError
The GetLastError function returns the calling thread's last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not overwrite each other's last-error code.

DWORD GetLastError(VOID)ParametersThis function has no parameters.Return ValuesThe return value is the calling thread's last-error code value. Functions set this value by calling the
SetLastError function. The Return Value section of each reference page notes the conditions
under which the function sets the last-error code.RemarksYou should call the GetLastError function immediately when a function's return value indicates
that such a call will return useful data. That is because some functions call SetLastError(0) when
they succeed, wiping out the error code set by the most recently failed function.

Most functions in the Win32 API that set the thread's last error code value set it when they fail; a
few functions set it when they succeed. Function failure is typically indicated by a return value
error code such as FALSE, NULL, 0xFFFFFFFF, or - 1. Some functions call SetLastError under
conditions of success; those cases are noted in each function's reference page.

Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-
defined error codes; no system error code has this bit set. If you are defining an error code for
your application, set this bit to one. That indicates that the error code has been defined by an
application, and ensures that your error code does not conflict with any error codes defined by the
operating system.

To obtain an error string for operating system error codes, use the FormatMessage function. For
a complete list of error codes, see the WINNT.H header file in the Win32 SDK.See AlsoFormatMessage, SetLastError, SetLastErrorEx

GetLengthSid
The GetLengthSid function returns the length, in bytes, of a valid SID structure. A SID is a
security identifier.

DWORD GetLengthSid(
PSID pSid // address of SID to query

);ParameterspSid
Points to the SID structure whose length is returned. The structure is assumed to be valid.

Return ValuesIf the function succeeds, the return value is the length, in bytes, of the SID structure. If the SID
structure is not valid, the return value is undefined. To get extended error information, call
GetLastError.See AlsoGetSidLengthRequired, GetSidSubAuthorityCount, IsValidSid, SID

GetLocaleInfo
The GetLocaleInfo function retrieves information about a locale.

int GetLocaleInfo(
LCID Locale, // locale identifier
LCTYPE LCType, // type of information
LPTSTR lpLCData, // address of buffer for information
int cchData // size of buffer

);ParametersLocale
Specifies the locale to retrieve information for. This parameter can be a locale identifier
created by the MAKELCID macro, or one of the following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

LCType
Specifies one of the LCTYPE constants to indicate the type of information to be retrieved.
All LCTYPE values are mutually exclusive, with the exception of
LOCALE_NOUSEROVERRIDE. An application may use the binary-OR operator to combine
LOCALE_NOUSEROVERRIDE with any other LCTYPE value. If passed such an LCType
value, the function bypasses user overrides, and returns the system default value for the
requested LCID.

lpLCData
Points to a buffer to receive the requested data.

cchData
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the lpLCData
buffer. If cchData is zero, the function returns the number of bytes or characters required to
hold the information, and the buffer pointed to by lpLCData is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the destination buffer, or if the cchData parameter is zero, the number
of bytes or characters required to hold the locale information.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
RemarksThe GetLocaleInfo function always retrieves information in text format. If the information is a

numeric value, the function converts the number to text using decimal notation.See AlsoGetStringTypeA, GetStringTypeEx, GetStringTypeW, GetSystemDefaultLCID,
GetUserDefaultLCID, SetLocaleInfo, MAKELCID

GetLocalTime
The GetLocalTime function retrieves the current local date and time.

VOID GetLocalTime(
LPSYSTEMTIME lpSystemTime // address of system time structure

);ParameterslpSystemTime
Points to a SYSTEMTIME structure to receive the current local date and time.

Return ValuesThis function does not return a value.See AlsoGetSystemTime, SetLocalTime, SYSTEMTIME

GetLogColorSpace
The GetLogColorSpace function retrieves information about the logical color space identified by
the specified handle.

BOOL GetLogColorSpace(
HCOLORSPACE hColorSpace,
LPLOGCOLORSPACE lpbuffer,
DWORD nSize

);ParametershColorSpace
Handle to the logical color space.

lpBuffer
Pointer to the LOGCOLORSPACE structure that receives the logical color space information.

nSize
Maximum size of the buffer, in bytes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksGetLogColorSpace copies as much information to the buffer as space allows. To determine the
correct size of the buffer to use, applications should check the lcsSize member in the structure.See AlsoLOGCOLORSPACE

GetLogicalDrives
The GetLogicalDrives function returns a bitmask representing the currently available disk drives.

DWORD GetLogicalDrives(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is a bitmask representing the currently available disk
drives. Bit position 0 (the least-significant bit) is drive A, bit position 1 is drive B, bit position 2 is
drive C, and so on.

If the function fails, the return value is zero.See AlsoGetLogicalDriveStrings

GetLogicalDriveStrings
The GetLogicalDriveStrings function fills a buffer with strings that specify valid drives in the
system.

DWORD GetLogicalDriveStrings(
DWORD nBufferLength, // size of buffer
LPTSTR lpBuffer // address of buffer for drive strings

);ParametersnBufferLength
Specifies the maximum size, in characters, of the buffer pointed to by lpBuffer. This size does
not include the terminating null character.

lpBuffer
Points to a buffer that receives a series of null-terminated strings, one for each valid drive in
the system, that end with a second null character. The following example shows the buffer
contents with <null> representing the terminating null character.c:\<null>d:\<null><null>

Return ValuesIf the function succeeds, the return value is the length, in characters, of the strings copied to the
buffer, not including the terminating null character. Note that an ANSI-ASCII null character uses
one byte, but a Unicode null character uses two bytes.

If the buffer is not large enough, the return value is greater than nBufferLength. It is the size of the
buffer required to hold the drive strings.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.RemarksEach string in the buffer may be used wherever a root directory is required, such as for the
GetDriveType and GetDiskFreeSpace functions.See AlsoGetDriveType, GetDiskFreeSpace, GetLogicalDrives

GetMailslotInfo
The GetMailslotInfo function retrieves information about the specified mailslot.

BOOL GetMailslotInfo(
HANDLE hMailslot, // mailslot handle
LPDWORD lpMaxMessageSize, // address of maximum message size
LPDWORD lpNextSize, // address of size of next message
LPDWORD lpMessageCount, // address of number of messages
LPDWORD lpReadTimeout // address of read time-out

);ParametershMailslot
Identifies a mailslot. The CreateMailslot function must create this handle.

lpMaxMessageSize
Points to a buffer specifying the maximum message size, in bytes, allowed for this mailslot,
when the function returns. This value can be greater than or equal to the value specified in the
cbMaxMsg parameter of the CreateMailslot function that created the mailslot. This parameter
can be NULL.

lpNextSize
Points to a buffer specifying the size, in bytes, of the next message, when the function returns.
The following value has special meaning:

Value Meaning
MAILSLOT_NO_MESSAGE There is no next message.

This parameter can be NULL.
lpMessageCount

Points to a buffer specifying the total number of messages waiting to be read, when the
function returns. This parameter can be NULL.

lpReadTimeout
Points to a buffer specifying the amount of time, in milliseconds, a read operation can wait for
a message to be written to the mailslot before a time-out occurs. This parameter is filled in
when the function returns. This parameter can be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateMailslot, SetMailslotInfo

GetMapMode
The GetMapMode function retrieves the current mapping mode.

int GetMapMode(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value specifies the mapping mode.

If the function fails, the return value is zero.RemarksThe following list describes the various mapping modes:

Value Description

MM_ANISOTROPIC Logical units are mapped to arbitrary units with
arbitrarily scaled axes. Use the
SetWindowExtEx and SetViewportExtEx
functions to specify the units, orientation, and
scaling that you want.

MM_HIENGLISH Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is up.

MM_HIMETRIC Each logical unit is mapped to 0.01 millimeter.
Positive x is to the right; positive y is up.

MM_ISOTROPIC Logical units are mapped to arbitrary units with
equally scaled axes; that is, one unit along the
x-axis is equal to one unit along the y-axis. Use
the SetWindowExtEx and SetViewportExtEx
functions to specify the units and the orientation
of the axes that you want. Graphics device
interface makes adjustments as necessary to
ensure the x and y units remain the same size
(for example, if you set the window extent, the
viewport will be adjusted to keep the units
isotropic).

MM_LOENGLISH Each logical unit is mapped to 0.01 inch.
Positive x is to the right; positive y is up.

MM_LOMETRIC Each logical unit is mapped to 0.1 millimeter.
Positive x is to the right; positive y is up.

MM_TEXT Each logical unit is mapped to one device pixel.
Positive x is to the right; positive y is down.

MM_TWIPS Each logical unit is mapped to one twentieth of
a printer's point (1/1440 inch, also called a
"twip"). Positive x is to the right; positive y is up.

See AlsoSetMapMode, SetWindowExtEx, SetViewportExtEx

GetMenu
The GetMenu function retrieves the handle of the menu assigned to the given window.

HMENU GetMenu(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window whose menu handle is retrieved.

Return ValuesIf the function succeeds, the return value is the handle of the menu. If the given window has no
menu, the return value is NULL. If the window is a child window, the return value is undefined.See AlsoGetSubMenu, SetMenu

GetMenuCheckMarkDimensions
This function is obsolete. Use the GetSystemMetrics with the CXMENUCHECK and
CYMENUCHECK values to retrieve the bitmap dimensions.

The GetMenuCheckMarkDimensions function returns the dimensions of the default check mark
bitmap. Windows displays this bitmap next to checked menu items. Before calling the
SetMenuItemBitmaps function to replace the default check mark bitmap for a menu item, an
application must determine the correct bitmap size by calling GetMenuCheckMarkDimensions.

LONG GetMenuCheckMarkDimensions(VOID)ParametersThis function has no parameters.Return ValuesThe return value specifies the height and width, in pixels, of the default check mark bitmap. The
high-order word contains the height; the low-order word contains the width.See AlsoSetMenuItemBitmaps

GetMenuContextHelpId
The GetMenuContextHelpId function retrieves the help context identifier associated with the
specified menu.

DWORD GetMenuContextHelpId(
HMENU hmenu

);Parametershmenu
Handle to the menu for which the help context identifier is to be retrieved.

Return ValuesReturns the help context identifier if the menu has one or zero otherwise.See AlsoSetMenuContextHelpId

GetMenuDefaultItem
[Now Supported on Windows NT]

The GetMenuDefaultItem function determines the default menu item on the specified menu.

UINT WINAPI GetMenuDefaultItem(
HMENU hMenu,
UINT fByPos,
UINT gmdiFlags

);ParametershMenu
Handle to the menu for which to retrieve the default menu item.

fByPos
Value specifying whether to retrieve the menu item's identifier or its position. If this parameter
is FALSE, the identifier is returned. Otherwise, the position is returned.

gmdiFlags
Value specifying how the function searches for menu items. This parameter can be zero or
more of the following values:

Value Meaning
GMDI_GOINTOPOPUPS Specifies that if the default item is one

that opens a submenu, the function is
to search recursively in the
corresponding submenu. If the
submenu has no default item, the
return value identifies the item that
opens the submenu.
By default, the function returns the
first default item on the specified
menu, regardless of whether it is an
item that opens a submenu.

GMDI_USEDISABLED Specifies that the function is to return
a default item, even if it is disabled.
By default, the function skips disabled
or grayed items.

Return ValuesIf the function succeeds, the return value is the identifier or position of the menu item.

If the function fails, the return value is - 1.See AlsoSetMenuDefaultItem

GetMenuItemCount
The GetMenuItemCount function determines the number of items in the specified menu.

int GetMenuItemCount(
HMENU hMenu // handle of menu

);ParametershMenu
Identifies the handle of the menu to be examined.

Return ValuesIf the function succeeds, the return value specifies the number of items in the menu.

If the function fails, the return value is - 1. To get extended error information, call GetLastError.See AlsoGetMenuItemID

GetMenuItemID
The GetMenuItemID function retrieves the menu item identifier of a menu item located at the
specified position in a menu.

UINT GetMenuItemID(
HMENU hMenu, // handle of menu
int nPos // position of menu item

);ParametershMenu
Identifies the menu that contains the item whose identifier is to be retrieved.

nPos
Specifies the zero-based relative position of the menu item whose identifier is to be retrieved.

Return ValuesIf the function succeeds, the return value specifies the identifier of the given menu item. If the
menu item identifier is NULL or if the specified item opens a submenu, the return value is
0xFFFFFFFF.See AlsoGetMenuItemCount, GetMenuString

GetMenuItemInfo
[Now Supported on Windows NT]

The GetMenuItemInfo function retrieves information about a menu item.

BOOL WINAPI GetMenuItemInfo(
HMENU hMenu,
UINT uItem,
BOOL fByPosition,
LPMENUITEMINFO lpmii

);ParametershMenu
Handle to the menu that contains the menu item.

uItem
Identifier or position of the menu item to get information about. The meaning of this parameter
depends on the value of fByPosition.

fByPosition
Value specifying the meaning of uItem. If this parameter is FALSE, uItem is a menu item
identifier. Otherwise, it is a menu item position.

lpmii
Pointer to a MENUITEMINFO structure that specifies the information to retrieve and receives
information about the menu item.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoSetMenuItemInfo, MENUITEMINFO

GetMenuItemRect
[Now Supported on Windows NT]

The GetMenuItemRect function retrieves the bounding rectangle for the specified menu item.

BOOL WINAPI GetMenuItemRect(
HWND hWnd,
HMENU hMenu,
UINT uItem,
LPRECT lprcItem

);ParametershWnd
Handle to the window containing the menu.

hMenu
Handle to a menu.

uItem
Zero-based position of the menu item.

lprcItem
Pointer to a RECT structure that receives the bounding rectangle of the specified menu item
expressed in screen coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoRECT

GetMenuState
The GetMenuState function retrieves the menu flags associated with the specified menu item. If
the menu item opens a submenu, this function also returns the number of items in the submenu.

The GetMenuState function has been superseded by the GetMenuItemInfo function. You can
still use GetMenuState, however, if you do not need any of the extended features of
GetMenuItemInfo.

UINT GetMenuState(
HMENU hMenu, // handle of menu
UINT uId, // menu item to query
UINT uFlags // menu flags

);ParametershMenu
Identifies the menu that contains the menu item whose flags are to be retrieved.

uId
Specifies the menu item for which the menu flags are to be retrieved, as determined by the
uFlags parameter.

uFlags
Specifies how the uId parameter is interpreted. This parameter can be one of the following
values:

Value Description
MF_BYCOMMAND Indicates that the uId parameter gives the

identifier of the menu item. The
MF_BYCOMMAND flag is the default if neither
the MF_BYCOMMAND nor MF_BYPOSITION
flag is specified.

MF_BYPOSITION Indicates that the uId parameter gives the
zero-based relative position of the menu item.

Return ValuesIf the specified item does not exist, the return value is 0xFFFFFFFF.

If the menu item opens a submenu, the low-order byte of the return value contains the menu flags
associated with the item, and the high-order byte contains the number of items in the submenu
opened by the item.

Otherwise, the return value is a mask (Boolean OR) of the menu flags. Following are the menu
flags associated with the menu item.

Value Description

MF_CHECKED Places a check mark next to the item (for drop-
down menus, submenus, and shortcut menus
only).

MF_DISABLED Disables the item.
MF_GRAYED Disables and grays the item.
MF_HILITE Highlights the item.
MF_MENUBARBREAKFunctions the same as the MF_MENUBREAK

flag, except for drop-down menus, submenus,
and shortcut menus, where the new column is
separated from the old column by a vertical
line.

MF_MENUBREAK Places the item on a new line (for menu bars)
or in a new column (for drop-down menus,
submenus, and shortcut menus) without
separating columns.

MF_SEPARATOR Creates a horizontal dividing line (for drop-
down menus, submenus, and shortcut menus
only).

See AlsoGetMenu, GetMenuItemCount, GetMenuItemID, GetMenuItemInfo, GetMenuString

GetMenuString
The GetMenuString function copies the text string of the specified menu item into the specified
buffer.

GetMenuString works, but is obsolete. Use GetMenuItemInfo instead.

int GetMenuString(
HMENU hMenu, // handle to the menu
UINT uIDItem, // menu item identifier
LPTSTR lpString, // pointer to the buffer for the string
int nMaxCount, // maximum length of the string
UINT uFlag // menu flags

);ParametershMenu
Identifies the menu.

uIDItem
Specifies the menu item to be changed, as determined by the uFlag parameter.

lpString
Points to the buffer that is to receive the null-terminated string.
If lpString is NULL, the function returns the length of the menu string.

nMaxCount
Specifies the maximum length, in characters, of the string to be copied. If the string is longer
than the maximum specified in the nMaxCount parameter, the extra characters are truncated.
If nMaxCount is 0, the function returns the length of the menu string.

uFlag
Specifies how the uIDItem parameter is interpreted. This parameter must be one of the
following values:

Value Meaning
MF_BYCOMMAND Indicates that uIDItem gives the identifier of

the menu item. If neither the
MF_BYCOMMAND nor MF_BYPOSITION
flag is specified, the MF_BYCOMMAND flag
is the default flag.

MF_BYPOSITION Indicates that uIDItem gives the zero-based
relative position of the menu item.

Return ValuesIf the function succeeds, the return value specifies the number of characters copied to the buffer,
not including the terminating null character.

If the function fails, the return value is zero.RemarksThe nMaxCount parameter must be one larger than the number of characters in the text string to
accommodate the terminating null character.

If nMaxCount is 0, the function returns the length of the menu string.See AlsoGetMenuItemID

GetMessage
The GetMessage function retrieves a message from the calling thread's message queue and
places it in the specified structure. This function can retrieve both messages associated with a
specified window and thread messages posted via the PostThreadMessage function. The
function retrieves messages that lie within a specified range of message values. GetMessage
does not retrieve messages for windows that belong to other threads or applications.

BOOL GetMessage(
LPMSG lpMsg, // address of structure with message
HWND hWnd, // handle of window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax // last message

);ParameterslpMsg
Points to an MSG structure that receives message information from the thread's message
queue.

hWnd
Identifies the window whose messages are to be retrieved. One value has a special meaning:

Value Meaning
NULL GetMessage retrieves messages for any window that

belongs to the calling thread and thread messages
posted to the calling thread via PostThreadMessage.

wMsgFilterMin
Specifies the integer value of the lowest message value to be retrieved.

wMsgFilterMax
Specifies the integer value of the highest message value to be retrieved.

Return ValuesIf the function retrieves a message other than WM_QUIT, the return value is nonzero.

If the function retrieves the WM_QUIT message, the return value is zero.

If there is an error, the return value is -1. For example, the function fails if hWnd is an invalid
window handle.RemarksAn application typically uses the return value to determine whether to end the main message loop
and exit the program.

The GetMessage function only retrieves messages associated with the window identified by the
hWnd parameter or any of its children as specified by the IsChild function, and within the range of
message values given by the wMsgFilterMin and wMsgFilterMax parameters. If hWnd is NULL,
GetMessage retrieves messages for any window that belongs to the calling thread and thread
messages posted to the calling thread via PostThreadMessage. GetMessage does not retrieve
messages for windows that belong to other threads nor for threads other than the calling thread.
Thread messages, posted by the PostThreadmessage function, have a message hWnd value of
NULL. If wMsgFilterMin and wMsgFilterMax are both zero, GetMessage returns all available
messages (that is, no range filtering is performed).

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to retrieve all
messages related to keyboard input; the WM_MOUSEFIRST and WM_MOUSELAST constants
can be used to retrieve all mouse messages. If the wMsgFilterMin and wMsgFilterMax parameters
are both zero, the GetMessage function returns all available messages (that is, without
performing any filtering).

GetMessage does not remove WM_PAINT messages from the queue. The messages remain in
the queue until processed.

Note that the function return value can be TRUE, FALSE, or -1. Thus, you should avoid code like
this:while (GetMessage(lpMsg, hWnd, 0, 0)) ...The possibility of a -1 return value means that such code can lead to fatal application errors.See AlsoIsChild, MSG, PeekMessage, PostMessage, PostThreadMessage, WaitMessage

GetMessageExtraInfo
The GetMessageExtraInfo function retrieves extra information associated with the last message
retrieved by the GetMessage or PeekMessage function. This information may be added to a
message by the driver for a pointing device or keyboard.

LONG GetMessageExtraInfo(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value specifies the extra information. The meaning of the extra
information is device specific.See AlsoGetMessage, PeekMessage

GetMessagePos
The GetMessagePos function returns a long value that gives the cursor position in screen
coordinates. This position is the point occupied by the cursor when the last message retrieved by
the GetMessage function occurred.

DWORD GetMessagePos(VOID)ParametersThis function has no parameters.Return ValuesThe return value specifies the x- and y-coordinates of the cursor position. The x coordinate is in
the LOWORD and the y coordinate is in the HIWORD.RemarksAs noted above, the x-coordinate is in the low-order word of the return value; the y-coordinate is in
the high-order word. If the return value is assigned to a variable, you can use the MAKEPOINTS
macro to obtain a POINTS structure from the return value. You can also use the LOWORD or
HIWORD macro to extract the x- or y-coordinate.

To determine the current position of the cursor instead of the position when the last message
occurred, use the GetCursorPos function.See AlsoGetCursorPos, GetMessage, GetMessageTime, HIWORD, LOWORD, MAKEPOINTS, POINTS

GetMessageTime
The GetMessageTime function returns the message time for the last message retrieved by the
GetMessage function from the current thread's message queue. The time is a long integer that
specifies the elapsed time, in milliseconds, from the time the system was started to the time the
message was created (that is, placed in the thread's message queue).

LONG GetMessageTime(VOID)ParametersThis function has no parameters.Return ValuesThe return value specifies the message time.RemarksThe return value from the GetMessageTime function does not necessarily increase between
subsequent messages, because the value wraps to zero if the timer count exceeds the maximum
value for a long integer.

To calculate time delays between messages, verify that the time of the second message is greater
than the time of the first message; then, subtract the time of the first message from the time of the
second message.See AlsoGetMessage, GetMessagePos

GetMetaFile
The GetMetaFile function creates a handle that identifies the given Windows-format metafile.

The GetMetaFile function is not implemented in the Win32 API. This function is provided for
compatibility with 16-bit versions of Microsoft Windows. Win32-based applications should use the
GetEnhMetaFile function.

GetMetaFileBitsEx
The GetMetaFileBitsEx function retrieves the contents of a Windows-format metafile and copies
them into the specified buffer.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the GetEnhMetaFileBits function.

UINT GetMetaFileBitsEx(
HMETAFILE hmf, // handle of metafile
UINT nSize, // size of metafile, in bytes
LPVOID lpvData // address of metafile data

);Parametershmf
Identifies a Windows-format metafile.

nSize
Specifies the size, in bytes, of the buffer to receive the data.

lpvData
Points to the buffer to receive the metafile data. The buffer must be sufficiently large to
contain the data. If lpvData is NULL, the function returns the number of bytes required to hold
the data.

Return ValuesIf the function succeeds and the buffer pointer is NULL, the return value is the number of bytes
required for the buffer; if the function succeeds and the buffer pointer is a valid pointer, the return
value is the number of bytes copied.

If the function fails, the return value is zero.RemarksAfter the Windows-metafile bits are retrieved, they can be used to create a memory-based
metafile by calling the SetMetaFileBitsEx function.

The GetMetaFileBitsEx function does not invalidate the metafile handle. An application must
delete this handle by calling the DeleteMetaFile function.

A Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should use the enhanced
format metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the
SetWinMetaFileBits function.See AlsoBeginPath, DeleteMetaFile, GetEnhMetaFileBits, PolyBezier, SetMetaFileBitsEx,
SetWinMetaFileBits, SetWorldTransform

GetMetaRgn
The GetMetaRgn function retrieves the current metaregion for the specified device context.

int GetMetaRgn(
HDC hdc, // handle of device context
HRGN hrgn // handle of region

);Parametershdc
Identifies the device context.

hrgn
Identifies an existing region before the function is called. After the function returns, this
parameter identifies a copy of the current metaregion.

Return ValuesIf the function succeeds, the return value is one.

If the function fails, the return value is zero.RemarksIf the function succeeds, hrgn identifies a copy of the current metaregion. Subsequent changes to
this copy will not affect the current metaregion.

The current clipping region of a device context is defined by the intersection of its clipping region
and its metaregion.See AlsoSetMetaRgn

GetMiterLimit
The GetMiterLimit function returns the miter limit for the specified device context.

BOOL GetMiterLimit(
HDC hdc, // handle of device context
PFLOAT peLimit // address of variable receiving miter limit

);Parametershdc
Identifies the device context.

peLimit
Points to a floating-point value where the current miter limit will be returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe miter limit is used when drawing geometric lines that have miter joins.See AlsoExtCreatePen, SetMiterLimit

GetModuleFileName
The GetModuleFileName function retrieves the full path and filename for the executable file
containing the specified module.

Windows 95: The GetModuleFilename function will return long filenames when an application's
version number is greater than or equal to 4.00 and the long filename is available. Otherwise, it
returns only 8.3 format filenames.

DWORD GetModuleFileName(
HMODULE hModule, // handle to module to find filename for
LPTSTR lpFilename, // pointer to buffer for module path
DWORD nSize // size of buffer, in characters

);ParametershModule
Identifies the module whose executable filename is being requested. If this parameter is
NULL, GetModuleFileName returns the path for the file used to create the calling process.

lpFilename
Points to a buffer that is filled in with the path and filename of the given module.

nSize
Specifies the length, in characters, of the lpFilename buffer. If the length of the path and
filename exceeds this limit, the string is truncated.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to the
buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a module is loaded in two processes, its module filename in one process may differ in case from
its module filename in the other process.See AlsoGetModuleHandle, LoadLibrary

GetModuleHandle
The GetModuleHandle function returns a module handle for the specified module if the file has
been mapped into the address space of the calling process.

HMODULE GetModuleHandle(
LPCTSTR lpModuleName // address of module name to return handle for

);ParameterslpModuleName
Points to a null-terminated string that names a Win32 module (either a .DLL or .EXE file). If
the filename extension is omitted, the default library extension .DLL is appended. The
filename string can include a trailing point character (.) to indicate that the module name has
no extension. The string does not have to specify a path. The name is compared (case
independently) to the names of modules currently mapped into the address space of the
calling process.
If this parameter is NULL, GetModuleHandle returns a handle of the file used to create the
calling process.

Return ValuesIf the function succeeds, the return value is a handle to the specified module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe returned handle is not global, inheritable, or duplicative, and it cannot be used by another
process.

The handles returned by GetModuleHandle and LoadLibrary can be used in the same functions
¾ for example, GetProcAddress, FreeLibrary, or LoadResource. The difference between the
two functions involves the reference count. LoadLibrary maps the module into the address space
of the calling process, if necessary, and increments the module's reference count, if it is already
mapped. GetModuleHandle, however, returns the handle of a mapped module without
incrementing its reference count.

Note that the reference count is used in FreeLibrary to determine whether to unmap the function
from the address space of the process. For this reason, use care when using a handle returned by
GetModuleHandle in a call to FreeLibrary because doing so can cause a dynamic-link library
(DLL) module to be unmapped prematurely.

This function must also be used carefully in a multithreaded application. There is no guarantee
that the module handle remains valid between the time this function returns the handle and the
time it is used by another function. For example, a thread might retrieve a module handle by
calling GetModuleHandle. Before the thread uses the handle in another function, a second
thread could free the module and the system could load another module, giving it the same
handle as the module that was recently freed. The first thread would then be left with a module
handle that refers to a module different than the one intended.See AlsoFreeLibrary, GetModuleFileName, GetProcAddress, LoadLibrary, LoadResource

GetMsgProc
The GetMsgProc hook procedure is an application-defined or library-defined callback function
that the system calls whenever the GetMessage function has retrieved a message from an
application message queue. Before passing the retrieved message to the destination window
procedure, the system passes the message to the hook procedure.

LRESULT CALLBACK GetMsgProc(
int code, // hook code
WPARAM wParam, // removal flag
LPARAM lParam // address of structure with message

);Parameterscode
Specifies whether the hook procedure must process the message. If code is HC_ACTION, the
hook procedure must process the message. If code is less than zero, the hook procedure
must pass the message to the CallNextHookEx function without further processing and
should return the value returned by CallNextHookEx.

wParam
Specifies whether the message has been removed from the queue. This parameter can be
one of the following values:

Value Meaning
PM_NOREMOVE Specifies that the message has not been

removed from the queue. (An application called
the PeekMessage function, specifying the
PM_NOREMOVE flag.)

PM_REMOVE Specifies that the message has been removed
from the queue. (An application called
GetMessage, or it called the PeekMessage
function, specifying the PM_REMOVE flag.)

lParam
Points to an MSG structure that contains details about the message.

Return ValuesThe return value should be zero.RemarksThe GetMsgProc hook procedure can examine or modify the message. After the hook procedure
returns control to the system, the GetMessage function returns the message, along with any
modifications, to the application that originally called it.

An application installs this hook procedure by specifying the WH_GETMESSAGE hook type and
the address of the hook procedure in a call to the SetWindowsHookEx function.

GetMsgProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, GetMessage, MSG, PeekMessage, SetWindowsHookEx

GetMultipleTrustee
[New - Windows NT]

The GetMultipleTrustee function is provided for future use. Do not call it on Windows NT version
4.0.

GetMultipleTrusteeOperation
[New - Windows NT]

The GetMultipleTrusteeOperation function is provided for future use. Do not call it on Windows
NT version 4.0.

GetNamedPipeHandleState
The GetNamedPipeHandleState function retrieves information about a specified named pipe.
The information returned can vary during the lifetime of an instance of the named pipe.

BOOL GetNamedPipeHandleState(
HANDLE hNamedPipe, // handle of named pipe
LPDWORD lpState, // address of flags indicating pipe state
LPDWORD lpCurInstances, // address of number of current pipe instances
LPDWORD lpMaxCollectionCount, // address of max. bytes before remote transmission
LPDWORD lpCollectDataTimeout, // address of max. time before remote transmission
LPTSTR lpUserName, // address of user name of client process
DWORD nMaxUserNameSize // size, in characters, of user name buffer

);ParametershNamedPipe
Identifies the named pipe for which information is wanted. The handle must have
GENERIC_READ access to the named pipe.

lpState
Points to a 32-bit variable that indicates the current state of the handle. This parameter can be
NULL if this information is not needed. Either or both of the following values can be specified:

Value Meaning
PIPE_NOWAIT The pipe handle is in nonblocking

mode. If this flag is not specified, the
pipe handle is in blocking mode.

PIPE_READMODE_MESSAGE The pipe handle is in message-read
mode. If this flag is not specified, the
pipe handle is in byte-read mode.

lpCurInstances
Points to a 32-bit variable that receives the number of current pipe instances. This parameter
can be NULL if this information is not required.

lpMaxCollectionCount
Points to a 32-bit variable that receives the maximum number of bytes to be collected on the
client's computer before transmission to the server. This parameter must be NULL if the
specified pipe handle is to the server end of a named pipe or if client and server processes
are on the same computer. This parameter can be NULL if this information is not required.

lpCollectDataTimeout
Points to a 32-bit variable that receives the maximum time, in milliseconds, that can pass
before a remote named pipe transfers information over the network. This parameter must be
NULL if the specified pipe handle is to the server end of a named pipe or if client and server
processes are on the same computer. This parameter can be NULL if this information is not
required.

lpUserName
Points to a buffer that receives the null-terminated string containing the user name string of
the client application. This parameter must be NULL if the specified pipe handle is to the client
end of a named pipe. This parameter can be NULL if this information is not required.

nMaxUserNameSize
Specifies the size, in characters, of the buffer specified by the lpUserName parameter. This
parameter is ignored if lpUserName is NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetNamedPipeHandleState function returns successfully even if all of the pointers passed
to it are NULL.

To set the pipe handle state, use the SetNamedPipeHandleState function.See AlsoSetNamedPipeHandleState

GetNamedPipeInfo
The GetNamedPipeInfo function retrieves information about the specified named pipe.

BOOL GetNamedPipeInfo(
HANDLE hNamedPipe, // handle of named pipe
LPDWORD lpFlags, // address of flags indicating type of pipe
LPDWORD lpOutBufferSize, // address of size, in bytes, of pipe's output buffer
LPDWORD lpInBufferSize, // address of size, in bytes, of pipe's input buffer
LPDWORD lpMaxInstances // address of max. number of pipe instances

);ParametershNamedPipe
Identifies the named pipe instance. The handle must have GENERIC_READ access to the
named pipe.

lpFlags
Points to a 32-bit variable that indicates the type of the named pipe. This parameter can be
NULL if this information is not required. Otherwise, use the following values:
Value Meaning
PIPE_CLIENT_END The handle refers to the client end of a

named pipe instance. This is the default.
PIPE_SERVER_END The handle refers to the server end of a

named pipe instance. If this value is not
specified, the handle refers to the client
end of a named pipe instance.

PIPE_TYPE_BYTE The named pipe is a byte pipe. This is the
default.

PIPE_TYPE_MESSAGEThe named pipe is a message pipe. If this
value is not specified, the pipe is a byte
pipe.

lpOutBufferSize
Points to a 32-bit variable that receives the size, in bytes, of the buffer for outgoing data. If the
buffer size is zero, the buffer is allocated as needed. This parameter can be NULL if this
information is not required.

lpInBufferSize
Points to a 32-bit variable that receives the size, in bytes, of the buffer for incoming data. If the
buffer size is zero, the buffer is allocated as needed. This parameter can be NULL if this
information is not required.

lpMaxInstances
Points to a 32-bit variable that receives the maximum number of pipe instances that can be
created. If the variable is set to PIPE_UNLIMITED_INSTANCES, the number of pipe
instances that can be created is limited only by the availability of system resources. This
parameter can be NULL if this information is not required.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateNamedPipe, GetNamedPipeHandleState

GetNamedSecurityInfo
[New - Windows NT]

The GetNamedSecurityInfo function retrieves a copy of the security descriptor for an object
specified by name.

DWORD GetNamedSecurityInfo(
LPTSTR pObjectName, // name of the object
SE_OBJECT_TYPE ObjectType, // type of object
SECURITY_INFORMATION SecurityInfo, // type of security information to retrieve
PSID *ppsidOwner, // receives a pointer to the owner SID
PSID *ppsidGroup, // receives a pointer to the primary group SID
PACL *ppDacl, // receives a pointer to the DACL
PACL *ppSacl, // receives a pointer to the SACL
PSECURITY_DESCRIPTOR *ppSecurityDescriptor // receives a pointer to the security descriptor

);ParameterspObjectName
Pointer to a null-terminated string that specifies the name of the object from which to retrieve
security information. For descriptions of the string formats for the different object types, see
SE_OBJECT_TYPE.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object
named by the pObjectName parameter.

SecurityInfo
A set of SECURITY_INFORMATION bit flags that indicate the type of security information to
retrieve. This parameter can be a combination of the following values.

Value Meaning
OWNER_SECURITY_INFORMATIONIf this flag is set, the

ppsidOwner parameter
receives the security
identifier (SID) of the object's
owner.

GROUP_SECURITY_INFORMATIONIf this flag is set, the
ppsidGroup parameter
receives the SID of the
object's primary group.

DACL_SECURITY_INFORMATION If this flag is set, the ppDacl
parameter receives the
object's discretionary
access-control list (DACL).

SACL_SECURITY_INFORMATION If this flag is set, the ppSacl
parameter receives the
object's system access-
control list (SACL)..

ppsidOwner
Pointer to a variable that receives a pointer to the owner SID in the security descriptor
returned in ppSecurityDescriptor. The returned pointer is valid only if you set the
OWNER_SECURITY_INFORMATION flag. This parameter can be NULL if you do not need
the owner SID.

ppsidGroup
Pointer to a variable that receives a pointer to the primary group SID in the returned security
descriptor. The returned pointer is valid only if you set the
GROUP_SECURITY_INFORMATION flag. This parameter can be NULL if you do not need
the group SID.

ppDacl
Pointer to a variable that receives a pointer to the DACL in the returned security descriptor.

The returned pointer is valid only if you set the DACL_SECURITY_INFORMATION flag. This
parameter can be NULL if you do not need the DACL.

ppSacl
Pointer to a variable that receives a pointer to the SACL in the returned security descriptor.
The returned pointer is valid only if you set the SACL_SECURITY_INFORMATION flag. This
parameter can be NULL if you do not need the SACL.

ppSecurityDescriptor
Pointer to a variable that receives a pointer to the security descriptor of the object. You must
call the LocalFree function to free the returned buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksIf the ppsidOwner, ppsidGroup, ppDacl, ppSacl parameters are non-NULL, and the SecurityInfo
parameter specifies that they be retrieved from the object, those parameters will point to the
corresponding parameters in the security descriptor returned in ppSecurityDescriptor.

To read the object's owner, group and DACL the caller must have READ_CONTROL access or be
the owner of the object. The caller must have the SE_SECURITY_NAME privilege enabled to
read the SACL.See AlsoACL, GetSecurityInfo, LocalFree, SE_OBJECT_TYPE, SECURITY_DESCRIPTOR,
SECURITY_INFORMATION, SetNamedSecurityInfo, SetSecurityInfo, SID

GetNearestColor
The GetNearestColor function returns a color value identifying a color from the system palette
that will be displayed when the specified color value is used.

COLORREF GetNearestColor(
HDC hdc, // handle of device context
COLORREF crColor // color to be matched

);Parametershdc
Identifies the device context.

crColor
Specifies a color value that identifies a requested color.

Return ValuesIf the function succeeds, the return value identifies a color from the system palette that
corresponds to the given color value.

If the function fails, the return value is CLR_INVALID. To get extended error information, call
GetLastError.See AlsoGetDeviceCaps, GetNearestPaletteIndex, COLORREF

GetNearestPaletteIndex
The GetNearestPaletteIndex function retrieves the index for the entry in the specified logical
palette most closely matching a specified color value.

UINT GetNearestPaletteIndex(
HPALETTE hpal, // handle of logical color palette
COLORREF crColor // color to be matched

);Parametershpal
Identifies a logical color palette.

crColor
Specifies a color to be matched.

Return ValuesIf the function succeeds, the return value is the index of an entry in a logical palette.

If the function fails, the return value is CLR_INVALID. To get extended error information, call
GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

If the given logical palette contains entries with the PC_EXPLICIT flag set, the return value is
undefined.See AlsoGetDeviceCaps, GetNearestColor, GetPaletteEntries, GetSystemPaletteEntries, COLORREF

GetNextDlgGroupItem
The GetNextDlgGroupItem function retrieves the handle of the first control in a group of controls
that precedes (or follows) the specified control in a dialog box.

HWND GetNextDlgGroupItem(
HWND hDlg, // handle of dialog box
HWND hCtl, // handle of control
BOOL bPrevious // direction flag

);ParametershDlg
Identifies the dialog box being searched.

hCtl
Identifies the control to be used as the starting point for the search. If this parameter is NULL,
the function uses the last (or first) control in the dialog box as the starting point for the search.

bPrevious
Specifies how the function is to search the group of controls in the dialog box. If this
parameter is TRUE, the function searches for the previous control in the group. If it is FALSE,
the function searches for the next control in the group.

Return ValuesIf GetNextDlgGroupItem succeeds, the return value is the handle of the previous (or next) control
in the group of controls.RemarksThe GetNextDlgGroupItem function searches controls in the order (or reverse order) they were
created in the dialog box template. The first control in the group must have the WS_GROUP style;
all other controls in the group must have been consecutively created and must not have the
WS_GROUP style.

When searching for the previous control, the function returns the first control it locates that is
visible and not disabled. If the control given by hCtl has the WS_GROUP style, the function
temporarily reverses the search to locate the first control having the WS_GROUP style, then
resumes the search in the original direction, returning the first control it locates that is visible and
not disabled, or returning hwndCtrl if no such control is found.

When searching for the next control, the function returns the first control it locates that is visible,
not disabled, and does not have the WS_GROUP style. If it encounters a control having the
WS_GROUP style, the function reverses the search, locates the first control having the
WS_GROUP style, and returns this control if it is visible and not disabled. Otherwise, the function
resumes the search in the original direction and returns the first control it locates that is visible and
not disabled, or returns hCtl if no such control is found.See AlsoGetNextDlgTabItem

GetNextDlgTabItem
The GetNextDlgTabItem function retrieves the handle of the first control that has the
WS_TABSTOP style that precedes (or follows) the specified control.

HWND GetNextDlgTabItem(
HWND hDlg, // handle of dialog box
HWND hCtl, // handle of known control
BOOL bPrevious // direction flag

);ParametershDlg
Identifies the dialog box to be searched.

hCtl
Identifies the control to be used as the starting point for the search. If this parameter is NULL,
the function uses the last (or first) control in the dialog box as the starting point for the search.

bPrevious
Specifies how the function is to search the dialog box. If this parameter is TRUE, the function
searches for the previous control in the dialog box. If this parameter is FALSE, the function
searches for the next control in the dialog box.

Return ValuesIf the function succeeds, the return value is the window handle of the previous (or next) control
that has the WS_TABSTOP style set.RemarksThe GetNextDlgTabItem function searches controls in the order (or reverse order) they were
created in the dialog box template. The function returns the first control it locates that is visible,
not disabled, and has the WS_TABSTOP style. If no such control exists, the function returns hCtl.See AlsoGetDlgItem, GetNextDlgGroupItem

GetNextWindow
The GetNextWindow function retrieves the handle of the next or previous window in the Z order.
The next window is below the specified window; the previous window is above. If the specified
window is a topmost window, the function retrieves the handle of the next (or previous) topmost
window. If the specified window is a top-level window, the function retrieves the handle of the next
(or previous) top-level window. If the specified window is a a child window, the function searches
for a handle of the next (or previous) child window.

HWND GetNextWindow(
HWND hWnd, // handle of current window
UINT wCmd // direction flag

);ParametershWnd
Identifies a window. The window handle retrieved is relative to this window, based on the
value of the wCmd parameter.

wCmd
Specifies whether the function returns the handle of the next window or of the previous
window. This parameter can be either of the following values:

Value Meaning
GW_HWNDNEXT Returns the handle of the window below the

given window.
GW_HWNDPREV Returns the handle of the window above the

given window.
Return ValuesIf the function succeeds, the return value is the handle of the next (or previous) window. If there is

no next (or previous) window, the return value is NULL. To get extended error information, call
GetLastError.RemarksUsing this function is the same as calling the GetWindow function with the GW_HWNDNEXT or
GW_HWNDPREV flag set.See AlsoGetTopWindow

GetNumberFormat
The GetNumberFormat function formats a number string as a number string customized for a
specified locale.

int GetNumberFormat(
LCID Locale, // locale for which number string is to be formatted
DWORD dwFlags, // bit flag that controls the function's operation
LPCTSTR lpValue, // pointer to input number string
CONST NUMBERFMT *lpFormat, // pointer to a formatting information structure
LPTSTR lpNumberStr, // pointer to output buffer
int cchNumber // size of output buffer

);ParametersLocale
Specifies the locale for which the number string is to be formatted. If lpFormat is NULL, the
function formats the string according to the number format for this locale. If lpFormat is not
NULL, the function uses the locale only for formatting information not specified in the
NUMBERFMT structure (for example, the locale's string value for the negative sign).
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
Contains a bit flag that controls the operation of the function. If lpFormat is non-NULL, this
parameter must be zero.
If lpFormat is NULL, you can specify the LOCALE_NOUSEROVERRIDE flag to format the
string using the system default number format for the specified locale; or you can specify zero
to format the string using any user overrides to the locale's default number format

lpValue
Points to a null-terminated string containing the number string to format.
This string can only contain the following characters:
· Characters '0' through '9'
· One decimal point (dot) if the number is a floating-point value
· A minus sign in the first character position if the number is a negative value
All other characters are invalid. The function returns an error if the string pointed to by lpValue
deviates from these rules.

lpFormat
Pointer to a NUMBERFMT structure that contains number formatting information. All members
in the structure pointed to by lpFormat must contain appropriate values.
If lpFormat is NULL, the function uses the number format of the specified locale.

lpNumberStr
Points to a buffer to receive the formatted number string.

cchNumber
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the
lpNumberStr buffer. If cchNumber is zero, the function returns the number of bytes or
characters required to hold the formatted number string, and the buffer pointed to by
lpNumberStr is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the buffer pointed to by lpNumberStr, or if the cchNumber parameter
is zero, the number of bytes or characters required to hold the formatted number string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID FLAGS

ERROR_INVALID_PARAMETERSee AlsoGetCurrencyFormat, NUMBERFMT

GetNumberOfConsoleInputEvents
The GetNumberOfConsoleInputEvents function retrieves the number of unread input records in
the console's input buffer.

BOOL GetNumberOfConsoleInputEvents(
HANDLE hConsoleInput, // handle of console input buffer
LPDWORD lpcNumberOfEvents // address for number of events

);ParametershConsoleInput
Identifies the console input buffer. The handle must have GENERIC_READ access.

lpcNumberOfEvents
Points to a 32-bit variable that receives the number of unread input records in the console's
input buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetNumberOfConsoleInputEvents function reports the total number of unread input
records in the input buffer, including keyboard, mouse, and window-resizing input records.
Processes using the ReadFile or ReadConsole function can only read keyboard input. Processes
using the ReadConsoleInput function can read all types of input records.

A process can specify a console input buffer handle in one of the wait functions to determine
when there is unread console input. When the input buffer is not empty, the state of a console
input buffer handle is signaled.

To read input records from a console input buffer without affecting the number of unread records,
use the PeekConsoleInput function. To discard all unread records in a console's input buffer, use
the FlushConsoleInputBuffer function.See AlsoFlushConsoleInputBuffer, PeekConsoleInput, ReadConsole, ReadConsoleInput, ReadFile

GetNumberOfConsoleMouseButtons
The GetNumberOfConsoleMouseButtons function retrieves the number of buttons on the
mouse used by the current console.

BOOL GetNumberOfConsoleMouseButtons(
LPDWORD lpNumberOfMouseButtons // address of number of buttons

);ParameterslpNumberOfMouseButtons
Points to a 32-bit variable that receives the number of mouse buttons.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen a console receives mouse input, an INPUT_RECORD structure containing a
MOUSE_EVENT_RECORD structure is placed in the console's input buffer. The dwButtonState
member of MOUSE_EVENT_RECORD has a bit indicating the state of each mouse button. The
bit is 1 if the button is down and 0 if the button is up. To determine the number of bits that are
significant, use GetNumberOfConsoleMouseButtons.See AlsoReadConsoleInput, INPUT_RECORD, MOUSE_EVENT_RECORD

GetNumberOfEventLogRecords
The GetNumberOfEventLogRecords function retrieves the number of records in the specified
event log.

BOOL GetNumberOfEventLogRecords(
HANDLE hEventLog, // handle to event log
PDWORD NumberOfRecords // buffer for number of records

);ParametershEventLog
Identifies the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

NumberOfRecords
Points to a variable that receives the number of records in the given event log.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetOldestEventLogRecord, OpenBackupEventLog, OpenEventLog

GetObject
The GetObject function obtains information about a specified graphics object. Depending on the
graphics object, the function places a filled-in BITMAP, DIBSECTION, EXTLOGPEN,
LOGBRUSH, LOGFONT, or LOGPEN structure, or a count of table entries (for a logical palette),
into a specified buffer.

int GetObject(
HGDIOBJ hgdiobj, // handle to graphics object of interest
int cbBuffer, // size of buffer for object information
LPVOID lpvObject // pointer to buffer for object information

);Parametershgdiobj
A handle to the graphics object of interest. This can be a handle to one of the following: a
logical bitmap, a brush, a font, a palette, a pen, or a device independent bitmap created by
calling the CreateDIBSection function.

cbBuffer
Specifies the number of bytes of information to be written to the buffer.

lpvObject
Points to a buffer that is to receive the information about the specified graphics object.
The following table shows the type of information the buffer receives for each type of graphics
object you can specify with hgdiobj:

hgdiobj Type Data Written to *lpvObject
HBITMAP BITMAP
HBITMAP returned from a
call to CreateDIBSection

DIBSECTION, if cbBuffer is set to
sizeof(DIBSECTION), or BITMAP, if
cbBuffer is set to sizeof(BITMAP)

HPALETTE a WORD count of the number of entries
in the logical palette

HPEN returned from a call
to ExtCreatePen

EXTLOGPEN

HPEN LOGPEN
HBRUSH LOGBRUSH
HFONT LOGFONT

If the lpvObject parameter is NULL, the function return value is the number of bytes required
to store the information it writes to the buffer for the specified graphics object.

Return ValuesIf the function succeeds, and lpvObject is a valid pointer, the return value is the number of bytes
stored into the buffer.

If the function succeeds, and lpvObject is NULL, the return value is the number of bytes required
to hold the information the function would store into the buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe buffer pointed to by the lpvObject parameter must be sufficiently large to receive the
information about the graphics object.

If hgdiobj identifies a bitmap created by calling CreateDIBSection, and the specified buffer is
large enough, the GetObject function returns a DIBSECTION structure. In addition, the bmBits
member of the BITMAP structure contained within the DIBSECTION will contain a pointer to the
bitmap's bit values.

If hgdiobj identifies a bitmap created by any other means, GetObject returns only the width,
height, and color format information of the bitmap. You can obtain the bitmap's bit values by
calling the GetDIBits or GetBitmapBits function.

If hgdiobj identifies a logical palette, GetObject retrieves a two-byte integer that specifies the
number of entries in the palette. The function does not retrieve the LOGPALETTE structure
defining the palette. To retrieve information about palette entries, an application can call the
GetPaletteEntries function.See AlsoCreateDIBSection, GetBitmapBits, GetDIBits, GetPaletteEntries, GetRegionData, BITMAP,
DIBSECTION, EXTLOGPEN, LOGBRUSH, LOGFONT, LOGPALETTE, LOGPEN

GetObjectType
The GetObjectType identifies the type of the specified object.

DWORD GetObjectType(
HGDIOBJ h // handle of graphic object

);Parametersh
Identifies the object.

Return ValuesIf the function succeeds, the return value identifies the object. This value can be one of the
following:

Value Meaning

OBJ_BITMAP Bitmap
OBJ_BRUSH Brush
OBJ_FONT Font
OBJ_PAL Palette
OBJ_PEN Pen
OBJ_EXTPEN Extended pen
OBJ_REGION Region
OBJ_DC Device context
OBJ_MEMDC Memory device context
OBJ_METAFILE Metafile
OBJ_METADC Metafile device context
OBJ_ENHMETAFILE Enhanced metafile
OBJ_ENHMETADC Enhanced metafile device context

If the function fails, the return value is zero.See AlsoGetObject, SelectObject

GetOEMCP
The GetOEMCP function retrieves the current OEM code-page identifier for the system. (OEM
stands for original equipment manufacturer.)

UINT GetOEMCP(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the current OEM code-page identifier for the system or
a default identifier if no code page is current.RemarksFollowing are the OEM code-page identifiers:

Identifier Meaning

437 MS-DOS United States
708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
720 Arabic (Transparent ASMO)
737 Greek (formerly 437G)
775 Baltic
850 MS-DOS Multilingual (Latin I)
852 MS-DOS Slavic (Latin II)
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish
860 MS-DOS Portuguese
861 MS-DOS Icelandic
862 Hebrew
863 MS-DOS Canadian-French
864 Arabic
865 MS-DOS Nordic
866 MS-DOS Russian (former USSR)
869 IBM Modern Greek
874 Thai
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1361 Korean (Johab)
See AlsoGetACP

GetOldestEventLogRecord
The GetOldestEventLogRecord function retrieves the absolute record number of the oldest
record in the specified event log.

BOOL GetOldestEventLogRecord(
HANDLE hEventLog, // handle to event log
PDWORD OldestRecord // buffer for number of oldest record

);ParametershEventLog
Identifies the open event log. This handle is returned by the OpenEventLog or
OpenBackupEventLog function.

OldestRecord
Points to the variable that receives the absolute record number of the oldest record in the
given event log.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetNumberOfEventLogRecords, OpenBackupEventLog, OpenEventLog

GetOpenClipboardWindow
The GetOpenClipboardWindow function retrieves the handle of the window that currently has
the clipboard open.

HWND GetOpenClipboardWindow(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the handle of the window that has the clipboard open.
If no window has the clipboard open, the return value is NULL. To get extended error information,
call GetLastError.RemarksIf an application or dynamic-link library (DLL) specifies a NULL window handle when calling the
OpenClipboard function, the clipboard is opened but is not associated with a window. In such a
case, GetOpenClipboardWindow returns NULL.See AlsoGetClipboardOwner, GetClipboardViewer, GetOpenClipboardWindow, OpenClipboard

GetOpenFileName
The GetOpenFileName function creates an Open common dialog box that lets the user specify
the drive, directory, and the name of a file or set of files to open.

BOOL GetOpenFileName(
LPOPENFILENAME lpofn // address of structure with initialization data

);Parameterslpofn
Pointer to an OPENFILENAME structure that contains information used to initialize the dialog
box. When GetOpenFileName returns, this structure contains information about the user's file
selection.

Return ValuesIf the user specifies a filename and clicks the OK button, the return value is nonzero. The buffer
pointed to by the lpstrFile member of the OPENFILENAME structure contains the full path and
filename specified by the user.

If the user cancels or closes the Open dialog box or an error occurs, the return value is zero. To
get extended error information, call the CommDlgExtendedError function, which can return one
of the following values:

CDERR_FINDRESFAILURE CDERR_NOHINSTANCE

CDERR_INITIALIZATION CDERR_NOHOOK
CDERR_LOCKRESFAILURE CDERR_NOTEMPLATE
CDERR_LOADRESFAILURE CDERR_STRUCTSIZE
CDERR_LOADSTRFAILURE FNERR_BUFFERTOOSMALL
CDERR_MEMALLOCFAILURE FNERR_INVALIDFILENAME
CDERR_MEMLOCKFAILURE FNERR_SUBCLASSFAILURE
RemarksBy default, Windows 95 and Windows NT version 4.0 display a new version of the Open dialog

box that provides user-interface features that are similar to the Windows Explorer. You can
provide an OFNHookProc hook procedure for an Explorer-style Open dialog box. To enable the
hook procedure, set the OFN_EXPLORER and OFN_ENABLEHOOK flags in the Flags member
of the OPENFILENAME structure and specify the address of the hook procedure in the lpfnHook
member.

Windows 95 and Windows NT 4.0 continue to support the old-style Open dialog box for
applications that want to maintain a user-interface consistent with the Windows 3.1 or Windows
NT 3.51 user-interface. To display the old-style Open dialog box, enable an
OFNHookProcOldStyle hook procedure and ensure that the OFN_EXPLORER flag is not set.See AlsoCommDlgExtendedError, GetSaveFileName, OFNHookProc , OFNHookProcOldStyle,
OPENFILENAME

GetOutlineTextMetrics
The GetOutlineTextMetrics function retrieves text metrics for TrueType fonts.

UINT GetOutlineTextMetrics(
HDC hdc, // handle of device context
UINT cbData, // size of metric data array
LPOUTLINETEXTMETRIC lpOTM // address of metric data array

);Parametershdc
Identifies the device context.

cbData
Specifies the size, in bytes, of the array in which the text metrics are to be returned.

lpOTM
Points to an array of OUTLINETEXTMETRIC structures. If this parameter is NULL, the
function returns the size of the buffer required for the retrieved metric data.

Return ValuesIf the function succeeds, the return value is TRUE or the size of the required buffer.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksThe OUTLINETEXTMETRIC structure contains most of the text metric information provided for
TrueType fonts (including a TEXTMETRIC structure). The sizes returned in the
OUTLINETEXTMETRIC structures are in logical units; they depend on the current mapping mode.See AlsoGetTextMetrics, OUTLINETEXTMETRIC, TEXTMETRIC

GetOverlappedResult
The GetOverlappedResult function returns the results of an overlapped operation on the
specified file, named pipe, or communications device.

Windows 95: This function works only on serial devices or on files opened by using the
DeviceIoControl function.

BOOL GetOverlappedResult(
HANDLE hFile, // handle of file, pipe, or communications device
LPOVERLAPPED lpOverlapped, // address of overlapped structure
LPDWORD lpNumberOfBytesTransferred, // address of actual bytes count
BOOL bWait // wait flag

);ParametershFile
Identifies the file, named pipe, or communications device. This is the same handle that was
specified when the overlapped operation was started by a call to the ReadFile, WriteFile,
ConnectNamedPipe, TransactNamedPipe, DeviceIoControl, or WaitCommEvent function.

lpOverlapped
Points to an OVERLAPPED structure that was specified when the overlapped operation was
started.

lpNumberOfBytesTransferred
Points to a 32-bit variable that receives the number of bytes that were actually transferred by
a read or write operation. For a TransactNamedPipe operation, this is the number of bytes
that were read from the pipe. For a DeviceIoControl operation, this is the number of bytes of
output data returned by the device driver. For a ConnectNamedPipe or WaitCommEvent
operation, this value is undefined.

bWait
Specifies whether the function should wait for the pending overlapped operation to be
completed. If TRUE, the function does not return until the operation has been completed. If
FALSE and the operation is still pending, the function returns FALSE and the GetLastError
function returns ERROR_IO_INCOMPLETE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe results reported by the GetOverlappedResult function are those of the specified handle's
last overlapped operation to which the specified OVERLAPPED structure was provided, and for
which the operation's results were pending. A pending operation is indicated when the function
that started the operation returns FALSE, and the GetLastError function returns
ERROR_IO_PENDING. When an I/O operation is pending, the function that started the operation
resets the hEvent member of the OVERLAPPED structure to the nonsignaled state. Then when
the pending operation has been completed, the system sets the event object to the signaled state.

If the bWait parameter is TRUE, GetOverlappedResult determines whether the pending
operation has been completed by waiting for the event object to be in the signaled state.

If the hEvent member of the OVERLAPPED structure is NULL, the system uses the state of the
hFile handle to signal when the operation has been completed. Use of file, named pipe, or
communications-device handles for this purpose is discouraged. It is safer to use an event object
because of the confusion that can occur when multiple simultaneous overlapped operations are
performed on the same file, named pipe, or communications device. In this situation, there is no
way to know which operation caused the object's state to be signaled.

Specify a manual-reset event object in the OVERLAPPED structure. If an auto-reset event object
is used, the event handle must not be specified in any other wait operation in the interval between
starting the overlapped operation and the call to GetOverlappedResult. For example, the event
object is sometimes specified in one of the wait functions to wait for the operation's completion.
When the wait function returns, the system sets an auto-reset event's state to nonsignaled, and a
subsequent call to GetOverlappedResult with the bWait parameter set to TRUE causes the
function to be blocked indefinitely.See AlsoCancelIo, ConnectNamedPipe, CreateEvent, DeviceIoControl, GetLastError, OVERLAPPED,
ReadFile, TransactNamedPipe, WaitCommEvent, WriteFile

GetPaletteEntries
The GetPaletteEntries function retrieves a specified range of palette entries from the given
logical palette.

UINT GetPaletteEntries(
HPALETTE hpal, // handle of logical color palette
UINT iStartIndex, // first entry to retrieve
UINT nEntries, // number of entries to retrieve
LPPALETTEENTRY lppe // address of array receiving entries

);Parametershpal
Identifies the logical color palette.

iStartIndex
Specifies the first entry in the logical palette to be retrieved.

nEntries
Specifies the number of entries in the logical palette to be retrieved.

lppe
Points to an array of PALETTEENTRY structures to receive the palette entries. The array
must contain at least as many structures as specified by the nEntries parameter.

Return ValuesIf the function succeeds and the handle of the logical color palette is a valid pointer (not NULL),
the return value is the number of entries retrieved from the logical palette. If the function succeeds
and handle of the logical color palette is NULL, the return value is the number of entries in the
given palette.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

If the nEntries parameter specifies more entries than exist in the palette, the remaining members
of the PALETTEENTRY structure are not altered.See AlsoGetDeviceCaps, GetSystemPaletteEntries, SetPaletteEntries, PALETTEENTRY

GetParent
The GetParent function retrieves the handle of the specified child window's parent window.

HWND GetParent(
HWND hWnd // handle of child window

);ParametershWnd
Identifies the window whose parent window handle is to be retrieved.

Return ValuesIf the function succeeds, the return value is the handle of the parent window. If the window has no
parent window, the return value is NULL. To get extended error information, call GetLastError.See AlsoSetParent

GetPath
The GetPath function retrieves the coordinates defining the endpoints of lines and the control
points of curves found in the path that is selected into the specified device context.

int GetPath(
HDC hdc, // handle of device context
LPPOINT lpPoints, // address of array receiving path vertices
LPBYTE lpTypes, // address of array of path vertex types
int nSize // count of points defining path

);Parametershdc
Identifies a device context that contains a closed path.

lpPoints
Points to an array of POINT structures that contains the line endpoints and curve control
points.

lpTypes
Points to an array of bytes where the vertex types are placed. Values are one of the following:
Type Description
PT_MOVETO Specifies that the corresponding point in the

lpPoints parameter starts a disjoint figure.
PT_LINETO Specifies that the previous point and the

corresponding point in lpPoints are the
endpoints of a line.

PT_BEZIERTOSpecifies that the corresponding point in
lpPoints is a control point or ending point for a
Bézier curve.
PT_BEZIERTO values always occur in sets of
three. The point in the path immediately
preceding them defines the starting point for the
Bézier curve. The first two PT_BEZIERTO
points are the control points, and the third
PT_BEZIERTO point is the ending (if hard-
coded) point.

A PT_LINETO or PT_BEZIERTO value may be combined with the following value (by
using the bitwise operator OR) to indicate that the corresponding point is the last point
in a figure and the figure should be closed:
Flag Description
PT_CLOSEFIGURESpecifies that the figure is automatically

closed after the corresponding line or curve
is drawn. The figure is closed by drawing a
line from the line or curve endpoint to the
point corresponding to the last
PT_MOVETO.

nSize
Specifies the total number of POINT structures that may be placed in the array pointed to by
lpPoints. This value must be the same as the number of bytes that may be placed in the array
pointed to by lpTypes.

Return ValuesIf the nSize parameter is nonzero, the return value is the number of points enumerated. If nSize is
0, the return value is the total number of points in the path (and GetPath writes nothing to the
buffers). If nSize is nonzero and is less than the number of points in the path, the return value is -
1. To get extended error information, call GetLastError. GetLastError may return one of the
following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_BUFFER_OVERFLOWRemarksThe device context identified by the hdc parameter must contain a closed path.

The points of the path are returned in logical coordinates. Points are stored in the path in device
coordinates, so GetPath changes the points from device coordinates to logical coordinates by
using the inverse of the current transformation.

The FlattenPath function may be called before GetPath to convert all curves in the path into line
segments.See AlsoFlattenPath, POINT, PolyDraw, WidenPath

GetPixel
The GetPixel function retrieves the red, green, blue (RGB) color value of the pixel at the specified
coordinates.

COLORREF GetPixel(
HDC hdc, // handle of device context
int XPos, // x-coordinate of pixel
int nYPos // y-coordinate of pixel

);Parametershdc
Identifies the device context.

nXPos
Specifies the logical x-coordinate of the pixel to be examined.

nYPos
Specifies the logical y-coordinate of the pixel to be examined.

Return ValuesIf the function succeeds, the return value is an RGB value. If the pixel is outside of the current
clipping region, the return value is CLR_INVALID.RemarksThe pixel must be within the boundaries of the current clipping region.

Not all devices support GetPixel. An application should call GetDeviceCaps to determine
whether a specified device supports this function.See AlsoGetDeviceCaps, SetPixel

GetPolyFillMode
The GetPolyFillMode function retrieves the current polygon fill mode.

int GetPolyFillMode(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value specifies the polygon fill mode, which can be either of
the following values:

Value Meaning

ALTERNATE Selects alternate mode (fills area between odd-
numbered and even-numbered polygon sides on
each scan line).

WINDING Selects winding mode (fills any region with a nonzero
winding value).

If an error occurs, the return value is zero.See AlsoSetPolyFillMode

GetPrinter
The GetPrinter function retrieves information about a specified printer.

BOOL GetPrinter(
HANDLE hPrinter, // handle to printer of interest
DWORD Level, // version of printer info data structure
LPBYTE pPrinter, // pointer to array of bytes that receives printer info. structure
DWORD cbBuf, // size, in bytes, of array of bytes
LPDWORD pcbNeeded // pointer to variable with count of bytes retrieved (or required)

);ParametershPrinter
Handle to the printer of interest.

Level
Specifies the level, or type, of PRINTER_INFO_* structure that the function stores into the
buffer pointed to by pPrinter.
Windows 95: This value can be 1, 2, or 5.
Windows NT: This value can be 1, 2, 3, 4, or 5.

pPrinter
Pointer to a buffer that receives a PRINTER_INFO_* structure. This structure contains
information about the specified printer. The type of structure is determined by the value of
Level.
Windows 95: The buffer can receive a PRINTER_INFO_1, PRINTER_INFO_2,
PRINTER_INFO_5 structure.
Windows NT: The buffer can receive a PRINTER_INFO_1, PRINTER_INFO_2,
PRINTER_INFO_3, PRINTER_INFO_4, or PRINTER_INFO_5 structure.

cbBuf
Specifies the size, in bytes, of the buffer pointed to by pPrinter.

pcbNeeded
Pointer to a variable that the function sets to the size in bytes of the printer information. If
cbBuf is smaller than this value, GetPrinter fails, and the value represents the required buffer
size. If cbBuf is equal to or greater than this value, GetPrinter succeeds, and the value
represents the number of bytes stored into the buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the structure returned in the buffer pointed to by the pPrinter parameter contains a pointer to a
security descriptor, only those components of the security descriptor that the caller has permission
to read will be present. An application that wants to retrieve particular security descriptor
components must open the printer with sufficient access permission. The following table shows
the security descriptor components that are retrieved for particular access permission values:

Access Permission Security Descriptor Components
Retrieved

READ_CONTROL Owner, Primary Group, Discretionary
access-control list (ACL)

ACCESS_SYSTEM_SECURITY System ACL
See AlsoAbortPrinter, AddPrinter, ClosePrinter, DeletePrinter, EnumPrinters, PRINTER_INFO_1,

PRINTER_INFO_2, PRINTER_INFO_3, PRINTER_INFO_4, PRINTER_INFO_5, OpenPrinter,
SetPrinter

GetPrinterData
The GetPrinterData function retrieves printer-configuration data for the specified printer.

DWORD GetPrinterData(
HANDLE hPrinter, // handle of printer object
LPTSTR pValueName, // address of data type
LPDWORD pType, // reserved
LPBYTE pData, // address of array of bytes that receives data
DWORD nSize, // size, in bytes, of array
LPDWORD pcbNeeded // address of variable with number of bytes retrieved (or required)

);ParametershPrinter
Identifies the printer for which configuration data should be retrieved.

pValueName
Points to a null-terminated string that specifies the type of data that the function should
retrieve.

pType
Points to a variable that receives the data type stored by the SetPrinterData function.
GetPrinterData passes pType on as the lpdwType parameter of a RegQueryValueEx
function call. This parameter may be NULL.

pData
Points to an array of bytes that receives the configuration data.

nSize
Specifies the size, in bytes, of the buffer pointed to by pData.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds or the
number of bytes required if nSize is too small.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error value.RemarksThe printer handle identified by the hPrinter parameter is obtained by calling the OpenPrinter
function.

GetPrinterData retrieves printer-configuration data set by the SetPrinter function.See AlsoOpenPrinter, RegQueryValueEx, SetPrinter, SetPrinterData

GetPrinterDriver
The GetPrinterDriver function retrieves driver data for the specified printer.

BOOL GetPrinterDriver(
HANDLE hPrinter, // printer object
LPTSTR pEnvironment, // address of environment
DWORD Level, // structure level
LPBYTE pDriverInfo, // address of structure array
DWORD cbBuf, // size, in bytes, of array
LPDWORD pcbNeeded // address of variable with number of bytes retrieved (or required)

);ParametershPrinter
Identifies the printer for which the driver data should be retrieved.

pEnvironment
Points to a null-terminated string that specifies the environment. For example, "Windows NT
x86" specifies Windows NT running on an Intel 80386 or 80486 processor. If this parameter is
NULL, the current environment of the calling application and client machine (not of the
destination application and print server) is used.

Level
Specifies the version of the structure to which lpbForm points. This value must be either 1, 2.,
or 3.

pDriverInfo
Points to either a DRIVER_INFO_1, DRIVER_INFO_2, or DRIVER_INFO_3structure. If Level
is 1, this array receives a DRIVER_INFO_1 structure; if Level is 2, this array receives a
DRIVER_INFO_2 structure, if Level is 3, this array receives a DRIVER_INFO_3 structure.

cbBuf
Specifies the size, in bytes, of the array at which pDriverInfo points.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds or the
number of bytes required if cbBuf is too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle identified by the hPrinter parameter should be retrieved by calling the
OpenPrinter function.

The DRIVER_INFO_2 and DRIVER_INFO_3 structures contain a full path and filename specifying
the location of the printer driver. An application can use the path and filename to load a printer
driver by calling the LoadLibrary function and supplying the path and filename as the single
argument.See AlsoAddPrinterDriver, DRIVER_INFO_1, DRIVER_INFO_2, EnumPrinterDrivers, LoadLibrary,
OpenPrinter

GetPrinterDriverDirectory
The GetPrinterDriverDirectory function retrieves the path of the printer-driver directory.

BOOL GetPrinterDriverDirectory(
LPTSTR pName, // address of server name
LPTSTR pEnvironment, // address of environment
DWORD Level, // address of structure
LPBYTE pDriverDirectory, // address of structure array that receives path
DWORD cbBuf, // size, in bytes, of array
LPDWORD pcbNeeded // address of variable with number of bytes retrieved (or required)

);ParameterspName
Points to a null-terminated string that specifies the name of the server on which the printer
driver resides. If this parameter is NULL, the local driver-directory path is retrieved.

pEnvironment
Points to a null-terminated string that specifies the environment. For example, "Windows NT
x86" specifies Windows NT running on an Intel 80386 or 80486 processor. If this parameter is
NULL, the current environment of the calling application and client machine (not of the
destination application and print server) is used.

Level
Specifies the structure level. This value must be 1.

pDriverDirectory
Points to an array of bytes that receives the path.

cbBuf
Specifies the size of the array to which pDriverDirectory points.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds, or the
number of bytes required if cbBuf is too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrinterDriver

GetPrintProcessorDirectory
The GetPrintProcessorDirectory function retrieves the path for the print processor on the
specified server.

BOOL GetPrintProcessorDirectory(
LPTSTR pName, // address of server name
LPTSTR pEnvironment, // address of environment
DWORD Level, // structure level
LPBYTE pPrintProcessorInfo, // address of structure array
DWORD cbBuf, // size, in bytes, of array
LPDWORD pcbNeeded // address of variable with number of bytes retrieved (or required)

);ParameterspName
Points to a null-terminated string that specifies the name of the server. If this parameter is
NULL, a local path is returned.

pEnvironment
Points to a null-terminated string that specifies the environment. For example, "Windows NT
x86" specifies Windows NT running on an Intel 80386 or 80486 processor. If this parameter is
NULL, the current environment of the calling application and client machine (not of the
destination application and print server) is used.

Level
Specifies the structure level. This value must be 1.

pPrintProcessorInfo
Points to an array of bytes into which the path is copied.

cbBuf
Specifies the size of the buffer pointed to by pPrintProcessorInfo.

pcbNeeded
Points to a value that specifies the number of bytes copied if the function succeeds, or the
number of bytes required if cbBuf is too small.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAddPrintProcessor

GetPriorityClass
The GetPriorityClass function returns the priority class for the specified process. This value,
together with the priority value of each thread of the process, determines each thread's base
priority level.

DWORD GetPriorityClass(
HANDLE hProcess // handle to the process

);ParametershProcess
Identifies the process.
Windows NT: The handle must have PROCESS_QUERY_INFORMATION access. For more
information, see Process Objects.

Return ValuesIf the function succeeds, the return value is the priority class of the specified process.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

The process's priority class is one of the following values:

Priority Meaning

HIGH_PRIORITY_CLASS Indicates a process that performs time-
critical tasks that must be executed
immediately for it to run correctly. The
threads of a high-priority class process
preempt the threads of normal or idle
priority class processes. An example is
Windows Task List, which must
respond quickly when called by the
user, regardless of the load on the
operating system. Use extreme care
when using the high-priority class,
because a high-priority class CPU-
bound application can use nearly all
available cycles.

IDLE_PRIORITY_CLASS Indicates a process whose threads run
only when the system is idle and are
preempted by the threads of any
process running in a higher priority
class. An example is a screen saver.
The idle priority class is inherited by
child processes.

NORMAL_PRIORITY_CLASSIndicates a normal process with no
special scheduling needs.

REALTIME_PRIORITY_CLASSIndicates a process that has the
highest possible priority. The threads of
a real-time priority class process
preempt the threads of all other
processes, including operating system
processes performing important tasks.
For example, a real-time process that
executes for more than a very brief
interval can cause disk caches not to
flush or cause the mouse to be
unresponsive.

RemarksEvery thread has a base priority level determined by the thread's priority value and the priority
class of its process. The operating system uses the base priority level of all executable threads to
determine which thread gets the next slice of CPU time. Threads are scheduled in a round-robin
fashion at each priority level, and only when there are no executable threads at a higher level will
scheduling of threads at a lower level take place.

For a table that shows the base priority levels for each combination of priority class and thread
priority value, see the SetPriorityClass function.See AlsoGetThreadPriority, SetPriorityClass, SetThreadPriority

GetPriorityClipboardFormat
The GetPriorityClipboardFormat function returns the first available clipboard format in the
specified list.

int GetPriorityClipboardFormat(
UINT *paFormatPriorityList, // address of priority list
int cFormats // number of entries in list

);ParameterspaFormatPriorityList
Points to an array of unsigned integers identifying clipboard formats, in priority order. For a
description of the clipboard formats, see the SetClipboardData function.

cFormats
Specifies the number of entries in the paFormatPriorityList array. This value must not be
greater than the number of entries in the list.

Return ValuesIf the function succeeds, the return value is the first clipboard format in the list for which data is
available. If the clipboard is empty, the return value is NULL. If the clipboard contains data, but not
in any of the specified formats, the return value is - 1. To get extended error information, call
GetLastError.See AlsoCountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName,
IsClipboardFormatAvailable, RegisterClipboardFormat, SetClipboardData

GetPrivateObjectSecurity
The GetPrivateObjectSecurity retrieves information from a protected server object's security
descriptor.

BOOL GetPrivateObjectSecurity(
PSECURITY_DESCRIPTOR ObjectDescriptor, // address of SD to query
SECURITY_INFORMATION SecurityInformation, // requested information
PSECURITY_DESCRIPTOR ResultantDescriptor, // address of retrieved SD
DWORD DescriptorLength, // size of buffer for retrieved SD
PDWORD ReturnLength // address of buffer size required for SD

);ParametersObjectDescriptor
Points to a SECURITY_DESCRIPTOR structure. This is the security descriptor to be queried.

SecurityInformation
Specifies a SECURITY_INFORMATION structure that identifies the security information being
requested.

ResultantDescriptor
Points to a buffer receiving a copy of the requested information from the specified security
descriptor. The SECURITY_DESCRIPTOR structure is returned in self-relative format.

DescriptorLength
Specifies the size, in bytes, of the buffer pointed to by the ResultantDescriptor parameter.

ReturnLength
Points to a variable the function sets to zero if the descriptor is copied successfully. If the
buffer is too small for the security descriptor, this variable receives the number of bytes
required. If this variable's value is greater than the value of the DescriptorLength parameter
when the function returns, the function returns FALSE and none of the security descriptor is
copied to the buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application must perform appropriate access/privilege checks and audits before calling this
function.See AlsoCreatePrivateObjectSecurity, DestroyPrivateObjectSecurity, GetFileSecurity,
GetKernelObjectSecurity, GetUserObjectSecurity, SECURITY_DESCRIPTOR,
SECURITY_INFORMATION, SetPrivateObjectSecurity

GetPrivateProfileInt
The GetPrivateProfileInt function retrieves an integer associated with a key in the specified
section of the given initialization file. This function is provided for compatibility with 16-bit
Windows-based applications. Win32-based applications should store initialization information in
the registry.

UINT GetPrivateProfileInt(
LPCTSTR lpAppName, // address of section name
LPCTSTR lpKeyName, // address of key name
INT nDefault, // return value if key name is not found
LPCTSTR lpFileName // address of initialization filename

);ParameterslpAppName
Points to a null-terminated string containing the section name in the initialization file.

lpKeyName
Points to the null-terminated string containing the key name whose value is to be retrieved.
This value is in the form of a string; the GetPrivateProfileInt function converts the string into
an integer and returns the integer.

nDefault
Specifies the default value to return if the key name cannot be found in the initialization file.

lpFileName
Points to a null-terminated string that names the initialization file. If this parameter does not
contain a full path to the file, Windows searches for the file in the Windows directory.

Return ValuesIf the function succeeds, the return value is the integer equivalent of the string following the
specified key name in the specified initialization file. If the key is not found, the return value is the
specified default value. If the value of the key is less than zero, the return value is zero.RemarksThe function searches the file for a key that matches the name specified by the lpKeyName
parameter under the section name specified by the lpAppName parameter. A section in the
initialization file must have the following form:
[section]
key=value
.
.

.

The GetPrivateProfileInt function is not case-sensitive; the strings in lpAppName and
lpKeyName can be a combination of uppercase and lowercase letters.

An application can use the GetProfileInt function to retrieve an integer value from the WIN.INI
file.

Windows NT:
Calls to private profile functions may be mapped to the registry instead of to the specified
initialization files. This mapping occurs when the initialization file and section are specified in
the registry under the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
This mapping is likely if an application modifies system-component initialization files, such as
CONTROL.INI, SYSTEM.INI, and WINFILE.INI. In these cases, the GetPrivateProfileInt
function retrieves information from the registry, not from the initialization file; the change in the
storage location has no effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.

4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values
under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetProfileInt, WritePrivateProfileString

GetPrivateProfileSection
The GetPrivateProfileSection function retrieves all of the keys and values for the specified
section from an initialization file. This function is provided for compatibility with 16-bit applications
written for Windows. Win32-based applications should store initialization information in the
registry.

Windows 95:
The specified profile section must not exceed 32K.

Windows NT:
The specified profile section has no size limit.

DWORD GetPrivateProfileSection(
LPCTSTR lpAppName, // address of section name
LPTSTR lpReturnedString, // address of return buffer
DWORD nSize, // size of return buffer
LPCTSTR lpFileName // address of initialization filename

);ParameterslpAppName
Points to a null-terminated string containing the section name in the initialization file.

lpReturnedString
Points to a buffer that receives the key name and value pairs associated with the named
section. The buffer is filled with one or more null-terminated strings; the last string is followed
by a second null character.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpReturnedString parameter.
Windows 95:

The maximum buffer size is 32,767 characters.
Windows NT:

There is no maximum buffer size.
lpFileName

Points to a null-terminated string that names the initialization file. If this parameter does not
contain a full path to the file, Windows searches for the file in the Windows directory.

Return ValuesThe return value specifies the number of characters copied to the buffer, not including the
terminating null character. If the buffer is not large enough to contain all the key name and value
pairs associated with the named section, the return value is equal to nSize minus two.RemarksThe data in the buffer pointed to by the lpReturnedString parameter consists of one or more null-
terminated strings, followed by a final null character. Each string has the following format:

key=string

The GetPrivateProfileSection function is not case-sensitive; the string pointed to by the
lpAppName parameter can be a combination of uppercase and lowercase letters.

This operation is atomic; no updates to the specified initialization file are allowed while the key
name and value pairs for the section are being copied to the buffer pointed to by the
lpReturnedString parameter.

Windows NT:
Calls to private profile functions may be mapped to the registry instead of to the specified
initialization files. This mapping occurs when the initialization file and section are specified in
the registry under the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
This mapping is likely if an application modifies system-component initialization files, such as
CONTROL.INI, SYSTEM.INI, and WINFILE.INI. In these cases, the
GetPrivateProfileSection function retrieves information from the registry, not from the
initialization file; the change in the storage location has no effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini

2. Look for the section name specified by lpAppName. This will be a named value under
myfile.ini, or a subkey of myfile.ini, or will not exist.

3. If the section name specified by lpAppName is a named value under myfile.ini, then that
value specifies where in the registry you will find the keys for the section.

4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values
under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetProfileSection, WritePrivateProfileSection

GetPrivateProfileSectionNames
The GetPrivateProfileSectionNames function retrieves the names of all sections in an
initialization file. This function is provided for compatibility with 16-bit Windows-based applications.
Win32-based applications should store initialization information in the registry.

DWORD GetPrivateProfileSectionNames(
LPTSTR lpszReturnBuffer, // address of return buffer
DWORD nSize, // size of return buffer
LPCTSTR lpFileName // address of initialization filename

);ParameterslpszReturnBuffer
Points to a buffer that receives the section names associated with the named file. The buffer
is filled with one or more null-terminated strings; the last string is followed by a second null
character.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpszReturnBuffer parameter.

lpFileName
Points to a null-terminated string that names the initialization file. If this parameter is NULL,
the function searches the WIN.INI file. If this parameter does not contain a full path to the file,
Windows searches for the file in the Windows directory.

Return ValuesThe return value specifies the number of characters copied to the specified buffer, not including
the terminating null character. If the buffer is not large enough to contain all the section names
associated with the specified initialization file, the return value is equal to the length specified by
nSize minus two.RemarksThis operation is atomic; no updates to the initialization file are allowed while the section names
are being copied to the buffer.

Calls to profile functions might be mapped to the registry instead of to the initialization files. When
the operation has been mapped, the GetPrivateProfileSectionNames function retrieves
information from the registry, not from the initialization file; the change in the storage location has
no effect on the function's behavior.

The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps
to locate initialization information:

1. Look in the registry for the name of the initialization file, say myfile.ini, under
IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the key
you are looking for does not exist as a named value, then there will be an unnamed value
(shown as "<No Name>") that specifies the default location in the registry where you will find
the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>") under
myfile.ini that specifies the default location in the registry where you will find the keys for the
section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI file
when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested data
is not found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative
to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

See AlsoGetPrivateProfileSection, WritePrivateProfileSection

GetPrivateProfileString
The GetPrivateProfileString function retrieves a string from the specified section in an
initialization file. This function is provided for compatibility with 16-bit Windows-based applications.
Win32-based applications should store initialization information in the registry.

DWORD GetPrivateProfileString(
LPCTSTR lpAppName, // points to section name
LPCTSTR lpKeyName, // points to key name
LPCTSTR lpDefault, // points to default string
LPTSTR lpReturnedString, // points to destination buffer
DWORD nSize, // size of destination buffer
LPCTSTR lpFileName // points to initialization filename

);ParameterslpAppName
Points to a null-terminated string that specifies the section containing the key name. If this
parameter is NULL, the GetPrivateProfileString function copies all section names in the file
to the supplied buffer.

lpKeyName
Pointer to the null-terminated string containing the key name whose associated string is to be
retrieved. If this parameter is NULL, all key names in the section specified by the lpAppName
parameter are copied to the buffer specified by the lpReturnedString parameter.

lpDefault
Pointer to a null-terminated default string. If the lpKeyName key cannot be found in the
initialization file, GetPrivateProfileString copies the default string to the lpReturnedString
buffer. This parameter cannot be NULL.
Avoid specifying a default string with trailing blank characters. The function inserts a null
character in the lpReturnedString buffer to strip any trailing blanks.
Windows 95: Although lpDefault is declared as a constant parameter, Windows 95 strips any
trailing blanks by inserting a null character into the lpDefault string before copying it to the
lpReturnedString buffer.
Windows NT: Windows NT does not modify the lpDefault string. This means that if the default
string contains trailing blanks, the lpReturnedString and lpDefault strings will not match when
compared using the lstrcmp function.

lpReturnedString
Pointer to the buffer that receives the retrieved string.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpReturnedString parameter.

lpFileName
Pointer to a null-terminated string that names the initialization file. If this parameter does not
contain a full path to the file, Windows searches for the file in the Windows directory.

Return ValuesIf the function succeeds, the return value is the number of characters copied to the buffer, not
including the terminating null character.

If neither lpAppName nor lpKeyName is NULL and the supplied destination buffer is too small to
hold the requested string, the string is truncated and followed by a null character, and the return
value is equal to nSize minus one.

If either lpAppName or lpKeyName is NULL and the supplied destination buffer is too small to hold
all the strings, the last string is truncated and followed by two null characters. In this case, the
return value is equal to nSize minus two.RemarksThe GetPrivateProfileString function searches the specified initialization file for a key that
matches the name specified by the lpKeyName parameter under the section heading specified by
the lpAppName parameter. If it finds the key, the function copies the corresponding string to the
buffer. If the key does not exist, the function copies the default character string specified by the
lpDefault parameter. A section in the initialization file must have the following form:
[section]
key=string
.
.

.

If lpAppName is NULL, GetPrivateProfileString copies all section names in the specified file to
the supplied buffer. If lpKeyName is NULL, the function copies all key names in the specified
section to the supplied buffer. An application can use this method to enumerate all of the sections
and keys in a file. In either case, each string is followed by a null character and the final string is
followed by a second null character. If the supplied destination buffer is too small to hold all the
strings, the last string is truncated and followed by two null characters.

If the string associated with lpKeyName is enclosed in single or double quotation marks, the
marks are discarded when the GetPrivateProfileString function retrieves the string.

The GetPrivateProfileString function is not case-sensitive; the strings can be a combination of
uppercase and lowercase letters.

To retrieve a string from the WIN.INI file, use the GetProfileString function.

Windows NT:
Calls to private profile functions may be mapped to the registry instead of to the specified
initialization files. This mapping occurs when the initialization file and section are specified in
the registry under the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
This mapping is likely if an application modifies system-component initialization files, such as
CONTROL.INI, SYSTEM.INI, and WINFILE.INI. In these cases, the GetPrivateProfileString
function retrieves information from the registry, not from the initialization file; the change in the
storage location has no effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetProfileString, WritePrivateProfileString

GetPrivateProfileStruct
The GetPrivateProfileStruct function retrieves the data associated with the specified key in the
given section of an initialization file. As it retrieves the data, the function calculates a checksum
and compares it with the checksum calculated by the WritePrivateProfileStruct function when
the data was added to the file.

Win32-based applications should store initialization information in the registry.

BOOL GetPrivateProfileStruct(
LPCTSTR lpszSection, // address of section name
LPCTSTR lpszKey, // address of key name
LPVOID lpStruct, // address of return buffer
UINT uSizeStruct, // size of return buffer
LPCTSTR szFile // address of initialization filename

);ParameterslpszSection
Points to a null-terminated string containing the section name in the initialization file.

lpszKey
Points to the null-terminated string containing the key name whose data is to be retrieved.

lpStruct
Points to the buffer that receives the data associated with the file, section, and key names.

uSizeStruct
Specifies the size, in bytes, of the buffer pointed to by the lpStruct parameter.

szFile
Points to a null-terminated string that names the initialization file. If this parameter does not
contain a full path to the file, Windows searches for the file in the Windows directory.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA section in the initialization file must have the following form:
[section]
key=data
.
.

.

Calls to private profile functions might be mapped to the registry instead of to the specified
initialization files. This mapping is likely if an application modifies system-component initialization
files, such as CONTROL.INI, SYSTEM.INI, and WINFILE.INI. In these cases, the
GetPrivateProfileStruct function retrieves information from the registry, not from the initialization
file; the change in the storage location has no effect on the function's behavior.

The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps
to locate initialization information:

1. Look in the registry for the name of the initialization file, say myfile.ini, under
IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the key
you are looking for does not exist as a named value, then there will be an unnamed value
(shown as "<No Name>") that specifies the default location in the registry where you will find
the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>") under
myfile.ini that specifies the default location in the registry where you will find the keys for the
section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI file
when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested data
is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative
to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

See AlsoWritePrivateProfileStruct

GetProcAddress
The GetProcAddress function returns the address of the specified exported dynamic-link library
(DLL) function.

FARPROC GetProcAddress(
HMODULE hModule, // handle to DLL module
LPCSTR lpProcName // name of function

);ParametershModule
Identifies the DLL module that contains the function. The LoadLibrary or GetModuleHandle
function returns this handle.

lpProcName
Points to a null-terminated string containing the function name, or specifies the function's
ordinal value. If this parameter is an ordinal value, it must be in the low-order word; the high-
order word must be zero.

Return ValuesIf the function succeeds, the return value is the address of the DLL's exported function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe GetProcAddress function is used to retrieve addresses of exported functions in DLLs.

The spelling and case of the function name pointed to by lpProcName must be identical to that in
the EXPORTS statement of the source DLL's module-definition (.DEF) file.

The lpProcName parameter can identify the DLL function by specifying an ordinal value
associated with the function in the EXPORTS statement. GetProcAddress verifies that the
specified ordinal is in the range 1 through the highest ordinal value exported in the .DEF file. The
function then uses the ordinal as an index to read the function's address from a function table. If
the .DEF file does not number the functions consecutively from 1 to N (where N is the number of
exported functions), an error can occur where GetProcAddress returns an invalid, non-NULL
address, even though there is no function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name rather than
by ordinal value.See AlsoFreeLibrary, GetModuleHandle, LoadLibrary

GetProcessAffinityMask
The GetProcessAffinityMask function obtains a process affinity mask for the specified process
and the system affinity mask for the system.

A process affinity mask is a bit vector in which each bit represents the processors that a process
is allowed to run on. A system affinity mask is a bit vector in which each bit represents the
processors that are configured into a system.

A process affinity mask is a proper subset of a system affinity mask. A process is only allowed to
run on the processors configured into a system.

BOOL GetProcessAffinityMask(
HANDLE hProcess, // handle to the process of interest
LPDWORD lpProcessAffinityMask, // pointer to structure to receive process affinity mask
LPDWORD lpSystemAffinityMask // pointer to structure to receive system affinity mask

);ParametershProcess
An open handle to the process whose affinity mask is desired.
Windows NT: This handle must have PROCESS_QUERY_INFORMATION access. For more
information, see Process Objects.

lpProcessAffinityMask
Pointer to a DWORD that the function sets to the process affinity mask for the specified
process.

lpSystemAffinityMask
Pointer to a DWORD that the function sets to the system affinity mask for the system.

Return ValuesIf the function succeeds, the return value is nonzero.

Windows NT: Upon success, the function sets the DWORD variables pointed to by
lpProcessAffinityMask and lpSystemAffinityMask to the appropriate affinity masks.

Windows 95: Upon success, the function sets the DWORD variables pointed to by
lpProcessAffinityMask and lpSystemAffinityMask to the value one.

If the function fails, the return value is zero, and the values of the DWORD variables pointed to by
lpProcessAffinityMask and lpSystemAffinityMask are undefined.See AlsoSetProcessAffinityMask, SetThreadAffinityMask

GetProcessHeap
The GetProcessHeap function obtains a handle to the heap of the calling process. This handle
can then be used in calls to the HeapAlloc, HeapReAlloc, HeapFree, and HeapSize functions.

HANDLE GetProcessHeap(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is a handle to the calling process's heap.

If the function fails, the return value is NULL.RemarksGetProcessHeap allows Win32-based applications to allocate memory from the process heap
without having to first create a heap with the HeapCreate function, as shown in this example:HeapAlloc(GetProcessHeap(), 0, dwBytes);Note that the handle obtained by calling the function should not be used in calls to the
HeapDestroy function.

Note, also, that the HEAP_NO_SERIALIZE flag should not be specified when using the
HeapAlloc, HeapFree, HeapReAlloc, and HeapSize functions to access the process heap. The
system may create additional threads within the application's process, such as a Ctrl+C handler,
that simultaneously access the process heap. For more information about
HEAP_NO_SERIALIZE, see the HeapCreate function.See AlsoGetProcessHeaps, HeapAlloc, HeapCreate, HeapDestroy, HeapFree, HeapReAlloc,
HeapSize

GetProcessHeaps
The GetProcessHeaps function obtains handles to all of the heaps that are valid for the calling
process.

DWORD GetProcessHeaps(
DWORD NumberOfHeaps, // maximum number of heap handles buffer can receive
PHANDLE ProcessHeaps // points to buffer to receive array of heap handles

);ParametersNumberOfHeaps
Specifies the maximum number of heap handles that can be stored into the buffer pointed to
by ProcessHeaps.

ProcessHeaps
Points to a buffer to receive an array of heap handles.

Return ValuesThe return value is the number of heap handles that are valid for the calling process.

If the return value is less than or equal to NumberOfHeaps, it is also the number of heap handles
stored into the buffer pointed to by ProcessHeaps.

If the return value is greater than NumberOfHeaps, the buffer pointed to by ProcessHeaps is too
small to hold all the valid heap handles of the calling process.The function will have stored no
handles into that buffer. In this situation, use the return value to allocate a buffer that is large
enough to receive the handles, and call the function again.

If the return value is zero, the function has failed, because every Win32 process has at least one
valid heap, the process heap. To get extended error information, call GetLastError.RemarksUse the GetProcessHeap function to obtain a handle to the process heap of the calling process.
The GetProcessHeaps function obtains a handle to that heap, plus handles to any additional
private heaps created by calling the HeapCreate function.See AlsoGetProcessHeap, HeapCreate

GetProcessPriorityBoost
[New - Windows NT]

The GetProcessPriorityBoost function returns the priority boost control state of the specified
process.

BOOL GetProcessPriorityBoost(
HANDLE hProcess, // handle to process
PBOOL pDisablePriorityBoost // indicates priority boost control state

);ParametershProcess
Handle to the process. This handle must have the PROCESS_QUERY_INFORMATION
access right. For more information, see Process Objects.

pDisablePriorityBoost
Pointer to a Boolean variable that receives the priority boost control state. A value of TRUE
indicates that dynamic boosting is disabled. A value of FALSE indicates normal behavior.

Return ValuesIf the function succeeds, the return value is nonzero. In that case, the Boolean variable pointed to
by the pDisablePriorityBoost parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetProcessPriorityBoost

GetProcessShutdownParameters
The GetProcessShutdownParameters function retrieves shutdown parameters for the currently
calling process.

BOOL GetProcessShutdownParameters(
LPDWORD lpdwLevel, // shutdown priority
LPDWORD lpdwFlags // shutdown flag

);

Parameters
lpdwLevel

Points to a variable that receives the shutdown priority level. Higher levels shut down first.
System level shutdown orders are reserved for system components. Higher numbers shut
down first. Following are the level conventions:

Value Meaning
000 - 0FF System reserved last shutdown range.
100 - 1FF Application reserved last shutdown range.
200 - 2FF Application reserved "in between" shutdown range.
300 - 3FF Application reserved first shutdown range.
400 - 4FF System reserved first shutdown range.

All processes start at shutdown level 0x280.
lpdwFlags

Points to a variable that receives the shutdown flags. It can be the following value:
Value Meaning
SHUTDOWN_NORETRY If this process takes longer than the

specified timeout to shut down, do not
display a retry dialog box for the user.
Instead, just cause the process to directly
exit.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoSetProcessShutdownParameters

GetProcessTimes
The GetProcessTimes function obtains timing information about a specified process.

BOOL GetProcessTimes(
HANDLE hProcess, // specifies the process of interest
LPFILETIME lpCreationTime, // when the process was created
LPFILETIME lpExitTime, // when the process exited
LPFILETIME lpKernelTime, // time the process has spent in kernel mode
LPFILETIME lpUserTime // time the process has spent in user mode

);ParametershProcess
An open handle that specifies the process whose timing information is sought. This handle
must be created with PROCESS_QUERY_INFORMATION access. For more information, see
Process Objects.

lpCreationTime
Points to a FILETIME structure that receives the creation time of the process.

lpExitTime
Points to a FILETIME structure that receives the exit time of the process. If the process has
not exited, the content of this structure is undefined.

lpKernelTime
Points to a FILETIME structure that receives the amount of time that the process has
executed in kernel mode. The time that each of the threads of the process has executed in
kernel mode is determined, and then all of those times are summed together to obtain this
value.

lpUserTime
Points to a FILETIME structure that receives the amount of time that the process has
executed in user mode. The time that each of the threads of the process has executed in user
mode is determined, and then all of those times are summed together to obtain this value.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll times are expressed using FILETIME data structures. Such a structure contains two 32-bit
values that combine to form a 64-bit count of 100-nanosecond time units.

Process creation and exit times are points in time expressed as the amount of time that has
elapsed since midnight on January 1, 1601 at Greenwich, England. The Win32 API provides
several functions that an application can use to convert such values to more generally useful
forms.

Process kernel mode and user mode times are amounts of time. For example, if a process has
spent one second in kernel mode, this function will fill the FILETIME structure specified by
lpKernelTime with a 64-bit value of ten million. That is the number of 100-nanosecond units in one
second.See AlsoFILETIME, FileTimeToDosDateTime, FileTimeToLocalFileTime, FileTimeToSystemTime

GetProcessVersion
The GetProcessVersion function obtains the major and minor version numbers of the Windows
version on which a specified process expects to run.

DWORD GetProcessVersion(
DWORD ProcessId // identifier specifying the process of interest

);ParametersProcessId
Process identifier that specifies the process of interest. A ProcessId value of zero specifies
the calling process.

Return ValuesIf the function succeeds, the return value is the version of Windows on which the process expects
to run. The high word of the return value contains the major version number. The low word of the
return value contains the minor version number.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
The function fails if ProcessId is an invalid value.RemarksThe GetProcessVersion function performs less quickly when ProcessId is nonzero, specifying a
process other than the calling process.

The version number returned by this function is the version number stamped in the image header
of the .EXE file the process is running. Linker programs set this value.

GetProcessWindowStation
The GetProcessWindowStation function returns a handle of the window station associated with
the calling process.

HWINSTA GetProcessWindowStation(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is a handle of the window station associated with the
calling process.

If the function fails, the return value is NULL. This can occur if the calling process is not an
application written for Windows NT. To get extended error information, call GetLastError.RemarksThe system associates a window station with a process when the process is created. A process
can use the SetProcessWindowStation function to change its window station.

The calling process can use the returned handle in calls to the GetUserObjectInformation,
GetUserObjectSecurity, SetUserObjectInformation, and SetUserObjectSecurity functions.See AlsoGetThreadDesktop, GetUserObjectInformation, GetUserObjectSecurity,
SetProcessWindowStation, SetUserObjectInformation, SetUserObjectSecurity

GetProcessWorkingSetSize
The GetProcessWorkingSetSize function obtains the minimum and maximum working set sizes
of a specified process.

The "working set" of a process is the set of memory pages currently visible to the process in
physical RAM memory. These pages are resident and available for an application to use without
triggering a page fault. The size of a process' working set is specified in bytes. The minimum and
maximum working set sizes affect the virtual memory paging behavior of a process.

BOOL GetProcessWorkingSetSize(
HANDLE hProcess, // open handle to the process of interest
LPDWORD lpMinimumWorkingSetSize, // points to variable to receive minimum working set size
LPDWORD lpMaximumWorkingSetSize // points to variable to receive maximum working set size

);ParametershProcess
An open handle to the process whose working set sizes will be obtained. The handle must
have PROCESS_QUERY_INFORMATION access rights. For more information, see Process
Objects.

lpMinimumWorkingSetSize
Points to a variable that receives the minimum working set size of the specified process. The
virtual memory manager attempts to keep at least this much memory resident in the process
whenever the process is active.

lpMaximumWorkingSetSize
Points to a variable that receives the maximum working set size of the specified process. The
virtual memory manager attempts to keep no more than this much memory resident in the
process whenever the process is active when memory is in short supply.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetProcessWorkingSetSize

GetProfileInt
The GetProfileInt function retrieves an integer from the specified key name in the given section of
the WIN.INI file. This function is provided for compatibility with 16-bit Windows-based applications.
Win32-based applications should store initialization information in the registry.

UINT GetProfileInt(
LPCTSTR lpAppName, // address of section name
LPCTSTR lpKeyName, // address of key name
INT nDefault // default value if key name is not found

);ParameterslpAppName
Points to a null-terminated string that specifies the section containing the key name.

lpKeyName
Points to the null-terminated string containing the key name whose value is to be retrieved.
This value is in the form of a string; the GetProfileInt function converts the string into an
integer and returns the integer.

nDefault
Specifies the default value to return if the key name cannot be found in the initialization file.

Return ValuesIf the function succeeds, the return value is the integer equivalent of the string following the key
name in WIN.INI. If the function cannot find the key, the return value is the default value. If the
value of the key is less than zero, the return value is zero.RemarksIf the key name consists of digits followed by characters that are not numeric, the function returns
only the value of the digits. For example, the function returns 102 for the following line: KeyName=
102abc.

Windows NT:
Calls to profile functions may be mapped to the registry instead of to the initialization files.
This mapping occurs when the initialization file and section are specified in the registry under
the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
When the operation has been mapped, the GetProfileInt function retrieves information from
the registry, not from the initialization file; the change in the storage location has no effect on
the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetPrivateProfileInt, WriteProfileString

GetProfileSection
The GetProfileSection function retrieves all of the keys and values for the specified section of the
WIN.INI file. This function is provided for compatibility with 16-bit Windows-based applications.
Win32-based applications should store initialization information in the registry.

Windows 95:
The specified profile section must not exceed 32K.

Windows NT:
The specified profile section has no size limit.

DWORD GetProfileSection(
LPCTSTR lpAppName, // address of section name
LPTSTR lpReturnedString, // address of return buffer
DWORD nSize // size of return buffer

);ParameterslpAppName
Points to a null-terminated string containing the section name in the WIN.INI file.

lpReturnedString
Points to a buffer that receives the keys and values associated with the named section. The
buffer is filled with one or more null-terminated strings; the last string is followed by a second
null character.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpReturnedString parameter.
Windows 95:

The maximum buffer size is 32,767 characters.
Windows NT:

There is no maximum buffer size.
Return ValuesThe return value specifies the number of characters copied to the specified buffer, not including

the terminating null character. If the buffer is not large enough to contain all the keys and values
associated with the named section, the return value is equal to the length specified by nSize
minus two.RemarksThe format of the returned keys and values is one or more null-terminated strings, followed by a
final null character. Each string has the following form:

key=string

The GetProfileSection function is not case-sensitive; the strings can be a combination of
uppercase and lowercase letters.

This operation is atomic; no updates to the WIN.INI file are allowed while the keys and values for
the section are being copied to the buffer.

Windows NT:
Calls to profile functions may be mapped to the registry instead of to the initialization files.
This mapping occurs when the initialization file and section are specified in the registry under
the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
When the operation has been mapped, the GetProfileSection function retrieves information
from the registry, not from the initialization file; the change in the storage location has no
effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.

4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values
under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetPrivateProfileSection, WriteProfileSection

GetProfileString
The GetProfileString function retrieves the string associated with the specified key in the given
section of the WIN.INI file. This function is provided for compatibility with 16-bit Windows-based
applications. Win32-based applications should store initialization information in the registry.

DWORD GetProfileString(
LPCTSTR lpAppName, // address of section name
LPCTSTR lpKeyName, // address of key name
LPCTSTR lpDefault, // address of default string
LPTSTR lpReturnedString, // address of destination buffer
DWORD nSize // size of destination buffer

);ParameterslpAppName
Pointer to a null-terminated string that specifies the section containing the key. If this
parameter is NULL, the function copies all section names in the file to the supplied buffer.

lpKeyName
Pointer to a null-terminated string containing the key name whose associated string is to be
retrieved. If this parameter is NULL, the function copies all keys in the given section to the
supplied buffer. Each string is followed by a null character, and the final string is followed by a
second null character.

lpDefault
Pointer to a null-terminated default string. If the lpKeyName key cannot be found in the
initialization file, GetPrivateProfileString copies the default string to the lpReturnedString
buffer. This parameter cannot be NULL.
Avoid specifying a default string with trailing blank characters. The function inserts a null
character in the lpReturnedString buffer to strip any trailing blanks.
Windows 95: Although lpDefault is declared as a constant parameter, Windows 95 strips any
trailing blanks by inserting a null character into the lpDefault string before copying it to the
lpReturnedString buffer.
Windows NT: Windows NT does not modify the lpDefault string. This means that if the default
string contains trailing blanks, the lpReturnedString and lpDefault strings will not match when
compared using the lstrcmp function.

lpReturnedString
Pointer to a buffer that receives the character string.

nSize
Specifies the size, in characters, of the buffer pointed to by the lpReturnedString parameter.

Return ValuesIf the function succeeds, the return value is the number of characters copied to the buffer, not
including the null-terminating character.

If neither lpAppName nor lpKeyName is NULL and the supplied destination buffer is too small to
hold the requested string, the string is truncated and followed by a null character, and the return
value is equal to nSize minus one.

If either lpAppName or lpKeyName is NULL and the supplied destination buffer is too small to hold
all the strings, the last string is truncated and followed by two null characters. In this case, the
return value is equal to nSize minus two.RemarksIf the string associated with the lpKeyName parameter is enclosed in single or double quotation
marks, the marks are discarded when the GetProfileString function returns the string.

The GetProfileString function is not case-sensitive; the strings can contain a combination of
uppercase and lowercase letters.

A section in the WIN.INI file must have the following form:
[section]
key=string
.
.

.

An application can use the GetPrivateProfileString function to retrieve a string from a specified
initialization file.

The lpDefault parameter must point to a valid string, even if the string is empty (that is, even if its
first character is a null character).

Windows NT:
Calls to profile functions may be mapped to the registry instead of to the initialization files.
This mapping occurs when the initialization file and section are specified in the registry under
the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
When the operation has been mapped, the GetProfileString function retrieves information
from the registry, not from the initialization file; the change in the storage location has no
effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetPrivateProfileString, WriteProfileString

GetProp
The GetProp function retrieves a data handle from the property list of the given window. The
given character string identifies the handle to be retrieved. The string and handle must have been
added to the property list by a previous call to the SetProp function.

HANDLE GetProp(
HWND hWnd, // handle of window
LPCTSTR lpString // atom or address of string

);ParametershWnd
Identifies the window whose property list is to be searched.

lpString
Points to a null-terminated character string or contains an atom that identifies a string. If this
parameter is an atom, it must have been created by using the GlobalAddAtom function. The
atom, a 16-bit value, must be placed in the low-order word of the lpString parameter; the high-
order word must be zero.

Return ValuesIf the property list contains the given string, the return value is the associated data handle.
Otherwise, the return value is NULL.See AlsoEnumProps, GlobalAddAtom, RemoveProp, SetProp

GetQueuedCompletionStatus
The GetQueuedCompletionStatus function attempts to dequeue an I/O completion packet from
a specified input/output completion port. If there is no completion packet queued, the function
waits for a pending input/output operation associated with the completion port to complete. The
function returns when it can dequeue a completion packet, or optionally when the function times
out. If the function returns because of an I/O operation completion, it sets several variables that
provide information about the operation.

BOOL GetQueuedCompletionStatus(
HANDLE CompletionPort, // the I/O completion port of interest
LPDWORD lpNumberOfBytesTransferred, // to receive number of bytes transferred during I/O
LPDWORD lpCompletionKey, // to receive file's completion key
LPOVERLAPPED *lpOverlapped, // to receive pointer to OVERLAPPED structure
DWORD dwMilliseconds // optional timeout value

);ParametersCompletionPort
Handle to the input/output completion port of interest. I/O completion ports are created by the
CreateIoCompletionPort function.

lpNumberOfBytesTransferred
Points to a variable that the function sets to the number of bytes transferred during an I/O
operation that has completed.

lpCompletionKey
Points to a variable that the function sets to the completion key value associated with the file
handle whose I/O operation has completed. A completion key is a per-file key that is specified
in a call to CreateIoCompletionPort.

lpOverlapped
Points to a variable that the function sets to the address of the OVERLAPPED structure that
was specified when the completed input/output operation was started.
The following functions can be used to start input/output operations that complete using I/O
completion ports. You must pass the function an OVERLAPPED structure and a file handle
associated (by a call to CreateIoCompletionPort) with an I/O completion port to invoke the I/
O completion port mechanism:
· ConnectNamedPipe
· DeviceIoControl
· LockFileEx
· ReadFile
· TransactNamedPipe
· WaitCommEvent
· WriteFile
Even if you have passed the function a file handle associated with a completion port and a
valid OVERLAPPED structure, an application can prevent completion port notification. This is
done by specifying a valid event handle for the hEvent member of the OVERLAPPED
structure, and setting its low-order bit. A valid event handle whose low-order bit is set keeps I/
O completion from being queued to the completion port.

dwMilliseconds
Specifies the number of milliseconds that the caller is willing to wait for an completion packet
to appear at the I/O completion port. If a completion packet doesn't appear within the specified
time, the function times out, returns FALSE, and sets *lpOverlapped to NULL.
If dwMilliseconds is INFINITE, the function will never time out. If dwMilliseconds is zero and
there is no I/O operation to dequeue, the function will time out immediately.

Return ValuesIf the function dequeues a completion packet for a successful I/O operation from the completion
port, the return value is nonzero. The function stores information in the variables pointed to by the
lpNumberOfBytesTransferred, lpCompletionKey, and lpOverlapped parameters.

If *lpOverlapped is NULL and the function does not dequeue a completion packet from the
completion port, the return value is zero. The function does not store information in the variables
pointed to by the lpNumberOfBytesTransferred and lpCompletionKey parameters. To get
extended error information, call GetLastError. If the function did not dequeue a completion packet
because the wait timed out, the error returned is WAIT_TIMEOUT.

If *lpOverlapped is not NULL and the function dequeues a completion packet for a failed I/O
operation from the completion port, the return value is zero. The function stores information in the
variables pointed to by lpNumberOfBytesTransferred, lpCompletionKey, and lpOverlapped. To get
extended error information, call GetLastError.RemarksThe I/O system can be instructed to send I/O completion notification packets to input/output
completion ports, where they are queued up. The CreateIoCompletionPort function provides a
mechanism for this.

When you perform an input/output operation with a file handle that has an associated input/output
completion port, the I/O system sends a completion notification packet to the completion port
when the I/O operation completes. The I/O completion port places the completion packet in a first-
in-first-out queue. The GetQueuedCompletionStatus function retrieves these queued I/O
completion packets.

A server application may have several threads calling GetQueuedCompletionStatus for the
same completion port. As input operations complete, the operating system queues completion
packets to the completion port. If threads are actively waiting in a call to this function, queued
requests complete their call.

You can call the PostQueuedCompletionStatus function to post an I/O completion packet to an
I/O completion port. The I/O completion packet will satisfy an outstanding call to the
GetQueuedCompletionStatus function.See AlsoConnectNamedPipe, CreateIoCompletionPort, DeviceIoControl, LockFileEx, OVERLAPPED,
ReadFile, PostQueuedCompletionStatus, TransactNamedPipe, WaitCommEvent, WriteFile

GetQueueStatus
The GetQueueStatus function returns flags that indicate the type of messages found in the
calling thread's message queue.

DWORD GetQueueStatus(
UINT flags // queue-status flags

);Parametersflags
Specifies queue-status flags giving the types of messages to check for. This parameter can be
a combination of the following values:

Value Meaning
QS_ALLEVENTS An input, WM_TIMER, WM_PAINT,

WM_HOTKEY, or posted message is in the
queue.

QS_ALLINPUT Any message is in the queue.
QS_HOTKEY A WM_HOTKEY message is in the queue.
QS_INPUT An input message is in the queue.
QS_KEY A WM_KEYUP, WM_KEYDOWN,

WM_SYSKEYUP, or WM_SYSKEYDOWN
message is in the queue.

QS_MOUSE A WM_MOUSEMOVE message or mouse-
button message (WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on).

QS_MOUSEBUTTON A mouse-button message
(WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on).

QS_MOUSEMOVE A WM_MOUSEMOVE message is in the
queue.

QS_PAINT A WM_PAINT message is in the queue.
QS_POSTMESSAGE A posted message (other than those just

listed) is in the queue.
QS_SENDMESSAGE A message sent by another thread or

application is in the queue.
QS_TIMER A WM_TIMER message is in the queue.

Return ValuesThe high-order word of the return value indicates the types of messages currently in the queue.
The low-order word indicates the types of messages that have been added to the queue and that
are still in the queue since the last call to the GetQueueStatus, GetMessage, or PeekMessage
function.RemarksThe presence of a QS_ flag in the return value does not guarantee that a subsequent call to the
PeekMessage or GetMessage function will return a message. GetMessage and PeekMessage
perform some internal filtering that may cause the message to be processed internally. For this
reason, the return value from GetQueueStatus should be considered only a hint as to whether
GetMessage or PeekMessage should be called.See AlsoGetInputState, GetMessage, PeekMessage

GetRasterizerCaps
The GetRasterizerCaps function returns flags indicating whether TrueType fonts are installed in
the system.

BOOL GetRasterizerCaps(
LPRASTERIZER_STATUS lprs, // address of rasterizer information structure
UINT cb // number of bytes in structure

);Parameterslprs
Points to a RASTERIZER_STATUS structure to receive information about the rasterizer.

cb
Specifies the number of bytes to be copied into the structure pointed to by the lprs parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetRasterizerCaps function enables applications and printer drivers to determine whether
TrueType fonts are installed.

If the TT_AVAILABLE flag is set in the wFlags member of the RASTERIZER_STATUS structure,
at least one TrueType font is installed. If the TT_ENABLED flag is set, TrueType is enabled for the
system.

The actual number of bytes copied is either the member specified in the cb parameter or the
length of the RASTERIZER_STATUS structure, whichever is less.See AlsoGetOutlineTextMetrics, RASTERIZER_STATUS

GetRegionData
The GetRegionData function fills the specified buffer with data describing a region. This data
includes the dimensions of the rectangles that make up the region.

DWORD GetRegionData(
HRGN hRgn, // handle of region
DWORD dwCount, // size of buffer containing region data
LPRGNDATA lpRgnData // address of buffer containing region data

);ParametershRgn
Identifies the region.

dwCount
Specifies the size, in bytes, of the lpRgnData buffer.

lpRgnData
Points to a RGNDATA structure that receives the information. If this parameter is NULL, the
return value contains the number of bytes needed for the region data.

Return ValuesIf the function succeeds and dwCount specifies an adequate number of bytes, the return value is
1. If dwCount is too small or lpRgnData is NULL, the return value is the required number of bytes.

If the function fails, the return value is zero.RemarksThe GetRegionData function is used in conjunction with the ExtCreateRegion function.See AlsoExtCreateRegion, RGNDATA

GetRgnBox
The GetRgnBox function retrieves the bounding rectangle of the specified region.

int GetRgnBox(
HRGN hrgn, // handle of a region
LPRECT lprc // address of structure that receives bounding rect.

);Parametershrgn
Identifies the region.

lprc
Points to a RECT structure that receives the bounding rectangle.

Return ValuesThe return value specifies the region's complexity. It can be one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than a single rectangle.

If the hrgn parameter does not identify a valid region, the return value is zero.See AlsoRECT

GetROP2
The GetROP2 function retrieves the foreground mix mode of the specified device context. The
mix mode specifies how the pen or interior color and the color already on the screen are
combined to yield a new color.

int GetROP2(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value specifies the foreground mix mode.

If the function fails, the return value is zero.RemarksFollowing are the foreground mix modes:

Mix mode Description

R2_BLACK Pixel is always 0.
R2_COPYPEN Pixel is the pen color.
R2_MASKNOTPEN Pixel is a combination of the colors common to

both the screen and the inverse of the pen.
R2_MASKPEN Pixel is a combination of the colors common to

both the pen and the screen.
R2_MASKPENNOT Pixel is a combination of the colors common to

both the pen and the inverse of the screen.
R2_MERGENOTPEN Pixel is a combination of the screen color and

the inverse of the pen color.
R2_MERGEPEN Pixel is a combination of the pen color and the

screen color.
R2_MERGEPENNOT Pixel is a combination of the pen color and the

inverse of the screen color.
R2_NOP Pixel remains unchanged.
R2_NOT Pixel is the inverse of the screen color.
R2_NOTCOPYPEN Pixel is the inverse of the pen color.
R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color.
R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN

color.
R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color.
R2_WHITE Pixel is always 1.
R2_XORPEN Pixel is a combination of the colors in the pen

and in the screen, but not in both.
See AlsoSetROP2

GetSaveFileName
The GetSaveFileName function creates a Save common dialog box that lets the user specify the
drive, directory, and name of a file to save.

BOOL GetSaveFileName(
LPOPENFILENAME lpofn // address of structure with initialization data

);Parameterslpofn
Pointer to an OPENFILENAME structure that contains information used to initialize the dialog
box. When GetSaveFileName returns, this structure contains information about the user's file
selection.

Return ValuesIf the user specifies a filename and clicks the OK button, the return value is nonzero. The buffer
pointed to by the lpstrFile member of the OPENFILENAME structure contains the full path and
filename specified by the user.

If the user cancels or closes the Save dialog box or an error occurs, the return value is zero. To
get extended error information, call the CommDlgExtendedError function, which can return one
of the following values:

CDERR_FINDRESFAILURE CDERR_NOHINSTANCE

CDERR_INITIALIZATION CDERR_NOHOOK
CDERR_LOCKRESFAILURE CDERR_NOTEMPLATE
CDERR_LOADRESFAILURE CDERR_STRUCTSIZE
CDERR_LOADSTRFAILURE FNERR_BUFFERTOOSMALL
CDERR_MEMALLOCFAILURE FNERR_INVALIDFILENAME
CDERR_MEMLOCKFAILURE FNERR_SUBCLASSFAILURE
RemarksBy default, Windows 95 and Windows NT version 4.0 display a new version of the Save dialog

box that provides user-interface features that are similar to the Windows Explorer. You can
provide an OFNHookProc hook procedure for an Explorer-style Save dialog box. To enable the
hook procedure, set the OFN_EXPLORER and OFN_ENABLEHOOK flags in the Flags member
of the OPENFILENAME structure and specify the address of the hook procedure in the lpfnHook
member.

Windows 95 and Windows NT 4.0 continue to support the old-style Save dialog box for
applications that want to maintain a user-interface consistent with the Windows 3.1 or Windows
NT 3.51 user-interface. To display the old-style Save dialog box, enable an
OFNHookProcOldStyle hook procedure and ensure that the OFN_EXPLORER flag is not set.See AlsoCommDlgExtendedError, GetOpenFilename, OFNHookProc, OFNHookProcOldStyle,
OPENFILENAME

GetScrollInfo
The GetScrollInfo function retrieves the parameters of a scroll bar, including the minimum and
maximum scrolling positions, the page size, and the position of the scroll box (thumb).

BOOL GetScrollInfo(
HWND hwnd, // handle of window with scroll bar
int fnBar, // scroll bar flag
LPSCROLLINFO lpsi // pointer to structure for scroll parameters

);Parametershwnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the fnBar parameter.

fnBar
Specifies the type of scroll bar for which to retrieve parameters. This parameter can be one of
the following values:

Value Meaning
SB_CTL Retrieves the parameters for a scroll bar control. The

hwnd parameter must be the handle of the scroll bar
control.

SB_HORZ Retrieves the parameters for the given window's
standard horizontal scroll bar.

SB_VERT Retrieves the parameters for the given window's
standard vertical scroll bar.

lpsi
Points to a SCROLLINFO structure whose fMask member, upon entry to the function,
specifies the scroll bar parameters to retrieve. Before returning, the function copies the
specified parameters to the appropriate members of the structure.
The fMask member can be a combination of the following values:

Value Meaning
SIF_PAGE Copies the scroll page to the nPage member of the

SCROLLINFO structure pointed to by lpsi.
SIF_POS Copies the scroll position to the nPos member of the

SCROLLINFO structure pointed to by lpsi.
SIF_RANGE Copies the scroll range to the nMin and nMax

members of the SCROLLINFO structure pointed to
by lpsi.

Return ValuesIf the function retrieved any values, the return value is nonzero.

If the function does not retrieve any values, the return value is zero.RemarksThe GetScrollInfo function enables applications to use 32-bit scroll positions. Although the
messages that indicate scroll-bar position, WM_HSCROLL and WM_VSCROLL, provide only 16
bits of position data, the functions SetScrollInfo and GetScrollInfo provide 32 bits of scroll-bar
position data. Thus, an application can call GetScrollInfo while processing either the
WM_HSCROLL or WM_VSCROLL messages to obtain 32-bit scroll-bar position data.

The limitation on this technique applies to real-time scrolling of a window's contents. An
application implements real-time scrolling by processing the WM_HSCROLL or WM_VSCROLL
messages that carry the SB_THUMBTRACK notification value, thereby tracking the position of the
scroll box (thumb) as the user moves it. Unfortunately, there is no function to retrieve the 32-bit
position scroll-box position as the user moves the scroll box. Because GetScrollInfo provides
only the static position, an application can obtain only 32-bit position data before or after a scroll
operation.See AlsoSCROLLINFO, SetScrollInfo, WM_HSCROLL, WM_VSCROLL

GetScrollPos
The GetScrollPos function retrieves the current position of the scroll box (thumb) in the specified
scroll bar. The current position is a relative value that depends on the current scrolling range. For
example, if the scrolling range is 0 through 100 and the scroll box is in the middle of the bar, the
current position is 50.

int GetScrollPos(
HWND hWnd, // handle of window with scroll bar
int nBar // scroll bar flags

);ParametershWnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the nBar parameter.

nBar
Specifies the scroll bar to be examined. This parameter can be one of the following values:

Value Meaning
SB_CTL Retrieves the position of the scroll box in a scroll bar

control. The hWnd parameter must be the handle of
the scroll bar control.

SB_HORZ Retrieves the position of the scroll box in a window's
standard horizontal scroll bar.

SB_VERT Retrieves the position of the scroll box in a window's
standard vertical scroll bar.

Return ValuesIf the function succeeds, the return value is the current position of the scroll box/

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetScrollPos function enables applications to use 32-bit scroll positions. Although the
messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are limited to 16
bits of position data, the functions SetScrollPos, SetScrollRange, GetScrollPos, and
GetScrollRange support 32-bit scroll bar position data. Thus, an application can call
GetScrollPos while processing either the WM_HSCROLL or WM_VSCROLL messages to obtain
32-bit scroll bar position data.

The limitation on this technique applies to real-time scrolling of a window's content. An application
implements such scrolling by processing the WM_HSCROLL or WM_VSCROLL messages that
carry the SB_THUMBTRACK notification message, thereby tracking the position of the scroll box,
also known as the thumb, while the user moves it. Unfortunately, there is no function to retrieve
the thumb's 32-bit position while the user moves it. GetScrollPos provides static position data
only; an application can therefore only obtain 32-bit position data before or after a scroll has taken
place.See AlsoGetScrollRange, ScrollDC, ScrollWindow, SetScrollPos, SetScrollRange, WM_HSCROLL,
WM_VSCROLL

GetScrollRange
The GetScrollRange function retrieves the current minimum and maximum scroll box (thumb)
positions for the specified scroll bar.

For Windows 95, the GetScrollRange function exists for compatibility with operating system
versions earlier than 4.0. With version 4.0 or later, use the GetScrollInfo function.

BOOL GetScrollRange(
HWND hWnd, // handle of window with scroll bar
int nBar, // scroll bar flags
LPINT lpMinPos, // address of variable that receives minimum position
LPINT lpMaxPos // address of variable that receives maximum position

);ParametershWnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the nBar parameter.

nBar
Specifies the scroll bar from which the positions are retrieved. This parameter can be one of
the following values:

Value Meaning
SB_CTL Retrieves the positions of a scroll bar control. The

hWnd parameter must be the handle of the scroll bar
control.

SB_HORZ Retrieves the positions of the window's standard
horizontal scroll bar.

SB_VERT Retrieves the positions of the window's standard
vertical scroll bar.

lpMinPos
Points to the integer variable that receives the minimum position.

lpMaxPos
Points to the integer variable that receives the maximum position.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the specified window does not have standard scroll bars or is not a scroll bar control, the
GetScrollRange function copies zero to the lpMinPos and lpMaxPos parameters.

The default range for a standard scroll bar is 0 through 100. The default range for a scroll bar
control is empty (both values are zero).

The messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are limited to
16 bits of position data. However, because SetScrollPos, SetScrollRange, GetScrollPos, and
GetScrollRange support 32-bit scroll bar position data, there is a way to circumvent the 16-bit
barrier for the WM_HSCROLL and WM_VSCROLL messages. See the GetScrollPos function for
a description of the technique and its limits.See AlsoGetScrollPos, SetScrollPos, SetScrollRange, WM_HSCROLL, WM_VSCROLL

GetSecurityDescriptorControl
The GetSecurityDescriptorControl function retrieves a security descriptor's control and revision
information.

BOOL GetSecurityDescriptorControl(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
PSECURITY_DESCRIPTOR_CONTROL pControl, // address of control structure
LPDWORD lpdwRevision // address of revision value

);ParameterspSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure whose control and revision information the
function retrieves.

pControl
Points to a SECURITY_DESCRIPTOR_CONTROL structure receiving the security
descriptor's control information.

lpdwRevision
Points to a variable receiving the security descriptor's revision value. This value is always set,
even when GetSecurityDescriptorControl returns an error.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetSecurityDescriptorDacl, GetSecurityDescriptorGroup, GetSecurityDescriptorLength,
GetSecurityDescriptorOwner, GetSecurityDescriptorSacl, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL

GetSecurityDescriptorDacl
The GetSecurityDescriptorDacl function retrieves a pointer to the discretionary access-control
list (ACL) in a specified security descriptor.

BOOL GetSecurityDescriptorDacl(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
LPBOOL lpbDaclPresent, // address of flag for presence of disc. ACL
PACL *pDacl, // address of pointer to ACL
LPBOOL lpbDaclDefaulted // address of flag for default disc. ACL

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure containing the discretionary ACL. The
function retrieves a pointer to it.

lpbDaclPresent
Points to a flag the function sets to indicate the presence of a discretionary ACL in the
specified security descriptor. If this parameter is TRUE, the security descriptor contains a
discretionary ACL, and the remaining output parameters in this function receive valid values. If
this parameter is FALSE, the security descriptor does not contain a discretionary ACL, and
the remaining output parameters do not receive valid values.

pDacl
Points to a pointer to an ACL structure. If a discretionary ACL exists, the function sets the
pointer pointed to by pDacl to the address of the security descriptor's discretionary ACL. If a
discretionary ACL does not exist, no value is stored.
If the function stores a NULL value in the pointer pointed to by pDacl, the security descriptor
has a NULL discretionary ACL. A NULL discretionary ACL implicitly allows all access to an
object.

lpbDaclDefaulted
Points to a flag set to the value of the SE_DACL_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure if a discretionary ACL exists for the security
descriptor. If this flag is TRUE, the discretionary ACL was retrieved by a default mechanism; if
FALSE, the discretionary ACL was explicitly specified by a user.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, GetSecurityDescriptorControl, GetSecurityDescriptorGroup,
GetSecurityDescriptorLength, GetSecurityDescriptorOwner, GetSecurityDescriptorSacl,
InitializeSecurityDescriptor, IsValidSecurityDescriptor, SECURITY_DESCRIPTOR,
SECURITY_DESCRIPTOR_CONTROL, SetSecurityDescriptorDacl

GetSecurityDescriptorGroup
The GetSecurityDescriptorGroup function retrieves the primary group information from a
security descriptor.

BOOL GetSecurityDescriptorGroup(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
PSID *pGroup, // address of pointer to group security identifier (SID)
LPBOOL lpbGroupDefaulted // address of flag for default

);ParameterspSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure whose primary group information the function
retrieves.

pGroup
Points to a pointer to a SID structure identifying the primary group when the function returns.
(A SID is a security identifier.) If the security descriptor does not contain a primary group, the
function sets the pointer pointed to by pGroup to NULL and ignores the remaining output
parameter, lpbGroupDefaulted. If the security descriptor contains a primary group, the
function sets the pointer pointed to by pGroup to the address of the security descriptor's group
SID structure and provides a valid value for the variable pointed to by lpbGroupDefaulted.

lpbGroupDefaulted
Points to a flag set to the value of the SE_GROUP_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure when the function returns. If the value
stored in the variable pointed to by the pGroup parameter is NULL, no value is set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorLength,
GetSecurityDescriptorOwner, GetSecurityDescriptorSacl, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL,
SetSecurityDescriptorGroup, SID

GetSecurityDescriptorLength
The GetSecurityDescriptorLength function returns the length, in bytes, of a structurally valid
SECURITY_DESCRIPTOR structure. The length includes the length of all associated structures,
such as SID and ACL structures.

DWORD GetSecurityDescriptorLength(
PSECURITY_DESCRIPTOR pSecurityDescriptor // address of security descriptor

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure whose length the function returns. The
SECURITY_DESCRIPTOR structure is assumed to be valid.

Return ValuesIf the function succeeds, the return value is the length, in bytes, of the SECURITY_DESCRIPTOR
structure. If the SECURITY_DESCRIPTOR structure is invalid, the return value is undefined.RemarksThe minimum length of a security descriptor is SECURITY_DESCRIPTOR_MIN_LENGTH. A
security descriptor of this length has no associated SID or ACL structures.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorOwner, GetSecurityDescriptorSacl, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR

GetSecurityDescriptorOwner
The GetSecurityDescriptorOwner function retrieves the owner information from a security
descriptor.

BOOL GetSecurityDescriptorOwner(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
PSID *pOwner, // address of pointer to owner security identifier (SID)
LPBOOL lpbOwnerDefaulted // address of flag for default

);ParameterspSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure whose owner information the function
retrieves.

pOwner
Points to a pointer to a SID structure identifying the owner when the function returns. (A SID is
a security identifier.) If the security descriptor does not contain an owner, the function sets the
pointer pointed to by pOwner to NULL and ignores the remaining output parameter,
lpbOwnerDefaulted. If the security descriptor contains an owner, the function sets the pointer
pointed to by pOwner to the address of the security descriptor's owner SID structure and
provides a valid value for the variable pointed to by lpbOwnerDefaulted.

lpbOwnerDefaulted
Points to a flag set to the value of the SE_OWNER_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure when the function returns. If the value
stored in the variable pointed to by the pOwner parameter is NULL, no value is set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorLength, GetSecurityDescriptorSacl, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL,
SetSecurityDescriptorOwner, SID

GetSecurityDescriptorSacl
The GetSecurityDescriptorSacl function retrieves a pointer to the system access-control list
(ACL) in a specified security descriptor.

BOOL GetSecurityDescriptorSacl(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
LPBOOL lpbSaclPresent, // address of flag for presence of system ACL
PACL *pSacl, // address of pointer to ACL
LPBOOL lpbSaclDefaulted // address of flag for default system ACL

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure containing the system ACL to which the
function retrieves a pointer to.

lpbSaclPresent
Points to a flag the function sets to indicate the presence of a system ACL in the specified
security descriptor. If this parameter is TRUE, the security descriptor contains a system ACL,
and the remaining output parameters in this function receive valid values. If this parameter is
FALSE, the security descriptor does not contain a system ACL, and the remaining output
parameters do not receive valid values.

pSacl
Points to a pointer to an ACL structure. If a system ACL exists, the function sets the pointer
pointed to by pSacl to the address of the security descriptor's system ACL. If a system ACL
does not exist, no value is stored.
If the function stores a NULL value in the pointer pointed to by pSacl, the security descriptor
has a NULL system ACL.

lpbSaclDefaulted
Points to a flag set to the value of the SE_SACL_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure if a system ACL exists for the security
descriptor.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, GetSecurityDescriptorControl, GetSecurityDescriptorDacl,
GetSecurityDescriptorGroup, GetSecurityDescriptorLength, GetSecurityDescriptorOwner,
InitializeSecurityDescriptor, IsValidSecurityDescriptor, SECURITY_DESCRIPTOR,
SECURITY_DESCRIPTOR_CONTROL, SetSecurityDescriptorSacl

GetSecurityInfo
[New - Windows NT]

The GetSecurityInfo function retrieves a copy of the security descriptor for an object specified by
a handle.

DWORD GetSecurityInfo(
HANDLE handle, // handle to the object
SE_OBJECT_TYPE ObjectType, // type of object
SECURITY_INFORMATION SecurityInfo, // type of security information to retrieve
PSID *ppsidOwner, // receives a pointer to the owner SID
PSID *ppsidGroup, // receives a pointer to the primary group SID
PACL *ppDacl, // receives a pointer to the DACL
PACL *ppSacl, // receives a pointer to the SACL
PSECURITY_DESCRIPTOR *ppSecurityDescriptor // receives a pointer to the security descriptor

);Parametershandle
A handle to the object from which to retrieve security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object
named by the pObjectName parameter.

SecurityInfo
A set of SECURITY_INFORMATION bit flags that indicate the type of security information to
retrieve. This parameter can be a combination of the following values.

Value Meaning
OWNER_SECURITY_INFORMATIONIf this flag is set, the

ppsidOwner parameter
receives the security
identifier (SID) of the object's
owner.

GROUP_SECURITY_INFORMATIONIf this flag is set, the
ppsidGroup parameter
receives the SID of the
object's primary group.

DACL_SECURITY_INFORMATION If this flag is set, the ppDacl
parameter receives the
object's discretionary
access-control list (DACL).

SACL_SECURITY_INFORMATION If this flag is set, the ppSacl
parameter receives the
object's system access-
control list (SACL)..

ppsidOwner
Pointer to a variable that receives a pointer to the owner SID in the security descriptor
returned in ppSecurityDescriptor. The returned pointer is valid only if you set the
OWNER_SECURITY_INFORMATION flag. This parameter can be NULL if you do not need
the owner SID.

ppsidGroup
Pointer to a variable that receives a pointer to the primary group SID in the returned security
descriptor. The returned pointer is valid only if you set the
GROUP_SECURITY_INFORMATION flag. This parameter can be NULL if you do not need
the group SID.

ppDacl
Pointer to a variable that receives a pointer to the DACL in the returned security descriptor.
The returned pointer is valid only if you set the DACL_SECURITY_INFORMATION flag. This
parameter can be NULL if you do not need the DACL.

ppSacl

Pointer to a variable that receives a pointer to the SACL in the returned security descriptor.
The returned pointer is valid only if you set the SACL_SECURITY_INFORMATION flag. This
parameter can be NULL if you do not need the SACL.

ppSecurityDescriptor
Pointer to a variable that receives a pointer to the security descriptor of the object. You must
call the LocalFree function to free the returned buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksIf the ppsidOwner, ppsidGroup, ppDacl, ppSacl parameters are non-NULL, and the SecurityInfo
parameter specifies that they be retrieved from the object, those parameters will point to the
corresponding parameters in the security descriptor returned in ppSecurityDescriptor.

To read the object's owner, group and DACL the caller must have READ_CONTROL access or be
the owner of the object. The caller must have the SE_SECURITY_NAME privilege enabled to
read the S ACL.See AlsoACL, GetNamedSecurityInfo, LocalFree, SE_OBJECT_TYPE, SECURITY_DESCRIPTOR,
SECURITY_INFORMATION, SetNamedSecurityInfo, SetSecurityInfo, SID

GetServiceDisplayName
The GetServiceDisplayName function obtains the display name that is associated with a
particular service name. The service name is the same as the service's registry key name.

BOOL GetServiceDisplayName(
SC_HANDLE hSCManager, // handle to a service control manager database
LPCTSTR lpServiceName, // the service name
LPTSTR lpDisplayName, // buffer to receive the service's display name
LPDWORD lpcchBuffer // size of display name buffer and display name

);ParametershSCManager
Handle to a machine's service control manager database. This parameter is an RPC server
handle as returned by the OpenSCManager function.

lpServiceName
Points to a null-terminated service name string. This name is the same as the service's
registry key name.

lpDisplayName
Points to a buffer into which the function stores the service's display name as a null-
terminated string. If the function fails, this buffer will contain an empty string.

lpcchBuffer
Points to a DWORD that contains the size, in characters, of the buffer pointed to by
lpDisplayName. When the function returns, this DWORD contains the size, in characters, of
the service's display name, excluding the NULL terminator.
If the buffer pointed to by lpDisplayName is too small to contain the display name, the function
stores no data into it. When the function returns, the DWORD pointed to by lpcchBuffer
contains the size in characters of the service's display name, excluding the NULL terminator.

Return ValuesIf the functions succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThere are two names for a service: the service name, which is the actual name of the service's
key in the registry's Services section, and a more user-friendly display name that appears in the
Services Control Panel application and is used with the NET START command. The
GetServiceDisplayName and GetServiceKeyName functions let an application map one of
these names to the other. An application passes a service's registry key name to
GetServiceDisplayName, and obtains the service's user-friendly display name. An application
passes a service's display name to GetServiceKeyName, and obtains the service's registry key
name.See AlsoGetServiceKeyName, OpenSCManager

GetServiceKeyName
The GetServiceKeyName function obtains the service name that is associated with a particular
service's display name. The service name is the same as the service's registry key name.

BOOL GetServiceKeyName(
SC_HANDLE hSCManager, // handle to a service control manager database
LPCTSTR lpDisplayName, // the service's display name
LPTSTR lpServiceName, // buffer to receive the service name
LPDWORD lpcchBuffer // size of service name buffer and service name

);ParametershSCManager
Handle to a computer's service control manager database. This parameter is a remote
procedure call (RPC) server handle as returned by OpenSCManager.

lpDisplayName
Points to a null-terminated service display name string.

lpServiceName
Points to a buffer into which the function stores the service name as a null-terminated string. If
the function fails, this buffer will contain an empty string.

lpcchBuffer
Points to a DWORD that contains the size in characters of the buffer pointed to by the
lpServiceName parameter. When the function returns, this DWORD contains the size, in
characters, of the service name, excluding the NULL terminator.
If the buffer pointed to by lpServiceName is too small to contain the service name, the function
stores no data in it. When the function returns, the DWORD pointed to by lpcchBuffer contains
the size, in characters, of the service name, excluding the NULL terminator.

Return ValuesIf the functions succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThere are two names for a service: the service name, which is the actual name of the service's
key in the registry's Services section, and a more user-friendly display name that appears in the
Services Control Panel application and is used with the NET START command. The
GetServiceDisplayName and GetServiceKeyName functions let an application map one of
these names to the other. An application passes a service's registry key name to
GetServiceDisplayName, and obtains the service's user-friendly display name. An application
passes a service's display name to GetServiceKeyName, and obtains the service's registry key
name.See AlsoGetServiceDisplayName, OpenSCManager

GetShortPathName
The GetShortPathName function obtains the short path form of a specified input path.

DWORD GetShortPathName(
LPCTSTR lpszLongPath, // points to a null-terminated path string
LPTSTR lpszShortPath, // points to a buffer to receive the null-terminated short form of the path
DWORD cchBuffer // specifies the size of the buffer pointed to by lpszShortPath

);ParameterslpszLongPath
Points to a null-terminated path string. The function obtains the short form of this path.

lpszShortPath
Points to a buffer to receive the null-terminated short form of the path specified by
lpszLongPath.

cchBuffer
Specifies the size, in characters, of the buffer pointed to by lpszShortPath.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to
lpszShortPath, not including the terminating null character.

If the function fails due to the lpszShortPath buffer being too small to contain the short path string,
the return value is the size, in characters, of the short path string. You need to call the function
with a short path buffer that is at least as large as the short path string.

If the function fails for any other reason, the return value is zero. To get extended error
information, call GetLastError.RemarksWhen an application calls this function and specifies a path on a volume that does not support 8.
3 aliases, the function fails with ERROR_INVALID_PARAMETER if the path is longer than 67
bytes.

The path specified by lpszLongPath does not have to be a fully qualified path or a long path. The
short form may be longer than the specifed path.

If the specified path is already in its short form, there is no need for any conversion, and the
function simply copies the specified path to the buffer for the short path.

You can set lpszShortPath to the same value as lpszLongPath; in other words, you can set the
buffer for the short path to the address of the input path string.

You can obtain the long name of a file from the short name by calling the FindFirstFile function.See AlsoGetFullPathName, FindFirstFile

GetSidIdentifierAuthority
The GetSidIdentifierAuthority function returns the address of the
SID_IDENTIFIER_AUTHORITY structure in a specified security identifier (SID).

PSID_IDENTIFIER_AUTHORITY GetSidIdentifierAuthority(
PSID pSid // address of SID to query

);ParameterspSid
Points to the SID structure for which the address of the SID_IDENTIFIER_AUTHORITY
structure is returned.

Return ValuesIf the function succeeds, the return value is the address of the SID_IDENTIFIER_AUTHORITY
structure for the specified SID structure.

If the function fails, the return value is undefined. The function fails if the SID structure pointed to
by the pSid parameter is invalid. To get extended error information, call GetLastError.See AlsoGetLengthSid, GetSidLengthRequired, GetSidSubAuthority, GetSidSubAuthorityCount,
IsValidSid, SID, SID_IDENTIFIER_AUTHORITY

GetSidLengthRequired
The GetSidLengthRequired function returns the length, in bytes, of the buffer required to store a
SID structure with a specified number of subauthorities.

DWORD GetSidLengthRequired(
UCHAR nSubAuthorityCount // count of subauthorities

);ParametersnSubAuthorityCount
Specifies the number of subauthorities to be stored in the SID structure.

Return ValuesThe return value is the length, in bytes, of the buffer required to store the SID structure. This
function cannot fail.See AlsoAllocateAndInitializeSid, GetLengthSid, GetSidIdentifierAuthority, GetSidSubAuthority,
GetSidSubAuthorityCount, InitializeSid, IsValidSid, SID

GetSidSubAuthority
The GetSidSubAuthority function returns the address of a specified subauthority in a SID
structure. The subauthority value is a relative identifier (RID). A SID is a security identifier.

PDWORD GetSidSubAuthority(
PSID pSid, // address of security identifier to query
DWORD nSubAuthority // index of subauthority to retrieve

);ParameterspSid
Points to the SID structure from which the address of a subauthority is to be returned.

nSubAuthority
Specifies an index value identifying the subauthority array element whose address the
function will return. The function performs no validation tests on this value. An application can
call the GetSidSubAuthorityCount function to discover the range of acceptable values.

Return ValuesIf the function succeeds, the return value is the address of the specified SID subauthority. To get
extended error information, call GetLastError.

If the function fails, the return value is undefined. The function fails if the specified SID structure is
invalid or if the index value specified by the nSubAuthority parameter is out of bounds.See AlsoGetLengthSid, GetSidIdentifierAuthority, GetSidLengthRequired,
GetSidSubAuthorityCount, IsValidSid, SID

GetSidSubAuthorityCount
The GetSidSubAuthorityCount function returns the address of the field in a SID structure
containing the subauthority count. A SID is a security identifier.

PUCHAR GetSidSubAuthorityCount(
PSID pSid // address of security identifier to query

);ParameterspSid
Points to the SID structure from which a pointer to the subauthority count is returned.

Return ValuesIf the function succeeds, the return value is a pointer to the subauthority count for the specified
SID structure.

If the function fails, the return value is undefined. The function fails if the specified SID structure is
invalid. To get extended error information, call GetLastError.See AlsoGetLengthSid, GetSidIdentifierAuthority, GetSidLengthRequired, GetSidSubAuthority,
IsValidSid, SID

GetStartupInfo
The GetStartupInfo function retrieves the contents of the STARTUPINFO structure that was
specified when the calling process was created.

VOID GetStartupInfo(
LPSTARTUPINFO lpStartupInfo // address of STARTUPINFO structure

);ParameterslpStartupInfo
Points to a STARTUPINFO structure that is filled in by the function.

Return ValuesThis function does not return a value.RemarksThe STARTUPINFO structure was specified by the process that created the calling process. It
can be used to specify properties associated with the main window of the calling process.See AlsoCreateProcess, STARTUPINFO

GetStdHandle
The GetStdHandle function returns a handle for the standard input, standard output, or standard
error device.

HANDLE GetStdHandle(
DWORD nStdHandle // input, output, or error device

);ParametersnStdHandle
Specifies the device for which to return the handle. This parameter can have one of the
following values:

Value Meaning
STD_INPUT_HANDLE Standard input handle
STD_OUTPUT_HANDLE Standard output handle
STD_ERROR_HANDLE Standard error handle

Return ValuesIf the function succeeds, the return value is a handle of the specified device.

If the function fails, the return value is the INVALID_HANDLE_VALUE flag. To get extended error
information, call GetLastError.RemarksHandles returned by GetStdHandle can be used by applications that need to read from or write to
the console. When a console is created, the standard input handle is a handle of the console's
input buffer, and the standard output and standard error handles are handles of the console's
active screen buffer. These handles can be used by the ReadFile and WriteFile functions, or by
any of the console functions that access the console input buffer or a screen buffer (for example,
the ReadConsoleInput, WriteConsole, or GetConsoleScreenBufferInfo functions).

All handles returned by this function have GENERIC_READ and GENERIC_WRITE access
unless the SetStdHandle function has been used to set a standard handle to be some handle
with a lesser access.

The standard handles of a process may be redirected by a call to SetStdHandle, in which case
GetStdHandle returns the redirected handle. If the standard handles have been redirected, you
can specify the CONIN$ value in a call to the CreateFile function to get a handle of a console's
input buffer. Similarly, you can specify the CONOUT$ value to get a handle of a console's active
screen buffer.See AlsoCreateFile, GetConsoleScreenBufferInfo, ReadConsoleInput, ReadFile, SetStdHandle,
WriteConsole, WriteFile

GetStockObject
The GetStockObject function retrieves a handle to one of the predefined stock pens, brushes,
fonts, or palettes.

HGDIOBJ GetStockObject(
int fnObject // type of stock object

);ParametersfnObject
Specifies the type of stock object. This parameter can be any one of the following values:

Value Meaning
BLACK_BRUSH Black brush.
DKGRAY_BRUSH Dark gray brush.
GRAY_BRUSH Gray brush.
HOLLOW_BRUSH Hollow brush (equivalent to

NULL_BRUSH).
LTGRAY_BRUSH Light gray brush.
NULL_BRUSH Null brush (equivalent to

HOLLOW_BRUSH).
WHITE_BRUSH White brush.
BLACK_PEN Black pen.
NULL_PEN Null pen.
WHITE_PEN White pen.
ANSI_FIXED_FONT Windows fixed-pitch (monospace)

system font.
ANSI_VAR_FONT Windows variable-pitch (proportional

space) system font.
DEVICE_DEFAULT_FONT Windows NT only: Device-dependent

font.
DEFAULT_GUI_FONT Windows 95 only: Default font for user

interface objects such as menus and
dialog boxes.

OEM_FIXED_FONT Original equipment manufacturer (OEM)
dependent fixed-pitch (monospace) font.

SYSTEM_FONT System font. By default, Windows uses
the system font to draw menus, dialog
box controls, and text. In Windows
versions 3.0 and later, the system font is
a proportionally spaced font; earlier
versions of Windows used a monospace
system font.

SYSTEM_FIXED_FONT Fixed-pitch (monospace) system font
used in Windows versions earlier than
3.0. This stock object is provided for
compatibility with earlier versions of
Windows.

DEFAULT_PALETTE Default palette. This palette consists of
the static colors in the system palette.

Return ValuesIf the function succeeds, the return value identifies the logical object requested.

If the function fails, the return value is NULL.RemarksUse the DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH stock objects only in windows
with the CS_HREDRAW and CS_VREDRAW styles. Using a gray stock brush in any other style
of window can lead to misalignment of brush patterns after a window is moved or sized. The
origins of stock brushes cannot be adjusted.

The HOLLOW_BRUSH and NULL_BRUSH stock objects are equivalent.

The font used by the DEFAULT_GUI_FONT stock object could change. Use this stock object
when you want to use the font that menus, dialog boxes, and other user interface objects use.

It is not necessary (but it is not harmful) to delete stock objects by calling DeleteObject.See AlsoDeleteObject, SelectObject

GetStretchBltMode
The GetStretchBltMode function retrieves the current stretching mode. The stretching mode
defines how color data is added to or removed from bitmaps that are stretched or compressed
when the StretchBlt function is called.

int GetStretchBltMode(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the current stretching mode.

If the function fails, the return value is zero.See AlsoSetStretchBltMode, StretchBlt

GetStringTypeA
The GetStringTypeA function returns character-type information for the characters in the
specified source string. For each character in the string, the function sets one or more bits in the
corresponding 16-bit element of the output array. Each bit identifies a given character type, such
as whether the character is a letter, a digit, or neither.

BOOL GetStringTypeA(
LCID Locale, // locale identifer
DWORD dwInfoType, // information-type options
LPCSTR lpSrcStr, // pointer to the source string
int cchSrc, // size, in bytes, of the source string
LPWORD lpCharType // pointer to the buffer for output

);ParametersLocale
Specifies the locale identifier. This value uniquely defines the ANSI code page to use to
translate the string pointed to by lpSrcStr from ANSI to Unicode. The function then analyzes
each Unicode character for character type information.
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale
LOCALE_USER_DEFAULT Default user locale

Note that the Locale parameter does not exist in the GetStringTypeW function. Because of
that parameter difference, an application cannot automatically invoke the proper A or W
version of GetStringType* through the use of the #define UNICODE switch. An application
can circumvent this limitation by using GetStringTypeEx, which is the recommended Win32
function.

dwInfoType
Specifies the type of character information the user wants to retrieve. The various types are
divided into different levels (see the following Remarks section for a list of the information
included in each type). This parameter can specify one of the following character type flags:

CT_CTYPE1 Retrieve character type information.
CT_CTYPE2 Retrieve bidirectional layout information.
CT_CTYPE3 Retrieve text processing information.

lpSrcStr
Points to the string for which character types are requested. If cchSrc is - 1, the string is
assumed to be null terminated. This must be an ANSI string. Note that this can be a double-
byte character set (DBCS) string if the locale is appropriate for DBCS.

cchSrc
Specifies the size, in bytes, of the string pointed to by the lpSrcStr parameter. If this count
includes a null terminator, the function returns character type information for the null
terminator. If this value is - 1, the string is assumed to be null terminated and the length is
calculated automatically.

lpCharType
Points to an array of 16-bit values. The length of this array must be large enough to receive
one 16-bit value for each character in the source string. When the function returns, this array
contains one word corresponding to each character in the source string.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksThe lpSrcStr and lpCharType pointers must not be the same. If they are the same, the function
fails and GetLastError returns ERROR_INVALID_PARAMETER.

The Locale parameter is only used to perform string conversion to Unicode. It has nothing to do
with the CTYPEs the function returns. The CTYPEs are solely determined by Unicode code
points, and do not vary on a locale basis. For example, Greek letters are C1_ALPHA for any
Locale value.

The character-type bits are divided into several levels. The information for one level can be
retrieved by a single call to this function. Each level is limited to 16 bits of information so that the
other mapping routines, which are limited to 16 bits of representation per character, can also
return character-type information.

The character types supported by this function include the following.

Ctype 1
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A
combination of these values is returned in the array pointed to by the lpCharType parameter
when the dwInfoType parameter is set to CT_CTYPE1.

Name Value Meaning
C1_UPPER 0x0001 Uppercase
C1_LOWER 0x0002 Lowercase
C1_DIGIT 0x0004 Decimal digits
C1_SPACE 0x0008 Space characters
C1_PUNCT 0x0010 Punctuation
C1_CNTRL 0x0020 Control characters
C1_BLANK 0x0040 Blank characters
C1_XDIGIT 0x0080 Hexadecimal digits
C1_ALPHA 0x0100 Any linguistic character: alphabetic,

syllabary, or ideographic

The following character types are either constant or computable from basic types and do
not need to be supported by this function.

Type Description

Alphanumeric Alphabetic characters and digits (C1_ALPHA and
C1_DIGIT)

Printable Graphic characters and blanks (all C1_* types except
C1_CNTRL)

Ctype 2
These types support proper layout of Unicode text. The direction attributes are assigned so
that the bidirectional layout algorithm standardized by Unicode produces accurate results.
These types are mutually exclusive. For more information about the use of these attributes,
see The Unicode Standard: Worldwide Character Encoding, Volumes 1 and 2, Addison
Wesley Publishing Company: 1991, 1992, ISBN 0201567881.

Name Value Meaning
Strong:
C2_LEFTTORIGHT 0x1 Left to right
C2_RIGHTTOLEFT 0x2 Right to left
Weak:
C2_EUROPENUMBER 0x3 European number, European

digit
C2_EUROPESEPARATOR 0x4 European numeric separator
C2_EUROPETERMINATOR0x5 European numeric terminator
C2_ARABICNUMBER 0x6 Arabic number
C2_COMMONSEPARATOR0x7 Common numeric separator
Neutral:
C2_BLOCKSEPARATOR 0x8 Block separator
C2_SEGMENTSEPARATOR0x9 Segment separator
C2_WHITESPACE 0xA White space
C2_OTHERNEUTRAL 0xB Other neutrals
Not applicable:
C2_NOTAPPLICABLE 0x0 No implicit directionality (for

example, control codes)

Ctype 3
These types are intended to be placeholders for extensions to the POSIX types required for
general text processing or for the standard C library functions. These types are supported in
the current version of Windows NT. A combination of these values is returned when
dwInfoType is set to CT_CTYPE3.

Name Value Meaning
C3_NONSPACING 0x1 Nonspacing mark
C3_DIACRITIC 0x2 Diacritic nonspacing mark
C3_VOWELMARK 0x4 Vowel nonspacing mark
C3_SYMBOL 0x8 Symbol
C3_KATAKANA 0x10 Katakana character
C3_HIRAGANA 0x20 Hiragana character
C3_HALFWIDTH 0x40 Half-width character
C3_FULLWIDTH 0x80 Full-width character
C3_IDEOGRAPH 0x100 Ideographic character
C3_KASHIDA 0x200 Arabic Kashida character
C3_ALPHA 0x8000 All linguistic characters (alphabetic,

syllabary, and ideographic)
Not applicable:
C3_NOTAPPLICABLE 0x0 Not applicable

See AlsoGetLocaleInfo, GetStringTypeEx, GetStringTypeW

GetStringTypeEx
The GetStringTypeEx function returns character-type information for the characters in the
specified source string. For each character in the string, the function sets one or more bits in the
corresponding 16-bit element of the output array. Each bit identifies a given character type, such
as whether the character is a letter, a digit, or neither.

Unlike its close relatives GetStringTypeA and GetStringTypeW, GetStringTypeEx exhibits
appropriate A or W behavior through the use of the #define UNICODE switch. It is the
recommended Win32 function.

BOOL GetStringTypeEx(
LCID Locale, // locale identifer
DWORD dwInfoType, // information-type options
LPCTSTR lpSrcStr, // address of source string
int cchSrc, // size, in bytes or characters, of source string
LPWORD lpCharType // address of buffer for output

);ParametersLocale
Specifies the locale identifier. This value uniquely defines the ANSI code page to use to
translate the string pointed to by lpSrcStr from ANSI to Unicode. The function then analyzes
each Unicode character for character type information. Note that the W version of this function
ignores this parameter.
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale
LOCALE_USER_DEFAULT Default user locale

dwInfoType
Specifies the type of character information the user wants to retrieve. The various types are
divided into different levels (see the following Remarks section for a list of the information
included in each type). This parameter can specify one of the following character type flags:

CT_CTYPE1 Retrieve character type information.
CT_CTYPE2 Retrieve bidirectional layout information.
CT_CTYPE3 Retrieve text processing information.

lpSrcStr
Points to the string for which character types are requested. If cchSrc is - 1, the string is
assumed to be null terminated. This must be a Unicode string for the W version of this
function, and an ANSI string for the A version. Note that for the A version, this can be a
double-byte character set (DBCS) string if the locale is appropriate for DBCS.

cchSrc
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the string
pointed to by the lpSrcStr parameter. If this count includes a null terminator, the function
returns character type information for the null terminator. If this value is - 1, the string is
assumed to be null terminated and the length is calculated automatically.

lpCharType
Points to an array of 16-bit values. The length of this array must be large enough to receive
one 16-bit value for each character in the source string. When the function returns, this array
contains one word corresponding to each character in the source string.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksThe GetStringTypeEx function exists to circumvent a limitation caused by the difference in
parameters of GetStringTypeA and GetStringTypeW. That parameter difference prevents an
application from automatically invoking the proper A or W version of GetStringType* through the
use of the #define UNICODE switch. GetStringTypeEx, on the other hand, behaves properly as
regards that switch. Thus, it is the recommended Win32 function.

The Locale parameter is only used to perform string conversion to Unicode. It has nothing to do
with the CTYPEs the function returns. The CTYPEs are solely determined by Unicode code
points, and do not vary on a locale basis. For example, Greek letters are C1_ALPHA for any
Locale value.

The lpSrcStr and lpCharType pointers must not be the same. If they are the same, the function
fails and GetLastError returns ERROR_INVALID_PARAMETER.

The character-type bits are divided into several levels. The information for one level can be
retrieved by a single call to this function. Each level is limited to 16 bits of information so that the
other mapping routines, which are limited to 16 bits of representation per character, can also
return character-type information.

The character types supported by this function include the following.

Ctype 1
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A
combination of these values is returned in the array pointed to by the lpCharType parameter
when the dwInfoType parameter is set to CT_CTYPE1.

Name Value Meaning
C1_UPPER 0x0001 Uppercase
C1_LOWER 0x0002 Lowercase
C1_DIGIT 0x0004 Decimal digits
C1_SPACE 0x0008 Space characters
C1_PUNCT 0x0010 Punctuation
C1_CNTRL 0x0020 Control characters
C1_BLANK 0x0040 Blank characters
C1_XDIGIT 0x0080 Hexadecimal digits
C1_ALPHA 0x0100 Any linguistic character: alphabetic,

syllabary, or ideographic

The following character types are either constant or computable from basic types and do
not need to be supported by this function.

Type Description

Alphanumeric Alphabetic characters and digits (C1_ALPHA and
C1_DIGIT)

Printable Graphic characters and blank (all C1_* types except
C1_CNTRL)

Ctype 2
These types support proper layout of Unicode text. The direction attributes are assigned so
that the bidirectional layout algorithm standardized by Unicode produces accurate results.
These types are mutually exclusive. For more information about the use of these attributes,
see The Unicode Standard: Worldwide Character Encoding, Volumes 1 and 2, Addison
Wesley Publishing Company: 1991, 1992, ISBN 0201567881.

Name Value Meaning
Strong:
C2_LEFTTORIGHT 0x1 Left to right
C2_RIGHTTOLEFT 0x2 Right to left
Weak:
C2_EUROPENUMBER 0x3 European number, European

digit
C2_EUROPESEPARATOR 0x4 European numeric separator
C2_EUROPETERMINATOR0x5 European numeric terminator
C2_ARABICNUMBER 0x6 Arabic number
C2_COMMONSEPARATOR0x7 Common numeric separator
Neutral:
C2_BLOCKSEPARATOR 0x8 Block separator

C2_SEGMENTSEPARATOR0x9 Segment separator
C2_WHITESPACE 0xA White space
C2_OTHERNEUTRAL 0xB Other neutrals
Not applicable:
C2_NOTAPPLICABLE 0x0 No implicit directionality (for

example, control codes)

Ctype 3
These types are intended to be placeholders for extensions to the POSIX types required for
general text processing or for the standard C library functions. These types are supported in
the current version of Windows NT. A combination of these values is returned when
dwInfoType is set to CT_CTYPE3.

Name Value Meaning
C3_NONSPACING 0x1 Nonspacing mark
C3_DIACRITIC 0x2 Diacritic nonspacing mark
C3_VOWELMARK 0x4 Vowel nonspacing mark
C3_SYMBOL 0x8 Symbol
C3_KATAKANA 0x10 Katakana character
C3_HIRAGANA 0x20 Hiragana character
C3_HALFWIDTH 0x40 Half-width character
C3_FULLWIDTH 0x80 Full-width character
C3_IDEOGRAPH 0x100 Ideographic character
C3_KASHIDA 0x200 Arabic Kashida character
C3_ALPHA 0x8000 All linguistic characters

(alphabetic, syllabary, and
ideographic)

Not applicable:
C3_NOTAPPLICABLE 0x0 Not applicable

See AlsoGetLocaleInfo, GetStringTypeA, GetStringTypeW

GetStringTypeW
The GetStringTypeW function returns character-type information for the characters in the
specified source string. For each character in the string, the function sets one or more bits in the
corresponding 16-bit element of the output array. Each bit identifies a given character type, such
as whether the character is a letter, a digit, or neither.

BOOL GetStringTypeW(
DWORD dwInfoType, // information-type options
LPCWSTR lpSrcStr, // address of source string
int cchSrc, // number of characters in string
LPWORD lpCharType // address of buffer for output

);ParametersdwInfoType
Specifies the type of character information the user wants to retrieve. The various types are
divided into different levels (see the following Remarks section for a list of the information
included in each type). This parameter can specify one of the following character type flags:

CT_CTYPE1 Retrieve character type information.
CT_CTYPE2 Retrieve bidirectional layout information.
CT_CTYPE3 Retrieve text processing information.

lpSrcStr
Points to the string for which character types are requested. If cchSrc is - 1, the string is
assumed to be null terminated. This must be a Unicode string.

cchSrc
Specifies the size, in characters, of the string pointed to by the lpSrcStr parameter. If this
count includes a null terminator, the function returns character type information for the null
terminator. If this value is - 1, the string is assumed to be null terminated and the length is
calculated automatically.

lpCharType
Points to an array of 16-bit values. The length of this array must be large enough to receive
one 16-bit value for the number of characters specified in the cchSrc parameter. When the
function returns, this array contains one word corresponding to each Unicode character in the
source string.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksNote that the GetStringTypeA function has one more parameter than the GetStringTypeW
function: GetStringTypeA has a first parameter that is an LCID named Locale. This parameter
does not exist in the GetStringTypeW function. Because of that parameter difference, an
application cannot automatically invoke the proper A or W version of GetStringType* through the
use of the #define UNICODE switch. An application can circumvent this limitation by using
GetStringTypeEx; it is the recommended Win32 function.

The lpSrcStr and lpCharType pointers must not be the same. If they are the same, the function
fails and GetLastError returns ERROR_INVALID_PARAMETER.

The character-type bits are divided into several levels. The information for one level can be
retrieved by a single call to this function. Each level is limited to 16 bits of information so that the
other mapping routines, which are limited to 16 bits of representation per character, can also
return character-type information.

The character types supported by this function include the following.

Ctype 1
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A
combination of these values is returned in the array pointed to by the lpCharType parameter
when the dwInfoType parameter is set to CT_CTYPE1.

Name Value Meaning
C1_UPPER 0x0001 Uppercase

C1_LOWER 0x0002 Lowercase
C1_DIGIT 0x0004 Decimal digits
C1_SPACE 0x0008 Space characters
C1_PUNCT 0x0010 Punctuation
C1_CNTRL 0x0020 Control characters
C1_BLANK 0x0040 Blank characters
C1_XDIGIT 0x0080 Hexadecimal digits
C1_ALPHA 0x0100 Any linguistic character: alphabetic,

syllabary, or ideographic

The following character types are either constant or computable from basic types and do
not need to be supported by this function.

Type Description

Alphanumeric Alphabetic characters and digits (C1_ALPHA and
C1_DIGIT)

Printable Graphic characters and blanks (all C1_* types except
C1_CNTRL)

Ctype 2
These types support proper layout of Unicode text. The direction attributes are assigned so
that the bidirectional layout algorithm standardized by Unicode produces accurate results.
These types are mutually exclusive. For more information about the use of these attributes,
see The Unicode Standard: Worldwide Character Encoding, Volumes 1 and 2, Addison
Wesley Publishing Company: 1991, 1992, ISBN 0201567881.

Name Value Meaning
Strong:
C2_LEFTTORIGHT 0x1 Left to right
C2_RIGHTTOLEFT 0x2 Right to left
Weak:
C2_EUROPENUMBER 0x3 European number, European

digit
C2_EUROPESEPARATOR 0x4 European numeric separator
C2_EUROPETERMINATOR0x5 European numeric terminator
C2_ARABICNUMBER 0x6 Arabic number
C2_COMMONSEPARATOR0x7 Common numeric separator
Neutral:
C2_BLOCKSEPARATOR 0x8 Block separator
C2_SEGMENTSEPARATOR0x9 Segment separator
C2_WHITESPACE 0xA White space
C2_OTHERNEUTRAL 0xB Other neutrals
Not applicable:
C2_NOTAPPLICABLE 0x0 No implicit directionality (for

example, control codes)

Ctype 3
These types are intended to be placeholders for extensions to the POSIX types required for
general text processing or for the standard C library functions. These types are supported in
the current version of Windows NT. A combination of these values is returned when
dwInfoType is set to CT_CTYPE3.

Name Value Meaning
C3_NONSPACING 0x1 Nonspacing mark
C3_DIACRITIC 0x2 Diacritic nonspacing mark
C3_VOWELMARK 0x4 Vowel nonspacing mark
C3_SYMBOL 0x8 Symbol
C3_KATAKANA 0x10 Katakana character

C3_HIRAGANA 0x20 Hiragana character
C3_HALFWIDTH 0x40 Half-width character
C3_FULLWIDTH 0x80 Full-width character
C3_IDEOGRAPH 0x100 Ideographic character
C3_KASHIDA 0x200 Arabic Kashida character
C3_ALPHA 0x8000 All linguistic characters (alphabetic,

syllabary, and ideographic)
Not applicable:
C3_NOTAPPLICABLE 0x0 Not applicable

See AlsoGetLocaleInfo, GetStringTypeA, GetStringTypeEx

GetSubMenu
The GetSubMenu function retrieves the handle of the drop-down menu or submenu activated by
the specified menu item.

HMENU GetSubMenu(
HMENU hMenu, // handle of menu
int nPos // menu item position

);ParametershMenu
Identifies the menu.

nPos
Specifies the zero-based relative position in the given menu of an item that activates a drop-
down menu or submenu.

Return ValuesIf the function succeeds, the return value is the handle of the drop-down menu or submenu
activated by the menu item. If the menu item does not activate a drop-down menu or submenu,
the return value is NULL.See AlsoCreatePopupMenu, GetMenu

GetSysColor
The GetSysColor function retrieves the current color of the specified display element. Display
elements are the parts of a window and the Windows display that appear on the system display
screen.

DWORD GetSysColor(
int nIndex // display element

);ParametersnIndex
Specifies the display element whose color is to be retrieved. This parameter must be one of
the following values:

Value Meaning
COLOR_3DDKSHADOW Dark shadow for three-

dimensional display elements.
COLOR_3DFACE,
COLOR_BTNFACE

Face color for three-
dimensional display elements.

COLOR_3DHILIGHT,
COLOR_3DHIGHLIGHT,
COLOR_BTNHILIGHT,
COLOR_BTNHIGHLIGHT

Highlight color for three-
dimensional display elements
(for edges facing the light
source.)

COLOR_3DLIGHT Light color for three-
dimensional display elements
(for edges facing the light
source.)

COLOR_3DSHADOW,
COLOR_BTNSHADOW

Shadow color for three-
dimensional display elements
(for edges facing away from the
light source).

COLOR_ACTIVEBORDER Active window border.
COLOR_ACTIVECAPTION Active window caption.
COLOR_APPWORKSPACE Background color of multiple

document interface (MDI)
applications.

COLOR_BACKGROUND,
COLOR_DESKTOP

Desktop.

COLOR_BTNTEXT Text on push buttons.
COLOR_CAPTIONTEXT Text in caption, size box, and

scroll bar arrow box.
COLOR_GRAYTEXT Grayed (disabled) text. This

color is set to 0 if the current
display driver does not support
a solid gray color.

COLOR_HIGHLIGHT Item(s) selected in a control.
COLOR_HIGHLIGHTTEXT Text of item(s) selected in a

control.
COLOR_INACTIVEBORDER Inactive window border.
COLOR_INACTIVECAPTION Inactive window caption.
COLOR_INACTIVECAPTIONTEXTColor of text in an inactive

caption.
COLOR_INFOBK Background color for tooltip

controls.
COLOR_INFOTEXT Text color for tooltip controls.
COLOR_MENU Menu background.
COLOR_MENUTEXT Text in menus.
COLOR_SCROLLBAR Scroll bar gray area.
COLOR_WINDOW Window background.

COLOR_WINDOWFRAME Window frame.
COLOR_WINDOWTEXT Text in windows.

Return ValuesIf the function succeeds, the return value is the red, green, blue (RGB) color value that specifies
the color of the given element.RemarksSystem colors for monochrome displays are usually interpreted as shades of gray.See AlsoSetSysColors

GetSysColorBrush
The GetSysColorBrush function retrieves a handle identifying a logical brush that corresponds to
the specified color index.

HBRUSH GetSysColorBrush(
int nIndex // system color index

);ParametersnIndex
Specifies a color index. This value corresponds to the color used to paint one of the 21
window elements.

Return ValuesIf the function succeeds, the return value identifies a logical brush. To get extended error
information, call GetLastError.RemarksA brush is a bitmap that Windows uses to paint the interiors of filled shapes. An application can
retrieve the current system colors by calling the GetSysColor function. An application can set the
current system colors by calling the SetSysColors function.

An application must not register a window class for a window using a system brush.See AlsoGetSysColor, SetSysColors

GetSysModalWindow
The GetSysModalWindow function is obsolete. This function is provided only for compatibility
with 16-bit versions of Windows.

GetSystemDefaultLangID
The GetSystemDefaultLangID function retrieves the system default language identifier.

LANGID GetSystemDefaultLangID(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the system default language identifier.RemarksFor more information about language identifiers, see Language Identifiers and Locales.See AlsoGetUserDefaultLangID, MAKELANGID

GetSystemDefaultLCID
The GetSystemDefaultLCID function retrieves the system default locale identifier.

LCID GetSystemDefaultLCID(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the system default locale identifier.RemarksFor more information about locale identifiers, see Locale Identifiers.See AlsoGetLocaleInfo, GetUserDefaultLCID, MAKELCID

GetSystemDirectory
The GetSystemDirectory function retrieves the path of the Windows system directory. The
system directory contains such files as Windows libraries, drivers, and font files.

UINT GetSystemDirectory(
LPTSTR lpBuffer, // address of buffer for system directory
UINT uSize // size of directory buffer

);ParameterslpBuffer
Points to the buffer to receive the null-terminated string containing the path. This path does
not end with a backslash unless the system directory is the root directory. For example, if the
system directory is named WINDOWS\SYSTEM on drive C, the path of the system directory
retrieved by this function is C:\WINDOWS\SYSTEM.

uSize
Specifies the maximum size of the buffer, in characters. This value should be set to at least
MAX_PATH.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to the
buffer, not including the terminating null character. If the length is greater than the size of the
buffer, the return value is the size of the buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksApplications should not create files in the system directory. If the user is running a shared version
of Windows, the application does not have write access to the system directory. Applications
should create files only in the directory returned by the GetWindowsDirectory function.See AlsoGetCurrentDirectory, GetWindowsDirectory, SetCurrentDirectory

GetSystemInfo
The GetSystemInfo function returns information about the current system.

VOID GetSystemInfo(
LPSYSTEM_INFO lpSystemInfo // address of system information structure

);ParameterslpSystemInfo
Points to a SYSTEM_INFO structure to be filled in by this function.

Return ValuesThis function does not return a value.See AlsoSYSTEM_INFO

GetSystemMenu
The GetSystemMenu function allows the application to access the window menu (also known as
the System menu or the Control menu) for copying and modifying.

HMENU GetSystemMenu(
HWND hWnd, // handle of window to own window menu
BOOL bRevert // reset flag

);ParametershWnd
Identifies the window that will own a copy of the window menu.

bRevert
Specifies the action to be taken. If this parameter is FALSE, GetSystemMenu returns the
handle of the copy of the window menu currently in use. The copy is initially identical to the
window menu, but it can be modified.
If this parameter is TRUE, GetSystemMenu resets the window menu back to the Windows
default state. The previous window menu, if any, is destroyed.

Return ValuesIf the bRevert parameter is FALSE, the return value is the handle of a copy of the window menu.
If the bRevert parameter is TRUE, the return value is NULL.RemarksAny window that does not use the GetSystemMenu function to make its own copy of the window
menu receives the standard window menu.

The window menu initially contains items with various identifier values, such as SC_CLOSE,
SC_MOVE, and SC_SIZE.

Menu items on the window menu send WM_SYSCOMMAND messages.

All predefined window menu items have identifier numbers greater than 0xF000. If an application
adds commands to the window menu, it should use identifier numbers less than 0xF000.

Windows automatically grays items on the standard window menu, depending on the situation.
The application can perform its own checking or graying by responding to the WM_INITMENU
message that is sent before any menu is displayed.See AlsoGetMenu, WM_INITMENU, WM_SYSCOMMAND

GetSystemMetrics
The GetSystemMetrics function retrieves various system metrics and system configuration
settings.

System metrics are the dimensions (widths and heights) of Windows display elements. All
dimensions retrieved by GetSystemMetrics are in pixels.

int GetSystemMetrics(
int nIndex // system metric or configuration setting to retrieve

);ParametersnIndex
Specifies the system metric or configuration setting to retrieve. All SM_CX* values are widths.
All SM_CY* values are heights. The following values are defined:

Value Meaning
SM_ARRANGE Flags specifying how the system

arranged minimized windows. For
more information about minimized
windows, see the following Remarks
section.

SM_CLEANBOOT Value that specifies how the system
was started:

0 Normal boot
1 Fail-safe boot
2 Fail-safe with network boot
Fail-safe boot (also called
SafeBoot) bypasses the user's
startup files.

SM_CMOUSEBUTTONS Number of buttons on mouse, or zero
if no mouse is installed.

SM_CXBORDER,
SM_CYBORDER

The width and height, in pixels, of a
window border. This is equivalent to
the SM_CXEDGE value for windows
with the 3-D look.

SM_CXCURSOR,
SM_CYCURSOR

Width and height, in pixels, of a
cursor. These are the cursor
dimensions supported by the current
display driver. The system cannot
create cursors of other sizes.

SM_CXDLGFRAME,
SM_CYDLGFRAME

Same as SM_CXFIXEDFRAME and
SM_CYFIXEDFRAME.

SM_CXDOUBLECLK,
SM_CYDOUBLECLK

Width and height, in pixels, of the
rectangle around the location of a
first click in a double-click sequence.
The second click must occur within
this rectangle for the system to
consider the two clicks a double-
click. (The two clicks must also occur
within a specified time.)

SM_CXDRAG,
SM_CYDRAG

Width and height, in pixels, of a
rectangle centered on a drag point to
allow for limited movement of the
mouse pointer before a drag
operation begins. This allows the
user to click and release the mouse
button easily without unintentionally
starting a drag operation.

SM_CXEDGE,
SM_CYEDGE

Dimensions, in pixels, of a 3-D
border. These are the 3-D
counterparts of SM_CXBORDER and

SM_CYBORDER.
SM_CXFIXEDFRAME,
SM_CYFIXEDFRAME

Thickness, in pixels, of the frame
around the perimeter of a window
that has a caption but is not sizable.
SM_CXFIXEDFRAME is the width of
the horizontal border and
SM_CYFIXEDFRAME is the height
of the vertical border.
Same as SM_CXDLGFRAME and
SM_CYDLGFRAME.

SM_CXFRAME,
SM_CYFRAME

Same as SM_CXSIZEFRAME and
SM_CYSIZEFRAME.

SM_CXFULLSCREEN,
SM_CYFULLSCREEN

Width and height of the client area
for a full-screen window. To get the
coordinates of the portion of the
screen not obscured by the tray, call
the SystemParametersInfo function
with the SPI_GETWORKAREA
value.

SM_CXHSCROLL,
SM_CYHSCROLL

Width, in pixels, of the arrow bitmap
on a horizontal scroll bar; and height,
in pixels, of a horizontal scroll bar.

SM_CXHTHUMB Width, in pixels, of the thumb box in
a horizontal scroll bar.

SM_CXICON,
SM_CYICON

The default width and height, in
pixels, of an icon. These values are
typically 32x32, but can vary
depending on the installed display
hardware.
The LoadIcon function can only load
icons of these dimensions.

SM_CXICONSPACING,
SM_CYICONSPACING

Dimensions, in pixels, of a grid cell
for items in large icon view. Each
item fits into a rectangle of this size
when arranged. These values are
always greater than or equal to
SM_CXICON and SM_CYICON.

SM_CXMAXIMIZED,
SM_CYMAXIMIZED

Default dimensions, in pixels, of a
maximized top-level window.

SM_CXMAXTRACK,
SM_CYMAXTRACK

Default maximum dimensions, in
pixels, of a window that has a caption
and sizing borders. The user cannot
drag the window frame to a size
larger than these dimensions. A
window can override these values by
processing the
WM_GETMINMAXINFO message.

SM_CXMENUCHECK,
SM_CYMENUCHECK

Dimensions, in pixels, of the default
menu check-mark bitmap.

SM_CXMENUSIZE,
SM_CYMENUSIZE

Dimensions, in pixels, of menu bar
buttons, such as multiple document
(MIDI) child close.

SM_CXMIN,
SM_CYMIN

Minimum width and height, in pixels,
of a window.

SM_CXMINIMIZED,
SM_CYMINIMIZED

Dimensions, in pixels, of a normal
minimized window.

SM_CXMINSPACING
SM_CYMINSPACING

Dimensions, in pixels, of a grid cell
for minimized windows. Each
minimized window fits into a
rectangle this size when arranged.
These values are always greater

than or equal to SM_CXMINIMIZED
and SM_CYMINIMIZED.

SM_CXMINTRACK,
SM_CYMINTRACK

Minimum tracking width and height,
in pixels, of a window. The user
cannot drag the window frame to a
size smaller than these dimensions.
A window can override these values
by processing the
WM_GETMINMAXINFO message.

SM_CXSCREEN,
SM_CYSCREEN

Width and height, in pixels, of the
screen.

SM_CXSIZE,
SM_CYSIZE

Width and height, in pixels, of a
button in a window's caption or title
bar.

SM_CXSIZEFRAME,
SM_CYSIZEFRAME

Thickness, in pixels, of the sizing
border around the perimeter of a
window that can be resized.
SM_CXSIZEFRAME is the width of
the horizontal border and
SM_CYSIZEFRAME is the height of
the vertical border.
Same as SM_CXFRAME and
SM_CYFRAME.

SM_CXSMICON,
SM_CYSMICON

Recommended dimensions, in pixels,
of a small icon. Small icons typically
appear in window captions and in
small icon view.

SM_CXSMSIZE
SM_CYSMSIZE

Dimensions, in pixels, of small
caption buttons.

SM_CXVSCROLL,
SM_CYVSCROLL

Width, in pixels, of a vertical scroll
bar; and height, in pixels, of the
arrow bitmap on a vertical scroll bar.

SM_CYCAPTION Height, in pixels, of normal caption
area.

SM_CYKANJIWINDOW For double-byte character set
versions of Windows, height, in
pixels, of the Kanji window at the
bottom of the screen.

SM_CYMENU Height, in pixels, of single-line menu
bar.

SM_CYSMCAPTION Height, in pixels, of a small caption.
SM_CYVTHUMB Height , in pixels, of the thumb box in

a vertical scroll bar.
SM_DBCSENABLED TRUE or nonzero if the double-byte

character set (DBCS) version of
USER.EXE is installed; FALSE, or
zero otherwise.

SM_DEBUG TRUE or nonzero if the debugging
version of USER.EXE is installed;
FALSE, or zero, otherwise.

SM_MENUDROPALIGNMENT TRUE, or nonzero if drop-down
menus are right-aligned relative to
the corresponding menu-bar item;
FALSE, or zero if they are left-
aligned.

SM_MIDEASTENABLED TRUE if the system is enabled for
Hebrew/Arabic languages.

SM_MOUSEPRESENT TRUE or nonzero if a mouse is
installed; FALSE, or zero, otherwise.

SM_MOUSEWHEELPRESENT Windows NT only: TRUE or

nonzero if a mouse with a wheel is
installed; FALSE, or zero, otherwise.

SM_NETWORK The least significant bit is set if a
network is present; otherwise, it is
cleared. The other bits are reserved
for future use.

SM_PENWINDOWS TRUE or nonzero if the Microsoft
Windows for Pen computing
extensions are installed; zero, or
FALSE, otherwise.

SM_SECURE TRUE if security is present, FALSE
otherwise.

SM_SHOWSOUNDS TRUE or nonzero if the user requires
an application to present information
visually in situations where it would
otherwise present the information
only in audible form; FALSE, or zero,
otherwise.

SM_SLOWMACHINE TRUE if the computer has a low-end
(slow) processor, FALSE otherwise.

SM_SWAPBUTTON TRUE or nonzero if the meanings of
the left and right mouse buttons are
swapped; FALSE, or zero, otherwise.

Return ValuesIf the function succeeds, the return value is the requested system metric or configuration setting.

If the function fails, the return value is zero. GetLastError does not provide extended error
information.RemarksSystem metrics may vary from display to display.

The SM_ARRANGE setting specifies how the system arranges minimized windows, and consists
of a starting position and a direction. The starting position can be one of the following values.

Value Meaning

ARW_BOTTOMLEFT Start at lower-left corner of screen (default
position).

ARW_BOTTOMRIGHT Start at lower-right corner of screen. Equivalent
to ARW_STARTRIGHT.

ARW_HIDE Hide minimized windows by moving them off of
the visible area of the screen.

ARW_TOPLEFT Start at upper-left corner of screen. Equivalent
to ARV_STARTTOP.

ARW_TOPRIGHT Start at upper-right corner of screen. Equivalent
to ARW_STARTTOP | SRW_STARTRIGHT.

The direction in which to arrange can be one of the following values.

Value Meaning

ARW_DOWN Arrange vertically, top to bottom.
ARW_LEFT Arrange horizontally, left to right.
ARW_RIGHT Arrange horizontally, right to left.
ARW_UP Arrange vertically, bottom to top.

GetSystemPaletteEntries
The GetSystemPaletteEntries function retrieves a range of palette entries from the system
palette that is associated with the specified device context.

UINT GetSystemPaletteEntries(
HDC hdc, // handle of device context
UINT iStartIndex, // index of first entry to be retrieved
UINT nEntries, // number of entries to be retrieved
LPPALETTEENTRY lppe // array receiving system-palette entries

);Parametershdc
Identifies the device context.

iStartIndex
Specifies the first entry to be retrieved from the system palette.

nEntries
Specifies the number of entries to be retrieved from the system palette.

lppe
Points to an array of PALETTEENTRY structures to receive the palette entries. The array
must contain at least as many structures as specified by the nEntries parameter. If this
parameter is NULL, the function returns the total number of entries in the palette.

Return ValuesIf the function succeeds, the return value is the number of entries retrieved from the palette.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.See AlsoGetDeviceCaps, GetPaletteEntries, PALETTEENTRY

GetSystemPaletteUse
The GetSystemPaletteUse function retrieves the current state of the system (physical) palette for
the specified device context.

UINT GetSystemPaletteUse(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the current state of the system palette. It can be any of
the following values:

Value Meaning

SYSPAL_NOSTATIC The system palette contains no static colors
except black and white.

SYSPAL_STATIC The system palette contains static colors that
will not change when an application realizes its
logical palette.

SYSPAL_ERROR The given device context is invalid or does not
support a color palette.

To get extended error information, call GetLastError.RemarksBy default, the system palette contains 20 static colors that are not changed when an application
realizes its logical palette. An application can gain access to most of these colors by calling the
SetSystemPaletteUse function.

The device context identified by the hdc parameter must represent a device that supports color
palettes.

An application can determine whether or not a device supports color palettes by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.See AlsoGetDeviceCaps, SetSystemPaletteUse

GetSystemPowerStatus
The GetSystemPowerStatus function retrieves the power status of the system. The status
indicates whether the system is running on AC or DC power, whether the battery is currently
charging, and how much battery life currently remains.

BOOL GetSystemPowerStatus(
LPSYSTEM_POWER_STATUS lpSystemPowerStatus

);ParameterslpSystemPowerStatus
Pointer to a SYSTEM_POWER_STATUS structure that receives status information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoSYSTEM_POWER_STATUS

GetSystemTime
The GetSystemTime function retrieves the current system date and time. The system time is
expressed in Coordinated Universal Time (UTC).

VOID GetSystemTime(
LPSYSTEMTIME lpSystemTime // address of system time structure

);ParameterslpSystemTime
Points to a SYSTEMTIME structure to receive the current system date and time.

Return ValuesThis function does not return a value.See AlsoGetLocalTime, GetSystemTimeAdjustment, SetSystemTime, SYSTEMTIME

GetSystemTimeAdjustment
The GetSystemTimeAdjustment function determines whether the system is applying periodic
time adjustments to its time-of-day clock at each clock interrupt, along with the value and period of
any such adjustments. Note that the period of such adjustments is equivalent to the time period
between clock interrupts.

BOOL GetSystemTimeAdjustment(
PDWORD lpTimeAdjustment, // size, in 100-nanosecond units, of a periodic time adjustment
PDWORD lpTimeIncrement, // time, in 100-nanosecond units, between periodic time adjustments
PBOOL lpTimeAdjustmentDisabled // whether periodic time adjustment is disabled or enabled

);ParameterslpTimeAdjustment
Pointer to a DWORD that the function sets to the number of 100-nanosecond units added to
the time-of-day clock at each periodic time adjustment.

lpTimeIncrement
Pointer to a DWORD that the function sets to the interval, counted in 100-nanosecond units,
between periodic time adjustments. This interval is the time period between a system's clock
interrupts.

lpTimeAdjustmentDisabled
Pointer to a BOOL that the function sets to indicate whether periodic time adjustment is in
effect.
A value of TRUE indicates that periodic time adjustment is disabled. At each clock interrupt,
the system merely adds the interval between clock interrupts to the time-of-day clock. The
system is free, however, to adjust its time-of-day clock using other techniques. Such other
techniques may cause the time-of-day clock to noticeably jump when adjustments are made.
A value of FALSE indicates that periodic time adjustment is being used to adjust the time-of-
day clock. At each clock interrupt, the system adds the time increment specified by
SetSystemTimeAdjustment's dwTimeIncrement parameter to the time-of-day clock. The
system will not interfere with the time adjustment scheme, and will not attempt to synchronize
time of day on its own via other techniques.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetSystemTimeAdjustment and SetSystemTimeAdjustment functions support algorithms
that want to synchronize the time-of-day clock, reported by GetSystemTime and GetLocalTime,
with another time source using a periodic time adjustment applied at each clock interrupt.

When periodic time adjustment is in effect, the system adds an adjusting value to the time-of-day
clock at a periodic interval, at each clock interrupt. The GetSystemTimeAdjustment function lets
a caller determine whether periodic time adjustment is enabled, and if it is, obtain the amount of
each adjustment and the time between adjustments. The SetSystemTimeAdjustment function
lets a caller enable or disable periodic time adjustment, and set the value of the adjusting
increment.See AlsoSetSystemTimeAdjustment, GetSystemTime, GetLocalTime

GetSystemTimeAsFileTime
The GetSystemTimeAsFileTime function obtains the current system date and time. The
information is in Coordinated Universal Time (UTC) format.

VOID GetSystemTimeAsFileTime(
LPFILETIME lpSystemTimeAsFileTime // pointer to a file time structure

);ParameterslpSystemTimeAsFileTime
Pointer to a FILETIME structure to receive the current system date and time in UTC format.

Return ValuesThis function does not return a value.RemarksThe GetSystemTimeAsFileTime function is equivalent to the following code sequence:FILETIME ft;
SYSTEMTIME st;
GetSystemTime(&st);
SystemTimeToFileTime(&st,&ft);

See AlsoFILETIME, GetSystemTime, SYSTEMTIME, SystemTimeToFileTime

GetTabbedTextExtent
The GetTabbedTextExtent function computes the width and height of a character string. If the
string contains one or more tab characters, the width of the string is based upon the specified tab
stops. The GetTabbedTextExtent function uses the currently selected font to compute the
dimensions of the string.

DWORD GetTabbedTextExtent(
HDC hDC, // handle of device context
LPCTSTR lpString, // address of character string
int nCount, // number of characters in string
int nTabPositions, // number of tab positions
LPINT lpnTabStopPositions // address of array of tab positions

);ParametershDC
Identifies the device context.

lpString
Points to a character string.

nCount
Specifies the number of characters in the text string.

nTabPositions
Specifies the number of tab-stop positions in the array pointed to by the lpnTabStopPositions
parameter.

lpnTabStopPositions
Points to an array containing the tab-stop positions, in device units. The tab stops must be
sorted in increasing order; the smallest x-value should be the first item in the array.

Return ValuesIf the function succeeds, the return value is the dimensions of the string. The height is in the high-
order word and the width is in the low-order word.

If the function fails, the return value is 0. GetTabbedTextExtent will fail if hDC is invalid and if
nTabPositions is less than 0.RemarksThe current clipping region does not affect the width and height returned by the
GetTabbedTextExtent function.

Because some devices do not place characters in regular cell arrays (that is, they kern the
characters), the sum of the extents of the characters in a string may not be equal to the extent of
the string.

If the nTabPositions parameter is zero and the lpnTabStopPositions parameter is NULL, tabs are
expanded to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the first value in the
array to which lpnTabStopPositions points.See AlsoGetTextExtentPoint32, HIWORD, LOWORD, TabbedTextOut

GetTapeParameters
The GetTapeParameters function retrieves information that describes the tape or the tape drive.

DWORD GetTapeParameters(
HANDLE hDevice, // handle of open device
DWORD dwOperation, // type of information requested
LPDWORD lpdwSize, // address of returned information
LPVOID lpTapeInformation // tape media or drive information

);ParametershDevice
Identifies the device about which information is sought. This handle is created by using the
CreateFile function.

dwOperation
Specifies the type of information requested. This parameter must be one of the following
values:

Value Description
GET_TAPE_MEDIA_INFORMATION Retrieves information about the

tape in the tape device.
GET_TAPE_DRIVE_INFORMATION Retrieves information about the

tape device.

lpdwSize
Points to a variable that receives the size, in bytes, of the buffer specified by the
lpTapeInformation parameter. If the buffer is too small, this parameter receives the required
size.

lpTapeInformation
Points to a structure that contains the requested information. If the dwOperation parameter is
GET_TAPE_MEDIA_INFORMATION, lpTapeInformation points to a
TAPE_GET_MEDIA_PARAMETERS structure.
If dwOperation is GET_TAPE_DRIVE_INFORMATION, lpTapeInformation points to a
TAPE_GET_DRIVE_PARAMETERS structure.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksThe block size range values (maximum and minimum) returned by the GetTapeParameters

function called with the dwOperation parameter set to the GET_TAPE_DRIVE_INFORMATION
value will indicate system limits, not drive limits. However, it is the tape drive device and the media
present in the drive that determine the true block size limits. Thus, an application may not be able
to set all the block sizes mentioned in the range obtained by specifying
GET_TAPE_DRIVE_INFORMATION in dwOperation.

See Also
CreateFile, SetTapeParameters, TAPE_GET_DRIVE_PARAMETERS,
TAPE_GET_MEDIA_PARAMETERS

GetTapePosition
The GetTapePosition function retrieves the current address of the tape, in logical or absolute
blocks.

DWORD GetTapePosition(
HANDLE hDevice, // handle of open device
DWORD dwPositionType, // type of address to obtain
LPDWORD lpdwPartition, // address of current tape partition
LPDWORD lpdwOffsetLow, // address of low-order 32 bits of tape position
LPDWORD lpdwOffsetHigh // address of high-order 32 bits of tape position

);ParametershDevice
Identifies the device on which to get the tape position. This handle is created by using
CreateFile.

dwPositionType
Specifies the type of address to obtain. This parameter can be one of the following values:

Value Description
TAPE_ABSOLUTE_POSITION The lpdwOffsetLow and

lpdwOffsetHigh parameters receive
the device-specific block address.
The dwPartition parameter receives
zero.

TAPE_LOGICAL_POSITION The lpdwOffsetLow and
lpdwOffsetHigh parameters receive
the logical block address. The
dwPartition parameter receives the
logical tape partition.

lpdwPartition
Points to a variable that receives the number of the current tape partition. Partitions are
numbered logically from 1 through n, where 1 is the first partition on the tape and n is the last.
When a device-specific block address is retrieved, or if the device supports only one partition,
this parameter receives zero.

lpdwOffsetLow
Points to a variable that receives the low-order 32 bits of the current tape position.

lpdwOffsetHigh
Points to a variable that receives the high-order 32 bits of the current tape position. This
parameter can be NULL if the high-order 32 bits are not required.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume

partition.
ERROR_DEVICE_NOT_PARTITIONEDThe partition information could

not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksA logical block address is relative to a partition. The first logical block address on each partition is

zero.

Call the GetTapeParameters function to obtain information about the status, capabilities, and
capacities of tape drives and media.See AlsoCreateFile, GetTapeParameters, SetTapePosition

GetTapeStatus
The GetTapeStatus function indicates whether the tape device is ready to process tape
commands.

DWORD GetTapeStatus(
HANDLE hDevice // handle of open device

);ParametershDevice
Identifies the device for which to get the device status. This handle is created by using the
CreateFile function.

Return ValuesIf the tape device is ready to accept appropriate tape-access commands without returning errors,
the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
See AlsoCreateFile

GetTempFileName
The GetTempFileName function creates a name for a temporary file. The filename is the
concatenation of specified path and prefix strings, a hexadecimal string formed from a specified
integer, and the .TMP extension.

The specified integer can be nonzero, in which case, the function creates the filename but does
not create the file. If you specify zero for the integer, the function creates a unique filename and
creates the file in the specified directory.

UINT GetTempFileName(
LPCTSTR lpPathName, // address of directory name for temporary file
LPCTSTR lpPrefixString, // address of filename prefix
UINT uUnique, // number used to create temporary filename
LPTSTR lpTempFileName // address of buffer that receives the new filename

);ParameterslpPathName
Points to a null-terminated string that specifies the directory path for the filename. This string
must consist of characters in the ANSI character set. Applications typically specify a period (.)
or the result of the GetTempPath function for this parameter. If this parameter is NULL, the
function fails.

lpPrefixString
Points to a null-terminated prefix string. The function uses the first three characters of this
string as the prefix of the filename. This string must consist of characters in the ANSI
character set.

uUnique
Specifies an unsigned integer that the function converts to a hexadecimal string for use in
creating the temporary filename.
If uUnique is nonzero, the function appends the hexadecimal string to lpPrefixString to form
the temporary filename. In this case, the function does not create the specified file, and does
not test whether the filename is unique.
If uUnique is zero, the function uses a hexadecimal string derived from the current system
time. In this case, the function uses different values until it finds a unique filename, and then it
creates the file in the lpPathName directory.

lpTempFileName
Points to the buffer that receives the temporary filename. This null-terminated string consists
of characters in the ANSI character set. This buffer should be at least the length, in bytes,
specified by MAX_PATH to accommodate the path.

Return ValuesIf the function succeeds, the return value specifies the unique numeric value used in the
temporary filename. If the uUnique parameter is nonzero, the return value specifies that same
number.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetTempFileName function creates a temporary filename of the following form:

path\preuuuu.TMP

The following table describes the filename syntax:

Component Meaning

path Path specified by the lpPathName parameter
pre First three letters of the lpPrefixString string
uuuu Hexadecimal value of uUnique

When Windows shuts down, temporary files whose names have been created by this
function are not automatically deleted.

To avoid problems resulting from converting an ANSI character set string to a Windows
string, an application should call the CreateFile function to create a temporary file.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique number based on
the current system time. If a file with the resulting filename exists, the number is increased by one
and the test for existence is repeated. Testing continues until a unique filename is found.

GetTempFileName then creates a file by that name and closes it. When uUnique is nonzero, no
attempt is made to create and open the file.See AlsoCreateFile, GetTempPath

GetTempPath
The GetTempPath function retrieves the path of the directory designated for temporary files. This
function supersedes the GetTempDrive function.

DWORD GetTempPath(
DWORD nBufferLength, // size, in characters, of the buffer
LPTSTR lpBuffer // address of buffer for temp. path

);ParametersnBufferLength
Specifies the size, in characters, of the string buffer identified by lpBuffer.

lpBuffer
Points to a string buffer that receives the null-terminated string specifying the temporary file
path.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to
lpBuffer, not including the terminating null character. If the return value is greater than
nBufferLength, the return value is the size of the buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetTempPath function gets the temporary file path as follows:

1. The path specified by the TMP environment variable.
2. The path specified by the TEMP environment variable, if TMP is not defined.
3. The current directory, if both TMP and TEMP are not defined.

See AlsoGetTempFileName

GetTextAlign
The GetTextAlign function retrieves the text-alignment setting for the specified device context.

UINT GetTextAlign(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the status of the text-alignment flags.

If the function fails, the return value is GDI_ERROR. To get extended error information, call
GetLastError.

For a list of status return values, see the Remarks section. The return value is a combination of
one or more of the following values:

Value Meaning

TA_BASELINE The reference point is on the base line of the
text.

TA_BOTTOM The reference point is on the bottom edge of the
bounding rectangle.

TA_TOP The reference point is on the top edge of the
bounding rectangle.

TA_CENTER The reference point is aligned horizontally with
the center of the bounding rectangle.

TA_LEFT The reference point is on the left edge of the
bounding rectangle.

TA_RIGHT The reference point is on the right edge of the
bounding rectangle.

TA_RTLREADING Windows 95 only: The text is laid out in right to
left reading order, as opposed to the default left
to right order. This only applies when the font
selected into the device context is either Hebrew
or Arabic.

TA_NOUPDATECP The current position is not updated after each
text output call.

TA_UPDATECP The current position is updated after each text
output call.

When the current font has a vertical default base line (as with Kanji), the following values
are used instead of TA_BASELINE and TA_CENTER:

Value Meaning

VTA_BASELINE The reference point is on the base line of the text.
VTA_CENTER The reference point is aligned vertically with the

center of the bounding rectangle.
RemarksThe bounding rectangle is a rectangle bounding all of the character cells in a string of text. Its

dimensions can be obtained by calling the GetTextExtentPoint32 function.

The text-alignment flags determine how the TextOut and ExtTextOut functions align a string of
text in relation to the string's reference point provided to TextOut or ExtTextOut.

The text-alignment flags are not necessarily single bit flags and may be equal to zero. The flags
must be examined in groups of related flags, as shown in the following list:
TA_LEFT, TA_RIGHT, and TA_CENTER
TA_BOTTOM, TA_TOP, and TA_BASELINE

TA_NOUPDATECP and TA_UPDATECP

If the current font has a vertical default base line, the related flags are as shown in the following
list:
TA_LEFT, TA_RIGHT, and VTA_BASELINE

TA_BOTTOM, TA_TOP, and VTA_CENTER

TA_NOUPDATECP and TA_UPDATECP

To verify that a particular flag is set in the return value of this function, the application must
perform the following steps:

1. Apply the bitwise OR operator to the flag and its related flags.
2. Apply the bitwise AND operator to the result and the return value.
3. Test for the equality of this result and the flag.
See AlsoExtTextOut, GetTextExtentPoint32, SetTextAlign, TextOut

GetTextCharacterExtra
The GetTextCharacterExtra function retrieves the current intercharacter spacing for the specified
device context.

int GetTextCharacterExtra(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the current intercharacter spacing.

If the function fails, the return value is 0x8000000.RemarksThe intercharacter spacing defines the extra space, in logical units along the base line, that the
TextOut or ExtTextOut functions add to each character as a line is written. The spacing is used
to expand lines of text.See AlsoExtTextOut, SetTextCharacterExtra, TextOut

GetTextCharset
The GetTextCharset function obtains a character-set identifier for the font that is currently
selected into a specified device context.

The function call GetTextCharset(hdc) is equivalent to the function call GetTextCharsetInfo(hdc,
NULL, 0).

UINT GetTextCharsetInfo(
HDC hdc, // handle to device context

);Parametershdc
Handle to a device context. The function obtains a character-set identifier for the font that is
selected into this device context.

Return ValuesIf the function succeeds, the return value identifies the character set of the font that is currently
selected into the specified device context. The following character-set identifiers are defined:

ANSI_CHARSET
CHINESEBIG5_CHARSET
DEFAULT_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
OEM_CHARSET
SHIFTJIS_CHARSET
SYMBOL_CHARSET

Windows 95 only:
ARABIC_CHARSET
BALTIC_CHARSET
EASTEUROPE_CHARSET
GREEK_CHARSET
HEBREW_CHARSET
JOHAB_CHARSET
MAC_CHARSET
RUSSIAN_CHARSET
THAI_CHARSET
TURKISH_CHARSET

If the function fails, the return value is DEFAULT_CHARSET.See AlsoGetTextCharsetInfo

GetTextCharsetInfo
The GetTextCharsetInfo function obtains information about the character set of the font that is
currently selected into a specified device context.

UINT GetTextCharsetInfo(
HDC hdc, // handle to device context
LPFONTSIGNATURE lpSig, // pointer to structure to receive Unicode and code page data
DWORD dwFlags // reserved; must be zero

);Parametershdc
Handle to a device context. The function obtains information about the font that is selected
into this device context.

lpSig
Pointer to a FONTSIGNATURE data structure that receives font-signature information.
If a TrueType font is currently selected into the device context, the FONTSIGNATURE
structure receives information that identifies the codepage and Unicode subranges for which
the font provides glyphs.
If a font other than TrueType is currently selected into the device context, the
FONTSIGNATURE structure receives zeroes. In this case, use the TranslateCharsetInfo
function to obtain generic font-signature information for the character set.
The lpSig parameter can be NULL if you do not need the FONTSIGNATURE information. In
this case, you can also call the GetTextCharset function, which is equivalent to calling
GetTextCharsetInfo with lpSig set to NULL.

dwFlags
This parameter is reserved for future use. It must be set to zero.

Return ValuesIf the function succeeds, the return value identifies the character set of the font currently selected
into the specified device context. The following character-set identifiers are defined:

ANSI_CHARSET
CHINESEBIG5_CHARSET
DEFAULT_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
OEM_CHARSET
SHIFTJIS_CHARSET
SYMBOL_CHARSET

Windows 95 only:
ARABIC_CHARSET
BALTIC_CHARSET
EASTEUROPE_CHARSET
GREEK_CHARSET
HEBREW_CHARSET
JOHAB_CHARSET
MAC_CHARSET
RUSSIAN_CHARSET
THAI_CHARSET
TURKISH_CHARSET

If the function fails, the return value is DEFAULT_CHARSET.See AlsoFONTSIGNATURE, GetTextCharset, TranslateCharsetInfo

GetTextColor
The GetTextColor function retrieves the current text color for the specified device context.

COLORREF GetTextColor(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is the current text color as a COLORREF value.

If the function fails, the return value is CLR_INVALID.RemarksThe text color defines the foreground color of characters drawn by using the TextOut or
ExtTextOut function.See AlsoExtTextOut, SetTextColor, TextOut

GetTextExtentExPoint
The GetTextExtentExPoint function retrieves the number of characters in a specified string that
will fit within a specified space and fills an array with the text extent for each of those characters.
(A text extent is the distance between the beginning of the space and a character that will fit in the
space.) This information is useful for word-wrapping calculations.

BOOL GetTextExtentExPoint(
HDC hdc, // handle of device context
LPCTSTR lpszStr, // address of character string
int cchString, // number of characters in string
int nMaxExtent, // maximum width for formatted string
LPINT lpnFit, // address of value specifying max. number of chars.
LPINT alpDx, // address of array for partial string widths
LPSIZE lpSize // address of structure with string dimensions

);Parametershdc
Identifies the device context.

lpszStr
Points to the null-terminated string for which extents are to be retrieved.

cchString
Specifies the number of bytes in the string pointed to by the lpszStr parameter.

nMaxExtent
Specifies the maximum allowable width, in logical units, of the formatted string.

lpnFit
Points to an integer to receive a count of the maximum number of characters that will fit in the
space specified by the nMaxExtent parameter. When the lpnFit parameter is NULL, the
nMaxExtent parameter is ignored.

alpDx
Points to an array of integers to receive partial string extents. Each element in the array gives
the distance, in logical units, between the beginning of the string and one of the characters
that fits in the space specified by the nMaxExtent parameter. Although this array should have
at least as many elements as characters specified by the cchString parameter, the function
fills the array with extents only for as many characters as are given by the lpnFit parameter. If
alpDx is NULL, the function does not compute partial string widths.

lpSize
Points to a SIZE structure that contains the dimensions of the string, in logical units when the
function returns. This value cannot be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf both the lpnFit and alpDx parameters are NULL, calling the GetTextExtentExPoint function is
equivalent to calling the GetTextExtentPoint function.See AlsoGetTextExtentPoint, SIZE

GetTextExtentPoint
The GetTextExtentPoint function computes the width and height of the specified string of text.

GetTextExtentPoint is provided for compatibility with 16-bit versions of Windows. Win32-based
applications should call the GetTextExtentPoint32 function, which provides more accurate
results.

BOOL GetTextExtentPoint(
HDC hdc, // handle of device context
LPCTSTR lpString, // address of text string
int cbString, // number of characters in string
LPSIZE lpSize // address of structure for string size

);Parametershdc
Identifies the device context.

lpString
Points to the string of text. The string does not need to be zero-terminated, since cbString
specifies the length of the string.

cbString
Specifies the number of characters in the string.

lpSize
Points to a SIZE structure in which the dimensions of the string are to be returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetTextExtentPoint function uses the currently selected font to compute the dimensions of
the string. The width and height, in logical units, are computed without considering any clipping.

Because some devices kern characters, the sum of the extents of the characters in a string may
not be equal to the extent of the string.

The calculated string width takes into account the intercharacter spacing set by the
SetTextCharacterExtra function.See AlsoGetTextExtentPoint32, SetTextCharacterExtra, SIZE

GetTextExtentPoint32
The GetTextExtentPoint32 function computes the width and height of the specified string of text.
This function supersedes the GetTextExtentPoint function.

BOOL GetTextExtentPoint32(
HDC hdc, // handle of device context
LPCTSTR lpString, // address of text string
int cbString, // number of characters in string
LPSIZE lpSize // address of structure for string size

);Parametershdc
Identifies the device context.

lpString
Points to the string of text. The string does not need to be zero-terminated, since cbString
specifies the length of the string.

cbString
Specifies the number of characters in the string.

lpSize
Points to a SIZE structure in which the dimensions of the string are to be returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetTextExtentPoint32 function uses the currently selected font to compute the dimensions
of the string. The width and height, in logical units, are computed without considering any clipping.

Because some devices kern characters, the sum of the extents of the characters in a string may
not be equal to the extent of the string.

The calculated string width takes into account the intercharacter spacing set by the
SetTextCharacterExtra function.See AlsoGetTextExtentPoint, SetTextCharacterExtra, SIZE

GetTextFace
The GetTextFace function retrieves the typeface name of the font that is selected into the
specified device context.

int GetTextFace(
HDC hdc, // handle of device context
int nCount, // length of buffer receiving typeface name
LPTSTR lpFaceName // address of buffer receiving typeface name

);Parametershdc
Identifies the device context.

nCount
Specifies the size, in characters, of the buffer.

lpFaceName
Points to the buffer that is to receive the typeface name. If this parameter is NULL, the
function returns the number of characters in the name, including the terminating null
character.

Return ValuesIf the function succeeds, the return value is the number of characters copied to the buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe typeface name is copied as a null-terminated character string.

If the name is longer than the number of characters specified by the nCount parameter, the name
is truncated.See AlsoGetTextAlign, GetTextColor, GetTextExtentPoint32, GetTextMetrics

GetTextMetrics
The GetTextMetrics function fills the specified buffer with the metrics for the currently selected
font.

BOOL GetTextMetrics(
HDC hdc, // handle of device context
LPTEXTMETRIC lptm // address of text metrics structure

);Parametershdc
Identifies the device context.

lptm
Points to the TEXTMETRIC structure that is to receive the metrics.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetTextAlign, GetTextExtentPoint32, GetTextFace, SetTextJustification, TEXTMETRIC

GetThreadContext
The GetThreadContext function retrieves the context of the specified thread.

BOOL GetThreadContext(
HANDLE hThread, // handle of thread with context
LPCONTEXT lpContext // address of context structure

);ParametershThread
Identifies an open handle of a thread whose context is to be retrieved.
Windows NT: The handle must have THREAD_GET_CONTEXT access to the thread. For
more information, see Thread Objects.

lpContext
Points to the address of a CONTEXT structure that receives the appropriate context of the
specified thread. The value of the ContextFlags member of this structure specifies which
portions of a thread's context are retrieved. The CONTEXT structure is highly computer
specific. Currently, there are CONTEXT structures defined for Intel, MIPS, Alpha, and
PowerPC processors. Refer to the header file WINNT.H for definitions of these structures.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe GetThreadContext function is used to retrieve the context of the specified thread. The
function allows a selective context to be retrieved based on the value of the ContextFlags
member of the CONTEXT structure. The thread handle identified by the hThread parameter is
typically being debugged, but the function can also operate when it is not being debugged.

You cannot get a valid context for a running thread. Use the SuspendThread function to suspend
the thread before calling GetThreadContext.See AlsoCONTEXT, SetThreadContext, SuspendThread

GetThreadDesktop
The GetThreadDesktop function returns a handle to the desktop associated with a specified
thread.

HDESK GetThreadDesktop(
DWORD dwThreadId // thread identifier

);ParametersdwThreadId
Identifies the thread for which to return the desktop handle. The GetCurrentThreadId and
CreateProcess functions return thread identifiers.

Return ValuesIf the function succeeds, the return value is the handle of the desktop associated with the
specified thread.RemarksThe system associates a desktop with a thread when that thread is created. A thread can use the
SetThreadDesktop function to change its desktop. The desktop associated with a thread must be
on the window station associated with the thread's process.

The calling process can use the returned handle in calls to the GetUserObjectInformation,
GetUserObjectSecurity, SetUserObjectInformation, and SetUserObjectSecurity functions.

Windows 95: Windows 95 does not support multiple desktops, so GetThreadDesktop always
returns the same value.See AlsoGetCurrentThreadId, GetProcessWindowStation, GetUserObjectInformation,
GetUserObjectSecurity, SetProcessWindowStation, SetThreadDesktop,
SetUserObjectInformation, SetUserObjectSecurity

GetThreadLocale
The GetThreadLocale function returns the calling thread's current locale.

LCID GetThreadLocale(VOID)ParametersThis function has no parameters.Return ValuesThe function returns the calling thread's 32-bit LCID locale identifier.RemarksWhen a thread is created, it is given the system default thread locale. The system reads the
system default thread locale from the registry when the system boots. This system default can be
modified for future process and thread creation using Control Panel's International application.See AlsoSetThreadLocale, GetSystemDefaultLCID, GetUserDefaultLCID

GetThreadPriority
The GetThreadPriority function returns the priority value for the specified thread. This value,
together with the priority class of the thread's process, determines the thread's base-priority level.

int GetThreadPriority(
HANDLE hThread // handle to thread

);ParametershThread
Identifies the thread.
Windows NT: The handle must have THREAD_QUERY_INFORMATION access. For more
information, see Thread Objects.

Return ValuesIf the function succeeds, the return value is the thread's priority level.

If the function fails, the return value is THREAD_PRIORITY_ERROR_RETURN. To get extended
error information, call GetLastError.

The thread's priority level is one of the following values:

Priority Meaning

THREAD_PRIORITY_ABOVE_NORMAL
Indicates 1 point above normal priority for the priority
class.

THREAD_PRIORITY_BELOW_NORMAL
Indicates 1 point below normal priority for the priority
class.

THREAD_PRIORITY_HIGHEST
Indicates 2 points above normal priority for the priority
class.

THREAD_PRIORITY_IDLE
Indicates a base-priority level of 1 for
IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS processes, and a base-
priority level of 16 for REALTIME_PRIORITY_CLASS
processes.

THREAD_PRIORITY_LOWEST
Indicates 2 points below normal priority for the priority
class.

THREAD_PRIORITY_NORMAL
Indicates normal priority for the priority class.

THREAD_PRIORITY_TIME_CRITICAL
Indicates a base-priority level of 15 for
IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS processes, and a base-
priority level of 31 for REALTIME_PRIORITY_CLASS
processes.

RemarksEvery thread has a base-priority level determined by the thread's priority value and the priority
class of its process. The operating system uses the base-priority level of all executable threads to
determine which thread gets the next slice of CPU time. Threads are scheduled in a round-robin
fashion at each priority level, and only when there are no executable threads at a higher level will
scheduling of threads at a lower level take place.

For a table that shows the base-priority levels for each combination of priority class and thread
priority value, refer to the SetPriorityClass function.See AlsoGetPriorityClass, SetPriorityClass, SetThreadPriority

GetThreadPriorityBoost
[New - Windows NT]

The GetThreadPriorityBoost function returns the priority boost control state of the specified
thread.

BOOL GetThreadPriorityBoost(
HANDLE hThread, // handle to thread
PBOOL pDisablePriorityBoost // indicates priority boost control state

);ParametershThread
Handle to the thread. This thread must have THREAD_QUERY_INFORMATION access. For
more information, see Thread Objects.

pDisablePriorityBoost
Pointer to a Boolean variable that receives the priority boost control state. A value of TRUE
indicates that dynamic boosting is disabled. A value of FALSE indicates normal behavior.

Return ValuesIf the function succeeds, the return value is nonzero. In that case, the Boolean variable pointed to
by the pDisablePriorityBoost parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoSetThreadPriorityBoost

GetThreadSelectorEntry
The GetThreadSelectorEntry function retrieves a descriptor table entry for the specified selector
and thread.

BOOL GetThreadSelectorEntry(
HANDLE hThread, // handle of thread that contains selector
DWORD dwSelector, // number of selector value to look up
LPLDT_ENTRY lpSelectorEntry // address of selector entry structure

);ParametershThread
Identifies a handle of the thread containing the specified selector.
Windows NT: The handle must have THREAD_QUERY_INFORMATION access. For more
information, see Thread Objects.

dwSelector
Specifies the global or local selector value to look up in the thread's descriptor tables.

lpSelectorEntry
Points to a structure that receives a copy of the descriptor table entry if the specified selector
has an entry in the specified thread's descriptor table. This information can be used to convert
a segment-relative address to a linear virtual address.

Return ValuesIf the function succeeds, the return value is nonzero. In that case, the structure pointed to by the
lpSelectorEntry parameter receives a copy of the specified descriptor table entry.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksGetThreadSelectorEntry is only functional on x86-based systems. For systems that are not x86-
based, the function returns FALSE.

Debuggers use this function to convert segment-relative addresses to linear virtual addresses.
The ReadProcessMemory and WriteProcessMemory functions use linear virtual addresses.See AlsoReadProcessMemory, WriteProcessMemory

GetThreadTimes
The GetThreadTimes function obtains timing information about a specified thread.

BOOL GetThreadTimes(
HANDLE hThread, // specifies the thread of interest
LPFILETIME lpCreationTime, // when the thread was created
LPFILETIME lpExitTime, // when the thread was destroyed
LPFILETIME lpKernelTime, // time the thread has spent in kernel mode
LPFILETIME lpUserTime // time the thread has spent in user mode

);ParametershThread
An open handle that specifies the thread whose timing information is sought. This handle
must be created with THREAD_QUERY_INFORMATION access. For more information, see
Thread Objects.

lpCreationTime
Points to a FILETIME structure that receives the creation time of the thread.

lpExitTime
Points to a FILETIME structure that receives the exit time of the thread. If the thread has not
exited, the content of this structure is undefined.

lpKernelTime
Points to a FILETIME structure that receives the amount of time that the thread has executed
in kernel mode.

lpUserTime
Points to a FILETIME structure that receives the amount of time that the thread has executed
in user mode.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll times are expressed using FILETIME data structures. Such a structure contains two 32-bit
values that combine to form a 64-bit count of 100-nanosecond time units.

Thread creation and exit times are points in time expressed as the amount of time that has
elapsed since midnight on January 1, 1601 at Greenwich, England. The Win32 API provides
several functions that an application can use to convert such values to more generally useful
forms; see Time and Date Functions, and the functions noted in the following See Also section.

Thread kernel mode and user mode times are amounts of time. For example, if a thread has spent
one second in kernel mode, this function will fill the FILETIME structure specified by lpKernelTime
with a 64-bit value of ten million. That is the number of 100-nanosecond units in one second.See AlsoFILETIME, FileTimeToDosDateTime, FileTimeToLocalFileTime, FileTimeToSystemTime

GetTickCount
The GetTickCount function retrieves the number of milliseconds that have elapsed since
Windows was started.

DWORD GetTickCount(VOID)ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the number of milliseconds that have elapsed since
Windows was started.RemarksThe elapsed time is stored as a DWORD value. Therefore, the time will wrap around to zero if
Windows is run continuously for 49.7 days.

Windows NT: To obtain the time elapsed since the computer was started, look up the System Up
Time counter in the performance data in the registry key HKEY_PERFORMANCE_DATA. The
value returned is an 8 byte value.

GetTimeFormat
The GetTimeFormat function formats a time as a time string for a specified locale. The function
formats either a specified time or the local system time.

int GetTimeFormat(
LCID Locale, // locale for which time is to be formatted
DWORD dwFlags, // flags specifying function options
CONST SYSTEMTIME *lpTime, // time to be formatted
LPCTSTR lpFormat, // time format string
LPTSTR lpTimeStr, // buffer for storing formatted string
int cchTime // size, in bytes or characters, of the buffer

);ParametersLocale
Specifies the locale for which the time string is to be formatted. If lpFormat is NULL, the
function formats the string according to the time format for this locale. If lpFormat is not NULL,
the function uses the locale only for information not specified in the format picture string (for
example, the locale's time markers).
This parameter can be a locale identifier created by the MAKELCID macro, or one of the
following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

dwFlags
A set of bit flags that specify various function options. You can specify a combination of the
following flags:

Flag Meaning
LOCALE_NOUSEROVERRIDE If set, the function formats the

string using the system default
time format for the specified
locale. If not set, the function
formats the string using any user
overrides to the locale's default
time format. This flag cannot be
set if lpFormat is non-NULL.

TIME_NOMINUTESORSECONDSDo not use minutes or seconds.
TIME_NOSECONDS Do not use seconds.
TIME_NOTIMEMARKER Do not use a time marker.
TIME_FORCE24HOURFORMAT Always use a 24-hour time format.

lpTime
Pointer to a SYSTEMTIME structure that contains the time information to be formatted. If this
pointer is NULL, the function uses the current local system time.

lpFormat
Pointer to a format picture to use to form the time string. If lpFormat is NULL, the function
uses the time format of the specified locale.
Use the following elements to construct a format picture string. If you use spaces to separate
the elements in the format string, these spaces will appear in the same location in the output
string. The letters must be in uppercase or lowercase as shown (for example, "ss", not "SS").
Characters in the format string that are enclosed in single quotation marks will appear in the
same location and unchanged in the output string.

Picture Meaning
h Hours with no leading zero for single-digit hours; 12-

hour clock
hh Hours with leading zero for single-digit hours; 12-hour

clock
H Hours with no leading zero for single-digit hours; 24-

hour clock
HH Hours with leading zero for single-digit hours; 24-hour

clock
m Minutes with no leading zero for single-digit minutes
mm Minutes with leading zero for single-digit minutes
s Seconds with no leading zero for single-digit seconds
ss Seconds with leading zero for single-digit seconds
t One character time marker string, such as A or P
tt Multicharacter time marker string, such as AM or PM

For example, to get the time string
"11:29:40 PM"

use the following picture string:
"hh':'mm':'ss tt"

lpTimeStr
Pointer to a buffer that receives the formatted time string.

cchTime
Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the lpTimeStr
buffer. If cchTime is zero, the function returns the number of bytes or characters required to
hold the formatted time string, and the buffer pointed to by lpTimeStr is not used.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) written to the buffer pointed to by lpTimeStr. If the cchTime parameter is zero,
the return value is the number of bytes or characters required to hold the formatted time string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
RemarksIf a time marker exists and the TIME_NOTIMEMARKER flag is not set, the function localizes the

time marker based on the specified locale identifier. Examples of time markers are "AM" and "PM"
for US English.

The time values in the SYSTEMTIME structure pointed to by lpTime must be valid. The function
checks each of the time values to determine that it is within the appropriate range of values. If any
of the time values are outside the correct range, the function fails, and sets the last-error to
ERROR_INVALID_PARAMETER.

The function ignores the date portions of the SYSTEMTIME structure pointed to by lpTime:
wYear, wMonth, wDayOfWeek, and wDay.

If TIME_NOMINUTESORSECONDS or TIME_NOSECONDS is specified, the function removes
the separator(s) preceding the minutes and/or seconds element(s).

If TIME_NOTIMEMARKER is specified, the function removes the separator(s) preceding and
following the time marker.

If TIME_FORCE24HOURFORMAT is specified, the function displays any existing time marker,
unless the TIME_NOTIMEMARKER flag is also set.

The function does not include milliseconds as part of the formatted time string.

To use the LOCALE_NOUSEROVERRIDE flag, lpFormat must be NULL.

No errors are returned for a bad format string. The function simply forms the best time string that it
can. If more than two hour, minute, second, or time marker format pictures are passed in, then the
function defaults to two. For example, the only time marker pictures that are valid are L"t" and L"tt"
(the 'L' indicates a Unicode (16-bit characters) string). If L"ttt" is passed in, the function assumes
L"tt".See AlsoGetDateFormat, SYSTEMTIME

GetTimeZoneInformation
The GetTimeZoneInformation function retrieves the current time-zone parameters. These
parameters control the translations between Coordinated Universal Time (UTC) and local time.

DWORD GetTimeZoneInformation(
LPTIME_ZONE_INFORMATION lpTimeZoneInformation // address of time-zone settings

);ParameterslpTimeZoneInformation
Points to a TIME_ZONE_INFORMATION structure to receive the current time-zone
parameters.

Return ValuesIf the function succeeds, the return value is one of the following values:

Value Meaning

TIME_ZONE_ID_UNKNOWNThe operating system cannot determine
the current time zone. This is usually
because a previous call to the
SetTimeZoneInformation function
supplied only the bias (and no transition
dates).

TIME_ZONE_ID_STANDARDThe operating system is operating in
the range covered by the
StandardDate member of the structure
pointed to by the
lpTimeZoneInformation parameter.

TIME_ZONE_ID_DAYLIGHT The operating system is operating in
the range covered by the DaylightDate
member of the structure pointed to by
the lpTimeZoneInformation parameter.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.RemarksAll translations between UTC time and local time are based on the following formula:UTC = local time + biasThe bias is the difference, in minutes, between UTC time and local time.See AlsoSetTimeZoneInformation, TIME_ZONE_INFORMATION

GetTokenInformation
The GetTokenInformation function retrieves a specified type of information about an access
token. The calling process must have appropriate access rights to obtain the information.

BOOL GetTokenInformation(
HANDLE TokenHandle, // handle of access token
TOKEN_INFORMATION_CLASS TokenInformationClass, // type of information to retrieve
LPVOID TokenInformation, // address of retrieved information
DWORD TokenInformationLength, // size of information buffer
PDWORD ReturnLength // address of required buffer size

);ParametersTokenHandle
Identifies an access token from which information is retrieved.

TokenInformationClass
Specifies a variable of the TOKEN_INFORMATION_CLASS enumerated type identifying the
type of information the function retrieves.

TokenInformation
Points to a buffer the function fills with the requested information. The structure put into this
buffer depends upon the type of information specified by the TokenInformationClass
parameter, as shown in the following list:

Token Information Class Structure Returned
TokenUser TOKEN_USER structure.

TOKEN_QUERY access is needed to
retrieve this information.

TokenGroups TOKEN_GROUPS structure.
TOKEN_QUERY access is needed to
retrieve this information.

TokenPrivileges TOKEN_PRIVILEGES structure.
TOKEN_QUERY access is needed to
retrieve this information.

TokenOwner TOKEN_OWNER structure.
TOKEN_QUERY access is needed to
retrieve this information.

TokenPrimaryGroup TOKEN_PRIMARY_GROUP structure.
TOKEN_QUERY access is needed to
retrieve this information.

TokenDefaultDacl TOKEN_DEFAULT_DACL structure.
TOKEN_QUERY access is needed to
retrieve this information.

TokenSource TOKEN_SOURCE structure.
TOKEN_QUERY_SOURCE access is
needed to retrieve this information.

TokenType TOKEN_TYPE enumerated type.
TOKEN_QUERY access is needed to
retrieve this information.

TokenImpersonationLevel SECURITY_IMPERSONATION_LEVEL
enumerated type. TOKEN_QUERY
access is needed to retrieve this
information about a token. If the access
token is not an impersonation token, the
function fails.

TokenStatistics TOKEN_STATISTICS structure.
TOKEN_QUERY access is needed to
retrieve this information.

The formats for the retrieved structures and enumerated types are listed in the
following Remarks section.

TokenInformationLength
Specifies the size, in bytes, of the buffer pointed to by the TokenInformation parameter.

ReturnLength
Points to a variable receiving the actual number of bytes needed for the buffer pointed to by
the TokenInformation parameter. If this value is larger than the value specified in the
TokenInformationLength parameter, the function fails and stores no data in the buffer.
If the value of the TokenInformationClass parameter is TokenDefaultDacl and the token has
no default access-control list, the function sets the variable pointed to by ReturnLength to zero
and stores no data in the buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAdjustTokenGroups, AdjustTokenPrivileges, OpenProcessToken, OpenThreadToken,
SetTokenInformation, SECURITY_IMPERSONATION_LEVEL, TOKEN_DEFAULT_DACL,
TOKEN_GROUPS, TOKEN_INFORMATION_CLASS, TOKEN_OWNER,
TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS,
TOKEN_TYPE, TOKEN_USER

GetTopWindow
The GetTopWindow function examines the Z order of the child windows associated with the
specified parent window and retrieves the handle of the child window at the top of the Z order.

HWND GetTopWindow(
HWND hWnd // handle of parent window

);ParametershWnd
Identifies the parent window whose child windows are to be examined. If this parameter is
NULL, the function returns a handle of the window at the top of the Z order.

Return ValuesIf the function succeeds, the return value is the handle of the child window at the top of the Z
order. If the specified window has no child windows, the return value is NULL. To get extended
error information, use the GetLastError function.See AlsoGetNextWindow, GetWindow

GetTrusteeForm
[New - Windows NT]

The GetTrusteeForm function retrieves the value assigned to the TrusteeForm member of a
specified TRUSTEE structure. This value indicates whether the structure uses a name string or a
security identifier (SID) to identify the trustee.

TRUSTEE_FORM GetTrusteeForm(
PTRUSTEE pTrustee // pointer to a TRUSTEE structure

);ParameterspTrustee
Pointer to a TRUSTEE structure.

Return ValuesThe return value is one of the constants from the TRUSTEE_FORM enumeration.See AlsoGetTrusteeName, GetTrusteeType, TRUSTEE, TRUSTEE_FORM

GetTrusteeName
[New - Windows NT]

The GetTrusteeName function retrieves the trustee name from a TRUSTEE structure.

LPTSTR GetTrusteeName(
PTRUSTEE pTrustee // pointer to a TRUSTEE structure

);ParameterspTrustee
Pointer to a TRUSTEE structure.

Return ValuesIf the TrusteeForm member of the TRUSTEE structure is TRUSTEE_IS_NAME, the return value
is the pointer assigned to the ptstrName member of the structure.

If the TrusteeForm member is TRUSTEE_IS_SID, the return value is NULL. The function does
not look up the name associated with a security identifier (SID).RemarksThe GetTrusteeName function does not allocate any memory.See AlsoTRUSTEE, SID

GetTrusteeType
[New - Windows NT]

The GetTrusteeType function retrieves the value assigned to the TrusteeType member of a
specified TRUSTEE structure. This value indicates whether the trustee is a user, a group, or the
trustee type is unknown.

TRUSTEE_TYPE GetTrusteeType(
PTRUSTEE pTrustee // pointer to the TRUSTEE structure

);ParameterspTrustee
Pointer to a TRUSTEE structure.

Return ValuesThe return value is one of the constants from the TRUSTEE_TYPE enumeration.See AlsoTRUSTEE, TRUSTEE_TYPE

GetUpdateRect
The GetUpdateRect function retrieves the coordinates of the smallest rectangle that completely
encloses the update region of the specified window. If the window was created with the
CS_OWNDC style and the mapping mode is not MM_TEXT, GetUpdateRect retrieves the
rectangle in logical coordinates. Otherwise, it retrieves the rectangle in client coordinates. If there
is no update region, GetUpdateRect retrieves an empty rectangle (sets all coordinates to zero).

BOOL GetUpdateRect(
HWND hWnd, // handle of window
LPRECT lpRect, // address of update rectangle coordinates
BOOL bErase // erase flag

);ParametershWnd
Identifies the window with an update region that is to be retrieved.

lpRect
Points to the RECT structure that receives the coordinates of the enclosing rectangle.
An application can set this parameter to NULL to determine whether an update region exists
for the window. If this parameter is NULL, GetUpdateRect returns nonzero if an update region
exists, and zero if one does not. This provides a simple and efficient means of determining
whether a WM_PAINT message resulted from an invalid area.

bErase
Specifies whether the background in the update region is to be erased. If this parameter is
TRUE and the update region is not empty, GetUpdateRect sends a WM_ERASEBKGND
message to the specified window to erase the background.

Return ValuesIf the update region is not empty, the return value is nonzero.

If there is no update region, the return value is zero.RemarksThe update rectangle retrieved by the BeginPaint function is identical to that retrieved by
GetUpdateRect.

BeginPaint automatically validates the update region, so any call to GetUpdateRect made
immediately after the call to BeginPaint retrieves an empty update region.See AlsoBeginPaint, GetUpdateRgn, InvalidateRect, RECT, UpdateWindow, ValidateRect

GetUpdateRgn
The GetUpdateRgn function retrieves the update region of a window by copying it into the
specified region. The coordinates of the update region are relative to the upper-left corner of the
window (that is, they are client coordinates).

int GetUpdateRgn(
HWND hWnd, // handle of window
HRGN hRgn, // handle of region
BOOL bErase // erase background flag

);ParametershWnd
Identifies the window with an update region that is to be retrieved.

hRgn
Identifies the region to receive the update region.

bErase
Specifies whether the window background should be erased and whether nonclient areas of
child windows should be drawn. If this parameter is FALSE, no drawing is done.

Return ValuesThe return value indicates the complexity of the resulting region; it can be one of the following
values:

Value Meaning

COMPLEXREGIONRegion consists of more than one rectangle.
ERROR An error occurred.
NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
RemarksThe BeginPaint function automatically validates the update region, so any call to GetUpdateRgn

made immediately after the call to BeginPaint retrieves an empty update region.See AlsoGetUpdateRect, InvalidateRgn, UpdateWindow, ValidateRgn

GetUserDefaultLangID
The GetUserDefaultLangID function retrieves the user default language identifier.

LANGID GetUserDefaultLangID(VOID)

ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the user default language identifier.See AlsoGetSystemDefaultLangID, MAKELANGID

GetUserDefaultLCID
The GetUserDefaultLCID function retrieves the user default locale identifier.

LCID GetUserDefaultLCID(VOID)

ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is the user default locale identifier.RemarksFor more information about locale identifiers, see Locale Identifiers.See AlsoGetLocaleInfo, GetSystemDefaultLCID, MAKELCID

GetUserName
The GetUserName function retrieves the user name of the current thread. This is the name of the
user currently logged onto the system.

BOOL GetUserName(
LPTSTR lpBuffer, // address of name buffer
LPDWORD nSize // address of size of name buffer

);ParameterslpBuffer
Points to the buffer to receive the null-terminated string containing the user's logon name. If
this buffer is not large enough to contain the entire user name, the function fails.

nSize
Pointer to a DWORD that, on input, specifies the maximum size, in characters, of the buffer
specified by the lpBuffer parameter. If this buffer is not large enough to contain the entire user
name, the function fails. If the function succeeds, it will place the number of characters copied
to the buffer into the DWORD that nSize points to.

Return ValuesIf the function succeeds, the return value is nonzero, and the variable pointed to by nSize contains
the number of characters copied to the buffer specified by lpBuffer, including the terminating null
character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the current thread is impersonating another client, the GetUserName function returns the user
name of the client that the thread is impersonating.See AlsoLookupAccountName

GetUserObjectInformation
The GetUserObjectInformation function returns information about a window station or desktop
object.

BOOL GetUserObjectInformation(
HANDLE hObj, // handle of object to get information for
int nIndex, // type of information to get
PVOID pvInfo, // points to buffer that receives the information
DWORD nLength, // size, in bytes, of pvInfo buffer
LPDWORD lpnLengthNeeded // receives required size, in bytes, of pvInfo buffer

);ParametershObj
Identifies the window station or desktop object for which to return information. This can be an
HDESK or HWINSTA handle (for example, a handle returned by CreateWindowStation,
OpenWindowStation, CreateDesktop, or OpenDesktop).

nIndex
Specifies the object information to be retrieved. The parameter must be one of the following
values:

Value Description
UOI_FLAGS Returns handle flags. The pvInfo parameter

must point to a USEROBJECTFLAGS
structure.

UOI_NAME Returns a string containing the name of the
object.

UOI_TYPE Returns a string containing the type name of
the object.

pvInfo
Points to a buffer to receive the object information.

nLength
Specifies the size, in bytes, of the buffer pointed to by the pvInfo parameter.

lpnLengthNeeded
Points to a variable receiving the number of bytes required to store the requested information.
If this variable's value is greater than the value of the nLength parameter when the function
returns, the function returns FALSE, and none of the information is copied to the pvInfo buffer.
If the value of the variable pointed to by lpnLengthNeeded is less than or equal to the value of
nLength, the entire information block is copied.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateDesktop, CreateWindowStation, GetUserObjectSecurity, OpenDesktop,
OpenWindowStation, SetUserObjectInformation, SetUserObjectSecurity,
USEROBJECTFLAGS

GetUserObjectSecurity
The GetUserObjectSecurity function retrieves security information for the specified user object.

BOOL GetUserObjectSecurity(
HANDLE hObj, // handle of user object
PSECURITY_INFORMATION pSIRequested, // address of requested security information
PSECURITY_DESCRIPTOR pSID, // address of security descriptor
DWORD nLength, // size of buffer for security descriptor
LPDWORD lpnLengthNeeded // address of required size of buffer

);ParametershObj
Identifies the user object for which to return security information.

pSIRequested
Points to a SECURITY_INFORMATION structure specifying the security information being
requested.

pSID
Points to a SECURITY_DESCRIPTOR structure in self-relative format that contains the
requested information when the function returns.

nLength
Specifies the length, in bytes, of the buffer pointed to by the pSID parameter.

lpnLengthNeeded
Points to a variable receiving the number of bytes required to store the complete security
descriptor. If this variable's value is greater than the value of the nLength parameter when the
function returns, the function returns FALSE and none of the security descriptor is copied to
the buffer. Otherwise, the entire security descriptor is copied.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreatePrivateObjectSecurity, GetKernelObjectSecurity, GetPrivateObjectSecurity,
SECURITY_DESCRIPTOR, SECURITY_INFORMATION, SetUserObjectSecurity

GetVersion
The GetVersion function returns the current version number of Windows and information about
the operating system platform.

This function has been superseded by GetVersionEx, which is the preferred method for obtaining
system version number information. New applications should use GetVersionEx. The
GetVersionEx function was developed because many existing Windows applications err when
examining the DWORD return value of a GetVersion function call, transposing the major and
minor version numbers packed into that DWORD. The GetVersionEx function forces applications
to explicitly examine each element of version information, and allows for future enhancements to
that information.

DWORD GetVersion(VOID)

ParametersThis function has no parameters.Return ValuesIf the function succeeds, the return value is a DWORD value that contains the major and minor
version numbers of Windows in the low order word, and information about the operating system
platform in the high order word.

For all platforms, the low order word contains the version number of Windows. The low-order byte
of this word specifies the major version number, in hexadecimal notation. The high-order byte
specifies the minor version (revision) number, in hexadecimal notation.

To distinguish between operating system platforms, use the high order bit and the low order byte,
as shown in the following table:

Platform High order bit Low order byte (major version
number)

Windows NT zero 3 or 4
Windows 95 1 4
Win32s with
Windows 3.1

1 3

For Windows NT and Win32s, the remaining bits in the high order word specify the build
number.

For Windows 95 the remaining bits of the high order word are reserved.RemarksThis function does not return the current version number of MS-DOS.

The following code fragment illustrates how to extract information from the GetVersion return
value:dwVersion = GetVersion();
// Get major and minor version numbers of Windows
dwWindowsMajorVersion = (DWORD)(LOBYTE(LOWORD(dwVersion)));
dwWindowsMinorVersion = (DWORD)(HIBYTE(LOWORD(dwVersion)));
// Get build numbers for Windows NT or Win32s
if (dwVersion < 0x80000000) // Windows NT

dwBuild = (DWORD)(HIWORD(dwVersion));
else if (dwWindowsMajorVersion < 4) // Win32s

dwBuild = (DWORD)(HIWORD(dwVersion) & ~0x8000);
else // Windows 95 -- No build numbers provided

dwBuild = 0;
See AlsoGetVersionEx

GetVersionEx
The GetVersionEx function obtains extended information about the version of the operating
system that is currently running.

BOOL GetVersionEx(
LPOSVERSIONINFO lpVersionInformation // pointer to version information structure

);ParameterslpVersionInformation
Pointer to an OSVERSIONINFO data structure that the function fills with operating system
version information.
Before calling the GetVersionEx function, set the dwOSVersionInfoSize member of the
OSVERSIONINFO data structure to sizeof(OSVERSIONINFO).

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
The function fails if you specify an invalid value for the dwOSVersionInfoSize member of the
OSVERSIONINFO structure.RemarksThe GetVersionEx function supersedes the GetVersion function and is the preferred method for
obtaining operating system version number information. New applications should use the
GetVersionEx function rather than the GetVersion function.See AlsoOSVERSIONINFO

GetViewportExtEx
The GetViewportExtEx function retrieves the x-extents and y-extents of the current viewport for
the specified device context.

BOOL GetViewportExtEx(
HDC hdc, // handle of device context
LPSIZE lpSize // address of structure receiving viewport dimensions

);Parametershdc
Identifies the device context.

lpSize
Points to a SIZE structure. The x- and y-extents, in device units, are placed in this structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetWindowExtEx, SetViewportExtEx, SetWindowExtEx

GetViewportOrgEx
The GetViewportOrgEx function retrieves the x-coordinates and y-coordinates of the viewport
origin for the specified device context.

BOOL GetViewportOrgEx(
HDC hdc, // handle of device context
LPPOINT lpPoint // address of structure receiving the viewport origin

);Parametershdc
Identifies the device context.

lpPoint
Points to a POINT structure that receives the origin coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetWindowOrgEx, POINT, SetViewportOrgEx, SetWindowOrgEx

GetVolumeInformation
The GetVolumeInformation function returns information about a file system and volume whose
root directory is specified.

BOOL GetVolumeInformation(
LPCTSTR lpRootPathName, // address of root directory of the file system
LPTSTR lpVolumeNameBuffer, // address of name of the volume
DWORD nVolumeNameSize, // length of lpVolumeNameBuffer
LPDWORD lpVolumeSerialNumber, // address of volume serial number
LPDWORD lpMaximumComponentLength, // address of system's maximum filename length
LPDWORD lpFileSystemFlags, // address of file system flags
LPTSTR lpFileSystemNameBuffer, // address of name of file system
DWORD nFileSystemNameSize // length of lpFileSystemNameBuffer

);ParameterslpRootPathName
Points to a string that contains the root directory of the volume to be described. If this
parameter is NULL, the root of the current directory is used. If this parameter is a UNC name,
you must follow it with an additional backslash. For example, you would specify \\MyServer\
MyShare as \\MyServer\MyShare\.

lpVolumeNameBuffer
Points to a buffer that receives the name of the specified volume.

nVolumeNameSize
Specifies the length, in characters, of the volume name buffer. This parameter is ignored if the
volume name buffer is not supplied.

lpVolumeSerialNumber
Points to a variable that receives the volume serial number. This parameter can be NULL if
the serial number is not required.

lpMaximumComponentLength
Points to a doubleword value that receives the maximum length, in characters, of a filename
component supported by the specified file system. A filename component is that portion of a
filename between backslashes.
The value stored in variable pointed to by *lpMaximumComponentLength is used to indicate
that long names are supported by the specified file system. For example, for a FAT file system
supporting long names, the function stores the value 255, rather than the previous 8.3
indicator. Long names can also be supported on systems that use the New Technology file
system.

lpFileSystemFlags
Points to a doubleword that receives flags associated with the specified file system. This
parameter can be any combination of the following flags, with one exception:
FS_FILE_COMPRESSION and FS_VOL_IS_COMPRESSED are mutually exclusive.

Value Meaning
FS_CASE_IS_PRESERVED If this flag is set, the file system

preserves the case of filenames
when it places a name on disk.

FS_CASE_SENSITIVE If this flag is set, the file system
supports case-sensitive filenames.

FS_UNICODE_STORED_ON_DISKIf this flag is set, the file system
supports Unicode in filenames as
they appear on disk.

FS_PERSISTENT_ACLS If this flag is set, the file system
preserves and enforces ACLs. For
example, NTFS preserves and
enforces ACLs, and FAT does not.

FS_FILE_COMPRESSION The file system supports file-
based compression.

FS_VOL_IS_COMPRESSED The specified volume is a
compressed volume; for example,
a DoubleSpace volume.

lpFileSystemNameBuffer
Points to a buffer that receives the name of the file system (such as FAT or NTFS).

nFileSystemNameSize
Specifies the length, in characters, of the file system name buffer. This parameter is ignored if
the file system name buffer is not supplied.

Return ValuesIf all the requested information is retrieved, the return value is nonzero.

If not all the requested information is retrieved, the return value is zero. To get extended error
information, call GetLastError.RemarksIf you are attempting to obtain information about a floppy drive that does not have a floppy disk or
a CD-ROM drive that does not have a compact disc, the system displays a message box asking
the user to insert a floppy disk or a compact disc, respectively. To prevent the system from
displaying this message box, call the SetErrorMode function with SEM_FAILCRITICALERRORS.

The FS_VOL_IS_COMPRESSED flag is the only indicator of volume-based compression. The file
system name is not altered to indicate compression. This flag comes back set on a DoubleSpace
volume, for example. With volume-based compression, an entire volume is either compressed or
not compressed.

The FS_FILE_COMPRESSION flag indicates whether a file system supports file-based
compression. With file-based compression, individual files can be compressed or not compressed.

The FS_FILE_COMPRESSION and FS_VOL_IS_COMPRESSED flags are mutually exclusive;
both bits cannot come back set.

The maximum component length value, stored in the DWORD variable pointed to by
lpMaximumComponentLength, is the only indicator that a volume supports longer-than-normal
FAT (or other file system) file names. The file system name is not altered to indicate support for
long file names.

The GetCompressedFileSize function obtains the compressed size of a file. The
GetFileAttributes function can determine whether an individual file is compressed.See AlsoGetCompressedFileSize, GetFileAttributes, SetErrorMode, SetVolumeLabel

GetWindow
The GetWindow function retrieves the handle of a window that has the specified relationship (Z
order or owner) to the specified window.

HWND GetWindow(
HWND hWnd, // handle of original window
UINT uCmd // relationship flag

);ParametershWnd
Identifies a window. The window handle retrieved is relative to this window, based on the
value of the uCmd parameter.

uCmd
Specifies the relationship between the specified window and the window whose handle is to
be retrieved. This parameter can be one of the following values:

Value Meaning
GW_CHILD The retrieved handle identifies the child

window at the top of the Z order, if the
specified window is a parent window;
otherwise, the retrieved handle is NULL. The
function examines only child windows of the
specified window. It does not examine
descendant windows.

GW_HWNDFIRST The retrieved handle identifies the window of
the same type that is highest in the Z order. If
the specified window is a topmost window, the
handle identifies the topmost window that is
highest in the Z order. If the specified window
is a top-level window, the handle identifies the
top-level window that is highest in the Z order.
If the specified window is a child window, the
handle identifies the sibling window that is
highest in the Z order.

GW_HWNDLAST The retrieved handle identifies the window of
the same type that is lowest in the Z order. If
the specified window is a topmost window, the
handle identifies the topmost window that is
lowest in the Z order. If the specified window is
a top-level window, the handle identifies the
top-level window that is lowest in the Z order. If
the specified window is a child window, the
handle identifies the sibling window that is
lowest in the Z order.

GW_HWNDNEXT The retrieved handle identifies the window
below the specified window in the Z order. If
the specified window is a topmost window, the
handle identifies the topmost window below
the specified window. If the specified window is
a top-level window, the handle identifies the
top-level window below the specified window.
If the specified window is a child window, the
handle identifies the sibling window below the
specified window.

GW_HWNDPREV The retrieved handle identifies the window
above the specified window in the Z order. If
the specified window is a topmost window, the
handle identifies the topmost window above
the specified window. If the specified window is
a top-level window, the handle identifies the
top-level window above the specified window.
If the specified window is a child window, the

handle identifies the sibling window above the
specified window.

GW_OWNER The retrieved handle identifies the specified
window's owner window, if any.

Return ValuesIf the function succeeds, the return value is a window handle. If no window exists with the
specified relationship to the specified window, the return value is NULL. To get extended error
information, call GetLastError.See AlsoGetActiveWindow, GetNextWindow, GetTopWindow

GetWindowContextHelpId
The GetWindowContextHelpId function retrieves the help context identifier, if any, associated
with the specified window.

DWORD GetWindowContextHelpId(
HWND hwnd

);Parametershwnd
Handle to the window for which the help context identifier is to be retrieved.

Return ValuesReturns the help context identifier if the window has one or zero otherwise.See AlsoSetWindowContextHelpId

GetWindowDC
The GetWindowDC function retrieves the device context (DC) for the entire window, including title
bar, menus, and scroll bars. A window device context permits painting anywhere in a window,
because the origin of the device context is the upper-left corner of the window instead of the client
area.

GetWindowDC assigns default attributes to the window device context each time it retrieves the
device context. Previous attributes are lost.

HDC GetWindowDC(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window with a device context that is to be retrieved.

Return ValuesIf the function succeeds, the return value is the handle of a device context for the specified
window.

If the function fails, the return value is NULL, indicating an error or an invalid hWnd parameter.RemarksGetWindowDC is intended for special painting effects within a window's nonclient area. Painting
in nonclient areas of any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of various parts of the
nonclient area, such as the title bar, menu, and scroll bars.

After painting is complete, the ReleaseDC function must be called to release the device context.
Not releasing the window device context has serious effects on painting requested by
applications.See AlsoBeginPaint, GetDC, GetSystemMetrics, ReleaseDC

GetWindowExtEx
This function retrieves the x-extents and y-extents of the window for the specified device context.

BOOL GetWindowExtEx(
HDC hdc, // handle of device context
LPSIZE lpSize // address of structure receiving window extents

);Parametershdc
Identifies the device context.

lpSize
Points to a SIZE structure. The x- and y-extents in page-space units are placed in this
structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetViewportExtEx, SetViewportExtEx, SetWindowExtEx

GetWindowLong
The GetWindowLong function retrieves information about the specified window. The function
also retrieves the 32-bit (long) value at the specified offset into the extra window memory of a
window.

LONG GetWindowLong(
HWND hWnd, // handle of window
int nIndex // offset of value to retrieve

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based offset to the value to be retrieved. Valid values are in the range zero
through the number of bytes of extra window memory, minus four; for example, if you
specified 12 or more bytes of extra memory, a value of 8 would be an index to the third 32-bit
integer. To retrieve any other value, specify one of the following values:

Value Action
GWL_EXSTYLE Retrieves the extended window styles.
GWL_STYLE Retrieves the window styles.
GWL_WNDPROC Retrieves the address of the window

procedure, or a handle representing the
address of the window procedure. You
must use the CallWindowProc function to
call the window procedure.

GWL_HINSTANCE Retrieves the handle of the application
instance.

GWL_HWNDPARENT Retrieves the handle of the parent window,
if any.

GWL_ID Retrieves the identifier of the window.
GWL_USERDATA Retrieves the 32-bit value associated with

the window. Each window has a
corresponding 32-bit value intended for use
by the application that created the window.

The following values are also available when the hWnd parameter identifies a dialog box:
Value Action
DWL_DLGPROC Retrieves the address of the dialog box

procedure, or a handle representing the
address of the dialog box procedure. You
must use the CallWindowProc function to
call the dialog box procedure.

DWL_MSGRESULT Retrieves the return value of a message
processed in the dialog box procedure.

DWL_USER Retrieves extra information private to the
application, such as handles or pointers.

Return ValuesIf the function succeeds, the return value is the requested 32-bit value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReserve extra window memory by specifying a nonzero value in the cbWndExtra member of the
WNDCLASS structure used with the RegisterClass function.See AlsoCallWindowProc, GetWindowWord, RegisterClass, SetParent, SetWindowLong,
SetWindowWord, WNDCLASS

GetWindowOrgEx
The GetWindowOrgEx function retrieves the x-coordinates and y-coordinates of the window
origin for the specified device context.

BOOL GetWindowOrgEx(
HDC hdc, // handle of device context
LPPOINT lpPoint // address of structure receiving the window origin

);Parametershdc
Identifies the device context.

lpPoint
Points to a POINT structure that receives the coordinates, in page units, of the window origin.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetViewportOrgEx, SetViewportOrgEx, SetWindowOrgEx

GetWindowPlacement
The GetWindowPlacement function retrieves the show state and the restored, minimized, and
maximized positions of the specified window.

BOOL GetWindowPlacement(
HWND hWnd, // handle of window
WINDOWPLACEMENT *lpwndpl // address of structure for position data

);ParametershWnd
Identifies the window.

lpwndpl
Points to the WINDOWPLACEMENT structure that receives the show state and position
information.
Before calling GetWindowPlacement, set the length member of the WINDOWPLACEMENT
structure to sizeof(WINDOWPLACEMENT).
GetWindowPlacement fails if lpwndpl->length is not set correctly.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe flags member of WINDOWPLACEMENT retrieved by this function is always zero. If the
window identified by the hWnd parameter is maximized, the showCmd member is
SW_SHOWMAXIMIZED. If the window is minimized, showCmd is SW_SHOWMINIMIZED.
Otherwise, it is SW_SHOWNORMAL.

The length member of WINDOWPLACEMENT must be set to sizeof(WINDOWPLACEMENT). If
this member is not set correctly, the function returns FALSE.See AlsoSetWindowPlacement, WINDOWPLACEMENT

GetWindowRect
The GetWindowRect function retrieves the dimensions of the bounding rectangle of the specified
window. The dimensions are given in screen coordinates that are relative to the upper-left corner
of the screen.

BOOL GetWindowRect(
HWND hWnd, // handle of window
LPRECT lpRect // address of structure for window coordinates

);ParametershWnd
Identifies the window.

lpRect
Points to a RECT structure that receives the screen coordinates of the upper-left and lower-
right corners of the window.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetClientRect, RECT

GetWindowRgn
The GetWindowRgn function obtains a copy of the window region of a window. The window
region of a window is set by calling the SetWindowRgn function. The window region determines
the area within the window where the operating system permits drawing. The operating system
does not display any portion of a window that lies outside of the window region

int GetWindowRgn(
HWND hWnd, // handle to window whose window region is to be obtained
HRGN hRgn // handle to region that receives a copy of the window region

);ParametershWnd
Handle to the window whose window region is to be obtained.

hrgn
Handle to a region. This region receives a copy of the window region.

Return ValuesThe return value specifies the type of the region that the function obtains. It can be one of the
following values:

Value Meaning

NULLREGION The region is empty.
SIMPLEREGION The region is a single rectangle.
COMPLEXREGIONThe region is more than one rectangle.
ERROR An error occurred; the region is unaffected.
CommentsThe coordinates of a window's window region are relative to the upper-left corner of the window,

not the client area of the window.

To set the window region of a window, call the SetWindowRgn function.See AlsoSetWindowRgn

GetWindowsDirectory
The GetWindowsDirectory function retrieves the path of the Windows directory. The Windows
directory contains such files as Windows-based applications, initialization files, and Help files.

UINT GetWindowsDirectory(
LPTSTR lpBuffer, // address of buffer for Windows directory
UINT uSize // size of directory buffer

);ParameterslpBuffer
Points to the buffer to receive the null-terminated string containing the path. This path does
not end with a backslash unless the Windows directory is the root directory. For example, if
the Windows directory is named WINDOWS on drive C, the path of the Windows directory
retrieved by this function is C:\WINDOWS. If Windows was installed in the root directory of
drive C, the path retrieved is C:\.

uSize
Specifies the maximum size, in characters, of the buffer specified by the lpBuffer parameter.
This value should be set to at least MAX_PATH to allow sufficient room in the buffer for the
path.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the string copied to the
buffer, not including the terminating null character.

If the length is greater than the size of the buffer, the return value is the size of the buffer required
to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe Windows directory is the directory where an application should store initialization and help
files. If the user is running a shared version of Windows, the Windows directory is guaranteed to
be private for each user.

If an application creates other files that it wants to store on a per-user basis, it should place them
in the directory specified by the HOMEPATH environment variable. This directory will be different
for each user, if so specified by an administrator, via the User Manager administrative tool.
HOMEPATH always specifies either the user's home directory, which is guaranteed to be private
for each user, or a default directory (for example, C:\USERS\DEFAULT) where the user will have
all access.See AlsoGetCurrentDirectory, GetSystemDirectory

GetWindowTask
The GetWindowTask function is obsolete. This function is provided only for compatibility with 16-
bit versions of Windows. Win32-based applications should use the GetWindowThreadProcessId
function.

GetWindowText
The GetWindowText function copies the text of the specified window's title bar (if it has one) into
a buffer. If the specified window is a control, the text of the control is copied.

int GetWindowText(
HWND hWnd, // handle of window or control with text
LPTSTR lpString, // address of buffer for text
int nMaxCount // maximum number of characters to copy

);ParametershWnd
Identifies the window or control containing the text.

lpString
Points to the buffer that will receive the text.

nMaxCount
Specifies the maximum number of characters to copy to the buffer. If the text exceeds this
limit, it is truncated.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the copied string, not
including the terminating null character. If the window has no title bar or text, if the title bar is
empty, or if the window or control handle is invalid, the return value is zero. To get extended error
information, call GetLastError.

This function cannot retrieve the text of an edit control in another application.RemarksThis function causes a WM_GETTEXT message to be sent to the specified window or control.

This function cannot retrieve the text of an edit control in another application.See AlsoGetWindowTextLength, SetWindowText, WM_GETTEXT

GetWindowTextLength
The GetWindowTextLength function retrieves the length, in characters, of the specified window's
title bar text (if the window has a title bar). If the specified window is a control, the function
retrieves the length of the text within the control.

int GetWindowTextLength(
HWND hWnd // handle of window or control with text

);ParametershWnd
Identifies the window or control.

Return ValuesIf the function succeeds, the return value is the length, in characters, of the text. Under certain
conditions, this value may actually be greater than the length of the text. For more information,
see the following Remarks section.

If the window has no text, the return value is zero. To get extended error information, call
GetLastError.RemarksThis function causes a WM_GETTEXTLENGTH message to be sent to the specified window or
control.

Under certain conditions, the GetWindowTextLength function may return a value that is larger
than the actual length of the text. This occurs with certain mixtures of ANSI and Unicode, and is
due to the operating system allowing for the possible existence of DBCS characters within the
text. The return value, however, will always be at least as large as the actual length of the text;
you can thus always use it to guide buffer allocation. This behavior can occur when an application
uses both ANSI functions and common dialogs, which use Unicode. It can also occur when an
application uses the ANSI flavor of GetWindowTextLength with a window whose window
procedure is Unicode, or the Unicode flavor with a window whose window procedure is ANSI.

To obtain the exact length of the text, use the WM_GETTEXT, LB_GETTEXT, or
CB_GETLBTEXT messages, or the GetWindowText function.See AlsoCB_GETLBTEXT, GetWindowText, LB_GETTEXT, SetWindowText, WM_GETTEXT,
WM_GETTEXTLENGTH

GetWindowThreadProcessId
The GetWindowThreadProcessId function retrieves the identifier of the thread that created the
specified window and, optionally, the identifier of the process that created the window. This
function supersedes the GetWindowTask function.

DWORD GetWindowThreadProcessId(
HWND hWnd, // handle of window
LPDWORD lpdwProcessId // address of variable for process identifier

);ParametershWnd
Identifies the window.

lpdwProcessId
Points to a 32-bit value that receives the process identifier. If this parameter is not NULL,
GetWindowThreadProcessId copies the identifier of the process to the 32-bit value;
otherwise, it does not.

Return ValuesThe return value is the identifier of the thread that created the window.RemarksThis function replaces the GetWindowTask function of Windows version 3.x.

GetWindowWord
The GetWindowWord function retrieves a 16-bit (word) value at the specified offset into the extra
window memory for the specified window.

WORD GetWindowWord(
HWND hWnd, // handle of window
int nIndex // offset of value to retrieve

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based byte offset of the value to be retrieved. Valid values are in the range
zero through the number of bytes of extra window memory, minus two; for example, if you
specified 10 or more bytes of extra window memory, a value of 8 would be an index to the fifth
16-bit integer.

Return ValuesIf the function succeeds, the return value is the requested 16-bit value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReserve extra window memory by specifying a nonzero value in the cbWndExtra member of the
WNDCLASS structure used with the RegisterClass function.

The GWW_ values are obsolete in Win32. You must use the GetWindowLong function to retrieve
information about the window.See AlsoGetParent, GetWindowLong, RegisterClass, SetParent, SetWindowLong, SetWindowWord,
WNDCLASS

GetWinMetaFileBits
The GetWinMetaFileBits function converts the enhanced-format records from a metafile into
Windows-format records and stores the converted records in the specified buffer.

UINT GetWinMetaFileBits(
HENHMETAFILE hemf, // handle to the enhanced metafile
UINT cbBuffer, // buffer size
LPBYTE lpbBuffer, // pointer to buffer
INT fnMapMode, // mapping mode
HDC hdcRef // handle of reference device context

);Parametershemf
Identifies the enhanced metafile.

cbBuffer
Specifies the size, in bytes, of the buffer into which the converted records are to be copied.

lpbBuffer
Points to the buffer into which the converted records are to be copied. If lpbBuffer is NULL,
GetWinMetaFileBits returns the the number of bytes required to store the converted metafile
records.

fnMapMode
Specifies the mapping mode to use in the converted metafile.

hdcRef
Identifies the reference device context.

Return ValuesIf the function succeeds and the buffer pointer is NULL, the return value is the number of bytes
required to store the converted records; if the function succeeds and the buffer pointer is a valid
pointer, the return value is the size of the metafile data in bytes.

If the function fails, the return value is zero.RemarksThis function converts an enhanced metafile into a Windows-format metafile so that its picture can
be displayed in an application that recognizes the older format.

Windows uses the reference device context to determine the resolution of the converted metafile.

The GetWinMetaFileBits function does not invalidate the enhanced metafile handle. An
application should call the DeleteEnhMetaFile function to release the handle when it is no longer
needed.

Due to the limitations of the Windows-format metafile, some information can be lost in the
retrieved metafile contents. For example, an original call to the PolyBezier function in the
enhanced metafile may be converted into a call to the Polyline function in the Windows-format
metafile, because there is no equivalent PolyBezier function in the Windows format.

Windows 3.x applications define the viewport origin and extents of a picture stored in a Windows-
format metafile. As a result, the Windows-format records created by GetWinMetaFileBits do not
contain the SetViewportOrgEx and SetViewportExtEx functions. However, GetWinMetaFileBits
does create Windows-format records for the SetWindowExtEx and SetMapMode functions.

To create a scalable Windows-format metafile, specify MM_ANISOTROPIC as the fnMapMode
parameter.

The upper-left corner of the metafile picture is always mapped to the origin of the reference
device.See AlsoDeleteEnhMetaFile, PolyBezier, Polyline, SetMapMode, SetViewportOrgEx,
SetViewportExtEx, SetWindowExtEx, SetWinMetaFileBits

GetWorldTransform
The GetWorldTransform function retrieves the current world-space to page-space
transformation.

BOOL GetWorldTransform(
HDC hdc, // handle to the device context
LPXFORM lpXform // pointer to the structure receiving transformation

);Parametershdc
Identifies the device context.

lpXform
Points to an XFORM structure that receives the current world-space to page-space
transformation.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe precision of the transformation may be altered if an application calls the
ModifyWorldTransform function prior to calling GetWorldTransform. (This is because the
internal format for storing transformation values uses a higher precision than a FLOAT value.)See AlsoModifyWorldTransform, SetWorldTransform

GlobalAddAtom
The GlobalAddAtom function adds a character string to the global atom table and returns a
unique value (an atom) identifying the string.

ATOM GlobalAddAtom(
LPCTSTR lpString // pointer to the string to add

);ParameterslpString
Points to the null-terminated string to be added. The string can have a maximum size of 255
bytes. Strings that differ only in case are considered identical. The case of the first string of
this name added to the table is preserved and returned by the GlobalGetAtomName
function.

Return ValuesIf the function succeeds, the return value is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the string already exists in the global atom table, the atom for the existing string is returned and
the atom's reference count is incremented.

The string associated with the atom is not deleted from memory until its reference count is zero.
For more information, see the GlobalDeleteAtom function.

Global atoms are not deleted automatically when the application terminates. For every call to the
GlobalAddAtom function, there must be a corresponding call to the GlobalDeleteAtom function.

GlobalAddAtom returns a string atom whose value is in the range 0xC000 through 0xFFFF.

If the lpString parameter has the form "#1234", GlobalAddAtom returns an integer atom whose
value is the 16-bit representation of the decimal number specified in the string (0x04D2, in this
example). If the decimal value specified is 0x0000 or a value in the range 0xC000 through
0xFFFF, the return value is zero, indicating an error. If lpString is in the range 0x0001 through
0xBFFF, the return value is the low-order word of lpString.

The MAKEINTATOM macro can be used to convert a WORD value into a string that can be
added to the atom table by using the GlobalAddAtom function.See AlsoAddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalDeleteAtom, GlobalFindAtom,
GlobalGetAtomName, MAKEINTATOM

GlobalAlloc
The GlobalAlloc function allocates the specified number of bytes from the heap. In the linear
Win32 API environment, there is no difference between the local heap and the global heap.

HGLOBAL GlobalAlloc(
UINT uFlags, // object allocation attributes
DWORD dwBytes // number of bytes to allocate

);ParametersuFlags
Specifies how to allocate memory. If zero is specified, the default is GMEM_FIXED. Except for
the incompatible combinations that are specifically noted, any combination of the following
flags can be used. To indicate whether the function allocates fixed or movable memory,
specify one of the first four flags:

Flag Meaning
GMEM_FIXED Allocates fixed memory. This flag

cannot be combined with the
GMEM_MOVEABLE or
GMEM_DISCARDABLE flag. The
return value is a pointer to the
memory block. To access the
memory, the calling process simply
casts the return value to a pointer.

GMEM_MOVEABLE Allocates movable memory. This flag
cannot be combined with the
GMEM_FIXED flag. The return value
is the handle of the memory object.
The handle is a 32-bit quantity that is
private to the calling process. To
translate the handle into a pointer,
use the GlobalLock function.

GPTR Combines the GMEM_FIXED and
GMEM_ZEROINIT flags.

GHND Combines the GMEM_MOVEABLE
and GMEM_ZEROINIT flags.

GMEM_DDESHARE Allocates memory to be used by the
dynamic data exchange (DDE)
functions for a DDE conversation.
Unlike Windows version 3. x, this
memory is not shared globally.
However, this flag is available for
compatibility purposes. It may be
used by some applications to
enhance the performance of DDE
operations and should, therefore, be
specified if the memory is to be used
for DDE.
Only processes that use DDE or the
clipboard for interprocess
communications should specify this
flag.

GMEM_DISCARDABLE Allocates discardable memory. This
flag cannot be combined with the
GMEM_FIXED flag. Some Win32-
based applications may ignore this
flag.

GMEM_LOWER Ignored. This flag is provided only for
compatibility with Windows version 3.
x.

GMEM_NOCOMPACT Does not compact or discard memory
to satisfy the allocation request.

GMEM_NODISCARD Does not discard memory to satisfy
the allocation request.

GMEM_NOT_BANKED Ignored. This flag is provided only for
compatibility with Windows version 3.
x.

GMEM_NOTIFY Ignored. This flag is provided only for
compatibility with Windows version 3.
x.

GMEM_SHARE Same as the GMEM_DDESHARE
flag.

GMEM_ZEROINIT Initializes memory contents to zero.

dwBytes
Specifies the number of bytes to allocate. If this parameter is zero and the uFlags parameter
specifies the GMEM_MOVEABLE flag, the function returns a handle to a memory object that
is marked as discarded.

Return ValuesIf the function succeeds, the return value is the handle of the newly allocated memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf the heap does not contain sufficient free space to satisfy the request, GlobalAlloc returns
NULL.

Because NULL is used to indicate an error, virtual address zero is never allocated. It is, therefore,
easy to detect the use of a NULL pointer.

All memory is created with execute access; no special function is required to execute dynamically
generated code.

Memory allocated with this function is guaranteed to be aligned on an 8-byte boundary.

The GlobalAlloc and LocalAlloc functions are limited to a combined total of 65,536 handles for
GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. This limitation does not apply
to GMEM_FIXED or LMEM_FIXED memory.

If this function succeeds, it allocates at least the amount of memory requested. If the actual
amount allocated is greater than the amount requested, the process can use the entire amount.
To determine the actual number of bytes allocated, use the GlobalSize function.See AlsoGlobalFree, GlobalLock, GlobalReAlloc, GlobalSize, LocalAlloc

GlobalCompact
The GlobalCompact function is obsolete. This function is provided only for compatibility with 16-
bit versions of Windows. It has no meaning in the 32-bit environment.

GlobalDeleteAtom
The GlobalDeleteAtom function decrements the reference count of a global string atom. If the
atom's reference count reaches zero, GlobalDeleteAtom removes the string associated with the
atom from the global atom table.

ATOM GlobalDeleteAtom(
ATOM nAtom // atom to delete

);ParametersnAtom
Identifies the atom and character string to be deleted.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is the nAtom parameter. To get extended error information,
call GetLastError.RemarksA string atom's reference count specifies the number of times the string has been added to or
removed from the atom table. The GlobalAddAtom function increments the reference count of a
string that already exists in the global atom table each time it is called.

The only way to ensure that an atom has been deleted from the atom table is to call this function
repeatedly until it fails. When the reference count is decremented to zero, the next
GlobalFindAtom or GlobalDeleteAtom function call fails.

GlobalDeleteAtom has no effect on an integer atom (an atom created by using the
MAKEINTATOM macro). The function always returns zero for an integer atom.See AlsoAddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalFindAtom, MAKEINTATOM

GlobalDiscard
The GlobalDiscard function discards the specified global memory block. The lock count of the
memory object must be zero.

HGLOBAL GlobalDiscard(
HGLOBAL hglbMem // handle to the global memory object

);ParametershglbMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the function succeeds, the return value is the handle of the memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksGlobalDiscard discards only global objects that the calling process allocated with the
GMEM_DISCARDABLE flag. If a process attempts to discard a fixed or locked object, the function
fails.

Although GlobalDiscard discards the object's memory block, the handle of the object remains
valid. A process can subsequently pass the handle to the GlobalReAlloc function to allocate
another global memory block identified by the same handle.See AlsoGlobalAlloc, GlobalReAlloc

GlobalFindAtom
The GlobalFindAtom function searches the global atom table for the specified character string
and retrieves the global atom associated with that string.

ATOM GlobalFindAtom(
LPCTSTR lpString // pointer to the string to find

);ParameterslpString
Points to the null-terminated character string to search for.

Return ValuesIf the function succeeds, the return value is the global atom associated with the given string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEven though Windows preserves the case of a string in an atom table as it was originally entered,
the search performed by GlobalFindAtom is not case sensitive.See AlsoAddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, GlobalDeleteAtom,
GlobalGetAtomName

GlobalFix
The GlobalFix function is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. Win32-based applications should use the VirtualLock and VirtualUnlock
functions.

GlobalFlags
The GlobalFlags function returns information about the specified global memory object.

UINT GlobalFlags(
HGLOBAL hMem // handle to the global memory object

);ParametershMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the function succeeds, the return value is a 32-bit value specifying the allocation flags and the
lock count for the memory object.

If the function fails, the return value is the GMEM_INVALID_HANDLE flag, indicating that the
global handle is not valid. To get extended error information, call GetLastError.RemarksThe low-order byte of the low-order word of the return value contains the lock count of the object.
To retrieve the lock count from the return value, use the GMEM_LOCKCOUNT mask with the
bitwise AND (&) operator. The lock count of memory objects allocated with the GMEM_FIXED flag
is always zero.

The high-order byte of the low-order word of the return value indicates the allocation flags of the
memory object. It can be zero or any combination of the following flags:

Flag Meaning

GMEM_DDESHARE Memory was allocated for use by the
dynamic data exchange (DDE) functions.
Unlike Windows version
3. x, this memory is not shared globally.
However, this flag is available for
compatibility purposes and may be used by
some applications to enhance the
performance of DDE operations. Only
processes that use DDE or the clipboard for
interprocess communications should specify
this flag.

GMEM_DISCARDABLEThe object's memory block can be
discarded.

GMEM_DISCARDED The object's memory block has been
discarded.

See AlsoGlobalAlloc, GlobalDiscard, GlobalLock, GlobalReAlloc, GlobalUnlock, LocalFlags

GlobalFree
The GlobalFree function frees the specified global memory object and invalidates its handle.

HGLOBAL GlobalFree(
HGLOBAL hMem // handle to the global memory object

);ParametershMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the function succeeds, the return value is NULL.

If the function fails, the return value is equal to the handle of the global memory object. To get
extended error information, call GetLastError.RemarksHeap corruption or an access violation exception (EXCEPTION_ACCESS_VIOLATION) may
occur if the process tries to examine or modify the memory after it has been freed.

If the hgblMem parameter is NULL, GlobalFree fails and the system generates an access
violation exception.

Both GlobalFree and LocalFree will free a locked memory object. A locked memory object has a
lock count greater than zero. The GlobalLock function locks a global memory object and
increments the lock count by one. The GlobalUnlock function unlocks it and decrements the lock
count by one. To get the lock count of a global memory object, use the GlobalFlags function.

Windows NT: However, if an application is running under a debug (DBG) version of Windows NT,
such as the one distributed on the SDK CD-ROM, both GlobalFree and LocalFree enter a
breakpoint just before freeing a locked object. This lets a programmer double-check the intended
behavior. Typing G while using the debugger in this situation lets the freeing operation occur.See AlsoGlobalAlloc, GlobalFlags, GlobalLock, GlobalReAlloc, GlobalUnlock, LocalFree

GlobalGetAtomName
The GlobalGetAtomName function retrieves a copy of the character string associated with the
specified global atom.

UINT GlobalGetAtomName(
ATOM nAtom, // atom identifier
LPTSTR lpBuffer, // pointer to the buffer for the atom string
int nSize // size of the buffer

);ParametersnAtom
Identifies the global atom associated with the character string to be retrieved.

lpBuffer
Points to the buffer for the character string.

nSize
Specifies the size, in characters, of the buffer.

Return ValuesIf the function succeeds, the return value is the length of the string copied to the buffer, in
characters, not including the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe string returned for an integer atom (an atom created by the MAKEINTATOM macro) is a null-
terminated string in which the first character is a pound sign (#) and the remaining characters
represent the unsigned integer originally passed to MAKEINTATOM.See AlsoAddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom,
MAKEINTATOM

GlobalHandle
The GlobalHandle function retrieves the handle associated with the specified pointer to a global
memory block.

HGLOBAL GlobalHandle(
LPCVOID pMem // pointer to the global memory block

);ParameterspMem
Points to the first byte of the global memory block. This pointer is returned by the GlobalLock
function.

Return ValuesIf the function succeeds, the return value is the handle of the specified global memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWhen the GlobalAlloc function allocates a memory object with the GMEM_MOVEABLE flag, it
returns the handle of the object. The GlobalLock function converts this handle into a pointer to
the memory block, and GlobalHandle converts the pointer back into a handle.See AlsoGlobalAlloc, GlobalLock

GlobalLock
The GlobalLock function locks a global memory object and returns a pointer to the first byte of
the object's memory block. The memory block associated with a locked memory object cannot be
moved or discarded. For memory objects allocated with the GMEM_MOVEABLE flag, the function
increments the lock count associated with the memory object.

LPVOID GlobalLock(
HGLOBAL hMem // address of the global memory object

);ParametershMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the function succeeds, the return value is a pointer to the first byte of the memory block.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe internal data structures for each memory object include a lock count that is initially zero. For
movable memory objects, GlobalLock increments the count by one, and the GlobalUnlock
function decrements the count by one. For each call that a process makes to GlobalLock for an
object, it must eventually call GlobalUnlock. Locked memory will not be moved or discarded,
unless the memory object is reallocated by using the GlobalReAlloc function. The memory block
of a locked memory object remains locked until its lock count is decremented to zero, at which
time it can be moved or discarded.

Memory objects allocated with the GMEM_FIXED flag always have a lock count of zero. For these
objects, the value of the returned pointer is equal to the value of the specified handle.

If the specified memory block has been discarded or if the memory block has a zero-byte size, this
function returns NULL.

Discarded objects always have a lock count of zero.See AlsoGlobalAlloc, GlobalFlags, GlobalReAlloc, GlobalUnlock

GlobalLRUNewest
The GlobalLRUNewest function is obsolete. This function is provided only for compatibility with
16-bit versions of Windows. Win32-based applications should use the VirtualLock and
VirtualUnlock functions.

GlobalLRUOldest
The GlobalLRUOldest function is obsolete. This function is provided only for compatibility with
16-bit versions of Windows. Win32-based applications should use the VirtualLock and
VirtualUnlock functions.

GlobalMemoryStatus
The GlobalMemoryStatus function retrieves information about current available memory. The
function returns information about both physical and virtual memory. This function supersedes the
GetFreeSpace function.

VOID GlobalMemoryStatus(
LPMEMORYSTATUS lpBuffer // pointer to the memory status structure

);ParameterslpBuffer
Points to a MEMORYSTATUS structure in which information about current memory
availability is returned. Before calling this function, the calling process should set the
dwLength member of this structure.

Return ValuesThis function does not return a value.RemarksAn application can use the GlobalMemoryStatus function to determine how much memory it can
allocate without severely impacting other applications.

The information returned is volatile, and there is no guarantee that two sequential calls to this
function will return the same information.See AlsoMEMORYSTATUS

GlobalReAlloc
The GlobalReAlloc function changes the size or attributes of a specified global memory object.
The size can increase or decrease.

HGLOBAL GlobalReAlloc(
HGLOBAL hMem, // handle to the global memory object
DWORD dwBytes, // new size of the block
UINT uFlags // how to reallocate object

);ParametershMem
Identifies the global memory object to be reallocated. This handle is returned by either the
GlobalAlloc or GlobalReAlloc function.

dwBytes
Specifies the new size, in bytes, of the memory block. If this parameter is zero and the uFlags
parameter specifies the GMEM_MOVEABLE flag, the function returns the handle of a memory
object that is marked as discarded. If uFlags specifies the GMEM_MODIFY flag, this
parameter is ignored.

uFlags
Specifies how to reallocate the global memory object. If the GMEM_MODIFY flag is specified,
this parameter modifies the attributes of the memory object, and the dwBytes parameter is
ignored. Otherwise, this parameter controls the reallocation of the memory object.
The GMEM_MODIFY flag can be combined with either or both of the following flags:

Flag Meaning
GMEM_DISCARDABLE Allocates discardable memory if the

GMEM_MODIFY flag is also
specified. This flag is ignored, unless
the object was previously allocated as
movable or the GMEM_MOVEABLE
flag is also specified.

GMEM_MOVEABLE Windows NT only: Changes a fixed
memory object to a movable memory
object if the GMEM_MODIFY flag is
also specified.

If this parameter does not specify GMEM_MODIFY, it can be any combination of the
following flags:

Flag Meaning
GMEM_MOVEABLE If dwBytes is zero, discards a

previously movable and discardable
memory block. If the lock count of the
object is not zero or if the block is not
movable and discardable, the
function fails.
If dwBytes is nonzero, enables the
system to move the reallocated block
to a new location without changing
the movable or fixed attribute of the
memory object. If the object is fixed,
the handle returned may be different
from the handle specified by the
hMem parameter. If the object is
movable, the block can be moved
without invalidating the handle, even
if the object is currently locked by a
previous call to the GlobalLock
function. To get the new address of
the memory block, use GlobalLock.

GMEM_NOCOMPACT Prevents memory from being
compacted or discarded to satisfy the

allocation request.
GMEM_ZEROINIT Causes the additional memory

contents to be initialized to zero if the
memory object is growing in size.

Return ValuesIf the function succeeds, the return value is the handle of the reallocated memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf GlobalReAlloc reallocates a movable object, the return value is the handle of the memory
object. To convert the handle to a pointer, use the GlobalLock function.

If GlobalReAlloc reallocates a fixed object, the value of the handle returned is the address of the
first byte of the memory block. To access the memory, a process can simply cast the return value
to a pointer.

If GlobalReAlloc fails, the original memory is not freed, and the original handle and pointer are
still valid.See AlsoGlobalAlloc, GlobalFree, GlobalLock

GlobalSize
The GlobalSize function retrieves the current size, in bytes, of the specified global memory
object.

DWORD GlobalSize(
HGLOBAL hMem // handle to the global memory object

);ParametershMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the function succeeds, the return value is the size, in bytes, of the specified global memory
object.

If the specified handle is not valid or if the object has been discarded, the return value is zero. To
get extended error information, call GetLastError.RemarksThe size of a memory block may be larger than the size requested when the memory was
allocated.

To verify that the specified object's memory block has not been discarded, use the GlobalFlags
function before calling GlobalSize.See AlsoGlobalAlloc, GlobalFlags, GlobalReAlloc

GlobalUnfix
The GlobalUnfix function is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. It has no meaning in the 32-bit environment.

GlobalUnlock
The GlobalUnlock function decrements the lock count associated with a memory object that was
allocated with the GMEM_MOVEABLE flag. This function has no effect on memory objects
allocated with the GMEM_FIXED flag.

BOOL GlobalUnlock(
HGLOBAL hMem // handle to the global memory object

);ParametershMem
Identifies the global memory object. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

Return ValuesIf the memory object is still locked after decrementing the lock count, the return value is a nonzero
value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
If GetLastError returns NO_ERROR, the memory object is unlocked.RemarksThe internal data structures for each memory object include a lock count that is initially zero. For
movable memory objects, the GlobalLock function increments the count by one, and
GlobalUnlock decrements the count by one. For each call that a process makes to GlobalLock
for an object, it must eventually call GlobalUnlock. Locked memory will not be moved or
discarded, unless the memory object is reallocated by using the GlobalReAlloc function. The
memory block of a locked memory object remains locked until its lock count is decremented to
zero, at which time it can be moved or discarded.

Memory objects allocated with the GMEM_FIXED flag always have a lock count of zero. If the
specified memory block is fixed memory, this function returns TRUE.

If the memory object is already unlocked, GlobalUnlock returns FALSE and GetLastError
reports ERROR_NOT_LOCKED. Memory objects allocated with the LMEM_FIXED flag always
have a lock count of zero and cause the ERROR_NOT_LOCKED error.

A process should not rely on the return value to determine the number of times it must
subsequently call GlobalUnlock for a memory object.See AlsoGlobalAlloc, GlobalFlags, GlobalLock, GlobalReAlloc

GlobalUnWire
The GlobalUnWire function is obsolete. Applications that need to lock a global memory object
should use the GlobalLock and GlobalUnlock functions.

This function is provided only for compatibility with 16-bit versions of Windows. New Win32-based
applications should not use this function.

GlobalWire
The GlobalWire function is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. Win32-based applications should use the GlobalLock and GlobalUnlock
functions.

GrayString
The GrayString function draws gray text at the specified location. The function draws the text by
copying it into a memory bitmap, graying the bitmap, and then copying the bitmap to the screen.
The function grays the text regardless of the selected brush and background. GrayString uses
the font currently selected for the specified device context.

If the lpOutputFunc parameter is NULL, GDI uses the TextOut function, and the lpData parameter
is assumed to be a pointer to the character string to be output. If the characters to be output
cannot be handled by TextOut (for example, the string is stored as a bitmap), the application must
supply its own output function.

BOOL GrayString(
HDC hDC, // handle to the device context
HBRUSH hBrush, // handle to the brush for graying
GRAYSTRINGPROC lpOutputFunc, // pointer to the callback function
LPARAM lpData, // pointer to application-defined data
int nCount, // number of characters to output
int X, // horizontal position
int Y, // vertical position
int nWidth, // width
int nHeight // height

);ParametershDC
Identifies the device context.

hBrush
Identifies the brush to be used for graying. If this parameter is NULL, the text is grayed with
the same brush that was used to draw window text.

lpOutputFunc
Points to the application-defined function that will draw the string, or, if TextOut is to be used
to draw the string, it is a NULL pointer. For details, see the OutputProc callback function.

lpData
Specifies a pointer to data to be passed to the output function. If the lpOutputFunc parameter
is NULL, lpData must be a pointer to the string to be output.

nCount
Specifies the number of characters to be output. If the nCount parameter is zero, GrayString
calculates the length of the string (assuming lpData is a pointer to the string). If nCount is - 1
and the function pointed to by lpOutputFunc returns FALSE, the image is shown but not
grayed.

X
Specifies the device x-coordinate of the starting position of the rectangle that encloses the
string.

Y
Specifies the device y-coordinate of the starting position of the rectangle that encloses the
string.

nWidth
Specifies the width, in device units, of the rectangle that encloses the string. If this parameter
is zero, GrayString calculates the width of the area, assuming lpData is a pointer to the
string.

nHeight
Specifies the height, in device units, of the rectangle that encloses the string. If this parameter
is zero, GrayString calculates the height of the area, assuming lpData is a pointer to the
string.

Return ValuesIf the string is drawn, the return value is nonzero.

If either the TextOut function or the application-defined output function returned zero, or there
was insufficient memory to create a memory bitmap for graying, the return value is zero.RemarksWithout calling GrayString, an application can draw grayed strings on devices that support a solid
gray color. The system color COLOR_GRAYTEXT is the solid-gray system color used to draw
disabled text. The application can call the GetSysColor function to retrieve the color value of
COLOR_GRAYTEXT. If the color is other than zero (black), the application can call the
SetTextColor function to set the text color to the color value and then draw the string directly. If
the retrieved color is black, the application must call GrayString to gray the text.

See AlsoDrawText, GetSysColor, OutputProc, SetTextColor, TabbedTextOut, TextOut

Handler
A Handler function is a function that a service process specifies as the control handling function
of a particular service. The function can have any application-defined name.

VOID WINAPI Handler(
DWORD fdwControl // requested control code

);ParametersfdwControl
Indicates the requested control code. This value can be one of the standard control codes in
the table, or it can be a user-defined control code in the range of 128 to 255, inclusive. For
user-defined control codes, the service defines the action associated with the control code.

Value Meaning
SERVICE_CONTROL_STOP

Requests the service to stop.
SERVICE_CONTROL_PAUSE

Requests the service to pause.
SERVICE_CONTROL_CONTINUE

Requests the paused service to resume.
SERVICE_CONTROL_INTERROGATE

Requests the service to immediately report its
current status information to the service control
manager.

SERVICE_CONTROL_SHUTDOWN
Requests the service to perform cleanup tasks,
because the system is shutting down. Due to
extremely limited time available for shutdown, this
control should only be used by services that
absolutely need to shut down ¾ for instance, when
the eventlog service needs to clear a dirty bit in the files
that it maintains, or when the server service needs to
shut down so that network connections aren't made
when the system is in the shutdown state.
If the service takes time to shut down, and sends out
STOP_PENDING status messages, it is highly
recommended that these messages include a waithint
so that the service controller will know how long to wait
before indicating to the system that service shutdown is
complete. The system gives the service control
manager a limited amount of time (about 20 seconds)
to complete service shutdown, after which time system
shutdown proceeds regardless of whether service
shutdown is complete.

Return ValuesThis function does not return a value.RemarksWhen a Win32 service is started, its ServiceMain function should immediately call the
RegisterServiceCtrlHandler function to specify a Handler function to handle control requests.

Whenever it receives a control request from the service control manager, the control dispatcher in
the main thread of a Win32 service process invokes the control handler function for the specified
service. After handling the control request, the control handler must call the SetServiceStatus
function to report its current status to the service control manager.See AlsoRegisterServiceCtrlHandler, ServiceMain, SetServiceStatus

HandlerRoutine
A HandlerRoutine function is a function that a console process specifies to handle control signals
received by the process. The function can have any name.

BOOL HandlerRoutine(
DWORD dwCtrlType // control signal type

);ParametersdwCtrlType
Indicates the type of control signal received by the handler. This value is one of the following:

Signal Description
CTRL_C_EVENT A CTRL+C signal was received, either

from keyboard input or from a signal
generated by the
GenerateConsoleCtrlEvent function.

CTRL_BREAK_EVENT A CTRL+BREAK signal was received,
either from keyboard input or from a
signal generated by
GenerateConsoleCtrlEvent.

CTRL_CLOSE_EVENT A signal that the system sends to all
processes attached to a console
when the user closes the console
(either by choosing the Close
command from the console window's
System menu, or by choosing the
End Task command from the Task
List).

CTRL_LOGOFF_EVENT A signal that the system sends to all
console processes when a user is
logging off. This signal does not
indicate which user is logging off, so
no assumptions can be made.

CTRL_SHUTDOWN_EVENTA signal that the system sends to all
console processes when the system
is shutting down.

Return ValuesIf the function handles the control signal, it should return TRUE. If it returns FALSE, the next
handler function in the list of handlers for this process is used.RemarksEach console process has its own list of HandlerRoutine functions. Initially, this list contains only
a default handler function that calls ExitProcess. A console process adds or removes additional
handler functions by calling the SetConsoleCtrlHandler function, which does not affect the list of
handler functions for other processes. When a console process receives any of the control
signals, its handler functions are called on a last-registered, first-called basis until one of the
handlers returns TRUE. If none of the handlers returns TRUE, the default handler is called.

The CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT signals
give the process an opportunity to clean up before termination. A HandlerRoutine called to
handle any of these signals can do one of the following after performing any cleanup operations:

· Call the ExitProcess function to terminate the process.
· Return FALSE. If none of the registered handler functions returns TRUE, the default

handler terminates the process.
· Return TRUE. In this case, no other handler functions are called, and the system displays

a pop-up dialog box that asks the user whether to terminate the process. The system also
displays the dialog box if the process does not respond within a certain time-out period (5
seconds for CTRL_CLOSE_EVENT, and 20 seconds for CTRL_LOGOFF_EVENT and
CTRL_SHUTDOWN_EVENT).

A process can use the SetProcessShutdownParameters function to prevent the
CTRL_LOGOFF_EVENT and CTRL_SHUTDOWN_EVENT dialog box from being displayed. In
this case, the system just terminates the process when a HandlerRoutine returns TRUE or when
the time-out period elapses.See AlsoExitProcess, GenerateConsoleCtrlEvent, GetProcessShutdownParameters,
SetConsoleCtrlHandler, SetProcessShutdownParameters

HeapAlloc
The HeapAlloc function allocates a block of memory from a heap. The allocated memory is not
movable.

LPVOID HeapAlloc(
HANDLE hHeap, // handle to the private heap block
DWORD dwFlags, // heap allocation control flags
DWORD dwBytes // number of bytes to allocate

);ParametershHeap
Specifies the heap from which the memory will be allocated. This parameter is a handle
returned by the HeapCreate or GetProcessHeap function.

dwFlags
Specifies several controllable aspects of heap allocation. Specifying any of these flags will
override the corresponding flag specified when the heap was created with HeapCreate. You
can specify one or more of the following flags:

Flag Meaning
HEAP_GENERATE_EXCEPTIONSSpecifies that the operating

system will raise an exception to
indicate a function failure, such as
an out-of-memory condition,
instead of returning NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion
will not be used while this function
is accessing the heap. For more
information about
HEAP_NO_SERIALIZE, see the
Remarks section of HeapCreate.

HEAP_ZERO_MEMORY Specifies that the allocated
memory will be initialized to zero.

dwBytes
Specifies the number of bytes to be allocated.
If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes must be less
than 0x7FFF8. You create a non-growable heap by calling the HeapCreate function with a
nonzero value.

Return ValuesIf the function succeeds, the return value is a pointer to the allocated memory block.

If the function fails and you have not specified HEAP_GENERATE_EXCEPTIONS, the return
value is NULL.

If the function fails and you have specified HEAP_GENERATE_EXCEPTIONS, the function may
generate the following exceptions:

Value Meaning

STATUS_NO_MEMORY The allocation attempt failed because
of a lack of available memory or heap
corruption.

STATUS_ACCESS_VIOLATIONThe allocation attempt failed because
of heap corruption or improper
function parameters.

Note that heap corruption can lead to either exception. It depends upon the nature of the
heap corruption.

If the function fails, it does not call SetLastError. An application cannot call GetLastError for
extended error information.RemarksIf HeapAlloc succeeds, it allocates at least the amount of memory requested. If the actual amount
allocated is greater than the amount requested, the process can use the entire amount. To
determine the actual size of the allocated block, use the HeapSize function.

To free a block of memory allocated by HeapAlloc, use the HeapFree function.

Memory allocated by HeapAlloc is not movable. Since the memory is not movable, it is possible
for the heap to become fragmented.

Note that if HEAP_ZERO_MEMORY is not specified, the allocated memory will not be initialized
to zero.See AlsoGetProcessHeap, HeapCreate, HeapDestroy, HeapFree, HeapReAlloc, HeapSize,
SetLastError

HeapCompact
The HeapCompact function attempts to compact a specified heap. It compacts the heap by
coalescing adjacent free blocks of memory and decommitting large free blocks of memory.

UINT HeapCompact(
HANDLE hHeap, // handle to the heap to compact
DWORD dwFlags // bit-flags that control heap access during function operation

);ParametershHeap
Handle to the heap that the function will attempt to compact.

dwFlags
A set of bit flags that control heap access during function operation. The following bit flag has
meaning:

Value Meaning
HEAP_NO_SERIALIZE If this flag is set, heap access is not

serialized while the HeapCompact
function accesses the heap; heap
access is not mutually exclusive. It is
safe to set this flag only in a limited set
of specific situations. For a discussion
of those situations and heap
serialization in general, see the
Remarks section of HeapCreate.
If this flag is clear, heap access is
serialized while HeapCompact
accesses the heap; heap access is
mutually exclusive. This is the safe and
simple default condition.

Return ValuesIf the function succeeds, the return value is the size, in bytes, of the largest committed free block
in the heap. This is an unsigned integer value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

In the unlikely case that there is absolutely no space available in the heap, the function return
value is zero, and GetLastError returns the value NO_ERROR.RemarksThere is no guarantee that an application can successfully allocate a memory block of the size
returned by HeapCompact. Other threads or the commit threshold might prevent such an
allocation.See AlsoHeapCreate, HeapValidate

HeapCreate
The HeapCreate function creates a heap object that can be used by the calling process. The
function reserves a contiguous block in the virtual address space of the process and allocates
physical storage for a specified initial portion of this block.

HANDLE HeapCreate(
DWORD flOptions, // heap allocation flag
DWORD dwInitialSize, // initial heap size
DWORD dwMaximumSize // maximum heap size

);ParametersflOptions
Specifies optional attributes for the new heap. These flags will affect subsequent access to
the new heap through calls to the heap functions (HeapAlloc, HeapFree, HeapReAlloc, and
HeapSize). You can specify one or more of the following flags:

Flag Meaning
HEAP_GENERATE_EXCEPTIONSSpecifies that the system will raise

an exception to indicate a function
failure, such as an out-of-memory
condition, instead of returning
NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion
will not be used when the heap
functions allocate and free
memory from this heap. The
default, occurring when the
HEAP_NO_SERIALIZE flag is not
specified, is to serialize access to
the heap. Serialization of heap
access allows two or more threads
to simultaneously allocate and
free memory from the same heap.

dwInitialSize
Specifies the initial size, in bytes, of the heap. This value determines the initial amount of
physical storage that is allocated for the heap. The value is rounded up to the next page
boundary. To determine the size of a page on the host computer, use the GetSystemInfo
function.

dwMaximumSize
If dwMaximumSize is a nonzero value, it specifies the maximum size, in bytes, of the heap.
The HeapCreate function rounds dwMaximumSize up to the next page boundary, and then
reserves a block of that size in the process's virtual address space for the heap. If allocation
requests made by the HeapAlloc or HeapReAlloc functions exceed the initial amount of
physical storage specified by dwInitialSize, the system allocates additional pages of physical
storage for the heap, up to the heap's maximum size.
In addition, if dwMaximumSize is nonzero, the heap cannot grow, and an absolute limitation
arises: the maximum size of a memory block in the heap is a bit less than 0x7FFF8 bytes.
Requests to allocate larger blocks will fail, even if the maximum size of the heap is large
enough to contain the block.
If dwMaximumSize is zero, it specifies that the heap is growable. The heap's size is limited
only by available memory. Requests to allocate blocks larger than 0x7FFF8 bytes do not
automatically fail; the system calls VirtualAlloc to obtain the memory needed for such large
blocks. Applications that need to allocate large memory blocks should set dwMaximumSize to
zero.

Return ValuesIf the function succeeds, the return value is a handle of the newly created heap.

If the function fails, the return value is is NULL. To get extended error information, call
GetLastError.RemarksThe HeapCreate function creates a private heap object from which the calling process can
allocate memory blocks by using the HeapAlloc function. The initial size determines the number
of committed pages that are initially allocated for the heap. The maximum size determines the
total number of reserved pages. These pages create a contiguous block in the process's virtual
address space into which the heap can grow. If requests by HeapAlloc exceed the current size of

committed pages, additional pages are automatically committed from this reserved space,
assuming that the physical storage is available.

The memory of a private heap object is accessible only to the process that created it. If a
dynamic-link library (DLL) creates a private heap, the heap is created in the address space of the
process that called the DLL, and it is accessible only to that process.

The system uses memory from the private heap to store heap support structures, so not all of the
specified heap size is available to the process. For example, if the HeapAlloc function requests
64 kilobytes (K) from a heap with a maximum size of 64K, the request may fail because of system
overhead.

If the HEAP_NO_SERIALIZE flag is not specified (the simple default), the heap will serialize
access within the calling process. Serialization ensures mutual exclusion when two or more
threads attempt to simultaneously allocate or free blocks from the same heap. There is a small
performance cost to serialization, but it must be used whenever multiple threads allocate and free
memory from the same heap.

Setting the HEAP_NO_SERIALIZE flag eliminates mutual exclusion on the heap. Without
serialization, two or more threads that use the same heap handle might attempt to allocate or free
memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE flag
can, therefore, be safely used only in the following situations:

· The process has only one thread.
· The process has multiple threads, but only one thread calls the heap functions for a

specific heap.
· The process has multiple threads, and the application provides its own mechanism for

mutual exclusion to a specific heap.
See AlsoGetProcessHeap, GetProcessHeaps, GetSystemInfo, HeapAlloc, HeapDestroy, HeapFree,

HeapReAlloc, HeapSize, HeapValidate, VirtualAlloc

HeapDestroy
The HeapDestroy function destroys the specified heap object. HeapDestroy decommits and
releases all the pages of a private heap object, and it invalidates the handle of the heap.

BOOL HeapDestroy(
HANDLE hHeap // handle to the heap

);ParametershHeap
Specifies the heap to be destroyed. This parameter should be a heap handle returned by the
HeapCreate function. A heap handle returned by the GetProcessHeap function should not be
used.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksProcesses can call HeapDestroy without first calling the HeapFree function to free memory
allocated from the heap.See AlsoGetProcessHeap, HeapAlloc, HeapCreate, HeapFree, HeapReAlloc, HeapSize

HeapFree
The HeapFree function frees a memory block allocated from a heap by the HeapAlloc or
HeapReAlloc function.

BOOL HeapFree(
HANDLE hHeap, // handle to the heap
DWORD dwFlags, // heap freeing flags
LPVOID lpMem // pointer to the memory to free

);ParametershHeap
Specifies the heap whose memory block the function frees. This parameter is a handle
returned by the HeapCreate or GetProcessHeap function.

dwFlags
Specifies several controllable aspects of freeing a memory block. Only one flag is currently
defined; however, all other flag values are reserved for future use. Specifying this flag will
override the corresponding flag specified in the flOptions parameter when the heap was
created by using the HeapCreate function:

Flag Meaning
HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be

used while the function is accessing the
heap. For more information about
HEAP_NO_SERIALIZE, see the Remarks
for the HeapCreate function.

lpMem
Points to the memory block to free. This pointer is returned by the HeapAlloc or
HeapReAlloc function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. An application can call GetLastError for extended
error information.See AlsoGetProcessHeap, HeapAlloc, HeapCreate, HeapDestroy, HeapReAlloc, HeapSize,
SetLastError

HeapLock
The HeapLock function attempts to acquire the critical section object, or lock, that is associated
with a specified heap.

If the function succeeds, the calling thread owns the heap lock. Only the calling thread will be able
to allocate or release memory from the heap. The execution of any other thread of the calling
process will be blocked if that thread attempts to allocate or release memory from the heap. Such
threads will remain blocked until the thread that owns the heap lock calls the HeapUnlock
function.

BOOL HeapLock(
HANDLE hHeap // handle to the heap to lock for exclusive thread access

);ParametershHeap
Handle to the heap to lock for exclusive access by the calling thread.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe HeapLock function is primarily useful for preventing the allocation and release of heap
memory by other threads while the calling thread uses the HeapWalk function.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock function.
Failure to call HeapUnlock will block the execution of any other threads of the calling process that
attempt to access the heap.See AlsoHeapUnlock, HeapWalk

HeapReAlloc
The HeapReAlloc function reallocates a block of memory from a heap. This function enables you
to resize a memory block and change other memory block properties. The allocated memory is
not movable.

LPVOID HeapReAlloc(
HANDLE hHeap, // handle to a heap block
DWORD dwFlags, // heap reallocation flags
LPVOID lpMem, // pointer to the memory to reallocate
DWORD dwBytes // number of bytes to reallocate

);ParametershHeap
Specifies the heap from which the memory will be reallocated. This is a handle returned by
the HeapCreate or GetProcessHeap function.

dwFlags
Specifies several controllable aspects of heap reallocation. Specifying any of these flags will
override the corresponding flag specified in the flOptions parameter when the heap was
created by using the HeapCreate function. You can specify one or more of the following flags:

Flag Meaning
HEAP_GENERATE_EXCEPTIONS Specifies that the operating-

system will raise an exception
to indicate a function failure,
such as an out-of-memory
condition, instead of returning
NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion
will not be used while this
function is accessing the heap.
For more information about
HEAP_NO_SERIALIZE, see
the Remarks section of
HeapCreate.

HEAP_REALLOC_IN_PLACE_ONLY Specifies that there can be no
movement when reallocating a
memory block to a larger size.
If this flag is not specified and
the reallocation request is for a
larger size, the function may
move the block to a new
location. If this flag is specified
and the block cannot be
enlarged without moving, the
function will fail, leaving the
original memory block
unchanged.

HEAP_ZERO_MEMORY If the reallocation request is for
a larger size, this flag specifies
that the additional region of
memory beyond the original
size will be initialized to zero.
The contents of the memory
block up to its original size are
unaffected.

lpMem
Points to the block of memory that the function reallocates. This pointer is returned by an
earlier call to the HeapAlloc or HeapReAlloc function.

dwBytes
Specifies the new size of the memory block, in bytes. A memory block's size can be increased
or decreased by using this function.

If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes must be less
than 0x7FFF8. You create a non-growable heap by calling the HeapCreate function with a
nonzero value.

Return ValuesIf the function succeeds, the return value is a pointer to the reallocated memory block.

If the function fails and you have not specified HEAP_GENERATE_EXCEPTIONS, the return
value is NULL.

If the function fails and you have specified HEAP_GENERATE_EXCEPTIONS, the function may
generate the following exceptions:

Value Meaning

STATUS_NO_MEMORY The reallocation attempt failed for
lack of available memory.

STATUS_ACCESS_VIOLATIONThe reallocation attempt failed
because of heap corruption or
improper function parameters.

If the function fails, it calls SetLastError. An application can call GetLastError for extended
error information.RemarksIf HeapReAlloc succeeds, it allocates at least the amount of memory requested. If the actual
amount allocated is greater than the amount requested, the process can use the entire amount.
To determine the actual size of the reallocated block, use the HeapSize function.

To free a block of memory allocated by HeapReAlloc, use the HeapFree function.See AlsoGetProcessHeap, HeapAlloc, HeapCreate, HeapDestroy, HeapFree, HeapSize, SetLastError

HeapSize
The HeapSize function returns the size, in bytes, of a memory block allocated from a heap by the
HeapAlloc or HeapReAlloc function.

DWORD HeapSize(
HANDLE hHeap, // handle to the heap
DWORD dwFlags, // heap size control flags
LPCVOID lpMem // pointer to memory to return size for

);ParametershHeap
Specifies the heap in which the memory block resides. This handle is returned by the
HeapCreate or GetProcessHeap function.

dwFlags
Specifies several controllable aspects of accessing the memory block. Only one flag is
currently defined; however, all other flag values are reserved for future use. Specifying this
flag will override the corresponding flag specified in the flOptions parameter when the heap
was created by using the HeapCreate function:

Value Meaning
HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be

used while the function is accessing the
heap. For more information about
HEAP_NO_SERIALIZE, see the Remarks
for HeapCreate.

lpaam
Points to the memory block whose size the function will obtain. This is a pointer returned by
the HeapAlloc or HeapReAlloc function.

Return ValuesIf the function succeeds, the return value is the size, in bytes, of the allocated memory block.

If the function fails, the return value is 0xFFFFFFFF. The function does not call SetLastError. An
application cannot call GetLastError for extended error information.See AlsoGetProcessHeap, HeapAlloc, HeapCreate, HeapDestroy, HeapFree, HeapReAlloc,
SetLastError

HeapUnlock
The HeapUnlock function releases ownership of the critical section object, or lock, that is
associated with a specified heap. The HeapUnlock function reverses the action of the HeapLock
function.

BOOL HeapUnlock(
HANDLE hHeap // handle to the heap to unlock

);ParametershHeap
Handle to the heap to unlock.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe HeapLock function is primarily useful for preventing the allocation and release of heap
memory by other threads while the calling thread uses the HeapWalk function. The HeapUnlock
function is the inverse of HeapLock.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock function.
Failure to call HeapUnlock will block the execution of any other threads of the calling process that
attempt to access the heap.See AlsoHeapLock, HeapWalk

HeapValidate
The HeapValidate function attempts to validate a specified heap. The function scans all the
memory blocks in the heap, and verifies that the heap control structures maintained by the
operating system's heap manager are in a consistent state. You can also use the HeapValidate
function to validate a single memory block within a specified heap, without checking the validity of
the entire heap.

BOOL HeapValidate(
HANDLE hHeap, // handle to the heap of interest
DWORD dwFlags, // bit flags that control heap access during function operation
LPCVOID lpMem // optional pointer to individual memory block to validate

);ParametershHeap
Handle to the heap of interest. The HeapValidate function attempts to validate this heap, or a
single memory block within this heap.

dwFlags
A set of bit flags that control heap access during function operation. The following bit flag has
meaning:

Value Meaning
HEAP_NO_SERIALIZE If this flag is set, heap access is not

serialized while the HeapValidate
function accesses the heap; heap
access is not mutually exclusive. It is
safe to set this flag only in a limited set
of specific situations. For a discussion
of those situations and heap
serialization in general, see the
Remarks section of HeapCreate.
If this flag is clear, heap access is
serialized while HeapValidate
accesses the heap; heap access is
mutually exclusive. This is the safe and
simple default condition.

lpMem
Points to a memory block within the specified heap. This parameter may be NULL.
If this parameter is NULL, the function attempts to validate the entire heap specified by
hHeap.
If this parameter is not NULL, the function attempts to validate the memory block pointed to by
lpMem. It does not attempt to validate the rest of the heap.

Return ValuesIf the specified heap or memory block is valid, the return value is nonzero.

If the specified heap or memory block is invalid, the return value is zero. On a system set up for
debugging, the HeapValidate function then displays debugging messages that describe the part
of the heap or memory block that is invalid, and stops at a hard-coded breakpoint so that you can
examine the system to determine the source of the invalidity. The HeapValidate function does not
set the thread's last error value.RemarksThere are heap control structures for each memory block in a heap, and for the heap as a whole.
When you use the HeapValidate function to validate a complete heap, it checks all of these
control structures for consistency.

When you use HeapValidate to validate a single memory block within a heap, it checks only the
control structures pertaining to that element. HeapValidate can only validate allocated memory
blocks. Calling HeapValidate on a freed memory block will return FALSE because there are no
control structures to validate.

If you want to validate the heap elements enumerated by the HeapWalk function, you should only
call HeapValidate on the elements that have the PROCESS_HEAP_ENTRY_BUSY bit flag in the
wFlags member of the PROCESS_HEAP_ENTRY structure. HeapValidate returns FALSE for all
heap elements that do not have this bit set.See AlsoHeapCreate, HeapWalk, PROCESS_HEAP_ENTRY

HeapWalk
The HeapWalk function enumerates the memory blocks in a specified heap.

BOOL HeapWalk(
HANDLE hHeap, // handle to the heap to enumerate
LPPROCESS_HEAP_ENTRY lpEntry // points to structure that maintains enumeration state information

);ParametershHeap
Handle to the heap whose memory blocks you wish to enumerate.

dwFlags
Points to a PROCESS_HEAP_ENTRY structure that maintains state informationfor a
particular heap enumeration.
If the HeapWalk function succeeds, returning the value TRUE, this structure's members
contain information about the next memory block in the heap.
To initiate a heap enumeration, set the lpData field of the PROCESS_HEAP_ENTRY
structure to NULL. To continue a particular heap enumeration, call the HeapWalk function
repeatedly, with no changes to hHeap, lpEntry, or any of the members of the
PROCESS_HEAP_ENTRY structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the heap enumeration terminates successfully by reaching the end of the heap, the function
returns FALSE, and GetLastError returns the error code ERROR_NO_MORE_ITEMS.RemarksTo initiate a heap enumeration, call HeapWalk with the lpData field of the
PROCESS_HEAP_ENTRY structure pointed to by lpEntry set to NULL.

To continue a heap enumeration, call HeapWalk with the same hHeap and lpEntry values, and
with the PROCESS_HEAP_ENTRY structure unchanged from the preceding call to HeapWalk.
Repeat this process until you have no need for further enumeration, or until the function returns
FALSE and GetLastError returns ERROR_NO_MORE_ITEMS, indicating that all of the heap's
memory blocks have been enumerated.

No special call of HeapWalk is needed to terminate the heap enumeration, since no enumeration
state data is maintained outside the contents of the PROCESS_HEAP_ENTRY structure.

HeapWalk can fail in a multithreaded application if the heap is not locked during the heap
enumeration. Use the HeapLock and HeapUnlock functions to control heap locking during heap
enumeration.See AlsoHeapLock, HeapUnlock, HeapValidate, PROCESS_HEAP_ENTRY

HideCaret
The HideCaret function removes the caret from the screen. Hiding a caret does not destroy its
current shape or invalidate the insertion point.

BOOL HideCaret(
HWND hWnd // handle to the window with the caret

);ParametershWnd
Identifies the window that owns the caret. If this parameter is NULL, HideCaret searches the
current task for the window that owns the caret.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksHideCaret hides the caret only if the specified window owns the caret. If the specified window
does not own the caret, HideCaret does nothing and returns FALSE.

Hiding is cumulative. If your application calls HideCaret five times in a row, it must also call
ShowCaret five times before the caret is displayed.See AlsoCreateCaret, DestroyCaret, GetCaretPos, SetCaretPos, ShowCaret

HiliteMenuItem
The HiliteMenuItem function highlights or removes the highlighting from an item in a menu bar.

BOOL HiliteMenuItem(
HWND hwnd, // handle to the window with the menu
HMENU hmenu, // handle to the menu
UINT uItemHilite, // menu item to highlight or unhighlight
UINT uHilite // highlight flags

);Parametershwnd
Identifies the window that contains the menu.

hmenu
Identifies the menu bar that contains the item to be highlighted.

uItemHilite
Specifies the menu item to be highlighted. This parameter is either the identifier of the menu
item or the offset of the menu item in the menu bar, depending on the value of the uHilite
parameter.

uHilite
Specifies flags that control the interpretation of the uItemHilite parameter and indicates
whether the menu item is highlighted. This parameter must be a combination of either
MF_BYCOMMAND or MF_BYPOSITION and MF_HILITE or MF_UNHILITE.

Value Meaning
MF_BYCOMMAND Indicates that uItemHilite gives the identifier

of the menu item.
MF_BYPOSITION Indicates that uItemHilite gives the zero-

based relative position of the menu item.
MF_HILITE Highlights the menu item. If this flag is not

specified, the highlighting is removed from
the item.

MF_UNHILITE Removes highlighting from the menu item.
Return ValuesIf the menu item is set to the specified highlight state, the return value is nonzero.

If the menu item is not set to the specified highlight state, the return value is zero.RemarksThe MF_HILITE and MF_UNHILITE flags can be used only with the HiliteMenuItem function;
they cannot be used with the ModifyMenu function.See AlsoModifyMenu

ImageList_Add
The ImageList_Add function adds an image or images to an image list.

int ImageList_Add(
HIMAGELIST himl, // handle to the image list
HBITMAP hbmImage, // handle to the bitmap containing the image
HBITMAP hbmMask // handle to the bitmap containing the mask

);Parametershiml
Handle to the image list.

hbmImage
Handle to the bitmap that contains the image or images. The number of images is inferred
from the width of the bitmap.

hbmMask
Handle to the bitmap that contains the mask. If no mask is used with the image list, this
parameter is ignored.

Return ValuesIf the function succeeds, the return value is the index of the first new image.

If the function fails, the return value is - 1.RemarksThe ImageList_Add function copies the bitmap to an internal data structure. Be sure to use the
DeleteObject function to delete hbmImage and hbmMask after the function returns.See AlsoDeleteObject

ImageList_AddMasked
The ImageList_AddMasked function adds an image or images to an image list, generating a
mask from the specified bitmap.

int ImageList_AddMasked(
HIMAGELIST himl, // handle to the image list
HBITMAP hbmImage, // handle to the bitmap
COLORREF crMask // color used to generate mask

);Parametershiml
Handle to the image list.

hbmImage
Handle to the bitmap that contains one or more images. The number of images is inferred
from the width of the bitmap.

crMask
Color used to generate the mask. Each pixel of this color in the specified bitmap is changed to
black, and the corresponding bit in the mask is set to one.

Return ValuesIf the function succeeds, the return value is the index of the first new image.

If the function fails, the return value is - 1.RemarksThe ImageList_AddMasked function copies the bitmap to an internal data structure. Be sure to
use the DeleteObject function to delete hbmImage and crMask after the function returns.See AlsoDeleteObject

ImageList_BeginDrag
The ImageList_BeginDrag function begins dragging an image.

BOOL ImageList_BeginDrag(
HIMAGELIST himlTrack,
int iTrack,
int dxHotspot,
int dyHotspot

);ParametershimlTrack
Handle to the image list.

iTrack
Index of the image to drag.

dxHotspot and dyHotspot
Location of the drag position relative to the upper-left corner of the image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThis function creates a temporary image list that is used for dragging. In response to subsequent
WM_MOUSEMOVE messages, you can move the drag image by using the
ImageList_DragMove function. To end the drag operation, you can use the ImageList_EndDrag
function.See AlsoImageList_DragMove, ImageList_EndDrag, WM_MOUSEMOVE

ImageList_Create
The ImageList_Create function creates a new image list.

HIMAGELIST ImageList_Create(
int cx,
int cy,
UINT flags,
int cInitial,
int cGrow

);Parameterscx
Specifies the width, in pixels, of each image.

cy
Specifies the height, in pixels, of each image.

flags
A set of bit flags that specify the type of image list to create. This parameter can be a
combination of the following values, but it can include only one of the ILC_COLOR values.

Value Meaning
ILC_COLOR Use the default behavior if none of the other

ILC_COLOR* flags is specified. Typically, the
default is ILC_COLOR4; but for older display
drivers, the default is ILC_COLORDDB.

ILC_COLOR4 Use a 4-bit (16 color) device-independent
bitmap (DIB) section as the bitmap for the
image list.

ILC_COLOR8 Use an 8-bit DIB section. The colors used for
the color table are the same colors as the
halftone palette.

ILC_COLOR16 Use a 16-bit (32/64k color) DIB section.
ILC_COLOR24 Use a 24-bit DIB section.
ILC_COLOR32 Use a 32-bit DIB section.
ILC_COLORDDB Use a device-dependent bitmap.
ILC_MASK Uses a mask. The image list contains two

bitmaps, one of which is a monochrome
bitmap used as a mask. If this value is not
included, the image list contains only one
bitmap.

cInitial
Number of images that the image list initially contains.

cGrow
Amount of images by which the image list can grow when the system needs to resize the list
to make room for new images. This parameter represents the number of new images that the
resized image list can contain.

Return ValuesIf the function succeeds, the return value is the handle to the image list.

If the function fails, the return value NULL.

ImageList_Destroy
The ImageList_Destroy function destroys an image list.

BOOL ImageList_Destroy(
HIMAGELIST himl

);Parametershiml
Handle to the image list to destroy.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_DragEnter
The ImageList_DragEnter function locks updates to the specified window during a drag
operation and displays the drag image at the specified position within the window.

BOOL ImageList_DragEnter(
HWND hwndLock,
int x,
int y

);ParametershwndLock
Handle to the window that owns the drag image.

x
Specifies the x-coordinate at which to display the drag image. The coordinate is relative to the
upper-left corner of the window, not the client area.

y
Specifies the y-coordinate at which to display the drag image. The coordinate is relative to the
upper-left corner of the window, not the client area.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksTo begin a drag operation, use the ImageList_BeginDrag function.See AlsoImageList_BeginDrag

ImageList_DragLeave
The ImageList_DragLeave function unlocks the specified window and hides the drag image,
allowing the window to be updated.

BOOL ImageList_DragLeave(
HWND hwndLock

);ParametershwndLock
Handle to the window that owns the drag image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_DragMove
The ImageList_DragMove function moves the image that is being dragged during a drag-and-
drop operation. This function is typically called in response to a WM_MOUSEMOVE message.

BOOL ImageList_DragMove(
int x,
int y

);Parametersx
Specifies the x-coordinate at which to display the drag image. The coordinate is relative to the
upper-left corner of the window, not the client area.

y
Specifies the y-coordinate at which to display the drag image. The coordinate is relative to the
upper-left corner of the window, not the client area.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksTo begin a drag operation, use the ImageList_BeginDrag function.See AlsoImageList_BeginDrag, WM_MOUSEMOVE

ImageList_DragShowNolock
The ImageList_DragShowNolock function shows or hides the image being dragged.

BOOL ImageList_DragShowNolock(
BOOL fShow

);ParametersfShow
Value specifying whether to show or hide the image being dragged. Specify TRUE to show
the image, FALSE to hide the image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_Draw
The ImageList_Draw function draws an image list item in the specified device context.

BOOL ImageList_Draw(
HIMAGELIST himl, // handle to the image list
int i, // index of the image to draw
HDC hdcDst, // handle to the destination device context
int x, // x-coordinate to draw at
int y, // y-coordinate to draw at
UINT fStyle // drawing style

);Parametershiml
Handle to the image list.

i
Specifies the index of the image to draw.

hdcDst
Handle to the destination device context.

x
Specifies the x-coordinate at which to draw within the specified device context.

y
Specifies the y-coordinate at which to draw within the specified device context.

fStyle
Flag specifying the drawing style. This parameter can be one or more of the following values:

Value Meaning
ILD_BLEND25,
ILD_FOCUS

Draws the image, blending 25 percent
with the system highlight color. This
value has no effect if the image list does
not contain a mask.

ILD_BLEND50,
ILD_SELECTED,
ILD_BLEND

Draws the image, blending 50 percent
with the system highlight color. This
value has no effect if the image list does
not contain a mask.

ILD_MASK Draws the mask.
ILD_NORMAL Draws the image using the background

color for the image list. If the background
color is the CLR_NONE value, the
image is drawn transparently using the
mask.

ILD_TRANSPARENT Draws the image transparently using the
mask, regardless of the background
color. This value has no effect if the
image list does not contain a mask.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_DrawEx
The ImageList_DrawEx function draws an image list item in the specified device context. The
function uses the specified drawing style and blends the image with the specified color.

BOOL ImageList_DrawEx(
HIMAGELIST himl, // handle to the image list
int i, // index of the image to draw
HDC hdcDst, // handle to the destination device context
int x, // x-coordinate to draw at
int y, // y-coordinate to draw at
int dx, // width of image
int dy, // height of image
COLORREF rgbBk, // background color of image
COLORREF rgbFg, // foreground color of image
UINT fStyle // drawing style

);Parametershiml
Handle to the image list

i
Index of the image to draw.

hdcDst
Handle to the destination device context.

x
Specifies the x-coordinate at which to draw within the specified device context.

y
Specifies the y-coordinate at which to draw within the specified device context.

dx
Specifies the width of the portion of the image to draw, relative to the upper-left corner of the
image. If dx and dy are zero, the function draws the entire image. The function does not
ensure that the parameters are valid.

dy
Specifies the height of the portion of the image to draw, relative to the upper-left corner of the
image. If dx and dy are zero, the function draws the entire image. The function does not
ensure that the parameters are valid.

rgbBk
Background color of the image. This parameter can be an application-defined RGB value or
one of the following values:

Value Meaning
CLR_NONE No background color. The image

is drawn transparently.
CLR_DEFAULT Default background color. The

image is drawn using the
background color of the image list.

This parameter is used only if the image list identified by himl was created with the
ILC_MASK value.

rgbFg
Foreground color of the image. This parameter can be an application-defined RGB value or
one of the following values:

Value Meaning
CLR_NONE No blend color. The image is

blended with the color of the
destination device context.

CLR_DEFAULT Default foreground color. The
image is drawn using the system
highlight color as the foreground
color.

This parameter is used only if fStyle includes the ILD_BLEND25 or ILD_BLEND50 value.
fStyle

Flag specifying the drawing style. This parameter can be one or more of the following values:
Value Meaning
ILD_BLEND25,
ILD_FOCUS

Draws the image, blending 25 percent with
the blend color specified by rgbFG. This
value has no effect if the image list does not
contain a mask.

ILD_BLEND50,
ILD_SELECTED,
ILD_BLEND

Draws the image, blending 50 percent with
the blend color specified by rgbFG. This
value has no effect if the image list does not
contain a mask.

ILD_MASK Draws the mask.
ILD_NORMAL Draws the image using the background color

for the image list. If the background color is
the CLR_NONE value, the image is drawn
transparently using the mask.

ILD_TRANSPARENT Draws the image transparently using the
mask, regardless of the background color.
This value has no effect if the image list
does not contain a mask.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoRGB

ImageList_EndDrag
The ImageList_EndDrag function ends a drag operation.

BOOL ImageList_EndDrag(VOID)

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_ExtractIcon
The ImageList_ExtractIcon function creates an icon or cursor based on an image and mask in
an image list. ImageList_ExtractIcon is a macro that calls the ImageList_GetIcon function.

HICON ImageList_ExtractIcon(
HINSTANCE hi,
HIMAGELIST himl,
int i

);Parametershi
Ignored; set to zero.

himl
Handle to the image list.

i
Index of the image.

Return ValuesIf the function succeeds, the return value is the handle of the icon or cursor.

If the function fails, the return value is NULL.See AlsoImageList_GetIcon

ImageList_GetBkColor
The ImageList_GetBkColor function retrieves the current background color for an image list.

COLORREF ImageList_GetBkColor(
HIMAGELIST himl

);Parametershiml
Handle to the image list.

Return ValuesThe return value is the background color.

ImageList_GetDragImage
The ImageList_GetDragImage function retrieves the temporary image list that is used for the
drag image. The function also retrieves the current drag position, and the offset of the drag image
relative to the drag position.

HIMAGELIST ImageList_GetDragImage(
POINT FAR *ppt,
POINT FAR *pptHotspot

);Parametersppt
Pointer to a POINT structure that receives the current drag position. Can be NULL.

pptHotSpot
Pointer to a POINT structure that receives the offset of the drag image relative to the drag
position. Can be NULL.

Return ValuesIf the function succeeds, the return value is the handle of the image list.

If the function fails, the return value is NULL.RemarksThe temporary image list is destroyed when the ImageList_EndDrag function is called. To begin
a drag operation, use the ImageList_BeginDrag function.See AlsoImageList_BeginDrag, ImageList_EndDrag, POINT

ImageList_GetIcon
The ImageList_GetIcon function creates an icon or cursor based on an image and mask in an
image list.

HICON ImageList_GetIcon(
HIMAGELIST himl,
int i,
UINT flags

);Parametershiml
Handle to the image list.

i
Index of the image.

flags
Combination of flags that specify the drawing style. For a list of values, see the description of
the ImageList_Draw function.

Return ValuesIf the function succeeds, the return value is the handle of the icon or cursor.

If the function fails, the return value is NULL.See AlsoImageList_Draw

ImageList_GetIconSize
The ImageList_GetIconSize function retrieves the dimensions of images in an image list. All
images in an image list have the same dimensions.

BOOL ImageList_GetIconSize(
HIMAGELIST himl,
int FAR *cx,
int FAR *cy

);Parametershiml
Handle to the image list.

cx
Pointer to integer variable that receives the width, in pixels, of each image.

cy
Pointer to integer variable that receives the height, in pixels, of each image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_GetImageCount
The ImageList_GetImageCount function retrieves the number of images in an image list.

int ImageList_GetImageCount(;
HIMAGELIST himl

);Parametershiml
Handle to the image list.

Return ValuesThe ImageList_GetImageCount function returns the number of images.

ImageList_GetImageInfo
The ImageList_GetImageInfo function retrieves information about an image.

BOOL ImageList_GetImageInfo(
HIMAGELIST himl,
int i,
IMAGEINFO FAR *pImageInfo

);Parametershiml
Handle to the image list.

i
Index of the image.

pImageInfo
Pointer to an IMAGEINFO structure that receives information about the image. The
information in this structure can be used to directly manipulate the bitmaps for the image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoIMAGEINFO

ImageList_LoadBitmap
The ImageList_LoadBitmap function creates an image list from the specified bitmap resource.
ImageList_LoadBitmap is a macro that calls the ImageList_LoadImage function.

HIMAGELIST ImageList_LoadBitmap(
HINSTANCE hi,
LPCSTR lpbmp,
int cx,
int cGrow,
COLORREF crMask

);Parametershi
Handle to the instance that contains the bitmap resource.

lpbmp
Name of the resource.

cx
Width of each image. The height of each image and the initial number of images are inferred
by the dimensions of the specified bitmap.

cGrow
Amount of images by which the image list can grow when the system needs to resize the list
to make room for new images. This parameter represents the number of new images that the
resized image list can contain.

crMask
Color used to generate a mask. Each pixel of this color in the specified bitmap is changed to
black, and the corresponding bit in the mask is set to one. If this parameter is the CLR_NONE
value, no mask is generated.

Return ValuesIf the function succeeds, the return value is the image list.

If the function fails, the return value is NULL.See AlsoImageList_LoadImage

ImageList_LoadImage
The ImageList_LoadImage function creates an image list from the specified bitmap, cursor, or
icon resource.

HIMAGELIST ImageList_LoadImage(
HINSTANCE hi,
LPCSTR lpbmp,
int cx,
int cGrow,
COLORREF crMask,
UINT uType,
UINT uFlags

);Parametershi
Handle to the instance that contains the resource.
If the hi parameter is zero, the low-order word of this parameter must be the identifier of the
OEM image to load. The OEM image identifiers are defined in WINUSER.H. Following are the
identifier prefixes and their meanings:

Prefix Meaning
OBM_ OEM bitmaps
OIC_ OEM icons
OCR_ OEM cursors

lpbmsp
Pointer to a null-terminated string that contains the name of the image to load.
If the uFlags parameter specifies the LR_LOADFROMFILE value, the lpbmp parameter must
be the name of the file that contains the image.

cx
Width of each image. The height of each image and the initial number of images are inferred
by the dimensions of the specified resource.

cGrow
Amount of images by which the image list can grow when the system needs to resize the list
to make room for new images. This parameter represents the number of new images that the
resized image list can contain.

crMask
Color used to generate a mask. Each pixel of this color in the specified bitmap, cursor, or icon
is changed to black, and the corresponding bit in the mask is set to 1. If this parameter is the
CLR_NONE value, no mask is generated.

uType
Flag that specifies the type of image to load. This parameter can be one of the following
values:

Value Meaning
IMAGE_BITMAP Loads a bitmap.
IMAGE_CURSOR Loads a cursor.
IMAsssGE_ICON Loads an icon.

uFlags
Flags that specify how to load the image. This parameter can be a combination of the
following values:

Value Meaning
LR_DEFAULTCOLOR Uses the color format of the display.
LR_LOADDEFAULTSIZE Uses the width or height specified by

the system metric values for cursors
and icons if the cx parameter is set to
zero. If this value is not specified and
cx is set to zero, the function sets the
size to that specified in the resource. If
the resource contains multiple images,

the function sets the size to that of the
first image.

LR_LOADFROMFILE Loads the image from the file specified
by the lpbmp parameter.

LR_LOADMAP3DCOLORSSearches the color table for the image
and replaces the following shades of
gray with the corresponding three-
dimensional color:

Dk Gray,
RGB(128, 128,
128)

COLOR_3DSHADOW

Gray,
RGB(192, 192,
192)

COLOR_3DFACE

Lt Gray,
RGB(223, 223,
223)

COLOR_3DLIGHT

LR_LOADTRANSPARENTRetrieves the color value of the first
pixel in the image and replaces the
corresponding entry in the color table
with the default window color (the
COLOR_WINDOW display color). All
pixels in the image that use that entry
become the default window value
color. This value applies only to
images that have corresponding color
tables.

LR_MONOCHROME Loads the image in black and white.
LR_SHARED Shares the image handle if the image is

loaded multiple times. Do not use this
value for images that have nontraditional
sizes that might change after loading or
for images that are loaded from a file.

Return ValuesIf the function succeeds, the return value is the handle of the image list.

If the function fails, the return value is NULL.See AlsoRGB

ImageList_Merge
The ImageList_Merge function creates a new image by combining two existing images. The
function also creates a new image list to store the image.

HIMAGELIST ImageList_Merge(
HIMAGELIST himl1,
int i1,
HIMAGELIST himl2,
int i2,
int dx,
int dy

);Parametershiml1
Handle to the first image list.

i1
Index of the first existing image.

himl2
Handle to the second image list.

i2
Index of the second existing image.

dx and dy
Offset of the second image relative to the first image.

Return Values/*If the function succeeds, the return value is the handle of the new image list.

If the function fails, the return value is NULL.RemarksThe new image consists of the second existing image drawn transparently over the first. The
mask for the new image is the result of performing a logical OR operation on the masks of the two
existing images.

ImageList_Read
The ImageList_Read function reads an image list from a stream.

HIMAGELIST ImageList_Read(
LPSTREAM pstm

);Parameterspstm
Pointer to the stream.

Return ValuesIf the function succeeds, the return value is the image list.

If the function fails, the return value is NULL.

ImageList_Remove
The ImageList_Remove function removes an image from an image list.

BOOL ImageList_Remove(
HIMAGELIST himl,
int i

);// Related macro
BOOL ImageList_RemoveAll(himl);
Parametershiml

Handle to the image list.
i

Index of the image to remove. If the i parameter is - 1, the function removes all images.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_Replace
The ImageList_Replace function replaces an image in an image list with a new image.

BOOL ImageList_Replace(
HIMAGELIST himl,
int i,
HBITMAP hbmImage,
HBITMAP hbmMask

);Parametershiml
Handle to the image list.

i
Index of the image to replace.

hbmImage
Handle to the bitmap that contains the image.

hbmMask
Handle to the bitmap that contains the mask. If no mask is used with the image list, this
parameter is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe ImageList_Replace function copies the bitmap to an internal data structure. Be sure to use
the DeleteObject function to delete hbmImage and hbmMask after the function returns.See AlsoDeleteObject

ImageList_ReplaceIcon
The ImageList_ReplaceIcon function replaces an image with an icon or cursor.

int ImageList_ReplaceIcon(
HIMAGELIST himl,
int i,
HICON hicon

);Parametershiml
Handle to the image list.

i
Index of the image to replace.

hicon
Handle to the icon or cursor that contains the bitmap and mask for the new image.

Return ValuesIf the function succeeds, the return value is the index of the image.

If the function fails, the return value is - 1.RemarksBecause the system does not save hicon, you can destroy it after the function returns if the icon or
cursor was created by the CreateIcon function. You do not need to destroy hicon if it was loaded
by the LoadIcon function; the system automatically frees an icon resource when it is no longer
needed.See AlsoCreateIcon, LoadIcon

ImageList_SetBkColor
The ImageList_SetBkColor function sets the background color for an image list.

COLORREF ImageList_SetBkColor(
HIMAGELIST himl,
COLORREF clrBk

);Parametershiml
Handle to the image list.

clrBk
Background color to set. This parameter can be the CLR_NONE value; in that case, images
are drawn transparently using the mask.

Return ValuesIf the function succeeds, the return value is the previous background color.

If the function fails, the return value is the CLR_NONE value.

ImageList_SetDragCursorImage
The ImageList_SetDragCursorImage function creates a new drag image by combining the
specified image (typically a mouse cursor image) with the current drag image.

BOOL ImageList_SetDragCursorImage(
HIMAGELIST himlDrag,
int iDrag,
int dxHotspot,
int dyHotspot

);ParametershimlDrag
Handle to the image list that contains the new image to combine with the drag image.

iDrag
Index of the new image to combine with the drag image.

dxHotspot and dyHotspot
Position of the hot spot within the new image.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_SetIconSize
The ImageList_SetIconSize function sets the dimensions of images in an image list and removes
all images from the list.

BOOL ImageList_SetIconSize(
HIMAGELIST himl,
int cx,
int cy

);Parametershiml
Handle to the image list.

cx
Width, in pixels, of the images in the image list. All images in an image list have the same
dimensions.

cy
Height, in pixels, of the images in the image list. All images in an image list have the same
dimensions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImageList_SetOverlayImage
The ImageList_SetOverlayImage function adds the index of an image to the list of images to be
used as overlay masks. Up to four indices can be added to the list.

BOOL ImageList_SetOverlayImage(
HIMAGELIST himl,
int iImage,
int iOverlay

);Parametershiml
Handle to the image list.

iImage
Image to use as an overlay mask.

iOverlay
One-based index of the overlay mask.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn overlay mask is an image drawn transparently over another image. You draw an overlay mask
over an image by using the ImageList_Draw or ImageList_DrawEx function with the index of the
overlay mask. The index must be specified by using the INDEXTOOVERLAYMASK macro.See AlsoImageList_Draw, ImageList_DrawEx, INDEXTOOVERLAYMASK

ImageList_Write
The ImageList_Write function writes an image list to a stream.

BOOL ImageList_Write(
HIMAGELIST himl, // handle to the image list
LPSTREAM pstm // pointer to the stream to write to

);Parametershiml
Handle to the image list.

pstm
Pointer to the stream.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ImmAssociateContext
[Now Supported on Windows NT]

The ImmAssociateContext function associates the specified input context with the specified
window. If hIMC is NULL, the function removes any association the window may have with an
input context. By default, the system associates the default input context with each window as it is
created.

HIMC ImmAssociateContext(
HWND hWnd,
HIMC hIMC

);ParametershWnd
Handle to the window to be associated with the input context.

hIMC
Handle to the input context.

Return ValuesReturns the handle to the input context previously associated with the window.RemarksIf an application associates an input context with a window, the application must remove that
association before destroying the input context. One way to do this is to save and reassociate the
handle to the default input context with the window.

ImmConfigureIME
[Now Supported on Windows NT]

The ImmConfigureIME function displays the configuration dialog box for the IME.

BOOL ImmConfigureIME(
HKL hKL,
HWND hWnd,
DWORD dwMode,
LPVOID lpdata

);ParametershKL
Handle to the keyboard layout.

hWnd
Handle to the parent window for the dialog box.

dwMode
Type of dialog box to display. This parameter can be one of the following values:

Value Meaning
IME_CONFIG_GENERAL Displays general

purpose configuration
dialog box.

IME_CONFIG_REGWORD Displays register
word dialog box.

IME_CONFIG_SELECTDICTIONARYDisplays dictionary
selection dialog box.

lpData
Pointer to supplemental data. If dwMode is IME_CONFIG_REGWORD, this parameter must
be the address of a REGISTERWORD structure.
If dwMode is not IME_CONFIG_REGWORD, this parameter is ignored.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksThe ImmConfigureIME function is called by the Control Panel.

ImmCreateContext
[Now Supported on Windows NT]

The ImmCreateContext function creates a new input context, allocating memory for the context
and initializing it. An application calls this function to prepare its own input context.

HIMC ImmCreateContext(void);Return ValuesIf the function succeeds, the return value is the handle to the new input context.

If the function fails, the return value is NULL.

ImmDestroyContext
[Now Supported on Windows NT]

The ImmDestroyContext function releases the input context and frees any memory associated
with it.

BOOL ImmDestroyContext(
HIMC hIMC

);ParametershIMC
Handle to the input context to free.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksAny application that creates an input context by using the ImmCreateContext function must call
this function to free the context before it terminates.See AlsoImmCreateContext

ImmEnumRegisterWord
[Now Supported on Windows NT]

The ImmEnumRegisterWord function enumerates the register strings having the specified
reading string, style, and register string.

UINT ImmEnumRegisterWord(
HKL hKL,
REGISTERWORDENUMPROC lpfnEnumProc,
LPCTSTR lpszReading,
DWORD dwStyle,
LPCTSTR lpszRegister,
LPVOID lpData

);ParametershKL
Handle to the keyboard layout.

lpfnEnumProc
Pointer to the callback function. For more information, see EnumRegisterWordProc.

lpszReading
Pointer to the reading string to be enumerated. If NULL, this function enumerates all available
reading strings that match with the specified dwStyle and lpszRegister.

dwStyle
Style to be enumerate. If zero, this function enumerates all available styles that match with the
specified lpszReading and lpszRegister.

lpszRegister
Pointer to the register string to enumerate. If NULL, this function enumerates all register
strings that match with the specified lpszReading and dwStyle.

lpData
Application-supplied data. The function passes this parameter to the callback function.

Return ValuesReturns the last value return by the callback function. Its meaning is defined by the application.
The function returns zero if it cannot enumerate the register strings.RemarksIf dwStyle is zero and both lpszReading and lpszRegister are NULL, the ImmEnumRegisterWord
function enumerates all register strings in the IME dictionary.See AlsoEnumRegisterWordProc

ImmEscape
[Now Supported on Windows NT]

The ImmEscape function carries out IME-specific subfunctions and is used mainly for country-
specific functions.

LRESULT ImmEscape(
HKL hKL,
HIMC hIMC,
UINT uEscape,
LPVOID lpData

);ParametershKL
Handle to the keyboard layout.

hIMC
Handle to the input context.

uEscape
Index of the subfunction. For more information about the escape, see the "IME Escapes" table
in Input Method Editor Constants.

lpData
Subfunction-specific data.

Return ValuesReturns zero on error; otherwise, returns an escape-specific value.

ImmGetCandidateList
[Now Supported on Windows NT]

The ImmGetCandidateList function retrieves a specified candidate list, copying the list to the
specified buffer.

DWORD ImmGetCandidateList(
HIMC hIMC,
DWORD deIndex,
LPCANDIDATELIST lpCandList,
DWORD dwBufLen

);ParametershIMC
Handle to the input context.

deIndex
Zero-based index of the candidate list.

lpCandList
Pointer to the CANDIDATELIST structure that receives the candidate list.

dwBufLen
Size of the buffer, in bytes. If zero, the function returns the size in bytes required to receive
the complete candidate list.

Return ValuesIf the function succeeds, the return value is the number of bytes copied to the specified buffer.

If the function fails, the return value is zero.See AlsoCANDIDATELIST

ImmGetCandidateListCount
[Now Supported on Windows NT]

The ImmGetCandidateListCount function retrieves the size, in bytes, of the candidate lists.

DWORD ImeGetCandidateListCount(
HIMC hIMC,
LPDWORD lpdwListCount

);ParametershIMC
Handle to the input context.

lpdwListCount
Pointer to the 32-bit variable that receives the size of the candidate lists.

Return ValuesReturns the number of bytes required to receive all candidate lists.RemarksApplications typically call this function in response to a IMN_OPENCANDIDATE or
IMN_CHANGECANDIDATE message.See AlsoIMN_CHANGECANDIDATE, IMN_OPENCANDIDATE

ImmGetCandidateWindow
[Now Supported on Windows NT]

The ImmGetCandidateWindow function gets information about the candidate list window.

BOOL ImmGetCandidateWindow(
HIMC hIMC,
DWORD dwBufLen,
LPCANDIDATEFORM lpCandidate

);ParametershIMC
Handle to the input context.

dwBufLen
Size, in bytes, of the buffer that receives the information.

lpCandidate
Pointer to the CANDIDATEFORM structure that receives information about the candidate
window.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.See AlsoCANDIDATEFORM

ImmGetCompositionFont
[Now Supported on Windows NT]

The ImmGetCompositionFont function retrieves information about the logical font currently used
to display characters in the composition window.

BOOL ImmGetCompositionFont(
HIMC hIMC,
LPLOGFONT lplf

);ParametershIMC
Handle to the input context.

lplf
Pointer to a LOGFONT structure that receives the font information.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.See AlsoLOGFONT

ImmGetCompositionString
[Now Supported on Windows NT]

The ImmGetCompositionString function retrieves information about the composition string.

LONG ImmGetCompositionString(
HIMC hIMC,
DWORD dwIndex,
LPVOID lpBuf,
DWORD dwBufLen

);ParametershIMC
Handle to the input context.

dwIndex
Index of the information to retrieve. This parameter can be one of the values given in the "IME
Composition String Values" table in Input Method Editor Constants. For each value except
GCS_CURSORPOS and GCS_DELTASTART, the function copies the requested information
to the specified buffer. The function returns the cursor and delta position values in the low 16-
bits of the return value.

lpBuf
Pointer to the buffer that receives the requested information.

dwBufLen
Size of the buffer, in bytes. If zero, the ImmGetCompositionString function returns the buffer
size needed for the complete information.

Return ValuesReturns the number of bytes copied to the destination buffer or, if dwBufLen is zero, the buffer
size, in bytes, needed to receive all of the requested information. On an error, the function returns
one of the following negative error values:

Value Meaning

IMM_ERROR_NODATA Composition data is not ready in
the input context.

IMM_ERROR_GENERAL General error detected by IME.
RemarksAn application calls this function in response to the WM_IME_COMPOSITION or

WM_IME_STARTCOMPOSITION message. The IMM removes the information when an
application calls the ImmReleaseContext function.See AlsoImmReleaseContext, WM_IME_COMPOSITION

ImmGetCompositionWindow
[Now Supported on Windows NT]

The ImmGetCompositionWindow function gets information about the composition window.

BOOL ImmGetCompositionWindow(
HIMC hIMC,
LPCOMPOSITIONFORM lpCompForm

);ParametershIMC
Handle to the input context.

lpCompForm
Pointer to the COMPOSITIONFORM structure that receives information about the composition
window.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.See AlsoCOMPOSITIONFORM

ImmGetContext
[Now Supported on Windows NT]

The ImmGetContext function retrieves the input context associated with the specified window.

HIMC ImmGetContext(
HWND hWnd

);ParametershWnd
Handle to the window to retrieve the input context for.

Return ValuesReturns the handle to the input context.RemarksAn application should routinely use this function to retrieve the current input context before
attempting to access information in the context.

ImmGetConversionList
[Now Supported on Windows NT]

The ImmGetConversionList function retrieves the list of characters or words from one character
or word.

UINT ImmGetConversionList(
HKL hKL,
HIMC hIMC,
LPCTSTR lpSrc,
LPCANDIDATELIST lpDst,
DWORD dwBufLen,
UINT uFlag

);ParametershKL
Handle to the keyboard layout.

hIMC
Handle to the input context.

lpSrc
Pointer to a null-terminated character string.

lpDst
Pointer to the CANDIDATELIST structure that receives the conversion result.

dwBufLen
Size of the destination buffer, in bytes. If zero, the function returns the buffer size needed for
the complete conversion result.

uFlag
Action flag. This parameter can be one of the following values:

Value Meaning
GCL_CONVERSION Source string is the reading string.

The function copies the result string to
the destination buffer.

GCL_REVERSECONVERSIONSource string is the result string. The
function copies the reading string to
the destination buffer.

GCL_REVERSE_LENGTH Source string is the result string. The
function returns the size in bytes of the
reading string that would be created if
GCL_REVERSECONVERSION were
given.

Return ValuesReturns the number of bytes copied to the specified buffer or, if dwBufLen is zero, the buffer size
needed to receive the list.See AlsoCANDIDATELIST

ImmGetConversionStatus
[Now Supported on Windows NT]

The ImmGetConversionStatus function gets the current conversion status.

BOOL ImmGetConversionStatus(
HIMC hIMC,
LPDWORD lpfdwConversion,
LPDWORD lpfdwSentence

);ParametershIMC
Handle to the input context for which to retrieve information.

lpfdwConversion
Pointer to a 32-bit variable that receives a combination of conversion mode values. For more
information, see the "IME Conversion Mode Values" table in Input Method Editor Constants.

lpfdwSentence
Pointer to a 32-bit variable that receives a sentence mode value. For more information, see
the "IME Sentence Mode Values" table in Input Method Editor Constants.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksConversion and sentence mode values are set only if the IME supports those modes.

ImmGetDefaultIMEWnd
[Now Supported on Windows NT]

The ImmGetDefaultIMEWnd function gets the default window handle to the IME class.

HWND ImmGetDefaultIMEWnd(
HWND hWnd

);ParametershWnd
Handle to the window for the application.

Return ValuesIf the function succeeds, the return value is the default window handle to the IME class.

If the function fails, the return value is NULL.RemarksThe system creates a default IME window for every thread. The IME window is created based on
the IME class. The application can send WM_IME_CONTROL to this window.See AlsoWM_IME_CONTROL

ImmGetDescription
[Now Supported on Windows NT]

The ImmGetDescription function copies the description of the IME to the specified buffer.

UINT ImmGetDescription(
HKL hKL,
LPTSTR lpszDescription,
UINT uBufLen

);ParametershKL
Handle to the keyboard layout.

lpszDescription
Pointer to the buffer that receives the null-terminated string describing the IME.

uBufLen
Size of the buffer, in bytes. If zero, the function returns the buffer size needed for the complete
description, not including terminating null character.

Return ValuesReturns the number of bytes copied to the buffer or, if uBufLen is zero, the buffer size in bytes
needed to receive the description. Neither value includes the terminating null character.

ImmGetGuideLine
[Now Supported on Windows NT]

The ImmGetGuideLine function gets information about errors. Applications use the information to
notify users.

DWORD ImmGetGuideLine(dwBufLen
HIMC hIMC,
DWORD dwIndex,
LPTSTR lpBuf,
DWORD dwBufLen

);ParametershIMC
Handle to the input context.

dwIndex
Type of guideline information to retrieve. Can be one of the following values:

Value Meaning
GGL_LEVEL Returns the error level.
GGL_INDEX Returns the error index.
GGL_STRING Retrieves the error message string.
GGL_PRIVATE Returns information about reverse

conversion.

lpBuf
Pointer to the buffer that receives the error message string. This parameter can be NULL if
dwIndex is not GGL_STRING or GGL_PRIVATE if dwBufLen is zero.

dwBufLen
Size, in bytes, of the buffer pointed to by lpBuf. If zero, the function returns the buffer size
needed to receive the error message string, not including the terminating null character.

Return ValuesThe return value is an error level, an error index, or the size of an error message string,
depending on the value of the dwIndex parameter. If dwIndex is GGL_LEVEL, the return value is
one of the following:

Value Meaning

GL_LEVEL_ERROR Error. The IME may not be able to
continue.

GL_LEVEL_FATAL Fatal error. The IME cannot continue,
and data may be lost.

GL_LEVEL_INFORMATION No error, but information is available
for the user.

GL_LEVEL_NOGUIDELINE No error. Remove previous error
message if still visible.

GL_LEVEL_WARNING Unexpected input or other result. The
user should be warned, but the IME
can continue.

If dwIndex is GGL_INDEX, the return value is one of the following:

Value Meaning

GL_ID_CANNOTSAVE The dictionary or the statistics data
cannot be saved.

GL_ID_NOCONVERT The IME cannot convert any more.
GL_ID_NODICTIONARY The IME cannot find the dictionary, or

the dictionary has an unexpected
format.

GL_ID_NOMODULE The IME can not find the module that
IME needs.

GL_ID_READINGCONFLICT For example, some vowels cannot put
together.

GL_ID_TOOMANYSTROKE There are too many strokes for one
character or one clause.

GL_ID_TYPINGERROR Typing error. The IME can not handle
this typing.

GL_ID_UNKNOWN Unknown error. The application
should refer to the error message
string.

GL_ID_INPUTREADING IME accepts reading character input.
GL_ID_INPUTRADICAL IME accepts radical character input.
GL_ID_INPUTCODE IME accepts character code input.
GL_ID_CHOOSECANDIDATE IME accepts candidate string

selection.
GL_ID_REVERSECONVERSIONInformation about reverse conversion

is available.

If dwIndex is GGL_STRING, the return value is the number of bytes of the string copied to the
buffer, or if dwBufLen is zero, the return value is the buffer size needed to receive the string.

If dwIndex is GGL_PRIVATE, the return value is the number of bytes of information copied to the
buffer. If dwIndex is GGL_PRIVATE and dwBufLen is zero, the return value is the buffer size
needed to receive the information.RemarksApplications typically call this function after receiving an IMN_GUIDELINE message.

ImmGetIMEFileName
[Now Supported on Windows NT]

The ImmGetIMEFileName function gets the filename of the IME associated with the specified
keyboard layout.

BOOL ImmGetIMEFileName(
HKL hKL,
LPTSTR lpszFileName,
UINT uBufLen

);ParametershKL
Handle to the keyboard layout.

lpszFileName
Pointer to the buffer that receives the filename.

uBufLen
Size in bytes of the buffer. If zero, the function returns the buffer size in bytes needed to
receive the filename, not including the termintaing null character.

Return ValuesThe return value is the number of bytes in the filename copied to the buffer, or if uBufLen is zero,
the return value is the buffer size needed for the filename. In either case, the terminating null
character is not included.RemarksIn the registry, the system stores the filename as the IME name value in
HKEY_LOCAL_MACHINE root under the \System\CurrentControlSet\control\keyboard layouts\
hKL key.

ImmGetOpenStatus
[Now Supported on Windows NT]

The ImmGetOpenStatus function checks whether the IME is open or closed.

BOOL WINAPI ImmGetOpenStatus(
HIMC hIMC

);ParametershIMC
Handle to the input context.

Return ValuesThe return value is a nonzero value if the IME is open, FALSE otherwise.

ImmGetProperty
[Now Supported on Windows NT]

The ImmGetProperty function gets the property and capabilities of the IME associated with the
specified keyboard layout.

BOOL ImmGetProperty(
HKL hKL,
DWORD fdwIndex

);ParametershKL
Handle to the keyboard layout.

fdwIndex
Type of property information to retrieve. This parameter can be one of the following values:

Value Meaning
IGP_PROPERTY Property information.
IGP_CONVERSION Conversion capabilities.
IGP_SENTENCE Sentence mode capabilities.
IGP_UI User interface capabilities.
IGP_SETCOMPSTR Composition string capabilities.
IGP_SELECT Selection inheritance capabilities.
IGP_GETIMEVERSION Retrieves the Windows version number

for which the specified IME was created.
Return ValuesReturns the property or capability value, depending on the value of the dwIndex parameter. If

dwIndex is IGP_PROPERTY, returns a combination of the following values:

Value Meaning

IME_PROP_AT_CARET If set, conversion window is at
the caret position. If clear, the
window is near caret position.

IME_PROP_SPECIAL_UI If set, IME has a nonstandard
user interface. The application
should not draw in the IME
window.

IME_PROP_CANDLIST_START_FROM_1If set, strings in the candidate
list are numbered starting at 1.
If clear, strings start at 0.

IME_PROP_UNICODE If set, strings for the input
context have Unicode
characters. If clear, strings have
single and double-byte
characters.

If dwIndex is IGP_UI, the return value is a combination of the following values:

Value Meaning

UI_CAP_2700 Supports text escapement values of 0 or 2700.
UI_CAP_ROT90 Supports text escapement values of 0, 900,

1800, or 2700.
UI_CAP_ROTANY Supports any text escapement value.

If dwIndex is IGP_SETCOMPSTR, the return value is a combination of the following values:

Value Meaning

SCS_CAP_COMPSTR Can create the composition string by using
the SCS_SETSTR value of the
ImmSetCompositionString function.

SCS_CAP_MAKEREADCan create the reading string from

corresponding composition string when using
the SCS_SETSTR value of the
ImmSetCompositionString function.

If dwIndex is IGP_SELECT, the return value is a combination of the following values:

Value Meaning

SELECT_CAP_CONVMODE Inherits conversion mode when a new
IME is selected.

SELECT_CAP_SENTENCE Inherits sentence mode when a new IME
is selected.

If dwIndex is IGP_GETIMEVERSION, the return value is one of the following values:

Value Meaning

IMEVER_0310 The IME was created for Windows 3.1
IMEVER_0400 The IME was created for Windows 95.

ImmGetRegisterWordStyle
[Now Supported on Windows NT]

The ImmGetRegisterWordStyle function gets a list of the styles support by the IME associated
with the specified keyboard layout.

UINT ImmGetRegisterWordStyle(
HKL hKL,
UINT nItem,
LPSTYLEBUF lpStyleBuf

);ParametershKL
Handle to the keyboard layout.

nItem
Maximum number of styles that the buffer can hold.

lpStyleBuf
Pointer to the STYLEBUF structure that receives the style information.

Return ValuesThe return value is the number of layout handles copied to the buffer, or if nItems is zero, the
return value is the buffer size in array elements needed to receive all available style information.See AlsoSTYLEBUF

ImmGetStatusWindowPos
[Now Supported on Windows NT]

The ImmGetStatusWindowPos function gets the position of the status window.

BOOL ImmGetStatusWindowPos(
HIMC hIMC,
LPPOINT lpptPos

);ParametershIMC
Handle to the input context.

lpptPos
Pointer to the POINT structure that receives the position coordinates. These are screen
coordinates, relative to the upper-left corner of the screen.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.See AlsoPOINT

ImmGetVirtualKey
[Now Supported on Windows NT]

The ImmGetVirtualKey function recovers the original virtual-key value associated with a key
input message that has already been processed by the IME.

UINT ImmGetVirtualKey(
HWND hWnd

);ParametershWnd
Handle to the window that receives the key message.

Return ValuesThe return value is the original virtual-key value.RemarksAlthough the IME sets the virtual-key value to VK_PROCESSKEY after processing a key input
message, an application can recover the original virtual-key value with the ImmGetVirtualKey
function. This function can be used only for key input messages containing the
VK_PROCESSKEY value.

ImmInstallIME
[Now Supported on Windows NT]

The ImmInstallIME function installs an IME into the system.

HKL ImmInstallIME(
LPCTSTR lpszIMEFileName,
LPCTSTR lpszLayoutText

);ParameterslpszIMEFileName
Pointer to a null-terminated string that specifies the full path of the IME.

lpszLayoutText
Pointer to a null-terminated string that specifies the name of the IME. This name also specifies
the layout text of the IME.

Return ValuesThe return value is the handle to the keyboard layout for the IME.RemarksThis function is intended to be used by IME setup programs only.

ImmIsIME
[Now Supported on Windows NT]

The ImmIsIME function checks whether the specified handle identifies an IME.

BOOL ImmIsIME(
HKL hKL

);ParametershKL
Handle to the keyboard layout to check.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.

ImmIsUIMessage
[Now Supported on Windows NT]

The ImmIsUIMessage function checks for messages intended for the IME window and sends
those messages to the specified window.

BOOL ImmIsUIMessage(
HWND hWndIME,
UINT msg,
WPARAM wParam,
LPARAM lParam

);ParametershWndIME
Handle to a window belonging to the IME window class.

msg
Message to check.

wParam
32-bit message-specific parameter.

lParam
32-bit message-specific parameter.

Return ValuesIf the message is processed by the IME window, the return value is a nonzero value.

If the message is not processed by the IME window, the return value is zero.RemarksAn application typically uses this function to display any composition string or candidate list
specified by IME. If hWndIME is NULL, the function checks whether the message is a user
interface message.

ImmNotifyIME
[Now Supported on Windows NT]

The ImmNotifyIME function notifies the IME about changes to the status of the input context.

BOOL ImmNotifyIME(
HIMC hIMC,
DWORD dwAction,
DWORD dwIndex,
DWORD dwValue

);ParametershIMC
Handle to the input context.

dwAction
Notification code. This parameter can be one of the following values:

Value Meaning
NI_CHANGECANDIDATELIST An application changed the

current selected candidate;
dwIndex is an index of a
candidate list to be selected and
dwValue is not used.

NI_CLOSECANDIDATE An application directs the IME to
close a candidate list; dwIndex
is the index of the list to close;
dwValue is not used. The IME
sends a
IMN_CLOSECANDIDATE
message to the application if it
closes the list.

NI_COMPOSITIONSTR An application directs the IME to
carry out an action on the
composition string; dwValue is
not used and dwIndex can be
CPS_CANCEL,
CPS_COMPLETE,
CPS_CONVERT, or
CPS_REVERT.

NI_OPENCANDIDATE An application directs the IME to
open a candidate list; dwIndex
is the index of the list to open;
dwValue is not used. The IME
sends a
IMN_OPENCANDIDATE
message to the application if it
opens the list.

NI_SELECTCANDIDATESTR An application selected one of
candidates; dwIndex is an index
of a candidate list to be selected
and dwValue is an index of a
candidate string in the selected
candidate list.

NI_SETCANDIDATE_PAGESIZE The dwIndex parameter
specifies the candidate list to be
changed and must have a value
in the range 0 to 31.

NI_SETCANDIDATE_PAGESTARTThe dwIndex parameter
specifies the candidate list to be
changed and must have a value
in the range 0 to 31.

dwIndex
Index of a candidate list or, if dwAction is NI_COMPOSITIONSTR, one of the following values:

Value Meaning
CPS_CANCEL Clear the composition string and

set the status to no composition
string.

CPS_COMPLETE Set the composition string as the
result string.

CPS_CONVERT Convert the composition string.
CPS_REVERT Cancel the current composition

string and revert to the
unconverted string.

dwValue
Index of a candidate string or not used, depending on the value of the dwAction parameter.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.

ImmRegisterWord
[Now Supported on Windows NT]

The ImmRegisterWord function registers a string into the dictionary of the IME associated with
the specified keyboard layout.

BOOL ImmRegisterWord(
HKL hKL,
LPCTSR lpszReading,
DWORD dwStyle,
LPCTSTR lpszRegister

);ParametershKL
Handle to the keyboard layout.

lpszReading
Pointer to a null-terminated string specifying the reading string associated with the string to
register.

dwStyle
Style of the register string. This parameter can be IME_REGWORD_STYLE_EUDC to
indicate the string is in the EUDC range, or any value in the reserved range
IME_REGWORD_STYLE_USER_FIRST to IME_REGWORD_STYLE_USER_LAST to
indicate a private style maintained by the specified IME.

lpszRegister
Pointer to a null-terminated string specifying the string to register.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.

ImmReleaseContext
[Now Supported on Windows NT]

The ImmReleaseContext function releases the input context and unlocks the memory associated
in the context. An application must call this function for each call to the ImmGetContext function.

BOOL ImmReleaseContext(
HWND hWnd,
HIMC hIMC

);ParametershWnd
Handle to the window for which the input context was previously retrieved.

hIMC
Handle to the input context.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.See AlsoImmGetContext

ImmSetCandidateWindow
[Now Supported on Windows NT]

The ImmSetCandidateWindow function sets information about the candidate list window.

BOOL ImmSetCandidateWindow(
HIMC hIMC,
LPCANDIDATEFORM lpCandidate

);ParametershIMC
Handle to the input context.

lpCandidate
Pointer to the CANDIDATEFORM structure that contains information about the candidate
window.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksImmSetCandidateWindow causes an IMN_SETCANDIDATEPOS message to be sent to the
application.See AlsoCANDIDATEFORM

ImmSetCompositionFont
[Now Supported on Windows NT]

The ImmSetCompositionFont function sets the logical font to be used to display characters in
the composition window.

BOOL ImmSetCompositionFont(
HIMC hIMC,
LPLOGFONT lplf

);ParametershIMC
Handle to the input context.

lplf
Pointer to the LOGFONT structure containing the font information to set.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksEven if an application never uses the composition window, it must set the appropriate font to
ensure that characters are displayed properly. This is especially true for vertical writing.

This function causes a IMN_SETCOMPOSITIONFONT message to be sent to the application.See AlsoIMN_SETCOMPOSITIONFONT, LOGFONT

ImmSetCompositionString
[Now Supported on Windows NT]

The ImmSetCompositionString function sets the characters, attributes, and clauses of the
composition and reading strings.

BOOL ImmSetCompositionString(
HIMC hIMC,
DWORD dwIndex,
LPCVOID lpComp,
DWORD dwCompLen,
LPCVOID lpRead,
DWORD dwReadLen

);ParametershIMC
Handle to the input context.

dwIndex
Type of information to set. This parameter can be one of one of the following values:

Value Meaning
SCS_SETSTR Sets the composition string, the reading

string, or both. At least one of the lpComp
and lpRead parameters must point to a valid
string. If either string is too long, the IME
truncates it.

SCS_CHANGEATTR Sets attributes for the composition string,
the reading string, or both. At least one of
the lpComp and lpRead parameters must
point to a valid attribute array.

SCS_CHANGECLAUSE Sets the clause information for the
composition string, the reading string, or
both. At least one of the lpComp and lpRead
parameters must point to a valid clause
information array.

lpComp
Pointer to the buffer containing the information to set for the composition string. The
information is as specified by the dwIndex value.

dwCompLen
Size in bytes of the information buffer for the composition string.

lpRead
Pointer to the buffer containing the information to set for the reading string. The information is
as specified by the dwIndex value.

dwReadLen
Size, in bytes, of the information buffer for the reading string.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksWhen changing attributes, all characters in a clause must have the same attribute. Converted
characters must be either ATTR_CONVERTED or ATTR_TARGET_CONVERTED; unconverted
characters either ATTR_INPUT or ATTR_TARGET_NOTCONVERTED.

When changing clause information, only the target clause can be changed and only one boundary
of the clause can be changed at a time. The target clause has the ATTR_TARGET_CONVERTED
or ATTR_TARGET_NOTCONVERTED attribute.

When the IME completes the changes, it sends a WM_IME_COMPOSITION message to the
application notifying it of the changes.See AlsoWM_IME_COMPOSITION

ImmSetCompositionWindow
[Now Supported on Windows NT]

The ImmSetCompositionWindow function sets the position of the composition window.

BOOL ImmSetCompositionWindow(
HIMC hIMC,
LPCOMPOSITIONFORM lpCompForm

);ParametershIMC
Handle to the input context.

lpCompForm
Pointer to the COMPOSITIONFORM structure that contains the new position and other
related information about the composition window.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksThe ImmSetCompositionWindow function causes a IMN_SETSCOMPOSITIONWINDOW
message to be sent to the application.See AlsoCOMPOSITIONFORM

ImmSetConversionStatus
[Now Supported on Windows NT]

The ImmSetConversionStatus function sets the current conversion status.

BOOL ImmSetConversionStatus(
HIMC hIMC,
DWORD fdwConversion,
DWORD fdwSentence

);ParametershIMC
Handle to the input context.

fdwConvStatus
Conversion mode values. For more information, see the "IME Conversion Mode Values" table
in Input Method Editor Constants.

fdwSentence
Sentence mode values. For more information, see the "IME Sentence Mode Values" table in
Input Method Editor Constants.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksThis function sends a IMN_SETCONVERSIONSTATUS message to the application.

ImmSetOpenStatus
[Now Supported on Windows NT]

The ImmSetOpenStatus function opens or closes the IME.

BOOL ImmSetOpenStatus(
HIMC hIMC,
BOOL fOpen

);ParametershIMC
Handle to the input context.

fOpen
Open flag. If TRUE, the IME is opened; otherwise, it is closed.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksThis function causes a IMN_SETOPENSTATUS message to be sent to the application.See AlsoIMN_SETOPENSTATUS

ImmSetStatusWindowPos
[Now Supported on Windows NT]

The ImmSetStatusWindowPos function sets the position of the status window.

BOOL ImmSetStatusWindowPos(
HIMC hIMC,
LPPOINT lpptPos

);ParametershIMC
Handle to the input context.

lpptPos
Pointer to the POINT structure that receives the new position of the status window.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.RemarksThe ImmSetStatusWindowPos function causes a IMN_SETSTATUSWINDOWPOS message to
be sent to the application.See AlsoIMN_SETSTATUSWINDOWPOS, POINT

ImmSimulateHotKey
[Now Supported on Windows NT]

The ImmSimulateHotKey function simulates the specified IME hot key, causing the same
response as if the user had pressed the hot key in the specified window.

BOOL ImmSimulateHotKey(
HWND hWnd,
DWORD dwHotKeyID

);ParametershWnd
Handle to the window.

dwHotKeyID
Identifier of the IME hot key. Can be one of the values specified in the "IME Hot Key
Identifiers" table in Input Method Editor Constants.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.

ImmUnregisterWord
[Now Supported on Windows NT]

The ImmUnregisterWord function removes a register string from the dictionary of the IME
associated with the specified keyboard layout.

BOOL ImmUnregisterWord(
HKL hKL,
LPCTSTR lpszReading,
DWORD dwStyle,
LPCTSTR lpszUnregister

);ParametershKL
Handle to the keyboard layout.

lpszReading
Pointer to a null-terminated string specifying the reading string associated with the string to
remove.

dwStyle
Style of the register string. Can be IME_REGWORD_STYLE_EUDC to indicate the string is in
the EUDC range, or any value in the reserved range IME_REGWORD_STYLE_USER_FIRST
to IME_REGWORD_STYLE_USER_LAST to indicate a private style maintained by the
specified IME.

lpszUnregister
Pointer to a null-terminated string specifying the register string to remove.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero.

ImpersonateDdeClientWindow
The ImpersonateDdeClientWindow function enables a DDE server application to impersonate a
DDE client application's security context in order to protect secure server data from unauthorized
DDE clients.

BOOL ImpersonateDdeClientWindow(
HWND hWndClient, // handle of DDE client window
HWND hWndServer // handle of DDE server window

);ParametershWndClient
Identifies the DDE client window to impersonate. The client window must have established a
DDE conversation with the server window identified by the hWndServer parameter.

hWndServer
Identifies the DDE server window. An application must create the server window before calling
this function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application should call the RevertToSelf function to undo the impersonation set by the
ImpersonateDdeClientWindow function.

A DDEML application should use the DdeImpersonateClient function.See AlsoDdeImpersonateClient, RevertToSelf

ImpersonateLoggedOnUser
The ImpersonateLoggedOnUser function lets the calling thread impersonate a user. The user is
represented by a token handle.

BOOL ImpersonateLoggedOnUser(
HANDLE hToken // handle to a token that represents a logged-on user

);ParametershToken
Handle to a primary or impersonation access token that represents a logged-on user. This can
be a token handle returned by a call to LogonUser, DuplicateToken, DuplicateTokenEx,
OpenProcessToken, or OpenThreadToken functions. If hToken is a primary token, it must
have TOKEN_QUERY and TOKEN_DUPLICATE access. If hToken is an impersonation
token, it must have TOKEN_QUERY access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe impersonation lasts until the thread exits or until it calls RevertToSelf.

The calling thread does not need to have any particular privileges to call
ImpersonateLoggedOnUser.See AlsoCreateProcessAsUser, DuplicateToken, DuplicateTokenEx, LogonUser,
OpenProcessToken, or OpenThreadToken, RevertToSelf

ImpersonateNamedPipeClient
The ImpersonateNamedPipeClient function impersonates a named-pipe client application.

BOOL ImpersonateNamedPipeClient(
HANDLE hNamedPipe // handle of a named pipe

);ParametershNamedPipe
Identifies a named pipe.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError
function.RemarksThe ImpersonateNamedPipeClient function allows the server end of a named pipe to
impersonate the client end. When this function is called, the named-pipe file system changes the
thread of the calling process to start impersonating the security context of the last message read
from the pipe. Only the server end of the pipe can call this function.

The server can call the RevertToSelf function when the impersonation is complete.See AlsoDdeImpersonateClient, DuplicateToken, RevertToSelf

ImpersonateSelf
The ImpersonateSelf function obtains an access token that impersonates the security context of
the calling process. The token is assigned to the calling thread.

BOOL ImpersonateSelf(
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel // impersonation level

);ParametersImpersonationLevel
Specifies a SECURITY_IMPERSONATION_LEVEL enumerated type that supplies the
impersonation level of the new token.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ImpersonateSelf function is used for tasks, such as enabling a privilege for a single thread
rather than for the entire process or for changing the default discretionary access-control list for a
single thread.

The server can call the RevertToSelf function when the impersonation is complete.See AlsoDuplicateToken, ImpersonateNamedPipeClient, RevertToSelf,
SECURITY_IMPERSONATION_LEVEL

InflateRect
The InflateRect function increases or decreases the width and height of the specified rectangle.
The InflateRect function adds dx units to the left and right ends of the rectangle and dy units to
the top and bottom. The dx and dy parameters are signed values; positive values increase the
width and height, and negative values decrease them.

BOOL InflateRect(
LPRECT lprc, // address of rectangle
int dx, // amount to increase or decrease width
int dy // amount to increase or decrease height

);Parameterslprc
Points to the RECT structure that increases or decreases in size.

dx
Specifies the amount to increase or decrease the rectangle width. This parameter must be
negative to decrease the width.

dy
Specifies the amount to increase or decrease the rectangle height. This parameter must be
negative to decrease the height.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoIntersectRect, OffsetRect, RECT, UnionRect

InitAtomTable
The InitAtomTable function initializes the local atom table and sets it to the specified size.

BOOL InitAtomTable(
DWORD nSize // size of atom table

);ParametersnSize
Specifies the size, in table entries, of the atom table. This value should be a prime number.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn application need not use this function to use a local atom table. The default size of the local
and global atom tables is 37 table entries. If an application does use InitAtomTable, however, it
should call the function before any other atom-management function.

If an application uses a large number of local atoms, it can reduce the time required to add an
atom to the local atom table or to find an atom in the table by increasing the size of the table.
However, this increases the amount of memory required to maintain the table.

The size of the global atom table cannot be changed.See AlsoAddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, GlobalDeleteAtom,
GlobalFindAtom, GlobalGetAtomName

InitCommonControls
The InitCommonControls function ensures that the common control dynamic-link library (DLL) is
loaded.

void InitCommonControls(VOID);

Return ValuesThis function does not return a value.

InitializeAcl
The InitializeAcl function creates a new ACL structure.

An ACL is an access-control list.

BOOL InitializeAcl(
PACL pAcl, // address of access-control list
DWORD nAclLength, // size of access-control list
DWORD dwAclRevision // revision level of access-control list

);ParameterspAcl
Points to an ACL structure initialized by this function.

nAclLength
Specifies the length, in bytes, of the buffer pointed to by the pAcl parameter. This value must
be large enough to contain the ACL header and all of the access-control entries (ACEs) to be
stored in the ACL.
When calculating the size of an ACL, note that each ACE in an ACL gets the SID specified by
its SidStart member copied to the ACE structure, starting at the ACE's SidStart member.
Thus, each ACE added to the ACL requires room for the ACE plus room for its SID minus the
size of the SidStart member (a DWORD).
For example, the size of an ACL buffer large enough to contain a single
ACCESS_ALLOWED_ACE is :cbAcl = sizeof(ACL) + sizeof(ACCESS_ALLOWED_ACE)

+ GetLengthSid(pSid) - sizeof(DWORD) ;Another example: the size of an ACL buffer large enough to contain seven
ACCESS_DENIED_ACE structures is :cbAcl = sizeof(ACL) + 7 * (sizeof(ACCESS_DENIED_ACE) - sizeof

(DWORD)) +
GetLengthSid(pSid1) + GetLengthSid(pSid2) + ... + GetLengthSid

(pSid7)dwAclRevision
Specifies the revision level of the ACL. This parameter must be set to the current revision
level, defined as ACL_REVISION for this version of Windows.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ACL initialized by this function contains no ACEs. It is empty, as opposed to being a
nonexistent ACL. If an empty ACL is applied to an object, it implicitly denies all access to that
object.See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACL, AddAccessAllowedAce,
AddAccessDeniedAce, AddAce, AddAuditAccessAce, DeleteAce, GetAce,
GetAclInformation, IsValidAcl, SetAclInformation, SID

InitializeCriticalSection
The InitializeCriticalSection function initializes a critical section object.

VOID InitializeCriticalSection(
LPCRITICAL_SECTION lpCriticalSection // address of critical section object

);ParameterslpCriticalSection
Points to the critical section object.

Return ValuesThis function does not return a value.RemarksThe threads of a single process can use a critical section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical section
object, which it can do by declaring a variable of type CRITICAL_SECTION. Before using a critical
section, some thread of the process must call the InitializeCriticalSection function to initialize the
object.

Once a critical section object has been initialized, the threads of the process can specify the
object in the EnterCriticalSection, TryEnterCriticalSection, or LeaveCriticalSection function to
provide mutually exclusive access to a shared resource. For similar synchronization between the
threads of different processes, use a mutex object.

A critical section object cannot be moved or copied. The process must also not modify the object,
but must treat it as logically opaque. Use only the functions provided in the Win32 application
programming interface (API) to manage critical section objects.See AlsoCreateMutex, DeleteCriticalSection, EnterCriticalSection, LeaveCriticalSection,
TryEnterCriticalSection

InitializeSecurityDescriptor
The InitializeSecurityDescriptor function initializes a new security descriptor.

BOOL InitializeSecurityDescriptor(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
DWORD dwRevision // revision level

);ParameterspSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure that the function initializes.

dwRevision
Specifies the revision level to assign to the security descriptor. This must be
SECURITY_DESCRIPTOR_REVISION.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe InitializeSecurityDescriptor function initializes a security descriptor in absolute format,
rather than self-relative format.

The InitializeSecurityDescriptor function initializes a security descriptor to have no system ACL,
no discretionary ACL, no owner, no primary group, and all control flags set to FALSE (NULL).
Thus, except for its revision level, it is empty.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorLength, GetSecurityDescriptorOwner, GetSecurityDescriptorSacl,
IsValidSecurityDescriptor, SECURITY_DESCRIPTOR, SetSecurityDescriptorDacl,
SetSecurityDescriptorGroup, SetSecurityDescriptorOwner, SetSecurityDescriptorSacl

InitializeSid
The InitializeSid function initializes a SID structure. An SID is a security identifier.

BOOL InitializeSid(
PSID Sid, // address of SID to initialize
PSID_IDENTIFIER_AUTHORITY pIdentifierAuthority, // address of identifier authority
BYTE nSubAuthorityCount // count of subauthorities

);ParametersSid
Points to a SID structure to be initialized.

pIdentifierAuthority
Points to a SID_IDENTIFIER_AUTHORITY structure to set in the SID structure.

nSubAuthorityCount
Specifies the number of subauthorities to set in the SID. Values of the subauthority must be
set separately, as described in the following Remarks section.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAlthough the InitializeSid function sets the number of subauthorities for the SID, it does not set
the subauthority values. This must be done separately, using functions, such as
GetSidSubAuthority.

An application can use the AllocateAndInitializeSid function to initialize a SID and set its
subauthority values.See AlsoAllocateAndInitializeSid, GetLengthSid, GetSidIdentifierAuthority, GetSidLengthRequired,
GetSidSubAuthority, GetSidSubAuthorityCount, IsValidSid, SID,
SID_IDENTIFIER_AUTHORITY

InitiateSystemShutdown
The InitiateSystemShutdown function initiates a shutdown and optional restart of the specified
computer.

BOOL InitiateSystemShutdown(
LPTSTR lpMachineName, // address of name of computer to shut down
LPTSTR lpMessage, // address of message to display in dialog box
DWORD dwTimeout, // time to display dialog box
BOOL bForceAppsClosed, // force applications with unsaved changes flag
BOOL bRebootAfterShutdown // reboot flag

);ParameterslpMachineName
Points to the null-terminated string that specifies the network name of the computer to shut
down. If lpMachineName is NULL or points to an empty string, the function shuts down the
local computer.

lpMessage
Points to a null-terminated string that specifies a message to display in the shutdown dialog
box. This parameter can be NULL if no message is required.

dwTimeout
Specifies the time (in seconds) that the dialog box should be displayed. While this dialog box
is displayed, the shutdown can be stopped by the AbortSystemShutdown function.
If dwTimeout is not zero, InitiateSystemShutdown displays a dialog box on the specified
computer. The dialog box displays the name of the user who called the function, displays the
message specified by the lpMessage parameter, and prompts the user to log off. The dialog
box beeps when it is created and remains on top of other windows in the system. The dialog
box can be moved but not closed. A timer counts down the remaining time before a forced
shutdown. If the user logs off, the system shuts down immediately. Otherwise, the computer is
shut down when the timer expires.
If dwTimeout is zero, the computer shuts down without displaying the dialog box, and the
shutdown cannot be stopped by AbortSystemShutdown.

bForceAppsClosed
Specifies whether applications with unsaved changes are to be forcibly closed. If this
parameter is TRUE, such applications are closed. If this parameter is FALSE, a dialog box is
displayed prompting the user to close the applications.

bRebootAfterShutdown
Specifies whether the computer is to restart immediately after shutting down. If this parameter
is TRUE, the computer is to restart. If this parameter is FALSE, the system flushes all caches
to disk, clears the screen, and displays a message indicating that it is safe to power down.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo shut down the local computer, the calling process must have the SE_SHUTDOWN_NAME
privilege. To shut down a remote computer, the calling process must have the
SE_REMOTE_SHUTDOWN_NAME privilege on the remote computer. By default, users can
enable the SE_SHUTDOWN_NAME privilege on the computer they are logged onto, and
administrators can enable the SE_REMOTE_SHUTDOWN_NAME privilege on remote computers.

Common failures include an invalid or inaccessible computer name or insufficient privilege.See AlsoAbortSystemShutdown

InSendMessage
The InSendMessage function specifies whether the current window procedure is processing a
message that was sent from another thread by a call to the SendMessage function.

BOOL InSendMessage(VOID)ParametersThis function has no parameters.Return ValuesIf the window procedure is processing a message sent to it from another thread using the
SendMessage function, the return value is nonzero.

If the window procedure is not processing a message sent to it from another thread using the
SendMessage function, the return value is zero.See AlsoPostThreadMessage, ReplyMessage, SendMessage

InsertMenu
The InsertMenu function inserts a new menu item into a menu, moving other items down the
menu.

The InsertMenu function has been superseded by the InsertMenuItem function. You can still use
InsertMenu, however, if you do not need any of the extended features of InsertMenuItem.

BOOL InsertMenu(
HMENU hMenu, // handle of menu
UINT uPosition, // menu item that new menu item precedes
UINT uFlags, // menu item flags
UINT uIDNewItem, // menu item identifier or handle of drop-down menu

or submenu
LPCTSTR lpNewItem // menu item content

);ParametershMenu
Identifies the menu to be changed.

uPosition
Specifies the menu item before which the new menu item is to be inserted, as determined by
the uFlags parameter.

uFlags
Specifies flags that control the interpretation of the uPosition parameter and the content,
appearance, and behavior of the new menu item. This parameter must be a combination of
one of the following required values and at least one of the values listed in the following
Remarks section.

Value Description
MF_BYCOMMAND Indicates that the uPosition parameter gives

the identifier of the menu item. The
MF_BYCOMMAND flag is the default if neither
the MF_BYCOMMAND nor MF_BYPOSITION
flag is specified.

MF_BYPOSITION Indicates that the uPosition parameter gives
the zero-based relative position of the new
menu item. If uPosition is 0xFFFFFFFF, the
new menu item is appended to the end of the
menu.

uIDNewItem
Specifies either the identifier of the new menu item or, if the uFlags parameter has the
MF_POPUP flag set, the handle of the drop-down menu or submenu.

lpNewItem
Specifies the content of the new menu item. The interpretation of lpNewItem depends on
whether the uFlags parameter includes the MF_BITMAP, MF_OWNERDRAW, or
MF_STRING flag, as follows:

Value Description
MF_BITMAP Contains a bitmap handle.
MF_OWNERDRAW Contains a 32-bit value supplied by the

application that can be used to maintain
additional data related to the menu item. The
value is in the itemData member of the
structure pointed to by the lparam parameter
of the WM_MEASUREITEM or
WM_DRAWITEM message sent when the
menu item is created or its appearance is
updated.

MF_STRING Contains a pointer to a null-terminated string
(the default).

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

RemarksThe application must call the DrawMenuBar function whenever a menu changes, whether or not
the menu is in a displayed window.

The following list describes the flags that can be set in the uFlags parameter:

Value Description

MF_BITMAP Uses a bitmap as the menu item. The
lpNewItem parameter contains the handle of
the bitmap.

MF_CHECKED Places a check mark next to the menu item. If
the application provides check mark bitmaps
(see SetMenuItemBitmaps), this flag displays
the check mark bitmap next to the menu item.

MF_DISABLED Disables the menu item so that it cannot be
selected, but does not gray it.

MF_ENABLED Enables the menu item so that it can be
selected and restores it from its grayed state.

MF_GRAYED Disables the menu item and grays it so it
cannot be selected.

MF_MENUBARBREAK Functions the same as the MF_MENUBREAK
flag for a menu bar. For a drop-down menu,
submenu, or shortcut menu, the new column is
separated from the old column by a vertical
line.

MF_MENUBREAK Places the item on a new line (for menu bars)
or in a new column (for a drop-down menu,
submenu, or shortcut menu) without
separating columns.

MF_OWNERDRAW Specifies that the item is an owner-drawn item.
Before the menu is displayed for the first time,
the window that owns the menu receives a
WM_MEASUREITEM message to retrieve the
width and height of the menu item. The
WM_DRAWITEM message is then sent to the
window procedure of the owner window
whenever the appearance of the menu item
must be updated.

MF_POPUP Specifies that the menu item opens a drop-
down menu or submenu. The uIDNewItem
parameter specifies the handle of the drop-
down menu or submenu. This flag is used to
add a menu name to a menu bar or a menu
item that opens a submenu to a drop-down
menu, submenu, or shortcut menu.

MF_SEPARATOR Draws a horizontal dividing line. This flag is
used only in a drop-down menu, submenu, or
shortcut menu. The line cannot be grayed,
disabled, or highlighted. The lpNewItem and
uIDNewItem parameters are ignored.

MF_STRING Specifies that the menu item is a text string;
the lpNewItem parameter points to the string.

MF_UNCHECKED Does not place a check mark next to the menu
item (default). If the application supplies check
mark bitmaps (see the SetMenuItemBitmaps
function), this flag displays the unchecked
bitmap next to the menu item.

The following groups of flags cannot be used together:

· MF_BYCOMMAND and MF_BYPOSITION
· MF_DISABLED, MF_ENABLED, and MF_GRAYED
· MF_BITMAP, MF_STRING, MF_OWNERDRAW, and MF_SEPARATOR

· MF_MENUBARBREAK and MF_MENUBREAK
· MF_CHECKED and MF_UNCHECKED
See AlsoAppendMenu, DeleteMenu, DrawMenuBar, InsertMenuItem, ModifyMenu, RemoveMenu,

SetMenuItemBitmaps, WM_DRAWITEM, WM_MEASUREITEM

InsertMenuItem
[Now Supported on Windows NT]

The InsertMenuItem function inserts a new menu item at the specified position in a menu.

BOOL WINAPI InsertMenuItem(
HMENU hMenu,
UINT uItem,
BOOL fByPosition,
LPMENUITEMINFO lpmii

);ParametershMenu
Handle to the menu in which the new menu item is inserted.

uItem
Identifier or position of the menu item before which to insert the new item. The meaning of this
parameter depends on the value of fByPosition.

fByPosition
Value specifying the meaning of uItem. If this parameter is FALSE, uItem is a menu item
identifier. Otherwise, it is a menu item position.

lpmii
Pointer to a MENUITEMINFO structure that contains information about the new menu item.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoMENUITEMINFO

Int32x32To64
The Int32x32To64 function multiplies two signed 32-bit integers, returning a signed 64-bit integer
result. The function performs optimally on all Win32 platforms.

LONGLONG Int32x32To64(
LONG Multiplier, // specifies first signed 32-bit integer for the multiplication
LONG Multiplicand // specifies second signed 32-bit integer for the multiplication

);ParametersMultiplier
Specifies the first signed 32-bit integer for the multiplication.

Multiplicand
Specifies the second signed 32-bit integer for the multiplication.

Return ValuesThe return value is the signed 64-bit integer result of the multiplication.RemarksThis function is implemented on all platforms by optimal inline code: a single multiply instruction
that returns a 64-bit result.

Please note that the function's return value is a 64-bit value, not a LARGE_INTEGER structure.See AlsoUInt32x32To64

Int64ShllMod32
The Int64ShllMod32 function performs a left logical shift operation on an unsigned 64-bit integer
value. The function provides improved shifting code for left logical shifts where the shift count is in
the range 0 - 31.

DWORDLONG Int64ShllMod32(
DWORDLONG Value, // specifies unsigned 64-bit integer to shift left logically
DWORD ShiftCount // specifies a shift count in the range 0 - 31

);ParametersValue
Specifies the unsigned 64-bit integer to be shifted.

ShiftCount
Specifies a shift count in the range 0 - 31.

Return ValuesThe return value is the unsigned 64-bit integer result of the left logical shift operation.RemarksThe shift count is the number of bit positions that the value's bits move.

In a left logical shift operation on an unsigned value, the value's bits move to the left, and vacated
bits on the right side of the value are set to zero.

A compiler can generate optimal code for a left logical shift operation when the shift count is a
constant. However, if the shift count is a variable whose range of values is unknown, the compiler
must assume the worst case, leading to non-optimal code: code that calls a subroutine, or code
that is inline but branches. By restricting the shift count to the range 0 - 31, the Int64ShllMod32
function lets the compiler generate optimal or near-optimal code.

Please note that the Int64ShllMod32 function's Value parameter and return value are 64-bit
values, not LARGE_INTEGER structures.See AlsoInt64ShraMod32, Int64ShrlMod32

Int64ShraMod32
The Int64ShraMod32 function performs a right arithmetic shift operation on a signed 64-bit
integer value. The function provides improved shifting code for right arithmetic shifts where the
shift count is in the range 0 - 31.

LONGLONG Int64ShraMod32(
LONGLONG Value, // specifies signed 64-bit integer to shift right arithmetically
DWORD ShiftCount // specifies a shift count in the range 0 - 31

);ParametersValue
Specifies the signed 64-bit integer to be shifted.

ShiftCount
Specifies a shift count in the range 0 - 31.

Return ValuesThe return value is the signed 64-bit integer result of the right arithmetic shift operation.RemarksThe shift count is the number of bit positions that the value's bits move.

In a right arithmetic shift operation on a signed value, the value's bits move to the right, and
vacated bits on the left side of the value are set to the value of the sign bit.

A compiler can generate optimal code for a right arithmetic shift operation when the shift count is
a constant. However, if the shift count is a variable whose range of values is unknown, the
compiler must assume the worst case, leading to non-optimal code: code that calls a subroutine,
or code that is inline but branches. By restricting the shift count to the range 0 - 31, the
Int64ShraMod32 function lets the compiler generate optimal or near-optimal code.

Please note that the Int64ShraMod32 function's Value parameter and return value are 64-bit
values, not LARGE_INTEGER structures.See AlsoInt64ShllMod32, Int64ShrlMod32

Int64ShrlMod32
The Int64ShrlMod32 function performs a right logical shift operation on an unsigned 64-bit integer
value. The function provides improved shifting code for right logical shifts where the shift count is
in the range 0 - 31.

DWORDLONG Int64ShrlMod32(
DWORDLONG Value, // specifies unsigned 64-bit integer to shift right logically
DWORD ShiftCount // specifies a shift count in the range 0 - 31

);ParametersValue
Specifies the unsigned 64-bit integer to be shifted.

ShiftCount
Specifies a shift count in the range 0 - 31.

Return ValuesThe return value is the unsigned 64-bit integer result of the right logical shift operation.RemarksThe shift count is the number of bit positions that the value's bits move.

In a right logical shift operation on an unsigned value, the value's bits move to the right, and
vacated bits on the left side of the value are set to zero.

A compiler can generate optimal code for a right logical shift operation when the shift count is a
constant. However, if the shift count is a variable whose range of values is unknown, the compiler
must assume the worst case, leading to non-optimal code: code that calls a subroutine, or code
that is inline but branches. By restricting the shift count to the range 0 - 31, the Int64ShrlMod32
function lets the compiler generate optimal or near-optimal code.

Please note that the Int64ShrlMod32 function's Value parameter and return value are 64-bit
values, not LARGE_INTEGER structures.See AlsoInt64ShllMod32, Int64ShraMod32

InterlockedCompareExchange
[New - Windows NT]

The InterlockedCompareExchange function performs an atomic comparison of the values
specified in the Destination and Comperand parameters and exchange of the values, based on
the outcome of the comparison. The function prevents more than one thread from using the same
variable simultaneously.

PVOID InterlockedCompareExchange(
PVOID *Destination, // pointer to the destination pointer
PVOID Exchange, // the exchange value
PVOID Comperand // the value to compare

);ParametersDestination
Specifies the address of the destination value. This is a 32-bit value. The sign is ignored.

Exchange
Specifies the exchange value. This is a 32-bit value. The sign is ignored.

Comperand
Specifies the value to compare to Destination. This is a 32-bit value. The sign is ignored.

Return ValuesThe return value is the initial value of the destination.RemarksThe functions InterlockedCompareExchange, InterlockedDecrement, InterlockedExchange,
InterlockedExchangeAdd, and InterlockedIncrement provide a simple mechanism for
synchronizing access to a variable that is shared by multiple threads. The threads of different
processes can use this mechanism if the variable is in shared memory.

The InterlockedCompareExchange function performs an atomic comparison of the Destination
value with the Comperand value. If the Destination value is equal to the Comperand value, the
Exchange value is stored in the address specified by Destination. Otherwise, no operation is
performed.

The variables for InterlockedCompareExchange must be aligned on a 32-bit boundary;
otherwise, this function will fail on multiprocessor x86 systems.See AlsoInterlockedDecrement, InterlockedExchange, InterlockedExchangeAdd,
InterlockedIncrement

InterlockedDecrement
The InterlockedDecrement function both decrements (decreases by one) the value of the
specified 32-bit variable and checks the resulting value. The function prevents more than one
thread from using the same variable simultaneously.

LONG InterlockedDecrement(
LPLONG lpAddend // address of the variable to decrement

);ParameterslpAddend
Points to the 32-bit variable to decrement.

Return ValuesIf the result of the decrement is zero, the return value is zero.

If the result of the decrement is less than zero, the return value is less than zero. If the result of
the decrement is greater than zero, the return value is greater than zero. A nonzero return value
may not be equal to the result of the decrement.RemarksThe functions InterlockedDecrement, InterlockedCompareExchange, InterlockedExchange,
InterlockedExchangeAdd, and InterlockedIncrement provide a simple mechanism for
synchronizing access to a variable that is shared by multiple threads. The threads of different
processes can use this mechanism if the variable is in shared memory.

The variable pointed to by the lpAddend parameter must be aligned on a 32-bit boundary;
otherwise, this function will fail on multiprocessor x86 systems.See AlsoInterlockedCompareExchange, InterlockedExchange, InterlockedExchangeAdd,
InterlockedIncrement

InterlockedExchange
The InterlockedExchange function atomically exchanges a pair of 32-bit values. The function
prevents more than one thread from using the same variable simultaneously.

LONG InterlockedExchange(
LPLONG Target, // address of 32-bit value to exchange
LONG Value // new value for the LONG value pointed to by Target

);ParametersTarget
Address of the LONG value to exchange. The function sets this LONG value to Value, and
returns its prior value.

Value
Specifies a new value for the LONG value pointed to by Target.

Return ValuesThe function returns the prior value of the LONG value pointed to by Target.RemarksThe functions InterlockedExchange, InterlockedCompareExchange, InterlockedDecrement,
InterlockedExchangeAdd, and InterlockedIncrement provide a simple mechanism for
synchronizing access to a variable that is shared by multiple threads. The threads of different
processes can use this mechanism if the variable is in shared memory.

The variable pointed to by the Target parameter must be aligned on a 32-bit boundary; otherwise,
this function will fail on multiprocessor x86 systems.See AlsoInterlockedCompareExchange, InterlockedDecrement, InterlockedExchangeAdd,
InterlockedIncrement

InterlockedExchangeAdd
[New - Windows NT]

The InterlockExchangeAdd function performs an atomic addition of an increment value to an
addend variable. The function prevents more than one thread from using the same variable
simultaneously.

LONG InterlockedExchangeAdd (
PLONG Addend, // pointer to the addend
LONG Increment // increment value

);ParametersAddend
Specifies the address of the number that will have the Increment number added to it.

Increment
Specifies the number to be added to the variable pointed to by the Addend parameter.

Return ValuesThe return value is the initial value of the Addend parameter.RemarksThe functions InterlockedExchangeAdd, InterlockedCompareExchange,
InterlockedDecrement, InterlockedExchange, and InterlockedIncrement provide a simple
mechanism for synchronizing access to a variable that is shared by multiple threads. The threads
of different processes can use this mechanism if the variable is in shared memory.

The InterlockedExchangeAdd function performs an atomic addition of the Increment value to the
Addend value. The result is stored in the address specified by Addend. The initial value of Addend
is returned as the function value.

The variables for InterlockedExchangeAdd must be aligned on a 32-bit boundary; otherwise, this
function will fail on multiprocessor x86 systems.See AlsoInterlockedCompareExchange, InterlockedDecrement, InterlockedExchange,
InterlockedIncrement

InterlockedIncrement
The InterlockedIncrement function both increments (increases by one) the value of the specified
32-bit variable and checks the resulting value. The function prevents more than one thread from
using the same variable simultaneously.

LONG InterlockedIncrement(
LPLONG lpAddend // address of the variable to increment

);ParameterslpAddend
Points to the 32-bit variable to increment.

Return ValuesIf the result of the increment is zero, the return value is zero.

If the result of the increment is less than zero, the return value is less than zero. If the result of the
increment is greater than zero, the return value is greater than zero. A nonzero return value may
not be equal to the result of the increment.RemarksThe functions InterlockedIncrement, InterlockedCompareExchange, InterlockedDecrement,
InterlockedExchange, and InterlockedExchangeAdd provide a simple mechanism for
synchronizing access to a variable that is shared by multiple threads. The threads of different
processes can use this mechanism if the variable is in shared memory.

The variable pointed to by the lpAddend parameter must be aligned on a 32-bit boundary;
otherwise, this function will fail on multiprocessor x86 systems.See AlsoInterlockedCompareExchange, InterlockedDecrement, InterlockedExchange,
InterlockedExchangeAdd

IntersectClipRect
The IntersectClipRect function creates a new clipping region from the intersection of the current
clipping region and the specified rectangle.

int IntersectClipRect(
HDC hdc, // handle of device context
int nLeftRect, // x-coordinate of upper-left corner of rectangle
int nTopRect, // y-coordinate of upper-left corner of rectangle
int nRightRect, // x-coordinate of lower-right corner of rectangle
int nBottomRect // y-coordinate of lower-right corner of rectangle

);Parametershdc
Identifies the device context.

nLeftRect
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Return ValuesIf the function succeeds, the return value specifies the new clipping region's type and can be any
one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred. (The current clipping region is

unaffected.)
RemarksThe lower and rightmost edges of the given rectangle are excluded from the clipping region.See AlsoExcludeClipRect

IntersectRect
The IntersectRect function calculates the intersection of two source rectangles and places the
coordinates of the intersection rectangle into the destination rectangle. If the source rectangles do
not intersect, an empty rectangle (in which all coordinates are set to zero) is placed into the
destination rectangle.

BOOL IntersectRect(
LPRECT lprcDst, // address of structure for intersection
CONST RECT *lprcSrc1, // address of structure with first rectangle
CONST RECT *lprcSrc2 // address of structure with second rectangle

);ParameterslprcDst
Points to the RECT structure that is to receive the intersection of the rectangles pointed to by
the lprcSrc1 and lprcSrc2 parameters.

lprcSrc1
Points to the RECT structure that contains the first source rectangle.

lprcSrc2
Points to the RECT structure that contains the second source rectangle.

Return ValuesIf the rectangles intersect, the return value is nonzero.

If the rectangles do not intersect, the return value is zero. To get extended error information, call
GetLastError.See AlsoInflateRect, OffsetRect, RECT, UnionRect

InvalidateRect
The InvalidateRect function adds a rectangle to the specified window's update region. The
update region represents the portion of the window's client area that must be redrawn.

BOOL InvalidateRect(
HWND hWnd, // handle of window with changed update region
CONST RECT *lpRect, // address of rectangle coordinates
BOOL bErase // erase-background flag

);ParametershWnd
Identifies the window whose update region has changed. If this parameter is NULL, Windows
invalidates and redraws all windows, and sends the WM_ERASEBKGND and WM_NCPAINT
messages to the window procedure before the function returns.

lpRect
Points to a RECT structure that contains the client coordinates of the rectangle to be added to
the update region. If this parameter is NULL, the entire client area is added to the update
region.

bErase
Specifies whether the background within the update region is to be erased when the update
region is processed. If this parameter is TRUE, the background is erased when the
BeginPaint function is called. If this parameter is FALSE, the background remains
unchanged.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe invalidated areas accumulate in the update region until the region is processed when the next
WM_PAINT message occurs or until the region is validated by using the ValidateRect or
ValidateRgn function.

Windows sends a WM_PAINT message to a window whenever its update region is not empty and
there are no other messages in the application queue for that window.

If the bErase parameter is TRUE for any part of the update region, the background is erased in
the entire region, not just in the given part.See AlsoBeginPaint, InvalidateRgn, RECT, ValidateRect, ValidateRgn, WM_ERASEBKGND,
WM_NCPAINT, WM_PAINT

InvalidateRgn
The InvalidateRgn function invalidates the client area within the specified region by adding it to
the current update region of a window. The invalidated region, along with all other areas in the
update region, is marked for painting when the next WM_PAINT message occurs.

BOOL InvalidateRgn(
HWND hWnd, // handle of window with changed update region
HRGN hRgn, // handle of region to add
BOOL bErase // erase-background flag

);ParametershWnd
Identifies the window with an update region that is to be modified.

hRgn
Identifies the region to be added to the update region. The region is assumed to have client
coordinates. If this parameter is NULL, the entire client area is added to the update region.

bErase
Specifies whether the background within the update region should be erased when the update
region is processed. If this parameter is TRUE, the background is erased when the
BeginPaint function is called. If the parameter is FALSE, the background remains
unchanged.

Return ValuesThe return value is always nonzero.RemarksInvalidated areas accumulate in the update region until the next WM_PAINT message is
processed or until the region is validated by using the ValidateRect or ValidateRgn function.

Windows sends a WM_PAINT message to a window whenever its update region is not empty and
there are no other messages in the application queue for that window.

The specified region must have been created by using one of the region functions.

If the bErase parameter is TRUE for any part of the update region, the background in the entire
region is erased, not just in the specified part.See AlsoBeginPaint, InvalidateRect, ValidateRect, ValidateRgn, WM_PAINT

InvertRect
The InvertRect function inverts a rectangle in a window by performing a logical NOT operation on
the color values for each pixel in the rectangle's interior.

BOOL InvertRect(
HDC hDC, // handle of device context
CONST RECT *lprc // address of structure with rectangle

);ParametershDC
Identifies the device context.

lprc
Points to a RECT structure that contains the logical coordinates of the rectangle to be
inverted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOn monochrome screens, InvertRect makes white pixels black and black pixels white. On color
screens, the inversion depends on how colors are generated for the screen. Calling InvertRect
twice for the same rectangle restores the display to its previous colors.See AlsoFillRect, RECT

InvertRgn
The InvertRgn function inverts the colors in the specified region.

BOOL InvertRgn(
HDC hdc, // handle of device context
HRGN hrgn // handle of region to be inverted

);Parametershdc
Identifies the device context.

hrgn
Identifies the region for which colors are inverted. The region's coordinates are presumed to
be logical coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksOn monochrome screens, the InvertRgn function makes white pixels black and black pixels
white. On color screens, this inversion is dependent on the type of technology used to generate
the colors for the screen.See AlsoFillRgn, PaintRgn

IOCTL_DISK_CHECK_VERIFY
The IOCTL_DISK_CHECK_VERIFY function has been superseded by the
IOCTL_STORAGE_CHECK_VERIFY function.

IOCTL_DISK_EJECT_MEDIA
The IOCTL_DISK_EJECT_MEDIA function has been superseded by the
IOCTL_STORAGE_EJECT_MEDIA function.

IOCTL_DISK_FORMAT_TRACKS
The IOCTL_DISK_FORMAT_TRACKS DeviceIoControl operation formats a specified,
contiguous set of tracks on a disk.dwIoControlCode = IOCTL_DISK_FORMAT_TRACKS; // operation code
lpInBuffer; // address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains a FORMAT_PARAMETERS data structure.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain a FORMAT_PARAMETERS data structure.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for floppy disk devices only.See AlsoDeviceIoControl, FORMAT_PARAMETERS

IOCTL_DISK_GET_DRIVE_GEOMETRY
The IOCTL_DISK_GET_DRIVE_GEOMETRY DeviceIoControl operation returns information
about the physical disk's geometry: type, number of cylinders, tracks per cylinder, sectors per
track, and bytes per sector.dwIoControlCode = IOCTL_DISK_GET_DRIVE_GEOMETRY; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // address of output buffer
nOutBufferSize ; // size of output buffer
lpBytesReturned ; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that will receive a DISK_GEOMETRY data structure.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer, which must be greater than
or equal to the size of a DISK_GEOMETRY data structure.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices.See AlsoDeviceIoControl, DISK_GEOMETRY, IOCTL_DISK_GET_MEDIA_TYPES

IOCTL_DISK_GET_DRIVE_LAYOUT
The IOCTL_DISK_GET_DRIVE_LAYOUT DeviceIoControl operation returns information about
the number of partitions on a disk and the features of each partition.dwIoControlCode = IOCTL_DISK_GET_DRIVE_LAYOUT; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // address of output buffer
nOutBufferSize ; // size of output buffer
lpBytesReturned ; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that will receive a DRIVE_LAYOUT_INFORMATION structure and a series
of PARTITION_INFORMATION structures, one of the latter for each partition on the drive.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer, which must be large
enough to contain one DRIVE_LAYOUT_INFORMATION data structure and as many
PARTITION_INFORMATION data structures as there are partitions on the drive.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices. Floppy disk drivers, however, do not need to
handle this operation.See AlsoDeviceIoControl, DRIVE_LAYOUT_INFORMATION, IOCTL_DISK_SET_DRIVE_LAYOUT,
PARTITION_INFORMATION

IOCTL_DISK_GET_MEDIA_TYPES
The IOCTL_DISK_GET_MEDIA_TYPES function has been superseded by the
IOCTL_STORAGE_GET_MEDIA_TYPES function.

IOCTL_DISK_GET_PARTITION_INFO
The IOCTL_DISK_GET_PARTITION_INFO DeviceIoControl operation returns information about
the type, size, and nature of a disk partition.dwIoControlCode = IOCTL_DISK_GET_PARTITION_INFO ; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer; // address of output buffer
nOutBufferSize;// size of output buffer
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that will receive a PARTITION_INFORMATION data structure.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer, which must be large
enough to contain a PARTITION_INFORMATION data structure.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices. Floppy disk drivers, however, do not need to
handle this operation.See AlsoDeviceIoControl, IOCTL_DISK_SET_PARTITION_INFO, PARTITION_INFORMATION

IOCTL_DISK_LOAD_MEDIA
The IOCTL_DISK_LOAD_MEDIA function has been superseded by the
IOCTL_STORAGE_LOAD_MEDIA function.

IOCTL_DISK_MEDIA_REMOVAL
The IOCTL_DISK_MEDIA_REMOVAL function has been superseded by the
IOCTL_STORAGE_MEDIA_REMOVAL function.

IOCTL_DISK_PERFORMANCE
The IOCTL_DISK_PERFORMANCE DeviceIoControl operation provides disk performance
information.dwIoControlCode = IOCTL_DISK_PERFORMANCE; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer; // address of output buffer
nOutBufferSize; // size of output buffer
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that will receive a DISK_PERFORMANCE data structure.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer, which must be large
enough to contain a DISK_PERFORMANCE data structure.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices.See AlsoDeviceIoControl, DISK_PERFORMANCE

IOCTL_DISK_REASSIGN_BLOCKS
The IOCTL_DISK_REASSIGN_BLOCKS DeviceIoControl operation directs the disk device to
map one or more blocks to its spare-block pool.dwIoControlCode = IOCTL_DISK_REASSIGN_BLOCKS; // operation code
lpInBuffer;// address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be
NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned;// address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains a REASSIGN_BLOCKS data structure specifying the blocks to
reassign to its spare block pool.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain the REASSIGN_BLOCKS data structure. Note that this structure is really a header
followed by an array of block specifiers; thus, it varies in size according to the number of
blocks to be reassigned; each block after the first adds the size of a DWORD to the overall
size.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices.See AlsoDeviceIoControl, REASSIGN_BLOCKS

IOCTL_DISK_SET_DRIVE_LAYOUT
The IOCTL_DISK_SET_DRIVE_LAYOUT DeviceIoControl operation partitions a disk as
specified by drive layout and partition information data.dwIoControlCode = IOCTL_DISK_SET_DRIVE_LAYOUT; // operation code
lpInBuffer;// address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be
NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned;// address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains drive layout and partition information data. The data exists as a
DRIVE_LAYOUT_INFORMATION data structure and a series of
PARTITION_INFORMATION data structures, one of the latter for each proposed partition on
the drive.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain one DRIVE_LAYOUT_INFORMATION data structure and as many
PARTITION_INFORMATION data structures as there are proposed partitions on the drive.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices. Floppy disk drivers, however, need not
handle this operation.See AlsoDeviceIoControl, DRIVE_LAYOUT_INFORMATION, IOCTL_DISK_GET_DRIVE_LAYOUT,
PARTITION_INFORMATION

IOCTL_DISK_SET_PARTITION_INFO
The IOCTL_DISK_SET_PARTITION_INFO DeviceIoControl operation sets the partition type of
the specified disk partition.dwIoControlCode = IOCTL_DISK_SET_PARTITION_INFO; // operation code
lpInBuffer;// address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be
NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned;// address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains the partition data to be set. The data exists as a
SET_PARTITION_INFORMATION data structure.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain a SET_PARTITION_INFORMATION data structure.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.
Not used with this operation. Set to NULL.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices. Floppy disk drivers, however, need not
handle this operation.See AlsoDeviceIoControl, IOCTL_DISK_GET_PARTITION_INFO, SET_PARTITION_INFORMATION

IOCTL_DISK_VERIFY
The IOCTL_DISK_VERIFY DeviceIoControl operation performs a logical format of a specified
extent on a disk.dwIoControlCode = IOCTL_DISK_VERIFY; // operation code
lpInBuffer;// address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be
NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned;// address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains a VERIFY_INFORMATION data structure.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain a VERIFY_INFORMATION data structure.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for disk devices. Floppy disk drivers, however, need not
handle this operation.See AlsoDeviceIoControl, IOCTL_DISK_CHECK_VERIFY, VERIFY_INFORMATION

IOCTL_SERIAL_LSRMST_INSERT
The IOCTL_SERIAL_LSRMST_INSERT DeviceIoControl operation enables or disables the
placement of line status and modem status values into the regular data stream that an application
acquires through the ReadFile function.

When this line-status and modem-status data placement mode is enabled, status values are
preceded in the data stream by an escape character. The user-definable escape character is set
by the IOCTL_SERIAL_LSRMST_INSERT operation. Status values consist of 1 to 3 BYTEs. See
the Remarks section below for status value details.dwIoControlCode = IOCTL_SERIAL_LSRMST_INSERT;// operation code
lpInBuffer; // address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains a single BYTE.
If the BYTE is a nonzero value, it is the desired line-status and modem-status value escape
character. The operation will turn the LSRMST_INSERT line-status and modem-status data
placement mode on.
If the BYTE is zero, the operation will turn the LSRMST_INSERT line-status and modem-
status data placement mode off.
The escape character can not be the XON or XOFF character.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. For this operation, this value
should be 1.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksNote that an application that uses this scheme must examine each character in the data stream to
determine the presence of modem-status or line-status data.

The following values follow the designated escape character in the data stream if the
LSRMST_INSERT mode has been turned on :

Value Meaning

SERIAL_LSRMST_ESCAPE Indicates the reception of the
escape character itself into the data
stream.

SERIAL_LSRMST_LSR_DATA Indicates that a line status change
occurred, and data was available in
the receive hardware buffer.
Following this BYTE is a BYTE
value of the line status register is the
BYTE present in the receive
hardware buffer when the line status
change was processed.

SERIAL_LSRMST_LSR_NODATAIndicates that a line status change
occurred, but no data was available
in the receive hardware buffer.

SERIAL_LSRMST_MST Indicates that a modem status
change occurred. Following this
BYTE is a BYTE that is the value of
the modem status register when the
modem status change was
processed.

See AlsoDeviceIoControl, ReadFile

IOCTL_STORAGE_CHECK_VERIFY
The IOCTL_STORAGE_CHECK_VERIFY DeviceIoControl operation determines whether a
device's media is accessible; for example, whether the media is in the device.dwIoControlCode = IOCTL_STORAGE_CHECK_VERIFY ; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds and the device media is accessible, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE.See AlsoDeviceIoControl

IOCTL_STORAGE_EJECT_MEDIA
The IOCTL_STORAGE_EJECT_MEDIA DeviceIoControl operation causes media to be ejected
from a SCSI device.dwIoControlCode = IOCTL_STORAGE_EJECT_MEDIA; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksIOCTL_STORAGE_EJECT_MEDIA may or may not be supported on SCSI devices that support
removable media.See AlsoDeviceIoControl, IOCTL_DISK_MEDIA_REMOVAL, IOCTL_DISK_LOAD_MEDIA

IOCTL_STORAGE_GET_MEDIA_TYPES
The IOCTL_STORAGE_GET_MEDIA_TYPES DeviceIoControl operation returns information
about the types of media a device driver supports.dwIoControlCode = IOCTL_STORAGE_GET_MEDIA_TYPES; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer ; // address of output buffer
nOutBufferSize ; // size of output buffer
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to a buffer that will receive an array of DISK_GEOMETRY data structures specifying
the media types the device driver supports.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer, which must be large
enough to contain as many DISK_GEOMETRY structures as there are media that the driver
supports.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThis device I/O control operation is for all class drivers, as well as non-small computer system
interface (SCSI) hard drives and floppy disk devices.See AlsoDeviceIoControl, DISK_GEOMETRY, IOCTL_DISK_GET_DRIVE_GEOMETRY

IOCTL_STORAGE_LOAD_MEDIA
The IOCTL_STORAGE_LOAD_MEDIA DeviceIoControl operation causes media to be loaded
into a device.dwIoControlCode = IOCTL_STORAGE_LOAD_MEDIA; // operation code
lpInBuffer = NULL; // address of input buffer; not used; must be NULL
nInBufferSize = 0; // size of input buffer; not used; must be zero
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to an input buffer. Not used with this operation. Set to NULL.
nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer. Not used with this operation.
Set to zero.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

RemarksThe IOCTL_STORAGE_LOAD_MEDIA is valid only for devices that support loadable media.See AlsoDeviceIoControl, IOCTL_STORAGE_EJECT_MEDIA, IOCTL_STORAGE_MEDIA_REMOVAL

IOCTL_STORAGE_MEDIA_REMOVAL
The IOCTL_STORAGE_MEDIA_REMOVAL DeviceIoControl operation enables or disables the
mechanism that ejects media, for those devices possessing that locking capability.dwIoControlCode = IOCTL_STORAGE_MEDIA_REMOVAL; // operation code
lpInBuffer; // address of input buffer
nInBufferSize; // size of input buffer
lpOutBuffer = NULL; // address of output buffer; not used; must be NULL
nOutBufferSize = 0; // size of output buffer; not used; must be zero
lpBytesReturned; // address of actual bytes of output
ParameterslpInBuffer

Points to a buffer that contains a PREVENT_MEDIA_REMOVAL data structure.
A TRUE value for that structure's PreventMediaRemoval member specifies that media
removal is prevented (the device is locked). A FALSE value specifies that media removal is
allowed.

nInBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpInBuffer, which must be large enough
to contain a PREVENT_MEDIA_REMOVAL data structure.

lpOutBuffer
Points to an output buffer. Not used with this operation. Set to NULL.

nOutBufferSize
Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer. Not used with this
operation. Set to zero.

lpBytesReturned
Points to a DWORD that receives the actual size, in bytes, of the data stored into lpOutBuffer.

Return ValuesIf the operation succeeds, DeviceIoControl returns TRUE.

If the operation fails, DeviceIoControl returns FALSE. To get extended error information, call
GetLastError.RemarksThe IOCTL_STORAGE_MEDIA_REMOVAL operation is valid only for devices that support
removable media.See AlsoDeviceIoControl, IOCTL_STORAGE_EJECT_MEDIA, IOCTL_STORAGE_LOAD_MEDIA,
PREVENT_MEDIA_REMOVAL

IsBadCodePtr
The IsBadCodePtr function determines whether the calling process has read access to the
memory at the specified address.

BOOL IsBadCodePtr(
FARPROC lpfn // address of function

);Parameterslpfn
Points to an address in memory.

Return ValuesIf the calling process has read access to the specified memory, the return value is zero.

If the calling process does not have read access to the specified memory, the return value is
nonzero. To get extended error information, call GetLastError.RemarksIsBadCodePtr checks the read access only at the specified address and does not guarantee read
access to a range of memory.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has read access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.See AlsoIsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadHugeReadPtr
The IsBadHugeReadPtr function verifies that the calling process has read access to the specified
range of memory.

BOOL IsBadHugeReadPtr(
CONST VOID *lp, // address of memory block
UINT ucb // size of block

);Parameterslp
Points to the first byte of the memory block.

ucb
Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is
zero.

Return ValuesIf the calling process has read access to all bytes in the specified memory range, the return value
is zero.

If the calling process does not have read access to all bytes in the specified memory range, the
return value is nonzero. To get extended error information, call GetLastError.RemarksIf the calling process has read access to some, but not all, of the bytes in the specified memory
range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has read access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.

IsBadHugeReadPtr is available for compatibility with earlier versions of Windows that distinguish
between normal memory allocations and huge allocations occupying multiple segments. In the
Win32 API, this function is equivalent to the IsBadReadPtr function.See AlsoIsBadHugeWritePtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadHugeWritePtr
The IsBadHugeWritePtr function verifies that the calling process has write access to the
specified range of memory.

BOOL IsBadHugeWritePtr(
LPVOID lp, // address of memory block
UINT ucb // size of block

);Parameterslp
Points to the first byte of the memory block.

ucb
Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is
zero.

Return ValuesIf the calling process has write access to all bytes in the specified memory range, the return value
is zero.

If the calling process does not have write access to all bytes in the specified memory range, the
return value is nonzero. To get extended error information, call GetLastErrorRemarksIf the calling process has write access to some, but not all, of the bytes in the specified memory
range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has write access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.

IsBadHugeWritePtr is available for compatibility with earlier versions of Windows, which
distinguish between normal memory allocations and huge allocations occupying multiple
segments. In the Win32 API, this function is equivalent to the IsBadWritePtr function.See AlsoIsBadHugeReadPtr, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr

IsBadReadPtr
The IsBadReadPtr function verifies that the calling process has read access to the specified
range of memory.

BOOL IsBadReadPtr(
CONST VOID *lp, // address of memory block
UINT ucb // size of block

);Parameterslp
Points to the first byte of the memory block.

ucb
Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is
zero.

Return ValuesIf the calling process has read access to all bytes in the specified memory range, the return value
is zero.

If the calling process does not have read access to all bytes in the specified memory range, the
return value is nonzero. To get extended error information, call GetLastErrorRemarksIf the calling process has read access to some, but not all, of the bytes in the specified memory
range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has read access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.See AlsoIsBadHugeReadPtr, IsBadHugeWritePtr, IsBadStringPtr, IsBadWritePtr

IsBadStringPtr
The IsBadStringPtr function verifies that the calling process has read access to a range of
memory pointed to by a string pointer.

BOOL IsBadStringPtr(
LPCTSTR lpsz, // address of string
UINT ucchMax // maximum size of string

);Parameterslpsz
Points to a null-terminated string, either Unicode or ASCII.

ucchMax
Specifies the maximum size, in characters, of the string. The function checks for read access
in all bytes up to the string's terminating null character or up to the number of bytes specified
by this parameter, whichever is smaller. If this parameter is zero, the return value is zero.

Return ValuesIf the calling process has read access to all bytes up to the string's terminating null character or up
to the number of bytes specified by ucchMax, the return value is zero.

If the calling process does not have read access to all bytes up to the string's terminating null
character or up to the number of bytes specified by ucchMax, the return value is nonzero. To get
extended error information, call GetLastErrorRemarksIf the calling process has read access to some, but not all, of the bytes in the specified memory
range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has read access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.See AlsoIsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadWritePtr

IsBadWritePtr
The IsBadWritePtr function verifies that the calling process has write access to the specified
range of memory.

BOOL IsBadWritePtr(
LPVOID lp, // address of memory block
UINT ucb // size of block

);Parameterslp
Points to the first byte of the memory block.

ucb
Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is
zero.

Return ValuesIf the calling process has write access to all bytes in the specified memory range, the return value
is zero.

If the calling process does not have write access to all bytes in the specified memory range, the
return value is nonzero. To get extended error information, call GetLastError.RemarksIf the calling process has write access to some, but not all, of the bytes in the specified memory
range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the
process's access to the memory being tested. Even when the function indicates that the process
has write access to the specified memory, you should use structured exception handling when
attempting to access the memory. Use of structured exception handling enables the system to
notify the process if an access violation exception occurs, giving the process an opportunity to
handle the exception.See AlsoIsBadCodePtr, IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr

IsCharAlpha
The IsCharAlpha function determines whether a character is an alphabetic character. This
determination is based on the semantics of the language selected by the user during setup or by
using Control Panel.

BOOL IsCharAlpha(
TCHAR ch // character to test

);Parametersch
Specifies the character to be tested.

Return ValuesIf the character is alphabetic, the return value is nonzero.

If the character is not alphabetic, the return value is zero. To get extended error information, call
GetLastError.See AlsoIsCharAlphaNumeric

IsCharAlphaNumeric
The IsCharAlphaNumeric function determines whether a character is either an alphabetic or a
numeric character. This determination is based on the semantics of the language selected by the
user during setup or by using Control Panel.

BOOL IsCharAlphaNumeric(
TCHAR ch // character to test

);Parametersch
Specifies the character to be tested.

Return ValuesIf the character is alphanumeric, the return value is nonzero.

If the character is not alphanumeric, the return value is zero. To get extended error information,
call GetLastError.See AlsoIsCharAlpha

IsCharLower
The IsCharLower function determines whether a character is lowercase. This determination is
based on the semantics of the language selected by the user during setup or by using Control
Panel.

BOOL IsCharLower(
TCHAR ch // character to test

);Parametersch
Specifies the character to be tested.

Return ValuesIf the character is lowercase, the return value is nonzero.

If the character is not lowercase, the return value is zero. To get extended error information, call
GetLastError.See AlsoIsCharUpper

IsCharUpper
The IsCharUpper function determines whether a character is uppercase. This determination is
based on the semantics of the language selected by the user during setup or by using Control
Panel.

BOOL IsCharUpper(
TCHAR ch // character to test

);Parametersch
Specifies the character to be tested.

Return ValuesIf the character is uppercase, the return value is nonzero.

If the character is not uppercase, the return value is zero. To get extended error information, call
GetLastError.See AlsoIsCharLower

IsChild
The IsChild function tests whether a window is a child window or descendant window of a
specified parent window. A child window is the direct descendant of a specified parent window if
that parent window is in the chain of parent windows; the chain of parent windows leads from the
original overlapped or pop-up window to the child window.

BOOL IsChild(
HWND hWndParent, // handle of parent window
HWND hWnd // handle of window to test

);ParametershWndParent
Identifies the parent window.

hWnd
Identifies the window to be tested.

Return ValuesIf the window is a child or descendant window of the specified parent window, the return value is
nonzero.

If the window is not a child or descendant window of the specified parent window, the return value
is zero.See AlsoIsWindow, SetParent

IsClipboardFormatAvailable
The IsClipboardFormatAvailable function determines whether the clipboard contains data in the
specified format.

BOOL IsClipboardFormatAvailable(
UINT format // clipboard format

);Parametersformat
Specifies a standard or registered clipboard format. For a description of the clipboard formats,
see the SetClipboardData function.

Return ValuesIf the clipboard format is available, the return value is nonzero.

If the clipboard format is not available, the return value is zero. To get extended error information,
call GetLastError.RemarksTypically, an application that recognizes only one clipboard format would call this function when
processing the WM_INITMENU or WM_INITMENUPOPUP message. The application would then
enable or disable the Paste menu item, depending on the return value. Applications that recognize
more than one clipboard format should use the GetPriorityClipboardFormat function for this
purpose.See AlsoCountClipboardFormats, EnumClipboardFormats, GetPriorityClipboardFormat,
RegisterClipboardFormat, SetClipboardData, WM_INITMENU, WM_INITMENUPOPUP

IsDBCSLeadByte
The IsDBCSLeadByte function determines whether a character is a lead byte ¾ that is, the first
byte of a character in a double-byte character set (DBCS).

BOOL IsDBCSLeadByte(
BYTE TestChar // character to test

);ParametersTestChar
Specifies the character to be tested.

Return ValuesIf the character is a lead byte, the return value is nonzero.

If the character is not a lead byte, the return value is zero. To get extended error information, call
GetLastError.RemarksLead bytes are unique to double-byte character sets. A lead byte introduces a double-byte
character. Lead bytes occupy a specific range of byte values. The IsDBCSLeadByte function
uses the ANSI code page to check lead-byte ranges.See AlsoMultiByteToWideChar

IsDBCSLeadByteEx
The IsDBCSLeadByteEx function determines whether a character is a lead byte ¾ that is, the
first byte of a character in a double-byte character set (DBCS).

BOOL IsDBCSLeadByteEx(
UINT CodePage, // identifier of code page
BYTE TestChar // character to test

);ParametersCodePage
Identifier of the code page to use to check lead-byte ranges. Can be one of the code-page
values given in the "Code-Page Identifiers" table in Unicode and Character Set Constants or
one of the following predefined values:

Value Meaning
0 Use system default ANSI code page.
CP_ACP Use system default ANSI code page.
CP_OEMCP Use system default OEM code page.

TestChar
Character to test.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

IsDebuggerPresent
[New - Windows NT]

The IsDebuggerPresent function indicates whether the calling process is running under the
context of a debugger.

This function is exported from KERNEL32.DLL.

BOOL IsDebuggerPresent(VOID)ParametersThis function has no parameters.Return ValueIf the current process is running in the context of a debugger, the return value is nonzero.

If the current process is not running in the context of a debugger, the return value is zero.RemarksThis function allows an application to determine whether or not it is being debugged, so that it can
modify its behavior. For example, an application could provide additional information using the
OutputDebugString function if it is being debugged.See AlsoOutputDebugString

IsDialogMessage
The IsDialogMessage function determines whether a message is intended for the specified
dialog box and, if it is, processes the message.

BOOL IsDialogMessage(
HWND hDlg, // handle of dialog box
LPMSG lpMsg // address of structure with message

);ParametershDlg
Identifies the dialog box.

lpMsg
Points to an MSG structure that contains the message to be checked.

Return ValuesIf the message has been processed, the return value is nonzero.

If the message has not been processed, the return value is zero.RemarksAlthough the IsDialogMessage function is intended for modeless dialog boxes, you can use it
with any window that contains controls, enabling the windows to provide the same keyboard
selection as is used in a dialog box.

When IsDialogMessage processes a message, it checks for keyboard messages and converts
them into selection commands for the corresponding dialog box. For example, the TAB key, when
pressed, selects the next control or group of controls, and the DOWN ARROW key, when pressed,
selects the next control in a group.

Because the IsDialogMessage function performs all necessary translating and dispatching of
messages, a message processed by IsDialogMessage must not be passed to the
TranslateMessage or DispatchMessage function.

IsDialogMessage sends WM_GETDLGCODE messages to the dialog box procedure to
determine which keys should be processed.

IsDialogMessage can send DM_GETDEFID and DM_SETDEFID messages to the window.
These messages are defined in the WINUSER.H header file as WM_USER and WM_USER + 1,
so conflicts are possible with application-defined messages having the same values.See AlsoDispatchMessage, DM_GETDEFID, DM_SETDEFID, MSG, TranslateMessage,
WM_GETDLGCODE, WM_USER

IsDlgButtonChecked
The IsDlgButtonChecked function determines whether a button control has a check mark next to
it or whether a three-state button control is grayed, checked, or neither.

UINT IsDlgButtonChecked(
HWND hDlg, // handle of dialog box
int nIDButton // button identifier

);ParametershDlg
Identifies the dialog box that contains the button control.

nIDButton
Specifies the integer identifier of the button control.

Return ValuesThe return value from a button created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE style can be one of the following:

Value Meaning

BST_CHECKED Button is checked.
BST_INDETERMINATE Button is grayed, indicating an indeterminate

state (applies only if the button has the
BS_3STATE or BS_AUTO3STATE style).

BST_UNCHECKED Button is unchecked

If the button has any other style, the return value is zero.RemarksThe IsDlgButtonChecked function sends a BM_GETCHECK message to the specified button
control.See AlsoCheckDlgButton

IsIconic
The IsIconic function determines whether the specified window is minimized (iconic).

BOOL IsIconic(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window.

Return ValuesIf the window is iconic, the return value is nonzero.

If the window is not iconic, the return value is zero.See AlsoIsZoomed

IsMenu
The IsMenu function determines whether a handle is a menu handle.

BOOL IsMenu(
HMENU hMenu // handle to test

);ParametershMenu
The handle to be tested.

Return ValuesIf hMenu is a menu handle, the return value is nonzero.

If hMenu is not a menu handle, the return value is zero.

IsProcessorFeaturePresent
[New - Windows NT]

The IsProcessorFeaturePresent function determines whether the specified processor feature is
supported by at least one processor on the current machine.

BOOL IsProcessorFeaturePresent(

DWORD ProcessorFeature
// specifies the processor feature

);
ParametersProcessorFeature

Specifies the processor feature to be tested. This value can be one of the following:
Value Meaning
PF_FLOATING_POINT_PRECISION_
ERRATA

In rare circumstances, a
floating-point precision
error can occur (Pentium).

PF_FLOATING_POINT_EMULATED Floating-point operations
are emulated using a
software emulator.

PF_COMPARE_EXCHANGE_DOUBLE The compare and
exchange double operation
is available (Pentium,
MIPS, and Alpha).

PF_MMX_INSTRUCTIONS_AVAILABLE The MMX instruction set is
available.

Return ValueIf at least one of the processors supports the feature, the return value is nonzero.

If no processor supports the feature, the return value is zero.

IsRectEmpty
The IsRectEmpty function determines whether the specified rectangle is empty. A empty
rectangle is one that has no area; that is, the coordinate of the right side is less than or equal to
the coordinate of the left side, or the coordinate of the bottom side is less than or equal to the
coordinate of the top side.

BOOL IsRectEmpty(
CONST RECT *lprc // address of structure with rectangle

);Parameterslprc
Points to a RECT structure that contains the logical coordinates of the rectangle.

Return ValuesIf the rectangle is empty, the return value is nonzero.

If the rectangle is not empty, the return value is zero. To get extended error information, call
GetLastError.See AlsoEqualRect, PtInRect, RECT

IsTextUnicode
The IsTextUnicode function determines whether a buffer probably contains a form of Unicode
text. The function uses various statistical and deterministic methods to make its determination,
under the control of flags passed via lpi. When the function returns, the results of such tests are
reported via lpi. If all specified tests are passed, the function returns TRUE; otherwise, it returns
FALSE.

DWORD IsTextUnicode(
CONST LPVOID lpBuffer, // pointer to an input buffer to be examined
int cb, // the size in bytes of the input buffer
LPINT lpi // pointer to flags that condition text examination and receive results

);ParameterslpBuffer
Pointer to the input buffer to be examined.

cb
Specifies the size, in bytes, of the input buffer pointed to by lpBuffer.

lpi
Pointer to an int that, upon entry to the function, contains a set of flags that specify the tests
to be applied to the input buffer text. Upon exit from the function, that same int contains a set
of bit flags indicating the results of the specified tests: 1 if the contents of the buffer pass a
test, 0 for failure. Only flags that are set upon entry to the function are significant upon exit.
If lpi is NULL, the function uses all available tests to determine whether the data in the buffer
is probably Unicode text.
Here are the constants used with *lpi's bit flags:

Value Meaning
IS_TEXT_UNICODE_ASCII16 The text is Unicode, and

contains nothing but zero-
extended ASCII values/
characters.

IS_TEXT_UNICODE_REVERSE_ASCII16 Same as the preceding,
except that the Unicode
text is byte-reversed.

IS_TEXT_UNICODE_STATISTICS The text is probably
Unicode, with the
determination made by
applying statistical
analysis. Absolute
certainty is not
guaranteed. See the note
in the following Remarks
section.

IS_TEXT_UNICODE_REVERSE_STATISTICSSame as the preceding,
except that the probably-
Unicode text is byte-
reversed.

IS_TEXT_UNICODE_CONTROLS The text contains Unicode
representations of one or
more of these non-
printing characters:
RETURN, LINEFEED,
SPACE, CJK_SPACE,
TAB.

IS_TEXT_UNICODE_REVERSE_CONTROLSSame as the preceding,
except that the Unicode
characters are byte-
reversed.

IS_TEXT_UNICODE_BUFFER_TOO_SMALLThere are too few
characters in the buffer for
meaningful analysis

(fewer than two bytes).
IS_TEXT_UNICODE_SIGNATURE The text contains the

Unicode byte-order mark
(BOM) 0xFEFF as its first
character.

IS_TEXT_UNICODE_REVERSE_SIGNATUREThe text contains the
Unicode byte-reversed
byte-order mark (Reverse
BOM) 0xFFFE as its first
character.

IS_TEXT_UNICODE_ILLEGAL_CHARS The text contains one of
these Unicode-illegal
characters: embedded
Reverse BOM,
UNICODE_NUL, CRLF
(packed into one WORD),
or 0xFFFF.

IS_TEXT_UNICODE_ODD_LENGTH The number of characters
in the string is odd. A
string of odd length cannot
(by definition) be Unicode
text.

IS_TEXT_UNICODE_NULL_BYTES The text contains null
bytes, which indicate non-
ASCII text.

IS_TEXT_UNICODE_UNICODE_MASK This flag constant is a
combination of
IS_TEXT_UNICODE_ASCII16,
IS_TEXT_UNICODE_STATISTICS,
IS_TEXT_UNICODE_CONTROLS,
IS_TEXT_UNICODE_SIGNATURE.

IS_TEXT_UNICODE_REVERSE_MASK This flag constant is a
combination of
IS_TEXT_UNICODE_REVERSE_ASCII16,
IS_TEXT_UNICODE_REVERSE_STATISTICS,
IS_TEXT_UNICODE_REVERSE_CONTROLS,
IS_TEXT_UNICODE_REVERSE_SIGNATURE.

IS_TEXT_UNICODE_NOT_UNICODE_MASKThis flag constant is a
combination of
IS_TEXT_UNICODE_ILLEGAL_CHARS,
IS_TEXT_UNICODE_ODD_LENGTH,
and two currently unused
bit flags.

IS_TEXT_UNICODE_NOT_ASCII_MASK This flag constant is a
combination of
IS_TEXT_UNICODE_NULL_BYTES
and three currently
unused bit flags.

Return ValuesThe function returns nonzero if the data in the buffer passes the specified tests.

The function returns zero if the data in the buffer does not pass the specified tests.

In either case, the int pointed to by lpi contains the results of the specific tests the function applied
to make its determination.RemarksAs noted in the preceding table of flag constants, the IS_TEXT_UNICODE_STATISTICS and
IS_TEXT_UNICODE_REVERSE_STATISTICS tests use statistical analysis. These tests are not
foolproof. The statistical tests assume certain amounts of variation between low and high bytes in
a string, and some ASCII strings can slip through. For example, if lpBuffer points to the ASCII
string 0x41, 0x0A, 0x0D, 0x1D (A\n\r^Z), the string passes the IS_TEXT_UNICODE_STATISTICS
test, though failure would be preferable.

IsValidAcl
The IsValidAcl function validates an access-control list (ACL).

BOOL IsValidAcl(
PACL pAcl // address of access-control list

);ParameterspAcl
Points to an ACL structure validated by this function. This must be a non-NULL value.

Return ValuesIf the ACL is valid, the return value is nonzero.

If the ACL is not valid, the return value is zero. To get extended error information, call
GetLastError.RemarksThis function checks the revision level of the ACL and verifies that the number of access-control
entries (ACEs) specified in the AceCount member of the ACL structure fits the space specified by
the AclSize member of the ACL structure.

If pAcl is NULL, the application will fail with an access violation.See AlsoACL, GetAclInformation, InitializeAcl

IsValidCodePage
The IsValidCodePage determines whether a specified code page is valid.

BOOL IsValidCodePage(
UINT CodePage // specifies code page to check

);ParametersCodePage
Specifies the code page to check. Each code page is identified by a unique number.

Return ValuesIf the code page is valid, the return value is nonzero.

If the code page is not valid, the return value is zero. To get extended error information, call
GetLastError.RemarksA code page is considered valid only if it is installed in the system.

Following are the code-page identifiers:

Identifier Meaning

037 EBCDIC
437 MS-DOS United States
500 EBCDIC "500V1"
708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
720 Arabic (Transparent ASMO)
737 Greek (formerly 437G)
775 Baltic
850 MS-DOS Multilingual (Latin I)
852 MS-DOS Slavic (Latin II)
855 IBM Cyrillic (primarily Russian)
857 IBM Turkish
860 MS-DOS Portuguese
861 MS-DOS Icelandic
862 Hebrew
863 MS-DOS Canadian-French
864 Arabic
865 MS-DOS Nordic
866 MS-DOS Russian
869 IBM Modern Greek
874 Thai
875 EBCDIC
932 Japan
936 Chinese (PRC, Singapore)
949 Korean
950 Chinese (Taiwan, Hong Kong)
1026 EBCDIC
1200 Unicode (BMP of ISO 10646)
1250 Windows 3.1 Eastern European
1251 Windows 3.1 Cyrillic
1252 Windows 3.1 US (ANSI)
1253 Windows 3.1 Greek
1254 Windows 3.1 Turkish
1255 Hebrew
1256 Arabic
1257 Baltic
1361 Korean (Johab)

10000 Macintosh Roman
10001 Macintosh Japanese
10006 Macintosh Greek I
10007 Macintosh Cyrillic
10029 Macintosh Latin 2
10079 Macintosh Icelandic
10081 Macintosh Turkish
See AlsoGetACP, GetCPInfo, GetOEMCP

IsValidLocale
The IsValidLocale function applies a validity test to a locale identifier. The dwFlags parameter
determines the nature of the validity test. Currently, the function tests whether a locale identifier is
installed or supported on the calling system.

BOOL IsValidLocale(
LCID Locale, // locale indentifier to validate
DWORD dwFlags // specifies validity test

);ParametersLocale
Specifies the locale identifier to be validated. You can use the MAKELCID macro to create a
locale identifier.

dwFlags
Specifies the validity test to apply to the locale identifier. This parameter can be one of the
following values:

Value Meaning
LCID_INSTALLED Test whether the locale identifier is both

supported and installed.
LCID_SUPPORTED Test whether the locale identifier is

supported.
Return ValuesIf the locale identifier passes the specified validity test, the return value is nonzero.

If the locale identifier does not pass the specified validity test, the return value is zero.RemarksIf the LCID_INSTALLED flag is specified and this function returns TRUE, the locale identifier is
both supported and installed on the system.

If the LCID_SUPPORTED flag is specified and this function returns TRUE, the locale identifier is
supported in the release, but not necessarily installed on the system.See AlsoGetLocaleInfo

IsValidSecurityDescriptor
The IsValidSecurityDescriptor function validates a SECURITY_DESCRIPTOR structure.
Validation is performed by checking the revision level of each component in the security
descriptor.

BOOL IsValidSecurityDescriptor(
PSECURITY_DESCRIPTOR pSecurityDescriptor // address of security descriptor

);ParameterspSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure that the function validates.

Return ValuesIf the structure of the security descriptor is valid, the return value is nonzero.

If the structure of the security descriptor is not valid, the return value is zero. To get extended
error information, call GetLastError.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorLength, GetSecurityDescriptorOwner, GetSecurityDescriptorSacl,
InitializeSecurityDescriptor, SECURITY_DESCRIPTOR, SetSecurityDescriptorDacl,
SetSecurityDescriptorGroup, SetSecurityDescriptorOwner, SetSecurityDescriptorSacl

IsValidSid
The IsValidSid function validates a SID structure by verifying that the revision number is within a
known range and that the number of subauthorities is less than the maximum. A SID is a security
identifier.

BOOL IsValidSid(
PSID pSid // address of SID to query

);ParameterspSid
Points to the SID structure to validate. This must be a non-NULL value.

Return ValuesIf the SID structure is valid, the return value is nonzero.

If the SID structure is not valid, the return value is zero. To get extended error information, call
GetLastError.RemarksIf pSid is NULL, the application will fail with an access violation.See AlsoGetLengthSid, GetSidIdentifierAuthority, GetSidLengthRequired, GetSidSubAuthority,
GetSidSubAuthorityCount, SID

IsWindow
The IsWindow function determines whether the specified window handle identifies an existing
window.

BOOL IsWindow(
HWND hWnd // handle of window

);ParametershWnd
Specifies the window handle.

Return ValuesIf the window handle identifies an existing window, the return value is nonzero.

If the window handle does not identify an existing window, the return value is zero.See AlsoIsWindowEnabled, IsWindowVisible

IsWindowEnabled
The IsWindowEnabled function determines whether the specified window is enabled for mouse
and keyboard input.

BOOL IsWindowEnabled(
HWND hWnd // handle of window to test

);ParametershWnd
Identifies the window to test.

Return ValuesIf the window is enabled, the return value is nonzero.

If the window is not enabled, the return value is zero.RemarksA child window receives input only if it is both enabled and visible.See AlsoEnableWindow, IsWindowVisible

IsWindowUnicode
The IsWindowUnicode function determines whether the specified window is a native Unicode
window.

BOOL IsWindowUnicode(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window.

Return ValuesIf the window is a native Unicode window, the return value is nonzero.

If the window is not a native Unicode window, the return value is zero.RemarksThe system does automatic two-way translation (Unicode to ANSI-ASCII) for window messages.
For example, if an ANSI-ASCII window message is sent to a Unicode window, the system
translates that message into a Unicode message before calling the window procedure. The
system calls the IsWindowUnicode function to determine whether to translate the message.

When this function returns FALSE, the window is a native ANSI-ASCII window.

IsWindowVisible
The IsWindowVisible function retrieves the visibility state of the specified window.

BOOL IsWindowVisible(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window.

Return ValuesIf the specified window and its parent window have the WS_VISIBLE style, the return value is
nonzero.

If the specified window and its parent window do not have the WS_VISIBLE style, the return value
is zero. Because the return value specifies whether the window has the WS_VISIBLE style, it may
be nonzero even if the window is totally obscured by other windows.RemarksThe visibility state of a window is indicated by the WS_VISIBLE style bit. When WS_VISIBLE is
set, the window is displayed and subsequent drawing into it is displayed as long as the window
has the WS_VISIBLE style.

Any drawing to a window with the WS_VISIBLE style will not be displayed if the window is
obscured by other windows or is clipped by its parent window.See AlsoShowWindow

IsZoomed
The IsZoomed function determines whether a window is maximized.

BOOL IsZoomed(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window.

Return ValuesIf the window is zoomed, the return value is nonzero.

If the window is not zoomed, the return value is zero.See AlsoIsIconic

JournalPlaybackProc
The JournalPlaybackProc hook procedure is a callback function that inserts mouse and
keyboard messages into the system message queue. Typically, an application uses this hook
procedure to play back a series of mouse and keyboard messages recorded previously by the
JournalRecordProc hook procedure. As long as a JournalPlaybackProc hook procedure is
installed, regular mouse and keyboard input is disabled.

LRESULT CALLBACK JournalPlaybackProc(
int code, // hook code
WPARAM wParam, // undefined
LPARAM lParam // address of message being processed

);Parameterscode
Specifies a code the hook procedure uses to determine how to process the message. This
parameter can be one of the following values:

Value Meaning
HC_GETNEXT The hook procedure must copy the current

mouse or keyboard message to the
EVENTMSG structure pointed to by the
lParam parameter.

HC_NOREMOVE An application has called the PeekMessage
function with wRemoveMsg set to
PM_NOREMOVE, indicating that the
message is not removed from the message
queue after PeekMessage processing.

HC_SKIP The hook procedure must prepare to copy
the next mouse or keyboard message to the
EVENTMSG structure pointed to by lParam.
Upon receiving the HC_GETNEXT code, the
hook procedure must copy the message to
the structure.

HC_SYSMODALOFF A system-modal dialog box has been
destroyed. The hook procedure must
resume playing back the messages.

HC_SYSMODALON A system-modal dialog box is being
displayed. Until the dialog box is destroyed,
the hook procedure must stop playing back
messages.

If code is less than zero, the hook procedure must pass the message to the CallNextHookEx
function without further processing and should return the value returned by CallNextHookEx.

wParam
Specifies a NULL value.

lParam
Points to an EVENTMSG structure that represents a message being processed by the hook
procedure. This parameter is valid only when the code parameter is HC_GETNEXT.

Return ValuesTo have the system wait before processing the message, the return value must be the amount of
time, in clock ticks, that the system should wait. (This value can be computed by calculating the
difference between the time members in the current and previous input messages.) To process
the message immediately, the return value should be zero. The return value is used only if the
hook code is HC_GETNEXT; otherwise, it is ignored.RemarksA JournalPlaybackProc hook procedure should copy an input message to the lParam parameter.
The message must have been previously recorded by using a JournalRecordProc hook
procedure, which should not modify the message.

To retrieve the same message over and over, the hook procedure can be called several times
with the code parameter set to HC_GETNEXT without an intervening call with code set to
HC_SKIP.

If code is HC_GETNEXT and the return value is greater than zero, the system sleeps for the
number of milliseconds specified by the return value. When the system continues, it calls the hook
procedure again with code set to HC_GETNEXT to retrieve the same message. The return value

from this new call to JournalPlaybackProc should be zero; otherwise, the system will go back to
sleep for the number of milliseconds specified by the return value, call JournalPlaybackProc
again, and so on. The system will appear to be hung.

Unlike most other global hook procedures, the JournalRecordProc and JournalPlaybackProc
hook procedures are always called in the context of the thread that set the hook.

After the hook procedure returns control to the system, the message continues to be processed. If
code is HC_SKIP, the hook procedure must prepare to return the next recorded event message
on its next call.

An application installs a JournalPlaybackProc hook procedure by specifying the
WH_JOURNALPLAYBACK hook type and the address of the hook procedure in a call to the
SetWindowsHookEx function.

A Win32 JournalRecordProc hook procedure does not need to live in a dynamic-link library. A
Win32 JournalRecordProc hook procedure can live in the application itself.

If the user presses CTRL+ESC or CTRL+ALT+DEL during journal playback, the system stops the
playback, unhooks the journal playback procedure, and posts a WM_CANCELJOURNAL
message to the journaling application.

If the hook procedure returns a message in the range WM_KEYFIRST to WM_KEYLAST, the
following conditions apply:

· The paramL member of the EVENTMSG structure specifies the virtual key code of the key
that was pressed.

· The paramH member of the EVENTMSG structure specifies the scan code.
· There's no way to specify a repeast count. The event is always taken to represent one

key event.
JournalPlaybackProc is a placeholder for an application-defined or library-defined function
name.See AlsoCallNextHookEx, EVENTMSG, JournalRecordProc, PeekMessage, SetWindowsHookEx,
WM_CANCELJOURNAL

JournalRecordProc
The JournalRecordProc hook procedure is a callback function that records messages the
system removes from the system message queue. Later, an application can use a
JournalPlaybackProc hook procedure to play back the messages.

LRESULT CALLBACK JournalRecordProc(
int code, // hook code
WPARAM wParam, // undefined
LPARAM lParam // address of message being processed

);Parameterscode
Specifies how to process the message. This parameter can be one of the following values:

Value Meaning
HC_ACTION The lParam parameter points to an

EVENTMSG structure containing information
about a message removed from the system
queue. The hook procedure must record the
contents of the structure by copying them to
a buffer or file.

HC_SYSMODALOFF A system-modal dialog box has been
destroyed. The hook procedure must resume
recording.

HC_SYSMODALON A system-modal dialog box is being
displayed. Until the dialog box is destroyed,
the hook procedure must stop recording.

If code is less than zero, the hook procedure must pass the message to the CallNextHookEx
function without further processing and should return the value returned by CallNextHookEx.

wParam
Specifies a NULL value.

lParam
Points to an EVENTMSG structure that contains the message to be recorded.

Return ValuesThe return value is ignored.RemarksA JournalRecordProc hook procedure must copy but not modify the messages. After the hook
procedure returns control to the system, the message continues to be processed.

An application installs a JournalRecordProc hook procedure by specifying the
WH_JOURNALRECORD hook type and the address of the hook procedure in a call to the
SetWindowsHookEx function.

A Win32 JournalRecordProc hook procedure does not need to live in a dynamic-link library. A
Win32 JournalRecordProc hook procedure can live in the application itself.

Unlike most other global hook procedures, the JournalRecordProc and JournalPlaybackProc
hook procedures are always called in the context of the thread that set the hook.

An application that has installed a JournalRecordProc hook procedure should watch for the
VK_CANCEL virtual keycode (which is implemented as the CTRL+BREAK key combination on most
keyboards). This virtual keycode should be interpreted by the application as a signal that the user
wishes to stop journal recording. The application should respond by ending the recording
sequence and removing the JournalRecordProc hook procedure. Removal is important. It
prevents a journaling application from locking up the system by hanging inside a hook procedure.

This role as a signal to stop journal recording means that a CTRL+BREAK key combination cannot
itself be recorded. Since the CTRL+C key combination has no such role as a journaling signal, it
can be recorded. There are two other key combinations that cannot be recorded: CTRL+ESC and
CTRL+ALT+DEL. Those two key combinations cause the system to stop all journaling activities
(record or playback), remove all journaling hooks, and post a WM_CANCELJOURNAL message
to the journaling application.

JournalRecordProc is a placeholder for an application-defined or library-defined function name.See AlsoCallNextHookEx, EVENTMSG, JournalPlaybackProc, SetWindowsHookEx,
WM_CANCELJOURNAL

keybd_event
The keybd_event function synthesizes a keystroke. The system can use such a synthesized
keystroke to generate a WM_KEYUP or WM_KEYDOWN message. The keyboard driver's
interrupt handler calls the keybd_event function.

VOID keybd_event(
BYTE bVk, // virtual-key code
BYTE bScan, // hardware scan code
DWORD dwFlags, // flags specifying various function options
DWORD dwExtraInfo // additional data associated with keystroke

);ParametersbVk
Specifies a virtual-key code. The code must be a value in the range 1 to 254.

bScan
Specifies a hardware scan code for the key.

dwFlags
A set of flag bits that specify various aspects of function operation. An application can use any
combination of the following predefined constant values to set the flags:

Value Meaning
KEYEVENTF_EXTENDEDKEY If specified, the scan code was

preceded by a prefix byte having the
value 0xE0 (224).

KEYEVENTF_KEYUP If specified, the key is being
released. If not specified, the key is
being depressed.

dwExtraInfo
Specifies an additional 32-bit value associated with the key stroke.

Return ValuesThis function has no return value.RemarksAlthough keybd_event passes an OEM-dependent hardware scan code to Windows, applications
should not use the scan code. Windows converts scan codes to virtual-key codes internally and
clears the up/down bit in the scan code before passing it to applications.

An application can simulate a press of the PRINTSCREEN key in order to obtain a screen
snapshot and save it to the Windows clipboard. To do this, call keybd_event with the bVk
parameter set to VK_SNAPSHOT, and the bScan parameter set to 0 for a snapshot of the full
screen or set bScan to 1 for a snapshot of the active window.See AlsoGetAsyncKeyState, GetKeyState, MapVirtualKey, SetKeyboardState

KeyboardProc
The KeyboardProc hook procedure is an application-defined or library-defined callback function
the system calls whenever an application calls the GetMessage or PeekMessage function and
there is a keyboard message (WM_KEYUP or WM_KEYDOWN) to be processed.

LRESULT CALLBACK KeyboardProc(
int code, // hook code
WPARAM wParam, // virtual-key code
LPARAM lParam // keystroke-message information

);Parameterscode
Specifies a code the hook procedure uses to determine how to process the message. This
parameter can be one of the following values:

Value Meaning
HC_ACTION The wParam and lParam parameters contain

information about a keystroke message.
HC_NOREMOVE The wParam and lParam parameters contain

information about a keystroke message, and the
keystroke message has not been removed from
the message queue. (An application called the
PeekMessage function, specifying the
PM_NOREMOVE flag.)

If code is less than zero, the hook procedure must pass the message to the CallNextHookEx
function without further processing and should return the value returned by CallNextHookEx.

wParam
Specifies the virtual-key code of the key that generated the keystroke message.

lParam
Specifies the repeat count, scan code, extended-key flag, context code, previous key-state
flag, and transition-state flag. This parameter can be a combination of the following values:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user's
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as a
function key or a key on the numeric keypad. The value
is 1 if the key is an extended key; otherwise, it is 0.

25- 28 Reserved.
29 Specifies the context code. The value is 1 if the ALT key

is down; otherwise, it is 0.
30 Specifies the previous key state. The value is 1 if the key

is down before the message is sent; it is 0 if the key is
up.

31 Specifies the transition state. The value is 0 if the key is
being pressed and 1 if it is being released.

For more information about the lParam parameter, see Keystroke Message Flags.Return ValuesTo prevent Windows from passing the message to the rest of the hook chain or to the target
window procedure, the return value must be a nonzero value. To allow Windows to pass the
message to the target window procedure, bypassing the remaining procedures in the chain, the
return value must be zero.RemarksAn application installs the hook procedure by specifying the WH_KEYBOARD hook type and the
address of the hook procedure in a call to the SetWindowsHookEx function.

KeyboardProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, GetMessage, PeekMessage, SetWindowsHookEx, WM_KEYUP,
WM_KEYDOWN

KillTimer
The KillTimer function destroys the specified timer.

BOOL KillTimer(
HWND hWnd, // handle of window that installed timer
UINT uIDEvent // timer identifier

);ParametershWnd
Identifies the window associated with the specified timer. This value must be the same as the
hWnd value passed to the SetTimer function that created the timer.

uIDEvent
Specifies the timer to be destroyed. If the window handle passed to SetTimer is valid, this
parameter must be the same as the uIDEvent value passed to SetTimer. If the application
calls SetTimer with hWnd set to NULL, this parameter must be the timer identifier returned by
SetTimer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe KillTimer function does not remove WM_TIMER messages already posted to the message
queue.See AlsoSetTimer, WM_TIMER

LBItemFromPt
The LBItemFromPt function retrieves the index of the item at the specified point in a list box.

int LBItemFromPt(
HWND hLB,
POINT pt,
BOOL bAutoScroll

);ParametershLB
Handle to the list box to check.

pt
POINT structure that contains the screen coordinates to check.

bAutoScroll
Scroll flag. If this parameter is TRUE and the point is directly above or below the list box, the
function scrolls the list box by one line and returns - 1. Otherwise, the function does not scroll
the list box.

Return ValuesThe return value is the item identifier if the point is over a list item, or - 1 otherwise.RemarksThe LBItemFromPt function only scrolls the list box if a minimum amount of time has passed
since it last did so. Timing prevents the list box from scrolling too quickly if the function is called
repeatedly in rapid succession ¾ for example, when DL_DRAGGING notification messages or
WM_MOUSEMOVE messages are processed.

If the specified point is outside the client area of the list box and bAutoScroll is TRUE, the function
scrolls the list box instead of returning an item identifier.See AlsoDL_DRAGGING, POINT, WM_MOUSEMOVE

LCMapString
The LCMapString function maps one character string to another, performing a specified locale-
dependent transformation. The function can also be used to generate a sort key for the input
string.

int LCMapString(
LCID Locale, // locale identifier
DWORD dwMapFlags, // mapping transformation type
LPCTSTR lpSrcStr, // address of source string
int cchSrc, // number of characters in source string
LPTSTR lpDestStr, // address of destination buffer
int cchDest // size of destination buffer

);ParametersLocale
Specifies a locale identifier. The locale provides a context for the string mapping or sort key
generation. An application can use the MAKELCID macro to create a locale identifier.

dwMapFlags
A set of flags that indicate the type of transformation to be used during string mapping or sort
key generation. An application can specify more than one of these options on a single
transformation, although some combinations are invalid. The following mapping options are
defined; restrictions are noted following the table:

Option Meaning
LCMAP_BYTEREV Windows NT only: Use byte reversal.

For example, if you pass in 0x3450
0x4822 the result is 0x5034 0x2248.

LCMAP_FULLWIDTH Map single-byte characters to double-
byte characters.

LCMAP_HALFWIDTH Map double-byte characters to single-
byte characters.

LCMAP_HIRAGANA Map double-byte Katakana characters
to double-byte Hiragana characters.

LCMAP_KATAKANA Map double-byte Hiragana characters
to double-byte Katakana characters.

LCMAP_LOWERCASE Use lowercase.
LCMAP_SORTKEY Produce a normalized wide-character

sort key.
LCMAP_UPPERCASE Use uppercase.
NORM_IGNORECASE Ignore case.
NORM_IGNOREKANATYPE Do not differentiate between Hiragana

and Katakana characters.
Corresponding Hiragana and
Katakana will compare as equal.

NORM_IGNORENONSPACE Ignore nonspacing. This flag also
removes Japanese accent characters.

NORM_IGNORESYMBOLS Ignore symbols.
NORM_IGNOREWIDTH Do not differentiate between a single-

byte character and the same character
as a double-byte character.

SORT_STRINGSORT Treat punctuation the same as
symbols.

If the LCMAP_SORTKEY flag is not specified, the LCMapString function performs string
mapping. In this case the following restrictions apply:
· LCMAP_LOWERCASE and LCMAP_UPPERCASE are mutually exclusive.
· LCMAP_HIRAGANA and LCMAP_KATAKANA are mutually exclusive.
· LCMAP_HALFWIDTH and LCMAP_FULLWIDTH are mutually exclusive.

· SORT_STRINGSORT, NORM_IGNOREKANATYPE, NORM_IGNOREWIDTH, and
NORM_IGNORECASE are not valid.

· LCMAP_LOWERCASE and LCMAP_UPPERCASE are not valid in combination with any
of the following flags: LCMAP_HIRAGANA, LCMAP_KATAKANA, LCMAP_HALFWIDTH,
and LCMAP_FULLWIDTH.

When the LCMAP_SORTKEY flag is specified, the LCMapString function generates a sort
key. In this case the following restriction applies:
· All LCMAP_* options are invalid, with the sole exception of LCMAP_BYTEREV. In other

words, LCMAP_SORTKEY is mutually exclusive with all other LCMAP_* flags, with the sole
exception of LCMAP_BYTEREV. LCMAP_BYTEREV is valid for Windows NT only.

lpSrcStr
Pointer to a source string that the function maps or uses for sort key generation.

cchSrc
Specifies the number of bytes (ANSI version) or characters (Unicode version) in the string
pointed to by the lpSrcStr parameter.
This count can include the NULL terminator, or not include it. If the NULL terminator is
included in the character count, it does not greatly affect the mapping behavior. That is
because NULL is considered to be unsortable, and always maps to itself.
A cchSrc value of - 1 specifies that the string pointed to by lpSrcStr is null-terminated. If this is
the case, and LCMapString is being used in its string-mapping mode, the function calculates
the string's length itself, and null-terminates the mapped string stored into *lpDestStr.

lpDestStr
Pointer to a buffer into which the function stores the mapped string or sort key.
If LCMAP_SORTKEY is specified, LCMapString stores a sort key into the buffer. The sort key
is stored as an array of byte values in the following format:[all Unicode sort weights] 0x01 [all Diacritic weights] 0x01 [all
Case weights] 0x01 [all Special weights] 0x00Note that the sort key is null-terminated. This is true regardless of the value of cchSrc. Also
note that, even if some of the sort weights are absent from the sort key, due to the presence
of one or more ignore flags in dwMapFlags, the 0x01 separators and the 0x00 terminator are
still present.

cchDest
Specifies the size in bytes (ANSI version) or characters (Unicode version) of the buffer
pointed to by lpDestStr.
If the function is being used for string mapping, the size is a character count. If space for a
NULL terminator is included in cchSrc, then cchDest must also include space for a NULL
terminator.
If the function is being used to generate a sort key, the size is a byte count. This byte count
must include space for the sort key 0x00 terminator.
If cchDest is zero, the function's return value is the number of characters, or bytes if
LCMAP_SORTKEY is specified, required to hold the mapped string or sort key. In this case,
the buffer pointed to by lpDestStr is not used.

Return ValuesIf the function succeeds, and the value of cchDest is nonzero, the return value is the number of
characters, or bytes if LCMAP_SORTKEY is specified, written to the buffer. This count includes
room for a NULL terminator.

If the function succeeds, and the value of cchDest is zero, the return value is the size of the buffer
in characters, or bytes if LCMAP_SORTKEY is specified, required to receive the translated string
or sort key. This size includes room for a NULL terminator.

If the function fails, the return value is 0. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksThe mapped string is null terminated if the source string is null terminated.

The A version of this function maps strings to and from Unicode based on the specified LCID's
default ANSI code page.

If the LCMAP_HIRAGANA flag is specified to map Katakana characters to Hiragana characters,
and LCMAP_FULLWIDTH is not specified, the function only maps full-width characters to
Hiragana. In this case, any half-width Katakana characters are placed as-is in the output string,
with no mapping to Hiragana. An application must specify LCMAP_FULLWIDTH if it wants half-
width Katakana characters mapped to Hiragana.

The lpSrcStr and lpDestStr pointers must not be the same. If they are the same, the function fails,
and GetLastError returns ERROR_INVALID_PARAMETER.

Even if the wide-character Unicode version of this function is called, the output string is only in
WCHAR or CHAR format if the string mapping mode of LCMapString is used. If the sort key
generation mode is used, specified by LCMAP_SORTKEY, the output is an array of byte values.
An application can compare sort keys by using a byte-by-byte comparison.

An application can call the function with the NORM_IGNORENONSPACE and
NORM_IGNORESYMBOLS flags set, and all other options flags cleared, in order to simply strip
characters from the input string. If this is done with an input string that is not null-terminated, it is
possible for LCMapString to return an empty string and not return an error.

The LCMapString function ignores the Arabic Kashida. If an application calls the function to
create a sort key for a string containing an Arabic Kashida, there will be no sort key value for the
Kashida.

The function treats the hyphen and apostrophe a bit differently than other punctuation symbols, so
that words like coop and co-op stay together in a list. All punctuation symbols other than the
hyphen and apostrophe sort before the alphanumeric characters. An application can change this
behavior by setting the SORT_STRINGSORT flag. See CompareString for a more detailed
discussion of this issue.

When LCMapString is used to generate a sort key, by setting the LC_MAPSORTKEY flag, the
sort key stored into *lpDestStr may contain an odd number of bytes. The LCMAP_BYTEREV
option (Windows NT only) only reverses an even number of bytes. If both options are chosen, the
last (odd-positioned) byte in the sort key is not reversed. If the terminating 0x00 byte is an odd-
positioned byte, then it remains the last byte in the sort key. If the terminating 0x00 byte is an
even-positioned byte, it exchanges positions with the byte that precedes it.See AlsoCompareString, FoldString, MAKELCID

LeaveCriticalSection
The LeaveCriticalSection function releases ownership of the specified critical section object.

VOID LeaveCriticalSection(
LPCRITICAL_SECTION lpCriticalSection // address of critical section object

);ParameterslpCriticalSection
Points to the critical section object.

Return ValuesThis function does not return a value.RemarksThe threads of a single process can use a critical-section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical-section
object, which it can do by declaring a variable of type CRITICAL_SECTION. Before using a critical
section, some thread of the process must call the InitializeCriticalSection function to initialize the
object.

A thread uses the EnterCriticalSection or TryEnterCriticalSection function to acquire
ownership of a critical section object. To release its ownership, the thread must call
LeaveCriticalSection once for each time that it entered the critical section.

If a thread calls LeaveCriticalSection when it does not have ownership of the specified critical
section object, an error occurs that may cause another thread using EnterCriticalSection to wait
indefinitely.

Any thread of the process can use the DeleteCriticalSection function to release the system
resources that were allocated when the critical section object was initialized. After this function
has been called, the critical section object can no longer be used for synchronization.See AlsoDeleteCriticalSection, EnterCriticalSection, InitializeCriticalSection, TryEnterCriticalSection

LimitEmsPages
The LimitEmsPages function is obsolete.

This function is provided only for compatibility with 16-bit versions of Windows. New Win32-based
applications do not require this function.

LineDDA
The LineDDA function determines which pixels should be highlighted for a line defined by the
specified starting and ending points.

BOOL LineDDA(
int nXStart, // x-coordinate of line's starting point
int nYStart, // y-coordinate of line's starting point
int nXEnd, // x-coordinate of line's ending point
int nYEnd, // y-coordinate of line's ending point
LINEDDAPROC lpLineFunc, // address of application-defined callback function
LPARAM lpData // address of application-defined data

);ParametersnXStart
Specifies the x-coordinate of the line's starting point.

nYStart
Specifies the y-coordinate of the line's starting point.

nXEnd
Specifies the x-coordinate of the line's ending point.

nYEnd
Specifies the y-coordinate of the line's ending point.

lpLineFunc
Specifies the address of an application-defined callback function. For more information, see
the LineDDAProc callback function.

lpData
Points to the application-defined data.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe LineDDA function passes the coordinates for each point along the line, except for the line's
ending point, to the application-defined callback function. In addition to passing the coordinates of
a point, this function passes any existing application-defined data.

The coordinates passed to the callback function match pixels on a video display only if the default
transformations and mapping modes are used.See AlsoLineDDAProc

LineDDAProc
A LineDDAProc function is an application-defined callback function that processes coordinates
from the LineDDA function. A value of type LINEDDAPROC is a pointer to such a function.

VOID CALLBACK LineDDAProc(
int X, // x-coordinate of point being evaluated
int Y, // y-coordinate of point being evaluated
LPARAM lpData // address of application-defined data

);ParametersX
Specifies the x-coordinate of the current point.

Y
Specifies the y-coordinate of the current point.

lpData
Points to the application-defined data.

RemarksLineDDAProc is a placeholder for an application-defined function name.

An application registers a LineDDAProc function by passing its address to the LineDDA function.See AlsoLineDDA

LineTo
The LineTo function draws a line from the current position up to, but not including, the specified
point.

BOOL LineTo(
HDC hdc, // device context handle
int nXEnd, // x-coordinate of line's ending point
int nYEnd // y-coordinate of line's ending point

);Parametershdc
Identifies a device context.

nXEnd
Specifies the x-coordinate of the line's ending point.

nYEnd
Specifies the y-coordinate of the line's ending point.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe coordinates of the line's ending point are specified in logical units.

The line is drawn by using the current pen and, if the pen is a geometric pen, the current brush.

If LineTo succeeds, the current position is set to the specified ending point.See AlsoMoveToEx, Polyline, PolylineTo

LoadAccelerators
The LoadAccelerators function loads the specified accelerator table.

HACCEL LoadAccelerators(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpTableName // address of table-name string

);ParametershInstance
Identifies an instance of the module whose executable file contains the accelerator table to
load.

lpTableName
Points to a null-terminated string that names the accelerator table to load. Alternatively, this
parameter can specify the resource identifier of an accelerator-table resource in the low-order
word and zero in the high-order word. The MAKEINTRESOURCE macro can be used to
create this value.

Return ValuesIf the function succeeds, the return value is the handle of the loaded accelerator table.

If the function fails, the return value is NULL.RemarksIf the accelerator table has not yet been loaded, the function loads it from the specified executable
file.

Accelerator tables loaded from resources are freed automatically when the application terminates.See AlsoCopyAcceleratorTable, CreateAcceleratorTable, DestroyAcceleratorTable,
MAKEINTRESOURCE

LoadBitmap
The LoadBitmap function loads the specified bitmap resource from a module's executable file.

HBITMAP LoadBitmap(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpBitmapName // address of bitmap resource name

);ParametershInstance
Identifies the instance of the module whose executable file contains the bitmap to be loaded.

lpBitmapName
Points to a null-terminated string that contains the name of the bitmap resource to be loaded.
Alternatively, this parameter can consist of the resource identifier in the low-order word and
zero in the high-order word. The MAKEINTRESOURCE macro can be used to create this
value.

Return ValuesIf the function succeeds, the return value is the handle of the specified bitmap.

If the function fails, the return value is NULL.RemarksIf the bitmap pointed to by the lpBitmapName parameter does not exist or there is insufficient
memory to load the bitmap, the function fails.

An application can use the LoadBitmap function to access the predefined bitmaps used by the
Win32 API. To do so, the application must set the hInstance parameter to NULL and the
lpBitmapName parameter to one of the following values:

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW
OBM_CHECK OBM_OLD_UPARROW
OBM_CHECKBOXES OBM_OLD_ZOOM
OBM_CLOSE OBM_REDUCE
OBM_COMBO OBM_REDUCED
OBM_DNARROW OBM_RESTORE
OBM_DNARROWD OBM_RESTORED
OBM_DNARROWI OBM_RGARROW
OBM_LFARROW OBM_RGARROWD
OBM_LFARROWD OBM_RGARROWI
OBM_LFARROWI OBM_SIZE
OBM_MNARROW OBM_UPARROW
OBM_OLD_CLOSE OBM_UPARROWD
OBM_OLD_DNARROW OBM_UPARROWI
OBM_OLD_LFARROW OBM_ZOOM
OBM_OLD_REDUCE OBM_ZOOMD

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows versions earlier
than 3.0.

For an application to use any of the OBM_ constants, the constant OEMRESOURCE must be
defined before the WINDOWS.H header file is included.

The application must call the DeleteObject function to delete each bitmap handle returned by the
LoadBitmap function.See AlsoCreateBitmap, DeleteObject, LoadCursor, LoadIcon, MAKEINTRESOURCE

LoadCursor
The LoadCursor function loads the specified cursor resource from the executable (.EXE) file
associated with an application instance.

HCURSOR LoadCursor(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpCursorName // name string or cursor resource identifier

);ParametershInstance
Identifies an instance of the module whose executable file contains the cursor to be loaded.

lpCursorName
Points to a null-terminated string that contains the name of the cursor resource to be loaded.
Alternatively, this parameter can consist of the resource identifier in the low-order word and
zero in the high-order word. The MAKEINTRESOURCE macro can also be used to create this
value.
To use one of the Win32 predefined cursors, the application must set the hInstance parameter
to NULL and the lpCursorName parameter to one the following values:

Value Description
IDC_APPSTARTING Standard arrow and small hourglass
IDC_ARROW Standard arrow
IDC_CROSS Crosshair
IDC_IBEAM Text I-beam
IDC_ICON Windows NT only: Empty icon
IDC_NO Slashed circle
IDC_SIZE Windows NT only: Four-pointed arrow
IDC_SIZEALL Same as IDC_SIZE
IDC_SIZENESW Double-pointed arrow pointing northeast and

southwest
IDC_SIZENS Double-pointed arrow pointing north and

south
IDC_SIZENWSE Double-pointed arrow pointing northwest and

southeast
IDC_SIZEWE Double-pointed arrow pointing west and east
IDC_UPARROW Vertical arrow
IDC_WAIT Hourglass

Return ValuesIf the function succeeds, the return value is the handle of the newly loaded cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksLoadCursor only loads the cursor resource if it has not been loaded; otherwise, it retrieves the
handle of the existing resource. This function returns a valid cursor handle only if the
lpCursorName parameter points to a cursor resource. If lpCursorName points to any type of
resource other than a cursor (such as an icon), the return value is not NULL, even though it is not
a valid cursor handle.

The LoadCursor function searches the cursor resource most appropriate for the cursor for the
current display device. The cursor resource can be a color or monochrome bitmap.See AlsoLoadImage, MAKEINTRESOURCE, SetCursor, SetCursorPos, ShowCursor

LoadCursorFromFile
The LoadCursorFromFile function creates a cursor based on data contained in a file. The file is
specified by its name or by a system cursor identifier. The function returns a handle to the newly
created cursor. Files containing cursor data may be in either cursor (.CUR) or animated cursor (.
ANI) format.

HCURSOR LoadCursorFromFile (
LPCTSTR lpFileName // pointer to name of cursor file, or system cursor identifier

);ParameterslpFileName
Indicates the source of the file data to be used to create the cursor. The data in the file must
be in either .CUR or .ANI format.
If the high-order word of lpszFileName is nonzero, it is a pointer to a string that is a fully
qualified name of a file containing cursor data.
If the high-order word of lpszFileName is zero, the low-order word is a system cursor identifier.
The function then searches the [Cursors] entry in the WIN.INI file for the file associated with
the name of that system cursor. Here is a list of system cursor names and identifiers:

System Cursor
Names

System Cursor Identifiers

"Arrow" OCR_NORMAL
"IBeam" OCR_IBEAM
"Wait" OCR_WAIT
"Crosshair" OCR_CROSS
"UpArrow" OCR_UP
"Size" OCR_SIZE
"Icon" OCR_ICON
"SizeNWSE" OCR_SIZENWSE
"SizeNESW" OCR_SIZENESW
"SizeWE" OCR_SIZEWE
"SizeNS" OCR_SIZENS
"SizeAll" OCR_SIZEALL
"No" OCR_NO
"AppStarting" OCR_APPSTARTING

For example, if the WIN.INI file contains the following :[Cursors]
Arrow = "arrow.ani"Then the callLoadCursorFromFile((LPWSTR)OCR_NORMAL)causes the LoadCursorFromFile function to obtain cursor data from the file ARROW.ANI. If

the WIN.INI file doesn't contain an entry for the specified system cursor, the function fails and
returns NULL.

Return ValuesIf the function is successful, the return value is a handle to the new cursor.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError. GetLastError may return the following value:

Value Meaning

ERROR_FILE_NOT_FOUNDThe specified file could not be
found.

See AlsoLoadCursor, SetCursor, SetSystemCursor

LoadIcon
The LoadIcon function loads the specified icon resource from the executable (.EXE) file
associated with an application instance.

HICON LoadIcon(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpIconName // icon-name string or icon resource identifier

);ParametershInstance
Identifies an instance of the module whose executable file contains the icon to be loaded. This
parameter must be NULL when a standard icon is being loaded.

lpIconName
Points to a null-terminated string that contains the name of the icon resource to be loaded.
Alternatively, this parameter can contain the resource identifier in the low-order word and zero
in the high-order word. Use the MAKEINTRESOURCE macro to create this value.
To use one of the Windows predefined icons, set the hInstance parameter to NULL and the
lpIconName parameter to one of the following values:

Value Description
IDI_APPLICATION Default application icon.
IDI_ASTERISK Asterisk (used in informative messages).
IDI_EXCLAMATION Exclamation point (used in warning

messages).
IDI_HAND Hand-shaped icon (used in serious warning

messages).
IDI_QUESTION Question mark (used in prompting

messages).
IDI_WINLOGO Windows logo.

Return ValuesIf the function succeeds, the return value is the handle of the newly loaded icon.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksLoadIcon loads the icon resource only if it has not been loaded; otherwise, it retrieves a handle to
the existing resource. The function searches the icon resource for the icon most appropriate for
the current display. The icon resource can be a color or monochrome bitmap.

LoadIcon can only load an icon whose size conforms to the SM_CXICON and SM_CYICON
system metric values. Use the LoadImage function to load icons of other sizes.See AlsoCreateIcon, LoadImage, MAKEINTRESOURCE

LoadImage
[Now Supported on Windows NT]

The LoadImage function loads an icon, cursor, or bitmap.

HANDLE LoadImage(
HINSTANCE hinst, // handle of the instance that contains the image
LPCTSTR lpszName, // name or identifier of image
UINT uType, // type of image
int cxDesired, // desired width
int cyDesired, // desired height
UINT fuLoad // load flags

);Parametershinst
Identifies an instance of the module that contains the image to be loaded. To load an OEM
image, set this parameter to zero.

lpszName
Identifies the image to load.
If the hinst parameter is non-NULL and the fuLoad parameter does not include
LR_LOADFROMFILE, lpszName is a pointer to a null-terminated string that contains the
name of the image resource in the hinst module.
If hinst is NULL and LR_LOADFROMFILE is not specified, the low-order word of this
parameter must be the identifier of the OEM image to load. The OEM image identifiers are
defined in WINUSER.H and have the following prefixes:

Prefix Meaning
OBM_ OEM bitmaps
OIC_ OEM icons
OCR_ OEM cursors

Windows 95: If the fuLoad parameter includes the LR_LOADFROMFILE value, lpszName is
the name of the file that contains the image.
Windows NT: LR_LOADFROMFILE is not supported.

uType
Specifies the type of image to be loaded. This parameter can be one of the following values:

Value Meaning
IMAGE_BITMAP Loads a bitmap.
IMAGE_CURSOR Loads a cursor.
IMAGE_ICON Loads an icon.

cxDesired
Specifies the width, in pixels, of the icon or cursor. If this parameter is zero and the fuLoad
parameter is LR_DEFAULTSIZE, the function uses the SM_CXICON or SM_CXCURSOR
system metric value to set the width. If this parameter is zero and LR_DEFAULTSIZE is not
used, the function uses the actual resource width.

cyDesired
Specifies the height, in pixels, of the icon or cursor. If this parameter is zero and the fuLoad
parameter is LR_DEFAULTSIZE, the function uses the SM_CYICON or SM_CYCURSOR
system metric value to set the height. If this parameter is zero and LR_DEFAULTSIZE is not
used, the function uses the actual resource height.

fuLoad
Specifies a combination of the following values:

Value Meaning
LR_DEFAULTCOLOR The default flag; it does nothing. All it

means is "not LR_MONOCHROME".
LR_CREATEDIBSECTION When the uType parameter specifies

IMAGE_BITMAP, causes the function to
return a DIB section bitmap rather than a
compatible bitmap. This flag is useful for

loading a bitmap without mapping it to the
colors of the display device.

LR_DEFAULTSIZE Uses the width or height specified by the
system metric values for cursors or icons,
if the cxDesired or cyDesired values are
set to zero. If this flag is not specified and
cxDesired and cyDesired are set to zero,
the function uses the actual resource
size. If the resource contains multiple
images, the function uses the size of the
first image.

LR_LOADFROMFILE Loads the image from the file specified by
the lpszName parameter. If this flag is not
specified, lpszName is the name of the
resource.

LR_LOADMAP3DCOLORSSearches the color table for the image
and replaces the following shades of gray
with the corresponding 3D color:

Color Replaced with
Dk Gray, RGB
(128,128,128)

COLOR_3DSHADOW

Gray, RGB(192,
192,192)

COLOR_3DFACE

Lt Gray, RGB
(223,223,223)

COLOR_3DLIGHT

LR_LOADTRANSPARENTRetrieves the color value of the first
pixel in the image and replaces the
corresponding entry in the color table
with the default window color
(COLOR_WINDOW). All pixels in the
image that use that entry become the
default window color. This value
applies only to images that have
corresponding color tables.
If fuLoad includes both the
LR_LOADTRANSPARENT and
LR_LOADMAP3DCOLORS values,
LRLOADTRANSPARENT takes
precedence. However, the color table
entry is replaced with COLOR_3DFACE
rather than COLOR_WINDOW.

LR_MONOCHROME Loads the image in black and white.
LR_SHARED Shares the image handle if the image is

loaded multiple times. If LR_SHARED is
not set, a second call to LoadImage for
the same resource will load the image
again and return a different handle.
Do not use LR_SHARED for images that
have non-standard sizes, that may
change after loading, or that are loaded
from a file.

Return ValuesIf the function succeeds, the return value is the handle of the newly loaded image.

If the function fails, the return value is NULL.See AlsoCopyImage, GetSystemMetrics, LoadBitmap, LoadCursor, LoadIcon

LoadKeyboardLayout
The implementations of LoadKeyboardLayout in Windows 95 and Windows NT are substantially
different. To accommodate these differences, this reference page first presents the Windows 95
implementation in its entirety, followed by the Windows NT version.

Windows 95:
The LoadKeyboardLayout function loads a new keyboard layout into the system. Several
keyboard layouts can be loaded at a time, but only one per process is active at a time. Loading
multiple keyboard layouts makes it possible to rapidly switch between layouts.

HKL LoadKeyboardLayout(
LPCTSTR pwszKLID, // name of layout to load
UINT Flags // keyboard layout flags

);ParameterspwszKLID
Points to the buffer that specifies the name of the keyboard layout. This name is a string
composed from the hexadecimal value of the primary language identifier (low word) and a
device identifier (high word). For example, U.S. English has a language identifier of 0x0409,
so the primary U.S. English layout is named "00000409". Variants of U.S. English layout, such
as the Dvorak layout, are named "00010409", "00020409", and so on. For a list of the primary
language identifiers and secondary language identifiers that make up a language identifier,
see the MAKELANGID macro.

Flags
Specifies how the keyboard layout is to be loaded. This parameter can be one of the following
values:

Value Meaning
KLF_ACTIVATE If the given layout is not already

loaded, the function loads and
activates the layout for the current
thread, inserting the layout at the head
of the keyboard layouts list in front of
the previously active layout. If the
layout is already loaded and the
KLF_REORDER value is not given,
the function simply rotates the
keyboard layouts list, making the next
layout the active layout.

KLF_NOTELLSHELL Prevents a ShellProc hook procedure
from receiving an
HSHELL_LANGUAGE hook code
when the new layout is loaded. This
value is typically used when an
application loads multiple layouts, one
after another. Applying this value to all
but the last layout delays the shell's
processing until all layouts have been
added.

KLF_REORDER Moves the given layout to the head of
the keyboard layouts list, making that
layout the active layout for the current
thread. This value reorders the
keyboard layouts list even if
KLF_ACTIVATE is not given.

KLF_REPLACELANG If the new layout has the same
language identifier as a current layout,
the new layout replaces the current
one as the layout for that language. If
this value is not given and the layouts
have the same language identifiers,
the current layout is not replaced and
the function returns NULL.

KLF_SUBSTITUTE_OK Substitues the given keyboard layout
with another layout preferred by the
user. The substitution occurs only if
the registry key
HKEY_CURRENT_USER\Keyboard
Layout\Substitutes explicitly defines
a substitution layout. For example, if
the key includes the value name
"00000409" with value "00010409",
loading the U.S. English layout
("00000409") causes the Dvorak U.S.
English layout ("00010409") to be
loaded instead. The system uses
KLF_SUBSTITUTE_OK when booting
and it is recommended that all
applications use this value too.

Return ValuesIf the function succeeds, the return value is the keyboard layout handle of the layout matched with
the requested name or NULL if no matching keyboard is available.RemarksIf a layout is to be loaded with the same language as a previously loaded one and the
KLF_REPLACELANG flag is not set, the call fails. Only one loaded layout may be associated with
a given language. (It is acceptable for multiple IMEs to be loaded with associations to the same
language.)

An application can and will typically want to load the default layout or IME for a language and can
do so by specifying only a string version of the language identifier. If an application wants to load
a specific layout or IME, it should read the registry to determine the specific layout identifier to
pass to LoadKeyboardLayout. In this case, a request to activate the default keyboard layout
handle for a locale will activate the first matching one. A specific IME should be activated using an
explicit keyboard layout handle returned from one of GetKeyboardLayout,
GetKeyboardLayoutList or LoadKeyboardLayout.See AlsoActivateKeyboardLayout, GetKeyboardLayout, GetKeyboardLayoutName, MAKELANGID,
UnloadKeyboardLayout

Windows NT:
The LoadKeyboardLayout function loads a keyboard layout.

HKL LoadKeyboardLayout(
LPCTSTR pwszKLID, // address of buffer for layout name
UINT Flags // keyboard layout flags

);ParameterspwszKLID
Points to the buffer that specifies the name of the keyboard layout. The name should be
derived from the hexadecimal value of the language identifier corresponding to the layout. For
example, U.S. English has a language identifier of 0x0409, so the primary U.S. English layout
is named "00000409". Variants of U.S. English layout, such as the Dvorak layout, are named
"00010409", "00020409", and so on. For a list of the primary language identifiers and sub-
language identifiers that make up a language identifier, see the MAKELANGID macro.

Flags
Specifies how the keyboard layout is to be loaded. This parameter can be one of the following
values:

Value Meaning
KLF_ACTIVATE The function loads the layout if it is not

already loaded, and activates it. This
value activates the layout for the entire
system not just the calling thread.

KLF_REORDER This flag is meaningful only if the
KLF_ACTIVATE flag is set and the
layout is already loaded. If these
conditions are met and the
KLF_REORDER bit is set, the function
removes the specified layout from its
position in the system's circular list of
loaded layouts, and places it at the head
of the list as the active layout.

If the KLF_ACTIVATE bit is set and the
layout is loaded but the KLF_REORDER
bit is not set, the function simply rotates
the system's circular list of loaded
layouts.
If the KLF_ACTIVATE flag is set and the
layout is not already loaded, it is loaded
as the active layout and inserted in the
system's circular list of keyboard layouts
ahead of the previously active layout.

KLF_SUBSTITUTE_OK The specified layout is looked up in the
user's profile (in the registry under the
key HKEY_CURRENT_USER\
Keyboard Layout\Substitutes) to find a
substitution layout preferred by the user.
For example, if there was a value in this
section of name "00000409" equal to
"00010409", loading the U.S. English
layout ("00000409") with the
KLF_SUBSTITUTE_OK flag set would
cause the Dvorak U.S. English layout
("00010409") to be loaded.

KLF_UNLOADPREVIOUS If KLF_ACTIVATE is specified, and the
layout is loaded and activated
successfully, the function unloads the
previously active layout. Otherwise, the
function ignores this flag.

Return ValuesIf the function succeeds, the return value is the handle of the keyboard layout.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksSeveral keyboard layouts can be loaded at a time, but only one at a time is active. Loading
multiple keyboard layouts makes it possible to switch rapidly between layouts.See AlsoActivateKeyboardLayout, GetKeyboardLayoutName, UnloadKeyboardLayout

LoadLibrary
The LoadLibrary function maps the specified executable module into the address space of the
calling process.

HINSTANCE LoadLibrary(
LPCTSTR lpLibFileName // address of filename of executable module

);ParameterslpLibFileName
Points to a null-terminated string that names the executable module (either a .DLL or .EXE
file). The name specified is the filename of the module and is not related to the name stored in
the library module itself, as specified by the LIBRARY keyword in the module-definition (.
DEF) file.
If the string specifies a path but the file does not exist in the specified directory, the function
fails.
If a path is not specified and the filename extension is omitted, the default library extension .
DLL is appended. However, the filename string can include a trailing point character (.) to
indicate that the module name has no extension. When no path is specified, the function
searches for the file in the following sequence:
1. The directory from which the application loaded.
2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
The first directory searched is the one directory containing the image file used to create the
calling process (for more information, see the CreateProcess function). Doing this allows
private dynamic-link library (DLL) files associated with a process to be found without adding
the process's installed directory to the PATH environment variable.
Once the function obtains a fully qualified path to a library module file, the path is compared
(case independently) to the full paths of library modules currently loaded into the calling
process. These libraries include those loaded when the process was starting up as well as
those previously loaded by LoadLibrary but not unloaded by FreeLibrary. If the path
matches the path of an already loaded module, the function just increments the reference
count for the module and returns the module handle for that library.

Return ValuesIf the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksLoadLibrary can be used to map a DLL module and return a handle that can be used in
GetProcAddress to get the address of a DLL function. LoadLibrary can also be used to map
other executable modules. For example, the function can specify an .EXE file to get a handle that
can be used in FindResource or LoadResource.

Module handles are not global or inheritable. A call to LoadLibrary by one process does not
produce a handle that another process can use ¾ for example, in calling GetProcAddress. The
other process must make its own call to LoadLibrary for the module before calling
GetProcAddress.

If the module is a DLL not already mapped for the calling process, the system calls the DLL's
DllEntryPoint function with the DLL_PROCESS_ATTACH value. If the DLL's entry-point function
does not return TRUE, LoadLibrary fails and returns NULL.

Windows 95: If you are using LoadLibrary to load a module that contains a resource whose
numeric identifier is greater than 0x7FFF, LoadLibrary fails.See AlsoDllEntryPoint, FindResource, FreeLibrary, GetProcAddress, GetSystemDirectory,
GetWindowsDirectory, LoadResource

LoadLibraryEx
The LoadLibraryEx function maps a specified executable module into the address space of the
calling process. The executable module can be a .DLL or an .EXE file. The specified module may
cause other modules to be mapped into the address space.

HINSTANCE LoadLibraryEx(
LPCTSTR lpLibFileName, // points to name of executable module
HANDLE hFile, // reserved, must be NULL
DWORD dwFlags // entry-point execution flag

);ParameterslpLibFileName
Points to a null-terminated string that names a Win32 executable module (either a .DLL or an .
EXE file). The name specified is the filename of the executable module. This name is not
related to the name stored in a library module itself, as specified by the LIBRARY keyword in
the module-definition (.DEF) file.
If the string specifies a path, but the file does not exist in the specified directory, the function
fails.
If the string does not specify a path, and the filename extension is omitted, the function
appends the default library extension .DLL to the filename. However, the filename string can
include a trailing point character (.) to indicate that the module name has no extension.
If the string does not specify a path, the function uses a standard search strategy to find the
file. See the Remarks for more information.
If mapping the specified module into the address space causes the operating system to map
in other, associated executable modules, the function can use either the standard search
strategy or an alternate search strategy to find those modules. See the Remarks for more
information.
Once the function obtains a fully qualified path to a library module file, the path is compared
(in a case-independent manner) to the full paths of library modules that are currently loaded
into the calling process. That set of libraries includes those that were loaded when the
process was starting up, as well as those previously loaded by calls to LoadLibrary or
LoadLibraryEx but not yet unloaded by calls to FreeLibrary. If the path matches the path of
an already loaded module, the function just increments the reference count for the module,
and returns the module handle for that library.

hFile
This parameter is reserved for future use. It must be NULL.

dwFlags
Specifies the action to take when loading the module. This parameter can be one of the
following values:

Flag Meaning
DONT_RESOLVE_DLL_REFERENCES

Windows NT only:
If this value is given, and the executable module is a
dynamic-link library (DLL), the operating system does not
call the DllEntryPoint function for process and thread
initialization and termination. Also, the system does not
load additional executable modules that are referenced by
the specified module.
If this value is not given, and the executable module is a
DLL, the operating system calls the DllEntryPoint
function for process and thread initialization and
termination. The system loads additional executable
modules that are referenced by the specified module. The
behavior of the function is then identical to that of
LoadLibrary in this regard.

LOAD_LIBRARY_AS_DATAFILE
If this value is given, the function does a simple mapping
of the file into the address space. Nothing is done relative
to executing or preparing to execute the code in the
mapped file. The function loads the module as if it were a

data file. You can use the module handle that the function
returns in this case with the Win32 functions that operate
on resources. Use this flag when you want to load a DLL
in order to extract messages or resources from it, and
have no intention of executing its code.
If this value is not given, the function maps the file into the
address space in the manner that is normal for an
executable module. The behavior of the function is then
identical to that of LoadLibrary in this regard.

LOAD_WITH_ALTERED_SEARCH_PATH
If this value is given, and lpLibFileName specifies a path,
the function uses the alternate file search strategy
discussed in the Remarks section following to find
associated executable modules that the specified module
causes to be loaded.
If this value is not given, or if lpLibFileName does not
specify a path, the function uses the standard search
strategy discussed in the Remarks section following to
find associated executable modules that the specified
module causes to be loaded. The behavior of the function
is then identical to that of LoadLibrary in this regard.

Return ValuesIf the function succeeds, the return value is a handle to the mapped executable module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksNote that the DONT_RESOLVE_DLL_REFERENCES flag is only implemented on the Windows
NT platform. It is not implemented on the Windows 95 platform.

The calling process can use the handle returned by this function to identify the module in calls to
the GetProcAddress, FindResource, and LoadResource functions.

The LoadLibraryEx function is very similar to the LoadLibrary function. The differences consist
of a set of optional behaviors that LoadLibraryEx provides. First, LoadLibraryEx can map a DLL
module without calling the DllEntryPoint function of the DLL. Second, LoadLibraryEx can use
either of two file search strategies to find executable modules that are associated with the
specified module. Third, LoadLibraryEx can load a module in a way that is optimized for the case
where the module will never be executed, loading the module as if it were a data file. You select
these optional behaviors by setting the dwFlags parameter; if dwFlags is zero, LoadLibraryEx
behaves identically to LoadLibrary.

If no path is specified, the LoadLibraryEx function uses the same standard file search strategy
that LoadLibrary, SearchPath, and OpenFile use to find the executable module and any
associated executable modules that it causes to be loaded. This standard strategy searches for a
file in the following sequence:

1. The directory from which the application loaded.
2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
If a path is specified, and the dwFlags parameter is set to
LOAD_WITH_ALTERED_SEARCH_PATH, the LoadLibraryEx function uses an alternate file
search strategy to find any executable modules that the specified module causes to be loaded.
This alternate strategy searches for a file in the following sequence:

1. The directory specified by the lpLibFileName path. In other words, the directory that the
specified executable module is in.

2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
Note that the standard file search strategy and the alternate search strategy differ in just one way:
the standard strategy starts its search in the calling application's directory, and the alternate
strategy starts its search in the directory of the executable module that LoadLibraryEx is loading.

If you specify the alternate search strategy, its behavior continues until all associated executable
modules have been located. Once the system starts processing DLL initialization routines, the
system reverts to the standard search strategy.See AlsoDllEntryPoint, FindResource, FreeLibrary, GetProcAddress, GetSystemDirectory,
GetWindowsDirectory, LoadLibrary, LoadResource, OpenFile, SearchPath

LoadMenu
The LoadMenu function loads the specified menu resource from the executable (.EXE) file
associated with an application instance.

HMENU LoadMenu(
HINSTANCE hInstance, // handle of application instance
LPCTSTR lpMenuName // menu name string or menu-resource identifier

);ParametershInstance
Identifies the instance of the module containing the menu resource to be loaded.

lpMenuName
Points to a null-terminated string that contains the name of the menu resource. Alternatively,
this parameter can consist of the resource identifier in the low-order word and zero in the
high-order word. To create this value, use the MAKEINTRESOURCE macro.

Return ValuesIf the function succeeds, the return value is the handle of the menu resource.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe DestroyMenu function is used, before an application closes, to destroy the menu and free
memory that the loaded menu occupied.See AlsoLoadMenuIndirect, MAKEINTRESOURCE

LoadMenuIndirect
The LoadMenuIndirect function loads the specified menu template in memory.

HMENU LoadMenuIndirect(
CONST MENUTEMPLATE *lpMenuTemplate // address of menu template

);ParameterslpMenuTemplate
Points to a menu template or an extended menu template.
A menu template consists of a MENUITEMTEMPLATEHEADER structure followed by one or
more contiguous MENUITEMTEMPLATE structures. An extended menu template consists of
a MENUEX_TEMPLATE_HEADER structure followed by one or more contiguous
MENUEX_TEMPLATE_ITEM structures.

Return ValuesIf the function succeeds, the return value is the handle of the menu.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksFor both the ANSI and the Unicode version of this function, the strings in the
MENUITEMTEMPLATE structure must be Unicode strings.See AlsoLoadMenu, MENUEX_TEMPLATE_HEADER, MENUEX_TEMPLATE_ITEM,
MENUITEMTEMPLATE, MENUITEMTEMPLATEHEADER

LoadModule
The LoadModule function loads and executes a Windows-based application or creates a new
instance of an existing Windows-based application.

This function is provided for compatibility with earlier versions of Windows. Win32-based
applications should use the CreateProcess function.

DWORD LoadModule(
LPCSTR lpModuleName, // address of filename to load
LPVOID lpParameterBlock // address of parameter block for new module

);ParameterslpModuleName
Points to a null-terminated string that contains the filename of the application to run. If the
lpModuleName parameter does not contain a directory path, Windows searches for the
executable file in this order:
1. The directory from which the application loaded.
2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
lpParameterBlock

Points to an application-defined LOADPARMS32 structure that defines the new application's
parameter block.
The LOADPARMS32 structure has the following form:typedef struct tagLOADPARMS32 {

LPSTR lpEnvAddress; // address of environment strings
LPSTR lpCmdLine;// address of command line
LPSTR lpCmdShow;// how to show new program
DWORD dwReserved; // must be zero

} LOADPARMS32;Member Description
lpEnvAddress Points to an array of null-terminated strings that

supply the environment strings for the new
process. The array has a value of NULL as its last
entry. A value of NULL for this parameter causes
the new process to start with the same
environment as the calling process.

lpCmdLine Points to a Pascal-style string that contains a
correctly formed command line. The first byte of
the string contains the number of bytes in the
string. The remainder of the string contains the
command line arguments, excluding the name of
the child process. If there are no command line
arguments, this parameter must point to a zero
length string; it cannot be NULL.

lpCmdShow Points to a structure containing two WORD values.
The first value must always be set to two. The
second value specifies how the application window
is to be shown and is used to supply the
wShowWindow member of the STARTUPINFO
structure to the CreateProcess function. See the
description of the nCmdShow parameter of the
ShowWindow function for a list of acceptable
values.

dwReserved This parameter is reserved; it must be zero.

Set all unused members to NULL, except for lpCmdLine, which must point to a null-
terminated string if it is not used.

Return ValuesIf the function succeeds, the return value is greater than 31.

If the function fails, the return value is an error value, which may be one of the following:

Value Meaning

0 The system is out of memory or
resources.

ERROR_BAD_FORMAT The .EXE file is invalid (non-Win32 .
EXE or error in .EXE image).

ERROR_FILE_NOT_FOUNDThe specified file was not found.
ERROR_PATH_NOT_FOUNDThe specified path was not found.
RemarksWin32-based applications should use the CreateProcess function. In the Win32 API, the

implementation of the LoadModule function calls CreateProcess. The following section
describes how each parameter for CreateProcess is formed:

CreateProcess
parameter

Value

lpszImageName LoadModule lpModuleName parameter.
lpszCommandLine LoadModule lpParameterBlock->

lpCmdLine.
lpsaProcess NULL.
lpsaThread NULL.
fInheritHandles FALSE.
fdwCreate 0.
lpvEnvironment LoadModule lpParameterBlock->

lpEnvAddress.
lpszCurDir NULL.
lpsiStartInfo The structure is initialized to zero. The cb

member is set to the size of the structure,
and the wShowWindow member is set to
the value of the second word of the
LoadModule lpParameterBlock->
lpCmdShow parameter.

lppiProcInfo.hProcess The handle is immediately closed.
lppiProcInfo.hThread The handle is immediately closed.
See AlsoCreateProcess, GetSystemDirectory, GetWindowsDirectory, ShowWindow, STARTUPINFO,

WinExec

LoadResource
The LoadResource function loads the specified resource into global memory.

HGLOBAL LoadResource(
HMODULE hModule, // resource-module handle
HRSRC hResInfo // resource handle

);ParametershModule
Identifies the module whose executable file contains the resource. If hModule is NULL,
Windows loads the resource from the module that was used to create the current process.

hResInfo
Identifies the resource to be loaded. This handle must be created by using the FindResource
or FindResourceEx function.

Return ValuesIf the function succeeds, the return value is a handle to the global memory block containing the
data associated with the resource.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksBoth Windows 95 and Windows NT automatically free resources. You do not need to call the
FreeResource function to free a resource loaded by using the LoadResource function.See AlsoFindResource, FindResourceEx, FreeResource, LoadLibrary, LoadModule, LockResource

LoadString
The LoadString function loads a string resource from the executable file associated with a
specified module, copies the string into a buffer, and appends a terminating null character.

int LoadString(
HINSTANCE hInstance, // handle of module containing string resource
UINT uID, // resource identifier
LPTSTR lpBuffer, // address of buffer for resource
int nBufferMax // size of buffer

);ParametershInstance
Identifies an instance of the module whose executable file contains the string resource.

uID
Specifies the integer identifier of the string to be loaded.

lpBuffer
Points to the buffer to receive the string.

nBufferMax
Specifies the size of the buffer in bytes (ANSI version) or characters (Unicode version). The
string is truncated and null terminated if it is longer than the number of characters specified.

Return ValuesIf the function succeeds, the return value is the number of bytes (ANSI version) or characters
(Unicode version) copied into the buffer, not including the null-terminating character, or zero if the
string resource does not exist. To get extended error information, call GetLastError.See AlsoFormatMessage, LoadAccelerators, LoadBitmap, LoadCursor, LoadIcon, LoadMenu,
LoadMenuIndirect

LocalAlloc
The LocalAlloc function allocates the specified number of bytes from the heap. In the linear
Win32 API environment, there is no difference between the local heap and the global heap.

HLOCAL LocalAlloc(
UINT uFlags, // allocation attributes
UINT uBytes // number of bytes to allocate

);ParametersuFlags
Specifies how to allocate memory. If zero is specified, the default is the LMEM_FIXED flag.
Except for the incompatible combinations that are specifically noted, any combination of the
following flags can be specified. To indicate whether the function allocates fixed or movable
memory, specify one of the first six flags:

Flag Meaning
LMEM_FIXED

Allocates fixed memory. This flag cannot be combined
with the LMEM_MOVEABLE or LMEM_DISCARDABLE
flag. The return value is a pointer to the memory block. To
access the memory, the calling process simply casts the
return value to a pointer.

LMEM_MOVEABLE
Allocates movable memory. This flag cannot be combined
with the LMEM_FIXED flag. The return value is the handle
of the memory object. The handle is a 32-bit quantity that
is private to the calling process. To translate the handle
into a pointer, use the LocalLock function.

LPTR
Combines the LMEM_FIXED and LMEM_ZEROINIT flags.

LHND
Combines the LMEM_MOVEABLE and LMEM_ZEROINIT
flags.

NONZEROLHND
Same as the LMEM_MOVEABLE flag.

NONZEROLPTR
Same as the LMEM_FIXED flag.

LMEM_DISCARDABLE
Allocates discardable memory. This flag cannot be
combined with the LMEM_FIXED flag. Some Win32-
based applications may ignore this flag.

LMEM_NOCOMPACT
Does not compact or discard memory to satisfy the
allocation request.

LMEM_NODISCARD
Does not discard memory to satisfy the allocation request.

LMEM_ZEROINIT
Initializes memory contents to zero.

uBytes
Specifies the number of bytes to allocate. If this parameter is zero and the uFlags parameter
specifies the LMEM_MOVEABLE flag, the function returns a handle to a memory object that is
marked as discarded.

Return ValuesIf the function succeeds, the return value is the handle of the newly allocated memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf the heap does not contain sufficient free space to satisfy the request, LocalAlloc returns NULL.

The GlobalAlloc and LocalAlloc functions are limited to a combined total of 65,536 handles for

GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. This limitation does not apply
to GMEM_FIXED or LMEM_FIXED memory.

If this function succeeds, it allocates at least the amount requested. If the amount allocated is
greater than the amount requested, the process can use the entire amount. To determine the
actual number of bytes allocated, use the LocalSize function.See AlsoGlobalAlloc, LocalFree, LocalLock, LocalReAlloc, LocalSize

LocalCompact
The LocalCompact function is obsolete. This function is provided only for compatibility with 16-
bit versions of Windows.

LocalDiscard
The LocalDiscard function discards the specified local memory object. The lock count of the
memory object must be zero.

HLOCAL LocalDiscard(
HLOCAL hlocMem // handle of local memory object

);ParametershlocMem
Identifies the local memory object. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

Return ValuesIf the function succeeds, the return value is the handle of the local memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksLocalDiscard discards only local objects allocated by a process with the LMEM_DISCARDABLE
flag. If a process attempts to discard a fixed or locked object, the function fails.

Although LocalDiscard discards the object's memory block, the handle of the object remains
valid. A process can subsequently pass the handle to the LocalReAlloc function to allocate
another local memory object identified by the same handle.See AlsoLocalAlloc, LocalReAlloc

LocalFileTimeToFileTime
The LocalFileTimeToFileTime function converts a local file time to a file time based on the
Coordinated Universal Time (UTC).

BOOL LocalFileTimeToFileTime(
CONST FILETIME *lpLocalFileTime, // address of local file time to convert
LPFILETIME lpFileTime // address of converted file time

);ParameterslpLocalFileTime
Points to a FILETIME structure that specifies the local file time to be converted into a UTC-
based file time.

lpFileTime
Points to a FILETIME structure to receive the converted UTC-based file time. This parameter
cannot be the same as the lpLocalFileTime parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoFILETIME, FileTimeToLocalFileTime

LocalFlags
The LocalFlags function returns information about the specified local memory object.

UINT LocalFlags(
HLOCAL hMem // handle of local memory object

);ParametershMem
Identifies the local memory object. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

Return ValuesIf the function succeeds, the return value is a 32-bit value that specifies the allocation flags and
the lock count for the memory object.

If the function fails, the return value is the LMEM_INVALID_HANDLE flag, indicating that the local
handle is not valid. To get extended error information, call GetLastError.RemarksThe low-order byte of the low-order word of the return value contains the lock count of the object.
To retrieve the lock count from the return value, use the LMEM_LOCKCOUNT mask with the
bitwise AND (&) operator. The lock count of memory objects allocated with the LMEM_FIXED flag
is always zero.

The high-order byte of the low-order word of the return value indicates the allocation flags of the
memory object. It can be zero or any combination of the following flags:

Value Description

LMEM_DISCARDABLE The object's memory block can be discarded.
LMEM_DISCARDED The object's memory block has been

discarded.
See AlsoGlobalFlags, LocalAlloc, LocalDiscard, LocalLock, LocalReAlloc, LocalUnlock

LocalFree
The LocalFree function frees the specified local memory object and invalidates its handle.

HLOCAL LocalFree(
HLOCAL hMem // handle of local memory object

);ParametershMem
Identifies the local memory object. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

Return ValuesIf the function succeeds, the return value is NULL.

If the function fails, the return value is equal to the handle of the local memory object. To get
extended error information, call GetLastError.RemarksIf the process tries to examine or modify the memory after it has been freed, heap corruption may
occur or an access violation exception (EXCEPTION_ACCESS_VIOLATION) may be generated.

If the hMem parameter is NULL, LocalFree ignores the parameter and returns NULL.

LocalFree succeeds even if the memory object is locked by a previous call to the LocalLock
function. The LocalLock function locks a local memory object and increments the lock count by
one. The LocalUnlock function unlocks it and decrements the lock count by one. To get the lock
count of a local memory object, use the LocalFlags function. LocalFree will free a locked
memory object. A locked memory object has a lock count greater than zero.

Both GlobalFree and LocalFree will free a locked memory object. However, if you run an
application under a debug version of Windows NT or Windows 95, both GlobalFree and
LocalFree will issue a message that tells you that this is happening. If you are debugging the
application, GlobalFree and LocalFree will enter a hard-coded breakpoint just before freeing a
locked object. This lets you double-check the intended behavior.See AlsoGlobalFree, LocalAlloc, LocalFlags, LocalLock, LocalReAlloc, LocalUnlock

LocalHandle
The LocalHandle function retrieves the handle associated with the specified pointer to a local
memory object.

HLOCAL LocalHandle(
LPCVOID pMem // address of local memory object

);ParameterspMem
Points to the first byte of the local memory object. This pointer is returned by the LocalLock
function.

Return ValuesIf the function succeeds, the return value is the handle of the specified local memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWhen the LocalAlloc function allocates a local memory object with the LMEM_MOVEABLE flag,
it returns the handle of the object. The LocalLock function converts this handle into a pointer to
the object's memory block, and LocalHandle converts the pointer back into a handle.See AlsoLocalAlloc, LocalLock

LocalLock
The LocalLock function locks a local memory object and returns a pointer to the first byte of the
object's memory block. The memory block associated with a locked memory object cannot be
moved or discarded. For memory objects allocated with the LMEM_MOVEABLE flag, the function
increments the object's lock count.

LPVOID LocalLock(
HLOCAL hMem // handle of local memory object

);ParametershMem
Identifies the local memory object. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

Return ValuesIf the function succeeds, the return value is a pointer to the first byte of the memory block.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe internal data structures for each memory object include a lock count that is initially zero. For
movable memory objects, LocalLock increments the count by one, and the LocalUnlock function
decrements the count by one. For each call that a process makes to LocalLock for an object, it
must eventually call LocalUnlock. Locked memory will not be moved or discarded unless the
memory object is reallocated by using the LocalReAlloc function. The memory block of a locked
memory object remains locked in memory until its lock count is decremented to zero, at which
time it can be moved or discarded.

Memory objects allocated with the LMEM_FIXED flag always have a lock count of zero. For these
objects, the value of the returned pointer is equal to the value of the specified handle.

If the specified memory block has been discarded or if the memory block has a zero-byte size, this
function returns NULL.

Discarded objects always have a lock count of zero.See AlsoLocalAlloc, LocalFlags, LocalReAlloc, LocalUnlock

LocalReAlloc
The LocalReAlloc function changes the size or the attributes of a specified local memory object.
The size can increase or decrease.

HLOCAL LocalReAlloc(
HLOCAL hMem, // handle of local memory object
UINT uBytes, // new size of block
UINT uFlags // how to reallocate object

);ParametershMem
Identifies the local memory object to be reallocated. This handle is returned by either the
LocalAlloc or LocalReAlloc function.

uBytes
Specifies the new size, in bytes, of the memory block. If this parameter is zero and the uFlags
parameter specifies the LMEM_MOVEABLE flag, the function returns a handle to a memory
object that is marked as discarded. If uFlags specifies the LMEM_MODIFY flag, this
parameter is ignored.

uFlags
Specifies how to reallocate the local memory object. If the LMEM_MODIFY flag is specified,
this parameter modifies the attributes of the memory object, and the uBytes parameter is
ignored. Otherwise, this parameter controls the reallocation of the memory object.
The LMEM_MODIFY flag can be combined with either or both of the following flags:

Flag Meaning
LMEM_DISCARDABLE

Allocates discardable memory if the LMEM_MODIFY flag
is also specified. This flag is ignored, unless the object
was previously allocated as movable or the
LMEM_MOVEABLE flag is also specified.

LMEM_MOVEABLE
You cannot combine LMEM_MOVEABLE with
LMEM_MODIFY to change a fixed memory object into a
movable one. The function returns an error if an
application attempts this.

If uFlags does not specify LMEM_MODIFY, this parameter can be any combination of the
following flags:

Flag Meaning
LMEM_MOVEABLE

If uBytes is zero, discards a previously movable and
discardable memory block. If the object's lock count is not
zero or the block is not movable and discardable, the
function fails.
If uBytes is nonzero, enables the system to move the
reallocated block to a new location without changing the
movable or fixed attribute of the memory object. If the
object is fixed, the handle returned may be different from
the handle specified in the hMem parameter. If the object
is movable, the block can be moved without invalidating
the handle, even if the object is currently locked by a
previous call to the LocalLock function. To get the new
address of the memory block, use LocalLock.

LMEM_NOCOMPACT
Prevents memory from being compacted or discarded to
satisfy the allocation request.

LMEM_ZEROINIT
Causes the additional memory contents to be initialized to
zero if the memory object is growing in size.

Return ValuesIf the function succeeds, the return value is the handle of the reallocated memory object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksIf LocalReAlloc reallocates a movable object, the return value is the handle of the memory
object. To convert the handle to a pointer, use the LocalLock function.

If LocalReAlloc reallocates a fixed object, the value of the handle returned is the address of the
first byte of the memory block. To access the memory, a process can simply cast the return value
to a pointer.See AlsoLocalAlloc, LocalFree, LocalLock

LocalShrink
The LocalShrink function is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. It has no meaning in the 32-bit environment.

LocalSize
The LocalSize function returns the current size, in bytes, of the specified local memory object.

UINT LocalSize(
HLOCAL hMem // handle of local memory object

);ParametershMem
Identifies the local memory object. This handle is returned by the LocalAlloc, LocalReAlloc,
or LocalHandle function.

Return ValuesIf the function succeeds, the return value is the size, in bytes, of the specified local memory
object. If the specified handle is not valid or if the object has been discarded, the return value is
zero. To get extended error information, call GetLastError.RemarksThe size of a memory block may be larger than the size requested when the memory was
allocated.

To verify that the specified object's memory block has not been discarded, call the LocalFlags
function before calling LocalSize.See AlsoLocalAlloc, LocalFlags, LocalHandle, LocalReAlloc

LocalUnlock
The LocalUnlock function decrements the lock count associated with a memory object that was
allocated with the LMEM_MOVEABLE flag. This function has no effect on memory objects
allocated with the LMEM_FIXED flag.

BOOL LocalUnlock(
HLOCAL hMem // handle of local memory object

);ParametershMem
Identifies the local memory object. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

Return ValuesIf the memory object is still locked after decrementing the lock count, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
If GetLastError returns NO_ERROR, the memory object is unlocked.RemarksThe internal data structures for each memory object include a lock count that is initially zero. For
movable memory objects, the LocalLock function increments the count by one, and LocalUnlock
decrements the count by one. For each call that a process makes to LocalLock for an object, it
must eventually call LocalUnlock. Locked memory will not be moved or discarded unless the
memory object is reallocated by using the LocalReAlloc function. The memory block of a locked
memory object remains locked until its lock count is decremented to zero, at which time it can be
moved or discarded.

If the memory object is already unlocked, LocalUnlock returns FALSE and GetLastError reports
ERROR_NOT_LOCKED. Memory objects allocated with the LMEM_FIXED flag always have a
lock count of zero and cause the ERROR_NOT_LOCKED error.

A process should not rely on the return value to determine the number of times it must
subsequently call LocalUnlock for the memory block.See AlsoLocalAlloc, LocalFlags, LocalLock, LocalReAlloc

LockFile
The LockFile function locks a region in an open file. Locking a region prevents other processes
from accessing the region.

BOOL LockFile(
HANDLE hFile, // handle of file to lock
DWORD dwFileOffsetLow, // low-order word of lock region offset
DWORD dwFileOffsetHigh, // high-order word of lock region offset
DWORD nNumberOfBytesToLockLow, // low-order word of length to lock
DWORD nNumberOfBytesToLockHigh // high-order word of length to lock

);ParametershFile
Identifies the file with a region to be locked. The file handle must have been created with
GENERIC_READ or GENERIC_WRITE access to the file (or both).

dwFileOffsetLow
Specifies the low-order word of the starting byte offset in the file where the lock should begin.

dwFileOffsetHigh
Specifies the high-order word of the starting byte offset in the file where the lock should begin.

nNumberOfBytesToLockLow
Specifies the low-order word of the length of the byte range to be locked.

nNumberOfBytesToLockHigh
Specifies the high-order word of the length of the byte range to be locked.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksLocking a region of a file gives the locking process exclusive access to the specified region. File
locks are not inherited by processes created by the locking process.

Locking a region of a file denies all other processes both read and write access to the specified
region. Locking a region that goes beyond the current end-of-file position is not an error.

Locks may not overlap an existing locked region of the file.

The UnlockFile function unlocks a file region locked by LockFile.See AlsoCreateFile, UnlockFile

LockFileEx
The LockFileEx function locks a byte range within an open file for shared or exclusive access.

BOOL LockFileEx(
HANDLE hFile, // handle of file to lock
DWORD dwFlags, // functional behavior modification flags
DWORD dwReserved, // reserved, must be set to zero
DWORD nNumberOfBytesToLockLow, // low-order 32 bits of length to lock
DWORD nNumberOfBytesToLockHigh, // high-order 32 bits of length to lock
LPOVERLAPPED lpOverlapped // addr. of structure with lock region start offset

);ParametershFile
Identifies an open handle to a file that is to have a range of bytes locked for shared or
exclusive access. The handle must have been created with either GENERIC_READ or
GENERIC_WRITE access to the file.

dwFlags
Specifies flags that modify the behavior of this function. This parameter may be one or more
of the following values:

Value Meaning
LOCKFILE_FAIL_IMMEDIATELY If this value is specified, the

function returns immediately if it is
unable to acquire the requested
lock. Otherwise, it waits.

LOCKFILE_EXCLUSIVE_LOCK If this value is specified, the
function requests an exclusive
lock. Otherwise, it requests a
shared lock.

dwReserved
Reserved parameter; must be set to zero.

nNumberOfBytesToLockLow
Specifies the low-order 32 bits of the length of the byte range to lock.

nNumberOfBytesToLockHigh
Specifies the high-order 32 bits of the length of the byte range to lock.

lpOverlapped
Points to an OVERLAPPED structure that the function uses with the locking request. This
structure, which is required, contains the file offset of the beginning of the lock range.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information, call
GetLastError.RemarksLocking a region of a file is used to acquire shared or exclusive access to the specified region of
the file. File locks are not inherited by a new process during process creation.

Locking a portion of a file for exclusive access denies all other processes both read and write
access to the specified region of the file. Locking a region that goes beyond the current end-of-file
position is not an error.

Locking a portion of a file for shared access denies all processes write access to the specified
region of the file, including the process that first locks the region. All processes can read the
locked region.

If an exclusive lock is requested for a range of a file that already has a shared or exclusive lock,
this call waits until the lock is granted, unless the LOCKFILE_FAIL_IMMEDIATELY flag is
specified.

Locks may not overlap an existing locked region of the file.See AlsoCreateFile, LockFile, OVERLAPPED, UnlockFile, UnlockFileEx

LockResource
The LockResource function locks the specified resource in memory.

LPVOID LockResource(
HGLOBAL hResData // handle to resource to lock

);ParametershResData
Identifies the resource to be locked. The LoadResource function returns this handle.

Return ValuesIf the loaded resource is locked, the return value is a pointer to the first byte of the resource;
otherwise, it is NULL.RemarksIt is not necessary for Win32-based applications to unlock resources that were locked by the
LockResource function.

Trying to lock a resource by using the handle returned by the FindResource or FindResourceEx
function will not work. You will get back a value that is incorrect and points to random data.See AlsoFindResource, FindResourceEx, LoadResource

LockSegment
The LockSegment function is obsolete. This function is provided only for compatibility with 16-bit
versions of Windows. It has no meaning in the 32-bit environment.

LockServiceDatabase
The LockServiceDatabase function locks a specified database.

SC_LOCK LockServiceDatabase(
SC_HANDLE hSCManager // handle of service control manager database

);ParametershSCManager
Identifies the service control manager database. The OpenSCManager function returns this
handle, which must have SC_MANAGER_LOCK access.

Return ValuesIf the function succeeds, the return value is a lock to the specified service control manager
database.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.ErrorsThe following error code may be set by the service control manager. Other error codes may be set
by registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not
opened with
SC_MANAGER_LOCK
access.

ERROR_INVALID_HANDLE The specified handle is
invalid.

ERROR_SERVICE_DATABASE_LOCKEDThe database is locked.
RemarksThe LockServiceDatabase function tries to acquire a lock on the specified database. Only one

process at a time can have a lock on a database.

A lock is a protocol used by setup and configuration programs and the service control manager to
serialize access to the service tree in the registry. The only time the service control manager
acquires a lock is when it is starting a service. Setup and configuration programs are expected to
acquire a lock before using the ChangeServiceConfig or SetServiceObjectSecurity function to
reconfigure a service. They should also acquire a lock before using the registry functions to
reconfigure a service. The lock prevents the service control manager from starting a service while
it is being reconfigured.

A call to the StartService function to start a service in a locked database fails. All other service
control manager functions are not affected by a lock.

The lock is held until the SC_LOCK handle is specified in a subsequent call to the
UnlockServiceDatabase function. If a process that is holding a lock terminates, the service
control manager automatically cleans up and releases the lock.See AlsoChangeServiceConfig, OpenSCManager, QueryServiceLockStatus,
SetServiceObjectSecurity, StartService, UnlockServiceDatabase

LockWindowUpdate
The LockWindowUpdate function disables or reenables drawing in the specified window. Only
one window can be locked at a time.

BOOL LockWindowUpdate(
HWND hWndLock // handle of window to lock

);ParametershWndLock
Specifies the window in which drawing will be disabled. If this parameter is NULL, drawing in
the locked window is enabled.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero, indicating that an error occurred or another window
was already locked.RemarksIf an application with a locked window (or any locked child windows) calls the GetDC, GetDCEx,
or BeginPaint function, the called function returns a device context with a visible region that is
empty. This will occur until the application unlocks the window by calling LockWindowUpdate,
specifying a value of NULL for hWndLock.

If an application attempts to draw within a locked window, the system records the extent of the
attempted operation in a bounding rectangle. When the window is unlocked, the system
invalidates the area within this bounding rectangle, forcing an eventual WM_PAINT message to
be sent to the previously locked window and its child windows. If no drawing has occurred while
the window updates were locked, no area is invalidated.

LockWindowUpdate does not make the given window invisible and does not clear the
WS_VISIBLE style bit.

A locked window cannot be moved.See AlsoBeginPaint, GetDC, GetDCEx, WM_PAINT

LogonUser
The LogonUser function attempts to perform a user logon operation. You specify the user with a
user name and domain, and authenticate the user with a clear-text password. If the function
succeeds, you receive a handle to a token that represents the logged-on user. You can then use
this token handle to impersonate the specified user, or in most cases, to create a process running
in the context of the specified user.

BOOL LogonUser(
LPTSTR lpszUsername, // string that specifies the user name
LPTSTR lpszDomain, // string that specifies the domain or server
LPTSTR lpszPassword, // string that specifies the password
DWORD dwLogonType, // specifies the type of logon operation
DWORD dwLogonProvider, // specifies the logon provider
PHANDLE phToken // pointer to variable to receive token handle

);ParameterslpszUsername
Pointer to a null-terminated string that specifies the user name. This is the name of the user
account to log on to.

lpszDomain
Pointer to a null-terminated string that specifies the domain or server to log on to. If this
parameter is ".", LogonUser searches only the local account database for the account
specified in lpszUsername. If this parameter is NULL, LogonUser searches the local account
database, and then searches trusted domain account databases, until it finds the
lpszUsername account or the search is exhausted without finding the account name.

lpszPassword
Pointer to a null-terminated string that specifies the clear-text password for the user account
specified by lpszUsername.

dwLogonType
Specifies the type of logon operation to perform. The following logon types are defined:

Value Meaning
LOGON32_LOGON_BATCH This logon type is intended for

batch servers, where
processes may be executing
on behalf of a user without
their direct intervention; or for
higher performance servers
that process many clear-text
authentication attempts at a
time, such as mail or web
servers. LogonUser does not
cache credentials for this
logon type.

LOGON32_LOGON_INTERACTIVEThis logon type is intended for
users who will be interactively
using the machine, such as a
user being logged on by a
terminal server, remote shell,
or similar process. This logon
type has the additional
expense of caching logon
information for disconnected
operation, and is therefore
inappropriate for some client/
server applications, such as a
mail server.

LOGON32_LOGON_SERVICE Indicates a service-type logon.
The account provided must
have the service privilege
enabled.

LOGON32_LOGON_NETWORK This logon type is intended for

high performance servers to
authenticate clear text
passwords. LogonUser does
not cache credentials for this
logon type. This is the fastest
logon path, but there are two
limitations.
First, the function returns an
impersonation token, not a
primary token. You cannot use
this token directly in the
CreateProcessAsUser
function. However, you can
call the DuplicateTokenEx
function to convert the token to
a primary token, and then use
it in CreateProcessAsUser.
Second, if you convert the
token to a primary token and
use it in
CreateProcessAsUser to
start a process, the new
process will not be able to
access other network
resources, such as remote
servers or printers, through the
redirector.

dwLogonProvider
Specifies the logon provider. The following logon providers are defined:

Value Meaning
LOGON32_PROVIDER_DEFAULT Use the standard logon

provider. This is the
recommended value for
dwLogonProvider. It gives
an application the maximum
upward compatibility with
future releases of Windows
NT.

phToken
Pointer to a HANDLE variable that receives a handle to a token that represents the specified
user.
You can use the returned handle in calls to the ImpersonateLoggedOnUser function.
In most cases, the returned handle is a primary token that you can use in calls to the
CreateProcessAsUser function. However, if you specify the LOGON32_LOGON_NETWORK
flag, LogonUser returns an impersonation token that you cannot use in
CreateProcessAsUser unless you call DuplicateTokenEx to convert it to a primary token.
When you no longer need this handle, close it by calling the CloseHandle function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe process that calls LogonUser must have the SE_TCB_NAME privilege. The privilege does
not need to be enabled. The LogonUser function enables the privilege as necessary. The
function fails if the calling process does not have the SE_TCB_NAME privilege, and GetLastError
returns the error code ERROR_PRIVILEGE_NOT_HELD. For more information about privileges,
see Privileges.

A user is considered logged on as long as at least one token exists. If you call
CreateProcessAsUser and then close the token, the system considers the user as still logged on
until the process (and all child processes) have ended.

If the LogonUser call is successful, the system notifies network providers that the logon occurred
by calling the provider's NPLogonNotify entry-point.

See AlsoCreateProcessAsUser, ImpersonateLoggedOnUser

LookupAccountName
The LookupAccountName function accepts the name of a system and an account as input. It
retrieves a security identifier (SID) for the account and the name of the domain on which the
account was found.

BOOL LookupAccountName(
LPCTSTR lpSystemName, // address of string for system name
LPCTSTR lpAccountName, // address of string for account name
PSID Sid, // address of security identifier
LPDWORD cbSid, // address of size of security identifier
LPTSTR ReferencedDomainName, // address of string for referenced domain
LPDWORD cbReferencedDomainName, // address of size of domain string
PSID_NAME_USE peUse // address of SID-type indicator

);ParameterslpSystemName
Points to a null-terminated string specifying the system. This string can be the name of a
remote computer. If this string is NULL, the account name is looked up on the local system.

lpAccountName
Points to a null-terminated string specifying the account name.

Sid
Points to a buffer receiving the SID structure that corresponds to the account name pointed to
by the lpAccountName parameter.

cbSid
Pointer to a DWORD variable. On input, this value specifies the size, in bytes, of the Sid
buffer. If the function fails because the buffer is too small, this variable receives the required
buffer size.

ReferencedDomainName
Points to a buffer receiving the name of the domain where the account name is found.

cbReferencedDomainName
Pointer to a DWORD variable. On input, this value specifies the size, in bytes (ANSI version)
or characters (Unicode version), of the ReferencedDomainName buffer. If the function fails
because the buffer is too small, this variable receives the required buffer size, including the
terminating null character.

peUse
Points to a SID_NAME_USE enumerated type indicating the type of the account when the
function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe LookupAccountName function attempts to find a security identifier for the specified name by
first checking a list of well-known SIDs. If the name does not correspond to a well-known SID, the
function checks built-in and administratively defined local accounts. Next, the function checks the
primary domain. If the name is not found there, trusted domains are checked.See AlsoEqualPrefixSid, GetUserName, LookupAccountSid

LookupAccountSid
The LookupAccountSid function accepts a security identifier (SID) as input. It retrieves the name
of the account for this SID and the name of the first domain on which this SID is found.

BOOL LookupAccountSid(
LPCTSTR lpSystemName, // address of string for system name
PSID Sid, // address of security identifier
LPTSTR Name, // address of string for account name
LPDWORD cbName, // address of size account string
LPTSTR ReferencedDomainName, // address of string for referenced domain
LPDWORD cbReferencedDomainName, // address of size domain string
PSID_NAME_USE peUse // address of structure for SID type

);ParameterslpSystemName
Points to a null-terminated string specifying the system. This string can be the name of a
remote computer. If this string is NULL, the SID is looked up on the local system.

Sid
Points to a SID structure for which the account name is looked up.

Name
Points to a buffer receiving a null-terminated string representing the account name
corresponding to the Sid parameter.

cbName
Pointer to a DWORD variable. On input, this value specifies the size, in bytes (ANSI version)
or characters (Unicode version), of the Name buffer. If the function fails because the buffer is
too small, this variable receives the required buffer size, including the terminating null
character.

ReferencedDomainName
Points to a buffer that will receive a null-terminated string giving the name of the domain
where the account name was found.
For Windows NT systems, the domain name returned for most accounts in the local
computer's security database is the computer's name as of the last start of the system.
Backslashes are excluded. If the computer's name changes, the old name continues to be
returned as the domain name until the system is restarted.
For Windows NT Server systems, the domain name returned for most accounts in the local
computer's security database is the name of the domain for which the Windows NT Server is
a domain controller.
Some accounts are predefined by the system. The domain name returned for these accounts
is BUILTIN.

cbReferencedDomainName
Pointer to a DWORD variable. On input, this value specifies the size, in bytes (ANSI version)
or characters (Unicode version), of the ReferencedDomainName buffer. If the function fails
because the buffer is too small, this variable receives the required buffer size, including the
terminating null character.

peUse
Points to an SID_NAME_USE enumerated type indicating the type of the account when the
function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe LookupAccountSid function attempts to find a name for the specified security identifier by
first checking a list of well-known SIDs. If the supplied SID does not correspond to a well-known
SID, the function checks built-in and administratively defined local accounts. Next, the function
checks the primary domain. Security identifiers not recognized by the primary domain are checked
against the trusted domains corresponding to their SID prefixes.See AlsoEqualPrefixSid, LookupAccountName

LookupIconIdFromDirectory
The LookupIconIdFromDirectory function searches through icon or cursor data for the icon or
cursor that best fits the current display device.

int LookupIconIdFromDirectory(
PBYTE presbits, // address of resource data
BOOL fIcon // look for icon or cursor

);Parameterspresbits
Points to the icon or cursor directory data. Because this function does not validate the
resource data, it causes a general protection (GP) fault or returns an undefined value if
presbits is not pointing to valid resource data.

fIcon
Specifies whether an icon or a cursor is sought. If this parameter is TRUE, the function is
searching for an icon; if the parameter is FALSE, the function is searching for a cursor.

Return ValuesIf the function succeeds, the return value is an integer resource identifier for the icon or cursor that
best fits the current display device.RemarksA resource file of type RT_GROUP_ICON (RT_GROUP_CURSOR indicates cursors) contains
icon (or cursor) data in several device-dependent and device-independent formats.
LookupIconIdFromDirectory searches the resource file for the icon (or cursor) that best fits the
current display device and returns its integer identifier. The FindResource and FindResourceEx
functions use the MAKEINTRESOURCE macro with this identifier to locate the resource in the
module.

The icon directory is loaded from a resource file with resource type RT_GROUP_ICON (or
RT_GROUP_CURSOR for cursors), and an integer resource name for the specific icon to be
loaded. LookupIconIdFromDirectory returns an integer identifier that is the resource name of
the icon that best fits the current display device.

The LoadIcon, LoadCursor, and LoadImage (in Windows 95) functions use this function to
search the specified resource data for the icon or cursor that best fits the current display device.See AlsoCreateIconFromResource, CreateIconIndirect, FindResource, FindResourceEx,
GetIconInfo, LoadCursor, LoadIcon, LoadImage, LookupIconIdFromDirectoryEx,
MAKEINTRESOURCE

LookupIconIdFromDirectoryEx
[Now Supported on Windows NT]

The LookupIconIdFromDirectoryEx function searches through icon or cursor data for the icon or
cursor that best fits the current display device.

int LookupIconIdFromDirectoryEx(
PBYTE presbits, // address of resource data
BOOL fIcon, // icon or cursor flag
int cxDesired, // desired width of icon or cursor
int cyDesired, // desired height of icon or cursor
UINT Flags // resource flags

);Parameterspresbits
Points to the icon or cursor directory data. Because this function does not validate the
resource data, it causes a general protection (GP) fault or returns an undefined value if
presbits is not pointing to valid resource data.

fIcon
Specifies whether an icon or a cursor is sought. If this parameter is TRUE, the function is
searching for an icon; if the parameter is FALSE, the function is searching for a cursor.

cxDesired
Specifies the desired width, in pixels, of the icon. If this parameter is zero, the function uses
the SM_CXICON or SM_CXCURSOR system metric value.

cyDesired
Specifies the desired height, in pixels, of the icon. If this parameter is zero, the function uses
the SM_CYICON or SM_CYCURSOR system metric value.

Flags
Specifies a combination of the following values:

Value Meaning
LR_DEFAULTCOLOR Uses the default color format.
LR_MONOCHROME Creates a monochrome icon or cursor.

Return ValuesIf the function succeeds, the return value is an integer resource identifier for the icon or cursor that
best fits the current display device.RemarksA resource file of type RT_GROUP_ICON (RT_GROUP_CURSOR indicates cursors) contains
icon (or cursor) data in several device-dependent and device-independent formats.
LookupIconIdFromDirectoryEx searches the resource file for the icon (or cursor) that best fits
the current display device and returns its integer identifier. The FindResource and
FindResourceEx functions use the MAKEINTRESOURCE macro with this identifier to locate the
resource in the module.

The icon directory is loaded from a resource file with resource type RT_GROUP_ICON (or
RT_GROUP_CURSOR for cursors), and an integer resource name for the specific icon to be
loaded. LookupIconIdFromDirectoryEx returns an integer identifier that is the resource name of
the icon that best fits the current display device.

The LoadIcon, LoadImage, and LoadCursor functions use this function to search the specified
resource data for the icon or cursor that best fits the current display device.See AlsoCreateIconFromResourceEx, CreateIconIndirect, FindResource, FindResourceEx,
GetIconInfo, LoadCursor, LoadIcon, LoadImage, LookupIconIdFromDirectory,
MAKEINTRESOURCE

LookupPrivilegeDisplayName
The LookupPrivilegeDisplayName function retrieves a displayable name representing a
specified privilege.

BOOL LookupPrivilegeDisplayName(
LPCTSTR lpSystemName, // pointer to string specifying the system
LPCTSTR lpName, // pointer to string specifying the privilege
LPTSTR lpDisplayName, // pointer to string receiving the displayable name
LPDWORD cbDisplayName, // pointer to size of string for displayable name
LPDWORD lpLanguageId // pointer to language identifier

);ParameterslpSystemName
Points to a null-terminated string specifying the name of the system on which the displayable
privilege name is looked up. If a null string is specified, the function attempts to find the
displayable name on the local system.

lpName
Points to a null-terminated string that specifies the name of the privilege, as defined in the
WINNT.H header file. For example, this parameter could specify the constant
SE_REMOTE_SHUTDOWN_NAME, or its corresponding string,
"SeRemoteShutdownPrivilege".

lpDisplayName
Points to a buffer receiving a null-terminated string giving the privilege's displayable name. For
example, if the lpName parameter is SE_REMOTE_SHUTDOWN_NAME, the displayable
name is "Force shutdown from a remote system."

cbDisplayName
Points to a variable specifying the size, in characters, of the lpDisplayName buffer. When the
function returns, this parameter contains the length of the displayable privilege name, not
including the terminating null character. If the buffer pointed to by the lpDisplayName
parameter is too small, this variable contains the required size when the function returns.

lpLanguageId
Points to a variable receiving the language identifier for the returned displayable name.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe LookupPrivilegeDisplayName function retrieves display names only for the privileges
specified in the Defined Privileges section of WINNT.H.See AlsoLookupPrivilegeName, LookupPrivilegeValue

LookupPrivilegeName
The LookupPrivilegeName function retrieves the name corresponding to the privilege
represented on a specific system by a specified locally unique identifier (LUID).

BOOL LookupPrivilegeName(
LPCTSTR lpSystemName, // address of string specifying the system
PLUID lpLuid, // address of locally unique identifier
LPTSTR lpName, // address of string specifying the privilege
LPDWORD cbName // address of size of string for displayable name

);ParameterslpSystemName
Points to a null-terminated string specifying the name of the system on which the privilege
name is looked up. If a null string is specified, the function attempts to find the privilege name
on the local system.

lpLuid
Points to the locally unique identifier by which the privilege is known on the target system.

lpName
Points to a buffer that receives a null-terminated string that represents the privilege's name.
For example, this string could be "SeSecurityPrivilege".

cbName
Points to a variable specifying the size, in characters, of the lpName buffer. When the function
returns, this parameter contains the length of the privilege name, not including the terminating
null character. If the buffer pointed to by the lpName parameter is too small, this variable
contains the required size when the function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFor this release of Windows NT, only the privileges specified in the Defined Privileges section of
WINNT.H are supported by this function.See AlsoLookupPrivilegeDisplayName, LookupPrivilegeValue

LookupPrivilegeValue
The LookupPrivilegeValue function retrieves the locally unique identifier (LUID) used on a
specified system to locally represent the specified privilege name.

BOOL LookupPrivilegeValue(
LPCTSTR lpSystemName, // address of string specifying the system
LPCTSTR lpName, // address of string specifying the privilege
PLUID lpLuid // address of locally unique identifier

);ParameterslpSystemName
Points to a null-terminated string specifying the name of the system on which the privilege
name is looked up. If a null string is specified, the function attempts to find the privilege name
on the local system.

lpName
Points to a null-terminated string that specifies the name of the privilege, as defined in the
WINNT.H header file. For example, this parameter could specify the constant
SE_SECURITY_NAME, or its corresponding string, "SeSecurityPrivilege".

lpLuid
Points to a variable that receives the locally unique identifier by which the privilege is known
on the system specified by the lpSystemName parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFor this release of Windows NT, only the privileges specified in the Defined Privileges section of
WINNT.H are supported by this function.See AlsoLookupPrivilegeDisplayName, LookupPrivilegeName

LookupSecurityDescriptorParts
[New - Windows NT]

The LookupSecurityDescriptorParts function retrieves security information from a self-relative
security descriptor.

DWORD LookupSecurityDescriptorParts(
PTRUSTEE *pOwner, // receives the owner SID from the security descriptor
PTRUSTEE *pGroup, // receives the group SID from the security descriptor
PULONG cCountOfAccessEntries, // receives number of access-control entries
PEXPLICIT_ACCESS *pListOfAccessEntries, // receives an array of DACL access-control entries
PULONG cCountOfAuditEntries, // receives number of audit-control entries
PEXPLICIT_ACCESS *pListOfAuditEntries, // receives an array of SACL audit-control entries
PSECURITY_DESCRIPTOR pSD // pointer that receives the new security descriptor

);ParameterspOwner
Pointer to a variable that receives a pointer to a TRUSTEE structure. The function looks up
the name associated with the owner SID in the pSD security descriptor, and returns a pointer
to the name in the ptstrName member of the TRUSTEE structure. The function sets the
TrusteeForm member to TRUSTEE_IS_NAME.
This parameter can be NULL if you are not interested in the name of the owner.

pGroup
Pointer to a variable that receives a pointer to a TRUSTEE structure. The function looks up
the name associated with the primary group SID of the security descriptor, and returns a
pointer to the name in the ptstrName member of the TRUSTEE structure. The function sets
the TrusteeForm member to TRUSTEE_IS_NAME.
This parameter can be NULL if you are not interested in the name of the group.

cCountOfAccessEntries
Pointer to a ULONG that receives the number of EXPLICIT_ACCESS structures returned in
the pListOfAccessEntries array. This parameter can be NULL only if the pListOfAccessEntries
parameter is also NULL.

pListOfAccessEntries
Pointer to a variable that receives a pointer to an array of EXPLICIT_ACCESS structures that
describe the ACEs in the DACL of the security descriptor. The TRUSTEE structure in these
EXPLICIT_ACCESS structures use the TRUSTEE_IS_NAME form. For a description of how
an array of EXPLICIT_ACCESS structures describes the ACEs in an ACL, see the
GetExplicitEntriesFromAcl function. If this parameter is NULL, the cCountOfAccessEntries
parameter must also be NULL.

cCountOfAuditEntries
Pointer to a ULONG that receives the number of EXPLICIT_ACCESS structures returned in
the pListOfAuditEntries array. This parameter can be NULL only if the pListOfAuditEntries
parameter is also NULL.

pListOfAuditEntries
Pointer to a variable that receives a pointer to an array of EXPLICIT_ACCESS structures that
describe the ACEs in the SACL of the security descriptor. The TRUSTEE structure in these
EXPLICIT_ACCESS structures uses the TRUSTEE_IS_NAME form. If this parameter is
NULL, the cCountOfAuditEntries parameter must also be NULL.

pSD
Pointer to an existing self-relative security descriptor from which the function retrieves security
information. A self-relative security descriptor stores a SECURITY_DESCRIPTOR structure
and associated security information in a contiguous block of memory. This differs from an
absolute security descriptor, which contains pointers to the associated security information.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksThe LookupSecurityDescriptorParts function retrieves the names of the owner and primary
group of the security descriptor. It also returns descriptions of the access-control entries in the
DACL and audit-control entries in the SACL of the security descriptor.

The parameters other than pSD can be NULL if you are not interested in the information. If you do
not want information about the DACL, both pListOfAccessEntries and cCountOfAccessEntries

must be NULL. If you do not want information about the SACL, both pListOfAuditEntries and
cCountOfAuditEntries must be NULL. Similarly, if you do want DACL or SACL information, both of
the corresponding parameters must be non-NULL.

You must call the LocalFree function to free any buffers returned by the pOwner, pGroup,
pListOfAccessEntries, or pListOfAuditEntries parameters.

The LookupSecurityDescriptorParts function is intended for trusted servers that implement or
expose security on their own objects. The function works with a self-relative security descriptor
suitable for serializing into a stream and storing to disk, as a trusted server might require.See AlsoACE, ACL, EXPLICIT_ACCESS, LocalFree, SECURITY_DESCRIPTOR,
GetExplicitEntriesFromAcl, SID, TRUSTEE

LPtoDP
The LPtoDP function converts logical coordinates into device coordinates. The conversion
depends on the mapping mode of the device context, the settings of the origins and extents for
the window and viewport, and the world transformation.

BOOL LPtoDP(
HDC hdc, // handle of device context
LPPOINT lpPoints, // array of points
int nCount // count of points

);Parametershdc
Identifies the DC.

lpPoints
Points to an array of POINT structures. The x-coordinates and y-coordinates contained in
each of the POINT structures will be transformed.

nCount
Specifies the number of points in the array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThis function fails if the logical coordinates exceed 32 bits, or if the converted device coordinates
exceed 27 bits. In the case of such an overflow, the results for all the points are undefined.See AlsoDPtoLP, POINT

LSEnumProviders
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSEnumProviders function returns a unique string for each installed license system service
provider.

LS_STATUS_CODE LS_API_ENTRY LSEnumProviders(
LS_ULONG Index, // index of the service provider
LS_STR *Buffer // pointer to string identifying the service provider

);ParametersIndex
[in] Specifies the index of the service provider. The first provider has an index of zero, the
second has an index of one, and so forth. This index should be incremented by the caller for
each successive call to LSEnumProviders until it returns the LS_BAD_INDEX status code.

Buffer
[out] Points to a buffer in which the unique null-terminated string identifying the license system
service provider is to be placed. The buffer pointed to by the Buffer parameter must be at
least 255 bytes long. The value of LS_ANY indicates that the current index is not in use, but it
is not the last index to obtain.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_BAD_INDEX An invalid index was specified in
a call to the LSEnumProviders
or the LSQuery function.

LS_BUFFER_TOO_SMALL The buffer that the Buffer
parameter points to is too small
to accommodate the text string
to be returned; or the challenge
data structure is too small to
accommodate the challenge
response.

RemarksThe LSEnumProviders function returns a unique string for each installed provider. The unique
null-terminated string typically identifies the vendor, product, and version of the license system.
This value is the same as the one returned by an appropriate call to the LSQuery function. In a
networked environment, it returns the version of the client, not the server.

An application can enumerate the installed license system service providers by calling
LSEnumProviders successively. The value specified in the Index parameter is passed in and the
calling application should increment it in each call until it returns the LS_BAD_INDEX status code.
This code indicates that the value of the Index parameter is higher than the number of providers
currently installed.See AlsoLSGetMessage, LSQuery

LSFreeHandle
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSFreeHandle function frees the licensing handle context.

LS_VOID LS_API_ENTRY LSFreeHandle(
LS_HANDLE LicenseHandle // handle to the license context

);ParameterLicenseHandle
[in] Specifies the handle to a license context that is no longer valid. This parameter must be a
handle created with the LSRequest function.

Return ValuesNone.RemarksCall the LSFreeHandle function after calling the LSRelease function, or after LSRequest returns
an error.See AlsoLSRelease, LSRequest

LSGetMessage
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSGetMessage function returns the message string associated with a license service
function status code.

LS_STATUS_CODE LS_API_ENTRY LSGetMessage(
LS_HANDLE LicenseHandle, // handle to the license context
LS_STATUS_CODE Value, // any status code returned by a license service function
LS_STR *Buffer, // pointer to buffer returning error message string
LS_ULONG BufferSize // maximum size of buffer string

);ParametersLicenseHandle
[in] Specifies the handle to the license context. This parameter must be a handle created with
the LSRequest function.

Value
[in] Specifies any status code returned by a license service function.

Buffer
[out] Points to a buffer in which a localized error message string will be returned.

BufferSize
[in] Specifies, in bytes, the maximum size of the string returned in the Buffer parameter.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_BAD_HANDLE The handle used on the call
does not describe a valid
licensing system context.

LS_RESOURCES_UNAVAILABLE The request cannot be
completed because of
insufficient resources, such as
memory.

LS_TEXT_UNAVAILABLE A warning occurred while
looking up an error message
string with the LSGetMessage
function.

LS_UNKNOWN_STATUS An unrecognized status code
was passed to the
LSGetMessage function.

LS_BUFFER_TOO_SMALL The buffer that the Buffer
parameter points to is too small
to accommodate the text string
to be returned; or the challenge
data structure is too small to
accommodate the challenge
response.

LS_BAD_ARG One or more of the arguments
is incorrect.

RemarksThe LSGetMessage function returns a string describing a specific error, and possibly a suggested
action to be taken in response to it. If the value specified in the Value parameter is the constant
LS_USE_LAST, then the last error associated with the supplied licensing handle, plus its
associated data, is returned. Otherwise, the function uses the supplied error code.See AlsoLSRequest

LSQuery
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSQuery function returns information about the service provider or the license system
context associated with the specified handle obtained by a call to the LSRequest function.

LS_STATUS_CODE LS_API_ENTRY LSQuery(
LS_HANDLE LicenseHandle, // handle to the license context
LS_ULONG Information, // index that identifies the license information
LS_VOID *InfoBuffer, // pointer to buffer for returning license information
LS_ULONG BufferSize, // maximum size of buffer
LS_ULONG *ActualBufferSize // pointer to actual count of characters returned in buffer

);ParametersLicenseHandle
[in] Specifies the handle to the license context. This parameter must be a handle created with
the LSRequest function.

Information
[in] Specifies the index that identifies the information to be returned.

InfoBuffer
[out] Points to a buffer in which the resulting information is to be placed.

BufferSize
[in] Specifies, in bytes, the maximum size of the buffer pointed to by the InfoBuffer parameter.

ActualBufferSize
[out] Points to an LS_ULONG value that specifies the actual number of characters returned in
the buffer, not including the trailing NULL byte.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_BAD_HANDLE The handle used on the call does
not describe a valid licensing
system context.

LS_RESOURCES_UNAVAILABLEThe request cannot be completed
because of insufficient resources,
such as memory.

LS_BAD_INDEX An invalid index was specified in a
call to the LSEnumProviders or
the LSQuery function.

LS_BUFFER_TOO_SMALL The buffer that the Buffer
parameter points to is too small to
accommodate the text string to be
returned; or the challenge data
structure is too small to
accommodate the challenge
response.

LS_BAD_ARG One or more of the arguments is
incorrect.

RemarksThe LSQuery function is used to obtain information about the license obtained from a call to the
LSRequest function. For example, an application can determine the license type (demo,
concurrent, personal, and so forth) and time restrictions.

The buffer should be large enough to accommodate the expected data. If the buffer is too small,
then the status code LS_BUFFER_TOO_SMALL is returned and only the number of bytes
specified in the parameter BufferSize is returned.See AlsoLSEnumProviders, LSGetMessage, LSRequest

LSRelease
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSRelease function requests that the license system release the licensing resources
associated with the license context identified by the LicenseHandle parameter.

LS_STATUS_CODE LS_API_ENTRY LSRelease(
LS_HANDLE LicenseHandle, // handle to the license context
LS_ULONG TotUnitsConsumed, // units consumed in this handle context
LS_STR *LogComment // pointer to optional comment associated with the request

);ParametersLicenseHandle
[in] Specifies the handle to the license context. This parameter must be a handle created with
the LSRequest function.

TotUnitsConsumed
[in] Specifies the total number of units consumed in this handle context since the initial call to
the LSRequest function. You can specify this license policy attribute within the application. A
value of LS_DEFAULT_UNITS indicates that the license system should determine the
appropriate value using its own license policy mechanisms.

LogComment
[in] Points to an optional string indicating a comment that will be associated with the request.
The license system can log the comment if logging is supported and enabled. If an error is
returned, the license system can log both the error and the comment, but this is not
guaranteed. If you do not specify a string, the value must be LS_NULL.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_BAD_HANDLE The handle used on the call
does not describe a valid
licensing system context.

LS_INSUFFICIENT_UNITS The licensing system cannot
locate enough available
licensing resources to
complete the request.

LS_NETWORK_UNAVAILABLE The network is unavailable.
LS_BAD_ARG One or more of the arguments

is incorrect.
RemarksUse the LSRelease function to release licensing resources associated with the license context

identified by the LicenseHandle parameter. If a policy that consumes licenses is in effect, and if
you choose to implement such a license policy in the application, then you can pass the license
units to be consumed in the TotUnitsConsumed parameter.

The LSRelease function does not free the license handle context. See the reference topic for
LSFreeHandle.See AlsoLSFreeHandle, LSGetMessage, LSRequest

LSRequest
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSRequest function asks that the license system grant the licensing resources so the calling
application can execute.

LS_STATUS_CODE LS_API_ENTRY LSRequest(
LS_STR *LicenseSystem, // pointer to string identifying the license system
LS_STR *PublisherName, // pointer to publisher of product requesting licensing resources
LS_STR *ProductName, // pointer to name of product requesting licensing resources
LS_STR *Version, // pointer to version number of product requesting licensing resources
LS_ULONG TotUnitsReserved, // units required to run the application
LS_STR *LogComment, // pointer to optional comment associated with the request
LS_CHALLENGE *Challenge, // pointer to a challenge structure
LS_ULONG *TotUnitsGranted, // pointer to total number of units granted
LS_HANDLE *LicenseHandle // pointer to handle to the license context

);ParametersLicenseSystem
[in] Points to a string that uniquely identifies the particular license system. You can obtain this
string by using the LSEnumProviders function. If the constant LS_ANY is specified, all
license system providers will be searched for a license match.

PublisherName
[in] Points to a string containing the name of the publisher of the software product requesting
licensing resources. The first 32 characters of the string must be unique. It is recommended
that a company name and trademark be used. This string cannot be null, nor can it be
LS_ANY.

ProductName
[in] Points to a string containing the name of the software product requesting licensing
resources. The first 32 characters of the string must be unique within the PublisherName
domain. This string cannot be null, nor can it be LS_ANY.

Version
[in] Points to a string containing the version number of the product. The first 12 characters of
the string must be unique within the PublisherName domain. This string cannot be null, nor
can it be LS_ANY.

TotUnitsReserved
[in] Specifies the number of units required to run the application. The software publisher may
choose to specify this policy attribute within the application. The recommended value of
LS_DEFAULT_UNITS allows the license system to determine the proper value using
information provided by the license system or the license itself. The license system verifies
that the requested number of units exist and it may reserve those units, but no units are
actually consumed at this time. The number of units available is returned in the
TotUnitsGranted parameter.

LogComment
[in] Points to an optional string indicating a comment that will be associated with the request.
The license system can log the comment if logging is supported and enabled. If an error is
returned, the license system can log both the error and the comment, but this is not
guaranteed. If you do not specify a string, the value must be LS_NULL.

Challenge
[in/out] Points to a challenge structure. The challenge response will also be returned in this
structure.

TotUnitsGranted
[out] Points to an LS_ULONG value in which the total number of units granted is returned. The
following table describes the TotUnitsGranted return value, given the TotUnitsReserved
parameter input value, and the status code returned:

TotUnitsReserved
Status code returned LS_DEFAULT_UNITSOther (specific

count)
LS_SUCCESS (A) (C)
LS_INSUFFICIENT_UNITS (B) (D)

Other errors (E) (E)

TotUnitsGranted return values:
(A) The default number of units commensurate with the license granted.
(B) The maximum number of units available to the requesting software. This can be less
than the normal default.
(C) The number of units used to grant the request. This value can be greater than or equal
to the actual units requested. For example, the license policy may allow only allow
increments of five units; therefore, a request of seven units would result in a grant of 10
units.
(D) The maximum number of units available to the requesting software. This can be more
or less than the units requested.
(E) Zero is returned.

LicenseHandle
[out] Points to an LS_HANDLE in which a handle to the license context is returned.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_INSUFFICIENT_UNITS The licensing system cannot
locate enough available
licensing resources to
complete the request.

LS_SYSTEM_UNAVAILABLE A licensing system cannot be
found to perform the function
invoked.

LS_AUTHORIZATION_UNAVAILABLE The licensing system has no
licensing resources to
complete the request.

LS_LICENSE_UNAVAILABLE The licensing system has
licensing resources that could
satisfy the request, but they
are not available at the time
of the request.

LS_RESOURCES_UNAVAILABLE The request cannot be
completed because of
insufficient resources, such
as memory.

LS_NETWORK_UNAVAILABLE The network is unavailable.
LS_BAD_ARG One or more of the

arguments is incorrect.
RemarksUse the LSRequest function to request licensing resources to authorize the identified product to

execute. If a valid license is found, the challenge response is computed and LS_SUCCESS is
returned. At minimum, the PublisherName, ProductName, and Version strings are used to identify
a matching license or licenses. Note that an underlying license system service provider may
ascertain additional information for the license request ¾ for example, the current user name,
computer name, and so forth.

If all service providers cannot satisfy a call to the LSRequest function, then LSRequest returns
the handle associated with the last service provider response. Therefore, regardless of whether
valid licensing resources are granted, LSRequest always returns a valid license handle. This
handle must always be released with the LSFreeHandle function when the application has
finished running. If licensing resources are granted, the application must also call LSRelease to
free the licensing resources, before calling LSFreeHandle.

A challenge response is not returned unless the license request completes successfully ¾ that is,
unless it returns a status code of LS_SUCCESS.

If the number of units requested is greater than the number of units available, the license request
is not granted. Upon successful completion, the value returned in the TotUnitsReserved

parameter indicates the number of units granted. This is greater than or equal to the number of
units requested unless LS_DEFAULT_UNITS was specified. In the case of failure, the value
returned in the TotUnitsGranted parameter is zero.See AlsoLS_CHALLENGE, LSEnumProviders, LSFreeHandle, LSGetMessage, LSRelease

LSUpdate
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LSUpdate function updates the synchronization between the licensed application software
and the license system.

LS_STATUS_CODE LS_API_ENTRY LSUpdate(
LS_HANDLE LicenseHandle, // handle to the license context
LS_ULONG TotUnitsConsumed, // units consumed in this handle context
LS_ULONG TotUnitsReserved, // units required to run the application
LS_STR *LogComment, // pointer to optional comment associated with the request
LS_CHALLENGE *Challenge, // pointer to a challenge structure
LS_ULONG *TotUnitsGranted // pointer to total number of units granted

);ParametersLicenseHandle
[in] Specifies the handle to the license context. This parameter must be a handle created with
the LSRequest function.

TotUnitsConsumed
[in] Specifies the total number of units consumed in this handle context since the initial call to
the LSRequest function. You can specify this license policy attribute within the application. A
value of LS_DEFAULT_UNITS indicates that the license system should determine the
appropriate value using its own license policy mechanisms. If an error is returned, no units are
consumed.
If the TotUnitsConsumed exceeds the number of units reserved, the error
LS_INSUFFICIENT_UNITS is returned and the remaining units are consumed.

TotUnitsReserved
[in] Specifies the total number of units to be reserved. If no additional units are required since
the initial call to the LSRequest function or the last call to the LSUpdate function, then this
parameter should be the current total returned in the TotUnitsGranted parameter. The total
reserved includes the units consumed. That is, if an application requests 100 units, and then
consumes 20 units, there are still 100 units reserved but only 80 available for consumption.
If additional units are required, the application must calculate a new total for
TotUnitsReserved. You can specify the constant LS_DEFAULT_UNITS, but this does not
allocate any additional units.
The license system verifies that the requested number of units exist, and it may reserve those
units, but these units are not consumed at this time. This value may be smaller than the
original number requested by LSRequest to indicate that fewer units are needed than
originally anticipated.

LogComment
[in] Points to an optional string indicating a comment that the license system will associate
with the request. The license system can log the comment if logging is supported and
enabled. If an error is returned, the license system can log both the error and the comment,
but this is not guaranteed. If you do not specify a string, the value must be LS_NULL.

Challenge
[in/out] Points to a challenge structure. The challenge response will also be returned in this
structure.

TotUnitsGranted
[out] Points to an LS_ULONG value that returns the total number of units granted since the
initial license request. The following table describes the TotUnitsGranted return value, given
the TotUnitsReserved parameter input value, and the status code returned:

TotUnitsReserved
Status code returned LS_DEFAULT_UNITSOther (specific

count)
LS_SUCCESS (A) (C)
LS_INSUFFICIENT_UNITS (B) (D)
Other errors (E) (E)

TotUnitsGranted return values:

(A) The default number of units commensurate with the license granted.
(B) The maximum number of units available to the requesting software. This can be less
than the normal default.
(C) The number of units used to grant the request. This value can differ from the actual
units requested. For example, the license policy may only allow only increments of five
units; therefore, a request of seven units would result in a grant of 10 units.
(D) The maximum number of units available to the requesting software. This can be more
or less than the units requested.
(E) Zero is returned.

Return ValuesIf the function succeeds, the return value is LS_SUCCESS.

If the function fails, the return value is a status code. For extended error information, call
LSGetMessage to return the status text corresponding to the status code. The LSGetMessage
function may return one of the following status codes:

Value Meaning

LS_BAD_HANDLE The handle used on the call
does not describe a valid
licensing system context.

LS_INSUFFICIENT_UNITS The licensing system cannot
locate enough available
licensing resources to
complete the request.

LS_LICENSE_TERMINATED The licensing system has
determined that the
resources used to satisfy a
previous request are no
longer granted to the calling
software.

LS_AUTHORIZATION_UNAVAILABLE The licensing system has no
licensing resources to
complete the request.

LS_LICENSE_UNAVAILABLE The licensing system has
licensing resources that could
satisfy the request, but they
are not available at the time
of the request.

LS_RESOURCES_UNAVAILABLE The request cannot be
completed because of
insufficient resources, such
as memory.

LS_NETWORK_UNAVAILABLE The network is unavailable.
LS_LICENSE_EXPIRED The license associated with

the current context has
expired. This may be due to a
time-restriction on the
license.

LS_BAD_ARG One or more of the
arguments is incorrect.

RemarksYour application should periodically call the LSUpdate function to verify that the current license is
still valid. The application can use the LSQuery function to determine the proper time interval for
the current licensing context. A guideline of once an hour may be appropriate, with a minimum
interval of 15 minutes. Consult your license system vendor for more information.

The LSUpdate function verifies that the license system context has not changed from the one
expected by the licensed software. The LSUpdate function can determine if the licensing
resources granted to the specified handle are still reserved for this application. In a distributed
license system, an error might indicate a temporary network interruption. It can also determine if
the license system has released the licensing resources granted to the specified handle. An error
indicates the software no longer has authorization to execute in a typical manner.

The call to the LSUpdate function can also indicate that the current licensing context has expired.

For example, in the case of a time-restricted license policy, it returns the warning status
LS_LICENSE_EXPIRED.

If the number of new units requested in the TotUnitsReserved parameter is greater than the
number available, then the update request fails and it returns the error
LS_INSUFFICIENT_UNITS.

If the call completes successfully, the value returned in the TotUnitsGranted parameter indicates
the current total of units granted.

If LSUpdate returns an error, it does not return a challenge response. Application software should
be prepared to handle vendor-specific error conditions if they arise. If any error is returned, a call
to the LSRelease function is still required.See AlsoLS_CHALLENGE, LSGetMessage, LSQuery, LSRelease, LSRequest

lstrcat
The lstrcat function appends one string to another.

LPTSTR lstrcat(
LPTSTR lpString1, // address of buffer for concatenated strings
LPCTSTR lpString2 // address of string to add to string1

);ParameterslpString1
Points to a null-terminated string. The buffer must be large enough to contain both strings.

lpString2
Points to the null-terminated string to be appended to the string specified in the lpString1
parameter.

Return ValuesIf the function succeeds, the return value is a pointer to the buffer.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See Alsolstrcmp, lstrcmpi, lstrcpy, lstrlen

lstrcmp
The lstrcmp function compares two character strings. The comparison is case sensitive.

int lstrcmp(
LPCTSTR lpString1, // address of first string
LPCTSTR lpString2 // address of second string

);ParameterslpString1
Points to the first null-terminated string to be compared.

lpString2
Points to the second null-terminated string to be compared.

Return ValuesIf the function succeeds and the string pointed to by lpString1 is less than the string pointed to by
lpString2, the return value is negative; if the string pointed to by lpString1 is greater than the string
pointed to by lpString2, it is positive. If the strings are equal, the return value is zero.RemarksThe lstrcmp function compares two strings by checking the first characters against each other,
the second characters against each other, and so on until it finds an inequality or reaches the
ends of the strings.

The function returns the difference of the values of the first unequal characters it encounters. For
example, lstrcmp determines that "abcz" is greater than "abcdefg" and returns the difference of z
and d.

The language (locale) selected by the user at setup time, or via the control panel, determines
which string is greater (or whether the strings are the same). If no language (locale) is selected,
Windows performs the comparison by using default values. In the Windows United States
language functions, uppercase characters have lower values than lowercase characters.

With a double-byte character set (DBCS) version of Windows, this function can compare two
DBCS strings.

The Win32 lstrcmp function uses a word sort, rather than a string sort. A word sort treats hyphens
and apostrophes differently than it treats other symbols that are not alphanumeric, in order to
ensure that words such as "coop" and "co-op" stay together within a sorted list. Note that in 16-bit
versions of Windows, lstrcmp uses a string sort. For a detailed discussion of word sorts and
string sorts, see the Remarks section of the reference page for the CompareString function .See AlsoCompareString, lstrcat, lstrcmpi, lstrcpy, lstrlen

lstrcmpi
The lstrcmpi function compares two character strings. The comparison is not case sensitive.

int lstrcmpi(
LPCTSTR lpString1, // address of first string
LPCTSTR lpString2 // address of second string

);ParameterslpString1
Points to the first null-terminated string to be compared.

lpString2
Points to the second null-terminated string to be compared.

Return ValuesIf the function succeeds and the string pointed to by lpString1 is less than the string pointed to by
lpString2, the return value is negative; if the string pointed to by lpString1 is greater than the string
pointed to by lpString2, it is positive. If the strings are equal, the return value is zero.RemarksThe lstrcmpi function compares two strings by checking the first characters against each other,
the second characters against each other, and so on until it finds an inequality or reaches the
ends of the strings.

The function returns the difference of the values of the first unequal characters it encounters. For
example, lstrcmpi determines that "abcz" is greater than "abcdefg" and returns the difference of z
and d.

The language (locale) selected by the user at setup time, or by using the control panel,
determines which string is greater (or whether the strings are the same). If no language (locale) is
selected, Windows performs the comparison by using default values.

For some locales, the lstrcmpi function may be insufficient. If this occurs, use CompareString to
ensure proper comparison. For example, in Japan call CompareString with the IGNORE_CASE,
IGNORE_KANATYPE, and IGNORE_WIDTH values to achieve the most appropriate non-exact
string comparison. The IGNORE_KANATYPE and IGNORE_WIDTH values are ignored in non-
Asian locales, so you can set these values for all locales and be guaranteed to have a culturally
correct "insensitive" sorting regardless of the locale. Note that specifying these values slows
performance, so use them only when necessary.

With a double-byte character set (DBCS) version of Windows, this function can compare two
DBCS strings.

The Win32 lstrcmpi function uses a word sort, rather than a string sort. A word sort treats
hyphens and apostrophes differently than it treats other symbols that are not alphanumeric, in
order to ensure that words such as "coop" and "co-op" stay together within a sorted list. Note that
in 16-bit versions of Windows, lstrcmpi uses a string sort. For a detailed discussion of word sorts
and string sorts, see the Remarks section of the reference page for the CompareString function .See AlsoCompareString, lstrcat, lstrcmp, lstrcpy, lstrlen

lstrcpy
The lstrcpy function copies a string to a buffer.

LPTSTR lstrcpy(
LPTSTR lpString1, // address of buffer
LPCTSTR lpString2 // address of string to copy

);ParameterslpString1
Points to a buffer to receive the contents of the string pointed to by the lpString2 parameter.
The buffer must be large enough to contain the string, including the terminating null character.

lpString2
Points to the null-terminated string to be copied.

Return ValuesIf the function succeeds, the return value is a pointer to the buffer.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWith a double-byte character set (DBCS) version of Windows, this function can be used to copy a
DBCS string.See Alsolstrcat, lstrcmp, lstrcmpi, lstrlen

lstrcpyn
The lstrcpyn function copies a specified number of characters from a source string into a buffer.

LPTSTR lstrcpyn(
LPTSTR lpString1, // address of target buffer
LPCTSTR lpString2, // address of source string
int iMaxLength // number of bytes or characters to copy

);ParameterslpString1
Points to a buffer into which the function copies characters. The buffer must be large enough
to contain the number of bytes (ANSI version) or characters (Unicode version) specified by
iMaxLength, including room for a terminating null character.

lpString2
Points to a null-terminated string from which the function copies characters.

iMaxLength
Specifies the number bytes (ANSI version) or characters (Unicode version) to be copied from
the string pointed to by lpString2 into the buffer pointed to by lpString1, including a terminating
null character.

Return ValuesIf the function succeeds, the return value is a pointer to the buffer.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksNote that the buffer pointed to by lpString1 must be large enough to include a terminating null
character, and the string length value specified by iMaxLength includes room for a terminating null
character. Thus, the following codeTCHAR chBuffer[512] ;

lstrcpyn(chBuffer, "abcdefghijklmnop", 4) ;... copies the string "abc", followed by a terminating null character, to chBuffer.See Alsolstrcat, lstrcmp, lstrcmpi, lstrcpy, lstrlen

lstrlen
The lstrlen function returns the length in bytes (ANSI version) or characters (Unicode version) of
the specified string (not including the terminating null character).

int lstrlen(
LPCTSTR lpString // address of string to count

);ParameterslpString
Points to a null-terminated string.

Return ValuesIf the function succeeds, the return value specifies the length of the string in bytes (ANSI version)
or characters (Unicode version).See Alsolstrcat, lstrcmp, lstrcmpi, lstrcpy

LZClose
The LZClose function closes a file that was opened by using the LZOpenFile function.

VOID LZClose(
INT hFile // LZ file handle identifying file to be closed

);ParametershFile
Identifies the source file to be closed.

Return ValuesThis function does not return a value.RemarksThe handle identifying the file must be retrieved by calling the LZOpenFile function. If the handle
is retrieved by calling the CreateFile or OpenFile function, an error occurs.

If the file is compressed by using the Microsoft File Compression Utility (COMPRESS.EXE) and
opened by using LZOpenFile, LZClose frees any global heap space that was allocated to expand
the file.See AlsoCreateFile, LZOpenFile, OpenFile

LZCopy
The LZCopy function copies a source file to a destination file. If the source file is compressed with
the Microsoft File Compression Utility (COMPRESS.EXE), this function creates a decompressed
destination file. If the source file is not compressed, this function duplicates the original file.

LONG LZCopy(
INT hfSource, // LZ file handle identifying source file
INT hfDest // LZ file handle identifying destination file

);ParametershfSource
Identifies the source file.

hfDest
Identifies the destination file.

Return ValuesIf the function succeeds, the return value specifies the size, in bytes, of the destination file.

If the function fails, the return value is an LZERROR_* code. These codes have values less than
zero. Note that LZCopy calls neither SetLastError nor SetLastErrorEx; thus, its failure does not
affect a thread's last-error code.

Here is a list of the LZERROR_* codes that LZCopy can return upon failure:

Value Meaning

LZERROR_BADINHANDLE The handle identifying the source file is
not valid. The file cannot be read.

LZERROR_BADOUTHANDLEThe handle identifying the destination
file is not valid. The file cannot be
written.

LZERROR_GLOBALLOC The maximum number of open
compressed files has been exceeded or
local memory cannot be allocated.

LZERROR_GLOBLOCK The LZ file handle cannot be locked
down.

LZERROR_READ The source file format is not valid.
RemarksThe handles identifying the source and destination files must be retrieved by calling the LZInit or

LZOpenFile function.

The preferred function to use for copying files is LZCopy. The CopyLZFile function is provided for
compatibility with 16-bit versions of Windows.

If the function succeeds, the file identified by the hfDest parameter is always uncompressed.See AlsoCopyLZFile, LZInit, LZOpenFile

LZDone
The LZDone function is obsolete. It is provided only for compatibility with 16-bit versions of
Windows. Win32-based applications should use the LZOpenFile function.

LZInit
The LZInit function allocates memory for the internal data structures required to decompress files,
and then creates and initializes them.

INT LZInit(
INT hfSource // handle of source file

);ParametershfSource
Identifies the source file.

Return ValuesIf the function succeeds, the return value is a new LZ file handle.

If the function fails, the return value is an LZERROR_* code. These codes have values less than
zero. Note that LZInit calls neither SetLastError nor SetLastErrorEx; thus, its failure does not
affect a thread's last-error code.

Here is a list of the LZERROR_* codes that LZInit can return upon failure:

Value Meaning

LZERROR_BADINHANDLEThe handle identifying the source file is
not valid. The file cannot be read.

LZERROR_GLOBALLOC The maximum number of open
compressed files has been exceeded or
local memory cannot be allocated.

LZERROR_GLOBLOCK The LZ file handle cannot be locked
down.

LZERROR_UNKNOWNALGThe file is compressed with an
unrecognized compression algorithm.

RemarksA maximum of 16 compressed files can be open at any given time. Similarly, a maximum of 16
uncompressed files can be open at any given time. An application should be careful to close the
handle returned by LZInit when it is done using the file; otherwise, the application can
inadvertently hit the 16-file limit.

The handle this function returns is compatible only with the functions in LZEXPAND.DLL; it should
not be used for other file operations.

LZOpenFile
The LZOpenFile function creates, opens, reopens, or deletes the specified file.

INT LZOpenFile(
LPTSTR lpFileName, // address of name of file to be opened
LPOFSTRUCT lpReOpenBuf, // address of open file structure
WORD wStyle // action to take

);ParameterslpFileName
Points to a string that specifies the name of a file.

lpReOpenBuf
Points to the OFSTRUCT structure that is to receive information about the file when the file is
first opened. The structure can be used in subsequent calls to the LZOpenFile function to
refer to the open file.
The szPathName member of this structure contains characters from the original equipment
manufacturer (OEM) character set.

wStyle
Specifies the action to take. This parameter can be a combination of the following values:

Value Meaning
OF_CANCEL Ignored. In the Win32-based

application programming interface (API)
, the OF_PROMPT style produces a
dialog box containing a Cancel button.

OF_CREATE Directs LZOpenFile to create a new
file. If the file already exists, it is
truncated to zero length.

OF_DELETE Deletes the file.
OF_EXIST Opens the file and then closes it to test

for a file's existence.
OF_PARSE Fills the OFSTRUCT structure but

carries out no other action.
OF_PROMPT Displays a dialog box if the requested

file does not exist. The dialog box
informs the user that Windows cannot
find the file, and it contains Retry and
Cancel buttons. Choosing the Cancel
button directs LZOpenFile to return a
"file not found" error message.

OF_READ Opens the file for reading only.
OF_READWRITE Opens the file for reading and writing.
OF_REOPEN Opens the file using information in the

reopen buffer.
OF_SHARE_DENY_NONE Opens the file without denying other

processes read or write access to the
file. LZOpenFile fails if the file has
been opened in compatibility mode by
any other process.

OF_SHARE_DENY_READ Opens the file and denies other
processes read access to the file.
LZOpenFile fails if the file has been
opened in compatibility mode or has
been opened for read access by any
other process.

OF_SHARE_DENY_WRITE Opens the file and denies other
processes write access to the file.
LZOpenFile fails if the file has been
opened in compatibility mode or has
been opened for write access by any

other process.
OF_SHARE_EXCLUSIVE Opens the file in exclusive mode,

denying other processes both read and
write access to the file. LZOpenFile
fails if the file has been opened in any
other mode for read or write access,
even by the current process.

OF_WRITE Opens the file for writing only.
Return ValuesIf the function succeeds and the value specified by the wStyle parameter is not OF_READ, the

return value is a handle identifying the file. If the file is compressed and opened with wStyle set to
OF_READ, the return value is a special file handle.

If the function fails, the return value is an LZERROR_* code. These codes have values less than
zero. Note that LZOpenFile calls neither SetLastError nor SetLastErrorEx; thus, its failure does
not affect a thread's last-error code.

Here is a list of the LZERROR_* codes that LZOpenFile can return upon failure:

Value Meaning

LZERROR_BADINHANDLEThe handle identifying the source file is
not valid. The file cannot be read.

LZERROR_GLOBALLOC The maximum number of open
compressed files has been exceeded or
local memory cannot be allocated.

RemarksIf the wStyle parameter is the OF_READ flag (or OF_READ and any of the OF_SHARE_ flags)
and the file is compressed, LZOpenFile calls the LZInit function, which performs the required
initialization for the decompression operations.

The handle this function returns is compatible only with the functions in LZEXPAND.DLL; it should
not be used for other file operations.See AlsoLZClose, LZInit, LZRead

LZRead
The LZRead function reads (at most) the specified number of bytes from a file and copies them
into a buffer.

INT LZRead(
INT hFile, // LZ file handle of file
LPSTR lpBuffer, // address of buffer for bytes
INT cbRead // count of bytes

);ParametershFile
Identifies the source file.

lpBuffer
Points to a buffer that receives the bytes read from the file.

cbRead
Specifies the count of bytes to be read.

Return ValuesIf the function succeeds, the return value specifies the number of bytes read.

If the function fails, the return value is an LZERROR_* code. These codes have values less than
zero. Note that LZRead calls neither SetLastError nor SetLastErrorEx; thus, its failure does not
affect a thread's last-error code.

Here is a list of the LZERROR_* codes that LZRead can return upon failure:

Value Meaning

LZERROR_BADINHANDLE The handle identifying the source file is
not valid. The file cannot be read.

LZERROR_BADOUTHANDLEThe handle identifying the destination
file is not valid. The file cannot be
written.

LZERROR_BADVALUE One of the input parameters is not valid.
LZERROR_GLOBALLOC The maximum number of open

compressed files has been exceeded or
local memory cannot be allocated.

LZERROR_GLOBLOCK The LZ file handle cannot be locked
down.

LZERROR_READ The source file format is not valid.
LZERROR_WRITE There is insufficient space for the output

file.
RemarksThe handle identifying the file must be retrieved by calling either the LZInit or LZOpenFile

function.

If the file is compressed, LZRead emulates the _lread function on an expanded image of the file
and copies the bytes of data into the specified buffer.

Applications must call the LZOpenFile, LZSeek, and LZRead functions instead of the OpenFile,
_llseek, and _lread functions.See AlsoLZInit, LZOpenFile, LZSeek

LZSeek
The LZSeek function moves a file pointer a number of bytes from a starting position.

LONG LZSeek(
INT hFile, // handle of source file
LONG lOffset, // number of bytes to move
INT iOrigin // starting position

);ParametershFile
Identifies the source file.

lOffset
Specifies the number of bytes by which to move the file pointer.

iOrigin
Specifies the starting position of the pointer. This parameter must be one of the following
values:

Value Meaning
0 Moves the file pointer lOffset bytes from the beginning of

the file.
1 Moves the file pointer lOffset bytes from the current

position.
2 Moves the file pointer lOffset bytes from the end of the

file.
Return ValuesIf the function succeeds, the return value specifies the offset from the beginning of the file to the

new pointer position.

If the function fails, the return value is an LZERROR_* code. These codes have values less than
zero. Note that LZSeek calls neither SetLastError nor SetLastErrorEx; thus, its failure does not
affect a thread's last-error code.

Upon failure, LZSeek can return the following LZERROR_* codes:

Value Meaning

LZERROR_BADINHANDLEThe handle identifying the source file is
not valid. The file cannot be read.

LZERROR_BADVALUE One of the parameters is outside the
range of acceptable values.

LZERROR_GLOBLOCK The LZ file handle cannot be locked
down.

RemarksThe handle identified by the hFile parameter must be retrieved by calling either the LZInit or
LZOpenFile function.

If the file is compressed, LZSeek emulates the _llseek function on an expanded image of the file.See AlsoLZInit, LZOpenFile

LZStart
The LZStart function is obsolete. It is provided only for compatibility with 16-bit versions of
Windows. Win32-based applications should use the LZCopy function.

MakeAbsoluteSD
The MakeAbsoluteSD function creates a security descriptor in absolute format by using a
security descriptor in self-relative format as a template.

BOOL MakeAbsoluteSD(
PSECURITY_DESCRIPTOR pSelfRelativeSecurityDescriptor, // address self-relative SD
PSECURITY_DESCRIPTOR pAbsoluteSecurityDescriptor, // address of absolute SD
LPDWORD lpdwAbsoluteSecurityDescriptorSize, // address of size of absolute SD
PACL pDacl, // address of discretionary ACL
LPDWORD lpdwDaclSize, // address of size of discretionary ACL
PACL pSacl, // address of system ACL
LPDWORD lpdwSaclSize, // address of size of system ACL
PSID pOwner, // address of owner SID
LPDWORD lpdwOwnerSize, // address of size of owner SID
PSID pPrimaryGroup, // address of primary-group SID
LPDWORD lpdwPrimaryGroupSize // address of size of group SID

);ParameterspSelfRelativeSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure in self-relative format. The function creates
an absolute-format version of this security descriptor without modifying the original security
descriptor.

pAbsoluteSecurityDescriptor
Points to a buffer that the function fills with the main body of an absolute-format security
descriptor. This information is formatted as a SECURITY_DESCRIPTOR structure.

lpdwAbsoluteSecurityDescriptorSize
Points to a variable specifying the size of the buffer pointed to by the
pAbsoluteSecurityDescriptor parameter. If the buffer is not large enough for the security
descriptor, the function fails and sets this variable to the minimum required size.

pDacl
Points to a buffer the function fills with the discretionary access-control list (ACL) of the
absolute-format security descriptor. The main body of the absolute-format security descriptor
references this pointer.

lpdwDaclSize
Points to a variable specifying the size of the buffer pointed to by the pDacl parameter. If the
buffer is not large enough for the ACL, the function fails and sets this variable to the minimum
required size.

pSacl
Points to a buffer the function fills with the system ACL of the absolute-format security
descriptor. The main body of the absolute-format security descriptor references this pointer.

lpdwSaclSize
Points to a variable specifying the size of the buffer pointed to by the pSacl parameter. If the
buffer is not large enough for the ACL, the function fails and sets this variable to the minimum
required size.

pOwner
Points to a buffer the function fills with the security identifier (SID) of the owner of the
absolute-format security descriptor. The main body of the absolute-format security descriptor
references this pointer.

lpdwOwnerSize
Points to a variable specifying the size of the buffer pointed to by the pOwner parameter. If the
buffer is not large enough for the SID, the function fails and sets this variable to the minimum
required size.

pPrimaryGroup
Points to a buffer the function fills with the SID of the absolute-format security descriptor's
primary group. The main body of the absolute-format security descriptor references this
pointer.

lpdwPrimaryGroupSize
Points to a variable specifying the size of the buffer pointed to by the pPrimaryGroup
parameter. If the buffer is not large enough for the SID, the function fails and sets this variable
to the minimum required size.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA security descriptor in absolute format contains pointers to the information it contains, rather than
the information itself. A security descriptor in self-relative format contains the information in a
contiguous block of memory. In a self-relative security descriptor, a SECURITY_DESCRIPTOR
structure always starts the information, but the security descriptor's other components can follow
the structure in any order. Instead of using memory addresses, the components of the self-
relative security descriptor are identified by offsets from the beginning of the security descriptor.
This format is useful when an security descriptor must be stored on a floppy disk or transmitted by
means of a communications protocol.

A server that copies secured objects to various media can use the MakeAbsoluteSD function to
create an absolute security descriptor from a self-relative security descriptor and the
MakeSelfRelativeSD function to create a self-relative security descriptor from an absolute
security descriptor.See AlsoMakeSelfRelativeSD, SECURITY_DESCRIPTOR

MakeDragList
The MakeDragList function changes the specified single-selection list box to a drag list box.

BOOL MakeDragList(
HWND hLB

);ParametershLB
Handle to the single-selection list box.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

MakeProcInstance
The MakeProcInstance function is obsolete. Win32 functions can be called directly.

This function is provided only for compatibility with 16-bit versions of Windows. Win32-based
applications should not use this function.

MakeSelfRelativeSD
The MakeSelfRelativeSD function creates a security descriptor in self-relative format by using a
security descriptor in absolute format as a template.

BOOL MakeSelfRelativeSD(
PSECURITY_DESCRIPTOR pAbsoluteSecurityDescriptor, // address of absolute SD
PSECURITY_DESCRIPTOR pSelfRelativeSecurityDescriptor, // address self-relative SD
LPDWORD lpdwBufferLength // address of SD size

);ParameterspAbsoluteSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure in absolute format. The function creates a
version of this security descriptor in self-relative format without modifying the original.

pSelfRelativeSecurityDescriptor
Points to a buffer the function fills with a security descriptor in self-relative format.

lpdwBufferLength
Points to a variable specifying the size of the buffer pointed to by the
pSelfRelativeSecurityDescriptor parameter. If the buffer is not large enough for the security
descriptor, the function fails and sets this variable to the minimum required size.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA security descriptor in absolute format contains pointers to the information it contains, rather than
containing the information itself. A security descriptor in self-relative format contains the
information in a contiguous block of memory. In a self-relative security descriptor, a
SECURITY_DESCRIPTOR structure always starts the information, but the security descriptor's
other components can follow the structure in any order. Instead of using memory addresses, the
components of the security descriptor are identified by offsets from the beginning of the security
descriptor. This format is useful when an security descriptor must be stored on a floppy disk or
transmitted by means of a communications protocol.

A server that copies secured objects to various media can use the MakeSelfRelativeSD function
to create a self-relative security descriptor from an absolute security descriptor and the
MakeAbsoluteSD function to create an absolute security descriptor from a self-relative security
descriptor.See AlsoMakeAbsoluteSD, SECURITY_DESCRIPTOR

MapDialogRect
The MapDialogRect function converts (maps) the specified dialog box units to screen units
(pixels). The function replaces the coordinates in the specified RECT structure with the converted
coordinates, which allows the structure to be used to create a dialog box or position a control
within a dialog box.

BOOL MapDialogRect(
HWND hDlg, // handle of dialog box
LPRECT lpRect // address of structure with rectangle

);ParametershDlg
Identifies a dialog box. This function accepts only handles for dialog boxes created by one of
the dialog box creation functions; handles for other windows are not valid.

lpRect
Points to a RECT structure that contains the dialog box coordinates to be converted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe MapDialogRect function assumes that the initial coordinates in the RECT structure represent
dialog box units. To convert these coordinates from dialog box units to pixels, the function
retrieves the current horizontal and vertical base units for the dialog box, then applies the
following formulas:left = (left * baseunitX) / 4
right = (right * baseunitX) / 4
top = (top * baseunitY) / 8
bottom = (bottom * baseunitY) / 8In most cases, the base units for the dialog box are the same as those retrieved by using the

GetDialogBaseUnits function. If the dialog box template has the DS_SETFONT style, however,
the base units are the average width and height, in pixels, of the characters in the font given by
the template.See AlsoCreateDialog, CreateDialogIndirect, CreateDialogIndirectParam, CreateDialogParam,
DialogBox, DialogBoxIndirect, DialogBoxIndirectParam, DialogBoxParam,
GetDialogBaseUnits, RECT

MapGenericMask
The MapGenericMask function maps the generic access rights in an access mask to specific and
standard access rights. The function applies a mapping supplied in a GENERIC_MAPPING
structure.

VOID MapGenericMask(
PDWORD AccessMask, // address of access mask
PGENERIC_MAPPING GenericMapping // address of GENERIC_MAPPING structure

);ParametersAccessMask
Points to an access mask receiving the specific and standard rights mapped from generic
access rights.

GenericMapping
Points to a GENERIC_MAPPING structure specifying a mapping of generic access types to
specific and standard access types.

Return ValuesThis function does not return a value.RemarksAfter calling the MapGenericMask function, the access mask pointed to by the AccessMask
parameter has none of its generic bits (GenericRead, GenericWrite, GenericExecute, or
GenericAll) or undefined bits set, although it can have other bits set. If bits other than the generic
bits are provided on input, this function does not clear them.See AlsoAccessCheck, AreAllAccessesGranted, AreAnyAccessesGranted, GENERIC_MAPPING

MapViewOfFile
The MapViewOfFile function maps a view of a file into the address space of the calling process.

LPVOID MapViewOfFile(
HANDLE hFileMappingObject, // file-mapping object to map into address space
DWORD dwDesiredAccess, // access mode
DWORD dwFileOffsetHigh, // high-order 32 bits of file offset
DWORD dwFileOffsetLow, // low-order 32 bits of file offset
DWORD dwNumberOfBytesToMap // number of bytes to map

);ParametershFileMappingObject
Identifies an open handle of a file-mapping object. The CreateFileMapping and
OpenFileMapping functions return this handle.

dwDesiredAccess
Specifies the type of access to the file view and, therefore, the protection of the pages
mapped by the file. This parameter can be one of the following values:

Value Meaning
FILE_MAP_WRITE Read-write access. The

hFileMappingObject parameter must
have been created with
PAGE_READWRITE protection. A read-
write view of the file is mapped.

FILE_MAP_READ Read-only access. The
hFileMappingObject parameter must
have been created with
PAGE_READWRITE or
PAGE_READONLY protection. A read-
only view of the file is mapped.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.
FILE_MAP_COPY Copy on write access. If you create the

map with PAGE_WRITECOPY and the
view with FILE_MAP_COPY, you will
receive a view to file. If you write to it,
the pages are automatically swappable
and the modifications you make will not
go to the original data file.
Windows 95: You must pass
PAGE_WRITECOPY to
CreateFileMapping; otherwise, an error
will be returned.
If you share the mapping between
multiple processes using
DuplicateHandle or OpenFileMapping
and one process writes to a view, the
modification is propagated to the other
process. The original file does not
change.
Windows NT: There is no restriction as
to how the hFileMappingObject
parameter must be created. Copy on
write is valid for any type of view.
If you share the mapping between
multiple processes using
DuplicateHandle or OpenFileMapping
and one process writes to a view, the
modification is not propagated to the
other process. The original file does not
change.

dwFileOffsetHigh
Specifies the high-order 32 bits of the file offset where mapping is to begin.

dwFileOffsetLow
Specifies the low-order 32 bits of the file offset where mapping is to begin. The combination of
the high and low offsets must specify an offset within the file that matches the system's
memory allocation granularity, or the function fails. That is, the offset must be a multiple of the
allocation granularity. Use the GetSystemInfo function, which fills in the members of a
SYSTEM_INFO structure, to obtain the system's memory allocation granularity.

dwNumberOfBytesToMap
Specifies the number of bytes of the file to map. If dwNumberOfBytesToMap is zero, the
entire file is mapped.

Return ValuesIf the function succeeds, the return value is the starting address of the mapped view.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksMapping a file makes the specified portion of the file visible in the address space of the calling
process.

Multiple views of a file (or a file-mapping object and its mapped file) are said to be "coherent" if
they contain identical data at a specified time. This occurs if the file views are derived from the
same file-mapping object. A process can duplicate a file-mapping object handle into another
process by using the DuplicateHandle function, or another process can open a file-mapping
object by name by using the OpenFileMapping function.

A mapped view of a file is not guaranteed to be coherent with a file being accessed by the
ReadFile or WriteFile function.

Windows 95: MapViewOfFile may require the swapfile to grow. If the swapfile cannot grow, the
function fails.

Windows NT: If the file-mapping object is backed by the paging file (handle = 0xFFFFFFFF), the
paging file must be large enough to hold the entire mapping. If it is not, MapViewOfFile fails.See AlsoCreateFileMapping, DuplicateHandle, GetSystemInfo, MapViewOfFileEx, OpenFileMapping,
UnmapViewOfFile, SYSTEM_INFO

MapViewOfFileEx
The MapViewOfFileEx function maps a view of a file into the address space of the calling
process. This extended function allows the calling process to specify a suggested memory
address for the mapped view.

This function is available for Win32-based applications only.

LPVOID MapViewOfFileEx(
HANDLE hFileMappingObject, // file-mapping object to map into address space
DWORD dwDesiredAccess, // access mode
DWORD dwFileOffsetHigh, // high-order 32 bits of file offset
DWORD dwFileOffsetLow, // low-order 32 bits of file offset
DWORD dwNumberOfBytesToMap, // number of bytes to map
LPVOID lpBaseAddress // suggested starting address for mapped view

);ParametershFileMappingObject
Identifies an open handle to a file-mapping object. The CreateFileMapping and
OpenFileMapping functions return this handle.

dwDesiredAccess
Specifies the type of access to the file-mapping object and, therefore, the page protection of
the pages mapped by the file. This parameter can be one of the following values:

Value Meaning
FILE_MAP_WRITE Read-and-write access. The

hFileMappingObject parameter must
have been created with
PAGE_READWRITE protection. A read-
write view of the file is mapped.

FILE_MAP_READ Read-only access. The
hFileMappingObject parameter must
have been created with
PAGE_READWRITE or
PAGE_READONLY protection. A read-
only view of the file is mapped.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.
FILE_MAP_COPY Copy on write access. If you create the

map with PAGE_WRITECOPY and the
view with FILE_MAP_COPY, you will
receive a view to the file. If you write to
it, the pages are automatically
swappable and the modifications you
make will not go to the original data file.
Windows 95: You must pass
PAGE_WRITECOPY to
CreateFileMapping; otherwise, an error
will be returned.
If you share the mapping between
multiple processes using
DuplicateHandle or OpenFileMapping
and one process writes to a view, the
modification is propagated to the other
process. The original file does not
change.
Windows NT: There is no restriction as
to how the hFileMappingObject
parameter must be created. Copy on
write is valid for any type of view.
If you share the mapping between
multiple processes using
DuplicateHandle or OpenFileMapping
and one process writes to a view, the

modification is not propagated to the
other process. The original file does not
change.

dwFileOffsetHigh
Specifies the high-order 32 bits of the file offset where mapping is to begin.

dwFileOffsetLow
Specifies the low-order 32 bits of the file offset where mapping is to begin. The combination of
the high and low offsets must specify an offset within the file that matches the system's
memory allocation granularity, or the function fails. That is, the offset must be a multiple of the
allocation granularity. Use the GetSystemInfo function, which fills in the members of a
SYSTEM_INFO structure, to obtain the system's memory allocation granularity.

dwNumberOfBytesToMap
Specifies the number of bytes of the file to map. If dwNumberOfBytesToMap is zero, the
entire file is mapped.

lpBaseAddress
Points to the memory address in the calling process's address space where mapping should
begin. This must be a multiple of the system's memory allocation granularity, or the function
fails. Use the GetSystemInfo function, which fills in the members of a SYSTEM_INFO
structure, to obtain the system's memory allocation granularity. If there is not enough address
space at the specified address, the function fails.
If lpBaseAddress is NULL, the operating system chooses the mapping address. In this case,
this function is equivalent to the MapViewOfFile function.

Return ValuesIf the function succeeds, the return value is the starting address of the mapped view.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksMapping a file makes the specified portion of the file visible in the address space of the calling
process.

If a suggested mapping address is supplied, the file is mapped at the specified address (rounded
down to the nearest 64K boundary) if there is enough address space at the specified address. If
there is not, the function fails.

Typically, the suggested address is used to specify that a file should be mapped at the same
address in multiple processes. This requires the region of address space to be available in all
involved processes. No other memory allocation, including use of the VirtualAlloc function to
reserve memory, can take place in the region used for mapping.

Windows 95: If the lpBaseAddress parameter specifies a base offset, the function succeeds only
if the same memory region is available for the memory mapped file in all other 32-bit processes.

Windows NT: If the lpBaseAddress parameter specifies a base offset, the function succeeds if
the given memory region is not already in use by the calling process. the system does not
guarantee that the same memory region is available for the memory mapped file in other 32-bit
processes.

Multiple views of a file (or a file-mapping object and its mapped file) are said to be "coherent" if
they contain identical data at a specified time. This occurs if the file views are derived from the
same file-mapping object. A process can duplicate a file-mapping object handle into another
process by using the DuplicateHandle function, or another process can open a file-mapping
object by name by using the OpenFileMapping function.

A mapped view of a file is not guaranteed to be coherent with a file being accessed by the
ReadFile or WriteFile function.See AlsoCreateFileMapping, DuplicateHandle, GetSystemInfo, MapViewOfFile, OpenFileMapping,
ReadFile, UnmapViewOfFile, SYSTEM_INFO, VirtualAlloc, WriteFile

MapVirtualKey
The MapVirtualKey function translates (maps) a virtual-key code into a scan code or character
value, or translates a scan code into a virtual-key code.

UINT MapVirtualKey(
UINT uCode, // virtual-key code or scan code
UINT uMapType // translation to perform

);ParametersuCode
Specifies the virtual-key code or scan code for a key. How this value is interpreted depends
on the value of the uMapType parameter.

uMapType
Specifies the translation to perform. The value of this parameter depends on the value of the
uCode parameter:

Value Meaning
0 uCode is a virtual-key code and is translated into a scan

code. If it is a virtual-key code that does not distinguish
between left- and right-hand keys, the left-hand scan
code is returned. If there is no translation, the function
returns 0.

1 uCode is a scan code and is translated into a virtual-key
code that does not distinguish between left- and right-
hand keys. If there is no translation, the function returns
0.

2 uCode is a virtual-key code and is translated into an
unshifted character value in the low-order word of the
return value. Dead keys (diacritics) are indicated by
setting the top bit of the return value. If there is no
translation, the function returns 0.

3 uCode is a scan code and is translated into a virtual-key
code that distinguishes between left- and right-hand
keys. If there is no translation, the function returns 0.

Return ValuesThe return value is either a scan code, a virtual-key code, or a character value, depending on the
value of uCode and uMapType. If there is no translation, the return value is zero.RemarksAn application can use MapVirtualKey to translate scan codes to the virtual-key code constants
VK_SHIFT, VK_CONTROL, and VK_MENU, and vice versa. These translations do not distinguish
between the left and right instances of the SHIFT, CTRL, or ALT keys. An application can get the
scan code corresponding to the left or right instance of one of these keys by calling
MapVirtualKey with uCode set to one of the following virtual-key code constants:

VK_LSHIFT VK_RSHIFT

VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU

These left- and right-distinguishing constants are available to an application only through the
GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, and MapVirtualKey
functions.See AlsoGetAsyncKeyState, GetKeyboardState, GetKeyState, SetKeyboardState

MapVirtualKeyEx
[Now Supported on Windows NT]

The MapVirtualKeyEx function translates (maps) a virtual-key code into a scan code or character
value, or translates a scan code into a virtual-key code. The function translates the codes using
the input language and physical keyboard layout identified by the given keyboard layout handle.

UINT MapVirtualKeyEx(
UINT uCode, // virtual-key code or scan code
UINT uMapType, // translation to perform
HKL dwhkl // keyboard layout handle

);ParametersuCode
Specifies the virtual-key code or scan code for a key. How this value is interpreted depends
on the value of the uMapType parameter.

uMapType
Specifies the translation to perform. The value of this parameter depends on the value of the
uCode parameter:

Value Meaning
0 uCode is a virtual-key code and is translated into a

scan code. If it is a virtual-key code that does not
distinguish between left- and right-hand keys, the left-
hand scan code is returned. If there is no translation,
the function returns 0.

1 uCode is a scan code and is translated into a virtual-
key code that does not distinguish between left- and
right-hand keys. If there is no translation, the function
returns 0.

2 uCode is a virtual-key code and is translated into an
unshifted character value in the low order word of the
return value. Dead keys (diacritics) are indicated by
setting the top bit of the return value. If there is no
translation, the function returns 0.

3 uCode is a scan code and is translated into a virtual-
key code that distinguishes between left- and right-
hand keys. If there is no translation, the function
returns 0.

dwhkl
Identifies the keyboard layout to use for translating the given code. This parameter can be any
keyboard layout handle previously returned by the LoadKeyboardLayout function.

Return ValuesThe return value is either a scan code, a virtual-key code, or a character value, depending on the
value of uCode and uMapType. If there is no translation, the return value is zero.RemarksAn application can use MapVirtualKeyEx to translate scan codes to the virtual-key code
constants VK_SHIFT, VK_CONTROL, and VK_MENU, and vice versa. These translations do not
distinguish between the left and right instances of the SHIFT, CTRL, or ALT keys. An application can
get the scan code corresponding to the left or right instance of one of these keys by calling
MapVirtualKeyEx with uCode set to one of the following virtual-key code constants:

VK_LSHIFT VK_RSHIFT

VK_LCONTROL VK_RCONTROL
VK_LMENU VK_RMENU

These left- and right-distinguishing constants are available to an application only through the
GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, MapVirtualKey,
and MapVirtualKeyEx functions.See AlsoGetAsyncKeyState, GetKeyboardState, GetKeyState, LoadKeyboardLayout, MapVirtualKey,
SetKeyboardState

MapWindowPoints
The MapWindowPoints function converts (maps) a set of points from a coordinate space relative
to one window to a coordinate space relative to another window.

int MapWindowPoints(
HWND hWndFrom, // handle of window to be mapped from
HWND hWndTo, // handle of window to be mapped to
LPPOINT lpPoints, // address of structure array with points to map
UINT cPoints // number of structures in array

);ParametershWndFrom
Identifies the window from which points are converted. If this parameter is NULL or
HWND_DESKTOP, the points are presumed to be in screen coordinates.

hWndTo
Identifies the window to which points are converted. If this parameter is NULL or
HWND_DESKTOP, the points are converted to screen coordinates.

lpPoints
Points to an array of POINT structures that contain the set of points to be converted. This
parameter can also point to a RECT structure, in which case the cPoints parameter should be
set to 2.

cPoints
Specifies the number of POINT structures in the array pointed to by the lpPoints parameter.

Return ValuesIf the function succeeds, the low-order word of the return value is the number of pixels added to
the horizontal coordinate of each source point in order to compute the horizontal coordinate of
each destination point; the high-order word is the number of pixels added to the vertical
coordinate of each source point in order to compute the vertical coordinate of each destination
point.See AlsoClientToScreen, POINT, RECT, ScreenToClient

MaskBlt
The MaskBlt function combines the color data for the source and destination bitmaps using the
specified mask and raster operation.

BOOL MaskBlt(
HDC hdcDest, // handle of destination device context
int nXDest, // x-coord. of upper-left corner of destination rectangle
int nYDest, // y-coord. of upper-left corner of destination rectangle
int nWidth, // width of source and destination rectangles
int nHeight, // height of source and destination rectangles
HDC hdcSrc, // handle of source device context
int nXSrc, // x-coord. of upper-left corner of source rectangle
int nYSrc, // y-coord. of upper-left corner of source rectangle
HBITMAP hbmMask, // handle of monochrome bit mask
int xMask, // horizontal pixel offset into the mask bitmap
int yMask, // vertical pixel offset into the mask bitmap
DWORD dwRop // raster operation code

);ParametershdcDest
Identifies the destination device context.

nXDest
Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

nYDest
Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth
Specifies the width, in logical units, of the destination rectangle and source bitmap.

nHeight
Specifies the height, in logical units, of the destination rectangle and source bitmap.

hdcSrc
Identifies the device context from which the bitmap is to be copied. It must be zero if the
dwRop parameter specifies a raster operation that does not include a source.

nXSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

nYSrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

hbmMask
Identifies the monochrome mask bitmap combined with the color bitmap in the source device
context.

xMask
Specifies the horizontal pixel offset for the mask bitmap specified by the hbmMask parameter.

yMask
Specifies the vertical pixel offset for the mask bitmap specified by the hbmMask parameter.

dwRop
Specifies both foreground and background ternary raster operation codes that the function
uses to control the combination of source and destination data. The background raster
operation code is stored in the high-order byte of the high-order word of this value; the
foreground raster operation code is stored in the low-order byte of the high-order word of this
value; the low-order word of this value is ignored, and should be zero. The macro
MAKEROP4 creates such combinations of foreground and background raster operation
codes.
For a discussion of foreground and background in the context of this function, see the
following Remarks section.
For a list of common raster operation codes, see the BitBlt function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA value of 1 in the mask specified by hbmMask indicates that the foreground raster operation
code specified by dwRop should be applied at that location. A value of 0 in the mask indicates that
the background raster operation code specified by dwRop should be applied at that location.

If the raster operations require a source, the mask rectangle must cover the source rectangle. If it
does not, the function will fail. If the raster operations do not require a source, the mask rectangle
must cover the destination rectangle. If it does not, the function will fail.

If a rotation or shear transformation is in effect for the source device context when this function is
called, an error occurs. However, other types of transformation are allowed.

If the color formats of the source, pattern, and destination bitmaps differ, this function converts the
pattern or source format, or both, to match the destination format.

If the mask bitmap is not a monochrome bitmap, an error occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns FALSE) if
the source device context identifies an enhanced-metafile device context.

Not all devices support the MaskBlt function. An application should call the GetDeviceCaps
function to determine whether a device supports this function.

If no mask bitmap is supplied, this function behaves exactly like BitBlt, using the foreground
raster operation code.

The pixel offsets in the mask bitmap map to the point (0,0) in the source device context's bitmap.
This is useful in cases where a mask bitmap contains a set of masks; an application can easily
apply any one of them to a mask-block transfer task by adjusting the pixel offsets and rectangle
sizes sent to MaskBlt.See AlsoBitBlt, GetDeviceCaps, PlgBlt, StretchBlt

MenuHelp
The MenuHelp function processes WM_MENUSELECT and WM_COMMAND messages and
displays help text about the current menu in the specified status window.

void MenuHelp(
UINT uMsg,
WPARAM wParam,
LPARAM lParam,
HMENU hMainMenu,
HINSTANCE hInst,
HWND hwndStatus,
UINT FAR *lpwIDs

);ParametersuMsg
WM_MENUSELECT or WM_COMMAND message.

wParam
First message parameter.

lParam
Second message parameter.

hMainMenu
Handle to the application's main menu.

hInst
Handle to the module that contains the string resources.

hwndStatus
Handle to the status window.

lpwIDs
Pointer to an array that contains pairs of string resource identifiers and menu handles. The
function searches the array for the handle to the selected menu and, if found, uses the
corresponding resource identifier to load the appropriate help string.

Return ValuesThis function does not return a value.See AlsoWM_COMMAND, WM_MENUSELECT

MenuItemFromPoint
[Now Supported on Windows NT]

The MenuItemFromPoint function determines which menu item, if any, is at the specified
location.

UINT WINAPI MenuItemFromPoint(
HWND hWnd,
HMENU hMenu,
POINT ptScreen

);ParametershWnd
Handle to the window containing the menu.

hMenu
Handle to the menu containing the menu items to hit test.

ptScreen
POINT structure specifying the location to test. If hMenu specifies a menu bar, this parameter
is in window coordinates. Otherwise, it is in client coordinates.

Return ValuesReturns the zero-based position of the menu item at the specified location or - 1 if no menu item is
at the specified location.See AlsoPOINT

MessageBeep
The MessageBeep function plays a waveform sound. The waveform sound for each sound type
is identified by an entry in the [sounds] section of the registry.

BOOL MessageBeep(
UINT uType // sound type

);ParametersuType
Specifies the sound type, as identified by an entry in the [sounds] section of the registry. This
parameter can be one of the following values:

Value Sound
0xFFFFFFFF Standard beep using the computer

speaker
MB_ICONASTERISK SystemAsterisk
MB_ICONEXCLAMATION SystemExclamation
MB_ICONHAND SystemHand
MB_ICONQUESTION SystemQuestion
MB_OK SystemDefault

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter queuing the sound, the MessageBeep function returns control to the calling function and
plays the sound asynchronously.

If it cannot play the specified alert sound, MessageBeep attempts to play the system default
sound. If it cannot play the system default sound, the function produces a standard beep sound
through the computer speaker.

The user can disable the warning beep by using the Control Panel Sound application.See AlsoFlashWindow, MessageBox

MessageBox
The MessageBox function creates, displays, and operates a message box. The message box
contains an application-defined message and title, plus any combination of predefined icons and
push buttons.

int MessageBox(
HWND hWnd, // handle of owner window
LPCTSTR lpText, // address of text in message box
LPCTSTR lpCaption, // address of title of message box
UINT uType // style of message box

);ParametershWnd
Identifies the owner window of the message box to be created. If this parameter is NULL, the
message box has no owner window.

lpText
Points to a null-terminated string containing the message to be displayed.

lpCaption
Points to a null-terminated string used for the dialog box title. If this parameter is NULL, the
default title Error is used.

uType
Specifies a set of bit flags that determine the contents and behavior of the dialog box. This
parameter can be a combination of flags from the following groups of flags.
Specify one of the following flags to indicate the buttons contained in the message box:

Flag Meaning
MB_ABORTRETRYIGNOREThe message box contains three push

buttons: Abort, Retry, and Ignore.
MB_OK The message box contains one push

button: OK. This is the default.
MB_OKCANCEL The message box contains two push

buttons: OK and Cancel.
MB_RETRYCANCEL The message box contains two push

buttons: Retry and Cancel.
MB_YESNO The message box contains two push

buttons: Yes and No.
MB_YESNOCANCEL The message box contains three push

buttons: Yes, No, and Cancel.

Specify one of the following flags to display an icon in the message box:
Flag Meaning
MB_ICONEXCLAMATION,
MB_ICONWARNING

An exclamation-point icon appears in the
message box.

MB_ICONINFORMATION,
MB_ICONASTERISK

An icon consisting of a lowercase letter i in
a circle appears in the message box.

MB_ICONQUESTION A question-mark icon appears in the
message box.

MB_ICONSTOP,
MB_ICONERROR,
MB_ICONHAND

A stop-sign icon appears in the message
box.

Specify one of the following flags to indicate the default button:
Flag Meaning
MB_DEFBUTTON1 The first button is the default button.

MB_DEFBUTTON1 is the default unless
MB_DEFBUTTON2, MB_DEFBUTTON3,

or MB_DEFBUTTON4 is specified.
MB_DEFBUTTON2 The second button is the default button.
MB_DEFBUTTON3 The third button is the default button.
MB_DEFBUTTON4 The fourth button is the default button.

Specify one of the following flags to indicate the modality of the dialog box:
Flag Meaning
MB_APPLMODAL The user must respond to the message

box before continuing work in the window
identified by the hWnd parameter.
However, the user can move to the
windows of other applications and work in
those windows.
Depending on the hierarchy of windows in
the application, the user may be able to
move to other windows within the
application. All child windows of the parent
of the message box are automatically
disabled, but popup windows are not.
MB_APPLMODAL is the default if neither
MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

MB_SYSTEMMODAL Same as MB_APPLMODAL except that
the message box has the
WS_EX_TOPMOST style. Use system-
modal message boxes to notify the user of
serious, potentially damaging errors that
require immediate attention (for example,
running out of memory). This flag has no
effect on the user's ability to interact with
windows other than those associated with
hWnd.

MB_TASKMODAL Same as MB_APPLMODAL except that all
the top-level windows belonging to the
current task are disabled if the hWnd
parameter is NULL. Use this flag when the
calling application or library does not have
a window handle available but still needs to
prevent input to other windows in the
current application without suspending
other applications.

In addition, you can specify the following flags:
MB_DEFAULT_DESKTOP_ONLY

The desktop currently receiving input must be a default desktop; otherwise, the
function fails. A default desktop is one an application runs on after the user has
logged on.

MB_HELP
Adds a Help button to the message box. Choosing the Help button or pressing F1
generates a Help event.

MB_RIGHT
The text is right-justified.

MB_RTLREADING
Displays message and caption text using right-to-left reading order on Hebrew and
Arabic systems.

MB_SETFOREGROUND
The message box becomes the foreground window. Internally, Windows calls the
SetForegroundWindow function for the message box.

MB_TOPMOST
The message box is created with the WS_EX_TOPMOST window style.

MB_SERVICE_NOTIFICATION
Windows NT only: The caller is a service notifying the user of an event. The function
displays a message box on the current active desktop, even if there is no user logged on to
the computer.
If this flag is set, the hWnd parameter must be NULL. This is so the message box can
appear on a desktop other than the desktop corresponding to the hWnd.
For Windows NT version 4.0, the value of MB_SERVICE_NOTIFICATION has changed.
See WINUSER.H for the old and new values. Windows NT 4.0 provides backward
compatibility for pre-existing services by mapping the old value to the new value in the
implementation of MessageBox and MessageBoxEx. This mapping is only done for
executables that have a version number, as set by the linker, less than 4.0.
To build a service that uses MB_SERVICE_NOTIFICATION, and can run on both Windows
NT 3.x and Windows NT 4.0, you have two choices.
1. At link-time, specify a version number less than 4.0; or

2. At link-time, specify version 4.0. At run-time,
use the GetVersionEx function to check the system
version. Then when running on Windows NT 3.x, use
MB_SERVICE_NOTIFICATION_NT3X; and on
Windows NT 4.0, use MB_SERVICE_NOTIFICATION.

MB_SERVICE_NOTIFICATION_NT3X
Windows NT only: This value corresponds to the value defined for
MB_SERVICE_NOTIFICATION for Windows NT version 3.51.

Return ValuesThe return value is zero if there is not enough memory to create the message box.

If the function succeeds, the return value is one of the following menu-item values returned by the
dialog box:

Value Meaning

IDABORT Abort button was selected.
IDCANCEL Cancel button was selected.
IDIGNORE Ignore button was selected.
IDNO No button was selected.
IDOK OK button was selected.
IDRETRY Retry button was selected.
IDYES Yes button was selected.

If a message box has a Cancel button, the function returns the IDCANCEL value if either
the ESC key is pressed or the Cancel button is selected. If the message box has no Cancel
button, pressing ESC has no effect.RemarksWhen you use a system-modal message box to indicate that the system is low on memory, the
strings pointed to by the lpText and lpCaption parameters should not be taken from a resource
file, because an attempt to load the resource may fail.

When an application calls MessageBox and specifies the MB_ICONHAND and
MB_SYSTEMMODAL flags for the uType parameter, Windows displays the resulting message
box regardless of available memory. When these flags are specified, Windows limits the length of
the message box text to three lines. Windows does not automatically break the lines to fit in the
message box, however, so the message string must contain carriage returns to break the lines at
the appropriate places.

If you create a message box while a dialog box is present, use the handle of the dialog box as the
hWnd parameter. The hWnd parameter should not identify a child window, such as a control in a
dialog box.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoFlashWindow, MessageBeep, MessageBoxEx, MessageBoxIndirect, SetForegroundWindow

MessageBoxEx
The MessageBoxEx function creates, displays, and operates a message box. The message box
contains an application-defined message and title, plus any combination of predefined icons and
push buttons. The wLanguageId parameter specifies which set of language resources is used for
the predefined push buttons. For full descriptions of the other parameters of MessageBoxEx, see
MessageBox .

int MessageBoxEx(
HWND hWnd, // handle of owner window
LPCTSTR lpText, // address of text in message box
LPCTSTR lpCaption, // address of title of message box
UINT uType, // style of message box
WORD wLanguageId // language identifier

);ParametershWnd
Identifies the owner window of the message box to be created. If this parameter is NULL, the
message box has no owner window.

lpCaption
Points to a null-terminated string containing the message to be displayed.

lpszTitle
Points to a null-terminated string used for the dialog box title. If this parameter is NULL, the
default title Error is used.

uType
Specifies a set of bit flags that determine the contents and behavior of the dialog box. This
parameter can be a combination of flags from the following groups of flags.
Specify one of the following flags to indicate the buttons contained in the message box:

Flag Meaning
MB_ABORTRETRYIGNORE The message box contains three push

buttons: Abort, Retry, and Ignore.
MB_OK The message box contains one push

button: OK. This is the default.
MB_OKCANCEL The message box contains two push

buttons: OK and Cancel.
MB_RETRYCANCEL The message box contains two push

buttons: Retry and Cancel.
MB_YESNO The message box contains two push

buttons: Yes and No.
MB_YESNOCANCEL The message box contains three push

buttons: Yes, No, and Cancel.

Specify one of the following flags to display an icon in the message box:
Flag Meaning
MB_ICONEXCLAMATION,
MB_ICONWARNING

An exclamation-point icon appears in the
message box.

MB_ICONINFORMATION,
MB_ICONASTERISK

An icon consisting of a lowercase letter i in
a circle appears in the message box.

MB_ICONQUESTION A question-mark icon appears in the
message box.

MB_ICONSTOP,
MB_ICONERROR,
MB_ICONHAND

A stop-sign icon appears in the message
box.

Specify one of the following flags to indicate the default button:
Flag Meaning

MB_DEFBUTTON1 The first button is the default button.
MB_DEFBUTTON1 is the default unless
MB_DEFBUTTON2, MB_DEFBUTTON3,
or MB_DEFBUTTON4 is specified.

MB_DEFBUTTON2 The second button is the default button.
MB_DEFBUTTON3 The third button is the default button.
MB_DEFBUTTON4 The fourth button is the default button.

Specify one of the following flags to indicate the modality of the dialog box:
Flag Meaning
MB_APPLMODAL The user must respond to the message

box before continuing work in the window
identified by the hWnd parameter.
However, the user can move to the
windows of other applications and work in
those windows.
Depending on the hierarchy of windows in
the application, the user may be able to
move to other windows within the
application. All child windows of the parent
of the message box are automatically
disabled, but popup windows are not.
MB_APPLMODAL is the default if neither
MB_SYSTEMMODAL nor
MB_TASKMODAL is specified.

MB_SYSTEMMODAL Same as MB_APPLMODAL except that
the message box has the
WS_EX_TOPMOST style. Use system-
modal message boxes to notify the user of
serious, potentially damaging errors that
require immediate attention (for example,
running out of memory). This flag has no
effect on the user's ability to interact with
windows other than those associated with
hWnd.

MB_TASKMODAL Same as MB_APPLMODAL except that all
the top-level windows belonging to the
current task are disabled if the hWnd
parameter is NULL. Use this flag when the
calling application or library does not have
a window handle available but still needs to
prevent input to other windows in the
current application without suspending
other applications.

In addition, you can specify the following flags:
MB_DEFAULT_DESKTOP_ONLY

The desktop currently receiving input must be a default desktop; otherwise, the
function fails. A default desktop is one an application runs on after the user has
logged on.

MB_HELP
Adds a Help button to the message box. Choosing the Help button or pressing F1
generates a Help event.

MB_RIGHT
The text is right-justified.

MB_RTLREADING
Displays message and caption text using right-to-left reading order on Hebrew and
Arabic systems.

MB_SETFOREGROUND

The message box becomes the foreground window. Internally, Windows calls the
SetForegroundWindow function for the message box.

MB_TOPMOST
The message box is created with the WS_EX_TOPMOST window style.

MB_SERVICE_NOTIFICATION
Windows NT only: The caller is a service notifying the user of an event. The function
displays a message box on the current active desktop, even if there is no user logged on to
the computer.
If this flag is set, the hWnd parameter must be NULL. This is so the message box can
appear on a desktop other than the desktop corresponding to the hWnd.
For Windows NT version 4.0, the value of MB_SERVICE_NOTIFICATION has changed.
See WINUSER.H for the old and new values. Windows NT 4.0 provides backward
compatibility for pre-existing services by mapping the old value to the new value in the
implementation of MessageBox and MessageBoxEx. This mapping is only done for
executables that have a version number, as set by the linker, less than 4.0.
To build a service that uses MB_SERVICE_NOTIFICATION, and can run on both Windows
NT 3.x and Windows NT 4.0, you have two choices.
1. At link-time, specify a version number less than 4.0; or

2. At link-time, specify version 4.0. At run-time,
use the GetVersionEx function to check the system
version. Then when running on Windows NT 3.x, use
MB_SERVICE_NOTIFICATION_NT3X; and on
Windows NT 4.0, use MB_SERVICE_NOTIFICATION.

MB_SERVICE_NOTIFICATION_NT3X
Windows NT only: This value corresponds to the value defined for
MB_SERVICE_NOTIFICATION for Windows NT version 3.51.

wLanguageId
Specifies the language in which to display the text contained in the predefined push buttons.
This value must be in the form returned by the MAKELANGID macro.
For a list of the language identifiers supported by Win32, see Language Identifiers. Note that
each localized release of Windows typically contains resources only for a limited set of
languages. Thus, for example, the U.S. version offers LANG_ENGLISH, the French version
offers LANG_FRENCH, the German version offers LANG_GERMAN, and the Japanese
version offers LANG_JAPANESE. Each version offers LANG_NEUTRAL. This limits the set of
values that can be used with the wLanguageId parameter. Before specifying a language
identifier, you should enumerate the locales that are installed on a system.

Return ValuesIf the function succeeds, the return value is a nonzero menu-item value returned by the dialog
box.

Value Meaning

IDABORT Abort button was selected.
IDCANCEL Cancel button was selected.
IDIGNORE Ignore button was selected.
IDNO No button was selected.
IDOK OK button was selected.
IDRETRY Retry button was selected.
IDYES Yes button was selected.

If a message box has a Cancel button, the function returns the IDCANCEL value when
either the ESC key or Cancel button is pressed. If the message box has no Cancel button,
pressing the ESC key has no effect.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.RemarksWhen you create a system-modal message box to indicate that the system is low on memory, the
strings passed as the lpText and lpCaption parameters should not be taken from a resource file,
because an attempt to load the resource may fail.

When an application calls the MessageBoxEx function and specifies the MB_ICONHAND and
MB_SYSTEMMODAL flags for the uType parameter, the Win32 API displays the resulting

message box regardless of available memory. When you specify these flags, Windows limits the
length of the message-box text to one line.

If you create a message box while a dialog box is present, use the handle of the dialog box as the
hWnd parameter. The hWnd parameter should not identify a child window, such as a dialog box.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoMAKELANGID, MessageBeep, MessageBox, MessageBoxIndirect, SetForegroundWindow

MessageBoxIndirect
[Now Supported on Windows NT]

The MessageBoxIndirect function creates, displays, and operates a message box. The message
box contains application-defined message text and title, any icon, and any combination of
predefined push buttons.

int MessageBoxIndirect(
LPMSGBOXPARAMS lpMsgBoxParams // address of structure for message box parameters

);ParameterslpMsgBoxParams
Pointer to a MSGBOXPARAMS structure that contains information used to display the
message box.

Return ValuesThe return value is zero if there is not enough memory to create the message box.

If the function succeeds, the return value is one of the following menu-item values returned by the
dialog box:

Value Meaning

IDABORT Abort button was selected.
IDCANCEL Cancel button was selected.
IDIGNORE Ignore button was selected.
IDNO No button was selected.
IDOK OK button was selected.
IDRETRY Retry button was selected.
IDYES Yes button was selected.

If a message box has a Cancel button, the function returns the IDCANCEL value if either
the ESC key is pressed or the Cancel button is selected. If the message box has no Cancel
button, pressing ESC has no effect.RemarksWhen you use a system-modal message box to indicate that the system is low on memory, the
strings pointed to by the lpszText and lpszCaption members of the MSGBOXPARAMS structure
should not be taken from a resource file, because an attempt to load the resource may fail.

When an application calls MessageBoxIndirect and specifies the MB_ICONHAND and
MB_SYSTEMMODAL flags for the dwStyle member of the MSGBOXPARAMS structure,
Windows displays the resulting message box regardless of available memory. When these flags
are specified, Windows limits the length of the message box text to three lines. Windows does not
automatically break the lines to fit in the message box, however, so the message string must
contain carriage returns to break the lines at the appropriate places.

If you create a message box while a dialog box is present, use the handle of the dialog box as the
hWnd parameter. The hWnd parameter should not identify a child window, such as a control in a
dialog box.

Windows 95: The system can support a maximum of 16,364 window handles.See AlsoMessageBox, MessageBoxEx, MSGBOXPARAMS

MessageProc
The MessageProc hook procedure is an application-defined callback function the system calls
after an input event occurs in a dialog box, message box, menu, or scroll bar, but before the
message generated by the input event is processed. The hook procedure can monitor messages
for a dialog box, message box, menu, or scroll bar created by a particular application or all
applications.

LRESULT CALLBACK MessageProc(
int code, // hook code
WPARAM wParam, // undefined
LPARAM lParam // address of structure with message data

);Parameterscode
Specifies the type of input event that generated the message. This parameter can be one of
the following values:

Value Meaning
MSGF_DDEMGR The input event occurred while the

Dynamic Data Exchange Management
Library (DDEML) was waiting for a
synchronous transaction to finish. For
more information about DDEML, see
Dynamic Data Exchange Management
Library.

MSGF_DIALOGBOX The input event occurred in a message
box or dialog box.

MSGF_MENU The input event occurred in a menu.
MSGF_NEXTWINDOW The input event occurred as a result of the

user's pressing the ALT+TAB key
combination to activate a different window.

MSGF_SCROLLBAR The input event occurred in a scroll bar.

If code is less than zero, the hook procedure must pass the message to the CallNextHookEx
function without further processing and return the value returned by CallNextHookEx.

wParam
Specifies a NULL value.

lParam
Points to an MSG structure.

Return ValuesIf the hook procedure processes the message, the return value must be a nonzero value.
Otherwise, it must be zero.RemarksAn application installs the hook procedure by specifying the WH_MSGFILTER hook type and the
address of the hook procedure in a call to the SetWindowsHookEx function.

If an application that uses the DDEML and performs synchronous transactions must process
messages before they are dispatched, it must use the WH_MSGFILTER hook.

MessageProc is a placeholder for the application-defined function name.See AlsoCallNextHookEx, SetWindowsHookEx, MSG

ModifyMenu
The ModifyMenu function changes an existing menu item. This function is used to specify the
content, appearance, and behavior of the menu item.

The ModifyMenu function has been superseded by the SetMenuItemInfo function. You can still
use ModifyMenu, however, if you do not need any of the extended features of SetMenuItemInfo.

BOOL ModifyMenu(
HMENU hMnu, // handle of menu
UINT uPosition, // menu item to modify
UINT uFlags, // menu item flags
UINT uIDNewItem, // menu item identifier or handle of drop-down

menu or submenu
LPCTSTR lpNewItem // menu item content

);ParametershMnu
Identifies the menu to be changed.

uPosition
Specifies the menu item to be changed, as determined by the uFlags parameter.

uFlags
Specifies flags that control the interpretation of the uPosition parameter and the content,
appearance, and behavior of the menu item. This parameter must be a combination of one of
the following required values and at least one of the values listed in the following Remarks
section.

Value Meaning
MF_BYCOMMAND Indicates that the uPosition parameter gives

the identifier of the menu item. The
MF_BYCOMMAND flag is the default if
neither the MF_BYCOMMAND nor
MF_BYPOSITION flag is specified.

MF_BYPOSITION Indicates that the uPosition parameter gives
the zero-based relative position of the menu
item.

uIDNewItem
Specifies either the identifier of the modified menu item or, if the uFlags parameter has the
MF_POPUP flag set, the handle of the drop-down menu or submenu.

lpNewItem
Points to the content of the changed menu item. The interpretation of this parameter depends
on whether the uFlags parameter includes the MF_BITMAP, MF_OWNERDRAW, or
MF_STRING flag.

Value Meaning
MF_BITMAP Contains a bitmap handle.
MF_OWNERDRAW Contains a 32-bit value supplied by an

application that is used to maintain additional
data related to the menu item. The value is
in the itemData member of the structure
pointed to by the lparam parameter of the
WM_MEASUREITEM or WM_DRAWITEM
messages sent when the menu item is
created or its appearance is updated.

MF_STRING Contains a pointer to a null-terminated string
(the default).

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf ModifyMenu replaces a menu item that opens a drop-down menu or submenu, the function
destroys the old drop-down menu or submenu and frees the memory used by it.

The application must call the DrawMenuBar function whenever a menu changes, whether or not
the menu is in a displayed window. To change the attributes of existing menu items, it is much
faster to use the CheckMenuItem and EnableMenuItem functions.

The following list describes the flags that may be set in the uFlags parameter:

Value Meaning

MF_BITMAP Uses a bitmap as the menu item. The
lpNewItem parameter contains the handle of
the bitmap.

MF_BYCOMMAND Indicates that the uPosition parameter
specifies the identifier of the menu item (the
default).

MF_BYPOSITION Indicates that the uPosition parameter
specifies the zero-based relative position of
the new menu item.

MF_CHECKED Places a check mark next to the item. If your
application provides check mark bitmaps
(see the SetMenuItemBitmaps function),
this flag displays a checked bitmap next to
the menu item.

MF_DISABLED Disables the menu item so that it cannot be
selected, but this flag does not gray it.

MF_ENABLED Enables the menu item so that it can be
selected and restores it from its grayed
state.

MF_GRAYED Disables the menu item and grays it so that
it cannot be selected.

MF_MENUBARBREAKFunctions the same as the
MF_MENUBREAK flag for a menu bar. For a
drop-down menu, submenu, or shortcut
menu, the new column is separated from the
old column by a vertical line.

MF_MENUBREAK Places the item on a new line (for menu
bars) or in a new column (for a drop-down
menu, submenu, or shortcut menu) without
separating columns.

MF_OWNERDRAW Specifies that the item is an owner-drawn
item. Before the menu is displayed for the
first time, the window that owns the menu
receives a WM_MEASUREITEM message
to retrieve the width and height of the menu
item. The WM_DRAWITEM message is then
sent to the window procedure of the owner
window whenever the appearance of the
menu item must be updated.

MF_POPUP Specifies that the menu item opens a drop-
down menu or submenu. The uIDNewItem
parameter specifies the handle of the drop-
down menu or submenu. This flag is used to
add a menu name to a menu bar or a menu
item that opens a submenu to a drop-down
menu, submenu, or shortcut menu.

MF_SEPARATOR Draws a horizontal dividing line. This flag is
used only in a drop-down menu, submenu,
or shortcut menu. The line cannot be grayed,
disabled, or highlighted. The lpNewItem and
uIDNewItem parameters are ignored.

MF_STRING Specifies that the menu item is a text string;
the lpNewItem parameter points to the
string.

MF_UNCHECKED Does not place a check mark next to the
item (the default). If your application supplies
check mark bitmaps (see the
SetMenuItemBitmaps function), this flag
displays an unchecked bitmap next to the
menu item.

The following groups of flags cannot be used together:

· MF_BYCOMMAND and MF_BYPOSITION
· MF_DISABLED, MF_ENABLED, and MF_GRAYED
· MF_BITMAP, MF_STRING, MF_OWNERDRAW, and MF_SEPARATOR
· MF_MENUBARBREAK and MF_MENUBREAK
· MF_CHECKED and MF_UNCHECKED
See AlsoAppendMenu, CheckMenuItem, DrawMenuBar, EnableMenuItem, SetMenuItemBitmaps,

SetMenuItemInfo, WM_DRAWITEM, WM_MEASUREITEM

ModifyWorldTransform
The ModifyWorldTransform function changes the world transformation for a device context using
the specified mode.

BOOL ModifyWorldTransform(
HDC hdc, // handle of device context
CONST XFORM *lpXform, // address of transformation data
DWORD iMode // modification mode

);Parametershdc
Specifies the device context.

lpXform
Points to an XFORM structure used to modify the world transformation for the given device
context.

iMode
Specifies how the transformation data modifies the current world transformation. This
parameter must be one of the following values:

Value Description
MWT_IDENTITY Resets the current world transformation

by using the identity matrix. If this mode
is specified, the XFORM structure
pointed to by lpXform is ignored.

MWT_LEFTMULTIPLY Multiplies the current transformation by
the data in the XFORM structure. (The
data in the XFORM structure becomes
the left multiplicand, and the data for the
current transformation becomes the right
multiplicand.)

MWT_RIGHTMULTIPLY Multiplies the current transformation by
the data in the XFORM structure. (The
data in the XFORM structure becomes
the right multiplicand, and the data for the
current transformation becomes the left
multiplicand.)

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe ModifyWorldTransform function will fail unless graphics mode for the specified device
context has been set to GM_ADVANCED by previously calling the SetGraphicsMode function.
Likewise, it will not be possible to reset the graphics mode for the device context to the default
GM_COMPATIBLE mode, unless world transform has first been reset to the default identity
transform by calling SetWorldTransform or ModifyWorldTransform.See AlsoGetWorldTransform, SetWorldTransform, SetGraphicsMode, XFORM

mouse_event
The mouse_event function synthesizes mouse motion and button clicks.

VOID mouse_event(
DWORD dwFlags, // flags specifying various motion/click variants
DWORD dx, // horizontal mouse position or position change
DWORD dy, // vertical mouse position or position change
DWORD dwData, // amount of wheel movement
DWORD dwExtraInfo // 32 bits of application-defined information

);ParametersdwFlags
A set of flag bits that specify various aspects of mouse motion and button clicking. The bits in
this parameter can be any reasonable combination of the following values:

Value Meaning
MOUSEEVENTF_ABSOLUTE Specifies that the dx and dy

parameters contain normalized
absolute coordinates. If not set,
those parameters contain relative
data: the change in position since
the last reported position. This flag
can be set, or not set, regardless
of what kind of mouse or mouse-
like device, if any, is connected to
the system. For further information
about relative mouse motion, see
the following Remarks section.

MOUSEEVENTF_MOVE Specifies that movement occurred.
MOUSEEVENTF_LEFTDOWN Specifies that the left button

changed to down.
MOUSEEVENTF_LEFTUP Specifies that the left button

changed to up.
MOUSEEVENTF_RIGHTDOWN Specifies that the right button

changed to down.
MOUSEEVENTF_RIGHTUP Specifies that the right button

changed to up.
MOUSEEVENTF_MIDDLEDOWN Specifies that the middle button

changed to down.
MOUSEEVENTF_MIDDLEUP Specifies that the middle button

changed to up.
MOUSEEVENTF_WHEEL Windows NT only: Specifies that

the wheel has been moved, if the
mouse has a wheel. The amount
of movement is given in dwData

The flag bits that specify mouse button status are set to indicate changes in status, not
ongoing conditions. For example, if the left mouse button is pressed and held down,
MOUSEEVENTF_LEFTDOWN is set when the left button is first pressed, but not for
subsequent motions. Similarly, MOUSEEVENTF_LEFTUP is set only when the button is
first released.

dx
Specifies the mouse's absolute position along the x-axis or its amount of motion since the last
mouse event was generated, depending on the setting of MOUSEEVENTF_ABSOLUTE.
Absolute data is given as the mouse's actual x-coordinate; relative data is given as the
number of mickeys moved.

dy
Specifies the mouse's absolute position along the y-axis or its amount of motion since the last
mouse event was generated, depending on the setting of MOUSEEVENTF_ABSOLUTE.
Absolute data is given as the mouse's actual y-coordinate; relative data is given as the
number of mickeys moved.

dwData
If dwFlags is MOUSEEVENTF_WHEEL, then dwData specifies the amount of wheel
movement. A positive value indicates that the wheel was rotated forward, away from the user;
a negative value indicates that the wheel was rotated backward, toward the user. One wheel
click is defined as WHEEL_DELTA, which is 120.
If dwFlags is not MOUSEEVENTF_WHEEL, then dwData should be zero.

dwExtraInfo
Specifies an additional 32-bit value associated with the mouse event. An application calls
GetMessageExtraInfo to obtain this extra information.

Return ValuesThis function has no return value.RemarksIf the mouse has moved, indicated by MOUSEEVENTF_MOVE being set, dx and dy hold
information about that motion. The information is given as absolute or relative integer values.

If MOUSEEVENTF_ABSOLUTE value is specified, dx and dy contain normalized absolute
coordinates between 0 and 65,535. The event procedure maps these coordinates onto the display
surface. Coordinate (0,0) maps onto the upper-left corner of the display surface, (65535,65535)
maps onto the lower-right corner.

If the MOUSEEVENTF_ABSOLUTE value is not specified, dx and dy specify relative motions from
when the last mouse event was generated (the last reported position). Positive values mean the
mouse moved right (or down); negative values mean the mouse moved left (or up).

Relative mouse motion is subject to the effects of the mouse speed and the two mouse threshold
values. In Windows NT, an end user sets these three values with the Mouse Tracking Speed
slider of Control Panel's Mouse option; in Windows 95, an end user sets them with the Pointer
Speed slider of the Control Panel's Mouse property sheet. An application obtains and sets these
values with the SystemParametersInfo function.

The operating system applies two tests to the specified relative mouse motion. If the specified
distance along either the x or y axis is greater than the first mouse threshold value, and the mouse
speed is not zero, the operating system doubles the distance. If the specified distance along either
the x or y axis is greater than the second mouse threshold value, and the mouse speed is equal to
two, the operating system doubles the distance that resulted from applying the first threshold test.
It is thus possible for the operating system to multiply relatively-specified mouse motion along the
x or y axis by up to four times.

The mouse_event function is used to synthesize mouse events by applications that need to do
so. It is also used by applications that need to obtain more information from the mouse than its
position and button state. For example, if a tablet manufacturer wants to pass pen-based
information to its own applications, it can write a dynamic-link library (DLL) that communicates
directly to the tablet hardware, obtains the extra information, and saves it in a queue. The DLL
then calls mouse_event with the standard button and x/y position data, along with, in the
dwExtraInfo parameter, some pointer or index to the queued extra information. When the
application needs the extra information, it calls the DLL with the pointer or index stored in
dwExtraInfo, and the DLL returns the extra information.See AlsoGetMessageExtraInfo, SystemParametersInfo

MouseProc
The MouseProc hook procedure is an application-defined or library-defined callback function the
system calls whenever an application calls the GetMessage or PeekMessage function and there
is a mouse message to be processed.

LRESULT CALLBACK MouseProc(
int nCode, // hook code
WPARAM wParam, // message identifier
LPARAM lParam // mouse coordinates

);ParametersnCode
Specifies a code the hook procedure uses to determine how to process the message. This
parameter can be one of the following values:

Value Meaning
HC_ACTION The wParam and lParam parameters contain

information about a mouse message.
HC_NOREMOVE The wParam and lParam parameters contain

information about a mouse message, and the
mouse message has not been removed from
the message queue. (An application called the
PeekMessage function, specifying the
PM_NOREMOVE flag.)

If nCode is less than zero, the hook procedure must pass the message to the
CallNextHookEx function without further processing and should return the value returned by
CallNextHookEx.

wParam
Specifies the identifier of the mouse message.

lParam
Points to a MOUSEHOOKSTRUCT structure.

Return ValuesTo enable the system to process the message, the return value must be zero. To discard the
message, the return value must be a nonzero value.RemarksThe hook procedure must not install a JournalPlaybackProc callback function.

An application installs the hook procedure by specifying the WH_MOUSE hook type and the
address of the hook procedure in a call to the SetWindowsHookEx function.

MouseProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, GetMessage, JournalPlaybackProc, MOUSEHOOKSTRUCT,
PeekMessage, SetWindowsHookEx

MoveFile
The MoveFile function renames an existing file or a directory (including all its children).

BOOL MoveFile(
LPCTSTR lpExistingFileName, // address of name of the existing file
LPCTSTR lpNewFileName // address of new name for the file

);ParameterslpExistingFileName
Points to a null-terminated string that names an existing file or directory.

lpNewFileName
Points to a null-terminated string that specifies the new name of a file or directory. The new
name must not already exist. A new file may be on a different file system or drive. A new
directory must be on the same drive.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe MoveFile function will move (rename) either a file or a directory (including all its children)
either in the same directory or across directories. The one caveat is that the MoveFile function will
fail on directory moves when the destination is on a different volume.See AlsoCopyFile, MoveFileEx

MoveFileEx
The MoveFileEx function renames an existing file or directory.

BOOL MoveFileEx(
LPCTSTR lpExistingFileName, // address of name of the existing file
LPCTSTR lpNewFileName, // address of new name for the file
DWORD dwFlags // flag to determine how to move file

);ParameterslpExistingFileName
Points to a null-terminated string that names an existing file or directory.

lpNewFileName
Points to a null-terminated string that specifies the new name of lpExistingFileName.
When moving a file, the destination can be on a different file system or drive. If the destination
is on another drive, you must set the MOVEFILE_COPY_ALLOWED flag in dwFlags.
When moving a directory, the destination must be on the same drive.
Windows NT:

If dwFlags specifies MOVEFILE_DELAY_UNTIL_REBOOT, lpNewFileName can be NULL.
In this case, MoveFileEx registers the lpExistingFileName file to be deleted when the
system reboots.

dwFlags
A set of bit flags that specify how to move the file. You can specify any combination of the
following values:

Value Meaning
MOVEFILE_COPY_ALLOWED

If the file is to be moved to a different volume, the
function simulates the move by using the CopyFile and
DeleteFile functions. Cannot be combined with the
MOVEFILE_DELAY_UNTIL_REBOOT flag.

MOVEFILE_DELAY_UNTIL_REBOOT
Windows NT only: The function does not move the file
until the operating system is restarted. The system
moves the file immediately after AUTOCHK is executed,
but before creating any paging files. Consequently, this
parameter enables the function to delete paging files
from previous startups.

MOVEFILE_REPLACE_EXISTING
If a file of the name specified by lpNewFileName already
exists, the function replaces its contents with those
specified by lpExistingFileName.

MOVEFILE_WRITE_THROUGH
Windows NT only: The function does not return until the
file has actually been moved on the disk.
Setting this flag guarantees that a move perfomed as a
copy and delete operation is flushed to disk before the
function returns. The flush occurs at the end of the copy
operation.
This flag has no effect if the
MOVEFILE_DELAY_UNTIL_REBOOT flag is set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application cannot specify both MOVEFILE_DELAY_UNTIL_REBOOT and
MOVEFILE_COPY_ALLOWED for dwFlags. Function calls that do so will fail.

Windows NT:
If the dwFlags parameter specifies MOVEFILE_DELAY_UNTIL_REBOOT, MoveFileEx
stores the locations of the files to be renamed at reboot under the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Session Manager\PendingFileRenameOperations

The key is of type REG_MULTI_SZ. Each rename operation is a pair of NULL-terminated
strings. The system uses these registry entries to complete the operation at reboot in the
same order that they were issued.
For example, on Windows NT, the following code fragment creates registry entries that delete
szDstFile and rename szSrcFile to be szDstFile at reboot:MoveFileEx(szDstFile, NULL, MOVEFILE_DELAY_UNTIL_REBOOT);
MoveFileEx(szSrcFile, szDstFile, MOVEFILE_DELAY_UNTIL_REBOOT);The system creates the associated PendingFileRenameOperations entries as follows:szDstFile\0\0
szSrcFile\0szDstFile\0\0Windows 95:

The MOVEFILE_DELAY_UNTIL_REBOOT flag is not supported. To rename or delete a file at
reboot on a Windows 95 system, place an entry in the WININIT.INI file in the Windows
directory.
For example, on Windows 95, the following code fragment creates WININIT.INI entries that
delete szDstFile and rename szSrcFile to be szDstFile at reboot:GetWindowsDirectory(szWinInitFile, uSize);
lstrcat(szWinInitFile, "\\WININIT.INI");
WritePrivateProfileString("Rename", "NUL", szDstFile,
szWinInitFile);
WritePrivateProfileString("Rename", szDstFile, szSrcFile,
szWinInitFile);

See AlsoCopyFile, DeleteFile, GetWindowsDirectory, lstrcat, MoveFile, WritePrivateProfileString

MoveMemory
The MoveMemory function moves a block of memory from one location to another.

VOID MoveMemory (
PVOID Destination, // address of move destination
CONST VOID *Source, // address of block to move
DWORD Length // size, in bytes, of block to move

);ParametersDestination
Points to the starting address of the destination of the move.

Source
Points to the starting address of the block of memory to move.

Length
Specifies the size, in bytes, of the block of memory to move.

Return ValuesThis function has no return value.RemarksThe source and destination blocks may overlap.See AlsoCopyMemory, FillMemory, ZeroMemory

MoveToEx
The MoveToEx function updates the current position to the specified point and optionally returns
the previous position.

BOOL MoveToEx(
HDC hdc, // handle of device context
int X, // x-coordinate of new current position
int Y, // y-coordinate of new current position
LPPOINT lpPoint // address of old current position

);Parametershdc
Identifies a device context.

X
Specifies the x-coordinate of the new position, in logical units.

Y
Specifies the y-coordinate of the new position, in logical units.

lpPoint
Points to a POINT structure in which the previous current position is stored. If this parameter
is a NULL pointer, the previous position is not returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe MoveToEx function affects all drawing functions.See AlsoAngleArc, LineTo, POINT, PolyBezierTo, PolylineTo

MoveWindow
The MoveWindow function changes the position and dimensions of the specified window. For a
top-level window, the position and dimensions are relative to the upper-left corner of the screen.
For a child window, they are relative to the upper-left corner of the parent window's client area.

BOOL MoveWindow(
HWND hWnd, // handle of window
int X, // horizontal position
int Y, // vertical position
int nWidth, // width
int nHeight, // height
BOOL bRepaint // repaint flag

);ParametershWnd
Identifies the window.

X
Specifies the new position of the left side of the window.

Y
Specifies the new position of the top of the window.

nWidth
Specifies the new width of the window.

nHeight
Specifies the new height of the window.

bRepaint
Specifies whether the window is to be repainted. If this parameter is TRUE, the window
receives a WM_PAINT message. If the parameter is FALSE, no repainting of any kind occurs.
This applies to the client area, the nonclient area (including the title bar and scroll bars), and
any part of the parent window uncovered as a result of moving a child window. If this
parameter is FALSE, the application must explicitly invalidate or redraw any parts of the
window and parent window that need redrawing.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksIf the bRepaint parameter is TRUE, Windows sends the WM_PAINT message to the window
procedure immediately after moving the window (that is, the MoveWindow function calls the
UpdateWindow function). If bRepaint is FALSE, Windows places the WM_PAINT message in the
message queue associated with the window. The message loop dispatches the WM_PAINT
message only after dispatching all other messages in the queue.

MoveWindow sends WM_WINDOWPOSCHANGING, WM_WINDOWPOSCHANGED,
WM_MOVE, WM_SIZE, and WM_NCCALCSIZE messages to the window.See AlsoSetWindowPos, UpdateWindow, WM_GETMINMAXINFO, WM_PAINT

MsgWaitForMultipleObjects
The MsgWaitForMultipleObjects function returns when one of the following occurs:

· Either any one or all of the specified objects are in the signaled state. The objects can
include input event objects, which you specify using the dwWakeMask parameter.

· The time-out interval elapses.
Note that MsgWaitForMultipleObjects doesn't return if there was previously unread input of the
specified type in the queue. It only wakes up when input arrives.

DWORD MsgWaitForMultipleObjects(
DWORD nCount, // number of handles in the object handle array
LPHANDLE pHandles, // pointer to the object-handle array
BOOL fWaitAll, // wait for all or wait for one
DWORD dwMilliseconds, // time-out interval in milliseconds
DWORD dwWakeMask // type of input events to wait for

);ParametersnCount
Specifies the number of object handles in the array pointed to by pHandles. The maximum
number of object handles is MAXIMUM_WAIT_OBJECTS minus one.

pHandles
Points to an array of object handles. For a list of the object types whose handles can be
specified, see the following Remarks section. The array can contain handles of objects of
different types.
Windows NT: The handles must have SYNCHRONIZE access.

fWaitAll
Specifies the wait type. If TRUE, the function returns when the states of all objects in the
pHandles array, including input events, have been set to signaled. If FALSE, the function
returns when the state of any one of the objects is set to signaled. In the latter case, the return
value indicates the object whose state caused the function to return.

dwMilliseconds
Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the criteria specified by the fWaitAll or dwWakeMask parameter have not been met. If
dwMilliseconds is zero, the function tests the states of the specified objects and returns
immediately. If dwMilliseconds is INFINITE, the function's time-out interval never elapses.

dwWakeMask
Specifies input types for which an input event object handle will be added to the array of
object handles. This parameter can be any combination of the following values:

Value Meaning
QS_ALLINPUT Any message is in the queue.
QS_HOTKEY A WM_HOTKEY message is in the queue.
QS_INPUT An input message is in the queue.
QS_KEY A WM_KEYUP, WM_KEYDOWN,

WM_SYSKEYUP, or WM_SYSKEYDOWN
message is in the queue.

QS_MOUSE A WM_MOUSEMOVE message or mouse-
button message (WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on).

QS_MOUSEBUTTON A mouse-button message
(WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on).

QS_MOUSEMOVE A WM_MOUSEMOVE message is in the
queue.

QS_PAINT A WM_PAINT message is in the queue.
QS_POSTMESSAGE A posted message (other than those just

listed) is in the queue.
QS_SENDMESSAGE A message sent by another thread or

application is in the queue.
QS_TIMER A WM_TIMER message is in the queue.

Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.
The successful return value is one of the following:

Value Meaning
WAIT_OBJECT_0 to
(WAIT_OBJECT_0 + nCount - 1)

If fWaitAll is TRUE, the return
value indicates that the state
of all specified objects is
signaled. If fWaitAll is FALSE,
the return value minus
WAIT_OBJECT_0 indicates
the pHandles array index of
the object that satisfied the
wait.

WAIT_OBJECT_0 + nCount Input of the type specified in
the dwWakeMask parameter
is available in the thread's
input queue.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount - 1)

If fWaitAll is TRUE, the return
value indicates that the state
of all specified objects is
signaled and at least one of
the objects is an abandoned
mutex object. If fWaitAll is
FALSE, the return value
minus
WAIT_ABANDONED_0
indicates the pHandles array
index of an abandoned mutex
object that satisfied the wait.

WAIT_TIMEOUT The time-out interval elapsed
and the conditions specified
by the fWaitAll and
dwWakeMask parameters
were not satisfied.

If the function fails, the return valueis 0xFFFFFFFF. To get extended error information, call
GetLastError.RemarksThe MsgWaitForMultipleObjects function determines whether the wait criteria have been met. If
the criteria have not been met, the calling thread enters an efficient wait state, using very little
processor time while waiting for the conditions of the wait criteria to be met.

The function does not modify the states of the specified objects until the states of all objects have
been set to signaled. For example, a mutex can be signaled, but the thread does not get
ownership until the states of the other objects have also been set to signaled. In the meantime,
some other thread may get ownership of the mutex, thereby setting its state to nonsignaled.

When fWaitAll is TRUE, the function's wait is completed only when the states of all objects have
been set to signaled, including the input events specified by dwWaskMask. Therefore, setting
fWaitAll to TRUE prevents input from being processed until the state of all objects in the pHandles
array have been set to signaled. For this reason, if you set fWaitAll to TRUE, you should use a
short timeout value in dwMilliseconds. If you have a thread that creates windows waiting for all
objects in the pHandles array, including input events specified by dwWakeMask, with no timeout
interval, the system will deadlock. This is because threads that create windows must process
messages. DDE sends message to all windows in the system. Therefore, if a thread creates
windows, do not set the fWaitAll parameter to TRUE in calls to MsgWaitForMultipleObjects
made from that thread.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

The MsgWaitForMultipleObjects function can specify handles of any of the following object
types in the pHandles array:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. The state of a change
notification object is set to signaled when a
specified type of change occurs within a specified
directory or directory tree.

Console input The CreateFile function returns the handle when
the CONIN$ value is specified, or the
GetStdHandle function returns the handle. The
state of the object is set to signaled when there is
unread input in the console's input buffer and
nonsignaled when the input buffer is empty.

Event The CreateEvent or OpenEvent function returns
the handle. The state of an event object is set
explicitly to signaled by the SetEvent or
PulseEvent function. The state of a manual-
reset event object must be reset explicitly to
nonsignaled by the ResetEvent function. For an
auto-reset event object, the wait function resets
the object state to nonsignaled before returning.
Event objects are also used in overlapped
operations, in which the state is set by the
system.

Mutex The CreateMutex or OpenMutex function
returns the handle. The state of a mutex object is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. The state of a process object
is set to signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and the
maximum count specified during its creation. Its
state is set to signaled when its count is greater
than zero and nonsignaled when its count is zero.
If the current state of the semaphore is signaled,
the wait function decreases the count by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. The state of a thread object is set to
signaled when the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an
active timer is set to signaled when it reaches its
due time. You can deactivate the timer by calling
the CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateThread, FindFirstChangeNotification,
GetStdHandle, MsgWaitForMultipleObjectsEx OpenEvent, OpenMutex, OpenProcess,
OpenSemaphore, OpenWaitableTimer, PulseEvent, ResetEvent, SetEvent

MsgWaitForMultipleObjectsEx
[New - Windows NT]

The MsgWaitForMultipleObjectsEx function returns when one of the following occurs:

· Either any one or all of the specified objects are in the signaled state. The array of objects
can include input event objects, which you specify using the dwWakeMask parameter.

· An I/O completion routine or asynchronous procedure call (APC) is queued to the thread.
· The time-out interval elapses.

The MsgWaitForMultipleObjectsEx function does not return if there is unread input of the
specified type in the queue. It returns only when new input arrives.

DWORD MsgWaitForMultipleObjectsEx(
DWORD nCount, // number of handles in handle array
LPHANDLE pHandles, // pointer to an object-handle array
DWORD dwMilliseconds, // time-out interval in milliseconds
DWORD dwWakeMask, // type of input events to wait for
DWORD dwFlags // wait flags

);ParametersnCount
Specifies the number of object handles in the array pointed to by pHandles. The maximum
number of object handles is MAXIMUM_WAIT_OBJECTS minus one.

pHandles
Points to an array of object handles. For a list of the object types whose handles you can
specify, see the Remarks section later in this topic. The array can contain handles to multiple
types of objects.
Windows NT: The handles must have SYNCHRONIZE access.

dwMilliseconds
Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the conditions specified by the dwWakeMask and dwFlags parameters are not met. If
dwMilliseconds is zero, the function tests the states of the specified objects and returns
immediately. If dwMilliseconds is INFINITE, the function's time-out interval never elapses.

dwWakeMask
Specifies input types for which an input event object handle will be added to the array of
object handles. This parameter can be any combination of the following values:

Value Meaning
QS_ALLINPUT Any message is in the queue.
QS_HOTKEY A WM_HOTKEY message is in the

queue.
QS_INPUT An input message is in the queue.
QS_KEY A WM_KEYUP, WM_KEYDOWN,

WM_SYSKEYUP, or
WM_SYSKEYDOWN message is in the
queue.

QS_MOUSE A WM_MOUSEMOVE message or
mouse-button message
(WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on) is in
the queue.

QS_MOUSEBUTTON A mouse-button message
(WM_LBUTTONUP,
WM_RBUTTONDOWN, and so on) is in
the queue.

QS_MOUSEMOVE A WM_MOUSEMOVE message is in the
queue.

QS_PAINT A WM_PAINT message is in the queue.
QS_POSTMESSAGE A posted message (other than those just

listed) is in the queue.
QS_SENDMESSAGE A message sent by another thread or

application is in the queue.
QS_TIMER A WM_TIMER message is in the queue.

dwFlags
Specifies the wait type. This parameter can be any combination of the following values:

Value Meaning
0 The function returns when any one

of the objects is signaled. The return
value indicates the object whose
state caused the function to return.

MWMO_WAITALL The function returns when all objects
in the pHandles array are signaled at
the same time.

MWMO_ALERTABLE The function also returns if an APC
has been queued to the thread with
QueueUserAPC.

Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.
The successful return value is one of the following:

Value Meaning
WAIT_OBJECT_0 to
(WAIT_OBJECT_0 + nCount - 1)

If the MWMO_WAITALL flag
is used, the return value
indicates that the state of all
specified objects is signaled.
Otherwise, the return value
minus WAIT_OBJECT_0
indicates the pHandles array
index of the object that
caused the function to return.

WAIT_OBJECT_0 + nCount Input of the type specified in
the dwWakeMask parameter
is available in the thread's
input queue.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount - 1)

If the MWMO_WAITALL flag
is used, the return value
indicates that the state of all
specified objects is signaled
and at least one of the
objects is an abandoned
mutex object. Otherwise, the
return value minus
WAIT_ABANDONED_0
indicates the pHandles array
index of an abandoned mutex
object that caused the
function to return.

WAIT_IO_COMPLETION The wait was ended by a
user-mode asynchronous
procedure call (APC) queued
to the thread.

WAIT_TIMEOUT The time-out interval elapsed,
but the conditions specified
by the dwFlags and
dwWakeMask parameters
were not met.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.RemarksThe MsgWaitForMultipleObjectsEx function determines whether the conditions specified by
dwWakeMask and dwFlags have been met. If the conditions have not been met, the calling thread
enters an efficient wait state. The thread uses very little processor time while waiting for one of the
conditions to be met or for the time-out interval to elapse.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the system decreases the count of a semaphore object by one.

The MsgWaitForMultipleObjectsEx function can specify handles of any of the following object
types in the pHandles array:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. The state of a change
notification object is set to signaled when a
specified change occurs within a specified
directory or directory tree.

Console input The CreateFile function returns the handle when
the CONIN$ value is specified, or the
GetStdHandle function returns the handle. The
state of the object is set to signaled when there is
unread input in the console's input buffer and
nonsignaled when the input buffer is empty.

Event The CreateEvent or OpenEvent function returns
the handle. The state of an event object is set
explicitly to signaled by the SetEvent or
PulseEvent function. The state of a manual-
reset event object must be reset explicitly to
nonsignaled by the ResetEvent function. For an
auto-reset event object, the wait function resets
the object state to nonsignaled before returning.
Event objects are also used in overlapped
operations, in which the state is set by the
system.

Mutex The CreateMutex or OpenMutex function
returns the handle. The state of a mutex object is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. The state of a process object
is set to signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and the
maximum count specified during its creation. Its
state is set to signaled when its count is greater
than zero and nonsignaled when its count is
zero. If the current state of the semaphore is
signaled, the wait function decreases the count
by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. The state of a thread object is set to
signaled when the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an
active timer is set to signaled when it reaches its
due time. You can deactivate the timer by calling
the CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.

See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateThread, CreateWaitableTimer,
FindFirstChangeNotification, GetStdHandle, MsgWaitForMultipleObjects, OpenEvent,
OpenMutex, OpenProcess, OpenSemaphore, OpenWaitableTimer, PulseEvent,
QueueUserAPC, ResetEvent, SetEvent, SetWaitableTimer

MulDiv
The MulDiv function multiplies two 32-bit values and then divides the 64-bit result by a third 32-
bit value. The return value is rounded up or down to the nearest integer.

int MulDiv(
int nNumber, // 32-bit signed multiplicand
int nNumerator, // 32-bit signed multiplier
int nDenominator // 32-bit signed divisor

);ParametersnNumber
Specifies the multiplicand.

nNumerator
Specifies the multiplier.

nDenominator
Specifies the number by which the result of the multiplication (nNumber * nNumerator) is to be
divided.

Return ValuesIf the function succeeds, the return value is the result of the multiplication and division. If either an
overflow occurred or nDenominator was 0, the return value is - 1.See AlsoInt32x32To64, UInt32x32To64

MultiByteToWideChar
The MultiByteToWideChar function maps a character string to a wide-character (Unicode) string.
The character string mapped by this function is not necessarily from a multibyte character set.

int MultiByteToWideChar(
UINT CodePage, // code page
DWORD dwFlags, // character-type options
LPCSTR lpMultiByteStr, // address of string to map
int cchMultiByte, // number of characters in string
LPWSTR lpWideCharStr, // address of wide-character buffer
int cchWideChar // size of buffer

);ParametersCodePage
Specifies the code page to be used to perform the conversion. This parameter can be given
the value of any codepage that is installed or available in the system. The following values
may be used to specify one of the system default code pages:

Value Meaning
CP_ACP ANSI code page
CP_MACCP Macintosh code page
CP_OEMCP OEM code page

dwFlags
A set of bit flags that indicate whether to translate to precomposed or composite wide
characters (if a composite form exists), whether to use glyph characters in place of control
characters, and how to deal with invalid characters. You can specify a combination of the
following flag constants:

Value Meaning
MB_PRECOMPOSED Always use precomposed characters ¾

that is, characters in which a base
character and a nonspacing character
have a single character value. This is the
default translation option. Cannot be used
with MB_COMPOSITE.

MB_COMPOSITE Always use composite characters ¾ that
is, characters in which a base character
and a nonspacing character have different
character values. Cannot be used with
MB_PRECOMPOSED.

MB_ERR_INVALID_CHARSIf the function encounters an invalid input
character, it fails and GetLastError
returns
ERROR_NO_UNICODE_TRANSLATION.

MB_USEGLYPHCHARS Use glyph characters instead of control
characters.

A composite character consists of a base character and a nonspacing character, each
having different character values. A precomposed character has a single character
value for a base/non-spacing character combination. In the character è, the e is the base
character and the accent grave mark is the nonspacing character.
The function's default behavior is to translate to the precomposed form. If a precomposed
form does not exist, the function attempts to translate to a composite form.
The flags MB_PRECOMPOSED and MB_COMPOSITE are mutually exclusive. The
MB_USEGLYPHCHARS flag and the MB_ERR_INVALID_CHARS can be set regardless of
the state of the other flags.

lpMultiByteStr
Points to the character string to be converted.

cchMultiByte
Specifies the size in bytes of the string pointed to by the lpMultiByteStr parameter. If this value
is - 1, the string is assumed to be null terminated and the length is calculated automatically.

lpWideCharStr
Points to a buffer that receives the translated string.

cchWideChar
Specifies the size, in wide characters, of the buffer pointed to by the lpWideCharStr
parameter. If this value is zero, the function returns the required buffer size, in wide
characters, and makes no use of the lpWideCharStr buffer.

Return ValuesIf the function succeeds, and cchWideChar is nonzero, the return value is the number of wide
characters written to the buffer pointed to by lpWideCharStr.

If the function succeeds, and cchWideChar is zero, the return value is the required size, in wide
characters, for a buffer that can receive the translated string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
ERROR_NO_UNICODE_TRANSLATION
RemarksThe lpMultiByteStr and lpWideCharStr pointers must not be the same. If they are the same, the

function fails, and GetLastError returns the value ERROR_INVALID_PARAMETER.

The function fails if MB_ERR_INVALID_CHARS is set and it encounters an invalid character in
the source string. An invalid character is one that would translate to the default character if
MB_ERR_INVALID_CHARS was not set, but is not the default character in the source string, or
when a lead byte is found in a string and there is no valid trail byte for DBCS strings. When an
invalid character is found, and MB_ERR_INVALID_CHARS is set, the function returns 0 and sets
GetLastError with the error ERROR_NO_UNICODE_TRANSLATION.See AlsoWideCharToMultiByte

MultinetGetConnectionPerformance
The MultinetGetConnectionPerformance function returns information about the expected
performance of a connection used to access a network resource. This function can be used only
to request information for a local device that is redirected to a network resource, or for a network
resource to which there is currently a connection.

MultinetGetConnectionPerformance(
LPNETRESOURCE lpNetResource,
LPNETCONNECTINFOSTRUCT lpNetConnectInfoStruct,

);ParameterslpNetResource
Specifies one of the following network resources:

Value Meaning
lpLocalName Pointer to a buffer that specifies a local

device, such as "F:" or "LPT1", that is
redirected to a network resource to be
queried. If this parameter is NULL or an
empty string, the network resource is
specified in lpRemoteName. If this flag
specifies a local device,
lpRemoteName is ignored.

LpRemoteName Specifies a network resource to query.
The resource must currently have an
established connection. For example, if
the resource is a file on a file server,
then having the file open will ensure the
connection.

LpProvider Usually set to NULL, but may be
optionally specified if the network on
which the resource resides is known. If
lpProvider is not NULL, Windows will try
only the named network.

lpNetConnectInfoStruct
Pointer to the NETCONNECTINFOSTRUCT structure.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one or more of the following error values.

Value Meaning

ERROR_NOT_SUPPORTED The network resource does
not supply this information.

ERROR_NOT_CONNECTED lpLocalName is not a
redirected device, or
lpRemoteName is not the
name of a resource that is
currently connected.

ERROR_NO_NET_OR_BAD_PATH The operation could not be
handled either because a
network component is not
started or the specified
resource name is not
recognized.

ERROR_BAD_DEVICE lpLocalName is invalid.
ERROR_BAD_NET_NAME lpRemoteName was not

recognized by any network.
ERROR_INVALID_PARAMETER Either lpNetConnectInfoStruct

does not point to a
NETCONNECTINFOSTRUCT
structure in which
cbStructure is filled with the

structure size, or both
lpLocalName and
lpRemoteName are not
specified.

ERROR_NO_NETWORK Network components are not
running.

ERROR_EXTENDED_ERROR A network-specific error
occurred. To obtain a
description of the error, call
WNetGetLastError.

RemarksThe information returned by the MultinetGetConnectionPerformance function is an estimate
only. Network traffic and routing can affect the accuracy of the results returned.

A typical way to use this function would be to open a file on a network server (which would ensure
that there is a connection to the file), call this function, and use the results to make decisions
about how to manage file I/O. For example, you can decide whether to read the entire file into a
temporary file on the client or directly access the file on the server.See AlsoNETRESOURCE, WNetGetLastError

NDdeGetErrorString
The NDdeGetErrorString function is called to convert an error code returned by a network DDE
function into an error string that explains the returned error code.

UINT NDdeGetErrorString(
UINT uErrorCode, // error code to get string for
LPTSTR lpszErrorString, // buffer to hold error string
DWORD cBufSize // size of buffer

);ParametersuErrorCode
Error code to be converted into an error string.

lpszErrorString
Address of a buffer to accept the translated error string. This parameter must not be NULL. If
the buffer is not large enough to store the complete error string, the string is truncated.

cBufSize
The size of the buffer allocated to receive the error string, in bytes.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error code. If the lpszErrorString buffer is not
large enough to accept the complete error string, and the string is truncated, the function returns
the value NDDE_BUF_TOO_SMALL.

NDdeGetShareSecurity
The NDdeGetShareSecurity function is called to get the SECURITY_DESCRIPTOR associated
with the DDE share. This is done usually for editing.

UINT NDdeGetShareSecurity(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share to delete
SECURITY_INFORMATION si, // requested information
PSECURITY_DESCRIPTOR pSD, // address of SD buffer
DWORD cbSD, // size of SD buffer
LPDWORD lpcbsdRequired // address of required size for SD buffer

);ParameterslpszServer
Address of the server name on which the DSDM resides.

lpszShareName
Address of the share name whose security descriptor is to be retrieved from the DSDM. This
parameter must not be NULL.

si
Identifies the SECURITY_INFORMATION to be retrieved from the SECURITY_DESCRIPTOR
associated with the share.

pSD
Address of a buffer that will accept the retrieved self-relative SECURITY_DESCRIPTOR. This
parameter can be NULL. If this parameter is NULL, the DSDM determines the size of the
requested security information and returns the number of bytes needed in the lpcbsdRequired
parameter along with the NDDE_BUF_TOO_SMALL error code.

cbSD
Specifies the size of the buffer provided and referenced by the pSD parameter to accept the
retrieved security descriptor. It must be 0 if pSD is NULL.

lpcbsdRequired
Address of the variable into which the actual size of the retrieved security descriptor is stored.
This paramter must not be NULL.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString. If the pSD parameter was NULL, it returns
NDDE_BUF_TOO_SMALL.See AlsoSECURITY_INFORMATION, NDdeSetShareSecurity

NDdeGetTrustedShare
The NDdeGetTrustedShare function is called to retrieve the options associated with a DDE share
that is in the server user's list of trusted shares.

UINT NDdeGetTrustedShare(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share to query
LPDWORD lpdwTrustOptions, // trust options in effect
LPDWORD lpdwShareModId0, // first word of share modify identifier
LPDWORD lpdwShareModId1 // second word of share modify identifier

);ParameterslpszServer
Address of the server name on which the DSDM resides.

lpszShareName
Address of the share name whose trusted status is being queried. This parameter must not be
NULL.

lpdwTrustOptions
Address of a variable into which the TRUST_SHARE_OPTIONS will be stored. This
parameter must not be NULL.

lpdwShareModId0
Address of a variable into which the first word of the trusted share modify identifier will be
stored. This parameter must not be NULL.

lpdwShareModId1
Address of a variable into which the second word of the trusted share modify identifier will be
stored. This parameter must not be NULL.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString.RemarksThe trusted share modify identifier reflects the version of the DDE share in the DSDM at the time
the DDE share was initially granted trusted status. The trusted share modify identifier is primarily
used to purge obsolete trusted shares. However, the user does not need to purge obsolete trusted
shares. The network DDE agent purges obsolete shares on the user's behalf.See alsoNDdeSetTrustedShare

NDdeIsValidAppTopicList
The NDdeIsValidAppTopicList function is called to check an application and topic string
("AppName|TopicName") for proper syntax.

BOOL NDdeIsValidAppTopicList(
LPTSTR targetTopic // points to app and topic string

);ParameterstargetTopic
Address of the application and topic string to validate. This parameter must not be NULL.

Return ValuesIf the targetTopic parameter has valid syntax, the return value is nonzero.

If the function fails, the return value is zero.RemarksThis function is also called by NDdeShareAdd when it creates the DDE share.See alsoNDdeShareAdd

NDdeIsValidShareName
The NDdeIsValidShareName function is called to check a share name for proper syntax.

BOOL NDdeIsValidShareName(
LPTSTR shareName // points to share name to validate

);ParametersshareName
Address of a share name to validate. This parameter must not be NULL.

Return ValuesIf the share name has valid syntax, the return value is nonzero.

If the share name does not have valid syntax, the return value is zero.RemarksThis function is also called by NDdeShareAdd when it creates the DDE share.See alsoNDdeShareAdd

NDdeSetShareSecurity
The NDdeSetShareSecurity function is called to set the SECURITY_DESCRIPTOR associated
with the DDE share. This is done usually after editing the DACL assigned to the DDE share.

UINT NDdeSetShareSecurity(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share to delete
SECURITY_INFORMATION si, // type of information
PSECURITY_DESCRIPTOR pSD // address of security descriptor to set

);ParameterslpszServer
Address of the server name on which the DSDM will be modified.

lpszShareName
Address of the share name whose security descriptor is to be modified in the DSDM. This
parameter must not be NULL.

si
Specifies a SECURITY_INFORMATION structure identifying the contents of the security
descriptor pointed to by the pSD parameter.

pSD
Address of the SECURITY_DESCRIPTOR that will be the source of the security information
modified in the DDE share. This parameter must not be NULL and should point to a valid
security descriptor.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString.RemarksTo modify the SECURITY_DESCRIPTOR associated with a DDE share in the DSDM, the user
must have appropriate privilege; the share creator has this privilege.See AlsoSECURITY_INFORMATION, NDdeGetShareSecurity

NDdeSetTrustedShare
The NDdeSetTrustedShare function is called to grant the referenced DDE share trusted status
within the current user's context.

UINT NDdeSetTrustedShare(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share to delete
DWORD dwTrustOptions // trust options to apply

);ParameterslpszServer
Address of the server name on which the DSDM will be modified.

lpszShareName
Address of the share name being granted trusted status. This parameter must not be NULL.

dwTrustOptions
Specifies the options affecting the trusted status of the DDE share. The following
TRUST_SHARE_OPTIONS options are available:

Option Meaning
NDDE_TRUST_SHARE_START Allow the application to be started

in the user's context.
NDDE_TRUST_SHARE_INIT Allow a client to initiate to the

application if it is already running in
the user's context.

NDDE_TRUST_SHARE_DEL Remove the share's trusted status.
NDDE_TRUST_CMD_SHOW Start the application with CmdShow

field defined here overriding the
CmdShow specified in the DDE
share DSDM.

NDDE_CMD_SHOW_MASK CmdShow value used to override
the DDE share CmdShow if the
NDDE_TRUST_CMD_SHOW is
set.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString.RemarksThe DDE share must first be created with NDdeShareAdd.

If NDdeSetTrustedShare is called with dwTrustOptions set to 0, the trusted share loses its
trusted status.See alsoNDdeShareAdd

NDdeShareAdd
The NDdeShareAdd function is called to create and add a new DDE share to the DDE Share
Database Manager (DSDM).

UINT NDdeShareAdd(
LPTSTR lpszServer, // server to execute on
UINT nLevel, // info level must be 2
PSECURITY_DESCRIPTOR pSD, // initial security descriptor
LPBYTE lpBuffer, // address of NDDESHAREINFO
DWORD cBufSize // size of supplied buffer

);ParameterslpszServer
Address of the server name on which the DSDM will be modified.

nLevel
Must always be 2.

pSD
Address of the SECURITY_DESCRIPTOR that will be associated with this share and against
which access checks will be performed on subsequent initiates to this share. This parameter
can optionally be NULL, in which case the DSDM creates a default
SECURITY_DESCRIPTOR that grants "Full Control" to the CREATOR_OWNER and "Read
and Link" to everyone.

lpBuffer
Address of the NDDESHAREINFO structure that defines the ApplicationTopic list associated
with the DDE share being created as well as other parameters. This parameter must not be
NULL.

cBufSize
Size of the structure identified by lpBuffer. This parameter must not be 0.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString.RemarksBefore a client can connect to the DDE share, it must be trusted with NDdeSetTrustedShare.See AlsoNDDESHAREINFO, NDdeSetTrustedShare

NDdeShareDel
The NDdeShareDel function is called to delete a DDE share from the DSDM.

UINT NDdeShareDel(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share to delete
UINT wReserved // must be 0

);ParameterslpszServer
Address of the server name on which the DSDM will be modified.

lpszShareName
Address of the share name that is to be deleted from the DSDM. This parameter must not be
NULL.

wReserved
This parameter must be 0.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code which can be translated into a text error
message by calling NDdeGetErrorString.RemarksTo delete a DDE share from the DSDM, you must have the appropriate privilege. The share
creator has delete privilege.

NDdeShareEnum
The NDdeShareEnum function is called to list the available DDE shares in the DSDM.

UINT NDdeShareEnum(
LPTSTR lpszServer, // server to execute on
UINT nLevel, // must be 0
LPBYTE lpBuffer, // pointer to buffer
DWORD cBufSize, // size of buffer
LPDWORD lpnEntriesRead, // number of names returned
LPDWORD lpcbTotalAvailable // number of bytes available

);ParameterslpszServer
Address of the server name on which the DSDM resides.

nLevel
Must be 0.

lpBuffer
Address of a buffer supplied to accept the list of DDE shares. The list of DDE shares is stored
as a sequence of null-separated strings terminating with a double null at the end. This
parameter can be NULL. If lpBuffer is NULL, the DSDM returns the size of buffer required to
hold the list of shares in the lpcbTotalAvailable field.

cBufSize
Specifies the size of the supplied buffer addressed by lpBuffer. Must be 0 if lpBuffer is NULL.

lpnEntriesRead
Address of a variable to receive the total number of shares being enumerated. Must not be
NULL.

lpcbTotalAvailable
Address of a variable to receive the total number of bytes needed in the buffer to store the list
of DDE shares. Must not be NULL.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString. If the lpBuffer parameter is NULL, it returns
NDDE_BUF_TOO_SMALL.

NDdeShareGetInfo
The NDdeShareGetInfo function is called to retrieve DDE share information from the DSDM. This
is usually done for editing.

UINT NDdeShareGetInfo(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share
UINT nLevel, // info level must be 2
LPBYTE lpBuffer, // contains (NDDESHAREINFO) + data
DWORD cBufSize, // size of buffer
LPDWORD lpnTotalAvailable, // number of bytes available
LPWORD lpnItems // item mask for partial getinfo

);ParameterslpszServer
Address of the server name on which the DSDM resides.

lpszShareName
Address of the share name whose information is to be retrieved from the DSDM. This
parameter must not be NULL.

nLevel
Must be 2.

lpBuffer
Address of a buffer that is to accept the NDDESHAREINFO structure and associated data
pointed to by NDDESHAREINFO pointer fields. This field can be NULL. If lpBuffer is NULL,
then the DSDM calculates the number of bytes required to store the requested share
information and returns that value in the lpnTotalAvailable field along with the
NDDE_BUF_TOO_SMALL error.

cBufSize
Defines the size of the buffer addressed by the lpBuffer field. If lpBuffer is NULL, then
cBufSize should be 0.

lpnTotalAvailable
Address of a varaible that receives the count of the total number of bytes needed to store the
requested share information. This parameter must not be NULL.

lpnItems
Address of an item selection mask for partial share information retrieval. For the first release
of Windows NT, the item selection mask must be 0.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString. If the lpBuffer parameter is NULL, it returns
NDDE_BUF_TOO_SMALL.See AlsoNDDESHAREINFO, NDdeShareSetInfo

NDdeShareSetInfo
The NDdeShareSetInfo function is called to modify DDE share information stored in the NetDDE
DSDM. This is usually done after editing.

UINT NDdeShareSetInfo(
LPTSTR lpszServer, // server to execute on
LPTSTR lpszShareName, // name of share
UINT nLevel, // information level must be 2
LPBYTE lpBuffer, // address of NDDESHAREINFO
DWORD cBufSize, // size of buffer
WORD sParmNum // parameter index

);ParameterslpszServer
Address of the server name on which the DSDM will be modified.

lpszShareName
Address of the share name whose information is to be modified in the DSDM. This parameter
must not be NULL.

nLevel
Must be 2.

lpBuffer
Address of the NDDESHAREINFO structure that defines the new DDE share information to
be stored in the DSDM. Currently the DDE share information is modified as a whole, that is,
no partial edits are made. This parameter must not be NULL.

cBufSize
Size of the DDE share information addressed by lpBuffer.

sParmNum
Parameter index being modified. The current implementation does not support partial
modification and, hence, this value must be 0.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString.See AlsoNDDESHAREINFO, NDdeShareGetInfo

NDdeTrustedShareEnum
The NDdeTrustedShareEnumfunction lists the names of all network DDE shares that are trusted
in the context of the calling process.

UINT NDdeTrustedShareEnum(
LPTSTR lpszServer, // server to execute on
UINT nLevel, // must be 0
LPBYTE lpBuffer, // pointer to buffer
DWORD cBufSize, // size of buffer
LPDWORD lpnEntriesRead, // number of names returned
LPDWORD lpcbTotalAvailable // number of bytes available

);ParameterslpszServer
Address of the server name on which the DSDM resides.

nLevel
Must be 0.

lpBuffer
Address of a buffer supplied to accept the list of trusted DDE shares. The list of trusted DDE
shares is returned as a sequence of null-separated strings terminating with a double null at
the end. This parameter can be NULL. If the lpBuffer is NULL, the DSDM returns the size of
buffer required to hold the list of shares in the lpcbTotalAvailable field.

cBufSize
Specifies the size of the supplied buffer addressed by lpBuffer. This parameter must be 0 if
lpBuffer is NULL.

lpnEntriesRead
Address of a variable to receive the total number of trusted shares being enumerated. This
parameter must not be NULL.

lpcbTotalAvailable
Address of a variable to receive the total number of bytes needed in the buffer to store the list
of trusted DDE shares. This parameter must not be NULL.

Return ValuesIf the function succeeds, the return value is NDDE_NO_ERROR.

If the function fails, the return value is an error code, which can be translated into a text error
message by calling NDdeGetErrorString. If the lpBuffer parameter is NULL, it returns
NDDE_BUF_TOO_SMALL.

NetAccessAdd
The NetAccessAdd function is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAccessCheck
The NetAccessCheck function is obsolete. Win32-based applications should use the
AccessCheck function.

NetAccessDel
The NetAccessDel function is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAccessEnum
The NetAccessEnum function is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAccessGetInfo
The NetAccessGetInfo function is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAccessGetUserPerms
The NetAccessGetUserPerms function is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAccessSetInfo
The NetAccessSetInfo functions is obsolete. Win32-based applications should use the
GetFileSecurity and SetFileSecurity functions.

NetAlertRaise
The NetAlertRaise function notifies all registered clients that a particular event occurred.Security RequirementsNo special group membership is required to successfully execute NetAlertRaise.

NET_API_STATUS NetAlertRaise(
LPTSTR AlertEventName,
LPVOID Buffer,
DWORD BufferSize

);ParametersAlertEventName
Pointer to a Unicode string that specifies the interrupting message to raise.

Buffer
Pointer to the data to be sent to the clients listening for this interrupting message. The data
should consist of the STD_ALERT structure followed by any additional interrupting message
data from the ADMIN_OTHER_INFO, ERRLOG_OTHER_INFO, PRINT_OTHER_INFO, and
USER_OTHER_INFO data structures.

BufferSize
Specifies in bytes, the size of the buffer.

See AlsoNetAlertRaiseEx

NetAlertRaiseEx
The NetAlertRaiseEx function simplifies the raising of an Administrators interrupting message.Security RequirementsNo special group membership is required to successfully execute NetAlertRaiseEx.

NET_API_STATUS NetAlertRaiseEx(
LPTSTR AlertEventName,
LPVOID VariableInfo,
DWORD VariableInfoSize,
LPTSTR ServiceName

);ParametersAlertEventName
Pointer to a Unicode string that specifies which type of interrupting message to raise.

VariableInfo
Information to put into the Administrators interrupting message.

VariableInfoSize
Number of bytes of variable information.

ServiceName
Name of the service raising the Administrators interrupting message.See AlsoNetAlertRaiseEx

NetApiBufferAllocate
The NetApiBufferAllocate function allocates memory from the heap. Use this function only when
compatibility with the NetApiBufferFree function is required. Otherwise, use LocalAlloc.

NET_API_STATUS NetApiBufferAllocate(
DWORD ByteCount,
LPVOID *Buffer

);ParametersByteCount
The number of bytes to allocate.

buffer
Pointer to the location at which to store the pointer to the allocated buffer.See AlsoNetApiBufferReallocate

NetApiBufferFree
The NetApiBufferFree function frees the memory that NetApiBufferAllocate allocates. Use this
function to free the memory that other LAN Manager functions return.

NET_API_STATUS NetApiBufferFree(
LPVOID Buffer

);ParametersBuffer
Pointer to an information buffer that other LAN Manager functions previously returned on a
function call.See AlsoNetApiBufferAllocate, NetApiBufferReallocate

NetApiBufferReallocate
The NetApiBufferReallocate function changes the size of a buffer allocated with
NetApiBufferAllocate.

NET_API_STATUS NetApiBufferReallocate(
LPVOID OldBuffer,
DWORD NewByteCount,
LPVOID NewBuffer

);ParametersOldBuffer
Pointer to the reallocated buffer.

NewByteCount
The new size of the buffer.

NewBuffer
Pointer to a function information buffer previously returned on a function call.

See AlsoNetApiBufferAllocate

NetApiBufferSize
The NetApiBufferSize function returns the size, in bytes, of the allocated buffer using
NetApiBufferAllocate.

NET_API_STATUS NetApiBufferSize(
LPVOID buffer,
DWORD ByteCount

);Parametersbuffer
Pointer to a function information buffer previously returned on a function call.

ByteCount
The size of the buffer.See AlsoNetApiBufferFree

NetAuditClear
The NetAuditClear function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use event logging.

NetAuditRead
The NetAuditRead function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use event logging.

Netbios
The Netbios function interprets and executes the specified network control block (NCB).

UCHAR Netbios(
PNCB pncb // address of network control block

);Parameterspncb
Pointer to an NCB structure describing the network control block.

Return ValuesFor synchronous requests, the return value is the return code of the NCB structure. That value is
also returned in the ncb_retcode member of the NCB structure.

There are two return value possibilities for accepted asynchronous requests. If the asynchronous
command has already completed when Netbios returns to its caller, the return value is the return
code of the NCB structure, just as if it were a synchronous NCB structure. If the asynchronous
command is still pending when Netbios returns to its caller, the return value is zero.

If the address specified by the pncb parameter is invalid, the return value is NRC_BADNCB.RemarksThe Netbios function is primarily for applications written for the IBM NetBIOS system that need to
be ported to Windows. Applications that do not have this requirement typically use other
interfaces, such as mailslots and named pipes, instead of Netbios.

Netbios contains extensions to the standard IBM NetBIOS 3.0 specification to allow POST
routines to be called from C and to operate efficiently in the Windows environment.

When an asynchronous network control block finishes and the ncb_post member is nonzero, the
routine specified in ncb_post is called with a single parameter of type PNCB. This parameter
contains the address of the finishing network control block. (In the standard IBM NetBIOS 3.0, the
address of the network control block is supplied in a nonportable interface.)

Another extension to the NCB structure is a handle of an event (the ncb_event member). The
event is set to the nonsignaled state by the system when an asynchronous NetBIOS command is
accepted, and it is set to the signaled state when the asynchronous NetBIOS command finishes.

Using ncb_event to submit asynchronous requests requires fewer system resources than using
ncb_post. Also, when ncb_event is nonzero, the pending request is canceled if the thread
terminates before the request is processed. This is not true for requests sent by using ncb_post.

Only manual reset events should be used with Netbios. A specified event should not be
associated with more than one active asynchronous NetBIOS command.

In Win32s, this function does not support features that conflict with the non-preemptive, shared-
memory design of Windows 3.1. Because the system does not implement events, this function
ignores the ncb_event member of the NCB structure. Also, the system maintains one systemwide
name table rather the a per-process name table.See AlsoNCB

NetConfigGet
The NetConfigGet function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use the registry.

NetConfigGetAll
The NetConfigGetAll function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use the registry.

NetConfigSet
The NetConfigSet function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use the registry.

NetConnectionEnum
The NetConnectionEnum function is obsolete. It is provided only for compatibility with LAN
Manager and 16-bit versions of Windows. Win32-based applications should use the
WNetEnumResource function.

NetErrorLogClear
The NetErrorLogClear function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use event logging.

NetErrorLogRead
The NetErrorLogRead function is obsolete. It is included for compatibility with 16-bit versions of
Windows. Win32-based applications should use event logging.

NetFileClose
The NetFileClose function is obsolete in the Win32-based application programming interface
(API). It is included for compatibility with 16-bit versions of Windows.

NetFileEnum
The NetFileEnum function supplies information about some or all open files on a server, allowing
the user to supply a resume handle and get required information through repeated calls to the
function.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetFileEnum.

NET_API_STATUS NetFileEnum(
LPTSTR servername,
LPTSTR basepath,
LPTSTR username,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

basepath
Pointer to a Unicode string containing a qualifier for the returned information. If NULL, all open
resources are enumerated. If not NULL, the function enumerates only resources that have
basepath as a prefix. A prefix is the path component up to a backslash.

username
Pointer to a Unicode string that specifies the name of the user. If not NULL, username serves
as a qualifier to the enumeration. The files returned are limited to those that have user names
matching the qualifier. If username is NULL, no user-name qualifier is used.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
2 Return file identification number. The returned

buffer will contain an array of FILE_INFO_2
structures.

3 Return information about the file. The returned
buffer will contain an array of FILE_INFO_3
structures.

bufptr
Pointer to the address of the return information structure.

prefmaxlen
Preferred maximum length, in 8-bit bytes, of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resume_handle
Pointer to a DWORD that contains a resume handle, which is used to continue an existing file
search. The handle should be zero on the first call and left unchanged for subsequent calls. If
resume_handle is NULL, then no resume handle is stored.See AlsoNetFileGetInfo

NetFileGetInfo
The NetFileGetInfo function retrieves information about a particular opening of a server resource.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetFileGetInfo.

NET_API_STATUS NetFileGetInfo(
LPTSTR servername,
DWORD fileid,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

fileid
File identifier of the open resource for which to return information. The fileid value must be
that returned in a previous enumeration call.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
2 Return file identification number. Points to a buffer

that contains an array of FILE_INFO_2 structures.
3 Return information about the file. Points to a buffer

that contains an array of FILE_INFO_3 structures.

bufptr
Pointer to the address of the return information structure.See AlsoNetFileEnum

NetGetAnyDCName
The NetGetAnyDCName function gets the name of any domain controller for a domain that is
directly trusted by the server name.Security RequirementsNo special group membership is required to successfully execute NetGetAnyDCName.

NET_API_STATUS NetGetAnyDCName(
LPCWSTR ServerName,
LPCWSTR DomainName,
OUT LPBYTE * Buffer

);ParametersServerName
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

DomainName
Specifies the name of domain (null for primary domain)

Buffer
Returns a pointer to an allocated buffer containing the server name of a domain controller for
the domain. The server name is prefixed by \\. The buffer should be deallocated using
NetApiBufferFree.

RemarksIf ServerName is a standalone Windows NT Workstation or standalone Windows NT Server, no
DomainName is valid. If ServerName is a Windows NT Workstation that is a member of a domain
or a Windows NT Server member, the DomainName must be in the same domain as
ServerName. If ServerName is a Windows NT Server domain controller, the DomainName must
be one of the domains trusted by the domain for which the server is a controller . The domain
controller that this call finds has been operational at least once during this call.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_SUCCESS Buffer successfully
contains the name of the
domain controller prefixed
by \\.

ERROR_NO_LOGON_SERVERS No domain controllers
could be found

ERROR_NO_SUCH_DOMAIN The specified domain is
not a trusted domain.

ERROR_NO_TRUST_LSA_SECRET The client side of the trust
relationship is broken.

ERROR_NO_TRUST_SAM_ACCOUNT The server side of the
trust relationship is broken
or the password is
broken.

ERROR_DOMAIN_TRUST_INCONSISTENTThe server that
responded is not a proper
domain controller of the
specified domain.

See AlsoNetGetDCName

NetGetDCName
The NetGetDCName function returns the name of the Primary Domain Controller (PDC) for the
specified domain.Security RequirementsNo special group membership is required to successfully execute NetGetDCName.

NET_API_STATUS NetGetDCName(
LPWSTR servername,
LPWSTR domainname,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

domainname
Pointer to a Unicode string containing the name of the domain. A NULL pointer or string
indicates that the function returns the name of the domain controller for the primary domain.

bufptr
Returns a pointer to an allocated buffer containing the server name of the PDC of the domain.
The server name is prefixed by \\. The buffer should be deallocated using NetApiBufferFree.

Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

NERR_DCNotFound Could not find the domain
controller for the domain.

ERROR_INVALID_NAME The name could not be
found.

See AlsoNetGetAnyDCName

NetGetDisplayInformationIndex
The NetGetDisplayInformationIndex function gets the index of the first display information entry
whose name begins with a specified string or alphabetically follows the string. You can use this
function to determine a starting index for subsequent calls to the NetQueryDisplayInformation
function.Security RequirementsNo special group membership is required to successfully execute
NetGetDisplayInformationIndex.

NET_API_STATUS NetGetDisplayInformationIndex(
LPWSTR ServerName, // pointer to server to get information from
DWORD Level, // level of information to retrieve
LPWSTR Prefix, // pointer to prefix string
LPDWORD Index // receives index of entry

);ParametersServerName
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

Level
Specifies one of the following values to return the level of information provided.

Value Meaning
1 Query all Local and Global (normal) user accounts.
2 Query all Workstation and Server user accounts.
3 Query all Global Groups.

Prefix
Pointer to a null-terminated Unicode string containing the prefix for which to search.

Index
Pointer to a 32-bit variable that receives the index of the entry.

See AlsoNetQueryDisplayInformation

NetGroupAdd
The NetGroupAdd function creates a global group in the security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupAdd.

NET_API_STATUS NetGroupAdd(
LPWSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information pointed to in the buf
parameter.

Value Meaning
0 Specify group name. The buf parameter contains a

pointer to a GROUP_INFO_0 structure.
1 Specify group name and a comment. The buf

parameter contains a pointer to a GROUP_INFO_1
structure.

2 Specifies information about the group. The buf
parameter contains a pointer to a GROUP_INFO_2
structure.

buf
Pointer to a buffer containing the global group information structure.

parm_err
Optional pointer to a DWORD to return the index of the first parameter in error when
ERROR_INVALID_PARAMETER is returned. If NULL, the parameter is not returned on error.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_GroupExists The group already exists.
NERR_NotPrimary The operation is allowed

only on the primary
domain controller of the
domain.

ERROR_INVALID_LEVEL The value specified for
the Level parameter is
invalid.

NERR_SpeGroupOp The operation is not
allowed on specified
special groups, which are
user groups, admin
groups, local groups, or
guest groups.

See AlsoNetGroupAddUser, NetGroupDel

NetGroupAddUser
The NetGroupAddUser function gives an existing user account membership in an existing global
group.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupAddUser.

NET_API_STATUS NetGroupAddUser(
LPWSTR servername,
LPWSTR GroupName,
LPWSTR username

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

GroupName
Pointer to a Unicode string containing the name of the global group to which the user is to be
given membership.

Username
Pointer to a Unicode string containing the name of the user to be given global group
membership.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_NotPrimary The operation is allowed
only on the primary
domain controller of the
domain.

NERR_SpeGroupOp The operation is not
allowed on specified
special groups, which are
user groups, admin
groups, local groups, or
guest groups.

NERR_GroupExists The group already exists.
NERR_UserNotFound The user name could not

be found.
NERR_GroupNotFound The group name could not

be found.
NERR_UserNotInGroup The user does not belong

to this group.
See AlsoNetGroupAdd, NetGroupAddUser, NetGroupDel, NetGroupDelUser

NetGroupDel
The NetGroupDel function deletes a global group account from the account database.Security RequirementsOnly members of the Administrators or the Account Operators local group can successfully
execute NetGroupDel.

NET_API_STATUS NetGroupDel(
LPWSTR servername,
LPWSTR groupname

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

groupname
Pointer to a Unicode string containing the name of the global group account to delete.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_NotPrimary The operation is allowed
only on the primary
domain controller of the
domain.

NERR_SpeGroupOp The operation is not
allowed on specified
special groups, which are
user groups, admin
groups, local groups, or
guest groups.

NERR_GroupNotFound The group name could not
be found.

See AlsoNetGroupAdd

NetGroupDelUser
The NetGroupDelUser function removes a user from a particular global group in the security
database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupDelUser.

NET_API_STATUS NetGroupDelUser(
LPWSTR servername,
LPWSTR GroupName,
LPWSTR Username

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

GroupName
Pointer to a Unicode string containing the name of the global group from which the user
membership is to be removed.

Username
Pointer to a Unicode string containing the name of the user to remove from the global group.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_NotPrimary The operation is allowed
only on the primary
domain controller of the
domain.

NERR_SpeGroupOp The operation is not
allowed on specified
special groups, which are
user groups, admin
groups, local groups, or
guest groups..

NERR_UserNotFound The user name could not
be found.

NERR_GroupNotFound The group name could not
be found.

NERR_UserNotInGroup The user does not belong
to this group.

See AlsoNetGroupAddUser

NetGroupEnum
The NetGroupEnum function retrieves information about each global group account.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupEnum.

NET_API_STATUS NetGroupEnum(
LPWSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
0 Return group name. The returned buffer points to

an array of GROUP_INFO_0 structures.
1 Return group name and comment. The returned

buffer points to an array of GROUP_INFO_1
structures.

2 Return information about the group. The returned
buffer points to an array of GROUP_INFO_2
structures.

bufptr
Pointer to the return information structure is returned in the address pointed to by bufptr. The
returned buffer should be deallocated using NetApiBufferFree.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resume_handle
Pointer to a DWORD that contains a resume_handle, which is used to continue an existing
global group search. The handle should be zero on the first call and left unchanged for
subsequent calls. If resume_handle is NULL, then no resume handle is stored.RemarksThe NetQueryDisplayInformation function provides a very efficient mechanism for enumerating

global group accounts. When possible, use that function instead of NetGroupEnum.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to
the requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_MORE_DATA More entries are available with

subsequent calls.
See AlsoNetQueryDisplayInformation, NetGroupGetInfo

NetGroupGetInfo
The NetGroupGetInfo function retrieves information about a particular global group account on a
server.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupGetInfo.

NET_API_STATUS NetGroupGetInfo(
LPWSTR servername,
LPWSTR groupname,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

groupname
Pointer to a Unicode string containing the name of the global group account on which to return
information.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
0 Return group name. The returned buffer points to

an array of GROUP_INFO_0 structures.
1 Return group name and comment. The returned

buffer points to an array of GROUP_INFO_1
structures.

2 Return information about the group. The returned
buffer points to an array of GROUP_INFO_2
structures.

bufptr
Pointer to the return information structure is returned in the address pointed to by bufptr. The
returned buffer should be deallocated using NetApiBufferFree.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_GroupNotFound The group name could not
be found.

See AlsoNetGroupSetInfo

NetGroupGetUsers
The NetGroupGetUsers function retrieves a list of the members of a particular global group in the
security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupGetUsers, except when the request is made by a user who has membership in the
specified global group, in which case no special group membership is required.

NET_API_STATUS NetGroupGetUsers(
LPWSTR servername,
LPWSTR groupname,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumeHandle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

groupname
Pointer to a Unicode string containing the name of the global group whose members are to be
listed.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
0 Return the group name. The returned buffer points

to an array of GROUP_USERS_INFO_0 structures.
1 Return the group attributes. The returned buffer

points to an array of GROUP_USERS_INFO_1
structures.

bufptr
On return a pointer to the return information structure is returned in the address pointed to by
bufptr. The returned buffer should be deallocated using NetApiBufferFree.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumeHandle
Pointer to a DWORD that contains resumeHandle, which is used to continue an existing user
group search. The handle should be zero on the first call and left unchanged for subsequent
calls. If resumeHandle is NULL, then no resume handle is stored.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_GroupNotFound The group name could not
be found.

ERROR_MORE_DATA More entries are available
with subsequent calls.

See AlsoNetGroupSetUsers

NetGroupSetInfo
The NetGroupSetInfo function sets the parameters of a global group account.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupSetInfo.

NET_API_STATUS NetGroupSetInfo(
LPWSTR servername,
LPWSTR groupname,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

groupname
Pointer to a Unicode string containing the name of the global group account to set information
on.

level
Specifies one of the following values to set the level of information pointed to in the buf
parameter.

Value Meaning
0 Specify group name. The specified buffer points to

an array of GROUP_INFO_0 structures.
1 Specifiy group name and comment. The specified

buffer points to an array of GROUP_INFO_1
structures.

2 Specify information about the group. The specified
buffer points to an array of GROUP_INFO_2
structures.

1002 Specify comments about the group. The specified
buffer points to an array of GROUP_INFO_1002
structures.

1005 Specify group attributes. The specified buffer points
to an array of GROUP_INFO_1005 structures.

buf
Pointer to a buffer containing the global group information.

parm_err
Optional pointer to a DWORD that returns the index of the first parameter in error following an
ERROR_INVALID_PARAMETER message. If NULL the parameter is not returned on error.RemarksYou can call NetGroupSetInfo with GROUP_INFO_1 and specify a value using the grpi1_name

member. However, that value will be ignored. The correct way to specify the new name of the
group is to call NetGroupSetInfo with GROUP_INFO_0 and specify a value using grpi0_name.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_NotPrimary The operation is allowed
only on the primary
domain controller of the
domain.

NERR_GroupNotFound The group name could not
be found.

NERR_SpeGroupOp The operation is not

allowed on specified
special groups, which are
user groups, admin
groups, local groups, or
guest groups.

See AlsoNetGroupGetInfo

NetGroupSetUsers
The NetGroupSetUsers function sets the global group membership for the specified global
group. Each user specified is made a member of the global group. Users that are not specified but
are currently members of the global group will have their membership revoked.

One use of NetGroupSetUsers is to replace the current membership with an entirely new
membership. The typical sequence is to use the NetGroupGetUsers function, modify the
returned membership list to look the way you want it to be, then call NetGroupSetUsers.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetGroupSetUsers on a remote server.

NET_API_STATUS NetGroupSetUsers(
LPWSTR servername,
LPWSTR groupname,
DWORD level,
LPBYTE buf,
DWORD NewMemberCount

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

groupname
Pointer to a Unicode string containing the name of the global group to which the specified
users belong.

level
Specifies one of the following values to set the level of information pointed to in the buf
parameter.

Value Meaning
0 Specify group name. The specified buffer points to

an array of GROUP_USERS_INFO_0 structures.
1 Specify group attributes. The specified buffer points

to an array of GROUP_USERS_INFO_1 structures.

buf
Pointer to the buffer location of the designated data.

NewMemberCount
Specifies the number of entries in the buffer pointed to by buf.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access
to the requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_NotPrimary The operation is allowed only

on the primary domain
controller of the domain.

NERR_GroupNotFound The group name could not be
found.

NERR_UserNotFound The user name could not be
found.

NERR_SpeGroupOp The operation is not allowed on
specified special groups, which
are user groups, admin groups,
local groups, or guest groups.

See AlsoNetGroupAddUser, NetGroupDel, NetGroupDelUser

NetHandleGetInfo
The NetHandleGetInfo function retrieves handle-specific information for character-device and
named-pipe handles.Security RequirementsAccess restrictions to the named pipe or character device also determine access privileges to
NetHandleGetInfo.

NET_API_STATUS NetHandleGetInfo(
UNSIGNED SHORT hHandle,
SHORT sLevel,
CHAR FAR *pbBuffer,
UNSIGNED SHORT cbBuffer,
UNSIGNED SHORT FAR *pcbTotalAvail

);ParametershHandle
Identifies a communication-device queue or a named pipe.

sLevel
Specifies the level of detail (1 or 2) requested.
Note The NetHandleGetInfo function can be called at level 1 only if the value of the
hHandle parameter is a valid handle to a named pipe or character device that exists on a
remote server.

The NetHandleGetInfo function can be called at level 2 only if the value of the hHandle
parameter is a handle to the server side of a valid named pipe opened on a remote
computer. If the named pipe has been opened locally or if the handle is not for a named
pipe, NetHandleGetInfo returns ERROR_INVALID_PARAMETER.

pbBuffer
Pointer to the buffer in which to store the returned data. If the function returns successfully,
the buffer contains a HANDLE_INFO_1 structure.

cbBuffer
Specifies the size, in bytes, of the data buffer pointed to by the pbBuffer parameter.

pcbTotalAvail
Pointer to an unsigned short integer in which the total number of bytes of information available
is returned. This count is valid only if NetHandleGetInfo returns NERR_SUCCESS,
ERROR_MORE_DATA, or NERR_BUFTOOSMALL.

See AlsoHANDLE_INFO_1, NetHandleSetInfo

NetHandleSetInfo
The NetHandleSetInfo function sets handle-specific information for character-device and named-
pipe handles.Security RequirementsAccess restrictions to the character device or named pipe determines access privilege.

NET_API_STATUS NetHandleSetInfo(
UNSIGNED SHORT hHandle,
SHORT sLevel,
CHAR FAR *pbBuffer,
UNSIGNED SHORT cbBuffer,
UNSIGNED SHORT FAR *sParmNum

);ParametershHandle
Identifies a communication-device queue or a named pipe.

sLevel
Specifies the level of detail provided; must be 1.

pbBuffer
Pointer to the data to be set.

cbBuffer
Specifies the size, in bytes, of the buffer pointed to by the pbBuffer parameter.

sParmNum
Specifies whether to reset all handle information or to change only a part of it. If the value of
sParmNum is PARMNUM_ALL, the pbBuffer parameter must point to the HANDLE_INFO_1
structure, and the previous handle information is replaced by this new information. If
sParmNum is any other defined value, only one element of the handle information is changed,
and the pbBuffer parameter must point to a valid value for that element.

See AlsoHANDLE_INFO_1, NetHandleSetInfo

NetLocalGroupAdd
The NetLocalGroupAdd function creates a local group in the security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupAdd.

NET_API_STATUS NetLocalGroupAdd(
LPWSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information pointed to in the buf
parameter.

Value Meaning
0 Specify local group name of the user. The specified

buffer points to an array of
LOCALGROUP_INFO_0 structures.

1 Specify local group attributes of the user. The
specified buffer points to an array of
LOCALGROUP_INFO_1 structures.

buf
Pointer to a buffer containing the local group information structure.

parm_err
Optional pointer to a DWORD that returns the index of the first parameter to cause
ERROR_INVALID_PARAMETER. If NULL the parameter is not returned on error.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have
access to the requested
information.

NERR_InvalidComputer The computer name is
invalid.

NERR_NotPrimary The operation is allowed
only on the primary
domain controller of the
domain.

NERR_GroupExists The group already exists.
NERR_UserExists The user account already

exists.
ERROR_ALIAS_EXISTS An error occurs when

accessing the alias.
See AlsoNetLocalGroupDel

NetLocalGroupAddMember
The NetLocalGroupAddMember function is obsolete. Win32-based applications should use the
NetLocalGroupAddMembers function.

NetLocalGroupAddMembers
The NetLocalGroupAddMembers function adds membership of one or more existing user
accounts or global groups to an existing local group. The function does not change the
membership status of users or global groups that are currently members of the local group.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupAddMembers on a remote server.

NET_API_STATUS NetLocalGroupAddMembers(
LPWSTR servername,
LPWSTR LocalGroupName,
DWORD level,
LPBYTE buf,
DWORD membercount

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a null-terminated Unicode string containing the name of the local group to which the
specified users or global groups will be added.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_0 structures.
3 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_3 structures.

buf
Pointer to a buffer containing the data for the new members.

membercount
Specifies the number of entries in the buffer pointed to by the buf parameter.

Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

NERR_GroupNotFound The local group specified by the
groupname parameter does not exist.

ERROR_NO_SUCH_MEMBEROne or more of the new members do
not exist. Therefore, no new members
were added.

ERROR_MEMBER_IN_ALIAS One or more of the members specified
were already members of the local
group. Therefore, no new members
were added.

ERROR_INVALID_MEMBER One or more of the members cannot
be added because their account type
is invalid. Therefore, no new members
were added.

See AlsoNetLocalGroupAdd, NetLocalGroupDelMembers, NetLocalGroupGetMembers

NetLocalGroupDel
The NetLocalGroupDel function deletes a local group account and all its members from the
accounts database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupDel.

NET_API_STATUS NetLocalGroupDel(
LPWSTR servername,
LPWSTR LocalGroupName

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a Unicode string containing the name of the local group account to delete.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_NotPrimary The operation is allowed only on the

primary domain controller of the
domain.

NERR_GroupExists The group already exists.
NERR_UserExists The user account already exists.
ERROR_NO_SUCH_ALIAS The alias group does not exist.
See AlsoNetLocalGroupAdd

NetLocalGroupDelMember
The NetLocalGroupDelMember function is obsolete. Win32-based applications should use the
NetLocalGroupDelMembers function.

NetLocalGroupDelMembers
The NetLocalGroupDelMembers function removes one or more members from an existing local
group.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupDelMembers on a remote server.

NET_API_STATUS NetLocalGroupDelMembers(
LPWSTR servername,
LPWSTR LocalGroupName,
DWORD level,
LPBYTE buf,
DWORD membercount

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a null-terminated Unicode string containing the name of the local group from which
the specified users or global groups will be removed.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_0 structures.
3 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_3 structures.

buf
Pointer to the buffer containing data that describes the removed members.

membercount
Specifies the number of entries in the array pointed to by the buf parameter.

Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

NERR_GroupNotFound The local group specified
by the groupname
parameter does not exist.

ERROR_NO_SUCH_MEMBER One or more of the
members do not exist.
Therefore, no members
were deleted.

ERROR_MEMBER_IN_ALIAS One or more of the
members specified were
not members of the local
group. Therefore, no
members were deleted.

See AlsoNetLocalGroupAddMembers, NetLocalGroupDel, NetLocalGroupGetMembers

NetLocalGroupEnum
The NetLocalGroupEnum function retrieves information about each local group account.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupEnum.

NET_API_STATUS NetLocalGroupEnum(
LPWSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
0 Return the local group name of the user. The

returned buffer points to an array of
LOCALGROUP_INFO_0 structures.

1 Return local group attributes of the user. The
returned buffer points to an array of
LOCALGROUP_INFO_1 structures.

bufptr
On return, a pointer to the return information structure is returned in the address pointed to by
bufptr. The returned buffer should be deallocated using the NetApiBufferFree function.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumehandle
Pointer to a DWORD that contains a resumehandle, which is used to continue an existing
local group search. The handle should be zero on the first call and left unchanged for
subsequent calls. If resumehandle is NULL, then no resume handle is stored.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_MORE_DATA More entries are available with

subsequent calls.
See AlsoNetQueryDisplayInformation, NetLocalGroupGetInfo

NetLocalGroupGetInfo
The NetLocalGroupGetInfo function retrieves information about a particular local group account
on a server.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupGetInfo.

NET_API_STATUS NetLocalGroupGetInfo(
LPWSTR servername,
LPWSTR LocalGroupName,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a Unicode string containing the name of the local group account on which to return
information.

level
Specifies one of the following values to return the level of information pointed to in the bufptr
parameter.

Value Meaning
0 Return the local group name of the user. The

returned buffer points to an array of
LOCALGROUP_INFO_0 structures.

1 Return local group attributes of the user. The
returned buffer points to an array of
LOCALGROUP_INFO_1 structures.

bufptr
Pointer to the return information structure is returned in the address pointed to by bufptr. The
returned buffer should be deallocated using the NetApiBufferFree function.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_NO_SUCH_ALIAS The alias group does not exist.
See AlsoNetQueryDisplayInformation, NetLocalGroupSetInfo

NetLocalGroupGetMembers
The NetLocalGroupGetMembers function retrieves a list of the members of a particular local
group in the security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupGetMembers. However, when the request is made by a user who has
membership in the specified local group, in no special group membership is required.

NET_API_STATUS NetLocalGroupGetMembers(
LPWSTR servername,
LPWSTR localgroupname,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

localgroupname
Pointer to a Unicode string containing the name of the local group whose members are to be
listed.

level
Specifies one of the following values to return the levels of information provided.

Value Meaning
0 The bufptr parameter points to an array of

LOCALGROUP_MEMBERS_INFO_0 structures.
1 The bufptr parameter points to an array of

LOCALGROUP_MEMBERS_INFO_1 structures.
2 The bufptr parameter points to an array of

LOCALGROUP_MEMBERS_INFO_2 structures.
3 The bufptr parameter points to an array of

LOCALGROUP_MEMBERS_INFO_3 structures.

bufptr
On return, a pointer to the return information structure is returned in the address pointed to by
bufptr. The returned buffer should be deallocated using the NetApiBufferFree function.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumehandle
Pointer to a DWORD that contains resumehandle, which is used to continue an existing user
group search. The handle should be zero on the first call and left unchanged for subsequent
calls. If resumehandle is NULL, then no resume handle is stored.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_NO_SUCH_ALIAS The alias group does not exist.
See AlsoNetApiBufferFree, NetLocalGroupSetMembers

NetLocalGroupSetInfo
The NetLocalGroupSetInfo function sets the parameters of a local group.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupSetInfo.

NET_API_STATUS NetLocalGroupSetInfo(
LPWSTR servername,
LPWSTR LocalGroupName,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a Unicode string containing the name of the local group account on which to set
information.

level
Specifies one of the following values to set the level of information pointed to in the buf
parameter.

Value Meaning
0 Specify the local group name of the user. The buf

parameter points to an array of
LOCALGROUP_INFO_0 structures.

1 Specify local group attributes of the user. The buf
parameter points to an array of
LOCALGROUP_INFO_1 structures.

1002 Specify local group attributes of the user. The buf
parameter points to an array of
LOCALGROUP_INFO_1002 structures.

buf
Pointer to a buffer containing the local group information.

parm_err
Optional pointer to a DWORD to return the index of the first parameter that caused
ERROR_INVALID_PARAMETER. If NULL the parameter is not returned on error.RemarksYou can call NetLocalGroupSetInfo with LOCALGROUP_INFO_1 and specify a value using the

lgrpi1_name member. However, that value will be ignored. The correct way to specify the new
name of the group is to call NetLocalGroupSetInfo with LOCALGROUP_INFO_0 and specify a
value using the lgrpi0_name member.Return ValuesIf the function succeeds, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_NotPrimary The operation is allowed only on the
primary domain controller of the
domain.

NERR_InvalidComputer The computer name is invalid.
ERROR_NO_SUCH_ALIAS The alias group does not exist.
See AlsoNetLocalGroupGetInfo

NetLocalGroupSetMembers
The NetLocalGroupSetMembers function sets the local group membership for the specified local
group. Each user or global group specified is made a member of the local group. Users or global
groups that are not specified but are currently members of the local group will have their
membership revoked.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetLocalGroupSetMembers on a remote server.

NET_API_STATUS NetLocalGroupSetMembers(
LPWSTR servername,
LPWSTR LocalGroupName,
DWORD level,
LPBYTE buf,
DWORD totalentries

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

LocalGroupName
Pointer to a Unicode string containing the name of the local group to which the specified users
or global groups belong.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_0 structures.
3 The buf parameter points to an array of

LOCALGROUP_MEMBERS_INFO_3 structures.

buf
Pointer to the buffer in which the data to be set is stored.

totalentries
Specifies the total number of entries in the buffer that the buf parameter points to.See AlsoNetLocalGroupGetMembers

NetMessageBufferSend
The NetMessageBufferSend function sends a buffer of information to a registered message
alias.Security RequirementsNo special group membership is required to execute NetMessageBufferSend on a LAN Manager
or Windows NT system. Admin, Accounts, Print, or Server operator group membership is required
to successfully execute NetMessageBufferSend on a remote server.

NET_API_STATUS NetMessageBufferSend(
LPTSTR servername,
LPTSTR msgname,
LPTSTR fromname,
LPBYTE buf,
DWORD buflen

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

msgname
Pointer to a Unicode string containing the message name to which the message buffer should
be sent.

fromname
Pointer to a Unicode string containing the message name sending the information. The
fromname parameter is new for Windows networking. This parameter is needed for sending
interrupting messages from the computer name rather than the logged on user. If NULL is
specified, the message is sent from the logged-on user as with LAN Manager 2.x.

buf
Pointer to a buffer of message text.

buflen
The length, in bytes, of the message text in buf.See AlsoNetMessageNameAdd, NetMessageNameDel, NetMessageNameEnum,

NetMessageNameGetInfo

NetMessageNameAdd
The NetMessageNameAdd function registers a message alias in the message name table. This
function requires that the Messenger service be started.Security RequirementsOnly members of the Administrators local group can successfully execute NetMessageNameAdd
on a remote server.

NET_API_STATUS NetMessageNameAdd(
LPTSTR servername,
LPTSTR msgname

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

msgname
Pointer to a Unicode string containing the message name to be added. The string cannot be
more than 15 characters long.

RemarksThe forward action flag from the LAN Manager 2.x NetMessageNameAdd function is no longer a
parameter because message forwarding is no longer supported. If the NetMessageNameAdd
function detects that a forwarded version of msgname exists on the network, the function will fail
with error NERR_Already_Exists.See AlsoNetMessageNameDel

NetMessageNameDel
The NetMessageNameDel function deletes a message alias from the table of message aliases
on a computer. This function requires that the Messenger service be started.Security RequirementsOnly members of the Administrators local group can successfully execute NetMessageNameDel
on a remote server.

NET_API_STATUS NetMessageNameDel(
LPTSTR servername,
LPTSTR msgname

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

msgname
Pointer to a Unicode string containing the message name to be deleted. The string cannot be
more than 15 characters long.See AlsoNetMessageNameAdd

NetMessageNameEnum
The NetMessageNameEnum function lists the message aliases that will receive messages on a
specified computer. This function requires that the Messenger service be started.Security RequirementsOnly members of the Administrators local group can successfully execute
NetMessageNameEnum on a remote server.

NET_API_STATUS NetMessageNameEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the requested level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

MSG_INFO_0 structures.
1 The bufptr parameter points to an array of

MSG_INFO_1 structures.

bufptr
Points to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resume_handle
Pointer to a DWORD that contains resume_handle, which is used to continue an existing
message name search. The handle should be zero on the first call and left unchanged for
subsequent calls. If resume_handle is NULL, no resume handle is stored.

See AlsoNetMessageNameGetInfo

NetMessageNameGetInfo
The NetMessageNameGetInfo function retrieves information about a particular message alias in
the message name table. This function requires that the Messenger service be started.Security RequirementsOnly members of the Administrators local group can successfully execute
NetMessageNameGetInfo on a remote server.

NET_API_STATUS NetMessageNameGetInfo(
LPTSTR servername,
LPTSTR msgname,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

msgname
Pointer to a Unicode string containing the message name on which to return information.

level
Specifies one of the following values to indicate the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

MSG_INFO_0 structures.
1 The bufptr parameter points to an array of

MSG_INFO_1 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.See AlsoNetMessageNameEnum

NetQueryDisplayInformation
The NetQueryDisplayInformation function returns user, computer, or global group account
information. Use this function to quickly enumerate account information for display in user
interfaces.Security RequirementsNo special group membership is required to successfully execute NetQueryDisplayInformation.

NET_API_STATUS NetQueryDisplayInformation(
LPWSTR ServerName,
DWORD Level,
DWORD Index,
DWORD EntriesRequested,
DWORD PreferredMaximumLength,
LPDWORD ReturnedEntryCount,
PVOID *SortedBuffer

);ParametersServerName
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

Level
Specifies one of the following values to return the level of information provided.

Value Meaning
1 Return all Local and Global (normal) user accounts.

The returned buffer points to an array of
NET_DISPLAY_USER structures.

2 Return all Workstation and Server (BDC) user
accounts. The returned buffer points to an array of
NET_DISPLAY_MACHINE structures.

3 Return all Global Groups. The returned buffer points
to an array of NET_DISPLAY_GROUP structures.

Index
Specifies the index of the first entry for which to retrieve information. Specify zero to retrieve
account information beginning with the first display information entry. If a call to
NetQueryDisplayInformation returns ERROR_MORE_DATA, you can set Index to the value
returned in the next_index member of the last entry in SortedBuffer to get data for additional
entries. To retrieve information for entries beginning with a specified prefix, set Index to the
index returned by a call to the NetGetDisplayInformationIndex function.

EntriesRequested
Specifies the maximum number of entries for which to get information.

PreferredMaximumLength
Specifies the preferred maximum size, in 8-bit bytes, of the system-allocated buffer returned
in the SortedBuffer parameter.

ReturnedEntryCount
Pointer to a 32-bit variable that receives the number of entries in the buffer returned in the
SortedBuffer parameter. Zero indicates that there are no entries with an index as large as that
specified. Entries may be returned when the function's return value is either NERR_Success
or ERROR_MORE_DATA.

SortedBuffer
Points to a variable that receives a pointer to a system-allocated buffer containing a sorted list
of the requested information. This buffer contains an array of NET_DISPLAY_USER,
NET_DISPLAY_MACHINE or NET_DISPLAY_GROUP structures. Use NetApiBufferFree to
deallocate the buffer.

Return ValuesIf the function returns account information, the return value is one of the following values.

Value Meaning

NERR_Success There are no more entries to be returned.
ERROR_MORE_DATA More entries are available. That is, the

last entry returned in the SortedBuffer
parameter is not the last entry available.
To get information for additional entries,
call NetQueryDisplayInformation again

with the Index parameter set to the value
returned in the next_index member of
the last entry in SortedBuffer.

If the function fails, the return value is one of the following error code.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

ERROR_INVALID_LEVEL The Level parameter specifies an invalid
value.

RemarksThe NetQueryDisplayInformation and NetGetDisplayInformationIndex functions provide a
very efficient mechanism for enumerating User and Global group accounts. When possible, use
these functions instead of the NetUserEnum and NetGroupEnum functions.See AlsoNET_DISPLAY_USER, NetApiBufferFree, NetGetDisplayInformationIndex, NetGroupEnum,
NetUserEnum

NetRemoteTOD
The NetRemoteTOD function returns the time of day information from a specified server.Security RequirementsNo special group membership is required to successfully execute NetRemoteTOD.

NET_API_STATUS NetRemoteTOD(
LPTSTR UncServerName,
LPBYTE *BufferPtr

);ParametersUncServerName
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

BufferPtr
On return a pointer to the return information structure TIME_OF_DAY_INFO is returned in the
address pointed to by BufferPtr.

NetReplExportDirAdd
The NetReplExportDirAdd function registers an existing directory in the export path to be
replicated.Security RequirementsOnly members of the Administrators local group or members of the Account Operators local group
can successfully execute NetReplExportDirAdd.

NET_API_STATUS NetReplExportDirAdd(
LPTSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to set the level of information provided.

Value Meaning
1 The buf parameter points to an array of

REPL_EDIR_INFO_1 structures.

buf
Pointer to the buffer in which the data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL the parameter is not returned on error.

RemarksThe default values for locktime and lockcount are both 0.See AlsoNetReplExportDirDel, REPL_EDIR_INFO_1

NetReplExportDirDel
The NetReplExportDirDel function removes registration of a replicated directory.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetReplExportDirDel.

NET_API_STATUS NetReplExportDirDel(
LPTSTR servername,
LPTSTR dirname

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the name of a replicated directory to
remove from the registration files.See AlsoNetReplExportDirAdd

NetReplExportDirEnum
The NetReplExportDirEnum function lists the replicated directories in the export path.Security RequirementsNo special group membership is required to successfully execute NetReplExportDirEnum.

NET_API_STATUS NetReplExportDirEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

REPL_EDIR_INFO_0 structures.
1 The bufptr parameter points to an array of

REPL_EDIR_INFO_1 structures.
2 The bufptr parameter points to an array of

REPL_EDIR_INFO_2 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data. A value of 0xFFFFFFFF indicates
that all available entries should be returned.

entriesread
Pointer to a DWORD that contains the actual enumerated element count is located in the
DWORD pointed to by entriesread.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position is located in the DWORD pointed to by
totalentries.

resumehandle
Pointer to a DWORD that contains resumehandle, which is used to continue an existing use
search. The handle should be zero on the first call and left unchanged for subsequent calls. If
resumehandle is NULL, no resume handle is stored.See AlsoNetReplExportDirGetInfo

NetReplExportDirGetInfo
The NetReplExportDirGetInfo function retrieves the control information of a replicated directory.Security RequirementsNo special group membership is required to successfully execute NetReplExportDirGetInfo.

NET_API_STATUS NetReplExportDirGetInfo(
LPTSTR servername,
LPTSTR dirname,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name about which to
return control information.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

REPL_EDIR_INFO_0 structures.
1 The bufptr parameter points to an array of

REPL_EDIR_INFO_1 structures.
2 The bufptr parameter points to an array of

REPL_EDIR_INFO_2 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.See AlsoNetReplExportDirSetInfo, NetReplExportDirEnum

NetReplExportDirLock
The NetReplExportDirLock function locks a replicated directory so that replication from it can be
suspended. This function increments the lock reference count for the specified directory.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetReplExportDirLock.

NET_API_STATUS NetReplExportDirLock(
LPTSTR servername,
LPTSTR dirname

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name to lock.See AlsoNetReplExportDirUnlock

NetReplExportDirSetInfo
The NetReplExportDirSetInfo function modifies the control information of a replicated directory.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetReplExportDirSetInfo.

NET_API_STATUS NetReplExportDirSetInfo(
LPTSTR servername,
LPTSTR dirname,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name to return control
information about.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
1 The buf parameter points to an array of

REPL_EDIR_INFO_1 structures.
1000 The buf parameter points to an array of

REPL_EDIR_INFO_1000 structures.
1001 The buf parameter points to an array of

REPL_EDIR_INFO_1001 structures.

buf
Pointer to the buffer in which the data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the identifier of the first parameter error when the
function sends an ERROR_INVALID_PARAMETER message. If NULL, the parameter is not
returned on error.See AlsoNetReplExportDirGetInfo

NetReplExportDirUnlock
The NetReplExportDirUnlock function unlocks a directory so that replication from it can resume.
This function decrements the lock reference count for the specified directory.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetReplExportDirUnlock.

NET_API_STATUS NetReplExportDirUnlock(
LPTSTR servername,
LPTSTR dirname,
DWORD unlockforce

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name to unlock.

unlockforce
Value that indicates the force level necessary to unlock the directory.
Force levels:
REPL_UNLOCK_NOFORCE

Unlocks the directory by decrementing the lock reference count. The lock reference count
may or may not return to 0, so the directory could still be locked.

REPL_UNLOCK_FORCE
Unlocks the directory completely by removing all outstanding locks on the directory. The
lock reference count is set to 0.See AlsoNetReplExportDirLock

NetReplGetInfo
The NetReplGetInfo function retrieves configuration information for the Replicator service.Security RequirementsNo special group membership is required to successfully execute NetReplGetInfo.

NET_API_STATUS NetReplGetInfo(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

REPL_INFO_0 structures.

bufptr
Points to the buffer in which the data set with the level parameter is stored.See AlsoNetReplSetInfo

NetReplImportDirAdd
The NetReplImportDirAdd function registers an existing directory in the import path to receive
replication from a master.Security RequirementsOnly members of the Administrators or Replicator group can successfully execute
NetReplImportDirAdd.

NET_API_STATUS NetReplImportDirAdd(
LPTSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

REPL_IDIR_INFO_0 structures.

buf
Pointer to a buffer in which data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains an index to the first parameter that caused
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.See AlsoNetReplImportDirDel

NetReplImportDirDel
The NetReplImportDirDel function removes the registration of a directory so that it no longer
receives updates from the master. Note that this function does not actually delete the directory
from the file system. The Replicator service can automatically register the directory service at any
time. To prevent the importing of a directory that is being exported by some Replicator service,
use the NetReplImportDirLock function instead.Security RequirementsOnly members of the Administrators local group or Replicator groups can successfully execute
NetReplImportDirDel.

NET_API_STATUS NetReplImportDirDel(
LPTSTR servername,
LPTSTR dirname

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the name of a replicated directory to
remove the registration.See AlsoNetReplImportDirAdd

NetReplImportDirEnum
The NetReplImportDirEnum function lists the replicated directories in the import path.Security RequirementsNo special group membership is required to successfully execute NetReplImportDirEnum.

NET_API_STATUS NetReplImportDirEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

REPL_IDIR_INFO_0 structures.
1 The bufptr parameter points to an array of

REPL_IDIR_INFO_1 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data. A value of 0xFFFFFFFF indicates
that all available entries should be returned.

entriesread
Pointer to a DWORD that contains the actual enumerated element count is located in the
DWORD pointed to by entriesread.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position is located in the DWORD pointed to by
totalentries.

resumehandle
Pointer to a DWORD that contains resumehandle, which is used to continue an existing
search. The handle should be zero on the first call and left unchanged for subsequent calls. If
resumehandle is NULL, no resume handle is stored.

See AlsoNetReplImportDirGetInfo, REPL_IDIR_INFO_0, REPL_IDIR_INFO_1

NetReplImportDirGetInfo
The NetReplImportDirGetInfo function retrieves the status information on a client replicated
directory.Security RequirementsNo special group membership is required to successfully execute NetReplImportDirGetInfo.

NET_API_STATUS NetReplImportDirGetInfo(
LPTSTR servername,
LPTSTR dirname,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name about which to
return control information.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

REPL_IDIR_INFO_0 structures.
1 The bufptr parameter points to an array of

REPL_IDIR_INFO_1 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

See AlsoNetReplImportDirEnum, REPL_IDIR_INFO_0, REPL_IDIR_INFO_1

NetReplImportDirLock
The NetReplImportDirLock function locks a replicated directory so that replication to it can be
suspended. This function increments the lock reference count for the specified directory.Security RequirementsOnly the Administrators local group or replicator group membership is required to successfully
execute NetReplImportDirLock.

NET_API_STATUS NetReplImportDirLock(
LPTSTR servername,
LPTSTR dirname

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name to lock.See AlsoNetReplImportDirUnlock

NetReplImportDirUnlock
The NetReplImportDirUnlock function unlocks a directory so that replication to it can resume.
This function decrements the lock reference count for the specified directory.Security RequirementsOnly the Administrators local group or replicator group membership is required to successfully
execute NetReplImportDirUnlock.

NET_API_STATUS NetReplImportDirUnlock(
LPTSTR servername,
LPTSTR dirname,
DWORD unlockforce

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

dirname
Pointer to a null-terminated Unicode string containing the directory name to unlock.

unlockforce
A value that indicates the force level necessary to unlock the directory.
Force levels:
REPL_UNLOCK_NOFORCE

Unlocks the directory by decrementing the lock reference count. The lock reference count
must return to 0, or the directory will remain locked.

REPL_UNLOCK_FORCE
Unlocks the directory completely by removing all outstanding locks on the directory. The
lock reference count is set to 0.See AlsoNetReplImportDirLock

NetReplSetInfo
The NetReplSetInfo function modifies the Replicator service configuration information.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetReplSetInfo.

NET_API_STATUS NetReplSetInfo(
LPTSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a null-terminated Unicode string containing the name of the remote server on which
the function is to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

REPL_INFO_0 structures.
1000 The buf parameter points to an array of

REPL_INFO_1000 structures.
1001 The buf parameter points to an array of

REPL_INFO_1001 structures.
1002 The buf parameter points to an array of

REPL_INFO_1002 structures.
1003 The buf parameter points to an array of

REPL_INFO_1003 structures.

buf
Pointer to the buffer in which data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the identifier of the first parameter that caused
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.

See AlsoNetReplGetInfo, REPL_INFO_0, REPL_INFO_1000, REPL_INFO_1001, REPL_INFO_1002,
REPL_INFO_1003

NetScheduleJobAdd
The NetScheduleJobAdd function submits a job to run at a specified future time and date. This
function requires that the Schedule service be started at the computer to which the job is
submitted.Security RequirementsOnly members of the Administrators local group can successfully execute NetScheduleJobAdd
on a remote server.

NET_API_STATUS NetScheduleJobAdd(
LPWSTR Servername,
LPBYTE Buffer,
LPDWORD JobId

);ParametersServername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

Buffer
Pointer to a buffer containing an AT_INFO structure describing the job to be submitted.

JobId
Pointer to a job identifier for a newly submitted job. This entry is valid only if the function
returns successfully.

If you set DaysOfMonth and DaysOfWeek to zero, then the job executes only once, the first time
JobTime at the server is reached. After being executed, the job will be deleted.

If one sets bits in DaysOfMonth and/or DaysOfWeek, but do not set the bit flag
JOB_RUN_PERIODICALLY, a job will execute at JobTime once for each day listed in days
bitmasks. See the AT_INFO structure for a descritpion of the bitmasks. After each execution, the
corresponding bit in days bitmasks will be cleared. Once the last bit in days bitmasks is cleared,
the job will be deleted.

If one sets bits in DaysOfMonth and/or DaysOfWeek, and at the same time set the bit flag
JOB_RUN_PERIODICALLY, a job executes at JobTime whenever a day with the corresponding
bit in days bitmasks is reached. See the AT_INFO structure for a descritpion of the bitmasks. This
job is thus executed periodically and does not get deleted as a result of repeated executions. The
only way to delete this job is by an explicit call to NetScheduleJobDel.

NetScheduleJobDel
The NetScheduleJobDel function deletes a range of jobs queued to run at a computer. This
function requires that the Schedule service be started at the computer to which the job deletion
request is being sent.Security RequirementsOnly members of the Administrators local group can successfully execute NetScheduleJobDel
on a remote server.

NET_API_STATUS NetScheduleJobDel(
LPWSTR Servername,
DWORD MinJobId,
DWORD MaxJobId

);ParametersServername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

MinJobId
Minimum job identifier. Jobs with a job identifier smaller than MinJobId will not be deleted.

MaxJobId
Maximum job identifier. Jobs with job identifier bigger than MaxJobId will not be deleted.

This function deletes all jobs whose job identifier is in the range MinJobId through MaxJobId. To
delete all jobs at the server, you can call this function with MinJobId equal to 0 and MaxJobId
equal to (DWORD) - 1. To delete just one particular job, you can choose MinJobId and MaxJobId
both equal to the identifier for that job.See AlsoNetScheduleJobAdd

NetScheduleJobEnum
The NetScheduleJobEnum function lists the jobs queued on a specified computer. This function
requires that the Schedule service be started.Security RequirementsOnly members of the Administrators local group can successfully execute NetScheduleJobEnum
on a remote server.

NET_API_STATUS NetScheduleJobEnum(
LPWSTR Servername,
LPBYTE *PointerToBuffer,
DWORD PreferredMaximumLength,
LPDWORD EntriesRead,
LPDWORD TotalEntries,
LPDWORD ResumeHandle

);ParametersServername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

PointerToBuffer
On return a pointer to the return information structure is returned in the address pointed to by
PointerToBuffer. The return information structure is an array of AT_ENUM data structures.

PreferredMaximumLength
Preferred maximum length, in 8-bit bytes of returned data.

EntriesRead
Pointer to a DWORD that contains the actual enumerated element count.

TotalEntries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

ResumeHandle
Pointer to a DWORD that contains ResumeHandle, which is used to continue an job
enumeration. The handle should be zero on the first call and left unchanged for subsequent
calls. If ResumeHandle is NULL, then no resume handle is stored.

Note Each entry returned contains the JobId number of the AT_ENUM structure. The value
of this member can be used in functions that require job identifier argument, such as
NetScheduleJobDel.See AlsoNetScheduleJobGetInfo

NetScheduleJobGetInfo
The NetScheduleJobGetInfo function retrieves information about a particular job queued on a
specified computer. This function requires that the Schedule service be started.Security RequirementsOnly members of the Administrators local group can successfully execute
NetScheduleJobGetInfo on a remote server.

NET_API_STATUS NetScheduleJobGetInfo(
LPWSTR Servername,
DWORD JobId,
LPBYTE *PointerToBuffer

);ParametersServername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

JobId
A job identifier of a job in question.

PointerToBuffer
On return a pointer to the buffer containing the AT_INFO structure describing the job in
question.

See AlsoNetScheduleJobEnum

NetServerDiskEnum
The NetServerDiskEnum function retrieves a list of disk drives on a server. This function returns
its result as an array of three-character strings (drive letter, colon, NULL).Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetServerDiskEnum on a remote computer. No special group membership is required for local
calls.

NET_API_STATUS NetServerDiskEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to return the level of information provided.

Value Meaning
100 The bufptr parameter points to an array of

SERVER_INFO_100 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resume_handle
Pointer to a DWORD that contains resume_handle, which is used to continue an existing
server disk search. The handle should be zero on the first call and left unchanged for
subsequent calls. If resume_handle is NULL, then no resume handle is stored.

See AlsoNetServerEnum, SERVER_INFO_100

NetServerEnum
The NetServerEnum function lists all servers of the specified type that are visible in the specified
domain. For example, an application can call NetServerEnum to list all domain controllers only or
all SQL servers only.

You can combine bit masks to list several types. For example, a value of 0x00000003 combines
the bit masks for SV_TYPE_WORKSTATION (0x00000001) and SV_TYPE_SERVER
(0x00000002).

Note If you require more information on the type, name, and comment for a specific server,
use the WNetEnumResource function.Security RequirementsNo special group membership is required to successfully execute NetServerEnum.

NET_API_STATUS NetServerEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
DWORD servertype,
LPTSTR domain,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
100 The bufptr parameter points to an array of

SERVER_INFO_100 structures.
101 The bufptr parameter points to an array of

SERVER_INFO_101 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
On return, the actual enumerated element count is located in the doubleword pointed to by
entriesread.

totalentries
Returns the total number of visible servers and workstations on the network.

servertype
A DWORD mask that filters server entries to return from the enumeration. The defined mask
bits specify:

Symbolic constant Value Meaning
SV_TYPE_WORKSTATION 0x00000001 All LAN Manager

workstations
SV_TYPE_SERVER 0x00000002 All LAN Manager

servers
SV_TYPE_SQLSERVER 0x00000004 Any server

running with
Microsoft SQL
Server

SV_TYPE_DOMAIN_CTRL 0x00000008 Primary domain
controller

SV_TYPE_DOMAIN_BAKCTRL 0x00000010 Backup domain
controller

SV_TYPE_TIMESOURCE 0x00000020 Server running
the Timesource
service

SV_TYPE_AFP 0x00000040 Apple File
Protocol servers

SV_TYPE_NOVELL 0x00000080 Novell servers
SV_TYPE_DOMAIN_MEMBER 0x00000100 LAN Manager 2.

x Domain
Member

SV_TYPE_LOCAL_LIST_ONLY 0x40000000 Servers
maintained by the
browser. See the
following
Remarks section.

SV_TYPE_PRINT 0x00000200 Server sharing
print queue

SV_TYPE_DIALIN 0x00000400 Server running
dial-in service

SV_TYPE_XENIX_SERVER 0x00000800 Xenix server
SV_TYPE_MFPN 0x00004000 Microsoft File and

Print for Netware
SV_TYPE_NT 0x00001000 Windows NT

(either
Workstation or
Server)

SV_TYPE_WFW 0x00002000 Server running
Windows for
Workgroups

SV_TYPE_SERVER_NT 0x00008000 Windows NT
Non-DC server

SV_TYPE_POTENTIAL_BROWSER0x00010000 Server that can
run the Browser
service

SV_TYPE_BACKUP_BROWSER 0x00020000 Server running a
Browser service
as backup

SV_TYPE_MASTER_BROWSER 0x00040000 Server running
the master
Browser service

SV_TYPE_DOMAIN_MASTER 0x00080000 Server running
the domain
master Browser

SV_TYPE_DOMAIN_ENUM 0x80000000 Primary Domain
SV_TYPE_WINDOWS 0x00400000 Windows 95 or

later
SV_TYPE_ALL 0xFFFFFFFF All servers

domain
A pointer to a Unicode string containing the name of the domain for which a list of servers is to
returned. If NULL is specified, the primary domain is implied.

resume_handle
Reserved. Must be set to zero. Use the Wnet functions.

Return ValuesIf the function returns account information, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes:

Value Meaning

ERROR_ACCESS_DENIED The user does not have access
to the requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_NO_BROWSER_SERVERS_FOUNDNo browser servers found.

ERROR_MORE_DATA More entries are available with
subsequent calls.

RemarksThe SV_TYPE_LOCAL_LIST_ONLY flag returns the list of servers maintained by the browser
internally. This has meaning only on the master browser (or on a computer that has been the
master browser in the past). The master browser is the machine that currently has rights to
determine which machines can be servers or workstations on the net.See AlsoNetServerDiskEnum, NetQueryDisplayInformation, SERVER_INFO_100, SERVER_INFO_101

NetServerGetInfo
The NetServerGetInfo function retrieves information about the specified server.Security RequirementsOnly the Administrators or Accounts Operators local group, or those with Communication, Print, or
Server operator group membership can successfully execute NetServerGetInfo at level 102 or
higher. No special group membership is required for level 100 or level 101 calls.

NET_API_STATUS NetServerGetInfo(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
100 The bufptr parameter points to an array of

SERVER_INFO_100 structures.
101 The bufptr parameter points to an array of

SERVER_INFO_101 structures.
102 The bufptr parameter points to an array of

SERVER_INFO_102 structures.

The preceding levels are valid for all platforms. The following levels are valid only for
the appropriate platforms.

Value Meaning
402 The buf parameter points to an array of

SERVER_INFO_402 structures.
403 The buf parameter points to an array of

SERVER_INFO_403 structures.
502 The buf parameter points to an array of

SERVER_INFO_502 structures.
503 The buf parameter points to an array of

SERVER_INFO_503 structures.

bufptr
Pointer to the buffer in which the data requested with the level parameter is stored.

See AlsoNetServerSetInfo, SERVER_INFO_100, SERVER_INFO_101, SERVER_INFO_102,
SERVER_INFO_402, SERVER_INFO_403, SERVER_INFO_502, SERVER_INFO_503

NetServerSetInfo
The NetServerSetInfo function sets a server's operating parameters; it can set them individually
or collectively. This information is stored in a way that allows it to remain in effect after the system
has been reinitialized.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetServerSetInfo.

NET_API_STATUS NetServerSetInfo(
LPTSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD ParmError

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Level of information to set. SERVER_INFO_100, SERVER_INFO_101, and
SERVER_INFO_102 are valid for all platforms. SERVER_INFO_402, SERVER_INFO_403,
SERVER_INFO_502 and SERVER_INFO_509 are valid for the appropriate platform. In
addition, SERVER_INFO_1001 - SERVER_INFO_1006, SERVER_INFO_1009 -
SERVER_INFO_1011, SERVER_INFO_1016 - SERVER_INFO_1018,
SERVER_INFO_1021, SERVER_INFO_1022, SERVER_INFO_1028, SERVER_INFO_1029,
and SERVER_INFO_1037 - SERVER_INFO_1043 are valid based on the restrictions for LAN
Manager systems described NetServerGetInfo.

buf
Pointer to a buffer containing the server information.

ParmError
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.See AlsoNetServerGetInfo

NetServerTransportAdd
The NetServerTransportAdd function binds the server to the transport.Security RequirementsOnly members of the Administrators local group can successfully execute
NetServerTransportAdd.

NET_API_STATUS NetServerTransportAdd(
LPTSTR servername,
DWORD level,
LPBYTE bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to set the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

SERVER_TRANSPORT_INFO_0 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

See AlsoNetServerTransportDel, SERVER_TRANSPORT_INFO_0

NetServerTransportDel
The NetServerTransportDel function unbinds (or disconnects) the transport protocol from the
server. Effectively, the server can no longer communicate with clients using the transport protocol.
The server will no longer process client request from the active transport protocol, such as TCP,
NetBEUI, and XNS.Security RequirementsOnly members of the Administrators local group can successfully execute
NetServerTransportDel.

NET_API_STATUS NetServerTransportDel(
LPWSTR servername,
LPWSTR transportname

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

transportname
Pointer to a Unicode string containing the name of the transport protocol from which to
unbind.See AlsoNetServerTransportAdd

NetServerTransportEnum
The NetServerTransportEnum function supplies information about transports that are managed
by the server.Security RequirementsNo special group membership is required to successfully execute NetServerTransportEnum.

NET_API_STATUS NetServerTransportEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Level of information required. Only zero is valid.

bufptr
On return a pointer to the return information structure is returned in the address pointed to by
bufptr.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumehandle
Pointer to a DWORD that contains resumehandle, which is used to continue an existing
server transport search. The handle should be zero on the first call and left unchanged for
subsequent calls. If resumehandle is NULL, no resume handle is stored.

NetServiceControl
The NetServiceControl function is obsolete. It is included for compatability with 16-bit versions of
Windows. Win32-based applications should use the service functions.

NetServiceEnum
The NetServiceEnum function is obsolete. It is included for compatability with 16-bit versions of
Windows. Win32-based applications should use the service functions.

NetServiceGetInfo
The NetServiceGetInfo function is obsolete. It is included for compatability with 16-bit versions of
Windows. Win32-based applications should use the service functions.

NetServiceInstall
The NetServiceInstall function is obsolete. It is included for compatability with 16-bit versions of
Windows. Win32-based applications should use the service functions.

NetSessionDel
The NetSessionDel function ends a session between a server and a workstation.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetSessionDel.

NET_API_STATUS NetSessionDel(
LPTSTR servername,
LPTSTR UncClientName,
LPTSTR username,

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

UncClientName
Pointer to a Unicode string containing the computer name of the client to disconnect. If
UncClientName is NULL, then all the sessions of the user in username will be deleted on the
server specified.

username
Pointer to a Unicode string containing the name of the user whose session is to be
terminated. A NULL pointer indicates that all users' sessions from the client name specified
are to be terminated.

See AlsoNetSessionEnum, NetSessionGetInfo

NetSessionEnum
The NetSessionEnum function provides information about all current sessions.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetSessionEnum at level 1 or level 2. No special group membership is required for level 0 or
level 10 calls.

NET_API_STATUS NetSessionEnum(
LPTSTR servername,
LPTSTR UncClientName,
LPTSTR username,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

UncClientName
Pointer to a Unicode string containing the name of the computer session for which information
is to be returned. A NULL pointer or string specifies that all computer sessions on the server
are to be enumerated.

username
Pointer to a Unicode string containing the name of the the user for which to enumerate the
sessions. A NULL pointer or string specifies that sessions for all users are to be enumerated.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

SESSION_INFO_0 structures.
1 The bufptr parameter points to an array of

SESSION_INFO_1 structures.
2 The bufptr parameter points to an array of

SESSION_INFO_2 structures.
10 The bufptr parameter points to an array of

SESSION_INFO_10 structures.
502 The bufptr parameter points to an array of

SESSION_INFO_502 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resume_handle
Pointer to a DWORD that contains resume_handle, which is used to continue an existing
session search. The handle should be zero on the first call and left unchanged for subsequent
calls. If resume_handle is NULL, no resume handle is stored.

See AlsoNetSessionGetInfo, SESSION_INFO_0, SESSION_INFO_1, SESSION_INFO_2,
SESSION_INFO_10, SESSION_INFO_502

NetSessionGetInfo
The NetSessionGetInfo function retrieves information about a session established between a
particular server and workstation.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetSessionGetInfo at level 1 or level 2. No special group membership is required for level 0 or
level 10 calls.

NET_API_STATUS NetSessionGetInfo(
LPTSTR servername,
LPTSTR UncClientName,
LPTSTR username,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

UncClientName
Pointer to a Unicode string containing the name of the computer session for which information
is to be returned. This parameter cannot be NULL.

username
Pointer to a Unicode string containing the name of the user whose session information is to be
returned. This parameter cannot be NULL.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

SESSION_INFO_0 structures.
1 The bufptr parameter points to an array of

SESSION_INFO_1 structures.
2 The bufptr parameter points to an array of

SESSION_INFO_2 structures.
10 The bufptr parameter points to an array of

SESSION_INFO_10 structures.

bufptr
Points to the buffer in which the data set with the level parameter is stored.

See AlsoNetSessionDel, NetSessionEnum, SESSION_INFO_0, SESSION_INFO_1, SESSION_INFO_2,
SESSION_INFO_10

NetShareAdd
The NetShareAdd function shares a server resource.Security RequirementsOnly members of the Administrators or Account Operators local group or those with
Communication, Print, or Server operator group membership can successfully execute
NetShareAdd. The Print operator can add only Printer queues. The Communication operator can
add only communication-device queues.

NET_API_STATUS NetShareAdd(
LPTSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
2 The buf parameter points to an array of

SHARE_INFO_2 structures.
502 The buf parameter points to an array of

SHARE_INFO_502 structures.

buf
Pointer to the buffer in which the data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.See AlsoNetShareDel

NetShareCheck
The NetShareCheck function checks whether or not a server is sharing a device.Security RequirementsNo special group membership is required to successfully execute NetShareCheck.

NET_API_STATUS NetShareCheck(
LPTSTR servername,
LPTSTR device,
LPDWORD type

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

device
Pointer to a Unicode string containing the name of the device to check for shared access.

type
Pointer to an address that contains the type of device share. On return the address pointed to
by the type parameter contains the type of share the device is offered with. This parameter is
set only if the function returned successfully.See AlsoNetShareEnum, NetShareGetInfo

NetShareDel
The NetShareDel function deletes a share name from a server's list of shared resources,
disconnecting all connections to the shared resource.Security RequirementsOnly members of the Administrators or Account Operators local group or those with
Communication, Print, or Server operator group membership can successfully execute
NetShareDel. The Print operator can delete only Printer queues. The Communication operator
can delete only communication-device queues.

NET_API_STATUS NetShareDel(
LPTSTR servername,
LPTSTR netname,
DWORD reserved

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

netname
Pointer to a Unicode string containing the network name of the share to delete.

reserved
Reserved, must be zero.See AlsoNetShareAdd

NetShareEnum
The NetShareEnum function is obsolete. It is provided only for compatibility with LAN Manager
and 16-bit versions of Windows. Win32-based applications should use the WNetEnumResource
function.

NetShareGetInfo
The NetShareGetInfo function retrieves information about a particular shared resource on a
server.Security RequirementsOnly members of the Administrators or Account Operators local group or those with
Communication, Print, or Server operator group membership can successfully execute
NetShareGetInfo at level 2. No special group membership is required for calls in
SHARE_INFO_0 and SHARE_INFO_1.

NET_API_STATUS NetShareGetInfo(
LPTSTR servername,
LPTSTR netname,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

netname
Pointer to a Unicode string containing the network name of the share on which to return
information.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

SHARE_INFO_0 structures.
1 The bufptr parameter points to an array of

SHARE_INFO_1 structures.
2 The bufptr parameter points to an array of

SHARE_INFO_2 structures.
502 The bufptr parameter points to an array of

SHARE_INFO_502 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

RemarksYou need to free the memory pointed to by bufptr. Use the NetAPIBufferFree function to free the
pointer.See AlsoNetShareSetInfo

NetShareSetInfo
The NetShareSetInfo function sets the parameters of a shared resource.Security RequirementsOnly the Administrators local group or Communication, Print, or Server operator group
membership is required to successfully execute NetShareSetInfo. The Print operator can set
information only about Printer queues. The Communication operator can set information only
about communication-device queues.

NET_API_STATUS NetShareSetInfo(
LPTSTR servername,
LPTSTR netname,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

netname
Pointer to a Unicode string containing the network name of the share to set information on.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
1 The buf parameter points to an array of

SHARE_INFO_1 structures.
2 The buf parameter points to an array of

SHARE_INFO_2 structures.
502 The buf parameter points to an array of

SHARE_INFO_502 structures.
1004 The buf parameter points to an array of

SHARE_INFO_1004 structures.
1006 The buf parameter points to an array of

SHARE_INFO_1006 structures.
1501 The buf parameter points to an array of

SHARE_INFO_1501 structures.

buf
Pointer to the buffer in which the data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.See AlsoNetShareGetInfo

NetStatisticsGet
The NetStatisicsGet function is obsolete. Win32-based applications should use the
NetStatisticsGet2 function

NetStatisticsGet2
NetStatisticsGet2 retrieves operating statistics for a service. Currently, only the Workstation and
Server services are supported.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetStatisticsGet2 on a remote server.

NET_API_STATUS NetStatisticsGet2(
LPTSTR server,
LPTSTR service,
DWORD level,
DWORD options,
LPBYTE *bufptr

);Parametersserver
Pointer to a Unicode string that contains the name of the server on which to execute
NetStatisticsGet2. A NULL pointer or null string specifies the local computer.

service
Pointer to a Unicode string that contains the name of the service about which to get the
statistics. Only the values SERVER and WORKSTATION are currently allowed.

level
Specifies the following value to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

STAT_WORKSTATION_0 or STAT_SERVER_0
structures.

options
Must be zero.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

See AlsoNetServerGetInfo, STAT_SERVER_0, STAT_WORKSTATION_0

NetUseAdd
The NetUseAdd function is obsolete. It is provided only for compatibility with LAN Manager and
16-bit versions of Windows. Win32-based applications should use the WNetAddConnection2
function.

NetUseDel
The NetUseDel function is obsolete. It is provided only for compatibility with LAN Manager and
16-bit versions of Windows. Win32-based applications should use the WNetCancelConnection2
function.

NetUseEnum
The NetUseEnum function is obsolete. It is provided only for compatibility with LAN Manager and
16-bit versions of Windows. Win32-based applications should use the WNetEnumResource
function.

NetUseGetInfo
The NetUseGetInfo function is obsolete. It is provided only for compatibility with LAN Manager
and 16-bit versions of Windows. Win32-based applications should use the WNetGetConnection
function.

NetUserAdd
The NetUserAdd function adds a user account and assigns a password and privilege level.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserAdd. Only members of the Administrators local group can add an Administrators privilege
account.

NET_API_STATUS NetUserAdd(
LPWSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
1 The buf parameter points to a USER_INFO_1

structure.
2 The buf parameter points to a USER_INFO_2

structure.
3 The buf parameter points to a USER_INFO_3

structure.

buf
Pointer to the buffer in which the data set with the level parameter is stored.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.

Return ValuesIf the function returns account information, the return value is NERR_Success.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer Thiecomputer name is invalid.
NERR_NotPrimary The operation is allowed only on the

primary domain controller of the domain.
NERR_GroupExists The group already exists.
NERR_UserExists The user account already exists.
NERR_PasswordTooShort The password is shorter than required.
RemarksServer users must use a system in which the server creates a WINDOWS NT system account for

the new user. The creation of this account is controlled by several parameters in the server's
LANMAN.INI file.

If the newly added server user name already exists as a Windows NT system user, the
useril_home_dir member of the USER_INFO_1 structure is ignored. The NetUserAdd function
supports USER_INFO_1 and USER_INFO_2 structures. Using members of USER_INFO_1
initializes default values in USER_INFO_2 and USER_INFO_3 structures.

Subsequent NetUserSetInfo calls can change the default values. The following are possible
default values.

Member Default Value

usriX_auth_flags None (0)
usriX_full_name usri1_name
usriX_usr_comment None (null string)
usriX_parms None (null string)

usriX_workstations All (null string)
usriX_acct_expires Never (TIMEQ_FOREVER)
usriX_max_storage Unlimited

(USER_MAXSTORAGE_UNLIMITED)
usriX_logon_hours Logon allowed at any time (each element

0xFF; all bits set to 1)
usriX_logon_server Any domain controller (*)
usriX_country_code Current (country_code on the server
usriX_code_page 0
See AlsoNetUserEnum, NetUserSetInfo, NetUserDel

NetUserChangePassword
The NetUserChangePassword function changes a user's password for a specified network
server or domain.Security RequirementsA server or domain can be configured to require a user to log on before changing the password on
a user account. In that case, only members of the Administrators or Account Operators local
group or the user himself can change the password for a user account. If logging on is not
required, the user can change the password for any user account, as long as the user knows the
current password.

NET_API_STATUS NetUserChangePassword(
LPWSTR domainname,
LPWSTR username,
LPWSTR oldpassword,
LPWSTR newpassword

);Parametersdomainname
Pointer to a null-terminated Unicode string that specifies the name of a remote server or
domain. The NetUserChangePassword function changes the user's password on that
remote server or domain.
A value of NULL in the domainname parameter specifies the logon domain of the caller.

username
Pointer to a null-terminated Unicode string that specifies a user name. The
NetUserChangePassword function changes the password for that user.
A value of NULL in the username parameter specifies the logon user name of the caller.

oldpassword
Pointer to a null-terminated Unicode string that specifies the user's old password on the server
or domain.

newpassword
Pointer to a null-terminated Unicode string that specifies the user's new password on the
server or domain.

Return ValuesIf the function is successful, it returns account information and the return value is
NET_API_STATUS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.

NERR_NotPrimary The operation is allowed only on the
primary domain controller of the domain.

NERR_UserNotFound The user name could not be found.

NERR_PasswordTooShort The password is shorter than required.
See AlsoNetUserSetInfo

NetUserDel
The NetUserDel function deletes a user account from a server.RequirementsOnly members of the Administrators or the Account Operators local group can successfully
execute NetUserDel on a remote server or on a computer that has local security enabled. Only
members of the Administrators local group can delete an Administrators privilege account.

NET_API_STATUS NetUserDel(
LPWSTR servername,
LPWSTR username

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

username
Pointer to a Unicode string containing the name of the user account to delete.

RemarksAn account cannot be deleted while a user or application is using a server resource. If the user
was added to the system through the server with the NetUserAdd function, deleting the user
deletes the user's Windows NT system account.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_NotPrimary The operation is allowed only on the

primary domain controller of the domain.
NERR_UserNotFound The user name could not be found.
See AlsoNetUserAdd, NetUserEnum, NetUserSetInfo, NetApiBufferFree

NetUserEnum
The NetUserEnum function provides information about all user accounts on a server.Security RequirementsOnly members of the Administrators or Account operators local group can successfully execute
NetUserEnum at levels 1 and 2. No special group membership is required at level 0 or 10.

NET_API_STATUS NetUserEnum(
LPWSTR servername,
DWORD level,
DWORD filter,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resume_handle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

USER_INFO_0 structures.
1 The bufptr parameter points to an array of

USER_INFO_1 structures.
2 The bufptr parameter points to an array of

USER_INFO_2 structures.
3 The bufptr parameter points to an array of

USER_INFO_3 structures.
10 The bufptr parameter points to an array of

USER_INFO_10 structures.
11 The bufptr parameter points to an array of

USER_INFO_11 structures.
12 The bufptr parameter points to an array of

USER_INFO_20 structures.

filter
Specifies a filter of account types to enumerate. A value of zero implies all account types.
Allowable values are:

Value Meaning
FILTER_TEMP_DUPLICATE_ACCOUNTS Enumerates local user

account data on a domain
controller.

FILTER_NORMAL_ACCOUNT Enumerates global user
account data on a
computer.

FILTER_INTERDOMAIN_TRUST_ACCOUNTEnumerates domain trust
account data on a domain
controller.

FILTER_WORKSTATION_TRUST_ACCOUNTEnumerates workstation
or member server account
data on a domain
controller.

FILTER_SERVER_TRUST_ACCOUNT Enumerates domain
controller account data on
a domain controller.

bufptr

Pointer to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position. EXCEPTION: If the call is to a computer that is
running LAN Manager 2.x, the totalentries parameter will always reflect the total number of
entries in the database no matter where it is in the resume sequence.

resume_handle
Pointer to a DWORD that contains resume_handle, which is used to continue an existing user
search. The handle should be zero on the first call and left unchanged for subsequent calls. If
resume_handle is NULL, then no resume handle is stored.

Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to
the requested information.

NERR_InvalidComputer The computer name is invalid.
ERROR_MORE_DATA More entries are available with

subsequent calls.
RemarksThe NetUserEnum function returns the full set of USER_INFO_0 or USER_INFO_1 components.

If level is set to 1, the password component of each data structure will be set to NULL to maintain
password security. The NetUserEnum does not return all Windows NT system users. It returns
only those users who have been added by the NetUserAdd function.See AlsoNetUserGetGroups, NetUserGetInfo, USER_INFO_0, USER_INFO_1, NetUserAdd

NetUserGetGroups
The NetUserGetGroups function retrieves a list of global groups to which a specified user
belongs.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserGetGroups or on a computer that has local security enabled, except when users request
details about their own accounts.

NET_API_STATUS NetUserGetGroups(
LPWSTR servername,
LPWSTR username,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the server program running on the local
computer.

username
Pointer to a Unicode string containing the name of the user to search for in each group
account.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to an array of

GROUP_USERS_INFO_0 structures.
1 The bufptr parameter points to an array of

GROUP_USERS_INFO_1 structures.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored. The buffer
passed in must have been previously allocated with NetApiBufferAlloc. The returned buffer
should be deallocated using the NetApiBufferFree function.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_UserNotFound The user name could not be found.
RemarksThe NetUserGetGroups function returns an array of GROUP_INFO_0 structure, that specifies

the names of all groups to which the user belongs. LAN Manager groups are separate and distinct
from Windows NT system groups.See AlsoNetUserGetInfo

NetUserGetInfo
The NetUserGetInfo function retrieves information about a particular user account on a server.Security RequirementsNo special group membership is required to successfully execute NetUserGetInfo. This is a
change from LAN Manager, which required membership in the Administrators or Account
Operators local group to call this function at information levels above 0 (except for the user's own
account, which could use level 11).

NET_API_STATUS NetUserGetInfo(
LPWSTR servername,
LPWSTR username,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

username
Pointer to a Unicode string containing the name of the user account on which to return
information.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 Returns USER_INFO_0 structure pointed to in

bufptr.
1 Returns USER_INFO_1 structure pointed to in

bufptr.
2 Returns USER_INFO_2 structure pointed to in

bufptr.
3 Returns USER_INFO_3 structure pointed to in

bufptr.
10 Returns USER_INFO_10 structure pointed to in

bufptr.
11 Returns USER_INFO_11 structure pointed to in

bufptr.
20 Returns USER_INFO_20 structure pointed to in

bufptr.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.

Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_UserNotFound The user name could not be found.
See AlsoNetApiBufferFree, NetUserSetInfo, NetUserGetGroups, NetUserEnum

NetUserGetLocalGroups
The NetUserGetLocalGroups function retrieves a list of local groups to which a specified user
belongs.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserGetLocalGroups.

NET_API_STATUS NetUserGetLocalGroups(
LPWSTR servername,
LPWSTR username,
DWORD level,
DWORD flags,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

username
Pointer to a Unicode string containing the name of the user for which to return global group
membership. This parameter can be of the form <UserName>, in which case the username is
expected to be found on servername. The user name can also be of the form <DomainName>
\<UserName> in which case <DomainName> is associated with servername and
<UserName> is expected to be to be found on that domain.

level
Level of information required. Only 0 is valid.

flags
Bitmask of flags. Currently, only LG_INCLUDE_INDIRECT is defined. If this bit is set, the
function will also return the local groups of which the user is indirectly a member (that is, by
the virtue of being in a global group that itself is a member of one or more local groups).

bufptr
On return a pointer to the return information structure is returned in the address pointed to by
bufptr. The returned information is an array of LOCALGROUP_USERS_INFO_0 structures.
The returned buffer should be deallocated using the NetApiBufferFree function.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_UserNotFound The user name could not be found.
See AlsoNetApiBufferFree

NetUserModalsGet
The NetUserModalsGet function retrieves global information for all users and global groups in the
security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserModalsGet.

NET_API_STATUS NetUserModalsGet(
LPWSTR servername,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to a

USER_MODALS_INFO_0 structure.
1 The bufptr parameter points to a

USER_MODALS_INFO_1 structure.
2 The bufptr parameter points to a

USER_MODALS_INFO_2 structure.
3 The bufptr parameter points to a

USER_MODALS_INFO_3 structure.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
See AlsoNetUserModalsSet, NetApiBufferFree

NetUserModalsSet
The NetUserModalsSet function sets global information for all users and global groups in the
security database.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserModalsSet.

NET_API_STATUS NetUserModalsSet(
LPWSTR servername,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to a

USER_MODALS_INFO_0 structure.
1 The buf parameter points to a

USER_MODALS_INFO_1 structure.
2 The buf parameter points to a

USER_MODALS_INFO_2 structure.
3 The buf parameter points to a

USER_MODALS_INFO_3 structure.
1001 The buf parameter points to a

USER_MODALS_INFO_1001 structure.
1002 The buf parameter points to a

USER_MODALS_INFO_1002 structure.
1003 The buf parameter points to a

USER_MODALS_INFO_1003 structure.
1004 The buf parameter points to a

USER_MODALS_INFO_1004 structure.
1005 The buf parameter points to a

USER_MODALS_INFO_1005 structure.
1006 The buf parameter points to a

USER_MODALS_INFO_1006 structure.
1007 The buf parameter points to a

USER_MODALS_INFO_1007 structure.

buf
Points to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_UserNotFound The user name could not be found.
See AlsoNetUserModalsGet, NetApiBufferFree

NetUserSetGroups
The NetUserSetGroups function sets global group memberships for a specified user account.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserSetGroups.

NET_API_STATUS NetUserSetGroups(
LPWSTR servername,
LPWSTR username,
DWORD level,
LPBYTE buf,
DWORD num_entries

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

username
Pointer to a Unicode string containing the name of the user for which to set global group
memberships.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to an array of

GROUP_USERS_INFO_0 structures.
1 The buf parameter points to an array of

GROUP_USERS_INFO_1 structures.

buf
Pointer to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.

num_entries
Number of global group information structures contained in the array pointed to by buf.

Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIED The user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_NotPrimary The operation is allowed only on the

primary domain controller of the
domain.

NERR_GroupNotFound The local group specified by the
groupname parameter does not exist.

NERR_UserNotFound The user name could not be found.
See AlsoNetUserGetGroups

NetUserSetInfo
The NetUserSetInfo function sets the parameters of a user account.Security RequirementsOnly members of the Administrators or Account Operators local group can successfully execute
NetUserSetInfo on a remote server or on a computer that has local security enabled. A user may
call NetUserSetInfo to set certain information on his or her own account.

NET_API_STATUS NetUserSetInfo(
LPWSTR servername,
LPWSTR username,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

username
Pointer to a Unicode string containing the name of the user account to set information.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to a USER_INFO_0

structure.
1 The buf parameter points to a USER_INFO_1

structure.
2 The buf parameter points to a USER_INFO_2

structure.
3 The buf parameter points to a USER_INFO_3

structure.
21 The buf parameter points to a USER_INFO_21

structure.
22 The buf parameter points to a USER_INFO_22

structure.
1003 The buf parameter points to a USER_INFO_1003

structure.
1005 The buf parameter points to a USER_INFO_1005

structure.
1006 The buf parameter points to a USER_INFO_1006

structure.
1007 The buf parameter points to a USER_INFO_1007

structure.
1008 The buf parameter points to a USER_INFO_1008

structure.
1009 The buf parameter points to a USER_INFO_1009

structure.
1010 The buf parameter points to a USER_INFO_1010

structure.
1011 The buf parameter points to a USER_INFO_1011

structure.
1012 The buf parameter points to a USER_INFO_1012

structure.
1013 The buf parameter points to a USER_INFO_1013

structure.
1014 The buf parameter points to a USER_INFO_1014

structure.
1017 The buf parameter points to a USER_INFO_1017

structure.

1020 The buf parameter points to a USER_INFO_1020
structure.

1024 The buf parameter points to a USER_INFO_1024
structure.

1051 The buf parameter points to a USER_INFO_1051
structure.

1053 The buf parameter points to a USER_INFO_1053
structure.

buf
Pointer to the buffer in which the data set with the level parameter is stored. The returned
buffer should be deallocated using the NetApiBufferFree function.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL the parameter is not returned on error.

RemarksThe NetUserSetInfo function can be called to change a user's password only by users or
applications having administrative privileges. However, the password can be changed by users or
applications knowing the current password and calling NetUserChangePassword. When an
administrator calls NetUserSetInfo, the only restriction applied is that the new password length
must be consistent with system modals.

Members of the Administrators local group can set any modifiable element. All users can set the
usri2_usr_comment, usri2_parms, and usri2_country_code, elements of the
user_info_2 data structure for their own accounts. To do this, the user must use the ParmNum
parameter and cannot pass the whole structure.

A member of the Account Operator's local group cannot set details for an Administrators class
account, give an existing account Administrator privilege, or change the operator privilege of any
account. If attempting to change the privilege level or disable the last account with Administrator
privilege in the database, NetUserSetInfo fails and returns NERR_LastAdmin.

You can call NetUserSetInfo with USER_INFO_1 and specify a value using the usri1_name
member. However, that value will be ignored. The correct way to specify the new name of the
group is to call NetUserSetInfo with USER_INFO_0 and specify a value using the usri0_name
member.

The NetUserSetInfo function cannot be used to change the home directory for user accounts that
were not created by the LAN Manager server.Return ValuesIf the function is successful, it returns NERR_SUCCESS.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have access to the
requested information.

NERR_InvalidComputer The computer name is invalid.
NERR_NotPrimary The operation is allowed only on the

primary domain controller of the domain.
NERR_SpeGroupOp The operation is not allowed on specified

special groups, which are user groups,
admin groups, local groups, or guest
groups.

NERR_LastAdmin The operation is not allowed on the last
administrative account.

NERR_BadPassword The share name or password is invalid.
NERR_PasswordTooShort The password is shorter than required.
NERR_UserNotFound The user name could not be found.
See AlsoNetUserGetInfo

NetWkstaGetInfo
The NetWkstaGetInfo function returns information about the configuration elements for a
workstation.Security RequirementsYou must have Print or Server operator privilege, or be a member of the Administrator or Account
local groups to successfully execute NetWkstaGetInfo at level 0 or level 1 on a remote server. No
special privilege is required for level 10 calls.

NET_API_STATUS NetWkstaGetInfo(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
100 The bufptr parameter points to a

WKSTA_INFO_100 structure.
101 The bufptr parameter points to a

WKSTA_INFO_101 structure.
102 The bufptr parameter points to a

WKSTA_INFO_102 structure.
302 The bufptr parameter points to a

WKSTA_INFO_302 structure.
402 The bufptr parameter points to an

WKSTA_INFO_402 structure.
502 The bufptr parameter points to a

WKSTA_INFO_502 structure.

bufptr
Pointer to the buffer in which the data set with the level parameter is stored.

See AlsoNetWkstaSetInfo

NetWkstaSetInfo
The NetWkstaSetInfo function configures a workstation. This information remains in effect after
the system has been reinitialized.Security RequirementsOnly members of the Administrators local group can successfully execute NetWkstaSetInfo on a
remote server.

NET_API_STATUS NetWkstaSetInfo(
LPTSTR servername,
DWORD level,
LPBYTE buffer,
LPDWORD parm_err

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
100 The buffer parameter points to a

WKSTA_INFO_100 structure.
101 The buffer parameter points to a

WKSTA_INFO_101 structure.
102 The buffer parameter points to a

WKSTA_INFO_102 structure.
302 The buffer parameter points to a

WKSTA_INFO_302 structure.
402 The buffer parameter points to a

WKSTA_INFO_402 structure.
1101 The buffer parameter points to a

WKSTA_USER_INFO_1101 structure.

In addition, the structures WKSTA_USER_INFO_502, WKSTA_USER_INFO_1010-1013,
WKSTA_USER_INFO_1018, WKSTA_USER_INFO_1023, WKSTA_USER_INFO_1027,
WKSTA_USER_INFO_1028, WKSTA_USER_INFO_1032, WKSTA_USER_INFO_1033,
WKSTA_USER_INFO_1035, and WKSTA_USER_INFO_1041-1062 should not be set by the
user.

buffer
Pointer to the buffer in which the data set with the level parameter is stored.

parm_num
Determines whether the buffer parameter contains a complete WKSTA_INFO_X (where Xis
the level) structure or a single structure component. If parm_num is set to PARMNUM_ALL,
buffer must point to a WKSTA_INFO_X structure. Otherwise, only one element is changed,
and parm_num must point to the single element to change.
Not all elements can be changed. Only those elements that have a specific PARMNUM
constant value defined can be set. The following possible values are defined.

Value Component to Set
PARMNUM_ALL All elements
WKSTA_CHARWAIT_PARMNUM wki0_charwait
WKSTA_CHARTIME_PARMNUM wki0_chartime
WKSTA_CHARCOUNT_PARMNUM wki0_charcount
WKSTA_ERRLOGSZ_PARMNUM wki0_errlogsz
WKSTA_PRINTBUFTIME_PARMNUM wki0_printbuftime
WKSTA_WRKHEURISTICS_PARMNUMwki0_wrkheuristics
WKSTA_OTHDOMAINS_PARMNUM wki1_oth_domains

parm_err

Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.

RemarksYou must be a member of the Administrators local group to successfully execute
NetWkstaSetInfo on a remote server or on a computer that has local security enabled.
NetWkstaSetInfo does not change values in the LANMAN.INI file. Values set by previous calls to
NetWkstaSetInfo can be overwritten when workstation parameters are reset. When the
Workstation service is stopped and restarted, parameters are reset to the default values specified
in the LANMAN.INI file unless overwritten by command-line parameters.

Domain names in the wki1_oth_domains member of the WKSTA_USER_INFO_1101 structure
are separated by spaces. An empty list is valid. A null pointer means to leave the member
unmodified. The wki1_oth_domains member cannot be set with MS-DOS. When setting this
element, NetWkstaSetInfo rejects the request if the name list was invalid or if a name could not
be added to one or more of the network adapters managed by LAN Manager.See AlsoNetWkstaGetInfo

NetWkstaTransportAdd
The NetWkstaTransportAdd function binds (or connects) the redirector to the transport. The
redirector is the software on the client computer which generates file requests to the server
computer.Security RequirementsOnly members of the Administrators local group can successfully execute
NetWkstaTransportAdd.

NET_API_STATUS NetWkstaTransportAdd(
LPTSTR servername,
DWORD level,
LPBYTE buf

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to set the level of information provided.

Value Meaning
0 The buf parameter points to a

WKSTA_TRANSPORT_INFO_0 structure.

buf
Pointer to an address containing the server transport information structure.

See AlsoNetWkstaTransportDel

NetWkstaTransportDel
The NetWkstaTransportDel function unbinds the transport protocol from the redirector, which is
the software on the client computer which generates file requests to the server computer.Security RequirementsOnly members of the Administrators local group can successfully execute
NetWkstaTransportDel.

NET_API_STATUS NetWkstaTransportDel(
LPTSTR servername,
LPTSTR transportname,
DWORD ucond

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

transportname
Pointer to a Unicode string containing the name of the transport from which to unbind.

ucond
Force level to delete connections on the transport binding.See AlsoNetWkstaTransportAdd

NetWkstaTransportEnum
The NetWkstaTransportEnum function supplies information about transport protocols that are
managed by the redirector, which is the software on the client computer that generates file
requests to the server computer.Security RequirementsNo special group membership is required to successfully execute NetWkstaTransportEnum.

NET_API_STATUS NetWkstaTransportEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Ppointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies the following value to return the level of information provided.

Value Meaning
0 The bufptr parameter points to a

WKSTA_TRANSPORT_INFO_0 structure.

bufptr
On return a pointer to the return information structure is returned in the address pointed to by
bufptr.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumehandle
Pointer to a DWORD that contains resumehandle, which is used to continue an existing
workstation transport search. The handle should be zero on the first call and left unchanged
for subsequent calls. If resumehandle is NULL, no resume handle is stored.See AlsoNetWkstaTransportAdd, NetWkstaTransportDel

NetWkstaUserEnum
The NetWkstaUserEnum function lists information about all users currently logged on to the
workstation. This list includes interactive, service and batch logons.Security RequirementsOnly members of the Administrators local group can successfully execute NetWkstaUserEnum
both locally and on a remote server.

NET_API_STATUS NetWkstaUserEnum(
LPTSTR servername,
DWORD level,
LPBYTE *bufptr,
DWORD prefmaxlen,
LPDWORD entriesread,
LPDWORD totalentries,
LPDWORD resumehandle

);Parametersservername
Pointer to a Unicode string containing the name of the remote server on which the function is
to execute. A NULL pointer or string specifies the local computer.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to a

WKSTA_USER_INFO_0 structure.
1 The bufptr parameter points to a

WKSTA_USER_INFO_1 structure.

bufptr
On return, a pointer to the return information structure is returned in the address pointed to by
bufptr.

prefmaxlen
Preferred maximum length, in 8-bit bytes of returned data.

entriesread
Pointer to a DWORD that contains the actual enumerated element count.

totalentries
Pointer to a DWORD that contains the total number of entries that could have been
enumerated from the current resume position.

resumehandle
Pointer to a DWORD that contains resumehandle, whhich is used to continue an existing
search. The handle should be zero on the first call and left unchanged for subsequent calls. If
resumehandle is NULL, no resume handle is stored.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

NetWkstaUserGetInfo
The NetWkstaUserGetInfo function returns information about the currently logged-on user. This
function must be called in the context of the logged-on user.Security RequirementsThis function only works locally.

NET_API_STATUS NetWkstaUserGetInfo(
LPTSTR reserved,
DWORD level,
LPBYTE *bufptr

);Parametersreserved
This parameter must be set to NULL.

level
Specifies one of the following values to return the level of information provided.

Value Meaning
0 The bufptr parameter points to a

WKSTA_USER_INFO_0 structure.
1 The bufptr parameter points to a

WKSTA_USER_INFO_1 structure.
1101 The bufptr parameter points to a

WKSTA_USER_INFO_1101 structure.

bufptr
On return, a pointer to the return information structure is returned in the address pointed to by
bufptr.

See AlsoNetWkstaSetInfo

NetWkstaUserSetInfo
The NetWkstaUserSetInfo function sets the user-specific information about the configuration
elements for a workstation.Security RequirementsThis function only works locally.

NET_API_STATUS NetWkstaUserSetInfo(
LPTSTR reserved,
DWORD level,
LPBYTE buf,
LPDWORD parm_err

);Parametersreserved
This parameter must be set to zero.

level
Specifies one of the following values to set the level of information provided.

Value Meaning
0 The buf parameter points to a

WKSTA_USER_INFO_0 structure.
1 The buf parameter points to a

WKSTA_USER_INFO_1 structure.
1101 The buf parameter points to a

WKSTA_USER_INFO_1101 structure.

buf
On return a pointer to the return information structure is returned in the address pointed to by
buf.

parm_err
Optional pointer to a DWORD that contains the index of the first parameter that causes
ERROR_INVALID_PARAMETER. If NULL, the parameter is not returned on error.See AlsoNetWkstaUserGetInfo

NotifyBootConfigStatus
The NotifyBootConfigStatus function notifies the service control manager as to the acceptability
of the configuration that booted the system.

An acceptable configuration triggers the storage of that configuration as the last-known good
configuration; an unacceptable configuration triggers a system reboot.

BOOL NotifyBootConfigStatus(
BOOL BootAcceptable // indicates acceptability of boot configuration

);ParametersBootAcceptable
Specifies whether the configuration that booted the system is acceptable. If this parameter's
value is TRUE, the service control manager saves the configuration that booted the system as
the last-known good configuration. If the parameter's value is FALSE, the system immediately
reboots, using the previously saved last-known good configuration.

Return ValuesIf the BootAcceptable parameter is FALSE, the function does not return.

If the last-known good configuration was successfully saved, the return value is nonzero.

If an error occurs, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager to set parameters in
the configuration registry.

Value Meaning

ERROR_ACCESS_DENIEDThe user does not have permission to
perform this operation.
A hard-coded DACL associated with the
service control manager object
determines who can perform a
NotifyBootConfigStatus operation. Only
the operating system and members of
the Adminstrators local group can do so.

RemarksSaving the configuration of a running system with this function is an acceptable method for saving
the last-known good configuration.

If the boot configuration is found to be unacceptable, this function can be called to a reboot with
the existing last-known good configuration. This function can be called only by a process running
in the LocalSystem or the Administrator's security context.

NotifyChangeEventLog
The NotifyChangeEventLog function lets an application receive notification when an event is
written to the event log file specified by the hEventLog parameter. When the event is written to the
event log file, the function causes the event object specified by the hEvent parameter to become
signaled.

BOOL NotifyChangeEventLog(
HANDLE hEventLog, // handle to an event log
HANDLE hEvent // handle to a Win32 event

);ParametershEventLog
Handle to an event log file, obtained by calling OpenEventLog function. When an event is
written to this log file, the event specified by hEvent becomes signaled.

hEvent
A handle to a Win32 event. This is the event that becomes signaled when an event is written
to the event log file specified by the hEventLog parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe NotifyChangeEventLog function does not work with remote handles. If hEventLog is the
handle of an event log on a remote computer, the NotifiyChangeEventLog function returns
FALSE, and GetLastError returns ERROR_INVALID_HANDLE.See AlsoOpenEventLog

ObjectCloseAuditAlarm
The ObjectCloseAuditAlarm function generates audit messages when a handle of an object is
deleted. Alarms are not supported in the current version of Windows NT.

BOOL ObjectCloseAuditAlarm(
LPCTSTR SubsystemName, // address of string for subsystem name
LPVOID HandleId, // address of handle identifier
BOOL GenerateOnClose // flag for audit generation

);ParametersSubsystemName
Points to a null-terminated string specifying the name of the subsystem calling the function, for
example, "DEBUG" or "WIN32".

HandleId
Specifies a unique 32-bit value representing the client's handle of the object. This should be
the same value that was passed to the AccessCheckAndAuditAlarm or
ObjectOpenAuditAlarm function.

GenerateOnClose
Specifies a flag set by a call to the AccessCheckAndAuditAlarm or
ObjectOpenAuditAlarm function when the object handle is created.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ObjectCloseAuditAlarm function requires the calling application to have the
SE_AUDIT_NAME privilege. The test for this privilege is always performed against the primary
token of the calling process, allowing the calling process to impersonate a client.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, MapGenericMask, ObjectDeleteAuditAlarm,
ObjectOpenAuditAlarm, ObjectPrivilegeAuditAlarm, PrivilegeCheck,
PrivilegedServiceAuditAlarm

ObjectDeleteAuditAlarm
[New - Windows NT]

The ObjectDeleteAuditAlarm function generates audit messages when an object is deleted.
Windows NT security does not support alarms.

BOOL ObjectDeleteAuditAlarm(
LPCTSTR SubsystemName, // pointer to string for subsystem name
LPVOID HandleId, // handle to the object
BOOL GenerateOnClose // flag for audit generation

);ParametersSubsystemName
Pointer to a null-terminated string that specifies the name of the subsystem calling the
function; for example, "DEBUG" or "WIN32". This string appears in the audit log for the object.

HandleId
Specifies a unique 32-bit value representing the client's handle to the object. This should be
the same value that was passed to the AccessCheckAndAuditAlarm or
ObjectOpenAuditAlarm function.

GenerateOnClose
Specifies a flag set by a call to the AccessCheckAndAuditAlarm or
ObjectOpenAuditAlarm function when the object handle is created.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ObjectDeleteAuditAlarm function requires the calling application to have the
SE_AUDIT_NAME privilege. The test for this privilege is always performed against the primary
token of the calling process, allowing the calling process to impersonate a client.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, MapGenericMask, ObjectCloseAuditAlarm,
ObjectOpenAuditAlarm, ObjectPrivilegeAuditAlarm, PrivilegeCheck,
PrivilegedServiceAuditAlarm

ObjectOpenAuditAlarm
The ObjectOpenAuditAlarm function generates audit messages when a client application
attempts to gain access to an object or to create a new one. Alarms are not supported in the
current version of Windows NT.

BOOL ObjectOpenAuditAlarm(
LPCTSTR SubsystemName, // address of string for subsystem name
LPVOID HandleId, // address of handle identifier
LPTSTR ObjectTypeName, // address of string for object type
LPTSTR ObjectName, // address of string for object name
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
HANDLE ClientToken, // handle of client's access token
DWORD DesiredAccess, // mask for desired access rights
DWORD GrantedAccess, // mask for granted access rights
PPRIVILEGE_SET Privileges, // address of privileges
BOOL ObjectCreation, // flag for object creation
BOOL AccessGranted, // flag for results
LPBOOL GenerateOnClose // address of flag for audit generation

);ParametersSubsystemName
Points to a null-terminated string specifying the subsystem calling this function, for example,
"DEBUG" or "WIN32".

HandleId
Points to a unique 32-bit value representing the client's handle of the object. If the access is
denied, this parameter is ignored.

ObjectTypeName
Points to a null-terminated string specifying the type of object to which the client is requesting
access. This string appears in the audit log for the object.

ObjectName
Points to a null-terminated string specifying the name of the object to which the client gained
access or attempted to gain access. This string appears in the audit log for the object.

pSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure for the object being accessed.

ClientToken
Identifies an access token representing the client requesting the operation. This handle must
be obtained by opening the token of a thread impersonating the client. The token must be
open for TOKEN_QUERY access.

DesiredAccess
Specifies the desired access mask. This mask must have been previously mapped by the
MapGenericMask function to contain no generic access rights.

GrantedAccess
Specifies an access mask indicating which access rights are granted. This access mask is
intended to be the same value set by one of the access-checking functions in its
GrantedAccess parameter. Examples of access-checking functions include
AccessCheckAndAuditAlarm and AccessCheck.

Privileges
Points to a PRIVILEGE_SET structure that specifies the set of privileges required for the
access attempt. This parameter can be NULL.

ObjectCreation
Specifies a flag that determines whether the application creates a new object when access is
granted. When this flag is TRUE, the application creates a new object; when it is FALSE, the
application opens an existing object.

AccessGranted
Specifies a flag indicating whether access was granted or denied in a previous call to an
access-checking function, such as AccessCheck. If access was granted, this flag is TRUE. If
not, it is FALSE.

GenerateOnClose
Points to a flag set by the audit-generation routine when the function returns. This flag must
be passed to the ObjectCloseAuditAlarm function when the object handle is closed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ObjectOpenAuditAlarm function requires the calling application to have the
SE_AUDIT_NAME privilege. The test for this privilege is always performed against the primary
token of the calling process, not the impersonation token of the thread. This allows the calling
process to impersonate a client during the call.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, MapGenericMask, ObjectCloseAuditAlarm,
ObjectDeleteAuditAlarm, ObjectPrivilegeAuditAlarm, PrivilegeCheck,
PrivilegedServiceAuditAlarm, PRIVILEGE_SET, SECURITY_DESCRIPTOR

ObjectPrivilegeAuditAlarm
The ObjectPrivilegeAuditAlarm function generates audit messages as a result of a client's
attempt to perform a privileged operation on a server application object using an already opened
handle of that object. Alarms are not supported in the current version of Windows NT.

BOOL ObjectPrivilegeAuditAlarm(
LPCTSTR SubsystemName, // pointer to string for subsystem name
LPVOID HandleId, // pointer to handle identifier
HANDLE ClientToken, // handle to client's access token
DWORD DesiredAccess, // mask for desired access rights
PPRIVILEGE_SET Privileges, // pointer to privileges
BOOL AccessGranted // flag for results

);ParametersSubsystemName
Points to a null-terminated string specifying the name of the subsystem calling the function; for
example, "DEBUG" or "WIN32".

HandleId
Points to a unique 32-bit value representing the client's handle to the object.

ClientToken
Identifies an access token representing the client requesting the operation. This handle must
be obtained by opening the token of a thread impersonating the client. The token must be
open for TOKEN_QUERY access.

DesiredAccess
Specifies an access mask indicating the privileged access types being used or whose use is
being attempted. The access mask can be mapped by the MapGenericMask function so it
does not contain any generic access types.

Privileges
Points to a PRIVILEGE_SET structure specifying the set of privileges required for the
requested operation. The information in this structure is supplied by a call to the
PrivilegeCheck function. This parameter can be NULL.

AccessGranted
Specifies a flag indicating whether access was granted or denied in a previous call to an
access-checking function such as PrivilegeCheck. If access was granted, this flag is TRUE. If
not, it is FALSE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ObjectPrivilegeAuditAlarm function requires the calling process to have SE_AUDIT_NAME
privilege. The test for this privilege is always performed against the primary token of the calling
process, not the impersonation token of the thread. This allows the calling process to impersonate
a client during the call.

The ObjectPrivilegeAuditAlarm function can send many messages to port objects. This can
result in a significant delay before the function returns. The design of applications calling
ObjectPrivilegeAuditAlarm can take this potential delay into account. For example, this
consideration may affect the design of an application using mutexes to lock structures.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, MapGenericMask, ObjectCloseAuditAlarm,
ObjectOpenAuditAlarm, PrivilegeCheck, PrivilegedServiceAuditAlarm, PRIVILEGE_SET

OemKeyScan
The OemKeyScan function maps OEM ASCII codes 0 through 0x0FF into the OEM scan codes
and shift states. The function provides information that allows a program to send OEM text to
another program by simulating keyboard input.

DWORD OemKeyScan(
WORD wOemChar // ASCII value of OEM character

);ParameterswOemChar
Specifies the ASCII value of the OEM character.

Return ValuesIf the function succeeds, the low-order word of the return value contains the scan code of the
given OEM character, and the high-order word contains the shift state, which can be a
combination of the following flag bits:

Bit Meaning

1 Either SHIFT key is pressed.
2 Either CTRL key is pressed.
4 Either ALT key is pressed.

If the character cannot be produced by a single keystroke using the current keyboard
layout, the return value is 0xFFFFFFFF.RemarksThis function does not provide translations for characters that require CTRL+ALT or dead keys.
Characters not translated by this function must be copied by simulating input using the ALT+
keypad mechanism. The NUMLOCK key must be off.

This function does not provide translations for characters that cannot be typed with one keystroke
using the current keyboard layout, such as characters with diacritics requiring dead keys.
Characters not translated by this function may be simulated using the ALT+ keypad mechanism.
The NUMLOCK key must be on.

This function is implemented using the VkKeyScan function.See AlsoVkKeyScan

OemToAnsi
The OemToAnsi function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the OemToChar function, which should be used for new Win32-based applications.

OemToAnsiBuff
The OemToAnsiBuff function is obsolete.

For compatibility with 16-bit versions of Windows, this function is implemented as a macro that
calls the OemToCharBuff function, which should be used for Win32-based applications.

OemToChar
The OemToChar function translates a string from the OEM-defined character set into either an
ANSI or a wide-character string. (OEM stands for original equipment manufacturer.) This function
supersedes the OemToAnsi function.

BOOL OemToChar(
LPCSTR lpszSrc, // pointer to string to translate
LPTSTR lpszDst // pointer to buffer for translated string

);ParameterslpszSrc
Points to a null-terminated string of characters from the OEM-defined character set.

lpszDst
Points to the buffer for the translated string. If the OemToChar function is being used as an
ANSI function, the string can be translated in place by setting the lpszDst parameter to the
same address as the lpszSrc parameter. This cannot be done if OemToChar is being used as
a wide-character function.

Return ValuesThe return value is always nonzero.See AlsoCharToOem, CharToOemBuff, OemToCharBuff

OemToCharBuff
The OemToCharBuff function translates a specified number of characters in a string from the
OEM-defined character set into either an ANSI or a wide-character string. (OEM stands for
original equipment manufacturer.) This function supersedes the OemToAnsiBuff function.

BOOL OemToCharBuff(
LPCSTR lpszSrc, // pointer to string to translate
LPTSTR lpszDst, // pointer to buffer for translated string
DWORD cchDstLength // size of buffer

);ParameterslpszSrc
Points to a buffer containing one or more characters from the OEM-defined character set.

lpszDst
Points to the buffer for the translated string. If the OemToCharBuff function is being used as
an ANSI function, the string can be translated in place by setting the lpszDst parameter to the
same address as the lpszSrc parameter. This cannot be done if the OemToCharBuff function
is being used as a wide-character function.

cchDstLength
Specifies the number of characters to translate in the buffer identified by the lpszSrc
parameter.

Return ValuesThe return value is always nonzero.See AlsoCharToOem, CharToOemBuff, OemToChar

OffsetClipRgn
The OffsetClipRgn function moves the clipping region of a device context by the specified
offsets.

int OffsetClipRgn(
HDC hdc, // handle to device context
int nXOffset, // offset along x-axis
int nYOffset // offset along y-axis

);Parametershdc
Identifies the device context.

nXOffset
Specifies the number of logical units to move left or right.

nYOffset
Specifies the number of logical units to move up or down.

Return ValuesIf the function succeeds, the return value specifies the new region's complexity and can be any
one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred. (The current clipping region is

unaffected.)
See AlsoSelectClipRgn

OffsetRect
The OffsetRect function moves the specified rectangle by the specified offsets.

BOOL OffsetRect(
LPRECT lprc, // pointer to structure with rectangle
int dx, // horizontal offset
int dy // vertical offset

);Parameterslprc
Points to a RECT structure that contains the logical coordinates of the rectangle to be moved.

dx
Specifies the amount to move the rectangle left or right. This parameter must be a negative
value to move the rectangle to the left.

dy
Specifies the amount to move the rectangle up or down. This parameter must be a negative
value to move the rectangle up.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoInflateRect, IntersectRect, UnionRect, RECT

OffsetRgn
The OffsetRgn function moves a region by the specified offsets.

int OffsetRgn(
HRGN hrgn, // handle to region
int nXOffset, // offset along x-axis
int nYOffset // offset along y-axis

);Parametershrgn
Identifies the region to be moved.

nXOffset
Specifies the number of logical units to move left or right.

nYOffset
Specifies the number of logical units to move up or down.

Return ValuesThe return value specifies the new region's complexity. It can be one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred; region is unaffected.

OffsetViewportOrgEx
The OffsetViewportOrgEx function modifies the viewport origin for a device context using the
specified horizontal and vertical offsets.

BOOL OffsetViewportOrgEx(
HDC hdc, // handle to device context
int nXOffset, // horizontal offset
int nYOffset, // vertical offset
LPPOINT lpPoint // pointer to structure receiving original origin

);Parametershdc
Identifies the device context.

nXOffset
Specifies the horizontal offset, in device units.

nYOffset
Specifies the vertical offset, in device units.

lpPoint
Points to a POINT structure. The previous viewport origin, in device units, is placed in this
structure. If lpPoint is NULL, the previous viewport origin is not returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe new origin is the sum of the current origin and the horizontal and vertical offsets.See AlsoGetViewportOrgEx, OffsetWindowOrgEx, SetViewportOrgEx

OffsetWindowOrgEx
The OffsetWindowOrgEx function modifies the window origin for a device context using the
specified horizontal and vertical offsets.

BOOL OffsetWindowOrgEx(
HDC hdc, // handle to device context
int nXOffset, // horizontal offset
int nYOffset, // vertical offset
LPPOINT lpPoint // pointer to structure receiving the original origin

);Parametershdc
Identifies the device context.

nXOffset
Specifies the horizontal offset, in logical units.

nYOffset
Specifies the vertical offset, in logical units.

lpPoint
Points to a POINT structure. The logical coordinates of the previous window origin are placed
in this structure. If lpPoint is NULL, the previous origin is not returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksGetViewportOrgEx, OffsetViewportOrgEx, POINT

OFNHookProc
An OFNHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Explorer-style Open and Save As common dialog boxes. The hook procedure
receives notification messages sent from the common dialog box. The hook procedure also
receives messages for any additional controls that you defined by specifying a child dialog
template.

If you do not specify the OFN_EXPLORER flag when you create an Open or Save As common
dialog box, and you want a hook procedure, you must use an old-style OFNHookProcOldStyle
hook procedure. In this case, the dialog box will have the old-style user interface.

UINT APIENTRY OFNHookProc(
HWND hdlg, // handle to child dialog window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the child dialog box of the Open or Save As dialog box. Use the GetParent function
to get the handle to the Open or Save As dialog box window.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to an
OPENFILENAME structure containing the values specified when the dialog box was created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.

For the CDN_SHAREVIOLATION and CDN_FILEOK notification messages, the hook procedure
should return a nonzero value to indicate that it has used the SetWindowLong function to set a
nonzero DWL_MSGRESULT value.RemarksWhen you use the GetOpenFileName or GetSaveFileName functions to create an Explorer-style
Open or Save As common dialog box, you can provide an OFNHookProc hook procedure. To
enable the hook procedure, use the OPENFILENAME structure that you passed to the dialog
creation function. Specify the pointer to the hook procedure in the lpfnHook member and specify
the OFN_ENABLEHOOK flag in the Flags member.

If you provide a hook procedure for an Explorer-style common dialog box, the system creates a
dialog box that is a child of the default dialog box. The hook procedure acts as the dialog
procedure for the child dialog. This child dialog is based on the template you specified in the
OPENFILENAME structure, or it is a default child dialog if no template is specified. The child
dialog is created when the default dialog procedure is processing its WM_INITDIALOG message.
After the child dialog processes its own WM_INITDIALOG message, the default dialog procedure
moves the standard controls, if necessary, to make room for any additional controls of the child
dialog. The system then sends the CDN_INITDONE notification message to the hook procedure.

The hook procedure does not receive messages intended for the standard controls of the default
dialog box. You can subclass the standard controls, but this is discouraged because it may make
your application incompatible with future versions of the common dialog box. However, the
Explorer-style common dialogs provide a set of messages that the hook procedure can use to
monitor and control the dialog. These include a set of WM_NOTIFY notification messages sent
from the dialog, as well as messages that you can send to retrieve information from the dialog.
For a complete list of these messages, see "Explorer-Style Hook Procedures."

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if it processes any

WM_CTLCOLOR* message, it must return a valid brush handle for painting the background of the
specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

OFNHookProc is a placeholder for the application-defined or library-defined function name. The
LPOFNHOOKPROC type is a pointer to either an OFNHookProc or OFNHookProcOldStyle
hook procedure.See AlsoGetOpenFileName, GetSaveFileName, OFNHookProcOldStyle, OPENFILENAME

OFNHookProcOldStyle
An OFNHookProcOldStyle hook procedure is an application-defined or library-defined callback
procedure that is used with the Open and Save As common dialog boxes. The hook procedure
receives messages or notifications intended for the dialog box procedure.

If you specify the OFN_EXPLORER flag when you create an Open or Save As common dialog
box, and you want a hook procedure, you must use an Explorer-style OFNHookProc hook
procedure.

UINT APIENTRY OFNHookProcOldStyle(
HWND hdlg, // handle to the dialog box window
UINT uiMsg // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Open or Save As dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to an
OPENFILENAME structure containing the values specified when the common dialog box was
created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the GetOpenFileName or GetSaveFileName functions to create an old-style Open
or Save As dialog box, you can provide an OFNHookProcOldStyle hook procedure. To enable
the hook procedure, use the OPENFILENAME structure that you passed to the dialog creation
function. Specify the pointer to the hook procedure in the lpfnHook member and specify the
OFN_ENABLEHOOK flag in the Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

OFNHookProcOldStyle is a placeholder for the application-defined or library-defined function
name. The LPOFNHOOKPROC type is a pointer to either an OFNHookProcOldStyle or
OFNHookProc hook procedure.

See AlsoGetOpenFileName, GetSaveFileName, OFNHookProc, OPENFILENAME, WM_INITDIALOG

OpenBackupEventLog
The OpenBackupEventLog function opens a handle of a backup event log. This handle can be
used with the BackupEventLog function.

HANDLE OpenBackupEventLog(
LPCTSTR lpUNCServerName, // backup file server name
LPCTSTR lpFileName // backup filename

);ParameterslpUNCServerName
Points to a null-terminated string that specifies the Universal Naming Convention (UNC) name
of the server on which this operation is to be performed. If this parameter is NULL, the
operation is performed on the local computer.

lpFileName
Points to a null-terminated string that specifies the name of the backup file. The backup
filename may contain a server name to open a backup file on a remote server (in this case,
the lpUNCServerName parameter must be NULL).

Return ValuesIf the function succeeds, the return value is a handle of the backup event log.

If the function fails, the return value is NULL.RemarksIf the backup filename specifies a remote server, lpUNCServerName must be NULL. You cannot
use this function to open a file on a remote server.See AlsoBackupEventLog

OpenClipboard
The OpenClipboard function opens the clipboard for examination and prevents other applications
from modifying the clipboard content.

BOOL OpenClipboard(
HWND hWndNewOwner // handle to window opening clipboard

);ParametershWndNewOwner
Identifies the window to be associated with the open clipboard. If this parameter is NULL, the
open clipboard is associated with the current task.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOpenClipboard fails if another window has the clipboard open.

An application should call the CloseClipboard function after every successful call to
OpenClipboard.

The window identified by the hWndNewOwner parameter does not become the clipboard owner
unless the EmptyClipboard function is called.See AlsoCloseClipboard, EmptyClipboard

OpenDesktop
The OpenDesktop function returns a handle to an existing desktop. A desktop is a secure object
contained within a window station object. A desktop has a logical display surface and contains
windows, menus and hooks.

HDESK OpenDesktop(
LPTSTR lpszDesktop, // name of the desktop to open
DWORD dwFlags, // flags to control interaction with other applications
BOOL fInherit, // specifies whether returned handle is inheritable
DWORD dwDesiredAccess // specifies access of returned handle

);ParameterslpszDesktop
Points to null-terminated string specifying the name of the desktop to be opened. Desktop
names are case-insensitive.

dwFlags
A bit flag parameter that controls how the calling application will cooperate with other
applications on the desktop. This parameter can specify zero or the following value:

Value Description
DF_ALLOWOTHERACCOUNTHOOKAllows processes running in other

accounts on the desktop to set hooks
in this process.

fInherit
Specifies whether the returned handle is inherited when a new process is created. If this value
is TRUE, new processes will inherit the handle.

dwDesiredAccess
Specifies the type of access to the desktop. This parameter can be one or more of the
following values:

Value Description
DESKTOP_CREATEMENU Required to create a menu on the desktop.
DESKTOP_CREATEWINDOW Required to create a window on the desktop.
DESKTOP_ENUMERATE Required for the desktop to be enumerated.
DESKTOP_HOOKCONTROL Required to establish any of the window

hooks.
DESKTOP_JOURNALPLAYBACK Required to perform journal playback on the

desktop.
DESKTOP_JOURNALRECORD Required to perform journal recording on the

desktop.
DESKTOP_READOBJECTS Required to read objects on the desktop.
DESKTOP_SWITCHDESKTOP Required to activate the desktop using

SwitchDesktop.
DESKTOP_WRITEOBJECTS Required to write objects on the desktop.

Return ValuesIf the function succeeds, the return value is the handle to the opened desktop.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe calling process must have an associated window station, either assigned by the system at
process creation time or set by the SetProcessWindowStation function.See AlsoCreateDesktop, SetProcessWindowStation, SetThreadDesktop, SwitchDesktop

OpenEvent
The OpenEvent function returns a handle of an existing named event object.

HANDLE OpenEvent(
DWORD dwDesiredAccess, // access flag
BOOL bInheritHandle, // inherit flag
LPCTSTR lpName // pointer to event-object name

);ParametersdwDesiredAccess
Specifies the requested access to the event object. For systems that support object security,
the function fails if the security descriptor of the specified object does not permit the requested
access for the calling process.
This parameter can be any combination of the following values:

Access Description
EVENT_ALL_ACCESS Specifies all possible access flags for the

event object.
EVENT_MODIFY_STATE Enables use of the event handle in the

SetEvent and ResetEvent functions to
modify the event's state.

SYNCHRONIZE Windows NT only: Enables use of the
event handle in any of the wait functions
to wait for the event's state to be
signaled.

bInheritHandle
Specifies whether the returned handle is inheritable. If TRUE, a process created by the
CreateProcess function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
Points to a null-terminated string that names the event to be opened. Name comparisons are
case sensitive.

Return ValuesIf the function succeeds, the return value is a handle of the event object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe OpenEvent function enables multiple processes to open handles of the same event object.
The function succeeds only if some process has already created the event by using the
CreateEvent function. The calling process can use the returned handle in any function that
requires a handle of an event object, subject to the limitations of the access specified in the
dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle
function to close the handle. The system closes the handle automatically when the process
terminates. The event object is destroyed when its last handle has been closed.See AlsoCloseHandle, CreateEvent, CreateProcess, DuplicateHandle, PulseEvent, ResetEvent,
SetEvent

OpenEventLog
The OpenEventLog function opens a handle of an event log.

HANDLE OpenEventLog(
LPCTSTR lpUNCServerName, // pointer to server name
LPCTSTR lpSourceName // pointer to source name

);ParameterslpUNCServerName
Points to a null-terminated string that specifies the Universal Naming Convention (UNC) name
of the server on which the event log is to be opened. If this parameter is NULL, the log is
opened on the local computer.

lpSourceName
Points to a null-terminated string that specifies the name of the source that the returned
handle will reference. The source name must be a subkey of a logfile entry under the
EventLog key in the registry. For example, the source name WinApp would be valid if the
registry had the following form:
HKEY_LOCAL_MACHINE
System
CurrentControlSet

Services
EventLog

Application
WinApp

Security
System
If the source name cannot be found, the event logging service uses the Application logfile
with no message files for the event identifier or category.

Return ValuesIf the function succeeds, the return value is the handle of an event log.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoClearEventLog, CloseEventLog, GetNumberOfEventLogRecords,
GetOldestEventLogRecord, ReadEventLog, ReportEvent

OpenFile
The OpenFile function creates, opens, reopens, or deletes a file.

This function is provided for compatibility with 16-bit versions of Windows. In particular, the
OpenFile function cannot open a named pipe. Win32-based applications should use the
CreateFile function.

HFILE OpenFile(
LPCSTR lpFileName, // pointer to filename
LPOFSTRUCT lpReOpenBuff, // pointer to buffer for file information
UINT uStyle // action and attributes

);ParameterslpFileName
Points to a null-terminated string that names the file to be opened. The string must consist of
characters from the Windows 3.x character set. The OpenFile function does not support
Unicode filenames.

lpReOpenBuff
Points to the OFSTRUCT structure that receives information about the file when it is first
opened. The structure can be used in subsequent calls to the OpenFile function to refer to the
open file.
The OFSTRUCT structure contains a pathname string member whose length is limited to
OFS_MAXPATHNAME characters. OFS_MAXPATHNAME is currently defined to be 128.
Because of this, you cannot use the OpenFile function to open a file whose path length
exceeds 128 characters. The CreateFile function does not have such a path length limitation.

uStyle
Specifies the action to take. The following values can be combined by using the bitwise OR
operator:

Value Meaning
OF_CANCEL Ignored. In the Win32 application

programming interface (API), the
OF_PROMPT style produces a dialog
box containing a Cancel button.

OF_CREATE Creates a new file. If the file already
exists, it is truncated to zero length.

OF_DELETE Deletes the file.
OF_EXIST Opens the file and then closes it. Used

to test for a file's existence.
OF_PARSE Fills the OFSTRUCT structure but

carries out no other action.
OF_PROMPT Displays a dialog box if the requested

file does not exist. The dialog box
informs the user that Windows cannot
find the file, and it contains Retry and
Cancel buttons. Choosing the Cancel
button directs OpenFile to return a file-
not-found error message.

OF_READ Opens the file for reading only.
OF_READWRITE Opens the file for reading and writing.
OF_REOPEN Opens the file using information in the

reopen buffer.
OF_SHARE_COMPAT For MS-DOS- based file systems using

the Win32 API, opens the file with
compatibility mode, allowing any
process on a specified computer to
open the file any number of times.
Other efforts to open with any other
sharing mode fail.
Windows NT: This flag is mapped to
the CreateFile function's

FILE_SHARE_READ |
FILE_SHARE_WRITE flags.

OF_SHARE_DENY_NONE Opens the file without denying read or
write access to other processes. On
MS-DOS-based file systems using the
Win32 API, if the file has been opened
in compatibility mode by any other
process, the function fails.
Windows NT: This flag is mapped to
the CreateFile function's
FILE_SHARE_READ |
FILE_SHARE_WRITE flags.

OF_SHARE_DENY_READ Opens the file and denies read access
to other processes. On MS-DOS-
based file systems using the Win32
API, if the file has been opened in
compatibility mode or for read access
by any other process, the function fails.
Windows NT: This flag is mapped to
the CreateFile function's
FILE_SHARE_WRITE flag.

OF_SHARE_DENY_WRITE Opens the file and denies write access
to other processes. On MS-DOS-
based file systems using the Win32
API, if the file has been opened in
compatibility mode or for write access
by any other process, the function fails.
Windows NT: This flag is mapped to
the CreateFile function's
FILE_SHARE_READ flag.

OF_SHARE_EXCLUSIVE Opens the file with exclusive mode,
denying both read and write access to
other processes. If the file has been
opened in any other mode for read or
write access, even by the current
process, the function fails.

OF_VERIFY Verifies that the date and time of the file
are the same as when it was previously
opened. This is useful as an extra
check for read-only files.

OF_WRITE Opens the file for writing only.
Return ValuesIf the function succeeds, the return value specifies a file handle.

If the function fails, the return value is HFILE_ERROR. To get extended error information, call
GetLastError.RemarksIf the lpFileName parameter specifies a filename and extension only, this function searches for a
matching file in the following directories, in the order shown:

1. The directory from which the application loaded.
2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
The lpFileName parameter cannot contain wildcard characters.

The Win32 OpenFile function does not support the OF_SEARCH flag supported by the 16-bit
Windows OpenFile function. The OF_SEARCH flag directs Windows to search for a matching file
even when the filename includes a full path. To search for a file in a Win32-based application, use
the SearchPath function.

To close the file after use, call the _lclose function.See AlsoCreateFile, GetSystemDirectory, GetWindowsDirectory, _lclose, OFSTRUCT, SearchPath

OpenFileMapping
The OpenFileMapping function opens a named file-mapping object.

HANDLE OpenFileMapping(
DWORD dwDesiredAccess, // access mode
BOOL bInheritHandle, // inherit flag
LPCTSTR lpName // pointer to name of file-mapping object

);ParametersdwDesiredAccess
Specifies the access to the file-mapping object.
Windows NT:

This access is checked against any security descriptor on the target file-mapping object.
Windows 95:

Windows 95 does not support security descriptors on file mapping objects.
This parameter can be one of the following values:

Value Meaning
FILE_MAP_WRITE Read-write access. The target file-

mapping object must have been created
with PAGE_READWRITE protection. A
read-write view of the file is mapped.

FILE_MAP_READ Read-only access. The target file-
mapping object must have been created
with PAGE_READWRITE or
PAGE_READ protection. A read-only
view of the file is mapped.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.
FILE_MAP_COPY Copy-on-write access. The target file-

mapping object must have been created
with PAGE_WRITECOPY protection. A
copy-on-write view of the file is mapped.

bInheritHandle
Specifies whether the returned handle is to be inherited by a new process during process
creation. A value of TRUE indicates that the new process inherits the handle.

lpName
Points to a string that names the file-mapping object to be opened. If there is an open handle
to a file-mapping object by this name and the security descriptor on the mapping object does
not conflict with the dwDesiredAccess parameter, the open operation succeeds.

Return ValuesIf the function succeeds, the return value is an open handle to the specified file-mapping object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle that OpenFileMapping returns can be used with any function that requires a handle
to a file-mapping object.See AlsoCreateFileMapping

OpenIcon
The OpenIcon function restores a minimized (iconic) window to its previous size and position; it
then activates the window.

BOOL OpenIcon(
HWND hWnd // handle to window

);ParametershWnd
Identifies the window to be restored and activated.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOpenIcon sends a WM_QUERYOPEN message to the given window.See AlsoCloseWindow, IsIconic, ShowWindow

OpenInputDesktop
The OpenInputDesktop function returns a handle to the desktop that receives user input. The
input desktop is a desktop on the window station associated with the logged-on user.

HDESK OpenInputDesktop(
DWORD dwFlags, // flags to control interaction with other applications
BOOL fInherit, // specifies whether returned handle is inheritable
DWORD dwDesiredAccess // specifies access of returned handle

);ParametersdwFlags
A bit flag parameter that controls how the calling application will cooperate with other
applications on the desktop. This parameter can specify zero or the following value:

Value Description
DF_ALLOWOTHERACCOUNTHOOKAllows processes running in other

accounts on the desktop to set
hooks in this process.

fInherit
Specifies whether the returned handle is inherited when a new process is created. If
this value is TRUE, new processes will inherit the handle.

dwDesiredAccess
Specifies the type of access to the desktop. This parameter can be one or more of the
following values:

Value Description
DESKTOP_CREATEMENU Required to create a menu on the desktop.
DESKTOP_CREATEWINDOW Required to create a window on the desktop.
DESKTOP_ENUMERATE Required for the desktop to be enumerated.
DESKTOP_HOOKCONTROL Required to establish any of the window

hooks.
DESKTOP_JOURNALPLAYBACK Required to perform journal playback on the

desktop.
DESKTOP_JOURNALRECORD Required to perform journal recording on the

desktop.
DESKTOP_READOBJECTS Required to read objects on the desktop.
DESKTOP_SWITCHDESKTOP Required to activate the desktop using

SwitchDesktop.
DESKTOP_WRITEOBJECTS Required to write objects on the desktop.

Return ValuesIf the function succeeds, the return value is a handle of the desktop that receives user input.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe calling process must have an associated window station, either assigned by the system at
process creation time or set by SetProcessWindowStation The window station associated with
the calling process must be capable of receiving input.

An application can use the SwitchDesktop function to change the input desktop.See AlsoSetProcessWindowStation, SwitchDesktop

OpenMutex
The OpenMutex function returns a handle of an existing named mutex object.

HANDLE OpenMutex(
DWORD dwDesiredAccess, // access flag
BOOL bInheritHandle, // inherit flag
LPCTSTR lpName // pointer to mutex-object name

);ParametersdwDesiredAccess
Specifies the requested access to the mutex object. For systems that support object security,
the function fails if the security descriptor of the specified object does not permit the requested
access for the calling process.
This parameter can be any combination of the following values:

Access Description
MUTEX_ALL_ACCESS Specifies all possible access flags for the

mutex object.
SYNCHRONIZE Windows NT only: Enables use of the

mutex handle in any of the wait functions
to acquire ownership of the mutex, or in
the ReleaseMutex function to release
ownership.

bInheritHandle
Specifies whether the returned handle is inheritable. If TRUE, a process created by the
CreateProcess function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
Points to a null-terminated string that names the mutex to be opened. Name comparisons are
case sensitive.

Return ValuesIf the function succeeds, the return value is a handle of the mutex object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe OpenMutex function enables multiple processes to open handles of the same mutex object.
The function succeeds only if some process has already created the mutex by using the
CreateMutex function. The calling process can use the returned handle in any function that
requires a handle of a mutex object, such as the wait functions, subject to the limitations of the
access specified in the dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle
function to close the handle. The system closes the handle automatically when the process
terminates. The mutex object is destroyed when its last handle has been closed.See AlsoCloseHandle, CreateMutex, CreateProcess, DuplicateHandle, ReleaseMutex

OpenPrinter
The OpenPrinter function retrieves a handle identifying the specified printer or print server.

BOOL OpenPrinter(
LPTSTR pPrinterName, // pointer to printer or server name
LPHANDLE phPrinter, // pointer to printer or server handle
LPPRINTER_DEFAULTS pDefault // pointer to printer defaults structure

);ParameterspPrinterName
Points to a null-terminated string that specifies the name of the printer or print server.

phPrinter
Points to a variable that receives the handle identifying the opened printer or print server
object.

pDefault
Points to a PRINTER_DEFAULTS structure. This value can be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe pDefault parameter allows an application to specify the data type and device mode values
that are used for printing documents submitted by the StartDocPrinter function. However, these
values can be overridden by using the SetJob function once a document has been started.

The DesiredAccess member of the PRINTER_DEFAULTS data structure pointed to by pDefault
specifies the accesses that an application wishes to perform using the handle returned by
OpenPrinter. If an application wishes to open a printer to perform administrative tasks, such as
the SetPrinter function, it should open the printer with PRINTER_ALL_ACCESS access. If an
application wishes only to perform basic printing operations, an access value that includes
PRINTER_ACCESS_USE is sufficient.

Windows 95: OpenPrinter ignores the DesiredAccess member of PRINTER_DEFAULTS.

An application can determine what permissions a client has on a print server, or obtain a handle to
a print server to call WaitForPrinterChange. To do so, it should call OpenPrinter with
pPrinterName set to the name of the server and should specify a server access mask value such
as SERVER_ALL_ACCESS. The pDatatype and pDevMode members of the
PRINTER_DEFAULTS data structure should be set to NULL. The handle returned by such a call
may be passed to the ClosePrinter or WaitForPrinterChange function.

If a user does not hold permission to open a specified printer or print server with the desired
access, the OpenPrinter call will fail, and GetLastError will return the value
ERROR_ACCESS_DENIED.See AlsoClosePrinter, SetPrinter, StartDocPrinter, WaitForPrinterChange, PRINTER_DEFAULTS

OpenProcess
The OpenProcess function returns a handle of an existing process object.

HANDLE OpenProcess(
DWORD dwDesiredAccess, // access flag
BOOL bInheritHandle, // handle inheritance flag
DWORD dwProcessId // process identifier

);ParametersdwDesiredAccess
Specifies the access to the process object. For operating systems that support security
checking, this access is checked against any security descriptor for the target process. Any
combination of the following access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED access flags:

Access Description
PROCESS_ALL_ACCESS Specifies all possible access

flags for the process object.
PROCESS_CREATE_PROCESS Used internally.
PROCESS_CREATE_THREAD Enables using the process

handle in the
CreateRemoteThread function
to create a thread in the
process.

PROCESS_DUP_HANDLE Enables using the process
handle as either the source or
target process in the
DuplicateHandle function to
duplicate a handle.

PROCESS_QUERY_INFORMATIONEnables using the process
handle in the
GetExitCodeProcess and
GetPriorityClass functions to
read information from the
process object.

PROCESS_SET_INFORMATION Enables using the process
handle in the SetPriorityClass
function to set the priority class
of the process.

PROCESS_TERMINATE Enables using the process
handle in the
TerminateProcess function to
terminate the process.

PROCESS_VM_OPERATION Enables using the process
handle in the VirtualProtectEx
and WriteProcessMemory
functions to modify the virtual
memory of the process.

PROCESS_VM_READ Enables using the process
handle in the
ReadProcessMemory function
to read from the virtual memory
of the process.

PROCESS_VM_WRITE Enables using the process
handle in the
WriteProcessMemory function
to write to the virtual memory of
the process.

SYNCHRONIZE Windows NT only: Enables
using the process handle in any
of the wait functions to wait for

the process to terminate.

bInheritHandle
Specifies whether the returned handle can be inherited by a new process created by the
current process. If TRUE, the handle is inheritable.

dwProcessId
Specifies the process identifier of the process to open.

Return ValuesIf the function succeeds, the return value is an open handle of the specified process.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe handle returned by the OpenProcess function can be used in any function that requires a
handle to a process, such as the wait functions, provided the appropriate access rights were
requested.

When you are finished with the handle, be sure to close it using the CloseHandle function.See AlsoCloseHandle, CreateProcess, CreateRemoteThread, DuplicateHandle, GetCurrentProcess,
GetCurrentProcessId, GetExitCodeProcess, GetPriorityClass, ReadProcessMemory,
SetPriorityClass, TerminateProcess, VirtualProtectEx, WriteProcessMemory

OpenProcessToken
The OpenProcessToken function opens the access token associated with a process.

BOOL OpenProcessToken(
HANDLE ProcessHandle, // handle to process
DWORD DesiredAccess, // desired access to process
PHANDLE TokenHandle // pointer to handle of open access token

);ParametersProcessHandle
Identifies the process whose access token is opened.

DesiredAccess
Specifies an access mask that specifies the requested types of access to the access token.
These requested access types are compared with the token's discretionary access-control list
(ACL) to determine which accesses are granted or denied. The following access rights have
been defined for access tokens.

Value Meaning
TOKEN_ADJUST_DEFAULT Required to change the default

ACL, primary group, or owner of
an access token.

TOKEN_ADJUST_GROUPS Required to change the groups
specified in an access token.

TOKEN_ADJUST_PRIVILEGES Required to change the
privileges specified in an access
token.

TOKEN_ALL_ACCESS Combines the
STANDARD_RIGHTS_REQUIRED
standard access rights and all
individual access rights for
tokens.

TOKEN_ASSIGN_PRIMARY Required to attach a primary
token to a process in addition to
the
SE_CREATE_TOKEN_NAME
privilege.

TOKEN_DUPLICATE Required to duplicate an access
token.

TOKEN_EXECUTE Combines the
STANDARD_RIGHTS_EXECUTE
standard access rights and the
TOKEN_IMPERSONATE access
right.

TOKEN_IMPERSONATE Required to attach an
impersonation access token to a
process.

TOKEN_QUERY Required to query the contents
of an access token.

TOKEN_QUERY_SOURCE Required to query the source of
an access token.

TOKEN_READ Combines the
STANDARD_RIGHTS_READ
standard access rights and the
TOKEN_QUERY access right.

TOKEN_WRITE Combines the
STANDARD_RIGHTS_WRITE
standard access rights and the
TOKEN_ADJUST_PRIVILEGES,
TOKEN_ADJUST_GROUPS,
and
TOKEN_ADJUST_DEFAULT

access rights.

TokenHandle
Points to a handle identifying the newly-opened access token when the function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAdjustTokenGroups, AdjustTokenPrivileges, GetTokenInformation, OpenThreadToken,
SetTokenInformation

OpenSCManager
The OpenSCManager function establishes a connection to the service control manager on the
specified computer and opens the specified database.

SC_HANDLE OpenSCManager(
LPCTSTR lpMachineName, // pointer to machine name string
LPCTSTR lpDatabaseName, // pointer to database name string
DWORD dwDesiredAccess // type of access

);ParameterslpMachineName
Points to a null-terminated string that names the target computer. If the pointer is NULL or if it
points to an empty string, the function connects to the service control manager on the local
computer.

lpDatabaseName
Points to a null-terminated string that names the service control manager database to open.
This string should specify ServicesActive. If the pointer is NULL, the ServicesActive database
is opened by default.

dwDesiredAccess
Specifies the access to the service control manager. Before granting the requested access,
the system checks the access token of the calling process against the discretionary access-
control list of the security descriptor associated with the service control manager object. The
SC_MANAGER_CONNECT access type is implicitly specified by calling this function. In
addition, any or all of the following service control manager object access types can be
specified:

Type Description
SC_MANAGER_ALL_ACCESS

Includes STANDARD_RIGHTS_REQUIRED, in addition
to all of the access types listed in this table.

SC_MANAGER_CONNECT
Enables connecting to the service control manager.

SC_MANAGER_CREATE_SERVICE
Enables calling of the CreateService function to create a
service object and add it to the database.

SC_MANAGER_ENUMERATE_SERVICE
Enables calling of the EnumServicesStatus function to
list the services that are in the database.

SC_MANAGER_LOCK
Enables calling of the LockServiceDatabase function to
acquire a lock on the database.

SC_MANAGER_QUERY_LOCK_STATUS
Enables calling of the QueryServiceLockStatus function
to retrieve the lock status information for the database.

The dwDesiredAccess parameter can specify any or all of the following generic access
types:

Generic access Service manager access
GENERIC_READ Combines the following access:

STANDARD_RIGHTS_READ,
SC_MANAGER_ENUMERATE_SERVICE,
and
SC_MANAGER_QUERY_LOCK_STATUS.

GENERIC_WRITE Combines the following access:
STANDARD_RIGHTS_WRITE,
SC_MANAGER_CREATE_SERVICE, and
SC_MANAGER_MODIFY_BOOT_CONFIG.

GENERIC_EXECUTE Combines the following access:
STANDARD_RIGHTS_EXECUTE,

SC_MANAGER_CONNECT, and
SC_MANAGER_LOCK.

Return ValuesIf the function succeeds, the return value is a handle to the specified service control manager
database.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Error code Meaning

ERROR_ACCESS_DENIED The requested access was
denied.

ERROR_DATABASE_DOES_NOT_EXISTThe specified database does
not exist.

ERROR_INVALID_PARAMETER A parameter that was
specified is invalid.

RemarksWhen a process uses the OpenSCManager function to open a handle to a service control
manager database, the system performs a security check before granting the requested access.
All processes are permitted SC_MANAGER_CONNECT,
SC_MANAGER_ENUMERATE_SERVICE, and SC_MANAGER_QUERY_LOCK_STATUS
access to all service control manager databases. This enables any process to open a service
control manager database handle that it can use in the OpenService, EnumServicesStatus, and
QueryServiceLockStatus functions. Only processes with Administrator privileges are able to
open a database handle used by the CreateService and LockServiceDatabase functions.

The calling process can use the returned handle to identify the database in the following functions,
if the appropriate access rights are enabled:
CreateService
EnumServicesStatus
LockServiceDatabase
OpenService

QueryServiceLockStatus

The returned handle is only valid for the process that called the OpenSCManager function. It can
be closed by calling the CloseServiceHandle function.See AlsoCloseServiceHandle, CreateService, EnumServicesStatus, LockServiceDatabase,
OpenService, QueryServiceLockStatus

OpenSemaphore
The OpenSemaphore function returns a handle of an existing named semaphore object.

HANDLE OpenSemaphore(
DWORD dwDesiredAccess, // access flag
BOOL bInheritHandle, // inherit flag
LPCTSTR lpName // pointer to semaphore-object name

);ParametersdwDesiredAccess
Specifies the requested access to the semaphore object. For systems that support object
security, the function fails if the security descriptor of the specified object does not permit the
requested access for the calling process.
This parameter can be any combination of the following values:

Access Description
SEMAPHORE_ALL_ACCESS Specifies all possible access flags

for the semaphore object.
SEMAPHORE_MODIFY_STATE Enables use of the semaphore

handle in the ReleaseSemaphore
function to modify the semaphore's
count.

SYNCHRONIZE Windows NT only: Enables use of
the semaphore handle in any of the
wait functions to wait for the
semaphore's state to be signaled.

bInheritHandle
Specifies whether the returned handle is inheritable. If TRUE, a process created by the
CreateProcess function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
Points to a null-terminated string that names the semaphore to be opened. Name
comparisons are case sensitive.

Return ValuesIf the function succeeds, the return value is a handle of the semaphore object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe OpenSemaphore function enables multiple processes to open handles of the same
semaphore object. The function succeeds only if some process has already created the
semaphore by using the CreateSemaphore function. The calling process can use the returned
handle in any function that requires a handle of a semaphore object, such as the wait functions,
subject to the limitations of the access specified in the dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle
function to close the handle. The system closes the handle automatically when the process
terminates. The semaphore object is destroyed when its last handle has been closed.See AlsoCloseHandle, CreateSemaphore, DuplicateHandle, ReleaseSemaphore

OpenService
The OpenService function opens a handle to an existing service.

SC_HANDLE OpenService(
SC_HANDLE hSCManager, // handle to service control manager database
LPCTSTR lpServiceName, // pointer to name of service to start
DWORD dwDesiredAccess // type of access to service

);ParametershSCManager
Identifies the service control manager (SCM) database. The OpenSCManager function
returns this handle.

lpServiceName
Points to a null-terminated string that names the service to open. The maximum string length
is 256 characters. The SCM database preserves the case of the characters, but service name
comparisons are always case insensitive. A slash (/), backslash (\), comma, and space are
invalid service name characters.

dwDesiredAccess
Specifies the access to the service. Before granting the requested access, the system checks
the access token of the calling process against the discretionary access-control list of the
security descriptor associated with the service object. Any or all of the following service object
access types can be specified:

Access Description
SERVICE_ALL_ACCESS Includes

STANDARD_RIGHTS_REQUIRED
in addition to all of the
access types listed in this
table.

SERVICE_CHANGE_CONFIG Enables calling of the
ChangeServiceConfig
function to change the
service configuration.

SERVICE_ENUMERATE_DEPENDENTS Enables calling of the
EnumDependentServices
function to enumerate all
the services dependent on
the service.

SERVICE_INTERROGATE Enables calling of the
ControlService function
to ask the service to report
its status immediately.

SERVICE_PAUSE_CONTINUE Enables calling of the
ControlService function
to pause or continue the
service.

SERVICE_QUERY_CONFIG Enables calling of the
QueryServiceConfig
function to query the
service configuration.

SERVICE_QUERY_STATUS Enables calling of the
QueryServiceStatus
function to ask the service
control manager about the
status of the service.

SERVICE_START Enables calling of the
StartService function to
start the service.

SERVICE_STOP Enables calling of the
ControlService function
to stop the service.

SERVICE_USER_DEFINED_CONTROL Enables calling of the
ControlService function
to specify a user-defined
control code.

STANDARD_RIGHTS_REQUIRED enables the following service object access types:
Standard rights Description
DELETE Enables calling of the DeleteService

function to delete the service.
READ_CONTROL Enables calling of the

QueryServiceObjectSecurity
function to query the security
descriptor of the service object.

WRITE_DAC|WRITE_OWNER Enables calling of the
SetServiceObjectSecurity function
to modify the security descriptor of
the service object.

The dwDesiredAccess parameter can specify any or all of the following generic access
types:

Generic access Service access
GENERIC_READ Combines the following access:

STANDARD_RIGHTS_READ,
SERVICE_QUERY_CONFIG,
SERVICE_QUERY_STATUS,
SERVICE_INTERROGATE, and
SERVICE_ENUMERATE_DEPENDENTS.

GENERIC_WRITE Combines the following access:
STANDARD_RIGHTS_WRITE and
SERVICE_CHANGE_CONFIG.

GENERIC_EXECUTE Combines the following access:
STANDARD_RIGHTS_EXECUTE,
SERVICE_START, SERVICE_STOP,
SERVICE_PAUSE_CONTINUE, and
SERVICE_USER_DEFINED_CONTROL.

Return ValuesIf the function succeeds, the return value is a handle to the service.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.ErrorsThe following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Error code Meaning

ERROR_ACCESS_DENIED The specified service control
manager database handle does
not have access to the service.

ERROR_INVALID_HANDLE The specified handle is invalid.
ERROR_INVALID_NAME The specified service name is

invalid.
ERROR_SERVICE_DOES_NOT_EXISTThe specified service does not

exist.
RemarksThe calling process can use the returned handle to identify the service in the following functions, if

the appropriate access rights are enabled:
ChangeServiceConfig
ControlService
DeleteService
EnumDependentServices
QueryServiceConfig
QueryServiceObjectSecurity
QueryServiceStatus
SetServiceObjectSecurity

StartService

The returned handle is only valid for the process that called OpenService. It can be closed by
calling the CloseServiceHandle function.See AlsoChangeServiceConfig, ControlService, CreateService, DeleteService,
EnumDependentServices, OpenSCManager, QueryServiceConfig,
QueryServiceObjectSecurity, QueryServiceStatus, SetServiceObjectSecurity, StartService

OpenThreadToken
The OpenThreadToken function opens the access token associated with a thread.

BOOL OpenThreadToken(
HANDLE ThreadHandle, // handle to thread
DWORD DesiredAccess, // access to process
BOOL OpenAsSelf, // flag for process or thread security
PHANDLE TokenHandle // pointer to handle to open access token

);ParametersThreadHandle
Identifies the thread whose access token is opened.

DesiredAccess
Specifies an access mask that specifies the requested types of access to the access token.
These requested access types are reconciled against the token's discretionary access-control
list (ACL) to determine which accesses are granted or denied. The following access rights
have been defined for access tokens.

Value Meaning
TOKEN_ADJUST_DEFAULT Required to change the default

ACL, primary group, or owner of
an access token.

TOKEN_ADJUST_GROUPS Required to change the groups
specified in an access token.

TOKEN_ADJUST_PRIVILEGESRequired to change the privileges
specified in an access token.

TOKEN_ALL_ACCESS Combines the
STANDARD_RIGHTS_REQUIRED
standard access rights and all
individual access rights for tokens.

TOKEN_ASSIGN_PRIMARY Required to attach a primary
token to a process in addition to
the SE_CREATE_TOKEN_NAME
privilege.

TOKEN_DUPLICATE Required to duplicate an access
token.

TOKEN_EXECUTE Combines the
STANDARD_RIGHTS_EXECUTE
standard access rights and the
TOKEN_IMPERSONATE access
right.

TOKEN_IMPERSONATE Required to attach an
impersonation access token to a
process.

TOKEN_QUERY Required to query the contents of
an access token.

TOKEN_QUERY_SOURCE Required to query the source of
an access token.

TOKEN_READ Combines the
STANDARD_RIGHTS_READ
standard access rights and the
TOKEN_QUERY access right.

TOKEN_WRITE Combines the
STANDARD_RIGHTS_WRITE
standard access rights and the
TOKEN_ADJUST_PRIVILEGES,
TOKEN_ADJUST_GROUPS, and
TOKEN_ADJUST_DEFAULT
access rights.

OpenAsSelf

Specifies a flag indicating whether the access check is to be made against the security
context of the thread calling the OpenThreadToken function or against the security context of
the process for the calling thread.
If this parameter is FALSE, the access check is performed using the security context for the
calling thread. If the thread is impersonating a client, this security context can be that of a
client process. If this parameter is TRUE, the access check is made using the security context
of the process for the calling thread.

TokenHandle
Points to a handle identifying the newly opened access token when the function returns.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe OpenAsSelf parameter allows a server process to open the access token for a client process
when the client process has specified the SecurityIdentification impersonation level for the
SECURITY_IMPERSONATION_LEVEL enumerated type. Without this parameter, the calling
process is not be able to open the client's access token using the client's security context,
because it is impossible to open executive-level objects using the SecurityIdentification
impersonation level.See AlsoAdjustTokenGroups, AdjustTokenPrivileges, GetTokenInformation, OpenProcessToken,
SetThreadToken, SetTokenInformation

OpenWaitableTimer
[New - Windows NT]

The OpenWaitableTimer function returns a handle to an existing named "waitable" timer object.

HANDLE OpenWaitableTimer(
DWORD dwDesiredAccess, // access flag
BOOL bInheritHandle, // inherit flag
LPCTSTR lpTimerName // pointer to timer object name

);ParametersdwDesiredAccess
Specifies the requested access to the timer object. For systems that support object security,
the function fails if the security descriptor of the specified object does not permit the requested
access for the calling process.
This parameter can be any combination of the following values:

Value Meaning
TIMER_ALL_ACCESS Specifies all possible access rights

for the timer object.
TIMER_MODIFY_STATE Enables use of the timer handle in

the SetWaitableTimer and
CancelWaitableTimer functions to
modify the timer's state.

SYNCHRONIZE Enables use of the timer handle in
any of the wait functions to wait for
the timer's state to be signaled.

bInheritHandle
Specifies whether the returned handle is inheritable. If TRUE, a process created by the
CreateProcess function can inherit the handle; otherwise, the handle cannot be inherited.

lpTimerName
Points to a null-terminated string specifying the name of the timer object. The name is limited
to MAX_PATH characters and can contain any character except the backslash path-
separator character (\). Name comparison is case sensitive.

Return ValueIf the function succeeds, the return value is a handle to the timer object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe OpenWaitableTimer function enables multiple processes to open handles to the same timer
object. The function succeeds only if some process has already created the timer using the
CreateWaitableTimer function. The calling process can use the returned handle in any function
that requires the handle of a timer object, such as the wait functions, subject to the limitations of
the access specified in the dwDesiredAccess parameter.

The returned handle can be duplicated by using the DuplicateHandle function. Use the
CloseHandle function to close the handle. The system closes the handle automatically when the
process terminates. The timer object is destroyed when its last handle has been closed.See AlsoCancelWaitableTimer, CloseHandle, CreateProcess, CreateWaitableTimer, DuplicateHandle,
SetWaitableTimer

OpenWindowStation
The OpenWindowStation function returns a handle to an existing window station.

HWINSTA OpenWindowStation(
LPTSTR lpszWinSta, // name of the window station to open
BOOL fInherit, // specifies whether returned handle is inheritable
DWORD dwDesiredAccess // specifies access of returned handle

);ParameterslpszWinSta
Points to a null-terminated string specifying the name of the window station to be opened.
Window station names are case-insensitive.

fInherit
Specifies whether the returned handle is inherited when a new process is created. If this value
is TRUE, new processes will inherit the handle.

dwDesiredAccess
Specifies the type of access to the window station. This parameter can be one or more of the
following values:

Value Description
WINSTA_ACCESSCLIPBOARD Required to use the clipboard.
WINSTA_ACCESSGLOBALATOMSRequired to manipulate global atoms.
WINSTA_CREATEDESKTOP Required to create new desktop objects on

the window station.
WINSTA_ENUMDESKTOPS Required to enumerate existing desktop

objects.
WINSTA_ENUMERATE Required for the window station to be

enumerated.
WINSTA_EXITWINDOWS Required to successfully call the

ExitWindows and ExitWindowsEx functions.
WINSTA_READATTRIBUTES Required to read the attributes of a window

station object.
WINSTA_READSCREEN Required to access screen contents.
WINSTA_WRITEATTRIBUTES Required to modify the attributes of a window

station object.
Return ValuesIf the function succeeds, the return value is the handle to the specified window station.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoExitWindows, ExitWindowsEx

ORASADFunc
The ORASADFunc function is an application-defined callback function that you can use to
provide a customized user interface for autodialing.

This prototype is provided for compatibility with earlier versions of Windows. New applications
should use the RASADFunc callback function. Support for this prototype may be removed in
future versions of RAS.

BOOL WINAPI ORASADFunc(
HWND hwndOwner, // handle of an owner window
LPSTR lpszEntry, // pointer to a phone-book entry
DWORD dwFlags, // reserved; must be zero
LPDWORD lpdwRetCode // receives the results of a dialing operation

);ParametershwndOwner
Handle of the owner window.

lpszEntry
Pointer to a null-terminated string that specifies the phone-book entry to use.

dwFlags
Reserved; must be zero.

lpdwRetCode
Pointer to a variable that the callback function fills in with the results of the dialing operation. If
the dialing operation succeeds, set this variable to ERROR_SUCCESS. If the dialing
operation fails, set it to a nonzero value.

Return ValuesIf the callback function performs the dialing operation, return TRUE. Use the lpdwRetCode
parameter to indicate the results of the dialing operation.

If the callback function does not perform the dialing operation, return FALSE. In this case, the
system uses the default user interface for dialing.RemarksIf your ORASADFunc function performs the dialing operation, it presents its own user interface for
dialing and calls the RasDial function to do the actual dialing. Your ORASADFunc then returns
TRUE to indicate that it took over the dialing. When the dialing operation has been completed, set
the variable pointed to by lpdwRetCode to indicate success or failure.

To enable an ORASADFunc handler for a phone-book entry, use the RASENTRY structure in a
call to the RasSetEntryProperties function. The szAutodialDll member specifies the name of
the DLL that contains the handler, and the szAutodialFunc member specifies the exported name
of the handler.

The ORASADFunc function is a placeholder for the library-defined function name. The
ORASADFUNC type is a pointer to an ORASADFunc function.See AlsoRASADFunc, RasDial, RASENTRY, RasSetEntryProperties

OutputDebugString
The OutputDebugString function sends a string to the debugger for the current application.

VOID OutputDebugString(
LPCTSTR lpOutputString // pointer to string to be displayed

);ParameterslpOutputString
Points to the null-terminated string to be displayed.

Return ValuesThis function does not return a value.RemarksIf the application has no debugger, the system debugger displays the string. If the application has
no debugger and the system debugger is not active, OutputDebugString does nothing.

OutputProc
The OutputProc function is an application-defined callback function that draws a string as a result
of a call to the GrayString function.

BOOL CALLBACK OutputProc(
HDC hdc, // handle to device context
LPARAM lpData, // pointer to string to be drawn
int cchData // length of string to be drawn

);Parametershdc
Identifies a device context with a bitmap of at least the width and height specified by the
nWidth and nHeight parameters passed to GrayString.

lpData
Points to the string to be drawn.

cchData
Specifies the length, in characters, of the string.

Return ValuesIf it succeeds, the callback function should return TRUE.

If the function fails, the return value is FALSE.RemarksThe callback function must draw an image relative to the coordinates (0,0).

OutputProc is a placeholder for the application-defined function name.See AlsoGrayString

PackDDElParam
The PackDDElParam function packs a DDE lParam value into an internal structure used for
sharing DDE data between processes.

LONG PackDDElParam(
UINT msg, // DDE message to be posted
UINT uiLo, // low-order word of lParam of message
UINT uiHi // high-order word of lParam of message

);Parametersmsg
Specifies the DDE message to be posted.

uiLo
Specifies a value that corresponds to the Windows 3.x low-order word of an lParam parameter
for the DDE message being posted.

uiHi
Specifies a value that corresponds to the Windows 3.x high-order word of an lParam
parameter for the DDE message being posted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe return value must be posted as the lParam parameter of a DDE message; it must not be used
for any other purpose. Once the application posts a return value, it need not perform any action to
dispose of the lParam parameter.

PackDDElParam eases the porting of 16-bit DDE applications to 32-bit DDE applications.

An application should call this function only for posted DDE messages.See AlsoFreeDDElParam, ReuseDDElParam, UnpackDDElParam

PagePaintHook
A PagePaintHook hook procedure is an application-defined or library-defined callback procedure
that is used with the Page Setup dialog box. The hook procedure receives messages that allow
you to customize drawing of the sample page in the Page Setup dialog box.

UINT APIENTRY PagePaintHook(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Page Setup dialog box window.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

Return ValuesIf the hook procedure returns TRUE for any of the first three messages of a drawing sequence
(WM_PSD_PAGESETUPDLG, WM_PSD_FULLPAGERECT, or WM_PSD_MINMARGINRECT),
the dialog box sends no more messages and does not draw in the sample page until the next time
the system needs to redraw the sample page. If the hook procedure returns FALSE for all three
messages, the dialog box sends the remaining messages of the drawing sequence.

If the hook procedure returns TRUE for any of the remaining messages in a drawing sequence,
the dialog box does not draw the corresponding portion of the sample page. If the hook procedure
returns FALSE for any of these messages, the dialog box draws that portion of the sample page.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. The image consists of a rectangle that
represents the selected paper or envelope type, with a dotted-line rectangle representing the
current margins, and partial (greek text) characters to show how text looks on the printed page.
When you use the PageSetupDlg function to create a Page Setup dialog box, you can provide a
PagePaintHook hook procedure to customize the appearance of the sample page.

To enable the hook procedure, use the PAGESETUPDLG structure that you passed to the dialog
creation function. Specify the pointer to the hook procedure in the lpfnPagePaintHook member
and specify the PSD_ENABLEPAGEPAINTHOOK flag in the Flags member.

Whenever the dialog box is about to draw the contents of the sample page, the hook procedure
receives the following messages in the order in which they are listed:

Message Meaning

WM_PSD_PAGESETUPDLG The dialog box is about to draw the
sample page. The hook procedure
can use this message to prepare to
draw the contents of the sample
page.

WM_PSD_FULLPAGERECT The dialog box is about to draw the
sample page. This message
specifies the bounding rectangle of
the sample page.

WM_PSD_MINMARGINRECT The dialog box is about to draw the
sample page. This message
specifies the margin rectangle.

WM_PSD_MARGINRECT The dialog box is about to draw the
margin rectangle.

WM_PSD_GREEKTEXTRECT The dialog box is about to draw the
greek text inside the margin
rectangle.

WM_PSD_ENVSTAMPRECT The dialog box is about to draw in
the envelope-stamp rectangle of an
envelope sample page. This
message is sent for envelopes only.

WM_PSD_YAFULLPAGERECT The dialog box is about to draw the
return address portion of an
envelope sample page. This
message is sent for envelopes and
other paper sizes.

PagePaintHook is a placeholder for the application-defined or library-defined function name. The
LPPAGEPAINTHOOK type is a pointer to a PagePaintHook hook procedure.See AlsoPageSetupDlg, PAGESETUPDLG

PageSetupDlg
The PageSetupDlg function creates a Page Setup dialog box that enables the user to specify the
attributes of a printed page. These attributes include the paper size and source, the page
orientation (portrait or landscape), and the width of the page margins.

BOOL PageSetupDlg(
LPPAGESETUPDLG lppsd pointer to a structure

);Parameterslppsd
Pointer to a PAGESETUPDLG structure that contains information used to initialize the dialog
box. The structure receives information about the user's selections when the function returns.

Return ValuesIf the user clicks the OK button, the return value is nonzero. The members of the
PAGESETUPDLG structure pointed to by the lppsd parameter indicate the user's selections.

If the user cancels or closes the Page Setup dialog box or an error occurs, the return value is
zero. To get extended error information, use the CommDlgExtendedError functionSee AlsoCommDlgExtendedError, PagePaintHook, PAGESETUPDLG, PageSetupHook

PageSetupHook
A PageSetupHook hook procedure is an application-defined or library-defined callback procedure
that is used with the Page Setup common dialog box. The hook procedure receives messages or
notifications intended for the default dialog box procedure.

UINT APIENTRY PageSetupHook(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Page Setup dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to a
PAGESETUPDLG structure containing the values specified when the common dialog box
was created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the PageSetupDlg function to create a Page Setup common dialog box, you can
provide a PageSetupHook hook procedure to process messages or notifications intended for the
dialog box procedure. To enable the hook procedure, use the PAGESETUPDLG structure that
you passed to the dialog creation function. Specify the pointer to the hook procedure in the
lpfnPageSetupHook member and specify the PSD_ENABLEPAGESETUPHOOK flag in the
Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

PageSetupHook is a placeholder for the application-defined or library-defined function name. The
LPPAGESETUPHOOK type is a pointer to a PageSetupHook hook procedure.See AlsoEndDialog, PageSetupDlg, PAGESETUPDLG, PostMessage, WM_INITDIALOG,
WM_CTLCOLORDLG

PaintDesktop
[Now Supported on Windows NT]

The PaintDesktop function fills the clipping region in the specified device context with the desktop
pattern or wallpaper. The function is provided primarily for shell desktops.

BOOL WINAPI PaintDesktop(
HDC hdc

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

PaintRgn
The PaintRgn function paints the specified region by using the brush currently selected into the
device context.

BOOL PaintRgn(
HDC hdc, // handle to device context
HRGN hrgn // handle to region to be painted

);Parametershdc
Identifies the device context.

hrgn
Identifies the region to be filled. The region's coordinates are presumed to be logical
coordinates.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoFillRgn

PatBlt
The PatBlt function paints the given rectangle using the brush that is currently selected into the
specified device context. The brush color and the surface color(s) are combined by using the
given raster operation.

BOOL PatBlt(
HDC hdc, // handle to device context
int nXLeft, // x-coord. of upper-left corner of rect. to be filled
int nYLeft, // y-coord. of upper-left corner of rect. to be filled
int nWidth, // width of rectangle to be filled
int nHeight, // height of rectangle to be filled
DWORD dwRop // raster operation code

);Parametershdc
Identifies the device context.

nXLeft
Specifies the x-coordinate, in logical units, of the upper-left corner of the rectangle to be filled.

nYLeft
Specifies the y-coordinate, in logical units, of the upper-left corner of the rectangle to be filled.

nWidth
Specifies the width, in logical units, of the rectangle.

nHeight
Specifies the height, in logical units, of the rectangle.

dwRop
Specifies the raster operation code. This code may be one of the following values:

Value Meaning
PATCOPY Copies the specified pattern into the destination

bitmap.
PATINVERT Combines the colors of the specified pattern with

the colors of the destination rectangle by using the
Boolean OR operator.

DSTINVERT Inverts the destination rectangle.
BLACKNESS Fills the destination rectangle using the color

associated with index 0 in the physical palette.
(This color is black for the default physical palette.)

WHITENESS Fills the destination rectangle using the color
associated with index 1 in the physical palette.
(This color is white for the default physical palette.)

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe values of the dwRop parameter for this function are a limited subset of the full 256 ternary
raster-operation codes; in particular, an operation code that refers to a source rectangle cannot be
used.

Not all devices support the PatBlt function. For more information, see the description of the
RC_BITBLT capability in the GetDeviceCaps function.See AlsoGetDeviceCaps

PathToRegion
The PathToRegion function creates a region from the path that is selected into the specified
device context.

HRGN PathToRegion(
HDC hdc // handle to device context

);Parametershdc
Identifies a device context that contains a closed path.

Return ValuesIf the function succeeds, the return value identifies a valid region.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksThe device context identified by the hdc parameter must contain a closed path.

After PathToRegion converts a path into a region, Windows discards the closed path from the
specified device context.See AlsoBeginPath, EndPath, SetPolyFillMode

PeekConsoleInput
The PeekConsoleInput function reads data from the specified console input buffer without
removing it from the buffer.

BOOL PeekConsoleInput(
HANDLE hConsoleInput, // handle to a console input buffer
PINPUT_RECORD lpBuffer, // pointer to the buffer for peek data
DWORD nLength, // number of records to read
LPDWORD lpNumberOfEventsRead // pointer to number of records read

);ParametershConsoleInput
Identifies the input buffer. The handle must have GENERIC_READ access.

lpBuffer
Points to an INPUT_RECORD buffer that receives the input buffer data.

nLength
Specifies the size, in records, of the buffer pointed to by the lpBuffer parameter.

lpNumberOfEventsRead
Points to a 32-bit variable that receives the number of input records read.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of records requested exceeds the number of records available in the buffer, the
number available is read. If no data is available, the function returns immediately.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoINPUT_RECORD, ReadConsoleInput, SetConsoleCP, SetConsoleOutputCP,
WriteConsoleInput

PeekMessage
The PeekMessage function checks a thread message queue for a message and places the
message (if any) in the specified structure.

BOOL PeekMessage(
LPMSG lpMsg, // pointer to structure for message
HWND hWnd, // handle to window
UINT wMsgFilterMin, // first message
UINT wMsgFilterMax, // last message
UINT wRemoveMsg // removal flags

);ParameterslpMsg
Points to an MSG structure that contains message information from the Windows-based
application queue.

hWnd
Identifies the window whose messages are to be examined.

wMsgFilterMin
Specifies the value of the first message in the range of messages to be examined.

wMsgFilterMax
Specifies the value of the last message in the range of messages to be examined.

wRemoveMsg
Specifies how messages are handled. This parameter can be one of the following values:

Value Meaning
PM_NOREMOVE Messages are not removed from the queue

after processing by PeekMessage.
PM_REMOVE Messages are removed from the queue after

processing by PeekMessage.

You can optionally combine the value PM_NOYIELD with either PM_NOREMOVE or
PM_REMOVE. However, PM_NOYIELD has no effect on 32-bit Windows applications. It
is defined in Win32 solely to provide compatibility with applications written for
previous versions of Windows, where it was used to prevent the current task from
halting and yielding system resources to another task. 32-bit Windows applications
always run simultaneously.

Return ValuesIf a message is available, the return value is nonzero.

If no messages are available, the return value is zero.RemarksUnlike the GetMessage function, the PeekMessage function does not wait for a message to be
placed in the queue before returning.

PeekMessage retrieves only messages associated with the window identified by the hWnd
parameter or any of its children as specified by the IsChild function, and within the range of
message values given by the wMsgFilterMin and wMsgFilterMax parameters. If hWnd is NULL,
PeekMessage retrieves messages for any window that belongs to the current thread making the
call. (PeekMessage does not retrieve messages for windows that belong to other threads.) If
hWnd is - 1, PeekMessage only returns messages with a hWnd value of NULL, as posted by the
PostAppMessage function. If wMsgFilterMin and wMsgFilterMax are both zero, PeekMessage
returns all available messages (that is, no range filtering is performed).

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to retrieve all
keyboard messages; the WM_MOUSEFIRST and WM_MOUSELAST constants can be used to
retrieve all mouse messages.

The PeekMessage function normally does not remove WM_PAINT messages from the queue.
WM_PAINT messages remain in the queue until they are processed. However, if a WM_PAINT
message has a null update region, PeekMessage does remove it from the queue.See AlsoGetMessage, IsChild, MSG, PostAppMessage, WaitMessage

PeekNamedPipe
The PeekNamedPipe function copies data from a named or anonymous pipe into a buffer without
removing it from the pipe. It also returns information about data in the pipe.

BOOL PeekNamedPipe(
HANDLE hNamedPipe, // handle to pipe to copy from
LPVOID lpBuffer, // pointer to data buffer
DWORD nBufferSize, // size, in bytes, of data buffer
LPDWORD lpBytesRead, // pointer to number of bytes read
LPDWORD lpTotalBytesAvail, // pointer to total number of bytes available
LPDWORD lpBytesLeftThisMessage // pointer to unread bytes in this message

);ParametershNamedPipe
Identifies the pipe. This parameter can be a handle to a named pipe instance, as returned by
the CreateNamedPipe or CreateFile function, or it can be a handle to the read end of an
anonymous pipe, as returned by the CreatePipe function. The handle must have
GENERIC_READ access to the pipe.

lpBuffer
Points to a buffer that receives data read from the pipe. This parameter can be NULL if no
data is to be read.

nBufferSize
Specifies the size, in bytes, of the buffer specified by the lpBuffer parameter. This parameter
is ignored if lpBuffer is NULL.

lpBytesRead
Points to a 32-bit variable that receives the number of bytes read from the pipe. This
parameter can be NULL if no data is to be read.

lpTotalBytesAvail
Points to a 32-bit variable that receives the total number of bytes available to be read from the
pipe. This parameter can be NULL if no data is to be read.

lpBytesLeftThisMessage
Points to a 32-bit variable that receives the number of bytes remaining in this message. This
parameter will be zero for byte-type named pipes or for anonymous pipes. This parameter can
be NULL if no data is to be read.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksPeekNamedPipe is similar to the ReadFile function with the following exceptions:

· The data read from the pipe is not removed from the pipe's buffer.
· The function always returns immediately, even if there is no data in the pipe. The wait

mode of a named pipe handle (blocking or nonblocking) has no effect on the function.
· The function can return additional information about the contents of the pipe.

If the specified handle is a named pipe handle in byte-read mode, the function reads all available
bytes up to the size specified in nBufferSize. For a named pipe handle in message-read mode,
the function reads the next message in the pipe. If the message is larger than nBufferSize, the
function returns TRUE after reading the specified number of bytes. In this situation,
lpBytesLeftThisMessage will receive the number of bytes remaining in the message.See AlsoCreateFile, CreateNamedPipe, CreatePipe, ReadFile, WriteFile

Pie
The Pie function draws a pie-shaped wedge bounded by the intersection of an ellipse and two
radials. The pie is outlined by using the current pen and filled by using the current brush.

BOOL Pie(
HDC hdc, // handle to device context
int nLeftRect, // x-coord. of bounding rectangle's upper-left corner
int nTopRect, // y-coord. of bounding rectangle's upper-left corner
int nRightRect, // x-coord. of bounding rectangle's lower-right corner
int nBottomRect, // y-coord. of bounding rectangle's lower-right corner
int nXRadial1, // x-coord. of first radial's endpoint
int nYRadial1, // y-coord. of first radial's endpoint
int nXRadial2, // x-coord. of second radial's endpoint
int nYRadial2 // y-coord. of second radial's endpoint

);Parametershdc
Identifies the device context.

nLeftRect
Specifies the x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect
Specifies the y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect
Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

nXRadial1
Specifies the x-coordinate of the endpoint of the first radial.

nYRadial1
Specifies the y-coordinate of the endpoint of the first radial.

nXRadial2
Specifies the x-coordinate of the endpoint of the second radial.

nYRadial2
Specifies the y-coordinate of the endpoint of the second radial.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe curve of the pie is defined by an ellipse that fits the specified bounding rectangle. The curve
begins at the point where the ellipse intersects the first radial and extends counterclockwise to the
point where the ellipse intersects the second radial. (A radial is a line drawn from the center of the
ellipse to the specified endpoint on the ellipse.)

The current position is neither used nor updated by the Pie function.

Windows 95: The sum of the coordinates of the bounding rectangle cannot exceed 32,767. The
sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed 32,
767.See AlsoAngleArc, Arc, ArcTo, Chord

PlayEnhMetaFile
The PlayEnhMetaFile function displays the picture stored in the specified enhanced-format
metafile.

BOOL PlayEnhMetaFile(
HDC hdc, // handle to a device context
HENHMETAFILE hemf, // handle to an enhanced metafile
CONST RECT *lpRect // pointer to bounding rectangle

);Parametershdc
Identifies the device context for the output device on which the picture will appear.

hemf
Identifies the enhanced metafile.

lpRect
Points to a RECT structure that contains the coordinates of the bounding rectangle used to
display the picture. The coordinates are specified in logical units.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen an application calls the PlayEnhMetaFile function, Windows uses the picture frame in the
enhanced-metafile header to map the picture onto the rectangle pointed to by the lpRect
parameter. (This picture may be sheared or rotated by setting the world transform in the output
device before calling PlayEnhMetaFile.) Points along the edges of the rectangle are included in
the picture.

An enhanced-metafile picture can be clipped by defining the clipping region in the output device
before playing the enhanced metafile.

If an enhanced metafile contains an optional palette, an application can achieve consistent colors
by setting up a color palette on the output device before calling PlayEnhMetaFile. To retrieve the
optional palette, use the GetEnhMetaFilePaletteEntries function.

An enhanced metafile can be embedded in a newly created enhanced metafile by calling
PlayEnhMetaFile and playing the source enhanced metafile into the device context for the new
enhanced metafile.

The states of the output device context are preserved by this function. Any object created but not
deleted in the enhanced metafile is deleted by this function.

To stop this function, an application can call the CancelDC function from another thread to
terminate the operation. In this case, the function returns FALSE.

Windows 95: PlayEnhMetaFile is subject to the limitations of the Windows 95 GDI. For example,
Windows 95 supports only 16-bit signed coordinates. For records that contain 32-bit values,
Windows 95 fails to play the record if the values are not in the range -32,768 to 32,767.See AlsoCancelDC, GetEnhMetaFileHeader, GetEnhMetaFilePaletteEntries, RECT,
SetWorldTransform

PlayEnhMetaFileRecord
The PlayEnhMetaFileRecord function plays an enhanced-metafile record by executing the
graphics device interface (GDI) functions identified by the record.

BOOL PlayEnhMetaFileRecord(
HDC hdc, // handle to device context
LPHANDLETABLE lpHandletable, // pointer to metafile handle table
CONST ENHMETARECORD *lpEnhMetaRecord, // pointer to metafile record
UINT nHandles // count of handles

);Parametershdc
Identifies the device context passed to the EnumEnhMetaFile function.

lpHandletable
Points to a table of handles identifying GDI objects used when playing the metafile. The first
entry in this table contains the enhanced-metafile handle.

lpEnhMetaRecord
Points to the enhanced-metafile record to be played.

nHandles
Specifies the number of handles in the handle table.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThis is an enhanced-metafile function.

An application typically uses PlayEnhMetaFileRecord in conjunction with the EnumEnhMetaFile
function to process and play an enhanced-format metafile one record at a time.

The hdc, lpHandletable, and nHandles parameters must be exactly those passed to the
EnhMetaFileProc callback procedure by the EnumEnhMetaFile function.

If PlayEnhMetaFileRecord does not recognize a record, it ignores the record and returns TRUE.

Windows 95: PlayEnhMetaFileRecord is subject to the limitations of the Windows 95 GDI. For
example, Windows 95 supports only 16-bit signed coordinates. For records that contain 32-bit
values, Windows 95 fails to play the record if the values are not in the range -32,768 to 32,767.See AlsoEnumEnhMetaFile, PlayEnhMetaFile

PlayMetaFile
The PlayMetaFile function displays the picture stored in the given Windows-format metafile on
the specified device.

This function is provided for compatibility with 16-bit versions of Windows. Win32-based
applications should use the PlayEnhMetaFile function.

BOOL PlayMetaFile(
HDC hdc, // handle to the device context
HMETAFILE hmf // handle to the metafile

);Parametershdc
Identifies a device context.

hmf
Identifies a Windows-format metafile.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should use the enhanced-
format metafile functions.

To convert a Windows-format metafile into an enhanced format metafile, use the
SetWinMetaFileBits function.

A Windows-format metafile can be played multiple times.

A Windows-format metafile can be embedded in a second Windows-format metafile by calling the
PlayMetaFile function and playing the source metafile into the device context for the target
metafile.

Any object created but not deleted in the Windows-format metafile is deleted by this function.

To stop this function, an application can call the CancelDC function from another thread to
terminate the operation. In this case, the function returns FALSE.See AlsoBeginPath, CancelDC, PolyBezier, SetWinMetaFileBits, SetWorldTransform

PlayMetaFileRecord
The PlayMetaFileRecord function plays a Windows-format metafile record by executing the
graphics device interface (GDI) function contained within that record.

This function is provided for compatibility with 16-bit versions of Microsoft Windows. Win32-based
applications should use the PlayEnhMetaFileRecord function.

BOOL PlayMetaFileRecord(
HDC hdc, // handle to device context
LPHANDLETABLE lpHandletable, // pointer to metafile handle table
LPMETARECORD lpMetaRecord, // pointer to metafile record
UINT nHandles // count of handles

);Parametershdc
Identifies a device context.

lpHandletable
Points to a table of handles identifying GDI objects used when playing the metafile.

lpMetaRecord
Points to the Windows-format metafile record.

nHandles
Specifies the number of handles in the handle table.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions, should use the enhanced
format metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the
SetWinMetaFileBits function.

An application typically uses PlayMetaFileRecord in conjunction with the EnumMetaFile function
to process and play a Windows-format metafile one record at a time.

The lpHandletable and nHandles parameters must be identical to those passed to the
EnumMetaFileProc callback procedure by EnumMetaFile.

If the PlayMetaFileRecord function does not recognize a record, it ignores the record and returns
TRUE.See AlsoBeginPath, EnumMetaFile, PlayMetaFile, PolyBezier, SetWinMetaFileBits,
SetWorldTransform

PlgBlt
The PlgBlt function performs a bit-block transfer of the bits of color data from the specified
rectangle in the source device context to the specified parallelogram in the destination device
context. If the given bitmask handle identifies a valid monochrome bitmap, the function uses this
bitmap to mask the bits of color data from the source rectangle.

BOOL PlgBlt(
HDC hdcDest, // handle to destination device context
CONST POINT *lpPoint, // vertices of destination parallelogram
HDC hdcSrc, // handle to source device context
int nXSrc, // x-coord. of upper-left corner of source rect.
int nYSrc, // y-coord. of upper-left corner of source rect.
int nWidth, // width of source rectangle
int nHeight, // height of source rectangle
HBITMAP hbmMask, // handle to bitmask
int xMask, // x-coord. of upper-left corner of bitmask rect.
int yMask // y-coord. of upper-left corner of bitmask rect.

);ParametershdcDest
Identifies the destination device context.

lpPoint
Points to an array of three points in logical space that identify three corners of the destination
parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this
array, the upper-right corner to the second point in this array, and the lower-left corner to the
third point. The lower-right corner of the source rectangle is mapped to the implicit fourth point
in the parallelogram.

hdcSrc
Identifies the source device context.

nXSrc
Specifies the x-coordinate, in logical units, of the upper-left corner of the source rectangle.

nYSrc
Specifies the y-coordinate, in logical units, of the upper-left corner of the source rectangle.

nWidth
Specifies the width, in logical units, of the source rectangle.

nHeight
Specifies the height, in logical units, of the source rectangle.

hbmMask
Identifies an optional monochrome bitmap that is used to mask the colors of the source
rectangle.

xMask
Specifies the x-coordinate of the upper-left corner of the the monochrome bitmap.

yMask
Specifies the y-coordinate of the upper-left corner of the the monochrome bitmap.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe fourth vertex of the parallelogram (D) is defined by treating the first three points (A, B, and C)
as vectors and computing D = B + C - A.

If the bitmask exists, a value of 1 in the mask indicates that the source pixel color should be
copied to the destination. A value of 0 in the mask indicates that the destination pixel color is not
to be changed.

If the mask rectangle is smaller than the source and destination rectangles, the function replicates
the mask pattern.

Scaling, translation, and reflection transformations are allowed in the source device context;
however, rotation and shear transformations are not.

If the mask bitmap is not a monochrome bitmap, an error occurs.

The stretching mode for the destination device context is used to determine how to stretch or
compress the pixels, if that is necessary.

When an enhanced metafile is being recorded, an error occurs if the source device context
identifies an enhanced-metafile device context.

The destination coordinates are transformed according to the destination device context; the
source coordinates are transformed according to the source device context. If the source
transformation has a rotation or shear, an error is returned.

If the destination and source rectangles do not have the same color format, PlgBlt converts the
source rectangle to match the destination rectangle.

Not all devices support the PlgBlt function. For more information, see the description of the
RC_BITBLT raster capability in the GetDeviceCaps function.

If the source and destination device contexts represent incompatible devices, PlgBlt returns an
error.See AlsoBitBlt, GetDeviceCaps, MaskBlt, SetStretchBltMode, StretchBlt

PolyBezier
The PolyBezier function draws one or more Bézier curves.

BOOL PolyBezier(
HDC hdc, // handle to device context
CONST POINT *lppt, // pointer to endpoints and control points
DWORD cPoints // count of endpoints and control points

);Parametershdc
Identifies a device context.

lppt
Points to an array of POINT structures that contain the endpoints and control points of the
curve(s).

cPoints
Specifies the number of points in the lppt array. This value must be one more than three times
the number of curves to be drawn, because each Bézier curve requires two control points and
an endpoint, and the initial curve requires an additional starting point.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksTh Polybezier function draws cubic Bézier curves by using the endpoints and control points
specified by the lppt parameter. The first curve is drawn from the first point to the fourth point by
using the second and third points as control points. Each subsequent curve in the sequence
needs exactly three more points: the ending point of the previous curve is used as the starting
point, the next two points in the sequence are control points, and the third is the ending point.

The current position is neither used nor updated by the PolyBezier function. The figure is not
filled.

This function draws lines by using the current pen.See AlsoMoveToEx, POINT, PolyBezierTo

PolyBezierTo
The PolyBezierTo function draws one or more Bézier curves.

BOOL PolyBezierTo(
HDC hdc, // handle to device context
CONST POINT *lppt, // pointer to endpoints and control points
DWORD cCount // count of endpoints and control points

);Parametershdc
Identifies a device context.

lppt
Points to an array of POINT structures that contains the endpoints and control points.

cCount
Specifies the number of points in the lppt array. This value must be three times the number of
curves to be drawn, because each Bézier curve requires two control points and an ending
point.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThis function draws cubic Bézier curves by using the control points specified by the lppt
parameter. The first curve is drawn from the current position to the third point by using the first two
points as control points. For each subsequent curve, the function needs exactly three more points,
and uses the ending point of the previous curve as the starting point for the next.

PolyBezierTo moves the current position to the ending point of the last Bézier curve. The figure is
not filled.

This function draws lines by using the current pen.See AlsoMoveToEx, POINT, PolyBezier

PolyDraw
The PolyDraw function draws a set of line segments and Bézier curves.

BOOL PolyDraw(
HDC hdc, // handle to a device context
CONST POINT *lppt, // pointer to array of points
CONST BYTE *lpbTypes, // pointer to line and curve identifiers
int cCount // count of points

);Parametershdc
Identifies a device context.

lppt
Points to an array of POINT structures that contains the endpoints for each line segment and
the endpoints and control points for each Bézier curve.

lpbTypes
Points to an array that specifies how each point in the lppt array is used. Types can be one of
the following:

Type Meaning
PT_MOVETO Specifies that this point starts a disjoint

figure. This point becomes the new current
position.

PT_LINETO Specifies that a line is to be drawn from the
current position to this point, which then
becomes the new current position.

PT_BEZIERTO Specifies that this point is a control point or
ending point for a Bézier curve.
PT_BEZIERTO types always occur in sets
of three. The current position defines the
starting point for the Bézier curve. The first
two PT_BEZIERTO points are the control
points, and the third PT_BEZIERTO point is
the ending point. The ending point becomes
the new current position. If there are not
three consecutive PT_BEZIERTO points,
an error results.

A PT_LINETO or PT_BEZIERTO type can be combined with the following value by using
the bitwise operator OR to indicate that the corresponding point is the last point in a
figure and the figure is closed:

Value Meaning
PT_CLOSEFIGURE Specifies that the figure is automatically closed

after the PT_LINETO or PT_BEZIERTO type
for this point is done. A line is drawn from this
point to the most recent PT_MOVETO or
MoveToEx point.
This value is combined with the PT_LINETO
type for a line, or with the PT_BEZIERTO type
of the ending point for a Bézier curve, by using
the bitwise operator OR.
The current position is set to the ending point
of the closing line.

cCount
Specifies the total number of points in the lppt array, the same as the number of bytes in the
lpbTypes array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe PolyDraw function can be used in place of consecutive calls to MoveToEx, LineTo, and
PolyBezierTo functions to draw disjoint figures. The lines and curves are drawn using the current

pen and figures are not filled. If there is an active path started by calling BeginPath, PolyDraw
adds to the path.

The points contained in the lppt array and in the lpbTypes array indicate whether each point is
part of a MoveTo, LineTo, or PolyBezierTo operation. It is also possible to close figures.

This function updates the current position.See AlsoBeginPath, EndPath, LineTo, MoveToEx, POINT, PolyBezierTo, PolyLine

Polygon
The Polygon function draws a polygon consisting of two or more vertices connected by straight
lines. The polygon is outlined by using the current pen and filled by using the current brush and
polygon fill mode.

BOOL Polygon(
HDC hdc, // handle to device context
CONST POINT *lpPoints, // pointer to polygon's vertices
int nCount // count of polygon's vertices

);Parametershdc
Identifies the device context.

lpPoints
Points to an array of POINT structures that specify the vertices of the polygon.

nCount
Specifies the number of vertices in the array. This value must be greater than or equal to 2.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe polygon is closed automatically by drawing a line from the last vertex to the first.

The current position is neither used nor updated by the Polygon function.See AlsoGetPolyFillMode, POINT, Polyline, PolylineTo, PolyPolygon, SetPolyFillMode

Polyline
The Polyline function draws a series of line segments by connecting the points in the specified
array.

BOOL Polyline(
HDC hdc, // handle of device context
CONST POINT *lppt, // address of array containing endpoints
int cPoints // number of points in the array

);Parametershdc
Identifies a device context.

lppt
Points to an array of POINT structures. Each structure in the array identifies a point in logical
space.

cPoints
Specifies the number of points in the array. This number must be greater than or equal to two.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe lines are drawn from the first point through subsequent points by using the current pen.
Unlike the LineTo function, the Polyline function neither uses nor updates the current position.See AlsoLineTo, MoveToEx, POINT, PolylineTo, PolyPolyline

PolylineTo
The PolylineTo function draws one or more straight lines.

BOOL PolylineTo(
HDC hdc, // handle of device context
CONST POINT *lppt, // address of array of points
DWORD cCount // number of points in array

);Parametershdc
Identifies the device context.

lppt
Points to an array of POINT structures that contains the vertices of the line.

cCount
Specifies the number of points in the array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksA line is drawn from the current position to the first point specified by the lppt parameter by using
the current pen. For each additional line, the function draws from the ending point of the previous
line to the next point specified by lppt.

PolylineTo moves the current position to the ending point of the last line.

If the line segments drawn by this function form a closed figure, the figure is not filled.See AlsoLineTo, MoveToEx, POINT, Polyline

PolyPolygon
The PolyPolygon function draws a series of closed polygons. Each polygon is outlined by using
the current pen and filled by using the current brush and polygon fill mode. The polygons drawn
by this function can overlap.

BOOL PolyPolygon(
HDC hdc, // handle of device context
CONST POINT *lpPoints, // points to array of vertices for all polygons
CONST INT *lpPolyCounts, // points to array with count of vertices for each polygon
int nCount // count of polygons

);Parametershdc
Identifies the device context.

lpPoints
Points to an array of POINT structures that define the vertices of the polygons. The polygons
are specified consecutively. Each polygon is closed automatically by drawing a line from the
last vertex to the first. Each vertex should be specified once.

lpPolyCounts
Points to an array of integers, each of which specifies the number of points in the
corresponding polygon. Each integer must be greater than or equal to 2.

nCount
Specifies the total number of polygons.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe current position is neither used nor updated by this function.See AlsoGetPolyFillMode, POINT, Polygon, Polyline, PolylineTo, SetPolyFillMode

PolyPolyline
The PolyPolyline function draws multiple series of connected line segments.

BOOL PolyPolyline(
HDC hdc, // handle of a device context
CONST POINT *lppt, // address of an array of points
CONST DWORD *lpdwPolyPoints, // address of an array of values
DWORD cCount // number of counts in the second array

);Parametershdc
Identifies the device context.

lppt
Points to an array of POINT structures that contains the vertices of the polylines. The
polylines are specified consecutively.

lpdwPolyPoints
Points to an array of variables specifying the number of points in the lppt array for the
corresponding polyline. Each entry must be greater than or equal to two.

cCount
Specifies the total number of counts in the lpdwPolyPoints array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe line segments are drawn by using the current pen. The figures formed by the segments are
not filled.

The current position is neither used nor updated by this function.See AlsoPOINT, Polyline, PolylineTo

PolyTextOut
The PolyTextOut function draws several strings using the font and text colors currently selected
in the specified device context.

BOOL PolyTextOut(
HDC hdc, // handle of device context
CONST POLYTEXT *pptxt, // address of array of structures that identify strings
int cStrings // number of structures in array

);Parametershdc
Identifies the device context.

pptxt
Points to an array of POLYTEXT structures describing the strings to be drawn. The array
contains one structure for each string to be drawn.

cStrings
Specifies the number of POLYTEXT structures in the pptxt array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEach POLYTEXT structure contains the coordinates of a reference point that Windows uses to
align the corresponding string of text. An application can specify how the reference point is used
by calling the SetTextAlign function. An application can determine the current text-alignment
setting for the specified device context by calling the GetTextAlign function.

To draw a single string of text, the application should call the ExtTextOut function.See AlsoExtTextOut, GetTextAlign, POLYTEXT, SetTextAlign

PostAppMessage
The PostAppMessage function is obsolete. The function is provided only for compatibility with
16-bit versions of Windows. Win32-based applications should use the PostThreadMessage
function.

PostMessage
The PostMessage function places (posts) a message in the message queue associated with the
thread that created the specified window and then returns without waiting for the thread to process
the message. Messages in a message queue are retrieved by calls to the GetMessage or
PeekMessage function.

BOOL PostMessage(
HWND hWnd, // handle of destination window
UINT Msg, // message to post
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the window whose window procedure is to receive the message. Two values have
special meanings:

Value Meaning
HWND_BROADCAST The message is posted to all top-level

windows in the system, including disabled
or invisible unowned windows, overlapped
windows, and pop-up windows. The
message is not posted to child windows.

NULL The function behaves like a call to
PostThreadMessage with the dwThreadId
parameter set to the identifier of the current
thread.

Msg
Specifies the message to be posted.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksApplications that need to communicate using HWND_BROADCAST should use the
RegisterWindowMessage function to obtain a unique message for inter-application
communication.

If you send a message in the range below WM_USER to the asynchronous message functions
(PostMessage, SendNotifyMessage, and SendMessageCallback), make sure that the
message parameters do not include pointers. Otherwise, the functions will return before the
receiving thread has had a chance to process the message and the sender will free the memory
before it is used.See AlsoGetMessage, PeekMessage, SendMessageCallback, SendNotifyMessage

PostQueuedCompletionStatus
The PostQueuedCompletionStatus function lets you post an I/O completion packet to an I/O
completion port. The I/O completion packet will satisfy an outstanding call to the
GetQueuedCompletionStatus function. The GetQueuedCompletionStatus function returns with
the three values passed as the second, third, and fourth parameters of the call to
PostQueuedCompletionStatus.

BOOL PostQueuedCompletionStatus(
HANDLE CompletionPort, // handle to an I/O completion port
DWORD dwNumberOfBytesTransferred, // value to return via

//GetQueuedCompletionStatus'
//lpNumberOfBytesTranferred

DWORD dwCompletionKey, // value to return via
//GetQueuedCompletionStatus'
//lpCompletionKey

LPOVERLAPPED lpOverlapped // value to return via
//GetQueuedCompletionStatus'
lpOverlapped

);ParametersCompletionPort
Handle to an I/O completion port that you want to post an I/O completion packet to.

dwNumberOfBytesTransferred
Specifies a value to be returned through the lpNumberOfBytesTransferred parameter of the
GetQueuedCompletionStatus function.

dwCompletionKey
Specifies a value to be returned through the lpCompletionKey parameter of the
GetQueuedCompletionStatus function.

lpOverlapped
Specifies a value to be returned through the lpOverlapped parameter of the
GetQueuedCompletionStatus function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError .RemarksFor more information concerning dwNumberOfBytesTransferred, dwCompletionKey, and
lpOverlapped, see GetQueuedCompletionStatus and the descriptions of the parameters those
values are returned through.See AlsoCreateIoCompletionPort, GetQueuedCompletionStatus, OVERLAPPED

PostQuitMessage
The PostQuitMessage function indicates to Windows that a thread has made a request to
terminate (quit). It is typically used in response to a WM_DESTROY message.

VOID PostQuitMessage(
int nExitCode // exit code

);ParametersnExitCode
Specifies an application exit code. This value is used as the wParam parameter of the
WM_QUIT message.

Return ValuesThis function does not return a value.RemarksThe PostQuitMessage function posts a WM_QUIT message to the thread's message queue and
returns immediately; the function simply indicates to the system that the thread is requesting to
quit at some time in the future.

When the thread retrieves the WM_QUIT message from its message queue, it should exit its
message loop and return control to Windows. The exit value returned to Windows must be the
wParam parameter of the WM_QUIT message.See AlsoGetMessage, PeekMessage, PostMessage, WM_DESTROY, WM_QUIT

PostThreadMessage
The PostThreadMessage function places (posts) a message in the message queue of the
specified thread and then returns without waiting for the thread to process the message.

BOOL PostThreadMessage(
DWORD idThread, // thread identifier
UINT Msg, // message to post
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametersidThread
Identifies the thread to which the message will be posted.
The function fails if the specified thread does not have a message queue. The system creates
a thread's message queue when the thread makes its first call to one of the Win32 USER or
GDI functions. For more information, see the Remarks section.

Msg
Specifies the type of message to be posted.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError returns ERROR_INVALID_THREAD_ID if idThread is not a valid thread identifier,
or if the thread specified by idThread does not have a message queue.RemarksThe thread to which the message is posted must have created a message queue, or else the call
to PostThreadMessage fails. Use one of the following methods to handle this situation:

· Call PostThreadMessage. If it fails, call the Sleep function and call PostThreadMessage
again. Repeat until PostThreadMessage succeeds.

· Create an event object, then create the thread. Use the WaitForSingleObject function to
wait for the event to be set to the signaled state before calling PostThreadMessage. In the
thread to which the message will be posted, call PeekMessage(&msg, NULL, WM_USER,
WM_USER, PM_NOREMOVE) to force the system to create the message queue. Set the
event, to indicate that the thread is ready to receive posted messages.

The thread to which the message is posted retrieves the message by calling the GetMessage or
PeekMessage function. The hwnd member of the returned MSG structure is NULL.See AlsoGetCurrentThreadId, GetMessage, GetWindowThreadProcessId, MSG, PeekMessage,
PostMessage, Sleep, WaitForSingleObject

PrepareTape
The PrepareTape function prepares the tape to be accessed or removed.

DWORD PrepareTape(
HANDLE hDevice, // handle of open device
DWORD dwOperation, // preparation method
BOOL bImmediate // return after operation begins

);ParametershDevice
Identifies the device preparing the tape. This handle is created by using the CreateFile
function.

dwOperation
Specifies how the tape device is to be prepared. This parameter can be one of the following
values:

Value Meaning
TAPE_FORMAT Performs a low-level format of the tape.

Currently, only the QIC117 device supports this
feature.

TAPE_LOAD Loads the tape and moves the tape to the
beginning.

TAPE_LOCK Locks the tape ejection mechanism so that the
tape is not ejected accidentally.

TAPE_TENSION Adjusts the tension by moving the tape to the
end of the tape and back to the beginning. This
option is not supported by all devices. This value
is ignored if it is not supported.

TAPE_UNLOAD Moves the tape to the beginning for removal
from the device. After a successful unload
operation, the device returns errors to
applications that attempt to access the tape,
until the tape is loaded again.

TAPE_UNLOCK Unlocks the tape ejection mechanism.

bImmediate
Specifies whether to return as soon as the preparation begins. If this parameter is TRUE, the
function returns immediately. If it is FALSE, the function does not return until the operation has
been completed.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksSome tape devices do not support certain tape operations. See your tape device documentation

and use the GetTapeParameters function to determine your tape device's capabilities.See AlsoCreateFile, GetTapeParameters

PrintDlg
The PrintDlg function displays a Print dialog box or a Print Setup dialog box. The Print dialog box
enables the user to specify the properties of a particular print job.

The Print Setup dialog box should not be used in new applications. It has been superseded by the
Page Setup common dialog box created by the PageSetupDlg function.

BOOL PrintDlg(
LPPRINTDLG lppd // address of structure with initialization data

);Parameterslppd
Pointer to a PRINTDLG structure that contains information used to initialize the dialog box.
When PrintDlg returns, this structure contains information about the user's selections.

Return ValuesIf the user clicks the OK button, the return value is nonzero. The members of the
PRINTDLGstructure pointed to by the lppd parameter indicate the user's selections.

If the user cancels or closes the Print or Printer Setup dialog box or an error occurs, the return
value is zero. To get extended error information, use the CommDlgExtendedError function,
which can return one of the following values:

CDERR_FINDRESFAILURE PDERR_CREATEICFAILURE

CDERR_INITIALIZATION PDERR_DEFAULTDIFFERENT
CDERR_LOADRESFAILURE PDERR_DNDMMISMATCH
CDERR_LOADSTRFAILURE PDERR_GETDEVMODEFAIL
CDERR_LOCKRESFAILURE PDERR_INITFAILURE
CDERR_MEMALLOCFAILUREPDERR_LOADDRVFAILURE
CDERR_MEMLOCKFAILUREPDERR_NODEFAULTPRN
CDERR_NOHINSTANCE PDERR_NODEVICES
CDERR_NOHOOK PDERR_PARSEFAILURE
CDERR_NOTEMPLATE PDERR_PRINTERNOTFOUND
CDERR_STRUCTSIZE PDERR_RETDEFFAILURE
RemarksIf the hook procedure (pointed to by the lpfnPrintHook or lpfnSetupHook member of the

PRINTDLG structure) processes the WM_CTLCOLORDLG message, the hook procedure must
return a handle for the brush that should be used to paint the control background.See AlsoCommDlgExtendedError, CreateDC, DOCINFO, PRINTDLG, PrintHookProc,
SetupHookProc, StartDoc, WM_CTLCOLORDLG

PrinterMessageBox
The PrinterMessageBox function displays a message box that lets an application that is printing
notify the user of a printing job error. If the owner of the job is logged on remotely, the function
sends a net popup to the owner. If the user selects Cancel in the message box, the function
cancels the print job; otherwise, the function clears the job error status, and the system tries to
print the job again.

HPRINTER PrinterMessageBox (
HANDLE hPrinter, // handle of printer
DWORD Error, // error identifier
HWND hWnd, // handle of owner window
LPTSTR pText, // pointer to message box text
LPTSTR pCaption, // pointer to message box title
DWORD dwType // style of message box

);ParametershPrinter
Identifies the printer to which the job was sent.

Error
Specifies the error that occurred. This parameter can be one of the following values:

Value Meaning
ERROR_OUT_OF_PAPER The printer is out of paper.
ERROR_NOT_READY The printer is not ready.

hWnd
Identifies an owner window for the message box the function creates. If this parameter is
NULL, the message box has no owner window.

pText
Points to a null-terminated string that specifies the message to be displayed.

pCaption
Points to a null-terminated string that specifies the dialog box title. If this parameter is NULL,
the function uses the default title "Error".

dwType
Specifies the contents and behavior of the dialog box. This parameter can be a combination of
any of the values accepted by the MessageBox function's fourth parameter; however, it is
recommended that an application use the following combination:MB_ICONSTOP | MB_RETRYCANCEL | MB_SETFOREGROUND

Return ValuesIf PrinterMessageBox sends a net popup, the return value is IDOK. Otherwise, the function
returns the value returned by the message box the function displays. Two typical return values are
the following:

Value Meaning

IDCANCEL Cancel button was selected.
IDRETRY Retry button was selected.

For a more complete list of message box return values, see MessageBox.See AlsoMessageBox

PrinterProperties
The PrinterProperties function displays a printer-properties dialog box for the specified printer.

BOOL PrinterProperties(
HWND hWnd, // handle of parent window
HANDLE hPrinter // handle of printer object

);ParametershWnd
Identifies the parent window of the dialog box.

hPrinter
Identifies a printer object.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoOpenPrinter

PrintHookProc
A PrintHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Print common dialog box. The hook procedure receives messages or
notifications intended for the default dialog box procedure.

UINT APIENTRY PrintHookProc(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Print common dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.
If the uiMsg parameter indicates the WM_INITDIALOG message, lParam is a pointer to a
PRINTDLG structure containing the values specified when the common dialog box was
created.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksWhen you use the PrintDlg function to create a Print common dialog box, you can provide a
PrintHookProc hook procedure to process messages or notifications intended for the dialog box
procedure. To enable the hook procedure, use the PRINTDLG structure that you passed to the
dialog creation function. Specify the address of the hook procedure in the lpfnPrintHook member
and specify the PD_ENABLEPRINTHOOK flag in the Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

PrintHookProc is a placeholder for the application-defined or library-defined function name. The
LPPRINTHOOKPROC type is a pointer to a PrintHookProc hook procedure.See AlsoEndDialog, PostMessage, PrintDlg, PRINTDLG, WM_INITDIALOG, WM_CTLCOLORDLG

PrivilegeCheck
The PrivilegeCheck function tests the security context represented by a specific access token to
discover whether it contains the specified privileges. This function is typically called by a server
application to check the privileges of a client's access token.

BOOL PrivilegeCheck(
HANDLE ClientToken, // handle of client's access token
PPRIVILEGE_SET RequiredPrivileges, // address of privileges
LPBOOL pfResult // address of flag for result

);ParametersClientToken
Identifies an access token representing a client process. This handle must have been
obtained by opening the token of a thread impersonating the client. The token must be open
for TOKEN_QUERY access.

RequiredPrivileges
Points to a PRIVILEGE_SET structure specifying the privileges required.
The specified access token is checked to see which of the specified privileges are present.
When a privilege specified in the PRIVILEGE_SET structure is found in the access token, the
function sets the SE_PRIVILEGE_USED_FOR_ACCESS attribute for that privilege in the
corresponding LUID_AND_ATTRIBUTES structure.

pfResult
Points to a flag the function sets to indicate whether the access token contains any or all of
the specified privileges. If PRIVILEGE_SET_ALL_NECESSARY is specified in the Control
member of the PRIVILEGE_SET structure pointed to by the RequiredPrivileges parameter,
this flag is TRUE only if all requested privileges are present in the access token. If
PRIVILEGE_SET_ALL_NECESSARY is not specified, and if any of the privileges are present,
this flag is TRUE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, LookupPrivilegeDisplayName, LookupPrivilegeName,
LookupPrivilegeValue, LUID_AND_ATTRIBUTES, ObjectPrivilegeAuditAlarm,
PRIVILEGE_SET, PrivilegedServiceAuditAlarm

PrivilegedServiceAuditAlarm
The PrivilegedServiceAuditAlarm function generates audit messages when an attempt is made
to perform privileged system service operations. Alarms are not supported in the current version
of Windows NT.

BOOL PrivilegedServiceAuditAlarm(
LPCTSTR SubsystemName, // address of string for subsystem name
LPCTSTR ServiceName, // address of string for service name
HANDLE ClientToken, // handle of access token
PPRIVILEGE_SET Privileges, // address of privileges
BOOL AccessGranted // flag for granted access rights

);ParametersSubsystemName
Points to a null-terminated string specifying the name of the subsystem calling the function,
such as "DEBUG" or "WIN32".

ServiceName
Points to a null-terminated string specifying the name of the privileged subsystem service. For
example, "RESET RUNTIME LOCAL SECURITY POLICY" might be specified by a local
security authority service used to update the local security policy database.

ClientToken
Identifies an access token representing the client that requested the operation. This handle
must have been obtained by opening the token of a thread impersonating the client. The
token must be open for TOKEN_QUERY access.

Privileges
Points to a PRIVILEGE_SET structure containing the privileges required to perform the
operation. The information in this structure is supplied by a call to the PrivilegeCheck
function.

AccessGranted
Specifies a flag indicating whether access was granted or denied in a previous call to an
access-checking function, such as PrivilegeCheck. If access is granted, this flag is TRUE. If
access is denied, it is FALSE.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe PrivilegedServiceAuditAlarm function requires the calling process to have
SE_AUDIT_NAME privilege. The test for this privilege is always performed against the primary
token of the calling process. This allows the calling process to impersonate a client during the call.See AlsoAccessCheck, AccessCheckAndAuditAlarm, AreAllAccessesGranted,
AreAnyAccessesGranted, MapGenericMask, ObjectCloseAuditAlarm,
ObjectDeleteAuditAlarm, ObjectOpenAuditAlarm, ObjectPrivilegeAuditAlarm,
PrivilegeCheck, PRIVILEGE_SET

PropEnumProc
A PropEnumProc function is an application-defined callback function that receives property
entries from a window's property list. A PropEnumProc function is called as a result of a call to
the EnumProps function. A value of type PROPENUMPROC is a pointer to a PropEnumProc
function.

BOOL CALLBACK PropEnumProc(
HWND hwnd, // handle to window whose property list is being enumerated
LPCTSTR lpszString, // string component of property
HANDLE hData // data handle component of property

);Parametershwnd
Handle to the window whose property list is being enumerated.

lpszString
Pointer to a null-terminated string. This string is the string component of a property list entry.
This is the string that was specified, along with a data handle, when the property was added
to the window's property list via a call to the SetProp function.

hData
Handle to data. This handle is the data component of a property list entry.

Return ValuesReturn TRUE to continue the property list enumeration.

Return FALSE to stop the property list enumeration.RemarksThe following restrictions apply to this callback function:

· The callback function must not yield control or do anything that might yield control to other
tasks.

· The callback function can call the RemoveProp function. However, RemoveProp can
remove only the property passed to the callback function through the callback function's
parameters.

· The callback function should not attempt to add properties.
PropEnumProc is a placeholder for the application-defined function name.See AlsoEnumProps, EnumPropsEx, PropEnumProcEx, RemoveProp, SetProp

PropEnumProcEx
A PropEnumProcEx function is an application-defined callback function that receives property
entries from a window's property list. A PropEnumProcEx function is called as a result of a call to
the EnumPropsEx function. A value of type PROPENUMPROCEX is a pointer to a
PropEnumProcEx function.

BOOL CALLBACK PropEnumProcEx(
HWND hwnd, // handle of window with property
LPTSTR lpszString, // string component of property
HANDLE hData, // data handle component of property
DWORD dwData // application-defined data

);Parametershwnd
Handle to the window whose property list is being enumerated.

lpszString
Pointer to a null-terminated string. This string is the string component of a property list entry.
This is the string that was specified, along with a data handle, when the property was added
to the window's property list via a call to the SetProp function.

hData
Handle to data. This handle is the data component of a property list entry.

dwData
Application-defined data. This is the value that was specified as the lParam parameter of the
call to EnumPropsEx that initiated the enumeration.

Return ValuesReturn TRUE to continue the property list enumeration.

Return FALSE to stop the property list enumeration.RemarksThe following restrictions apply to this callback function:

· The callback function must not yield control or do anything that might yield control to other
tasks.

· The callback function can call the RemoveProp function. However, RemoveProp can
remove only the property passed to the callback function through the callback function's
parameters.

· The callback function should not attempt to add properties.
PropEnumProcEx is a placeholder for the application-defined function name.See AlsoEnumProps, EnumPropsEx, PropEnumProc, RemoveProp, SetProp

PropertySheet
The PropertySheet function creates a property sheet and adds the pages defined in the specified
property sheet header structure.

int PropertySheet(
LPCPROPSHEETHEADER lppsph

);Parameterslppsph
Pointer to a PROPSHEETHEADER structure that defines the frame and pages of a property
sheet.

Return ValuesReturns a positive value if successful or - 1 otherwise.

If the dwFlags member of the PROPSHEETHEADER structure specifies the PSH_MODELESS
flag, the successful return value is the window handle of the property sheet dialog.

The following return values have a special meaning:

Value Meaning

ID_PSREBOOTSYSTEMA page sent the PSM_REBOOTSYSTEM
message to the property sheet. The
computer must be restarted for the user's
changes to take effect.

ID_PSRESTARTWINDOWSA page sent the
PSM_RESTARTWINDOWS message to
the property sheet. Windows must be
restarted for the user's changes to take
effect.

RemarksBy default, PropertySheet creates a modal dialog. If the dwFlags member of the
PROPSHEETHEADER structure specifies the PSH_MODELESS flag, PropertySheet creates a
modeless dialog and returns immediately after the dialog is created. In this case, the
PropertySheet return value is the window handle of the modeless dialog.

For a modeless property sheet, your message loop should use PSM_ISDIALOGMESSAGE to
pass messages to the property sheet dialog. Your message loop should use
PSM_GETCURRENTPAGEHWND to determine when to destroy the dialog. When the user
selects the OK or Cancel button, PSM_GETCURRENTPAGEHWND returns NULL, and you can
then use the DestroyWindow function to destroy the dialog.See AlsoDestroyWindow, PROPSHEETHEADER, PSM_GETCURRENTPAGEHWND,
PSM_ISDIALOGMESSAGE, PSM_REBOOTSYSTEM, PSM_RESTARTWINDOWS

PropSheetPageProc
The PropSheetPageProc function specifies an application-defined callback function that a
property sheet calls when a page is created and when it is about to be destroyed. An application
can use this function to perform initialization and cleanup operations for the page.

UINT CALLBACK PropSheetPageProc(
HWND hwnd,
UINT uMsg,
LPPROPSHEETPAGE ppsp

);Parametershwnd
Reserved; must be NULL.

uMsg
Action flag. This parameter can be one of the following values:

Value Meaning
PSPCB_CREATEA page is being created. Return nonzero to allow

the page to be created or zero to prevent it.
PSPCB_RELEASEA page is being destroyed. The return value is

ignored.
ppsp

Pointer to a PROPSHEETPAGE structure that defines the page being created or destroyed.
Return ValuesThe return value depends on the value of uMsg.RemarksAn application must specify the address of this callback function in the pfnCallback member of a

PROPSHEETPAGE structure before specifying the address of the structure in a call to the
CreatePropertySheetPage function.See AlsoCreatePropertySheetPage, PROPSHEETPAGE

PropSheetProc
A PropSheetProc function is an application-defined callback function that the system calls when
the property sheet is being created and initialized.

int CALLBACK PropSheetProc(
HWND hwndDlg, // handle to the property sheet dialog box
UINT uMsg, // message identifier
LPARAM lParam // message parameter

);ParametershwndDlg
Handle to the property sheet dialog box.

uMsg
Identifies the message being received. This parameter is one of the following values:

Value Meaning
PSCB_INITIALIZED Indicates that the property sheet is being

initialized. The lParam value is zero for this
message.

PSCB_PRECREATE Indicates that the property sheet is about to
be created. The hwndDlg parameter is NULL
and the lParam parameter is a pointer to a
dialog template in memory. This template is
in the form of a DLGTEMPLATE structure
followed by one or more
DLGITEMTEMPLATE structures.

lParam
Specifies additional information about the message. The meaning of this value depends on
the uMsg parameter.

Return ValuesThe function returns zero.RemarksTo enable a PropSheetProc callback function, use the PROPSHEETHEADER structure when
you call the PropertySheet function to create the property sheet. Use the pfnCallback member
to specify a pointer to the callback function, and set the PSP_USECALLBACK flag in the dwFlags
member.

PropSheetProc is a placeholder for the application-defined function name. The
PFNPROPSHEETCALLBACK type is a pointer to a PropSheetProc callback function.See AlsoDLGTEMPLATE, DLGITEMTEMPLATE, PropertySheet, PROPSHEETHEADER

PtInRect
The PtInRect function determines whether the specified point lies within the specified rectangle. A
point is within a rectangle if it lies on the left or top side or is within all four sides. A point on the
right or bottom side is considered outside the rectangle.

BOOL PtInRect(
CONST RECT *lprc, // address of structure with rectangle
POINT pt // structure with point

);Parameterslprc
Points to a RECT structure that contains the specified rectangle.

pt
Specifies a POINT structure that contains the specified point.

Return ValuesIf the specified point lies within the rectangle, the return value is nonzero.

If the specified point does not lie within the rectangle, the return value is zero. To get extended
error information, call GetLastError.See AlsoEqualRect, IsRectEmpty, POINT, RECT

PtInRegion
The PtInRegion function determines whether the specified point is inside the specified region.

BOOL PtInRegion(
HRGN hrgn, // handle of region
int X, // x-coordinate of point
int Y // y-coordinate of point

);Parametershrgn
Identifies the region to be examined.

X
Specifies the x-coordinate of the point.

Y
Specifies the y-coordinate of the point.

Return ValuesIf the specified point is in the region, the return value is nonzero.

If the specified point is not in the region, the return value is zero.See AlsoRectInRegion

PtVisible
The PtVisible function indicates whether the specified point is within the clipping region of a
device context.

BOOL PtVisible(
HDC hdc, // handle of device context
int X, // x-coordinate of point
int Y // y-coordinate of point

);Parametershdc
Identifies the device context.

X
Specifies the logical x-coordinate of the point.

Y
Specifies the logical y-coordinate of the point.

Return ValuesIf the specified point is within the clipping region of the device context, the return value is nonzero.

If the specified point is not within the clipping region of the device context, the return value is zero.See AlsoRectVisible

PulseEvent
The PulseEvent function provides a single operation that sets (to signaled) the state of the
specified event object and then resets it (to nonsignaled) after releasing the appropriate number of
waiting threads.

BOOL PulseEvent(
HANDLE hEvent // handle of event object

);ParametershEvent
Identifies the event object. The CreateEvent or OpenEvent function returns this handle.
Windows NT: The handle must have EVENT_MODIFY_STATE access. For more
information, see Interprocess Synchronization Objects.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFor a manual-reset event object, all waiting threads that can be released immediately are
released. The function then resets the event object's state to nonsignaled and returns.

For an auto-reset event object, the function resets the state to nonsignaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, PulseEvent simply sets the
event object's state to nonsignaled and returns.

Note that for a thread using the multiple-object wait functions to wait for all specified objects to be
signaled, PulseEvent can set the event object's state to signaled and reset it to nonsignaled
without causing the wait function to return. This happens if not all of the specified objects are
simultaneously signaled.See AlsoCreateEvent, OpenEvent, ResetEvent, SetEvent

PurgeComm
The PurgeComm function can discard all characters from the output or input buffer of a specified
communications resource. It can also terminate pending read or write operations on the resource.

BOOL PurgeComm(
HANDLE hFile, // handle of communications resource
DWORD dwFlags // action to perform

);ParametershFile
Identifies the communications resource. The CreateFile function returns this handle.

dwFlags
Specifies the action to take. This parameter can be a combination of the following values:

Value Meaning
PURGE_TXABORT Terminates all outstanding write operations

and returns immediately, even if the write
operations have not been completed.

PURGE_RXABORT Terminates all outstanding read operations
and returns immediately, even if the read
operations have not been completed.

PURGE_TXCLEAR Clears the output buffer (if the device driver
has one).

PURGE_RXCLEAR Clears the input buffer (if the device driver has
one).

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a thread uses PurgeComm to flush an output buffer, the deleted characters are not transmitted.
To empty the output buffer while ensuring that the contents are transmitted, call the
FlushFileBuffers function (a synchronous operation). Note, however, that FlushFileBuffers is
subject to flow control but not to write time-outs, and it will not return until all pending write
operations have been transmitted.See AlsoCreateFile

QueryDosDevice
The QueryDosDevice function lets an application obtain information about MS-DOS device
names. The function can obtain the current mapping for a particular MS-DOS device name. The
function can also obtain a list of all existing MS-DOS device names.

MS-DOS device names are stored as symbolic links in the Windows NT object name space. The
code that converts an MS-DOS path into a corresponding Windows NT path uses these symbolic
links to map MS-DOS devices and drive letters. The QueryDosDevice function provides a
mechanism whereby a Win32-based application can query the names of the symbolic links used
to implement the MS-DOS device namespace as well as the value of each specific symbolic link.

DWORD QueryDosDevice(
LPCTSTR lpDeviceName, // address of MS-DOS device name string
LPTSTR lpTargetPath, // address of buffer for storing query results
DWORD ucchMax // maximum storage capacity of buffer

);ParameterslpDeviceName
Pointer to an MS-DOS device name string specifying the target of the query.
This parameter can be NULL. In that case, the QueryDosDevice function will store a list of all
existing MS-DOS device names into the buffer pointed to by lpTargetPath.

lpTargetPath
Pointer to a buffer that will receive the result of the query. The function fills this buffer with one
or more null-terminated strings. The final null-terminated string is followed by an additional
NULL.
If lpDeviceName is non-NULL, the function obtains information about the particular MS-DOS
device specified by lpDeviceName. The first null-terminated string stored into the buffer is the
current mapping for the device. The other null-terminated strings represent undeleted prior
mappings for the device.
If lpDeviceName is NULL, the function obtains a list of all existing MS-DOS device names.
Each null-terminated string stored into the buffer is the name of an existing MS-DOS device.

ucchMax
Specifies the maximum number of characters that can be stored into the buffer pointed to by
lpTargetPath.

Return ValuesIf the function succeeds, the return value is the number of characters stored into the buffer pointed
to by lpTargetPath.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe DefineDosDevice function provides a means whereby a Win32-based application can create
and modify the symbolic links used to implement the MS-DOS device namespace.

MS-DOS device names are global. Once defined, an MS-DOS device name remains visible to all
processes until either it is explicity removed or the system reboots.See AlsoDefineDosDevice

QueryPerformanceCounter
The QueryPerformanceCounter function retrieves the current value of the high-resolution
performance counter, if one exists.

BOOL QueryPerformanceCounter(
LARGE_INTEGER *lpPerformanceCount // address of current counter value

);ParameterslpPerformanceCount
Points to a variable that the function sets, in counts, to the current performance-counter value.
If the installed hardware does not support a high-resolution performance counter, this
parameter can be to zero.

Return ValuesIf the installed hardware supports a high-resolution performance counter, the return value is
nonzero.

If the installed hardware does not support a high-resolution performance counter, the return value
is zero.See AlsoQueryPerformanceFrequency

QueryPerformanceFrequency
The QueryPerformanceFrequency function retrieves the frequency of the high-resolution
performance counter, if one exists.

BOOL QueryPerformanceFrequency(
LARGE_INTEGER *lpFrequency // address of current frequency

);ParameterslpFrequency
Points to a variable that the function sets, in counts per second, to the current performance-
counter frequency. If the installed hardware does not support a high-resolution performance
counter, this parameter can be to zero.

Return ValuesIf the installed hardware supports a high-resolution performance counter, the return value is
nonzero.

If the installed hardware does not support a high-resolution performance counter, the return value
is zero.See AlsoQueryPerformanceCounter

QueryServiceConfig
The QueryServiceConfig function retrieves the configuration parameters of the specified service.

BOOL QueryServiceConfig(
SC_HANDLE hService, // handle of service
LPQUERY_SERVICE_CONFIG lpServiceConfig, // address of service config. structure
DWORD cbBufSize, // size of service configuration buffer
LPDWORD pcbBytesNeeded // address of variable for bytes needed

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function,
and it must have SERVICE_QUERY_CONFIG access.

lpServiceConfig
Points to a QUERY_SERVICE_CONFIG structure in which the service configuration
information is returned.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpServiceConfig parameter.

pcbBytesNeeded
Points to a variable that receives the number of bytes needed to return all the configuration
information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not opened
with SERVICE_QUERY_CONFIG
access.

ERROR_INSUFFICIENT_BUFFERThere is more service configuration
information than would fit into the
lpServiceConfig buffer. The number
of bytes required to get all the
information is returned in the
pcbBytesNeeded parameter. Nothing
is written to the lpServiceConfig
buffer.

ERROR_INVALID_HANDLE The specified handle is invalid.
RemarksThe QueryServiceConfig function returns the service configuration information kept in the

registry for a particular service. This configuration information was first set via the CreateService
function, and may have been updated via the ChangeServiceConfig function. If the service was
running when the configuration information was last changed, the information returned with the
QueryServiceConfig will not reflect the true configuration of the service that is running. Instead, it
will reflect the configuration of the service when it is run next. Upon stopping the service, the
service control manager database will be updated with the configuration that is stored in the
registry. The DisplayName key is an exception to this. When the DisplayName key is changed, it
takes effect immediately regardless of whether the service is running.

The lpServiceConfig buffer must be large enough to hold the strings pointed to by the members of
the QUERY_SERVICE_CONFIG structure.See AlsoChangeServiceConfig, CreateService, OpenService, QUERY_SERVICE_CONFIG,
QueryServiceObjectSecurity, QueryServiceStatus

QueryServiceLockStatus
The QueryServiceLockStatus function retrieves the lock status of the specified service control
manager database.

BOOL QueryServiceLockStatus(
SC_HANDLE hSCManager, // handle of svc. ctrl. mgr. database
LPQUERY_SERVICE_LOCK_STATUS lpLockStatus, // address of lock status structure
DWORD cbBufSize, // size of service configuration buffer
LPDWORD pcbBytesNeeded // address of variable for bytes needed

);ParametershSCManager
Identifies the service control manager database. The OpenSCManager function returns this
handle, which must have SC_MANAGER_QUERY_LOCK_STATUS access.

lpLockStatus
Points to a QUERY_SERVICE_LOCK_STATUS structure in which the lock status of the
specified database is returned.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpLockStatus parameter.

pcbBytesNeeded
Points to a variable that receives the number of bytes needed to return all the lock status
information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with
SC_MANAGER_QUERY_LOCK_STATUS access.

ERROR_INSUFFICIENT_BUFFER
There is more lock status information than would fit into the
lpLockStatus buffer. The number of bytes required to get all
the information is returned in the pcbBytesNeeded
parameter. Nothing is written to the lpLockStatus buffer.

ERROR_INVALID_HANDLE
The specified handle is invalid.

RemarksThe QueryServiceLockStatus function returns a QUERY_SERVICE_LOCK_STATUS structure
that indicates whether the specified database is locked. If the database is locked, the structure
provides the account name of the user that holds the lock and the length of time that the lock has
been held.

A process calls the LockServiceDatabase function to lock a service control manager database
and the UnlockServiceDatabase function to release the lock.

The lpLockStatus buffer must be large enough to hold the string pointed to by the lpLockOwner
member of the QUERY_SERVICE_LOCK_STATUS structure.See AlsoLockServiceDatabase, OpenSCManager, QUERY_SERVICE_LOCK_STATUS,
UnlockServiceDatabase

QueryServiceObjectSecurity
The QueryServiceObjectSecurity function retrieves a copy of the security descriptor protecting a
service object.

BOOL QueryServiceObjectSecurity(
SC_HANDLE hService, // handle of service
SECURITY_INFORMATION dwSecurityInformation, // type of security information requested
PSECURITY_DESCRIPTOR lpSecurityDescriptor, // address of security descriptor
DWORD cbBufSize, // size of security descriptor buffer
LPDWORD pcbBytesNeeded // address of variable for bytes needed

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function,
and it must have READ_CONTROL access.

dwSecurityInformation
Specifies the security information being requested. Any or all of the following flags can be
specified:

Value Meaning
OWNER_SECURITY_INFORMATION Requests the object's owner

security identifier (SID).
GROUP_SECURITY_INFORMATION Requests the object's

primary group SID.
DACL_SECURITY_INFORMATION Requests the object's

discretionary access control
list (ACL).

SACL_SECURITY_INFORMATION Requests the object's
system ACL. The calling
process must have the
SE_SECURITY_NAME
privilege. For more
information about privileges,
see Privileges.

lpSecurityDescriptor
Points to a buffer that receives a copy of the security descriptor of the specified service object.
The calling process must have the appropriate access to view the specified aspects of the
object's security descriptor. The SECURITY_DESCRIPTOR structure is returned in self-
relative format.

cbBufSize
Specifies the size, in bytes, of the buffer pointed to by the lpSecurityDescriptor parameter.

pcbBytesNeeded
Points to a variable that receives the number of bytes needed to return all the requested
security descriptor information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was not
opened with READ_CONTROL
access, or the calling process is not
the owner of the object.

ERROR_INVALID_HANDLE The specified handle is invalid.
ERROR_INSUFFICIENT_BUFFERThere is more security descriptor

information than would fit into the
lpSecurityDescriptor buffer. The
number of bytes required to get all
the information is returned in the
pcbBytesNeeded parameter.

Nothing is written to the
lpSecurityDescriptor buffer.

ERROR_INVALID_PARAMETER The specified security information
is invalid.

RemarksThe initial security descriptor of a service object is created by the service control manager, based
on the security descriptor of the process that called the CreateService function to create the
service. The security descriptor can be changed by calling the SetServiceObjectSecurity
function.See AlsoCreateService, OpenService, SECURITY_DESCRIPTOR, SetServiceObjectSecurity

QueryServiceStatus
The QueryServiceStatus function retrieves the current status of the specified service.

BOOL QueryServiceStatus(
SC_HANDLE hService, // handle of service
LPSERVICE_STATUS lpServiceStatus // address of service status structure

);ParametershService
Identifies the service. This handle is returned by the OpenService or the CreateService
function, and it must have SERVICE_QUERY_STATUS access.

lpServiceStatus
Points to a SERVICE_STATUS structure in which the status information is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIEDThe specified handle was not opened
with SERVICE_QUERY_STATUS
access.

ERROR_INVALID_HANDLEThe specified handle is invalid.
RemarksThe QueryServiceStatus function returns the most recent service status information reported to

the service control manager. The service may have just changed its status and may not have
updated the service control manager yet. Applications can find out the absolutely latest service
status by interrogating the service directly by using the ControlService function with the
SERVICE_CONTROL_INTERROGATE control code.See AlsoControlService, CreateService, OpenService, SERVICE_STATUS, SetServiceStatus

QueueUserAPC
[New - Windows NT]

The QueueUserAPC function adds a user-mode asynchronous procedure call (APC) object to the
APC queue of the specified thread.

DWORD QueueUserAPC(
PAPCFUNC pfnAPC, // pointer to APC function
HANDLE hThread, // handle to the thread
DWORD dwData // argument for the APC function

);ParameterspfnAPC
Points to the application-supplied APC function to be called when the specified thread
performs an alertable wait operation.

hThread
Specifies the handle to the thread. The handle must have THREAD_SET_CONTEXT access.
For more information, see Thread Objects.

dwData
Specifies a single DWORD argument that is passed to the APC function pointed to by the
pfnAPC parameter.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. There are no error values defined for this function
that can be retrieved by calling GetLastError.RemarksThe APC support provided in the operating system allows an application to queue an APC object
to a thread. Each thread has its own APC queue. The queuing of an APC is a request for the
thread to call the APC function. The operating system issues a software interrupt to direct the
thread to call the APC function.

When a user-mode APC is queued, the thread is not directed to call the APC function unless it is
in an alertable state. A thread enters an alertable state by using SleepEx, SignalObjectAndWait,
WaitForSingleObjectEx, WaitForMultipleObjectsEx, or MsgWaitForMultipleObjectsEx to
perform an alertable wait operation. After the thread is in an alertable state, the thread handles all
pending APCs in first in, first out (FIFO) order, and the wait operation returns
WAIT_IO_COMPLETION.

If an application queues an APC before the thread begins running, the thread begins by calling the
APC function. Once the thread calls an APC function, it calls the APC functions for all APCs in its
APC queue.

When the thread is terminated using the ExitThread or TerminateThread function, the APCs in
its APC queue are lost. The APC functions are not called.

Note that the ReadFileEx and WriteFileEx functions are implemented using an APC as the
completion notification callback mechanism.See AlsoMsgWaitForMultipleObjectsEx, ReadFileEx, SleepEx, WaitForMultipleObjectsEx,
WaitForSingleObjectEx, WriteFileEx

RaiseException
The RaiseException function raises an exception in the calling thread.

VOID RaiseException(
DWORD dwExceptionCode, // exception code
DWORD dwExceptionFlags, // continuable exception flag
DWORD nNumberOfArguments, // number of arguments in array
CONST DWORD *lpArguments // address of array of arguments

);ParametersdwExceptionCode
Specifies the application-defined exception code of the exception being raised. The filter
expression and exception-handler block of an exception handler can use the
GetExceptionCode function to retrieve this value.
Note that the system will clear bit 28 of dwExceptionCode. This bit is a reserved exception bit,
used by the system for its own purposes. For example, after calling the RaiseException
function with a dwExceptionCode value of 0xEFFFFFFF Windows displays a message
indicating that the exception number is 0xEFFFFFFF.

dwExceptionFlags
Specifies the exception flags. This can be either zero to indicate a continuable exception, or
EXCEPTION_NONCONTINUABLE to indicate a noncontinuable exception. Any attempt to
continue execution after a noncontinuable exception causes the
EXCEPTION_NONCONTINUABLE_EXCEPTION exception.

nNumberOfArguments
Specifies the number of arguments in the lpArguments array. This value must not exceed
EXCEPTION_MAXIMUM_PARAMETERS. This parameter is ignored if lpArguments is NULL.

lpArguments
Points to an array of 32-bit arguments. This parameter can be NULL. These arguments can
contain any application-defined data that needs to be passed to the filter expression of the
exception handler.

Return ValuesThis function does not return a value.RemarksThe RaiseException function enables a process to use structured exception handling to handle
private, software-generated, application-defined exceptions.

Raising an exception causes the exception dispatcher to go through the following search for an
exception handler:

1. The system first attempts to notify the process's debugger, if any.
2. If the process is not being debugged, or if the associated debugger does not handle the

exception, the system attempts to locate a frame-based exception handler by searching the
stack frames of the thread in which the exception occurred. The system searches the current
stack frame first, then proceeds backward through preceding stack frames.

3. If no frame-based handler can be found, or no frame-based handler handles the
exception, the system makes a second attempt to notify the process's debugger.

4. If the process is not being debugged, or if the associated debugger does not handle the
exception, the system provides default handling based on the exception type. For most
exceptions, the default action is to call the ExitProcess function.

The values specified in the dwExceptionCode, dwExceptionFlags, nNumberOfArguments, and
lpArguments parameters can be retrieved in the filter expression of a try-except frame-based
exception handler by calling the GetExceptionInformation function. A debugger can retrieve
these values by calling the WaitForDebugEvent function.See AlsoExitProcess, GetExceptionCode, GetExceptionInformation, WaitForDebugEvent

RASADFunc
[New - Windows NT]

The RASADFunc function is an application-defined callback function that you can use to provide
a customized user interface for autodialing.

BOOL WINAPI RASADFunc(
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPTSTR lpszEntry, // pointer to the entry name to validate
LPRASADPARAMS lpAutodialParams, // pointer to a RASADPARAMS structure
LPDWORD lpdwRetCode // receives results of dialing operation

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that specifies the phone-book entry to use.

lpAutoDialParams
Pointer to a RASADPARAMS structure that indicates how to position the window of your
AutoDial user interface. The structure may also specify a parent window for your AutoDial
window.

lpdwRetCode
Pointer to a variable in which you must return a value if you perform the dialing operation. If
the dialing operation succeeds, set this variable to ERROR_SUCCESS. If the dialing
operation fails, set it to a nonzero value.

Return ValuesIf your application performs the dialing operation, return TRUE. Use the lpdwRetCode parameter
to indicate the results of the dialing operation.

If your application does not perform the dialing operation, return FALSE. In this case, the system
uses the default user interface for dialing.RemarksWhen the system starts an AutoDial operation for a phone-book entry with a custom AutoDial
handler, it calls the specified RASADFunc. Your RASADFunc can start a thread to perform the
custom dialing operation. The RASADFunc function returns TRUE to indicate that it took over the
dialing, or FALSE to allow the system to perform the dialing.

If your RASADFunc function performs the dialing operation, it presents its own user interface for
dialing and calls the RasDial function to do the actual dialing. Your RASADFunc then returns
TRUE to indicate that it took over the dialing. When the dialing operation has been completed, set
the variable pointed to by the lpdwRetCode parameter to indicate success or failure.

Your AutoDial DLL must provide both a RASADFUNCA (ANSI) and a RASADFUNCW (Unicode)
version of the RASADFunc handler. To enable a RASADFunc AutoDial handler for a phone-
book entry, use the RASENTRY structure in a call to the RasSetEntryProperties function. The
szAutodialDll member specifies the name of the DLL that contains the handler, and the
szAutodialFunc member specifies the exported name of the handler. The szAutodialFunc
member should not include the "A" or "W" suffix.

RASADFunc is a placeholder for the library-defined function name. The RASADFUNC type is a
pointer to a RASADFunc function.See AlsoRasDial, RASENTRY, RasSetEntryProperties

RasAdminAcceptNewConnection
[New - Windows NT]

The RasAdminAcceptNewConnection function is an application-defined function that is
exported by a third-party RAS server administration DLL. RAS calls this function when a user tries
to establish a remote connection to a RAS server. The function decides whether the user is
allowed to connect.

The RAS server calls RasAdminAcceptNewConnection once for each port in a multilink
connection.

BOOL RasAdminAcceptNewConnection(
RAS_PORT_1 *pRasPort1, // pointer to information about the connection
RAS_PORT_STATISTICS *pRasStats, // pointer to statistics about the port
RAS_PARAMETERS *pRasParams // pointer to an array of media-specific parameters and values

);ParameterspRasPort1
Pointer to a RAS_PORT_1 structure that contains RAS data about the pending connection.
This structure contains the relevant connection information that you need to make a decision
about the connection.

pRasStats
Pointer to a RAS_PORT_STATISTICS structure that contains statistics about the port.

pRasParams
Pointer to an array of RAS_PARAMETERS structures. Each structure contains the name of a
media-specific key, such as MAXCONNECTBPS, and its associated value.

Return ValuesIf the function returns TRUE, RAS accepts the new connection.

If the function returns FALSE, RAS does not accept the new connection.RemarksThe RasAdminAcceptNewConnection function gives more control to a RAS server
administration DLL to determine whether a specified remote user should be allowed to connect to
a server.

The setup program for a third-party RAS administration DLL must register the DLL with RAS by
providing information under the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
To register the DLL, set the following values under this key.

Value Name Value Data

DisplayName A REG_SZ string that contains the user-friendly
display name of the DLL.

DLLPath A REG_SZ string that contains the full path of the
DLL.

For example, the registry entry for a RAS Administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS Administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's registry
entries.See AlsoRAS_PARAMETERS, RAS_PORT_1, RAS_PORT_STATISTICS

RasAdminConnectionHangupNotification
[New - Windows NT]

The RasAdminConnectionHangupNotification function is an application-defined function that is
exported by a third-party RAS server administration DLL. When RAS disconnects an existing
connection, it calls this function to notify your DLL.

The RAS server calls RasAdminConnectionHangupNotification once for each port in a multilink
connection.

VOID RasAdminConnectionHangupNotification(
RAS_PORT_1 *pRasPort1, // pointer to information about the connection
RAS_PORT_STATISTICS *pRasStats, // pointer to statistics about the port
RAS_PARAMETERS *pRasParams // pointer to an array of media-specific parameters and values

);ParameterspRasPort1
Pointer to a RAS_PORT_1 structure that contains RAS data about the connection that ended.
This structure contains the relevant connection information that you can use to determine how
long the port was connected.

pRasStats
Pointer to a RAS_PORT_STATISTICS structure that contains statistics about the port. RAS
began accumulating these statistics when the connection was first established.

pRasParams
Pointer to an array of RAS_PARAMETERS structures. Each structure contains the name of a
media-specific key, such as MAXCONNECTBPS, and its associated value.

Return ValuesThe function does not return a value.RemarksThe RAS call to the RasAdminConnectionHangupNotification function is just a notification; no
action is required from your DLL. You can use the information provided by this function for
accounting purposes.

The setup program for a third-party RAS administration DLL must register the DLL with RAS by
providing information under the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
To register the DLL, set the following values under this key.

Value Name Value Data

DisplayName A REG_SZ string that contains the user-friendly
display name of the DLL.

DLLPath A REG_SZ string that contains the full path of the
DLL.

For example, the registry entry for a RAS Administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS Administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's registry
entries.See AlsoRAS_PARAMETERS, RAS_PORT_1, RAS_PORT_STATISTICS

RasAdminFreeBuffer
[New - Windows NT]

The RasAdminFreeBuffer function frees memory that was allocated by RAS on behalf of the
caller.

DWORD RasAdminFreeBuffer(
PVOID Pointer // pointer to the buffer to free

);ParametersPointer
Pointer to the buffer to be freed.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

ERROR_INVALID_PARAMETER The Pointer parameter is invalid.

Do not call GetLastError to get error information for this function.RemarksUse the RasAdminFreeBuffer function to free the buffers allocated by the RasAdminPortEnum
and RasAdminPortGetInfo functions.See AlsoRasAdminPortEnum, RasAdminPortGetInfo

RasAdminGetErrorString
[New - Windows NT]

The RasAdminGetErrorString function retrieves a message string that corresponds to a RAS
error code returned by one of the RAS server administration (RasAdmin) functions. These
message strings are retrieved from the RASMSG.DLL that is installed as part of RAS.

DWORD RasAdminGetErrorString (
UINT ResourceId, // error code to get message for
WCHAR *lpszString, // pointer to a buffer that receives the error string
DWORD InBufSize // size, in characters, of the buffer

);ParametersResourceId
Specifies an error code returned by one of the RasAdmin functions. This value must be in the
range of error codes from RASBASE to RASBASEEND that are defined in RASERROR.H.

lpszString
Pointer to a buffer that receives the error message corresponding to the specified error code.

InBufSize
Specifies the size, in characters, of the lpszString buffer. Error messages are typically 80
characters or less; a buffer size of 512 characters is always adequate.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error code. This value can be a last error value set by
the LoadLibrary, GlobalAlloc, or LoadString functions; or it can be one of the following error
codes.

Value Meaning

ERROR_INVALID_PARAMETER The ResourceId or lpszString
parameters are invalid.

ERROR_INSUFFICIENT_BUFFERThe size specified by the InBufSize
parameter is too small.

Do not call GetLastError to get error information for this function.RemarksThe RasAdmin functions can return error codes that are not in the range supported by the
RasAdminGetErrorString function. For example, the RasAdmin functions can return error codes
that are defined in LMERR.H and WINERROR.H. Before calling RasAdminGetErrorString, verify
that the error code is in the range RASBASE to RASBASEEND, as defined in RASERROR.H.See AlsoLoadLibrary, GlobalAlloc, LoadString

RasAdminGetIpAddressForUser
[New - Windows NT]

The RasAdminGetIpAddressForUser function is an application-defined function that is exported
by a third-party RAS server administration DLL. RAS calls this function to get an IP address for
the dialed-in remote client.

DWORD RasAdminGetIpAddressForUser(
WCHAR *lpszUserName, // pointer to the name of the remote user
WCHAR *lpszPortName, // pointer to the name of the port
IPADDR *pipAddress, // pointer to the IP address
BOOL *bNotifyRelease // indicates whether RAS should call RasAdminReleaseIpAddress

);ParameterslpszUserName
Pointer to a null-terminated Unicode string that contains the name of the remote user for
whom an IP address is required.

lpszPortName
Pointer to a null-terminated Unicode string that contains the name of the port on which the
user specified by lpszUserName is attempting to connect.

pipAddress
Pointer to an IPADDR variable. On input, *pipAddress contains either zero or the IP address
that the RAS server proposes to use for the dialed-in remote client. The function can set *
pipAddress to a different IP address, or accept the passed-in IP address. If *pipAddress is
zero on input, the function must provide an IP address; otherwise, the client will be unable to
connect to this server using IP.

bNotifyRelease
Pointer to a BOOL variable. Set this variable to TRUE if you want RAS to call your
RasAdminReleaseIpAddress function when the user disconnects from this port; otherwise,
set it to FALSE.

Return ValuesIf pipAddress points to an IP address that the client can use to connect to this RAS server, the
function should return NO_ERROR. This can occur if the function accepts the IP address that was
passed by the RAS server, or if the function provides a different IP address.

If pipAddress does not point to an IP address, the function should return a nonzero error code.
This can occur if no IP address is available, or if the passed in IP address is unacceptable. In this
case, the client will be unable to connect to this server using IP.RemarksThe setup program for a third-party RAS administration DLL must register the DLL with RAS by
providing information under the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
To register the DLL, set the following values under this key.

Value Name Value Data

DisplayName A REG_SZ string that contains the user-friendly
display name of the DLL.

DLLPath A REG_SZ string that contains the full path of the
DLL.

For example, the registry entry for a RAS Administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS Administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's registry
entries.See AlsoRasAdminReleaseIpAddress

RasAdminGetUserAccountServer
[New - Windows NT]

The RasAdminGetUserAccountServer function retrieves the name of the server that has the
user account database. You can use the returned server name in the RasAdminUserGetInfo and
RasAdminUserSetInfo functions to get or set information about a specified user.

DWORD RasAdminGetUserAccountServer(
const WCHAR *lpszDomain, // pointer to the name of the Windows NT domain
const WCHAR *lpszServer, // pointer to the name of the RAS server
LPWSTR lpszUserAccountServer // receives the name of the user account server

);ParameterslpszDomain
Pointer to a null-terminated Unicode string that contains the name of the domain to which the
RAS server belongs. This parameter can be NULL if you are running your RAS administration
application on a Windows NT Workstation or Server that is not participating in a Windows NT
domain. If this parameter is NULL, the lpszServer parameter must be non-NULL.

lpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. Specify the name with leading "\\" characters, in the form: \\servername. This
parameter can be NULL if the lpszDomain parameter is not NULL.

lpszUserAccountServer
Pointer to a buffer that receives a null-terminated Unicode string containing the name of the
primary domain controller (PDC) Windows NT server that has the user account database. The
buffer should be big enough to hold the server name (UNCLEN +1). The function prefixes the
returned server name with leading "\\" characters, in the form: \\servername. If the server
name specified by lpszServer is a stand-alone Windows NT Server or Workstation (that is, the
server or workstation does not participate in a Windows NT domain), then the server name
itself is returned in the lpszUserAccountServer buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

ERROR_INVALID_PARAMETER Both lpszDomain and lpszServer are
NULL.

Do not call GetLastError to get error information for this function.

Remarks
The lpszDomain parameter should specify a valid Windows NT domain name. If you are running
your RAS administration application on a Windows NT Workstation or Server that is not
participating in a Windows NT domain (for example, the workstation or server is in its own work
group), then set lpszDomain to NULL. In this case, you must specify your server name in the
lpszServer parameter. Be sure to prefix the server name with the "\\" characters. To get the server
name, call the GetComputerName function.See AlsoGetComputerName, RasAdminUserGetInfo, RasAdminUserSetInfo

RasAdminPortClearStatistics
[New - Windows NT]

The RasAdminPortClearStatistics function resets the counters representing the various
statistics reported by the RasAdminPortGetInfo function in the RAS_PORT_STATISTICS
structure. The counters are reset to zero and start accumulating from then on.

DWORD RasAdminPortClearStatistics(
const WCHAR *lpszServer, // pointer to the server name
const WCHAR *lpszPort // pointer to the name of port on the server

);ParameterslpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. Specify the name with leading "\\" characters, in the form: \\servername.

lpszPort
Pointer to a null-terminated Unicode string that contains the name of the port on the server.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

ERROR_DEV_NOT_EXIST The specified port is invalid.

Do not call GetLastError to get error information for this function.RemarksThe RasAdminPortClearStatistics function clears the statistics on the server, not locally within
the application that makes the call. This means that the statistics are also reset for any other
application that is monitoring the specified port.

If the lpszPort port is part of a multilink connection, RasAdminPortClearStatistics resets the
statistics for the specified port, The function also resets the cumulative statistics for the multilink
connection. However, the function does not effect the individual statistics for other ports that are
part of the multilink connection.See AlsoRAS_PORT_STATISTICS, RasAdminPortGetInfo

RasAdminPortDisconnect
[New - Windows NT]

The RasAdminPortDisconnect function disconnects a port that is currently in use.

DWORD RasAdminPortDisconnect(
const WCHAR *lpszServer, // pointer to the server name
const WCHAR *lpszPort // pointer to the name of port on the server

);ParameterslpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. Specify the name with leading "\\" characters, in the form: \\servername.

lpszPort
Pointer to a null-terminated Unicode string that contains the name of the port on the server.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PORT The specified port is invalid.
NERR_UserNotFound The port is not currently in use.

Do not call GetLastError to get error information for this function.

RasAdminPortEnum
[New - Windows NT]

The RasAdminPortEnum function enumerates all ports on the specified RAS server. For each
port on the server, the function returns a RAS_PORT_0 structure that contains information about
the port.

DWORD RasAdminPortEnum(
const WCHAR *lpszServer, // pointer to the server name
PRAS_PORT_0 *ppRasPort0, // receives a pointer to an array of port information
WORD *pcEntriesRead // receives the number of ports enumerated

);ParameterslpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. Specify the name with leading "\\" characters, in the form: \\servername.

ppRasPort0
Pointer to a variable that receives a pointer to a buffer that contains an array of RAS_PORT_0
structures. When your application has finished with the memory, free it by calling the
RasAdminFreeBuffer function.

pcEntriesRead
Pointer to a 16-bit variable that receives the total number of RAS_PORT_0 structures
returned in the ppRasPort0 array.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

NERR_ItemNotFound No ports could be enumerated. This
could be because all configured ports
on the server are currently being used
for dialing out.

Do not call GetLastError to get error information for this function.See AlsoRAS_PORT_0, RasAdminFreeBuffer

RasAdminPortGetInfo
[New - Windows NT]

The RasAdminPortGetInfo function retrieves information about a specified port on a specified
server.

DWORD RasAdminPortGetInfo(
const WCHAR *lpszServer, // pointer to the server name
const WCHAR *lpszPort, // pointer to the name of port on the server
RAS_PORT_1 *pRasPort1, // receives the state of the port
RAS_PORT_STATISTICS *pRasStats, // receives statistics about the port
RAS_PARAMETERS **ppRasParams // receives an array of media-specific parameters and values

);ParameterslpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. Specify the name with leading "\\" characters, in the form: \\servername.

lpszPort
Pointer to a null-terminated Unicode string that contains the name of the port on the server.

pRasPort1
Pointer to a RAS_PORT_1 structure that the function fills in with information about the state of
the port.

pRasStats
Pointer to a RAS_PORT_STATISTICS structure that the function fills in with statistics about
the port.

ppRasParams
Pointer to a variable that receives a pointer to an array of RAS_PARAMETERS structures.
Each structure contains the name of a media-specific key, such as MAXCONNECTBPS, and
its associated value. When your application is finished with the memory pointed to by *
ppRasParams, free it by calling the RasAdminFreeBuffer function.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_DEV_NOT_EXIST The specified port is invalid.
ERROR_NOT_ENOUGH_MEMORYInsufficient memory to allocate a

buffer for the ppRasParams array.

Do not call GetLastError to get error information for this function.See AlsoRAS_PARAMETERS, RAS_PORT_1, RAS_PORT_STATISTICS, RasAdminFreeBuffer

RasAdminReleaseIpAddress
[New - Windows NT]

The RasAdminReleaseIpAddress function is an application-defined function that is exported by
a third-party RAS server administration DLL. RAS calls this function to notify your DLL that the
remote client was disconnected and that the IP address should be released.

VOID RasAdminReleaseIpAddress(
WCHAR *lpszUserName, // pointer to the name of the remote user
WCHAR *lpszPortName, // pointer to the name of the port
IPADDR *pipAddress // pointer to the IP address

);ParameterslpszUserName
Pointer to a null-terminated Unicode string that contains the name of a remote user for whom
an IP address was previously obtained using the RasAdminGetIpAddressForUser function.

lpszPortName
Pointer to a null-terminated Unicode string that contains the name of the port on which the
user specified by lpszUserName is connected.

pipAddress
Pointer to an IPADDR variable that contains the IP address returned for this user in a
previous call to RasAdminGetIpAddressForUser.

Return ValuesNone.RemarksThe RAS server calls your RasAdminReleaseIpAddress function only if your application
returned TRUE in the bNotifyRelease parameter during the earlier call to
RasAdminGetIpAddressForUser for the user specified by the lpszUserName parameter.

The setup program for a third-party RAS administration DLL must register the DLL with RAS by
providing information under the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
To register the DLL, set the following values under this key.

Value Name Value Data

DisplayName A REG_SZ string that contains the user-friendly
display name of the DLL.

DLLPath A REG_SZ string that contains the full path of the
DLL.

For example, the registry entry for a RAS Administration DLL from a fictional company
named Netwerks Corporation might be:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS\AdminDll
DisplayName : REG_SZ : Netwerks RAS Admin DLL
DLLPath : REG_SZ : C:\nt\system32\ntwkadm.dll

The setup program for a RAS Administration DLL should also provide remove/uninstall
functionality. If a user removes the DLL, the setup program should delete the DLL's registry
entries.See AlsoRasAdminGetIpAddressForUser

RasAdminServerGetInfo
[New - Windows NT]

The RasAdminServerGetInfo function gets the server configuration of a RAS server.

DWORD RasAdminServerGetInfo(
const WCHAR *lpszServer, // pointer to the name of the RAS server
PRAS_SERVER_0 pRasServer0 // pointer to server information

);ParameterslpszServer
Pointer to a null-terminated Unicode string that contains the name of the Windows NT RAS
server. If this parameter is NULL, the function returns information about the local computer.
Specify the name with leading "\\" characters, in the form: \\servername.

pRasServer0
Pointer to a RAS_SERVER_0 structure that receives the number of ports configured on the
server, the number of ports currently in use, and the server version number.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error code. Possible error codes include those returned
by GetLastError for the CallNamedPipe function. Do not call GetLastError to get error
information for this function.

Remarks
To enumerate all RAS servers in a Windows NT domain, call the NetServerEnum function and
specify SV_TYPE_DIALIN for the servertype parameter.See AlsoNetServerEnum, RAS_SERVER_0

RasAdminUserGetInfo
[New - Windows NT]

The RasAdminUserGetInfo function gets the RAS permissions and callback phone number
information for a specified user.

DWORD RasAdminUserGetInfo(
const WCHAR *lpszUserAccountServer, // pointer to the name of the user account server
const WCHAR *lpszUser, // pointer to the name of the user
PRAS_USER_0 pRasUser0 // receives the user's RAS information

);ParameterslpszUserAccountServer
Pointer to a null-terminated Unicode string that contains the name of the primary or backup
domain controller that has the user account database. Use the
RasAdminGetUserAccountServer function to get this server name.

lpszUser
Pointer to a null-terminated Unicode string that contains the name of the user for whom to get
RAS information.

pRasUser0
Pointer to a RAS_USER_0 structure that receives the RAS data for the specified user.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be the following error code.

Value Meaning

NERR_BufTooSmall Insufficient memory to perform this
function.

Do not call GetLastError to get error information for this function.See AlsoRAS_USER_0, RasAdminGetUserAccountServer, RasAdminUserSetInfo

RasAdminUserSetInfo
[New - Windows NT]

The RasAdminUserSetInfo function sets the RAS permissions and call-back phone number for a
specified user.

DWORD RasAdminUserSetInfo(
const WCHAR *lpszUserAccountServer, // pointer to the name of the user account server
const WCHAR *lpszUser, // pointer to the name of the user
const PRAS_USER_0 pRasUser0 // pointer to the new RAS information for this user

);ParameterslpszUserAccountServer
Pointer to a null-terminated Unicode string that contains the name of the primary or backup
domain controller that has the user account database. Use the
RasAdminGetUserAccountServer function to get this server name.

lpszUser
Pointer to a null-terminated Unicode string that contains the name of the user for whom RAS
information is to be set.

pRasUser0
Pointer to a RAS_USER_0 structure that contains the new RAS data for the specified user.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value can be one of the following error codes.

Value Description

ERROR_INVALID_DATA
The pRasUser0 buffer contains invalid data.

ERROR_INVALID_CALLBACK_NUMBER
The callback number specified in the pRasUser0
buffer contains invalid characters.

NERR_BufTooSmall
Insufficient memory to perform this function.

Do not call GetLastError to get error information for this function.

Remarks
When setting the RAS permissions for a user, the bfPrivilege member of the RAS_USER_0
structure must specify at least one of the call-back flags. For example, to set a user's privileges
to allow dial-in privilege but no call-back privilege, set bfPrivilege to RASPRIV_DialinPrivilege |
RASPRIV_NoCallback.See AlsoRAS_USER_0, RasAdminGetUserAccountServer, RasAdminUserGetInfo

RasConnectionNotification
[New - Windows NT]

The RasConnectionNotification function specifies an event object that the system sets to the
signaled state when a RAS connection is created or terminated.

DWORD RasConnectionNotification(
HANDLE hEvent, // handle to an event object
DWORD dwFlags // type of event to receive notifications for

);ParametershEvent
Specifies the handle of an event object. Use the CreateEvent function to create an event
object.

dwFlags
Indicates the RAS event that causes the system to signal the event object specified by the
hEvent parameter. This parameter can be a combination of the following values.

Value Meaning
RASCN_Connection A new RAS connection has been

created.
RASCN_Disconnection An existing RAS connection has

been terminated.
Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error code.RemarksTo determine when the event object is signaled, use any of the wait functions.

When the event is signaled, you can use other RAS functions, such as RasEnumConnections, to
get more information about the RAS connection that was created or terminated.See AlsoCreateEvent, RasEnumConnections

RasCreatePhonebookEntry
The RasCreatePhonebookEntry function creates a new phone-book entry. The function displays
a dialog box in which the user types information about the phone-book entry.

Windows NT: The RasCreatePhonebookEntry function calls the RasEntryDlg function.
Applications written for Windows NT version 4.0 should use RasEntryDlg.

DWORD RasCreatePhonebookEntry(
HWND hwnd, // handle to the parent window of the dialog box
LPTSTR lpszPhonebook // pointer to the full path and filename of the phone-book file

);Parametershwnd
Handle to the parent window of the dialog box.

lpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: Dial-up networking stores phone-book entries in the registry rather than in a
phone-book file.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is the following error code:

Value Description

ERROR_CANNOT_OPEN_PHONEBOOK
The phone book is corrupted or missing
components.

See AlsoRasEditPhonebookEntry, RasEntryDlg, RasGetEntryDialParams, RasSetEntryDialParams

RasDeleteEntry
[New - Windows NT]

The RasDeleteEntry function deletes an entry from a phone book.

DWORD RasDeleteEntry(
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPTSTR lpszEntry // pointer to an entry name to delete

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string containing the name of an existing entry to be deleted.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is ERROR_INVALID_NAME.See AlsoRasCreatePhonebookEntry, RasEnumEntries

RasDial
The RasDial function establishes a RAS connection between a RAS client and a RAS server. The
connection data includes callback and user authentication information.

DWORD RasDial(
LPRASDIALEXTENSIONS lpRasDialExtensions, // pointer to function extensions data
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPRASDIALPARAMS lpRasDialParams, // pointer to calling parameters data
DWORD dwNotifierType, // specifies type of RasDial event handler
LPVOID lpvNotifier, // specifies a handler for RasDial events
LPHRASCONN lphRasConn // pointer to variable to receive connection handle

);ParameterslpRasDialExtensions
Windows NT:

Points to a RASDIALEXTENSIONS structure that specifies a set of RasDial extended
features to enable. If you do not need to enable any of the extensions, set this parameter to
NULL.

Windows 95:
This parameter is ignored. On Windows 95, RasDial always uses the default behaviors for
the RASDIALEXTENSIONS options.

lpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: This parameter is ignored. Dial-up networking stores phone-book entries in the
registry rather than in a phone-book file.

lpRasDialParams
Points to a RASDIALPARAMS structure that specifies calling parameters for the RAS
connection.
The caller must set the RASDIALPARAMS structure's dwSize member to the sizeof
(RASDIALPARAMS) to identify the version of the structure being passed.

dwNotifierType
Specifies the nature of the lpvNotifier parameter. If lpvNotifier is NULL, dwNotifierType is
ignored. If lpvNotifier is not NULL, set dwNotifierType to one of the following values:

Value Meaning
0xFFFFFFFF The lpvNotifier parameter is a handle to a

window to receive progress notification
messages. In a progress notification
message, wParam is the equivalent of the
rasconnstate parameter of RasDialFunc
and RasDialFunc1, and lParam is the
equivalent of the dwError parameter of
RasDialFunc and RasDialFunc1.
The progress notification message uses a
system registered message code. You
can obtain the value of this message
code as follows:
{UINT unMsg =

RegisterWindowMessageA(
RASDIALEVENT);
if (unMsg == 0)
unMsg = WM_RASDIALEVENT;

}

0 The lpvNotifier parameter points to a
RasDialFunc callback function.

1 The lpvNotifier parameter points to a

RasDialFunc1 callback function.
2 Windows NT: The lpvNotifier parameter

points to a RasDialFunc2 callback
function.

lpvNotifier
Specifies a window handle or a RasDialFunc, RasDialFunc1, or RasDialFunc2 callback
function to receive RasDial event notifications. The dwNotifierType parameter specifies the
nature of lpvNotifier. Please refer to its description preceding for further detail.
If this parameter is not NULL, RasDial sends the window a message, or calls the callback
function, for each RasDial event. Additionally, the RasDial call operates asynchronously:
RasDial returns immediately, before the connection is established, and communicates its
progress via the window or callback function.
If lpvNotifier is NULL, the RasDial call operates synchronously: RasDial does not return until
the connection attempt has completed successfully or failed.
If lpvNotifier is not NULL, notifications to the window or callback function can occur at any time
after the initial call to RasDial. Notifications end when one of the following events occurs:
· The connection is established. In other words, the RAS connection state is

RASCS_Connected.
· The connection fails. In other words, dwError is nonzero.
· RasHangUp is called on the connection.
The callback notifications are made in the context of a thread captured during the initial call to
RasDial.

lphRasConn
Points to a variable of type HRASCONN. You must set the HRASCONN variable to NULL
before calling RasDial. If RasDial succeeds, it stores a handle to the RAS connection into *
lphRasConn.

Return ValuesIf the function succeeds, the immediate return value is zero. In addition, the function stores a
handle to the RAS connection into the variable pointed to by lphRasConn.

If the function fails, the immediate return value is a nonzero error value, either from the set listed
in the RAS header file or ERROR_NOT_ENOUGH_MEMORY.RemarksErrors that occur after the immediate return can be detected by RasGetConnectStatus. Data is
available until an application calls RasHangUp to hang up the connection.

An application must eventually call RasHangUp whenever a non-NULL connection handle is
stored into *lphRasConn. This applies even if RasDial returns a nonzero (error) value.

An application can safely call RasHangUp from a RasDial notifier callback function. If this is
done, however, the hangup does not occur until the routine returns.

Windows NT:
If the structure pointed to by lpRasDialExtensions enables RDEOPT_PausedStates, the
RasDial function pauses whenever it enters a state in which the RASCS_PAUSED bit is set
to one. To restart RasDial from such a paused state, call RasDial again, passing the
connection handle returned from the original RasDial call in *lphRasConn. The same notifier
used in the original RasDial call must be used when restarting from a paused state.
To specify that RasDial should enter a RASCS_CallbackSetByCaller state, set
lpRasDialParams->szCallbackNumber to "*" on the initial call to RasDial. When your
notification handler is called with this state, you can set the the callback number to a number
supplied by the user.

Windows 95:
Windows 95 does not support the RASCS_CallbackSetByCaller state or any of the other
paused states.

See AlsoRasDialDlg, RasDialFunc, RasDialFunc1, RasDialFunc2, RasGetConnectStatus,
RasHangUp, RASDIALEXTENSIONS, RASDIALPARAMS, WM_RASDIALEVENT

RasDialDlg
[New - Windows NT]

The RasDialDlg function tries to establish a RAS connection using a specified phone-book entry
and the credentials of the logged-on user. The function displays a stream of dialog boxes that
indicate the state of the connection operation.

BOOL RasDialDlg(
LPTSTR lpszPhonebook, // pointer to the full path and filename of the phone-book file
LPTSTR lpszEntry, // pointer to the name of the phone-book entry to dial
LPTSTR lpszPhoneNumber, // pointer to replacement phone number to dial
LPRASDIALDLG lpInfo // pointer to a structure that contains additional parameters

);ParameterslpszPhonebook
Pointer to a null-terminated string that specifies the full path and filename of a phone-book (.
PBK) file. If this parameter is NULL, the function uses the current default phone-book file. The
default phone-book file is the one selected by the user in the User Preferences property
sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that contains the name of the phone-book entry to dial.

lpszPhoneNumber
Pointer to a null-terminated string that contains a phone number that overrides the numbers
stored in the phone-book entry. If this parameter is NULL, RasDialDlg uses the numbers in
the phone-book entry.

lpInfo
Pointer to a RASDIALDLG structure that contains additional input and output parameters. On
input, the dwSize member of this structure must specify sizeof(RASDIALDLG). If an error
occurs, the dwError member returns an error code; otherwise, it returns zero.

Return ValuesIf the function establishes a RAS connection, the return value is a nonzero value.

If an error occurs, or if the user selects the Cancel button during the dialing operation, the return
value is zero. If an error occurs, the dwError member of the RASDIALDLG structure returns a
nonzero system or RAS error code.RemarksThe RasDialDlg function displays a stream of dialog boxes that are similar to the dialog boxes
that main Dial-Up Networking dialog box displays when the user selects the Dial button. The
RasDialDlg function is useful for applications in which you want to display a standard user
interface for a connection operation without presenting the main phone-book dialog box. For
example, the RAS AutoDial service uses this function to establish a connection using the phone-
book entry associated with a remote address.

The RasDialDlg function displays dialog boxes during the connection operation to provide
feedback to the user about the progress of the operation. For example, the dialog boxes might
indicate when the operation is dialing, when it is authenticating the user's credentials on the
remote server, and so on. The dialog boxes also provide a Cancel button for the user to terminate
the operation.

RasDialDlg returns when the connection is established, or when the user cancels the operation.See AlsoRASDIALDLG, RasPhonebookDlg

RasDialFunc
The RasDialFunc function is an application-defined or library-defined callback function that the
RasDial function calls when a change of state occurs during a RAS connection process.

VOID WINAPI RasDialFunc(
UINT unMsg, // type of event that has occurred
RASCONNSTATE rasconnstate, // connection state about to be entered
DWORD dwError // error that may have occurred

);ParametersunMsg
Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rasconnstate
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial remote
access connection process is about to enter.

dwError
Indicates the error that has occurred, or zero if no error has occurred.
RasDial calls RasDialFunc with dwError set to zero upon entry to each connection state. If
an error occurs within a state, RasDialFunc is called again with a nonzero dwError value.

Return ValuesNone.RemarksA RasDial connection operation is suspended during a call to a RasDialFunc callback function.
For that reason, your RasDialFunc implementation should generally return as quickly as possible.
There are two exceptions to that rule. Asynchronous (slow) devices such as modems often have
time-out periods measured in seconds rather than milliseconds; a less-than-prompt return from a
RasDialFunc function is generally not a problem. The prompt return requirement also does not
apply when dwError is nonzero, indicating that an error has occurred. It is safe, for example, to put
up an error dialog box and wait for user input.

Your RasDialFunc implementation should not depend on the order or occurrence of particular
RASCONNSTATE connection states, because this may vary between platforms.

Do not call the RasDial function from within a RasDialFunc callback function. You can call the
RasGetConnectStatus, RasEnumEntries, RasEnumConnections, RasGetErrorString, and
RasHangUp functions from within the callback function. For example, calling
RasGetConnectStatus from within a callback function would be useful for determining the name
and type of the connecting device.

Note that, for convenience, RasHangUp can be called from within a RasDialFunc callback
function. However, much of the hang-up processing occurs after the RasDialFunc callback
function has returned.

RasDialFunc is a placeholder for the application-defined or library-defined function name.See AlsoRASCONNSTATE, RasDial, RasDialFunc1, RasDialFunc2, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasDialFunc1
A RasDialFunc1 function is an application-defined or library-defined callback function that the
RasDial function calls when a change of state occurs during a remote access connection process.
A RasDialFunc1 function is comparable to a RasDialFunc function, but is enhanced by the
addition of two parameters: a handle to the RAS connection, and an extended error code.

VOID WINAPI RasDialFunc1(
HRASCONN hrasconn, // handle to RAS connection
UINT unMsg, // type of event that has occurred
RASCONNSTATE rascs, // connection state about to be entered
DWORD dwError, // error that may have occurred
DWORD dwExtendedError // extended error information for some errors

);Parametershrasconn
Provides a handle to the RAS connection, as returned by RasDial.

unMsg
Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rascs
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial remote
access connection process is about to enter.

dwError
Specifies the error that has occurred. If no error has occurred, dwError is zero.
RasDial calls RasDialFunc1 with dwError set to zero upon entry to each connection state. If
an error occurs within a state, RasDial calls RasDialFunc1 again with a nonzero dwError
value.
In some error cases, the dwExtendedError parameter contains extended error information.

dwExtendedError
Specifies extended error information for certain nonzero values of dwError. For all other
values of dwError, dwExtendedError is zero.
The contents of dwExtendedError are defined for values of dwError as follows:
dwError dwExtendedError
ERROR_SERVER_NOT_RESPONDINGSpecifies the NetBIOS error

that occurred.
ERROR_NETBIOS_ERROR Specifies the NetBIOS error

that occurred.
ERROR_AUTH_INTERNAL Specifies an internal

diagnostics code.
ERROR_CANNOT_GET_LANA Specifies a routing error

code, which is a RAS error.
Return ValuesNone.RemarksA RasDial connection operation is suspended during a call to a RasDialFunc1 callback function.

For that reason, your RasDialFunc1 implementation should generally return as quickly as
possible. There are two exceptions to that rule. Asynchronous (slow) devices such as modems
often have time-out periods measured in seconds rather than milliseconds; a less-than-prompt
return from a RasDialFunc1 function is generally not a problem. The prompt return requirement
also does not apply when dwError is nonzero, indicating that an error has occurred. It is safe, for
example, to put up an error dialog box and wait for user input.

Your RasDialFunc1 implementation should not depend on the order or occurrence of particular
RASCONNSTATE connection states, because this may vary between platforms.

Do not call the RasDial function from within a RasDialFunc1 callback function. You can call the
RasGetConnectStatus, RasEnumEntries, RasEnumConnections, RasGetErrorString, and
RasHangUp functions from within the callback function. For example, calling
RasGetConnectStatus from within a callback function would be useful for determining the name
and type of the connecting device.

Note that, for convenience, RasHangUp can be called from within a RasDialFunc1 callback

function. However, much of the hang-up processing occurs after the RasDialFunc1 callback
function has returned.

RasDialFunc1 is a placeholder for the application-defined or library-defined function name.See AlsoRasDial, RasDialFunc, RasDialFunc2, RASCONNSTATE, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasDialFunc2
[New - Windows NT]

A RasDialFunc2 function is an application-defined or library-defined callback function that the
RasDial function calls when a change of state occurs during a remote access connection process.
A RasDialFunc2 function is similar to the RasDialFunc1 callback function, except that it provides
additional information for multilink connections.

DWORD WINAPI RasDialFunc2(
DWORD dwCallbackId, // user-defined value specified in RasDial call
DWORD dwSubEntry, // subentry index in multilink connection
HRASCONN hrasconn, // handle to RAS connection
UINT unMsg, // type of event that has occurred
RASCONNSTATE rascs, // connection state about to be entered
DWORD dwError, // error that may have occurred
DWORD dwExtendedError // extended error information for some errors

);ParametersdwCallbackId
Provides an application-defined value that was specified in the dwCallbackId member of the
RASDIALPARAMS structure passed to RasDial.

dwSubEntry
Specifies a subentry index for the phone-book entry associated with this connection. This
value indicates the subentry that generated this call to your RasDialFunc2 callback function.

hrasconn
Provides a handle to the RAS connection, as returned by RasDial.

unMsg
Specifies the type of event that has occurred. Currently, the only event defined is
WM_RASDIALEVENT.

rascs
Specifies a RASCONNSTATE enumerator value that indicates the state the RasDial remote
access connection process is about to enter.

dwError
Specifies the error that has occurred. If no error has occurred, dwError is zero.
The RasDial function calls RasDialFunc2 with dwError set to zero upon entry to each
connection state. If an error occurs within a state, RasDial calls RasDialFunc2 again with a
nonzero dwError value.
In some error cases, the dwExtendedError parameter contains extended error information.

dwExtendedError
Specifies extended error information for certain nonzero values of dwError. For all other
values of dwError, dwExtendedError is zero.
The contents of dwExtendedError are defined for values of dwError as follows:

dwError dwExtendedError
ERROR_SERVER_NOT_RESPONDINGSpecifies the NetBIOS

error that occurred.
ERROR_NETBIOS_ERROR Specifies the NetBIOS

error that occurred.
ERROR_AUTH_INTERNAL Specifies an internal

diagnostics code.
ERROR_CANNOT_GET_LANA Specifies a routing error

code, which is a RAS error.
Return ValuesIf the RasDialFunc2 function returns a nonzero value, RasDial continues to send callback

notifications.

If the RasDialFunc2 function returns zero, RasDial stops sending callback notifications for all
subentries.RemarksA RasDial connection operation is suspended during a call to a RasDialFunc2 callback function.
For that reason, your RasDialFunc2 implementation should generally return as quickly as
possible. There are two exceptions to that rule. Asynchronous (slow) devices such as modems
often have time-out periods measured in seconds rather than milliseconds; a less-than-prompt

return from a RasDialFunc2 function is generally not a problem. The prompt return requirement
also does not apply when dwError is nonzero, indicating that an error has occurred. It is safe, for
example, to put up an error dialog box and wait for user input.

Your RasDialFunc2 implementation should not depend on the order or occurrence of particular
RASCONNSTATE connection states, because this may vary between platforms.

Do not call the RasDial function from within a RasDialFunc2 callback function. You can call the
RasGetConnectStatus, RasEnumEntries, RasEnumConnections, RasGetErrorString, and
RasHangUp functions from within the callback function. For example, calling
RasGetConnectStatus from within a callback function would be useful for determining the name
and type of the connecting device.

Note that, for convenience, RasHangUp can be called from within a RasDialFunc2 callback
function. However, much of the hang-up processing occurs after the RasDialFunc2 callback
function has returned.

RasDialFunc2 is a placeholder for the application-defined or library-defined function name.See AlsoRasDial, RasDialFunc, RasDialFunc1, RASCONNSTATE, RasEnumConnections,
RasEnumEntries, RasGetConnectStatus, RasGetErrorString, RasHangUp

RasEditPhonebookEntry
The RasEditPhonebookEntry function edits an existing phone-book entry. The function displays
a dialog box in which the user can modify the existing information.

Windows NT: The RasEditPhonebookEntry function calls the RasEntryDlg function.
Applications written for Windows NT version 4.0 should use RasEntryDlg.

DWORD RasEditPhonebookEntry(
HWND hwnd, // handle to the parent window of the dialog box
LPTSTR lpszPhonebook, // pointer to the full path and filename of the phone-book file
LPTSTR lpszEntryName // pointer to the phone-book entry name

);Parametershwnd
Handle to the parent window of the dialog box.

lpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: Dial-up networking stores phone-book entries in the registry rather than in a
phone-book file.

lpszEntryName
Points to a null-terminated string that specifies the name of an existing entry in the phone-
book file.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes:

Value Description

ERROR_BUFFER_INVALID
The phone-book entry buffer is invalid.

ERROR_CANNOT_OPEN_PHONEBOOK
The phone book is corrupted or missing
components.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRY
The phone-book entry does not exist.

See AlsoRasCreatePhonebookEntry, RasEntryDlg, RasGetEntryDialParams,
RasSetEntryDialParams

RasEntryDlg
[New - Windows NT]

The RasEntryDlg function displays modal property sheets that allow a user to manipulate phone-
book entries. If editing or copying an existing phone-book entry, the function displays a phone-
book entry property sheet. The RasEntryDlg function returns when the user closes the property
sheet.

BOOL RasEntryDlg(
LPTSTR lpszPhonebook, // pointer to the full path and filename of the phone-book file
LPTSTR lpszEntry, // pointer to the name of the phone-book entry to edit, copy, or create
LPRASENTRYDLG lpInfo // pointer to a structure that contains additional parameters

);ParameterslpszPhonebook
Pointer to a null-terminated string that specifies the full path and filename of a phone-book (.
PBK) file. If this parameter is NULL, the function uses the current default phone-book file. The
default phone-book file is the one selected by the user in the User Preferences property
sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that contains the name of the phone-book entry to edit,
copy, or create.
If you are editing or copying an entry, this parameter is the name of an existing phone-book
entry. If you are copying an entry, set the RASEDFLAG_CloneEntry flag in the dwFlags
member of the RASENTRYDLG structure.
If you are creating an entry, this parameter is a default new entry name that the user can
change. If this parameter is NULL, the function provides a default name. If you are creating an
entry, set the RASEDFLAG_NewEntry flag in the dwFlags member of the RASENTRYDLG
structure.

lpInfo
Pointer to a RASENTRYDLG structure that contains additional input and output parameters.
On input, the dwSize member of this structure must specify sizeof(RASENTRYDLG). Use the
dwFlags member to indicate whether you are creating, editing, or copying an entry. If an error
occurs, the dwError member returns an error code; otherwise, it returns zero.

Return ValuesIf the user creates, copies, or edits a phone-book entry, the return value is a nonzero value.

If an error occurs, or if the user cancels the operation, the return value is zero. If an error occurs,
the dwError member of the RASENTRYDLG structure returns a nonzero system error code or
RAS error code.RemarksThe RasCreatePhonebookEntry and RasEditPhonebookEntry functions call the RasEntryDlg
function.See AlsoRasCreatePhonebookEntry, RasEditPhonebookEntry, RASENTRYDLG

RasEnumAutodialAddresses
[New - Windows NT]

The RasEnumAutodialAddresses function returns a list of all addresses in the AutoDial mapping
database.

DWORD RasEnumAutodialAddresses (
LPTSTR *lppAddresses, // pointer to buffer that receives network address strings
LPDWORD lpdwcbAddresses, // pointer to size, in bytes, of the buffer
LPDWORD lpdwcAddresses // pointer to number of strings returned

);ParameterslppAddresses
Pointer to an array of string pointers, with additional space for the storage of the strings
themselves at the end of the buffer. Each string is the name of an address in the AutoDial
mapping database.
If lppAddresses is NULL, RasEnumAutodialAddresses sets the lpdwcbAddresses and
lpdwcAddresses parameters to indicate the required size, in bytes, and the number of address
entries in the database.

lpdwcbAddresses
Pointer to a variable that contains the size, in bytes, of the buffer specified by the
lppAddresses parameter. On return, the function sets this variable to the number of bytes
returned, or the number of bytes required if the buffer is too small.

lpdwcAddresses
Pointer to a variable that receives the number of address strings returned in the lppAddresses
buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is the following error code.

Value Meaning

ERROR_INVALID_PARAMETERNULL was passed for the
lpdwcbAddresses or lpdwcAddresses
parameter.

See AlsoRASAUTODIALENTRY, RasGetAutodialAddress, RasSetAutodialAddress

RasEnumConnections
The RasEnumConnections function lists all active RAS connections. It returns each connection's
handle and phone-book entry name.

DWORD RasEnumConnections(
LPRASCONN lprasconn, // buffer to receive connections data
LPDWORD lpcb, // size in bytes of buffer
LPDWORD lpcConnections // number of connections written to buffer

);Parameterslprasconn
Points to a buffer that receives an array of RASCONN structures, one for each RAS
connection. Before calling the function, an application must set the dwSize member of the first
RASCONN structure in the buffer to sizeof(RASCONN) in order to identify the version of the
structure being passed.

lpcb
Points to a variable that contains the size, in bytes, of the buffer specified by lprasconn. On
return, the function sets this variable to the number of bytes required to enumerate the RAS
connections.

lpcConnections
Points to a variable that the function sets to the number of RASCONN structures written to the
buffer specified by lprasconn.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file or one of
ERROR_BUFFER_TOO_SMALL or ERROR_NOT_ENOUGH_MEMORY.RemarksIf a connection was made without specifying a phone-book entry name, the information returned
for that connection will give the connection phone number preceded by ".".See AlsoRASCONN, RasEnumEntries, RasGetConnectStatus

RasEnumDevices
[New - Windows NT]

The RasEnumDevices function returns the name and type of all available RAS-capable devices.

DWORD RasEnumDevices(
LPRASDEVINFO lpRasDevInfo, // buffer to receive information about RAS devices
LPDWORD lpcb, // size, in bytes, of the buffer
LPDWORD lpcDevices // receives the number of entries written to the buffer

);ParameterslpRasDevInfo
Pointer to a buffer that receives an array of RASDEVINFO structures, one for each RAS-
capable device. Before calling the function, set the dwSize member of the first RASDEVINFO
structure in the buffer to sizeof(RASDEVINFO) to identify the version of the structure.

lpcb
Pointer to a variable that contains the size, in bytes, of the lpRasDevInfo buffer. On return, the
function sets this variable to the number of bytes required to enumerate the devices.
To determine the required buffer size, call RasEnumDevices with the lpRasDevInfo
parameter set to NULL and the variable pointed to by lpcb set to zero. The function returns
the required buffer size in the variable pointed to by lpcb.

lpcDevices
Pointer to a variable that the function sets to the number of RASDEVINFO structures written
to the lpRasDevInfo buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero RAS error value or one of following error codes.

Value Meaning

ERROR_BUFFER_TOO_SMALL The lpRasDevInfo buffer is not large
enough. The function returns the
required buffer size in the variable
pointed to by lpcb.

ERROR_NOT_ENOUGH_MEMORYIndicates insufficient memory.
ERROR_INVALID_PARAMETER Indicates an invalid parameter value.
ERROR_INVALID_USER_BUFFER The address or buffer specified by

lpRasDevInfo is invalid.
See AlsoRASDEVINFO

RasEnumEntries
The RasEnumEntries function lists all entry names in a remote access phone book.

DWORD RasEnumEntries (
LPTSTR reserved, // reserved, must be NULL
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPRASENTRYNAME lprasentryname, // buffer to receive phone-book entries
LPDWORD lpcb, // size in bytes of buffer
LPDWORD lpcEntries // number of entries written to buffer

);Parametersreserved
Reserved; must be NULL.

lpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: This parameter is ignored. Dial-up networking stores phone-book entries in the
registry rather than in a phone-book file.

lprasentryname
Points to a buffer that receives an array of RASENTRYNAME structures, one for each phone-
book entry. Before calling the function, an application must set the dwSize member of the first
RASENTRYNAME structure in the buffer to sizeof(RASENTRYNAME) in order to identify the
version of the structure being passed.

lpcb
Points to a variable that contains the size, in bytes, of the buffer specified by lprasentryname.
On return, the function sets this variable to the number of bytes required to successfully
complete the call.

lpcEntries
Points to a variable that the function, if successful, sets to the number of phone-book entries
written to the buffer specified by lprasentryname.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file or one of
ERROR_BUFFER_TOO_SMALL or ERROR_NOT_ENOUGH_MEMORY.See AlsoRASENTRYNAME, RasEnumConnections

RasGetAutodialAddress
[New - Windows NT]

The RasGetAutodialAddress function retrieves information about all the AutoDial entries
associated with a network address in the AutoDial mapping database.

DWORD RasGetAutodialAddress(
LPTSTR lpszAddress, // pointer to a network address string
LPDWORD lpdwReserved, // reserved; must be NULL
LPRASAUTODIALENTRY lpAutoDialEntries, // pointer to buffer for AutoDial entry data
LPDWORD lpdwcbAutoDialEntries, // pointer to size, in bytes, of buffer
LPDWORD lpdwcAutoDialEntries // pointer to number of entries returned

);ParameterslpszAddress
Pointer to a null-terminated string that specifies the address for which information is
requested. This can be an IP address ("127.95.1.4"), Internet host name ("www.microsoft.
com"), or NetBIOS name ("products1").

lpdwReserved
Reserved; must be NULL.

lpAutoDialEntries
Pointer to a buffer that receives an array of RASAUTODIALENTRY structures, one for each
AutoDial entry associated with the address specified by the lpszAddress parameter. Before
calling RasGetAutodialAddress, set the dwSize member of the first RASAUTODIALENTRY
structure in the buffer to sizeof(RASAUTODIALENTRY) to identify the version of the
structure.
If lpAutoDialEntries is NULL, RasGetAutodialAddress sets the lpdwcbAutoDialEntries and
lpdwcAutoDialEntries parameters to indicate the required buffer size, in bytes, and the
number of AutoDial entries.

lpdwcbAutoDialEntries
Pointer to a variable that contains the size, in bytes, of the lpAutoDialEntries buffer. On return,
the function sets this variable to the number of bytes returned, or the number of bytes required
if the buffer is too small.

lpdwcAutoDialEntries
Pointer to a variable that receives the number of structure elements returned in the
lpAutoDialEntries buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_XXX_NOT_FOUND The address was not found in the
mapping database.

ERROR_INVALID_SIZE The dwSize member of the
RASAUTODIALENTRY structure is
an invalid value.

ERROR_INVALID_PARAMETER The lpszAddress,
lpdwcbAutoDialEntries, or
lpdwcAutoDialEntries parameter was
NULL.

See AlsoRASAUTODIALENTRY, RasEnumAutodialAddresses, RasSetAutodialAddress

RasGetAutodialEnable
[New - Windows NT]

The RasGetAutodialEnable function indicates whether the AutoDial feature is enabled for a
specified TAPI dialing location. For more information about TAPI dialing locations, see the Win32
Telephony (TAPI) Programmer's Reference.

DWORD RasGetAutodialEnable (
DWORD dwDialingLocation, // identifier of the TAPI dialing location
LPBOOL lpfEnabled // pointer to variable that receives AutoDial state for this location

);ParametersdwDialingLocation
Specifies the identifier of a TAPI dialing location.

lpfEnabled
Pointer to a BOOL variable that receives a nonzero value if AutoDial is enabled for the
specified dialing location, or zero if it is not enabled.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero value.See AlsoRasSetAutodialEnable

RasGetAutodialParam
[New - Windows NT]

The RasGetAutodialParam function retrieves the value of an AutoDial parameter.

DWORD RasGetAutodialParam(
DWORD dwKey, // indicates the parameter to retrieve
LPVOID lpvValue, // pointer to a buffer that receives the value
LPDWORD lpdwcbValue // size, in bytes, of the buffer

);ParametersdwKey
Indicates the AutoDial parameter to retrieve. This parameter can be one of the following
values.

Value Meaning
RASADP_DisableConnectionQueryThe lpvValue parameter returns

a DWORD value. If this value is
zero (the default), AutoDial
displays a dialog box to query
the user before creating a
connection. If this value is 1,
and the AutoDial database has
the phone-book entry to dial,
AutoDial creates a connection
without displaying the dialog
box.

RASADP_LoginSessionDisable The lpvValue parameter returns
a DWORD value. If this value is
1, the system disables all
AutoDial connections for the
current logon session. If this
value is zero (the default),
AutoDial connections are
enabled. The AutoDial system
service changes this value to
zero when a new user logs on
to the workstation.

RASADP_SavedAddressesLimit The lpvValue parameter returns
a DWORD value that indicates
the maximum number of
addresses that AutoDial stores
in the registry. AutoDial first
stores addresses that it used to
create an AutoDial connection;
then it stores addresses that it
learned after a RAS connection
was created. Addresses written
using the
RasSetAutodialAddress
function are always saved, and
are not included in calculating
the limit. The default value is
100.

RASADP_FailedConnectionTimeoutThe lpvValue parameter returns
a DWORD value that indicates
a timeout value, in seconds.
When an AutoDial connection
attempt fails, the AutoDial
system service disables
subsequent attempts to reach
the same address for the
timeout period. This prevents

AutoDial from displaying
multiple connection dialog
boxes for the same logical
request by an application. The
default value is 5.

lpvValue
Pointer to a buffer that receives the value for the specified parameter.

lpdwcbValue
Pointer to a DWORD value. On input, set this value to indicate the size, in bytes, of the
lpvValue buffer. On output, this value indicates the actual size of the value written to the
buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER The dwKey or lpvValue
parameter is invalid.

ERROR_INVALID_SIZE The size specified by the
lpdwcbValue is too small.

See AlsoRasSetAutodialAddress, RasSetAutodialParam

RasGetConnectStatus
The RasGetConnectStatus function retrieves information on the current status of the specified
remote access connection. An application can use this call to determine when an asynchronous
RasDial call has completed.

DWORD RasGetConnectStatus(
HRASCONN hrasconn, // handle to RAS connection of interest
LPRASCONNSTATUS lprasconnstatus // buffer to receive status data

);Parametershrasconn
Identifies the remote access connection for which to retrieve the status. This handle must
have been obtained from RasDial or RasEnumConnections.

lprasconnstatus
Points to a RASCONNSTATUS structure that the function fills with status information. Before
calling the function, an application must set the dwSize member of the structure to sizeof
(RASCONNSTATUS) in order to identify the version of the structure being passed.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file or one of
ERROR_BUFFER_TOO_SMALL or ERROR_NOT_ENOUGH_MEMORY.See AlsoRASCONNSTATUS, RasDial, RasEnumConnections

RasGetCountryInfo
[New - Windows NT]

The RasGetCountryInfo function retrieves country-specific dialing information from the Windows
Telephony list of countries.

For more information about country-specific dialing information and TAPI country identifiers, see
the Win32 Telephony (TAPI) Programmer's Reference.

DWORD RasGetCountryInfo(
LPRASCTRYINFO lpRasCtryInfo, // buffer that receives country information
LPDWORD lpdwSize // size, in bytes, of the buffer

);ParameterslpRasCtryInfo
Pointer to a RASCTRYINFO structure that receives the country-specific dialing information
followed by additional bytes for a country description string. Before calling the function, set the
dwSize member of the structure to sizeof(RASCTRYINFO) to identify the version of the
structure. You must also set the dwCountryId member to the TAPI country identifier of the
country for which to get information.
The size of the buffer should be at least 256 bytes.

lpdwSize
Pointer to a variable that contains the size, in bytes, of the buffer pointed to by the
lpRasCtryInfo parameter. On return, the function sets this variable to the number of bytes
required.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_USER_BUFFERThe address or buffer specified
by lpRasCtryInfo is invalid.

ERROR_INVALID_PARAMETER The dwCountryId member of the
structure pointed to by
lpRasCtryInfo was not a valid
value.

ERROR_BUFFER_TOO_SMALL The size of the lpRasCtryInfo
buffer specified by the lpdwSize
parameter was not large enough
to store the information for the
country identified by the
dwCountryId member. The
function returns the required
buffer size in the variable pointed
to by lpdwSize.

ERROR_TAPI_CONFIGURATION TAPI subsystem information was
corrupted.

RemarksTo enumerate information for all countries in the Windows Telephony list, set the dwCountryId
member of the RASCTRYINFO structure to 1 in the initial RasGetCountryInfo call. This causes
the function to return information for the first country in the list. The value returned in the
dwNextCountryId member is the country identifier of the next country in the list. Use this value in
repeated calls to RasGetCountryInfo until dwNextCountryID returns zero, indicating the last
country in the list.See AlsoRASCTRYINFO

RasGetCredentials
[New - Windows NT]

The RasGetCredentials function retrieves the user credentials associated with a specified RAS
phone-book entry.

DWORD RasGetCredentials(
LPTSTR lpszPhonebook, // pointer to the full path and filename of a phone-book file
LPTSTR lpszEntry, // pointer to the name of a phone-book entry
LPRASCREDENTIALS lpCredentials // pointer to structure that receives credentials

);ParameterslpszPhonebook
Pointer to a null-terminated string that specifies the full path and filename of a phone-book (.
PBK) file. If this parameter is NULL, the function uses the current default phone-book file. The
default phone-book file is the one selected by the user in the User Preferences property
sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that contains the name of a phone-book entry.

lpCredentials
Pointer to a RASCREDENTIALS structure that receives the user credentials associated with
the specified phone-book entry. Before calling RasGetCredentials, set the dwSize member
of the structure to sizeof(RASCREDENTIALS), and set the dwMask member to indicate the
credential information to retrieve. When the function returns, dwMask indicates the members
that were successfully retrieved.

Return ValuesIf the function succeeds the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_CANNOT_OPEN_PHONEBOOKThe specified phone book
cannot be found.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe specified entry does not
exist in the phone book.

ERROR_INVALID_PARAMETER The lpCredentials parameter
was NULL.

ERROR_INVALID_SIZE The dwSize member of the
RASCREDENTIALS
structure is an unrecognized
value.

RemarksThe RasGetCredentials function retrieves the credentials of the last user to successfully connect
using the specified phone-book entry, or the credentials subsequently specified in a call to the
RasSetCredentials function for the phone-book entry.

The RasGetCredentials function retrieves the user credentials that are stored securely for the
specified phone-book entry. This function is the preferred way of securely retrieving the
credentials associated with a RAS phone book entry. RasGetCredentials supersedes the
RasGetEntryDialParams function, which may not be supported in future releases of Windows
NT.See AlsoRASCREDENTIALS, RasGetEntryDialParams, RasSetCredentials

RasGetEntryDialParams
The RasGetEntryDialParams function retrieves the connection information saved by the last
successful call to the RasDial or RasSetEntryDialParams function for a specified phone-book
entry.

DWORD RasGetEntryDialParams(
LPTSTR lpszPhonebook, // pointer to the full path and filename of the phone-book file
LPRASDIALPARAMS lprasdialparams, // pointer to a structure that receives the connection parameters
LPBOOL lpfPassword // indicates whether the user's password was retrieved

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: Dial-up networking stores phone-book entries in the registry rather than in a
phone-book file.

lprasdialparams
Points to a RASDIALPARAMS structure that receives the connection parameters associated
with the phone-book entry specified by the szEntryName member. On entry, the dwSize
member must specify the size of the RASDIALPARAMS structure, and the szEntryName
member must specify a valid phone-book entry.

lpfPassword
Points to a flag that indicates whether the function retrieved the password associated with the
user name for the phone-book entry. The function sets this flag to TRUE if the user's
password was returned in the szPassword member of the RASDIALPARAMS structure
pointed to by lprasdialparams.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes:

Value Description

ERROR_BUFFER_INVALID
The lprasdialparams or lpfPassword pointer is
invalid, or the lprasdialparams buffer is invalid.

ERROR_CANNOT_OPEN_PHONEBOOK
The phone book is corrupted or missing
components.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRY
The phone-book entry does not exist.

See AlsoRasDial, RASDIALPARAMS, RasCreatePhonebookEntry, RasEditPhonebookEntry,
RasSetEntryDialParams

RasGetEntryProperties
[New - Windows NT]

The RasGetEntryProperties function retrieves the properties of a phone-book entry.

DWORD RasGetEntryProperties(
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPTSTR lpszEntry, // pointer to an entry name
LPRASENTRY lpRasEntry, // buffer that receives entry information
LPDWORD lpdwEntryInfoSize, // size, in bytes, of the lpRasEntry buffer
LPBYTE lpbDeviceInfo, // buffer that receives device-specific configuration information
LPDWORD lpdwDeviceInfoSize // size, in bytes, of the lpbDeviceInfo buffer

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string containing an existing entry name. If you specify an empty
string, "", the function returns default values in the buffers pointed to by the lpRasEntry and
lpbDeviceInfo parameters.

lpRasEntry
Pointer to a RASENTRY structure followed by additional bytes for the alternate phone number
list, if there is one. The structure receives the connection data associated with the phone-
book entry specified by the lpszEntry parameter. Before calling the function, set the dwSize
member of the structure to sizeof(RASENTRY) to identify the version of the structure. This
parameter can be NULL.

lpdwEntryInfoSize
Pointer to a variable that contains the size, in bytes, of the lpRasEntry buffer. On return, the
function sets this variable to the number of bytes required. This parameter can be NULL if the
lpRasEntry parameter is NULL.
To determine the required buffer size, call RasGetEntryProperties with lpRasEntry set to
NULL and *lpdwEntryInfoSize set to zero. The function returns the required buffer size in *
lpdwEntryInfoSize.

lpbDeviceInfo
Pointer to a buffer that receives device-specific configuration information. This is opaque TAPI
device configuration information that you should not manipulate directly. This parameter can
be NULL. For more information about TAPI device configuration, see the Win32 Telephony
(TAPI) Programmer's Reference.

lpdwDeviceInfoSize
Pointer to a variable that contains the size, in bytes, of the buffer specified by the
lpbDeviceInfo parameter. On return, the function sets this variable to the number of bytes
required. This parameter can be NULL if the lpbDeviceInfo parameter s NULL.
To determine the required buffer size, call RasGetEntryProperties with lpbDeviceInfo set to
NULL and *lpdwDeviceInfoSize set to zero. The function returns the required buffer size in *
lpdwDeviceInfoSize.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER The function was called
with an invalid
parameter.

ERROR_BUFFER_INVALID The address or buffer
specified by lpRasEntry
is invalid.

ERROR_BUFFER_TOO_SMALL The buffer size
indicated in
lpdwEntryInfoSize is too

small.
ERROR_CANNOT_OPEN_PHONEBOOK The phone book is

corrupted or is missing
components.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe phone-book entry
does not exist.

See AlsoRASENTRY, RasSetEntryProperties

RasGetErrorString
The RasGetErrorString function obtains an error message string for a specified RAS error value.

DWORD RasGetErrorString (
UINT uErrorValue, // error to get string for
LPTSTR lpszErrorString, // buffer to hold error string
DWORD cBufSize // size, in characters, of buffer

);ParametersuErrorValue
Specifies the error value of interest. These are values returned by one of the RAS functions:
those listed in the RAS header file.

lpszErrorString
Points to a buffer that the function will write the error string to. This parameter must not be
NULL.

cBufSize
Specifies the size, in characters, of the buffer pointed to by lpszErrorString.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value. This value is
ERROR_INVALID_PARAMETER or the GetLastError value returned from the functions
GlobalAlloc or LoadString. The function does not set a thread's last error information; that is,
there is no GetLastError information set by the RasGetErrorString function.RemarksThere is no way to determine in advance the exact size in characters of an error message, and
thus the size of buffer required. Error messages will generally be 80 characters or fewer in size; a
buffer size of 256 characters will always be adequate. A buffer of insufficient size causes the
RasGetErrorString function to fail, returning ERROR_INSUFFICIENT_BUFFER. Note that buffer
sizes are specified in characters, not bytes; thus, the Unicode version of RasGetErrorString
requires a 512 byte buffer to guarantee that every error message will fit.See AlsoGlobalAlloc, LoadString

RasGetProjectionInfo
The RasGetProjectionInfo function obtains information about a remote access projection
operation for a specified remote access component protocol.

DWORD RasGetProjectionInfo(
HRASCONN hrasconn, // handle that specifies remote access connection of interest
RASPROJECTION rasprojection, // specifies type of projection information to obtain
LPVOID lpprojection, // points to buffer that receives projection information
LPDWORD lpcb // points to variable that specifies buffer size

);Parametershrasconn
Handle to the remote access connection of interest. An application obtains a RAS connection
handle from the RasDial or RasEnumConnections function.

rasprojection
A RASPROJECTION enumerated type value that specifies the protocol of interest.

lpprojection
Points to a buffer that will receive the information specified by the rasprojection parameter.
The information will be in a structure appropriate to the rasprojection value:

rasprojection value Data structure
RASP_Amb RASAMB
RASP_PppNbf RASPPPNBF
RASP_PppIpx RASPPPIPX
RASP_PppIp RASPPPIP

lpcb
Points to a variable that, on entry, specifies the size in bytes of the buffer pointed to by
lpprojection. On exit, this variable contains the size of buffer needed to contain the specified
projection information.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is an error code. The function may return a nonzero RAS error
code, or one of the following error codes:

Value Meaning

ERROR_BUFFER_TOO_SMALL The buffer pointed to by
lpprojection is not large
enough to contain the
requested information.

ERROR_INVALID_HANDLE The hrasconn parameter
is not a valid handle.

ERROR_INVALID_PARAMETER One of the parameters is
invalid.

ERROR_INVALID_SIZE The dwSize member of
the structure pointed to by
lpprojection specifies an
invalid size.

ERROR_PROTOCOL_NOT_CONFIGUREDThe control protocol for
which information was
requested neither
succeeded nor failed,
because the connection's
phone-book entry did not
require that an attempt to
negotiate the protocol be
made. This is a RAS error
code.

RemarksRemote access projection is the process whereby a remote access server and a remote client
negotiate network protocol-specific information. A remote access server uses this network
protocol-specific information to represent a remote client on the network.

Windows NT: Remote access projection information is not available until the operating system
has executed the RasDial RASCS_Projected state on the remote access connection. If
RasGetProjectionInfo is called prior to the RASCS_Projected state, it returns
ERROR_PROJECTION_NOT_COMPLETE.

Windows 95: Windows 95 Dial-Up Networking does not support the RASCS_Projected state. The
projection phase may be done during the RASCS_Authenticate state. If the authentication is
successful, the connection operation proceeds to the RASCS_Authenticated state, and projection
information is available for successfully configured protocols. If RasGetProjectionInfo is called
prior to the RASCS_Authenticated state, it returns ERROR_PROTOCOL_NOT_CONFIGURED.See AlsoRASAMB, RasDial, RasEnumConnections, RASPPPNBF, RASPPPIPX, RASPPPIP,
RASPROJECTION

RasGetSubEntryHandle
[New - Windows NT]

The RasGetSubEntryHandle function retrieves a connection handle for a specified subentry of a
multilink connection.

DWORD RasGetSubEntryHandle(
HRASCONN hrasconn,
DWORD dwSubEntry,
LPHRASCONN lphrasconn

);Parametershrasconn
Specifies an HRASCONN connection handle returned by the RasDial function for a multilink
phone-book entry.

dwSubEntry
Specifies a valid subentry index for the phone-book entry.

lphrasconn
Pointer to an HRASCONN variable that receives a connection handle that represents the
subentry connection.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_HANDLE The hrasconn connection handle
does not represent a connected
phone-book entry.

ERROR_PORT_NOT_OPEN The hrasconn and dwSubEntry
parameters are valid, but the
specified subentry is not connected.

ERROR_NO_MORE_ITEMS The value specified by dwSubEntry
exceeds the maximum number of
subentries for the phone-book
entry.

RemarksThe connection handle specified in the hrasconn parameter refers to the entire multilink
connection, but the connection handle returned in the *lphrasconn parameter refers only to the
subentry connection. You can use the subentry connection handle in any function that accepts
an hrasconn parameter, including the RasHangUp, RasGetConnectStatus, and
RasGetProjectionInfo functions. The projection information returned by RasGetProjectionInfo
for a multilink entry is the same for the each of the subentry connection handles as it is for the
main connection handle.See AlsoRasDial, RasGetConnectStatus, RasGetProjectionInfo, RasHangUp

RasGetSubEntryProperties
[New - Windows NT]

The RasGetSubEntryProperties function retrieves information about a subentry for a specified
phone-book entry.

DWORD RasGetSubEntryProperties(
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPTSTR lpszEntry, // pointer to an entry name
DWORD dwSubEntry, // index of the subentry
LPRASSUBENTRY lpRasSubEntry, // pointer to structure that receives information about subentry
LPDWORD lpdwcb // size, in bytes, of the structure

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string containing the name of an existing entry in the phone book.

dwSubEntry
Specifies the one-based index of the subentry.

lpRasSubEntry
Pointer to a RASSUBENTRY structure followed by additional bytes for the alternate phone
number list, if there is one. The structure receives the information about the specified
subentry. Before calling the function, set the dwSize member of the structure to sizeof
(RASSUBENTRY) to identify the version of the structure. This parameter can be NULL.

lpdwcb
Pointer to a variable that contains the size, in bytes, of the lpRasSubEntry buffer. On return,
the function sets this variable to the number of bytes returned, or the number of bytes required
if the buffer is too small. This parameter can be NULL if lpRasSubEntry is NULL.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER The function was called
with an invalid parameter.

ERROR_BUFFER_INVALID The address or buffer
specified by lpRasSubEntry
is invalid.

ERROR_BUFFER_TOO_SMALL The lpRasSubEntry buffer
is too small. The lpdwcb
variable receives the
required buffer size.

ERROR_CANNOT_OPEN_PHONEBOOK The phone book is
corrupted or is missing
components.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe phone-book entry does
not exist.

RemarksA RAS phone-book entry can have zero or more subentries, each minimally consisting of a device
and a phone number. A phone-book entry with multiple subentries can be configured to dial the
first available or all subentries when the entry is dialed.

Use the RasGetEntryProperties function to retrieve a RASENTRY structure containing
information about the subentries of a phone-book entry. The dwSubEntries member indicates the
number of subentries and the dwDialMode member indicates the dialing configuration.See AlsoRasGetEntryProperties, RASENTRY, RasSetSubEntryProperties, RASSUBENTRY

RasHangUp
The RasHangUp function terminates a remote access connection. The connection is specified
with a RAS connection handle. The function releases all RASAPI32.DLL resources associated
with the handle.

DWORD RasHangUp(
HRASCONN hrasconn // handle to the RAS connection to hang up

);Parametershrasconn
Identifies the remote access connection to terminate. This is a handle returned from a
previous call to RasDial or RasEnumConnections.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error value listed in the RAS header file, or
ERROR_INVALID_HANDLE.RemarksThe connection is terminated even if the RasDial call has not yet been completed.

After this call, the hrasconn handle can no longer be used.

An application should not call RasHangUp and then immediately exit. The connection state
machine needs time to properly terminate. If the system prematurely terminates the state
machine, the state machine may fail to properly close a port, leaving the port in an inconsistent
state. A simple way to avoid this problem is to call Sleep(3000) after returning from RasHangUp;
after that pause, the application can exit. A more responsive way to avoid the problem is, after
returning from RasHangUp, to call RasGetConnectStatus(hrasconn) and Sleep(0) in a loop until
RasGetConnectStatus returns ERROR_INVALID_HANDLE.See AlsoRASCONN, RasDial, RasEnumConnections, RasGetConnectStatus, Sleep

RasMonitorDlg
[New - Windows NT]

The RasMonitorDlg function displays the Dial-Up Networking Monitor property sheet that
describes the status of RAS connections.

BOOL RasMonitorDlg(
LPTSTR lpszDeviceName, // pointer to the name of the device to display initially
LPRASMONITORDLG lpInfo // pointer to structure that contains input and output parameters

);ParameterslpszDeviceName
Pointer to a null-terminated string that specifies the name of the device to display initially. If
this parameter is NULL, or if the specified device does not exist, the property sheet displays
the first device.

lpInfo
Pointer to a RASMONITORDLG structure that contains additional input and output
parameters. On input, the dwSize member of this structure must specify
sizeof(RASMONITORDLG). If an error occurs, the dwError member returns an error code;
otherwise, it returns zero.

Return ValuesIf the user hangs up a connection, the return value is a nonzero value.

If an error occurs, or if the user closes the dialog box without hanging up a connection, the return
value is zero. If an error occurs, the dwError member of the RASMONITORDLG structure returns
a nonzero system error code or RAS error code.See AlsoRASMONITORDLG

RasPBDlgFunc
[New - Windows NT]

The RasPBDlgFunc function is an application-defined callback function that receives notifications
of user activity while the RasPhonebookDlg dialog box is open.

VOID WINAPI RasPBDlgFunc(
DWORD dwCallbackId, // an application-defined value
DWORD dwEvent, // indicates the event that occurred
LPTSTR pszText, // pointer to an additional string argument
LPVOID pData // pointer to an additional buffer argument

);ParametersdwCallbackId
Indicates the application-defined value that was specified in the dwCallback member of the
RASPBDLG structure passed to the RasPhonebookDlg function.

dwEvent
A set of bit flags that indicates the event that occurred. This parameter is one of the following
values.

Value Meaning
RASPBDEVENT_AddEntry Received when the user creates a

new phone-book entry or copies an
existing phone-book entry. The
pszText parameter is the name of
the new or copied entry. The pData
parameter is undefined.

RASPBDEVENT_EditEntry Received when the user changes
an existing phone-book entry. The
pszText parameter is the name of
the modified entry. The pData
parameter is undefined.

RASPBDEVENT_RemoveEntryReceived when the user deletes a
phone-book entry. The pszText
parameter is the name of the
deleted entry. The pData parameter
is undefined.

RASPBDEVENT_DialEntry Received when the user
successfully dials an entry. The
pszText parameter is the name of
the newly connected entry. The
pData parameter is undefined.

RASPBDEVENT_EditGlobals Received when the user makes
changes in the User Preferences
property sheet. The pszText
parameter is the full path of the
default phone-book file selected by
the user. The pData parameter is
undefined.
This event is also received during
dialog startup if the lpszPhonebook
parameter of the
RasPhonebookDlg call is NULL.
In this case, the event informs the
caller of the path of the default
phone book.

RASPBDEVENT_NoUser Received during dialog box
initialization when the
RASPBDFLAG_NoUser flag is set.
The pData parameter is a pointer to
a RASNOUSER structure. The
callback function should fill the

structure with the user's logon
credentials and dialog timeout. The
RasPhonebookDlg function then
uses the supplied credentials for
authentication by the remote
server. The pszText parameter is
undefined.

RASPBDEVENT_NoUserEdit Received if the
RASPBDFLAG_NoUser flag is set
and the user changes the
credentials that you supplied during
the RASPBDEVENT_NoUser
event. The pData parameter is a
pointer to a RASNOUSER structure
containing the updated credentials.
This occurs during a dialing
operation if the user changes his or
her password, or if the
authentication fails and the user
retries authentication with different
credentials. The pszText parameter
is undefined.

pszText
Pointer to an additional string argument whose meaning depends on the event indicated in the
dwEvent parameter.

pData
Pointer to an additional buffer argument whose meaning depends on the event indicated in
the dwEvent parameter.

See AlsoRASNOUSER, RasPhonebookDlg

RasPhonebookDlg
[New - Windows NT]

The RasPhonebookDlg function displays the main Dial-Up Networking dialog box. From this
modal dialog box, the user can dial, edit, or delete a selected phone-book entry, create a new
phone-book entry, or specify user preferences. The RasPhonebookDlg function returns when the
dialog box closes.

BOOL RasPhonebookDlg(
LPTSTR lpszPhonebook, // pointer to the full path and filename of the phone-book file
LPTSTR lpszEntry, // pointer to the name of the phone-book entry to highlight
LPRASPBDLG lpInfo // pointer to a structure that contains additional parameters

);ParameterslpszPhonebook
Pointer to a null-terminated string that specifies the full path and filename of a phone-book (.
PBK) file. If this parameter is NULL, the function uses the current default phone-book file. The
default phone-book file is the one selected by the user in the User Preferences property
sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that contains the name of the phone-book entry to highlight
initially. If this parameter is NULL, or if the specified entry does not exist, the dialog box
highlights the first entry in the alphabetic list.

lpInfo
Pointer to a RASPBDLG structure that contains additional input and output parameters. On
input, the dwSize member of this structure must specify sizeof(RASPBDLG). If an error
occurs, the dwError member returns an error code; otherwise, it returns zero.

Return ValuesIf the user selects the Dial button and the function establishes a connection, the return value is a
nonzero value.

If an error occurs, or if the user selects the Close button to close the dialog box, the return value
is zero. If an error occurs, the dwError member of the RASPBDLG structure returns a nonzero
system error code or RAS error code.See AlsoRASPBDLG

RasRenameEntry
[New - Windows NT]

The RasRenameEntry function changes the name of an entry in a phone book.

DWORD RasRenameEntry(
LPTSTR lpszPhonebook, // pointer to full path and filename of phone-book file
LPTSTR lpszOldEntry, // pointer to the old entry name
LPTSTR lpszNewEntry // pointer to the new entry name

);ParameterslpszPhonebook
Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszOldEntry
Pointer to a null-terminated string containing an existing entry name.

lpszNewEntry
Pointer to a null-terminated string containing the new entry name. Before calling
RasRenameEntry, call the RasValidateEntryName function to validate the new entry name.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_NAME The lpszNewEntry name
is invalid.

ERROR_ALREADY_EXISTS An entry with the
lpszNewEntry name
already exists.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe phone-book entry
does not exist.

See AlsoRasValidateEntryName

RasSecurityDialogBegin
[New - Windows NT]

The RasSecurityDialogBegin function is a third-party RAS security DLL entry point that the
Windows NT RAS server calls when a remote user tries to connect. This enables the security DLL
to begin its authentication of the remote user.

DWORD WINAPI RasSecurityDialogBegin(
HPORT hPort, // RAS handle to the port
PBYTE pSendBuf, // pointer to buffer for sending data
DWORD SendBufSize, // size, in bytes, of the send buffer
PBYTE pRecvBuf, // pointer to buffer for receiving data
DWORD RecvBufSize, // size, in bytes, of the receive buffer
VOID (WINAPI * RasSecurityDialogComplete) // pointer to the completion function

);ParametershPort
Specifies a RAS port handle. The security DLL uses this handle in other RAS security
functions, such as RasSecurityDialogSend and RasSecurityDialogReceive, to identify this
authentication transaction.
Note that this handle is valid only in RAS security functions; you cannot use it in other Win32
I/O functions.

pSendBuf
Pointer to a buffer allocated by the RAS server. The security DLL uses this buffer with the
RasSecurityDialogSend function to send text that is displayed in the RAS terminal window
on the remote computer.

SendBufSize
Specifies the size, in bytes, of the pSendBuf buffer.

pRecvBuf
Pointer to a buffer allocated by the RAS server. The security DLL uses this buffer with the
RasSecurityDialogReceive function to receive the response from the remote user.

RecvBufSize
Specifies the size, in bytes, of the pRecvBuf buffer.

RasSecurityDialogComplete
Specifies a pointer to a RasSecurityDialogComplete function. When the security DLL has
completed the authentication of the remote user, it calls this function to report the results to
the RAS server.

Return ValuesIf the security DLL successfully starts the authentication operation, RasSecurityDialogBegin
should return NO_ERROR. In this case, the security DLL must later terminate the authentication
transaction by calling the function pointed to by the RasSecurityDialogComplete parameter.

If an error occurs, RasSecurityDialogBegin should return a nonzero error code. In this case, the
RAS server hangs up the call and records the error in the Windows NT event log. Returning a
nonzero error code terminates the authentication transaction, so the security DLL does not need
to call the RasSecurityDialogComplete function.RemarksWhen a Windows NT RAS server receives a call from a remote computer, it calls the
RasSecurityDialogBegin function exported by the registered RAS security DLL, if there is one.
When the RAS server calls this function, it passes the following information to the security DLL:

· A port handle to identify the connection
· Pointers to buffers to use when communicating with the remote user
· A pointer to a RasSecurityDialogComplete function to call when the authentication has

been completed
The port handle and buffer pointers are valid until you call RasSecurityDialogComplete to
terminate the authentication transaction.

Your RasSecurityDialogBegin implementation must return as soon as possible, because the
RAS server is blocked and cannot accept any other calls until RasSecurityDialogBegin returns.
The RasSecurityDialogBegin function should copy the input parameters and create a thread to
communicate with and authenticate the remote user.See AlsoRasSecurityDialogComplete, RasSecurityDialogReceive, RasSecurityDialogSend

RasSecurityDialogComplete
[New - Windows NT]

The RasSecurityDialogComplete function notifies the RAS server of the results of a third-party
security authentication transaction. A third-party RAS security DLL calls
RasSecurityDialogComplete when it has completed its authentication of the remote user.

The RAS server passes a pointer to the RasSecurityDialogComplete function when the server
calls the RasSecurityDialogBegin entry point of the security DLL.

VOID RasSecurityDialogComplete(
SECURITY_MESSAGE *pSecMsg // pointer to the security message structure

);ParameterspSecMsg
Pointer to a SECURITY_MESSAGE structure that contains the results of the authentication
transaction.

Return ValuesNone.RemarksWhen a security DLL has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function to report the results. The RAS server then performs a
cleanup sequence. As part of this cleanup sequence, the RAS server calls the security DLL's
RasSecurityDialogEnd function to give the DLL an opportunity to perform its own cleanup, if
necessary.See AlsoRasSecurityDialogBegin, RasSecurityDialogComplete, RasSecurityDialogEnd,
SECURITY_MESSAGE

RasSecurityDialogEnd
[New - Windows NT]

The RasSecurityDialogEnd function is a third-party RAS security DLL entry point that the
Windows NT RAS server calls to terminate an authentication transaction.

DWORD WINAPI RasSecurityDialogEnd(
HPORT hPort // RAS handle to the port

);ParametershPort
Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

Return ValuesIf the security DLL returns NO_ERROR, the RAS server does not terminate the authentication
transaction. In this case, the security DLL must later call the RasSecurityDialogComplete
function when it is ready to terminate.

If the security DLL returns a nonzero error code, the RAS server terminates the authentication
transaction. In this case, the security DLL does not need to make another
RasSecurityDialogComplete call. You should return an error code defined in WINERROR.H or
RASERROR.H, such as ERROR_PORT_DISCONNECTED.RemarksWhen a security DLL has finished authenticating the remote user, it calls the
RasSecurityDialogComplete function. The RAS server then performs a cleanup sequence that
includes a call to the DLL's RasSecurityDialogEnd function. This gives the security DLL an
opportunity to perform any necessary cleanup. To terminate the authentication transaction,
RasSecurityDialogEnd must return a nonzero error code.

The RAS server may also call RasSecurityDialogEnd if it needs to abnormally terminate the
authentication transaction before the security DLL calls RasSecurityDialogComplete. In this
case, the security DLL should terminate the worker thread associated with the hPort port handle,
and perform any other necessary cleanup. If RasSecurityDialogEnd returns a nonzero value, the
security DLL does not need to call RasSecurityDialogComplete.

For either a normal or abnormal termination, your RasSecurityDialogEnd function can return
NO_ERROR to delay the termination. If it does so, it must later call RasSecurityDialogComplete
when it is ready to terminate.See AlsoRasSecurityDialogBegin, RasSecurityDialogComplete

RasSecurityDialogGetInfo
[New - Windows NT]

The RasSecurityDialogGetInfo function is called by a RAS security DLL to get information about
a port from the RAS server.

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL. Then call
the GetProcAddress function to get the DLL's RasSecurityDialogGetInfo entry point.

DWORD RasSecurityDialogGetInfo(
HPORT hPort, // RAS handle to port
RAS_SECURITY_INFO *pBuffer // pointer to structure that gets port information

);ParametershPort
Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

pBuffer
Pointer to a RAS_SECURITY_INFO structure that receives information about the specified
RAS port.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the error codes defined in RASERROR.H or
WINERROR.H. GetLastError does not provide extended error information.RemarksThe RasSecurityDialogGetInfo function retrieves information about the port associated with a
RAS security DLL authentication transaction.

The LastError member of the RAS_SECURITY_INFO structure indicates the state of the last
RasSecurityDialogReceive call for the port. If the receive operation has been completed
successfully, LastError is SUCCESS and the BytesReceived member indicates the number of
bytes received. Otherwise, LastError is PENDING if the receive operation is still in progress, or a
nonzero error code if the receive operation failed.See AlsoGetProcAddress, LoadLibrary, RAS_SECURITY_INFO, RasSecurityDialogReceive

RasSecurityDialogReceive
[New - Windows NT]

The RasSecurityDialogReceive function starts an asynchronous operation that receives a
response from a remote user. The response is the input that the user typed in a terminal window
on the remote computer. A third-party RAS security DLL calls this function as part of its
authentication of the remote user.

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL. Then call
the GetProcAddress function to get the DLL's RasSecurityDialogReceive entry point.

DWORD WINAPI RasSecurityDialogReceive(
HPORT hPort, // RAS handle to the port
PBYTE pBuffer, // pointer to buffer that receives the user's response
PWORD pBufferLength, // returns size, in bytes, of the data received
DWORD Timeout, // time-out period, in seconds
HANDLE hEvent // event that is signaled when operation is finished

);ParametershPort
Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

pBuffer
Pointer to the receive buffer that was passed to the security DLL in the
RasSecurityDialogBegin call. When the asynchronous receive operation has been
completed successfully, this buffer contains the response from the remote user.

pBufferLength
Pointer to a variable that receives the number of bytes returned in the pBuffer buffer.

Timeout
Specifies a time-out period, in seconds, after which the RAS server sets the hEvent event
object to the signaled state. If this value is zero, there is no time-out period; that is, the RAS
server does not signal the event object until the receive operation has been completed.

hEvent
Specifies the handle of an event object created by the CreateEvent function. The RAS server
sets the event object to the signaled state when the receive operation has been completed or
when the time-out period has elapsed.

Return ValuesIf the function is successful, the return value is PENDING (defined in RASERROR.H). This
indicates that the receive operation is in progress.

If an error occurs, the return value is one of the error codes defined in RASERROR.H or
WINERROR.H. GetLastError does not provide extended error information.RemarksAfter calling the RasSecurityDialogSend function to send a security challenge to the remote
user, the security DLL must call the RasSecurityDialogReceive function to get the user's
response.

The RasSecurityDialogReceive function is asynchronous. When the function returns, the
security DLL must use one of the wait functions, such as WaitForSingleObject, to wait for the
hEvent event object to be signaled. The RAS server signals the event object when the receive
operation has been completed or when the time-out interval has elapsed. If the receive operation
is successful, the pBuffer buffer contains the response from the remote user, and the
pBufferLength parameter indicates the number of bytes received.

You can use the Timeout parameter to specify a time-out interval. If the time-out elapses, the RAS
server signals the event object, and the pBufferLength parameter indicates that zero bytes were
transferred. Alternatively, you can set Timeout to zero, and specify a time-out interval in the wait
function that you use to wait for the event object to be signaled.

When a security DLL is authenticating a remote user, the connection operation on the remote
computer enters a RASCS_Interactive paused state. The message sent by
RasSecurityDialogSend is displayed as output in a terminal window on the remote computer.
The response received by RasSecurityDialogReceive is the input that the remote user types in
the terminal window. The RASCS_Interactive value is defined in the RASCONNSTATE
enumeration.See AlsoCreateEvent, GetProcAddress, LoadLibrary, RASCONNSTATE, RasSecurityDialogSend,
WaitForSingleObject

RasSecurityDialogSend
[New - Windows NT]

The RasSecurityDialogSend function sends a message to be displayed in a terminal window on
a remote computer. A third-party RAS security DLL sends this message as part of its
authentication of a remote user.

To call this function, you must first call the LoadLibrary function to load RASMAN.DLL. Then call
the GetProcAddress function to get the DLL's RasSecurityDialogSend entry point.

DWORD RasSecurityDialogSend(
HPORT hPort, // RAS handle to the port
PBYTE pBuffer, // pointer to buffer containing data to send
WORD BufferLength // size, in bytes, of the data being sent

);ParametershPort
Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

pBuffer
Pointer to the send buffer that was passed to the security DLL in the call to
RasSecurityDialogBegin. Before calling RasSecurityDialogSend, copy into this buffer the
message to send to the remote user. The SendBufSize parameter of the
RasSecurityDialogBegin function indicates the maximum number of bytes you can copy to
this buffer.

BufferLength
Specifies the number of bytes to send in the pBuffer buffer.

Return ValuesIf the function is successful, the return value is PENDING (defined in RASERROR.H). This
indicates that the send operation is in progress.

If an error occurs, the return value is one of the error codes defined in RASERROR.H or
WINERROR.H. GetLastError does not provide extended error information.RemarksThe RasSecurityDialogSend function is asynchronous. After calling it to send a message to the
remote user, call the RasSecurityDialogReceive function, and then wait for a response. The
security DLL can make any number of RasSecurityDialogSend calls, with each call followed by a
RasSecurityDialogReceive call.

When a security DLL is authenticating a remote user, the connection operation on the remote
computer enters a RASCS_Interactive paused state. The message sent by
RasSecurityDialogSend is displayed as output in a terminal window on the remote computer.
The response received by RasSecurityDialogReceive is the input that the remote user types in
the terminal window. The RASCS_Interactive value is defined in the RASCONNSTATE
enumeration.See AlsoGetProcAddress, LoadLibrary, RASCONNSTATE, RasSecurityDialogBegin,
RasSecurityDialogReceive

RasSetAutodialAddress
[New - Windows NT]

The RasSetAutodialAddress function can add an address to the AutoDial mapping database.
Alternatively, the function can delete or modify the data associated with an existing address in the
database.

DWORD RasSetAutodialAddress(
LPTSTR lpszAddress, // pointer to a network address string
DWORD dwReserved, // reserved; must be zero
LPRASAUTODIALENTRY lpAutoDialEntries, // pointer to buffer containing AutoDial entry data
DWORD dwcbAutoDialEntries, // size, in bytes, of the buffer
DWORD dwcAutoDialEntries // number of entries in the buffer

);ParameterslpszAddress
Pointer to a null-terminated string that specifies the address to add, delete, or modify. This
can be an IP address ("127.95.1.4"), Internet host name ("www.microsoft.com"), or NetBIOS
name ("products1").

dwReserved
Reserved; must be zero.

lpAutoDialEntries
Pointer to an array of one or more RASAUTODIALENTRY structures to be associated with
the lpszAddress address. If lpAutoDialEntries is NULL and dwcbAutodialEntries is zero,
RasSetAutodialAddress deletes all structures associated with lpszAddress from the
mapping database.

dwcbAutoDialEntries
Specifies the size, in bytes, of the lpAutodialEntries buffer.

dwcAutoDialEntries
Specifies the number of RASAUTODIALENTRY structures in the lpAutoDialEntries buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is one of the following error codes.

Value Meaning

ERROR_INVALID_SIZE The dwSize member of the
RASAUTODIALENTRY structure is
an invalid value.

ERROR_INVALID_PARAMETER The lpszAddress parameter was
NULL.

RemarksAn address in the AutoDial mapping database can have any number of associated
RASAUTODIALENTRY entries. Each entry specifies AutoDial information for a particular TAPI
dialing location.

If the address specified by the lpszAddress parameter is an existing address in the database and
the lpAutoDialEntries parameter is not NULL, the RasSetAutodialAddress function modifies the
set of AutoDial entries associated with the address. If an entry in the lpAutoDialEntries array
specifies a dialing location for which the address already has an entry, the function replaces the
existing entry with the new entry. Otherwise, the function simply adds the lpAutoDialEntries
entries to the set of entries for the address.

If the lpszAddress address exists in the database and lpAutoDialEntries is NULL and
dwcbAutodialEntries is zero, RasSetAutodialAddress deletes the address from the database.

If the lpszAddress address does not exist in the database, RasSetAutodialAddress adds the
address to the database. The lpAutoDialEntries parameter specifies the AutoDial entries to
associate with the new address.See AlsoRASAUTODIALENTRY, RasEnumAutodialAddresses, RasGetAutodialAddress

RasSetAutodialEnable
[New - Windows NT]

The RasSetAutodialEnable function sets whether the AutoDial feature is enabled for a specified
TAPI dialing location. For more information about TAPI dialing locations, see the Win32
Telephony (TAPI) Programmer's Reference.

DWORD RasSetAutodialEnable (
DWORD dwDialingLocation, // identifier of the TAPI dialing location
BOOL fEnabled // AutoDial state for this location

);ParametersdwDialingLocation
Specifies the identifier of a TAPI dialing location.

fEnabled
Specify TRUE to enable AutoDial for the specified dialing location, or FALSE to disable it.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is a nonzero error code.See AlsoRasGetAutodialEnable

RasSetAutodialParam
[New - Windows NT]

The RasSetAutodialParam function sets the value of an AutoDial parameter.

DWORD RasSetAutodialParam(
DWORD dwKey, // indicates the parameter to set
LPVOID lpvValue, // pointer to a buffer that specifies the value
DWORD dwcbValue // size, in bytes, of the buffer

);ParametersdwKey
Indicates the AutoDial parameter to set. This parameter can be one of the following values.

Value Meaning
RASADP_DisableConnectionQuery The lpvValue parameter

points to a DWORD value. If
this value is zero (the default)
, AutoDial displays a dialog
box to query the user before
creating a connection. If this
value is 1, and the AutoDial
database has the phone-
book entry to dial, AutoDial
creates a connection without
displaying the dialog box.

RASADP_LoginSessionDisable The lpvValue parameter
points to a DWORD value. If
this value is 1, the system
disables all AutoDial
connections for the current
logon session. If this value is
zero (the default), AutoDial
connections are enabled. The
AutoDial system service
changes this value to zero
when a new user logs on to
the workstation.

RASADP_SavedAddressesLimit The lpvValue parameter
points to a DWORD value that
indicates the maximum
number of addresses that
AutoDial stores in the registry.
AutoDial first stores
addresses that it used to
create an AutoDial
connection; then it stores
addresses that it learned after
a RAS connection was
created. Addresses written
using the
RasSetAutodialAddress
function are always saved,
and are not included in
calculating the limit. The
default value is 100.

RASADP_FailedConnectionTimeout The lpvValue parameter
points to a DWORD value that
indicates a timeout value, in
seconds. When an AutoDial
connection attempt fails, the
AutoDial system service
disables subsequent attempts

to reach the same address for
the timeout period. This
prevents AutoDial from
displaying multiple connection
dialog boxes for the same
logical request by an
application. The default value
is 5.

lpvValue
Pointer to a buffer that contains the new value for the specified parameter.

dwcbValue
Specifies the size, in bytes, of the value in the lpvValue buffer.

Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_INVALID_PARAMETER The dwKey or lpvValue
parameter is invalid.

ERROR_INVALID_SIZE The size specified by the
dwcbValue is invalid.

See AlsoRasGetAutodialParam, RasSetAutodialAddress

RasSetCredentials
[New - Windows NT]

The RasSetCredentials function sets the user credentials associated with a specified RAS
phone-book entry.

DWORD RasSetCredentials(
LPTSTR lpszPhonebook, // pointer to the full path and filename of a phone-book file
LPTSTR lpszEntry, // pointer to the name of a phone-book entry
LPRASCREDENTIALS lpCredentials // pointer to structure that specifies the credentials

);ParameterslpszPhonebook
Pointer to a null-terminated string that specifies the full path and filename of a phone-book (.
PBK) file. If this parameter is NULL, the function uses the current default phone-book file. The
default phone-book file is the one selected by the user in the User Preferences property
sheet of the Dial-Up Networking dialog box.

lpszEntry
Pointer to a null-terminated string that contains the name of a phone-book entry.

lpCredentials
Pointer to a RASCREDENTIALS structure that specifies the user credentials to set for the
specified phone-book entry. Before calling RasSetCredentials, set the dwSize member of
the structure to sizeof(RASCREDENTIALS). Set the dwMask member to indicate the
credential information to be set.

Return ValuesIf the function succeeds the return value is zero.

If the function fails, the return value can be one of the following error codes:

Value Meaning

ERROR_CANNOT_OPEN_PHONEBOOKThe specified phone book
cannot be found.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe specified entry does not
exist in the phone book.

ERROR_INVALID_PARAMETER The lpCredentials parameter
was NULL.

ERROR_INVALID_SIZE The dwSize member of the
RASCREDENTIALS
structure is an unrecognized
value.

RemarksThe RasSetCredentials function sets the user credentials associated with a specified RAS
phone-book entry. The credentials stored with a phone-book entry are the credentials of the last
user to successfully connect using the specified phone-book entry, or the credentials
subsequently specified in a call to the RasSetCredentials or RasSetEntryDialParams function
for the phone-book entry.

The RasSetCredentials function is the preferred way of securely storing credentials with a
phone-book entry. RasSetCredentials supersedes the RasSetEntryDialParams function, which
may not be supported in future releases of Windows NT.See AlsoRASCREDENTIALS, RasGetCredentials, RasSetEntryDialParams

RasSetEntryDialParams
The RasSetEntryDialParams function changes the connection information saved by the last
successful call to the RasDial or RasSetEntryDialParams function for a specified phonebook
entry.

DWORD RasSetEntryDialParams(

LPTSTR lpszPhonebook,
// pointer to the full path and filename of the phonebook file

LPRASDIALPARAMS lprasdialparams, // pointer to a structure with the new connection parameters
BOOL fRemovePassword // indicates whether to remove password from entry's parameters

);
ParameterslpszPhonebook

Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.
Windows 95: Dial-up networking stores phonebook entries in the registry rather than in a
phonebook file.

lprasdialparams

Points to a RASDIALPARAMS structure containing the connection parameters to be
associated with the phonebook entry. RasSetEntryDialParams uses the structure's members
as follows:

Member Description
dwSize Must specify the sizeof

(RASDIALPARAMS) to identify the version
of the structure.

szEntryName A null-terminated string that identifies the
phonebook entry to set parameters for.

szPhoneNumber Not used. Set to NULL.
szCallbackNumber A null-terminated string containing the

callback phone number. If
szCallbackNumber is an empty string (""),
the callback number is not changed.

szUserName A null-terminated string containing the logon
name of the user associated with this entry.
If szUserName is an empty string, the user
name is not changed.

szPassword A null-terminated string containing the
password for the user specified by
szUserName. If szUserName is an empty
string, the password is not changed. If
szPassword is an empty string and
fRemovePassword is FALSE, the password
is set to the empty string. If
fRemovePassword is TRUE, the password
stored in this phonebook entry for the user
specified by szUserName is removed
regardless of the contents of the
szPassword string.

szDomain A null-terminated string containing the name
of the domain to log on to. If szDomain is an
empty string, the domain name is not
changed.

fRemovePassword

Indicates whether to remove the phonebook entry's stored password for the user specified by
lprasdialparams->szUserName. If fRemovePassword is TRUE, the password is removed.Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes:

Value Description

ERROR_BUFFER_INVALID
The address or buffer specified by
lprasdialparams is invalid.

ERROR_CANNOT_OPEN_PHONEBOOK
The phonebook is corrupted or missing
components.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRY
The phonebook entry does not exist.

See AlsoRASDIALPARAMS, RasCreatePhonebookEntry, RasEditPhonebookEntry,
RasGetEntryDialParams

RasSetEntryProperties
[New - Windows NT]

The RasSetEntryProperties function changes the connection information for an entry in the
phone book or creates a new phone-book entry.

DWORD RasSetEntryProperties(

LPTSTR lpszPhonebook,
// pointer to full path and filename of phone-book file

LPTSTR lpszEntry, // pointer to an entry name
LPRASENTRY lpRasEntry, // buffer that contains entry information
DWORD dwEntryInfoSize, // size, in bytes, of the lpRasEntry buffer
LPBYTE lpbDeviceInfo, // buffer that contains device-specific configuration information
DWORD dwDeviceInfoSize // size, in bytes, of the lpbDeviceInfo buffer

);
ParameterslpszPhonebook

Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry

Pointer to a null-terminated string containing an entry name.
If the entry name matches an existing entry, RasSetEntryProperties modifies the properties
of that entry.
If the entry name does not match an existing entry, RasSetEntryProperties creates a new
phone-book entry. For new entries, call the RasValidateEntryName function to validate the
entry name before calling RasSetEntryProperties.

lpRasEntry

Pointer to a RASENTRY structure that contains the new connection data to be associated
with the phone-book entry specified by the lpszEntry parameter.
The structure might be followed by an array of null-terminated alternate phone number strings.
The last string is terminated by two consecutive null characters. The dwAlternateOffset
member of the RASENTRY structure contains the offset to the first string.

dwEntryInfoSize

Specifies the size, in bytes, of the buffer specified by the lpRasEntry parameter.
lpbDeviceInfo

Pointer to a buffer containing device-specific configuration information. This is opaque TAPI
device configuration information. For more information about TAPI device configuration, see
the Win32 Telephony (TAPI) Programmer's Reference.

dwDeviceInfoSize

Specifies the size, in bytes, of the lpbDeviceInfo buffer.Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BUFFER_INVALID The address or buffer specified
by lpRasEntry is invalid.

ERROR_CANNOT_OPEN_PHONEBOOKThe phone book is corrupted or
missing components.

See AlsoRASENTRY, RasCreatePhonebookEntry, RasGetEntryProperties, RasValidateEntryName

RasSetSubEntryProperties
[New - Windows NT]

The RasSetSubEntryProperties function creates a new subentry or modifies an existing
subentry of a specified phone-book entry.

DWORD RasSetSubEntryProperties(

LPTSTR lpszPhonebook,
// pointer to full path and filename of phone-book file // pointer to the full path and filename of the phone-book file

LPTSTR lpszEntry, // pointer to an entry name // pointer to an entry name
DWORD dwSubEntry, // index of the subentry //
LPRASSUBENTRY lpRasSubEntry, // pointer to structure containing information about subentry //
DWORD dwcb // size, in bytes, of the structure //

);
ParameterslpszPhonebook

Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry

Pointer to a null-terminated string containing the name of an existing entry in the phone book.
dwSubEntry

Specifies the one-based index of the subentry. If the index matches an existing subentry
index, the function changes the properties of that subentry. If the index does not match an
existing index, the function creates a new subentry.

lpRasSubEntry

Pointer to a RASSUBENTRY structure that contains the data for the subentry.
The structure might be followed by an array of null-terminated alternate phone number strings.
The last string is terminated by two consecutive null characters. The dwAlternateOffset
member of the RASSUBENTRY structure contains the offset to the first string.

dwcb

Specifies the size, in bytes, of the lpRasSubEntry buffer.Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value can be one of the following error codes.

Value Meaning

ERROR_BUFFER_INVALID The address or buffer
specified by lpRasEntry is
invalid.

ERROR_CANNOT_FIND_PHONEBOOK_ENTRYThe phone-book entry
does not exist.

ERROR_CANNOT_OPEN_PHONEBOOK The phone book is
corrupted or missing
components.

ERROR_INVALID_PARAMETER The function was called
with an invalid parameter.

RemarksA RAS phone-book entry can have zero or more subentries, each minimally consisting of a device
and a phone number. A phone-book entry with multiple subentries can be configured to dial either
the first available subentry or all subentries when the entry is dialed.

Use the RasGetEntryProperties function to retrieve a RASENTRY structure containing
information about the subentries of a phone-book entry. The dwSubEntries member indicates the
number of subentries and the dwDialMode member indicates the dialing configuration.See AlsoRasGetEntryProperties, RASENTRY, RASSUBENTRY

RasValidateEntryName
[New - Windows NT]

The RasValidateEntryName function validates the format of a connection entry name. The name
must contain at least one non-white-space alphanumeric character.

DWORD RasValidateEntryName(

LPTSTR lpszPhonebook,
// pointer to full path and filename of phone-book file

LPTSTR lpszEntry // pointer to the entry name to validate
);
ParameterslpszPhonebook

Windows NT: Pointer to a null-terminated string that specifies the full path and filename of a
phone-book (.PBK) file. If this parameter is NULL, the function uses the current default phone-
book file. The default phone-book file is the one selected by the user in the User Preferences
property sheet of the Dial-Up Networking dialog box.

lpszEntry

Pointer to a null-terminated string containing an entry name.
Windows NT: The entry name cannot begin with a period (".").Return ValuesIf the function succeeds, the return value is zero.

If the function fails, the return value is ERROR_INVALID_NAME or ERROR_ALREADY_EXISTS.See AlsoRasCreatePhonebookEntry, RasGetEntryProperties

ReadConsole
The ReadConsole function reads character input from the console input buffer and removes it
from the buffer.

BOOL ReadConsole(

HANDLE hConsoleInput,
// handle of a console input buffer

LPVOID lpBuffer, // address of buffer to receive data
DWORD nNumberOfCharsToRead, // number of characters to read
LPDWORD lpNumberOfCharsRead, // address of number of characters read
LPVOID lpReserved // reserved

);
ParametershConsoleInput

Identifies the console input buffer. The handle must have GENERIC_READ access.
lpBuffer

Points to a buffer that receives the data read from the console input buffer.
nNumberOfCharsToRead

Specifies the number of characters to read. Because the function can read either 2-byte
Unicode or 1-byte ANSI characters, the size of the buffer pointed to by the lpBuffer parameter
should be at least nNumberOfCharsToRead * sizeof(TCHAR).

lpNumberOfCharsRead

Points to a 32-bit variable that receives the number of characters actually read.
lpReserved

Reserved; must be NULL.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReadConsole reads keyboard input from a console's input buffer. It behaves like the ReadFile
function, except that it can read in either Unicode (wide-character) or ANSI mode. To have
applications that maintain a single set of sources compatible with both modes, use ReadConsole
rather than ReadFile. Although ReadConsole can only be used with a console input buffer
handle, ReadFile can be used with other handles (such as files or pipes). ReadConsole fails if
used with a standard handle that has been redirected to be something other than a console
handle.

All of the input modes that affect the behavior of ReadFile have the same effect on
ReadConsole. To retrieve and set the input modes of a console input buffer, use the
GetConsoleMode and SetConsoleMode functions.

If the input buffer contains input events other than keyboard events (such as mouse events or
window-resizing events), they are discarded. Those events can only be read by using the
ReadConsoleInput function.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoGetConsoleMode, ReadConsoleInput, ReadFile, SetConsoleCP, SetConsoleMode,
SetConsoleOutputCP, WriteConsole

ReadConsoleInput
The ReadConsoleInput function reads data from a console input buffer and removes it from the
buffer.

BOOL ReadConsoleInput(

HANDLE hConsoleInput,
// handle of a console input buffer

PINPUT_RECORD lpBuffer, // address of the buffer for read data
DWORD nLength, // number of records to read
LPDWORD lpNumberOfEventsRead // address of number of records read

);
ParametershConsoleInput

Identifies the input buffer. The handle must have GENERIC_READ access.
lpBuffer

Points to an INPUT_RECORD buffer that receives the input buffer data.
nLength

Specifies the size, in input records, of the buffer pointed to by the lpBuffer parameter.
lpNumberOfEventsRead

Points to a 32-bit variable that receives the number of input records read.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of records requested in the nLength parameter exceeds the number of records
available in the buffer, the number available is read. The function does not return until at least one
input record has been read.

A process can specify a console input buffer handle in one of the wait functions to determine
when there is unread console input. When the input buffer is not empty, the state of a console
input buffer handle is signaled.

To determine the number of unread input records in a console's input buffer, use the
GetNumberOfConsoleInputEvents function. To read input records from a console input buffer
without affecting the number of unread records, use the PeekConsoleInput function. To discard
all unread records in a console's input buffer, use the FlushConsoleInputBuffer function.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoFlushConsoleInputBuffer, GetNumberOfConsoleInputEvents, INPUT_RECORD,
PeekConsoleInput, ReadConsole, ReadFile, SetConsoleCP, SetConsoleOutputCP,
WriteConsoleInput

ReadConsoleOutput
The ReadConsoleOutput function reads character and color attribute data from a rectangular
block of character cells in a console screen buffer, and the function writes the data to a
rectangular block at a specified location in the destination buffer.

BOOL ReadConsoleOutput(

HANDLE hConsoleOutput,
// handle of a console screen buffer

PCHAR_INFO lpBuffer, // address of buffer that receives data
COORD dwBufferSize, // column-row size of destination buffer
COORD dwBufferCoord, // upper-left cell to write to
PSMALL_RECT lpReadRegion // address of rectangle to read from

);
ParametershConsoleOutput

Identifies the screen buffer. The handle must have GENERIC_READ access.
lpBuffer

Points to a destination buffer that receives the data read from the screen buffer. This pointer is
treated as the origin of a two-dimensional array of CHAR_INFO structures whose size is
specified by the dwBufferSize parameter.

dwBufferSize

Specifies the size, in character cells, of the lpBuffer parameter. The X member of the COORD
structure is the number of columns; the Y member is the number of rows.

dwBufferCoord

Specifies the coordinates of the upper-left cell in the lpBuffer parameter that receives the data
read from the screen buffer. The X member of the COORD structure is the column, and the Y
member is the row.

lpReadRegion

Points to a SMALL_RECT structure. On input, the structure members specify the upper-left
and lower-right coordinates of the screen buffer rectangle from which the function is to read.
On output, the structure members specify the actual rectangle that the function copied from.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReadConsoleOutput treats the screen buffer and the destination buffer as two-dimensional
arrays (columns and rows of character cells). The rectangle pointed to by the lpReadRegion
parameter specifies the size and location of the block to be read from the screen buffer. A
destination rectangle of the same size is located with its upper-left cell at the coordinates of the
dwBufferCoord parameter in the lpBuffer array. Data read from the cells in the screen buffer
source rectangle is copied to the corresponding cells in the destination buffer. If the corresponding
cell is outside the boundaries of the destination buffer rectangle (whose dimensions are specified
by the dwBufferSize parameter), the data is not copied.

Cells in the destination buffer corresponding to coordinates that are not within the boundaries of
the screen buffer are left unchanged. In other words, these are the cells for which no screen buffer
data is available to be read.

Before ReadConsoleOutput returns, it sets the members of the structure pointed to by the
lpReadRegion parameter to the actual screen buffer rectangle whose cells were copied into the
destination buffer. This rectangle reflects the cells in the source rectangle for which there existed
a corresponding cell in the destination buffer, because ReadConsoleOutput clips the dimensions
of the source rectangle to fit the boundaries of the screen buffer.

If the rectangle specified by lpReadRegion lies completely outside the boundaries of the screen
buffer, or if the corresponding rectangle is positioned completely outside the boundaries of the
destination buffer, no data is copied. In this case, the function returns with the members of the
structure pointed to by the lpReadRegion parameter set such that the Right member is less than
the Left, or the Bottom member is less than the Top. To determine the size of the screen buffer,
use the GetConsoleScreenBufferInfo function.

The ReadConsoleOutput function has no effect on the screen buffer's cursor position. The
contents of the screen buffer are not changed by the function.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoCHAR_INFO, COORD, ReadConsoleOutputAttribute, ReadConsoleOutputCharacter,
SetConsoleCP, SetConsoleOutputCP, SMALL_RECT, WriteConsoleOutput

ReadConsoleOutputAttribute
The ReadConsoleOutputAttribute function copies a specified number of foreground and
background color attributes from consecutive cells of a console screen buffer, beginning at a
specified location.

BOOL ReadConsoleOutputAttribute(

HANDLE hConsoleOutput,
// handle of a console screen buffer

LPWORD lpAttribute, // address of buffer to receive attributes
DWORD nLength, // number of character cells to read from
COORD dwReadCoord, // coordinates of first cell to read from
LPDWORD lpNumberOfAttrsRead // address of number of cells read from

);
ParametershConsoleOutput

Identifies a console screen buffer. The handle must have GENERIC_READ access.
lpAttribute

Points to a buffer that receives the attributes read from the screen buffer.
nLength

Specifies the number of screen buffer character cells from which to read. The size of the
buffer pointed to by the lpAttribute parameter should be nLength * sizeof(WORD).

dwReadCoord

Specifies the coordinates of the first cell in the screen buffer from which to read. The X
member of the COORD structure is the column, and the Y member is the row.

lpNumberOfAttrsRead

Points to a 32-bit variable that receives the number of attributes actually read.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of attributes to be read from extends beyond the end of the specified screen buffer
row, attributes are read from the next row. If the number of attributes to be read from extends
beyond the end of the screen buffer, attributes up to the end of the screen buffer are read.

Each attribute specifies the foreground (text) and background colors in which that character cell is
drawn. The attribute values are some combination of the following values:
FOREGROUND_BLUE, FOREGROUND_GREEN, FOREGROUND_RED,
FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination
of values produces red text on a white background:FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE
See AlsoCOORD, ReadConsoleOutput, ReadConsoleOutputCharacter, WriteConsoleOutput,

WriteConsoleOutputAttribute, WriteConsoleOutputCharacter

ReadConsoleOutputCharacter
The ReadConsoleOutputCharacter function copies a number of characters from consecutive
cells of a console screen buffer, beginning at a specified location.

BOOL ReadConsoleOutputCharacter(

HANDLE hConsoleOutput,
// handle of a console screen buffer

LPTSTR lpCharacter, // address of buffer to receive characters
DWORD nLength, // number of character cells to read from
COORD dwReadCoord, // coordinates of first cell to read from
LPDWORD lpNumberOfCharsRead // address of number of cells read from

);
ParametershConsoleOutput

Identifies a console screen buffer. The handle must have GENERIC_READ access.
lpCharacter

Points to a buffer that receives the characters read from the screen buffer.
nLength

Specifies the number of screen buffer character cells from which to read. The size of the
buffer pointed to by the lpCharacter parameter should be nLength * sizeof(TCHAR).

dwReadCoord

Specifies the coordinates of the first cell in the screen buffer from which to read. The X
member of the COORD structure is the column, and the Y member is the row.

lpNumberOfCharsRead

Points to a 32-bit variable that receives the number of characters actually read.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of characters to be read from extends beyond the end of the specified screen buffer
row, characters are read from the next row. If the number of characters to be read from extends
beyond the end of the screen buffer, characters up to the end of the screen buffer are read.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoCOORD, ReadConsoleOutput, ReadConsoleOutputAttribute, SetConsoleCP,
SetConsoleOutputCP, WriteConsoleOutput, WriteConsoleOutputAttribute,
WriteConsoleOutputCharacter

ReadDirectoryChangesW
[New - Windows NT]

The ReadDirectoryChangesW function returns information describing the changes occurring
within a directory.

BOOL ReadDirectoryChangesW(

HANDLE hDirectory,
// handle to the directory to be watched

LPVOID lpBuffer, // pointer to the buffer to receive the read results
DWORD nBufferLength, // length of lpBuffer
BOOL bWatchSubtree, // flag for monitoring directory or directory tree
DWORD dwNotifyFilter, // filter conditions to watch for
LPDWORD lpBytesReturned, // number of bytes returned
LPOVERLAPPED lpOverlapped, // pointer to structure needed for overlapped I/O
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine // pointer to completion routine

);
ParametershDirectory

Identifies the directory to be watched. This directory must be opened with the
FILE_LIST_DIRECTORY access right.

lpBuffer

Specifies the address of the formatted buffer in which the read results are to be returned. The
structure of this buffer is defined by the FILE_NOTIFY_INFORMATION structure. This buffer
is filled either synchronously or asynchronously, depending on how the directory is opened
and what value is given to the lpOverlapped parameter. For more information, see the
Remarks section.

nBufferLength

Specifies the length of the buffer pointed to by the lpBuffer parameter.
bWatchSubtree

Specifies whether the ReadDirectoryChangesW function will monitor the directory or the
directory tree. If TRUE is specified, the function monitors the directory tree rooted at the
specified directory. If FALSE is specified, the function monitors only the directory specified by
the hDirectory parameter.

dwNotifyFilter

Specifies filter criteria the function checks to determine if the wait operation has completed.
This parameter can be one or more of the following values:

Value Meaning
FILE_NOTIFY_CHANGE_FILE_NAMEAny filename change in the

watched directory or subtree
causes a change notification
wait operation to return.
Changes include renaming,
creating, or deleting a file.

FILE_NOTIFY_CHANGE_DIR_NAME Any directory-name change
in the watched directory or
subtree causes a change
notification wait operation to
return. Changes include
creating or deleting a
directory.

FILE_NOTIFY_CHANGE_ATTRIBUTESAny attribute change in the
watched directory or subtree
causes a change notification
wait operation to return.

FILE_NOTIFY_CHANGE_SIZE Any file-size change in the
watched directory or subtree

causes a change notification
wait operation to return. The
operating system detects a
change in file size only
when the file is written to the
disk. For operating systems
that use extensive caching,
detection occurs only when
the cache is sufficiently
flushed.

FILE_NOTIFY_CHANGE_LAST_WRITEAny change to the last write-
time of files in the watched
directory or subtree causes
a change notification wait
operation to return. The
operating system detects a
change to the last write-
time only when the file is
written to the disk. For
operating systems that use
extensive caching, detection
occurs only when the cache
is sufficiently flushed.

FILE_NOTIFY_CHANGE_LAST_ACCESSAny change to the last
access time of files in the
watched directory or subtree
causes a change notification
wait operation to return.

FILE_NOTIFY_CHANGE_CREATION Any change to the creation
time of files in the watched
directory or subtree causes
a change notification wait
operation to return.

FILE_NOTIFY_CHANGE_SECURITY Any security-descriptor
change in the watched
directory or subtree causes
a change notification wait
operation to return.

lpBytesReturned

For synchronous calls, this parameter specifies the number of bytes transferred into the
lpBuffer parameter. For asynchronous calls, this parameter is undefined. You must use an
asynchronous notification technique to retrieve the number of bytes transferred.

lpOverlapped

Points to an OVERLAPPED structure that supplies data to be used during asynchronous
operation. Otherwise, this value is NULL. The Offset and OffsetHigh members of this
structure are not used.

lpCompletionRoutine

Points to a completion routine to be called when the operation has been completed and the
calling thread is in an alertable wait state. For more information about this completion routine,
see FileIOCompletionRoutine.Return ValueIf the function succeeds, the return value is nonzero. For synchronous calls, this means that the

operation succeeded. For asynchronous calls, this indicates that the operation was successfully
queued.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo obtain a handle to a directory, use the CreateFile function with
FILE_FLAG_BACKUP_SEMANTICS as follows:hDir = CreateFile (
DirName, // pointer to the file name
FILE_LIST_DIRECTORY, // access (read-write) mode
FILE_SHARE_READ|FILE_SHARE_DELETE, // share mode
NULL, // security descriptor
OPEN_EXISTING, // how to create
FILE_FLAG_BACKUP_SEMANTICS, // file attributes
NULL // file with attributes to copy

);A call to ReadDirectoryChangesW can be completed synchronously or asynchronously. To
specify asynchronous completion, open the directory with CreateFile as shown above, but
additionally specify the FILE_FLAG_OVERLAPPED attribute in the dwFlagsAndAttributes
parameter. Then specify an OVERLAPPED structure when you call ReadDirectoryChangesW.

Upon successful synchronous completion, the lpBuffer parameter is a formatted buffer and the
number of bytes written to the buffer is available in lpBytesReturned. If the number of bytes
transferred is zero, the buffer was too small to provide detailed information on all the changes that
occurred in the directory or subtree. In this case, you should compute the changes by
enumerating the directory or subtree.

For asynchronous completion, you can receive notification in one of three ways:

· Using the GetOverlappedResult function. To receive notification through
GetOverlappedResult, do not specify a completion routine in the lpCompletionRoutine
parameter. Be sure to set the hEvent member of the OVERLAPPED structure to a unique
event.

· Using the GetQueuedCompletionStatus function. To receive notification through
GetQueuedCompletionStatus, do not specify a completion routine in lpCompletionRoutine.
Associate the directory handle hDirectory with a completion port by calling the
CreateIoCompletionPort function.

· Using a completion routine. To receive notification through a completion routine, do not
associate the directory with a completion port. Specify a completion routine in
lpCompletionRoutine. This routine is called whenever the operation completes while the
thread is in an alertable wait state. The hEvent member of the OVERLAPPED structure is not
used by the system, so you can use it yourself.See AlsoCreateFile, CreateIoCompletionPort, FILE_NOTIFY_INFORMATION,

FileIOCompletionRoutine, GetOverlappedResult, GetQueuedCompletionStatus,
OVERLAPPED

ReadEventLog
The ReadEventLog function reads a whole number of entries from the specified event log. The
function can be used to read log entries in forward or reverse chronological order.

BOOL ReadEventLog(

HANDLE hEventLog,
// handle of event log

DWORD dwReadFlags, // specifies how to read log
DWORD dwRecordOffset, // number of first record
LPVOID lpBuffer, // address of buffer for read data
DWORD nNumberOfBytesToRead, // number of bytes to read
DWORD *pnBytesRead, // number of bytes read
DWORD *pnMinNumberOfBytesNeeded // number of bytes required for next record

);
ParametershEventLog

Identifies the event log to read. This handle is returned by the OpenEventLog function.
dwReadFlags

Specifies how the read operation is to proceed. This parameter can be any combination of the
following values:

Value Meaning
EVENTLOG_FORWARDS_READ The log is read in forward

chronological order.
EVENTLOG_BACKWARDS_READ The log is read in reverse

chronological order.
EVENTLOG_SEEK_READ The read operation proceeds

from the record specified by the
dwRecordOffset parameter. If
this flag is used, dwReadFlags
must also specify
EVENTLOG_FORWARDS_READ
or
EVENTLOG_BACKWARDS_READ.
If the buffer is large enough,
more than one record can be
read at the specified seek
position; the additional flag
indicates the direction for
successive read operations.

EVENTLOG_SEQUENTIAL_READ The read operation proceeds
sequentially from the last call to
the ReadEventLog function
using this handle.

dwRecordOffset

Specifies the log-entry record number at which the read operation should start. This
parameter is ignored unless the dwReadFlags parameter includes the
EVENTLOG_SEEK_READ flag.

lpBuffer

Points to a buffer for the data read from the event log. This parameter cannot be NULL, even
if the nNumberOfBytesToRead parameter is zero.
The buffer will be filled with an EVENTLOGRECORD structure.

nNumberOfBytesToRead

Specifies the size, in bytes, of the buffer. This function will read as many whole log entries as

will fit in the buffer; the function will not return partial entries, even if there is room in the
buffer.

pnBytesRead

Points to a variable that receives the number of bytes read by the function.
pnMinNumberOfBytesNeeded

Points to a variable that receives the number of bytes required for the next log entry. This
count is valid only if ReadEventLog returns zero and GetLastError returns
ERROR_INSUFFICIENT_BUFFER.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen this function returns, the read position in the error log is adjusted by the number of records
read. Only a whole number of event log records will be returned.

Note The configured filename for this source may also be the configured filename for other
sources (several sources can exist as subkeys under a single logfile). Therefore, this function
may return events that were logged by more than one source.See AlsoClearEventLog, CloseEventLog, EVENTLOGRECORD, OpenEventLog, ReportEvent

ReadFile
The ReadFile function reads data from a file, starting at the position indicated by the file pointer.
After the read operation has been completed, the file pointer is adjusted by the number of bytes
actually read, unless the file handle is created with the overlapped attribute. If the file handle is
created for overlapped input and output (I/O), the application must adjust the position of the file
pointer after the read operation.

BOOL ReadFile(

HANDLE hFile,
// handle of file to read

LPVOID lpBuffer, // address of buffer that receives data
DWORD nNumberOfBytesToRead, // number of bytes to read
LPDWORD lpNumberOfBytesRead, // address of number of bytes read
LPOVERLAPPED lpOverlapped // address of structure for data

);
ParametershFile

Identifies the file to be read. The file handle must have been created with GENERIC_READ
access to the file.
Windows NT

For asynchronous read operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle returned by
the socket or accept functions.

Windows 95

For asynchronous read operations, hFile can be a communications resource, mailslot, or
named pipe handle opened with the FILE_FLAG_OVERLAPPED flag by CreateFile, or a
socket handle returned by the socket or accept functions. Windows 95 does not support
asynchronous read operations on disk files.

lpBuffer

Points to the buffer that receives the data read from the file.
nNumberOfBytesToRead

Specifies the number of bytes to be read from the file.
lpNumberOfBytesRead

Points to the number of bytes read. ReadFile sets this value to zero before doing any work or
error checking. If this parameter is zero when ReadFile returns TRUE on a named pipe, the
other end of the message-mode pipe called the WriteFile function with
nNumberOfBytesToWrite set to zero.
If lpOverlapped is NULL, lpNumberOfBytesRead cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesRead can be NULL. If this is an overlapped
read operation, you can get the number of bytes read by calling GetOverlappedResult. If
hFile is associated with an I/O completion port, you can get the number of bytes read by
calling GetQueuedCompletionStatus.

lpOverlapped

Points to an OVERLAPPED structure. This structure is required if hFile was created with
FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not
be NULL. It must point to a valid OVERLAPPED structure. If hFile was created with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report
that the read operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the read
operation starts at the offset specified in the OVERLAPPED structure and ReadFile may
return before the read operation has been completed. In this case, ReadFile returns FALSE
and the GetLastError function returns ERROR_IO_PENDING. This allows the calling process
to continue while the read operation finishes. The event specified in the OVERLAPPED
structure is set to the signaled state upon completion of the read operation.

If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the read
operation starts at the current file position and ReadFile does not return until the operation
has been completed.
If hFile is not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the
read operation starts at the offset specified in the OVERLAPPED structure. ReadFile does
not return until the read operation has been completed.Return ValuesIf the function succeeds, the return value is nonzero.

If the return value is nonzero and the number of bytes read is zero, the file pointer was beyond the
current end of the file at the time of the read operation. However, if the file was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the return value is FALSE and
GetLastError returns ERROR_HANDLE_EOF when the file pointer goes beyond the current end
of file.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReadFile returns when one of the following is true: a write operation completes on the write end of
the pipe, the number of bytes requested has been read, or an error occurs.

If part of the file is locked by another process and the read operation overlaps the locked portion,
this function fails.

Applications must not read from nor write to the input buffer that a read operation is using until the
read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

Characters can be read from the console input buffer by using ReadFile with a handle to console
input. The console mode determines the exact behavior of the ReadFile function.

If a named pipe is being read in message mode and the next message is longer than the
nNumberOfBytesToRead parameter specifies, ReadFile returns FALSE and GetLastError
returns ERROR_MORE_DATA. The remainder of the message may be read by a subsequent call
to the ReadFile or PeekNamedPipe function.

When reading from a communications device, the behavior of ReadFile is governed by the
current communication timeouts as set and retrieved using the SetCommTimeouts and
GetCommTimeouts functions. Unpredictable results can occur if you fail to set the timeout
values. For more information about communication timeouts, see COMMTIMEOUTS.

If ReadFile attempts to read from a mailslot whose buffer is too small, the function returns FALSE
and GetLastError returns ERROR_INSUFFICIENT_BUFFER.

If the anonymous write pipe handle has been closed and ReadFile attempts to read using the
corresponding anonymous read pipe handle, the function returns FALSE and GetLastError
returns ERROR_BROKEN_PIPE.

The ReadFile function may fail and return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O
requests.

The ReadFile code to check for the end-of-file condition (eof) differs for synchronous and
asynchronous read operations.

When a synchronous read operation reaches the end of a file, ReadFile returns TRUE and sets *
lpNumberOfBytesRead to zero. The following sample code tests for end-of-file for a synchronous
read operation:// attempt a synchronous read operation
bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead, NULL) ;
// check for eof
if (bResult && nBytesRead == 0,) {

// we're at the end of the file
}An asynchronous read operation can encounter the end of a file during the initiating call to

ReadFile, or during subsequent asynchronous operation.

If EOF is detected at ReadFile time for an asynchronous read operation, ReadFile returns FALSE
and GetLastError returns ERROR_HANDLE_EOF.

If EOF is detected during subsequent asynchronous operation, the call to GetOverlappedResult
to obtain the results of that operation returns FALSE and GetLastError returns
ERROR_HANDLE_EOF.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle. I/O operations that are
canceled complete with the error ERROR_OPERATION_ABORTED.

The following sample code illustrates testing for end-of-file for an asynchronous read operation:// set up overlapped structure fields
// to simplify this sample, we'll eschew an event handle
gOverLapped.Offset= 0;
gOverLapped.OffsetHigh = 0;
gOverLapped.hEvent= NULL;
// attempt an asynchronous read operation
bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead,

&gOverlapped) ;
// if there was a problem, or the async. operation's still pending ...
if (!bResult)
{

// deal with the error code
switch (dwError = GetLastError())
{
case ERROR_HANDLE_EOF:
{
// we're reached the end of the file
// during the call to ReadFile
// code to handle that
}
case ERROR_IO_PENDING:
{
// asynchronous i/o is still in progress
// do something else for a while
GoDoSomethingElse() ;
// check on the results of the asynchronous read
bResult = GetOverlappedResult(hFile, &gOverlapped,
&nBytesRead, FALSE) ;
// if there was a problem ...
if (!bResult)
{
// deal with the error code
switch (dwError = GetLastError())
{
case ERROR_HANDLE_EOF:
{

// we're reached the end of the file
//during asynchronous operation

}
// deal with other error cases
}
}
} // end case
// deal with other error cases
} // end switch

} // end if
See AlsoCancelIo, CreateFile, GetCommTimeouts, GetOverlappedResult,

GetQueuedCompletionStatus, OVERLAPPED, PeekNamedPipe, ReadFileEx,
SetCommTimeouts, WriteFile

ReadFileEx
The ReadFileEx function reads data from a file asynchronously. It is designed solely for
asynchronous operation, unlike the ReadFile function, which is designed for both synchronous
and asynchronous operation. ReadFileEx lets an application perform other processing during a
file read operation.

The ReadFileEx function reports its completion status asynchronously, calling a specified
completion routine when reading is completed and the calling thread is in an alertable wait state.

BOOL ReadFileEx(

HANDLE hFile,
// handle of file to read

LPVOID lpBuffer, // address of buffer
DWORD nNumberOfBytesToRead, // number of bytes to read
LPOVERLAPPED lpOverlapped, // address of offset
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine // address of completion routine

);
ParametershFile

An open handle that specifies the file entity to be read from. This file handle must have been
created with the FILE_FLAG_OVERLAPPED flag and must have GENERIC_READ access to
the file.
Windows NT: hFile can be any handle opened with the FILE_FLAG_OVERLAPPED flag by
the CreateFile function, or a socket handle returned by the socket or accept functions.
Windows 95: hFile can be a communications resource, mailslot, or named pipe handle
opened with the FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned
by the socket or accept functions. Windows 95 does not support asynchronous operations on
disk files.

lpBuffer

Points to a buffer that receives the data read from the file.
This buffer must remain valid for the duration of the read operation. The application should not
use this buffer until the read operation is completed.

nNumberOfBytesToRead

Specifies the number of bytes to be read from the file.
lpOverlapped

Points to an OVERLAPPED data structure that supplies data to be used during the
asynchronous (overlapped) file read operation.
If the file specified by hFile supports the concept of byte offsets, the caller of ReadFileEx
must specify a byte offset within the file at which reading should begin. The caller specifies the
byte offset by setting the OVERLAPPED structure's Offset and OffsetHigh members.
If the file entity specified by hFile does not support the concept of byte offsets ¾ for example,
if it is a named pipe ¾ the caller must set the Offset and OffsetHigh members to zero, or
ReadFileEx fails.
The ReadFileEx function ignores the OVERLAPPED structure's hEvent member. An
application is free to use that member for its own purposes in the context of a ReadFileEx
call. ReadFileEx signals completion of its read operation by calling, or queueing a call to, the
completion routine pointed to by lpCompletionRoutine, so it does not need an event handle.
The ReadFileEx function does use the OVERLAPPED structure's Internal and InternalHigh
members. An application should not set these members.
The OVERLAPPED data structure pointed to by lpOverlapped must remain valid for the
duration of the read operation. It should not be a variable that can go out of scope while the
file read operation is in progress.

lpCompletionRoutine

Points to the completion routine to be called when the read operation is complete and the
calling thread is in an alertable wait state. For more information about the completion routine,
see FileIOCompletionRoutine.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the function succeeds, the calling thread has an asynchronous I/O (input/output) operation
pending: the overlapped read operation from the file. When this I/O operation completes, and the
calling thread is blocked in an alertable wait state, the system calls the function pointed to by
lpCompletionRoutine, and the wait state completes with a return code of
WAIT_IO_COMPLETION.

If the function succeeds, and the file reading operation completes, but the calling thread is not in
an alertable wait state, the system queues the completion routine call, holding the call until the
calling thread enters an alertable wait state. For information about alertable waits and overlapped
input/output operations, see Synchronization and Overlapped Input and Output.

If ReadFileEx attempts to read past the end of the file, the function returns zero, and
GetLastError returns ERROR_HANDLE_EOF.RemarksIf a portion of the file specified by hFile is locked by another process, and the read operation
specified in a call to ReadFileEx overlaps the locked portion, the call to ReadFileEx fails.

If ReadFileEx attempts to read data from a mailslot whose buffer is too small, the function returns
FALSE, and GetLastError returns ERROR_INSUFFICIENT_BUFFER.

Applications must not read from nor write to the input buffer that a read operation is using until the
read operation completes. A premature access to the input buffer may lead to corruption of the
data read into that buffer.

The ReadFileEx function may fail if there are too many outstanding asynchronous I/O requests. In
the event of such a failure, GetLastError can return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle. I/O operations that are
canceled complete with the error ERROR_OPERATION_ABORTED.

If hFile is a handle to a named pipe or other file entity that doesn't support the byte-offset concept,
the Offset and OffsetHigh members of the OVERLAPPED structure pointed to by lpOverlapped
must be zero, or ReadFileEx fails.

An application uses the MsgWaitForMultipleObjectsEx, WaitForSingleObjectEx,
WaitForMultipleObjectsEx, and SleepEx functions to enter an alertable wait state. For more
information about alertable waits and overlapped input/output, refer to those functions' reference
and Synchronization.

Windows 95: On this platform, neither ReadFileEx nor WriteFileEx can be used by the comm
ports to communicate. However, you can use ReadFile and WriteFile to perform asynchronous
communication.See AlsoCancelIo, CreateFile, FileIOCompletionRoutine, MsgWaitForMultipleObjectsEx,
OVERLAPPED, ReadFile, SleepEx, WaitForMultipleObjectsEx, WaitForSingleObjectEx,
WriteFileEx

ReadPrinter
The ReadPrinter function retrieves data from the specified printer.

BOOL ReadPrinter(

HANDLE hPrinter,
// handle of printer object

LPVOID pBuf, // address of array of bytes that receives data
DWORD cbBuf, // size, in bytes, of array
LPDWORD pNoBytesRead // address of variable with number of bytes retrieved

);
ParametershPrinter

Identifies the printer for which to retrieve data.
pBuf

Points to an array of bytes that receives the printer data.
cbBuf

Specifies the size, in bytes, of the buffer to which pBuf points.
pNoBytesRead

Points to a variable that receives the number of bytes of data copied into the array to which
pBuf points.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReadPrinter returns an error if the device or the printer is not bidirectional.See AlsoOpenPrinter

ReadProcessMemory
The ReadProcessMemory function reads memory in a specified process. The entire area to be
read must be accessible, or the operation fails.

BOOL ReadProcessMemory(

HANDLE hProcess,
// handle of the process whose memory is read

LPCVOID lpBaseAddress, // address to start reading
LPVOID lpBuffer, // address of buffer to place read data
DWORD nSize, // number of bytes to read
LPDWORD lpNumberOfBytesRead // address of number of bytes read

);
ParametershProcess

Identifies an open handle of a process whose memory is read. The handle must have
PROCESS_VM_READ access to the process.

lpBaseAddress

Points to the base address in the specified process to be read. Before any data transfer
occurs, the system verifies that all data in the base address and memory of the specified size
is accessible for read access. If this is the case, the function proceeds; otherwise, the function
fails.

lpBuffer

Points to a buffer that receives the contents from the address space of the specified process.
nSize

Specifies the requested number of bytes to read from the specified process.
lpNumberOfBytesRead

Points to the actual number of bytes transferred into the specified buffer. If
lpNumberOfBytesRead is NULL, the parameter is ignored.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

The function fails if the requested read operation crosses into an area of the process that is
inaccessible.RemarksReadProcessMemory copies the data in the specified address range from the address space of
the specified process into the specified buffer of the current process. Any process that has a
handle with PROCESS_VM_READ access can call the function. The process whose address
space is read is typically, but not necessarily, being debugged.

The entire area to be read must be accessible. If it is not, the function fails as noted previously.See AlsoWriteProcessMemory

RealizePalette
The RealizePalette function maps palette entries from the current logical palette to the system
palette.

UINT RealizePalette(

HDC hdc
// handle of device context

);
Parametershdc

Identifies the device context (DC) into which a logical palette has been selected.Return ValuesIf the function succeeds, the return value is the number of entries in the logical palette mapped to
the system palette.

If the function fails, the return value is GDI_ERROR. To get extended error information, call
GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

The RealizePalette function modifies the palette for the device associated with the specified
device context. If the device context is a memory DC, the color table for the bitmap selected into
the DC is modified. If the device context is a display DC, the physical palette for that device is
modified.

A logical color palette is a buffer between color-intensive applications and the system, allowing
these applications to use as many colors as needed without interfering with colors displayed by
other windows.

When an application's window has the focus and it calls the RealizePalette function, Windows
attempts to realize as many of the requested colors as possible. The same is also true for
applications with inactive windows.See AlsoCreatePalette, GetDeviceCaps, SelectPalette

Rectangle
The Rectangle function draws a rectangle. The rectangle is outlined by using the current pen and
filled by using the current brush.

BOOL Rectangle(

HDC hdc,
// handle of device context

int nLeftRect, // x-coord. of bounding rectangle's upper-left corner
int nTopRect, // y-coord. of bounding rectangle's upper-left corner
int nRightRect, // x-coord. of bounding rectangle's lower-right corner
int nBottomRect // y-coord. of bounding rectangle's lower-right corner

);
Parametershdc

Identifies the device context.
nLeftRect

Specifies the logical x-coordinate of the upper-left corner of the rectangle.
nTopRect

Specifies the logical y-coordinate of the upper-left corner of the rectangle.
nRightRect

Specifies the logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect

Specifies the logical y-coordinate of the lower-right corner of the rectangle.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe current position is neither used nor updated by Rectangle.See AlsoRoundRect

RectInRegion
The RectInRegion function determines whether any part of the specified rectangle is within the
boundaries of a region.

BOOL RectInRegion(

HRGN hrgn,
// handle of region

CONST RECT *lprc // address of structure with rectangle
);
Parametershrgn

Identifies the region.
lprc

Points to a RECT structure containing the coordinates of the rectangle. The lower and right
edges of the rectangle are not included.Return ValuesIf any part of the specified rectangle lies within the boundaries of the region, the return value is

nonzero.

If no part of the specified rectangle lies within the boundaries of the region, the return value is
zero.See AlsoPtInRegion, RECT

RectVisible
The RectVisible function determines whether any part of the specified rectangle lies within the
clipping region of a device context.

BOOL RectVisible(

HDC hdc,
// handle of the device context

CONST RECT *lprc // address of rectangle structure
);
Parametershdc

Identifies the device context.
lprc

Points to a RECT structure that contains the logical coordinates of the specified rectangle.Return ValuesIf some portion of the specified rectangle lies within the clipping region, the return value is
nonzero.

If no portion of the specified rectangle lies within the clipping region, the return value is zero.See AlsoCreateRectRgn, PtVisible, RECT, SelectClipRgn

RedrawWindow
The RedrawWindow function updates the specified rectangle or region in a window's client area.

BOOL RedrawWindow(
HWND hWnd, // handle of window
CONST RECT *lprcUpdate, // address of structure with update rectangle
HRGN hrgnUpdate, // handle of update region
UINT flags // array of redraw flags

);ParametershWnd
Identifies the window to be redrawn. If this parameter is NULL, the desktop window is
updated.

lprcUpdate
Points to a RECT structure containing the coordinates of the update rectangle. This parameter
is ignored if the hrgnUpdate parameter identifies a region.

hrgnUpdate
Identifies the update region. If both the hrgnUpdate and lprcUpdate parameters are NULL, the
entire client area is added to the update region.

flags
Specifies one or more redraw flags. This parameter can be a combination of flags that
invalidate or validate a window, control repainting, and control which windows are affected by
RedrawWindow.
The following flags are used to invalidate the window:

Flag (invalidation) Description
RDW_ERASE Causes the window to receive a

WM_ERASEBKGND message when the
window is repainted. The
RDW_INVALIDATE flag must also be
specified; otherwise, RDW_ERASE has
no effect.

RDW_FRAME Causes any part of the nonclient area of
the window that intersects the update
region to receive a WM_NCPAINT
message. The RDW_INVALIDATE flag
must also be specified; otherwise,
RDW_FRAME has no effect. The
WM_NCPAINT message is typically not
sent during the execution of
RedrawWindow unless either
RDW_UPDATENOW or
RDW_ERASENOW is specified.

RDW_INTERNALPAINT Causes a WM_PAINT message to be
posted to the window regardless of
whether any portion of the window is
invalid.

RDW_INVALIDATE Invalidates lprcUpdate or hrgnUpdate
(only one may be non-NULL). If both are
NULL, the entire window is invalidated.

The following flags are used to validate the window:
Flag (validation) Description
RDW_NOERASE Suppresses any pending

WM_ERASEBKGND messages.
RDW_NOFRAME Suppresses any pending

WM_NCPAINT messages. This flag
must be used with RDW_VALIDATE
and is typically used with
RDW_NOCHILDREN.
RDW_NOFRAME should be used with

care, as it could cause parts of a
window to be painted improperly.

RDW_NOINTERNALPAINT Suppresses any pending internal
WM_PAINT messages. This flag does
not affect WM_PAINT messages
resulting from a non-NULL update
area.

RDW_VALIDATE Validates lprcUpdate or hrgnUpdate
(only one may be non-NULL). If both
are NULL, the entire window is
validated. This flag does not affect
internal WM_PAINT messages.

The following flags control when repainting occurs. RedrawWindow will not repaint
unless one of these flags is specified.

Flag Description
RDW_ERASENOW Causes the affected windows (as specified

by the RDW_ALLCHILDREN and
RDW_NOCHILDREN flags) to receive
WM_NCPAINT and WM_ERASEBKGND
messages, if necessary, before the function
returns. WM_PAINT messages are received
at the ordinary time.

RDW_UPDATENOW Causes the affected windows (as specified
by the RDW_ALLCHILDREN and
RDW_NOCHILDREN flags) to receive
WM_NCPAINT, WM_ERASEBKGND, and
WM_PAINT messages, if necessary, before
the function returns.

By default, the windows affected by RedrawWindow depend on whether the given window
has the WS_CLIPCHILDREN style. Child windows that are not the WS_CLIPCHILDREN style
are unaffected; non-WS_CLIPCHILDREN windows are recursively validated or invalidated
until a WS_CLIPCHILDREN window is encountered. The following flags control which
windows are affected by the RedrawWindow function:

Flag Description
RDW_ALLCHILDREN Includes child windows, if any, in the

repainting operation.
RDW_NOCHILDREN Excludes child windows, if any, from the

repainting operation.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen RedrawWindow is used to invalidate part of the desktop window, the desktop window does
not receive a WM_PAINT message. To repaint the desktop, an application uses the
RDW_ERASE flag to generate a WM_ERASEBKGND message.See AlsoGetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn, RECT, UpdateWindow

RegCloseKey
The RegCloseKey function releases the handle of the specified key.

LONG RegCloseKey(
HKEY hKey // handle of key to close

);ParametershKey
Identifies the open key to close.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe handle for a specified key should not be used after it has been closed, because it will no
longer be valid. Key handles should not be left open any longer than necessary.

The RegCloseKey function does not necessarily write information to the registry before returning;
it can take as much as several seconds for the cache to be flushed to the hard disk. If an
application must explicitly write registry information to the hard disk, it can use the RegFlushKey
function. RegFlushKey, however, uses many system resources and should be called only when
necessary.See AlsoRegCreateKey, RegCreateKeyEx, RegDeleteKey, RegFlushKey, RegOpenKey,
RegOpenKeyEx, RegSetValue, RegSetValueEx

RegConnectRegistry
The RegConnectRegistry function establishes a connection to a predefined registry handle on
another computer.

LONG RegConnectRegistry(
LPTSTR lpMachineName, // address of name of remote computer
HKEY hKey, // predefined registry handle
PHKEY phkResult // address of buffer for remote registry handle

);ParameterslpMachineName
Points to a null-terminated string containing the name of the remote computer. The string has
the following form:
\\computername
If lpMachineName is NULL, the local computer name is used.

hKey
Specifies the predefined handle of the registry on the remote computer. Currently, the
following values can be used:
HKEY_LOCAL_MACHINE
HKEY_USERS
An application cannot specify the HKEY_CLASSES_ROOT or HKEY_CURRENT_USER
value for this parameter.

phkResult
Points to a variable that receives a key handle identifying the predefined handle on the remote
computer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksWhen a handle returned by RegConnectRegistry is no longer needed, it should be closed by
calling RegCloseKey.See AlsoRegCloseKey

RegCreateKey
The RegCreateKey function creates the specified key. If the key already exists in the registry, the
function opens it. This function is provided for compatibility with Windows version 3.1. Win32-
based applications should use the RegCreateKeyEx function.

LONG RegCreateKey(
HKEY hKey, // handle of an open key
LPCTSTR lpSubKey, // address of name of subkey to open
PHKEY phkResult // address of buffer for opened handle

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The key opened or created by this function is a subkey of the key identified by hKey.

lpSubKey
Points to a null-terminated string specifying the name of a key that this function opens or
creates. This key must be a subkey of the key identified by the hKey parameter.
If hKey is one of the predefined keys, lpSubKey may be NULL. In that case, the handle
returned by using phkResult is the same hKey handle passed in to the function.

phkResult
Points to a variable that receives the handle of the opened or created key.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksAn application can use the RegCreateKey function to create several keys at once. For example,
an application can create a subkey four levels deep at the same time as the three preceding
subkeys by specifying a string of the following form for the lpSubKey parameter:

subkey1\subkey2\subkey3\subkey4

The key identified by the hKey parameter must have been opened with KEY_CREATE_SUB_KEY
access (KEY_WRITE access includes KEY_CREATE_SUB_KEY access).

If the lpSubKey parameter is the address of an empty string, the function opens and then passes
back the key identified by the hKey parameter.See AlsoRegCloseKey, RegCreateKeyEx, RegDeleteKey, RegOpenKey, RegOpenKeyEx,
RegSetValue

RegCreateKeyEx
The RegCreateKeyEx function creates the specified key. If the key already exists in the registry,
the function opens it.

LONG RegCreateKeyEx(
HKEY hKey, // handle of an open key
LPCTSTR lpSubKey, // address of subkey name
DWORD Reserved, // reserved
LPTSTR lpClass, // address of class string
DWORD dwOptions, // special options flag
REGSAM samDesired, // desired security access
LPSECURITY_ATTRIBUTES lpSecurityAttributes, // address of key security structure
PHKEY phkResult, // address of buffer for opened handle
LPDWORD lpdwDisposition // address of disposition value buffer

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The key opened or created by the RegCreateKeyEx function is a subkey of the key identified
by the hKey parameter.

lpSubKey
Points to a null-terminated string specifying the name of a subkey that this function opens or
creates. The subkey specified must be a subkey of the key identified by the hKey parameter.
This subkey must not begin with the backslash character ('\'). This parameter cannot be
NULL.

Reserved
Reserved; must be zero.

lpClass
Points to a null-terminated string that specifies the class (object type) of this key. This
parameter is ignored if the key already exists.

dwOptions
Specifies special options for the key. This parameter can be one of the following values.

Value Meaning
REG_OPTION_NON_VOLATILE This key is not volatile; this is the

default. The information is stored
in a file and is preserved when
the system is restarted. The
RegSaveKey function saves
keys that are not volatile.

REG_OPTION_VOLATILE Windows NT: This key is
volatile; the information is stored
in memory and is not preserved
when the system is restarted.
The RegSaveKey function does
not save volatile keys. This flag
is ignored if the key already
exists.
Windows 95: This value is
ignored in Windows 95. If
REG_OPTION_VOLATILE is
specified, the RegCreateKeyEx
function creates a nonvolatile
key and returns
ERROR_SUCCESS.

REG_OPTION_BACKUP_RESTOREWindows NT: If this flag is set,
the function ignores the

samDesired parameter and
attempts to open the key with
the access required to backup or
restore the key. If the calling
thread has the
SE_BACKUP_NAME privilege
enabled, the key is opened with
ACCESS_SYSTEM_SECURITY
and KEY_READ access. If the
calling thread has the
SE_RESTORE_NAME privilege
enabled, the key is opened with
ACCESS_SYSTEM_SECURITY
and KEY_WRITE access. If both
privileges are enabled, the key
has the combined accesses for
both privileges.
Windows 95: This flag is
ignored. Windows 95 does not
support security in its registry.

samDesired
Specifies an access mask that specifies the desired security access for the new key. This
parameter can be a combination of the following values:

Value Meaning
KEY_ALL_ACCESS Combination of

KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY,
KEY_CREATE_SUB_KEY,
KEY_CREATE_LINK, and
KEY_SET_VALUE access.

KEY_CREATE_LINK Permission to create a symbolic
link.

KEY_CREATE_SUB_KEY Permission to create subkeys.
KEY_ENUMERATE_SUB_KEYS Permission to enumerate subkeys.
KEY_EXECUTE Permission for read access.
KEY_NOTIFY Permission for change notification.
KEY_QUERY_VALUE Permission to query subkey data.
KEY_READ Combination of

KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,
and KEY_NOTIFY access.

KEY_SET_VALUE Permission to set subkey data.
KEY_WRITE Combination of KEY_SET_VALUE

and KEY_CREATE_SUB_KEY
access.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle
can be inherited by child processes. If lpSecurityAttributes is NULL, the handle cannot be
inherited.
Windows NT: The lpSecurityDescriptor member of the structure specifies a security
descriptor for the new key. If lpSecurityAttributes is NULL, the key gets a default security
descriptor.
Windows 95: The lpSecurityDescriptor member of the structure is ignored.

phkResult
Points to a variable that receives the handle of the opened or created key.

lpdwDisposition
Points to a variable that receives one of the following disposition values:

Value Meaning
REG_CREATED_NEW_KEY The key did not exist and was

created.
REG_OPENED_EXISTING_KEYThe key existed and was simply

opened without being changed.
Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe key that the RegCreateKeyEx function creates has no values. An application can use the
RegSetValue or RegSetValueEx function to set key values.

The key identified by the hKey parameter must have been opened with KEY_CREATE_SUB_KEY
access. To open the key, use the RegCreateKeyEx or RegOpenKeyEx function.

An application cannot create a key under HKEY_USERS or HKEY_LOCAL_MACHINE.

An application can use RegCreateKeyEx to temporarily lock a portion of the registry. When the
locking process creates a new key, it receives the disposition value REG_CREATED_NEW_KEY,
indicating that it "owns" the lock. Another process attempting to create the same key receives the
disposition value REG_OPENED_EXISTING_KEY, indicating that another process already owns
the lock.See AlsoRegCloseKey, RegCreateKey, RegDeleteKey, RegOpenKey, RegOpenKeyEx, RegSaveKey,
SECURITY_ATTRIBUTES

RegDeleteKey
Windows 95: The RegDeleteKey function deletes a key and all its descendents.

Windows NT: The RegDeleteKey function deletes the specified key. This function cannot delete
a key that has subkeys.

LONG RegDeleteKey(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey // address of name of subkey to delete

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The key specified by the lpSubKey parameter must be a subkey of the key identified by hKey.

lpSubKey
Points to a null-terminated string specifying the name of the key to delete. This parameter
cannot be NULL, and the specified key must not have subkeys.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf the function succeeds, RegDeleteKey removes the specified key from the registry. The entire
key, including all of its values, is removed.

To open the key, use the RegCreateKeyEx or RegOpenKeyEx function. Do not use the
RegCreateKey or RegOpenKey functions.See AlsoRegCloseKey, RegCreateKeyEx, RegOpenKeyEx

RegDeleteValue
The RegDeleteValue function removes a named value from the specified registry key.

LONG RegDeleteValue(
HKEY hKey, // handle of key
LPCTSTR lpValueName // address of value name

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpValueName
Points to a null-terminated string that names the value to remove. If this parameter is NULL or
points to an empty string, the value set by the RegSetValue function is removed.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe key identified by the hKey parameter must have been opened with KEY_SET_VALUE access
(KEY_WRITE access includes KEY_SET_VALUE access).See AlsoRegSetValue, RegSetValueEx

RegEnumKey
The RegEnumKey function enumerates subkeys of the specified open registry key. The function
retrieves the name of one subkey each time it is called. This function is provided for compatibility
with Windows version 3.1. Win32-based applications should use the RegEnumKeyEx function.

LONG RegEnumKey(
HKEY hKey, // handle of key to query
DWORD dwIndex, // index of subkey to query
LPTSTR lpName, // address of buffer for subkey name
DWORD cbName // size of subkey buffer

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The keys returned are relative to the key identified by hKey.

dwIndex
Specifies the index of the subkey to retrieve. This value should be zero for the first call to the
RegEnumKey function and then incremented for subsequent calls.
Because subkeys are not ordered, any new subkey will have an arbitrary index. This means
that the function may return subkeys in any order.

lpName
Points to a buffer that receives the name of the subkey, including the terminating null
character. This function copies only the name of the subkey, not the full key hierarchy, to the
buffer.

cbName
Specifies the size, in characters, of the buffer pointed to by the lpName parameter, in
characters. To determine the required buffer size, use the RegQueryInfoKey function to
determine the size of the largest subkey for the key identified by the hKey parameter. The
maximum required buffer size is (MAX_PATH + 1) characters.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksTo enumerate subkeys, an application should initially call the RegEnumKey function with the
dwIndex parameter set to zero. The application should then increment the dwIndex parameter and
call the RegEnumKey function until there are no more subkeys (until the function returns
ERROR_NO_MORE_ITEMS).

The application can also set dwIndex to the index of the last key on the first call to the function
and decrement the index until the subkey with index 0 is enumerated. To retrieve the index of the
last subkey, use the RegQueryInfoKey.

While an application is using the RegEnumKey function, it should not make calls to any
registration functions that might change the key being queried.

The key identitied by the hKey parameter must have been opened with
KEY_ENUMERATE_SUB_KEYS access (KEY_READ access includes
KEY_ENUMERATE_SUB_KEYS access). To open the key, use the RegCreateKeyEx or
RegOpenKeyEx function.See AlsoRegCloseKey, RegCreateKeyEx, RegDeleteKey, RegEnumKeyEx, RegOpenKeyEx,
RegQueryInfoKey, RegQueryValue

RegEnumKeyEx
The RegEnumKeyEx function enumerates subkeys of the specified open registry key. The
function retrieves information about one subkey each time it is called. Unlike the RegEnumKey
function, RegEnumKeyEx retrieves the class name of the subkey and the time it was last
modified.

LONG RegEnumKeyEx(
HKEY hKey, // handle of key to enumerate
DWORD dwIndex, // index of subkey to enumerate
LPTSTR lpName, // address of buffer for subkey name
LPDWORD lpcbName, // address for size of subkey buffer
LPDWORD lpReserved, // reserved
LPTSTR lpClass, // address of buffer for class string
LPDWORD lpcbClass, // address for size of class buffer
PFILETIME lpftLastWriteTime // address for time key last written to

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The enumerated keys are subkeys of the key identified by hKey.

dwIndex
Specifies the index of the subkey to retrieve. This parameter should be zero for the first call to
the RegEnumKeyEx function and then incremented for subsequent calls.
Because subkeys are not ordered, any new subkey will have an arbitrary index. This means
that the function may return subkeys in any order.

lpName
Points to a buffer that receives the name of the subkey, including the terminating null
character. The function copies only the name of the subkey, not the full key hierarchy, to the
buffer.

lpcbName
Points to a variable that specifies the size, in characters, of the buffer specified by the lpName
parameter. This size should include the terminating null character. When the function returns,
the variable pointed to by lpcbName contains the number of characters stored in the buffer.
The count returned does not include the terminating null character.

lpReserved
Reserved; must be NULL.

lpClass
Points to a buffer that contains the class of the enumerated subkey when the function returns.
This parameter can be NULL if the class is not required.

lpcbClass
Points to a variable that specifies the size, in characters, of the buffer specified by the lpClass
parameter. The size should include the terminating null character. When the function returns,
lpcbClass contains the number of characters stored in the buffer. The count returned does not
include the terminating null character. This parameter can be NULL only if lpClass is NULL.

lpftLastWriteTime
Points to a variable that receives the time the enumerated subkey was last written to.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksTo enumerate subkeys, an application should initially call the RegEnumKeyEx function with the
dwIndex parameter set to zero. The application should then increment the dwIndex parameter and
call RegEnumKeyEx until there are no more subkeys (until the function returns
ERROR_NO_MORE_ITEMS).

The application can also set dwIndex to the index of the last subkey on the first call to the function
and decrement the index until the subkey with the index 0 is enumerated. To retrieve the index of
the last subkey, use the RegQueryInfoKey function.

While an application is using the RegEnumKeyEx function, it should not make calls to any
registration functions that might change the key being enumerated.

The key identified by hKey must have been opened with KEY_ENUMERATE_SUB_KEYS access
(KEY_READ includes KEY_ENUMERATE_SUB_KEYS). Use the RegCreateKeyEx or
RegOpenKeyEx function to open the key.See AlsoRegCreateKeyEx, RegDeleteKey, RegEnumKey, RegOpenKeyEx, RegQueryInfoKey

RegEnumValue
The RegEnumValue function enumerates the values for the specified open registry key. The
function copies one indexed value name and data block for the key each time it is called.

LONG RegEnumValue(
HKEY hKey, // handle of key to query
DWORD dwIndex, // index of value to query
LPTSTR lpValueName, // address of buffer for value string
LPDWORD lpcbValueName, // address for size of value buffer
LPDWORD lpReserved, // reserved
LPDWORD lpType, // address of buffer for type code
LPBYTE lpData, // address of buffer for value data
LPDWORD lpcbData // address for size of data buffer

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The enumerated values are associated with the key identified by hKey.

dwIndex
Specifies the index of the value to retrieve. This parameter should be zero for the first call to
the RegEnumValue function and then be incremented for subsequent calls.
Because values are not ordered, any new value will have an arbitrary index. This means that
the function may return values in any order.

lpValueName
Points to a buffer that receives the name of the value, including the terminating null character.

lpcbValueName
Points to a variable that specifies the size, in characters, of the buffer pointed to by the
lpValueName parameter. This size should include the terminating null character. When the
function returns, the variable pointed to by lpcbValueName contains the number of characters
stored in the buffer. The count returned does not include the terminating null character.

lpReserved
Reserved; must be NULL.

lpType
Points to a variable that receives the type code for the value entry. The type code can be one
of the following values:

Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian

format (same as REG_DWORD).
In little-endian format, the most
significant byte of a word is the
high-order byte. This is the most
common format for computers
running Windows NT and Windows
95.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format. In big-endian format, the
most significant byte of a word is
the low-order byte.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references to
environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string depending
on whether you use the Unicode or

ANSI functions.
REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be a

Unicode or ANSI string, depending
on whether you use the Unicode or
ANSI functions.

The lpType parameter can be NULL if the type code is not required.
lpData

Points to a buffer that receives the data for the value entry. This parameter can be NULL if the
data is not required.

lpcbData
Points to a variable that specifies the size, in bytes, of the buffer pointed to by the lpData
parameter. When the function returns, the variable pointed to by the lpcbData parameter
contains the number of bytes stored in the buffer. This parameter can be NULL, only if lpData
is NULL.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksTo enumerate values, an application should initially call the RegEnumValue function with the
dwIndex parameter set to zero. The application should then increment dwIndex and call the
RegEnumValue function until there are no more values (until the function returns
ERROR_NO_MORE_ITEMS).

The application can also set dwIndex to the index of the last value on the first call to the function
and decrement the index until the value with index 0 is enumerated. To retrieve the index of the
last value, use the RegQueryInfoKey function.

While using RegEnumValue, an application should not call any registration functions that might
change the key being queried.

The key identified by the hKey parameter must have been opened with KEY_QUERY_VALUE
access. To open the key, use the RegCreateKeyEx or RegOpenKeyEx function.

To determine the maximum size of the name and data buffers, use the RegQueryInfoKey
function.See AlsoRegCreateKeyEx, RegEnumKey, RegEnumKeyEx, RegOpenKeyEx, RegQueryInfoKey

RegFlushKey
The RegFlushKey function writes all the attributes of the specified open key into the registry.

LONG RegFlushKey(
HKEY hKey // handle of key to write

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERSReturn ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIt is not necessary to call RegFlushKey to change a key. Registry changes are flushed to disk by
the registry using its lazy flusher. Registry changes are also flushed to disk at system shutdown.

Unlike RegCloseKey, the RegFlushKey function returns only when all the data has been written
to the registry.

The RegFlushKey function may also write out parts of or all of the other keys. Calling this
function excessively can have a negative effect on an application's performance.

An application should only call RegFlushKey if it requires absolute certainty that registry changes
are on disk. In general, RegFlushKey rarely, if ever, need be used.See AlsoRegCloseKey, RegDeleteKey

RegGetKeySecurity
The RegGetKeySecurity function retrieves a copy of the security descriptor protecting the
specified open registry key.

LONG RegGetKeySecurity(
HKEY hKey, // open handle of key to set
SECURITY_INFORMATION SecurityInformation, // descriptor contents
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of descriptor for key
LPDWORD lpcbSecurityDescriptor // address of size of buffer and descriptor

);ParametershKey
Identifies an open key for which to retrieve the security descriptor.

SecurityInformation
Specifies a SECURITY_INFORMATION structure that indicates the requested security
information.

pSecurityDescriptor
Points to a buffer that receives a copy of the requested security descriptor.

lpcbSecurityDescriptor
Points to a variable that specifies the size, in bytes, of the buffer pointed to by the
pSecurityDescriptor parameter. When the function returns, the variable contains the number
of bytes written to the buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf the buffer specified by the pSecurityDescriptor parameter is too small, the function returns
ERROR_INSUFFICIENT_BUFFER and the lpcbSecurityDescriptor parameter contains the
number of bytes required for the requested security descriptor.

To read the security descriptor for the specified key, the calling process must have been granted
READ_CONTROL access when the key was opened, or it must be the owner of the key.
(READ_CONTROL access is granted by the KEY_READ, KEY_WRITE, KEY_EXECUTE, and
KEY_ALL_ACCESS access rights.) In addition, the caller must have the SE_SECURITY_NAME
privilege to read the system access-control list (SACL).

For more information about security, see Security.See AlsoRegDeleteKey, RegOpenKeyEx, RegSetKeySecurity, SECURITY_INFORMATION

RegisterClass
The RegisterClass function registers a window class for subsequent use in calls to the
CreateWindow or CreateWindowEx function.

The RegisterClass function has been superseded by the RegisterClassEx function. You can still
use RegisterClass, however, if you do not need to set the class small icon.

ATOM RegisterClass(
CONST WNDCLASS *lpWndClass // address of structure with class data

);ParameterslpWndClass
Points to a WNDCLASS structure. You must fill the structure with the appropriate class
attributes before passing it to the function.

Return ValuesIf the function succeeds, the return value is an atom that uniquely identifies the class being
registered.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll window classes that an application registers are unregistered when it terminates.

Windows 95: RegisterClass fails if the cbWndExtra or cbClsExtra member of the WNDCLASS
structure contains more than 40 bytes.See AlsoCreateWindow, CreateWindowEx, GetClassInfo, GetClassName, RegisterClassEx,
UnregisterClass, WindowProc, WNDCLASS

RegisterClassEx
[Now Supported on Windows NT]

The RegisterClassEx function registers a window class for subsequent use in calls to the
CreateWindow or CreateWindowEx function. The RegisterClass function does not allow you to
set the small icon.

ATOM RegisterClassEx(
CONST WNDCLASSEX *lpwcx // address of structure with class data

);Parameterslpwcx
Points to a WNDCLASSEX structure. You must fill the structure with the appropriate class
attributes before passing it to the function.

Return ValuesIf the function succeeds, the return value is an atom that uniquely identifies the class being
registered.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll window classes that an application registers are unregistered when it terminates.

Windows 95: RegisterClassEx fails if the cbWndExtra or cbClsExtra member of the
WNDCLASSEX structure contains more than 40 bytes.See AlsoCreateWindow, CreateWindowEx, GetClassInfoEx, GetClassName, RegisterClass,
UnregisterClass, WindowProc,WNDCLASSEX

RegisterClipboardFormat
The RegisterClipboardFormat function registers a new clipboard format. This format can then be
used as a valid clipboard format.

UINT RegisterClipboardFormat(
LPCTSTR lpszFormat // address of name string

);ParameterslpszFormat
Points to a null-terminated string that names the new format.

Return ValuesIf the function succeeds, the return value identifies the registered clipboard format.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf a registered format with the specified name already exists, a new format is not registered and
the return value identifies the existing format. This enables more than one application to copy and
paste data using the same registered clipboard format. Note that the format name comparison is
case-insensitive.

Registered clipboard formats are identified by values in the range 0xC000 through 0xFFFF.See AlsoCountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName

RegisterDialogClasses
The RegisterDialogClasses function registers any nonstandard window classes required by a
screen saver's configuration dialog box.

BOOL RegisterDialogClasses(
HANDLE hInst // handle of application instance

);ParametershInst
Identifies an instance of the module registering the window classes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe RegisterDialogClasses function should not be exported. It is called by routines defined in
the SCRNSAVE.LIB file.

If a screen saver does not register any special window classes for the configuration dialog box,
the RegisterDialogClasses function must return TRUE.See AlsoScreenSaverConfigureDialog

RegisterEventSource
The RegisterEventSource function returns a handle that can be used with the ReportEvent
function to log an event.

Any source name can be used; it will be carried in the event log record so that Event Viewer can
use it for filtering.

HANDLE RegisterEventSource(
LPCTSTR lpUNCServerName, // server name for source
LPCTSTR lpSourceName // source name for registered handle

);ParameterslpUNCServerName
Points to a null-terminated string that specifies the Universal Naming Convention (UNC) name
of the server on which this operation is to be performed. If this parameter is NULL, the
operation is performed on the local computer.

lpSourceName
Points to a null-terminated string that specifies the name of the source referenced by the
returned handle. The source name must be a subkey of a logfile entry under the EventLog
key in the registry. For example, the source name WinApp would be valid if the registry had
the following form:
HKEY_LOCAL_MACHINE
System
CurrentControlSet

Services
EventLog

Application
WinApp

Security
System
If the source name cannot be found, the event logging service uses the Application logfile
with no message files for the event identifier or category.

Return ValuesIf the function succeeds, the return value is a handle that can be used with the ReportEvent
function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.See AlsoDeregisterEventSource, ReportEvent

RegisterHotKey
The RegisterHotKey function defines a hot key for the current thread.

BOOL RegisterHotKey(
HWND hWnd, // window to receive hot-key notification
int id, // identifier of hot key
UINT fsModifiers, // key-modifier flags
UINT vk // virtual-key code

);ParametershWnd
Identifies the window that will receive WM_HOTKEY messages generated by the hot key. If
this parameter is NULL, WM_HOTKEY messages are posted to the message queue of the
calling thread and must be processed in the message loop.

id
Specifies the identifier of the hot key. No other hot key in the calling thread should have the
same identifier. An application must specify a value in the range 0x0000 through 0xBFFF. A
shared dynamic-link library (DLL) must specify a value in the range 0xC000 through 0xFFFF
(the range returned by the GlobalAddAtom function). To avoid conflicts with hot-key
identifiers defined by other shared DLLs, a DLL should use the GlobalAddAtom function to
obtain the hot-key identifier.

fsModifiers
Specifies keys that must be pressed in combination with the key specified by the nVirtKey
parameter in order to generate the WM_HOTKEY message. The fsModifiers parameter can
be a combination of the following values:

Value Meaning
MOD_ALT Either ALT key must be held down.
MOD_CONTROL Either CTRL key must be held down.
MOD_SHIFT Either SHIFT key must be held down.

vk
Specifies the virtual-key code of the hot key.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksWhen a key is pressed, the system looks for a match against all thread hot keys. Upon finding a
match, the system posts the WM_HOTKEY message to the message queue of the thread that
registered the hot key. This message is posted to the beginning of the queue so it is removed by
the next iteration of the message loop.

This function cannot associate a hot key with a window created by another thread.

RegisterHotKey fails if the keystrokes specified for the hot key have already been registered by
another hot key.

If the window identified by the hWnd parameter already registered a hot key with the same
identifier as that specified by the id parameter, the new values for the fsModifiers and vk
parameters replace the previously specified values for these parameters.See AlsoGlobalAddAtom, UnregisterHotKey, WM_HOTKEY

RegisterServiceCtrlHandler
The RegisterServiceCtrlHandler function registers a function to handle service control requests
for a service.

SERVICE_STATUS_HANDLE RegisterServiceCtrlHandler(
LPCTSTR lpServiceName, // address of name of service
LPHANDLER_FUNCTION lpHandlerProc // address of handler function

);ParameterslpServiceName
Points to a null-terminated string that names the service run by the calling thread. This is the
service name that was specified in the CreateService function when the service was created.

lpHandlerProc
Points to the Handler function to be registered.

Return ValuesIf the function succeeds, the return value is a service status handle.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_INVALID_NAME The specified service name is
invalid.

ERROR_SERVICE_DOES_NOT_EXISTThe specified service does not
exist.

RemarksThe ServiceMain function of a new service should immediately call the
RegisterServiceCtrlHandler function to register a control handling function with the control
dispatcher. This enables the control dispatcher to invoke the specified function when it receives
control requests for this service. The threads of the calling process can use the service status
handle returned by this function to identify the service in subsequent calls to the
SetServiceStatus function.

This function must be called before the first SetServiceStatus call because it returns a service
status handle for the caller to use so that no other service can inadvertently set this service's
status, which is maintained by the service control manager. It also needs to be called before the
first SetServiceStatus so that a control handler is in place to field control requests by the time the
service specifies the controls it accepts through the SetServiceStatus function.

When the control handler function is invoked with a control request, it must call SetServiceStatus
to notify the service control manager of its latest status, regardless of whether the status of the
service has changed.

The service status handle does not have to be closed.See AlsoCreateService, Handler, ServiceMain, SetServiceStatus

RegisterWindowMessage
The RegisterWindowMessage function defines a new window message that is guaranteed to be
unique throughout the system. The returned message value can be used when calling the
SendMessage or PostMessage function.

UINT RegisterWindowMessage(
LPCTSTR lpString // address of message string

);ParameterslpString
Points to a null-terminated string that specifies the message to be registered.

Return ValuesIf the message is successfully registered, the return value is a message identifier in the range
0xC000 through 0xFFFF.

If the function fails, the return value is zero.RemarksThe RegisterWindowMessage function is typically used to register messages for communicating
between two cooperating applications.

If two different applications register the same message string, the applications return the same
message value. The message remains registered until the Windows session ends.

Only use RegisterWindowMessage when more than one application must process the same
message. For sending private messages within a window class, an application can use any
integer in the range WM_USER through 0x7FFF. (Messages in this range are private to a window
class, not to an application. For example, predefined control classes such as BUTTON, EDIT,
LISTBOX, and COMBOBOX may use values in this range.)See AlsoPostAppMessage, PostMessage, SendMessage

RegLoadKey
The RegLoadKey function creates a subkey under HKEY_USER or HKEY_LOCAL_MACHINE
and stores registration information from a specified file into that subkey. This registration
information is in the form of a hive. A hive is a discrete body of keys, subkeys, and values that is
rooted at the top of the registry hierarchy. A hive is backed by a single file and .LOG file.

LONG RegLoadKey(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey, // address of name of subkey
LPCTSTR lpFile // address of filename for registry information

);ParametershKey
Specifies the key where the subkey will be created. This can be a predefined reserved handle
value, or a handle returned by a call to RegConnectRegistry. The predefined reserved
handle values are:
HKEY_LOCAL_MACHINE
HKEY_USERS
This function always loads information at the top of the registry hierarchy. The
HKEY_CLASSES_ROOT and HKEY_CURRENT_USER handle values cannot be specified
for this parameter, because they represent subsets of the HKEY_LOCAL_MACHINE and
HKEY_USERS handle values, respectively.

lpSubKey
Points to a null-terminated string that specifies the name of the key to be created under hKey.
This subkey is where the registration information from the file will be loaded.

lpFile
Points to a null-terminated string containing the name of a file that has registration
information. This file must have been created with the RegSaveKey function. Under the file
allocation table (FAT) file system, the filename may not have an extension.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf hKey is a handle returned by RegConnectRegistry, then the path specified in lpFile is relative
to the remote computer.

Windows NT: The calling process must have the SE_RESTORE_NAME privilege. For more
information about privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoRegConnectRegistry, RegDeleteKey, RegReplaceKey, RegRestoreKey, RegSaveKey,
RegUnloadKey

RegNotifyChangeKeyValue
The RegNotifyChangeKeyValue function notifies the caller about changes to the attributes or
contents of a specified registry key. Note that the function does not notify the caller if the specified
key is deleted.

LONG RegNotifyChangeKeyValue(
HKEY hKey, // handle of key to watch
BOOL bWatchSubtree, // flag for subkey notification
DWORD dwNotifyFilter, // changes to be reported
HANDLE hEvent, // handle of signaled event
BOOL fAsynchronous // flag for asynchronous reporting

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

bWatchSubtree
Specifies a flag that indicates whether to report changes in the specified key and all of its
subkeys or only in the specified key. If this parameter is TRUE, the function reports changes
in the key and its subkeys. If the parameter is FALSE, the function reports changes only in the
key.

dwNotifyFilter
Specifies a set of flags that control which changes should be reported. This parameter can be
a combination of the following values:

Value Meaning
REG_NOTIFY_CHANGE_NAME Notify the caller if a subkey is

added or deleted.
REG_NOTIFY_CHANGE_ATTRIBUTESNotify the caller of changes to

the attributes of the key, such
as the security descriptor
information.

REG_NOTIFY_CHANGE_LAST_SET Notify the caller of changes to
a value of the key. This can
include adding or deleting a
value, or changing an existing
value.

REG_NOTIFY_CHANGE_SECURITY Notify the caller of changes to
the security descriptor of the
key.

hEvent
Identifies an event. If the fAsynchronous parameter is TRUE, the function returns immediately
and changes are reported by signaling this event. If fAsynchronous is FALSE, hEvent is
ignored.

fAsynchronous
Specifies a flag that indicates how the function reports changes. If this parameter is TRUE, the
function returns immediately and reports changes by signaling the specified event. When this
parameter is FALSE, the function does not return until a change has occurred.
If hEvent does not specify a valid event, the fAsynchronous parameter cannot be TRUE.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf the key identified by the hKey parameter is closed, the event is signaled. This means that an
application should not depend on the key being open after returning from a wait operation on the
event.

RegNotifyChangeKeyValue does not work with remote handles. If RegNotifyChangeKeyValue
is called with an hKey value that is a remote handle, it returns ERROR_INVALID_HANDLE.See AlsoRegDeleteKey, RegEnumKey, RegEnumKeyEx, RegEnumValue, RegQueryInfoKey,
RegQueryValue, RegQueryValueEx

RegOpenKey
The RegOpenKey function opens the specified key. This function is provided for compatibility with
Windows version 3.1. Win32-based applications should use the RegOpenKeyEx function.

LONG RegOpenKey(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey, // address of name of subkey to open
PHKEY phkResult // address of handle of open key

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
The key opened by the RegOpenKey function is a subkey of the key identified by hKey.

lpSubKey
Points to a null-terminated string containing the name of the key to open. This key must be a
subkey of the key identified by the hKey parameter. If this parameter is NULL or a pointer to
an empty string, the function returns the same handle that was passed in.

phkResult
Points to a variable that receives the handle of the opened key.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe RegOpenKey function uses the default security access mask to open a key. If opening the
key requires a different mask, the function fails, returning ERROR_ACCESS_DENIED. An
application should use the RegOpenKeyEx function to specify an access mask in this situation.

Unlike the RegCreateKey function, RegOpenKey does not create the specified key if the key
does not exist in the database.See AlsoRegCloseKey, RegCreateKey, RegCreateKeyEx, RegDeleteKey, RegOpenKeyEx

RegOpenKeyEx
The RegOpenKeyEx function opens the specified key.

LONG RegOpenKeyEx(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey, // address of name of subkey to open
DWORD ulOptions, // reserved
REGSAM samDesired, // security access mask
PHKEY phkResult // address of handle of open key

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpSubKey
Points to a null-terminated string containing the name of the subkey to open. If this parameter
is NULL or a pointer to an empty string, the function will open a new handle of the key
identified by the hKey parameter. In this case, the function will not close the handles
previously opened.

ulOptions
Reserved; must be zero.

samDesired
Specifies an access mask that describes the desired security access for the new key. This
parameter can be a combination of the following values:

Value Meaning
KEY_ALL_ACCESS Combination of

KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,
KEY_NOTIFY,
KEY_CREATE_SUB_KEY,
KEY_CREATE_LINK, and
KEY_SET_VALUE access.

KEY_CREATE_LINK Permission to create a symbolic
link.

KEY_CREATE_SUB_KEY Permission to create subkeys.
KEY_ENUMERATE_SUB_KEYS Permission to enumerate subkeys.
KEY_EXECUTE Permission for read access.
KEY_NOTIFY Permission for change notification.
KEY_QUERY_VALUE Permission to query subkey data.
KEY_READ Combination of

KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,
and KEY_NOTIFY access.

KEY_SET_VALUE Permission to set subkey data.
KEY_WRITE Combination of KEY_SET_VALUE

and KEY_CREATE_SUB_KEY
access.

phkResult
Points to a variable that receives the handle of the opened key.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksUnlike the RegCreateKeyEx function, the RegOpenKeyEx function does not create the specified
key if the key does not exist in the registry.

See AlsoRegCloseKey, RegCreateKeyEx, RegDeleteKey, RegOpenKey

RegQueryInfoKey
The RegQueryInfoKey function retrieves information about a specified registry key.

LONG RegQueryInfoKey (
HKEY hKey, // handle of key to query
LPTSTR lpClass, // address of buffer for class string
LPDWORD lpcbClass, // address of size of class string buffer
LPDWORD lpReserved, // reserved
LPDWORD lpcSubKeys, // address of buffer for number of subkeys
LPDWORD lpcbMaxSubKeyLen, // address of buffer for longest subkey name length
LPDWORD lpcbMaxClassLen, // address of buffer for longest class string length
LPDWORD lpcValues, // address of buffer for number of value entries
LPDWORD lpcbMaxValueNameLen, // address of buffer for longest value name length
LPDWORD lpcbMaxValueLen, // address of buffer for longest value data length
LPDWORD lpcbSecurityDescriptor, // address of buffer for security descriptor length
PFILETIME lpftLastWriteTime // address of buffer for last write time

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpClass
Points to a buffer that receives the key's class name. This parameter can be NULL.

lpcbClass
Points to a variable that specifies the size, in characters, of the buffer pointed to by the
lpClass parameter. This size should include the terminating null character. When the function
returns, this variable contains the length of the class string stored in the buffer. The count
returned does not include the terminating null character. If the buffer is not big enough, the
function returns ERROR_MORE_DATA, and the variable contains the size of the string, in
characters, without counting the null character.
If lpClass is NULL, lpcbClass can be NULL.
Windows NT: If the lpClass parameter is a valid address, but the lpcbClass parameter is not
(for example, it is NULL), the function returns ERROR_INVALID_PARAMETER.
Windows 95: If the lpClass parameter is a valid address, but the lpcbClass parameter is not
(for example, it is NULL), the function returns ERROR_SUCCESS instead of
ERROR_INVALID_PARAMETER. To ensure compatibility with other platforms, verify that
lpcbClass is valid before calling the function.

lpReserved
Reserved; must be NULL.

lpcSubKeys
Points to a variable that receives the number of subkeys contained by the specified key. This
parameter can be NULL.

lpcbMaxSubKeyLen
Points to a variable that receives the length, in characters, of the key's subkey with the longest
name. The count returned does not include the terminating null character. This parameter can
be NULL.

lpcbMaxClassLen
Points to a variable that receives the length, in characters, of the longest string specifying a
subkey class. The count returned does not include the terminating null character. This
parameter can be NULL.

lpcValues
Points to a variable that receives the number of values associated with the key. This
parameter can be NULL.

lpcbMaxValueNameLen
Points to a variable that receives the length, in characters, of the key's longest value name.
The count returned does not include the terminating null character. This parameter can be
NULL.

lpcbMaxValueLen
Points to a variable that receives the length, in bytes, of the longest data component among
the key's values. This parameter can be NULL.

lpcbSecurityDescriptor
Points to a variable that receives the length, in bytes, of the key's security descriptor. This
parameter can be NULL.

lpftLastWriteTime
Pointer to a FILETIME structure. This parameter can be NULL.
If you are querying the registry on a computer running Windows NT, the function sets the
members of the FILETIME structure to indicate the last time that the key or any of its value
entries was modified.
If you are querying the registry on a computer running Windows 95, the function sets the
members of the FILETIME structure to zero. This is because the Windows 95 operating
system does not keep track of registry key last write time information.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe key identified by the hKey parameter must have been opened with KEY_QUERY_VALUE
access (KEY_READ access includes KEY_QUERY_VALUE access).See AlsoFILETIME, RegDeleteKey, RegEnumKey, RegEnumKeyEx, RegEnumValue, RegQueryValue,
RegQueryValueEx

RegQueryMultipleValues
The RegQueryMultipleValues function retrieves the type and data for a list of value names
associated with an open registry key.

LONG RegQueryMultipleValues(
HKEY hKey, // handle of key to query
PVALENT val_list, // address of array of value entry structures
DWORD num_vals, // size of array of value entry structures
LPTSTR lpValueBuf, // address of buffer for value information
LPDWORD ldwTotsize // address of size of value buffer

);ParametershKey
Identifies a currently open key or any of the pre-defined reserved handle values:
HKEY_CLASSES_ROOT
HEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

val_list
Address of an array of VALENT structures that describe one or more value entries. On input,
the ve_valuename member of each structure must contain a pointer to the name of a value to
retrieve. The function fails if any of the specified values do not exist in the specified key.
If the function succeeds, each element of the array contains the information for the specified
value.

num_vals
Specifies the number of elements in the val_list array.

lpValueBuf
Pointer to a buffer. If the function succeeds, the buffer receives the data for each value.
If lpValueBuf is NULL, the function returns success, and ldwTotsize returns the required size,
in bytes, of the buffer.

ldwTotsize
Pointer to a value that specifies the size, in bytes, of the buffer pointed to by the lpValueBuf
parameter. If the function succeeds, ldwTotsize returns the number of bytes copied to the
buffer. If the function fails because the buffer is too small, ldwTotsize receives the required
size, in bytes.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is one of the following error codes:

Value Meaning

ERROR_CANTREAD RegQueryMultipleValues cannot
instantiate or access the provider
of the dynamic key.

ERROR_MORE_DATA The buffer pointed to by
lpValueBuf was too small. In this
case, ldwTotsize returns the
required buffer size.

ERROR_TRANSFER_TOO_LONGThe total length of the requested
data (size of the val_list array +
ldwTotSize) is more than the
system limit of one megabyte.

RemarksThe RegQueryMultipleValues function allows an application to query one or more values of a
static or dynamic key. If the target key is a static key, the system provides all of the values in an
atomic fashion. To prevent excessive serialization, the aggregate data returned by the function
can not exceed one megabyte.

If the target key is a dynamic key, its provider must provide all the values in an atomic fashion.
This means the provider should fill the results buffer synchronously, providing a consistent view of
all the values in the buffer while avoiding excessive serialization. The provider can provide at most
one megabyte of total output data during an atomic call to this function.

RegQueryMultipleValues is supported remotely; that is, the hKey parameter passed to the
function can refer to a remote computer.See AlsoVALENT

RegQueryValue
The RegQueryValue function retrieves the value associated with the unnamed value for a
specified key in the registry. Values in the registry have name, type, and data components. This
function retrieves the data for a key's first value that has a NULL name. This function is provided
for compatibility with Windows version 3.1. Win32-based applications should use the
RegQueryValueEx function.

LONG RegQueryValue(
HKEY hKey, // handle of key to query
LPCTSTR lpSubKey, // address of name of subkey to query
LPTSTR lpValue, // address of buffer for returned string
PLONG lpcbValue // address of buffer for size of returned string

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpSubKey
Points to a null-terminated string containing the name of the subkey of the hKey parameter for
which a value is to be retrieved. If this parameter is NULL or points to an empty string, the
function retrieves the value set by the RegSetValue function for the key identified by hKey.

lpValue
Points to a buffer that receives the value associated with the lpSubKey parameter. The buffer
should be big enough to contain the terminating null character. This parameter can be NULL if
the data is not required.
If lpValue is NULL, and lpcbValue is not NULL, the function places the size in bytes of the
data referenced by the value key, including the terminating null character, into the variable
pointed to by lpcbValue. This lets an application determine how to best preallocate a buffer for
the value key's data.

lpcbValue
Points to a variable specifying the size, in bytes, of the buffer pointed to by the lpValue
parameter. When the function returns, this variable contains the size of the data copied to
lpValue, including the terminating null character.
If the buffer specified by lpValue parameter is not large enough to hold the data, the function
returns the value ERROR_MORE_DATA, and stores the required buffer size, in bytes, into
the variable pointed to by lpcbValue.
If lpValue is NULL, the function returns ERROR_SUCCESS, and stores the size of the string,
in bytes, into the variable pointed to by lpcbValue. This lets an application determine the best
way to allocate a buffer for the value key's data.
In all cases the value returned in lpcbValue always includes the size of the terminating null
character in the string.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe key identified by the hKey parameter must have been opened with KEY_QUERY_VALUE
access (KEY_READ access includes KEY_QUERY_VALUE access).

If the ANSI version of this function is used (either by explicitly calling RegQueryValue or by not
defining Unicode before including the WINDOWS.H file), this function converts the stored Unicode
string to an ANSI string before copying it to the buffer specified by the lpValue parameter.See AlsoRegEnumKey, RegEnumKeyEx, RegEnumValue, RegQueryInfoKey, RegQueryValueEx,
RegSetValue, RegSetValueEx

RegQueryValueEx
The RegQueryValueEx function retrieves the type and data for a specified value name
associated with an open registry key.

LONG RegQueryValueEx(
HKEY hKey, // handle of key to query
LPTSTR lpValueName, // address of name of value to query
LPDWORD lpReserved, // reserved
LPDWORD lpType, // address of buffer for value type
LPBYTE lpData, // address of data buffer
LPDWORD lpcbData // address of data buffer size

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpValueName
Points to a null-terminated string containing the name of the value to be queried.

lpReserved
Reserved; must be NULL.

lpType
Points to a variable that receives the key's value type. The value returned through this
parameter will be one of the following:

Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian

format (same as REG_DWORD).
In little-endian format, the most
significant byte of a word is the
high-order byte. This is the most
common format for computers
running Windows NT and Windows
95.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format. In big-endian format, the
most significant byte of a word is
the low-order byte.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references to
environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be a

Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

The lpType parameter can be NULL if the type is not required.

lpData
Points to a buffer that receives the value's data. This parameter can be NULL if the data is not
required.

lpcbData
Points to a variable that specifies the size, in bytes, of the buffer pointed to by the lpData
parameter. When the function returns, this variable contains the size of the data copied to
lpData.
If the buffer specified by lpData parameter is not large enough to hold the data, the function
returns the value ERROR_MORE_DATA, and stores the required buffer size, in bytes, into
the variable pointed to by lpcbData.
If lpData is NULL, and lpcbData is non-NULL, the function returns ERROR_SUCCESS, and
stores the size of the data, in bytes, in the variable pointed to by lpcbData. This lets an
application determine the best way to allocate a buffer for the value key's data.
If the data has the REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ type, then lpData will
also include the size of the terminating null character.
The lpcbData parameter can be NULL only if lpData is NULL.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe key identified by hKey must have been opened with KEY_QUERY_VALUE access. To open
the key, use the RegCreateKeyEx or RegOpenKeyEx function.

This function does not expand the environment-variable names in the value data when the value
type is REG_EXPAND_SZ. The ExpandEnvironmentStrings function can be used to expand the
environment-variable names.

If the value data has the REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ type, and the ANSI
version of this function is used (either by explicitly calling RegQueryValueEx or by not defining
Unicode before including the WINDOWS.H file), this function converts the stored Unicode string to
an ANSI string before copying it to the buffer pointed to by lpData.

When calling the RegQueryValueEx function with hKey set to the
HKEY_PERFORMANCE_DATA handle and a value string of a specified object, the returned data
structure sometimes has unrequested objects. Don't be surprised; this is normal behavior. When
calling the RegQueryValueEx function, you should always expect to walk the returned data
structure to look for the requested object.See AlsoExpandEnvironmentStrings, RegCreateKeyEx, RegEnumKey, RegEnumKeyEx,
RegEnumValue, RegOpenKeyEx, RegQueryInfoKey, RegQueryValue

RegReplaceKey
The RegReplaceKey function replaces the file backing a key and all its subkeys with another file,
so that when the system is next started, the key and subkeys will have the values stored in the
new file.

LONG RegReplaceKey(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey, // address of name of subkey
LPCTSTR lpNewFile, // address of filename for file with new data
LPCTSTR lpOldFile // address of filename for backup file

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpSubKey
Points to a null-terminated string containing the name of a key whose subkeys and values are
replaced by this function. This key must be a subkey of the key identified by the hKey
parameter. This parameter can be NULL.
The selected key must be the root of a hive; that is, it must be an immediate descendent of
HKEY_LOCAL_MACHINE or HKEY_USERS.

lpNewFile
Points to a null-terminated string containing the name of the file with registration information.
This file is typically created by using the RegSaveKey function. Under the file allocation table
(FAT) file system, the filename may not have an extension.

lpOldFile
Points to a null-terminated string containing the name of a file that receives a backup copy of
the registry information being replaced. If this file is created under the FAT file system, it
should not have an extension.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThe file specified by the lpNewFile parameter remains open until the system is restarted.

If hKey is a handle returned by RegConnectRegistry, then the paths specified in lpNewFile and
lpOldFile are relative to the remote computer.

Windows NT: The calling process must have the SE_RESTORE_NAME privilege. For more
information about privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoRegConnectRegistry, RegDeleteKey, RegLoadKey, RegRestoreKey

RegRestoreKey
The RegRestoreKey function reads the registry information in a specified file and copies it over
the specified key. This registry information may be in the form of a key and multiple levels of
subkeys.

LONG RegRestoreKey(
HKEY hKey, // handle of key where restore begins
LPCTSTR lpFile, // address of filename containing saved tree
DWORD dwFlags // optional flags

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
Any information contained in this key and its descendent keys is overwritten by the
information in the file pointed to by the lpFile parameter.

lpFile
Points to a null-terminated string containing the name of the file with registry information. This
file is typically created by using the RegSaveKey function. Under the file allocation table
(FAT) file system, the filename may not have an extension.

dwFlags
Specifies a flag indicating whether the key is volatile. (A volatile key is valid only until the next
time the system is started.) This parameter is optional; if no value is specified, the key is not
volatile.
This parameter can be the REG_WHOLE_HIVE_VOLATILE flag set. Instead of restoring the
given key, this flag causes a new, volatile (memory only) set of registry information to be
created. (A hive is a large set of registry information, typically containing all of the pertinent
information for part of the system. For example, HKEY_LOCAL_MACHINE\Hardware is a
volatile hive.)
If REG_WHOLE_HIVE_VOLATILE is specified, the key identified by the hKey parameter must
be either the HKEY_USERS or HKEY_LOCAL_MACHINE value.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf any subkeys of the hKey parameter are open, RegRestoreKey fails. The function also fails if
the calling process does not have the SE_RESTORE_NAME privilege. For more information
about privileges, see Privileges.

This function replaces the keys and values below the specified key with the keys and values that
are subsidiary to the top-level key in the file, no matter what the name of the top-level key in the
file might be. For example, hKey might identify a key A with subkeys B and C, while the lpFile
parameter specifies a file containing key X with subkeys Y and Z. After a call to RegRestoreKey,
the registry would contain key A with subkeys Y and Z. The value entries of A would be replaced
by the value entries of X.

The new information in the file specified by lpFile overwrites the contents of the key specified by
the hKey parameter, except for the key name.

If hKey represents a key in a remote computer, the path described by lpFile is relative to the
remote computer.See AlsoRegDeleteKey, RegLoadKey, RegReplaceKey, RegSaveKey

RegSaveKey
The RegSaveKey function saves the specified key and all of its subkeys and values to a new file.

LONG RegSaveKey(
HKEY hKey, // handle of key where save begins
LPCTSTR lpFile, // address of filename to save to
LPSECURITY_ATTRIBUTES lpSecurityAttributes // address of security structure

);ParametershKey
Specifies a handle of the key where the save operation is to begin, or any of the following
predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpFile
Points to a null-terminated string containing the name of the file in which the specified key and
subkeys are saved. This file cannot already exist. If this filename includes an extension, it
cannot be used on file allocation table (FAT) file systems by the RegLoadKey,
RegReplaceKey, or RegRestoreKey function.

lpSecurityAttributes
Windows NT: Pointer to a SECURITY_ATTRIBUTES structure that specifies a security
descriptor for the new file. If lpSecurityAttributes is NULL, the file gets a default security
descriptor.
Windows 95: This parameter is ignored.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf hKey represents a key on a remote computer, the path described by lpFile is relative to the
remote computer.

The RegSaveKey function saves only nonvolatile keys. It does not save volatile keys. A key is
made volatile or nonvolatile at its creation; see RegCreateKeyEx.

Windows NT: The calling process must have the SE_BACKUP_NAME privilege. For more
information about privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoRegCreateKeyEx, RegDeleteKey, RegLoadKey, RegReplaceKey, RegRestoreKey,
SECURITY_ATTRIBUTES

RegSetKeySecurity
The RegSetKeySecurity function sets the security of an open registry key.

LONG RegSetKeySecurity(
HKEY hKey, // open handle of key to set
SECURITY_INFORMATION SecurityInformation, // descriptor contents
PSECURITY_DESCRIPTOR pSecurityDescriptor // address of descriptor for key

);ParametershKey
Identifies an open key for which the security descriptor is set.

SecurityInformation
Specifies a SECURITY_INFORMATION structure that indicates the contents of the supplied
security descriptor.
Because subkeys are not ordered, any new subkey will have an arbitrary index. This means
the function may return subkeys in any order.

pSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure that specifies the security attributes to set for
the specified key.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThis function succeeds only if the following conditions are met:

· If the key's owner or group is being set, the caller must have WRITE_OWNER permission
or have the SE_TAKE_OWNERSHIP_NAME privilege.

· If the key's discretionary access-control list (DACL) is being set, the caller must have
WRITE_DAC permission or be the object's owner.

· If the key's system access-control list (SACL) is being set, the caller must have the
SE_SECURITY_NAME privilege.

If hKey is one of the predefined keys, the predefined key should be closed with RegCloseKey.
That ensures that the new security information is in effect the next time the predefined key is
referenced.See AlsoRegCloseKey, RegDeleteKey, RegGetKeySecurity, SECURITY_INFORMATION

RegSetValue
The RegSetValue function associates a value with a specified key. This value must be a text
string and cannot have a name. This function is provided for compatibility with Windows version 3.
1. Win32-based applications should use the RegSetValueEx function, which allows an application
to set any number of named values of any data type.

LONG RegSetValue(
HKEY hKey, // handle of key to set value for
LPCTSTR lpSubKey, // address of subkey name
DWORD dwType, // type of value
LPCTSTR lpData, // address of value data
DWORD cbData // size of value data

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpSubKey
Points to a null-terminated string containing the name of the subkey with which a value is
associated. This parameter can be null or a pointer to an empty string. In this case, the value
will be added to the key identified by the hKey parameter.

dwType
Specifies the type of information to be stored. This parameter must be the REG_SZ type. To
store other data types, use the RegSetValueEx function.

lpData
Points to a null-terminated string containing the value to set for the specified key.

cbData
Specifies the length, in bytes, of the string pointed to by the lpData parameter, not including
the terminating null character.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksIf the key specified by the lpSubKey parameter does not exist, the RegSetValue function creates
it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the registry. This helps the registry perform efficiently.

The key identified by the hKey parameter must have been opened with KEY_SET_VALUE
access. To open the key, use the RegCreateKeyEx or RegOpenKeyEx function. If the ANSI
version of this function is used (either by explicitly calling RegSetValue or by not defining Unicode
before including the WINDOWS.H file), the lpData parameter must be an ANSI character string.
The string is converted to Unicode before it is stored in the registry.See AlsoRegCreateKeyEx, RegFlushKey, RegOpenKeyEx, RegQueryValue, RegQueryValueEx,
RegSetValueEx

RegSetValueEx
The RegSetValueEx function stores data in the value field of an open registry key. It can also set
additional value and type information for the specified key.

LONG RegSetValueEx(
HKEY hKey, // handle of key to set value for
LPCTSTR lpValueName, // address of value to set
DWORD Reserved, // reserved
DWORD dwType, // flag for value type
CONST BYTE *lpData, // address of value data
DWORD cbData // size of value data

);ParametershKey
Identifies a currently open key or any of the following predefined reserved handle values:
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS

lpValueName
Points to a string containing the name of the value to set. If a value with this name is not
already present in the key, the function adds it to the key.
If this parameter is NULL or points to an empty string and the dwType parameter is the
REG_SZ type, this function sets the same value the RegSetValue function would set.

Reserved
Reserved; must be zero.

dwType
Specifies the type of information to be stored as the value's data. This parameter can be one
of the following values:

Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian

format (same as REG_DWORD).
In little-endian format, the most
significant byte of a word is the
high-order byte. This is the most
common format for computers
running Windows NT and Windows
95.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format. In big-endian format, the
most significant byte of a word is
the low-order byte.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references to
environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be a

Unicode or ANSI string depending
on whether you use the Unicode or

ANSI functions.

lpData
Points to a buffer containing the data to be stored with the specified value name.

cbData
Specifies the size, in bytes, of the information pointed to by the lpData parameter. If the data
is of type REG_SZ, REG_EXPAND_SZ, or REG_MULTI_SZ, cbData must include the size of
the terminating null character.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksValue lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the registry. This helps the registry perform efficiently.
Application elements such as icons, bitmaps, and executable files should be stored as files and
not be placed in the registry.

The key identified by the hKey parameter must have been opened with KEY_SET_VALUE
access. To open the key, use the RegCreateKeyEx or RegOpenKeyEx function.

If dwType is the REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ type and the ANSI version of
this function is used (either by explicitly calling RegSetValueEx or by not defining Unicode before
including the WINDOWS.H file), the data pointed to by the lpData parameter must be an ANSI
character string. The string is converted to Unicode before it is stored in the registry.See AlsoRegCreateKeyEx, RegFlushKey, RegOpenKeyEx, RegQueryValue, RegQueryValueEx,
RegSetValue

RegUnLoadKey
The RegUnLoadKey function unloads the specified key and subkeys from the registry.

LONG RegUnLoadKey(
HKEY hKey, // handle of open key
LPCTSTR lpSubKey // address of name of subkey to unload

);ParametershKey
Specifies the key to be unloaded. This can be a predefined reserved handle value, or a
handle returned by a call to RegConnectRegistry. The predefined reserved handle values
are:
HKEY_LOCAL_MACHINE
HKEY_USERS

lpSubKey
Points to a null-terminated string containing the name of the subkey to be unloaded. The key
referred to by the lpSubKey parameter must have been created by using the RegLoadKey
function.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H. You can
use the FormatMessage function with the FORMAT_MESSAGE_FROM_SYSTEM flag to get a
generic description of the error.RemarksThis function removes a hive from the registry but does not modify the file containing the registry
information. A hive is a discrete body of keys, subkeys, and values that is rooted at the top of the
registry hierarchy.

Windows NT: The calling process must have the SE_RESTORE_NAME privilege. For more
information about privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoRegConnectRegistry, RegDeleteKey, RegLoadKey, RegRestoreKey

ReleaseCapture
The ReleaseCapture function releases the mouse capture from a window in the current thread
and restores normal mouse input processing. A window that has captured the mouse receives all
mouse input, regardless of the position of the cursor, except when a mouse button is clicked while
the cursor hot spot is in the window of another thread.

BOOL ReleaseCapture(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksAn application calls this function after calling the SetCapture function.

Windows 95: Calling this function causes the window that is losing the mouse capture to receive
a WM_CAPTURECHANGED message.See AlsoGetCapture, SetCapture, WM_CAPTURECHANGED

ReleaseDC
The ReleaseDC function releases a device context (DC), freeing it for use by other applications.
The effect of the ReleaseDC function depends on the type of device context. It frees only
common and window device contexts. It has no effect on class or private device contexts.

int ReleaseDC(
HWND hWnd, // handle of window
HDC hDC // handle of device context

);ParametershWnd
Identifies the window whose device context is to be released.

hDC
Identifies the device context to be released.

Return ValuesThe return value specifies whether the device context is released. If the device context is
released, the return value is 1.

If the device context is not released, the return value is zero.RemarksThe application must call the ReleaseDC function for each call to the GetWindowDC function and
for each call to the GetDC function that retrieves a common device context.

An application cannot use the ReleaseDC function to release a device context that was created
by calling the CreateDC function; instead, it must use the DeleteDC function.See AlsoCreateDC, DeleteDC, GetDC, GetWindowDC

ReleaseMutex
The ReleaseMutex function releases ownership of the specified mutex object.

BOOL ReleaseMutex(
HANDLE hMutex // handle of mutex object

);ParametershMutex
Identifies the mutex object. The CreateMutex or OpenMutex function returns this handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe ReleaseMutex function fails if the calling thread does not own the mutex object.

A thread gets ownership of a mutex by specifying a handle of the mutex in one of the wait
functions. The thread that creates a mutex object can also get immediate ownership without using
one of the wait functions. When the owning thread no longer needs to own the mutex object, it
calls the ReleaseMutex function.

While a thread has ownership of a mutex, it can specify the same mutex in additional wait-
function calls without blocking its execution. This prevents a thread from deadlocking itself while
waiting for a mutex that it already owns. However, to release its ownership, the thread must call
ReleaseMutex once for each time that the mutex satisfied a wait.See AlsoCreateMutex

ReleaseSemaphore
The ReleaseSemaphore function increases the count of the specified semaphore object by a
specified amount.

BOOL ReleaseSemaphore(
HANDLE hSemaphore, // handle of the semaphore object
LONG lReleaseCount, // amount to add to current count
LPLONG lpPreviousCount // address of previous count

);ParametershSemaphore
Identifies the semaphore object. The CreateSemaphore or OpenSemaphore function returns
this handle.
Windows NT: This handle must have SEMAPHORE_MODIFY_STATE access. For more
information, see Interprocess Synchronization Objects.

lReleaseCount
Specifies the amount by which the semaphore object's current count is to be increased. The
value must be greater than zero. If the specified amount would cause the semaphore's count
to exceed the maximum count that was specified when the semaphore was created, the count
is not changed and the function returns FALSE.

lpPreviousCount
Points to a 32-bit variable to receive the previous count for the semaphore. This parameter
can be NULL if the previous count is not required.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe state of a semaphore object is signaled when its count is greater than zero and nonsignaled
when its count is equal to zero. The process that calls the CreateSemaphore function specifies
the semaphore's initial count. Each time a waiting thread is released because of the semaphore's
signaled state, the count of the semaphore is decreased by one.

Typically, an application uses a semaphore to limit the number of threads using a resource.
Before a thread uses the resource, it specifies the semaphore handle in a call to one of the wait
functions. When the wait function returns, it decreases the semaphore's count by one. When the
thread has finished using the resource, it calls ReleaseSemaphore to increase the semaphore's
count by one.

Another use of ReleaseSemaphore is during an application's initialization. The application can
create a semaphore with an initial count of zero. This sets the semaphore's state to nonsignaled
and blocks all threads from accessing the protected resource. When the application finishes its
initialization, it uses ReleaseSemaphore to increase the count to its maximum value, to permit
normal access to the protected resource.See AlsoCreateSemaphore, OpenSemaphore

RemoveDirectory
The RemoveDirectory function deletes an existing empty directory.

BOOL RemoveDirectory(
LPCTSTR lpPathName // address of directory to remove

);ParameterslpPathName
Points to a null-terminated string that specifies the path of the directory to be removed. The
path must specify an empty directory, and the calling process must have delete access to the
directory.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateDirectory

RemoveFontResource
The RemoveFontResource function removes the fonts in the specified file from the Windows font
table.

BOOL RemoveFontResource(
LPCTSTR lpFileName // address of font-resource filename

);ParameterslpFileName
Points to a null-terminated string that names a font resource file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application that adds or removes fonts from the Windows public font table should notify other
windows of the change by sending a WM_FONTCHANGE message to all top-level windows in the
system. The application sends this message by calling the SendMessage function with the hwnd
parameter set to HWND_BROADCAST.

If there are outstanding references to a font, the associated resource remains loaded until no
device context is using it.See AlsoAddFontResource, SendMessage

RemoveMenu
The RemoveMenu function deletes a menu item from the specified menu. If the menu item opens
a drop-down menu or submenu, RemoveMenu does not destroy the menu or its handle, allowing
the menu to be reused. Before this function is called, the GetSubMenu function should retrieve
the handle of the drop-down menu or submenu.

BOOL RemoveMenu(
HMENU hMenu, // handle of menu
UINT uPosition, // menu item identifier or position
UINT uFlags // menu item flag

);ParametershMenu
Identifies the menu to be changed.

uPosition
Specifies the menu item to be deleted, as determined by the uFlags parameter.

uFlags
Specifies how the uPosition parameter is interpreted. This parameter must be one of the
following values:

Value Meaning
MF_BYCOMMAND Indicates that uPosition gives the identifier of

the menu item. If neither the
MF_BYCOMMAND nor MF_BYPOSITION
flag is specified, the MF_BYCOMMAND flag
is the default flag.

MF_BYPOSITION Indicates that uPosition gives the zero-based
relative position of the menu item.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe application must call the DrawMenuBar function whenever a menu changes, whether or not
the menu is in a displayed window.See AlsoCreatePopupMenu, DeleteMenu, DrawMenuBar, GetSubMenu

RemoveProp
The RemoveProp function removes an entry from the property list of the specified window. The
specified character string identifies the entry to be removed.

HANDLE RemoveProp(
HWND hWnd, // handle to window
LPCTSTR lpString // atom or address of string

);ParametershWnd
Identifies the window whose property list is to be changed.

lpString
Points to a null-terminated character string or contains an atom that identifies a string. If this
parameter is an atom, it must have been created using the AddAtom function. The atom, a
16-bit value, must be placed in the low-order word of lpString; the high-order word must be
zero.

Return ValuesIf the function succeeds, the return value identifies the specified string. If the string cannot be
found in the specified property list, the return value is NULL.RemarksAn application must free the data handles associated with entries removed from a property list.
The application can remove only those properties it has added. It must not remove properties
added by other applications or by Windows itself.

The RemoveProp function returns the data handle associated with the string so that the
application can free the data associated with the handle.See AlsoAddAtom, EnumProps, EnumPropsEx, GetProp, SetProp

ReplaceText
The ReplaceText function creates a system-defined modeless dialog box that lets the user
specify a string to search for and a replacement string, as well as options to control the find and
replace operations.

HWND ReplaceText(
LPFINDREPLACE lpfr // pointer to structure with initialization data

);Parameterslpfr
Pointer to a FINDREPLACE structure that contains information used to initialize the dialog
box. The dialog box uses this structure to send information about the user's input to your
application. For more information, see the following Remarks section.

Return ValuesIf the function succeeds, the return value is the window handle to the dialog box. You can use the
window handle to communicate with the dialog box or close it.

If the function fails, the return value is NULL. To get extended error information, call the
CommDlgExtendedError function, which can return one of the following error codes:

CDERR_FINDRESFAILURE CDERR_MEMLOCKFAILURE

CDERR_INITIALIZATION CDERR_NOHINSTANCE
CDERR_LOADRESFAILURE CDERR_NOHOOK
CDERR_LOADSTRFAILURE CDERR_NOTEMPLATE
CDERR_LOCKRESFAILURE CDERR_STRUCTSIZE
CDERR_MEMALLOCFAILURE FRERR_BUFFERLENGTHZERO
RemarksThe ReplaceText function does not perform a text replacement operation. Instead, the dialog box

sends FINDMSGSTRING registered messages to the window procedure of the owner window of
the dialog box. When you create the dialog box, the hwndOwner member of the FINDREPLACE
structure identifies the owner window.

Before calling ReplaceText, you must call the RegisterWindowMessage function to get the
identifier for the FINDMSGSTRING message. The dialog box procedure uses this identifier to
send messages when the user clicks the Find Next, Replace, or Replace All buttons, or when the
dialog box is closing. The lParam parameter of a FINDMSGSTRING message contains a pointer
to the FINDREPLACE structure. The Flags member of this structure indicates the event that
caused the message. Other members of the structure indicate the user's input.

If you create a Replace dialog box, you must also use the IsDialogMessage function in the main
message loop of your application to ensure that the dialog box correctly processes keyboard
input, such as the TAB and ESC keys. The IsDialogMessage function returns a value that
indicates whether the Replace dialog box processed the message.

You can provide an FRHookProc hook procedure for a Replace dialog box. The hook procedure
can process messages sent to the dialog box. To enable a hook procedure, set the
FR_ENABLEHOOK flag in the Flags member of the FINDREPLACE structure and specify the
address of the hook procedure in the lpfnHook member.See AlsoCommDlgExtendedError, FINDREPLACE, FRHookProc, IsDialogMessage,
RegisterWindowMessage, WM_CTLCOLORDLG

ReplyMessage
The ReplyMessage function is used to reply to a message sent through the SendMessage
function without returning control to the function that called SendMessage.

BOOL ReplyMessage(
LRESULT lResult // message-specific reply

);ParameterslResult
Specifies the result of the message processing. The possible values are based on the
message sent.

Return ValuesIf the calling thread was processing a message sent from another thread or process, the return
value is nonzero.

If the calling thread was not processing a message sent from another thread or process, the
return value is zero.RemarksBy calling this function, the window procedure that receives the message allows the thread that
called SendMessage to continue to run as though the thread receiving the message had returned
control. The thread that calls the ReplyMessage function also continues to run.

If the message was not sent through SendMessage or if the message was sent by the same
thread, ReplyMessage has no effect.See AlsoInSendMessage, SendMessage

ReportEvent
The ReportEvent function writes an entry at the end of the specified event log.

BOOL ReportEvent(
HANDLE hEventLog, // handle returned by RegisterEventSource
WORD wType, // event type to log
WORD wCategory, // event category
DWORD dwEventID, // event identifier
PSID lpUserSid, // user security identifier (optional)
WORD wNumStrings, // number of strings to merge with message
DWORD dwDataSize, // size of binary data, in bytes
LPCTSTR *lpStrings, // array of strings to merge with message
LPVOID lpRawData // address of binary data

);ParametershEventLog
Identifies the event log. This handle is returned by the RegisterEventSource function.

wType
Specifies the type of event being logged. This parameter can be one of the following values:

Value Meaning
EVENTLOG_ERROR_TYPE Error event
EVENTLOG_WARNING_TYPE Warning event
EVENTLOG_INFORMATION_TYPEInformation event
EVENTLOG_AUDIT_SUCCESS Success Audit event
EVENTLOG_AUDIT_FAILURE Failure Audit event

For more information about event types, see Event Logging.
wCategory

Specifies the event category. This is source-specific information; the category can have any
value.

dwEventID
Specifies the event identifier. The event identifier specifies the message that goes with this
event as an entry in the message file associated with the event source.

lpUserSid
Points to the current user's security identifier. This parameter can be NULL if the security
identifier is not required.

wNumStrings
Specifies the number of strings in the array pointed to by the lpStrings parameter. A value of
zero indicates that no strings are present.

dwDataSize
Specifies the number of bytes of event-specific raw (binary) data to write to the log. If this
parameter is zero, no event-specific data is present.

lpStrings
Points to a buffer containing an array of null-terminated strings that are merged into the
message before Event Viewer displays the string to the user. This parameter must be a valid
pointer (or NULL), even if wNumStrings is zero.

lpRawData
Points to the buffer containing the binary data. This parameter must be a valid pointer (or
NULL), even if the dwDataSize parameter is zero.

Return ValuesIf the function succeeds, the return value is nonzero, indicating that the entry was written to the
log.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThis function is used to log an event. The entry is written to the end of the configured logfile for the
source identified by the hEventLog parameter. The ReportEvent function adds the time, the user
name, the entry's length, and the offsets before storing the entry in the log.See AlsoClearEventLog, CloseEventLog, OpenEventLog, ReadEventLog, RegisterEventSource

ResetDC
The ResetDC function updates the given printer or plotter device context, based on the
information in the specified structure.

HDC ResetDC(
HDC hdc, // handle of device context
CONST DEVMODE *lpInitData // address of structure with device context information

);Parametershdc
Identifies the device context to update.

lpInitData
Points to a DEVMODE structure containing information about the new device context.

Return ValuesIf the function succeeds, the return value is the handle of the original device context.

If the function fails, the return value is NULL.RemarksAn application will typically use the ResetDC function when a window receives a
WM_DEVMODECHANGE message. ResetDC can also be used to change the paper orientation
or paper bins while printing a document.

The ResetDC function cannot be used to change the driver name, device name, or the output
port. When the user changes the port connection or device name, the application must delete the
original device context and create a new device context with the new information.

An application can pass an information device context to the ResetDC function. In that situation,
ResetDC will always return a printer device context.See AlsoDeviceCapabilities, DEVMODE, Escape

ResetEvent
The ResetEvent function sets the state of the specified event object to nonsignaled.

BOOL ResetEvent(
HANDLE hEvent // handle of event object

);ParametershEvent
Identifies the event object. The CreateEvent or OpenEvent function returns this handle.
Windows NT: The handle must have EVENT_MODIFY_STATE access. For more
information, see Interprocess Synchronization Objects.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe state of an event object remains nonsignaled until it is explicitly set to signaled by the
SetEvent or PulseEvent function. This nonsignaled state blocks the execution of any threads that
have specified the event object in a call to one of the wait functions.

The ResetEvent function is used primarily for manual-reset event objects, which must be set
explicitly to the nonsignaled state. Auto-reset event objects automatically change from signaled to
nonsignaled after a single waiting thread is released.See AlsoCreateEvent, OpenEvent, PulseEvent, SetEvent

ResetPrinter
The ResetPrinter function lets an application specify the data type and device mode values that
are used for printing documents submitted by the StartDocPrinter function. These values can be
overridden by using the SetJob function once document printing has started.

BOOL ResetPrinter (
HANDLE hPrinter, // printer handle
LPPRINTER_DEFAULTS pDefault // address of printer defaults structure

);ParametershPrinter
Identifies a printer.

pDefault
Points to a PRINTER_DEFAULTS structure.
The ResetPrinter function ignores the DesiredAccess member of the PRINTER_DEFAULTS
structure. Set that member to zero.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoOpenPrinter, PRINTER_DEFAULTS, StartDocPrinter, SetJob

ResizePalette
The ResizePalette function increases or decreases the size of a logical palette based on the
specified value.

BOOL ResizePalette(
HPALETTE hpal, // handle of logical palette
UINT nEntries // number of entries in logical palette

);Parametershpal
Identifies the palette to be changed.

nEntries
Specifies the number of entries in the palette after it has been resized.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

If an application calls ResizePalette to reduce the size of the palette, the entries remaining in the
resized palette are unchanged. If the application calls ResizePalette to enlarge the palette, the
additional palette entries are set to black (the red, green, and blue values are all 0) and their flags
are set to zero.See AlsoGetDeviceCaps

RestoreDC
The RestoreDC function restores a device context (DC) to the specified state. The device context
is restored by popping state information off a stack created by earlier calls to the SaveDC
function.

BOOL RestoreDC(
HDC hdc, // handle of device context
int nSavedDC // specifies state to be restored

);Parametershdc
Identifies the device context.

nSavedDC
Specifies the instance of the device context to be restored. If this parameter is positive,
nSavedDC represents a specific instance of the device context to be restored. If this
parameter is negative, nSavedDC represents an instance relative to the current device
context. For example, - 1 restores the most recently saved state.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe stack can contain the state information for several instances of the device context. If the state
specified by the given parameter is not at the top of the stack, RestoreDC deletes all state
information between the top of the stack and the specified instance.See AlsoSaveDC

ResumeThread
The ResumeThread function decrements a thread's suspend count. When the suspend count is
decremented to zero, the execution of the thread is resumed.

DWORD ResumeThread(
HANDLE hThread // identifies thread to restart

);ParametershThread
Specifies a handle for the thread to be restarted.
Windows NT: The handle must have THREAD_SUSPEND_RESUME access to the thread.
For more information, see Thread Objects.

Return ValuesIf the function succeeds, the return value is the thread's previous suspend count.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.RemarksThe ResumeThread function checks the suspend count of the subject thread. If the suspend
count is 0, the thread is not currently suspended. Otherwise, the subject thread's suspend count is
decremented. If the resulting value is 0, then the execution of the subject thread is resumed.

If the return value is 0, the specified thread was not suspended. If the return value is 1, the
specified thread was suspended but was restarted. If the return value is greater than 1, the
specified thread is still suspended.

Note that while reporting debug events, all threads within the reporting process are frozen.
Debuggers are expected to use the SuspendThread and ResumeThread functions to limit the
set of threads that can execute within a process. By suspending all threads in a process except
for the one reporting a debug event, it is possible to "single step" a single thread. The other
threads are not released by a continue operation if they are suspended.See AlsoSuspendThread

ReuseDDElParam
The ReuseDDElParam function allows an application to reuse a packed DDE lParam parameter,
rather than allocating a new packed lParam. Using this function reduces reallocations for
applications that pass packed DDE messages.

LONG ReuseDDElParam(
LONG lParam, // posted lParam to be reused
UINT msgIn, // identifier of received message
UINT msgOut, // identifier of posted message
UINT uiLo, // low-order word of new lParam
UINT uiHi // high-order word of new lParam

);ParameterslParam
Specifies the lParam parameter of the posted DDE message being reused.

msgIn
Specifies the identifier of the received DDE message.

msgOut
Specifies the identifier of the DDE message to be posted. The DDE message will reuse the
packed lParam parameter.

uiLo
Specifies the value to be packed into the low-order word of the reused lParam parameter.

uiHi
Specifies the value to be packed into the high-order word of the reused lParam parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe return value must be posted as the lParam parameter of a DDE message; it must not be used
for any other purpose. Once the return value is posted, the posting application need not perform
any action to dispose of the lParam parameter.

Use ReuseDDElParam instead of FreeDDElParam if the lParam parameter will be reused in a
responding message. ReuseDDElParam returns the lParam appropriate for reuse.

This function allocates or frees lParam parameters as needed, depending on the packing
requirements of the incoming and outgoing messages. This reduces reallocations in passing DDE
messages.See AlsoFreeDDElParam, PackDDElParam, UnpackDDElParam

RevertToSelf
The RevertToSelf function terminates the impersonation of a client application.

BOOL RevertToSelf(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIt is advisable for a process to call the RevertToSelf function after finishing any impersonation
begun by using the DdeImpersonateClient, ImpersonateNamedPipeClient, or
ImpersonateSelf function.See AlsoDdeImpersonateClient, ImpersonateNamedPipeClient, ImpersonateSelf

RoundRect
The RoundRect function draws a rectangle with rounded corners. The rectangle is outlined by
using the current pen and filled by using the current brush.

BOOL RoundRect(
HDC hdc, // handle of device context
int nLeftRect, // x-coord. of bounding rectangle's upper-left corner
int nTopRect, // y-coord. of bounding rectangle's upper-left corner
int nRightRect, // x-coord. of bounding rectangle's lower-right corner
int nBottomRect, // y-coord. of bounding rectangle's lower-right corner
int nWidth, // width of ellipse used to draw rounded corners
int nHeight // height of ellipse used to draw rounded corners

);Parametershdc
Identifies the device context.

nLeftRect
Specifies the x-coordinate of the upper-left corner of the rectangle.

nTopRect
Specifies the y-coordinate of the upper-left corner of the rectangle.

nRightRect
Specifies the x-coordinate of the lower-right corner of the rectangle.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the rectangle.

nWidth
Specifies the width of the ellipse used to draw the rounded corners.

nHeight
Specifies the height of the ellipse used to draw the rounded corners.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe current position is neither used nor updated by this function.

Windows 95: The sum of the coordinates of the bounding rectangle cannot exceed 32,767. The
sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed 32,
767.See AlsoRectangle

SaveDC
The SaveDC function saves the current state of the specified device context (DC) by copying data
describing selected objects and graphic modes (such as the bitmap, brush, palette, font, pen,
region, drawing mode, and mapping mode) to a context stack.

int SaveDC(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context to be saved.

Return ValuesIf the function succeeds, the return value identifies the saved device context.

If the function fails, the return value is zero.RemarksThe SaveDC function can be used any number of times to save any number of instances of the
device context's state.

A saved state can later be restored by using the RestoreDC function.See AlsoRestoreDC

ScaleViewportExtEx
The ScaleViewportExtEx function modifies the viewport for a device context (DC) by using the
ratios formed by the specified multiplicands and divisors.

BOOL ScaleViewportExtEx(
HDC hdc, // handle of device context
int Xnum, // horizontal multiplicand
int Xdenom, // horizontal divisor
int Ynum, // vertical multiplicand
int Ydenom, // vertical divisor
LPSIZE lpSize // address of previous viewport extents

);Parametershdc
Identifies the device context.

Xnum
Specifies the amount by which to multiply the current horizontal extent.

Xdenom
Specifies the amount by which to divide the current horizontal extent.

Ynum
Specifies the amount by which to multiply the current vertical extent.

Ydenom
Specifies the amount by which to divide the current vertical extent.

lpSize
Points to a SIZE structure. The previous viewport extents (in device units) are placed in this
structure. If lpSize is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe viewport extents are modified as follows:xNewVE = (xOldVE * Xnum) / Xdenom
yNewVE = (yOldVE * Ynum) / Ydenom

See AlsoGetViewportExtEx, SIZE

ScaleWindowExtEx
The ScaleWindowExtEx function modifies the window for a device context using the ratios
formed by the specified multiplicands and divisors.

BOOL ScaleWindowExtEx(
HDC hdc, // handle of device context
int Xnum, // horizontal multiplicand
int Xdenom, // horizontal divisor
int Ynum, // vertical multiplicand
int Ydenom, // vertical divisor
LPSIZE lpSize // address of previous window extents

);Parametershdc
Identifies the device context.

Xnum
Specifies the amount by which to multiply the current horizontal extent.

Xdenom
Specifies the amount by which to divide the current horizontal extent.

Ynum
Specifies the amount by which to multiply the current vertical extent.

Ydenom
Specifies the amount by which to divide the current vertical extent.

lpSize
Points to a SIZE structure. The previous window extents (in logical units) are placed in this
structure. If lpSize is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe window extents are modified as follows:xNewWE = (xOldWE * Xnum) / Xdenom
yNewWE = (yOldWE * Ynum) / Ydenom

See AlsoGetWindowExtEx, SIZE

ScheduleJob
The ScheduleJob function requests that the print spooler schedule a specified print job for
printing.

BOOL ScheduleJob(
HANDLE hPrinter, // specifies printer for the print job
DWORD dwJobID // print job identifier

);ParametershPrinter
Handle that specifies a printer for the print job. This must be a local printer that is configured
as a spooled printer. If hPrinter is a handle to a remote printer connection, or if the printer is
configured for direct printing, the ScheduleJob function fails.
hPrinter must be the same printer handle specifed in the call to AddJob that obtained the
dwJobID print job identifer.

dwJobID
Specifies the print job to be scheduled. You obtain this print job identifer by calling the
AddJob function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou obtain a printer handle by calling the OpenPrinter function.

You must successfully call the AddJob function before calling the ScheduleJob function.
AddJob obtains the print job identifer that you pass to ScheduleJob as dwJobID. Both calls must
use the same value for hPrinter.

The ScheduleJob function checks for a valid spool file. If there is an invalid spool file, or if it is
empty, ScheduleJob deletes both the spool file and the corresponding print job entry in the print
spooler.See AlsoAddJob, OpenPrinter

ScreenSaverConfigureDialog
The ScreenSaverConfigureDialog function receives messages sent to a screen saver's
configuration dialog box. A screen saver that allows user configuration must support this function.

BOOL ScreenSaverConfigureDialog(
HWND hDlg, // handle of dialog box
UINT message, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershDlg
Identifies the configuration dialog box.

message
Specifies the message.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesIf the function processes the message, the return value is TRUE; otherwise, it is FALSE, except in
response to a WM_INITDIALOG message. In response to a WM_INITDIALOG message,
ScreenSaverConfigureDialog should return FALSE if it calls the SetFocus function to set the
keyboard focus to one of the controls in the dialog box. Otherwise, the function should return
TRUE, in which case the system sets the keyboard focus to the first control in the dialog box that
can be given the focus.RemarksThe dialog box template for the configuration dialog box must have the
DLG_SCRNSAVECONFIGURE identifier.

The dialog box procedure is used only if the application specifies the default window class
(WC_DIALOG) for the dialog box. The application uses the default class if no explicit class is
given in the dialog box template. Although the dialog box procedure is similar to a window
procedure, it must not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the default dialog box procedure.

The ScreenSaverConfigureDialog function must be exported by including it in the EXPORTS
statement in the application's module-definition (.DEF) file.See AlsoDefWindowProc, RegisterDialogClasses, SetFocus

ScreenSaverProc
The ScreenSaverProc function receives messages sent to the specified screen saver window.

LONG ScreenSaverProc(
HWND hWnd, // handle of screen saver window
UINT message, // message
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the window.

message
Specifies the message.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value is the result of the message processing and depends on the message sent.RemarksA screen saver's ScreenSaverProc window procedure should use the DefScreenSaverProc
function instead of the DefWindowProc function to provide default message processing. The
DefScreenSaverProc function passes any messages that do not affect screen saver operations
to DefWindowProc.

The ScreenSaverProc function must be exported by including it in the EXPORTS statement in
the application's module-definition (.DEF) file.See AlsoDefScreenSaverProc, DefWindowProc

ScreenToClient
The ScreenToClient function converts the screen coordinates of a specified point on the screen
to client coordinates.

BOOL ScreenToClient(
HWND hWnd, // window handle for source coordinates
LPPOINT lpPoint // address of structure containing coordinates

);ParametershWnd
Identifies the window whose client area will be used for the conversion.

lpPoint
Points to a POINT structure that contains the screen coordinates to be converted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe function uses the window identified by the hWnd parameter and the screen coordinates given
in the POINT structure to compute client coordinates. It then replaces the screen coordinates with
the client coordinates. The new coordinates are relative to the upper-left corner of the specified
window's client area.

The ScreenToClient function assumes the specified point is in screen coordinates.See AlsoClientToScreen, MapWindowPoints, POINT

ScrollConsoleScreenBuffer
The ScrollConsoleScreenBuffer function moves a block of data in a screen buffer. The effects of
the move can be limited by specifying a clipping rectangle, so the contents of the screen buffer
outside the clipping rectangle are unchanged.

BOOL ScrollConsoleScreenBuffer(
HANDLE hConsoleOutput, // handle of a console screen buffer
CONST SMALL_RECT *lpScrollRectangle, // address of screen buffer rect. to move
CONST SMALL_RECT *lpClipRectangle, // address of affected screen buffer rect.
COORD dwDestinationOrigin, // new location of screen buffer rect.
CONST CHAR_INFO *lpFill // address of fill character and color

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_WRITE access.

lpScrollRectangle
Points to a SMALL_RECT structure whose members specify the upper-left and lower-right
coordinates of the screen buffer rectangle to be moved.

lpClipRectangle
Points to a SMALL_RECT structure whose members specify the upper-left and lower-right
coordinates of the screen buffer rectangle that is affected by the scrolling. This pointer can be
NULL.

dwDestinationOrigin
Specifies the upper-left corner of the new location of the lpScrollRectangle contents.

lpFill
Points to a CHAR_INFO structure that specifies the character and color attributes to be used
in filling the cells within the intersection of lpScrollRectangle and lpClipRectangle that were left
empty as a result of the move.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksScrollConsoleScreenBuffer copies the contents of a rectangular region of a screen buffer,
specified by the lpScrollRectangle parameter, to another area of the screen buffer. The target
rectangle has the same dimensions as the lpScrollRectangle rectangle with its upper-left corner at
the coordinates specified by the dwDestinationOrigin parameter. Those parts of lpScrollRectangle
that do not overlap with the target rectangle are filled in with the character and color attributes
specified by the lpFill parameter.

The clipping rectangle applies to changes made in both the lpScrollRectangle rectangle and the
target rectangle. For example, if the clipping rectangle does not include a region that would have
been filled by the contents of lpFill, the original contents of the region are left unchanged.

If the scroll or target regions extend beyond the dimensions of the screen buffer, they are clipped.
For example, if lpScrollRectangle is the region contained by (0,0) and (19,19) and
dwDestinationOrigin is (10,15), the target rectangle is the region contained by (10,15) and (29,34)
. However, if the screen buffer is 50 characters wide and 30 characters high, the target rectangle
is clipped to (10,15) and (29,29). Changes to the screen buffer are also clipped according to
lpClipRectangle, if the parameter specifies a SMALL_RECT structure. If the clipping rectangle is
specified as (0,0) and (49,19), only the changes that occur in that region of the screen buffer are
made.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoCHAR_INFO, SetConsoleCP, SetConsoleOutputCP, SetConsoleWindowInfo, SMALL_RECT

ScrollDC
The ScrollDC function scrolls a rectangle of bits horizontally and vertically.

BOOL ScrollDC(
HDC hDC, // handle of device context
int dx, // horizontal scroll units
int dy, // vertical scroll units
CONST RECT *lprcScroll, // address of structure for scrolling rectangle
CONST RECT *lprcClip, // address of structure for clipping rectangle
HRGN hrgnUpdate, // handle of scrolling region
LPRECT lprcUpdate // address of structure for update rectangle

);ParametershDC
Identifies the device context that contains the bits to be scrolled.

dx
Specifies the amount, in device units, of horizontal scrolling. This parameter must be a
negative value to scroll to the left.

dy
Specifies the amount, in device units, of vertical scrolling. This parameter must be a negative
value to scroll up.

lprcScroll
Points to the RECT structure containing the coordinates of the scrolling rectangle.

lprcClip
Points to the RECT structure containing the coordinates of the clipping rectangle. Only device
bits within the clipping rectangle are affected. Bits scrolled from the outside of the rectangle to
the inside are painted; bits scrolled from the inside of the rectangle to the outside are not
painted.

hrgnUpdate
Identifies the region uncovered by the scrolling process. ScrollDC defines this region; it is not
necessarily a rectangle.

lprcUpdate
Points to the RECT structure that receives the coordinates of the rectangle bounding the
scrolling update region. This is the largest rectangular area that requires repainting. When the
function returns, the values in the structure are in client coordinates, regardless of the
mapping mode for the specified device context. This allows applications to use the update
region in a call to the InvalidateRgn function, if required.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the lprcUpdate parameter is NULL, Windows does not compute the update rectangle. If both the
hrgnUpdate and lprcUpdate parameters are NULL, Windows does not compute the update region.
If hrgnUpdate is not NULL, Windows proceeds as though it contains a valid handle of the region
uncovered by the scrolling process (defined by ScrollDC).

When you must scroll the entire client area of a window, use the ScrollWindow function;
otherwise, use ScrollDC.See AlsoInvalidateRgn, RECT, ScrollWindow

ScrollWindow
The ScrollWindow function scrolls the content of the specified window's client area. This function
exists for backward compatibility. For new applications, use the ScrollWindowEx function.

BOOL ScrollWindow(
HWND hWnd, // handle of window to scroll
int XAmount, // amount of horizontal scrolling
int YAmount, // amount of vertical scrolling
CONST RECT *lpRect, // address of structure with scroll rectangle
CONST RECT *lpClipRect // address of structure with clip rectangle

);ParametershWnd
Identifies the window where the client area is to be scrolled.

XAmount
Specifies the amount, in device units, of horizontal scrolling. If the window being scrolled has
the CS_OWNDC or CS_CLASSDC style, then this parameter uses logical units rather than
device units. This parameter must be a negative value to scroll the content of the window to
the left.

YAmount
Specifies the amount, in device units, of vertical scrolling. If the window being scrolled has the
CS_OWNDC or CS_CLASSDC style, then this parameter uses logical units rather than device
units. This parameter must be a negative value to scroll the content of the window up.

lpRect
Points to the RECT structure specifying the portion of the client area to be scrolled. If this
parameter is NULL, the entire client area is scrolled.

lpClipRect
Points to the RECT structure containing the coordinates of the clipping rectangle. Only device
bits within the clipping rectangle are affected. Bits scrolled from the outside of the rectangle to
the inside are painted; bits scrolled from the inside of the rectangle to the outside are not
painted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the caret is in the window being scrolled, ScrollWindow automatically hides the caret to prevent
it from being erased and then restores the caret after the scrolling is finished. The caret position is
adjusted accordingly.

The area uncovered by ScrollWindow is not repainted, but it is combined into the window's
update region. The application eventually receives a WM_PAINT message notifying it that the
region must be repainted. To repaint the uncovered area at the same time the scrolling is in
action, call the UpdateWindow function immediately after calling ScrollWindow.

If the lpRect parameter is NULL, the positions of any child windows in the window are offset by the
amount specified by the XAmount and YAmount parameters; invalid (unpainted) areas in the
window are also offset. ScrollWindow is faster when lpRect is NULL.

If lpRect is not NULL, the positions of child windows are not changed and invalid areas in the
window are not offset. To prevent updating problems when lpRect is not NULL, call
UpdateWindow to repaint the window before calling ScrollWindow.See AlsoRECT, ScrollDC, ScrollWindowEx, UpdateWindow

ScrollWindowEx
The ScrollWindowEx function scrolls the content of the specified window's client area. This
function is similar to the ScrollWindow function, but it has additional features.

int ScrollWindowEx(
HWND hWnd, // handle of window to scroll
int dx, // amount of horizontal scrolling
int dy, // amount of vertical scrolling
CONST RECT *prcScroll, // address of structure with scroll rectangle
CONST RECT *prcClip, // address of structure with clip rectangle
HRGN hrgnUpdate, // handle of update region
LPRECT prcUpdate, // address of structure for update rectangle
UINT flags // scrolling flags

);ParametershWnd
Identifies the window where the client area is to be scrolled.

dx
Specifies the amount, in device units, of horizontal scrolling. This parameter must be a
negative value to scroll to the left.

dy
Specifies the amount, in device units, of vertical scrolling. This parameter must be a negative
value to scroll up.

prcScroll
Points to the RECT structure specifying the portion of the client area to be scrolled. If this
parameter is NULL, the entire client area is scrolled.

prcClip
Points to the RECT structure containing the coordinates of the clipping rectangle. Only device
bits within the clipping rectangle are affected. Bits scrolled from the outside of the rectangle to
the inside are painted; bits scrolled from the inside of the rectangle to the outside are not
painted.

hrgnUpdate
Identifies the region that is modified to hold the region invalidated by scrolling. This parameter
may be NULL.

prcUpdate
Points to the RECT structure receiving the boundaries of the rectangle invalidated by
scrolling. This parameter may be NULL.

flags
Specifies flags that control scrolling. This parameter can be one of the following values:

Value Meaning
SW_ERASE Erases the newly invalidated region by

sending a WM_ERASEBKGND message
to the window when specified with the
SW_INVALIDATE flag.

SW_INVALIDATE Invalidates the region identified by the
hrgnUpdate parameter after scrolling.

SW_SCROLLCHILDREN Scrolls all child windows that intersect the
rectangle pointed to by the prcScroll
parameter. The child windows are scrolled
by the number of pixels specified by the
dx and dy parameters. Windows sends a
WM_MOVE message to all child windows
that intersect the prcScroll rectangle, even
if they do not move.

Return ValuesIf the function succeeds, the return value is SIMPLEREGION (rectangular invalidated region),
COMPLEXREGION (nonrectangular invalidated region; overlapping rectangles), or NULLREGION
(no invalidated region).

If the function fails, the return value is ERROR.RemarksIf the SW_INVALIDATE and SW_ERASE flags are not specified, ScrollWindowEx does not
invalidate the area that is scrolled from. If either of these flags is set, ScrollWindowEx invalidates

this area. The area is not updated until the application calls the UpdateWindow function, calls the
RedrawWindow function (specifying the RDW_UPDATENOW or RDW_ERASENOW flag), or
retrieves the WM_PAINT message from the application queue.

If the window has the WS_CLIPCHILDREN style, the returned areas specified by hrgnUpdate and
prcUpdate represent the total area of the scrolled window that must be updated, including any
areas in child windows that need updating.

If the SW_SCROLLCHILDREN flag is specified, Windows does not properly update the screen if
part of a child window is scrolled. The part of the scrolled child window that lies outside the source
rectangle is not erased and is not properly redrawn in its new destination. To move child windows
that do not lie completely within the rectangle specified by prcScroll, use the DeferWindowPos
function. The cursor is repositioned if the SW_SCROLLCHILDREN flag is set and the caret
rectangle intersects the scroll rectangle.

All input and output coordinates (for prcScroll, prcClip, prcUpdate, and hrgnUpdate) are
determined as client coordinates, regardless of whether the window has the CS_OWNDC or
CS_CLASSDC class style. Use the LPtoDP and DPtoLP functions to convert to and from logical
coordinates, if necessary.See AlsoDeferWindowPos, DPtoLP, LPtoDP, RECT, RedrawWindow, ScrollDC, ScrollWindow,
UpdateWindow

SearchPath
The SearchPath function searches for the specified file.

DWORD SearchPath(
LPCTSTR lpPath, // address of search path
LPCTSTR lpFileName, // address of filename
LPCTSTR lpExtension, // address of extension
DWORD nBufferLength, // size, in characters, of buffer
LPTSTR lpBuffer, // address of buffer for found filename
LPTSTR *lpFilePart // address of pointer to file component

);ParameterslpPath
Points to a null-terminated string that specifies the path to be searched for the file. If this
parameter is NULL, the function searches for a matching file in the following directories in the
following sequence:
1. The directory from which the application loaded.
2. The current directory.
3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to

get the path of this directory.
Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory
function to get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.
lpFileName

Points to a null-terminated string that specifies the name of the file to search for.
lpExtension

Points to a null-terminated string that specifies an extension to be added to the filename when
searching for the file. The first character of the filename extension must be a period (.). The
extension is added only if the specified filename does not end with an extension.
If a filename extension is not required or if the filename contains an extension, this parameter
can be NULL.

nBufferLength
Specifies the length, in characters, of the buffer that receives the valid path and filename.

lpBuffer
Points to the buffer for the valid path and filename of the file found.

lpFilePart
Points to the address (within lpBuffer) of the last component of the valid path and filename,
which is the address of the character immediately following the final backslash (\) in the path.

Return ValuesIf the function succeeds, the value returned is the length, in characters, of the string copied to the
buffer, not including the terminating null character. If the return value is greater than
nBufferLength, the value returned is the size of the buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoFindFirstFile, FindNextFile, GetSystemDirectory, GetWindowsDirectory

SelectClipPath
The SelectClipPath function selects the current path as a clipping region for a device context,
combining the new region with any existing clipping region by using the specified mode.

BOOL SelectClipPath(
HDC hdc, // handle of device context
int iMode // clipping mode

);Parametershdc
Identifies the device context of the path.

iMode
Specifies the way to use the path. The following values are allowed:

Value Meaning
RGN_AND The new clipping region includes the intersection

(overlapping areas) of the current clipping region
and the current path.

RGN_COPY The new clipping region is the current path.
RGN_DIFF The new clipping region includes the areas of the

current clipping region with those of the current path
excluded.

RGN_OR The new clipping region includes the union
(combined areas) of the current clipping region and
the current path.

RGN_XOR The new clipping region includes the union of the
current clipping region and the current path but
without the overlapping areas.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksThe device context identified by the hdc parameter must contain a closed path.See AlsoBeginPath, EndPath

SelectClipRgn
The SelectClipRgn function selects a region as the current clipping region for the specified
device context.

int SelectClipRgn(
HDC hdc, // handle of device context
HRGN hrgn // handle of region to be selected

);Parametershdc
Identifies the device context.

hrgn
Identifies the region to be selected.

Return ValuesIf the function succeeds, the return value specifies the region's complexity and can be any one of
the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred. (The previous clipping region

is unaffected.)
RemarksOnly a copy of the selected region is used. The region itself can be selected for any number of

other device contexts or it can be deleted.

The SelectClipRgn function assumes that the coordinates for a region are specified in device
units.

To remove a device-context's clipping region, specify a NULL region handle.See AlsoExtSelectClipRgn

SelectObject
The SelectObject function selects an object into the specified device context. The new object
replaces the previous object of the same type.

HGDIOBJ SelectObject(
HDC hdc, // handle of device context
HGDIOBJ hgdiobj // handle of object

);Parametershdc
Identifies the device context.

hgdiobj
Identifies the object to be selected. The specified object must have been created by using one
of the following functions:

Object Functions
Bitmap CreateBitmap, CreateBitmapIndirect,

CreateCompatibleBitmap, CreateDIBitmap,
CreateDIBSection
(Bitmaps can be selected for memory device contexts
only, and for only one device context at a time.)

Brush CreateBrushIndirect, CreateDIBPatternBrush,
CreateDIBPatternBrushPt, CreateHatchBrush,
CreatePatternBrush, CreateSolidBrush

Font CreateFont, CreateFontIndirect
Pen CreatePen, CreatePenIndirect
Region CombineRgn, CreateEllipticRgn,

CreateEllipticRgnIndirect, CreatePolygonRgn,
CreateRectRgn, CreateRectRgnIndirect

Return ValuesIf the selected object is not a region and the function succeeds, the return value is the handle of
the object being replaced. If the selected object is a region and the function succeeds, the return
value is one of the following values:

Value Meaning

SIMPLEREGION Region consists of a single rectangle.
COMPLEXREGIONRegion consists of more than one rectangle.
NULLREGION Region is empty.

If an error occurs and the selected object is not a region, the return value is NULL.
Otherwise, it is GDI_ERROR.RemarksThis function returns the previously selected object of the specified type. An application should
always replace a new object with the original, default object after it has finished drawing with the
new object.

An application cannot select a bitmap into more than one device context at a time.See AlsoCombineRgn, CreateBitmap, CreateBitmapIndirect, CreateBrushIndirect,
CreateCompatibleBitmap, CreateDIBitmap, CreateDIBPatternBrush, CreateEllipticRgn,
CreateEllipticRgnIndirect, CreateFont, CreateFontIndirect, CreateHatchBrush,
CreatePatternBrush, CreatePen, CreatePenIndirect, CreatePolygonRgn, CreateRectRgn,
CreateRectRgnIndirect, CreateSolidBrush, SelectClipRgn, SelectPalette

SelectPalette
The SelectPalette function selects the specified logical palette into a device context.

HPALETTE SelectPalette(
HDC hdc, // handle of device context
HPALETTE hpal, // handle of logical color palette
BOOL bForceBackground // foreground/background mode

);Parametershdc
Identifies the device context.

hpal
Identifies the logical palette to be selected.

bForceBackground
Specifies whether the logical palette is forced to be a background palette. If this value is
TRUE, the RealizePalette function causes the logical palette to be mapped to the colors
already in the physical palette in the best possible way. This is always done, even if the
window for which the palette is realized belongs to a thread without active focus.
If this value is FALSE, RealizePalette causes the logical palette to be copied into the device
palette when the application is in the foreground. (If the hdc parameter is a memory device
context, this parameter is ignored.)

Return ValuesIf the function succeeds, the return value identifies the device context's previous logical palette.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

An application can select a logical palette into more than one device context. However, changes
to a logical palette will affect all device contexts for which it is selected.

An application might call the SelectPalette function with the bForceBackground parameter set to
TRUE if the child windows of a top-level window each realize their own palettes. However, only
the child window that needs to realize its palette must set bForceBackground to TRUE; other child
windows must set this value to FALSE.See AlsoCreatePalette, GetDeviceCaps, RealizePalette

SendAsyncProc
A SendAsyncProc function is an application-defined callback function that the operating system
calls when the SendMessageCallback function is called. The system passes the message to the
callback function after passing the message to the destination window procedure. A value of type
SENDASYNCPROC is a pointer to such a function.

VOID CALLBACK SendAsyncProc(
HWND hwnd, // handle of destination window
UINT uMsg, // message
DWORD dwData, // application-defined value
LRESULT lResult // result of message processing

);Parametershwnd
Identifies the window whose window procedure received the message.
If the SendMessageCallback function was called with its hwnd parameter set to
HWND_BROADCAST, the operating system calls the SendAsyncProc function once for each
top-level window.

uMsg
Specifies the message.

dwData
Specifies an application-defined value sent from the SendMessageCallback function.

lResult
Specifies the result of the message processing and depends on the message.

Return ValuesThis callback function does not return a value.RemarksSendAsyncProc is a placeholder for an application-defined function name.

You install a SendAsyncProc application-defined callback function by passing a
SENDASYNCPROC pointer to the SendMessageCallback function.

The callback function is only called when the thread that called SendMessageCallback calls
GetMessage, PeekMessage, or WaitMessage.See AlsoGetMessage, PeekMessage, SendMessageCallback, WaitMessage

SendDlgItemMessage
The SendDlgItemMessage function sends a message to the specified control in a dialog box.

LONG SendDlgItemMessage(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershDlg
Identifies the dialog box that contains the control.

nIDDlgItem
Specifies the identifier of the control that receives the message.

Msg
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message
sent.RemarksThe SendDlgItemMessage function does not return until the message has been processed.

Using SendDlgItemMessage is identical to retrieving a handle of the specified control and calling
the SendMessage function.See AlsoSendMessage

SendMessage
The SendMessage function sends the specified message to a window or windows. The function
calls the window procedure for the specified window and does not return until the window
procedure has processed the message. The PostMessage function, in contrast, posts a message
to a thread's message queue and returns immediately.

LRESULT SendMessage(
HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the window whose window procedure will receive the message. If this parameter is
HWND_BROADCAST, the message is sent to all top-level windows in the system, including
disabled or invisible unowned windows, overlapped windows, and pop-up windows; but the
message is not sent to child windows.

Msg
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesThe return value specifies the result of the message processing and depends on the message
sent.RemarksApplications that need to communicate using HWND_BROADCAST should use the
RegisterWindowMessage function to obtain a unique message for inter-application
communication.

If the specified window was created by the calling thread, the window procedure is called
immediately as a subroutine. If the specified window was created by a different thread, Windows
switches to that thread and calls the appropriate window procedure. Messages sent between
threads are processed only when the receiving thread executes message retrieval code. The
sending thread is blocked until the receiving thread processes the message.See AlsoInSendMessage, PostMessage, RegisterWindowMessage, SendDlgItemMessage

SendMessageCallback
The SendMessageCallback function sends the specified message to a window or windows. The
function calls the window procedure for the specified window and returns immediately. After the
window procedure processes the message, the system calls the specified callback function,
passing the result of the message processing and an application-defined value to the callback
function.

BOOL SendMessageCallback(
HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam, // second message parameter
SENDASYNCPROC lpResultCallBack, // function to receive message value
DWORD dwData // value to pass to callback function

);ParametershWnd
Identifies the window whose window procedure will receive the message. If this parameter is
HWND_BROADCAST, the message is sent to all top-level windows in the system, including
disabled or invisible unowned windows, overlapped windows, and pop-up windows; but the
message is not sent to child windows.

Msg
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

lpResultCallBack
Points to a callback function that the system calls after the window procedure processes the
message. See SendAsyncProc for information on suitable callback functions.
If hWnd is HWND_BROADCAST, the operating system calls the SendAsyncProc callback
function once for each top-level window.

dwData
Specifies an application-defined value to be sent to the callback function pointed to by the
lpfnResultCallBack parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf you send a message in the range below WM_USER to the asynchronous message functions
(PostMessage, SendNotifyMessage, and SendMessageCallback), make sure that the
message parameters do not include pointers. Otherwise, the functions will return before the
receiving thread has had a chance to process the message and the sender will free the memory
before it is used.

Applications that need to communicate using HWND_BROADCAST should use the
RegisterWindowMessage function to obtain a unique message for inter-application
communication.

The callback function is called only when the thread that called SendMessageCallback also calls
GetMessage, PeekMessage, or WaitMessage.See AlsoPostMessage, RegisterWindowMessage, SendAsyncProc, SendMessageCallback,
SendNotifyMessage

SendMessageTimeout
The SendMessageTimeout function sends the specified message to a window or windows. The
function calls the window procedure for the specified window and, if the specified window belongs
to a different thread, does not return until the window procedure has processed the message or
the specified time-out period has elapsed. If the window receiving the message belongs to the
same queue as the current thread, the window procedure is called directly ¾ the time-out value is
ignored.

LRESULT SendMessageTimeout(
HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam, // second message parameter
UINT fuFlags, // how to send the message
UINT uTimeout, // time-out duration
LPDWORD lpdwResult // return value for synchronous call

);ParametershWnd
Identifies the window whose window procedure will receive the message. If this parameter is
HWND_TOPMOST, the message is sent to all top-level windows in the system, including
disabled or invisible unowned windows.

Msg
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

fuFlags
Specifies how to send the message. This parameter can be a combination of the following
values:

Value Meaning
SMTO_ABORTIFHUNG Returns without waiting for the time-out

period to elapse if the receiving process
appears to be in a "hung" state.

SMTO_BLOCK Prevents the calling thread from
processing any other requests until the
function returns.

SMTO_NORMAL The calling thread is not prevented from
processing other requests while waiting for
the function to return.

uTimeout
Specifies the duration, in milliseconds, of the time-out period.

lpdwResult
Specifies the result of the message processing and depends on the message sent.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.See AlsoInSendMessage, PostMessage, SendDlgItemMessage, SendMessage,
SendMessageCallback, SendNotifyMessage

SendNotifyMessage
The SendNotifyMessage function sends the specified message to a window. If the window was
created by the calling thread, SendNotifyMessage calls the window procedure for the window
and does not return until the window procedure has processed the message. If the window was
created by a different thread, SendNotifyMessage passes the message to the window procedure
and returns immediately; it does not wait for the window procedure to finish processing the
message.

BOOL SendNotifyMessage(
HWND hWnd, // handle of destination window
UINT Msg, // message to send
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);ParametershWnd
Identifies the window whose window procedure will receive the message. If this parameter is
HWND_BROADCAST, the message is sent to all top-level windows in the system, including
disabled or invisible unowned windows, overlapped windows, and pop-up windows; but the
message is not sent to child windows.

Msg
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf you send a message in the range below WM_USER to the asynchronous message functions
(PostMessage, SendNotifyMessage, and SendMessageCallback), make sure that the
message parameters do not include pointers. Otherwise, the functions will return before the
receiving thread has had a chance to process the message and the sender will free the memory
before it is used.

Applications that need to communicate using HWND_BROADCAST should use the
RegisterWindowMessage function to obtain a unique message for inter-application
communication.See AlsoPostMessage, PostThreadMessage, RegisterWindowMessage, SendMessage
SendMessageCallback, SendNotifyMessage

ServiceMain
A ServiceMain function is a function that a service process specifies as the entry point function of
a particular service. The function can have any application-defined name.

VOID WINAPI ServiceMain(
DWORD dwArgc, // number of arguments
LPTSTR *lpszArgv // address of array of argument string pointers

);ParametersdwArgc
Specifies the number of arguments in the lpszArgv array.

lpszArgv
Points to an array of pointers that point to null-terminated argument strings. The first argument
in the array is the name of the service, and subsequent arguments are any strings passed to
the service by the process that called the StartService function to start the service.

Return ValuesThis function does not return a value.RemarksA service process can start one or more services. For each service that it can start, a service
process has a SERVICE_TABLE_ENTRY structure that specifies the service name and a pointer
to the ServiceMain function for that service.

When the service control manager receives a request to start a service, it starts the service
process (if it is not already running). The main thread of the service process calls the
StartServiceCtrlDispatcher function with a pointer to an array of SERVICE_TABLE_ENTRY
structures. Then the service control manager sends a start request to the service control
dispatcher for this service process. The service control dispatcher creates a new thread to
execute the ServiceMain function of the service being started.

This function should immediately call the RegisterServiceCtrlHandler function to specify a
Handler function to handle control requests. Next, it should call the SetServiceStatus function to
send status information to the service control manager. After these calls, the function completes
the initialization tasks of the service, and then it waits for the service to terminate.

A ServiceMain function does not return until the service is ready to terminate.See AlsoHandler, RegisterServiceCtrlHandler, SetServiceStatus, SERVICE_TABLE_ENTRY,
StartServiceCtrlDispatcher

SetAbortProc
The SetAbortProc function sets the application-defined abort function that allows a print job to be
canceled during spooling. This function replaces the SETABORTPROC printer escape.

int SetAbortProc(
HDC hdc, // handle of device context
ABORTPROC lpAbortProc // address of abort function

);Parametershdc
Identifies the device context for the print job.

lpAbortProc
Points to the application-defined abort function. For more information about the callback
function, see the AbortProc callback function.

Return ValuesIf the function succeeds, the return value is greater than zero.

If the function fails, the return value is SP_ERROR. To get extended error information, call
GetLastError.See AlsoAbortDoc, AbortProc

SetAclInformation
The SetAclInformation function sets information about an access-control list (ACL).

BOOL SetAclInformation(
PACL pAcl, // address of access-control list
LPVOID pAclInformation, // address of ACL information
DWORD nAclInformationLength, // size of ACL information
ACL_INFORMATION_CLASS dwAclInformationClass // specifies class of requested info

);ParameterspAcl
Points to an ACL structure. The function sets information in this ACL.

pAclInformation
Points to a buffer containing the information to be set. For the current version of Windows NT,
this must be an ACL_REVISION_INFORMATION structure.

nAclInformationLength
Specifies the size, in bytes, of the buffer pointed to by the pAclInfo parameter.

dwAclInformationClass
Specifies an ACL_INFORMATION_CLASS enumerated type that gives the class of
information requested.
Currently, this parameter can be AclRevisionInformation. This means that the buffer pointed to
by the pAclInformation parameter contains an ACL_REVISION_INFORMATION structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, ACL_INFORMATION_CLASS, ACL_REVISION_INFORMATION, GetAclInformation,
InitializeAcl, IsValidAcl

SetActiveWindow
The SetActiveWindow function activates a window.

HWND SetActiveWindow(
HWND hWnd // handle of window to activate

);ParametershWnd
Identifies the top-level window to be activated.

Return ValuesIf the function succeeds, the return value is the handle of the window that was previously active.RemarksThe SetActiveWindow function activates a window, but not if the application is in the
background. The window will be brought into the foreground (top of Z order) if the application is in
the foreground when it sets the activation.

If the window identified by the hWnd parameter was created by the calling thread, the active
window status of the calling thread is set to hWnd. Otherwise, the active window status of the
calling thread is set to NULL.

The SetForegroundWindow window function, on the other hand, activates a window and forces
it into the foreground. An application should only call SetForegroundWindow if it needs to
display critical errors or information that needs the user's immediate attention .See AlsoGetActiveWindow, SetForegroundWindow, WM_ACTIVATE

SetArcDirection
The SetArcDirection sets the drawing direction to be used for arc and rectangle functions.

int SetArcDirection(
HDC hdc, // identifies the device context
int ArcDirection // specifies the new arc direction

);Parametershdc
Identifies the device context.

ArcDirection
Specifies the new arc direction. This parameter can be one of the following values:

Value Meaning
AD_COUNTERCLOCKWISE Figures drawn counterclockwise.
AD_CLOCKWISE Figures drawn clockwise.

Return ValuesIf the function succeeds, the return value specifies the old arc direction.

If the function fails, the return value is zero.RemarksThe default direction is counterclockwise.

The SetArcDirection function specifies the direction in which the following functions draw:

Arc ArcTo

Chord Ellipse
Pie Rectangle
RoundRect

SetBitmapBits
The SetBitmapBits function sets the bits of color data for a bitmap to the specified values.

The SetBitmapBits function is included only for compatibility with earlier versions of Windows.
For Win32-based applications, use the SetDIBits function.

LONG SetBitmapBits(
HBITMAP hbmp, // handle of bitmap
DWORD cBytes, // number of bytes in bitmap array
CONST VOID * lpBits // address of array with bitmap bits

);Parametershbmp
Identifies the bitmap to be set.

cBytes
Specifies the number of bytes pointed to by the lpBits parameter.

lpBits
Points to an array of bytes that contain color data for the specified bitmap.

Return ValuesIf the function succeeds, the return value is the number of bytes used in setting the bitmap bits.

If the function fails, the return value is zero.RemarksThe array identified by lpBits must be WORD aligned.See AlsoGetBitmapBits, SetDIBits

SetBitmapDimensionEx
The SetBitmapDimensionEx function assigns preferred dimensions to a bitmap. These
dimensions can be used by applications; however, they are not used by Windows.

BOOL SetBitmapDimensionEx(
HBITMAP hBitmap, // handle of bitmap
int nWidth, // bitmap width in .01-mm units
int nHeight, // bitmap height in .01-mm units
LPSIZE lpSize // address of structure for original dimensions

);ParametershBitmap
Identifies the bitmap. The bitmap cannot be a DIB section bitmap.

nWidth
Specifies the width, in 0.1-millimeter units, of the bitmap.

nHeight
Specifies the height, in 0.1-millimeter units, of the bitmap.

lpSize
Points to a SIZE structure to receive the previous dimensions of the bitmap. This pointer can
be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can retrieve the dimensions assigned to a bitmap with the
SetBitmapDimensionEx function by calling the GetBitmapDimensionEx function.

The bitmap identified by hBitmap cannot be a dib section, which is a bitmap created by the
CreateDIBSection function. If the bitmap is a dib section, the SetBitmapDimensionEx function
fails.See AlsoCreateDIBSection, GetBitmapDimensionEx, SIZE

SetBkColor
The SetBkColor function sets the current background color to the specified color value, or to the
nearest physical color if the device cannot represent the specified color value.

COLORREF SetBkColor(
HDC hdc, // handle of device context
COLORREF crColor // background color value

);Parametershdc
Identifies the device context.

crColor
Specifies the new background color.

Return ValuesIf the function succeeds, the return value specifies the previous background color as a
COLORREF value.

If the function fails, the return value is CLR_INVALID.RemarksThis function fills the gaps between styled lines drawn using a pen created by the CreatePen
function; it does not fill the gaps between styled lines drawn using a pen created by the
ExtCreatePen function.

If the background mode is OPAQUE, the background color is used to fill gaps between styled
lines, gaps between hatched lines in brushes, and character cells. The background color is also
used when converting bitmaps from color to monochrome and vice versa.See AlsoCreatePen, ExtCreatePen, GetBKColor, GetBkMode, SetBkMode, COLORREF

SetBkMode
The SetBkMode function sets the background mix mode of the specified device context. The
background mix mode is used with text, hatched brushes, and pen styles that are not solid lines.

int SetBkMode(
HDC hdc, // handle of device context
int iBkMode // flag specifying background mode

);Parametershdc
Identifies the device context.

iBkMode
Specifies the background mode. This parameter can be either of the following values:

Value Description
OPAQUE Background is filled with the current background

color before the text, hatched brush, or pen is
drawn.

TRANSPARENT Background remains untouched.
Return ValuesIf the function succeeds, the return value specifies the previous background mode.

If the function fails, the return value is zero.RemarksThe SetBkMode function affects the line styles for lines drawn using a pen created by the
CreatePen function. SetBkMode does not affect lines drawn using a pen created by the
ExtCreatePen function.

The iBkMode parameter can also be set to driver-specific values. GDI passes such values to the
device driver and otherwise ignores them.See AlsoCreatePen, ExtCreatePen, GetBkMode

SetBoundsRect
The SetBoundsRect function controls the accumulation of bounding rectangle information for the
specified device context. Windows can maintain a bounding rectangle for all drawing operations.
An application can examine and set this rectangle. The drawing boundaries are useful for
invalidating bitmap caches.

UINT SetBoundsRect(
HDC hdc, // handle of device context
CONST RECT *lprcBounds, // address of rectangle coordinates
UINT flags // controls rectangle combination

);Parametershdc
Identifies the device context for which to accumulate bounding rectangles.

lprcBounds
Points to a RECT structure used to set the bounding rectangle. Rectangle dimensions are in
logical coordinates. This parameter can be NULL.

flags
Specifies how the new rectangle will be combined with the accumulated rectangle. This
parameter can be a combination of the following values:

Value Description
DCB_ACCUMULATE Adds the rectangle specified by the

lprcBounds parameter to the bounding
rectangle (using a rectangle union
operation). Using both DCB_RESET and
DCB_ACCUMULATE sets the bounding
rectangle to the rectangle specified by the
lprcBounds parameter.

DCB_DISABLE Turns off boundary accumulation.
DCB_ENABLE Turns on boundary accumulation, which is

disabled by default.
DCB_RESET Clears the bounding rectangle.

Return ValuesIf the function succeeds, the return value specifies the previous state of the bounding rectangle.
This state can be a combination of the following values:

Value Meaning

DCB_DISABLE Boundary accumulation is off.
DCB_ENABLE Boundary accumulation is on. DCB_ENABLE and

DCB_DISABLE are mutually exclusive.
DCB_RESET Bounding rectangle is empty.
DCB_SET Bounding rectangle is not empty. DCB_SET and

DCB_RESET are mutually exclusive.
RemarksThe DCB_SET value is a combination of the bit values DCB_ACCUMULATE and DCB_RESET.

Applications that check the DCB_RESET bit to determine whether the bounding rectangle is
empty must also check the DCB_ACCUMULATE bit. The bounding rectangle is empty only if the
DCB_RESET bit is 1 and the DCB_ACCUMULATE bit is 0.See AlsoGetBoundsRect, RECT

SetBrushOrgEx
The SetBrushOrgEx function sets the brush origin that GDI assigns to the next brush an
application selects into the specified device context.

BOOL SetBrushOrgEx(
HDC hdc, // handle of device context
int nXOrg, // x-coordinate of new origin
int nYOrg, // y-coordinate of new origin
LPPOINT lppt // points to previous brush origin

);Parametershdc
Identifies the device context.

nXOrg
Specifies the x-coordinate, in device units, of the new brush origin. If this value is greater than
the brush width, its value is reduced using the modulus operator (nXOrg mod brush width).

nYOrg
Specifies the y-coordinate, in device units, of the new brush origin. If this value is greater than
the brush height, its value is reduced using the modulus operator (nYOrg mod brush height).

lppt
Points to a POINT structure that receives the previous brush origin.
This parameter can be NULL if the previous brush origin is not required.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA brush is a bitmap that the operating system uses to paint the interiors of filled shapes.

The brush origin is a pair of coordinates specifying the location of one pixel in the bitmap. The
default brush origin coordinates are (0,0). For horizontal coordinates, the value 0 corresponds to
the leftmost column of pixels; the width corresponds to the rightmost column. For vertical
coordinates, the value 0 corresponds to the uppermost row of pixels; the height corresponds to
the lowermost row.

The operating system automatically tracks the origin of all window-managed device contexts and
adjusts their brushes as necessary to maintain an alignment of patterns on the surface. The brush
origin that is set with this call is relative to the upper-left corner of the client area.

An application should call SetBrushOrgEx after setting the bitmap stretching mode to
HALFTONE via SetStretchBltMode. This must be done to avoid brush misalignment.

Windows NT: The operating system automatically tracks the origin of all window-managed device
contexts and adjusts their brushes as necessary to maintain an alignment of patterns on the
surface.

Windows 95: Automatic tracking of the brush origin is not supported. Applications must use the
UnrealizeObject, SetBrushOrgEx, and SelectObject functions to align the brush before using it.See AlsoGetBrushOrgEx, POINT, SelectObject, SetStretchBltMode, UnrealizeObject

SetCapture
The SetCapture function sets the mouse capture to the specified window belonging to the current
thread. Once a window has captured the mouse, all mouse input is directed to that window,
regardless of whether the cursor is within the borders of that window. Only one window at a time
can capture the mouse.

If the mouse cursor is over a window created by another thread, the system will direct mouse
input to the specified window only if a mouse button is down.

HWND SetCapture(
HWND hWnd // handle of window to receive mouse capture

);ParametershWnd
Identifies the window in the current thread that is to capture the mouse.

Return ValuesIf the function succeeds, the return value is the handle of the window that had previously captured
the mouse. If there is no such window, the return value is NULL.RemarksOnly the foreground window can capture the mouse. When a background window attempts to do
so, the window receives messages only for mouse events that occur when the cursor hot spot is
within the visible portion of the window. Also, even if the foreground window has captured the
mouse, the user can still click another window, bringing it to the foreground.

When the window no longer requires all mouse input, the thread that created the window should
call the ReleaseCapture function to release the mouse.

This function cannot be used to capture mouse input meant for another process.

Windows 95: Calling this function causes the window that is losing the mouse capture to receive
a WM_CAPTURECHANGED message.See AlsoGetCapture, ReleaseCapture, WM_CAPTURECHANGED

SetCaretBlinkTime
The SetCaretBlinkTime function sets the caret blink time to the specified number of milliseconds.
The blink time is the elapsed time, in milliseconds, required to invert the caret's pixels.

BOOL SetCaretBlinkTime(
UINT uMSeconds // blink time, in milliseconds

);ParametersuMSeconds
Specifies the new blink time, in milliseconds.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe user can set the blink time using the Control Panel. Applications should respect the setting
that the user has chosen. The SetCaretBlinkTime function should only be used by application
that allow the user to set the blink time, such as a Control Panel applet.

If you change the blink time, subsequently activated applications will use the modified blink time,
even if you restore the previous blink time when you lose the keyboard focus or become inactive.
This is due to the multithreaded environment, where deactivation of your application is not
synchronized with the activation of another application. This feature allows the system to activate
another application even if the current application is hung.See AlsoGetCaretBlinkTime

SetCaretPos
The SetCaretPos function moves the caret to the specified coordinates. If the window that owns
the caret was created with the CS_OWNDC class style, then the specified coordinates are subject
to the mapping mode of the device context associated with that window.

BOOL SetCaretPos(
int X, // horizontal position
int Y // vertical position

);ParametersX
Specifies the new x-coordinate of the caret.

Y
Specifies the new y-coordinate of the caret.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksSetCaretPos moves the caret whether or not the caret is hidden.

The caret is a shared resource; there is only one caret in the system. A window can set the caret
position only if it owns the caret.See AlsoGetCaretPos, HideCaret, ShowCaret

SetClassLong
The SetClassLong function replaces the specified 32-bit (long) value at the specified offset into
the extra class memory or the WNDCLASS structure for the class to which the specified window
belongs.

DWORD SetClassLong(
HWND hWnd, // handle of window
int nIndex, // index of value to change
LONG dwNewLong // new value

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the 32-bit value to replace. To set a 32-bit value in the extra class memory, specify
the positive, zero-based byte offset of the value to be set. Valid values are in the range zero
through the number of bytes of extra class memory, minus four; for example, if you specified
12 or more bytes of extra class memory, a value of 8 would be an index to the third 32-bit
integer. To set any other value from the WNDCLASS structure, specify one of the following
values:

Value Action
GCL_CBCLSEXTRA Sets the size, in bytes, of the extra

memory associated with the class.
Setting this value does not change the
number of extra bytes already allocated.

GCL_CBWNDEXTRA Sets the size, in bytes, of the extra
window memory associated with each
window in the class. Setting this value
does not change the number of extra
bytes already allocated. For information
on how to access this memory, see
SetWindowLong and
SetWindowWord.

GCL_HBRBACKGROUND Replaces the handle of the background
brush associated with the class.

GCL_HCURSOR Replaces the handle of the cursor
associated with the class.

GCL_HICON Replaces the handle of the icon
associated with the class.

GCL_HMODULE Replaces the handle of the module that
registered the class.

GCL_MENUNAME Replaces the address of the menu name
string. The string identifies the menu
resource associated with the class.

GCL_STYLE Replaces the window-class style bits.
GCL_WNDPROC Replaces the address of the window

procedure associated with the class.

dwNewLong
Specifies the replacement value.

Return ValuesIf the function succeeds, the return value is the previous value of the specified 32-bit integer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf you use the SetClassLong function and the GCL_WNDPROC index to replace the window
procedure, the window procedure must conform to the guidelines specified in the description of
the WindowProc callback function.

Calling SetClassLong with the GCL_WNDPROC index creates a subclass of the window class
that affects all windows subsequently created with the class. An application should not subclass a
window created by another process.

Reserve extra class memory by specifying a nonzero value in the cbClsExtra member of the
WNDCLASS structure used with the RegisterClass function.

Use the SetClassLong function with care. For example, it is possible to change the background
color for a class by using SetClassLong, but this change does not immediately repaint all
windows belonging to the class.See AlsoGetClassLong, GetClassWord, RegisterClass, SetClassWord, SetWindowLong,
SetWindowWord, WindowProc, WNDCLASS

SetClassWord
The SetClassWord function replaces the 16-bit (word) value at the specified offset into the extra
class memory for the window class to which the specified window belongs.

WORD SetClassWord(
HWND hWnd, // handle of window
int nIndex, // index of value to change
WORD wNewWord // new value

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based byte offset of the value to be replaced. Valid values are in the range
zero through the number of bytes of class memory minus two; for example, if you specified 10
or more bytes of extra class memory, a value of 8 would be an index to the fifth 16-bit integer.

wNewWord
Specifies the replacement value.

Return ValuesIf the function succeeds, the return value is the previous value of the specified 16-bit integer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReserve extra class memory by specifying a nonzero value in the cbClsExtra member of the
WNDCLASS structure used with the RegisterClass function.

The GCW_ values are obsolete in the Win32 API. You must use the SetClassLong function to
set the class values previously set by using the GCW_ values with the SetClassWord function.See AlsoGetClassLong, GetClassWord, RegisterClass, SetClassLong, WNDCLASS

SetClipboardData
The SetClipboardData function places data on the clipboard in a specified clipboard format. The
window must be the current clipboard owner, and the application must have called the
OpenClipboard function. (When responding to the WM_RENDERFORMAT and
WM_RENDERALLFORMATS messages, the clipboard owner must not call OpenClipboard
before calling SetClipboardData.)

HANDLE SetClipboardData(
UINT uFormat, // clipboard format
HANDLE hMem // data handle

);ParametersuFormat
Specifies a clipboard format. This parameter can be a registered format or any of the standard
clipboard formats listed in the following Remarks section. For information about registered
clipboard formats, see the RegisterClipboardFormat function.

hMem
Identifies the data in the specified format. This parameter can be NULL, indicating that the
window provides data in the specified clipboard format (renders the format) upon request. If a
window delays rendering, it must process the WM_RENDERFORMAT and
WM_RENDERALLFORMATS messages.
Once SetClipboardData is called, the system owns the object identified by the hMem
parameter. The application can read the data, but must not free the handle or leave it locked.
If the hMem parameter identifies a memory object, the object must have been allocated using
the GlobalAlloc function with the GMEM_MOVEABLE and GMEM_DDESHARE flags.

Return ValuesIf the function succeeds, the return value is the handle of the data.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe uFormat parameter can identify a registered clipboard format, or it can be one of the following
values:

Value Meaning

CF_BITMAP A handle to a bitmap (HBITMAP).
CF_DIB A memory object containing a

BITMAPINFO structure followed by the
bitmap bits.

CF_DIF Software Arts' Data Interchange Format.
CF_DSPBITMAP Bitmap display format associated with a

private format. The hMem parameter
must be a handle of data that can be
displayed in bitmap format in lieu of the
privately formatted data.

CF_DSPENHMETAFILE Enhanced metafile display format
associated with a private format. The
hMem parameter must be a handle of
data that can be displayed in enhanced
metafile format in lieu of the privately
formatted data.

CF_DSPMETAFILEPICT Metafile-picture display format
associated with a private format. The
hMem parameter must be a handle of
data that can be displayed in metafile-
picture format in lieu of the privately
formatted data.

CF_DSPTEXT Text display format associated with a
private format. The hMem parameter
must be a handle of data that can be
displayed in text format in lieu of the
privately formatted data.

CF_ENHMETAFILE A handle of an enhanced metafile
(HENHMETAFILE).

CF_GDIOBJFIRST through
CF_GDIOBJLAST

Range of integer values for application-
defined GDI object clipboard formats.
Handles associated with clipboard
formats in this range are not
automatically deleted using the
GlobalFree function when the clipboard
is emptied. Also, when using values in
this range, the hMem parameter is not a
handle to a GDI object, but is a handle
allocated by the GlobalAlloc function
with the GMEM_DDESHARE and
GMEM_MOVEABLE flags.

CF_HDROP A handle of type HDROP that identifies
a list of files. An application can retrieve
information about the files by passing
the handle to the DragQueryFile
functions.

CF_LOCALE The data is a handle to the locale
identifier associated with text in the
clipboard. When you close the clipboard,
if it contains CF_TEXT data but no
CF_LOCALE data, the system
automatically sets the CF_LOCALE
format to the current input locale. You
can use the CF_LOCALE format to
associate a different locale with the
clipboard text.
An application that pastes text from the
clipboard can retrieve this format to
determine which character set was used
to generate the text.
Note that the clipboard does not support
plain text in multiple character sets. To
achieve this, use a fomatted text data
type such as RTF instead.
Windows NT: The system uses the
code page associated with CF_LOCALE
to implicitly convert from CF_TEXT to
CF_UNICODETEXT. Therefore, the
correct code page table is used for the
conversion.

CF_METAFILEPICT Handle of a metafile picture format as
defined by the METAFILEPICT
structure. When passing a
CF_METAFILEPICT handle by means
of dynamic data exchange (DDE), the
application responsible for deleting
hMem should also free the metafile
referred to by the CF_METAFILEPICT
handle.

CF_OEMTEXT Text format containing characters in the
OEM character set. Each line ends with
a carriage return/linefeed (CR-LF)
combination. A null character signals the
end of the data.

CF_OWNERDISPLAY Owner-display format. The clipboard
owner must display and update the
clipboard viewer window, and receive
the WM_ASKCBFORMATNAME,
WM_HSCROLLCLIPBOARD,
WM_PAINTCLIPBOARD,
WM_SIZECLIPBOARD, and

WM_VSCROLLCLIPBOARD messages.
The hMem parameter must be NULL.

CF_PALETTE Handle of a color palette. Whenever an
application places data in the clipboard
that depends on or assumes a color
palette, it should place the palette on the
clipboard as well.
If the clipboard contains data in the
CF_PALETTE (logical color palette)
format, the application should use the
SelectPalette and RealizePalette
functions to realize (compare) any other
data in the clipboard against that logical
palette.
When displaying clipboard data,
Windows clipboard always uses as its
current palette any object on the
clipboard that is in the CF_PALETTE
format.

CF_PENDATA Data for the pen extensions to the
Microsoft Windows for Pen Computing.

CF_PRIVATEFIRST through
CF_PRIVATELAST

Range of integer values for private
clipboard formats. Handles associated
with private clipboard formats are not
freed automatically; the clipboard owner
must free such handles, typically in
response to the
WM_DESTROYCLIPBOARD message.

CF_RIFF Represents audio data more complex
than can be represented in a CF_WAVE
standard wave format.

CF_SYLK Microsoft Symbolic Link (SYLK) format.
CF_TEXT Text format. Each line ends with a

carriage return/linefeed (CR-LF)
combination. A null character signals the
end of the data. Use this format for ANSI
text.

CF_WAVE Represents audio data in one of the
standard wave formats, such as 11 kHz
or 22 kHz pulse code modulation (PCM)
.

CF_TIFF Tagged-image file format.
CF_UNICODETEXT Windows NT only: Unicode text format.

Each line ends with a carriage return/
linefeed (CR-LF) combination. A null
character signals the end of the data.

The operating system performs implicit data format conversions between certain clipboard
formats when an application calls the GetClipboardData function. For example, if the
CF_OEMTEXT format is on the clipboard, a window can retrieve data in the CF_TEXT format.
The format on the clipboard is converted to the requested format on demand. The following table
shows the clipboard data type conversions that are available. Note that some of these automatic
type conversions are not available on all platforms.

Clipboard FormatConversion FormatPlatform Support

CF_BITMAP CF_DIB Windows NT, Windows 95
CF_DIB CF_BITMAP Windows NT, Windows 95
CF_DIB CF_PALETTE Windows NT, Windows 95
CF_ENHMETAFILECF_METAFILEPICTWindows NT, Windows 95
CF_METAFILEPICTCF_ENHMETAFILE Windows NT, Windows 95

CF_OEMTEXT CF_TEXT Windows NT, Windows 95
CF_OEMTEXT CF_UNICODETEXTWindows NT
CF_TEXT CF_OEMTEXT Windows NT, Windows 95
CF_TEXT CF_UNICODETEXTWindows NT
CF_UNICODETEXTCF_OEMTEXT Windows NT
CF_UNICODETEXTCF_TEXT Windows NT

If the operating system provides an automatic type conversion for a particular clipboard
format, there is no advantage to placing the conversion format(s) on the clipboard.

When copying bitmaps, it is best to place only the CF_DIB format on the clipboard. This is
because the colors in a device-dependent bitmap (CF_BITMAP) are relative to the system
palette, which may change before the bitmap is pasted. If only the CF_DIB format is on the
clipboard and a window requests the CF_BITMAP format, the system renders the device-
dependent bitmap using the current palette at that time.

If you place the CF_BITMAP format on the clipboard (and not CF_DIB), the system renders
the CF_DIB clipboard format as soon as the clipboard is closed. This ensures that the
correct palette is used to generate the device-independent bitmap (DIB). Conversions
between other clipboard formats occur upon demand.

Windows platforms support two clipboard formats for metafiles: CF_ENHMETAFILE and
CF_METAFILEPICT. Specify CF_ENHMETAFILE for enhanced metafiles and
CF_METAFILEPICT for Windows metafiles.See AlsoBITMAPINFO, GetClipboardData, GlobalAlloc, GlobalFree, METAFILEPICT, OpenClipboard,
RealizePalette, RegisterClipboardFormat, SelectPalette, WM_ASKCBFORMATNAME,
WM_DESTROYCLIPBOARD, WM_HSCROLLCLIPBOARD, WM_PAINTCLIPBOARD,
WM_RENDERFORMAT, WM_RENDERALLFORMATS, WM_SIZECLIPBOARD,
WM_VSCROLLCLIPBOARD

SetClipboardViewer
The SetClipboardViewer function adds the specified window to the chain of clipboard viewers.
Clipboard viewer windows receive a WM_DRAWCLIPBOARD message whenever the content of
the clipboard changes.

HWND SetClipboardViewer(
HWND hWndNewViewer // handle of clipboard viewer window

);ParametershWndNewViewer
Identifies the window to be added to the clipboard chain.

Return ValuesIf the function succeeds, the return value identifies the next window in the clipboard viewer chain.
If an error occurs or there are no other windows in the clipboard viewer chain, the return value is
NULL. To get extended error information, call GetLastError.RemarksThe windows that are part of the clipboard viewer chain, called clipboard viewer windows, must
process the clipboard messages WM_CHANGECBCHAIN and WM_DRAWCLIPBOARD. Each
clipboard viewer window calls the SendMessage function to pass these messages to the next
window in the clipboard viewer chain.

A clipboard viewer window must eventually remove itself from the clipboard viewer chain by
calling the ChangeClipboardChain function ¾ for example, in response to the WM_DESTROY
message.See AlsoChangeClipboardChain, GetClipboardViewer, SendMessage, WM_CHANGECBCHAIN,
WM_DRAWCLIPBOARD

SetColorAdjustment
The SetColorAdjustment function sets the color adjustment values for a device context using the
specified values.

BOOL SetColorAdjustment(
HDC hdc, // handle to device context
CONST COLORADJUSTMENT *lpca // pointer to COLORADJUSTMENT structure

);Parametershdc
Identifies the device context.

lpca
Points to a COLORADJUSTMENT structure containing the color adjustment values.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe color adjustment values are used to adjust the input color of the source bitmap for calls to the
StretchBlt and StretchDIBits functions when HALFTONE mode is set.See AlsoGetColorAdjustment, StretchBlt, StretchDIBits, SetStretchBltMode, COLORADJUSTMENT

SetColorSpace
The SetColorSpace function sets the color space for the specified device context, defining the
endpoints of the logical RGB space in CIE XYZ space.

BOOL SetColorSpace(
HDC hdc, // handle to the device context
HCOLORSPACE hColorSpace // handle to the logical color space

);Parametershdc
Handle to the device context.

hColorSpace
Handle to the logical color space.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetColorSpace, RGB

SetCommBreak
The SetCommBreak function suspends character transmission for a specified communications
device and places the transmission line in a break state until the ClearCommBreak function is
called.

BOOL SetCommBreak(
HANDLE hFile // handle of communications device

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetCommBreak function does not flush data that has not been transmitted.See AlsoClearCommBreak, CreateFile

SetCommConfig
[Now Supported on Windows NT]

The SetCommConfig function sets the current configuration of a communications device.

BOOL SetCommConfig(
HANDLE hCommDev, // handle of communications device
LPCOMMCONFIG lpCC, // address of comm. configuration services
DWORD dwSize // size of structure

);ParametershCommDev
Identifies the open communications device.

lpCC
Points to a COMMCONFIG structure.

dwSize
Specifies the size, in bytes, of the structure pointed to by lpCC.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetCommConfig, COMMCONFIG

SetCommMask
The SetCommMask function specifies a set of events to be monitored for a communications
device.

BOOL SetCommMask(
HANDLE hFile, // handle of communications device
DWORD dwEvtMask // mask that identifies enabled events

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

dwEvtMask
Specifies the events to be enabled. A value of zero disables all events. This parameter can be
a combination of the following values:

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are

CE_FRAME, CE_OVERRUN, and
CE_RXPARITY.

EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal

changed state.
EV_RXCHAR A character was received and placed in the input

buffer.
EV_RXFLAG The event character was received and placed in

the input buffer. The event character is specified
in the device's DCB structure, which is applied to
a serial port by using the SetCommState
function.

EV_TXEMPTY The last character in the output buffer was sent.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetCommMask function specifies the set of events that can be monitored for a particular
communications resource. A handle to the communications resource can be specified in a call to
the WaitCommEvent function, which waits for one of the events to occur. To get the current
event mask of a communications resource, use the GetCommMask function.

If SetCommMask is called for a communications resource while an overlapped wait is pending for
that resource, WaitCommEvent returns an error.See AlsoCreateFile, DCB, GetCommMask, SetCommState, WaitCommEvent

SetCommState
The SetCommState function configures a communications device according to the specifications
in a device-control block (a DCB structure). The function reinitializes all hardware and control
settings, but it does not empty output or input queues.

BOOL SetCommState(
HANDLE hFile, // handle of communications device
LPDCB lpDCB // address of device-control block structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpDCB
Points to a DCB structure containing the configuration information for the specified
communications device.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetCommState function uses a DCB structure to specify the desired configuration. The
GetCommState function returns the current configuration.

To set only a few members of the DCB structure, you should modify a DCB structure that has
been filled in by a call to GetCommState. This ensures that the other members of the DCB
structure have appropriate values.

The SetCommState function fails if the XonChar member of the DCB structure is equal to the
XoffChar member.

When SetCommState is used to configure the 8250, the following restrictions apply to the values
for the DCB structure's ByteSize and StopBits members:

· The number of data bits must be 5 to 8 bits.
· The use of 5 data bits with 2 stop bits is an invalid combination, as are 6, 7, or 8 data bits

with 1.5 stop bits.
See AlsoBuildCommDCB, CreateFile, DCB, GetCommState

SetCommTimeouts
The SetCommTimeouts function sets the time-out parameters for all read and write operations
on a specified communications device.

BOOL SetCommTimeouts(
HANDLE hFile, // handle of communications device
LPCOMMTIMEOUTS lpCommTimeouts // address of communications time-out structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpCommTimeouts
Points to a COMMTIMEOUTS structure that contains the new time-out values.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCOMMTIMEOUTS, GetCommTimeouts, ReadFile, ReadFileEx, WriteFile, WriteFileEx

SetComputerName
The SetComputerName function sets the computer name to be used the next time the system is
restarted.

BOOL SetComputerName(
LPCTSTR lpComputerName // address of new computer name

);ParameterslpComputerName
Points to a null-terminated character string that specifies the name that will be the computer
name the next time the computer is started. The name must not be longer than
MAX_COMPUTERNAME_LENGTH characters.
Windows 95: If this string contains one or more characters that are outside the standard
character set, those characters are coerced into standard characters.
Windows NT: If this string contains one or more characters that are outside the standard
character set, SetComputerName returns ERROR_INVALID_PARAMETER. It does not
coerce the characters outside the standard set.
The standard character set includes letters, numbers, and the following symbols: ! @ # $ % ^
& ') (. - _ { } ~ .

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksApplications using this function must have administrator rights.See AlsoGetComputerName

SetConsoleActiveScreenBuffer
The SetConsoleActiveScreenBuffer function sets the specified screen buffer to be the currently
displayed console screen buffer.

BOOL SetConsoleActiveScreenBuffer(
HANDLE hConsoleOutput // handle of console screen buffer

);ParametershConsoleOutput
Identifies a console screen buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA console can have multiple screen buffers. SetConsoleActiveScreenBuffer determines which
one is displayed. You can write to an inactive screen buffer and then use
SetConsoleActiveScreenBuffer to display the buffer's contents.See AlsoCreateConsoleScreenBuffer

SetConsoleCP
The SetConsoleCP function sets the input code page used by the console associated with the
calling process. A console uses its input code page to translate keyboard input into the
corresponding character value.

BOOL SetConsoleCP(
UINT wCodePageID // code page to set

);ParameterswCodePageID
Specifies the identifier of the code page to set. The identifiers of the code pages available on
the local computer are stored in the registry under the following key.
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA code page maps 256 character codes to individual characters. Different code pages include
different special characters, typically customized for a language or a group of languages.

To determine a console's current input code page, use the GetConsoleCP function. To set and
retrieve a console's output code page, use the SetConsoleOutputCP and GetConsoleOutputCP
functions.See AlsoGetConsoleCP, GetConsoleOutputCP, SetConsoleOutputCP

SetConsoleCtrlHandler
The SetConsoleCtrlHandler function adds or removes an application-defined HandlerRoutine
function from the list of handler functions for the calling process. If no handler function is specified,
the function sets an inheritable attribute that determines whether the calling process ignores
CTRL+C signals.

BOOL SetConsoleCtrlHandler(
PHANDLER_ROUTINE HandlerRoutine, // address of handler function
BOOL Add // handler to add or remove

);ParametersHandlerRoutine
Points to the application-defined HandlerRoutine function to add or remove. This parameter
can be NULL.

Add
Specifies whether to add or remove the function pointed to by the HandlerRoutine parameter
from the handler list. If this parameter is TRUE, the handler is added; if it is FALSE, the
handler is removed.
If the HandlerRoutine parameter is NULL, a TRUE value causes the calling process to ignore
CTRL+C input, and a FALSE value restores normal processing of CTRL+C input. This attribute
of ignoring or processing CTRL+C is inherited by child processes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEach console process has its own list of application-defined HandlerRoutine functions that
handle CTRL+C and CTRL+BREAK signals. The handler functions also handle signals generated by
the system when the user closes the console, logs off, or shuts down the system. Initially, the
handler list for each process contains only a default handler function that calls the ExitProcess
function. A console process adds or removes additional handler functions by calling the
SetConsoleCtrlHandler function, which does not affect the list of handler functions for other
processes. When a console process receives any of the control signals, its handler functions are
called on a last-registered, first-called basis until one of the handlers returns TRUE. If none of the
handlers returns TRUE, the default handler is called.

For console processes, the CTRL+C and CTRL+BREAK key combinations are typically treated as
signals (CTRL_C_EVENT and CTRL_C_BREAK_EVENT). When a console window with the
keyboard focus receives CTRL+C or CTRL+BREAK, the signal is typically passed to all processes
sharing that console.

CTRL+BREAK is always treated as a signal, but typical CTRL+C behavior can be changed in three
ways that prevent the handler functions from being called:

· The SetConsoleMode function can disable the ENABLE_PROCESSED_INPUT mode
for a console's input buffer, so CTRL+C is reported as keyboard input rather than as a signal.

· Calling SetConsoleCtrlHandler with the NULL and TRUE arguments causes the calling
process to ignore CTRL+C signals. This attribute is inherited by child processes, but it can be
enabled or disabled by any process without affecting existing processes.

· If a console process is being debugged and CTRL+C signals have not been disabled, the
kernel generates a DBG_CONTROL_C exception. This exception is raised only for the benefit
of the debugger, and an application should never use an exception handler to deal with it. If
the debugger handles the exception, an application will not notice the CTRL+C, with one
exception: alertable waits will terminate. If the debugger passes the exception on unhandled,
CTRL+C is passed to the console process and treated as a signal, as previously discussed.

A console process can use the GenerateConsoleCtrlEvent function to send a CTRL+C or CTRL+
BREAK signal to a console process group.

The system generates CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and
CTRL_SHUTDOWN_EVENT signals when the user closes the console, logs off, or shuts down
the system so that the process has an opportunity to clean up before termination. Console
functions, or any C run-time functions that call console functions, may not work reliably during
processing of any of the three signals mentioned previously. The reason is that some or all of the
internal console cleanup routines may have been called before executing the process signal
handler.See AlsoExitProcess, GenerateConsoleCtrlEvent, GetConsoleMode, HandlerRoutine,
SetConsoleMode

SetConsoleCursorInfo
The SetConsoleCursorInfo function sets the size and visibility of the cursor for the specified
console screen buffer.

BOOL SetConsoleCursorInfo(
HANDLE hConsoleOutput, // handle of console screen buffer
CONST CONSOLE_CURSOR_INFO *lpConsoleCursorInfo // address of cursor information

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_WRITE access.

lpConsoleCursorInfo
Points to a CONSOLE_CURSOR_INFO structure containing the new specifications for the
screen buffer's cursor.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen a screen buffer's cursor is visible, its appearance can vary, ranging from completely filling a
character cell to showing up as a horizontal line at the bottom of the cell. The dwSize member of
the CONSOLE_CURSOR_INFO structure specifies the percentage of a character cell that is filled
by the cursor. If this member is less than 1 or greater than 100, SetConsoleCursorInfo fails.See AlsoCONSOLE_CURSOR_INFO, GetConsoleCursorInfo, SetConsoleCursorPosition

SetConsoleCursorPosition
The SetConsoleCursorPosition function sets the cursor position in the specified console screen
buffer.

BOOL SetConsoleCursorPosition(
HANDLE hConsoleOutput, // handle of console screen buffer
COORD dwCursorPosition // new cursor position coordinates

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_WRITE access.

dwCursorPosition
Specifies a COORD structure containing the new cursor position. The coordinates are the
column and row of a screen buffer character cell. The coordinates must be within the
boundaries of the screen buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe cursor position determines where characters written by the WriteFile or WriteConsole
function, or echoed by the ReadFile or ReadConsole function, are displayed. To determine the
current position of the cursor, use the GetConsoleScreenBufferInfo function.

If the new cursor position is not within the boundaries of the screen buffer's window, the window
origin changes to make the cursor visible.See AlsoGetConsoleCursorInfo, GetConsoleScreenBufferInfo, ReadConsole, ReadFile,
SetConsoleCursorInfo, WriteConsole, WriteFile

SetConsoleMode
The SetConsoleMode function sets the input mode of a console's input buffer or the output mode
of a console screen buffer.

BOOL SetConsoleMode(
HANDLE hConsoleHandle, // handle of console input or screen buffer
DWORD dwMode // input or output mode to set

);ParametershConsoleHandle
Identifies a console input buffer or a screen buffer. The handle must have GENERIC_WRITE
access.

dwMode
Specifies the input or output mode to set. If the hConsoleHandle parameter is an input handle,
the mode can be a combination of the following values. When a console is created, all input
modes except ENABLE_WINDOW_INPUT are enabled by default.

Value Meaning
ENABLE_LINE_INPUT The ReadFile or ReadConsole

function returns only when a carriage
return character is read. If this mode
is disabled, the functions return when
one or more characters are
available.

ENABLE_ECHO_INPUT Characters read by the ReadFile or
ReadConsole function are written to
the active screen buffer as they are
read. This mode can be used only if
the ENABLE_LINE_INPUT mode is
also enabled.

ENABLE_PROCESSED_INPUTCTRL+C is processed by the system
and is not placed in the input buffer.
If the input buffer is being read by
ReadFile or ReadConsole, other
control keys are processed by the
system and are not returned in the
ReadFile or ReadConsole buffer. If
the ENABLE_LINE_INPUT mode is
also enabled, backspace, carriage
return, and linefeed characters are
handled by the system.

ENABLE_WINDOW_INPUT User interactions that change the
size of the console screen buffer are
reported in the console's input buffer.
Information about these events can
be read from the input buffer by
applications using the
ReadConsoleInput function, but not
by those using ReadFile or
ReadConsole.

ENABLE_MOUSE_INPUT If the mouse pointer is within the
borders of the console window and
the window has the keyboard focus,
mouse events generated by mouse
movement and button presses are
placed in the input buffer. These
events are discarded by ReadFile or
ReadConsole, even when this mode
is enabled.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be a combination

of the following values. When a screen buffer is created, both output modes are enabled by
default.

Value Meaning
ENABLE_PROCESSED_OUTPUT Characters written by the

WriteFile or WriteConsole
function or echoed by the
ReadFile or ReadConsole
function are examined for ASCII
control sequences and the
correct action is performed.
Backspace, tab, bell, carriage
return, and linefeed characters
are processed.

ENABLE_WRAP_AT_EOL_OUTPUTWhen writing with WriteFile or
WriteConsole or echoing with
ReadFile or ReadConsole, the
cursor moves to the beginning of
the next row when it reaches the
end of the current row. This
causes the rows displayed in the
console window to scroll up
automatically when the cursor
advances beyond the last row in
the window. It also causes the
contents of the screen buffer to
scroll up (discarding the top row
of the screen buffer) when the
cursor advances beyond the last
row in the screen buffer. If this
mode is disabled, the last
character in the row is
overwritten with any subsequent
characters.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA console consists of an input buffer and one or more screen buffers. The mode of a console
buffer determines how the console behaves during input and output (I/O) operations. One set of
flag constants is used with input handles, and another set is used with screen buffer (output)
handles. Setting the output modes of one screen buffer does not affect the output modes of other
screen buffers.

The ENABLE_LINE_INPUT and ENABLE_ECHO_INPUT modes only affect processes that use
ReadFile or ReadConsole to read from the console's input buffer. Similarly, the
ENABLE_PROCESSED_INPUT mode primarily affects ReadFile and ReadConsole users,
except that it also determines whether CTRL+C input is reported in the input buffer (to be read by
the ReadConsoleInput function) or is passed to a HandlerRoutine function defined by the
application.

The ENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUT modes determine whether user
interactions involving window resizing and mouse actions are reported in the input buffer or
discarded. These events can be read by ReadConsoleInput, but they are always filtered by
ReadFile and ReadConsole.

The ENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUT modes only
affect processes using ReadFile or ReadConsole and WriteFile or WriteConsole.

To determine the current mode of a console input buffer or a screen buffer, use the
GetConsoleMode function.See AlsoGetConsoleMode, HandlerRoutine, ReadConsole, ReadConsoleInput, ReadFile,
WriteConsole, WriteFile

SetConsoleOutputCP
The SetConsoleOutputCP function sets the output code page used by the console associated
with the calling process. A console uses its output code page to translate the character values
written by the various output functions into the images displayed in the console window.

BOOL SetConsoleOutputCP(
UINT wCodePageID // code page to set

);ParameterswCodePageID
Specifies the identifier of the code page to set. The identifiers of the code pages available on
the local computer are stored in the registry under the following key.
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA code page maps 256 character codes to individual characters. Different code pages include
different special characters, typically customized for a language or a group of languages.

To determine a console's current output code page, use the GetConsoleOutputCP function. To
set and retrieve a console's input code page, use the SetConsoleCP and GetConsoleCP
functions.See AlsoGetConsoleCP, GetConsoleOutputCP, SetConsoleCP

SetConsoleScreenBufferSize
The SetConsoleScreenBufferSize function changes the size of the specified console screen
buffer.

BOOL SetConsoleScreenBufferSize(
HANDLE hConsoleOutput, // handle of console screen buffer
COORD dwSize // new size in character rows and cols.

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_WRITE access.

dwSize
Specifies a COORD structure containing the new size, in rows and columns, of the screen
buffer. The specified width and height cannot be less than the width and height of the screen
buffer's window. The specified dimensions also cannot be less than the minimum size allowed
by the system. This minimum depends on the current font size for the console (selected by
the user) and the SM_CXMIN and SM_CYMIN values returned by the GetSystemMetrics
function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCOORD, GetConsoleScreenBufferInfo, SetConsoleWindowInfo

SetConsoleTextAttribute
The SetConsoleTextAttribute function sets the foreground (text) and background color attributes
of characters written to the screen buffer by the WriteFile or WriteConsole function, or echoed by
the ReadFile or ReadConsole function. This function affects only text written after the function
call.

BOOL SetConsoleTextAttribute(
HANDLE hConsoleOutput, // handle of console screen buffer
WORD wAttributes // text and background colors

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_READ access.

wAttributes
Specifies the foreground and background color attributes. Any combination of the following
values can be specified: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE,
BACKGROUND_GREEN, BACKGROUND_RED, and BACKGROUND_INTENSITY. For
example, the following combination of values produces white text on a black background:FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo determine the current color attributes of a screen buffer, call the
GetConsoleScreenBufferInfo function.See AlsoGetConsoleScreenBufferInfo, ReadConsole, ReadFile, WriteConsole, WriteFile

SetConsoleTitle
The SetConsoleTitle function sets the title bar string for the current console window.

BOOL SetConsoleTitle(
LPCTSTR lpConsoleTitle // address of new title

);ParameterslpConsoleTitle
Points to a null-terminated string that contains the string to appear in the title bar of the
console window.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoGetConsoleTitle, SetConsoleCP, SetConsoleOutputCP

SetConsoleWindowInfo
The SetConsoleWindowInfo function sets the current size and position of a console screen
buffer's window.

BOOL SetConsoleWindowInfo(
HANDLE hConsoleOutput, // handle of console screen buffer
BOOL bAbsolute, // coordinate type flag
CONST SMALL_RECT *lpConsoleWindow // address of new window rectangle

);ParametershConsoleOutput
Identifies a console screen buffer. The handle must have GENERIC_WRITE access.

bAbsolute
Specifies how the coordinates in the structure pointed to by the lpConsoleWindow parameter
are used. If bAbsolute is TRUE, the coordinates specify the new upper-left and lower-right
corners of the window. If it is FALSE, the coordinates are offsets to the current window-corner
coordinates.

lpConsoleWindow
Points to a SMALL_RECT structure that contains values that determine the new upper-left
and lower-right corners of the window.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe function fails if the specified window rectangle extends beyond the boundaries of the screen
buffer. This means that the Top and Left members of the lpConsoleWindow rectangle (or the
calculated top and left coordinates, if bAbsolute is FALSE) cannot be less than zero. Similarly, the
Bottom and Right members (or the calculated bottom and right coordinates) cannot be greater
than (screen buffer height - 1) and (screen buffer width - 1), respectively. The function also fails if
the Right member (or calculated right coordinate) is less than or equal to the Left member (or
calculated left coordinate) or if the Bottom member (or calculated bottom coordinate) is less than
or equal to the Top member (or calculated top coordinate).

For consoles with more than one screen buffer, changing the window location for one screen
buffer does not affect the window locations of the other screen buffers.

To determine the current size and position of a screen buffer's window, use the
GetConsoleScreenBufferInfo function. This function also returns the maximum size of the
window, given the current screen buffer size, the current font size, and the screen size. The
GetLargestConsoleWindowSize function returns the maximum window size given the current
font and screen sizes, but it does not consider the size of the screen buffer.

SetConsoleWindowInfo can be used to scroll the contents of the screen buffer by shifting the
position of the window rectangle without changing its size.See AlsoGetConsoleScreenBufferInfo, GetLargestConsoleWindowSize, SMALL_RECT,
ScrollConsoleScreenBuffer

SetCurrentDirectory
The SetCurrentDirectory function changes the current directory for the current process.

BOOL SetCurrentDirectory(
LPCTSTR lpPathName // address of name of new current directory

);ParameterslpPathName
Points to a null-terminated string that specifies the path to the new current directory. This
parameter may be a relative path or a fully qualified path. In either case, the fully qualified
path of the specified directory is calculated and stored as the current directory.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEach process has a single current directory made up of two parts:

· A disk designator that is either a drive letter followed by a colon, or a server name and
share name (\\servername\sharename)

· A directory on the disk designator
See AlsoGetCurrentDirectory

SetCursor
The SetCursor function establishes the cursor shape.

HCURSOR SetCursor(
HCURSOR hCursor // handle of cursor

);ParametershCursor
Identifies the cursor. The cursor must have been created by the CreateCursor or loaded by
the LoadCursor or LoadImage function. If this parameter is NULL, the cursor is removed
from the screen.

Windows 95: The width and height of the cursor must be the values returned by the
GetSystemMetrics function for SM_CXCURSOR and SM_CYCURSOR. In addition, the
cursor bit depth must match the bit depth of the display or the cursor must be monochrome.

Return ValuesThe return value is the handle of the previous cursor, if there was one.

If there was no previous cursor, the return value is NULL.RemarksThe cursor is set only if the new cursor is different from the previous cursor; otherwise, the
function returns immediately.

The cursor is a shared resource. A window should set the cursor shape only when the cursor is in
its client area or when the window is capturing mouse input. In systems without a mouse, the
window should restore the previous cursor before the cursor leaves the client area or before it
relinquishes control to another window.

If your application must set the cursor while it is in a window, make sure the class cursor for the
specified window's class is set to NULL. If the class cursor is not NULL, the system restores the
class cursor each time the mouse is moved.

The cursor is not shown on the screen if the internal cursor display count is less than zero. This
occurs if the application uses the ShowCursor function to hide the cursor more times than to
show the cursor.See AlsoCreateCursor, GetCursor, GetSystemMetrics, LoadCursor, LoadImage, SetCursorPos,
ShowCursor

SetCursorPos
The SetCursorPos function moves the cursor to the specified screen coordinates. If the new
coordinates are not within the screen rectangle set by the most recent ClipCursor function,
Windows automatically adjusts the coordinates so that the cursor stays within the rectangle.

BOOL SetCursorPos(
int X, // horizontal position
int Y // vertical position

);ParametersX
Specifies the new x-coordinate, in screen coordinates, of the cursor.

Y
Specifies the new y-coordinate, in screen coordinates, of the cursor.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe cursor is a shared resource. A window should move the cursor only when the cursor is in its
client area.

The calling process must have WINSTA_WRITEATTRIBUTES access to the window station.See AlsoClipCursor, GetCursorPos, SetCaretPos, SetCursor, ShowCursor

SetDebugErrorLevel
The SetDebugErrorLevel function sets the minimum error level at which Windows will generate
debugging events and pass them to a debugger.

VOID SetDebugErrorLevel(
DWORD dwLevel // debugging error level

);ParametersdwLevel
Specifies the minimum error level for debugging events. If an error is equal to or above this
level, Windows generates a debugging event. This parameter must be one of the following
values:

Value Meaning
0 Does not report any errors. This value is the

default error level.
SLE_ERROR Reports only ERROR level debugging events.
SLE_MINORERROR Reports only MINORERROR level and

ERROR level debugging events.
SLE_WARNING Reports WARNING level, MINORERROR

level, and ERROR level debugging events.
Return ValuesThis function does not return a value.RemarksThe debugger calls SetDebugErrorLevel to specify the types of errors that it should be notified

about.

If the debugging error level is greater than the error that occurred, the value for the GetLastError
function is set, but the kernel does not generate a debugging event.

SetDefaultCommConfig
[Now Supported on Windows NT]

The SetDefaultCommConfig function sets the default configuration for a communications device.

BOOL SetDefaultCommConfig(
LPCSTR lpszName,
LPCOMMCONFIG lpCC,
DWORD dwSize

);ParameterslpszName
Points to a null-terminated string specifying the name of the device.

lpCC
Points to a COMMCONFIG structure. If this parameter is NULL, the default configuration is set
to the device driver's defaults.

dwSize
Specifies the size, in bytes, of the structure pointed to by lpCC.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetDefaultCommConfig, COMMCONFIG

SetDeviceGammaRamp
The SetDeviceGammaRamp function sets the gamma ramp on direct color display boards.

BOOL SetDeviceGammaRamp(
HDC hdc,
LPVOID lpRamp

);Parametershdc
Handle to the device context.

lpRamp
Pointer to a set of three arrays of 256-byte elements. These arrays are the mapping between
color values in the frame buffer and DAC values. The first array is red, the next is green, and
the final one is blue.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksDirect color display modes do not use color look-up tables. The direct color modes are usually 16-
, 24-, or 32-bit. Not all direct color video boards support loadable gamma ramps. This function
succeeds only for those drivers that support loadable gamma ramps in hardware.See AlsoGetDeviceGammaRamp

SetDIBColorTable
The SetDIBColorTable function sets RGB (red, green, blue) color values in a range of entries in
the color table of the device-independent bitmap (DIB) that is currently selected into a specified
device context.

UINT SetDIBColorTable(
HDC hdc, // handle of device context whose DIB is of interest
UINT uStartIndex, // color table index of first entry to set
UINT cEntries, // number of color table entries to set
CONST RGBQUAD *pColors // pointer to array of color table entries

);Parametershdc
Specifies a device context. A device-independent bitmap must be selected into this device
context.

uStartIndex
A zero-based color table index that specifies the first color table entry to set.

cEntries
Specifies the number of color table entries to set.

pColors
Points to an array of RGBQUAD structures containing new color information for the DIB's
color table.

Return ValuesIf the function succeeds, the return value is the number of color table entries that the function sets.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThis function should be called to set the color table for device-independent bitmaps that use 1, 4,
or 8 bits per pixel. The biBitCount member of a bitmap's associated BITMAPINFOHEADER
structure specifies the number of bits per pixel. Device-independent bitmaps with a biBitCount
value greater than 8 do not have a color table.See AlsoBITMAPINFOHEADER, CreateDIBSection, GetDIBColorTable, GetObject, DIBSECTION,
RGBQUAD

SetDIBits
The SetDIBits function sets the pixels in a bitmap using the color data found in the specified
device-independent bitmap (DIB).

int SetDIBits(
HDC hdc, // handle of device context
HBITMAP hbmp, // handle of bitmap
UINT uStartScan, // starting scan line
UINT cScanLines, // number of scan lines
CONST VOID *lpvBits, // array of bitmap bits
CONST BITMAPINFO *lpbmi, // address of structure with bitmap data
UINT fuColorUse // type of color indices to use

);Parametershdc
Identifies a device context.

hbmp
Identifies the bitmap that is to be altered using the color data from the specified DIB.

uStartScan
Specifies the starting scan line for the device-independent color data in the array pointed to by
the lpvBits parameter.

cScanLines
Specifies the number of scan lines found in the array containing device-independent color
data.

lpvBits
Points to the DIB color data, stored as an array of bytes. The format of the bitmap values
depends on the biBitCount member of the BITMAPINFO structure pointed to by the lpbmi
parameter.

lpbmi
Points to a BITMAPINFO data structure that contains information about the DIB.

fuColorUse
Specifies whether the bmiColors member of the BITMAPINFO structure was provided and, if
so, whether bmiColors contains explicit red, green, blue (RGB) values or palette indices. The
fuColorUse parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit

indices into the logical palette of the device
context identified by the hdc parameter.

DIB_RGB_COLORS The color table is provided and contains literal
RGB values.

Return ValuesIf the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOptimal bitmap drawing speed is obtained when the bitmap bits are indices into the system
palette.

Applications can retrieve the system palette colors and indices by calling the
GetSystemPaletteEntries function. After the colors and indices are retrieved, the application can
create the DIB. For more information, see System Palette.

The device context identified by the hdc parameter is used only if the DIB_PAL_COLORS
constant is set for the fuColorUse parameter; otherwise it is ignored.

The bitmap identified by the hbmp parameter must not be selected into a device context when the
application calls this function.

The origin for bottom-up DIBs is the lower-left corner of the bitmap; the origin for top-down DIBs is
the upper-left corner of the bitmap.See AlsoGetDIBits, GetSystemPaletteEntries, BITMAPINFO

SetDIBitsToDevice
The SetDIBitsToDevice function sets the pixels in the specified rectangle on the device that is
associated with the destination device context using color data from a device-independent bitmap
(DIB).

int SetDIBitsToDevice(
HDC hdc, // handle of device context
int XDest, // x-coordinate of upper-left corner of dest. rect.
int YDest, // y-coordinate of upper-left corner of dest. rect.
DWORD dwWidth, // source rectangle width
DWORD dwHeight, // source rectangle height
int XSrc, // x-coordinate of lower-left corner of source rect.
int YSrc, // y-coordinate of lower-left corner of source rect.
UINT uStartScan, // first scan line in array
UINT cScanLines, // number of scan lines
CONST VOID *lpvBits, // address of array with DIB bits
CONST BITMAPINFO *lpbmi, // address of structure with bitmap info.
UINT fuColorUse // RGB or palette indices

);Parametershdc
Identifies the device context.

XDest
Specifies the x-coordinate, in logical units, of the upper-left corner of the destination rectangle.

YDest
Specifies the y-coordinate, in logical units, of the upper-left corner of the destination rectangle.

dwWidth
Specifies the width, in logical units, of the DIB.

dwHeight
Specifies the height, in logical units, of the DIB.

XSrc
Specifies the x-coordinate, in logical units, of the lower-left corner of the DIB.

YSrc
Specifies the y-coordinate, in logical units, of the lower-left corner of the DIB.

uStartScan
Specifies the starting scan line in the DIB.

cScanLines
Specifies the number of DIB scan lines contained in the array pointed to by the lpvBits
parameter.

lpvBits
Points to DIB color data stored as an array of bytes.

lpbmi
Points to a BITMAPINFO structure that contains information about the DIB.

fuColorUse
Specifies whether the bmiColors member of the BITMAPINFO structure contains explicit red,
green, blue (RGB) values or indices into a palette. The fuColorUse parameter must be one of
the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit

indices into the currently selected logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.
Return ValuesIf the function succeeds, the return value is the number of scan lines set.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOptimal bitmap drawing speed is obtained when the bitmap bits are indices into the system
palette.

Applications can retrieve the system palette colors and indices by calling the

GetSystemPaletteEntries function. After the colors and indices are retrieved, the application can
create the DIB. For more information about the system palette, see Colors.

The origin of a bottom-up DIB is the lower-left corner of the bitmap; the origin of a top-down DIB is
the upper-left corner.

To reduce the amount of memory required to set bits from a large device-independent bitmap on a
device surface, an application can band the output by repeatedly calling SetDIBitsToDevice,
placing a different portion of the bitmap into the lpvBits array each time. The values of the
uStartScan and cScanLines parameters identify the portion of the bitmap contained in the lpvBits
array.

The SetDIBitsToDevice function returns an error if it is called by a process that is running in the
background while a full-screen MS-DOS session runs in the foreground.See AlsoBITMAPINFO, GetSystemPaletteEntries, SetDIBits, StretchDIBits

SetDlgItemInt
The SetDlgItemInt function sets the text of a control in a dialog box to the string representation of
a specified integer value.

BOOL SetDlgItemInt(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
UINT uValue, // value to set
BOOL bSigned // signed or unsigned indicator

);ParametershDlg
Identifies the dialog box that contains the control.

nIDDlgItem
Specifies the control to be changed.

uValue
Specifies the integer value used to generate the item text.

bSigned
Specifies whether the uValue parameter is signed or unsigned. If this parameter is TRUE,
uValue is signed. If this parameter is TRUE and uValue is less than zero, a minus sign is
placed before the first digit in the string. If this parameter is FALSE, uValue is unsigned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo set the new text, this function sends a WM_SETTEXT message to the specified control.See AlsoGetDlgItemInt, SetDlgItemText, WM_SETTEXT

SetDlgItemText
The SetDlgItemText function sets the title or text of a control in a dialog box.

BOOL SetDlgItemText(
HWND hDlg, // handle of dialog box
int nIDDlgItem, // identifier of control
LPCTSTR lpString // text to set

);ParametershDlg
Identifies the dialog box that contains the control.

nIDDlgItem
Identifies the control with a title or text that is to be set.

lpString
Points to the null-terminated string that contains the text to be copied to the control.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetDlgItemText function sends a WM_SETTEXT message to the specified control.See AlsoGetDlgItemInt, GetDlgItemText, SetDlgItemInt, WM_SETTEXT

SetDoubleClickTime
The SetDoubleClickTime function sets the double-click time for the mouse. A double-click is a
series of two clicks of a mouse button, the second occurring within a specified time after the first.
The double-click time is the maximum number of milliseconds that may occur between the first
and second clicks of a double-click.

BOOL SetDoubleClickTime(
UINT uInterval // double-click interval

);ParametersuInterval
Specifies the number of milliseconds that may occur between the first and second clicks of a
double-click. If this parameter is set to zero, Windows uses the default double-click time of
500 milliseconds.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe SetDoubleClickTime function alters the double-click time for all windows in the system.See AlsoGetDoubleClickTime

SetEndOfFile
The SetEndOfFile function moves the end-of-file (EOF) position for the specified file to the
current position of the file pointer.

BOOL SetEndOfFile(
HANDLE hFile // handle of file whose EOF is to be set

);ParametershFile
Identifies the file to have its EOF position moved. The file handle must have been created with
GENERIC_WRITE access to the file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThis function can be used to truncate or extend a file. If the file is extended, the contents of the file
between the old EOF position and the new position are not defined.

If you called CreateFileMapping to create a file-mapping object for hFile, you must first call
UnmapViewOfFile to unmap all views and call CloseHandle to close the file-mapping object
before you can call SetEndOfFile.See AlsoCloseHandle, CreateFile, CreateFileMapping, UnmapViewOfFile

SetEnhMetaFileBits
The SetEnhMetaFileBits function creates a memory-based enhanced-format metafile from the
supplied data.

HENHMETAFILE SetEnhMetaFileBits(
UINT cbBuffer, // buffer size
CONST BYTE *lpData // buffer that contains enhanced metafile data

);ParameterscbBuffer
Specifies the size, in bytes, of the data provided.

lpData
Points to a buffer that contains enhanced-metafile data. (It is assumed that the data in the
buffer was obtained by calling the GetEnhMetaFileBits function.)

Return ValuesIf the function succeeds, the return value is a handle of a memory-based enhanced metafile.

If the function fails, the return value is NULL.RemarksWhen the application no longer needs the enhanced-metafile handle, it should delete the handle
by calling the DeleteEnhMetaFile function.

The SetEnhMetaFileBits function does not accept metafile data in the Windows format. To import
Windows-format metafiles, use the SetWinMetaFileBits function.See AlsoDeleteEnhMetaFile, GetEnhMetaFileBits, SetWinMetaFileBits

SetEntriesInAcl
[New - Windows NT]

The SetEntriesInAcl function creates a new access-control list (ACL) by merging new access-
control or audit-control information into an existing ACL.

DWORD SetEntriesInAcl(
ULONG cCountOfExplicitEntries, // number of entries in the list
PEXPLICIT_ACCESS pListOfExplicitEntries, // pointer to list of entries with new access data
PACL OldAcl, // pointer to the original ACL
PACL * NewAcl // receives a pointer to the new ACL

);ParameterscCountOfExplicitEntries
Specifies the number of EXPLICIT_ACCESS structures in the pListOfExplicitEntries array.

pListOfExplicitEntries
Pointer to an array of EXPLICIT_ACCESS structures that describe the access control
information to merge into the existing ACL.

OldAcl
Pointer to the existing ACL. This parameter can be NULL, in which case, the function creates
a new ACL based on the EXPLICIT_ACCESS entries.

NewAcl
Pointer to a variable that receives a pointer to the new ACL. If the function succeeds, you
must call the LocalFree function to free the returned buffer.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.RemarksEach entry in the array of EXPLICIT_ACCESS structures specifies access-control or audit-
control information for a specified trustee. A trustee can be a user, group, or other SID value, such
as a logon identifier or logon type (for instance, a Windows NT service or batch job). You can use
a name or a security identifier (SID) to identify a trustee.

You can use the SetEntriesInAcl function to modify the list of ACEs in a DACL or a SACL. A
DACL controls access to an object, and a SACL controls the system's auditing of attempts to
access to an object. Note that SetEntriesInAcl does not prevent you from mixing access-control
and audit-control information in the same ACL; however, the resulting ACL will contain
meaningless entries.

For a DACL, the grfAccessMode member of the EXPLICIT_ACCESS structure specifies whether
to allow, deny, or revoke access rights for the trustee. This member can specify one of the
following values from the ACCESS_MODE enumeration.

Value Meaning

GRANT_ACCESS Creates a new access-allowed ACE that
combines the specified rights with any existing
rights of the trustee. The new ACE replaces any
existing access-allowed ACE for the trustee. The
function also modifies or deletes any existing
access-denied ACE for the trustee that denies
the specified rights.

SET_ACCESS Similar to GRANT_ACCESS except that the new
access-allowed ACE allows only the specified
rights, discarding any existing rights. This flag
also removes any existing access-denied ACE
for the trustee.

DENY_ACCESS Creates a new access-denied ACE that replaces
any existing access-denied ACE for the trustee.
The new ACE denies the specified rights in
addition to any currently denied rights of the
trustee. The function also modifies or deletes
any existing access-allowed ACE for the trustee
that allows the specified rights.

REVOKE_ACCESS Removes any existing ACEs for the specified

trustee. The function ignores the rights specified
in the grfAccessPermissions member of the
EXPLICIT_ACCESS structure.

The SetEntriesInAcl function places any new access-denied ACEs at the beginning of the list of
ACEs for the new ACL. It places any new access-allowed ACEs just before any existing access-
allowed ACEs.

For a SACL, the grfAccessMode member of the EXPLICIT_ACCESS structure can specify the
following values.

Value Meaning

REVOKE_ACCESS Removes any existing ACEs for the specified
trustee. The function ignores the rights
specified in the grfAccessPermissions
member of the EXPLICIT_ACCESS
structure.

SET_AUDIT_SUCCESSCreates a new system-audit ACE that
replaces any existing system-audit ACE for
the trustee. The new ACE generates audit
messages when the specified trustee
successfully uses the specified access
rights. The new ACE combines the specified
rights with any existing audited access rights
for the trustee. You can combine this value
with SET_AUDIT_FAILURE.

SET_AUDIT_FAILURE Creates a new system-audit ACE that
replaces any existing system-audit ACE for
the trustee. The new ACE generates audit
messages for failed attempts to use the
specified access rights. The new ACE
combines the specified rights with any
existing audited access rights for the trustee.
You can combine this value with
SET_AUDIT_SUCCESS.

The SetEntriesInAcl function places any new system-audit ACEs at the beginning of the list of
ACEs for the new ACL.See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACL, EXPLICIT_ACCESS, LocalFree,
SYSTEM_AUDIT_ACE

SetEnvironmentVariable
The SetEnvironmentVariable function sets the value of an environment variable for the current
process.

BOOL SetEnvironmentVariable(
LPCTSTR lpName, // address of environment variable name
LPCTSTR lpValue // address of new value for variable

);ParameterslpName
Points to a null-terminated string that specifies the environment variable whose value is being
set. The operating system creates the environment variable if it does not exist and lpValue is
not NULL.

lpValue
Points to a null-terminated string containing the new value of the specified environment
variable. If this parameter is NULL, the variable is deleted from the current process's
environment.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetEnvironmentVariable

SetErrorMode
The SetErrorMode function controls how the operating system handles several types of serious
errors. You can specify that the operating system will handle these errors or that the application
will receive and handle them.

UINT SetErrorMode(
UINT uMode // set of bit flags that specify error-handling properties

);ParametersuMode
A set of bit flags that specify system error-handling properties. The following error mode bit
flag constants are defined; you can set any combination of them:

Value Action
SEM_FAILCRITICALERRORS If this flag is set, the operating

system does not display the
critical-error-handler message
box when such an error occurs.
Instead, the operating system
sends the error to the calling
process.

SEM_NOALIGNMENTFAULTEXCEPTIf this flag is set, the operating
system automatically fixes
memory alignment faults and
makes them invisible to the
application. It does this for the
calling process and any
descendant processes.
This flag always affects MIPS
processors. It has no effect on
x86 processors.
If the registry value \
CurrentControlSet\Control\
Session Manager:
EnableAlignmentFaultExceptions
is set to REG_DWORD 0x0, this
key has no effect on ALPHA
processors. That is the system
default. If the registry key is set
to REG_DWORD 0x1, the
SEM_NOALIGNMENTFAULTEXCEPT
flag does affect ALPHA
processors.

SEM_NOGPFAULTERRORBOX If this flag is set, the operating
system does not display the
general-protection-fault message
box when such an error occurs.
This flag should only be set by
debugging applications that
handle general protection (GP)
faults themselves via an
appropriate exception handler.

SEM_NOOPENFILEERRORBOX If this flag is set, the operating
system does not display a
message box when it fails to find
a a file. Instead, the error is
returned to the calling process.

Return ValuesThe return value is the previous state of the error-mode bit flags.RemarksA child process inherits the error mode of its parent process.

The default state for the error mode properties set by this function is OFF.

On some non-x86 processors misaligned memory references cause an alignment fault exception.
The SEM_NOALIGNMENTFAULTEXCEPT flag lets you control whether the operating system
automatically fixes such alignment faults, or makes them visible to an application.

The SEM_NOALIGNMENTFAULTEXCEPT flag always affects MIPS processors. It never affects
x86 processors. It affects ALPHA processors only if the registry key \CurrentControlSet\Control\
Session Manager:EnableAlignmentFaultExceptions is set to REG_DWORD 0x1. The default
setting for that registry key is REG_DWORD 0x0.

On an x86 platform, an application doesn't need to do anything to have the operating system
automatically fix misaligned memory references. The operating system does not make alignment
faults visible to an application.

On a MIPS platform, an application must explicitly call SetErrorMode, setting the
SEM_NOALIGNMENTFAULTEXCEPT flag, to have the operating system automatically fix
alignment faults. The default setting is for the operating system to make alignment faults visible to
an application.

On an ALPHA platform, the operating system automatically fixes alignment faults, unless the
aforementioned registry key is set to REG_DWORD 0x1. When that registry key is set to
REG_DWORD 0x1, the operating system makes alignment faults visible to an application, and an
application must then call SetErrorMode to have the operating system automatically fix alignment
faults.

Specifying the SEM_NOALIGNMENTFAULTEXCEPT flag on x86 systems is not an error, but
implementations of Windows NT are free to silently ignore and not properly preserve the flag. This
means that code sequences such as the following are not always valid on x86 systems:SetErrorMode(SEM_NOALIGNMENTFAULTEXCEPT);

fuOldErrorMode = SetErrorMode(0);
ASSERT(fuOldErrorMode == SEM_NOALIGNMENTFAULTEXCEPT);

SetEvent
The SetEvent function sets the state of the specified event object to signaled.

BOOL SetEvent(
HANDLE hEvent // handle of event object

);ParametershEvent
Identifies the event object. The CreateEvent or OpenEvent function returns this handle.
Windows NT: The handle must have EVENT_MODIFY_STATE access. For more
information, see Interprocess Synchronization Objects.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe state of a manual-reset event object remains signaled until it is set explicitly to the
nonsignaled state by the ResetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object by calling one of the wait
functions, can be released while the object's state is signaled.

The state of an auto-reset event object remains signaled until a single waiting thread is released,
at which time the system automatically sets the state to nonsignaled. If no threads are waiting, the
event object's state remains signaled.See AlsoCreateEvent, OpenEvent, PulseEvent, ResetEvent

SetFileApisToANSI
The SetFileApisToANSI function causes a set of Win32 file functions to use the ANSI character
set code page. This function is useful for 8-bit console input and output operations.

VOID SetFileApisToANSI (VOID)ParametersThis function has no parameters.Return ValuesThis function has no return value.RemarksThe SetFileApisToANSI function complements the SetFileApisToOEM function, which causes
the same set of Win32 file functions to use the OEM character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use the ANSI
code page by default. This means that strings returned by the console functions may not be
processed correctly by other functions, and vice versa. For example, if the FindFirstFileA
function returns a string that contains certain extended ANSI characters, and the 8-bit console
functions are set to use the OEM code page, then the WriteConsoleA function will not display the
string properly.

Use the AreFileApisANSI function to determine which code page the set of file functions is
currently using. Use the SetConsoleCP and SetConsoleOutputCP functions to set the code
page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console
applications. Console applications that use Unicode are much more versatile than those that use
8-bit console functions. Barring that solution, a console application can call the
SetFileApisToOEM function to cause the set of Win32 file functions to use OEM character set
strings rather than ANSI character set strings. Use the SetFileApisToANSI function to set those
functions back to the ANSI code page.

SetFileApisToANSI and SetFileApisToOEM affect these Win32 functions:

_lopen GetDriveType LoadLibrary

CopyFile GetFileAttributes LoadLibraryEx
CreateDirectory GetFullPathName MoveFile
CreateFile GetModuleFileName MoveFileEx
CreateProcess GetModuleHandle OpenFile
DeleteFile GetSystemDirectory RemoveDirectory
FindFirstFile GetTempFileName SearchPath
FindNextFile GetTempPath SetCurrentDirectory
GetCurrentDirectoryGetVolumeInformationSetFileAttributes
GetDiskFreeSpace GetWindowsDirectory

When dealing with command lines, a console application should obtain the command line
in Unicode form, and then convert it to OEM form using the relevant character-to-OEM
functions. Note also that the argv function uses the ANSI character set.See AlsoAreFileApisANSI, FindFirstFileA, SetFileApisToOEM, SetConsoleCP, SetConsoleOutputCP,
WriteConsoleA

SetFileApisToOEM
The SetFileApisToOEM function causes a set of Win32 file functions to use the OEM character
set code page. This function is useful for 8-bit console input and output operations.

VOID SetFileApisToOEM(VOID)ParametersThis function has no parameters.Return ValuesThis function has no return value.RemarksThe SetFileApisToOEM function is complemented by the SetFileApisToANSI function, which
causes the same set of Win32 file functions to use the ANSI character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use the ANSI
code page by default. This means that strings returned by the console functions may not be
processed correctly by other functions, and vice versa. For example, if the FindFirstFileA
function returns a string that contains certain extended ANSI characters, and the 8-bit console
functions are set to use the OEM code page, then the WriteConsoleA function will not display the
string properly.

Use the AreFileApisANSI function to determine which code page the set of file functions is
currently using. Use the SetConsoleCP and SetConsoleOutputCP functions to set the code
page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console
applications. Console applications that use Unicode are much more versatile than those that use
8-bit console functions. Barring that solution, a console application can call the
SetFileApisToOEM function to cause the set of Win32 file functions to use OEM character set
strings rather than ANSI character set strings. Use the SetFileApisToANSI function to set those
functions back to the ANSI code page.

SetFileApisToANSI and SetFileApisToOEM affect these Win32 functions:

_lopen GetDriveType LoadLibrary

CopyFile GetFileAttributes LoadLibraryEx
CreateDirectory GetFullPathName MoveFile
CreateFile GetModuleFileName MoveFileEx
CreateProcess GetModuleHandle OpenFile
DeleteFile GetSystemDirectory RemoveDirectory
FindFirstFile GetTempFileName SearchPath
FindNextFile GetTempPath SetCurrentDirectory
GetCurrentDirectoryGetVolumeInformationSetFileAttributes
GetDiskFreeSpace GetWindowsDirectory

When dealing with command lines, a console application should obtain the command line
in Unicode form, and then convert it to OEM form using the relevant character-to-OEM
functions. Note also that the argv function uses the ANSI character set.See AlsoAreFileApisANSI, FindFirstFileA, SetConsoleCP, SetConsoleCP, SetConsoleOutputCP,
SetFileApisToANSI, WriteConsoleA

SetFileAttributes
The SetFileAttributes function sets a file's attributes.

BOOL SetFileAttributes(
LPCTSTR lpFileName, // address of filename
DWORD dwFileAttributes // address of attributes to set

);ParameterslpFileName
Points to a string that specifies the name of the file whose attributes are to be set.
Windows 95: This string must not exceed MAX_PATH characters.
Windows NT: There is a default string size limit for paths of MAX_PATH characters. This limit
is related to how the SetFileAttributes function parses paths. An application can transcend
this limit and send in paths longer than MAX_PATH characters by calling the wide (W) version
of SetFileAttributes and prepending "\\?\" to the path. The "\\?\" tells the function to turn off
path parsing; it lets paths longer than MAX_PATH be used with SetFileAttributesW. This
also works with UNC names. The "\\?\" is ignored as part of the path. For example, "\\?\C:\
myworld\private" is seen as "C:\myworld\private", and "\\?\UNC\bill_g_1\hotstuff\coolapps" is seen as "\\
bill_g_1\hotstuff\coolapps".

dwFileAttributes
Specifies the file attributes to set for the file. This parameter can be a combination of the
following values. However, all other values override FILE_ATTRIBUTE_NORMAL.

Value Meaning
FILE_ATTRIBUTE_ARCHIVE The file is an archive file.

Applications use this value to
mark files for backup or
removal.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not
included in an ordinary directory
listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes
set. This value is valid only if
used alone.

FILE_ATTRIBUTE_OFFLINE The data of the file is not
immediately available. Indicates
that the file data has been
physically moved to offline
storage.

FILE_ATTRIBUTE_READONLY The file is read-only.
Applications can read the file
but cannot write to it or delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of the operating
system or is used exclusively by
it.

FILE_ATTRIBUTE_TEMPORARY The file is being used for
temporary storage. File systems
attempt to keep all of the data in
memory for quicker access
rather than flushing the data
back to mass storage. A
temporary file should be deleted
by the application as soon as it
is no longer needed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou cannot use the SetFileAttribute function to set a file's compression state. Setting
FILE_ATTRIBUTE_COMPRESSED in the dwFileAttributes parameter does nothing. Use the
DeviceIoControl function and the FSCTL_SET_COMPRESSION operation to set a file's
compression state.

See AlsoDeviceIoControl, FSCTL_SET_COMPRESSION, GetFileAttributes

SetFilePointer
The SetFilePointer function moves the file pointer of an open file.

DWORD SetFilePointer(
HANDLE hFile, // handle of file
LONG lDistanceToMove, // number of bytes to move file pointer
PLONG lpDistanceToMoveHigh, // address of high-order word of distance to move
DWORD dwMoveMethod // how to move

);ParametershFile
Identifies the file whose file pointer is to be moved. The file handle must have been created
with GENERIC_READ or GENERIC_WRITE access to the file.

lDistanceToMove
Specifies the number of bytes to move the file pointer. A positive value moves the pointer
forward in the file and a negative value moves it backward.

lpDistanceToMoveHigh
Points to the high-order word of the 64-bit distance to move. If the value of this parameter is
NULL, SetFilePointer can operate only on files whose maximum size is 2^32 - 2. If this
parameter is specified, the maximum file size is 2^64 - 2. This parameter also receives the
high-order word of the new value of the file pointer.

dwMoveMethod
Specifies the starting point for the file pointer move. This parameter can be one of the
following values:

Value Meaning
FILE_BEGIN The starting point is zero or the beginning of the

file. If FILE_BEGIN is specified,
DistanceToMove is interpreted as an unsigned
location for the new file pointer.

FILE_CURRENT The current value of the file pointer is the
starting point.

FILE_END The current end-of-file position is the starting
point.

Return ValuesIf the SetFilePointer function succeeds, the return value is the low-order doubleword of the new
file pointer, and if lpDistanceToMoveHigh is not NULL, the function puts the high-order
doubleword of the new file pointer into the LONG pointed to by that parameter.

If the function fails and lpDistanceToMoveHigh is NULL, the return value is 0xFFFFFFFF. To get
extended error information, call GetLastError.

If the function fails, and lpDistanceToMoveHigh is non-NULL, the return value is 0xFFFFFFFF and
GetLastError will return a value other than NO_ERROR.RemarksYou cannot use the SetFilePointer function with a handle to a nonseeking device, such as a pipe
or a communications device. To determine the file type for hFile, use the GetFileType function.

You should be careful when setting the file pointer in a multithreaded application. For example, an
application whose threads share a file handle, update the file pointer, and read from the file must
protect this sequence by using a critical section object or mutex object. For more information
about these objects, see Mutex Objects and Critical Section Objects.

If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an application
can move the file pointer only to sector-aligned positions. A sector-aligned position is a position
that is a whole number multiple of the volume's sector size. An application can obtain a volume's
sector size by calling the GetDiskFreeSpace function. If an application calls SetFilePointer with
distance-to-move values that result in a position that is not sector-aligned and a handle that was
opened with FILE_FLAG_NO_BUFFERING, the function fails, and GetLastError returns
ERROR_INVALID_PARAMETER.

Note that if the return value is 0xFFFFFFFF and if lpDistanceToMoveHigh is non-NULL, an
application must call GetLastError to determine whether the function has succeeded or failed.
The following sample code illustrates this point://
// Case One: calling the function with
// lpDistanceToMoveHigh == NULL
// try to move hFile's file pointer some distance
dwPointer = SetFilePointer (hFile, lDistance,

NULL, FILE_BEGIN) ;
// if we failed ...
if (dwPointer == 0xFFFFFFFF) {

// obtain the error code
dwError = GetLastError() ;
// deal with that failure
.
.
.
} // end of error handler

//
// Case Two: calling the function with
// lpDistanceToMoveHigh != NULL
// try to move hFile's file pointer some huge distance
dwPointerLow = SetFilePointer (hFile, lDistanceLow,
& lDistanceHigh, FILE_BEGIN) ;
// if we failed ...
if (dwPointerLow == 0xFFFFFFFF

&&
(dwError = GetLastError()) != NO_ERROR){
// deal with that failure
.
.
.
} // end of error handler

See AlsoGetDiskFreeSpace, GetFileType, ReadFile, ReadFileEx, WriteFile, WriteFileEx

SetFileSecurity
The SetFileSecurity function sets the security of a file or directory object.

BOOL SetFileSecurity(
LPCTSTR lpFileName, // address of string for filename
SECURITY_INFORMATION SecurityInformation, // type of information to set
PSECURITY_DESCRIPTOR pSecurityDescriptor // address of security descriptor

);ParameterslpFileName
Points to a null-terminated string specifying the file or directory for which security is set.

SecurityInformation
Specifies a SECURITY_INFORMATION structure identifying the contents of the security
descriptor pointed to by the pSecurityDescriptor parameter.

pSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetFileSecurity function is successful only if the following conditions are met:

· If the object's owner is being set, the calling process must have either WRITE_OWNER
permission or be the object's owner.

· If the object's discretionary access-control list (ACL) is being set, the calling process must
have either WRITE_DAC permission or be the object's owner.

· If the object's system ACL is being set, the SE_SECURITY_NAME privilege must be
enabled for the calling process.

See AlsoGetFileSecurity, SECURITY_DESCRIPTOR, SECURITY_INFORMATION,
SetKernelObjectSecurity, SetPrivateObjectSecurity, SetUserObjectSecurity

SetFileTime
The SetFileTime function sets the date and time that a file was created, last accessed, or last
modified.

BOOL SetFileTime(
HANDLE hFile, // identifies the file
CONST FILETIME *lpCreationTime, // time the file was created
CONST FILETIME *lpLastAccessTime, // time the file was last accessed
CONST FILETIME *lpLastWriteTime // time the file was last written

);ParametershFile
Identifies the file for which to set the dates and times. The file handle must have been created
with GENERIC_WRITE access to the file.

lpCreationTime
Points to a FILETIME structure that contains the date and time the file was created. This
parameter can be NULL if the application does not need to set this information.

lpLastAccessTime
Points to a FILETIME structure that contains the date and time the file was last accessed. The
last access time includes the last time the file was written to, read from, or (in the case of
executable files) run. This parameter can be NULL if the application does not need to set this
information.

lpLastWriteTime
Points to a FILETIME structure that contains the date and time the file was last written to. This
parameter can be NULL if the application does not want to set this information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe FAT and New Technology file systems support the file creation, last access, and last write
time values.See AlsoFILETIME, GetFileSize, GetFileTime, GetFileType

SetFocus
The SetFocus function sets the keyboard focus to the specified window. The window must be
associated with the calling thread's message queue.

HWND SetFocus(
HWND hWnd // handle of window to receive focus

);ParametershWnd
Identifies the window that will receive the keyboard input. If this parameter is NULL,
keystrokes are ignored.

Return ValuesIf the function succeeds, the return value is the handle of the window that previously had the
keyboard focus. If the hWnd parameter is invalid or the window is not associated with the calling
thread's message queue, the return value is NULL.RemarksThe SetFocus function sends a WM_KILLFOCUS message to the window that loses the
keyboard focus and a WM_SETFOCUS message to the window that receives the keyboard focus.
It also activates either the window that receives the focus or the parent of the window that
receives the focus.

If a window is active but does not have the focus, any key pressed will produce the
WM_SYSCHAR, WM_SYSKEYDOWN, or WM_SYSKEYUP message. If the VK_MENU key is
also pressed, the lParam parameter of the message will have bit 30 set. Otherwise, the messages
produced do not have this bit set.

By using the AttachThreadInput function, a thread can attach its input processing to another
thread. This allows a thread to call SetFocus to set the keyboard focus to a window associated
with another thread's message queue.See AlsoAttachThreadInput, GetFocus, WM_KILLFOCUS, WM_SETFOCUS, WM_SYSCHAR,
WM_SYSKEYDOWN, WM_SYSKEYUP

SetForegroundWindow
The SetForegroundWindow function puts the thread that created the specified window into the
foreground and activates the window. Keyboard input is directed to the window, and various visual
cues are changed for the user.

BOOL SetForegroundWindow(
HWND hWnd // handle of window to bring to foreground

);ParametershWnd
Identifies the window that should be activated and brought to the foreground.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe foreground window is the window at the top of the Z order. It is the window that the user is
working with. In a preemptive multitasking environment, you should generally let the user control
which window is the foreground window. However, an application can call
SetForegroundWindow if it wants to put itself into the foreground to display a critical error or
information that requires the user's immediate attention. A good example is a debugger when it
hits a breakpoint.

The system assigns a slightly higher priority to the thread that created the foreground window than
it does to other threads.See AlsoGetForegroundWindow

SetForm
The SetForm function sets the form information for the specified printer.

BOOL SetForm(
HANDLE hPrinter, // handle of printer object
LPTSTR pFormName, // address of form name
DWORD Level, // structure level
LPBYTE pForm // address of structure array

);ParametershPrinter
Identifies the printer for which the form information is set.

pFormName
Points to a null-terminated string that specifies the form name for which the form information is
set.

Level
Specifies the version of the structure to which pForm points. This value must be 1.

pForm
Points to a FORM_INFO_1 structure.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle hPrinter is obtained by calling the OpenPrinter function.See AlsoGetForm, OpenPrinter, FORM_INFO_1

SetGraphicsMode
The SetGraphicsMode function sets the graphics mode for the specified device context.

int SetGraphicsMode(
HDC hdc, // handle of the device context
int iMode // graphics mode

);Parametershdc
Identifies the device context.

iMode
Specifies the graphics mode. This parameter can be one of the following values:

Value Meaning
GM_COMPATIBLE Sets the graphics mode that is compatible

with Windows version 3.1. This is the default
mode. If this value is specified, the application
can only modify the world-to-device transform
by calling functions that set window and
viewport extents and origins, but not by using
SetWorldTransform or
ModifyWorldTransform; calls to those
functions will fail. Examples of functions that
set window and viewport extents and origins
are SetViewportExtEx and
SetWindowExtEx.

GM_ADVANCED Windows NT: Sets the advanced graphics
mode that allows world transformations. This
value must be specified if the application will
set or modify the world transformation for the
specified device context. In this mode all
graphics, including text output, fully comforms
to the world-to-device transformation specified
in the device context.
Windows 95: The GM_ADVANCED value is
not supported. When playing enhanced
metafiles, Windows 95 does its best to ensure
that enhanced metafiles on Windows 95 look
the same as they do on Windows NT. To
accomplish this, Windows 95 may simulate
GM_ADVANCED mode when playing specific
enhanced metafile records.

Return ValuesIf the function succeeds, the return value is the old graphics mode.

If the function fails, the return value is zero.RemarksThere are three areas in which graphics output differs according to the graphics mode:

1. Text Output: In the GM_COMPATIBLE mode, TrueType (or vector font) text output
behaves much the same way as raster font text output with respect to the world-to-device
transform in the DC. The TrueType text is always written from left to right and right side up,
even if the rest of the graphics will be flipped in the x or y axis. Only the height of the
TrueType (or vector font) text is scaled appropriately. The only way to write nonhorizontal text
in the GM_COMPATIBLE mode is to specify nonzero escapement and orientation for the
logical font selected in this device context.
In the GM_ADVANCED mode, TrueType (or vector font) text output fully conforms to the
world-to-device transform in the device context. The raster fonts only have very limited
transformation capabilities (stretching by some integer factors). Graphics device interface
(GDI) tries to produce the best output it can with raster fonts for non-trivial transforms.

2. Rectangle Exclusion: If the default GM_COMPATIBLE graphics mode is set, the system
excludes bottom and rightmost edges when it draws rectangles.
The GM_ADVANCED graphics mode is required if applications want to draw rectangles that
are bottom-right inclusive.

3. Arc Drawing: If the default GM_COMPATIBLE graphics mode is set, GDI draws arcs
using the current arc direction in the device space. With this convention, arcs do not respect
page-to-device transforms that require a flip along the x or y axis.
If the GM_ADVANCED graphics mode is set, GDI always draws arcs in the counterclockwise
direction in logical space. This is equivalent to the statement that, in the GM_ADVANCED
graphics mode, both arc control points and arcs themselves fully respect the device context's
world-to-device transform.

See AlsoCreateDC, GetArcDirection, GetDC, GetGraphicsMode, ModifyWorldTransform,
SetArcDirection, SetViewportExtent, SetViewportExtEx, SetWindowExtent,
SetWindowExtEx, SetWorldTransform

SetHandleCount
The SetHandleCount function sets the number of file handles available to a process. This
function has no effect under Windows NT and Windows 95, because there is no explicit file handle
limit for applications on these platforms. Under Win32s, there are only 20 file handles available to
a process by default; however you could use SetHandleCount to allow a process to use up to
255 file handles.

UINT SetHandleCount(
UINT uNumber // number of file handles needed

);ParametersuNumber
Specifies the number of file handles needed by the application.

Return ValuesUnder Windows NT and Windows 95, this function simply returns the value specified in the
uNumber parameter.

Under Win32s, the return value specifies the number of file handles actually available to the
application. It may be fewer than the number specified by the uNumber parameter.RemarksUnder Windows NT and Windows 95, the maximum number of files that an application can open
is determined by the amount of available non-paged memory pool, because each open file handle
requires non-paged memory.

SetHandleInformation
The SetHandleInformation function sets certain properties of an object handle. The information
is specified as a set of bit flags.

BOOL SetHandleInformation (
HANDLE hObject, // handle to an object
DWORD dwMask, // specifies flags to change
DWORD dwFlags // specifies new values for flags

);ParametershObject
Specifies a handle to an object. The SetHandleInformation function sets information
associated with this object handle.

dwMask
A mask that specifies the bit flags to be changed. Use the same flag constants shown in the
description of dwFlags.

dwFlags
A set of bit flags that specify properties of the object handle. The following flags are defined:

Value Meaning
HANDLE_FLAG_INHERIT If this flag is set, a child

process created with the
bInheritHandles
parameter of
CreateProcess set to
TRUE will inherit the
object handle.

HANDLE_FLAG_PROTECT_FROM_CLOSEIf this flag is set, calling
the CloseHandle
function will not close the
object handle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksNote that you must set a change mask bit flag in dwMask in order to set or clear the associated bit
flag in dwFlags.See AlsoCreateProcess, CloseHandle, GetHandleInformation

SetICMMode
The SetICMMode function enables or disables image color matching for the specified device
context.

int SetICMMode(
HDC hdc,
int fICM

);Parametershdc
Handle to the device context.

fICM
Set to ICM_ON to turn on image color matching; ICM_OFF to turn it off; and ICM_QUERY to
return the current mode.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

If ICM_QUERY is specified, the function returns ICM_ON or ICM_OFF to indicate the current
mode.RemarksThis function fails if an appropriate color profile cannot be found for the device.

SetICMProfile
The SetICMProfile function sets the color profile for the specified device context.

BOOL SetICMProfile(
HDC hdc,
LPTSTR lpFileName

);Parametershdc
Handle to the device context.

lpFileName
Pointer to a null-terminated string that names the color profile file.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetICMProfile

SetJob
The SetJob function pauses, resumes, cancels, or restarts a print job on a specified printer. You
can also use the SetJob function to set print job parameters, such as the print job priority and the
document name.

Windows 95: You can use the SetJob function to give a command to a print job, or to set print
job parameters, but you can not do both in the same call. Thus, when the Command parameter is
non-zero, the function ignores the Level and pJob parameters. To set print job parameters, you
must set Command to 0.

Windows NT: You can use the SetJob function to give a command to a print job, or to set print
job parameters, or you can do both in the same call. The value of the Command parameter does
not affect how the function uses the Level and pJob parameters.

BOOL SetJob(
HANDLE hPrinter, // handle to printer object
DWORD JobId, // print job identifier
DWORD Level, // specifies type of job information structure
LPBYTE pJob, // pointer to job information structure
DWORD Command // job command value

);ParametershPrinter
Handle to the printer object of interest.

JobId
Identifier that specifies the print job. You obtain a print job identifier by calling the AddJob
function or the StartDoc function.
Windows NT: If the Level parameter is set to 3, the JobId parameter must match the JobId
member of the JOB_INFO_3 structure pointed to by pJob.

Level
Specifies the type of job information structure pointed to by the pJob parameter. You can set
the Level parameter to 0, 1, or 2.
When you set Level to 0, pJob should be NULL. Use these values when you are not setting
any print job parameters.
Windows NT: You can also set the Level parameter to 3.
Windows 95: The function pays attention to this parameter only if the Command parameter is
0. If Command is non-zero, the function ignores this parameter and the pJob parameter.

pJob
Pointer to a JOB_INFO_1 or JOB_INFO_2 structure. The function uses this structure to set
print job parameters.
Windows NT: pJob can also point to a JOB_INFO_3 structure.
If the Level parameter is 0, pJob should be NULL.
If the Level parameter is 1, pJob should point to a JOB_INFO_1 structure. If the Level
parameter is 2, pJob should point to a JOB_INFO_2 structure.
Windows NT: If the Level parameter is 3, pJob should point to a JOB_INFO_3 structure. You
must have JOB_ACCESS_ADMINISTER access permission for the jobs specified by the
JobId and NextJobId members of the JOB_INFO_3 structure.
Windows 95: The function pays attention to this parameter only if the Command parameter is
0. If Command is non-zero, the function ignores this parameter and the Level parameter.

Command
Specifies the print job operation to perform. You can use one of the following values:

Value Meaning
JOB_CONTROL_CANCEL Delete the print job.
JOB_CONTROL_PAUSE Pause the print job.
JOB_CONTROL_RESTART Restart the print job. A job can only be

restarted if it was printing.
JOB_CONTROL_RESUME Resume a paused print job.

Windows 95: If you are using the SetJob function to set print job parameters, you must set
the Command parameter to 0.
Windows NT: You can use the same call to the SetJob function to set print job parameters
and to give a command to a print job. Thus, Command does not need to be 0 if you are
setting print job parameters, although it can be.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou can use the SetJob function to set various print job parameters by supplying a pointer to a
JOB_INFO_1, JOB_INFO_2, or JOB_INFO_3 structure that contains the necessary data.

Windows 95: When you use the function to set print job parameters, you must set the Command
parameter to 0.

To remove or delete all of the print jobs for a particular printer, call the SetPrinter function with its
Command parameter set to PRINTER_CONTROL_PURGE.

The following members of a JOB_INFO_1 or JOB_INFO_2 structure are ignored on a call to
SetJob:

JobId, pPrinterName, pMachineName, pDrivername, Size, Submitted, and Time.

You must have PRINTER_ACCESS_ADMINISTER access permission for a printer in order to
change a print job's position in the print queue.

If you do not want to set a print job's position in the print queue, you should set the Position
member of the JOB_INFO_1 or JOB_INFO_2 structure to JOB_POSITION_UNSPECIFIED.

Windows NT: Use the SetJob function with the JOB_INFO_3 structure to link together a set of
print jobs. This can be useful in situations where a single document consists of several parts that
you want to render separately.See AlsoAddJob, GetJob, OpenPrinter, SetPrinter, JOB_INFO_1, JOB_INFO_2, JOB_INFO_3

SetKernelObjectSecurity
The SetKernelObjectSecurity function sets the security of a kernel object. For example, this can
be a process, thread, or event.

BOOL SetKernelObjectSecurity(
HANDLE Handle, // handle of object
SECURITY_INFORMATION SecurityInformation, // type of information to set
PSECURITY_DESCRIPTOR SecurityDescriptor // address of security descriptor

);ParametersHandle
Identifies a kernel object for which security information is set.

SecurityInformation
Specifies a SECURITY_INFORMATION structure identifying the contents of the security
descriptor pointed to by the SecurityDescriptor parameter.

SecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure containing the new security information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetKernelObjectSecurity function is successful only if the following conditions are met:

· If the object's owner is being set, the calling process must have either WRITE_OWNER
permission or be the object's owner.

· If the object's discretionary access-control list (ACL) is being set, the calling process must
have either WRITE_DAC permission or be the object's owner.

· If the object's system ACL is being set, the SE_SECURITY_NAME privilege must be
enabled for the calling process.

See AlsoGetKernelObjectSecurity, SECURITY_DESCRIPTOR, SECURITY_INFORMATION,
SetFileSecurity, SetPrivateObjectSecurity, SetUserObjectSecurity

SetKeyboardState
The SetKeyboardState function copies a 256-byte array of keyboard key states into the calling
thread's keyboard-input state table. This is the same table accessed by the GetKeyboardState
and GetKeyState functions. Changes made to this table do not affect keyboard input to any other
thread.

BOOL SetKeyboardState(
LPBYTE lpKeyState // address of array with virtual-key codes

);ParameterslpKeyState
Points to a 256-byte array that contains keyboard key states.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksBecause the SetKeyboardState function alters the input state of the calling thread and not the
global input state of the system, an application cannot use SetKeyboardState to set the NUM
LOCK, CAPS LOCK, or SCROLL LOCK indicator lights on the keyboard.See AlsoGetAsyncKeyState, GetKeyboardState, GetKeyState, MapVirtualKey

SetLastError
The SetLastError function sets the last-error code for the calling thread.

VOID SetLastError(
DWORD dwErrCode // per-thread error code

);ParametersdwErrCode
Specifies the last-error code for the thread.

RemarksError codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-
defined error codes; no Win32 API error code has this bit set. If you are defining an error code for
your application, set this bit to indicate that the error code has been defined by your application
and to ensure that your error code does not conflict with any system-defined error codes.

This function is intended primarily for dynamic-link libraries (DLLs). Calling this function after an
error occurs lets the DLL emulate the behavior of a Win32 function.

Most Win32 functions call SetLastError when they fail. Function failure is typically indicated by a
return value error code such as FALSE, NULL, 0xFFFFFFFF, or - 1. Some functions call
SetLastError under conditions of success; those cases are noted in each function's reference
page.

Applications can retrieve the value saved by this function by using the GetLastError function. The
use of GetLastError is optional; an application can call it to find out the specific reason for a
function failure.

The last-error code is kept in thread local storage so that multiple threads do not overwrite each
other's values.See AlsoGetLastError, SetLastErrorEx, TlsGetValue

SetLastErrorEx
The SetLastErrorEx function sets the last-error code. In Windows 95 and in Windows NT, this
function is identical to the SetLastError function. The second parameter is not implemented.

VOID SetLastErrorEx(
DWORD dwErrCode, // per-thread error code
DWORD dwType // error type

);ParametersdwErrCode
Specifies the last-error code for the thread.

dwType
Specifies the error type. If this process is being controlled by a debugging process, the
debugger may take action based on the error type. This parameter can have one of the
following values:

Value Meaning
SLE_ERROR Invalid data was passed to the function, and

complete failure has occurred.
SLE_MINORERROR Invalid data was passed to the function, but

the function has recovered.
SLE_WARNING Potentially invalid data was passed to the

function, but the function has recovered.
0 The last-error code is set without reporting

anything to the debugger. Specifying this
value is equivalent to using the SetLastError
function.

RemarksError codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-
defined error codes; no Win32 API error code has this bit set. If you are defining an error code for
your application, set this bit to indicate that the error code has been defined by the application and
to ensure that your error code does not conflict with any system-defined error codes.

This function is intended primarily for dynamic-link libraries (DLLs). Calling this function after an
error occurs allows the DLL to emulate the behavior of the Win32 API.

Most Win32 functions call SetLastError when they fail. Function failure is typically indicated by a
return value error code such as FALSE, NULL, 0xFFFFFFFF, or - 1. Some functions call
SetLastError under conditions of success; those cases are noted in each function's reference
page.

Applications can retrieve the value saved by this function by using the GetLastError function.

The last-error code is kept in thread local storage so that multiple threads do not overwrite each
other's values.See AlsoGetLastError, SetLastError

SetLocaleInfo
The SetLocaleInfo function sets an item of locale information. It does so by making an entry in
the process portion of the locale table. This setting only affects the user override portion of the
locale settings; it does not set the system defaults.

Only certain types of locale information, or LCTYPE values, can be set by this function. See the
following Remarks section for a list of valid LCTYPE values.

The locale information is always passed in as a null-terminated Unicode string in the Unicode (W)
version of the function, and as a null-terminated ANSI string in the ANSI (A) version. No integers
are allowed by this function; any numeric values must be specified as Unicode or ANSI text. Each
LCTYPE has a particular format, as noted in Locale Identifiers.

BOOL SetLocaleInfo(
LCID Locale, // locale identifier
LCTYPE LCType, // type of information to set
LPCTSTR lpLCData // pointer to information to set

);ParametersLocale
Specifies the locale whose information the function will set.

LCType
Specifies the type of locale information to be set by the function. Note that only one LCTYPE
may be specified per call. Not all LCTYPE values are valid; see the list of valid LCTYPE
values in the following Remarks section.

lpLCData
Points to a null-terminated string containing the locale information the function will set. This
should be an LPWSTR for the Unicode (W) version of the function, and an LPSTR for the
ANSI (A) version. The information must be in the specified LCTYPE's particular format.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:

ERROR_INVALID_ACCESS
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
RemarksThe following LCTYPE values are valid for this function:

LOCALE_ICALENDARTYPE LOCALE_SDATE

LOCALE_ICURRDIGITS LOCALE_SDECIMAL
LOCALE_ICURRENCY LOCALE_SGROUPING
LOCALE_IDIGITS LOCALE_SLIST
LOCALE_IFIRSTDAYOFWEEK LOCALE_SLONGDATE
LOCALE_IFIRSTWEEKOFYEARLOCALE_SMONDECIMALSEP
LOCALE_ILZERO LOCALE_SMONGROUPING
LOCALE_IMEASURE LOCALE_SMONTHOUSANDSEP
LOCALE_INEGCURR LOCALE_SNEGATIVESIGN
LOCALE_INEGNUMBER LOCALE_SPOSITIVESIGN
LOCALE_ITIME LOCALE_SSHORTDATE
LOCALE_S1159 LOCALE_STHOUSAND
LOCALE_S2359 LOCALE_STIME
LOCALE_SCURRENCY LOCALE_STIMEFORMAT
See AlsoGetLocaleInfo

SetLocalTime
The SetLocalTime function sets the current local time and date.

BOOL SetLocalTime(
CONST SYSTEMTIME *lpSystemTime // address of local time to set

);ParameterslpSystemTime
Points to a SYSTEMTIME structure that contains the current local date and time.
The wDayOfWeek member of the SYSTEMTIME structure is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT: The SetLocalTime function fails if the calling process does not have the
SE_SYSTEMTIME_NAME privilege. This privilege is disabled by default. Use the
AdjustTokenPrivileges function to enable this privilege and again to disable it after the time has
been set. For more information about security privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoAdjustTokenPrivileges, GetLocalTime, GetSystemTime, SetSystemTimeAdjustment,
SYSTEMTIME

SetMailslotInfo
The SetMailslotInfo function sets the time-out value used by the specified mailslot for a read
operation.

BOOL SetMailslotInfo(
HANDLE hMailslot, // mailslot handle
DWORD lReadTimeout // read time-out

);ParametershMailslot
Identifies a mailslot. The CreateMailslot function must create this handle.

lReadTimeout
Specifies the amount of time, in milliseconds, a read operation can wait for a message to be
written to the mailslot before a time-out occurs. The following values have special meanings:

Value Meaning
0 Returns immediately if no message is

present. (The system does not treat
an immediate return as an error.)

MAILSLOT_WAIT_FOREVER Waits forever for a message.

This time-out value applies to all subsequent read operations and to all inherited
mailslot handles.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe initial time-out value used by a mailslot for a read operation is typically set by CreateMailslot
when the mailslot is created.See AlsoCreateMailslot, GetMailslotInfo

SetMapMode
The SetMapMode function sets the mapping mode of the specified device context. The mapping
mode defines the unit of measure used to transform page-space units into device-space units,
and also defines the orientation of the device's x and y axes.

int SetMapMode(
HDC hdc, // handle of device context
int fnMapMode // new mapping mode

);Parametershdc
Identifies the device context.

fnMapMode
Specifies the new mapping mode. It can be any one of the following values:
Value Description
MM_ANISOTROPICLogical units are mapped to arbitrary units

with arbitrarily scaled axes. Use the
SetWindowExtEx and SetViewportExtEx
functions to specify the units, orientation,
and scaling that you want.

MM_HIENGLISH Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is up.

MM_HIMETRIC Each logical unit is mapped to 0.01
millimeter. Positive x is to the right; positive
y is up.

MM_ISOTROPIC Logical units are mapped to arbitrary units
with equally scaled axes; that is, one unit
along the x-axis is equal to one unit along
the y-axis. Use the SetWindowExtEx and
SetViewportExtEx functions to specify the
units and the orientation of the axes that
you want. Graphics device interface (GDI)
makes adjustments as necessary to ensure
the x and y units remain the same size (for
example, if you set the window extent, the
viewport will be adjusted to keep the units
isotropic).

MM_LOENGLISH Each logical unit is mapped to 0.01 inch.
Positive x is to the right; positive y is up.

MM_LOMETRIC Each logical unit is mapped to 0.1
millimeter. Positive x is to the right; positive
y is up.

MM_TEXT Each logical unit is mapped to one device
pixel. Positive x is to the right; positive y is
down.

MM_TWIPS Each logical unit is mapped to one
twentieth of a printer's point (1/1440 inch,
also called a "twip"). Positive x is to the
right; positive y is up.

Return ValuesIf the function succeeds, the return value identifies the previous mapping mode.

If the function fails, the return value is zero.RemarksThe MM_TEXT mode allows applications to work in device pixels, whose size varies from device
to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and MM_TWIPS
modes are useful for applications drawing in physically meaningful units (such as inches or
millimeters).

The MM_ISOTROPIC mode ensures a 1:1 aspect ratio.

The MM_ANISOTROPIC mode allows the x-coordinates and y-coordinates to be adjusted
independently.See AlsoGetMapMode, SetViewportExtEx, SetViewportOrgEx, SetWindowExtEx, SetWindowOrgEx

SetMapperFlags
The SetMapperFlags function alters the algorithm the font mapper uses when it maps logical
fonts to physical fonts.

DWORD SetMapperFlags(
HDC hdc, // handle of device context
DWORD dwFlag // font-mapper flag

);Parametershdc
Identifies the device context that contains the font-mapper flag.

dwFlag
Specifies whether the font mapper should attempt to match a font's aspect ratio to the current
device's aspect ratio. If bit zero is set, the mapper selects only matching fonts.

Return ValuesIf the function succeeds, the return value is the previous value of the font-mapper flag.

If the function fails, the return value is GDI_ERROR. To get extended error information, call
GetLastError.RemarksIf the dwFlag parameter is set and no matching fonts exist, Windows chooses a new aspect ratio
and retrieves a font that matches this ratio.

The remaining bits of the dwFlag parameter must be zero.See AlsoGetAspectRatioFilterEx

SetMenu
The SetMenu function assigns a new menu to the specified window.

BOOL SetMenu(
HWND hWnd, // handle of window
HMENU hMenu // handle of menu

);ParametershWnd
Identifies the window to which the menu is to be assigned.

hMenu
Identifies the new menu. If this parameter is NULL, the window's current menu is removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe window is redrawn to reflect the menu change.

The SetMenu function replaces the previous menu, if any, but it does not destroy it. An
application should call the DestroyMenu function to accomplish this task.See AlsoDestroyMenu, GetMenu

SetMenuContextHelpId
The SetMenuContextHelpId function associates a help context identifier with a menu. All items in
the menu share this identifier. It is not possible to attach a help context identifier to the individual
menu items.

BOOL SetMenuContextHelpId(
HMENU hmenu,
DWORD dwContextHelpId

);Parametershmenu
Handle to the menu with which to associate the help context identifier.

dwContextHelpId
Help context identifier.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetMenuContextHelpId

SetMenuDefaultItem
[Now Supported on Windows NT]

The SetMenuDefaultItem function sets the default menu item for the specified menu.

BOOL SetMenuDefaultItem(
HMENU hMenu,
UINT uItem,
UINT fByPos

);ParametershMenu
Handle to the menu to set the default item for.

uItem
Identifier or position of the new default menu item or - 1 for no default item. The meaning of
this parameter depends on the value of fByPos.

fByPos
Value specifying the meaning of uItem. If this parameter is FALSE, uItem is a menu item
identifier. Otherwise, it is a menu item position.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoGetMenuDefaultItem

SetMenuItemBitmaps
The SetMenuItemBitmaps function associates the specified bitmap with a menu item. Whether
the menu item is checked or unchecked, Windows displays the appropriate bitmap next to the
menu item.

BOOL SetMenuItemBitmaps(
HMENU hMenu, // handle of menu
UINT uPosition, // menu item to receive new bitmaps
UINT uFlags, // menu item flags
HBITMAP hBitmapUnchecked, // handle of unchecked bitmap
HBITMAP hBitmapChecked // handle of checked bitmap

);ParametershMenu
Identifies the menu containing the item to receive new check mark bitmaps.

uPosition
Specifies the menu item to be changed, as determined by the uFlags parameter.

uFlags
Specifies how the uPosition parameter is interpreted. The uFlags parameter must be one of
the following values:

Value Meaning
MF_BYCOMMAND Indicates that uPosition gives the identifier of

the menu item. If neither MF_BYCOMMAND
nor MF_BYPOSITION is specified,
MF_BYCOMMAND is the default flag.

MF_BYPOSITION Indicates that uPosition gives the zero-based
relative position of the menu item.

hBitmapUnchecked
Identifies the bitmap displayed when the menu item is not checked.

hBitmapChecked
Identifies the bitmap displayed when the menu item is checked.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf either the hBitmapUnchecked or hBitmapChecked parameter is NULL, Windows displays
nothing next to the menu item for the corresponding check state. If both parameters are NULL,
Windows displays the default check mark bitmap when the item is checked and removes the
bitmap when the item is not checked.

When the menu is destroyed, these bitmaps are not destroyed; it is up to the application to
destroy them.

Windows NT: The GetMenuCheckMarkDimensions function retrieves the dimensions of the
default check mark used for menu items. These values are used to determine the appropriate size
for the bitmaps supplied with this function.

Windows 95: GetMenuCheckMarkDimensions is obsolete. Use GetsystemMetrics with the
CXMENUCHECK and CYMENUCHECK values to retrieve the bitmap dimensions.See AlsoGetMenu, GetMenuCheckMarkDimensions

SetMenuItemInfo
[Now Supported on Windows NT]

The SetMenuItemInfo function changes information about a menu item.

BOOL WINAPI SetMenuItemInfo(
HMENU hMenu,
UINT uItem,
BOOL fByPosition,
LPMENUITEMINFO lpmii

);ParametershMenu
Handle to the menu that contains the menu item.

uItem
Identifier or position of the menu item to change. The meaning of this parameter depends on
the value of fByPosition.

fByPosition
Value specifying the meaning of uItem. If this parameter is FALSE, uItem is a menu item
identifier. Otherwise, it is a menu item position.

lpmii
Pointer to a MENUITEMINFO structure that contains information about the menu item and
specifies which menu item attributes to change.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoGetMenuItemInfo, MENUITEMINFO

SetMessageExtraInfo
The SetMessageExtraInfo function sets the extra message information for the current thread.
Extra message information is an application- or driver-defined 32-bit value associated with the
current thread's message queue. An application can use the GetMessageExtraInfo function to
retrieve a thread's extra message information.

LPARAM SetMessageExtraInfo(
LPARAM lParam // application-defined 32-bit value

);ParameterslParam
Specifies the 32-bit value to associate with the current thread.

Return ValuesThe return value is the previous 32-bit value.See AlsoGetMessageExtraInfo

SetMessageQueue
The SetMessageQueue function is obsolete. This function is provided only for compatibility for
16-bit versions of Windows. This function does nothing on Win32 platforms, because message
queues are expanded dynamically as necessary.

SetMetaFileBitsEx
The SetMetaFileBitsEx function creates a memory-based Windows-format metafile from the
supplied data.

This function is provided for compatibility with earlier versions of Microsoft Windows. Win32-
based applications should use the SetEnhMetaFileBits function.

HMETAFILE SetMetaFileBitsEx(
UINT nSize, // size of Windows-format metafile
CONST BYTE *lpData // address of buffer containing metafile data

);ParametersnSize
Specifies the size, in bytes, of the Windows-format metafile.

lpData
Points to a buffer that contains the Windows-format metafile. (It is assumed that the data was
obtained by using the GetMetaFileBitsEx function.)

Return ValuesIf the function succeeds, the return value is a handle of a memory-based Windows-format
metafile.

If the function fails, the return value is NULL.RemarksA Windows-format metafile does not support the new curve, path, and transformation functions
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new
functions and use metafiles to store pictures created by these functions should use the enhanced-
format metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the
SetWinMetaFileBits function.

When the application no longer needs the metafile handle returned by SetMetaFileBitsEx, it
should delete it by calling the DeleteMetaFile function.See AlsoBeginPath, DeleteMetaFile, GetMetaFileBitsEx, PolyBezier, SetEnhMetaFileBits,
SetWinMetaFileBits, SetWorldTransform

SetMetaRgn
The SetMetaRgn function intersects the current clipping region for the specified device context
with the current metaregion and saves the combined region as the new metaregion for the
specified device context. The clipping region is reset to a null region.

int SetMetaRgn(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value specifies the new clipping region's complexity and can
be any one of the following values:

Value Meaning

NULLREGION Region is empty.
SIMPLEREGION Region is a single rectangle.
COMPLEXREGIONRegion is more than one rectangle.
ERROR An error occurred. (The previous clipping region

is unaffected.)
RemarksThe current clipping region of a device context is defined by the intersection of its clipping region

and its metaregion.

The SetMetaRgn function should only be called after an application's original device context was
saved by calling the SaveDC function.See AlsoGetMetaRgn, SaveDC

SetMiterLimit
The SetMiterLimit function sets the limit for the length of miter joins for the specified device
context.

BOOL SetMiterLimit(
HDC hdc, // handle of device context
FLOAT eNewLimit, // new miter limit
PFLOAT peOldLimit // previous miter limit

);Parametershdc
Identifies the device context.

eNewLimit
Specifies the new miter limit for the device context.

peOldLimit
Points to a floating-point value that receives the previous miter limit. If this parameter is NULL,
the previous miter limit is not returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe miter length is defined as the distance from the intersection of the line walls on the inside of
the join to the intersection of the line walls on the outside of the join. The miter limit is the
maximum allowed ratio of the miter length to the line width.

The default miter limit is 10.0.See AlsoExtCreatePen, GetMiterLimit

SetNamedPipeHandleState
The SetNamedPipeHandleState function sets the read mode and the blocking mode of the
specified named pipe. If the specified handle is to the client end of a named pipe and if the named
pipe server process is on a remote computer, the function can also be used to control local
buffering.

BOOL SetNamedPipeHandleState(
HANDLE hNamedPipe, // handle of named pipe
LPDWORD lpMode, // address of new pipe mode
LPDWORD lpMaxCollectionCount, // address of max. bytes before remote transmission
LPDWORD lpCollectDataTimeout // address of max. time before remote transmission

);ParametershNamedPipe
Identifies the named pipe instance. This parameter can be a handle to the server end of the
pipe, as returned by the CreateNamedPipe function, or to the client end of the pipe, as
returned by the CreateFile function. The handle must have GENERIC_WRITE access to the
named pipe.

lpMode
Points to a 32-bit variable that supplies the new mode. The mode is a combination of a read-
mode flag and a wait-mode flag. This parameter can be NULL if the mode is not being set.
One of the following read modes can be specified:

Mode Description
PIPE_READMODE_BYTE Data is read from the pipe as a

stream of bytes. This mode is the
default if no read-mode flag is
specified.

PIPE_READMODE_MESSAGE Data is read from the pipe as a
stream of messages. The
function fails if this flag is
specified for a byte-type pipe.

One of the following wait modes can be specified:
Mode Description
PIPE_WAIT Blocking mode is enabled. This mode is the

default if no wait-mode flag is specified.
When a blocking mode pipe handle is
specified in the ReadFile, WriteFile, or
ConnectNamedPipe function, operations
are not finished until there is data to read,
all data is written, or a client is connected.
Use of this mode can mean waiting
indefinitely in some situations for a client
process to perform an action.

PIPE_NOWAIT Nonblocking mode is enabled. In this mode,
ReadFile, WriteFile, and
ConnectNamedPipe always return
immediately. Note that nonblocking mode is
supported for compatibility with Microsoft®
LAN Manager version 2.0 and should not be
used to achieve asynchronous input and
output (I/O) with named pipes.

lpMaxCollectionCount
Points to a 32-bit variable that specifies the maximum number of bytes collected on the client
computer before transmission to the server. This parameter must be NULL if the specified
pipe handle is to the server end of a named pipe or if client and server processes are on the
same machine. This parameter is ignored if the client process specifies the
FILE_FLAG_WRITE_THROUGH flag in the CreateFile function when the handle was
created. This parameter can be NULL if the collection count is not being set.

lpCollectDataTimeout

Points to a 32-bit variable that specifies the maximum time, in milliseconds, that can pass
before a remote named pipe transfers information over the network. This parameter must be
NULL if the specified pipe handle is to the server end of a named pipe or if client and server
processes are on the same computer. This parameter is ignored if the client process specified
the FILE_FLAG_WRITE_THROUGH flag in the CreateFile function when the handle was
created. This parameter can be NULL if the collection count is not being set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoConnectNamedPipe, CreateFile, CreateNamedPipe, GetNamedPipeHandleState, ReadFile,
WriteFile

SetNamedSecurityInfo
[New - Windows NT]

The SetNamedSecurityInfo function sets specified security information in the security descriptor
of a specified object. The caller identifies the object by name.

DWORD SetNamedSecurityInfo(
LPTSTR pObjectName, // name of the object
SE_OBJECT_TYPE ObjectType, // type of object
SECURITY_INFORMATION SecurityInfo, // type of security information to set
PSID psidOwner, // pointer to the new owner SID
PSID psidGroup, // pointer to the new primary group SID
PACL pDacl, // pointer to the new DACL
PACL pSacl // pointer to the new SACL

);ParameterspObjectName
Pointer to a null-terminated string that specifies the name of the object for which to set
security information. This can be the name of a local or remote file or directory on a NTFS file
system, Windows NT network sharename, registry key, semaphore, event, mutex, file
mapping, or waitable timer.
For descriptions of the string formats for the different object types, see SE_OBJECT_TYPE.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object
named by the pObjectName parameter.

SecurityInfo
A set of SECURITY_INFORMATION bit flags that indicate the type of security information to
set. This parameter can be a combination of the following values.

Value Meaning
OWNER_SECURITY_INFORMATIONSet the owner security

identifier (SID) in the object's
security descriptor. The
psidOwner parameter points
to the new SID.

GROUP_SECURITY_INFORMATIONSet the primary group SID in
the object's security
descriptor. The psidGroup
parameter points to the new
SID.

DACL_SECURITY_INFORMATION Set the discretionary access-
control list (DACL) in the
object's security descriptor.
The pDacl parameter points
to the new DACL.

SACL_SECURITY_INFORMATION Set the system access-
control list (SACL) in the
object's security descriptor.
The pSacl parameter points
to the new SACL.

psidOwner
Pointer to a SID that identifies the object's owner. The SID must be one that can be assigned
as the owner SID of a security descriptor. The SecurityInfo parameter must include the
OWNER_SECURITY_INFORMATION flag. The caller must have WRITE_OWNER access to
the object or have the SE_TAKE_OWNERSHIP_NAME privilege enabled. This parameter can
be NULL if you are not setting the owner SID.

psidGroup
Pointer to a SID that identifies the object's primary group. The SecurityInfo parameter must
include the GROUP_SECURITY_INFORMATION flag. This parameter can be NULL if you are
not setting the primary group SID.

pDacl
Pointer to the new DACL for the object. The SecurityInfo parameter must include the
DACL_SECURITY_INFORMATION flag. The caller must have WRITE_DAC access to the
object or be the object's owner. This parameter can be NULL if you are not setting the DACL.

pSacl
Pointer to the new SACL for the object. The SecurityInfo parameter must include the
SACL_SECURITY_INFORMATION flag. The caller must have the SE_SECURITY_NAME
privilege enabled. This parameter can be NULL if you are not setting the SACL.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.See AlsoACL, GetNamedSecurityInfo, GetSecurityInfo, SE_OBJECT_TYPE,
SECURITY_DESCRIPTOR, SECURITY_INFORMATION, SetSecurityInfo, SID

SetPaletteEntries
The SetPaletteEntries function sets RGB (red, green, blue) color values and flags in a range of
entries in a logical palette.

UINT SetPaletteEntries(
HPALETTE hpal, // handle of logical palette
UINT iStart, // index of first entry to set
UINT cEntries, // number of entries to set
CONST PALETTEENTRY *lppe // address of array of structures

);Parametershpal
Identifies the logical palette.

iStart
Specifies the first logical-palette entry to be set.

cEntries
Specifies the number of logical-palette entries to be set.

lppe
Points to the first member of an array of PALETTEENTRY structures containing the RGB
values and flags.

Return ValuesIf the function succeeds, the return value is the number of entries that were set in the logical
palette.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether or not a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

Even if a logical palette has been selected and realized, changes to the palette do not affect the
physical palette in the surface. RealizePalette must be called again to set the new logical palette
into the surface.See AlsoGetDeviceCaps, GetPaletteEntries, RealizePalette, PALETTEENTRY

SetParent
The SetParent function changes the parent window of the specified child window.

HWND SetParent(
HWND hWndChild, // handle of window whose parent is changing
HWND hWndNewParent // handle of new parent window

);ParametershWndChild
Identifies the child window.

hWndNewParent
Identifies the new parent window. If this parameter is NULL, the desktop window becomes the
new parent window.

Return ValuesIf the function succeeds, the return value is the handle of the previous parent window.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksAn application can use the SetParent function to set the parent window of a pop-up, overlapped,
or child window. The new parent window and the child window must belong to the same
application.

If the window identified by the hWndChild parameter is visible, Windows performs the appropriate
redrawing and repainting.See AlsoGetParent

SetPixel
The SetPixel function sets the pixel at the specified coordinates to the specified color.

COLORREF SetPixel(
HDC hdc, // handle of device context
int X, // x-coordinate of pixel
int Y, // y-coordinate of pixel
COLORREF crColor // pixel color

);Parametershdc
Identifies the device context.

X
Specifies the x-coordinate, in logical units, of the point to be set.

Y
Specifies the y-coordinate, in logical units, of the point to be set.

crColor
Specifies the color to be used to paint the point.

Return ValuesIf the function succeeds, the return value is the RGB value that the function sets the pixel to. This
value may differ from the color specified by crColor; that happens when an exact match for the
specified color cannot be found.

If the function fails, the return value is - 1. To get extended error information, call GetLastError.RemarksThe function fails if the pixel coordinates lie outside of the current clipping region.

Not all devices support the SetPixel function. For more information, see GetDeviceCaps.See AlsoGetDeviceCaps, GetPixel, SetPixelV

SetPixelV
The SetPixelV function sets the pixel at the specified coordinates to the closest approximation of
the specified color. The point must be in the clipping region and the visible part of the device
surface.

BOOL SetPixelV(
HDC hdc, // handle of device context
int X, // x-coordinate of pixel
int Y, // y-coordinate of pixel
COLORREF crColor // new pixel color

);Parametershdc
Identifies the device context.

X
Specifies the x-coordinate, in logical units, of the point to be set.

Y
Specifies the y-coordinate, in logical units, of the point to be set.

crColor
Specifies the color to be used to paint the point.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksNot all devices support the SetPixelV function. For more information, see the description of the
RC_BITBLT capability in the GetDeviceCaps function.

SetPixelV is faster than SetPixel because it does not need to return the color value of the point
actually painted.See AlsoGetDeviceCaps, SetPixel

SetPolyFillMode
The SetPolyFillMode function sets the polygon fill mode for functions that fill polygons.

int SetPolyFillMode(
HDC hdc, // handle of device context
int iPolyFillMode // polygon fill mode

);Parametershdc
Identifies the device context.

iPolyFillMode
Specifies the new fill mode. This parameter can be either of the following values:

Value Meaning
ALTERNATE Selects alternate mode (fills the area between odd-

numbered and even-numbered polygon sides on
each scan line).

WINDING Selects winding mode (fills any region with a
nonzero winding value).

Return ValuesThe return value specifies the previous filling mode. If an error occurs, the return value is zero.RemarksIn general, the modes differ only in cases where a complex, overlapping polygon must be filled
(for example, a five-sided polygon that forms a five-pointed star with a pentagon in the center). In
such cases, ALTERNATE mode fills every other enclosed region within the polygon (that is, the
points of the star), but WINDING mode fills all regions (that is, the points and the pentagon).

When the fill mode is ALTERNATE, GDI fills the area between odd-numbered and even-
numbered polygon sides on each scan line. That is, GDI fills the area between the first and
second side, between the third and fourth side, and so on.

When the fill mode is WINDING, GDI fills any region that has a nonzero winding value. This value
is defined as the number of times a pen used to draw the polygon would go around the region.
The direction of each edge of the polygon is important.See AlsoGetPolyFillMode

SetPort
[New - Windows NT]

The SetPort function sets the status associated with a printer port.

BOOL SetPort(
LPTSTR pName, // pointer to a printer server name
LPTSTR pPortName, // pointer to a printer port name
DWORD dwLevel, // version of PORT_INFO_* structure
LPBYTE pPortInfo // pointer to a PORT_INFO_* structure

);ParameterspName
Pointer to a zero-terminated string that specifies the name of the printer server to which the
port is connected. Set this parameter to NULL if the port is on the local machine.

pPortName
Pointer to a zero-terminated string that specifies the name of the printer port.

dwLevel
Specifies the type of PORT_INFO_* structure pointed to by the pPortInfo parameter.
This value must be 3, which corresponds to a PORT_INFO_3 data structure.

pPortInfo
Pointer to a PORT_INFO_3 structure that contains the port status information to set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe caller of the SetPort function must have SERVER_ACCESS_ADMINISTER access to
the server to which the port is connected.

When you set a printer port status value with the severity value
PORT_STATUS_TYPE_ERROR, the print spooler stops sending jobs to the port. The print
spooler resumes sending jobs to the port when the port status is cleared by another call to
SetPort.See AlsoPORT_INFO_3

SetPrinter
The SetPrinter function sets the state of the specified printer by pausing printing, resuming
printing, or clearing all print jobs. The function can also be used to set printer data.

BOOL SetPrinter(
HANDLE hPrinter, // handle of printer object
DWORD Level, // structure level
LPBYTE pPrinter, // address of array containing printer data
DWORD Command // printer-state command

);ParametershPrinter
Handle to the printer of interest.

Level
Windows 95: Specifies the type of data contained in pPrinter. This parameter must be 0, 2, 3,
4, or 5. This parameter must be zero if Command is not equal to zero.
Windows NT: Specifies the type of data contained in pPrinter. This parameter must be 0, 2,
3, 5, or 6. This parameter must be zero if Command is not equal to zero.

pPrinter
This is either a DWORD value indicating the printer status, or a pointer to an array of bytes
that may contain printer data.
If Level is 0, and the Command parameter is PRINTER_CONTROL_SET_STATUS, pPrinter
must contain a DWORD value that specifies the new printer status to set. For a list of the
possible status values, see the Status member of the PRINTER_INFO_2 structure. Note that
PRINTER_STATUS_PAUSED and PRINTER_STATUS_PENDING_DELETION are not valid
status values to set.
If Level is 0, but the Command parameter is not PRINTER_CONTROL_SET_STATUS,
pPrinter must be NULL.
Windows 95: If Level is 2, 3, 4, or 5, pPrinter points to an array that contains
PRINTER_INFO_2, PRINTER_INFO_3, PRINTER_INFO_4, or PRINTER_INFO_5 structures,
respectively.
Windows NT: If Level is 2, 3, 5, or 6, pPrinter points to an array that contains
PRINTER_INFO_2, PRINTER_INFO_3, PRINTER_INFO_5, or PRINTER_INFO_6
structures, respectively.

Command
This parameter can be zero or one of the following values. If it is zero, the printer retains its
original state and the printer data is reconfigured by using the structure to which pPrinter
points.

Value Meaning
PRINTER_CONTROL_PAUSE Pauses the printer.
PRINTER_CONTROL_PURGE Deletes all print jobs in the

printer.
PRINTER_CONTROL_RESUME Resumes a paused printer.
PRINTER_CONTROL_SET_STATUSSets the printer status.

If Command is any of the above values, Level must be zero.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou can obtain the handle hPrinter is by calling the OpenPrinter function.

To modify the current printer settings, an application should call GetPrinter to retrieve the current
settings into a PRINTER_INFO_2 structure, modify the members of that structure as necessary,
and then call the SetPrinter function.

The SetPrinter function ignores the following members of a PRINTER_INFO_2 structure:

pServerName, AveragePPM, Status, and cJobs

Pausing a printer suspends scheduling of all print jobs for that printer, except for the one
print job that may be currently printing. Print jobs can be submitted to a paused printer,

but no jobs will be scheduled to print on that printer until printing is resumed. If a printer is
cleared, all print jobs for that printer are deleted, except for the current print job.

If the printer data structure contains a pointer to a security descriptor, only those components of
the security descriptor that the caller has permission to write should be present. An application
that wants to write particular security descriptor components must open the printer with sufficient
access permission to modify those components. The following table shows the security descriptor
components that can be modified for particular access permission values:

Access Permission Modifiable Security Descriptor
Components

WRITE_OWNER Owner, primary proup
WRITE_DAC Discretionary access-control list (ACL)
ACCESS_SYSTEM_SECURITYSystem ACL

If the calling application lacks a required permission, SetPrinter fails. Those components of a
security descriptor that an application does not wish to modify should be NULL or not be present,
as appropriate. If you do not want to modify the security descriptor, and are calling SetPrinter with
a PRINTER_INFO_2 structure, set the pSecurityDescriptor member of that structure to NULL.

Windows 95: SetPrinter does not update the pShareName member in the PRINTER_INFO_2
structure.

Windows 95: SetPrinter is not supported when called against a Windows NT printer from a
Windows 95 machine using the printer's UNC name.See AlsoAddPrinter, GetPrinter, OpenPrinter, PRINTER_INFO_2, PRINTER_INFO_3,
PRINTER_INFO_4, PRINTER_INFO_5, PRINTER_INFO_6

SetPrinterData
The SetPrinterData function sets the configuration data for a printer.

DWORD SetPrinterData(
HANDLE hPrinter, // handle of printer object
LPTSTR pValueName, // address of data type
DWORD Type, // flag for value type
LPBYTE pData, // address of array that specifies printer data
DWORD cbData // size, in bytes, of array

);ParametershPrinter
Identifies the printer for which the configuration data should be set.

pValueName
Points to a null-terminated string that specifies the type of data to be set.

Type
Specifies the type of information to be stored as the value's data. This parameter can be one
of the following values:

Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian

format (same as REG_DWORD).
In little-endian format, the most
significant byte of a word is the
high-order byte. This is the most
common format for computers
running Windows NT and Windows
95.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format. In big-endian format, the
most significant byte of a word is
the low-order byte.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references to
environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be a

Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

pData
Points to an array of bytes that contains the printer configuration data.

cbData
Specifies the size, in bytes, of the array.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is an error value.RemarksThe handle hPrinter is obtained by calling the OpenPrinter function.

Existing configuration data for a printer can be retrieved by calling the GetPrinter function.See AlsoGetPrinter, GetPrinterData, OpenPrinter

SetPriorityClass
The SetPriorityClass function sets the priority class for the specified process. This value together
with the priority value of each thread of the process determines each thread's base priority level.

BOOL SetPriorityClass(
HANDLE hProcess, // handle to the process
DWORD dwPriorityClass // priority class value

);ParametershProcess
Identifies the process.
Windows NT: The handle must have the PROCESS_SET_INFORMATION access right. For
more information, see Process Objects.

dwPriorityClass
Specifies the priority class for the process. Specify one of the following values:

Priority Meaning
HIGH_PRIORITY_CLASS Specify this class for a process that

performs time-critical tasks that
must be executed immediately. The
threads of the process preempt the
threads of normal or idle priority
class processes. An example is
Windows Task List, which must
respond quickly when called by the
user, regardless of the load on the
operating system. Use extreme care
when using the high-priority class,
because a high-priority class
application can use nearly all
available CPU time.

IDLE_PRIORITY_CLASS Specify this class for a process
whose threads run only when the
system is idle. The threads of the
process are preempted by the
threads of any process running in a
higher priority class. An example is
a screen saver. The idle-priority
class is inherited by child processes.

NORMAL_PRIORITY_CLASS Specify this class for a process with
no special scheduling needs.

REALTIME_PRIORITY_CLASS Specify this class for a process that
has the highest possible priority.
The threads of the process preempt
the threads of all other processes,
including operating system
processes performing important
tasks. For example, a real-time
process that executes for more than
a very brief interval can cause disk
caches not to flush or cause the
mouse to be unresponsive.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEvery thread has a base priority level determined by the thread's priority value and the priority
class of its process. The system uses the base priority level of all executable threads to determine
which thread gets the next slice of CPU time. The SetThreadPriority function enables setting the
base priority level of a thread relative to the priority class of its process. For more information, see
Scheduling Priorities.See AlsoCreateProcess, CreateThread, GetPriorityClass, GetThreadPriority, SetThreadPriority

SetPrivateObjectSecurity
The SetPrivateObjectSecurity function modifies a private object's security descriptor.

BOOL SetPrivateObjectSecurity(
SECURITY_INFORMATION SecurityInformation, // type of security information
PSECURITY_DESCRIPTOR ModificationDescriptor, // address of SD to apply to object
PSECURITY_DESCRIPTOR *ObjectsSecurityDescriptor, // address of object's SD
PGENERIC_MAPPING GenericMapping, // address of access-mapping structure
HANDLE Token // handle of client access token

);ParametersSecurityInformation
Specifies a SECURITY_INFORMATION structure identifying the contents of the security
descriptor pointed to by the ModificationDescriptor parameter.

ModificationDescriptor
Points to a SECURITY_DESCRIPTOR structure to be applied to the object.

ObjectsSecurityDescriptor
Points to a pointer to a SECURITY_DESCRIPTOR structure to be altered by this function.
This security descriptor must be in self-relative form.

GenericMapping
Points to a GENERIC_MAPPING structure specifying the mapping of generic to specific and
standard access types for the object.

Token
Identifies the access token for the client on whose behalf the private object's security is being
modified. This parameter is required to ensure that the client has provided a legitimate value
for a new owner security identifier (SID). The token must be open for TOKEN_QUERY
access.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe object's security descriptor must be in self-relative form.

If necessary, the SetPrivateObjectSecurity function allocates additional memory to produce a
larger security descriptor.

The SetPrivateObjectSecurity function is successful only if the following conditions are met:

· If the object's owner is being set, the calling process must have either WRITE_OWNER
permission or be the object's owner.

· If the object's discretionary access-control list (ACL) is being set, the calling process must
have either WRITE_DAC permission or be the object's owner.

· If the object's system ACL is being set, the SE_SECURITY_NAME privilege must be
enabled for the calling process.

The process calling this function must not be impersonating a client.See AlsoCreatePrivateObjectSecurity, DestroyPrivateObjectSecurity, GENERIC_MAPPING,
GetPrivateObjectSecurity, SECURITY_DESCRIPTOR, SECURITY_INFORMATION,
SetFileSecurity, SetKernelObjectSecurity, SetUserObjectSecurity

SetProcessAffinityMask
[New - Windows NT]

The SetProcessAffinityMask function sets a processor affinity mask for the threads of a
specified process.

A process affinity mask is a bit vector in which each bit represents the processor on which the
threads of the process are allowed to run.

The value of the process affinity mask must be a proper subset of the mask values obtained by
the GetProcessAffinityMask function.

BOOL SetProcessAffinityMask(
HANDLE hProcess, // handle to process
DWORD dwProcessAffinityMask // process affinity mask

);ParametershProcess
A handle to the process whose affinity mask the function sets. This handle must have the
PROCESS_SET_INFORMATION access right. For more information, see Process Objects.

dwProcessAffinityMask
Specifies an affinity mask for the threads of the process.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksProcess affinity is inherited by any process that you start with the CreateProcess function.See AlsoCreateProcess, GetProcessAffinityMask

SetProcessPriorityBoost
[New - Windows NT]

The SetProcessPriorityBoost function disables the ability of Windows NT to temporarily boost
the priority of the threads of the specified process.

BOOL SetProcessPriorityBoost(
HANDLE hProcess, // handle to process
BOOL DisablePriorityBoost // priority boost control state

);ParametershProcess
Handle to the process. This handle must have the PROCESS_SET_INFORMATION access
right. For more information, see Process Objects.

DisablePriorityBoost
A Boolean variable that is used to set the priority boost control state. A value of TRUE
indicates that dynamic boosting is to be disabled. A value of FALSE restores normal behavior.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen a thread is running in one of the dynamic priority classes, Windows NT temporarily boosts
the thread's priority when it is taken out of a wait state. If SetProcessPriorityBoost is called with
the DisablePriorityBoost parameter set to TRUE, its threads' priorities are not boosted. This
setting affects all existing threads and any threads subsequently created by the process. To
restore normal behavior, call SetProcessPriorityBoost with DisablePriorityBoost set to FALSE.See AlsoGetProcessPriorityBoost

SetProcessShutdownParameters
The SetProcessShutdownParameters function sets shutdown parameters for the currently
calling process. This function sets a shutdown order for a process relative to the other processes
in the system.

BOOL SetProcessShutdownParameters(
DWORD dwLevel, // shutdown priority
DWORD dwFlags // shutdown flags

);ParametersdwLevel
Specifies the shutdown priority for a process relative to other processes in the system. The
system shuts down processes from high dwLevel values to low. The highest and lowest
shutdown priorities are reserved for system components. This parameter must be in the
following range of values:

Value Meaning
000 - 0FF System reserved last shutdown range.
100 - 1FF Application reserved last shutdown range.
200 - 2FF Application reserved "in between" shutdown range.
300 - 3FF Application reserved first shutdown range.
400 - 4FF System reserved first shutdown range.

All processes start at shutdown level 0x280.
dwFlags

Specifies a flags parameter. It can be the following value:
Value Meaning
SHUTDOWN_NORETRY Specifies whether to retry the shutdown if

the specified time-out period expires. If
this flag is specified, the system
terminates the process without displaying
a retry dialog box for the user.

Return ValuesIf the function is succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksApplications running in the system security context do not get shut down by the operating system.
They get notified of shutdown or logoff through the callback function installable via
SetConsoleCtrlHandler. They also get notified in the order specified by the dwLevel parameter.See AlsoGetProcessShutdownParameters, SetConsoleCtrlHandler

SetProcessWindowStation
The SetProcessWindowStation function assigns a window station to the calling process. This
enables the process to access objects in the window station such as desktops, the clipboard, and
global atoms. All subsequent operations on the window station use the access rights granted to
hWinSta.

BOOL SetProcessWindowStation(
HWINSTA hWinSta // handle of window station to assign to this process

);ParametershWinSta
Identifies the window station to be assigned to the calling process. This handle is returned by
the CreateWindowStation and OpenWindowStation functions.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateWindowStation, GetProcessWindowStation, OpenWindowStation, SetThreadDesktop

SetProcessWorkingSetSize
The SetProcessWorkingSetSize function sets the minimum and maximum working set sizes for
a specified process.

The working set of a process is the set of memory pages currently visible to the process in
physical RAM memory. These pages are resident and available for an application to use without
triggering a page fault. The size of the working set of a process is specified in bytes. The minimum
and maximum working set sizes affect the virtual memory paging behavior of a process.

BOOL SetProcessWorkingSetSize(
HANDLE hProcess, // open handle to the process of interest
DWORD dwMinimumWorkingSetSize, // specifies minimum working set size
DWORD dwMaximumWorkingSetSize // specifies maximum working set size

);ParametershProcess
An open handle to the process whose working set sizes will be set.
Windows NT: The handle must have PROCESS_SET_QUOTA access rights. For more
information, see Process Objects.

dwMinimumWorkingSetSize
Specifies a minimum working set size for the process. The virtual memory manager attempts
to keep at least this much memory resident in the process whenever the process is active.
If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value 0xffffffff,
the function temporarily trims the working set of the specified process to zero. This essentially
swaps the process out of physical RAM memory.

dwMaximumWorkingSetSize
Specifies a maximum working set size for the process. The virtual memory manager attempts
to keep no more than this much memory resident in the process whenever the process is
active and memory is in short supply.
If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value 0xffffffff,
the function temporarily trims the working set of the specified process to zero. This essentially
swaps the process out of physical RAM memory.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. Call GetLastError to obtain extended error
information.RemarksThe working set of the specified process can be emptied by specifying the value 0xffffffff for both
the minimum and maximum working set sizes.

If the values of either dwMinimumWorkingSetSize or dwMaximumWorkingSetSize are greater
than the process' current working set sizes, the specified process must have the
SE_INC_BASE_PRIORITY_NAME privilege. Users in the Administrators and Power Users groups
generally have this privilege. For more information about security privileges, see Privileges.

The operating system allocates working set sizes on a first-come, first-served basis. For example,
if an application successfully sets 40 megabytes as its minimum working set size on a 64-
megabyte system, and a second application requests a 40-megabyte working set size, the
operating system denies the second application's request.

Using the SetProcessWorkingSetSize function to set an application's minimum and maximum
working set sizes does not guarantee that the requested memory will be reserved, or that it will
remain resident at all times. When the application is idle, or a low-memory situation causes a
demand for memory, the operating system can reduce the application's working set. An
application can use the VirtualLock function to lock ranges of the application's virtual address
space in memory; however, that can potentially degrade the performance of the system.

When you increase the working set size of an application, you are taking away physical memory
from the rest of the system. This can degrade the performance of other applications and the
system as a whole. It can also lead to failures of operations that require physical memory to be
present; for example, creating processes, threads, and kernel pool. Thus, you must use the
SetProcessWorkingSetSize function carefully. You must always consider the performance of the
whole system when you are designing an application.See AlsoGetProcessWorkingSetSize, VirtualLock

SetProp
The SetProp function adds a new entry or changes an existing entry in the property list of the
specified window. The function adds a new entry to the list if the specified character string does
not exist already in the list. The new entry contains the string and the handle. Otherwise, the
function replaces the string's current handle with the specified handle.

BOOL SetProp(
HWND hWnd, // handle of window
LPCTSTR lpString, // atom or address of string
HANDLE hData // handle of data

);ParametershWnd
Identifies the window whose property list receives the new entry.

lpString
Points to a null-terminated string or contains an atom that identifies a string. If this parameter
is an atom, it must be a global atom created by a previous call to the GlobalAddAtom
function. The atom, a 16-bit value, must be placed in the low-order word of lpString; the high-
order word must be zero.

hData
Identifies data to be copied to the property list. The data handle can identify any value useful
to the application.

Return ValuesIf the data handle and string are added to the property list, the return value is nonzero.

If the function fails, the return value is zero.RemarksBefore destroying a window (that is, before processing the WM_DESTROY message), an
application must remove all entries it has added to the property list. The application must use the
RemoveProp function to remove the entries.See AlsoEnumProps, EnumPropsEx, GetProp, GlobalAddAtom, RemoveProp

SetRect
The SetRect function sets the coordinates of the specified rectangle. This is equivalent to
assigning the left, top, right, and bottom arguments to the appropriate members of the RECT
structure.

BOOL SetRect(
LPRECT lprc, // address of structure with rectangle to set
int xLeft, // left side
int yTop, // top side
int xRight, // right side
int yBottom // bottom side

);Parameterslprc
Points to the RECT structure that contains the rectangle to be set.

xLeft
Specifies the x-coordinate of the rectangle's upper-left corner.

yTop
Specifies the y-coordinate of the rectangle's upper-left corner.

xRight
Specifies the x-coordinate of the rectangle's lower-right corner.

yBottom
Specifies the y-coordinate of the rectangle's lower-right corner.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCopyRect, SetRectEmpty, RECT

SetRectEmpty
The SetRectEmpty function creates an empty rectangle in which all coordinates are set to zero.

BOOL SetRectEmpty(
LPRECT lprc // address of structure with rectangle set to empty

);Parameterslprc
Points to the RECT structure that contains the coordinates of the rectangle.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCopyRect, RECT, SetRect

SetRectRgn
The SetRectRgn function changes a region into a rectangular region with the specified
coordinates.

BOOL SetRectRgn(
HRGN hrgn, // handle of region
int nLeftRect, // x-coordinate of upper-left corner of rectangle
int nTopRect, // y-coordinate of upper-left corner of rectangle
int nRightRect, // x-coordinate of lower-right corner of rectangle
int nBottomRect // y-coordinate of lower-right corner of rectangle

);Parametershrgn
Identifies the region.

nLeftRect
Specifies the x-coordinate of the upper-left corner of the rectangular region.

nTopRect
Specifies the y-coordinate of the upper-left corner of the rectangular region.

nRightRect
Specifies the x-coordinate of the lower-right corner of the rectangular region.

nBottomRect
Specifies the y-coordinate of the lower-right corner of the rectangular region.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe region does not include the lower and right boundaries of the rectangle.See AlsoCreateRectRgn

SetROP2
The SetROP2 function sets the current foreground mix mode. GDI uses the foreground mix mode
to combine pens and interiors of filled objects with the colors already on the screen. The
foreground mix mode defines how colors from the brush or pen and the colors in the existing
image are to be combined.

int SetROP2(
HDC hdc, // handle of device context
int fnDrawMode // drawing mode

);Parametershdc
Identifies the device context.

fnDrawMode
Specifies the new mix mode. This parameter can be any one of the following values:

Mix mode Description
R2_BLACK Pixel is always 0.
R2_COPYPEN Pixel is the pen color.
R2_MASKNOTPEN Pixel is a combination of the colors common

to both the screen and the inverse of the pen.
R2_MASKPEN Pixel is a combination of the colors common

to both the pen and the screen.
R2_MASKPENNOT Pixel is a combination of the colors common

to both the pen and the inverse of the screen.
R2_MERGENOTPEN Pixel is a combination of the screen color and

the inverse of the pen color.
R2_MERGEPEN Pixel is a combination of the pen color and

the screen color.
R2_MERGEPENNOT Pixel is a combination of the pen color and

the inverse of the screen color.
R2_NOP Pixel remains unchanged.
R2_NOT Pixel is the inverse of the screen color.
R2_NOTCOPYPEN Pixel is the inverse of the pen color.
R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN

color.
R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN

color.
R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color.
R2_WHITE Pixel is always 1.
R2_XORPEN Pixel is a combination of the colors in the pen

and in the screen, but not in both.
Return ValuesIf the function succeeds, the return value specifies the previous mix mode.

If the function fails, the return value is zero.RemarksMix modes define how GDI combines source and destination colors when drawing with the current
pen. The mix modes are binary raster operation codes, representing all possible Boolean
functions of two variables, using the binary operations AND, OR, and XOR (exclusive OR), and
the unary operation NOT. The mix mode is for raster devices only; it is not available for vector
devices.See AlsoGetROP2

SetScrollInfo
The SetScrollInfo function sets the parameters of a scroll bar, including the minimum and
maximum scrolling positions, the page size, and the position of the scroll box (thumb). The
function also redraws the scroll bar, if requested.

int SetScrollInfo(
HWND hwnd, // handle of window with scroll bar
int fnBar, // scroll bar flag
LPSCROLLINFO lpsi, // pointer to structure with scroll parameters
BOOL fRedraw // redraw flag

);Parametershwnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the fnBar parameter.

fnBar
Specifies the type of scroll bar for which to set parameters. This parameter can be one of the
following values:

Value Meaning
SB_CTL Sets the parameters of a scroll bar control. The hwnd

parameter must be the handle of the scroll bar control.
SB_HORZ Sets the parameters of the given window's standard

horizontal scroll bar.
SB_VERT Sets the parameters of the given window's standard

vertical scroll bar.

lpsi
Points to a SCROLLINFO structure whose fMask member, upon entry to the function,
specifies the scroll bar parameters to set.
The fMask member can be a combination of the following values:

Value Meaning
SIF_DISABLENOSCROLLDisables the scroll bar instead of

removing it, if the scroll bar's new
parameters make the scroll bar
unnecessary.

SIF_PAGE Sets the scroll page to the value
specified in the nPage member of the
SCROLLINFO structure pointed to by
lpsi.

SIF_POS Sets the scroll position to the value
specified in the nPos member of the
SCROLLINFO structure pointed to by
lpsi.

SIF_RANGE Sets the scroll range to the value
specified in the nMin and nMax
members of the SCROLLINFO
structure pointed to by lpsi.

fRedraw
Specifies whether the scroll bar is redrawn to reflect the changes to the scroll bar. If this
parameter is TRUE, the scroll bar is redrawn, otherwise, it is not redrawn.

Return ValuesThe return value is the current position of the scroll box.RemarksThe SetScrollInfo function performs range checking on the values specified by the nPage and
nPos members of the SCROLLINFO structure. The nPage member must specify a value from 0
to nMax - nMin +1. The nPos member must specify a value between nMin and nMax -
max(nPage - 1, 0). If either value is beyond its range, the function sets it to a value that is just
within the range.See AlsoGetScrollInfo, SCROLLINFO

SetScrollPos
The SetScrollPos function sets the position of the scroll box (thumb) in the specified scroll bar
and, if requested, redraws the scroll bar to reflect the new position of the scroll box. The
SetScrollPos function is provided for compatibility with Windows 3.x. Win32-based applications
should use the SetScrollInfo function.

int SetScrollPos(
HWND hWnd, // handle of window with scroll bar
int nBar, // scroll bar flag
int nPos, // new position of scroll box
BOOL bRedraw // redraw flag

);ParametershWnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the nBar parameter.

nBar
Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Meaning
SB_CTL Sets the position of the scroll box in a scroll bar

control. The hWnd parameter must be the handle of
the scroll bar control.

SB_HORZ Sets the position of the scroll box in a window's
standard horizontal scroll bar.

SB_VERT Sets the position of the scroll box in a window's
standard vertical scroll bar.

nPos
Specifies the new position of the scroll box. The position must be within the scrolling range.
For more information about the scrolling range, see the SetScrollRange function.

bRedraw
Specifies whether the scroll bar is redrawn to reflect the new scroll box position. If this
parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not redrawn.

Return ValuesIf the function succeeds, the return value is the previous position of the scroll box.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the scroll bar is redrawn by a subsequent call to another function, setting the bRedraw
parameter to FALSE is useful.

Because the messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are
limited to 16 bits of position data, applications that rely solely on those messages for position data
have a practical maximum value of 65,535 for the SetScrollPos function's nPos parameter.

However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange
functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of
the WM_HSCROLL and WM_VSCROLL messages. See GetScrollPos for a description of the
technique and its limits.See AlsoGetScrollPos, GetScrollRange, ScrollDC, ScrollWindow, SetScrollRange

SetScrollRange
The SetScrollRange function sets the minimum and maximum position values for the specified
scroll bar. It can also be used to hide or show a standard scroll bar.The SetScrollRange function
is provided for compatibility with Windows 3.x. Win32-based applications should use the
SetScrollInfo function.

BOOL SetScrollRange(
HWND hWnd, // handle of window with scroll bar
int nBar, // scroll bar flag
int nMinPos, // minimum scrolling position
int nMaxPos, // maximum scrolling position
BOOL bRedraw // redraw flag

);ParametershWnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the nBar parameter.

nBar
Specifies the scroll bar to be set. This parameter can be one of the following values:

Value Meaning
SB_CTL Sets the range of a scroll bar control. The hWnd

parameter must be the handle of the scroll bar
control.

SB_HORZ Sets the range of a window's standard horizontal
scroll bar.

SB_VERT Sets the range of a window's standard vertical scroll
bar.

nMinPos
Specifies the minimum scrolling position.

nMaxPos
Specifies the maximum scrolling position.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the change. If this parameter is
TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not redrawn.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application should not call the SetScrollRange function to hide a scroll bar while processing a
scroll bar message.

If the call to SetScrollRange immediately follows a call to the SetScrollPos function, the
bRedraw parameter in SetScrollPos must be zero to prevent the scroll bar from being drawn
twice.

The default range for a standard scroll bar is 0 through 100. The default range for a scroll bar
control is empty (both the nMinPos and nMaxPos parameter values are zero). The difference
between the values specified by the nMinPos and nMaxPos parameters must not be greater than
the value of MAXLONG.

Because the messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are
limited to 16 bits of position data, applications that rely solely on those messages for position data
have a practical maximum value of 65,535 for the SetScrollRange function's nMaxPos
parameter.

However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange
functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of
the WM_HSCROLL and WM_VSCROLL messages. See GetScrollPos for a description of the
technique and its limits.See AlsoGetScrollPos, GetScrollRange, SetScrollPos

SetSecurityDescriptorDacl
The SetSecurityDescriptorDacl function sets information in a discretionary access-control list
(ACL). If a discretionary ACL is already present in the security descriptor, it is replaced.

BOOL SetSecurityDescriptorDacl(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
BOOL bDaclPresent, // flag for presence of discretionary ACL
PACL pDacl, // address of discretionary ACL
BOOL bDaclDefaulted // flag for default discretionary ACL

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure to which the function adds the discretionary
ACL. This security descriptor must be in absolute format, meaning that its members must be
pointers to other structures, rather than offsets to contiguous data.

bDaclPresent
Specifies a flag indicating the presence of a discretionary ACL in the security descriptor. If this
parameter is TRUE, the function sets the SE_DACL_PRESENT flag in the
SECURITY_DESCRIPTOR_CONTROL structure and uses the values in the pDacl and
bDaclDefaulted parameters. If it is FALSE, the function clears the SE_DACL_PRESENT flag,
and pDacl and bDaclDefaulted are ignored.

pDacl
Points to an ACL structure specifying the discretionary ACL for the security descriptor. If this
parameter is NULL, a NULL discretionary ACL is assigned to the security descriptor, allowing
all access to the object. The discretionary ACL is referenced by, not copied into, the security
descriptor.

bDaclDefaulted
Specifies a flag indicating the source of the discretionary ACL. If this flag is TRUE, the
discretionary ACL has been retrieved by some default mechanism. If FALSE, the discretionary
ACL has been explicitly specified by a user. The function stores this value in the
SE_DACL_DEFAULTED flag of the SECURITY_DESCRIPTOR_CONTROL structure. If this
parameter is not specified, the SE_DACL_DEFAULTED flag is cleared.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThere is an important difference between an empty and a nonexistent discretionary ACL. When a
discretionary ACL is empty, it contains no access-control entries and no access rights have been
explicitly granted. As a result, access to the object is implicitly denied. When an object has no
DACL, on the other hand, no protection is assigned to the object, and any access request is
granted.

There are three possible outcomes in different configurations of the bDaclPresent flag and the
pDacl parameter:

· When the pDacl parameter points to a discretionary ACL and the bDaclPresent flag is
TRUE, a discretionary ACL is specified and it must contain access-allowed ACEs to allow
access to the object.

· When the pDacl parameter does not point to a discretionary ACL and the bDaclPresent
flag is TRUE, a NULL discretionary ACL is specified. All access is allowed.

· When the pDacl parameter does not point to a discretionary ACL and the bDaclPresent
flag is FALSE, a discretionary ACL can be provided for the object through an inheritance or
default mechanism.

See AlsoACL, GetSecurityDescriptorDacl, InitializeSecurityDescriptor, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL,
SetSecurityDescriptorGroup, SetSecurityDescriptorOwner, SetSecurityDescriptorSacl

SetSecurityDescriptorGroup
The SetSecurityDescriptorGroup function sets the primary group information of an absolute-
format security descriptor, replacing any primary group information already present in the security
descriptor.

BOOL SetSecurityDescriptorGroup(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
PSID pGroup, // address of SID for group
BOOL bGroupDefaulted // flag for default

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure whose primary group is set by this function.
The function replaces any existing primary group with the new primary group.

pGroup
Points to a SID structure the function sets as the security descriptor's new primary group. The
SID structure is referenced by, not copied into, the security descriptor. If this parameter is
NULL, the function clears the security descriptor's primary group information. This marks the
security descriptor as having no primary group.

bGroupDefaulted
Specifies a flag indicating whether the primary group information was derived from a default
mechanism. If this flag is TRUE, it is default information, and the function stores this value as
the SE_GROUP_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL structure. If
this parameter is zero, the SE_GROUP_DEFAULTED flag is cleared.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetSecurityDescriptorGroup, InitializeSecurityDescriptor, SECURITY_DESCRIPTOR,
SECURITY_DESCRIPTOR_CONTROL, SetSecurityDescriptorDacl,
SetSecurityDescriptorOwner, SetSecurityDescriptorSacl, SID

SetSecurityDescriptorOwner
The SetSecurityDescriptorOwner function sets the owner information of an absolute-format
security descriptor. It replaces any owner information already present in the security descriptor.

BOOL SetSecurityDescriptorOwner(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
PSID pOwner, // address of SID for owner
BOOL bOwnerDefaulted // flag for default

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure whose owner is set by this function. The
function replaces any existing owner with the new owner.

pOwner
Points to a SID structure the function sets as the security descriptor's new primary owner. The
SID structure is referenced by, not copied into, the security descriptor. If this parameter is
NULL, the function clears the security descriptor's owner information. This marks the security
descriptor as having no owner.

bOwnerDefaulted
Specifies a flag indicating whether the owner information is derived from a default mechanism.
If this flag is TRUE, it is default information. The function stores this value as the
SE_OWNER_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL structure. If
this parameter is zero, the SE_OWNER_DEFAULTED flag is cleared.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetSecurityDescriptorOwner, InitializeSecurityDescriptor, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL,
SetSecurityDescriptorDacl, SetSecurityDescriptorGroup, SetSecurityDescriptorSacl, SID

SetSecurityDescriptorSacl
The SetSecurityDescriptorSacl function sets information in a system access-control list (ACL). If
there is already a system ACL present in the security descriptor, it is replaced.

BOOL SetSecurityDescriptorSacl(
PSECURITY_DESCRIPTOR pSecurityDescriptor, // address of security descriptor
BOOL bSaclPresent, // flag for presence of system ACL
PACL pSacl, // address of system ACL
BOOL bSaclDefaulted // flag for default system ACL

);ParameterspSecurityDescriptor
Points to the SECURITY_DESCRIPTOR structure to which the function adds the system ACL.
This security descriptor must be in absolute format, meaning that its members must be
pointers to other structures, rather than offsets to contiguous data.

bSaclPresent
Specifies a flag indicating the presence of a system ACL in the security descriptor. If this
parameter is TRUE, the function sets the SE_SACL_PRESENT flag in the
SECURITY_DESCRIPTOR_CONTROL structure and uses the values in the pSacl and
bSaclDefaulted parameters. If it is FALSE, the function does not set the SE_SACL_PRESENT
flag, and pSacl and bSaclDefaulted are ignored.

pSacl
Points to an ACL structure that specifies the system ACL for the security descriptor. If this
parameter is NULL, a NULL system ACL is assigned to the security descriptor. The system
ACL is referenced by, not copied into, the security descriptor.

bSaclDefaulted
Specifies a flag indicating the source of the system ACL. If this flag is TRUE, the system ACL
has been retrieved by some default mechanism. If it is FALSE, the system ACL has been
explicitly specified by a user. The function stores this value in the SE_SACL_DEFAULTED
flag of the SECURITY_DESCRIPTOR_CONTROL structure. If this parameter is not specified,
the SE_SACL_DEFAULTED flag is cleared.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoACL, GetSecurityDescriptorSacl, InitializeSecurityDescriptor, IsValidSecurityDescriptor,
SECURITY_DESCRIPTOR, SECURITY_DESCRIPTOR_CONTROL,
SetSecurityDescriptorDacl, SetSecurityDescriptorGroup, SetSecurityDescriptorOwner

SetSecurityInfo
[New - Windows NT]

The SetSecurityInfo function sets specified security information in the security descriptor of a
specified object. The caller identifies the object by a handle.

DWORD SetSecurityInfo(
HANDLE handle, // handle to the object
SE_OBJECT_TYPE ObjectType, // type of object
SECURITY_INFORMATION SecurityInfo, // type of security information to set
PSID psidOwner, // pointer to the new owner SID
PSID psidGroup, // pointer to the new primary group SID
PACL pDacl, // pointer to the new DACL
PACL pSacl // pointer to the new SACL

);Parametershandle
A handle to the object for which to set security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object
identified by the handle parameter.

SecurityInfo
A set of SECURITY_INFORMATION bit flags that indicate the type of security information to
set. This parameter can be a combination of the following values.

Value Meaning
OWNER_SECURITY_INFORMATIONSet the owner security

identifier (SID) in the object's
security descriptor. The
psidOwner parameter points
to the new SID.

GROUP_SECURITY_INFORMATIONSet the primary group SID in
the object's security
descriptor. The psidGroup
parameter points to the new
SID.

DACL_SECURITY_INFORMATION Set the discretionary access-
control list (DACL) in the
object's security descriptor.
The pDacl parameter points
to the new DACL.

SACL_SECURITY_INFORMATION Set the system access-
control list (SACL) in the
object's security descriptor.
The pSacl parameter points
to the new SACL.

psidOwner
Pointer to a SID that identifies the object's owner. The SID must be one that can be assigned
as the owner SID of a security descriptor. The SecurityInfo parameter must include the
OWNER_SECURITY_INFORMATION flag. The caller must have WRITE_OWNER access to
the object or have the SE_TAKE_OWNERSHIP_NAME privilege enabled. This parameter can
be NULL if you are not setting the owner SID.

psidGroup
Pointer to a SID that identifies the object's primary group. The SecurityInfo parameter must
include the GROUP_SECURITY_INFORMATION flag. This parameter can be NULL if you are
not setting the primary group SID.

pDacl
Pointer to the new DACL for the object. The SecurityInfo parameter must include the
DACL_SECURITY_INFORMATION flag. The caller must have WRITE_DAC access to the
object or be the object's owner. This parameter can be NULL if you are not setting the DACL.

pSacl
Pointer to the new SACL for the object. The SecurityInfo parameter must include the
SACL_SECURITY_INFORMATION flag. The caller must have the SE_SECURITY_NAME
privilege enabled. This parameter can be NULL if you are not setting the SACL.

Return ValuesIf the function succeeds, the return value is ERROR_SUCCESS.

If the function fails, the return value is a nonzero error code defined in WINERROR.H.See AlsoACL, GetNamedSecurityInfo, GetSecurityInfo, SE_OBJECT_TYPE,
SECURITY_DESCRIPTOR, SECURITY_INFORMATION, SetNamedSecurityInfo, SID

SetServiceBits
The SetServiceBits function registers a service's service type with the Service Control Manager
and the Server service. The Server service can then announce the registered service type as one
it currently supports. The LAN Manager functions NetServerGetInfo and NetServerEnum obtain
a specified machine's supported service types.

A service type is represented as a set of bit flags; the SetServiceBits function sets or clears
combinations of those bit flags.

BOOL SetServiceBits(
SERVICE_STATUS_HANDLE hServiceStatus, // service status handle
DWORD dwServiceBits, // service type bits to set or clear
BOOL bSetBitsOn, // flag to set or clear the service type bits
BOOL bUpdateImmediately // flag to announce server type immediately

);ParametershServiceStatus
A handle to the Service Control Manager's status information structure for a service. A service
obtains a SERVICE_STATUS_HANDLE value by calling the RegisterServiceCtrlHandler
function. It is the service's handle for making calls to the Service Control Manager.

dwServiceBits
A set of bit flags that specifies a service type.
Certain bit flags (0xC00F3F7B) are reserved for use by Microsoft. The SetServiceBits
function fails with the error ERROR_INVALID_DATA if any of these bit flags are set in
dwServiceBits. There are 18 of these bit flags:

Bit Flag Constant Value
SV_TYPE_WORKSTATION 0x00000001
SV_TYPE_SERVER 0x00000002
SV_TYPE_DOMAIN_CTRL 0x00000008
SV_TYPE_DOMAIN_BAKCTRL 0x00000010
SV_TYPE_TIME_SOURCE 0x00000020
SV_TYPE_AFP 0x00000040
SV_TYPE_DOMAIN_MEMBER 0x00000100
SV_TYPE_PRINTQ_SERVER 0x00000200
SV_TYPE_DIALIN_SERVER 0x00000400
SV_TYPE_XENIX_SERVER 0x00000800
SV_TYPE_SERVER_UNIX 0x00000800
SV_TYPE_NT 0x00001000
SV_TYPE_WFW 0x00002000
SV_TYPE_POTENTIAL_BROWSER0x00010000
SV_TYPE_BACKUP_BROWSER 0x00020000
SV_TYPE_MASTER_BROWSER 0x00040000
SV_TYPE_DOMAIN_MASTER 0x00080000
SV_TYPE_LOCAL_LIST_ONLY 0x40000000
SV_TYPE_DOMAIN_ENUM 0x80000000

Certain bit flags (0x00300084) are defined by Microsoft, but are not specifically
reserved for systems software. There are four of these bit flags:

Bit Flag Constant Value
SV_TYPE_SV_TYPE_SQLSERVER0x00000004
SV_TYPE_NOVELL 0x00000080
SV_TYPE_DOMAIN_CTRL 0x00100000
SV_TYPE_DOMAIN_BAKCTRL 0x00200000

Certain bit flags (0x3FC0C000) are not defined by Microsoft, and their use is not
coordinated by Microsoft. Developers of applications that use these bits should be

aware that other applications may also use them, thus creating a conflict. There are 10
of these bit flags:

Value Value
0x00004000 0x02000000
0x00008000 0x04000000
0x00400000 0x08000000
0x00800000 0x10000000
0x01000000 0x20000000

bSetBitsOn
A BOOLEAN that specifies whether the function is to set or clear the bit flags that are set in
dwServiceBit. The value TRUE specifies that the bits are to be set; FALSE specifies clearing.

bUpdateImmediately
A BOOLEAN that specifies whether the Server service is to perform an immediate update,
announcing the new service type. The value TRUE specifies an immediate update; FALSE
specifies otherwise.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoNetServerGetInfo, NetServerEnum, RegisterServiceCtrlHandler, SetServiceStatus

SetServiceObjectSecurity
The SetServiceObjectSecurity function sets the security descriptor of a service object.

BOOL SetServiceObjectSecurity(
SC_HANDLE hService, // handle of service
SECURITY_INFORMATION dwSecurityInformation, // type of security information requested
PSECURITY_DESCRIPTOR lpSecurityDescriptor // address of security descriptor

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function.
The access required for this handle depends on the security information specified in the
dwSecurityInformation parameter.

dwSecurityInformation
Specifies the security information to be set. Any or all of the following flags can be specified:

Value Meaning
OWNER_SECURITY_INFORMATION Sets the object's owner

security identifier (SID). The
hService handle must have
WRITE_OWNER access, or
the calling process must be
the object's owner.

GROUP_SECURITY_INFORMATION Sets the object's primary
group SID. The hService
handle must have
WRITE_OWNER access, or
the calling process must be
the object's owner.

DACL_SECURITY_INFORMATION Sets the object's discretionary
access control list (ACL). The
hService handle must have
WRITE_DAC access, or the
calling process must be the
object's owner.

SACL_SECURITY_INFORMATION Sets the object's system ACL.
The calling process must
have the
SE_SECURITY_NAME
privilege. For more
information about security
privileges, see Privileges.

lpSecurityDescriptor
Points to a SECURITY_DESCRIPTOR structure containing the new security information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED
The specified handle was not opened with the required
access, or the calling process is not the owner of the object.

ERROR_INVALID_HANDLE
The specified handle is invalid.

ERROR_INVALID_PARAMETER
The specified security information or security descriptor is
invalid.

ERROR_SERVICE_MARKED_FOR_DELETE
The specified service has been marked for deletion.

RemarksThe SetServiceObjectSecurity function sets the specified portions of the service object's security
descriptor, based on the information specified in the lpSecurityDescriptor buffer. This function
replaces any or all of the security information associated with the service object, according to the
flags set in the dwSecurityInformation parameter and subject to the calling process's access
rights.

The initial security descriptor of a service object is created by the service control manager, based
on the security descriptor of the process that called the CreateService function to create the
service. The security descriptor can be changed by calling the SetServiceObjectSecurity
function.See AlsoCreateService, OpenService, QueryServiceObjectSecurity, SECURITY_DESCRIPTOR

SetServiceStatus
The SetServiceStatus function updates the service control manager's status information for the
calling service.

BOOL SetServiceStatus(
SERVICE_STATUS_HANDLE hServiceStatus~, // service status handle
LPSERVICE_STATUS lpServiceStatus // address of status structure

);ParametershServiceStatus~
Specifies a handle to the service control manager's status information structure for the current
service. This handle is returned by the RegisterServiceCtrlHandler function.

lpServiceStatus
Points to the SERVICE_STATUS structure the contains the latest status information for the
calling service.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_INVALID_HANDLEThe specified handle is invalid.
ERROR_INVALID_DATA The specified service status structure is

invalid.
RemarksA Win32 service's ServiceMain function first calls the RegisterServiceCtrlHandler function to

get the service's SERVICE_STATUS_HANDLE. Then it immediately calls the SetServiceStatus
function to notify the service control manager of its SERVICE_START_PENDING status.

When a Win32 service receives a control request, the service's Handler function must call this
function, even if the service's status did not change. A service can also use this function at any
time and by any thread of the service to notify the service control manager of status changes.
Examples of such unsolicited status updates include:

· Checkpoint updates that occur when the service is in transition from one state to another
(that is, SERVICE_START_PENDING).

· An update made necessary by the expected occurrence of a fatal error that causes the
service to stop.

A service can call this function only after it has called RegisterServiceCtrlHandler to get a
service status handle.See AlsoHandler, RegisterServiceCtrlHandler, SERVICE_STATUS, ServiceMain, SetServiceBits

SetStdHandle
The SetStdHandle function is used to set the handle for the standard input, standard output, or
standard error device. The specified handle can be used by subsequent calls to the
GetStdHandle function to refer to the input, output, or error device.

BOOL SetStdHandle(
DWORD nStdHandle, // input, output, or error device
HANDLE hHandle // handle to be a standard handle

);ParametersnStdHandle
Specifies the handle to be set. This parameter can have one of the following values:

Value Meaning
STD_INPUT_HANDLE Standard input handle
STD_OUTPUT_HANDLE Standard output handle
STD_ERROR_HANDLE Standard error handle

hHandle
Supplies the handle to store as standard input, standard output, or standard error.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe standard handles of a process may have been redirected by a call to SetStdHandle, in which
case GetStdHandle will return the redirected handle. If the standard handles have been
redirected, you can specify the CONIN$ value in a call to the CreateFile function to get a handle
of a console's input buffer. Similarly, you can specify the CONOUT$ value to get a handle of the
console's active screen buffer.See AlsoCreateFile, GetStdHandle

SetStretchBltMode
The SetStretchBltMode function sets the bitmap stretching mode in the specified device context.

int SetStretchBltMode(
HDC hdc, // handle of device context
int iStretchMode // bitmap stretching mode

);Parametershdc
Identifies the device context.

iStretchMode
Specifies the stretching mode. It can be one of the following values:

Value Description
BLACKONWHITE Performs a Boolean AND operation using the

color values for the eliminated and existing
pixels. If the bitmap is a monochrome bitmap,
this mode preserves black pixels at the
expense of white pixels.

COLORONCOLOR Deletes the pixels. This mode deletes all
eliminated lines of pixels without trying to
preserve their information.

HALFTONE Maps pixels from the source rectangle into
blocks of pixels in the destination rectangle.
The average color over the destination block
of pixels approximates the color of the source
pixels.
After setting the HALFTONE stretching mode,
an application must call the SetBrushOrgEx
function to set the brush origin. If it fails to do
so, brush misalignment occurs.

STRETCH_ANDSCANS Same as BLACKONWHITE.
STRETCH_DELETESCANS Same as COLORONCOLOR.
STRETCH_HALFTONE Same as HALFTONE.
STRETCH_ORSCANS Same as WHITEONBLACK.
WHITEONBLACK Performs a Boolean OR operation using the

color values for the eliminated and existing
pixels. If the bitmap is a monochrome bitmap,
this mode preserves white pixels at the
expense of black pixels.

Return ValuesIf the function succeeds, the return value is the previous stretching mode.

If the function fails, the return value is zero.RemarksThe stretching mode defines how Windows combines rows or columns of a bitmap with existing
pixels on a display device when an application calls the StretchBlt function.

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK (STRETCH_ORSCANS)
modes are typically used to preserve foreground pixels in monochrome bitmaps. The
COLORONCOLOR (STRETCH_DELETESCANS) mode is typically used to preserve color in color
bitmaps.

The HALFTONE mode requires more processing of the source image than the other three modes;
it is slower than the others but produces higher quality images. Also note that SetBrushOrgEx
must be called after setting the HALFTONE mode to avoid brush misalignment.

Additional stretching modes might also be available depending on the capabilities of the device
driver.See AlsoGetStretchBltMode, SetBrushOrgEx, StretchBlt

SetSwapAreaSize
The SetSwapAreaSize function is obsolete. This function is provided only for compatibility with
16-bit versions of Windows. It has no meaning in the 32-bit environment.

SetSysColors
The SetSysColors function sets the colors for one or more display elements. Display elements
are the various parts of a window and the Windows display that appear on the system display
screen.

BOOL WINAPI SetSysColors(
int cElements, // number of elements to change
CONST INT *lpaElements, // address of array of elements
CONST COLORREF *lpaRgbValues // address of array of RGB values

);ParameterscElements
Specifies the number of display elements in the array pointed to by the lpaElements
parameter.

lpaElements
Points to an array of integers that specify the display elements to be changed. For a list of
display elements, see the GetSysColor function.

lpaRgbValues
Points to an array of unsigned long integers that contains the new red, green, blue (RGB)
color value for each display element in the array pointed to by the lpaElements parameter.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetSysColors function sends a WM_SYSCOLORCHANGE message to all windows to
inform them of the change in color. It also directs Windows to repaint the affected portions of all
currently visible windows.

The SetSysColors function changes the current Windows session only. The new colors are not
saved when Windows terminates.See AlsoGetSysColor

SetSysModalWindow
The SetSysModalWindow function is obsolete. This function is provided only for compatibility
with 16-bit versions of Windows. The new input model does not allow for System Modal windows.

SetSystemCursor
The SetSystemCursor function replaces the contents of the system cursor specified by id with
the contents of the cursor specified by hcur, and then destroys hcur. This function lets an
application customize the system cursors.

BOOL SetSystemCursor (
HCURSOR hcur, // set specified system cursor to this cursor's contents,

// then destroy this
DWORD id // system cursor specified by its identifier

);Parametershcur
Handle to a cursor. The function replaces the contents of the system cursor specified by id
with the contents of the cursor handled by hcur. Then the function destroys hcur by calling
DestroyCursor(hCursor).

id
A system cursor identifier. The function replaces the contents of this system cursor with the
contents of the cursor handled by hcur.
Following is a list of system cursor identifiers:

Value Description
OCR_NORMAL normal arrow cursor
OCR_IBEAM I-beam cursor
OCR_WAIT larger hourglass cursor
OCR_CROSS crosshair cursor
OCR_UP up arrow cursor
OCR_SIZE size cursor
OCR_ICON icon cursor
OCR_SIZENWSE NW to SE sizing cursor
OCR_SIZENESW NE to SW sizing cursor
OCR_SIZEWE horizontal sizing cursor
OCR_SIZENS vertical sizing cursor
OCR_SIZEALL horizontal and vertical sizing cursor
OCR_SIZENO international no symbol cursor
OCR_APPSTARTING smaller hourglass with arrow cursor

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoDestroyCursor, LoadCursor, LoadCursorFromFile, SetCursor

SetSystemPaletteUse
The SetSystemPaletteUse function allows an application to specify whether the system palette
contains 2 or 20 static colors. The default system palette contains 20 static colors. (Static colors
cannot be changed when an application realizes a logical palette.)

UINT SetSystemPaletteUse(
HDC hdc, // handle of device context
UINT uUsage // palette-usage flag

);Parametershdc
Identifies the device context. This device context must refer to a device that supports color
palettes.

uUsage
Specifies the new use of the system palette. This parameter can be one of the following
values:

Value Meaning
SYSPAL_NOSTATIC The system palette contains two static colors

(black and white).
SYSPAL_STATIC The system palette contains static colors that

will not change when an application realizes
its logical palette.

Return ValuesIf the function succeeds, the return value is the previous usage of the system palette (it can be
either SYSPAL_NOSTATIC or SYSPAL_STATIC).

If the function fails, the return value is SYSPAL_ERROR. To get extended error information, call
GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

When an application window moves to the foreground and the SYSPAL_NOSTATIC value is set,
the application must call the GetSysColor function to save the current system colors setting. It
must also call SetSysColors to set reasonable values using only black and white. When the
application returns to the background or terminates, the previous system colors must be restored.

If the function returns SYSPAL_ERROR, the specified device context is invalid or does not
support color palettes.

An application must call this function only when its window is maximized and has the input focus.

If an application calls SetSystemPaletteUse with uUsage set to SYSPAL_NOSTATIC, Windows
continues to set aside two entries in the system palette for pure white and pure black,
respectively.

After calling this function with uUsage set to SYSPAL_NOSTATIC, an application must take the
following steps:

1. Realize the logical palette.
2. Call the GetSysColor function to save the current system-color settings.
3. Call the SetSysColors function to set the system colors to reasonable values using black

and white. For example, adjacent or overlapping items (such as window frames and borders)
should be set to black and white, respectively.

4. Send the WM_SYSCOLORCHANGE message to other top-level windows to allow them
to be redrawn with the new system colors.

When the application's window loses focus or closes, the application must perform the following
steps:

1. Call SetSystemPaletteUse with the uUsage parameter set to SYSPAL_STATIC.
2. Realize the logical palette.
3. Restore the system colors to their previous values.
4. Send the WM_SYSCOLORCHANGE message.
See AlsoGetDeviceCaps, GetSysColor, SetSysColors, GetSystemPaletteUse

SetSystemPowerState
The SetSystemPowerState function suspends the system by shutting power down. Depending
on the ForceFlag parameter, the function either suspends operation immediately or requests
permission from all applications and device drivers before doing so.

BOOL SetSystemPowerState(
BOOL fSuspend,
BOOL fForce

);ParametersfSuspend
Suspension technique. If TRUE, the system suspends using RAM-alive technique. Otherwise,
suspends using hibernate technique.

fForce
Forced suspension. If TRUE, the function sends a PBT_APMSUSPEND message to each
application and driver, then immediately suspends operation. If FALSE, the function sends a
PBT_APMQUERYSUSPEND message to each application to request permission to suspend
operation.

Return ValuesIf power has been suspended and subsequently restored, the return value is nonzero.

If the system was not suspended, the return value is zero. To get extended error information, call
GetLastError.RemarksIf any application or driver denies permission to suspend operation, the function sends a
PBT_APMQUERYSUSPENDFAILED message to each application and driver. If power is
suspended, this function returns only after system operation is resumed and related
WM_POWERBROADCAST messages have been sent to all applications and drivers.See AlsoPBT_APMQUERYSUSPEND, PBT_APMQUERYSUSPENDFAILED, PBT_APMSUSPEND,
WM_POWERBROADCAST

SetSystemTime
The SetSystemTime function sets the current system time and date. The system time is
expressed in Coordinated Universal Time (UTC).

BOOL SetSystemTime(
CONST SYSTEMTIME *lpSystemTime // address of system time to set

);ParameterslpSystemTime
Points to a SYSTEMTIME structure that contains the current system date and time.
The wDayOfWeek member of the SYSTEMTIME structure is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows NT: The SetSystemTime function fails if the calling process does not have the
SE_SYSTEMTIME_NAME privilege. This privilege is disabled by default. Use the
AdjustTokenPrivileges function to enable this privilege and again to disable it after the time has
been set. For more information about security privileges, see Privileges.

Windows 95: Security privileges are not supported or required.See AlsoAdjustTokenPrivileges, GetSystemTime, SetSystemTimeAdjustment, SYSTEMTIME,
SystemTimeToTzSpecificLocalTime

SetSystemTimeAdjustment
The SetSystemTimeAdjustment function tells the system to enable or disable periodic time
adjustments to its time of day clock. Such time adjustments are used to synchronize the time of
day with some other source of time information. When periodic time adjustments are enabled,
they are applied at each clock interrupt.

BOOL SetSystemTimeAdjustment(
DWORD dwTimeAdjustment, // size, in 100-nanosecond units, of a periodic time adjustment
BOOL bTimeAdjustmentDisabled // whether periodic time adjustment is to be disabled or enabled

);ParametersdwTimeAdjustment
Specifies the number of 100-nanosecond units added to the time-of-day clock at each clock
interrupt if periodic time adjustment is enabled.

bTimeAdjustmentDisabled
Specifies the time adjustment mode that the system is to use. Periodic system time
adjustments can be disabled or enabled.
A value of TRUE specifies that periodic time adjustment is to be disabled. The system is free
to adjust time of day using its own internal mechanisms. The value of dwTimeAdjustment is
ignored. The system's internal adjustment mechanisms may cause the time-of-day clock to
jump noticeably when adjustments are made.
A value of FALSE specifies that periodic time adjustment is to be enabled, and will be used to
adjust the time-of-day clock. The system will not interfere with the time adjustment scheme,
and will not attempt to synchronize time of day on its own. The system will add the value of
dwTimeAdjustment to the time of day at each clock interrupt.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
One way the function can fail is if the caller does not possess the SE_SYSTEMTIME_NAME
privilege.RemarksThe GetSystemTimeAdjustment and SetSystemTimeAdjustment functions support algorithms
that synchronize the time-of-day clock, reported via GetSystemTime and GetLocalTime, with
another time source using a periodic time adjustment.

The SetSystemTimeAdjustment function supports two modes of time synchronization: time-
adjustment - disabled and time-adjustment - enabled.

In the first mode, bTimeAdjustmentDisabled is set to FALSE. At each clock interrupt, the system
adds the value of dwTimeAdjustment to the time of day. The clock interrupt rate may be
determined by calling GetSystemTimeAdjustment, and looking at the returned value of the
DWORD value pointed to by lpTimeIncrement.

In the second mode, bTimeAdjustmentDisabled is set to TRUE. At each clock interrupt, the
system adds the interval between clock interrupts to the time of day. No adjustment to that interval
is made. The system is free to periodically refresh the time-of-day clock using other techniques.
Such other techniques may cause the time-of-day clock to jump noticeably when adjustments are
made.

An application must have system-time privilege (the SE_SYSTEMTIME_NAME privilege) for this
function to succeed. The SE_SYSTEMTIME_NAME privilege is disabled by default. Use the
AdjustTokenPrivileges function to enable the privilege before calling
SetSystemTimeAdjustment, and then to disable the privilege after the
SetSystemTimeAdjustment call.See AlsoAdjustTokenPrivileges, GetSystemTimeAdjustment, SetLocalTime, SetSystemTime,
SystemTimeToTzSpecificLocalTime

SetTapeParameters
The SetTapeParameters function either specifies the block size of a tape or configures the tape
device.

DWORD SetTapeParameters(
HANDLE hDevice, // handle of open device
DWORD dwOperation, // type of information to set
LPVOID lpTapeInformation // address of buffer with information to set

);ParametershDevice
Identifies the device for which to set configuration information. This handle is created by using
the CreateFile function.

dwOperation
Specifies the type of information to set. This parameter must be one of the following values:

Value Description
SET_TAPE_MEDIA_INFORMATION Sets the tape-specific

information specified by the
lpTapeInformation parameter.

GET_TAPE_DRIVE_INFORMATION Sets the device-specific
information specified by
lpTapeInformation.

lpTapeInformation
Points to a structure that contains the information to set. If the dwOperation parameter is
SET_TAPE_MEDIA_INFORMATION, lpTapeInformation points to a
TAPE_SET_MEDIA_PARAMETERS structure.
If dwOperation is SET_TAPE_DRIVE_INFORMATION, lpTapeInformation points to a
TAPE_SET_DRIVE_PARAMETERS structure.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
See AlsoGetTapeParameters, TAPE_SET_DRIVE_PARAMETERS, TAPE_SET_MEDIA_PARAMETERS

SetTapePosition
The SetTapePosition sets the tape position on the specified device.

DWORD SetTapePosition(
HANDLE hDevice, // handle of open device
DWORD dwPositionMethod, // type of positioning to perform
DWORD dwPartition, // new tape partition
DWORD dwOffsetLow, // low-order 32 bits of tape position
DWORD dwOffsetHigh, // high-order 32 bits of tape position
BOOL bImmediate // return after operation begins

);ParametershDevice
Identifies the device on which to set the tape position. This handle is created by using the
CreateFile function.

dwPositionMethod
Specifies the type of positioning to perform. This parameter must be one of the following
values:

Value Meaning
TAPE_ABSOLUTE_BLOCK Moves the tape to the device-

specific block address specified
by the dwOffsetLow and
dwOffsetHigh parameters. The
dwPartition parameter is
ignored.

TAPE_LOGICAL_BLOCK Moves the tape to the block
address specified by
dwOffsetLow and dwOffsetHigh
in the partition specified by
dwPartition.

TAPE_REWIND Moves the tape to the
beginning of the current
partition. The dwPartition,
dwOffsetLow, and
dwOffsetHigh parameters are
ignored.

TAPE_SPACE_END_OF_DATA Moves the tape to the end of
the data on the partition
specified by dwPartition.

TAPE_SPACE_FILEMARKS Moves the tape forward (or
backward) the number of
filemarks specified by
dwOffsetLow and dwOffsetHigh
in the current partition. The
dwPartition parameter is
ignored.

TAPE_SPACE_RELATIVE_BLOCKS Moves the tape forward (or
backward) the number of blocks
specified by dwOffsetLow and
dwOffsetHigh in the current
partition. The dwPartition
parameter is ignored.

TAPE_SPACE_SEQUENTIAL_FMKSMoves the tape forward (or
backward) to the first
occurrence of n filemarks in the
current partition, where n is the
number specified by
dwOffsetLow and
dwOffsetHigh. The dwPartition
parameter is ignored.

TAPE_SPACE_SEQUENTIAL_SMKSMoves the tape forward (or

backward) to the first
occurrence of n setmarks in the
current partition, where n is the
number specified by
dwOffsetLow and
dwOffsetHigh. The dwPartition
parameter is ignored.

TAPE_SPACE_SETMARKS Moves the tape forward (or
backward) the number of
setmarks specified by
dwOffsetLow and
dwOffsetHigh in the current
partition. The dwPartition
parameter is ignored.

dwPartition
Specifies the partition to position within. If dwPartition is zero, the current partition is used.
Partitions are numbered logically from 1 through n, where 1 is the first partition on the tape
and n is the last.

dwOffsetLow
Specifies the low-order 32 bits of the block address or count for the position operation
specified by the dwPositionMethod parameter.

dwOffsetHigh
Specifies the high-order 32 bits of the block address or count for the position operation
specified by the dwPositionMethod parameter. If the high-order 32 bits are not required, this
parameter should be zero.

bImmediate
Indicates whether to return as soon as the move operation begins. If this parameter is TRUE,
the function returns immediately; if FALSE, the function does not return until the move
operation has been completed.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive
has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksIf the offset specified by dwOffsetLow and dwOffsetHigh specifies the number of blocks, filemarks,

or setmarks to move, a positive offset moves the tape forward to the end of the last block,
filemark, or setmark. A negative offset moves the tape backward to the beginning of the last block,
filemark, or setmark. If the offset is zero, the tape does not move.

To obtain information about the status, capabilities, and capacities of tape drives and media, call
the GetTapeParameters function.See AlsoCreateFile, GetTapeParameters, GetTapePosition

SetTextAlign
The SetTextAlign function sets the text-alignment flags for the specified device context.

UINT SetTextAlign(
HDC hdc, // handle of device context
UINT fMode // text-alignment flag

);Parametershdc
Identifies the device context.

fMode
Specifies the text alignment by using a mask of the values in the following list. Only one flag
can be chosen from those that affect horizontal and vertical alignment. In addition, only one of
the two flags that alter the current position can be chosen.

Value Meaning
TA_BASELINE The reference point will be on the base line of

the text.
TA_BOTTOM The reference point will be on the bottom

edge of the bounding rectangle.
TA_TOP The reference point will be on the top edge of

the bounding rectangle.
TA_CENTER The reference point will be aligned

horizontally with the center of the bounding
rectangle.

TA_LEFT The reference point will be on the left edge of
the bounding rectangle.

TA_RIGHT The reference point will be on the right edge
of the bounding rectangle.

TA_NOUPDATECP The current position is not updated after each
text output call. The reference point is passed
to the text output function.

TA_RTLREADING Windows 95 only: The text is laid out in right
to left reading order, as opposed to the default
left to right order. This applies only when the
font selected into the device context is either
Hebrew or Arabic.

TA_UPDATECP The current position is updated after each text
output call. The current position is used as the
reference point.

When the current font has a vertical default base line, as with Kanji, the following
values must be used instead of TA_BASELINE and TA_CENTER:

Value Meaning
VTA_BASELINE The reference point will be on the base line of

the text.
VTA_CENTER The reference point will be aligned vertically with

the center of the bounding rectangle.

The default values are TA_LEFT, TA_TOP, and TA_NOUPDATECP.
Return ValuesIf the function succeeds, the return value is the previous text-alignment setting.

If the function fails, the return value is GDI_ERROR. To get extended error information, call
GetLastError.RemarksThe TextOut and ExtTextOut functions use the text-alignment flags to position a string of text on
a display or other device. The flags specify the relationship between a reference point and a
rectangle that bounds the text. The reference point is either the current position or a point passed
to a text output function.

The rectangle that bounds the text is formed by the character cells in the text string.See AlsoExtTextOut, GetTextAlign, TextOut

SetTextCharacterExtra
The SetTextCharacterExtra function sets the intercharacter spacing. Intercharacter spacing is
added to each character, including break characters, when Windows writes a line of text.

int SetTextCharacterExtra(
HDC hdc, // handle of device context
int nCharExtra // extra-space value

);Parametershdc
Identifies the device context.

nCharExtra
Specifies the amount of extra space, in logical units, to be added to each character. If the
current mapping mode is not MM_TEXT, the nCharExtra parameter is transformed and
rounded to the nearest pixel.

Return ValuesIf the function succeeds, the return value is the previous intercharacter spacing.

If the function fails, the return value is 0x80000000.See AlsoDrawText, GetTextCharacterExtra, TextOut

SetTextColor
The SetTextColor function sets the text color for the specified device context to the specified
color.

COLORREF SetTextColor(
HDC hdc, // handle of device context
COLORREF crColor // text color

);Parametershdc
Identifies the device context.

crColor
Specifies the color of the text.

Return ValuesIf the function succeeds, the return value is a color reference for the previous text color.

If the function fails, the return value is CLR_INVALID. To get extended error information, call
GetLastError.RemarksThe text color is used to draw the face of each character written by the TextOut and ExtTextOut
functions. The text color is also used in converting bitmaps from color to monochrome and vice
versa.See AlsoBitBlt, ExtTextOut, GetTextColor, RGB, SetBkColor, StretchBlt, TextOut

SetTextJustification
The SetTextJustification function specifies the amount of space Windows should add to the
break characters in a string of text. The space is added when an application calls the TextOut or
ExtTextOut functions.

BOOL SetTextJustification(
HDC hdc, // handle of device context
int nBreakExtra, // length of extra space, in logical units
int nBreakCount // count of space characters in line of text

);Parametershdc
Identifies the device context.

nBreakExtra
Specifies the total extra space, in logical units, to be added to the line of text. If the current
mapping mode is not MM_TEXT, the value identified by the nBreakExtra parameter is
transformed and rounded to the nearest pixel.

nBreakCount
Specifies the number of break characters in the line.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe break character is usually the space character (ASCII 32), but it may be defined by a font as
some other character. The GetTextMetrics function can be used to retrieve a font's break
character.

The TextOut function distributes the specified extra space evenly among the break characters in
the line.

The GetTextExtentPoint32 function is always used with the SetTextJustification function. The
GetTextExtentPoint32 function computes the width of a given line before justification. This width
must be known before an appropriate nBreakExtra value can be computed.

SetTextJustification can be used to justify a line that contains multiple strings in different fonts.
In this case, each string must be justified separately.

Because rounding errors can occur during justification, Windows keeps a running error term that
defines the current error value. When justifying a line that contains multiple runs,
GetTextExtentPoint automatically uses this error term when it computes the extent of the next
run, allowing TextOut to blend the error into the new run. After each line has been justified, this
error term must be cleared to prevent it from being incorporated into the next line. The term can
be cleared by calling SetTextJustification with nBreakExtra set to zero.See AlsoExtTextOut, GetTextExtentPoint32, GetTextMetrics, TextOut

SetThreadAffinityMask
The SetThreadAffinityMask function sets a processor affinity mask for a specified thread.

A thread affinity mask is a bit vector in which each bit represents the processors that a thread is
allowed to run on.

A thread affinity mask must be a proper subset of the process affinity mask for the containing
process of a thread. A thread is only allowed to run on the processors its process is allowed to run
on.

DWORD SetThreadAffinityMask (
HANDLE hThread, // handle to the thread of interest
DWORD dwThreadAffinityMask // a thread affinity mask

);ParametershThread
A handle to the thread whose affinity mask the function sets.
Windows NT: This handle must have the THREAD_SET_INFORMATION access right
associated with it. For more information, see Thread Objects.

dwThreadAffinityMask
Windows 95: This value must be 1.
Windows NT: Specifies an affinity mask for the thread.

Return ValuesIf the function succeeds, the return value is nonzero.

Windows 95: The return value is 1. To succeed, hThread must be valid and
dwThreadAffinityMask must be 1.

Windows NT: The return value is the thread's previous affinity mask.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetProcessAffinityMask, SetThreadIdealProcessor

SetThreadContext
The SetThreadContext function sets the context in the specified thread.

BOOL SetThreadContext(
HANDLE hThread, // handle of thread with context
CONST CONTEXT *lpContext // address of context structure

);ParametershThread
Identifies an open handle of a thread whose context is to be written to.
Windows NT: The handle must have the THREAD_SET_CONTEXT access right to the
thread. For more information, see Thread Objects.

lpContext
Points to the address of a CONTEXT structure that contains the context to be set in the
specified thread. The value of the ContextFlags member of this structure specifies which
portions of a thread's context to set. Some values in the CONTEXT structure that cannot be
specified are silently set to the correct value. This includes bits in the CPU status register that
specify the privileged processor mode, global enabling bits in the debugging register, and
other states that must be controlled by the operating system.

Return ValuesIf the context was set, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe function allows the selective context to be set based on the value of the ContextFlags
member of the context structure. The thread handle identified by the hThread parameter is
typically being debugged, but the function can also operate even when it is not being debugged.

Do not try to set the context for a running thread; the results are unpredictable. Use the
SuspendThread function to suspend the thread before calling SetThreadContext.See AlsoCONTEXT, GetThreadContext, SuspendThread

SetThreadDesktop
The SetThreadDesktop function assigns a desktop to the calling thread. All subsequent
operations on the desktop use the access rights granted to hDesktop.

BOOL SetThreadDesktop(
HDESK hDesktop // handle of the desktop to assign to this thread

);ParametershDesktop
Identifies the desktop to be assigned to the calling thread. This handle is returned by the
CreateDesktop, GetThreadDesktop, and OpenDesktop functions.
This function will fail if the calling thread has any windows or hooks on its current desktop
(unless hDesktop is a handle to the current desktop).

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateDesktop, GetThreadDesktop, OpenDesktop, SetProcessWindowStation

SetThreadIdealProcessor
[New - Windows NT]

The SetThreadIdealProcessor function is used to specify a preferred processor for a thread. The
system schedules threads on their preferred processors whenever possible.

DWORD SetThreadIdealProcessor(
HANDLE hThread, // handle to the thread
DWORD dwIdealProcessor // ideal processor number

);ParametershThread
Handle to the thread whose preferred processor is to be set. The handle must have the
THREAD_SET_INFORMATION access right associated with it. For more information, see
Thread Objects.

dwIdealProcessor
Specifies the number of the preferred processor for the thread. A value of
MAXIMUM_PROCESSORS tells the system that the thread has no preferred processor.

Return ValuesIf the function succeeds, the return value is the previous preferred processor or
MAXIMUM_PROCESSORS if the thread does not have a preferred processor.

If the function fails, the return value is - 1. To get extended error information, call GetLastError.RemarksYou can use the GetSystemInfo function to determine the number of processors on the
computer. You can also use the GetProcessAffinityMask function to check the processors on
which the thread is allowed to run. Note that GetProcessAffinityMask returns a bit mask
whereas SetThreadIdealProcessor uses an integer value to represent the processor.See AlsoGetProcessAffinityMask, GetSystemInfo, SetThreadAffinityMask

SetThreadLocale
The SetThreadLocale function sets the calling thread's current locale.

BOOL SetThreadLocale (
LCID Locale // locale identifier

);ParametersLocale
Specifies the new locale for the calling thread. This parameter can be a locale identifier
created by the MAKELCID macro, or one of the following predefined values:

LOCALE_SYSTEM_DEFAULT Default system locale.
LOCALE_USER_DEFAULT Default user locale.

For more information, see Locale Identifiers.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen a thread is created, it is given the system default thread locale. The system reads the
system default thread locale from the registry when the system boots. This system default can be
modified for future process and thread creation using Control Panel's International application.See AlsoGetThreadLocale, GetSystemDefaultLCID, GetUserDefaultLCID

SetThreadPriority
The SetThreadPriority function sets the priority value for the specified thread. This value,
together with the priority class of the thread's process, determines the thread's base priority level.

BOOL SetThreadPriority(
HANDLE hThread, // handle to the thread
int nPriority // thread priority level

);ParametershThread
Identifies the thread whose priority value is to be set.
Windows NT: The handle must have the THREAD_SET_INFORMATION access right
associated with it. For more information, see Thread Objects.

nPriority
Specifies the priority value for the thread. This parameter can be one of the following values:

Priority Meaning
THREAD_PRIORITY_ABOVE_NORMALIndicates 1 point above

normal priority for the priority
class.

THREAD_PRIORITY_BELOW_NORMALIndicates 1 point below
normal priority for the priority
class.

THREAD_PRIORITY_HIGHEST Indicates 2 points above
normal priority for the priority
class.

THREAD_PRIORITY_IDLE Indicates a base priority level
of 1 for
IDLE_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS
processes, and a base
priority level of 16 for
REALTIME_PRIORITY_CLASS
processes.

THREAD_PRIORITY_LOWEST Indicates 2 points below
normal priority for the priority
class.

THREAD_PRIORITY_NORMAL Indicates normal priority for
the priority class.

THREAD_PRIORITY_TIME_CRITICAL Indicates a base priority level
of 15 for
IDLE_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
or HIGH_PRIORITY_CLASS
processes, and a base
priority level of 31 for
REALTIME_PRIORITY_CLASS
processes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEvery thread has a base priority level determined by the thread's priority value and the priority
class of its process. The system uses the base priority level of all executable threads to determine
which thread gets the next slice of CPU time. Threads are scheduled in a round-robin fashion at
each priority level, and only when there are no executable threads at a higher level does
scheduling of threads at a lower level take place.

The SetThreadPriority function enables setting the base priority level of a thread relative to the
priority class of its process. For example, specifying THREAD_PRIORITY_HIGHEST in a call to
SetThreadPriority for a thread of an IDLE_PRIORITY_CLASS process sets the thread's base

priority level to 6. For a table that shows the base priority levels for each combination of priority
class and thread priority value, see the SetPriorityClass function.

For IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, and HIGH_PRIORITY_CLASS
processes, the system dynamically boosts a thread's base priority level when events occur that
are important to the thread. REALTIME_PRIORITY_CLASS processes do not receive dynamic
boosts.

All threads initially start at THREAD_PRIORITY_NORMAL. Use the GetPriorityClass and
SetPriorityClass functions to get and set the priority class of a process. Use the
GetThreadPriority function to get the priority value of a thread.

Use the priority class of a process to differentiate between applications that are time critical and
those that have normal or below normal scheduling requirements. Use thread priority values to
differentiate the relative priorities of the tasks of a process. For example, a thread that handles
input for a window could have a higher priority level than a thread that performs intensive
calculations for the CPU.

When manipulating priorities, be very careful to ensure that a high-priority thread does not
consume all of the available CPU time. A thread with a base priority level above 11 interferes with
the normal operation of the operating system. Using REALTIME_PRIORITY_CLASS may cause
disk caches to not flush, hang the mouse, and so on.See AlsoGetPriorityClass, GetThreadPriority, SetPriorityClass

SetThreadPriorityBoost
[New - Windows NT]

The SetThreadPriorityBoost function disables the ability of Windows NT to temporarily boost the
priority of a thread.

BOOL SetThreadPriorityBoost(
HANDLE hThread, // handle to thread
BOOL DisablePriorityBoost // priority boost control state

);ParametershThread
Handle to the thread whose priority is to be boosted. This thread must have the
THREAD_SET_INFORMATION access right associated with it. For more information, see
Thread Objects.

DisablePriorityBoost
A Boolean variable that is used to set the priority boost control state. A value of TRUE
indicates that dynamic boosting is to be disabled. A value of FALSE restores normal behavior.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen a thread is running in one of the dynamic priority classes, Windows NT temporarily boosts
the thread's priority when it is taken out of a wait state. If SetThreadPriorityBoost is called with
the DisablePriorityBoost parameter set to TRUE, the thread's priority is not boosted. To restore
normal behavior, call SetThreadPriorityBoost with DisablePriorityBoost set to FALSE.See AlsoGetThreadPriorityBoost

SetThreadToken
The SetThreadToken function assigns an impersonation token to a thread. The function can also
cause a thread to stop using an impersonation token.

BOOL SetThreadToken(
PHANDLE Thread, // points to a handle to the thread
HANDLE Token // handle to the impersonation token

);ParametersThread
Points to a handle to the thread to which the function assigns the impersonation token.
If Thread is NULL, the function assigns the impersonation token to the calling thread.

Token
An open handle to the impersonation token to assign to the thread. This handle must have
been opened with TOKEN_IMPERSONATE access rights. For more information, see Access-
Token Objects.
If Token is NULL, the function causes the thread to stop using an impersonation token.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoOpenThreadToken

SetTimer
The SetTimer function creates a timer with the specified time-out value.

UINT SetTimer(
HWND hWnd, // handle of window for timer messages
UINT nIDEvent, // timer identifier
UINT uElapse, // time-out value
TIMERPROC lpTimerFunc // address of timer procedure

);ParametershWnd
Identifies the window to be associated with the timer. This window must be owned by the
calling thread. If this parameter is NULL, no window is associated with the timer and the
nIDEvent parameter is ignored.

nIDEvent
Specifies a nonzero timer identifier. If the hWnd parameter is NULL, this parameter is ignored.

uElapse
Specifies the time-out value, in milliseconds.

lpTimerFunc
Points to the function to be notified when the time-out value elapses. For more information
about the function, see TimerProc.
If lpTimerFunc is NULL, the system posts a WM_TIMER message to the application queue.
The hwnd member of the message's MSG structure contains the value of the hWnd
parameter.

Return ValuesIf the function succeeds, the return value is an integer identifying the new timer. An application
can pass this value, or the string identifier, if it exists, to the KillTimer function to destroy the
timer. If the function fails to create a timer, the return value is zero.RemarksAn application can process WM_TIMER messages by including a WM_TIMER case statement in
the window procedure or by specifying a TimerProc callback function when creating the timer.
When you specify a TimerProc callback function, the DispatchMessage function simply calls the
callback function instead of the window procedure. Therefore, you need to dispatch messages in
the calling thread, even when you use TimerProc instead of processing WM_TIMER.

The wParam parameter of the WM_TIMER message contains the value of the nIDEvent
parameter.See AlsoDispatchMessage, KillTimer, MSG, TimerProc, WM_TIMER

SetTimeZoneInformation
The SetTimeZoneInformation function sets the current time-zone parameters. These parameters
control translations from Coordinated Universal Time (UTC) to local time.

BOOL SetTimeZoneInformation(
CONST TIME_ZONE_INFORMATION *lpTimeZoneInformation // address of time-zone settings

);ParameterslpTimeZoneInformation
Points to a TIME_ZONE_INFORMATION structure that contains the time-zone parameters to
set.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll translations between UTC and local time are based on the following formula:UTC = local time + biasThe bias is the difference, in minutes, between UTC and local time.See AlsoGetTimeZoneInformation, TIME_ZONE_INFORMATION

SetTokenInformation
The SetTokenInformation function sets various types of information for a specified access token.
The information it sets replaces existing information. The calling process must have appropriate
access rights to set the information.

BOOL SetTokenInformation(
HANDLE TokenHandle, // handle of access token
TOKEN_INFORMATION_CLASS TokenInformationClass, // type of information to set
LPVOID TokenInformation, // address of information to set
DWORD TokenInformationLength // size of information buffer

);ParametersTokenHandle
Identifies the access token for which information is to be set.

TokenInformationClass
Specifies a variable of the TOKEN_INFORMATION_CLASS enumerated type identifying the
type of information the function sets. The valid values from TOKEN_INFORMATION_CLASS
are TokenOwner, TokenPrimaryGroup, and TokenDefaultDacl. For more information about
these values, see the description of the TokenInformation parameter, following.

TokenInformation
Points to a buffer containing the information set in the access token. The structure of this
buffer depends on the type of information specified by the TokenInformationClass parameter.
The following three values are valid in calls to this function:

Token Information Class Structure Provided
TokenOwner TOKEN_OWNER structure. The

TOKEN_ADJUST_DEFAULT access right
is needed to set owner information. A
valid owner value is a user or group
identifier with an attribute allowing
assignment as the owner of objects.

TokenPrimaryGroup TOKEN_PRIMARY_GROUP structure.
The TOKEN_ADJUST_DEFAULT access
right is needed to set primary group
information.

TokenDefaultDacl TOKEN_DEFAULT_DACL structure. The
TOKEN_ADJUST_DEFAULT access right
is needed to set information in the default
discretionary access-control list (ACL).
The ACL structure provided as a new
default discretionary ACL is not validated
for correctness or consistency. If the
TokenInformation parameter is NULL, the
current default discretionary ACL is
removed and no replacement is
established.

The formats for the structures this function can set are listed in the following Remarks
section.

TokenInformationLength
Specifies the length, in bytes, of the buffer pointed to by TokenInformation.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTo set privilege information, an application can call the AdjustTokenPrivileges function. To set a
token's groups, an application can call the AdjustTokenGroups function.

Token-type information can be set only when an access token is created.See AlsoAdjustTokenGroups, AdjustTokenPrivileges, GetTokenInformation, OpenProcessToken,
OpenThreadToken, TOKEN_DEFAULT_DACL, TOKEN_INFORMATION_CLASS,
TOKEN_OWNER, TOKEN_PRIMARY_GROUP

SetUnhandledExceptionFilter
The SetUnhandledExceptionFilter function lets an application supersede the top-level exception
handler that Win32 places at the top of each thread and process.

After calling this function, if an exception occurs in a process that is not being debugged, and the
exception makes it to the Win32 unhandled exception filter, that filter will call the exception filter
function specified by the lpTopLevelExceptionFilter parameter.

LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter // exception filter function

);ParameterslpTopLevelExceptionFilter
Supplies the address of a top-level exception filter function that will be called whenever the
UnhandledExceptionFilter function gets control, and the process is not being debugged. A
value of NULL for this parameter specifies default handling within
UnhandledExceptionFilter.
The filter function has syntax congruent to that of UnhandledExceptionFilter: It takes a
single parameter of type LPEXCEPTION_POINTERS, and returns a value of type LONG. The
filter function should return one of the following values:

Value Meaning
EXCEPTION_EXECUTE_HANDLER Return from

UnhandledExceptionFilter
and execute the associated
exception handler. This
usually results in process
termination.

EXCEPTION_CONTINUE_EXECUTIONReturn from
UnhandledExceptionFilter
and continue execution from
the point of the exception.
Note that the filter function is
free to modify the continuation
state by modifying the
exception information
supplied through its
LPEXCEPTION_POINTERS
parameter.

EXCEPTION_CONTINUE_SEARCH Proceed with normal
execution of
UnhandledExceptionFilter .
That means obeying the
SetErrorMod flags, or
invoking the Application Error
pop-up message box.

Return ValuesThe SetUnhandledExceptionFilter function returns the address of the previous exception filter
established with the function. A NULL return value means that there is no current top-level
exception handler.RemarksIssuing SetUnhandledExceptionFilter replaces the existing top-level exception filter for all
existing and all future threads in the calling process.

The exception handler specified by lpTopLevelExceptionFilter is executed in the context of the
thread that caused the fault. This can affect the exception handler's ability to recover from certain
exceptions, such as an invalid stack.See AlsoUnhandledExceptionFilter

SetupComm
The SetupComm function initializes the communications parameters for a specified
communications device.

BOOL SetupComm(
HANDLE hFile, // handle of communications device
DWORD dwInQueue, // size of input buffer
DWORD dwOutQueue // size of output buffer

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

dwInQueue
Specifies the recommended size, in bytes, of the device's internal input buffer.

dwOutQueue
Specifies the recommended size, in bytes, of the device's internal output buffer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAfter a process uses the CreateFile function to open a handle to a communications device, it can
call SetupComm to set the communications parameters for the device. If it does not set them, the
device uses the default parameters when the first call to another communications function occurs.

The dwInQueue and dwOutQueue parameters specify the recommended sizes for the internal
buffers used by the driver for the specified device. For example, YMODEM protocol packets are
slightly larger than 1024 bytes. Therefore, a recommended buffer size might be 1200 bytes for
YMODEM communications. For Ethernet-based communications, a recommended buffer size
might be 1600 bytes, which is slightly larger than a single Ethernet frame.

The device driver receives the recommended buffer sizes, but is free to use any input and output
(I/O) buffering scheme, as long as it provides reasonable performance and data is not lost due to
overrun (except under extreme circumstances). For example, the function can succeed even
though the driver does not allocate a buffer, as long as some other portion of the operating system
provides equivalent functionality.

If the device driver determines that the recommended buffer sizes involve transfers beyond its
ability to handle, the function can fail.See AlsoCreateFile, SetCommState

SetupHookProc
A SetupHookProc hook procedure is an application-defined or library-defined callback procedure
that is used with the Print Setup common dialog box. The hook procedure receives messages or
notifications intended for the default dialog box procedure.

UINT APIENTRY SetupHookProc(
HWND hdlg, // handle to the dialog box window
UINT uiMsg, // message identifier
WPARAM wParam, // message parameter
LPARAM lParam // message parameter

);Parametershdlg
Handle to the Print Setup common dialog box window for which the message is intended.

uiMsg
Identifies the message being received.

wParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the uiMsg parameter.

Return ValuesIf the hook procedure returns zero, the default dialog box procedure processes the message.

If the hook procedure returns a nonzero value, the default dialog box procedure ignores the
message.RemarksThe Print Setup dialog box has been superseded by the Page Setup dialog box, which should be
used by new applications written for Windows NT or Windows 95. However, for compatibility with
earlier versions of Windows, the PrintDlg function continues to support display of the Print Setup
dialog box. You can provide a SetupHookProc hook procedure for the Print Setup dialog box to
process messages or notifications intended for the dialog box procedure.

To enable the hook procedure, use the PRINTDLG structure that you passed to the dialog
creation function. Specify the address of the hook procedure in the lpfnSetupHook member and
specify the PD_ENABLESETUPHOOK flag in the Flags member.

The default dialog box procedure processes the WM_INITDIALOG message before passing it to
the hook procedure. For all other messages, the hook procedure receives the message first.
Then, the return value of the hook procedure determines whether the default dialog procedure
processes the message or ignores it.

If the hook procedure processes the WM_CTLCOLORDLG message, it must return a valid brush
handle for painting the background of the dialog box. In general, if the hook procedure processes
any WM_CTLCOLOR* message, it must return a valid brush handle for painting the background
of the specified control.

Do not call the EndDialog function from the hook procedure. Instead, the hook procedure can call
the PostMessage function to post a WM_COMMAND message with the IDABORT value to the
dialog box procedure. Posting IDABORT closes the dialog box and causes the dialog box function
to return FALSE. If you need to know why the hook procedure closed the dialog box, you must
provide your own communication mechanism between the hook procedure and your application.

You can subclass the standard controls of the common dialog box. However, the common dialog
box procedure may also subclass the controls. Because of this, you should subclass controls
when your hook procedure processes the WM_INITDIALOG message. This ensures that your
subclass procedure receives the control-specific messages before the subclass procedure set by
the dialog box procedure.

SetupHookProc is a placeholder for the application-defined or library-defined function name. The
LPSETUPHOOKPROC type is a pointer to a SetupHookProc hook procedure.See AlsoEndDialog, PrintDlg, PRINTDLG, PostMessage, WM_INITDIALOG, WM_CTLCOLORDLG

SetUserObjectInformation
The SetUserObjectInformation function sets information about a window station or desktop
object.

BOOL SetUserObjectInformation(
HANDLE hObj, // handle of the object for which to set information
int nIndex, // type of information to set
PVOID pvInfo, // points to a buffer that contains the information
DWORD nLength // size, in bytes, of pvInfo buffer

);ParametershObj
Identifies the window station or desktop object for which to set object information. This value
can be an HDESK or HWINSTA handle (for example, a handle returned by
CreateWindowStation, OpenWindowStation, CreateDesktop, or OpenDesktop).

nIndex
Specifies the object information to be set. This parameter must specify the following value:

Value Description
UOI_FLAGS Sets the object's handle flags. The pvInfo

parameter must point to a
USEROBJECTFLAGS structure.

pvInfo
Points to a buffer containing the object information.

nLength
Specifies the size, in bytes, of the information contained in the buffer pointed to by pvInfo.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails the return value is zero. To get extended error information, call GetLastError.See AlsoCreateDesktop, CreateWindowStation, GetUserObjectInformation, OpenDesktop,.
OpenWindowStation, USEROBJECTFLAGS

SetUserObjectSecurity
The SetUserObjectSecurity function sets the security of a user object. This can be, for example,
a window or a DDE conversation.

BOOL SetUserObjectSecurity(
HANDLE hObj, // handle of user object
PSECURITY_INFORMATION pSIRequested, // address of security information
PSECURITY_DESCRIPTOR pSID // address of security descriptor

);ParametershObj
Identifies a user object for which security information is set.

pSIRequested
Points to a SECURITY_INFORMATION structure describing the security information being
set.

pSID
Points to a SECURITY_DESCRIPTOR structure containing the new security information.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetUserObjectSecurity function applies changes specified in a security descriptor to the
security descriptor assigned to a user object. The object's security descriptor must be in self-
relative form. If necessary, this function allocates additional memory to increase the size of the
security descriptor.

The SetUserObjectSecurity function is successful only if the following conditions are met:

· If the object's owner is being set, the calling process must either have WRITE_OWNER
permission or be the object's owner.

· If the object's discretionary access-control list (ACL) is being set, the calling process must
either have WRITE_DAC permission or be the object's owner.

· If the object's system ACL is being set, the SE_SECURITY_NAME privilege must be
enabled for the calling process.

See AlsoGetUserObjectSecurity, SECURITY_DESCRIPTOR, SECURITY_INFORMATION,
SetFileSecurity, SetKernelObjectSecurity, SetPrivateObjectSecurity

SetViewportExtEx
The SetViewportExtEx function sets the horizontal and vertical extents of the viewport for a
device context by using the specified values.

BOOL SetViewportExtEx(
HDC hdc, // handle of device context
int nXExtent, // new horizontal viewport extent
int nYExtent, // new vertical viewport extent
LPSIZE lpSize // original viewport extent

);Parametershdc
Identifies the device context.

nXExtent
Specifies the horizontal extent, in device units, of the viewport.

nYExtent
Specifies the vertical extent, in device units, of the viewport.

lpSize
Points to a SIZE structure. The previous viewport extents (in device units) are placed in this
structure. If lpSize is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksWhen the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExtEx functions are ignored.

· MM_HIENGLISH
· MM_HIMETRIC
· MM_LOENGLISH
· MM_LOMETRIC
· MM_TEXT
· MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx function
before it calls SetViewportExtEx.See AlsoGetViewportExtEx, SetWindowExtEx, SIZE

SetViewportOrgEx
The SetViewportOrgEx function sets the viewport origin of a device context by using the
specified coordinates.

BOOL SetViewportOrgEx(
HDC hdc, // handle of device context
int X, // new x-coordinate of viewport origin
int Y, // new y-coordinate of viewport origin
LPPOINT lpPoint // address of structure receiving original origin

);Parametershdc
Identifies the device context.

X
Specifies the x-coordinate, in device units, of the new viewport origin.

Y
Specifies the y-coordinate, in device units, of the new viewport origin.

lpPoint
Points to a POINT structure. The previous viewport origin (in device coordinates) is placed in
this structure. If lpPoint is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetViewportOrgEx, POINT, SetWindowOrgEx

SetVolumeLabel
The SetVolumeLabel function sets the label of a file system volume.

BOOL SetVolumeLabel(
LPCTSTR lpRootPathName, // address of name of root directory for volume
LPCTSTR lpVolumeName // name for the volume

);ParameterslpRootPathName
Points to a null-terminated string specifying the root directory of a file system volume. This is
the volume the function will label. If this parameter is NULL, the root of the current directory is
used.

lpVolumeName
Points to a string specifying a name for the volume. If this parameter is NULL, the function
deletes the name of the specified volume.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetVolumeInformation

SetWaitableTimer
[New - Windows NT]

The SetWaitableTimer function activates the specified "waitable" timer. When the due time
arrives, the timer is signaled and the thread that set the timer calls the optional completion routine.

BOOL SetWaitableTimer(
HANDLE hTimer, // handle to a timer object
const LARGE_INTEGER *pDueTime, // when timer will become signaled
LONG lPeriod, // periodic timer interval
PTIMERAPCROUTINE pfnCompletionRoutine, // pointer to the completion routine
LPVOID lpArgToCompletionRoutine, // data passed to the completion routine
BOOL fResume // flag for resume state

);ParametershTimer
Identifies the timer object. The CreateWaitableTimer or OpenWaitableTimer function returns
this handle.

pDueTime
Specifies when the state of the timer is to be set to signaled, in 100 nanosecond intervals.
Use the format described by the FILETIME structure. Positive values indicate absolute time.
Negative values indicate relative time. The actual timer accuracy depends on the capability of
your hardware.

lPeriod
Specifies the period of the timer, in milliseconds. If lPeriod is zero, the timer is signaled once.
If lPeriod is greater than zero, the timer is periodic. A periodic timer automatically reactivates
each time the period elapses, until the timer is canceled using the CancelWaitableTimer
function or reset using SetWaitableTimer. If lPeriod is less than zero, the function fails.

pfnCompletionRoutine
Specifies an optional completion routine. The completion routine has the following prototype:VOID
(APIENTRY *PTIMERAPCROUTINE)(

LPVOID lpArgToCompletionRoutine,
DWORD dwTimerLowValue,
DWORD dwTimerHighValue

);The argument for the completion routine is specified when the timer is made active, in the
lpArgToCompletionRoutine parameter. The completion routine also takes two DWORD values
that specify the high and low time values of the time at which the timer was signaled. These
values are passed to the routine by the system using the FILETIME format..

lpArgToCompletionRoutine
Pointer to the structure that is passed to the function specified by the pointer
pfnCompletionRoutine.

fResume
Specifies whether to restore a system in suspended power conservation mode when the timer
state is set to signaled. If fResume is TRUE on a platform that does not support a restore, the
call will succeed, but GetLastError returns ERROR_NOT_SUPPORTED.

Return ValueIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTimer are initially inactive. Timers are activated by calling SetWaitableTimer. If the timer is
already active when you call SetWaitableTimer, the timer is stopped, then it is reactivated.
Stopping the timer in this manner does not set the timer state to signaled, so threads blocked in a
wait operation on the timer remain blocked.

When the specified due time arrives, the timer becomes inactive. The state of the timer is set to
signaled, the timer is reactivated using the specified period, and the thread calls the completion
routine. If you call SetWaitableTimer and the thread is not in an alertable state, the completion
routine is canceled.

When a manual-reset timer is set to the signaled state, it remains in this state until
SetWaitableTimer is called to reset the timer. As a result, a periodic manual-reset timer is set to
the signaled state when the initial due time arrives and remains signaled until it is canceled or
reset. When a synchronization timer is set to the signaled state, it remains in this state until a
thread completes a wait operation on the timer object.See AlsoCancelWaitableTimer, CreateWaitableTimer, FILETIME, OpenWaitableTimer

SetWindowContextHelpId
The SetWindowContextHelpId function associates a help context identifier with the specified
window.

BOOL SetWindowContextHelpId(
HWND hwnd,
DWORD dwContextHelpId

);Parametershwnd
Handle to the window with which to associate the help context identifier.

dwContextHelpId
Help context identifier.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksIf a child window does not have a help context identifier, it inherits the identifier of its parent
window. Likewise, if an owned window does not have a help context identifier, it inherits the
identifier of its owner window. This inheritance of help context identifiers allows an application to
set just one identifier for a dialog box and all of its controls.See AlsoGetWindowContextHelpId

SetWindowExtEx
The SetWindowExtEx function sets the horizontal and vertical extents of the window for a device
context by using the specified values.

BOOL SetWindowExtEx(
HDC hdc, // handle of device context
int nXExtent, // new horizontal window extent
int nYExtent, // new vertical window extent
LPSIZE lpSize // original window extent

);Parametershdc
Identifies the device context.

nXExtent
Specifies the window's horizontal extent in logical units.

nYExtent
Specifies the window's vertical extent in logical units.

lpSize
Points to a SIZE structure. The previous window extents (in logical units) are placed in this
structure. If lpSize is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksWhen the following mapping modes are set, calls to the SetWindowExtEx and
SetViewportExtEx functions are ignored:

· MM_HIENGLISH
· MM_HIMETRIC
· MM_LOENGLISH
· MM_LOMETRIC
· MM_TEXT
· MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExtEx function
before calling SetViewportExtEx.See AlsoGetWindowExtEx, SetViewportExtEx, SIZE

SetWindowLong
The SetWindowLong function changes an attribute of the specified window. The function also
sets a 32-bit (long) value at the specified offset into the extra window memory of a window.

LONG SetWindowLong(
HWND hWnd, // handle of window
int nIndex, // offset of value to set
LONG dwNewLong // new value

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based offset to the value to be set. Valid values are in the range zero
through the number of bytes of extra window memory, minus 4; for example, if you specified
12 or more bytes of extra memory, a value of 8 would be an index to the third 32-bit integer.
To set any other value, specify one of the following values:

Value Action
GWL_EXSTYLE Sets a new extended window style.
GWL_STYLE Sets a new window style.
GWL_WNDPROC Sets a new address for the window procedure.
GWL_HINSTANCE Sets a new application instance handle.
GWL_ID Sets a new identifier of the window.
GWL_USERDATA Sets the 32-bit value associated with the

window. Each window has a corresponding
32-bit value intended for use by the
application that created the window.

The following values are also available when the hWnd parameter identifies a dialog box:
Value Action
DWL_DLGPROC Sets the new address of the dialog box

procedure.
DWL_MSGRESULT Sets the return value of a message

processed in the dialog box procedure.
DWL_USER Sets new extra information that is private to

the application, such as handles or pointers.

dwNewLong
Specifies the replacement value.

Return ValuesIf the function succeeds, the return value is the previous value of the specified 32-bit integer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the previous value of the specified 32-bit integer is zero, and the function succeeds, the return
value is zero, but the function does not clear the last error information. This makes it difficult to
determine success or failure. To deal with this, you should clear the last error information by
calling SetLastError(0) before calling SetWindowLong. Then, function failure will be indicated by
a return value of zero and a GetLastError result that is nonzero.RemarksThe SetWindowLong function fails if the window specified by the hWnd parameter does not
belong to the same process as the calling thread.

If you use the SetWindowLong function and the GWL_WNDPROC index to replace the window
procedure, the window procedure must conform to the guidelines specified in the description of
the WindowProc callback function.

Calling SetWindowLong with the GWL_WNDPROC index creates a subclass of the window
class used to create the window. An application should not subclass a window created by another
process. The SetWindowLong function creates the window subclass by changing the window
procedure associated with a particular window, causing Windows to call the new window
procedure instead of the previous one. An application must pass any messages not processed by
the new window procedure to the previous window procedure by calling CallWindowProc. This
allows the application to create a chain of window procedures.

Reserve extra window memory by specifying a nonzero value in the cbWndExtra member of the
WNDCLASS structure used with the RegisterClass function.

You must not call SetWindowLong with the GWL_HWNDPARENT index to change the parent of
a child window. Instead, use the SetParent function.See AlsoCallWindowProc, GetWindowLong, GetWindowWord, RegisterClass, SetParent,
SetWindowWord, WindowProc, WNDCLASS

SetWindowOrgEx
The SetWindowOrgEx function sets the window origin of the device context by using the
specified coordinates.

BOOL SetWindowOrgEx(
HDC hdc, // handle of device context
int X, // new x-coordinate of window origin
int Y, // new y-coordinate of window origin
LPPOINT lpPoint // address of structure receiving original origin

);Parametershdc
Identifies the device context.

X
Specifies the logical x-coordinate of the new window origin.

Y
Specifies the logical y-coordinate of the new window origin.

lpPoint
Points to a POINT structure. The previous origin of the window is placed in this structure. If
lpPoint is NULL, nothing is returned.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoGetViewportOrgEx, GetWindowOrgEx, POINT, SetViewportOrgEx

SetWindowPlacement
The SetWindowPlacement function sets the show state and the restored, minimized, and
maximized positions of the specified window.

BOOL SetWindowPlacement(
HWND hWnd, // handle of window
CONST WINDOWPLACEMENT *lpwndpl // address of structure with position data

);ParametershWnd
Identifies the window.

lpwndpl
Points to a WINDOWPLACEMENT structure that specifies the new show state and window
positions.
Before calling SetWindowPlacement, set the length member of the WINDOWPLACEMENT
structure to sizeof(WINDOWPLACEMENT).
SetWindowPlacement fails if lpwndpl->length is not set correctly.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe length member of WINDOWPLACEMENT must be set to sizeof(WINDOWPLACEMENT). If
this member is not set correctly, the function returns FALSE.See AlsoGetWindowPlacement, WINDOWPLACEMENT

SetWindowPos
The SetWindowPos function changes the size, position, and Z order of a child, pop-up, or top-
level window. Child, pop-up, and top-level windows are ordered according to their appearance on
the screen. The topmost window receives the highest rank and is the first window in the Z order.

BOOL SetWindowPos(
HWND hWnd, // handle of window
HWND hWndInsertAfter, // placement-order handle
int X, // horizontal position
int Y, // vertical position
int cx, // width
int cy, // height
UINT uFlags // window-positioning flags

);ParametershWnd
Identifies the window.

hWndInsertAfter
Identifies the window to precede the positioned window in the Z order. This parameter must
be a window handle or one of the following values:

Value Meaning
HWND_BOTTOM Places the window at the bottom of the Z

order. If the hWnd parameter identifies a
topmost window, the window loses its
topmost status and is placed at the bottom
of all other windows.

HWND_NOTOPMOST Places the window above all non-topmost
windows (that is, behind all topmost
windows). This flag has no effect if the
window is already a non-topmost window.

HWND_TOP Places the window at the top of the Z order.
HWND_TOPMOST Places the window above all non-topmost

windows. The window maintains its
topmost position even when it is
deactivated.

For more information about how this parameter is used, see the following Remarks
section.

X
Specifies the new position of the left side of the window.

Y
Specifies the new position of the top of the window.

cx
Specifies the new width of the window, in pixels.

cy
Specifies the new height of the window, in pixels.

uFlags
Specifies the window sizing and positioning flags. This parameter can be a combination of the
following values:

Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the window's

class description) around the window.
SWP_FRAMECHANGED Sends a WM_NCCALCSIZE message to

the window, even if the window's size is
not being changed. If this flag is not
specified, WM_NCCALCSIZE is sent only
when the window's size is being
changed.

SWP_HIDEWINDOW Hides the window.

SWP_NOACTIVATE Does not activate the window. If this flag
is not set, the window is activated and
moved to the top of either the topmost or
non-topmost group (depending on the
setting of the hWndInsertAfter parameter)
.

SWP_NOCOPYBITS Discards the entire contents of the client
area. If this flag is not specified, the valid
contents of the client area are saved and
copied back into the client area after the
window is sized or repositioned.

SWP_NOMOVE Retains the current position (ignores the
X and Y parameters).

SWP_NOOWNERZORDER Does not change the owner window's
position in the Z order.

SWP_NOREDRAW Does not redraw changes. If this flag is
set, no repainting of any kind occurs. This
applies to the client area, the nonclient
area (including the title bar and scroll
bars), and any part of the parent window
uncovered as a result of the window
being moved. When this flag is set, the
application must explicitly invalidate or
redraw any parts of the window and
parent window that need redrawing.

SWP_NOREPOSITION Same as the SWP_NOOWNERZORDER
flag.

SWP_NOSENDCHANGING Prevents the window from receiving the
WM_WINDOWPOSCHANGING
message.

SWP_NOSIZE Retains the current size (ignores the cx
and cy parameters).

SWP_NOZORDER Retains the current Z order (ignores the
hWndInsertAfter parameter).

SWP_SHOWWINDOW Displays the window.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the SWP_SHOWWINDOW or SWP_HIDEWINDOW flag is set, the window cannot be moved or
sized.

All coordinates for child windows are client coordinates (relative to the upper-left corner of the
parent window's client area).

A window can be made a topmost window either by setting the hWndInsertAfter parameter to
HWND_TOPMOST and ensuring that the SWP_NOZORDER flag is not set, or by setting a
window's position in the Z order so that it is above any existing topmost windows. When a non-
topmost window is made topmost, its owned windows are also made topmost. Its owners,
however, are not changed.

If neither the SWP_NOACTIVATE nor SWP_NOZORDER flag is specified (that is, when the
application requests that a window be simultaneously activated and its position in the Z order
changed), the value specified in hWndInsertAfter is used only in the following circumstances:

· Neither the HWND_TOPMOST nor HWND_NOTOPMOST flag is specified in
hWndInsertAfter.

· The window identified by hWnd is not the active window.
An application cannot activate an inactive window without also bringing it to the top of the Z order.
Applications can change an activated window's position in the Z order without restrictions, or it can
activate a window and then move it to the top of the topmost or non-topmost windows.

If a topmost window is repositioned to the bottom (HWND_BOTTOM) of the Z order or after any

non-topmost window, it is no longer topmost. When a topmost window is made non-topmost, its
owners and its owned windows are also made non-topmost windows.

A non-topmost window can own a topmost window, but the reverse cannot occur. Any window (for
example, a dialog box) owned by a topmost window is itself made a topmost window, to ensure
that all owned windows stay above their owner.

If an application is not in the foreground, and should be in the foreground, it must call the
SetForegroundWindow function.See AlsoMoveWindow, SetActiveWindow, SetForegroundWindow

SetWindowRgn
The SetWindowRgn function sets the window region of a window. The window region determines
the area within the window where the operating system permits drawing. The operating system
does not display any portion of a window that lies outside of the window region

int SetWindowRgn(
HWND hWnd, // handle to window whose window region is to be set
HRGN hRgn, // handle to region
BOOL bRedraw // window redraw flag

);ParametershWnd
Handle to the window whose window region is to be set.

hRgn
Handle to a region. The function sets the window region of the window to this region.
If hRgn is NULL, the function sets the window region to NULL.

bRedraw
Boolean value that specifies whether the operating system redraws the window after setting
the window region. If bRedraw is TRUE, the operating system does so; otherwise, it does not.
Typically, you set bRedraw to TRUE if the window is visible.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksIf the bRedraw parameter is TRUE, the system sends the WM_WINDOWPOSCHANGING and
WM_WINDOWPOSCHANGED messages to the window.

The coordinates of a window's window region are relative to the upper-left corner of the window,
not the client area of the window.

After a successful call to SetWindowRgn, the operating system owns the region specified by the
region handle hRgn. The operating system does not make a copy of the region. Thus, you should
not make any further function calls with this region handle. In particular, do not close this region
handle.

To obtain the window region of a window, call the GetWindowRgn function.See AlsoGetWindowRgn, WM_WINDOWPOSCHANGING

SetWindowsHook
The SetWindowsHook function is obsolete. This function is provided only for compatibility with
16-bit versions of Windows. Win32-based applications should use the SetWindowsHookEx
function.

SetWindowsHookEx
The SetWindowsHookEx function installs an application-defined hook procedure into a hook
chain. An application installs a hook procedure to monitor the system for certain types of events. A
hook procedure can monitor events associated either with a specific thread or with all threads in
the system. This function supersedes the SetWindowsHook function.

HHOOK SetWindowsHookEx(
int idHook, // type of hook to install
HOOKPROC lpfn, // address of hook procedure
HINSTANCE hMod, // handle of application instance
DWORD dwThreadId // identity of thread to install hook for

);ParametersidHook
Specifies the type of hook procedure to be installed. This parameter can be one of the
following values:

Value Description
WH_CALLWNDPROC Installs a hook procedure that monitors

messages before the system sends
them to the destination window
procedure. For more information, see
the CallWndProc hook procedure.

WH_CALLWNDPROCRET Installs a hook procedure that monitors
messages after they have been
processed by the destination window
procedure. For more information, see
the CallWndRetProc hook procedure.

WH_CBT Installs a hook procedure that receives
notifications useful to a computer-
based training (CBT) application. For
more information, see the CBTProc
hook procedure.

WH_DEBUG Installs a hook procedure useful for
debugging other hook procedures. For
more information, see the DebugProc
hook procedure.

WH_GETMESSAGE Installs a hook procedure that monitors
messages posted to a message queue.
For more information, see the
GetMsgProc hook procedure.

WH_JOURNALPLAYBACK Installs a hook procedure that posts
messages previously recorded by a
WH_JOURNALRECORD hook
procedure. For more information, see
the JournalPlaybackProc hook
procedure.

WH_JOURNALRECORD Installs a hook procedure that records
input messages posted to the system
message queue. This hook is useful for
recording macros. For more
information, see the
JournalRecordProc hook procedure.

WH_KEYBOARD Installs a hook procedure that monitors
keystroke messages. For more
information, see the KeyboardProc
hook procedure.

WH_MOUSE Installs a hook procedure that monitors
mouse messages. For more
information, see the MouseProc hook
procedure.

WH_MSGFILTER Installs a hook procedure that monitors
messages generated as a result of an
input event in a dialog box, message
box, menu, or scroll bar. For more
information, see the MessageProc
hook procedure.

WH_SHELL Installs a hook procedure that receives
notifications useful to shell applications.
For more information, see the
ShellProc hook procedure.

WH_SYSMSGFILTER Installs a hook procedure that monitors
messages generated as a result of an
input event in a dialog box, message
box, menu, or scroll bar. The hook
procedure monitors these messages
for all applications in the system. For
more information, see the
SysMsgProc hook procedure.

lpfn
Points to the hook procedure. If the dwThreadId parameter is zero or specifies the identifier of
a thread created by a different process, the lpfn parameter must point to a hook procedure in
a dynamic-link library (DLL). Otherwise, lpfn can point to a hook procedure in the code
associated with the current process.

hMod
Identifies the DLL containing the hook procedure pointed to by the lpfn parameter. The hMod
parameter must be set to NULL if the dwThreadId parameter specifies a thread created by the
current process and if the hook procedure is within the code associated with the current
process.

dwThreadId
Specifies the identifier of the thread with which the hook procedure is to be associated. If this
parameter is zero, the hook procedure is associated with all existing threads.

Return ValuesIf the function succeeds, the return value is the handle of the hook procedure.

If the function fails, the return value is NULL.RemarksAn error may occur if the hMod parameter is NULL and the dwThreadId parameter is zero or
specifies the identifier of a thread created by another process.

Chaining to the next hook procedure (that is, calling the CallNextHookEx function) is optional. An
application or library can call the next hook procedure either before or after any processing in its
own hook procedure. Although chaining to the next hook is optional, it is highly recommended;
otherwise, the other applications that have installed hooks will not receive hook notifications and
may behave incorrectly as a result.

Before terminating, an application must call the UnhookWindowsHookEx function to free system
resources associated with the hook.

The scope of a hook depends on the hook type. Some hooks can be set only with system scope;
others can also be set for only a specific thread, as shown in the following list:

Hook Scope

WH_CALLWNDPROC Thread or system
WH_CBT Thread or system
WH_DEBUG Thread or system
WH_GETMESSAGE Thread or system
WH_JOURNALPLAYBACKSystem only
WH_JOURNALRECORD System only
WH_KEYBOARD Thread or system
WH_MOUSE Thread or system
WH_MSGFILTER Thread or system
WH_SHELL Thread or system
WH_SYSMSGFILTER System only

For a specified hook type, thread hooks are called first, then system hooks.

The system hooks are a shared resource, and installing one affects all applications. All
system hook functions must be in libraries. System hooks should be restricted to special-
purpose applications or to use as a development aid during application debugging.
Libraries that no longer need a hook should remove the hook procedure.See AlsoCallNextHookEx, CallWndProc, CallWndRetProc, CBTProc, DebugProc, GetMsgProc,
JournalPlaybackProc, JournalRecordProc, KeyboardProc, MouseProc, MessageProc,
ShellProc, SysMsgProc, UnhookWindowsHookEx

SetWindowText
The SetWindowText function changes the text of the specified window's title bar (if it has one). If
the specified window is a control, the text of the control is changed.

BOOL SetWindowText(
HWND hWnd, // handle of window or control
LPCTSTR lpString // address of string

);ParametershWnd
Identifies the window or control whose text is to be changed.

lpString
Points to a null-terminated string to be used as the new title or control text.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SetWindowText function causes a WM_SETTEXT message to be sent to the specified
window or control. If the window is a list box control created with the WS_CAPTION style,
however, SetWindowText sets the text for the control, not for the list box entries.

The SetWindowText function does not expand tab characters (ASCII code 0x09). Tab characters
are displayed as vertical bar (|) characters.See AlsoGetWindowText, WM_SETTEXT

SetWindowWord
The SetWindowWord function replaces the 16-bit (word) value at the specified offset into the
extra window memory for the specified window.

WORD SetWindowWord(
HWND hWnd, // handle of window
int nIndex, // offset of value to set
WORD wNewWord // new value

);ParametershWnd
Identifies the window and, indirectly, the class to which the window belongs.

nIndex
Specifies the zero-based byte offset of the value to be replaced. Valid values are in the range
zero through the number of bytes of window memory, minus two; for example, if you specified
10 or more bytes of extra window memory, a value of 8 would be an index to the fifth 16-bit
integer.

wNewWord
Specifies the replacement value.

Return ValuesIf the function succeeds, the return value is the previous value of the specified 16-bit integer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksReserve extra window memory by specifying a nonzero value in the cbWndExtra member of the
WNDCLASS structure used with the RegisterClass function.

The GWW_ values are obsolete in the Win32 API. You must use the SetWindowLong function to
set information about the window.See AlsoGetParent, GetWindowLong, GetWindowWord, RegisterClass, SetParent, SetWindowLong,
WNDCLASS

SetWinMetaFileBits
The SetWinMetaFileBits function converts a metafile from the older Windows format to the new
enhanced format and stores the new metafile in memory.

HENHMETAFILE SetWinMetaFileBits(
UINT cbBuffer, // size of buffer
CONST BYTE *lpbBuffer, // address of buffered metafile data
HDC hdcRef, // handle of reference device context
CONST METAFILEPICT *lpmfp // suggested size of metafile picture

);ParameterscbBuffer
Specifies the size, in bytes, of the buffer that contains the Windows-format metafile.

lpbBuffer
Points to a buffer that contains the Windows-format metafile data. (It is assumed that the data
was obtained by using the GetMetaFileBitsEx or GetWinMetaFileBits function.)

hdcRef
Identifies a reference device context.

lpmfp
Points to a METAFILEPICT structure that contains the suggested size of the metafile picture
and the mapping mode that was used when the picture was created.

Return ValuesIf the function succeeds, the return value is a handle of a memory-based enhanced metafile.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksWindows uses the reference device context's resolution data and the data in the METAFILEPICT
structure to scale a picture. If the hdcRef parameter is NULL, Windows uses resolution data for
the current output device. If the lpmfp parameter is NULL, Windows uses the MM_ANISOTROPIC
mapping mode to scale the picture so that it fits the entire device surface. The hMF field in the
METAFILEPICT structure is not used.

When the application no longer needs the enhanced metafile handle, it should delete it by calling
the DeleteEnhMetaFile function.

The handle returned by this function can be used with other enhanced-metafile functions.

If the reference device context is not identical to the device in which the metafile was originally
created, some GDI functions that use device units may not draw the picture correctly.See AlsoDeleteEnhMetaFile, GetWinMetaFileBits, GetMetaFileBitsEx, METAFILEPICT,
PlayEnhMetaFile

SetWorldTransform
The SetWorldTransform function sets a two-dimensional linear transformation between world
space and page space for the specified device context. This transformation can be used to scale,
rotate, shear, or translate graphics output.

BOOL SetWorldTransform(
HDC hdc, // handle of device context
CONST XFORM *lpXform // address of transformation data

);Parametershdc
Identifies the device context.

lpXform
Points to an XFORM structure that contains the transformation data.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksFor any coordinates (x, y) in world space, the transformed coordinates in page space (x', y') can
be determined by the following algorithm:x' = x * eM11 + y * eM21 + eDx,
y' = x * eM12 + y * eM22 + eDy,where the transformation matrix is represented by the following:| eM11 eM12 0 |
| eM21 eM22 0 |
| eDx eDy 1 |The mapping mode (defined by the current window and viewport extents origins) serves to define

units and scales.

The world transformation is usually used to scale or rotate logical images in a device-independent
way.

The default world transformation is the identity matrix with zero offset.

The SetWorldTransform function will fail unless the graphics mode for the given device context
has been set to GM_ADVANCED by previously calling the SetGraphicsMode function. Likewise,
it will not be possible to reset the graphics mode for the device context to the default
GM_COMPATIBLE mode, unless the world transformation has first been reset to the default
identity transformation by calling SetWorldTransform or ModifyWorldTransform.See AlsoGetWorldTransform, ModifyWorldTransform, SetGraphicsMode, SetMapMode,
SetViewportExtEx, SetViewportOrgEx, SetWindowExtEx, SetWindowOrgEx, XFORM

SHAddToRecentDocs
[Now Supported on Windows NT]

Adds a document to the shell's list of recently used documents or clears all documents from the
list. The user gains access to the list through the Start menu of the Windows taskbar.

WINSHELLAPI void WINAPI SHAddToRecentDocs(
UINT uFlags,
LPCVOID pv

);ParametersuFlags
Flag that indicates the meaning of the pv parameter. This parameter can be one of the
following values:

SHARD_PATH pv is the address of a path string.
SHARD_PIDL pv is the address of an item identifier list.

pv
Pointer to a buffer that contains the path and filename of the document, or the address of an
ITEMIDLIST structure that contains an item identifier list uniquely identifying the document. If
this parameter is NULL, the function clears all documents from the list.

Return ValuesNo return value.

SHAppBarMessage
[Now Supported on Windows NT]

Sends an appbar message to the system.

WINSHELLAPI UINT APIENTRY SHAppBarMessage(
DWORD dwMessage,
PAPPBARDATA pData

);ParametersdwMessage
Identifier of the appbar message to send. This parameter can be one of the following values:

ABM_ACTIVATE Notifies the system that an appbar has
been activated.

ABM_GETAUTOHIDEBAR Retrieves the handle of the autohide
appbar associated with a particular
edge of the screen.

ABM_GETSTATE Retrieves the autohide and always-
on-top states of the Windows taskbar.

ABM_GETTASKBARPOS Retrieves the bounding rectangle of
the Windows taskbar.

ABM_NEW Registers a new appbar and specifies
the message identifier that the system
should use to send notification
messages to the appbar.

ABM_QUERYPOS Requests a size and screen position
for an appbar.

ABM_REMOVE Unregisters an appbar, removing bar
from the system's internal list.

ABM_SETAUTOHIDEBAR Registers or unregisters an autohide
appbar for an edge of the screen.

ABM_SETPOS Sets the size and screen position of
an appbar.

ABM_WINDOWPOSCHANGEDNotifies the system when an appbar's
position has changed.

pData
Pointer to an APPBARDATA structure. The content of the structure depends on the value of
dwMessage.

Return ValuesReturns a message-dependent value. For more information, see the documentation for the
individual appbar messages.See AlsoAPPBARDATA

SHBrowseForFolder
[Now Supported on Windows NT]

Displays a dialog box that enables the user to select a shell folder.

WINSHELLAPI LPITEMIDLIST WINAPI SHBrowseForFolder(
LPBROWSEINFO lpbi

);Parameterslpbi
Pointer to a BROWSEINFO structure that contains information used to display the dialog box.

Return ValuesReturns a pointer to an item identifier list that specifies the location of the selected folder relative
to the root of the name space. If the user chooses the Cancel button in the dialog box, the return
value is NULL.

The calling application is responsible for freeing the returned item identifier list using the shell's
task allocator.See AlsoBROWSEINFO

SHChangeNotify
[Now Supported on Windows NT]

Notifies the system of an event that an application has performed. An application should use this
function if it performs an action that may affect the shell.

WINSHELLAPI void WINAPI SHChangeNotify(
LONG wEventId,
UINT uFlags,
LPCVOID dwItem1,
LPCVOID dwItem2

);ParameterswEventId
Array of flags that specifies the events. This parameter can be a combination of the following
values:

SHCNE_ASSOCCHANGED Changed a file type association.
SHCNE_ATTRIBUTES Changed a file's attributes.
SHCNE_CREATE Created a file.
SHCNE_DELETE Deleted a file.
SHCNE_DRIVEADD Added a network drive.
SHCNE_DRIVEADDGUI Added a network drive by way of a

graphic user interface.
SHCNE_DRIVEREMOVED Removed a network drive.
SHCNE_INTERRUPT Performed the event as a result of a

system interrupt.
SHCNE_MEDIAINSERTED Added removable media, such as a

CD-ROM.
SHCNE_MEDIAREMOVED Removed a removable medium,

such as a CD-ROM.
SHCNE_MKDIR Created a new directory.
SHCNE_NETSHARE Shared a resource on the network.
SHCNE_NETUNSHARE Stopped sharing a resource.
SHCNE_RENAMEFOLDER Renamed a folder.
SHCNE_RENAMEITEM Renamed an item in a folder.
SHCNE_RMDIR Removed a directory.
SHCNE_SERVERDISCONNECTDisconnected a network server.
SHCNE_UPDATEDIR Updated the contents of a directory.
SHCNE_UPDATEIMAGE Changed an image in the system

global image list.
SHCNE_UPDATEITEM Changed the properties of a printer

or file.

uFlags
Flag that indicates the meaning of dwItem1 and dwItem2. This parameter can be one of the
following values:

SHCNF_DWORD The dwItem1 and dwItem2 parameters are
doubleword values.

SHCNF_FLUSH Flushes the system event buffer. The
function does not return until the system is
finished processing the given event.

SHCNF_FLUSHNOWAIT Flushes the system event buffer. The
function returns immediately regardless of
whether the system is finished processing
the given event.

SHCNF_IDLIST dwItem1 and dwItem2 are the addresses
of item identifier lists.

SHCNF_PATH dwItem1 and dwItem2 are path names.

SHCNF_PRINTER dwItem1 and dwItem2 are printer "friendly"
names.

dwItem1
First event-dependent value.

dwItem2
Second event-dependent value.

Return ValuesNo return value.

Shell_NotifyIcon
[Now Supported on Windows NT]

Sends a message to the system to add, modify, or delete an icon from the taskbar status area.

WINSHELLAPI BOOL WINAPI Shell_NotifyIcon(
DWORD dwMessage, // message identifier
PNOTIFYICONDATA pnid // pointer to structure

);ParametersdwMessage
Identifier of the message to send. This parameter can be one of these values:

NIM_ADD Adds an icon to the status area.
NIM_DELETE Deletes an icon from the status area.
NIM_MODIFY Modifies an icon in the status area.

pnid
Pointer to a NOTIFYICONDATA structure. The content of the structure depends on the value
of dwMessage.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

ShellAbout
The ShellAbout function displays a Shell About dialog box.

int ShellAbout (
HWND hWnd, // handle of parent window
LPCTSTR szApp, // title bar and first line text
LPCTSTR szOtherStuff, // other dialog text
HICON hIcon // icon to display

);ParametershWnd
Identifies a parent window. This parameter can be NULL.

szApp
Points to text that the function displays in the title bar of the Shell About dialog box and on the
first line of the dialog box after the text "Microsoft Windows" or "Microsoft Windows NT." If the
text contains a "#" separator, dividing it into two parts, the function displays the first part in the
title bar, and the second part on the first line after the text "Microsoft Windows" or "Microsoft
Windows NT."

szOtherStuff
Points to text that the function displays in the dialog box after the version and copyright
information.

hIcon
Identifies an icon that the function displays in the dialog box. If this parameter is NULL, the
function displays the Microsoft Windows or Microsoft Windows NT icon.

Return ValuesIf the function succeeds in displaying the dialog box, the return value is TRUE; otherwise the
return value is FALSE.RemarksPlease note that the ShellAbout function dialog box uses text and a default icon that are specific
to either Microsoft Windows or Microsoft Windows NT.

An example of a Shell About dialog box can be seen by selecting the About Program Manager
command in Program Manager.

ShellExecute
The ShellExecute function opens or prints a specified file. The file can be an executable file or a
document file. See ShellExecuteEx also.

HINSTANCE ShellExecute(
HWND hwnd, // handle to parent window
LPCTSTR lpOperation, // pointer to string that specifies operation to perform
LPCTSTR lpFile, // pointer to filename or folder name string
LPCTSTR lpParameters, // pointer to string that specifies executable-file parameters
LPCTSTR lpDirectory, // pointer to string that specifies default directory
INT nShowCmd // whether file is shown when opened

);Parametershwnd
Specifies a parent window. This window receives any message boxes that an application
produces. For example, an application may report an error by producing a message box.

lpOperation
Pointer to a null-terminated string that specifies the operation to perform. The following
operation strings are valid:

String Meaning
"open" The function opens the file specified by

lpFile. The file can be an executable file or a
document file. The file can be a folder to
open.

"print" The function prints the file specified by
lpFile. The file should be a document file. If
the file is an executable file, the function
opens the file, as if "open" had been
specified.

"explore" The function explores the folder specified by
lpFile.

The lpOperation parameter can be NULL. In that case, the function opens the file specified
by lpFile.

lpFile
Pointer to a null-terminated string that specifies the file to open or print or the folder to open or
explore. The function can open an executable file or a document file. The function can print a
document file.

lpParameters
If lpFile specifies an executable file, lpParameters is a pointer to a null-terminated string that
specifies parameters to be passed to the application.
If lpFile specifies a document file, lpParameters should be NULL.

lpDirectory
Pointer to a null-terminated string that specifies the default directory.

nShowCmd
If lpFile specifies an executable file, nShowCmd specifies how the application is to be shown
when it is opened. This parameter can be one of the following values:

Value Meaning
SW_HIDE Hides the window and activates

another window.
SW_MAXIMIZE Maximizes the specified window.
SW_MINIMIZE Minimizes the specified window and

activates the next top-level window in
the Z order.

SW_RESTORE Activates and displays the window. If
the window is minimized or maximized,
Windows restores it to its original size
and position. An application should
specify this flag when restoring a

minimized window.
SW_SHOW Activates the window and displays it in

its current size and position.
SW_SHOWDEFAULT Sets the show state based on the SW_

flag specified in the STARTUPINFO
structure passed to the CreateProcess
function by the program that started the
application. An application should call
ShowWindow with this flag to set the
initial show state of its main window.

SW_SHOWMAXIMIZED Activates the window and displays it as
a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as
a minimized window.

SW_SHOWMINNOACTIVE Displays the window as a minimized
window. The active window remains
active.

SW_SHOWNA Displays the window in its current state.
The active window remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The active window
remains active.

SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position. An application should
specify this flag when displaying the
window for the first time.

If lpFile specifies a document file, nShowCmd should be zero.
Return ValuesIf the function succeeds, the return value is the instance handle of the application that was run, or

the handle of a dynamic data exchange (DDE) server application.

If the function fails, the return value is an error value that is less than or equal to 32. The following
table lists these error values:

Value Meaning

0 The operating system is out of memory
or resources.

ERROR_FILE_NOT_FOUND The specified file was not found.
ERROR_PATH_NOT_FOUND The specified path was not found.
ERROR_BAD_FORMAT The .EXE file is invalid (non-Win32 .

EXE or error in .EXE image).
SE_ERR_ACCESSDENIED The operating system denied access to

the specified file.
SE_ERR_ASSOCINCOMPLETEThe filename association is incomplete

or invalid.
SE_ERR_DDEBUSY The DDE transaction could not be

completed because other DDE
transactions were being processed.

SE_ERR_DDEFAIL The DDE transaction failed.
SE_ERR_DDETIMEOUT The DDE transaction could not be

completed because the request timed
out.

SE_ERR_DLLNOTFOUND The specified dynamic-link library was
not found.

SE_ERR_FNF The specified file was not found.
SE_ERR_NOASSOC There is no application associated with

the given filename extension.
SE_ERR_OOM There was not enough memory to

complete the operation.

SE_ERR_PNF The specified path was not found.
SE_ERR_SHARE A sharing violation occurred.
RemarksThe file specified by the lpFile parameter can be a document file or an executable file. If the file is

a document file, the ShellExecute function opens or prints it, depending on the value of the
lpOperation parameter. If the file is an executable file, the ShellExecute function opens it, even if
lpOperation specifies printing.

You can use ShellExecute to open or explore a shell folder. To open a folder, use either of the
following calls:ShellExecute(handle, NULL, path_to_folder, NULL, NULL, SW_SHOWNORMAL);

or
ShellExecute(handle, "open", path_to_folder, NULL, NULL, SW_SHOWNORMAL)
;To explore a folder, use the following call:ShellExecute(handle, "explore", path_to_folder, NULL, NULL,
SW_SHOWNORMAL);If lpOperation is NULL, the function opens the file specified by lpFile. If lpOperation is "open" or

"explore", the function will force an open window or explorer.See AlsoFindExecutable, ShellExecuteEx

ShellExecuteEx
[Now Supported on Windows NT]

The ShellExecuteEx function performs an action on a file. The file can be an executable file or a
document.

WINSHELLAPI BOOL WINAPI ShellExecuteEx(
LPSHELLEXECUTEINFO lpExecInfo // pointer to SHELLEXECUTEINFO structure

);ParameterslpExecInfo
Pointer to a SHELLEXECUTEINFO structure that contains and receives information about the
application to start.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the function succeeds, it sets the hInstApp member of the SHELLEXECUTEINFO structure to
the instance handle of the application that the function started. If the function fails, hInstApp is
one of the SE_ERR_ error values indicating the cause of the failure. (An instance handle will
always be greater than 32, and an error value less than 32.) Note that the SE_ERR_ error values
are for compatibility with the ShellExecute function; use the GetLastError function to retrieve
error information.

Last error values returned by GetLastError correspond to the SE_ERR_ values and may be one
of the following:

Value Meaning

ERROR_FILE_NOT_FOUND The specified file was not found.
ERROR_PATH_NOT_FOUND The specified path was not found.
ERROR_DDE_FAIL The DDE transaction failed.
ERROR_NO_ASSOCIATION There is no application associated

with the given filename extension.
ERROR_ACCESS_DENIED
ERROR_DLL_NOT_FOUND
ERROR_CANCELLED The function prompted the user for

the location of the application, but the
user cancelled the request.

ERROR_NOT_ENOUGH_MEMORY
ERROR_SHARING_VIOLATION A sharing violation occurred.
See AlsoShellExecute, SHELLEXECUTEINFO

ShellProc
The ShellProc hook procedure is an application-defined or library-defined callback function a
shell application uses to receive useful notifications from the system.

LRESULT CALLBACK ShellProc(
int nCode, // hook code
WPARAM wParam, // event-specific information
LPARAM lParam // event-specific information

);ParametersnCode
Specifies the hook code. This parameter can be one of the following values:

Value Meaning
HSHELL_ACTIVATESHELLWINDOWThe shell should activate its main

window.
HSHELL_GETMINRECT Windows 95 only: A window is

being minimized or maximized and
the system needs the coordinates
of the minimized rectangle for the
window. The wParam parameter
contains the handle of the window,
and the lParam parameter contains
the address of a RECT structure
that receives the coordinates.

HSHELL_LANGUAGE Windows 95 only: Keyboard
language was changed or a new
keyboard layout was loaded.

HSHELL_REDRAW Windows 95 only: The title of a
window in the task bar has been
redrawn. The wParam parameter
contains the handle of the window.

HSHELL_TASKMAN Windows 95 only: The user has
selected the task list. The wParam
parameter is undefined and should
be ignored. A shell application that
provides a task list should return
TRUE to prevent Windows from
starting its task list.

HSHELL_WINDOWACTIVATED Windows 95 only: The activation
has changed to a different top-
level, unowned window. The
wParam parameter contains the
handle of the window.

HSHELL_WINDOWCREATED A top-level, unowned window has
been created. The window exists
when the system calls a ShellProc
function.

HSHELL_WINDOWDESTROYED A top-level, unowned window is
about to be destroyed. The window
still exists when the system calls a
ShellProc function.

If nCode is less than zero, the hook procedure must pass the message to the
CallNextHookEx function without further processing and should return the value returned by
CallNextHookEx.

wParam
Specifies additional information the shell application may require. If the nCode parameter is
HSHELL_ACTIVATESHELLWINDOW, the wParam parameter is not used. If nCode is
HSHELL_WINDOWCREATED or HSHELL_WINDOWDESTROYED, wParam specifies the
handle of the window being created or destroyed, respectively.

lParam
Windows 95:

Specifies additional information. The exact value depends on the value of the nCode
parameter. If nCode is HSHELL_GETMINRECT, lParam is LPRECT. If nCode is
HSHELL_WINDOWSACTIVATED, lParam is fFullScreen. If nCode is HSHELL_REDRAW,
lParam is fNewFlash.

Windows NT:
This parameter must be zero.

Return ValuesThe return value should be zero.RemarksAn application installs the hook procedure by specifying the WH_SHELL hook type and the
address of the hook procedure in a call to the SetWindowsHookEx function.

ShellProc is a placeholder for the application-defined or library-defined function name.See AlsoCallNextHookEx, SendMessage, SetWindowsHookEx

SHFileOperation
[Now Supported on Windows NT]

Performs a copy, move, rename, or delete operation on a file system object.

WINSHELLAPI int WINAPI SHFileOperation(
LPSHFILEOPSTRUCT lpFileOp

);ParameterslpFileOp
Pointer to an SHFILEOPSTRUCT structure that contains information the function needs to
carry out the operation.

Return ValuesReturns zero if successful or nonzero if an error occurs.See AlsoSHFILEOPSTRUCT

SHFreeNameMappings
[Now Supported on Windows NT]

Frees a filename mapping object that was retrieved by the SHFileOperation function.

WINSHELLAPI void WINAPI SHFreeNameMappings(;
HANDLE hNameMappings

);ParametershNameMappings
Handle of the filename mapping object to free.

Return ValuesNo return value.

SHGetDataFromIDList
[Now Supported on Windows NT]

The ShGetDataFromIDList function retrieves extended property data from a relative IDList.

HRESULT ShGetDataFromIDList(
LPSHELLFOLDER psf, //Points to the parent folder
LPCITEMIDLIST pidl, //Points to an item identifier struct
int nFormat, //Specifies a format
PVOID pv, //Points to a buffer for a structure
int cb //Size of the buffer passed in

);Parameterspsf
Pointer to the parent folder.

pidl
Pointer to an ITEMIDLIST structure that identifies the subfolder relative to its parent folder.

nFormat
Specifies one of the following formats:

SHGDFIL_FINDDATA Format used for file system objects.
SHGDFIL_NETRESOURCE Format used for network resources.

pv
Pointer to a buffer for either a WIN32_FIND_DATA or NET_RESOURCE structure, depending
on the value of the nFormat parameter. For more information, see the Remarks section below.

cb
Size of the buffer passed in. This value should be either sizeof(WIN32_FIND_DATA) for
SHGDFIL_FINDDATA or, sizeof(NETRESOURCE) + 1024 to retrieve a
SHGDFIL_NETRESOURCE structure.

Return ValuesThe return value is NOERROR if the format is supported and the function succeeds. If the psf,
pidl, pv, or cb parameters do not match the nFormat parameter, or if nFormat is not one of the
specific SHGDFIL_ values shown, E_INVALIDARG is also returned.RemarksIf nFormat is SHGDFIL_NETRESURCE, there are two possible cases. If the buffer is large
enough, the net resource's string information (fields for the network name, local name, provider,
and comments) will be placed into the buffer. If the buffer is not large enough, only the net
resource structure will be placed into the buffer and the string information pointers will be NULL.

SHGetDesktopFolder
[Now Supported on Windows NT]

Retrieves the IShellFolder interface for the desktop folder, which is the root of the shell's name
space.

WINSHELLAPI HRESULT WINAPI SHGetDesktopFolder(
LPSHELLFOLDER *ppshf

);Parametersppshf
Address that receives an IShellFolder interface pointer for the desktop folder. The calling
application is responsible for eventually freeing the interface by calling its Release method.

Return ValuesReturns NOERROR if successful or an OLE-defined error result otherwise.See AlsoIShellFolder

SHGetFileInfo
[Now Supported on Windows NT]

Retrieves information about an object in the file system, such as a file, a folder, a directory, or a
drive root.

WINSHELLAPI DWORD WINAPI SHGetFileInfo(
LPCTSTR pszPath,
DWORD dwFileAttributes,
SHFILEINFO FAR *psfi,
UINT cbFileInfo,
UINT uFlags

);ParameterspszPath
Pointer to a buffer that contains the path and filename. Both absolute and relative paths are
valid. If uFlags includes the SHGFI_PIDL, value pszPath must be the address of an
ITEMIDLIST structure that contains the list of item identifiers that uniquely identifies the file
within the shell's name space.
This string can use either short (the 8.3 form) or long filenames.

dwFileAttributes
Array of file attribute flags (FILE_ATTRIBUTE_ values). If uFlags does not include the
SHGFI_USEFILEATTRIBUTES value, this parameter is ignored.

psfi and cbFileInfo
Address and size, in bytes, of the SHFILEINFO structure that receives the file information.

uFlags
Flag that specifies the file information to retrieve. This parameter can be a combination of the
following values:

SHGFI_ATTRIBUTES Retrieves the file attribute flags. The
flags are copied to the dwAttributes
member of the structure specified by
psfi.

SHGFI_DISPLAYNAME Retrieves the display name for the file.
The name is copied to the
szDisplayName member of the
structure specified by psfi.
The returned display name uses the
long filename, if any, rather than the 8.
3 form of the filename.

SHGFI_EXETYPE Returns the type of the executable file
if pszPath identifies an executable file.
For more information, see the
comments below.

SHGFI_ICON Retrieves the handle of the icon that
represents the file and the index of the
icon within the system image list. The
handle is copied to the hIcon member
of the structure specified by psfi, and
the index is copied to the iIcon
member. The return value is the
handle of the system image list.

SHGFI_ICONLOCATION Retrieves the name of the file that
contains the icon representing the file.
The name is copied to the
szDisplayName member of the
structure specified by psfi.

SHGFI_LARGEICON Modifies SHGFI_ICON, causing the
function to retrieve the file's large icon.

SHGFI_LINKOVERLAY Modifies SHGFI_ICON, causing the
function to add the link overlay to the

file's icon.
SHGFI_OPENICON Modifies SHGFI_ICON, causing the

function to retrieve the file's open icon.
A container object displays an open
icon to indicate that the container is
open.

SHGFI_PIDL Indicates that pszPath is the address
of an ITEMIDLIST structure rather than
a path name.

SHGFI_SELECTED Modifies SHGFI_ICON, causing the
function to blend the file's icon with the
system highlight color.

SHGFI_SHELLICONSIZE Modifies SHGFI_ICON, causing the
function to retrieve a shell-sized icon. If
this flag is not specified, the function
sizes the icon according to the system
metric values.

SHGFI_SMALLICON Modifies SHGFI_ICON, causing the
function to retrieve the file's small icon.

SHGFI_SYSICONINDEX Retrieves the index of the icon within
the system image list. The index is
copied to the iIcon member of the
structure specified by psfi. The return
value is the handle of the system
image list.

SHGFI_TYPENAME Retrieves the string that describes the
file's type. The string is copied to the
szTypeName member of the structure
specified by psfi.

SHGFI_USEFILEATTRIBUTESIndicates that the function should use
the dwFileAttributes parameter.

To retrieve the executable file type, uFlags must specify only SHGFI_EXETYPE. The return value
specifies the type of the executable file:

0 Nonexecutable file or an error condition.
LOWORD = NE or PE
HIWORD = 3.0, 3.5, or 4.0

Windows application

LOWORD = MZ
HIWORD = 0

MS-DOS .EXE, .COM or .BAT file

LOWORD = PE
HIWORD = 0

Win32 console application

Return Values· Returns a value whose meaning depends on the uFlags parameter. If uFlags specifies the
SHGFI_EXETYPE value, the return value indicates the type of the executable file. For more
information, see the comments below.

· If uFlags includes the SHGFI_ICON or SHGFI_SYSICONINDEX value, the return value is
the handle of the system image list that contains the large icon images. If the
SHGFI_SMALLICON value is also included, the return value is the handle of the image list
that contains the small icon images.

· If uFlags does not include SHGFI_EXETYPE, SHGFI_ICON, SHGFI_SYSICONINDEX, or
SHGFI_SMALLICON, the return value is nonzero the function succeeds, or zero otherwise.

SHGetInstanceExplorer
[Now Supported on Windows NT]

Retreives the address of the Explorer's IUnknown interface.

WINSHELLAPI HRESULT WINAPI SHGetInstanceExplorer(
IUnknown *ppunk

);Parametersppunk
Pointer to a value that receives the address of the Explorer's IUnknown interface.

Return ValuesReturns NOERROR if successful or E_FAIL otherwise.

SHGetMalloc
[Now Supported on Windows NT]

Retrieves a pointer to the shell's IMalloc interface. A shell extension must use this interface to
allocate memory that is later freed by the shell.

HRESULT SHGetMalloc(
LPMALLOC *ppMalloc

);ParametersppMalloc
Address of a value that receives the address of the shell's IMalloc interface.

Return ValuesReturns the NOERROR value if successful or E_FAIL otherwise.

SHGetPathFromIDList
[Now Supported on Windows NT]

Converts an item identifier list to a file system path.

WINSHELLAPI BOOL WINAPI SHGetPathFromIDList(
LPCITEMIDLIST pidl,
LPSTR pszPath

);Parameterspidl
Pointer to an item identifier list that specifies a file or directory location relative to the root of
the name space (the desktop).

pszPath
Pointer to a buffer that receives the file system path. The size of this buffer is assumed to be
MAX_PATH bytes.

Return ValuesReturns TRUE if successful or FALSE if an error occurs ¾ for example, if the location specified by
the pidl parameter is not part of the file system.

SHGetSpecialFolderLocation
[Now Supported on Windows NT]

Retrieves the location of a special folder.

WINSHELLAPI HRESULT WINAPI SHGetSpecialFolderLocation(;
HWND hwndOwner,
int nFolder,
LPITEMIDLIST *ppidl

);ParametershwndOwner
Handle of the owner window that the client should specify if it displays a dialog box or
message box.

nFolder
Value specifying the folder to retrieve the location of. This parameter can be one of the
following values:

CSIDL_BITBUCKET Recycle bin ¾ file system directory
containing file objects in the user's
recycle bin. The location of this
directory is not in the registry; it is
marked with the hidden and system
attributes to prevent the user from
moving or deleting it.

CSIDL_CONTROLS Control Panel ¾ virtual folder
containing icons for the control panel
applications.

CSIDL_DESKTOP Windows desktop ¾ virtual folder at
the root of the name space.

CSIDL_DESKTOPDIRECTORYFile system directory used to
physically store file objects on the
desktop (not to be confused with the
desktop folder itself).

CSIDL_DRIVES My Computer ¾ virtual folder
containing everything on the local
computer: storage devices, printers,
and Control Panel. The folder may
also contain mapped network drives.

CSIDL_FONTS Virtual folder containing fonts.
CSIDL_NETHOOD File system directory containing

objects that appear in the network
neighborhood.

CSIDL_NETWORK Network Neighborhood ¾ virtual folder
representing the top level of the
network hierarchy.

CSIDL_PERSONAL File system directory that serves as a
common respository for documents.

CSIDL_PRINTERS Printers folder ¾ virtual folder
containing installed printers.

CSIDL_PROGRAMS File system directory that contains the
user's program groups (which are also
file system directories).

CSIDL_RECENT File system directory that contains the
user's most recently used documents.

CSIDL_SENDTO File system directory that contains
Send To menu items.

CSIDL_STARTMENU File system directory containing Start
menu items.

CSIDL_STARTUP File system directory that corresponds
to the user's Startup program group.

CSIDL_TEMPLATES File system directory that serves as a
common repository for document
templates.

ppidl
Address that receives a pointer to an item identifier list specifying the folder's location relative
to the root of the name space (the desktop).

Return ValuesReturns NOERROR if successful or an OLE-defined error result otherwise.

SHLoadInProc
[Now Supported on Windows NT]

Creates an instance of the specified object class from within the context of the shell's process.

WINSHELLAPI HRESULT WINAPI SHLoadInProc(
REFCLSID rclsid

);Parametersrclsid
CLSID of the object class to be created.

Return ValuesReturns NOERROR if successful or an OLE-defined error result otherwise.

ShowCaret
The ShowCaret function makes the caret visible on the screen at the caret's current position.
When the caret becomes visible, it begins flashing automatically.

BOOL ShowCaret(
HWND hWnd // handle of window with caret

);ParametershWnd
Identifies the window that owns the caret. If this parameter is NULL, ShowCaret searches the
current task for the window that owns the caret.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksShowCaret shows the caret only if the specified window owns the caret, the caret has a shape,
and the caret has not been hidden two or more times in a row. If one or more of these conditions
is not met, ShowCaret does nothing and returns FALSE.

Hiding is cumulative. If your application calls HideCaret five times in a row, it must also call
ShowCaret five times before the caret reappears.

The caret is a shared resource; there is only one caret in the system. A window should show a
caret only when the window has the keyboard focus or is active.See AlsoCreateCaret, DestroyCaret, GetCaretPos, HideCaret, SetCaretPos

ShowCursor
The ShowCursor function displays or hides the cursor.

int ShowCursor(
BOOL bShow // cursor visibility flag

);ParametersbShow
Specifies whether the internal display counter is to be incremented or decremented. If bShow
is TRUE, the display count is incremented by one. If bShow is FALSE, the display count is
decremented by one.

Return ValuesThe return value specifies the new display counter.RemarksThis function sets an internal display counter that determines whether the cursor should be
displayed. The cursor is displayed only if the display count is greater than or equal to 0. If a
mouse is installed, the initial display count is 0. If no mouse is installed, the display count is - 1.See AlsoClipCursor, GetCursorPos, SetCursor, SetCursorPos

ShowHideMenuCtl
The ShowHideMenuCtl function sets or removes the specified menu item's check-mark attribute,
and shows or hides the corresponding control. The function adds a check mark to the specified
menu item if it does not have one and then displays the corresponding control. If the menu item
already has a check mark, the function removes the check mark and hides the corresponding
control.

BOOL ShowHideMenuCtl(
HWND hWnd, // handle to MDI child window
UINT uFlags, // message
LPINT lpInfo // first message parameter

);ParametershWnd
Handle to the window that contains the menu and controls.

uFlags
Identifier of the menu item to receive or lose a check mark.

lpInfo
Pointer to an array that contains pairs of values. The second value in the first pair must be the
handle to the application's main menu. Each subsequent pair consists of a menu item
identifier and a control window identifier. The function searches the array for a value that
matches uFlags and, if the value is found, checks or unchecks the menu item and shows or
hides the corresponding control.

Return ValuesIf the function shows or hides the control, the return value is nonzero.

If the function does not show or hide the control, the return value is zero.

ShowOwnedPopups
The ShowOwnedPopups function shows or hides all pop-up windows owned by the specified
window.

BOOL ShowOwnedPopups(
HWND hWnd, // handle of window
BOOL fShow // window visibility flag

);ParametershWnd
Identifies the window that owns the pop-up windows to be shown or hidden.

fShow
Specifies whether pop-up windows are to be shown or hidden. If this parameter is TRUE, all
hidden pop-up windows are shown. If this parameter is FALSE, all visible pop-up windows are
hidden.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksShowOwnedPopups shows only windows hidden by a previous call to ShowOwnedPopups. For
example, if a pop-up window is hidden by using the ShowWindow function, subsequently calling
ShowOwnedPopups with the fShow parameter set to TRUE does not cause the window to be
shown.See AlsoIsWindowVisible, ShowWindow

ShowScrollBar
The ShowScrollBar function shows or hides the specified scroll bar.

BOOL ShowScrollBar(
HWND hWnd, // handle of window with scroll bar
int wBar, // scroll bar flag
BOOL bShow // scroll bar visibility flag

);ParametershWnd
Identifies a scroll bar control or a window with a standard scroll bar, depending on the value of
the wBar parameter.

wBar
Specifies the scroll bar(s) to be shown or hidden. This parameter can be one of the following
values:

Value Meaning
SB_BOTH Shows or hides a window's standard horizontal and

vertical scroll bars.
SB_CTL Shows or hides a scroll bar control. The hWnd

parameter must be the handle of the scroll bar
control.

SB_HORZ Shows or hides a window's standard horizontal scroll
bars.

SB_VERT Shows or hides a window's standard vertical scroll
bar.

bShow
Specifies whether the scroll bar is shown or hidden. If this parameter is TRUE, the scroll bar is
shown; otherwise, it is hidden.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhile processing a scroll bar message, an application should not call this function to hide a scroll
bar.See AlsoGetScrollPos, GetScrollRange, ScrollDC, ScrollWindow, SetScrollPos, SetScrollRange

ShowWindow
The ShowWindow function sets the specified window's show state.

BOOL ShowWindow(
HWND hWnd, // handle of window
int nCmdShow // show state of window

);ParametershWnd
Identifies the window.

nCmdShow
Specifies how the window is to be shown. This parameter is ignored the first time an
application calls ShowWindow, if the program that launched the application provides a
STARTUPINFO structure. Otherwise, the first time ShowWindow is called, the value should
be the value obtained by the WinMain function in its nCmdShow parameter. In subsequent
calls, this parameter can be one of the following values:

Value Meaning
SW_HIDE Hides the window and activates

another window.
SW_MAXIMIZE Maximizes the specified window.
SW_MINIMIZE Minimizes the specified window and

activates the next top-level window in
the Z order.

SW_RESTORE Activates and displays the window. If
the window is minimized or maximized,
Windows restores it to its original size
and position. An application should
specify this flag when restoring a
minimized window.

SW_SHOW Activates the window and displays it in
its current size and position.

SW_SHOWDEFAULT Sets the show state based on the SW_
flag specified in the STARTUPINFO
structure passed to the CreateProcess
function by the program that started the
application.

SW_SHOWMAXIMIZED Activates the window and displays it as
a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as
a minimized window.

SW_SHOWMINNOACTIVE Displays the window as a minimized
window. The active window remains
active.

SW_SHOWNA Displays the window in its current state.
The active window remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The active window
remains active.

SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position. An application should
specify this flag when displaying the
window for the first time.

Return ValuesIf the window was previously visible, the return value is nonzero.

If the window was previously hidden, the return value is zero.RemarksThe first time a program calls ShowWindow, it uses the WinMain function's nCmdShow
parameter as its nCmdShow parameter. Subsequent calls to ShowWindow must use one of the

values in the given list, instead of the one specified by the WinMain function's nCmdShow
parameter.

As noted in the discussion of the nCmdShow parameter, the nCmdShow value is ignored in the
first call to ShowWindow if the program that launched the application specifies startup
information in the STARTUPINFO structure. In this case, ShowWindow uses the information
specified in the STARTUPINFO structure to show the window. On subsequent calls, the
application must call ShowWindow with nCmdShow set to SW_SHOWDEFAULT to use the
startup information provided by the program that launched the application. For example, Program
Manager specifies that applications start with a minimized main window. This behavior is
designed for the following situations:

· Applications create their main window by calling CreateWindow with the WS_VISIBLE
flag set.

· Applications create their main window by calling CreateWindow with the WS_VISIBLE
flag cleared, and later call ShowWindow with the SW_SHOW flag set to make it visible.

See AlsoCreateProcess, CreateWindow, ShowOwnedPopups, STARTUPINFO, WinMain

ShowWindowAsync
[Now Supported on Windows NT]

The ShowWindowAsync function sets the show state of a window created by a different thread.

BOOL ShowWindowAsync(
HWND hWnd, // handle of window
int nCmdShow // show state of window

);ParametershWnd
Identifies the window.

nCmdShow
Specifies how the window is to be shown. For a list of possible values, see the description of
the ShowWindow function.

Return ValuesIf the window was previously visible, the return value is nonzero.

If the window was previously hidden, the return value is zero.RemarksThis function posts a show-window event to the message queue of the given window. An
application can use this function to avoid becoming hung while waiting for a hung application to
finish processing a show-window event.See AlsoShowWindow

SignalObjectAndWait
[New - Windows NT]

The SignalObjectAndWait function allows the caller to atomically signal an object and wait on
another object.

BOOL SignalObjectAndWait(
HANDLE hObjectToSignal, // handle of object to signal
HANDLE hObjectToWaitOn, // handle of object to wait for
DWORD dwMilliseconds, // time-out interval in milliseconds
BOOL bAlertable // alertable flag

);ParametershObjectToSignal
Specifies the handle to the object to signal. This object can be a semaphore, a mutex, or an
event. If the handle is a semaphore, SEMAPHORE_MODIFY_STATE access is required. If
the handle is an event, EVENT_MODIFY_STATE access is required. If the handle is a mutex,
SYNCHRONIZE access is assumed, because only the owner of a mutex may release it. For
more information, see Interprocess Synchronization Objects.

hObjectToWaitOn
Specifies the handle of the object to wait for. For a list of the object types whose handles you
can specify, see the Remarks section later in this topic.

dwMilliseconds
Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the object's state is nonsignaled and no completion or asynchronous procedure call
(APC) objects are queued. If dwMilliseconds is zero, the function tests the object's state,
checks for queued completion routines or APCs, and returns immediately. If dwMilliseconds is
INFINITE, the function's time-out interval never elapses.

bAlertable
Specifies whether the function returns when the system queues an I/O completion routine or
an APC for the calling thread. If TRUE, the function returns, and the thread calls the
completion routine or APC function. If FALSE, the function does not return, and the thread
does not call the completion routine or APC function.

Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.

Upon success, the return value is one of the following values:

Value Meaning

WAIT_ABANDONED The specified object is a mutex object
that was not released by the thread that
owned the mutex object before the
owning thread terminated. Ownership
of the mutex object is granted to the
calling thread, and the mutex is set to
nonsignaled.

WAIT_IO_COMPLETION One or more I/O completion routines or
user-mode APCs are queued for
execution.

WAIT_OBJECT_0 The state of the specified object is
signaled.

WAIT_TIMEOUT The time-out interval elapsed, and the
object's state is nonsignaled.

RemarksA completion routine is queued for execution when the ReadFileEx or WriteFileEx function in
which it was specified has been completed. The wait function returns and the completion routine
is executed only if bAlertable is TRUE, and the calling thread is the thread that initiated the read or
write operation.
The SignalObjectAndWait function can wait for the following objects:
Object Description
Change notification The FindFirstChangeNotification function

returns the handle. The state of a change
notification object is set to signaled when a
specified change occurs within a specified
directory or directory tree.

Console input The handle is returned by the CreateFile
function when the CONIN$ value is specified,
or by the GetStdHandle function. The state of
the object is set to signaled when there is
unread input in the console's input buffer, and
nonsignaled when the input buffer is empty.

Event The CreateEvent or OpenEvent function
returns the handle. The state of an event object
is set explicitly to signaled by the SetEvent or
PulseEvent function. The state of a manual-
reset event object must be reset explicitly to
nonsignaled by the ResetEvent function. For
an auto-reset event object, the wait function
resets the object state to nonsignaled before
returning. Event objects are also used in
overlapped operations, in which the state is set
by the system.

Mutex The CreateMutex or OpenMutex function
returns the handle. The state of a mutex object
is signaled when it is not owned by any thread.
The wait function requests ownership of the
mutex for the calling thread, changing the
mutex state to nonsignaled when ownership is
granted.

Process The CreateProcess or OpenProcess function
returns the handle. The state of a process
object is signaled when the process
terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore
object maintains a count between zero and the
maximum count specified during its creation.
Its state is set to signaled when its count is
greater than zero, and nonsignaled when its
count is zero. If the current state of the
semaphore is signaled, the wait function
decreases the count by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. The state of a thread object is signaled
when the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the
handle. Activate the timer by calling the
SetWaitableTimer function. The state of an
active timer is signaled when it reaches its due
time. Deactivate the timer by calling the
CancelWaitableTimer function.

You have to be careful when using the wait functions and DDE. If a thread creates any
windows, it must process messages. DDE sends messages to all windows in the system. If
you have a thread that uses a wait function with no time-out interval, the system will
deadlock. Therefore, if you have a thread that creates windows, use
MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than
SignalObjectAndWait.See AlsoCancelWaitableTimer, CreateEvent, CreateMutex, CreateProcess, CreateThread,
CreateRemoteThread, CreateSemaphore, CreateWaitableTimer,
FindFirstChangeNotification, MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx,

OpenEvent, OpenMutex, OpenProcess, OpenSemaphore, OpenWaitableTimer, PulseEvent,
ReadFileEx, ResetEvent, SetEvent, SetWaitableTimer, WriteFileEx

SizeofResource
The SizeofResource function returns the size, in bytes, of the specified resource.

DWORD SizeofResource(
HMODULE hModule, // resource-module handle
HRSRC hResInfo // resource handle

);ParametershModule
Identifies the module whose executable file contains the resource.

hResInfo
Identifies the resource. This handle must be created by using the FindResource or
FindResourceEx function.

Return ValuesIf the function succeeds, the return value is the number of bytes in the resource.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe value returned may be larger than the actual resource because of alignment. An application
should not rely upon this value for the exact size of a resource.See AlsoFindResource, FindResourceEx, LoadResource, LockResource

Sleep
The Sleep function suspends the execution of the current thread for a specified interval.

VOID Sleep(
DWORD dwMilliseconds // sleep time in milliseconds

);ParametersdwMilliseconds
Specifies the time, in milliseconds, for which to suspend execution. A value of zero causes the
thread to relinquish the remainder of its time slice to any other thread of equal priority that is
ready to run. If there are no other threads of equal priority ready to run, the function returns
immediately, and the thread continues execution. A value of INFINITE causes an infinite
delay.

Return ValuesThis function does not return a value.RemarksA thread can relinquish the remainder of its time slice by calling this function with a sleep time of
zero milliseconds.

You have to be careful when using Sleep and DDE. If a thread creates any windows, it must
process messages. DDE sends messages to all windows in the system. If you have a thread that
uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have a
thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than Sleep.See AlsoMsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, SleepEx

SleepEx
The SleepEx function causes the current thread to enter a wait state until one of the following
occurs:

· An I/O completion callback function is called
· An asynchronous procedure call (APC) is queued to the thread.
· The time-out interval elapses
DWORD SleepEx(
DWORD dwMilliseconds, // time-out interval in milliseconds
BOOL bAlertable // early completion flag

);ParametersdwMilliseconds
Specifies the time, in milliseconds, that the delay is to occur. A value of zero causes the
function to return immediately. A value of INFINITE causes an infinite delay.

bAlertable
Specifies whether the function may terminate early due to an I/O completion callback function
or an APC. If bAlertable is FALSE, the function does not return until the time-out period has
elapsed. If an I/O completion callback occurs, the function does not return and the I/O
completion function is not executed. If an APC is queued to the thread, the function does not
return and the APC function is not executed.
If bAlertable is TRUE and the thread that called this function is the same thread that called the
extended I/O function (ReadFileEx or WriteFileEx), the function returns when either the time-
out period has elapsed or when an I/O completion callback function occurs. If an I/O
completion callback occurs, the I/O completion function is called. If an APC is queued to the
thread (QueueUserAPC), the function returns when either the timer-out period has elapsed or
when the APC function is called.

Return ValuesThe return value is zero if the specified time interval expired.

The return value is WAIT_IO_COMPLETION if the function returned due to one or more I/O
completion callback functions. This can happen only if bAlertable is TRUE, and if the thread that
called the SleepEx function is the same thread that called the extended I/O function.RemarksThis function can be used with the ReadFileEx or WriteFileEx functions to suspend a thread until
an I/O operation has been completed. These functions specify a completion routine that is to be
executed when the I/O operation has been completed. For the completion routine to be executed,
the thread that called the I/O function must be in an alertable wait state when the completion
callback function occurs. A thread goes into an alertable wait state by calling either SleepEx,
MsgWaitForMultipleObjectsEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx, with
the function's bAlertable parameter set to TRUE.

A thread can relinquish the remainder of its time slice by calling this function with a sleep time of
zero milliseconds.

You have to be careful when using SleepEx and DDE. If a thread creates any windows, it must
process messages. DDE sends messages to all windows in the system. If you have a thread that
uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have a
thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than SleepEx.See AlsoMsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx, QueueUserAPC, ReadFileEx,
Sleep, WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

SnmpExtensionInit
The extensible agent calls the SnmpExtensionInit function in the extension agent DLL to perform
bilateral initialization of both the extension and the extensible agents.

BOOL SnmpExtensionInit(
DWORD dwTimeZeroReference,
HANDLE *hPollForTrapEvent,
AsnObjectIdentifier *supportedView

);ParametersdwTimeZeroReference
[in] Specifies a time-zero reference for the extension agent.

hPollForTrapEvent
[out] Points to an event handle that will indicate that there are traps available when the
extensible agent polls the SnmpExtensionTrap function entry point.

supportedView
[out] Points to an object identifier variable structure that specifies the MIB subtree that the
extension agent supports.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.RemarksThe dwTimeZeroReference parameter allows all extension agents to report time information from
the same reference point. The extension agent can compute elapsed time by subtracting
dwTimeZeroReference from the value returned by the GetCurrentTime function. This time
reference is necessary to implement traps and initiate some MIB variables.

An extension agent notifies the extensible agent that it needs to send a trap by setting the state of
the hPollForTrapEvent parameter that is passed back during the SnmpExtensionInit entry point
to signaled. Once this event has been set to the signaled state, the extensible agent repeatedly
calls the extension agent's SnmpExtensionTrap entry point until it returns a value of FALSE. This
indicates that the extension agent has no more traps to send. An extension agent application
typically creates the hPollForTrapEvent event handle with the CreateEvent function during
initialization. It typically sets hPollForTrapEvent to the signaled state with the SetEvent function.

If the extension agent does not generate traps, the hPollForTrapEvent parameter should return a
value of NULL.See AlsoSnmpExtensionTrap, GetCurrentTime, CreateEvent, SetEvent

SnmpExtensionInitEx
The SnmpExtensionInitEx function identifies any additional management information base (MIB)
subtrees the extension agent supports. The extensible agent calls the SnmpExtensionInitEx
function in the extension agent DLL during the extensible agent's service startup.

BOOL SnmpExtensionInitEx(
AsnObjectIdentifier *supportedView // pointer to next MIB subtree

);ParameterssupportedView
[out] Pointer to an AsnObjectIdentifier structure that specifies the next MIB subtree that the
extension agent supports.

Return ValuesIf the supportedView parameter has been initialized with an additional MIB subtree, the return
value is TRUE.

If there are no more MIB subtrees to register, the return value is FALSE.RemarksThe extensible agent repeatedly calls the SnmpExtensionInitEx function entry point so extension
agents can register support for additional MIB subtrees. The extension agent must keep track of
which MIB subtrees have already been registered.See AlsoSnmpExtensionInit, AsnObjectIdentifier

SnmpExtensionQuery
The extensible agent calls the SnmpExtensionQuery function in the extension agent DLL to
resolve SNMP requests that contain variables within one or more of the extension agent's
registered MIB subtrees.

BOOL SnmpExtensionQuery(
BYTE requestType,
RFC1157VarBindList *variableBindings,
AsnInteger *errorStatus,
AsnInteger *errorIndex

);ParametersrequestType
[in] Specifies the SNMP request type. This parameter can be one of the following values:

Value Meaning
ASN_RFC1157_GETREQUEST Search and receive a value

from a specified variable.
ASN_RFC1157_GETNEXTREQUESTSearch and receive a value

from a variable without
knowing the name of the
variable.

ASN_RFC1157_SETREQUEST Store a value within a
specific variable.

variableBindings
[in/out] Points to the variable bindings list.

errorStatus
[out] Points to a variable in which the error status result will be returned. This parameter can
be one of the following values:

Value Meaning
SNMP_ERRORSTATUS_NOERROR The agent reports that no

errors occurred during
transmission.

SNMP_ERRORSTATUS_TOOBIG The agent could not place
the results of the
requested operation into a
single SNMP message.

SNMP_ERRORSTATUS_NOSUCHNAMEThe requested operation
identified an unknown
variable.

SNMP_ERRORSTATUS_BADVALUE The requested operation
tried to change a variable
but it specified either a
syntax or value error.

SNMP_ERRORSTATUS_READONLY The requested operation
tried to change a variable
that was not allowed to
change according to the
community profile of the
variable.

SNMP_ERRORSTATUS_GENERR An error other than one of
those listed here occurred
during the requested
operation.

errorIndex
[out] Points to a variable in which the error index result will be returned.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

RemarksWhen the extensible agent must resolve a Get, Get Next, or Set command within the subtree
indicated by the SnmpExtensionInit function, it must call the SnmpExtensionQuery function.
For Get or Set commands, the extension agent must follow the rules in RFC 1157 to either
resolve the variable bindings request or generate an error.

A Get Next command is more complicated to process because the extension agent may not be
able to resolve the requested variable binding. If the variable binding can be resolved, the
extension agent must follow the rules in RFC 1157 to either resolve the variable bindings request
or generate an error. If the extension agent cannot resolve the variable binding, it must change
the name field of the RFC1157VarBind structure to the value following the MIB subtree value
specified in the supportedView parameter of the SnmpExtensionInit function. For example, if the
agent supports view ".1.3.6.1.4.1.77.1", a Get Next command on ".1.3.6.1.4.1.77.1.5.1" would
result in a modified name field of ".1.3.6.1.4.1.77.2". This signals the extensible agent to continue
the attempt to resolve the variable bindings with other extension agents.

It is important to note that the extensible agent and the extension agent may need to exchange
dynamically allocated memory during a call to the SnmpExtensionQuery function. The extensible
agent dynamically allocates the object identifier in each RFC1157VarBind structure it passes to
the extension agent. However, the extension agent must release this memory in order to replace
the object identifier when it processes a Get Next request. The extension agent allocates dynamic
memory for variable-length object types. The extensible agent needs to release this memory after
the object is placed in the response.

In order to avoid heap corruption and memory leaks, both the extensible agent and the extension
agent must use memory allocation routines that resolve to the same heap. Extension agents
should use the SnmpUtilMemAlloc function to allocate memory and the SnmpUtilMemFree
function to release memory. These functions are located in the utility dynamic-link library
SNMPAPI.DLL.See AlsoRFC1157VarBind, SnmpExtensionInit, SnmpUtilMemAlloc, SnmpUtilMemFree

SnmpExtensionTrap
The extensible agent calls the SnmpExtensionTrap function in the extension agent DLL to
retrieve traps generated by the extension agent.

BOOL SnmpExtensionTrap(

AsnObjectIdentifier *enterprise,
// Generating enterprise

AsnInteger *genericTrap, // Generating trap type
AsnInteger *specificTrap, // Enterprise specific type
AsnTimeticks *timeStamp, // Time stamp
RFC1157VarBindList *variableBindings // Variable bindings

);
Parametersenterprise

[out] Points to an object identifier that indicates the originating object generating the trap. The
extensible agent does not free the memory for this variable.

genericTrap

[out] Points to an indication of the generic trap. This parameter can be one of the following
values:

Value Meaning
SNMP_GENERICTRAP_COLDSTART The agent is initializing

protocol entities on the
managed mode. It may
alter objects in its view.

SNMP_GENERICTRAP_WARMSTART The agent is re-
initializing itself but will
not alter objects within its
view.

SNMP_GENERICTRAP_LINKDOWN An attached interface has
changed from the up
state to the down state.
The first variable
identifies the interface.

SNMP_GENERICTRAP_LINKUP An attached interface has
changed from the down
state to the up state. The
first variable identifies the
interface.

SNMP_GENERICTRAP_AUTHFAILURE An SNMP entity has sent
an SNMP message, but
has falsely claimed to
belong to a known
community.

SNMP_GENERICTRAP_EGPNEIGHLOSSAn EGP peer has
changed to the down
state. The first variable
identifies the IP address
of the EGP peer.

SNMP_GENERICTRAP_ENTERSPECIFICSignals an extraordinary
event that is identified in
the specific-trap
parameter.

specificTrap

[out] Points to an indication of the specific trap generated.
timeStamp

[out] Points to a variable to receive the time stamp.
variableBindings

[out] Points to the variable bindings list. The memory for the list will be allocated by the
extension agent. The extensible agent will free the memory with a call to the
SnmpUtilVarBindListFree function.Return ValuesIf the SnmpExtensionTrap function returns a trap in its parameters, the return value is TRUE.

Otherwise, the extensible agent repeatedly calls the function until it returns a value of FALSE.RemarksThe extensible agent repeatedly calls the SnmpExtensionTrap function once the
hPollForTrapEvent event handle of the SnmpExtensionInit function has been set to the signaled
state. Each successful call returns data from a single trap. It returns FALSE to indicate that its
parameters do not represent valid trap data and to stop the extensible agent's repeated calls.

The extension agent must not free the memory for the variableBindings parameter. The extensible
agent automatically performs this action. Use the SnmpUtilMemAlloc function to allocate
memory for each RFC1157VarBind structure.

It is important to note that earlier documentation stated that the extension agent should
dynamically allocate memory for the enterprise object identifier because the extensible agent
would attempt to release the memory after sending a trap. The extensible agent will not release
the memory associated with the enterprise object identifier. The recommendation is that you
return a pointer to a static AsnObjectIdentifier structure instead.See AlsoSetEvent, SnmpUtilMemAlloc, SnmpUtilVarBindListFree, RFC1157VarBindList,
SnmpExtensionInit

SnmpMgrClose
The SnmpMgrClose function closes communications sockets and data structures associated with
the specified session.

BOOL SnmpMgrClose(

LPSNMP_MGR_SESSION session
// SNMP session pointer

);
Parameterssession

[in] Points to an internal structure that specifies the session to close.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. This function may return Windows Sockets Error
codes.See AlsoSnmpMgrOpen, SnmpMgrRequest

SnmpMgrGetTrap
The SnmpMgrGetTrap function returns outstanding trap data that the caller has not received if
trap reception is enabled.

BOOL SnmpMgrGetTrap(

AsnObjectIdentifier *enterprise,
// generating enterprise

AsnNetworkAddress *IPAddress, // generating IP address
AsnInteger *genericTrap, // generic trap type
AsnInteger *specificTrap, // enterprise-specific type
AsnTimeticks *timeStamp, // time stamp
RFC1157VarBindList *variableBindings // variable bindings

);
Parametersenterprise

[out] Points to an object identifier that specifies the enterprise that generated the SNMP trap.
IPAddress

[out] Points to the IP address of the enterprise that generated the SNMP trap.
genericTrap

[out] Points to an indicator of the generic trap. This parameter can be one of the following
values:

Value Meaning
SNMP_GENERICTRAP_COLDSTART The agent is initializing

protocol entities on the
managed mode. It may alter
objects in its view.

SNMP_GENERICTRAP_WARMSTART The agent is re-initializing
itself but it will not alter
objects in its view.

SNMP_GENERICTRAP_LINKDOWN An attached interface has
changed from the up state
to the down state. The first
variable in the variable
bindings list identifies the
interface.

SNMP_GENERICTRAP_LINKUP An attached interface has
changed from the down
state to the up state. The
first variable in the variable
bindings list identifies the
interface.

SNMP_GENERICTRAP_AUTHFAILURE An SNMP entity has sent an
SNMP message, but it has
falsely claimed to belong to
a known community.

SNMP_GENERICTRAP_EGPNEIGHLOSSAn EGP peer has changed
to the down state. The first
variable in the variable
bindings list identifies the IP
address of the EGP peer.

SNMP_GENERICTRAP_ENTERSPECIFICAn extraordinary event has
occurred and it is identified
in the specificTrap
parameter with an
enterprise-specific value.

specificTrap

[out] Points to an indication of the specific trap generated.
timeStamp

[out] Points to a variable to receive the time stamp.
variableBindings

[out] Points to the variable bindings list.Return ValuesIf the function returns a trap, the return value is TRUE.

You should call the SnmpMgrGetTrap function repeatedly until GetLastError returns a value of
FALSE. GetLastError may also return the following error codes:

Error Code Meaning

SNMP_MGMTAPI_TRAP_ERRORS Indicates errors were
encountered; traps are not
accessible.

SNMP_MGMTAPI_NOTRAPS Indicates no traps are
available.

SNMP_MEM_ALLOC_ERROR Indicates a memory allocation
error.

RemarksYou must allocate memory for the list member of the RFC1157VarBindList structure with the
SnmpUtilMemAlloc function but you do not need to free it.

Once an operating system completes a task, it sends a trap signal. An internal SNMP signal
checks for the trap signal to notify the SNMP manager of the completed task. The event that the
phTrapAvailable parameter of the SnmpMgrTrapListen function points to allows event-driven
acquisition of SNMP traps. You can ignore the trap and poll the SnmpMgrGetTrap function for
traps at regular intervals instead.

Another method to acquire traps is to create a thread to wait on the event using the
WaitForSingleObject function. When the event occurs, the thread should clear the event using
the ResetEvent function. Then the thread should repeatedly call SnmpMgrGetTrap until it
returns a value of FALSE.

Always call the SnmpMgrTrapListen function before calling SnmpMgrGetTrap to receive traps.
If an SNMP manager application calls SnmpMgrGetTrap first to receive traps, it returns a value
of FALSE, even if there are traps available. If the application calls GetLastError before calling
SnmpMgrTrapListen, GetLastError returns the error code SNMP_MGMTAPI_TRAP_ERRORS.See AlsoSnmpMgrTrapListen, SnmpUtilMemAlloc, WaitForSingleObject, RFC1157VarBindList,
ResetEvent

SnmpMgrOidToStr
The SnmpMgrStrToOid function converts an internal object identifier to a string object identifier
or object descriptor representation.

BOOL SnmpMgrOidToStr(

AsnObjectIdentifier *oid,
// object identifier to convert

LPSTR *string // string object identifier representation
);
Parametersoid

[in] Points to an object identifier variable to be converted.
string

[out] Points to a null-terminated string that will receive the converted value.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. This function may return Windows Sockets error
codes.RemarksThis function looks for the file MIB.BIN. If it does not find the file, it generates an error.See AlsoSnmpMgrStrToOid

SnmpMgrOpen
The SnmpMgrOpen function initializes communications sockets and data structures, allowing
communications with the specified agent.

LPSNMP_MGR_SESSION SnmpMgrOpen(

LPSTR lpAgentAddress,
// name and address of target SNMP agent

LPSTR lpAgentCommunity, // community for target SNMP agent
INT nTimeOut, // communication time-out in milliseconds
INT nRetries // communication time-out or retry count

);
ParameterslpAgentAddress

[in] Points to a null-terminated string specifying either a dotted-decimal IP address or a host
name that can be resolved to an IP address, an IPX address (in 8.12 notation), or an ethernet
address.

lpAgentCommunity

[in] Points to a null-terminated string specifying the SNMP community name used when
communicating with the agent specified in the lpAgentAddress parameter.

nTimeOut

[in] Specifies the communications time-out in milliseconds.
nRetries

[in] Specifies the communications retry count. The time-out specified in the nTimeOut
parameter is doubled each time a retry attempt is transmitted.Return ValuesIf the function succeeds, the return value is a pointer to an LPSNMP_MGR_SESSION structure.

This structure is used internally and the programmer should not alter it.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError. GetLastError may return the SNMP_MEM_ALLOC_ERROR error code, which
indicates a memory allocation error.

This function may also return Windows Sockets error codes.

The name and address of the SNMP target, or the string pointed to by the lpAgentAddress
parameter, should conform to one of the following forms:

Name/Address Form (example)

IP Address 157.57.8.160
IP Hostname merlin.microsoft.com
Ethernet Address 00aa00bbccdd
IPX Address 00006112.00aa00bbccdd
RemarksNames can be provided for agents only if TCP/IP is loaded and the names are TCP/IP host

names. NetBIOS names cannot be supplied for IPX hosts.See AlsoSnmpMgrClose, SnmpMgrRequest

SnmpMgrRequest
The SnmpMgrRequest function requests the specified operation be performed with the specified
agent.

SNMPAPI SnmpMgrRequest(

LPSNMP_MGR_SESSION session,
// SNMP session pointer

BYTE requestType, // Get, GetNext, or Set
RFC1157VarBindList *variableBindings, // variable bindings
AsnInteger *errorStatus, // result error status
AsnInteger *errorIndex // result error index

);
Parameterssession

[in] Points to an internal structure that specifies the session that will perform the request.
requestType

[in] Specifies the SNMP request type. This parameter can be one of the following values:
Value Meaning
ASN_RFC1157_GETREQUEST Search and receive a value

from a specified variable.
ASN_RFC1157_GETNEXTREQUESTSearch and receive a value

from a variable without
knowing the name of the
variable.

ASN_RFC1157_SETREQUEST Store a value within a
specific variable.

variableBindings

[in/out] Points to the variable bindings list.
errorStatus

[out] Points to a variable in which the error status result will be returned. This parameter can
be one of the following values:

Value Meaning
SNMP_ERRORSTATUS_NOERROR The agent reports that no

errors occurred during
transmission.

SNMP_ERRORSTATUS_TOOBIG The agent could not place
the results of the
requested operation into a
single SNMP message.

SNMP_ERRORSTATUS_NOSUCHNAMEThe requested operation
identified an unknown
variable.

SNMP_ERRORSTATUS_BADVALUE The requested operation
tried to change a variable
but it specified either a
syntax or value error.

SNMP_ERRORSTATUS_READONLY The requested operation
tried to change a variable
that was not allowed to
change according to the
community profile of the
variable.

SNMP_ERRORSTATUS_GENERR An error other than one of
those listed here occurred

during the requested
operation.

errorIndex

[out] Points to a variable in which the error index result will be returned.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Error Code Meaning

SNMP_MGMTAPI_TIMEOUT The request timed-out
SNMP_MGMTAPI_SELECT_FDERRORS Unexpected error file

descriptors indicated by
the Windows Sockets
select function

RemarksRetries and time-outs are supplied to the SnmpMgrOpen function. Each variable in the variable
bindings list must be initialized to type ASN_NULL for Get and Get Next requests.

For more information, see RFC 1157.See AlsoSnmpMgrOpen, SnmpMgrClose

SnmpMgrStrToOid
The SnmpMgrStrToOid function converts a string object identifier or object descriptor
representation to an internal object identifier.

BOOL SnmpMgrStrToOid(

LPSTR string,
// string object identifier to be converted

AsnObjectIdentifier *oid // object identifier internal representation
);
Parametersstring

[in] Points to a null-terminated string to be converted.
oid

[out] Points to an object identifier variable that will receive the converted value.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. This function does not return Windows Sockets
error codes.RemarksThe SnmpMgrStrToOid function looks for the file MIB.BIN. If the function does not find the file, it
generates an error.

If an application passes a valid object identifier to SnmpMgrStrToOid, yet is unable to obtain the
requested variable, then the syntax of the system group and object identifier is incorrect. This
occurs because SnmpMgrStrToOid assumes that the object identifier is under the Internet MIB of
the management subtree.

You must always precede the object identifier with a period (.) to obtain the correct system group
(for example, ".1.3.6.1.2.1.1"). If an application passes the variable "1.3.6.1.2.1.1",
SnmpMgrStrToOid cannot interpret the object identifier correctly.See AlsoSnmpMgrOidToStr

SnmpMgrTrapListen
The SnmpMgrTrapListen function registers the ability of a manager application to receive SNMP
traps.

BOOL SnmpMgrTrapListen(

HANDLE *phTrapAvailable
// event handle indicating trap(s) available

);
ParametersphTrapAvailable

[out] Points to an event handle that will be used to indicate that there are traps available, and
that the application should call the SnmpMgrGetTrap function.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError. GetLastError may return any of the following error codes:

Error Code Description

SNMP_MEM_ALLOC_ERROR Indicates a memory allocation
error.

SNMP_MGMTAPI_TRAP_DUPINIT Indicates that this function has
already been called.

SNMP_MGMTAPI_AGAIN Indicates an error occurred;
the application can attempt to
call the function again.

This function may return other system errors as well.RemarksIt is important to note that the SnmpMgrTrapListen function succeeds on Windows NT 4.0 only if
the SNMP Trap Service has been started. See Turning SNMP On and Off for additional
information.

The event that the phTrapAvailable parameter points to allows event-driven acquisition of SNMP
traps. If you call the SnmpMgrTrapListen function first, you can ignore the event handle and poll
the SnmpMgrGetTrap function for traps at regular intervals instead.

Another method to acquire traps is to create a thread to wait on the event using the
WaitForSingleObject function. When the call initiates an event, the thread should clear the event
using the ResetEvent function. Then the thread should repeatedly call the SnmpMgrGetTrap
function until it returns a value of FALSE.

Always call the SnmpMgrTrapListen function before calling SnmpMgrGetTrap to receive traps.
If an SNMP manager application calls SnmpMgrGetTrap first to receive traps, it returns a value
of FALSE, even if there are traps available. If the application calls GetLastError before calling
SnmpMgrTrapListen, GetLastError returns the error code SNMP_MGMTAPI_TRAP_ERRORS.See AlsoSnmpMgrGetTrap, WaitForSingleObject, ResetEvent

SnmpUtilMemAlloc
The SnmpUtilMemAlloc function allocates dynamic memory from the process heap.

LPVOID SnmpUtilMemAlloc(

UINT Size
// bytes to allocate

);
ParametersSize

[in] The number of bytes to allocate for the memory object.Return ValuesIf the function succeeds, the return value is a pointer to the newly allocated memory object.

If the function fails, the return value is NULL.RemarksUse the SnmpUtilMemFree function to release memory that the SnmpUtilMemAlloc function
allocates.See AlsoSnmpUtilMemFree, SnmpUtilMemReAlloc

SnmpUtilMemFree
The SnmpUtilMemFree function frees the specified memory object.

VOID SnmpUtilMemFree(

LPVOID Addr
// pointer to memory object

);
ParametersAddr

[in/out] Pointer to the memory object to be released.Return ValuesNone.RemarksUse the SnmpUtilMemAlloc function to allocate memory.See AlsoSnmpUtilMemAlloc, SnmpUtilMemReAlloc

SnmpUtilMemReAlloc
The SnmpUtilMemReAlloc function changes the size of the specified memory object.

LPVOID SnmpUtilMemReAlloc(

LPVOID Addr,
// pointer to memory object

UINT Size // bytes to allocate
);
ParametersAddr

[in] Pointer to the memory object to be resized.
Size

[in] The number of bytes to allocate for the new memory object.Return ValuesIf the function succeeds, the return value is a pointer to the newly allocated memory object.

If the function fails, the return value is NULL.RemarksUse the SnmpUtilMemFree function to release memory that the SnmpUtilMemReAlloc function
allocates.See AlsoSnmpUtilMemAlloc, SnmpUtilMemFree

SnmpUtilOidAppend
The SnmpUtilOidAppend function appends the source object identifier to the destination object
identifier.

SNMPAPI SnmpUtilOidAppend(

AsnObjectIdentifier *DestObjId,
// destination object identifier

AsnObjectIdentifier *SrcObjId // source object identifier
);
ParametersDestObjId

[in/out] Points to an AsnObjectIdentifier structure to receive the copy.
SrcObjId

[in] Points to an AsnObjectIdentifier structure to append.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. This function does not generate Windows Sockets
errors. The application should call the GetLastError function. GetLastError may return the
following error codes:

Error Code Description

SNMP_BERAPI_OVERFLOW Indicates an overflow condition
SNMP_MEM_ALLOC_ERROR Indicates a memory allocation

error
RemarksThe SnmpUtilOidAppend function calls the SnmpUtilMemReAlloc function. The

SnmpUtilMemReAlloc function expands the buffer for the destination object identifier.

Use the SnmpUtilOidFree function to free memory that the SnmpUtilOidAppend function
allocates for the destination.See AlsoSnmpUtilMemReAlloc, SnmpUtilOidFree

SnmpUtilOidCmp
The SnmpUtilOidCmp function compares two object identifiers.

SNMPAPI SnmpUtilOidCmp(

AsnObjectIdentifier *ObjIdA,
// first object identifier

AsnObjectIdentifier *ObjIdB // second object identifier
);
ParametersObjIdA

[in] Points to an AsnObjectIdentifier structure to compare.
ObjIdB

[in] Points to an AsnObjectIdentifier structure to compare.Return ValuesThe function returns a value greater than zero if ObjIdA is greater than ObjIdB, zero if ObjIdA
equals ObjIdB, and less than zero if ObjIdA is less than ObjIdB.RemarksThe SnmpUtilOidCmp function calls the SnmpUtilOidNCmp function.See AlsoSnmpUtilOidNCmp

SnmpUtilOidCpy
The SnmpUtilOidCpy function copies the variable pointed to by the SrcObjId parameter to the
DestObjId parameter, allocating any necessary memory for the destination's copy.

SNMPAPI SnmpUtilOidCpy(

AsnObjectIdentifier *DestObjId,
// destination object identifier

AsnObjectIdentifier *SrcObjId // source object identifier
);
ParametersDestObjId

[out] Points to an AsnObjectIdentifier structure to receive the copy.
SrcObjId

[in] Points to an AsnObjectIdentifier structure to copy.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.RemarksThe application can free memory that the SnmpUtilOidCpy function allocates for the destination
with the SnmpUtilOidFree function.See AlsoSnmpUtilOidFree

SnmpUtilOidFree
The SnmpUtilOidFree function frees any allocated data associated with the object identifier.

VOID SnmpUtilOidFree(

AsnObjectIdentifier *Obj
// object identifier to free

);
ParametersObj

[in/out] Points to an AsnObjectIdentifier structure whose allocated data should be freed.Return ValuesNo return value.See AlsoSnmpUtilOidAppend

SnmpUtilOidNCmp
The SnmpUtilOidNCmp function compares two object identifier variables up to the length
specified by the Len parameter.

SNMPAPI SnmpUtilOidNCmp(

AsnObjectIdentifier *ObjIdA,
// first object identifier

AsnObjectIdentifier *ObjIdB, // second object identifier
UINT Len // maximum length to compare

);
ParametersObjIdA

[in] Points to an AsnObjectIdentifier structure to compare.
ObjIdB

[in] Points to an AsnObjectIdentifier structure to compare.
Len

[in] Indicates the number of subidentifiers to compare.Return ValuesThe function returns a value greater than zero if ObjIdA is greater than ObjIdB, zero if ObjIdA
equals ObjIdB, and less than zero if ObjIdA is less than ObjIdB.See AlsoSnmpUtilOidCmp

SnmpUtilPrintAsnAny
The SnmpUtilPrintAsnAny function prints the value of the Any parameter to the standard output.

VOID SnmpUtilPrintAsnAny(

AsnAny *Any
);
ParametersAny

[in] Points to an AsnAny structure for a value to print.Return ValuesNo return value.RemarksUse the SnmpUtilPrintAsnAny function for debugging and development purposes. This function
does not generally print the data in a form that a manager application would typically need.See AlsoAsnAny

SnmpUtilVarBindCpy
The SnmpUtilVarBindCpy function copies the RFC1157VarBind structure, and allocates any
memory necessary for the destination structure.

SNMPAPI SnmpUtilVarBindCpy(

RFC1157VarBind *dst,
// destination variable bindings

RFC1157VarBind *src // source variable bindings
);
Parametersdst

[out] Points to an RFC1157VarBind structure to receive the copy.
src

[in] Points to an RFC1157VarBind structure to copy.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.RemarksUse the SnmpUtilVarBindFree function to free memory that the SnmpUtilVarBindCpy function
allocates for the destination.See AlsoRFC1157VarBind, SnmpUtilVarBindFree

SnmpUtilVarBindListCpy
The SnmpUtilVarBindListCpy function copies the RFC1157VarBindList structure, and allocates
any necessary memory for the destination's copy.

SNMPAPI SnmpUtilVarBindListCpy(

RFC1157VarBindList *dst,
// destination variable bindings list

RFC1157VarBindList *src // source variable bindings list
);
Parametersdst

[out] Points to an RFC1157VarBindList structure to receive the copy.
src

[in] Points to an RFC1157VarBindList structure to copy.Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.RemarksUse the SnmpUtilVarBindListFree function to free memory that the SnmpUtilVarBindListCpy
function allocates for the destination.See AlsoRFC1157VarBindList, SnmpUtilVarBindListFree, SnmpUtilOidCpy

SnmpUtilVarBindFree
The SnmpUtilVarBindFree function frees any allocated data associated with an
RFC1157VarBind structure.

VOID SnmpUtilVarBindFree(

RFC1157VarBind *VarBind
// variable binding to free

);
ParametersVarBind

[in/out] Points to an RFC1157VarBind structure whose allocated data should be freed.Return ValuesNo return value.See AlsoRFC1157VarBind, SnmpUtilVarBindListFree

SnmpUtilVarBindListFree
The SnmpUtilVarBindListFree function frees any allocated data associated with an
RFC1157VarBindList structure.

VOID SnmpUtilVarBindListFree(

RFC1157VarBindList *VarBindList
// variable bindings list to free

);
ParametersVarBindList

[in/out] Points to an RFC1157VarBindList structure whose allocated data should be freed.Return ValuesNo return value.See AlsoRFC1157VarBindList, SnmpUtilVarBindFree

SOBailOut
Allows the file parser to return an error condition.

The parser should return from the VwReadStreamFunc function as soon as possible after this
function is called.

VOID SOBailOut(

WORD wError,
HPROC reserved

);
ParameterswError

Error flag. This parameter can be one of these values:
SOERROR_BADFILE Invalid file format
SOERROR_EOF Unexpected end of file (EOF)
SOERROR_GENERALUnspecified error

reserved

Reserved; do not use.Return ValuesNone.

SOBeginTable
Starts a table definition, indicating that the text in subsequent output calls is part of a table.

This function must be called between paragraphs and before row and cell formats are specified.

VOID SOBeginTable(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndColumnInfo
Ends the definition of column information.

The file parser must call this function immediately after setting the column information. This
function can only be called from the VwStreamSection function.

VOID SOEndColumnInfo(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndFieldInfo
Ends the definition of field information.

The file parser must have previously called the SOStartFieldInfo function.

The file parser calls this function immediately after setting the field information. This function can
only be called from the VwStreamSection function.

VOID SOEndFieldInfo(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndFontTable
Ends the definition of a font table.

The file parser must call this function immediately after setting font entries. This function can only
be called from the VwStreamSection function.

VOID SOEndFontTable(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndPalette
Ends the definition of a color palette.

The file parser calls this function immediately after specifying the last palette entry.

VOID SOEndPalette(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndTable
Ends a table definition, indicating that the text in subsequent output calls is no longer part of a
table.

The function must be called after a row break.

VOID SOEndTable(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOEndTabStops
Ends the definition of tabs stops for a paragraph.

To set tab stops, use the SOPutTabStop function.

The file parser calls this function immediately after setting the last tab stop for the paragraph.

VOID SOEndTabStops(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOGetInfo
Retrieves information about a spreadsheet.

VOID SOGetInfo(

WORD wInfo,
void VWPTR *pInfo,
HPROC reserved

);
ParameterswInfo

Information type. If this parameter is the SOINFO_COLUMNRANGE value, the function
retrieves the range of columns for a spreadsheet to read.

pInfo

Address of a 32-bit variable that receives the first column number in the low-order word and
the second column number in the high-order word.

reserved

Reserved; do not use.Return ValuesNone.

SOGetScanLineBuffer
Retrieves the address of the buffer for storing the current scan line.

This function is called from the VwStreamReadFunc function for each scan line produced.

This function sets the variable pointed to by ppScanLineData to the address where the scan line
data should be built.

WORD SOGetScanLineBuffer(

VOID VWPTR *ppScanLineData,
HPROC reserved

);
ParametersppScanLineData

Address of the variable that receives the address of the scan line data buffer.
reserved

Reserved; do not use.Return ValuesReturns the size, in bytes, of the scan line data buffer. The size is the maximum number of bytes
that may be accessed using the returned address and is guaranteed to be sufficient to hold a scan
line as wide as the entire tile.

SOPutBitmapHeader
Outputs information about a bitmap.

VOID SOPutBitmapHeader(

PSOBITMAPHEADER pBitmapHeader,
HPROC reserved

);
ParameterspBitmapHeader

Address of the SOBITMAPHEADER structure that contains the bitmap header information.
reserved

Reserved; do not use.Return ValuesNone.

SOPutBreak
Sets a paragraph, cell, record, page, section, or other type of break.

In spreadsheet sections, the last cell in a section must have an associated SO_CELLBREAK
break before the SO_SECTIONBREAK or SO_EOFBREAK break.

In database sections, the last record in a section must have an associated SO_RECORDBREAK
break before the SO_SECTIONBREAK or SO_EOFBREAK break.

In word processing sections, the last paragraph does not need an SO_PARABREAK break before
the SO_SECTIONBREAK or SO_EOFBREAK break.

WORD SOPutBreak(

WORD wType,
DWORD dwInfo,
HPROC reserved

);
ParameterswType

Type of break. This parameter can one of these values:
SO_CELLBREAK Regular cell break
SO_EOFBREAK End of file (EOF) break, which

implies a section break
SO_PARABREAK Regular paragraph break
SO_RECORDBREAK Regular record break
SO_SECTIONBREAK Section break
SO_SUBDOCBEGINBREAK Subdocument's begin break
SO_SUBDOCENDBREAK Subdocument's end break

dwInfo

Data to save for each record. This data is for database section breaks. For all other section
types, this parameter should be zero.
dwInfo is saved after every SOPutBreak function and, like the regular save information,
should represent the next record, not the one just read.

reserved

Reserved; do not use.Return ValuesReturns the SO_STOP value to direct the file parser to stop processing and return or the
SO_CONTINUE value to direct the file parser to continue processing.

SOPutChar
Outputs a character, applying the current font, height, and attributes.

The character is assumed to belong to the character set selected by the open function and is
countable and visible.

VOID SOPutChar(

WORD wCh,
HPROC reserved

);
ParameterswCh

Character value. This parameter must be within the range specified by the current character
set.

reserved

Reserved; do not use.Return ValuesNone.

SOPutCharAttr
Sets the style attributes for characters in text.

VOID SOPutCharAttr(

WORD wAttr,
WORD wState,
HPROC reserved

);
ParameterswAttr

Style attribute type. This parameter can be one of these values:
SO_BOLD Bold
SO_CAPS All capital letters
SO_DOTUNDERLINE Dotted underline
SO_DUNDERLINE Double underline
SO_ITALIC Italic
SO_OUTLINE Outlined rather than solid
SO_SHADOW Shadow slightly beneath and behind
SO_SMALLCAPS Small capital letters
SO_STRIKEOUT Strikeout
SO_SUBSCRIPT Subscript
SO_SUPERSCRIPT Superscript
SO_UNDERLINE Single underline
SO_WORDUNDERLINE Underline

wState

Style attribute state. This parameter can be the SO_ON or SO_OFF value.
reserved

Reserved; do not use.Return ValuesNone.

SOPutCharFontById
Sets the font for characters in text.

VOID SOPutCharFontById(

DWORD dwFontId,
HPROC reserved

);
ParametersdwFontId

Font identifier, relative to the previously given font table.
reserved

Reserved; do not use.Return ValuesNone.

SOPutCharFontByName
Sets the font for characters in text.

VOID SOPutCharFontByName(

WORD wFontType,
WORD pFontName,
HPROC reserved

);
ParameterswFontType

Font family. This parameter can be one of these values:
SO_FAMILYDECORATIVE Fancy display font
SO_FAMILYMODERN Fixed width
SO_FAMILYROMAN Variable width with serifs
SO_FAMILYSCRIPT Handwriting
SO_FAMILYSWISS Variable width without serifs
SO_FAMILYSYMBOL Symbol font
SO_FAMILYUNKNOWN Not known

pFontName

Address of a null-terminated string specifying the name of the font.
reserved

Reserved; do not use.Return ValuesNone.

SOPutCharHeight
Sets the height, in half points, of a character in text.

VOID SOPutCharHeight(

WORD wHeight,
HPROC reserved

);
ParameterswHeight

Height, in half points, of the character.
reserved

Reserved; do not use.Return ValuesNone.

SOPutCharX
Outputs a character, applying the specified character type.

The character is assumed to belong to the character set selected by the open function.

VOID SOPutCharX(

WORD wCh,
WORD wType,
HPROC reserved

);
ParameterswCh

Character value. This parameter must be within the range specified by the current character
set.

wType

Type flag. This parameter can be one or more of these values:
SO_COUNT The character is countable and may be

deleted. Characters without this value are for
display purposes and do not enter into
character count calculations for write back.

SO_HIDDEN The character is not visible on the display.
SO_LIMITEDIT Consecutive characters of this type will be

deleted as a group. No write back command
will begin on one of these characters, but it
may encompass a group of these
characters.

reserved

Reserved; do not use.Return ValuesNone.

SOPutColumnInfo
Sets column information.

The file parser must call the SOStartColumnInfo function before calling this function.

This function can only be called from the VwStreamSection function.

VOID SOPutColumnInfo(

PSOCOLUMN pColumn,
HPROC reserved

);
ParameterspColumn

Address of the SOCOLUMN structure containing the column information.
reserved

Reserved; do not use.Return ValuesNone.

SOPutDataCell
Outputs data for a cell.

VOID SOPutCell(

PSODATACELL pCell,
HPROC reserved

);
ParameterspCell

Address of a SODATACELL structure.
reserved

Reserved; do not use.Return ValuesNone.

SOPutEmbeddedObject
Sets an embedded graphics object.

The file parser must set the SOEMBEDDEDOBJECT structure with the appropriate values.

VOID SOPutEmbeddedObject(

PSOEMBEDDEDOBJECT pObject,
HPROC reserved

);
ParameterspObject

Address of the SOEMBEDDEDOBJECT structure that contains information about the object
to be embedded.

reserved

Reserved; do not use.Return ValuesNone.

SOPutField
Outputs data for a field.

This function is used for all wStorage types except the SO_FIELDTEXTVAR value.

VOID SOPutField(

void VWPTR *pData,
HPROC reserved

);
ParameterspData

Address of the data for the field.
reserved

Reserved; do not use.Return ValuesNone.

SOPutFieldInfo
Sets field information.

The file parser must call the SOStartFieldInfo function before calling this function.

This function can only be called from the VwStreamSection function.

VOID SOPutFieldInfo(

PSOFIELD pField,
HPROC reserved

);
ParameterspField

Address of the SOFIELD structure containing the field information.
reserved

Reserved; do not use.Return ValuesNone.

SOPutFontTableEntry
Sets a font table entry.

The file parser must call the SOStartFontTable function before calling this function.
SOPutFontTableEntry must be called once for each font to be added to the table. Font identifiers
must be unique, but they can be given in any order.

This function can only be called from the VwStreamSection function.

VOID SOPutFontTableEntry(

DWORD dwFontId,
WORD wFontType,
Char VWPTR *pFontName,
HPROC reserved

);
ParametersdwFontId

Font identifier. This parameter can be any number, but it must be unique within the font table.
wFontType

Font family. This parameter can be one of these values:
SO_FAMILYDECORATIVE Fancy display font
SO_FAMILYMODERN Fixed width
SO_FAMILYROMAN Variable width with serifs
SO_FAMILYSCRIPT Handwriting
SO_FAMILYSWISS Variable width without serifs
SO_FAMILYSYMBOL Symbol font
SO_FAMILYUNKNOWN Not known

pFontName

Address of a null-terminated string specifying the name of the font.
reserved

Reserved; do not use.Return ValuesNone.

SOPutHdrEntry
Sets strings for the header information.

This function can only be called from the VwStreamSection function.

VOID SOPutHdrEntry(

char VWPTR *pLabel,
char VWPTR *pData,
WORD wId,
HPROC reserved

);
ParameterspLabel

Label that the display engine should use when presenting this value.
pData

Value to display.
wId

Identifier for this item that the display engine and filter agree upon.
reserved

Reserved; do not use.Return ValuesNone.

SOPutMoreText
Outputs the text for a cell and indicates whether there is more text to be output for the cell.

This function is used to output a sequence of text initially started by using the SOPutText
function.

If there is more text to output, the file parser must use a subsequent call or calls to the
SOPutMoreText function to output the text. The 128 byte limit is for the convenience of the
function processing SOPutMoreText.

VOID SOPutMoreText(

WORD wCount,
char VWPTR *pText,
WORD bMore,
HPROC reserved

);
ParameterswCount

Number of characters pointed to by pText. The number must not exceed 128 bytes.
pText

Address of the string of text characters to output.
bMore

More data flag. This parameter can be the SO_YES value to indicate more text to be output or
the SO_NO value to indicate none.

reserved

Reserved; do not use.Return ValuesNone.

SOPutMoreVarField
Outputs data for a variable field and indicates whether there is more data to be output for the field.

This function can be called any number of times.

If there is more data to output, the file parser must use a subsequent call or calls to
SOPutMoreVarField to output the data. The 128 byte limit is for the convenience of the function
processing SOPutMoreVarField.

This function is used to output a sequence of data initially started using the SOPutVarField
function.

VOID SOPutMoreVarField(

VOID VWPTR *pData,
WORD wCount,
WORD bMore,
HPROC reserved

);
ParameterspData

Address of the data for the field.
wCount

Number of bytes pointed to by pData. The number must not exceed 128 bytes.
bMore

More data flag. This parameter can be the SO_YES value to indicate more data to be output
or the SO_NO value to indicate none.

reserved

Reserved; do not use.Return ValuesNone.

SOPutPaletteEntry
Sets the colors for a palette entry.

The file parser must call the SOStartPalette function before calling this function.

The order of calls to this function determines the order of entries in the color table for an image.
The first palette entry is color 0, the color displayed for pixels with a value of 0; the second palette
entry is color 1; and so on.

VOID SOPutPaletteEntry(

unsigned char Red,
unsigned char Green,
unsigned char Blue,
HPROC reserved

);
ParametersRed

Relative red intensity in the range 0 to 255.
Green

Relative green intensity in the range 0 to 255.
Blue

Relative blue intensity in the range 0 to 255.
reserved

Reserved; do not use.Return ValuesNone.

SOPutParaAlign
Sets the alignment for a paragraph.

VOID SOPutParAlign(

WORD wType,
HPROC reserved

);
ParameterswType

Type of alignment. This parameter can be the SO_ALIGNLEFT, SO_ALIGNRIGHT,
SO_ALIGNCENTER, or SO_ALIGNJUSTIFY value.

reserved

Reserved; do not use.Return ValuesNone.

SOPutParaIndents
Sets indents for a paragraph. Indents are relative to the corresponding left or right margin.

VOID SOPutParaIndents(

LONG dwLeft,
LONG dwRight,
LONG dwFirst,
HPROC reserved

);
ParametersdwLeft

Width, in twips, of the left indent. The indent is measured from the left page margin.
dwRight

Width, in twips, of the right indent. The indent is measured from the right page margin.
dwFirst

Width, in twips, of the left indent for the first line in the paragraph. The indent is measured
from the left page margin.

reserved

Reserved; do not use.Return ValuesNone.

SOPutParaMargins
Sets paragraph margins. The margins are relative to the left or right edge of the page.

VOID SOPutParaMargins(

LONG dwLeft,
LONG dwRight,
HPROC reserved

);
ParametersdwLeft

Width, in twips, of the left margin.
dwRight

Width, in twips, of the right margin.
reserved

Reserved; do not use.Return ValuesNone.

SOPutParaSpacing
Sets the spacing for a paragraph.

VOID SOPutParaSpacing(

WORD wLineHeightType,
DWORD dwLineHeight,
DWORD dwSpaceBefore,
DWORD dwSpaceAfter,
HPROC reserved

);
ParameterswLineHeightType

Type of line height. This parameter can be one of these values:
SO_HEIGHTATLEAST Sets the line height to the height given by

dwLineHeight or sets it to fit the tallest
character in the line, whichever height is
greater.

SO_HEIGHTAUTO Sets the line height automatically to fit the
tallest character in the line.

SO_HEIGHTEXACTLY Sets the line height to the height given by
dwLineHeight.

dwLineHeight

Baseline to baseline height, in twips.
dwSpaceBefore

Space before the paragraph, in twips.
dwSpaceAfter

Space after the paragraph, in twips.
reserved

Reserved; do not use.Return ValuesNone.

SOPutScanLineData
Sets the bit values in a single scan line of a bitmap.

The bitmap format must have been previously defined by using the SOPutBitmapHeader
function.

VOID SOPutScanLineData(

U_BYTE VWPTR *pScanLineData,
HPROC reserved

);
ParameterspScanLineData

Address of the bitmap data for the current scan line.
reserved

Reserved; do not use.Return ValuesNone.

SOPutSectionName
Sets the name of a section.

VOID SOPutSectionName(

char VWPTR *pName,
HPROC reserved

);
ParameterspName

Address of a null-terminated string specifying the name of the section.
reserved

Reserved; do not use.Return ValuesNone.

SOPutSectionType
Outputs a section type.

VOID SOPutSectionType(

WORD wType,
HPROC reserved

);
ParameterswType

Section type. This parameter can be one of these values:
SO_BITMAP Sets the section type to be a bitmap. When

generating output for the section, the file
parser should use only general and bitmap
stream output functions.

SO_CELLS Sets the section type to be a spreadsheet
consisting of cells. When generating output
for the section, the file parser should use
only the general and spreadsheet stream
output functions.

SO_FIELDS Sets the section type to be a database
consisting of fields. When generating output
for the section, the file parser should use
only the general and database stream output
functions.

SO_PARAGRAPHS Sets the section type to be a word
processing document consisting of
paragraphs. When generating output for the
section, the file parser should use only
general and word processing stream output
functions.

SO_VECTOR Sets the section type to be a vector graphics
section consisting of graphics objects. When
generating output for the section, the file
parser should use only the general and
vector graphics stream output functions.

reserved

Reserved; do not use.Return ValuesNone.

SOPutSpecialCharX
Outputs a special character, applying the specified character type.

VOID SOPutSpecialCharX(

WORD wCh,
WORD wType,
HPROC reserved

);
ParameterswCh

Character value. This parameter can be one of these values:
SO_CHDATE Automatic current date
SO_CHHHYPHEN Nonbreaking hyphen
SO_CHHLINE Hard line break
SO_CHHPAGE Hard page break
SO_CHHSPACE Nonbreaking space
SO_CHPAGENUMBER Automatic page number
SO_CHSHYPHEN Hyphen
SO_CHTAB Tab
SO_CHTIME Automatic current time
SO_CHUNKNOWN Default character

wType

Type flag. This parameter can be one or more of these values:
SO_COUNT The character is countable and may be

deleted. Characters without this value are for
display purposes and do not enter into
character count calculations for write back.

SO_HIDDEN The character is not visible on the display.
SO_LIMITEDIT Consecutive characters of this type will be

deleted as a group. No write back command
will begin on one of these characters, but it
may encompass a group of these
characters.

reserved

Reserved; do not use.Return ValuesNone.

SOPutSubdocInfo
Outputs subdocument data.

VOID SOPutSubdocInfo(

WORD wType,
WORD wSubType,
HPROC reserved

);
ParameterswType

Type of data. This parameter can be one of these values:
SO_COMMENT The data is a comment.
SO_FOOTER The data applies to the document footer.
SO_FOOTNOTE The data applies to a footnote.
SO_HEADER The data applies to the document header.

wSubType

Subtype of data. This parameter can be one of these values:
SO_BOTH The data is for a header or footer on both left

and right pages. This value is used with
SO_HEADER or SO_FOOTER.

SO_LEFT The data is for a header or footer on even pages
only. This value is used with SO_HEADER or
SO_FOOTER.

SO_RIGHT The data is for a header or footer on odd pages
only. This value is used with SO_HEADER or
SO_FOOTER.

0 through 65535 The data is a footnote number. This value is
used with SO_FOOTNOTE only.

If wType is SO_COMMENT, no subtype is needed.
reserved

Reserved; do not use.Return ValuesNone.

SOPutTableCellInfo
Sets cell information.

VOID SOPutTableCellInfo(

PSOTABLECELLINFO pCellInfo,
HPROC reserved

);
ParameterspCellInfo

Address of a SOTABLECELLINFO structure containing information about the cell.
reserved

Reserved; do not use.Return ValuesNone.

SOPutTableRowFormat
Sets the format of a row in a table.

VOID SOPutTableRowFormat(

WORD wLeftEdge,
WORD wRowHeight,
WORD wRowHeightType,
WORD wCellMargin,
WORD wRowAlignment,
WORD wNumCells,
HPROC reserved

);
ParameterswLeftEdge

Position, in twips, of the left edge of the table, relative to the left margin.
wRowHeight

Row height, in twips.
wRowHeightType

Type of height for the row. This parameter can be one of these values:
SO_HEIGHTATLEAST Sets the row height at least as high as

that given by wRowHeight.
SO_HEIGHTAUTO Sets the row height automatically to fit

text in the row.
SO_HEIGHTEXACTLY Sets the row height exactly as given by

wRowHeight.

wCellMargin

White space on either side of text in a cell within the specified cell width. It is equal to half the
total white space between adjacent cells.

wRowAlignment

Alignment of row within margins. This parameter can be the SO_ALIGNLEFT,
SO_ALIGNRIGHT, or SO_ALIGNCENTER value.

wNumCells

Number of cells in the row.
reserved

Reserved; do not use.Return ValuesNone.

SOPutTabStop
Sets a tab stop for the paragraph.

The file parser must call the SOStartTabStops function before calling this function and can set
multiple tab stops for a paragraph by calling it multiple times. The file parser must not call any
other output function while setting tab stops and must call the SOEndTabStops function after
setting the last tab stop.

VOID SOPutTabStop(

PSOTAB pTabs,
HPROC reserved

);
ParameterspTabs

Address of the SOTAB structure containing the tab stop information.
reserved

Reserved; do not use.Return ValuesNone.

SOPutTextCell
Outputs the text for a cell and indicates whether there is more text to be output for the cell.

If there is more text to be output, the file parser must use a subsequent call or calls to the
SOPutMoreText function to output the text.

VOID SOPutTextCell(

PSOTEXTCELL pCell,
WORD wCount,
char VWPTR *pText,
HPROC reserved

);
ParameterspCell

Address of a SOTEXTCELL structure.
wCount

Number of characters pointed to by pText. The number must not exceed 128 bytes.
pText

Address of the string of text characters to be output.
bMore

More data flag. This parameter can be the SO_YES value to indicate more text to be output or
the SO_NO value to indicate none.

reserved

Reserved; do not use.Return ValuesNone.

SOPutVarField
Outputs data for a variable field and indicates whether there is more data to be output for the field.

If there is more data to be output, the file parser must use a subsequent call or calls to the
SOPutMoreVarField function to output the data.

VOID SOPutVarField(

void VWPTR *pData,
WORD wCount,
WORD *bMore,
HPROC reserved

);
ParameterspData

Address of the data for the variable field.
wCount

Number of bytes pointed to by pData. The number must not exceed 128 bytes.
bMore

More data flag. This parameter can be the SO_YES value to indicate more data to be output
or the SO_NO value to indicate none.

reserved

Reserved; do not use.Return ValuesNone.

SOPutVectorHeader
Outputs the vector header, specifying the display resolution, x- and y-axis orientation, background
color, and color value type (RGB or palette).

VOID SOPutVectorHeader(

PSOVECTORHEADER pVectorHeader,
HPROC reserved

);
ParameterspVectorHeader

Address of a SOVECTORHEADER structure.
reserved

Reserved; do not use.Return ValuesNone.

SOSetDateBase
Sets the base date. All subsequent dates are calculated as the sum of the base date and the
given date value.

This function can only be called from the VwStreamSection function.

VOID SOSetDataBase(

DWORD dwBase,
WORD wFlags,
HPROC reserved

);
ParametersdwBase

Base number of Julian days to be automatically added to dates. All dates are entered in Julian
day format in the following manner:

Jan. 1, 4713 B.C. Julian Day 1
Jan. 1, 1 A.D. Julian Day 1721424
Jan. 1, 1900 Julian Day 2415021
Jan. 1, 1904 Julian Day 2416481

Formats supporting dates before 1582 are not supported.
wFlags

Action flag. This parameter can be the SO_LOTUSHELL value to correct for the Lotus 1-2-3®
1990 leap year bug.

reserved

Reserved; do not use.Return ValuesNone.

SOStartColumnInfo
Starts the definition of column information.

The file parser must call this function immediately before setting the information. This function can
only be called from the VwStreamSection function.

VOID SOStartColumnInfo(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOStartFieldInfo
Starts the definition of field information.

The file parser calls this function immediately before setting field information. This function can
only be called from the VwStreamSection function.

VOID SOStartFieldInfo(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOStartFontTable
Starts the definition of a font table.

The file parser must call this function immediately before setting font entries. The function can
only be called from the VwStreamSection function.

VOID SOStartFontTable(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOStartPalette
Starts the definition of a color palette.

The file parser calls this function immediately before defining palette entries.

VOID SOStartPalette(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SOStartTabStops
Starts the definition of tab stops for a paragraph.

To set tab stops, use the SOPutTabStop function.

The file parser calls this function immediately before setting the first tab stop for the paragraph.

VOID SOStartTabStops(

HPROC reserved
);
Parametersreserved

Reserved; do not use.Return ValuesNone.

SoundSentryProc
The SoundSentryProc function is a library-defined callback function that produces a customized
visual signal when the SoundSentry accessibility feature is on and a Windows-based application
(or a non-Windows-based application running in a window) generates a sound through the
computer's built-in speaker.

LRESULT CALLBACK SoundSentryProc(

DWORD dwMillisec,
// duration of visual signal

DWORD fdwEffect // effect-type flag
);
ParametersdwMillisec

Specifies the duration, in milliseconds, of the visual signal that is displayed when a Windows-
based application (or a non-Windows-based application running in a window) generates a
sound.

fdwEffect

Specifies the type of visual signal to display. Currently, this value must always be
SSWF_CUSTOM.Return ValuesIf the visual signal was or will be displayed correctly, the return value is TRUE. If the signal is

asynchronous and the status is not available when the function is called, it should return TRUE.

If an error prevented the signal from being displayed, the return value is FALSE. To get extended
error information, call GetLastError.RemarksThe library that contains the SoundSentryProc function must be a 32-bit DLL, and the DLL must
export a function with the name "SoundSentryProc."

The SoundSentryProc function is called only after an application or library calls the
SystemParametersInfo function, specifying the SPI_SETSOUNDSENTRY value and the address
of a SOUNDSENTRY structure whose iWindowsEffect member is set to SSWF_CUSTOM.See AlsoSOUNDSENTRY, SystemParametersInfo

SOVectorAttr
Sets attributes related to drawing vector graphics objects.

VOID SOVectorAttr(

INT nItemId,
DWORD wDataSize,
VOID VWPTR *pData,
HPROC reserved

);
ParametersnItemId

Action identifier. This parameter, which specifies the action to carry out and determines the
appropriate values for wDataSize and pData, can be one of the vector attribute values in
"Constants" later in this topic.

wDataSize

Size, in bytes, of data pointed to by pData.
pData

Address of a buffer containing the information used to carry out the requested action. The
meaning and format of the buffer depends on the value of nItemId.

reserved

Reserved; do not use.Return ValuesNone.

SOVectorObject
Draws or defines the given vector graphics object.

VOID SOVectorObject(

INT nItemId,
DWORD wDataSize,
VOID VWPTR *pData,
HPROC reserved

);
ParametersnItemId

Action flag. This parameter, which specifies the action to carry out and determines the
appropriate values for wDataSize and pData, can be one of the vector object values in
"Constants" later in this topic.

wDataSize

Size, in bytes, of the data pointed to by pData.
pData

Address of a buffer containing the information used to carry out the requested action. The
meaning and format of the buffer depends on the value of nItemId.

reserved

Reserved; do not use.Return ValuesNone.

SUUserPopData
Pops user data. The data must have been pushed previously by using the SUUserPushData
function.

VOID SUUserPopData(

VOID VWPTR *pData,
HPROC reserved

);
ParameterspData

Address of the VwStreamUserSaveType structure receiving the data.
reserved

Reserved; do not use.Return ValuesNone.

SUUserPushData
Pushes user data.

The data can be retrieved by using the SUUserPopData function.

VOID SUUserPushData(

VOID VWPTR *pData,
HPROC reserved

);
ParameterspData

Address of a VwStreamUserSaveType structure containing the data to be saved.
reserved

Reserved; do not use.Return ValuesNone.

SUUserRetrieveData
Retrieves user data.

The data must have been previously saved by using the SUUserSaveData function.

This function should not be used. The SUUserPopData function should be used instead.

VOID SUUserRetrieveData(

WORD wIndex,
VOID VWPTR *pData,
HPROC reserved

);
ParameterswIndex

Index value specifying the data to retrieve. This value must have been previously returned by
the SUUserSaveData function.

pData

Address of the VwStreamUserSaveType structure receiving the data.
reserved

Reserved; do not use.Return ValuesNone.

SUUserSaveData
Saves user data.

This function should not be used. The SUUserPushData function should be used instead.

VOID SUUserSaveData(

VOID VWPTR *pData,
HPROC reserved

);
ParameterspData

Address of a VwStreamUserSaveType structure containing the data to be saved.
reserved

Reserved; do not use.Return ValuesReturns the index used to retrieve the data. Indexes are guaranteed to be zero-based and
sequential.

StartDoc
The StartDoc function starts a print job. This function replaces the STARTDOC printer escape.

int StartDoc(
HDC hdc, // handle of device context
CONST DOCINFO *lpdi // address of structure with file names

);Parametershdc
Identifies the device context for the print job.

lpdi
Points to a DOCINFO structure containing the name of the document file and the name of the
output file.

Return ValuesIf the function succeeds, the return value is greater than zero. This value is the print job identifier
for the document.

If the function fails, the return value is less than or equal to zero. To get extended error
information, call GetLastError.RemarksApplications should call the StartDoc function immediately before beginning a print job. Using this
function ensures that multipage documents are not interspersed with other print jobs.

Applications can use the value returned by StartDoc to retrieve or set the priority of a print job.
Call the GetJob or SetJob function and supply this value as one of the required arguments.See AlsoDOCINFO, EndDoc, GetJob, SetJob

StartDocPrinter
The StartDocPrinter function informs the print spooler that a document is to be spooled for
printing.

DWORD StartDocPrinter(
HANDLE hPrinter, // handle of printer object
DWORD Level, // structure level
LPBYTE pDocInfo // address of structure

);ParametershPrinter
Identifies the printer.

Level
Specifies the version of the structure to which pDocInfo points. This value must be 1 for
Windows NT. For Windows 95, you can also select a value of 2. (See DOC_INFO_2 following.
)

pDocInfo
Points to a DOC_INFO_1 structure or a DOC_INFO_2 structure. If dwlevel is 1, the function
stores the data in a DOC_INFO_1 structure. If dwlevel is 2, the function stores the data in a
DOC_INFO_2 structure.
Windows 95: The DOC_INFO_2 structure has the following form:typedef struct _DOC_INFO_2 { // dci2

LPTSTR pDocName;
LPTSTR pOutputFile;
LPTSTR pDatatype;
DWORD dwMode;
DWORD JobId;

} DOC_INFO_2;
Return ValuesIf the function succeeds, the return value identifies the print job.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle identified by the hPrinter parameter is obtained by calling the OpenPrinter
function.

The return value will never be greater than 2^31 - 1.See AlsoDOC_INFO_1, OpenPrinter

StartPage
The StartPage function prepares the printer driver to accept data.

int StartPage(
HDC hDC // handle of device context

);ParametershDC
Identifies the device context for the print job.

Return ValuesIf the function succeeds, the return value is greater than zero.

If the function fails, the return value is less than or equal to zero. To get extended error
information, call GetLastError.RemarksThe system disables the ResetDC function between calls to the StartPage and EndPage
functions. This means that you cannot change the device mode except at page boundaries. After
calling EndPage, you can call ResetDC to change the device mode, if necessary. Note that a call
to ResetDC resets all device context attributes back to default values.

Windows 3.x: EndPage resets the device context attributes back to default values. You must re-
select objects and set up the mapping mode again before printing the next page.

Windows 95: EndPage does not reset the device context attributes. However, the next
StartPage call does reset the device context attributes to default values. At that time, you must re-
select objects and set up the mapping mode again before printing the next page. Note that
StartPage also resets the device context state stack used by the SaveDC and RestoreDC
functions to default values.

Windows NT: Beginning with Windows NT Version 3.5, neither EndPage or StartPage resets the
device context attributes. Device context attributes remain constant across subsequent pages.
You do not need to re-select objects and set up the mapping mode again before printing the next
page; however, doing so will produce the same results and reduce code differences between
Windows 95 and Windows NT.See AlsoEndPage, ResetDC

StartPagePrinter
The StartPagePrinter function informs the spooler that a page is about to be printed on the
specified printer.

BOOL StartPagePrinter(
HANDLE hPrinter // handle of printer object

);ParametershPrinter
Identifies a printer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe printer handle identified by the hPrinter parameter is obtained by calling the OpenPrinter
function.

When an application has finished writing a page, it should call the EndPagePrinter function to
inform the spooler that the page is complete.See AlsoEndPagePrinter, OpenPrinter

StartService
The StartService function starts the execution of a service.

BOOL StartService(
SC_HANDLE hService, // handle of service
DWORD dwNumServiceArgs, // number of arguments
LPCTSTR *lpServiceArgVectors // address of array of argument string pointers

);ParametershService
Identifies the service. This handle is returned by the OpenService or CreateService function,
and it must have SERVICE_START access.

dwNumServiceArgs
Specifies the number of argument strings in the lpServiceArgVectors array. If
lpServiceArgVectors is NULL, this parameter can be zero.

lpServiceArgVectors
Points to an array of pointers that point to null-terminated argument strings passed to a
service. Driver services do not receive these arguments. If no arguments are passed to the
service being started, this parameter can be NULL. The service accesses these arguments
through its ServiceMain function. Note that in the array of arguments passed to the
ServiceMain function, the first argument (argv[0]) is the name of the service by default,
followed by the arguments, if any, in the lpServiceArgVectors array.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes can be set by the service control manager. Others can be set by the
registry functions that are called by the service control manager.

Value Meaning

ERROR_ACCESS_DENIED The specified handle was
not opened with
SERVICE_START
access.

ERROR_INVALID_HANDLE The specified handle is
invalid.

ERROR_PATH_NOT_FOUND The service binary file
could not be found.

ERROR_SERVICE_ALREADY_RUNNING An instance of the service
is already running.

ERROR_SERVICE_DATABASE_LOCKED The database is locked.
ERROR_SERVICE_DEPENDENCY_DELETEDThe service depends on a

service that does not exist
or has been marked for
deletion.

ERROR_SERVICE_DEPENDENCY_FAIL The service depends on
another service that has
failed to start.

ERROR_SERVICE_DISABLED The service has been
disabled.

ERROR_SERVICE_LOGON_FAILED The service could not be
logged on.

ERROR_SERVICE_MARKED_FOR_DELETEThe service has been
marked for deletion.

ERROR_SERVICE_NO_THREAD A thread could not be
created for the Win32
service.

ERROR_SERVICE_REQUEST_TIMEOUT The service did not
respond to the start
request in a timely
fashion.

RemarksWhen a driver service is started, the StartService function does not return until the device driver
has finished initializing.

When a service is started, the service control manager spawns the service process, if necessary.
If the specified service shares a process with other services, the required process may already
exist. The StartService function does not wait for the first status update from the new service
(which may take a while). Instead, it returns when the service control manager receives
notification from the service control dispatcher that the ServiceMain thread for this service was
created successfully.

The service control manager sets the following default status values before returning from
StartService:

· Current state of the service is set to SERVICE_START_PENDING.
· Controls accepted is set to none (zero).
· The CheckPoint value is set to zero.
· The WaitHint time is set to 2 seconds.

The calling process can determine if the new service has finished its initialization by calling the
QueryServiceStatus function periodically to query the service's status.

A service cannot call StartService during initialization. The reason is that the Service Control
Manager locks the service control database during initialization, so a call to StartService will
block. Once the service reports to the Service Control Manager that it has successfully started, it
can call StartService.See AlsoControlService, CreateService, OpenService, QueryServiceStatus, ServiceMain

StartServiceCtrlDispatcher
The StartServiceCtrlDispatcher function connects the main thread of a service process to the
service control manager, which causes the thread to be the service control dispatcher thread for
the calling process.

BOOL StartServiceCtrlDispatcher(
LPSERVICE_TABLE_ENTRY lpServiceStartTable // address of service table

);ParameterslpServiceStartTable
Points to an array of SERVICE_TABLE_ENTRY structures containing one entry for each
service that can execute in the calling process. The members of the last entry in the table
must have NULL values to designate the end of the table.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error code can be set by the service control manager. Other error codes can be set
by the registry functions that are called by the service control manager.

Value Meaning

ERROR_INVALID_DATA The specified dispatch table contains
entries that are not in the proper format.

RemarksWhen the service control manager starts a service process, it waits for the process to call the
StartServiceCtrlDispatcher function. The main thread of a service process should make this call
as soon as possible after it starts up. If StartServiceCtrlDispatcher succeeds, it connects the
calling thread to the service control manager and does not return until all running services in the
process have terminated. The service control manager uses this connection to send control and
service start requests to the main thread of the service process. The main thread acts as a
dispatcher by invoking the appropriate Handler function to handle control requests, or by creating
a new thread to execute the appropriate ServiceMain function when a new service is started.

The lpServiceStartTable parameter contains an entry for each service that can run in the calling
process. Each entry specifies the ServiceMain function for that service. For
SERVICE_WIN32_SHARE_PROCESS services, each entry must contain the name of a service.
This name is the service name that was specified by the CreateService function when the service
was installed. For SERVICE_WIN32_OWN_PROCESS services, the service name in the table
entry is ignored.

If a service runs in its own process, the main thread of the service process should immediately call
StartServiceCtrlDispatcher. All initialization tasks are done in the service's ServiceMain function
when the service is started.

If multiple services share a process and some common process-wide initialization needs to be
done before any ServiceMain function is called, the main thread can do the work before calling
StartServiceCtrlDispatcher, as long as it takes less than 30 seconds. Otherwise, another thread
must be created to do the process-wide initialization, while the main thread calls
StartServiceCtrlDispatcher and becomes the service control dispatcher. Any service-specific
initialization should still be done in the individual service main functions.See AlsoControlService, Handler, RegisterServiceCtrlHandler, ServiceMain,
SERVICE_TABLE_ENTRY

StretchBlt
The StretchBlt function copies a bitmap from a source rectangle into a destination rectangle,
stretching or compressing the bitmap to fit the dimensions of the destination rectangle, if
necessary. Windows stretches or compresses the bitmap according to the stretching mode
currently set in the destination device context.

BOOL StretchBlt(
HDC hdcDest, // handle of destination device context
int nXOriginDest, // x-coordinate of upper-left corner of dest. rect.
int nYOriginDest, // y-coordinate of upper-left corner of dest. rect.
int nWidthDest, // width of destination rectangle
int nHeightDest, // height of destination rectangle
HDC hdcSrc, // handle of source device context
int nXOriginSrc, // x-coordinate of upper-left corner of source rectangle
int nYOriginSrc, // y-coordinate of upper-left corner of source rectangle
int nWidthSrc, // width of source rectangle
int nHeightSrc, // height of source rectangle
DWORD dwRop // raster operation code

);ParametershdcDest
Identifies the destination device context.

nXOriginDest
Specifies the x-coordinate, in logical units, of the upper-left corner of the destination rectangle.

nYOriginDest
Specifies the y-coordinate, in logical units, of the upper-left corner of the destination rectangle.

nWidthDest
Specifies the width, in logical units, of the destination rectangle.

nHeightDest
Specifies the height, in logical units, of the destination rectangle.

hdcSrc
Identifies the source device context.

nXOriginSrc
Specifies the x-coordinate, in logical units, of the upper-left corner of the source rectangle.

nYOriginSrc
Specifies the y-coordinate, in logical units, of the upper-left corner of the source rectangle.

nWidthSrc
Specifies the width, in logical units, of the source rectangle.

nHeightSrc
Specifies the height, in logical units, of the source rectangle.

dwRop
Specifies the raster operation to be performed. Raster operation codes define how Windows
combines colors in output operations that involve a brush, a source bitmap, and a destination
bitmap.
See the BitBlt function for a list of common raster operation codes.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksStretchBlt stretches or compresses the source bitmap in memory and then copies the result to
the destination rectangle. The color data for pattern or destination pixels is merged after the
stretching or compression occurs.

When an enhanced metafile is being recorded, an error occurs (and the function returns FALSE) if
the source device context identifies an enhanced-metafile device context.

If the specified raster operation requires a brush, Windows uses the brush currently selected into
the destination device context.

The destination coordinates are transformed by using the transformation currently specified for the
destination device context; the source coordinates are transformed by using the transformation
currently specified for the source device context.

If the source transformation has a rotation or shear, an error occurs.

If destination, source, and pattern bitmaps do not have the same color format, StretchBlt
converts the source and pattern bitmaps to match the destination bitmap.

If StretchBlt must convert a monochrome bitmap to a color bitmap, it sets white bits (1) to the
background color and black bits (0) to the foreground color. To convert a color bitmap to a
monochrome bitmap, it sets pixels that match the background color to white (1) and sets all other
pixels to black (0). The foreground and background colors of the device context with color are
used.

StretchBlt creates a mirror image of a bitmap if the signs of the nWidthSrc and nWidthDest
parameters or of the nHeightSrc and nHeightDest parameters differ. If nWidthSrc and nWidthDest
have different signs, the function creates a mirror image of the bitmap along the x-axis. If
nHeightSrc and nHeightDest have different signs, the function creates a mirror image of the
bitmap along the y-axis.

Not all devices support the StretchBlt function. For more information, see the GetDeviceCaps
function.See AlsoBitBlt, GetDeviceCaps, MaskBlt, PlgBlt, SetStretchBltMode

StretchDIBits
The StretchDIBits function copies the color data for a rectangle of pixels in a device-independent
bitmap (DIB) to the specified destination rectangle. If the destination rectangle is larger than the
source rectangle, this function stretches the rows and columns of color data to fit the destination
rectangle. If the destination rectangle is smaller than the source rectangle, this function
compresses the rows and columns by using the specified raster operation.

int StretchDIBits(
HDC hdc, // handle of device context
int XDest, // x-coordinate of upper-left corner of dest. rect.
int YDest, // y-coordinate of upper-left corner of dest. rect.
int nDestWidth, // width of destination rectangle
int nDestHeight, // height of destination rectangle
int XSrc, // x-coordinate of upper-left corner of source rect.
int YSrc, // y-coordinate of upper-left corner of source rect.
int nSrcWidth, // width of source rectangle
int nSrcHeight, // height of source rectangle
CONST VOID *lpBits, // address of bitmap bits
CONST BITMAPINFO *lpBitsInfo, // address of bitmap data
UINT iUsage, // usage
DWORD dwRop // raster operation code

);Parametershdc
Identifies the destination device context.

XDest
Specifies the x-coordinate, in logical units, of the upper-left corner of the destination rectangle.

YDest
Specifies the y-coordinate, in logical units, of the upper-left corner of the destination rectangle.

nDestWidth
Specifies the width, in logical units, of the destination rectangle.

nDestHeight
Specifies the height, in logical units, of the destination rectangle.

XSrc
Specifies the x-coordinate, in pixels, of the source rectangle in the DIB.

YSrc
Specifies the y-coordinate, in pixels, of the source rectangle in the DIB.

nSrcWidth
Specifies the width, in pixels, of the source rectangle in the DIB.

nSrcHeight
Specifies the height, in pixels, of the source rectangle in the DIB.

lpBits
Points to the DIB bits, which are stored as an array of bytes.

lpBitsInfo
Points to a BITMAPINFO structure that contains information about the DIB.

iUsage
Specifies whether the bmiColors member of the BITMAPINFO structure was provided and, if
so, whether bmiColors contains explicit red, green, blue (RGB) values or indices. The iUsage
parameter must be one of the following values:

Value Description
DIB_PAL_COLORS The array contains 16-bit indices into the

logical palette of the source device context.
DIB_RGB_COLORS The color table contains literal RGB values.

dwRop
Specifies how the source pixels, the destination device context's current brush, and the
destination pixels are to be combined to form the new image.

Return ValuesIf the function succeeds, the return value is the number of scan lines copied.

If the function fails, the return value is GDI_ERROR. To get extended error information, call
GetLastError.

RemarksThe origin of a bottom-up DIB is the bottom-left corner; the origin of a top-down DIB is the upper-
left corner.

StretchDIBits creates a mirror image of a bitmap if the signs of the nSrcWidth and nDestWidth
parameters, or of the nSrcHeight and nDestHeight parameters differ. If nSrcWidth and
nDestWidth have different signs, the function creates a mirror image of the bitmap along the x-
axis. If nSrcHeight and nDestHeight have different signs, the function creates a mirror image of
the bitmap along the y-axis.See AlsoSetMapMode, SetStretchBltMode, BITMAPINFO

StrokeAndFillPath
The StrokeAndFillPath function closes any open figures in a path, strokes the outline of the path
by using the current pen, and fills its interior by using the current brush.

BOOL StrokeAndFillPath(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksThe device context identified by the hdc parameter must contain a closed path.

The StrokeAndFillPath function has the same effect as closing all the open figures in the path,
and stroking and filling the path separately, except that the filled region will not overlap the stroked
region even if the pen is wide.See AlsoBeginPath, FillPath, SetPolyFillMode, StrokePath

StrokePath
The StrokePath function renders the specified path by using the current pen.

BOOL StrokePath(
HDC hdc // handle of device context

);Parametershdc
Identifies a device context that contains a closed path.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksThe device context identified by the hdc parameter must contain a closed path.See AlsoBeginPath, EndPath, ExtCreatePen

SubtractRect
The SubtractRect function obtains the coordinates of a rectangle determined by subtracting one
rectangle from another.

BOOL SubtractRect(
LPRECT lprcDst, // pointer to destination rectangle
CONST RECT *lprcSrc1, // pointer to rectangle to subtract from
CONST RECT *lprcSrc2 // pointer to rectangle to subtract

);ParameterslprcDst
Points to a RECT structure that receives the coordinates of the rectangle determined by
subtracting the rectangle pointed to by lprcSrc2 from the rectangle pointed to by lprcSrc1.

lprcSrc1
Points to a RECT structure from which the function subtracts the rectangle pointed to by
lprcSrc2.

lprcSrc2
Points to a RECT structure that the function subtracts from the rectangle pointed to by
lprcSrc1.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe function only subtracts the rectangle specified by lprcSrc2 from the rectangle specified by
lprcSrc1 when the rectangles intersect completely in either the x- or y-direction. For example, if *
lprcSrc1 has the coordinates (10,10,100,100) and *lprcSrc2 has the coordinates (50,50,150,150),
the function sets the coordinates of the rectangle pointed to by lprcDst to (10,10,100,100). If *
lprcSrc1 has the coordinates (10,10,100,100) and *lprcSrc2 has the coordinates (50,10,150,150),
however, the function sets the coordinates of the rectangle pointed to by lprcDst to (10,10,50,
100).See AlsoIntersectRect, RECT, UnionRect

SuspendThread
The SuspendThread function suspends the specified thread.

DWORD SuspendThread(
HANDLE hThread // handle to the thread

);ParametershThread
Identifies the thread.
Windows NT: The handle must have THREAD_SUSPEND_RESUME access. For more
information, see Thread Objects.

Return ValuesIf the function succeeds, the return value is the thread's previous suspend count; otherwise, it is
0xFFFFFFFF. To get extended error information, use the GetLastError function.RemarksIf the function succeeds, execution of the specified thread is suspended and the thread's suspend
count is incremented.

Suspending a thread causes the thread to stop executing user-mode (application) code.

Each thread has a suspend count (with a maximum value of MAXIMUM_SUSPEND_COUNT). If
the suspend count is greater than zero, the thread is suspended; otherwise, the thread is not
suspended and is eligible for execution. Calling SuspendThread causes the target thread's
suspend count to be incremented. Attempting to increment past the maximum suspend count
causes an error without incrementing the count.

The ResumeThread function decrements the suspend count of a suspended thread.See AlsoResumeThread

SwapMouseButton
The SwapMouseButton function reverses or restores the meaning of the left and right mouse
buttons.

BOOL SwapMouseButton(
BOOL fSwap // reverse or restore buttons

);ParametersfSwap
Specifies whether the mouse button meanings are reversed or restored. If this parameter is
TRUE, the left button generates right-button messages and the right button generates left-
button messages. If this parameter is FALSE, the buttons are restored to their original
meanings.

Return ValuesIf the meaning of the mouse buttons was reversed previously, before the function was called, the
return value is nonzero.

If the meaning of the mouse buttons was not reversed, the return value is zero.RemarksButton swapping is provided as a convenience to people who use the mouse with their left hands.
The SwapMouseButton function is usually called by Control Panel only. Although an application
is free to call the function, the mouse is a shared resource and reversing the meaning of its
buttons affects all applications.See AlsoSetDoubleClickTime

SwitchDesktop
The SwitchDesktop function makes a desktop visible and activates it. This enables the desktop
to receive input from the user. The calling process must have DESKTOP_SWITCHDESKTOP
access to the desktop for the SwitchDesktop function to succeed.

BOOL SwitchDesktop(
HDESK hDesktop // handle of desktop to activate

);ParametershDesktop
Identifies the desktop to be made visible and active. This handle is returned by the
CreateDesktop and OpenDesktop functions.
The SwitchDesktop function will fail if the desktop belongs to an invisible window station.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreateDesktop, OpenDesktop

SwitchToFiber
The SwitchToFiber function schedules a fiber.

VOID SwitchToFiber(
LPVOID lpFiber // pointer to fiber to switch to

);ParameterslpFiber
Specifies the address of the fiber to switch to.

Return ValuesThis function does not return a value.RemarksThe SwitchToFiber function is used to manually schedule a fiber. This function saves the state
information of the current fiber and restores the state of the specified fiber. The caller of this
routine must be a fiber.

You create fibers with CreateFiber. Before you can schedule fibers associated with a thread, you
must call ConvertThreadToFiber to set up an area in which to save the fiber state information.
The thread is now the currently executing fiber.

Warning Avoid making the following call:SwitchToFiber(GetCurrentFiber());This call causes unpredictable problems.See AlsoCreateFiber, ConvertThreadToFiber

SwitchToThread
[New - Windows NT]

The SwitchToThread function causes the calling thread to yield execution to another thread that
is ready to run on the current processor. The operating system selects the thread to yield to.

BOOL SwitchToThread(VOID)ParametersThis function has no parameters.Return ValuesIf calling the SwitchToThread function causes the operating system to switch execution to
another thread, the return value is nonzero.

If there are no other threads ready to execute, the operating system does not switch execution to
another thread, and the return value is zero.RemarksThe yield of execution is in effect for up to one thread-scheduling time slice. After that, the
operating system reschedules execution for the yielding thread. The rescheduling is determined
by the priority of the yielding thread and the status of other threads that are available to run.

Note that the yield of execution is limited to the processor of the calling thread. The operating
system will not switch execution to another processor, even if that processor is idle or is running a
thread of lower priority.See AlsoSuspendThread

SysMsgProc
The SysMsgProc hook procedure is a library-defined callback function the system calls after an
input event occurs in a dialog box, message box, menu, or scroll bar, but before the message
generated by the input event is processed. The hook procedure can monitor messages for any
dialog box, message box, menu, or scroll bar in the system.

LRESULT CALLBACK SysMsgProc(
int nCode, // message flag
WPARAM wParam, // undefined
LPARAM lParam // address of structure with message data

);ParametersnCode
Specifies the type of input event that generated the message. This parameter can be one of
the following values:

Value Meaning
MSGF_DIALOGBOX The input event occurred in a message

box or dialog box.
MSGF_MENU The input event occurred in a menu.
MSGF_SCROLLBAR The input event occurred in a scroll bar.
MSGF_NEXTWINDOW The input event occurred as a result of the

user's pressing the ALT+TAB key combination to
activate a different window.

If nCode is less than zero, the hook procedure must pass the message to the
CallNextHookEx function without further processing and should return the value returned by
CallNextHookEx.

wParam
Specifies a NULL value.

lParam
Points to an MSG message structure.

Return ValuesIf the hook procedure processes the message, the return value must be nonzero. Otherwise, it
must be zero.RemarksAn application installs the hook procedure by specifying the WH_SYSMSGFILTER hook type and
the address of the hook procedure in a call to the SetWindowsHookEx function.

SysMsgProc is a placeholder for the library-defined function name.See AlsoCallNextHookEx, MSG, SetWindowsHookEx

SystemParametersInfo
The SystemParametersInfo function queries or sets systemwide parameters. This function can
also update the user profile while setting a parameter.

BOOL SystemParametersInfo(
UINT uiAction, // system parameter to query or set
UINT uiParam, // depends on action to be taken
PVOID pvParam, // depends on action to be taken
UINT fWinIni // user profile update flag

);ParametersuiAction
Specifies the systemwide parameter to query or set. This parameter can be one of the
following values:

Value Meaning
SPI_GETACCESSTIMEOUT Retrieves information about the

time-out period associated with
the accessibility features. The
pvParam parameter must point
to an ACCESSTIMEOUT
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(ACCESSTIMEOUT).

SPI_GETANIMATION Retrieves the animation effects
associated with user actions.
The pvParam parameter must
point to an ANIMATIONINFO
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(ANIMATIONINFO).

SPI_GETBEEP Indicates whether the warning
beeper is on.
The pvParam parameter is a
pointer to a BOOL that receives
TRUE if the beeper is on, or
FALSE if it is off.

SPI_GETBORDER Retrieves the border multiplier
factor that determines the width
of a window's sizing border. The
pvParam parameter must point
to an integer variable.

SPI_GETDEFAULTINPUTLANG Returns the keyboard layout
handle for the system default
input language. The pvParam
parameter must point to the 32-
bit variable that receives the
keyboard layout handle for the
default language. The uiParam
parameter is not used.

SPI_GETDRAGFULLWINDOWS Determines whether dragging of
full windows is enabled. The
pvParam parameter must point
to a BOOL variable that
receives TRUE if enabled, or
FALSE otherwise.
Windows 95: This flag is
supported only if Windows Plus!

is installed. See
SPI_GETWINDOWSEXTENSION.

SPI_GETFASTTASKSWITCH This flag is obsolete. Previous
versions of Windows use this
flag to determine whether ALT+
TAB fast task switching is
enabled. Beginning with
Windows 95 and Windows NT
version 4.0, fast task switching
is always enabled.

SPI_GETFILTERKEYS Retrieves information about the
FilterKeys accessibility feature.
The pvParam parameter must
point to a FILTERKEYS
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(FILTERKEYS).

SPI_GETFONTSMOOTHING Indicates whether the font
smoothing feature is enabled.
This feature uses font anti-
aliasing to make font curves
appear smoother by painting
pixels at different gray levels.
The pvParam parameter is a
pointer to a BOOL variable that
receives TRUE if the feature is
enabled, or FALSE if it is not.
Windows 95: This flag is
supported only if Windows Plus!
is installed. See
SPI_GETWINDOWSEXTENSION.

SPI_GETGRIDGRANULARITY Retrieves the current granularity
value of the desktop sizing grid.
The pvParam parameter must
point to an integer variable that
receives the granularity.

SPI_GETHIGHCONTRAST Windows 95 only: Retrieves
information about the
HighContrast accessibility
feature. The pvParam
parameter must point to a
HIGHCONTRAST structure that
receives the information. Set the
cbSize member of this structure
and the uiParam parameter to
sizeof(HIGHCONTRAST).

SPI_GETICONMETRICS Retrieves the metrics
associated with icons. The
pvParam parameter must point
to an ICONMETRICS structure
that receives the information.
Set the cbSize member of this
structure and the uiParam
parameter to
sizeof(ICONMETRICS).

SPI_GETICONTITLELOGFONT Retrieves the logical font
information for the current icon-
title font. The uiParam
parameter specifies the size of a
LOGFONT structure, and the

pvParam parameter must point
to the LOGFONT structure to fill
in.

SPI_GETICONTITLEWRAP Determines whether icon-title
wrapping is enabled. The
pvParam parameter must point
to a BOOL variable that
receives TRUE if enabled, or
FALSE otherwise.

SPI_GETKEYBOARDDELAY Retrieves the keyboard repeat-
delay setting. The pvParam
parameter must point to an
integer variable that receives
the setting.

SPI_GETKEYBOARDPREF Determines whether the user
relies on the keyboard instead
of the mouse, and wants
applications to display keyboard
interfaces that would otherwise
be hidden. The pvParam
parameter must point to a
BOOL variable that receives
TRUE if the user relies on the
keyboard; the variable receives
FALSE otherwise.

SPI_GETKEYBOARDSPEED Retrieves the keyboard repeat-
speed setting. The pvParam
parameter must point to a
DWORD variable that receives
the setting.

SPI_GETLOWPOWERACTIVE This flag is not supported for 32-
bit applications on Windows NT
or Windows 95.
Windows 95 only: For 16-bit
Windows applications, this value
determines whether the low-
power phase of screen saving is
enabled or not. The pvParam
parameter must point to a
BOOL variable that receives
TRUE if enabled, or FALSE if
disabled.

SPI_GETLOWPOWERTIMEOUT This flag is not supported for 32-
bit applications on Windows NT
or Windows 95.
Windows 95 only: For 16-bit
Windows applications, this value
retrieves the time-out value for
the low-power phase of screen
saving. The pvParam parameter
must point to an integer value
that receives the value.

SPI_GETMENUDROPALIGNMENTDetermines whether pop-up
menus are left-aligned or right-
aligned, relative to the
corresponding menu-bar item.
The pvParam parameter must
point to a BOOL variable that
receives TRUE if left-aligned, or
FALSE otherwise.

SPI_GETMINIMIZEDMETRICS Retrieves the metrics
associated with minimized

windows. The pvParam
parameter must point to a
MINIMIZEDMETRICS structure
that receives the information.
Set the cbSize member of this
structure and the uiParam
parameter to
sizeof(MINIMIZEDMETRICS).

SPI_GETMOUSE Retrieves the two mouse
threshold values and the mouse
speed. The pvParam parameter
must point to an array of three
integers that receives these
values. See mouse_event for
further information.

SPI_GETMOUSEHOVERHEIGHTWindows NT only: Gets the
height, in pixels, of the rectangle
within which the mouse pointer
has to stay for
TrackMouseEvent to generate
a WM_MOUSEHOVER
message. The height is returned
in a UINT pointed to by the
pvParam parameter.

SPI_GETMOUSEHOVERTIME Windows NT only: Gets the
time, in milliseconds, that the
mouse pointer has to stay in the
hover rectangle for
TrackMouseEvent to generate
a WM_MOUSEHOVER
message. The time is returned
in a UINT pointed to by the
pvParam parameter.

SPI_GETMOUSEHOVERWIDTH Windows NT only: Gets the
width, in pixels, of the rectangle
within which the mouse pointer
has to stay for
TrackMouseEvent to generate
a WM_MOUSEHOVER
message. The width is returned
in a UINT pointed to by the
pvParam parameter.

SPI_GETMOUSEKEYS Retrieves information about the
MouseKeys accessibility
feature. The pvParam
parameter must point to a
MOUSEKEYS structure that
receives the information. Set the
cbSize member of this structure
and the uiParam parameter to
sizeof(MOUSEKEYS).

SPI_GETMOUSETRAILS Windows 95 only: Indicates
whether the Mouse Trails
feature is enabled. This feature
improves the visibility of mouse
cursor movements by briefly
showing a trail of cursors and
quickly erasing them.
The pvParam parameter is a
pointer to an INT variable that
receives a value. If the value is
zero or 1, the feature is
disabled. If the value is greater

than 1, the feature is enabled
and the value indicates the
number of cursors drawn in the
trail. The uiParam parameter is
not used.

SPI_GETNONCLIENTMETRICS Retrieves the metrics
associated with the nonclient
area of nonminimized windows.
The pvParam parameter must
point to a
NONCLIENTMETRICS
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(NONCLIENTMETRICS).

SPI_GETPOWEROFFACTIVE This flag is not supported for 32-
bit applications on Windows NT
or Windows 95.
Windows 95 only: For 16-bit
Windows applications, this value
determines whether the power-
off phase of screen saving is
enabled or not. The pvParam
parameter must point to a
BOOL variable that receives
TRUE if enabled, or FALSE if
disabled.

SPI_GETPOWEROFFTIMEOUT This flag is not supported for 32-
bit applications on Windows NT
or Windows 95.
Windows 95 only: For 16-bit
Windows applications, this value
retrieves the time-out value for
the power-off phase of screen
saving. The pvParam parameter
must point to an integer value
that receives the value.

SPI_GETSCREENREADER Windows 95 only: Determines
whether a screen reviewer utility
is running. A screen reviewer
utility directs textual information
to an output device, such as a
speech synthesizer or Braille
display. When this flag is set, an
application should provide
textual information in situations
where it would otherwise
present the information
graphically.
The pvParam parameter is a
pointer to a BOOL variable that
receives TRUE if a screen
reviewer utility is running, or
FALSE if it is not.

SPI_GETSCREENSAVEACTIVE Determines whether screen
saving is enabled. The pvParam
parameter must point to a
BOOL variable that receives
TRUE if enabled, or FALSE
otherwise.

SPI_GETSCREENSAVETIMEOUTRetrieves the screen saver time-

out value, in seconds. The
pvParam parameter must point
to an integer variable that
receives the value.

SPI_GETSERIALKEYS Windows 95 only: Retrieves
information about the
SerialKeys accessibility feature.
The pvParam parameter must
point to a SERIALKEYS
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(SERIALKEYS).

SPI_GETSHOWSOUNDS Determines whether the Show
Sounds accessibility flag is on
or off. If it is on, the user
requires an application to
present information visually in
situations where it would
otherwise present the
information only in audible form.
The pvParam parameter must
point to a BOOL variable that
receives TRUE if the feature is
on, or FALSE if it is off.
Using this value is equivalent to
calling GetSystemMetrics
(SM_SHOWSOUNDS). That is
the recommended call.

SPI_GETSNAPTODEFBUTTON Windows NT only: Determines
whether the snap-to-default-
button feature is enabled. If
enabled, the mouse cursor
automatically moves to the
default button, such as "OK" or
"Apply", of a dialog box. The
pvParam parameter must point
to a BOOL variable that
receives TRUE if the feature is
on, or FALSE if it is off.

SPI_GETSOUNDSENTRY Retrieves information about the
SoundSentry accessibility
feature. The pvParam
parameter must point to a
SOUNDSENTRY structure that
receives the information. Set the
cbSize member of this structure
and the uiParam parameter to
sizeof(SOUNDSENTRY).

SPI_GETSTICKYKEYS Retrieves information about the
StickyKeys accessibility feature.
The pvParam parameter must
point to a STICKYKEYS
structure that receives the
information. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(STICKYKEYS).

SPI_GETTOGGLEKEYS Retrieves information about the
ToggleKeys accessibility
feature. The pvParam
parameter must point to a

TOGGLEKEYS structure that
receives the information. Set the
cbSize member of this structure
and the uiParam parameter to
sizeof(TOGGLEKEYS).

SPI_GETWHEELSCROLLLINES Windows NT only: Gets the
number of lines to scroll when
the mouse wheel is rotated. The
number of lines is returned in a
UINT pointed to by pvParam.
The default value is 3.

SPI_GETWINDOWSEXTENSION Windows 95 only: Indicates
whether the Windows extension,
Windows Plus!, is installed. Set
the uiParam parameter to 1.
The pvParam parameter is not
used. The function returns
TRUE if the extension is
installed, or FALSE if it is not.

SPI_GETWORKAREA Retrieves the size of the
working area. The working area
is the portion of the screen not
obscured by the tray. The
pvParam parameter must point
to the RECT structure that
receives the coordinates of the
working area.

SPI_ICONHORIZONTALSPACINGSets the width of an icon cell.
The uiParam parameter
specifies the width, in pixels.

SPI_ICONVERTICALSPACING Sets the height of an icon cell.
The uiParam parameter
specifies the height, in pixels.

SPI_LANGDRIVER Not implemented.
SPI_SCREENSAVERRUNNING Windows 95 only: Used

internally; applications should
not use this flag.

SPI_SETACCESSTIMEOUT Sets the time-out period
associated with the accessibility
features. The pvParam
parameter must point to an
ACCESSTIMEOUT structure
that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(ACCESSTIMEOUT).

SPI_SETANIMATION Sets the animation effects
associated with user actions.
The pvParam parameter must
point to an ANIMATIONINFO
structure that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(ANIMATIONINFO).

SPI_SETBEEP Turns the warning beeper on or
off. The uiParam parameter
specifies TRUE for on, or
FALSE for off.

SPI_SETBORDER Sets the border multiplier factor
that determines the width of a

window's sizing border. The
uiParam parameter specifies the
new value.

SPI_SETDEFAULTINPUTLANG Sets the default input language
for the system shell and
applications. The specified
language must be displayable
using the current system
character set. The uiParam
parameter is not used. The
pvParam parameter must point
to a 32-bit variable that contains
the keyboard layout handle for
the default language.

SPI_SETDESKPATTERN Sets the current desktop pattern
by causing Windows to read the
Pattern= setting from the WIN.
INI file.

SPI_SETDESKWALLPAPER Sets the desktop wallpaper. The
pvParam parameter must point
to a null-terminated string
containing the name of a bitmap
file.

SPI_SETDOUBLECLICKTIME Sets the double-click time for
the mouse to the value of the
uiParam parameter. The
double-click time is the
maximum number of
milliseconds that can occur
between the first and second
clicks of a double-click.

SPI_SETDOUBLECLKHEIGHT Sets the height of the double-
click rectangle to the value of
the uiParam parameter.
The double-click rectangle is the
rectangle within which the
second click of a double-click
must fall for it to be registered
as a double-click.

SPI_SETDOUBLECLKWIDTH Sets the width of the double-
click rectangle to the value of
the uiParam parameter.
The double-click rectangle is the
rectangle within which the
second click of a double-click
must fall for it to be registered
as a double-click.

SPI_SETDRAGFULLWINDOWS Sets dragging of full windows
either on or off. The uiParam
parameter specifies TRUE for
on, or FALSE for off.
Windows 95: This flag is
supported only if Windows Plus!
is installed. See
SPI_GETWINDOWSEXTENSION.

SPI_SETDRAGHEIGHT Sets the height, in pixels, of the
rectangle used to detect the
start of a drag operation.
See SM_CXDRAG and
SM_CYDRAG in the table under
the nIndex parameter of
GetSystemMetrics.

SPI_SETDRAGWIDTH Sets the width, in pixels, of the
rectangle used to detect the
start of a drag operation.
See SM_CXDRAG and
SM_CYDRAG in the table under
the nIndex parameter of
GetSystemMetrics.

SPI_SETFASTTASKSWITCH This flag is obsolete. Previous
versions of Windows use this
flag to enable or disable ALT+
TAB fast task switching.
Beginning with Windows 95 and
Windows NT version 4.0, fast
task switching is always
enabled.

SPI_SETFILTERKEYS Sets the parameters of the
FilterKeys accessibility feature.
The pvParam parameter must
point to a FILTERKEYS
structure that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(FILTERKEYS).

SPI_SETFONTSMOOTHING Enables or disables the font
smoothing feature, which uses
font anti-aliasing to make font
curves appear smoother by
painting pixels at different gray
levels.
To enable the feature, set the
uiParam parameter to TRUE. To
disable the feature, set uiParam
to FALSE.
Windows 95: This flag is
supported only if Windows Plus!
is installed. See
SPI_GETWINDOWSEXTENSION.

SPI_SETGRIDGRANULARITY Sets the granularity of the
desktop sizing grid to the value
of the uiParam parameter.

SPI_SETHANDHELD Used internally; applications
should not use this value.

SPI_SETHIGHCONTRAST Windows 95 only: Sets the
parameters of the HighContrast
accessibility feature. The
pvParam parameter must point
to a HIGHCONTRAST structure
that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(HIGHCONTRAST).

SPI_SETICONMETRICS Sets the metrics associated with
icons. The pvParam parameter
must point to an ICONMETRICS
structure that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(ICONMETRICS).

SPI_SETICONTITLELOGFONT Sets the font that is used for

icon titles. The uiParam
parameter specifies the size of a
LOGFONT structure, and the
pvParam parameter must point
to a LOGFONT structure.

SPI_SETICONTITLEWRAP Turns icon-title wrapping on or
off. The uiParam parameter
specifies TRUE for on, or
FALSE for off.

SPI_SETKEYBOARDDELAY Sets the keyboard repeat-delay
setting to the value of the
uiParam parameter.

SPI_SETKEYBOARDPREF Windows 95 only: Sets the
keyboard preference. The
uiParam parameter specifies
TRUE if the user relies on the
keyboard instead of the mouse,
and wants applications to
display keyboard interfaces that
would otherwise be hidden;
uiParam is FALSE otherwise.

SPI_SETKEYBOARDSPEED Sets the keyboard repeat-
speed setting to the value of the
uiParam parameter.

SPI_SETLANGTOGGLE Sets the hot key set for
switching between input
languages. The uiParam and
pvParam parameters are not
used. The value sets the
shortcut keys in the keyboard
property sheets by reading the
registry again. The registry must
be set before this flag is used.
the path in the registry is \
HKEY_CURRENT_USER\
keyboard layout\toggle. Valid
values are "1" = ALT+SHIFT, "2" =
CTRL+SHIFT, and "3" = none.

SPI_SETLOWPOWERACTIVE Windows 95 only: Activates or
deactivates the low-power
phase of screen saving. Set
uiParam to 1 to activate, or 0 to
deactivate. The pvParam
parameter must be NULL.

SPI_SETLOWPOWERTIMEOUT Windows 95 only: Retrieves
the time-out value, in seconds,
for the low-power phase of
screen saving. The uiParam
parameter specifies the new
value. The pvParam parameter
must be NULL.

SPI_SETMENUDROPALIGNMENTSets the alignment value of pop-
up menus. The uiParam
parameter specifies TRUE for
right alignment, or FALSE for
left alignment.

SPI_SETMINIMIZEDMETRICS Sets the metrics associated with
minimized windows. The
pvParam parameter must point
to a MINIMIZEDMETRICS
structure that contains the new
parameters. Set the cbSize

member of this structure and the
uiParam parameter to
sizeof(MINIMIZEDMETRICS).

SPI_SETMOUSE Sets the two mouse threshold
values and the mouse speed.
The pvParam parameter must
point to an array of three
integers that specifies these
values. See mouse_event for
further information.

SPI_SETMOUSEBUTTONSWAP Swaps or restores the meaning
of the left and right mouse
buttons. The uiParam parameter
specifies TRUE to swap the
meanings of the buttons, or
FALSE to to restore their
original meanings.

SPI_SETMOUSEHOVERHEIGHT Windows NT only: Sets the
height, in pixels, of the rectangle
within which the mouse pointer
has to stay for
TrackMouseEvent to generate a
WM_MOUSEHOVER message.
The height is set from the
uiParam parameter.

SPI_SETMOUSEHOVERTIME Windows NT only: Sets the
time, in milliseconds, that the
mouse pointer has to stay in the
hover rectangle for
TrackMouseEvent to generate a
WM_MOUSEHOVER message.
This is used only if you pass
HOVER_DEFAULT in the
dwHoverTime parameter in the
call to TrackMouseEvent. The
time is set from the uiParam
parameter.

SPI_SETMOUSEHOVERWIDTH Windows NT only: Sets the
width, in pixels, of the rectangle
within which the mouse pointer
has to stay for
TrackMouseEvent to generate a
WM_MOUSEHOVER message.
The width is set from the
uiParam parameter.

SPI_SETMOUSEKEYS Sets the parameters of the
MouseKeys accessibility
feature. The pvParam
parameter must point to a
MOUSEKEYS structure that
contains the new parameters.
Set the cbSize member of this
structure and the uiParam
parameter to
sizeof(MOUSEKEYS).

SPI_SETMOUSETRAILS Windows 95 only: Enables or
disables the Mouse Trails
feature, which improves the
visibility of mouse cursor
movements by briefly showing a
trail of cursors and quickly
erasing them.

To disable the feature, set the
uiParam parameter to zero or 1.
To enable the feature, set
uiParam to a value greater than
1 to indicate the number of
cursors drawn in the trail.

SPI_SETNONCLIENTMETRICS Sets the metrics associated with
the nonclient area of
nonminimized windows. The
pvParam parameter must point
to a NONCLIENTMETRICS
structure that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(NONCLIENTMETRICS).

SPI_SETPENWINDOWS Windows 95 only: Specifies
that pen windows is being
loaded or unloaded. The
uiParam parameter is TRUE
when loading and FALSE when
unloading pen windows. The
pvParam parameter is NULL.

SPI_SETPOWEROFFACTIVE Windows 95 only: Activates or
deactivates the power-off phase
of screen saving. Set uiParam
to 1 to activate, or 0 to
deactivate. The pvParam
parameter must be NULL.

SPI_SETPOWEROFFTIMEOUT Windows 95 only: Retrieves
the time-out value, in seconds,
for the power-off phase of
screen saving. The uiParam
parameter specifies the new
value. The pvParam parameter
must be NULL.

SPI_SETSCREENREADER Windows 95 only: Indicates
whether a screen review utility is
running. The uiParam
parameter specifies TRUE for
on, or FALSE for off.

SPI_SETSCREENSAVEACTIVE Sets the state of the screen
saver. The uiParam parameter
specifies TRUE to activate
screen saving, or FALSE to
deactivate it.

SPI_SETSCREENSAVETIMEOUTSets the screen saver time-out
value to the value of the
uiParam parameter. This value
is the amount of time, in
seconds, that the system must
be idle before the screen saver
activates.

SPI_SETSERIALKEYS Windows 95 only: Sets the
parameters of the SerialKeys
accessibility feature. The
pvParam parameter must point
to a SERIALKEYS structure
that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to

sizeof(SERIALKEYS).
SPI_SETSHOWSOUNDS Sets the ShowSounds

accessibility feature as on or off.
The uiParam parameter
specifies TRUE for on, or
FALSE for off.

SPI_SETSNAPTODEFBUTTON Windows NT only: Enables or
disables the snap-to-default-
button feature. If enabled, the
mouse cursor automatically
moves to the default button,
such as "OK" or "Apply", of a
dialog box. Set the uiParam
parameter to TRUE to enable
the feature, or FALSE to disable
it.

SPI_SETSOUNDSENTRY Sets the parameters of the
SoundSentry accessibility
feature. The pvParam
parameter must point to a
SOUNDSENTRY structure that
contains the new parameters.
Set the cbSize member of this
structure and the uiParam
parameter to
sizeof(SOUNDSENTRY).

SPI_SETSTICKYKEYS Sets the parameters of the
StickyKeys accessibility feature.
The pvParam parameter must
point to a STICKYKEYS
structure that contains the new
parameters. Set the cbSize
member of this structure and the
uiParam parameter to
sizeof(STICKYKEYS).

SPI_SETTOGGLEKEYS Sets the parameters of the
ToggleKeys accessibility
feature. The pvParam
parameter must point to a
TOGGLEKEYS structure that
contains the new parameters.
Set the cbSize member of this
structure and the uiParam
parameter to
sizeof(TOGGLEKEYS).

SPI_SETWHEELSCROLLLINES Windows NT only: Sets the
number of lines to scroll when
the mouse wheel is rotated. The
number of lines is set from the
uiParam parameter.
The number of lines is the
suggested number of lines to
scroll when the mouse wheel is
rolled without using modifier
keys. If the number is 0, then no
scrolling should occur. If the
number of lines to scroll is
greater than the number of lines
viewable, and in particular if it is
WHEEL_PAGESCROLL
(#defined as UINT_MAX), the
scroll operation should be
interpreted as clicking once in

the page down or page up
regions of the scroll bar.

SPI_SETWORKAREA Sets the size of the work area.
The work area is the portion of
the screen not obscured by the
taskbar. The pvParam
parameter must point to the
RECT structure that contains
the coordinates of the work
area.

uiParam
Depends on the system parameter being queried or set. For more information about
systemwide parameters, see the uiAction parameter. If not otherwise indicated, specify zero.

pvParam
Depends on the system parameter being queried or set. For more information about
systemwide parameters, see the uiAction parameter. If not otherwise indicated, specify NULL.

fWinIni
If a system parameter is being set, specifies whether the user profile is to be updated, and if
so, whether the WM_SETTINGCHANGE message is to be broadcast to all top-level windows
to notify them of the change. This parameter can be zero or can be one of the following
values:

Value Action
SPIF_UPDATEINIFILE Writes the new system-wide

parameter setting to the user profile.
SPIF_SENDCHANGE Broadcasts the

WM_SETTINGCHANGE message
after updating the user profile.

SPIF_SENDWININICHANGESame as SPIF_SENDCHANGE.
Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThis function is intended for use with applications, such as the Control Panel, that allow the user
to customize the Windows environment.

A keyboard layout name should be derived from the hexadecimal value of the language identifier
corresponding to the layout. For example, U.S. English has a language identifier of 0x0409, so the
primary U.S. English layout is named "00000409." Variants of U.S. English layout, such as the
Dvorak layout, are named "00010409," "00020409" and so on. For a list of the primary language
identifiers and sublanguage identifiers that make up a language identifier, see the MAKELANGID
macro.See AlsoACCESSTIMEOUT, ANIMATIONINFO, FILTERKEYS, GetLastError, GetSystemMetrics,
HIGHCONTRAST, ICONMETRICS, LOGFONT, MAKELANGID, MINIMIZEDMETRICS,
mouse_event, MOUSEKEYS, NONCLIENTMETRICS, RECT, SERIALKEYS, SOUNDSENTRY,
STICKYKEYS, TOGGLEKEYS, TrackMouseEvent WM_SETTINGCHANGE

SystemTimeToFileTime
The SystemTimeToFileTime function converts a system time to a file time.

BOOL SystemTimeToFileTime(
CONST SYSTEMTIME *lpSystemTime, // address of system time to convert
LPFILETIME lpFileTime // address of buffer for converted file time

);ParameterslpSystemTime
Points to a SYSTEMTIME structure that contains the time to be converted.
The wDayOfWeek member of the SYSTEMTIME structure is ignored.

lpFileTime
Points to a FILETIME structure to receive the converted system time.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoDosDateTimeToFileTime, FILETIME, FileTimeToDosDateTime, FileTimeToSystemTime,
SYSTEMTIME

SystemTimeToTzSpecificLocalTime
The SystemTimeToTzSpecificLocalTime function converts a Coordinated Universal Time (UTC)
to a specified time zone's corresponding local time.

BOOL SystemTimeToTzSpecificLocalTime(
LPTIME_ZONE_INFORMATION lpTimeZoneInformation, // pointer to time zone of interest
LPSYSTEMTIME lpUniversalTime, // pointer to universal time of interest
LPSYSTEMTIME lpLocalTime // pointer to structure to receive local time

);ParameterslpTimeZoneInformation
Pointer to a TIME_ZONE_INFORMATION structure that specifies the time zone of interest.
If lpTimeZoneInformation is NULL, the function uses the currently active time zone.

lpUniversalTime
Pointer to a SYSTEMTIME structure that specifies a UTC. The function converts this universal
time to the specified time zone's corresponding local time.

lpLocalTime
Pointer to a SYSTEMTIME structure that receives the local time information.

Return ValuesIf the function succeeds, the return value is nonzero, and the function sets the members of the
SYSTEMTIME structure pointed to by lpLocalTime to the appropriate local time values.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe SystemTimeToTzSpecificLocalTime function works in Windows NT. If called in Windows
95, the function fails, and returns FALSE.See AlsoGetSystemTime, GetTimeZoneInformation, SYSTEMTIME, TIME_ZONE_INFORMATION

TabbedTextOut
The TabbedTextOut function writes a character string at a specified location, expanding tabs to
the values specified in an array of tab-stop positions. Text is written in the currently selected font.

LONG TabbedTextOut(
HDC hDC, // handle of device context
int X, // x-coordinate of starting position
int Y, // y-coordinate of starting position
LPCTSTR lpString, // address of string
int nCount, // number of characters in string
int nTabPositions, // number of tabs in array
LPINT lpnTabStopPositions, // address of array for tab positions
int nTabOrigin // x-coordinate for tab expansion

);ParametershDC
Identifies the device context.

X
Specifies the x-coordinate of the starting point of the string, in logical units.

Y
Specifies the y-coordinate of the starting point of the string, in logical units.

lpString
Points to the character string to draw. The string does not need to be zero-terminated, since
nCount specifies the length of the string.

nCount
Specifies the number of characters in the string.

nTabPositions
Specifies the number of values in the array of tab-stop positions.

lpnTabStopPositions
Points to an array containing the tab-stop positions, in device units. The tab stops must be
sorted in increasing order; the smallest x-value should be the first item in the array.
Windows 95: A tab stop can be specified as a negative value, which causes text to be right-
aligned on the tab stop rather than left-aligned.

nTabOrigin
Specifies the x-coordinate of the starting position from which tabs are expanded, in logical
units.

Return ValuesIf the function succeeds, the return value is the dimensions, in logical units, of the string. The
height is in the high-order word and the width is in the low-order word.RemarksIf the nTabPositions parameter is zero and the lpnTabStopPositions parameter is NULL, tabs are
expanded to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the first value in the
lpnTabStopPositions array.

If the lpnTabStopPositions array contains more than one value, a tab stop is set for each value in
the array, up to the number specified by nTabPositions.

The nTabOrigin parameter allows an application to call the TabbedTextOut function several times
for a single line. If the application calls TabbedTextOut more than once with the nTabOrigin set to
the same value each time, the function expands all tabs relative to the position specified by
nTabOrigin.

By default, the current position is not used or updated by the TabbedTextOut function. If an
application needs to update the current position when it calls TabbedTextOut, the application can
call the SetTextAlign function with the wFlags parameter set to TA_UPDATECP. When this flag
is set, Windows ignores the X and Y parameters on subsequent calls to the TabbedTextOut
function, using the current position instead.See AlsoDrawText, GetTabbedTextExtent, GrayString, SetTextAlign, TextOut

TerminateProcess
The TerminateProcess function terminates the specified process and all of its threads.

BOOL TerminateProcess(
HANDLE hProcess, // handle to the process
UINT uExitCode // exit code for the process

);ParametershProcess
Identifies the process to terminate.
Windows NT: The handle must have PROCESS_TERMINATE access. For more information,
see Process Objects.

uExitCode
Specifies the exit code for the process and for all threads terminated as a result of this call.
Use the GetExitCodeProcess function to retrieve the process's exit value. Use the
GetExitCodeThread function to retrieve a thread's exit value.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe TerminateProcess function is used to unconditionally cause a process to exit. Use it only in
extreme circumstances. The state of global data maintained by dynamic-link libraries (DLLs) may
be compromised if TerminateProcess is used rather than ExitProcess.

TerminateProcess causes all threads within a process to terminate, and causes a process to
exit, but DLLs attached to the process are not notified that the process is terminating.

Terminating a process causes the following:

1. All of the object handles opened by the process are closed.
2. All of the threads in the process terminate their execution.
3. The state of the process object becomes signaled, satisfying any threads that had been

waiting for the process to terminate.
4. The states of all threads of the process become signaled, satisfying any threads that had

been waiting for the threads to terminate.
5. The termination status of the process changes from STILL_ACTIVE to the exit value of

the process.
Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the system. A
process object is deleted when the last handle to the process is closed.See AlsoExitProcess, OpenProcess, GetExitCodeProcess, GetExitCodeThread

TerminateThread
The TerminateThread function terminates a thread.

BOOL TerminateThread(
HANDLE hThread, // handle to the thread
DWORD dwExitCode // exit code for the thread

);ParametershThread
Identifies the thread to terminate.
Windows NT: The handle must have THREAD_TERMINATE access. For more information,
see Thread Objects.

dwExitCode
Specifies the exit code for the thread. Use the GetExitCodeThread function to retrieve a
thread's exit value.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTerminateThread is used to cause a thread to exit. When this occurs, the target thread has no
chance to execute any user-mode code and its initial stack is not deallocated. DLLs attached to
the thread are not notified that the thread is terminating.

TerminateThread is a dangerous function that should only be used in the most extreme cases.
You should call TerminateThread only if you know exactly what the target thread is doing, and
you control all of the code that the target thread could possibly be running at the time of the
termination. For example, TerminateThread can result in the following problems:

· If the target thread owns a critical section, the critical section will not be released.
· If the target thread is executing certain kernel32 calls when it is terminated, the kernel32

state for the thread's process could be inconsistent.
· If the target thread is manipulating the global state of a shared DLL, the state of the DLL

could be destroyed, affecting other users of the DLL.
A thread cannot protect itself against TerminateThread, other than by controlling access to its
handles. The thread handle returned by the CreateThread and CreateProcess functions has
THREAD_TERMINATE access, so any caller holding one of these handles can terminate your
thread.

If the target thread is the last thread of a process when this function is called, the thread's process
is also terminated.

The state of the thread object becomes signaled, releasing any other threads that had been
waiting for the thread to terminate. The thread's termination status changes from STILL_ACTIVE
to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the system. A thread
object is deleted when the last thread handle is closed.See AlsoCreateProcess, CreateThread, ExitThread, GetExitCodeThread

TextOut
The TextOut function writes a character string at the specified location, using the currently
selected font.

BOOL TextOut(
HDC hdc, // handle of device context
int nXStart, // x-coordinate of starting position
int nYStart, // y-coordinate of starting position
LPCTSTR lpString, // address of string
int cbString // number of characters in string

);Parametershdc
Identifies the device context.

nXStart
Specifies the logical x-coordinate of the reference point that Windows uses to align the string.

nYStart
Specifies the logical y-coordinate of the reference point that Windows uses to align the string.

lpString
Points to the string to be drawn. The string does not need to be zero-terminated, since
cbString specifies the length of the string.

cbString
Specifies the number of characters in the string.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe interpretation of the reference point depends on the current text-alignment mode. An
application can retrieve this mode by calling the GetTextAlign function; an application can alter
this mode by calling the SetTextAlign function.

By default, the current position is not used or updated by this function. However, an application
can call the SetTextAlign function with the fMode parameter set to TA_UPDATECP to permit
Windows to use and update the current position each time the application calls TextOut for a
specified device context. When this flag is set, Windows ignores the nXStart and nYStart
parameters on subsequent TextOut calls.

When the TextOut function is placed inside a path bracket, the system generates a path for the
TrueType text that includes each character plus its character box. The region generated is the
character box minus the text, rather than the text itself. You can obtain the region enclosed by the
outline of the TrueType text by setting the background mode to transparent before placing the
TextOut function in the path bracket. Following is sample code that demonstrates this procedure.// Obtain the window's client rectangle
GetClientRect(hwnd, &r);
// THE FIX: by setting the background mode
// to transparent, the region is the text itself
// SetBkMode(hdc, TRANSPARENT);
// Bracket begin a path
BeginPath(hdc);
// Send some text out into the world
TextOut(hdc, r.left, r.top, "Defenestration can be hazardous", 4);
// Bracket end a path
EndPath(hdc);
// Derive a region from that path
SelectClipPath(hdc, RGN_AND);
// This generates the same result as SelectClipPath()
// SelectClipRgn(hdc, PathToRegion(hdc));
// Fill the region with grayness
FillRect(hdc, &r, GetStockObject(GRAY_BRUSH));
See AlsoGetTextAlign, SetTextAlign, TabbedTextOut

TileWindows
[Now Supported on Windows NT]

The TileWindows function tiles the specified windows, or the child windows of the specified
parent window.

WORD WINAPI TileWindows(
HWND hwndParent, // handle of parent window
UINT wHow, // types of windows not to arrange
CONST RECT *lpRect, // rectangle to arrange windows in
UINT cKids, // number of windows to arrange
const HWND FAR *lpKids // array of window handles

);ParametershwndParent
Identifies the parent window. If this parameter is NULL, the desktop window is assumed.

wHow
Specifies the types of windows not to arrange, and whether to tile vertically or horizontally.
This parameter can be one of the following values combined with zero or more of the values
listed with the CascadeWindows function:

Value Meaning
MDITILE_HORIZONTAL Tiles windows horizontally.
MDITILE_VERTICAL Tiles windows vertically.

lpRect
Points to a SMALL_RECT structure that specifies the rectangular area, in screen coordinates,
within which the windows are arranged. If this parameter is NULL, the client area of the parent
window is used.

cKids
Specifies the number of elements in the array specified by the lpKids parameter. This
parameter is ignored if lpKids is NULL.

lpKids
Points to an array of window handles identifying the windows to arrange. If this parameter is
NULL, the child windows of the specified parent window (or of the desktop window) are
arranged.

Return ValuesIf the function succeeds, the return value is the number of windows arranged.

If the function fails, the return value is zero.See AlsoCascadeWindows, SMALL_RECT

TimerProc
The TimerProc function is an application-defined callback function that processes WM_TIMER
messages.

VOID CALLBACK TimerProc(
HWND hwnd, // handle of window for timer messages
UINT uMsg, // WM_TIMER message
UINT idEvent, // timer identifier
DWORD dwTime // current system time

);Parametershwnd
Identifies the window associated with the timer.

uMsg
Specifies the WM_TIMER message.

idEvent
Specifies the timer's identifier.

dwTime
Specifies the number of milliseconds that have elapsed since Windows was started. This is
the value returned by the GetTickCount function.

Return ValuesThis function does not return a value.RemarksTimerProc is a placeholder for the application-defined function name.See AlsoGetTickCount, KillTimer, SetTimer, WM_TIMER

TlsAlloc
The TlsAlloc function allocates a thread local storage (TLS) index. Any thread of the process can
subsequently use this index to store and retrieve values that are local to the thread.

DWORD TlsAlloc(VOID)ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is a TLS index.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.RemarksThe threads of the process can use the TLS index in subsequent calls to the TlsFree,
TlsSetValue, or TlsGetValue functions.

TLS indexes are typically allocated during process or dynamic-link library (DLL) initialization. Once
allocated, each thread of the process can use a TLS index to access its own TLS storage slot. To
store a value in its slot, a thread specifies the index in a call to TlsSetValue. The thread specifies
the same index in a subsequent call to TlsGetValue, to retrieve the stored value.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes available
in each process. This minimum is guaranteed to be at least 64 for all systems.

TLS indexes are not valid across process boundaries. A DLL cannot assume that an index
assigned in one process is valid in another process.

A DLL might use TlsAlloc, TlsSetValue, TlsGetValue, and TlsFree as follows:

1. When a DLL attaches to a process, the DLL uses TlsAlloc to allocate a TLS index. The
DLL then allocates some dynamic storage and uses the TLS index in a call to TlsSetValue to
store the address in the TLS slot. This concludes the per-thread initialization for the initial
thread of the process. The TLS index is stored in a global or static variable of the DLL.

2. Each time the DLL attaches to a new thread of the process, the DLL allocates some
dynamic storage for the new thread and uses the TLS index in a call to TlsSetValue to store
the address in the TLS slot. This concludes the per-thread initialization for the new thread.

3. Each time an initialized thread makes a DLL call requiring the data in its dynamic storage,
the DLL uses the TLS index in a call to TlsGetValue to retrieve the address of the dynamic
storage for that thread.

For additional information on thread local storage, see Thread Local Storage.See AlsoTlsFree, TlsGetValue, TlsSetValue

TlsFree
The TlsFree function releases a thread local storage (TLS) index, making it available for reuse.

BOOL TlsFree(
DWORD dwTlsIndex // TLS index to free

);ParametersdwTlsIndex
Specifies a TLS index that was allocated by the TlsAlloc function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the threads of the process have allocated dynamic storage and used the TLS index to store
pointers to this storage, they should free the storage before calling TlsFree. The TlsFree function
does not free any dynamic storage that has been associated with the TLS index. It is expected
that DLLs call this function (if at all) only during their process detach routine.

For a brief discussion of typical uses of the TLS functions, see the Remarks section of the
TlsAlloc function.See AlsoTlsAlloc, TlsGetValue, TlsSetValue

TlsGetValue
The TlsGetValue function retrieves the value in the calling thread's thread local storage (TLS) slot
for a specified TLS index. Each thread of a process has its own slot for each TLS index.

LPVOID TlsGetValue(
DWORD dwTlsIndex // TLS index to retrieve value for

);ParametersdwTlsIndex
Specifies a TLS index that was allocated by the TlsAlloc function.

Return ValuesIf the function succeeds, the return value is the value stored in the calling thread's TLS slot
associated with the specified index.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note that the data stored in a TLS slot can have a value of zero. In this case, the return value is
zero and GetLastError returns NO_ERROR.RemarksTLS indexes are typically allocated by the TlsAlloc function during process or DLL initialization.
Once allocated, each thread of the process can use a TLS index to access its own TLS storage
slot for that index. The storage slot for each thread is initialized to NULL. A thread specifies a TLS
index in a call to TlsSetValue, to store a value in its slot. The thread specifies the same index in a
subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this function
succeeds if dwTlsIndex is in the range 0 through (TLS_MINIMUM_AVAILABLE - 1). It is up to the
programmer to ensure that the index is valid.

Win32 functions that return indications of failure call SetLastError when they fail. They generally
do not call SetLastError when they succeed. The TlsGetValue function is an exception to this
general rule. The TlsGetValue function calls SetLastError to clear a thread's last error when it
succeeds. That allows checking for the error-free retrieval of NULL values.See AlsoGetLastError, SetLastError, TlsAlloc, TlsFree, TlsSetValue

TlsSetValue
The TlsSetValue function stores a value in the calling thread's thread local storage (TLS) slot for
a specified TLS index. Each thread of a process has its own slot for each TLS index.

BOOL TlsSetValue(
DWORD dwTlsIndex, // TLS index to set value for
LPVOID lpTlsValue // value to be stored

);ParametersdwTlsIndex
Specifies a TLS index that was allocated by the TlsAlloc function.

lpTlsValue
Specifies the value to be stored in the calling thread's TLS slot specified by dwTlsIndex.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTLS indexes are typically allocated by the TlsAlloc function during process or DLL initialization.
Once allocated, each thread of the process can use a TLS index to access its own TLS storage
slot for that index. The storage slot for each thread is initialized to NULL. A thread specifies a TLS
index in a call to TlsSetValue, to store a value in its slot. The thread specifies the same index in a
subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this function
succeeds if dwTlsIndex is in the range 0 through (TLS_MINIMUM_AVAILABLE - 1). It is up to the
programmer to ensure that the index is valid.See AlsoTlsAlloc, TlsFree, TlsGetValue

ToAscii
The ToAscii function translates the specified virtual-key code and keyboard state to the
corresponding Windows character or characters. The function translates the code using the input
language and physical keyboard layout identified by the given keyboard layout handle.

int ToAscii(
UINT uVirtKey, // virtual-key code
UINT uScanCode, // scan code
PBYTE lpKeyState, // address of key-state array
LPWORD lpChar, // buffer for translated key
UINT uFlags // active-menu flag

);ParametersuVirtKey
Specifies the virtual-key code to be translated.

uScanCode
Specifies the hardware scan code of the key to be translated. The high-order bit of this value
is set if the key is up (not pressed).

lpKeyState
Points to a 256-byte array that contains the current keyboard state. Each element (byte) in the
array contains the state of one key. If the high-order bit of a byte is set, the key is down
(pressed).
The low bit, if set, indicates that the key is toggled on. In this function, only the toggle bit of the
CAPS LOCK key is relevant. The toggle state of the NUM LOCK and SCROLL LOCK keys is
ignored.

lpChar
Points to the buffer that will receive the translated Windows character or characters.

uFlags
Specifies whether a menu is active. This parameter must be 1 if a menu is active, or 0
otherwise.

Return ValuesIf the specified key is a dead key, the return value is negative. Otherwise, it is one of the following
values:

Value Meaning

0 The specified virtual key has no translation for the current
state of the keyboard.

1 One Windows character was copied to the buffer.
2 Two characters were copied to the buffer. This usually

happens when a dead-key character (accent or diacritic)
stored in the keyboard layout cannot be composed with the
specified virtual key to form a single character.

RemarksThe parameters supplied to the ToAscii function might not be sufficient to translate the virtual-
key code, because a previous dead key is stored in the keyboard layout.

Typically, ToAscii performs the translation based on the virtual-key code. In some cases,
however, bit 15 of the uScanCode parameter may be used to distinguish between a key press and
a key release. The scan code is used for translating ALT+number key combinations.

Although NUM LOCK is a toggle key that affects keyboard behavior, ToAscii ignores the toggle
setting (the low bit) of lpKeyState (VK_NUMLOCK, because the uVirtKey parameter alone is
sufficient to distinguish the cursor movement keys (VK_HOME, VK_INSERT, and so on) from the
numeric keys (VK_DECIMAL, VK_NUMPAD0 - VK_NUMPAD9).See AlsoOemKeyScan, ToUnicode, VkKeyScan

ToAsciiEx
[Now Supported on Windows NT]

The ToAsciiEx function translates the specified virtual-key code and keyboard state to the
corresponding Windows character or characters. The function translates the code using the input
language and physical keyboard layout identified by the given keyboard layout handle.

int ToAsciiEx(
UINT uVirtKey, // virtual-key code
UINT uScanCode, // scan code
PBYTE lpKeyState, // address of key-state array
LPWORD lpChar, // buffer for translated key
UINT uFlags, // active-menu flag
HKL dwhkl // keyboard layout handle

);ParametersuVirtKey
Specifies the virtual-key code to be translated.

uScanCode
Specifies the hardware scan code of the key to be translated. The high-order bit of this value
is set if the key is up (not pressed).

lpKeyState
Points to a 256-byte array that contains the current keyboard state. Each element (byte) in the
array contains the state of one key. If the high-order bit of a byte is set, the key is down
(pressed).
The low bit, if set, indicates that the key is toggled on. In this function, only the toggle bit of the
CAPS LOCK key is relevant. The toggle state of the NUM LOCK and SCROLL LOCK keys is
ignored.

lpChar
Points to the buffer that will receive the translated Windows character or characters.

uFlags
Specifies whether a menu is active. This parameter must be 1 if a menu is active, zero
otherwise.

dwhkl
Identifies the keyboard layout to use to translate the given code. This parameter can be any
keyboard layout handle previously returned by the LoadKeyboardLayout function.

Return ValuesIf the specified key is a dead key, the return value is negative. Otherwise, it is one of the following
values:

Value Meaning

0 The specified virtual key has no translation for the current
state of the keyboard.

1 One Windows character was copied to the buffer.
2 Two characters were copied to the buffer. This usually

happens when a dead-key character (accent or diacritic)
stored in the keyboard layout cannot be composed with the
specified virtual key to form a single character.

RemarksThe parameters supplied to the ToAsciiEx function might not be sufficient to translate the virtual-
key code, because a previous dead key is stored in the keyboard layout.

Typically, ToAsciiEx performs the translation based on the virtual-key code. In some cases,
however, bit 15 of the uScanCode parameter may be used to distinguish between a key press and
a key release. The scan code is used for translating ALT+number key combinations.

Although NUM LOCK is a toggle key that affects keyboard behavior, ToAsciiEx ignores the toggle
setting (the low bit) of lpKeyState (VK_NUMLOCK, because the uVirtKey parameter alone is
sufficient to distinguish the cursor movement keys (VK_HOME, VK_INSERT, and so on) from the
numeric keys (VK_DECIMAL, VK_NUMPAD0 - VK_NUMPAD9).See AlsoLoadKeyboardLayout, MapVirtualKeyEx, OemKeyScan, ToAscii, VkKeyScan

ToUnicode
The ToUnicode function translates the specified virtual-key code and keyboard state to the
corresponding Unicode character or characters.

int ToUnicode(
UINT wVirtKey, // virtual-key code
UINT wScanCode, // scan code
PBYTE lpKeyState, // address of key-state array
LPWSTR pwszBuff, // buffer for translated key
int cchBuff, // size of translated key buffer
UINT wFlags // set of function-conditioning flags

);ParameterswVirtKey
Specifies the virtual-key code to be translated.

wScanCode
Specifies the hardware scan code of the key to be translated. The high-order bit of this value
is set if the key is up.

lpKeyState
Points to a 256-byte array that contains the current keyboard state. Each element (byte) in the
array contains the state of one key. If the high-order bit of a byte is set, the key is down.

pwszBuff
Points to the buffer that receives the translated Unicode character or characters.

cchBuff
Specifies the size in characters of the buffer pointed to by the pwszBuff parameter.

wFlags
A set of bit flags that condition the behavior of the function. Set bit 0 if a menu is active. Bits 1
through 31 are reserved.

Return ValuesThe function returns one of the following values:

Value Meaning

- 1 The specified virtual key is a dead-key character (accent
or diacritic). This value is returned regardless of the
keyboard layout, even if several characters have been
typed and are stored in the keyboard state. If possible,
even with Unicode keyboard layouts, the function has
written a spacing version of the dead-key character to the
buffer specified by pwszBuffer. For example, the function
writes the character SPACING ACUTE (0x00B4), rather
than the character NON_SPACING ACUTE (0x0301).

0 The specified virtual key has no translation for the current
state of the keyboard. Nothing was written to the buffer
specified by pwszBuffer.

1 One character was written to the buffer specified by
pwszBuffer.

2 or more Two or more characters were written to the buffer
specified by pwszBuff. The most common cause for this
is that a dead-key character (accent or diacritic) stored in
the keyboard layout could not be combined with the
specified virtual key to form a single character.

RemarksThe parameters supplied to the ToUnicode function might not be sufficient to translate the virtual-
key code because a previous dead key is stored in the keyboard layout.

Typically, ToUnicode performs the translation based on the virtual-key code. In some cases,
however, bit 15 of the wScanCode parameter can be used to distinguish between a key press and
a key release.See AlsoToAscii, VkKeyScan

ToUnicodeEx
The ToUnicodeEx function translates the specified virtual-key code and keyboard state to the
corresponding Unicode character or characters.

int ToUnicodeEx(
UINT wVirtKey, // virtual-key code
UINT wScanCode, // scan code
PBYTE lpKeyState, // address of key-state array
LPWSTR pwszBuff, // buffer for translated key
int cchBuff, // size of translated key buffer
UINT wFlags, // set of function-conditioning flags
HKL dwhkl // keyboard layout handle

);ParameterswVirtKey
Specifies the virtual-key code to be translated.

wScanCode
Specifies the hardware scan code of the key to be translated. The high-order bit of this value
is set if the key is up.

lpKeyState
Points to a 256-byte array that contains the current keyboard state. Each element (byte) in the
array contains the state of one key. If the high-order bit of a byte is set, the key is down.

pwszBuff
Points to the buffer that receives the translated Unicode character or characters.

cchBuff
Specifies the size in characters of the buffer pointed to by the pwszBuff parameter.

wFlags
A set of bit flags that condition the behavior of the function. Set bit 0 if a menu is active. Bits 1
through 31 are reserved.

dwhkl
Identifies the keyboard layout to use to translate the given code. This parameter can be any
keyboard layout handle previously returned by the LoadKeyboardLayout function.

Return ValuesThe function returns one of the following values:

Value Meaning

- 1 The specified virtual key is a dead-key character (accent
or diacritic). This value is returned regardless of the
keyboard layout, even if several characters have been
typed and are stored in the keyboard state. If possible,
even with Unicode keyboard layouts, the function has
written a spacing version of the dead-key character to the
buffer specified by pwszBuffer. For example, the function
writes the character SPACING ACUTE (0x00B4), rather
than the character NON_SPACING ACUTE (0x0301).

0 The specified virtual key has no translation for the current
state of the keyboard. Nothing was written to the buffer
specified by pwszBuffer.

1 One character was written to the buffer specified by
pwszBuffer.

2 or more Two or more characters were written to the buffer
specified by pwszBuff. The most common cause for this
is that a dead-key character (accent or diacritic) stored in
the keyboard layout could not be combined with the
specified virtual key to form a single character.

RemarksThe parameters supplied to the ToUnicodeEx function might not be sufficient to translate the
virtual-key code because a previous dead key is stored in the keyboard layout.

Typically, ToUnicodeEx performs the translation based on the virtual-key code. In some cases,
however, bit 15 of the wScanCode parameter can be used to distinguish between a key press and
a key release.See AlsoToAscii, ToUnicode, VkKeyScan

TrackMouseEvent
[New - Windows NT]

The TrackMouseEvent function posts messages when the mouse pointer leaves a window or
hovers over a window for a specified amount of time.

BOOL TrackMouseEvent(
LPTRACKMOUSEEVENT lpEventTrack // pointer to a TRACKMOUSEEVENT structure

);ParameterslpEventTrack
Pointer to a TRACKMOUSEEVENT structure.

Return ValuesIf the function succeeds, the return value is nonzero .

If the function fails, return value is zero. To get extended error information, call GetLastError.

The messages that the function can post are the following:

Message Meaning

WM_MOUSEHOVER The mouse hovered over the client area of
the window for the period of time specified in
a prior call to TrackMouseEvent. Hover
tracking stops when this message is
generated. The application must call
TrackMouseEvent again if it requires
further tracking of mouse hover behavior.

WM_MOUSELEAVE The mouse left the client area of the window
specified in a prior call to
TrackMouseEvent. All tracking requested
by TrackMouseEvent is canceled when this
message is generated. The application must
call TrackMouseEvent when the mouse re-
enters its window if it requires further
tracking of mouse hover behavior.

RemarksThe mouse pointer is considered to be hovering when it stays within a specified rectangle for a
specified period of time. Call SystemParametersInfo and use the values
SPI_GETMOUSEHOVERWIDTH, SPI_GETMOUSEHOVERHEIGHT, and
SPI_GETMOUSEHOVERTIME to retrieve the size of the rectangle and the time.See AlsoSystemParametersInfo, TRACKMOUSEEVENT

TrackPopupMenu
The TrackPopupMenu function displays a shortcut menu at the specified location and tracks the
selection of items on the menu. The shortcut menu can appear anywhere on the screen.

BOOL TrackPopupMenu(
HMENU hMenu, // handle of shortcut menu
UINT uFlags, // screen-position and mouse-button flags
int x, // horizontal position, in screen coordinates
int y, // vertical position, in screen coordinates
int nReserved, // reserved, must be zero
HWND hWnd, // handle of owner window
CONST RECT *prcRect // points to RECT that specifies no-dismissal area

);ParametershMenu
Identifies the shortcut menu to be displayed. The handle can be obtained by calling
CreatePopupMenu to create a new shortcut menu, or by calling GetSubMenu to retrieve the
handle of a submenu associated with an existing menu item.

uFlags
A set of bit flags that specify function options.
Use one of the following bit flag constants to specify how the function positions the popup
menu horizontally:

Value Meaning
TPM_CENTERALIGN If this flag is set, the function centers the

shortcut menu horizontally relative to the
coordinate specified by the x parameter.

TPM_LEFTALIGN If this flag is set, the function positions the
shortcut menu so that its left side is aligned
with the coordinate specified by the x
parameter.

TPM_RIGHTALIGN Positions the shortcut menu so that its right
side is aligned with the coordinate
specified by the x parameter.

Use one of the following bit flag constants to specify which mouse button the shortcut
menu tracks:

Value Meaning
TPM_LEFTBUTTON If this flag is set, the shortcut menu tracks

the left mouse button.
TPM_RIGHTBUTTON If this flag is set, the shortcut menu tracks

the right mouse button

x
Specifies the horizontal location of the shortcut menu, in screen coordinates.

y
Specifies the vertical location of the shortcut menu, in screen coordinates.

nReserved
Reserved; must be zero.

hWnd
Identifies the window that owns the shortcut menu. This window receives all messages from
the menu. The window does not receive a WM_COMMAND message from the menu until the
function returns.

prcRect
Points to a RECT structure that specifies the portion of the screen in which the user can select
without dismissing the shortcut menu. If this parameter is NULL, the shortcut menu is
dismissed if the user clicks outside the shortcut menu.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoCreatePopupMenu, GetSubMenu, RECT, WM_COMMAND

TrackPopupMenuEx
[Now Supported on Windows NT]

The TrackPopupMenuEx function displays a shortcut menu at the specified location and tracks
the selection of items on the shortcut menu. The shortcut menu can appear anywhere on the
screen.

BOOL TrackPopupMenuEx(
HMENU hmenu,
UINT fuFlags,
int x,
int y,
HWND hwnd,
LPTPMPARAMS lptpm

);Parametershmenu
Handle to the shortcut menu to be displayed. This handle can be obtained by calling the
CreatePopupMenu function to create a new shortcut menu or by calling the GetSubMenu
function to retrieve the handle to a submenu associated with an existing menu item.

fuFlags
Positioning and other options. This parameter, which can be zero or more of the values listed
with the TrackPopupMenu function, may also include one of the following values:

Value Meaning
TPM_HORIZONTAL If the menu cannot be shown at the

specified location without overlapping the
excluded rectangle, the system tries to
accommodate the requested horizontal
alignment before the requested vertical
alignment.

TPM_VERTICAL If the menu cannot be shown at the
specified location without overlapping the
excluded rectangle, the system tries to
accommodate the requested vertical
alignment before the requested horizontal
alignment.

The excluded rectangle is a portion of the screen that the menu should not overlap; it
is specified by lptpm.

x
Horizontal location of the shortcut menu, in screen coordinates.

y
Vertical location of the shortcut menu, in screen coordinates.

hwnd
Handle to the window that owns the shortcut menu. This window receives all messages from
the menu. The window does not receive a WM_COMMAND message from the menu until the
function returns.

lptpm
Pointer to a TPMPARAMS structure that specifies an area of the screen the menu should not
overlap. This parameter can be NULL.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the
GetLastError function.See AlsoCreatePopupMenu, GetSubMenu, TPMPARAMS, TrackPopupMenu, WM_COMMAND

TransactNamedPipe
The TransactNamedPipe function combines into a single network operation the functions that
write a message to and read a message from the specified named pipe.

BOOL TransactNamedPipe(
HANDLE hNamedPipe, // handle of named pipe
LPVOID lpInBuffer, // address of write buffer
DWORD nInBufferSize, // size of the write buffer, in bytes
LPVOID lpOutBuffer, // address of read buffer
DWORD nOutBufferSize, // size of read buffer, in bytes
LPDWORD lpBytesRead, // address of variable for bytes actually read
LPOVERLAPPED lpOverlapped // address of overlapped structure

);ParametershNamedPipe
Identifies the named pipe returned by the CreateNamedPipe or CreateFile function.

lpInBuffer
Points to the buffer containing the data written to the pipe.

nInBufferSize
Specifies the size, in bytes, of the write buffer.

lpOutBuffer
Points to the buffer that receives the data read from the pipe.

nOutBufferSize
Specifies the size, in bytes, of the read buffer.

lpBytesRead
Points to the variable that receives the number of bytes read from the pipe.
If lpOverlapped is NULL, lpBytesRead cannot be NULL.
If lpOverlapped is not NULL, lpBytesRead can be NULL. If this is an overlapped read
operation, you can get the number of bytes read by calling GetOverlappedResult. If
hNamedPipe is associated with an I/O completion port, you can get the number of bytes read
by calling GetQueuedCompletionStatus.

lpOverlapped
Points to an OVERLAPPED structure. This structure is required if hNamedPipe was opened
with FILE_FLAG_OVERLAPPED.
If hNamedPipe was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter
must not be NULL. It must point to a valid OVERLAPPED structure. If hNamedPipe was
created with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can
incorrectly report that the opeation is complete.
If hNamePipe was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL,
TransactNamedPipe is executed as an overlapped operation. The OVERLAPPED structure
should contain a manual-reset event object (which can be created by using the CreateEvent
function). If the operation cannot be completed immediately, TransactNamedPipe returns
FALSE and GetLastError returns ERROR_IO_PENDING. In this situation, the event object is
set to the nonsignaled state before TransactNamedPipe returns, and it is set to the signaled
state when the transaction has finished. For more information about overlapped operations,
see Pipes.
If hNamedPipe was not opened with FILE_FLAG_OVERLAPPED, TransactNamedPipe does
not return until the operation is complete.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksTransactNamedPipe fails if the server did not create the pipe as a message-type pipe or if the
pipe handle is not in message-read mode. For example, if a client is running on the same machine
as the server and uses the \\.\pipe\pipename format to open the pipe, the pipe is opened in byte
mode by the named pipe file system (NPFS). If the client uses the form \\server\pipe\pipename,
the redirector opens the pipe in message mode. A byte mode pipe handle can be changed to
message-read mode with the SetNamedPipeHandleState function.

The function cannot be completed successfully until data is written into the buffer specified by the
lpOutBuffer parameter. The lpOverlapped parameter is available to enable the calling thread to
perform other tasks while the operation is executing in the background.

If the message to be read is longer than the buffer specified by the nOutBufferSize parameter,
TransactNamedPipe returns FALSE and the GetLastError function returns
ERROR_MORE_DATA. The remainder of the message can be read by a subsequent call to
ReadFile, ReadFileEx, or PeekNamedPipe.See AlsoCreateEvent, CreateFile, CreateNamedPipe, GetOverlappedResult,
GetQueuedCompletionStatus, PeekNamedPipe, ReadFile, ReadFileEx,
SetNamedPipeHandleState, OVERLAPPED

TranslateAccelerator
The TranslateAccelerator function processes accelerator keys for menu commands. The
function translates a WM_KEYDOWN or WM_SYSKEYDOWN message to a WM_COMMAND or
WM_SYSCOMMAND message (if there is an entry for the key in the specified accelerator table)
and then sends the WM_COMMAND or WM_SYSCOMMAND message directly to the appropriate
window procedure. TranslateAccelerator does not return until the window procedure has
processed the message.

int TranslateAccelerator(
HWND hWnd, // handle of destination window
HACCEL hAccTable, // handle of accelerator table
LPMSG lpMsg // address of structure with message

);ParametershWnd
Identifies the window whose messages are to be translated.

hAccTable
Identifies an accelerator table. The accelerator table must have been loaded by a call to the
LoadAccelerators function or created by a call to the CreateAcceleratorTable function.

lpMsg
Points to an MSG structure that contains message information retrieved from the calling
thread's message queue by using the GetMessage or PeekMessage function.

Return ValuesIf the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.RemarksTo differentiate the message that this function sends from messages sent by menus or controls,
the high-order word of the wParam parameter of the WM_COMMAND or WM_SYSCOMMAND
message contains the value 1.

Accelerator key combinations used to select items from the window menu are translated into
WM_SYSCOMMAND messages; all other accelerator key combinations are translated into
WM_COMMAND messages.

When TranslateAccelerator returns a nonzero value and the message is translated, the
application should not use the TranslateMessage function to process the message again.

An accelerator need not correspond to a menu command.

If the accelerator command corresponds to a menu item, the application is sent WM_INITMENU
and WM_INITMENUPOPUP messages, as if the user were trying to display the menu. However,
these messages are not sent if any of the following conditions exist:

· The window is disabled.
· The menu item is disabled.
· The accelerator key combination does not correspond to an item on the window menu

and the window is minimized.
· A mouse capture is in effect. For information about mouse capture, see the SetCapture

function.
If the specified window is the active window and no window has the keyboard focus (which is
generally the case if the window is minimized), TranslateAccelerator translates WM_SYSKEYUP
and WM_SYSKEYDOWN messages instead of WM_KEYUP and WM_KEYDOWN messages.

If an accelerator keystroke occurs that corresponds to a menu item when the window that owns
the menu is minimized, TranslateAccelerator does not send a WM_COMMAND message.
However, if an accelerator keystroke occurs that does not match any of the items in the window's
menu or in the window menu, the function sends a WM_COMMAND message, even if the
window is minimized.See AlsoCreateAcceleratorTable, GetMessage, LoadAccelerators, MSG, PeekMessage, SetCapture,
TranslateMessage, WM_COMMAND, WM_INITMENU, WM_INITMENUPOPUP,
WM_KEYDOWN, WM_SYSKEYDOWN, WM_SYSCOMMAND

TranslateCharsetInfo
[Now Supported on Windows NT]

The TranslateCharsetInfo function translates based on the specified character set, code page, or
font signature value, setting all members of the destination structure to appropriate values.

UINT TranslateCharsetInfo(
DWORD FAR *lpSrc,
LPCHARSETINFO lpCs,
DWORD dwFlags

);ParameterslpSrc
Address or value as defined by the dwFlags parameter. If dwFlags is TCI_SRCFONTSIG, this
parameter is the address of the fsCsb member of a FONTSIGNATURE structure. Otherwise,
this parameter is a 32-bit value.

lpCs
Pointer to a CHARSETINFO structure that receives the translated character set information.

dwFlags
Translation flags. This parameter can be one of the following values:

Value Meaning
TCI_SRCCHARSET Source contains the character set value in

the low word, and zero in the high word.
TCI_SRCCODEPAGE Source is a code-page value in the low

word and zero in the high word.
TCI_SRCFONTSIG Source is the code-page bitfield portion of

a FONTSIGNATURE structure. On input
this should have only one Windows code-
page bit set, either for an ANSI code-page
value or for a common ANSI and OEM
value (for OEM values, bits 32-63 must be
clear.). On output this will have only one
bit set.
If the TCI_SRCFONTSIG value is given,
the lpSrc parameter must be the address
of the codepage bit field. If any other TCI_
value is given, the lpSrc parameter must
be a value not an address.

Return ValuesIf the function succeeds, it returns a nonzero value.

If the function fails, it returns zero. To get extended error information, call GetLastError.See AlsoCHARSETINFO, FONTSIGNATURE

TranslateMDISysAccel
The TranslateMDISysAccel function processes accelerator keystrokes for window menu
commands of the multiple document interface (MDI) child windows associated with the specified
MDI client window. The function translates WM_KEYUP and WM_KEYDOWN messages to
WM_SYSCOMMAND messages and sends them to the appropriate MDI child windows.

BOOL TranslateMDISysAccel(
HWND hWndClient, // handle of MDI client window
LPMSG lpMsg // address of structure with message data

);ParametershWndClient
Identifies the MDI client window.

lpMsg
Points to a message retrieved by using the GetMessage or PeekMessage function. The
message must be an MSG structure and contain message information from the application's
message queue.

Return ValuesIf the message is translated into a system command, the return value is nonzero.

If the message is not translated into a system command, the return value is zero.See AlsoGetMessage, PeekMessage, TranslateAccelerator, MSG, WM_KEYDOWN, WM_KEYUP,
WM_SYSCOMMAND

TranslateMessage
The TranslateMessage function translates virtual-key messages into character messages. The
character messages are posted to the calling thread's message queue, to be read the next time
the thread calls the GetMessage or PeekMessage function.

BOOL TranslateMessage(
CONST MSG *lpMsg // address of structure with message

);ParameterslpMsg
Points to an MSG structure that contains message information retrieved from the calling
thread's message queue by using the GetMessage or PeekMessage function.

Return ValuesIf the message is translated (that is, a character message is posted to the thread's message
queue), the return value is nonzero.

If the message is not translated (that is, a character message is not posted to the thread's
message queue), the return value is zero.

Windows NT: The TranslateMessage function returns a nonzero value for function and arrow
keys as well as for character and digit keys.RemarksThe TranslateMessage function does not modify the message pointed to by the lpMsg
parameter.

WM_KEYDOWN and WM_KEYUP combinations produce a WM_CHAR or WM_DEADCHAR
message. WM_SYSKEYDOWN and WM_SYSKEYUP combinations produce a WM_SYSCHAR
or WM_SYSDEADCHAR message.

TranslateMessage produces WM_CHAR messages only for keys that are mapped to ASCII
characters by the keyboard driver.

If applications process virtual-key messages for some other purpose, they should not call
TranslateMessage. For instance, an application should not call TranslateMessage if the
TranslateAccelerator function returns TRUE.See AlsoGetMessage, PeekMessage, TranslateAccelerator, WM_CHAR, WM_DEADCHAR,
WM_KEYDOWN, WM_KEYUP, WM_SYSCHAR, WM_SYSDEADCHAR, WM_SYSKEYDOWN,
WM_SYSKEYUP

TransmitCommChar
The TransmitCommChar function transmits a specified character ahead of any pending data in
the output buffer of the specified communications device.

BOOL TransmitCommChar(
HANDLE hFile, // handle of communications device
char cChar // character to transmit

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

cChar
Specifies the character to be transmitted.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe TransmitCommChar function is useful for sending an interrupt character (such as a CTRL+C)
to a host system.

If the device is not transmitting, TransmitCommChar cannot be called repeatedly. Once
TransmitCommChar places a character in the output buffer, the character must be transmitted
before the function can be called again. If the previous character has not yet been sent,
TransmitCommChar returns an error.

Character transmission is subject to normal flow control and handshaking. This function can only
be called synchronously.See AlsoCreateFile, WaitCommEvent

TryEnterCriticalSection
[New - Windows NT]

The TryEnterCriticalSection function attempts to enter a critical section without blocking. If the
call is successful, the calling thread takes ownership of the critical section.

BOOL TryEnterCriticalSection(
LPCRITICAL_SECTION lpCriticalSection // pointer to critical section object

);ParameterslpCriticalSection
Specifies the critical section object.

Return ValuesIf the critical section is successfully entered or the current thread already owns the critical section,
the return value is nonzero.

If another thread already owns the critical section, the return value is zero.RemarksThe threads of a single process can use a critical section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical section
object, which it can do by declaring a variable of type CRITICAL_SECTION. Before using a critical
section, some thread of the process must call the InitializeCriticalSection function to initialize the
object.

To enable mutually exclusive use of a shared resource, each thread calls the
EnterCriticalSection or TryEnterCriticalSection function to request ownership of the critical
section before executing any section of code that uses the protected resource. The difference is
that TryEnterCriticalSection returns immediately, regardless of whether it obtained ownership of
the critical section, while EnterCriticalSection blocks until the thread can take ownership of the
critical section. When it has finished executing the protected code, the thread uses the
LeaveCriticalSection function to relinquish ownership, enabling another thread to become the
owner and gain access to the protected resource. The thread must call LeaveCriticalSection
once for each time that it entered the critical section.

Any thread of the process can use the DeleteCriticalSection function to release the system
resources that were allocated when the critical section object was initialized. After this function
has been called, the critical section object can no longer be used for synchronization.See AlsoDeleteCriticalSection, EnterCriticalSection, InitializeCriticalSection, LeaveCriticalSection

UInt32x32To64
The UInt32x32To64 function multiplies two unsigned 32-bit integers, returning an unsigned 64-bit
integer result. The function performs optimally on all Win32 platforms.

DWORDLONG UInt32x32To64(
DWORD Multiplier, // specifies first unsigned 32-bit integer for the multiplication
DWORD Multiplicand // specifies second unsigned 32-bit integer for the multiplication

);ParametersMultiplier
Specifies the first unsigned 32-bit integer for the multiplication.

Multiplicand
Specifies the second unsigned 32-bit integer for the multiplication.

Return ValuesThe return value is the unsigned 64-bit integer result of the multiplication.RemarksThis function is implemented on all platforms by optimal inline code: a single multiply instruction
that returns a 64-bit result.

Please note that the function's return value is a 64-bit value, not a LARGE_INTEGER structure.See AlsoInt32x32To64

UndeleteFile
The UndeleteFile function is an application-defined callback function that File Manager calls when
the user chooses the Undelete command from the File Manager File menu.

DWORD APIENTRY UndeleteFile(
HWND hwndOwner, // handle of File Manager window
LPSTR lpszDir // address of name of initial directory

);ParametershwndOwner
Identifies the File Manager window. An "undelete" dynamic-link library (DLL) should use this
handle to specify the owner window for any dialog box or message box the DLL may display.

lpszDir
Points to a null-terminated string that contains the name of the initial directory.

Return ValuesIf the function succeeds, the return value is one of the following:

Value Meaning

- l An error occurred.
IDOK A file was undeleted. File Manager repaints its

windows.
IDCANCEL No file was undeleted.

UnhandledExceptionFilter
The UnhandledExceptionFilter function passes unhandled exceptions to the debugger, if the
process is being debugged. Otherwise, it optionally displays an Application Error message box
and causes the exception handler to be executed. This function can be called only from within the
filter expression of a try-except exception handler.

LONG UnhandledExceptionFilter(
STRUCT _EXCEPTION_POINTERS *ExceptionInfo // address of exception info

);ParametersExceptionInfo
Points to an EXCEPTION_POINTERS structure containing a description of the exception and
the processor context at the time of the exception. This pointer is the return value of a call to
the GetExceptionInformation function.

Return ValuesThe function returns one of the following values:

Value Meaning

EXCEPTION_CONTINUE_SEARCHThe process is being debugged, so
the exception should be passed (as
second chance) to the application's
debugger.

EXCEPTION_EXECUTE_HANDLERIf the
SEM_NOGPFAULTERRORBOX
flag was specified in a previous call
to SetErrorMode, no Application
Error message box is displayed.
The function returns control to the
exception handler, which is free to
take any appropriate action.

RemarksIf the process is not being debugged, the function displays an Application Error message box,
depending on the current error mode. The default behavior is to display the dialog box, but this
can be disabled by specifying SEM_NOGPFAULTERRORBOX in a call to the SetErrorMode
function.

The system uses UnhandledExceptionFilter internally to handle exceptions that occur during
process and thread creation.See AlsoEXCEPTION_POINTERS, GetExceptionInformation, SetErrorMode,
SetUnhandledExceptionFilter, UnhandledExceptionFilter

UnhookWindowsHook
The UnhookWindowsHook function is obsolete, but is provided for compatibility with 16-bit
versions of Windows. For Win32-based applications, use the UnhookWindowsHookEx function.

UnhookWindowsHookEx
The UnhookWindowsHookEx function removes a hook procedure installed in a hook chain by
the SetWindowsHookEx function.

BOOL UnhookWindowsHookEx(
HHOOK hhk // handle of hook procedure to remove

);Parametershhk
Identifies the hook to be removed. This parameter is a hook handle obtained by a previous
call to SetWindowsHookEx.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe hook procedure can be in the state of being called by another thread even after
UnhookWindowsHookEx returns. If the hook procedure is not being called concurrently, the
hook procedure is removed immediately before UnhookWindowsHookEx returns.See AlsoSetWindowsHookEx, UnhookWindowsHook

UnionRect
The UnionRect function creates the union of two rectangles. The union is the smallest rectangle
that contains both source rectangles.

BOOL UnionRect(
LPRECT lprcDst, // address of structure for union
CONST RECT *lprcSrc1, // address of structure with first rectangle
CONST RECT *lprcSrc2 // address of structure with second rectangle

);ParameterslprcDst
Points to the RECT structure that will receive a rectangle containing the rectangles pointed to
by the lprcSrc1 and lprcSrc2 parameters.

lprcSrc1
Points to the RECT structure that contains the first source rectangle.

lprcSrc2
Points to the RECT structure that contains the second source rectangle.

Return ValuesIf the specified structure contains a nonempty rectangle, the return value is nonzero.

If the specified structure does not contain a nonempty rectangle, the return value is zero. To get
extended error information, call GetLastError.RemarksWindows ignores the dimensions of an empty rectangle ¾ that is, a rectangle in which all
coordinates are set to zero, so that it has no height or no width.See AlsoInflateRect, IntersectRect, OffsetRect, RECT

UnloadKeyboardLayout
The UnloadKeyboardLayout function removes a keyboard layout.

BOOL UnloadKeyboardLayout(
HKL hkl // handle of keyboard layout

);Parametershkl
Identifies the keyboard layout to unload.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The function can fail for the following reasons:

· An invalid keyboard layout handle was passed.
· The layout was preloaded.
· The layout is in use.
RemarksWindows 95: UnloadKeyboardLayout cannot unload the system default keyboard layout. This

ensures that an appropriate character set is always available for the user to type commands for
the shell or names for the file system.

Windows NT: UnloadKeyboardLayout can unload the system default keyboard layout.See AlsoActivateKeyboardLayout, GetKeyboardLayoutName, LoadKeyboardLayout

UnlockFile
The UnlockFile function unlocks a region in an open file. Unlocking a region enables other
processes to access the region.

BOOL UnlockFile(
HANDLE hFile, // handle of file to unlock
DWORD dwFileOffsetLow, // low-order word of lock region offset
DWORD dwFileOffsetHigh, // high-order word of lock region offset
DWORD nNumberOfBytesToUnlockLow, // low-order word of length to unlock
DWORD nNumberOfBytesToUnlockHigh // high-order word of length to unlock

);ParametershFile
Identifies a file that contains a region locked with LockFile. The file handle must have been
created with either GENERIC_READ or GENERIC_WRITE access to the file.

dwFileOffsetLow
Specifies the low-order word of the starting byte offset in the file where the locked region
begins.

dwFileOffsetHigh
Specifies the high-order word of the starting byte offset in the file where the locked region
begins.

nNumberOfBytesToUnlockLow
Specifies the low-order word of the length of the byte range to be unlocked.

nNumberOfBytesToUnlockHigh
Specifies the high-order word of the length of the byte range to be unlocked.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksUnlocking a region of a file releases a lock on the file. The region to unlock must correspond
exactly to an existing locked region. For example, two adjacent regions of a file cannot be locked
separately and then unlocked as a single region that spans both locked regions.

A process should not be terminated with a portion of a file locked and a file that has locked
regions should not be closed.

This function works on a file allocation table (FAT) - based file system only if the operating system
is running SHARE.EXE.See AlsoCreateFile, LockFile

UnlockFileEx
The UnlockFileEx function unlocks a previously locked byte range in an open file.

BOOL UnlockFileEx(
HANDLE hFile, // handle of file to unlock
DWORD dwReserved, // reserved, must be set to zero
DWORD nNumberOfBytesToUnlockLow, // low order 32-bits of length to unlock
DWORD nNumberOfBytesToUnlockHigh, // high order 32-bits of length to unlock
LPOVERLAPPED lpOverlapped // addr. of struct. with unlock region start offset

);ParametershFile
Identifies an open handle to a file that is to have an existing locked region unlocked. The
handle must have been created with either GENERIC_READ or GENERIC_WRITE access to
the file.

dwReserved
Reserved parameter; must be zero.

nNumberOfBytesToUnlockLow
Specifies the low-order 32-bits of the length of the byte range to unlock.

nNumberOfBytesToUnlockHigh
Specifies the high-order 32-bits of the length of the byte range to unlock.

lpOverlapped
Points to an OVERLAPPED structure that the function uses with the unlocking request. This
structure contains the file offset of the beginning of the unlock range.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information, call
GetLastError.RemarksUnlocking a region of a file releases a previously acquired lock on a file. The region to unlock
must correspond exactly to an existing locked region. Two adjacent regions of a file can not be
locked separately and then unlocked using a single region that spans both locked regions.

If a process terminates with a portion of a file locked or closes a file that has outstanding locks,
the behavior is not specified.See AlsoCreateFile, LockFile, LockFileEx, OVERLAPPED, UnlockFile

UnlockResource
The UnlockResource function is obsolete. This function is provided only for compatibility with 16-
bit versions of Windows. It is not necessary for Win32-based applications to unlock resources.See AlsoLoadResource, LockResource

UnlockSegment
The UnlockSegment function is obsolete. This function is provided only for compatibility with 16-
bit versions of Windows. Segments have no meaning in the 32-bit environment.

UnlockServiceDatabase
The UnlockServiceDatabase function unlocks a service control manager database by releasing
the specified lock.

BOOL UnlockServiceDatabase(
SC_LOCK ScLock // service control manager database lock to be released

);ParametersScLock
Specifies a lock obtained from a previous call to the LockServiceDatabase function.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.ErrorsThe following error codes may be set by the service control manager. Other error codes may be
set by the registry functions that are called by the service control manager.

Value Meaning

ERROR_INVALID_SERVICE_LOCKThe specified lock is invalid.
See AlsoLockServiceDatabase, QueryServiceLockStatus

UnmapViewOfFile
The UnmapViewOfFile function unmaps a mapped view of a file from the calling process's
address space.

BOOL UnmapViewOfFile(
LPCVOID lpBaseAddress // address where mapped view begins

);ParameterslpBaseAddress
Points to the base address of the mapped view of a file that is to be unmapped. This value
must be identical to the value returned by a previous call to the MapViewOfFile or
MapViewOfFileEx function.

Return ValuesIf the function succeeds, the return value is nonzero, and all dirty pages within the specified range
are written "lazily" to disk.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAlthough an application may close the file handle used to create a file mapping object, the system
holds the corresponding file open until the last view of the file is unmapped.

Windows 95: Files for which the last view has not yet been unmapped are held open with the
same sharing restrictions as the original file handle.

Windows NT: Files for which the last view has not yet been unmapped are held open with no
sharing restrictions.See AlsoMapViewOfFile, MapViewOfFileEx

UnpackDDElParam
The UnpackDDElParam function unpacks a DDE lParam value received from a posted DDE
message.

BOOL UnpackDDElParam(
UINT msg, // posted DDE message
LONG lParam, // lParam of posted DDE message
PUINT puiLo, // address of low-order word of lParam
PUINT puiHi // address of high-order word of lParam

);Parametersmsg
Specifies the posted DDE message.

lParam
Specifies the lParam parameter of the posted DDE message that was received. The
application must free the memory object specified by the lParam parameter by calling the
FreeDDElParam function.

puiLo
Points to a value the function will set to the low-order word of lParam.

puiHi
Points to a value the function will set to the high-order word of lParam.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksPackDDElParam eases the porting of 16-bit DDE applications to 32-bit DDE applications.See AlsoFreeDDElParam, PackDDElParam, ReuseDDElParam

UnrealizeObject
The UnrealizeObject function resets a logical palette. It directs the system to realize the palette
as though it had not previously been realized. The next time the application calls the
RealizePalette function for the specified palette, the system completely remaps the logical palette
to the system palette.

If hgdiobj is a brush, UnrealizeObject does nothing, and the function returns TRUE. Use
SetBrushOrgEx to set the origin of a brush.

BOOL UnrealizeObject(
HGDIOBJ hgdiobj // logical palette handle

);Parametershgdiobj
Identifies the logical palette to be reset.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe UnrealizeObject function should not be used with stock objects. The default palette, obtained
by calling GetStockObject(DEFAULT_PALETTE), is a stock object.

A palette identified by hgdiobj can be the currently selected palette of a device context.See AlsoGetStockObject, RealizePalette, SetBrushOrgEx

UnregisterClass
The UnregisterClass function removes a window class, freeing the memory required for the
class.

BOOL UnregisterClass(
LPCTSTR lpClassName, // address of class name string
HINSTANCE hInstance // handle of application instance

);ParameterslpClassName
Points to a null-terminated string or is an integer atom. If this parameter is an integer atom, it
must be a global atom created by a previous call to the GlobalAddAtom function. The atom,
a 16-bit value less than 0xC000, must be in the low-order word of lpClassName; the high-
order word must be zero.
If lpClassName is a string, it specifies the window class name. This class name must have
been registered by a previous call to the RegisterClass function. System global classes, such
as dialog box controls, cannot be unregistered.

hInstance
Identifies the instance of the module that created the class.

Return ValuesIf the function succeeds, the return value is nonzero.

If the class could not be found or if a window still exists that was created with the class, the return
value is zero. To get extended error information, call GetLastError.RemarksBefore calling this function, an application must destroy all windows created with the specified
class.

All window classes that an application registers are unregistered when it terminates.See AlsoGlobalAddAtom, RegisterClass

UnregisterHotKey
The UnregisterHotKey function frees a hot key previously registered by the calling thread.

BOOL UnregisterHotKey(
HWND hWnd, // window associated with hot key
int id // identifier of hot key

);ParametershWnd
Identifies the window associated with the hot key to be freed. This parameter should be NULL
if the hot key is not associated with a window.

id
Specifies the identifier of the hot key to be freed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoRegisterHotKey, WM_HOTKEY

UpdateColors
The UpdateColors function updates the client area of the specified device context by remapping
the current colors in the client area to the currently realized logical palette.

BOOL UpdateColors(
HDC hdc // handle of device context

);Parametershdc
Identifies the device context.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can determine whether a device supports palette operations by calling the
GetDeviceCaps function and specifying the RASTERCAPS constant.

An inactive window with a realized logical palette may call UpdateColors as an alternative to
redrawing its client area when the system palette changes.

The UpdateColors function typically updates a client area faster than redrawing the area.
However, because UpdateColors performs the color translation based on the color of each pixel
before the system palette changed, each call to this function results in the loss of some color
accuracy.

This function must be called soon after a WM_PALETTECHANGED message is received.See AlsoGetDeviceCaps, RealizePalette

UpdateICMRegKey
The UpdateICMRegKey function installs, removes, or queries registry entries that identify ICC
color profiles or color-matching DLLs. The function carries out the action specified by the
nCommand parameter.

BOOL UpdateICMRegKey(
DWORD dwReserved,
DWORD CMID,
LPTSTR lpszFileName,
UINT nCommand

);ParametersdwReserved
Reserved; must be zero.

CMID
Profile identifier of the color-matching DLL to use with the profile.

lpszFileName
Pointer to a zero-terminated string that specifies the filename of an ICC color profile or
address of a DEVMODE structure, depending on the value of nCommand.

nCommand
Action flag. This parameter can have one of the following values:

ICM_ADDPROFILE Adds the ICC profile to the ICM
branch in the registry.

ICM_DELETEPROFILE Deletes the ICC profile from the ICM
branch in the registry.

ICM_QUERYPROFILE Determines if the profile is in the
ICM branch of the registry.

ICM_SETDEFAULTPROFILE Makes the profile first among equals.
ICM_REGISTERICMATCHER Equates a CMID to a color-

matching DLL.
ICM_UNREGISTERICMATCHERRemoves the reference between

CMID and a color-matching DLL.
ICM_QUERYMATCH Determines if a profile exists based

on the DEVMODE pointed to by
lpszFileName.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksGDI uses the registry to keep track of ICC profiles installed in the system (listed in the registry).
Although not required, if ICC profiles are copied to a local directory, they should be placed in the
Color directory in the Windows System directory.See AlsoDEVMODE

UpdateResource
The UpdateResource function adds, deletes, or replaces a resource in an executable file.

BOOL UpdateResource(
HANDLE hUpdate, // update-file handle
LPCTSTR lpType, // address of resource type to update
LPCTSTR lpName, // address of resource name to update
WORD wLanguage, // language identifier of resource
LPVOID lpData, // address of resource data
DWORD cbData // length of resource data, in bytes

);ParametershUpdate
Specifies an update-file handle. This handle is returned by the BeginUpdateResource
function.

lpType
Points to a null-terminated string specifying the resource type to be updated. This parameter
can also be an integer value passed to the MAKEINTRESOURCE macro, or it can be one of
the following predefined resource types:

Value Meaning
RT_ACCELERATOR Accelerator table
RT_ANICURSOR Animated cursor
RT_ANIICON Animated icon
RT_BITMAP Bitmap resource
RT_CURSOR Hardware-dependent cursor resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_GROUP_CURSOR Hardware-independent cursor resource
RT_GROUP_ICON Hardware-independent icon resource
RT_ICON Hardware-dependent icon resource
RT_MENU Menu resource
RT_MESSAGETABLE Message-table entry
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_VERSION Version resource

lpName
Points to a null-terminated string specifying the name of the resource to be updated. This
parameter can also be an integer value passed to the MAKEINTRESOURCE macro.

wLanguage
Specifies the language identifier of the resource to be updated. For a list of the primary
language identifiers and sublanguage identifiers that make up a language identifier, see the
MAKELANGID macro

lpData
Points to the resource data to be inserted into the executable file. If the resource is one of the
predefined types, the data must be valid and properly aligned. Note that this is the raw binary
data stored in the executable file, not the data provided by LoadIcon, LoadString, or other
resource-specific load functions. All data containing strings or text must be in Unicode format;
lpData must not point to ANSI data.
If lpData is NULL, the specified resource is deleted from the executable file.

cbData
Specifies the size, in bytes, of the resource data at lpData.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAn application can use UpdateResource repeatedly to make changes to the resource data. Each
call to UpdateResource contributes to an internal list of additions, deletions, and replacements

but does not actually write the data to the executable file. The application must use the
EndUpdateResource function to write the accumulated changes to the executable file.See AlsoBeginUpdateResource, EndUpdateResource, LoadIcon, LoadString, LockResource,
MAKEINTRESOURCE, MAKELANGID, SizeofResource

UpdateWindow
The UpdateWindow function updates the client area of the specified window by sending a
WM_PAINT message to the window if the window's update region is not empty. The function
sends a WM_PAINT message directly to the window procedure of the specified window,
bypassing the application queue. If the update region is empty, no message is sent.

BOOL UpdateWindow(
HWND hWnd // handle of window

);ParametershWnd
Identifies the window to be updated.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.See AlsoExcludeUpdateRgn, GetUpdateRect, GetUpdateRgn, InvalidateRect, InvalidateRgn,
WM_PAINT

ValidateRect
The ValidateRect function validates the client area within a rectangle by removing the rectangle
from the update region of the specified window.

BOOL ValidateRect(
HWND hWnd, // handle of window
CONST RECT *lpRect // address of validation rectangle coordinates

);ParametershWnd
Identifies the window whose update region is to be modified. If this parameter is NULL,
Windows invalidates and redraws all windows and sends the WM_ERASEBKGND and
WM_NCPAINT messages to the window procedure before the function returns.

lpRect
Points to a RECT structure that contains the client coordinates of the rectangle to be removed
from the update region. If this parameter is NULL, the entire client area is removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe BeginPaint function automatically validates the entire client area. Neither the ValidateRect
nor ValidateRgn function should be called if a portion of the update region must be validated
before the next WM_PAINT message is generated.

Windows continues to generate WM_PAINT messages until the current update region is
validated.See AlsoBeginPaint, InvalidateRect, InvalidateRgn, RECT, ValidateRgn, WM_PAINT

ValidateRgn
The ValidateRgn function validates the client area within a region by removing the region from
the current update region of the specified window.

BOOL ValidateRgn(
HWND hWnd, // handle of window
HRGN hRgn // handle of valid region

);ParametershWnd
Identifies the window whose update region is to be modified.

hRgn
Identifies a region that defines the area to be removed from the update region. If this
parameter is NULL, the entire client area is removed.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksThe specified region must have been created by a region function. The region coordinates are
assumed to be client coordinates.

The BeginPaint function automatically validates the entire client area. Neither the ValidateRect
nor ValidateRgn function should be called if a portion of the update region must be validated
before the next WM_PAINT message is generated.See AlsoBeginPaint, ExcludeUpdateRgn, InvalidateRect, InvalidateRgn, ValidateRect, WM_PAINT

VerFindFile
The VerFindFile function determines where to install a file based on whether it locates another
version of the file in the system. The values VerFindFile returns in the specified buffers are used
in a subsequent call to VerInstallFile.

As with the other file installation functions, VerFindFile will only work with Win32 file images. 16-
bit Windows file images are not supported.

DWORD VerFindFile(
DWORD dwFlags, // bit flags that condition function behavior
LPTSTR szFileName, // file to be installed
LPTSTR szWinDir, // Windows directory
LPTSTR szAppDir, // directory where related files are being installed
LPTSTR szCurDir, // receives path of directory where file is currently installed
PUINT lpuCurDirLen, // size of string in szCurDir
LPTSTR szDestDir, // receives path of recommended destination directory
PUINT lpuDestDirLen // size of string in szDestDir

);ParametersdwFlags
Contains a bitmask of flags. This parameter can be the following value:

Flag Description
VFFF_ISSHAREDFILE The source file can be shared by multiple

applications. An application can use this
information to determine where the file
should be copied.

All other values are reserved.
szFileName

Points to the name of the file to be installed. The filename can include only the filename and
extension, not a path.

szWinDir
Points to the directory in which Windows is running or will be run. This string is returned by the
GetWindowsDirectory function.

szAppDir
Points to the directory where the installation program is installing a set of related files. If the
installation program is installing an application, this is the directory where the application will
reside. This parameter also points to the application's current directory unless otherwise
specified.

szCurDir
Points to a buffer that receives the path to a current version of the file being installed. The
path is a zero-terminated string. If a current version is not installed, the buffer will contain a
zero-length string. The buffer should be at least _MAX_PATH characters long, although this is
not required.

lpuCurDirLen
Points to a variable that contains the length of the szCurDir buffer. This pointer must not be
NULL.
When the function returns, lpuCurDirLen contains the size, in characters, of the data returned
in szCurDir, including the terminating null character. If the buffer is too small to contain all the
data, lpuCurDirLen will be the size of the buffer required to hold the path.

szDestDir
Points to a buffer that receives the path to the installation location recommended by
VerFindFile. The path is a zero-terminated string. The buffer should be at least _MAX_PATH
characters long, although this is not required.

lpuDestDirLen
Points to a variable that contains the length of the szDestDir buffer. This pointer must not be
NULL.
When the function returns, lpuDestDirLen contains the size, in characters, of the data returned
in szDestDir, including the terminating null character. If the buffer is too small to contain all the
data, lpuDestDirLen will be the size of the buffer needed to hold the path.

Return ValuesThe return value is a bitmask that indicates the status of the file. It can be one or more of the
following values:

Value Meaning

VFF_CURNEDEST The currently installed version of the file is not
in the recommended destination.

VFF_FILEINUSE Windows is using the currently installed
version of the file; therefore, the file cannot be
overwritten or deleted.

VFF_BUFFTOOSMALLAt least one of the buffers was too small to
contain the corresponding string. An
application should check the output buffers to
determine which buffer was too small.

All other values are reserved.RemarksVerFindFile searches for a copy of the specified file by using the OpenFile function. However, it
determines the system directory from the specified Windows directory, or searches the path.

If the dwFlags parameter indicates that the file is private to this application (not
VFFF_ISSHAREDFILE), VerFindFile recommends installing the file in the application's directory.
Otherwise, if the system is running a shared copy of Windows, the function recommends installing
the file in the Windows directory. If the system is running a private copy of Windows, the function
recommends installing the file in the system directory.See AlsoGetWindowsDirectory, OpenFile, VerInstallFile

VerInstallFile
The VerInstallFile function attempts to install the specified file based on information returned from
the VerFindFile function. VerInstallFile decompresses the file, if necessary, assigns a unique
filename, and checks for errors, such as outdated files.

As with the other file installation functions, VerInstallFile will only work with Win32 file images.
16-bit Windows file images are not supported.

DWORD VerInstallFile(
DWORD uFlags, // bit flags that condition function behavior
LPTSTR szSrcFileName, // file to install
LPTSTR szDestFileName, // new name of file to install
LPTSTR szSrcDir, // source directory of file to install
LPTSTR szDestDir, // directory in which to install file
LPTSTR szCurDir, // directory where file is currently installed
LPTSTR szTmpFile, // receives name of temporary copy of file used during installation
PUINT lpuTmpFileLen // size of string in szTmpFile

);ParametersuFlags
Contains a bitmask of flags. This parameter can be one of the following values:

Flag Description
VIFF_FORCEINSTALL Installs the file regardless of mismatched

version numbers. The function checks
only for physical errors during installation.

VIFF_DONTDELETEOLD Installs the file without deleting the
previously installed file, if the previously
installed file is not in the destination
directory.

All other values are reserved.
szSrcFileName

Points to the name of the file to be installed. This is the filename in the directory pointed to by
the szSrcDir parameter; the filename can include only the filename and extension, not a path.

szDestFileName
Points to the name VerInstallFile will give the new file upon installation. This filename may be
different from the filename in the szSrcFileName directory. The new name should include only
the filename and extension, not a path.

szSrcDir
Points to a buffer that contains the name of the directory where the new file is found.

szDestDir
Points to a buffer that contains the name of the directory where the new file should be
installed. VerFindFile returns this value in its szDestDir parameter.

szCurDir
Points to a buffer that contains the name of the directory where the preexisting version of this
file is found. VerFindFile returns this value in its szCurDir parameter.

szTmpFile
Points to a buffer that should be empty upon the initial call to VerInstallFile. The function fills
the buffer with the name of a temporary copy of the source file. The buffer should be at least
_MAX_PATH characters long, although this is not required.

lpuTmpFileLen
Points to a variable that contains the length of the szTmpFile buffer. This pointer must not be
NULL.
When the function returns, lpuTmpFileLen contains the size, in characters, of the data
returned in szTmpFile, including the terminating null character. If the buffer is too small to
contain all the data, lpuTmpFileLen will be the size of the buffer required to hold the data.

Return ValuesThe return value is a bitmask that indicates exceptions. It can be one or more of the following
values:

Value Meaning

VIF_TEMPFILE The temporary copy of the new file is in
the destination directory. The cause of

failure is reflected in other flags.
VIF_MISMATCH The new and preexisting files differ in one

or more attributes. This error can be
overridden by calling VerInstallFile again
with the VIFF_FORCEINSTALL flag set.

VIF_SRCOLD The file to install is older than the
preexisting file. This error can be
overridden by calling VerInstallFile again
with the VIFF_FORCEINSTALL flag set.

VIF_DIFFLANG The new and preexisting files have
different language or code-page values.
This error can be overridden by calling
VerInstallFile again with the
VIFF_FORCEINSTALL flag set.

VIF_DIFFCODEPG The new file requires a code page that
cannot be displayed by the version of
Windows currently running. This error can
be overridden by calling VerInstallFile
with the VIFF_FORCEINSTALL flag set.

VIF_DIFFTYPE The new file has a different type, subtype,
or operating system from the preexisting
file. This error can be overridden by calling
VerInstallFile again with the
VIFF_FORCEINSTALL flag set.

VIF_WRITEPROT The preexisting file is write protected. This
error can be overridden by calling
VerInstallFile again with the
VIFF_FORCEINSTALL flag set.

VIF_FILEINUSE The preexisting file is in use by Windows
and cannot be deleted.

VIF_OUTOFSPACE The function cannot create the temporary
file due to insufficient disk space on the
destination drive.

VIF_ACCESSVIOLATION A read, create, delete, or rename
operation failed due to an access violation.

VIF_SHARINGVIOLATIONA read, create, delete, or rename
operation failed due to a sharing violation.

VIF_CANNOTCREATE The function cannot create the temporary
file. The specific error may be described
by another flag.

VIF_CANNOTDELETE The function cannot delete the destination
file, or cannot delete the existing version of
the file located in another directory. If the
VIF_TEMPFILE bit is set, the installation
failed, and the destination file probably
cannot be deleted.

VIF_CANNOTDELETECURThe existing version of the file could not be
deleted and VIFF_DONTDELETEOLD
was not specified.

VIF_CANNOTRENAME The function cannot rename the temporary
file, but already deleted the destination file.

VIF_OUTOFMEMORY The function cannot complete the
requested operation due to insufficient
memory. Generally, this means the
application ran out of memory attempting
to expand a compressed file.

VIF_CANNOTREADSRC The function cannot read the source file.
This could mean that the path was not
specified properly.

VIF_CANNOTREADDST The function cannot read the destination

(existing) files. This prevents the function
from examining the file's attributes.

VIF_BUFFTOOSMALL The szTmpFile buffer was too small to
contain the name of the temporary source
file. When the function returns,
lpuTmpFileLen contains the size of the
buffer required to hold the filename.

All other values are reserved.RemarksVerInstallFile copies the file from the source directory to the destination directory. If szCurDir
indicates that a previous version of the file exists on the system, VerInstallFile compares the files'
version stamp information. If the previously installed version of the file is more recent than the new
version, or if the files' attributes are significantly different, for example, if they are in different
languages, then VerInstallFile returns with one or more recoverable error codes.

VerInstallFile leaves the temporary file in the destination directory. The application can either
override the error or delete the temporary file. If the application overrides the error, VerInstallFile
deletes the previously installed version and renames the temporary file with the original filename.See AlsoVerFindFile

VerLanguageName
The VerLanguageName function retrieves a description string for the language associated with a
specified binary Microsoft language identifier.

DWORD VerLanguageName(
DWORD wLang, // Microsoft language identifier
LPTSTR szLang, // pointer to buffer for language description string
DWORD nSize // size of buffer

);ParameterswLang
Specifies the binary Microsoft language identifier. For a complete list of the language
identifiers supported by Win32, see Language Identifiers.
For example, the description string associated with the language identifier 0x040A is "Spanish
(Traditional Sort)". If the identifier is unknown, the szLang parameter points to a default string
("Language Neutral").

szLang
Points to the buffer to receive the null-terminated string representing the language specified
by the wLang parameter.

nSize
Indicates the size of the buffer, in characters, pointed to by szLang.

Return ValuesIf the return value is less than or equal to the buffer size, the return value is the size, in characters,
of the string returned in the buffer. This value does not include the terminating null character.

If the return value is greater than the buffer size, the return value is the size of the buffer required
to hold the entire string. The string is truncated to the length of the existing buffer.

If an error occurs, the return value is zero. Unknown language identifiers do not produce errors.RemarksTypically, an installation program uses this function to translate a language identifier returned by
the VerQueryValue function. The text string may be used in a dialog box that asks the user how
to proceed in the event of a language conflict.See AlsoVerQueryValue

VerQueryValue
The VerQueryValue function returns selected version information from the specified version-
information resource. To retrieve the appropriate resource, the GetFileVersionInfo function must
be called before VerQueryValue.

As with the other file installation functions, VerQueryValue will only work with Win32 file images.
16-bit Windows file images are not supported.

BOOL VerQueryValue(
const LPVOID pBlock, // address of buffer for version resource
LPTSTR lpSubBlock, // address of value to retrieve
LPVOID *lplpBuffer, // address of buffer for version pointer
PUINT puLen // address of version-value length buffer

);ParameterspBlock
Points to the buffer containing the version-information resource returned by
GetFileVersionInfo.

lpSubBlock
Points to a zero-terminated string specifying which version-information value to retrieve. The
string consists of names separated by backslashes (\) and can have one of the following
forms:

Form Description
\ Specifies the root block. The

function retrieves a pointer to
the VS_FIXEDFILEINFO
structure for the version-
information resource.

\VarFileInfo\Translation Specifies the translation
table in the variable
information structure. The
function retrieves a pointer to
an array of language and
character-set identifiers. An
application uses these
identifiers to create the name
of a language-specific
structure in the version-
information resource.

\StringFileInfo\lang-charset\string-nameSpecifies a value in a
language-specific structure.
The lang-charset name is a
concatenation of a language
and character-set identifier
pair found in the translation
table for the resource. The
lang-charset name must be
specified as a hexadecimal
string. The string-name
name is one of the
predefined strings described
in the following Remarks
section.

lplpBuffer
Points to a buffer that receives a pointer to the version-information value.

puLen
Points to a buffer that receives the length, in characters, of the version-information value.

Return ValuesIf the specified structure exists and version information is available, the return value is nonzero. If
the address of the length buffer is zero, no value is available for the specified version-information
name.

If the specified name does not exist or the specified resource is not valid, the return value is zero.

RemarksThe Win32 API contains the following predefined version information strings:

CompanyName FileDescription FileVersion InternalName LegalCopyright OriginalFilename
ProductName ProductVersion

The following example shows how to retrieve the FileDescription string-value from a block of
version information:VerQueryValue(pBlock,

TEXT("\\StringFileInfo\\040904E4\\FileDescription"),
&lpBuffer,
&dwBytes);Call the GetFileVersionInfoSize and GetFileVersionInfo functions to properly initialize the

pBlock buffer before calling the VerQueryValue function.See AlsoGetFileVersionInfo, GetFileVersionInfoSize, VS_FIXEDFILEINFO, VS_VERSION_INFO

VirtualAlloc
The VirtualAlloc function reserves or commits a region of pages in the virtual address space of
the calling process. Memory allocated by this function is automatically initialized to zero.

LPVOID VirtualAlloc(
LPVOID lpAddress, // address of region to reserve or commit
DWORD dwSize, // size of region
DWORD flAllocationType, // type of allocation
DWORD flProtect // type of access protection

);ParameterslpAddress
Specifies the desired starting address of the region to allocate. If the memory is being
reserved, the specified address is rounded down to the next 64-kilobyte boundary. If the
memory is already reserved and is being committed, the address is rounded down to the next
page boundary. To determine the size of a page on the host computer, use the
GetSystemInfo function. If this parameter is NULL, the system determines where to allocate
the region.

dwSize
Specifies the size, in bytes, of the region. If the lpAddress parameter is NULL, this value is
rounded up to the next page boundary. Otherwise, the allocated pages include all pages
containing one or more bytes in the range from lpAddress to (lpAddress+dwSize). This means
that a 2-byte range straddling a page boundary causes both pages to be included in the
allocated region.

flAllocationType
Specifies the type of allocation. You can specify any combination of the following flags:

Flag Meaning
MEM_COMMIT Allocates physical storage in memory or in

the paging file on disk for the specified region
of pages.
An attempt to commit an already committed
page will not cause the function to fail. This
means that a range of committed or
decommitted pages can be committed without
having to worry about a failure.

MEM_RESERVE Reserves a range of the process's virtual
address space without allocating any physical
storage. The reserved range cannot be used
by any other allocation operations (the
malloc function, the LocalAlloc function, and
so on) until it is released. Reserved pages
can be committed in subsequent calls to the
VirtualAlloc function.

MEM_TOP_DOWN Allocates memory at the highest possible
address.

flProtect
Specifies the type of access protection. If the pages are being committed, any one of the
following flags can be specified, along with the PAGE_GUARD and PAGE_NOCACHE
protection modifier flags, as desired:

Flag Meaning
PAGE_READONLY Enables read access to the committed

region of pages. An attempt to write to
the committed region results in an
access violation. If the system
differentiates between read-only
access and execute access, an
attempt to execute code in the
committed region results in an access
violation.

PAGE_READWRITE Enables both read and write access to
the committed region of pages.

PAGE_EXECUTE Enables execute access to the
committed region of pages. An attempt
to read or write to the committed
region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read access to
the committed region of pages. An
attempt to write to the committed
region results in an access violation.

PAGE_EXECUTE_READWRITEEnables execute, read, and write
access to the committed region of
pages.

PAGE_GUARD Pages in the region become guard
pages. Any attempt to read from or
write to a guard page causes the
operating system to raise a
STATUS_GUARD_PAGE exception
and turn off the guard page status.
Guard pages thus act as a one-shot
access alarm.
The PAGE_GUARD flag is a page
protection modifier. An application
uses it with one of the other page
protection flags, with one exception: It
cannot be used with
PAGE_NOACCESS. When an access
attempt leads the operating system to
turn off guard page status, the
underlying page protection takes over.
If a guard page exception occurs
during a system service, the service
typically returns a failure status
indicator.

PAGE_NOACCESS Disables all access to the committed
region of pages. An attempt to read
from, write to, or execute in the
committed region results in an access
violation exception, called a general
protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed
regions of pages. The hardware
attributes for the physical memory
should be specified as "no cache."
This is not recommended for general
usage. It is useful for device drivers;
for example, mapping a video frame
buffer with no caching. This flag is a
page protection modifier, only valid
when used with one of the page
protections other than
PAGE_NOACCESS.

Return ValuesIf the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksVirtualAlloc can perform the following operations:

· Commit a region of pages reserved by a previous call to the VirtualAlloc function.
· Reserve a region of free pages.
· Reserve and commit a region of free pages.

You can use VirtualAlloc to reserve a block of pages and then make additional calls to

VirtualAlloc to commit individual pages from the reserved block. This enables a process to
reserve a range of its virtual address space without consuming physical storage until it is needed.

Each page in the process's virtual address space is in one of three states:

State Meaning

Free The page is not committed or reserved and is not
accessible to the process. VirtualAlloc can reserve, or
simultaneously reserve and commit, a free page.

Reserved The range of addresses cannot be used by other
allocation functions, but the page is not accessible and
has no physical storage associated with it. VirtualAlloc
can commit a reserved page, but it cannot reserve it a
second time. The VirtualFree function can release a
reserved page, making it a free page.

Committed Physical storage is allocated for the page, and access is
controlled by a protection code. The system initializes
and loads each committed page into physical memory
only at the first attempt to read or write to that page.
When the process terminates, the system releases the
storage for committed pages. VirtualAlloc can commit
an already committed page. This means that you can
commit a range of pages, regardless of whether they
have already been committed, and the function will not
fail. VirtualFree can decommit a committed page,
releasing the page's storage, or it can simultaneously
decommit and release a committed page.

If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters
to compute the region of pages to be allocated. The current state of the entire range of pages
must be compatible with the type of allocation specified by the flAllocationType parameter.
Otherwise, the function fails and none of the pages are allocated. This compatibility requirement
does not preclude committing an already committed page; see the preceding list.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act as one-
shot access alarms. See Guard Pages.See AlsoGlobalAlloc, HeapAlloc, VirtualFree, VirtualLock, VirtualProtect, VirtualQuery

VirtualAllocEx
[New - Windows NT]

The VirtualAllocEx function reserves, commits, or both, a region of memory within the virtual
address space of a specified process. The function initializes the memory it allocates to zero.

The difference between the VirtualAllocEx function and the VirtualAlloc function is that
VirtualAlloc allocates memory within the address space of the calling process, while
VirtualAllocEx lets you specify a process.

LPVOID VirtualAllocEx(
HANDLE hProcess, // process within which to allocate memory
LPVOID lpAddress, // desired starting address of allocation
DWORD dwSize, // size, in bytes, of region to allocate
DWORD flAllocationType, // type of allocation
DWORD flProtect // type of access protection

);ParametershProcess
Handle to a process. The function allocates memory within the virtual address space of this
process.
You must have PROCESS_VM_OPERATION access to the process. If you do not, the
function fails.

lpAddress
Pointer that specifies a desired starting address for the region of pages that you want to
allocate.
If you are reserving memory, the function rounds this address down to the nearest 64-kilobyte
boundary.
If you are committing memory that is already reserved, the function rounds this address down
to the nearest page boundary. To determine the size of a page on the host computer, use the
GetSystemInfo function.
If lpAddress is NULL, the function determines where to allocate the region.

dwSize
Specifies the size, in bytes, of the region of memory to allocate.
If lpAddress is NULL, the function rounds dwSize up to the next page boundary.
If lpAddress is not NULL, the function allocates all pages that contain one or more bytes in the
range from lpAddress to (lpAddress+dwSize). This means, for example, that a 2-byte range
that straddles a page boundary causes the function to allocate both pages.

flAllocationType
A set of bit flags that specifies the type of memory allocation. You can set one or more of the
following flags:

Flag Meaning
MEM_COMMIT The function allocates actual physical storage

in memory or in the paging file on disk for the
specified region of memory pages. The
function initializes the memory to zero.
An attempt to commit a memory page that is
already committed does not cause the
function to fail. This means that you can
commit a range of pages without first
determining the current commitment state of
each page.
If a memory page is not yet reserved, setting
this flag causes the function to both reserve
and commit the memory page.

MEM_RESERVE The function reserves a range of the
process's virtual address space without
allocating any actual physical storage in
memory or in the paging file on disk.
Other memory allocation functions, such as

malloc and LocalAlloc, cannot use a
reserved range of memory until it is released.
You can commit reserved memory pages in
subsequent calls to the VirtualAllocEx
function.

MEM_TOP_DOWN The function allocates memory at the highest
possible address.

flProtect
A set of bit flags that specifies access protection for the region of pages you are allocating.
You can specify one of the following flags, along with the PAGE_GUARD and
PAGE_NOCACHE protection modifier flags, as desired:

Flag Meaning
PAGE_READONLY Enables read permission to the

committed region of pages. An attempt
to write to the committed region results
in an access violation. If the system
differentiates between read-only
permission and execute permission,
an attempt to execute code in the
committed region results in an access
violation.

PAGE_READWRITE Enables both read and write
permission to the committed region of
pages.

PAGE_EXECUTE Enables execute permission to the
committed region of pages. An attempt
to read or write to the committed
region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read permission
to the committed region of pages. An
attempt to write to the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write
permission to the committed region of
pages.

PAGE_GUARD Pages in the region become guard
pages. Any attempt to read from or
write to a guard page causes the
operating system to raise a
STATUS_GUARD_PAGE exception
and turn off the guard page status.
Guard pages thus act as a one-shot
access alarm.
The PAGE_GUARD flag is a page
protection modifier. An application
uses it with one of the other page
protection flags, with one exception: It
cannot be used with
PAGE_NOACCESS. When an access
attempt leads the operating system to
turn off guard page status, the
underlying page protection takes over.
If a guard page exception occurs
during a system service, the service
typically returns a failure status
indicator.

PAGE_NOACCESS Disables all access to the committed
region of pages. An attempt to read
from, write to, or execute in the
committed region results in an access

violation exception, called a general
protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed
regions of pages. The hardware
attributes for the physical memory
should be specified as "no cache."
This is not recommended for general
usage. It is useful for device drivers;
for example, mapping a video frame
buffer with no caching. This flag is a
page protection modifier, only valid
when used with one of the page
protections other than
PAGE_NOACCESS.

A set of bit flags that specifies access protection for the region of pages you are
allocating. You can specify one of the following flags, along with the PAGE_GUARD
and PAGE_NOCACHE protection modifier flags, as desired:Return ValuesIf the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.RemarksThe VirtualAllocEx function can perform the following operations:

· Commit a region of pages reserved by a previous call to the VirtualAllocEx function.
· Reserve a region of free pages.
· Reserve and commit a region of free pages.

You can use VirtualAllocEx to reserve a block of pages and then make additional calls to
VirtualAllocEx to commit individual pages from the reserved block. This lets you reserve a range
of a process's virtual address space without consuming physical storage until it is needed.

Each page of memory in a process's virtual address space is in one of three states:

State Meaning

Free The page is not committed or reserved and is not
accessible to the process. The VirtualAllocEx function
can reserve, or simultaneously reserve and commit, a
free page.

Reserved The page is reserved. The range of addresses cannot
be used by other allocation functions, but the page is
not accessible and has no physical storage associated
with it. The VirtualAllocEx function can commit a
reserved page, but it cannot reserve it a second time.
You can use the VirtualFreeEx function to release a
reserved page in a specified process, making it a free
page.

Committed Physical storage is allocated for the page, and access is
controlled by a protection code. The system initializes
and loads each committed page into physical memory
only at the first attempt to read or write to that page.
When the process terminates, the system releases the
storage for committed pages. The VirtualAllocEx
function can commit an already committed page. This
means that you can commit a range of pages,
regardless of whether they have already been
committed, and the function will not fail. You can use the
VirtualFreeEx function to decommit a committed page
in a specified process, or to simultaneously decommit
and free a committed page.

If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters
to compute the region of pages to be allocated. The current state of the entire range of pages
must be compatible with the type of allocation specified by the flAllocationType parameter.
Otherwise, the function fails and none of the pages is allocated. This compatibility requirement
does not preclude committing an already committed page; see the preceding list.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act as one-
shot access alarms. For more information see Guard Pages.See AlsoGlobalAlloc, HeapAlloc, VirtualAlloc, VirtualFree, VirtualFreeEx, VirtualLock, VirtualProtect,
VirtualQuery

VirtualFree
The VirtualFree function releases or decommits (or both) a region of pages within the virtual
address space of the calling process.

BOOL VirtualFree(
LPVOID lpAddress, // address of region of committed pages
DWORD dwSize, // size of region
DWORD dwFreeType // type of free operation

);ParameterslpAddress
Points to the base address of the region of pages to be freed. If the dwFreeType parameter
includes the MEM_RELEASE flag, this parameter must be the base address returned by the
VirtualAlloc function when the region of pages was reserved.

dwSize
Specifies the size, in bytes, of the region to be freed. If the dwFreeType parameter includes
the MEM_RELEASE flag, this parameter must be zero. Otherwise, the region of affected
pages includes all pages containing one or more bytes in the range from the lpAddress
parameter to (lpAddress+dwSize). This means that a 2-byte range straddling a page boundary
causes both pages to be freed.

dwFreeType
Specifies the type of free operation. One, but not both, of the following flags can be specified:

Flag Meaning
MEM_DECOMMIT Decommits the specified region of committed

pages.
An attempt to decommit an uncommitted page
will not cause the function to fail. This means
that a range of committed or uncommitted
pages can be decommitted without having to
worry about a failure.

MEM_RELEASE Releases the specified region of reserved
pages. If this flag is specified, the dwSize
parameter must be zero, or the function fails.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksVirtualFree can perform one of the following operations:

· Decommit a region of committed or uncommitted pages.
· Release a region of reserved pages.
· Decommit and release a region of committed or uncommitted pages.

To release a region of pages, the entire range of pages must be in the same state (all reserved or
all committed) and the entire region originally reserved by the VirtualAlloc function must be
released at the same time. If only part of the pages in the original reserved region are committed,
you must first call VirtualFree to decommit the committed pages and then call VirtualFree again
to release the entire block.

Pages that have been released are free pages available for subsequent allocation operations.
Attempting to read from or write to a free page results in an access violation exception.

VirtualFree can decommit an uncommitted page; this means that a range of committed or
uncommitted pages can be decommitted without having to worry about a failure. Decommitting a
page releases its physical storage, either in memory or in the paging file on disk. If a page is
decommitted but not released, its state changes to reserved, and it can be committed again by a
subsequent call to VirtualAlloc. Attempting to read from or write to a reserved page results in an
access violation exception.

The current state of the entire range of pages must be compatible with the type of free operation
specified by the dwFreeType parameter. Otherwise, the function fails and no pages are released
or decommitted.See AlsoGlobalAlloc, GlobalFree, VirtualAlloc

VirtualFreeEx
[New - Windows NT]

The VirtualFreeEx function releases, decommits, or both, a region of memory within the virtual
address space of a specified process.

The difference between the VirtualFreeEx function and the VirtualFree function is that
VirtualFree frees memory within the address space of the calling process, while VirtualFreeEx
lets you specify a process.

BOOL VirtualFreeEx(
HANDLE hProcess, // process within which to free memory
LPVOID lpAddress, // starting address of memory region to free
DWORD dwSize, // size, in bytes, of memory region to free
DWORD dwFreeType // type of free operation

);ParametershProcess
Handle to a process. The function frees memory within the virtual address space of this
process.
You must have PROCESS_VM_OPERATION access to this process. If you do not, the
function fails.

lpAddress
Pointer to the starting address of the region of memory to free.
If the MEM_RELEASE flag is set in the dwFreeType parameter, lpAddress must be the base
address returned by the VirtualAllocEx function when the region was reserved.

dwSize
Specifies the size, in bytes, of the region of memory to free.
If the MEM_RELEASE flag is set in the dwFreeType parameter, dwSize must be zero. The
function frees the entire region that was reserved in the initial allocation call to
VirtualAllocEx.
If the MEM_DECOMMIT flag is set, the function decommits all memory pages that contain
one or more bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This
means, for example, that a 2-byte region of memory that straddles a page boundary causes
both pages to be decommitted.
The function decommits the entire region that was reserved by VirtualAllocEx. If the following
three conditions are met:

· the MEM_DECOMMIT flag is set
· lpAddress is the base address returned by the VirtualAllocEx function when the region

was reserved
· dwSize is zero

The entire region the enters the reserved state.
dwFreeType

Set of bit flags that specifies the type of free operation. You must set one of the following two
flags:

Flag Meaning
MEM_DECOMMIT The function decommits the specified region

of pages. The pages enter the reserved state.
The function does not fail if you attempt to
decommit an uncommitted page. This means
that you can decommit a range of pages
without first determining their current
commitment state.

MEM_RELEASE The function releases the specified region of
pages. The pages enter the free state.
If you specify this flag, dwSize must be zero,
and lpAddress must point to the base address
returned by the VirtualAllocEx function when
the region was reserved. The function fails if
either of these conditions is not met.

If any pages in the region are currently
committed, the function first decommits and
then releases them.
The function does not fail if you attempt to
release pages that are in different states,
some reserved and some committed. This
means that you can release a range of pages
without first determining their current
commitment state.

Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksEach page of memory in a process's virtual address space is in one of three states:

State Meaning

Free The page is neither committed nor reserved. The page
is not accessible to the process. Attempting to read from
or write to a free page results in an access violation
exception.
You can use the VirtualFreeEx function to put reserved
or committed memory pages into the free state.

Reserved The page is reserved. The range of addresses cannot
be used by other allocation functions. The page is not
accessible and has no physical storage associated with
it. Attempting to read from or write to a free page
results in an access violation exception.
You can use the VirtualFreeEx function to put
committed memory pages into the reserved state, and
to put reserved memory pages into the free state.

Committed The page is committed. Physical storage in memory or
in the paging file on disk is allocated for the page, and
access is controlled by a protection code.
The operating system initializes and loads each
committed page into physical memory only at the first
attempt to read from or write to that page.
When a process terminates, the operating system
releases all storage for committed pages.
You can use the VirtualAllocEx function to put
committed memory pages into either the reserved or
free state.

The VirtualFreeEx function can perform the following operations:

· Decommit a region of committed or uncommitted pages. After this operation, the pages
are in the reserved state.

· Release a region of reserved pages. After this operation, the pages are in the free state.
· Decommit and release a region of committed or uncommitted pages. After this operation,

the pages are in the free state.
The VirtualFreeEx function can decommit a range of pages that are in different states, some
committed and some uncommitted. This means that you can decommit a range of pages without
first determining the current commitment state of each page. Decommitting a page releases its
physical storage, either in memory or in the paging file on disk.

If a page is decommitted but not released, its state changes to reserved. You can subsequently
call VirtualAllocEx to commit it, or VirtualFreeEx to release it. Attempting to read from or write to
a reserved page results in an access violation exception.

The VirtualFreeEx function can release a range of pages that are in different states, some
reserved and some committed. This means that you can release a range of pages without first
determining the current commitment state of each page. The entire range of pages originally
reserved by the VirtualAllocEx function must be released at the same time.

If a page is released, its state changes to free, and it is available for subsequent allocation
operations. Attempting to read from or write to a free page results in an access violation
exception.See AlsoGlobalAlloc, GlobalFree, VirtualAlloc, VirtualAllocEx, VirtualFree

VirtualLock
The VirtualLock function locks the specified region of the process's virtual address space into
memory, ensuring that subsequent access to the region will not incur a page fault.

BOOL VirtualLock(
LPVOID lpAddress, // address of first byte of range to lock
DWORD dwSize // number of bytes in range to lock

);ParameterslpAddress
Points to the base address of the region of pages to be locked.

dwSize
Specifies the size, in bytes, of the region to be locked. The region of affected pages includes
all pages that contain one or more bytes in the range from the lpAddress parameter to
(lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes both
pages to be locked.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksAll pages in the specified region must be committed. Memory protected with the
PAGE_NOACCESS flag cannot be locked.

Locking pages into memory may degrade the performance of the system by reducing the
available RAM and forcing the system to swap out other critical pages to the paging file. By
default, a process can lock a maximum of 30 pages. The default limit is intentionally small to avoid
severe performance degradation. Applications that need to lock larger numbers of pages must
first call the SetProcessWorkingSetSize function to increase their minimum and maximum
working set sizes. The maximum number of pages that a process can lock is equal to the number
of pages in its minimum working set minus a small overhead.

Pages that a process has locked remain resident even when the process is idle for extended
periods.

To unlock a region of locked pages, use the VirtualUnlock function. Locked pages are
automatically unlocked when the process terminates.

This function is not like the GlobalLock or LocalLock function in that it does not increment a lock
count and translate a handle into a pointer. There is no lock count for virtual pages, so multiple
calls to the VirtualUnlock function are never required to unlock a region of pages.

Windows 95:
On Windows 95, the VirtualLock function is implemented as a stub that has no effect and
always returns TRUE.

See AlsoGlobalLock, LocalLock, SetProcessWorkingSetSize, VirtualUnlock

VirtualProtect
The VirtualProtect function changes the access protection on a region of committed pages in the
virtual address space of the calling process. This function differs from VirtualProtectEx, which
changes the access protection of any process.

BOOL VirtualProtect(
LPVOID lpAddress, // address of region of committed pages
DWORD dwSize, // size of the region
DWORD flNewProtect, // desired access protection
PDWORD lpflOldProtect // address of variable to get old protection

);ParameterslpAddress
Points to the base address of the region of pages whose access protection attributes are to be
changed.
All pages in the specified region must have been allocated in a single call to the VirtualAlloc
or VirtualAllocEx function. The pages cannot span adjacent regions that were allocated by
separate calls to VirtualAlloc or VirtualAllocEx.

dwSize
Specifies the size, in bytes, of the region whose access protection attributes are to be
changed. The region of affected pages includes all pages containing one or more bytes in the
range from the lpAddress parameter to (lpAddress+dwSize). This means that a 2-byte range
straddling a page boundary causes the protection attributes of both pages to be changed.

flNewProtect
Specifies the new access protection. You can specify any one of the following flags, along
with the PAGE_GUARD and PAGE_NOCACHE protection modifier flags, as necessary:

Value Meaning
PAGE_READONLY Enables read access to the

committed region of pages. An
attempt to write to the committed
region results in an access violation.
If the system differentiates between
read-only access and execute
access, an attempt to execute code
in the committed region results in an
access violation.

PAGE_READWRITE Enables both read and write access
to the committed region of pages.

PAGE_WRITECOPY Gives copy-on-write access to the
committed region of pages.

PAGE_EXECUTE Enables execute access to the
committed region of pages. An
attempt to read or write to the
committed region results in an
access violation.

PAGE_EXECUTE_READ Enables execute and read access to
the committed region of pages. An
attempt to write to the committed
region results in an access violation.

PAGE_EXECUTE_READWRITEEnables execute, read, and write
access to the committed region of
pages.

PAGE_EXECUTE_WRITECOPYEnables execute, read, and write
access to the committed region of
pages. The pages are shared read-
on-write and copy-on-write.

PAGE_GUARD Pages in the region become guard
pages. Any attempt to access a
guard page causes the operating
system to raise a

STATUS_GUARD_PAGE exception
and turn off the guard page status.
Guard pages thus act as a one-shot
access alarm.
The PAGE_GUARD flag is a page
protection modifier. An application
uses it with one of the other page
protection flags, with one exception:
it cannot be used with
PAGE_NOACCESS. When an
access attempt leads the operating
system to turn off guard page status,
the underlying page protection takes
over.
If a guard page exception occurs
during a system service, the service
typically returns a failure status
indicator.

PAGE_NOACCESS Disables all access to the committed
region of pages. An attempt to read
from, write to, or execute in the
committed region results in an
access violation exception, called a
general protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed
regions of pages. The hardware
attributes for the physical memory
should be specified as "no cache."
This is not recommended for general
usage. It is useful for device drivers;
for example, mapping a video frame
buffer with no caching. This flag is a
page protection modifier, only valid
when used with one of the page
protections other than
PAGE_NOACCESS.

lpflOldProtect
Points to a variable that the function sets to the previous access protection value of the first
page in the specified region of pages. If this parameter is NULL or does not point to a valid
variable, the function fails.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksYou can set the access protection value on committed pages only. If the state of any page in the
specified region is not committed, the function fails and returns without modifying the access
protection of any pages in the specified region.

The VirtualProtect function changes the access protection of memory in the calling process, and
the VirtualProtectEx function changes the access protection of memory in a specified process.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act as one-
shot access alarms. See Guard Pages for further discussion of guard pages.See AlsoVirtualAlloc, VirtualProtectEx

VirtualProtectEx
The VirtualProtectEx function changes the access protection on a region of committed pages in
the virtual address space of a specified process. Note that this function differs from
VirtualProtect, which changes the access protection on the calling process only.

BOOL VirtualProtectEx(
HANDLE hProcess, // handle of process
LPVOID lpAddress, // address of region of committed pages
DWORD dwSize, // size of region
DWORD flNewProtect, // desired access protection
PDWORD lpflOldProtect // address of variable to get old protection

);ParametershProcess
Identifies the process whose memory protection is to be changed. The handle must have
PROCESS_VM_OPERATION access. For more information on
PROCESS_VM_OPERATION, see OpenProcess.

lpAddress
Points to the base address of the region of pages whose access protection attributes are to be
changed.
All pages in the specified region must have been allocated in a single call to the VirtualAlloc
or VirtualAllocEx function. The pages cannot span adjacent regions that were allocated by
separate calls to VirtualAlloc or VirtualAllocEx.

dwSize
Specifies the size, in bytes, of the region whose access protection attributes are changed. The
region of affected pages includes all pages containing one or more bytes in the range from the
lpAddress parameter to (lpAddress+dwSize). This means that a 2-byte range straddling a
page boundary causes the protection attributes of both pages to be changed.

flNewProtect
Specifies the new access protection. Any one of the following flags can be specified, along
with the PAGE_GUARD and PAGE_NOCACHE protection modifier flags, as desired:

Value Meaning
PAGE_READONLY Enables read access to the

committed region of pages. An
attempt to write to the committed
region results in an access
violation. If the system
differentiates between read-only
access and execute access, an
attempt to execute code in the
committed region results in an
access violation.

PAGE_READWRITE Enables both read and write
access to the committed region of
pages.

PAGE_WRITECOPY Gives copy-on-write access to the
committed region of pages.

PAGE_EXECUTE Enables execute access to the
committed region of pages. An
attempt to read or write to the
committed region results in an
access violation.

PAGE_EXECUTE_READ Enables execute and read access
to the committed region of pages.
An attempt to write to the
committed region results in an
access violation.

PAGE_EXECUTE_READWRITEEnables execute, read, and write
access to the committed region of
pages.

PAGE_EXECUTE_WRITECOPYEnables execute, read, and write
access to the committed region of
pages. The pages are shared
read-on-write and copy-on-write.

PAGE_GUARD Pages in the region become
guard pages. Any attempt to read
from or write to a guard page
causes the operating system to
raise a STATUS_GUARD_PAGE
exception, and turn off the guard
page status. Guard pages thus
act as a one-shot access alarm.
The PAGE_GUARD flag is a page
protection modifier. An application
uses it with one of the other page
protection flags, with one
exception: it cannot be used with
PAGE_NOACCESS. When an
access attempt leads the
operating system to turn off guard
page status, the underlying page
protection takes over.
If a guard page exception occurs
during a system service, the
service typically returns a failure
status indicator.

PAGE_NOACCESS Disables all access to the
committed region of pages. An
attempt to read from, write to, or
execute in the committed region
results in an access violation
exception, called a general
protection (GP) fault.

PAGE_NOCACHE Allows no caching of the
committed regions of pages. The
hardware attributes for the
physical memory should be set to
"no cache." This is not
recommended for general usage.
It is useful for device drivers; for
example, mapping a video frame
buffer with no caching. This flag is
a page protection modifier, only
valid when used with one of the
page protections other than
PAGE_NOACCESS.

lpflOldProtect
Points to a variable that receives the previous access protection of the first page in the
specified region of pages. If this parameter is NULL or does not point to a valid variable, the
function fails.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe access protection value can be set only on committed pages. If the state of any page in the
specified region is not committed, the function fails and returns without modifying the access
protection of any pages in the specified region.

VirtualProtectEx is identical to the VirtualProtect function except that it changes the access
protection of memory in a specified process.

The PAGE_GUARD protection modifier flag establishes guard pages. Guard pages act as one-
shot access alarms. See Guard Pages. for further discussion of guard pages.See AlsoVirtualAlloc, VirtualProtect, VirtualQueryEx

VirtualQuery
The VirtualQuery function provides information about a range of pages in the virtual address
space of the calling process.

DWORD VirtualQuery(
LPCVOID lpAddress, // address of region
PMEMORY_BASIC_INFORMATION lpBuffer, // address of information buffer
DWORD dwLength // size of buffer

);ParameterslpAddress
Points to the base address of the region of pages to be queried. This value is rounded down
to the next page boundary. To determine the size of a page on the host computer, use the
GetSystemInfo function.

lpBuffer
Points to a MEMORY_BASIC_INFORMATION structure in which information about the
specified page range is returned.

dwLength
Specifies the size, in bytes, of the buffer pointed to by the lpBuffer parameter.

Return ValuesThe return value is the actual number of bytes returned in the information buffer.RemarksVirtualQuery provides information about a region of consecutive pages beginning at a specified
address that share the following attributes:

· The state of all pages is the same with the MEM_COMMIT, MEM_RESERVE,
MEM_FREE, MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE flag.

· If the initial page is not free, all pages in the region are part of the same initial allocation of
pages reserved by a call to the VirtualAlloc function.

· The access of all pages is the same with the PAGE_READONLY, PAGE_READWRITE,
PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or
PAGE_NOCACHE flag.

The function determines the attributes of the first page in the region and then scans subsequent
pages until it scans the entire range of pages or until it encounters a page with a nonmatching set
of attributes. The function returns the attributes and the size, in bytes, of the region of pages with
matching attributes. For example, if there is a 40 megabyte (MB) region of free memory, and
VirtualQuery is called on a page that is 10 MB into the region, the function will obtain a state of
MEM_FREE and a size of 30 MB.

This function reports on a region of pages in the memory of the calling process, and the
VirtualQueryEx function reports on a region of pages in the memory of a specified process.See AlsoGetSystemInfo, MEMORY_BASIC_INFORMATION, VirtualQueryEx

VirtualQueryEx
The VirtualQueryEx function provides information about a range of pages within the virtual
address space of a specified process.

DWORD VirtualQueryEx(
HANDLE hProcess, // handle of process
LPCVOID lpAddress, // address of region
PMEMORY_BASIC_INFORMATION lpBuffer, // address of information buffer
DWORD dwLength // size of buffer

);ParametershProcess
Identifies the process whose memory information is queried. The handle must have
PROCESS_QUERY_INFORMATION access.

lpAddress
Points to the base address of the region of pages to be queried. This value is rounded down
to the next page boundary. To determine the size of a page on the host computer, use the
GetSystemInfo function.

lpBuffer
Points to a MEMORY_BASIC_INFORMATION structure in which information about the
specified page range is returned.

dwLength
Specifies the size, in bytes, of the buffer pointed to by the lpBuffer parameter.

Return ValuesThe return value is the actual number of bytes returned in the information buffer.RemarksVirtualQueryEx provides information about a region of consecutive pages beginning at a
specified address that share the following attributes:

· The state of all pages is the same with the MEM_COMMIT, MEM_RESERVE,
MEM_FREE, MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE flag.

· If the initial page is not free, all pages in the region are part of the same initial allocation of
pages reserved by a call to the VirtualAlloc function.

· The access of all pages is the same with the PAGE_READONLY, PAGE_READWRITE,
PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or
PAGE_NOCACHE flag.

The VirtualQueryEx function determines the attributes of the first page in the region and then
scans subsequent pages until it scans the entire range of pages, or until it encounters a page with
a nonmatching set of attributes. The function returns the attributes and the size, in bytes, of the
region of pages with matching attributes. For example, if there is a 40 megabyte (MB) region of
free memory, and VirtualQueryEx is called on a page that is 10 MB into the region, the function
will obtain a state of MEM_FREE and a size of 30 MB.

This function is identical to the VirtualQuery function, except that it enables access to information
about memory in a specified process.See AlsoGetSystemInfo, MEMORY_BASIC_INFORMATION, VirtualAlloc, VirtualProtectEx,
VirtualQuery

VirtualUnlock
The VirtualUnlock function unlocks a specified range of pages in the virtual address space of a
process, enabling the system to swap the pages out to the paging file if necessary.

BOOL VirtualUnlock(
LPVOID lpAddress, // address of first byte of range
DWORD dwSize // number of bytes in range

);ParameterslpAddress
Points to the base address of the region of pages to be unlocked.

dwSize
Specifies the size, in bytes, of the region being unlocked. The region of affected pages
includes all pages containing one or more bytes in the range from the lpAddress parameter to
(lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes both
pages to be unlocked.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksFor the function to succeed, the range specified need not match a range passed to a previous call
to the VirtualLock function, but all pages in the range must be locked.See AlsoVirtualLock

VkKeyScan
The VkKeyScan function translates a character to the corresponding virtual-key code and shift
state for the current keyboard.

SHORT VkKeyScan(
TCHAR ch // character to translate

);Parametersch
Specifies the character to be translated into a virtual-key code.

Return ValuesIf the function succeeds, the low-order byte of the return value contains the virtual-key code and
the high-order byte contains the shift state, which can be a combination of the following flag bits:

Bit Meaning

1 Either SHIFT key is pressed.
2 Either CTRL key is pressed.
4 Either ALT key is pressed.

If the function finds no key that translates to the passed character code, both the low-
order and high-order bytes contain -1.RemarksFor keyboard layouts that use the right-hand ALT key as a shift key (for example, the French
keyboard layout), the shift state is represented by the value 6, because the right-hand ALT key is
converted internally into CTRL+ALT.

Translations for the numeric keypad (VK_NUMPAD0 through VK_DIVIDE) are ignored. This
function is intended to translate characters into keystrokes from the main keyboard section only.
For example, the character "7" is translated into VK_7, not VK_NUMPAD7.

VkKeyScan is used by applications that send characters by using the WM_KEYUP and
WM_KEYDOWN messages.See AlsoGetAsyncKeyState, GetKeyboardState, GetKeyNameText, GetKeyState, SetKeyboardState,
WM_KEYDOWN, WM_KEYUP

VkKeyScanEx
[Now Supported on Windows NT]

The VkKeyScanEx function translates a character to the corresponding virtual-key code and shift
state. The function translates the character using the input language and physical keyboard layout
identified by the given keyboard layout handle.

SHORT VkKeyScanEx(
CHAR ch, // character to translate
HKL dwhkl // keyboard layout handle

);Parametersch
Specifies the character to be translated into a virtual-key code.

dwhkl
Identifies the keyboard layout to use to translate the character. This parameter can be any
keyboard layout handle previously returned by the LoadKeyboardLayout function.

Return ValuesIf the function succeeds, the low-order byte of the return value contains the virtual-key code and
the high-order byte contains the shift state, which can be a combination of the following flag bits:

Bit Meaning

1 Either SHIFT key is pressed.
2 Either CTRL key is pressed.
4 Either ALT key is pressed.

If the function finds no key that translates to the passed character code, both the low-
order and high-order bytes contain -1.RemarksFor keyboard layouts that use the right-hand ALT key as a shift key (for example, the French
keyboard layout), the shift state is represented by the value 6, because the right-hand ALT key is
converted internally into CTRL+ALT.

Translations for the numeric keypad (VK_NUMPAD0 through VK_DIVIDE) are ignored. This
function is intended to translate characters into keystrokes from the main keyboard section only.
For example, the character "7" is translated into VK_7, not VK_NUMPAD7.

VkKeyScanEx is used by applications that send characters by using the WM_KEYUP and
WM_KEYDOWN messages.See AlsoGetAsyncKeyState, GetKeyboardState, GetKeyNameText, GetKeyState,
LoadKeyboardLayout, SetKeyboardState, ToAsciiEx, VkKeyScan

VwStreamCloseFunc
Closes the file. The file parser must carry out any necessary cleanup, such as closing any other
open files related to the given file.

VOID VwStreamCloseFunc(
SOFILE hFile,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Return ValuesNone.

VwStreamOpenFunc
Checks the validity of the specified file and returns information about the file parser.

INT VwStreamOpenFunc(
SOFILE hFile,
INT wFileId,
U_BYTE VWPTR *pFileName,
SOFILTERINFO VWPTR *pFilterInfo,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

wFileId
Identifier for the file.

pFileName
Address of the null-terminated string specifying the base name of the file. This string does not
include path information.

pFilterInfo
Address of the SOFILTERINFO structure that receives information about the file parser.

reserved
Reserved; do not use.

Return ValuesReturns the VWERR_OK value if successful or one of the following error values otherwise:

VWERR_BADFILE Corrupt or unreadable file

VWERR_EMPTYFILE Empty file
VWERR_PROTECTEDFILE Password-protected or encrypted

file
VWERR_SUPFILEOPENFAILS Supplementary file failed to open

VwStreamReadFunc
Outputs characters, cells, or fields, depending on the current section type and file contents.

INT VwStreamReadFunc(
SOFILE hFile,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Return ValuesReturns zero if successful or - 1 if the end of the file is reached.

VwStreamReadRecordFunc
Outputs a single record by calling various stream output functions.

This function should output a single record and then call the SOPutBreak function with the
SO_RECORDBREAK value before returning. The SO_EOFBREAK and SO_SECTIONBREAK
conditions do not need to be trapped by this function.

VOID VwStreamReadRecordFunc(
SOFILE hFile,
DWORD dwData,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

dwData
Data to be saved for the record.

reserved
Reserved; do not use.

Return ValuesNone.

VwStreamSectionFunc
Sets the parameters for a section.

At a minimum, this function should call the SOPutSectionType and SOPutSectionName
functions to set the section type and name. The function should also set the cell width if the
section is a spreadsheet or the field format if the section is a database.

The display engine calls the function after calling the VwStreamOpenFunc function but before
calling the VwStreamReadFunc function. It is also called after any VwStreamReadFunc that
ends with a call to the SOPutBreak function with the SO_SECTIONBREAK value.

INT VwStreamSectionFunc(
SOFILE hFile,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Return ValuesAlways returns zero.

VwStreamSeekFunc
Same definition as the line filters Seek function.

INT VwStreamSeekFunc(
SOFILE hFile,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Return ValuesReturns zero if successful or - 1 if the function fails.

VwStreamTellFunc
Same definition as the line filters Tell function.

INT VwStreamTellFunc(
SOFILE hFile,
HPROC reserved

);ParametershFile
Handle of the file for execute input and output (XIO) routines.

reserved
Reserved; do not use.

Return ValuesReturns zero if successful or - 1 if the function fails.

WaitCommEvent
The WaitCommEvent function waits for an event to occur for a specified communications device.
The set of events that are monitored by this function is contained in the event mask associated
with the device handle.

BOOL WaitCommEvent(
HANDLE hFile, // handle of communications device
LPDWORD lpEvtMask, // address of variable for event that occurred
LPOVERLAPPED lpOverlapped, // address of overlapped structure

);ParametershFile
Identifies the communications device. The CreateFile function returns this handle.

lpEvtMask
Points to a 32-bit variable that receives a mask indicating the type of event that occurred. If an
error occurs, the value is zero; otherwise, it is one of the following values:

Value Meaning
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR (data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are

CE_FRAME, CE_OVERRUN, and
CE_RXPARITY.

EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal

changed state.
EV_RXCHAR A character was received and placed in the input

buffer.
EV_RXFLAG The event character was received and placed in

the input buffer. The event character is specified
in the device's DCB structure, which is applied to
a serial port by using the SetCommState
function.

EV_TXEMPTY The last character in the output buffer was sent.

lpOverlapped
Points to an OVERLAPPED structure. This structure is required if hFile was opened with
FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not
be NULL. It must point to a valid OVERLAPPED structure. If hFile was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report
that the operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL,
WaitCommEvent is performed as an overlapped operation. In this case, the OVERLAPPED
structure must contain a handle to a manual-reset event object (created by using the
CreateEvent function).
If hFile handle was not opened with FILE_FLAG_OVERLAPPED, WaitCommEvent does not
return until one of the specified events or an error occurs.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe WaitCommEvent function monitors a set of events for a specified communications resource.
To set and query the current event mask of a communications resource, use the SetCommMask
and GetCommMask functions.

If the overlapped operation cannot be completed immediately, the function returns FALSE and the
GetLastError function returns ERROR_IO_PENDING, indicating that the operation is executing in
the background. When this happens, the system sets the hEvent member of the OVERLAPPED
structure to the not-signaled state before WaitCommEvent returns, and then it sets it to the
signaled state when one of the specified events or an error occurs. The calling process can use
one of the wait functions to determine the event object's state and then use the

GetOverlappedResult function to determine the results of the WaitCommEvent operation.
GetOverlappedResult reports the success or failure of the operation, and the variable pointed to
by the lpEvtMask parameter is set to indicate the event that occurred.

If a process attempts to change the device handle's event mask by using the SetCommMask
function while an overlapped WaitCommEvent operation is in progress, WaitCommEvent returns
immediately. The variable pointed to by the lpEvtMask parameter is set to zero.See AlsoCreateFile, DCB, GetCommMask, GetOverlappedResult, OVERLAPPED, SetCommMask,
SetCommState

WaitForDebugEvent
The WaitForDebugEvent function waits for a debugging event to occur in a process being
debugged.

BOOL WaitForDebugEvent(

LPDEBUG_EVENT lpDebugEvent,
// address of structure for event information

DWORD dwMilliseconds // number of milliseconds to wait for event
);
ParameterslpDebugEvent

Points to a DEBUG_EVENT structure that is filled with information about the debugging event.
dwMilliseconds

Specifies the number of milliseconds to wait for a debugging event. If this parameter is zero,
the function tests for a debugging event and returns immediately. If the parameter is
INFINITE, the function does not return until a debugging event has occurred.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksOnly the thread that created the process being debugged can call WaitForDebugEvent.See AlsoContinueDebugEvent, DebugActiveProcess, DebugBreak, DEBUG_EVENT,
OutputDebugString

WaitForInputIdle
The WaitForInputIdle function waits until the given process is waiting for user input with no input
pending, or until the time-out interval has elapsed.

The WaitForInputIdle function only works with GUI applications. If a console application calls the
function, it returns immediately, with no wait.

DWORD WaitForInputIdle(

HANDLE hProcess,
// handle to process

DWORD dwMilliseconds // time-out interval in milliseconds
);
ParametershProcess

Identifies the process.
dwMilliseconds

Specifies the time-out interval, in milliseconds. If dwMilliseconds is INFINITE, the function
does not return until the process is idle.Return ValuesThe following table shows the possible return values:

Value Meaning

0 The wait was satisfied successfully.
WAIT_TIMEOUT The wait was terminated because the time-out

interval elapsed.
0xFFFFFFFF An error occurred. To get extended error

information, use the GetLastError function.
RemarksThe WaitForInputIdle function enables a thread to suspend its execution until a specified process

has finished its initialization and is waiting for user input with no input pending. This can be useful
for synchronizing a parent process and a newly created child process. When a parent process
creates a child process, the CreateProcess function returns without waiting for the child process
to finish its initialization. Before trying to communicate with the child process, the parent process
can use WaitForInputIdle to determine when the child's initialization has been completed. For
example, the parent process should use WaitForInputIdle before trying to find a window
associated with the child process.

The WaitForInputIdle function can be used at any time, not just during application startup.See AlsoCreateProcess

WaitForMultipleObjects
The WaitForMultipleObjects function returns when one of the following occurs:

· Either any one or all of the specified objects are in the signaled state.
· The time-out interval elapses.
DWORD WaitForMultipleObjects(

DWORD nCount,
// number of handles in the object handle array

CONST HANDLE *lpHandles, // pointer to the object-handle array
BOOL bWaitAll, // wait flag
DWORD dwMilliseconds // time-out interval in milliseconds

);
ParametersnCount

Specifies the number of object handles in the array pointed to by lpHandles. The maximum
number of object handles is MAXIMUM_WAIT_OBJECTS.

lpHandles

Points to an array of object handles. For a list of the object types whose handles can be
specified, see the following Remarks section. The array can contain handles of objects of
different types.
Windows NT: The handles must have SYNCHRONIZE access. For more information, see
Access Masks and Access Rights.

bWaitAll

Specifies the wait type. If TRUE, the function returns when the state all objects in the
lpHandles array is signaled. If FALSE, the function returns when the state of any one of the
objects set to is signaled. In the latter case, the return value indicates the object whose state
caused the function to return.

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the conditions specified by the bWaitAll parameter are not met. If dwMilliseconds is
zero, the function tests the states of the specified objects and returns immediately. If
dwMilliseconds is INFINITE, the function's time-out interval never elapses.Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call
GetLastError.

The return value upon success is one of the following values:

Value Meaning

WAIT_OBJECT_0 to (WAIT_OBJECT_0 +
nCount - 1)

If bWaitAll is TRUE, the return value
indicates that the state of all specified
objects is signaled.
If bWaitAll is FALSE, the return value
minus WAIT_OBJECT_0 indicates the
lpHandles array index of the object that
satisfied the wait. If more than one object
became signalled during the call, this is
the array index of the signalled object
with the smallest index value of all the
signalled objects.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount - 1)

If bWaitAll is TRUE, the return value
indicates that the state of all specified
objects is signaled and at least one of the
objects is an abandoned mutex object.
If bWaitAll is FALSE, the return value
minus WAIT_ABANDONED_0 indicates
the lpHandles array index of an

abandoned mutex object that satisfied the
wait.

WAIT_TIMEOUT The time-out interval elapsed and the
conditions specified by the bWaitAll
parameter are not satisfied.

RemarksThe WaitForMultipleObjects function determines whether the wait criteria have been met. If the
criteria have not been met, the calling thread enters an efficient wait state, consuming very little
processor time while waiting for the criteria to be met.

When bWaitAll is TRUE, the function's wait operation is completed only when the states of all
objects have been set to signaled. The function does not modify the states of the specified objects
until the states of all objects have been set to signaled. For example, a mutex can be signaled, but
the thread does not get ownership until the states of the other objects are also set to signaled. In
the meantime, some other thread may get ownership of the mutex, thereby setting its state to
nonsignaled.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

The WaitForMultipleObjects function can specify handles of any of the following object types in
the lpHandles array:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. A change notification object's
state is signaled when a specified type of change
occurs within a specified directory or directory
tree.

Console input The handle is returned by the CreateFile function
when the CONIN$ value is specified, or by the
GetStdHandle function. The object's state is
signaled when there is unread input in the
console's input buffer, and it is nonsignaled when
the input buffer is empty.

Event The CreateEvent or OpenEvent function returns
the handle. An event object's state is set explicitly
to signaled by the SetEvent or PulseEvent
function. A manual-reset event object's state
must be reset explicitly to nonsignaled by the
ResetEvent function. For an auto-reset event
object, the wait function resets the object's state
to nonsignaled before returning. Event objects
are also used in overlapped operations, in which
the state is set by the system.

Mutex The CreateMutex or OpenMutex function
returns the handle. A mutex object's state is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex's state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. A process object's state is
signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and some
maximum value. Its state is signaled when its
count is greater than zero and nonsignaled when
its count is zero. If the current state is signaled,
the wait function decreases the count by one.

Thread The CreateProcess, CreateThread, or

CreateRemoteThread function returns the
handle. A thread object's state is signaled when
the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an active
timer is signaled when it reaches its due time.
You can deactivate the timer by calling the
CancelWaitableTimer function. The state of an
active timer is signaled when it reaches its due
time. You can deactivate the timer by calling the
CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.

You have to be careful when using the wait functions and DDE. If a thread creates any windows, it
must process messages. DDE sends messages to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have
a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than WaitForMultipleObjects.See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateThread, CreateWaitableTimer,
FindFirstChangeNotification, GetStdHandle, MsgWaitForMultipleObjects,
MsgWaitForMultipleObjectsEx, OpenEvent, OpenMutex, OpenProcess, OpenSemaphore,
OpenWaitableTimer, PulseEvent, QueueUserAPC, ResetEvent, SetEvent, SetWaitableTimer

WaitForMultipleObjectsEx
The WaitForMultipleObjectsEx function returns when one of the following occurs:

· Either any one or all of the specified objects are in the signaled state.
· An I/O completion routine or asynchronous procedure call (APC) is queued to the thread.
· The time-out interval elapses.
DWORD WaitForMultipleObjectsEx(

DWORD nCount,
// number of handles in handle array

CONST HANDLE *lpHandles, // points to the object-handle array
BOOL bWaitAll, // wait flag
DWORD dwMilliseconds, // time-out interval in milliseconds
BOOL bAlertable // alertable wait flag

);
ParametersnCount

Specifies the number of object handles to wait for in the array pointed to by lpHandles. The
maximum number of object handles is MAXIMUM_WAIT_OBJECTS.

lpHandles

Points to an array of object handles. For a list of the object types whose handles can be
specified, see the following Remarks section. The array can contain handles of objects of
different types.
Windows NT: The handles must have SYNCHRONIZE access. For more information, see
Access Masks and Access Rights.

bWaitAll

Specifies the wait type. If TRUE, the function returns when the states all objects in the
lpHandles array are set to signaled. If FALSE, the function returns when the state of any one
of the objects is set to signaled. In the latter case, the return value indicates the object whose
state caused the function to return.

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the criteria specified by the bWaitAll parameter are not met and no completion routines
or APCs are queued. If dwMilliseconds is zero, the function tests the states of the specified
objects and checks for queued completion routines or APCs and then returns immediately. If
dwMilliseconds is INFINITE, the function's time-out interval never elapses.

bAlertable

Specifies whether the function returns when the system queues an I/O completion routine or
APC. If TRUE, the function returns and the completion routine or APC function is executed. If
FALSE, the function does not return and the completion routine or APC function is not
executed.
A completion routine is queued when the ReadFileEx or WriteFileEx function in which it was
specified has completed. The wait function returns and the completion routine is called only if
bAlertable is TRUE and the calling thread is the thread that initiated the read or write
operation. An APC is queued when you call QueueUserAPC.Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.

The return value on success is one of the following values:

Value Meaning

WAIT_OBJECT_0 to (WAIT_OBJECT_0 +
nCount - 1)

If bWaitAll is TRUE, the return value
indicates that the state of all specified
objects is signaled.
If bWaitAll is FALSE, the return value
minus WAIT_OBJECT_0 indicates the

lpHandles array index of the object that
satisfied the wait. If more than one object
became signalled during the call, this is
the array index of the signalled object with
the smallest index value of all the
signalled objects.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount - 1)

If bWaitAll is TRUE, the return value
indicates that the state of all specified
objects is signaled, and at least one of the
objects is an abandoned mutex object.
If bWaitAll is FALSE, the return value
minus WAIT_ABANDONED_0 indicates
the lpHandles array index of an
abandoned mutex object that satisfied the
wait.

WAIT_IO_COMPLETION One or more I/O completion routines are
queued for execution.

WAIT_TIMEOUT The time-out interval elapsed, the
conditions specified by the bWaitAll
parameter were not satisfied, and no
completion routines are queued.

RemarksThe WaitForMultipleObjectsEx function determines whether the wait criteria have been met. If
the criteria have not been met, the calling thread enters an efficient wait state, using very little
processor time while waiting for the criteria to be met.

When bWaitAll is TRUE, the function's wait operation is completed only when the states of all
objects have been set to signaled. The function does not modify the states of the specified objects
until the states of all objects have been set to signaled. For example, a mutex can be signaled, but
the thread does not get ownership until the states of the other objects are also set to signaled. In
the meantime, some other thread may get ownership of the mutex, thereby setting its state to
nonsignaled.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

The WaitForMultipleObjectsEx function can specify handles of any of the following object types
in the lpHandles array:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. A change notification object's
state is signaled when a specified type of change
occurs within a specified directory or directory
tree.

Console input The handle is returned by the CreateFile function
when the CONIN$ value is specified, or by the
GetStdHandle function. The object's state is
signaled when there is unread input in the
console's input buffer, and it is nonsignaled when
the input buffer is empty.

Event The CreateEvent or OpenEvent function returns
the handle. An event object's state is set explicitly
to signaled by the SetEvent or PulseEvent
function. A manual-reset event object's state
must be reset explicitly to nonsignaled by the
ResetEvent function. For an auto-reset event
object, the wait function resets the object's state
to nonsignaled before returning. Event objects
are also used in overlapped operations, in which
the state is set by the system.

Mutex The CreateMutex or OpenMutex function

returns the handle. A mutex object's state is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex's state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. A process object's state is
signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and some
maximum value. Its state is signaled when its
count is greater than zero and nonsignaled when
its count is zero. If the current state is signaled,
the wait function decreases the count by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. A thread object's state is signaled when
the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an active
timer is signaled when it reaches its due time.
You can deactivate the timer by calling the
CancelWaitableTimer function. The state of an
active timer is signaled when it reaches its due
time. You can deactivate the timer by calling the
CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.

You have to be careful when using the wait functions and DDE. If a thread creates any windows, it
must process messages. DDE sends messages to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have
a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than WaitForMultipleObjectsEx.See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateWaitableTimer, CreateThread,
FindFirstChangeNotification, GetStdHandle, MsgWaitForMultipleObjects,
MsgWaitForMultipleObjectsEx, OpenEvent, OpenMutex, OpenProcess, OpenSemaphore,
OpenWaitableTimer, PulseEvent, QueueUserAPC, ReadFileEx, ResetEvent, SetEvent,
SetWaitableTimer, WriteFileEx

WaitForPrinterChange
The WaitForPrinterChange function is obsolete. This function is provided only for compatibility
with 16-bit versions of Windows. Win32-based applications should use the
FindFirstPrinterChangeNotification, FindNextPrinterChangeNotification, and
FindClosePrinterChangeNotification functions to monitor the occurrence of requested changes
on a printer or print server.when one or more requested changes occur on a printer or print server.

WaitForSingleObject
The WaitForSingleObject function returns when one of the following occurs:

· The specified object is in the signaled state.
· The time-out interval elapses.
DWORD WaitForSingleObject(

HANDLE hHandle,
// handle of object to wait for

DWORD dwMilliseconds // time-out interval in milliseconds
);
ParametershHandle

Identifies the object. For a list of the object types whose handles can be specified, see the
following Remarks section.
Windows NT: The handle must have SYNCHRONIZE access. For more information, see
Access Masks and Access Rights.

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the object's state is nonsignaled. If dwMilliseconds is zero, the function tests the
object's state and returns immediately. If dwMilliseconds is INFINITE, the function's time-out
interval never elapses.Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call
GetLastError.

The return value on success is one of the following values:

Value Meaning

WAIT_ABANDONED The specified object is a mutex object that was
not released by the thread that owned the
mutex object before the owning thread
terminated. Ownership of the mutex object is
granted to the calling thread, and the mutex is
set to nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.
WAIT_TIMEOUT The time-out interval elapsed, and the object's

state is nonsignaled.
RemarksThe WaitForSingleObject function checks the current state of the specified object. If the object's

state is nonsignaled, the calling thread enters an efficient wait state. The thread consumes very
little processor time while waiting for the object state to become signaled or the time-out interval to
elapse.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

The WaitForSingleObject function can wait for the following objects:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. A change notification object's
state is signaled when a specified type of change
occurs within a specified directory or directory
tree.

Console input The handle is returned by the CreateFile function
when the CONIN$ value is specified, or by the
GetStdHandle function. The object's state is
signaled when there is unread input in the
console's input buffer, and it is nonsignaled when

the input buffer is empty.
Event The CreateEvent or OpenEvent function returns

the handle. An event object's state is set explicitly
to signaled by the SetEvent or PulseEvent
function. A manual-reset event object's state
must be reset explicitly to nonsignaled by the
ResetEvent function. For an auto-reset event
object, the wait function resets the object's state
to nonsignaled before returning. Event objects
are also used in overlapped operations, in which
the state is set by the system.

Mutex The CreateMutex or OpenMutex function
returns the handle. A mutex object's state is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex's state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. A process object's state is
signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and some
maximum value. Its state is signaled when its
count is greater than zero and nonsignaled when
its count is zero. If the current state is signaled,
the wait function decreases the count by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. A thread object's state is signaled when
the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an active
timer is signaled when it reaches its due time.
You can deactivate the timer by calling the
CancelWaitableTimer function. The state of an
active timer is signaled when it reaches its due
time. You can deactivate the timer by calling the
CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.

You have to be careful when using the wait functions and DDE. If a thread creates any windows, it
must process messages. DDE sends messages to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have
a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than WaitForSingleObject.See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateThread, CreateWaitableTimer,
FindFirstChangeNotification, GetStdHandle, MsgWaitForMultipleObjects,
MsgWaitForMultipleObjectsEx, OpenEvent, OpenMutex, OpenProcess, OpenSemaphore,
OpenWaitableTimer, PulseEvent, ResetEvent, SetEvent, SetWaitableTimer

WaitForSingleObjectEx
The WaitForSingleObjectEx function returns when one of the following occurs:

· The specified object is in the signaled state.
· An I/O completion routine or asynchronous procedure call (APC) is queued to the thread.
· The time-out interval elapses.
DWORD WaitForSingleObjectEx(

HANDLE hHandle,
// handle of object to wait for

DWORD dwMilliseconds, // time-out interval in milliseconds
BOOL bAlertable // return to execute I/O completion routine if TRUE

);
ParametershHandle

Identifies the object. For a list of the object types whose handles can be specified, see the
following Remarks section.
Windows NT: The handle must have SYNCHRONIZE access. For more information, see
Access Masks and Access Rights.

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the object's state is nonsignaled and no completion routines or APCs are queued. If
dwMilliseconds is zero, the function tests the object's state and checks for queued completion
routines or APCs and then returns immediately. If dwMilliseconds is INFINITE, the function's
time-out interval never elapses.

bAlertable

Specifies whether the function returns when the system queues an I/O completion routine or
APC. If TRUE, the function returns and the completion routine or APC function is executed. If
FALSE, the function does not return, and the completion routine or APC function is not
executed.
A completion routine is queued when the ReadFileEx or WriteFileEx function in which it was
specified has completed. The wait function returns and the completion routine is called only if
bAlertable is TRUE, and the calling thread is the thread that initiated the read or write
operation. An APC is queued when you call QueueUserAPC.Return ValuesIf the function succeeds, the return value indicates the event that caused the function to return.

If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call
GetLastError.

The successful return value is one of the following:

Value Meaning

WAIT_OBJECT_0 The state of the specified object is signaled.
WAIT_ABANDONED The specified object is a mutex object that

was not released by the thread that owned
the mutex object before the owning thread
terminated. Ownership of the mutex object
is granted to the calling thread, and the
mutex is set to nonsignaled.

WAIT_IO_COMPLETIONOne or more I/O completion routines are
queued for execution.

WAIT_TIMEOUT The time-out interval elapsed, and the
object's state is nonsignaled.

RemarksThe WaitForSingleObjectEx function determines whether the wait criteria have been met. If the
criteria have not been met, the calling thread enters an efficient wait state, consuming very little
processor time while waiting for the criteria to be met.

Before returning, a wait function modifies the state of some types of synchronization objects.

Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

The WaitForSingleObjectEx function can wait for the following objects:

Object Description

Change notification The FindFirstChangeNotification function
returns the handle. A change notification object's
state is signaled when a specified type of change
occurs within a specified directory or directory
tree.

Console input The handle is returned by the CreateFile function
when the CONIN$ value is specified, or by the
GetStdHandle function. The object's state is
signaled when there is unread input in the
console's input buffer, and it is nonsignaled when
the input buffer is empty.

Event The CreateEvent or OpenEvent function returns
the handle. An event object's state is set explicitly
to signaled by the SetEvent or PulseEvent
function. A manual-reset event object's state
must be reset explicitly to nonsignaled by the
ResetEvent function. For an auto-reset event
object, the wait function resets the object's state
to nonsignaled before returning. Event objects
are also used in overlapped operations, in which
the state is set by the system.

Mutex The CreateMutex or OpenMutex function
returns the handle. A mutex object's state is
signaled when it is not owned by any thread. The
wait function requests ownership of the mutex for
the calling thread, changing the mutex's state to
nonsignaled when ownership is granted.

Process The CreateProcess or OpenProcess function
returns the handle. A process object's state is
signaled when the process terminates.

Semaphore The CreateSemaphore or OpenSemaphore
function returns the handle. A semaphore object
maintains a count between zero and some
maximum value. Its state is signaled when its
count is greater than zero and nonsignaled when
its count is zero. If the current state is signaled,
the wait function decreases the count by one.

Thread The CreateProcess, CreateThread, or
CreateRemoteThread function returns the
handle. A thread object's state is signaled when
the thread terminates.

Timer The CreateWaitableTimer or
OpenWaitableTimer function returns the handle.
Activate the timer by calling the
SetWaitableTimer function. The state of an active
timer is signaled when it reaches its due time.
You can deactivate the timer by calling the
CancelWaitableTimer function. The state of an
active timer is signaled when it reaches its due
time. You can deactivate the timer by calling the
CancelWaitableTimer function.

In some circumstances, you can specify a handle of a file, named pipe, or communications
device as a synchronization object in lpHandles. However, their use for this purpose is
discouraged.

You have to be careful when using the wait functions and DDE. If a thread creates any windows, it
must process messages. DDE sends messages to all windows in the system. If you have a thread
that uses a wait function with no time-out interval, the system will deadlock. Therefore, if you have
a thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than WaitForSingleObjectEx.See AlsoCancelWaitableTimer, CreateEvent, CreateFile, CreateMutex, CreateProcess,
CreateRemoteThread, CreateSemaphore, CreateThread, CreateWaitableTimer,
FindFirstChangeNotification, GetStdHandle, MsgWaitForMultipleObjects,
MsgWaitForMultipleObjectsEx, OpenEvent, OpenMutex, OpenProcess, OpenSemaphore,
OpenWaitableTimer, PulseEvent, QueueUserAPC, ReadFileEx, ResetEvent, SetEvent,
SetWaitableTimer, WriteFileEx

WaitMessage
The WaitMessage function yields control to other threads when a thread has no other messages
in its message queue. The WaitMessage function suspends the thread and does not return until a
new message is placed in the thread's message queue.

BOOL WaitMessage(VOID)

ParametersThis function has no parameters.Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoGetMessage, PeekMessage

WaitNamedPipe
The WaitNamedPipe function waits until either a time-out interval elapses or an instance of the
specified named pipe is available to be connected to (that is, the pipe's server process has a
pending ConnectNamedPipe operation on the pipe).

BOOL WaitNamedPipe(

LPCTSTR lpNamedPipeName,
// address of name of pipe to wait for

DWORD nTimeOut // time-out interval, in milliseconds
);
ParameterslpNamedPipeName

Points to a null-terminated string that specifies the name of the named pipe. The string must
include the name of the computer on which the server process is executing. A period may be
used for the servername if the pipe is local. The following pipe name format is used:

\\servername\pipe\pipename

nTimeOut

Specifies the number of milliseconds that the function will wait for an instance of the named
pipe to be available. One of the following values can be used instead of specifying a number
of milliseconds:

Value Meaning
NMPWAIT_USE_DEFAULT_WAITThe time-out interval is the default

value specified by the server
process in the CreateNamedPipe
function.

NMPWAIT_WAIT_FOREVER The function does not return until
an instance of the named pipe is
available.

Return ValuesIf an instance of the pipe is available before the time-out interval elapses, the return value is
nonzero.

If an instance of the pipe is not available before the time-out interval elapses, the return value is
zero. To get extended error information, call GetLastError.RemarksIf no instances of the specified named pipe exist, the WaitNamedPipe function returns
immediately, regardless of the time-out value.

If the function succeeds, the process should use the CreateFile function to open a handle to the
named pipe. A return value of TRUE indicates that there is at least one instance of the pipe
available. A subsequent CreateFile call to the pipe can fail, because the instance was closed by
the server or opened by another client.See AlsoCallNamedPipe, ConnectNamedPipe, CreateFile, CreateNamedPipe

WideCharToMultiByte
The WideCharToMultiByte function maps a wide-character string to a new character string. The
new character string is not necessarily from a multibyte character set.

int WideCharToMultiByte(

UINT CodePage,
// code page

DWORD dwFlags, // performance and mapping flags
LPCWSTR lpWideCharStr, // address of wide-character string
int cchWideChar, // number of characters in string
LPSTR lpMultiByteStr, // address of buffer for new string
int cchMultiByte, // size of buffer
LPCSTR lpDefaultChar, // address of default for unmappable characters
LPBOOL lpUsedDefaultChar // address of flag set when default char. used

);
ParametersCodePage

Specifies the code page used to perform the conversion. This parameter can be given the
value of any codepage that is installed or available in the system. The following values may
be used to specify one of the system default code pages:

Value Meaning
CP_ACP ANSI code page
CP_MACCP Macintosh code page
CP_OEMCP OEM code page

dwFlags

A set of bit flags that specify the handling of unmapped characters. The function performs
more quickly when none of these flags is set. The following flag constants are defined:

Value Meaning
WC_COMPOSITECHECK Convert composite characters to

precomposed characters.
WC_DISCARDNS Discard nonspacing characters during

conversion.
WC_SEPCHARS Generate separate characters during

conversion. This is the default conversion
behavior.

WC_DEFAULTCHAR Replace exceptions with the default
character during conversion.

When WC_COMPOSITECHECK is specified, the function converts composite
characters to precomposed characters. A composite character consists of a base
character and a nonspacing character, each having different character values. A
precomposed character has a single character value for a base/nonspacing character
combination. In the character è, the e is the base character, and the accent grave mark is
the nonspacing character.
When an application specifies WC_COMPOSITECHECK, it can use the last 3 flags in this list
(WC_DISCARDNS, WC_SEPCHARS, and WC_DEFAULTCHAR) to customize the
conversion to precomposed characters. These flags determine the function's behavior when
there is no precomposed mapping for a base/nonspace character combination in a wide-
character string. These last 3 flags can only be used if the WC_COMPOSITECHECK flag is
set.
The function's default behavior is to generate separate characters (WC_SEPCHARS) for
unmapped composite characters.

lpWideCharStr

Points to the wide-character string to be converted.

cchWideChar

Specifies the number of characters in the string pointed to by the lpWideCharStr parameter. If
this value is - 1, the string is assumed to be null-terminated and the length is calculated
automatically.

lpMultiByteStr

Points to the buffer to receive the translated string.
cchMultiByte

Specifies the size in characters of the buffer pointed to by the lpMultiByteStr parameter. If this
value is zero, the function returns the number of bytes required for the buffer. (In this case, the
lpMultiByteStr buffer is not used.)

lpDefaultChar

Points to the character used if a wide character cannot be represented in the specified code
page. If this parameter is NULL, a system default value is used. The function is faster when
both lpDefaultChar and lpUsedDefaultChar are NULL.

lpUsedDefaultChar

Points to a flag that indicates whether a default character was used. The flag is set to TRUE if
one or more wide characters in the source string cannot be represented in the specified code
page. Otherwise, the flag is set to FALSE. This parameter may be NULL. The function is
faster when both lpDefaultChar and lpUsedDefaultChar are NULL.Return ValuesIf the function succeeds, and cchMultiByte is nonzero, the return value is the number of bytes

written to the buffer pointed to by lpMultiByteStr.

If the function succeeds, and cchMultiByte is zero, the return value is the required size, in bytes,
for a buffer that can receive the translated string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETERRemarksThe lpMultiByteStr and lpWideCharStr pointers must not be the same. If they are the same, the
function fails, and GetLastError returns ERROR_INVALID_PARAMETER.

An application can use the lpDefaultChar parameter to change the default character used for the
conversion.

As noted earlier, the WideCharToMultiByte function operates most efficiently when both
lpDefaultChar and lpUsedDefaultChar are NULL. The following table shows the behavior of
WideCharToMultiByte for the four combinations of lpDefaultChar and lpUsedDefaultChar :

lpDefaultChar lpUsedDefaultCharResult

NULL NULL No default checking. This is the
most efficient, quick way to use
this function.

non-NULL NULL Uses the specified default
character, but does not set
lpUsedDefaultChar.

NULL non-NULL Uses the system default
character and sets
lpUsedDefaultChar if necessary.

non-NULL non-NULL Uses the specified default
character and sets
lpUsedDefaultChar if necessary.

See AlsoMultiByteToWideChar

WidenPath
The WidenPath function redefines the current path as the area that would be painted if the path
were stroked using the pen currently selected into the given device context.

BOOL WidenPath(

HDC hdc
// handle of device context

);
Parametershdc

Identifies a device context that contains a closed path.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
GetLastError may return one of the following error codes:
ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORYRemarksThe WidenPath function is successful only if the current pen is a geometric pen created by the
ExtCreatePen function, or if the pen is created with the CreatePen function and has a width, in
device units, of more than one.

The device context identified by the hdc parameter must contain a closed path.

Any Bézier curves in the path are converted to sequences of straight lines approximating the
widened curves. As such, no Bézier curves remain in the path after WidenPath is called.See AlsoBeginPath, CreatePen, EndPath, ExtCreatePen, SetMiterLimit

WindowFromDC
The WindowFromDC function returns the handle of the window associated with the given display
device context (DC). Output functions that use the given device context draw into this window.

HWND WindowFromDC(

HDC hDC
// handle of window

);
ParametershDC

Identifies the device context from which a handle for the associated window is to be retrieved.Return ValuesIf the function succeeds, the return value is the handle of the window associated with the given
display device context.

If the function fails, the return value is NULL.See AlsoGetDC, GetDCEx, GetWindowDC

WindowFromPoint
The WindowFromPoint function retrieves the handle of the window that contains the specified
point.

HWND WindowFromPoint(

POINT Point
// structure with point

);
ParametersPoint

Specifies a POINT structure that defines the point to be checked.Return ValuesIf the function succeeds, the return value is the handle of the window that contains the point. If no
window exists at the given point, the return value is NULL.RemarksThe WindowFromPoint function does not retrieve the handle of a hidden or disabled window,
even if the point is within the window. An application should use the ChildWindowFromPoint
function for a nonrestrictive search.See AlsoChildWindowFromPoint, POINT, WindowFromDC

WindowProc
The WindowProc function is an application-defined callback function that processes messages
sent to a window.

LRESULT CALLBACK WindowProc(

HWND hwnd,
// handle of window

UINT uMsg, // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter

);
Parametershwnd

Identifies the window.
uMsg

Specifies the message.
wParam

Specifies additional message information. The contents of this parameter depend on the value
of the uMsg parameter.

lParam

Specifies additional message information. The contents of this parameter depend on the value
of the uMsg parameter.Return ValuesThe return value is the result of the message processing and depends on the message sent.RemarksWindowProc is a placeholder for the application-defined function name.See AlsoCallWindowProc, DefWindowProc, RegisterClass

WinExec
The WinExec function runs the specified application.

This function is provided for compatibility with earlier versions of Windows. For Win32-based
applications, use the CreateProcess function.

UINT WinExec(

LPCSTR lpCmdLine,
// address of command line

UINT uCmdShow // window style for new application
);
ParameterslpCmdLine

Points to a null-terminated character string that contains the command line (filename plus
optional parameters) for the application to be executed. If the name of the executable file in
the lpCmdLine parameter does not contain a directory path, Windows searches for the
executable file in this sequence:
1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory. The GetSystemDirectory function retrieves the path of

this directory.
4. The Windows directory. The GetWindowsDirectory function retrieves the path of this

directory.
5. The directories listed in the PATH environment variable.

uCmdShow

Specifies how a Windows-based application window is to be shown and is used to supply the
wShowWindow member of the STARTUPINFO parameter to the CreateProcess function.
For a list of the acceptable values, see the description of the nCmdShow parameter of the
ShowWindow function. For a non-Windows - based application, the PIF file, if any, for the
application determines the window state.Return ValuesIf the function succeeds, the return value is greater than 31.

If the function fails, the return value is one of the following error values:

Value Meaning

0 The system is out of memory or
resources.

ERROR_BAD_FORMAT The .EXE file is invalid (non-Win32 .
EXE or error in .EXE image).

ERROR_FILE_NOT_FOUNDThe specified file was not found.
ERROR_PATH_NOT_FOUNDThe specified path was not found.
RemarksWin32-based applications should use the CreateProcess function rather than this function. The

WinExec function exists in Win32 to provide compatibility with earlier versions of Windows. For
more information about how the WinExec function is implemented, see the Remarks section of
the LoadModule function.

In Win32, the WinExec function returns when the started process calls the GetMessage function
or a time-out limit is reached. To avoid waiting for the time out delay, call the GetMessage
function as soon as possible in any process started by a call to WinExec.See AlsoCreateProcess, GetMessage, GetSystemDirectory, GetWindowsDirectory, LoadModule,
ShowWindow

WinHelp
The WinHelp function starts Windows Help (WINHELP.EXE) and passes additional data
indicating the nature of the help requested by the application. The application specifies the name
and, where required, the directory path of the help file to display.

BOOL WinHelp(

HWND hWndMain,
// handle of window requesting Help

LPCTSTR lpszHelp, // address of directory-path string
UINT uCommand, // type of Help
DWORD dwData // additional data

);
ParametershWndMain

Identifies the window requesting Help. The WinHelp function uses this handle to keep track of
which applications have requested Help.

lpszHelp

Points to a null-terminated string containing the path, if necessary, and the name of the Help
file that the Help application is to display.
The filename may be followed by an angle bracket (>) and the name of a secondary window if
the topic is to be displayed in a secondary window rather than in the primary window. The
name of the secondary window must have been defined in the [WINDOWS] section of the
Help project (.HPJ) file.

uCommand

Specifies the type of help requested. For a list of possible values and how they affect the
value to place in the dwData parameter, see the Remarks section.

dwData

Specifies additional data. The value used depends on the value of the uCommand parameter.
For a list of possible values, see the Remarks section.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.RemarksBefore closing the window that requested Help, the application must call WinHelp with the
uCommand parameter set to HELP_QUIT. Until all applications have done this, Windows Help will
not terminate. Note that calling WinHelp with the HELP_QUIT command is not necessary if you
used the HELP_CONTEXTPOPUP command to start Help

The following table shows the possible values for the uCommand parameter and the
corresponding formats of the dwData parameter:

uCommand Action dwData

HELP_COMMAND Executes a Help
macro or macro
string.

Address of a string
that specifies the
name of the Help
macro(s) to execute.
If the string specifies
multiple macros
names, the names
must be separated
by semicolons. You
must use the short
form of the macro
name for some
macros because
Help does not
support the long
name.

HELP_CONTENTS Displays the topic
specified by the
Contents option in

Ignored, set to 0.

the [OPTIONS]
section of the .HPJ
file. This is for
backward
compatibility. New
applications should
provide a .CNT file
and use the
HELP_FINDER
command.

HELP_CONTEXT Displays the topic
identified by the
specified context
identifier defined in
the [MAP] section of
the .HPJ file.

Unsigned long
integer containing
the context identifier
for the topic.

HELP_CONTEXTPOPUP Displays, in a pop-
up window, the topic
identified by the
specified context
identifier defined in
the [MAP] section of
the .HPJ file.

Unsigned long
integer containing
the context identifier
for a topic.

HELP_FORCEFILE Ensures that
WinHelp is
displaying the
correct help file. If
the incorrect help
file is being
displayed, WinHelp
opens the correct
one; otherwise,
there is no action.

Ignored, set to 0.

HELP_HELPONHELP Displays help on
how to use Windows
Help, if the
WINHELP.HLP file
is available.

Ignored, set to 0.

HELP_INDEX Displays the Index
in the Help Topics
dialog box. This
command is for
backward
compatibility. New
applications should
use the
HELP_FINDER
command.

Ignored, set to 0.

HELP_KEY Displays the topic in
the keyword table
that matches the
specified keyword, if
there is an exact
match. If there is
more than one
match, displays the
Index with the topics
listed in the Topics
Found list box.

Address of a
keyword string.

HELP_MULTIKEY Displays the topic
specified by a
keyword in an
alternative keyword

Address of a
MULTIKEYHELP
structure that
specifies a table

table. footnote character
and a keyword.

HELP_PARTIALKEY Displays the topic in
the keyword table
that matches the
specified keyword, if
there is an exact
match. If there is
more than one
match, displays the
Index tab. To
display the Index
without passing a
keyword (the third
result), you should
use a pointer to an
empty string.

Address of a
keyword string.

HELP_QUIT Informs the Help
application that it is
no longer needed. If
no other
applications have
asked for Help,
Windows closes the
Help application.

Ignored, set to 0.

HELP_SETCONTENTS Specifies the
Contents topic. The
Help application
displays this topic
when the user clicks
the Contents button.

Unsigned long
integer containing
the context identifier
for the Contents
topic.

HELP_SETINDEX Specifies a keyword
table to be displayed
in the Index of the
Help Topics dialog
box.

Unsigned long
integer containing
the context identifier
for the Index topic.

HELP_SETWINPOS Displays the Help
window, if it is
minimized or in
memory, and sets
its size and position
as specified.

Address of a
HELPWININFO
structure that
specifies the size
and position of
either a primary or
secondary Help
window.

See AlsoHELPWININFO, MULTIKEYHELP

WinLoadTrustProvider
[New - Windows NT]

The WinLoadTrustProvider function loads a trust provider DLL into the address space of the
calling process. The function loads the trust provider that has registered itself as being able to
process the specified action identifier. You can use WinLoadTrustProvider to determine whether
the local computer has a trust provider that supports the specified action identifier.
WinLoadTrustProvider does not perform the action.

BOOL WinLoadTrustProvider(

GUID * ActionID
// pointer to a trust provider action identifier

);
ParametersActionID

Pointer to a GUID structure that identifies a trust provider action.
The WinTrust service is designed to work with trust providers implemented by third parties.
Each trust provider provides its own unique set of action identifiers. For information about the
action identifiers supported by a trust provider, see the documentation for that trust provider.Return ValuesIf the function locates and loads a trust provider that supports the specified action identifier, the

return value is a nonzero value.

If the function fails to locate or load the trust provider, the return value is zero. To get extended
error information, call GetLastError.RemarksYou do not need to call the WinLoadTrustProvider function before calling the WinVerifyTrust
function to perform the specified action. WinVerifyTrust automatically loads the trust provider if it
has not already been loaded. Preloading is recommended, however, because it reduces the time
required for the first call to WinVerifyTrust.See AlsoGUID, WinVerifyTrust

WinMain
The WinMain function is called by the system as the initial entry point for a Win32-based
application.

int WINAPI WinMain(

HINSTANCE hInstance,
// handle to current instance

HINSTANCE hPrevInstance, // handle to previous instance
LPSTR lpCmdLine, // pointer to command line
int nCmdShow // show state of window

);
ParametershInstance

Identifies the current instance of the application.
hPrevInstance

Identifies the previous instance of the application. For a Win32-based application, this
parameter is always NULL. If you need to detect whether another instance already exists,
create a named mutex using the CreateMutex function. If the GetLastError function returns
ERROR_ALREADY_EXISTS, another instance of your application exists (it created the
mutex).

lpCmdLine

Points to a null-terminated string specifying the command line for the application.
nCmdShow

Specifies how the window is to be shown. This parameter can be one of the following values:
Value Meaning
SW_HIDE Hides the window and activates

another window.
SW_MINIMIZE Minimizes the specified window and

activates the top-level window in the
system's list.

SW_RESTORE Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its
current size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as
an icon.

SW_SHOWMINNOACTIVE Displays a window as an icon. The
active window remains active.

SW_SHOWNA Displays a window in its current state.
The active window remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The active window
remains active.

SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as SW_RESTORE)
.

Return ValuesIf the function succeeds, terminating when it receives a WM_QUIT message, it should return the

exit value contained in that message's wParam parameter. If the function terminates before
entering the message loop, it should return 0.RemarksWinMain initializes an application, displays its main window, and then enters a message retrieval-
and-dispatch loop that is the top-level control structure for the remainder of the application's
execution. The message loop terminates when a WM_QUIT message is received. At that point,
WinMain exits the application, returning the value passed in the WM_QUIT message's wParam
parameter. If WM_QUIT was received as a result of calling PostQuitMessage, the value of
wParam is the value of the PostQuitMessage function's nExitCode parameter. For more
information, see Creating a Message Loop.See AlsoCreateMutex, DispatchMessage, GetMessage, PostQuitMessage, TranslateMessage

WinSubmitCertificate
[New - Windows NT]

The WinSubmitCertificate function passes a WIN_CERTIFICATE structure to all trust providers
registered with the WinTrust service.

BOOL WinSubmitCertificate(

LPWIN_CERTIFICATE lpCertificate
// pointer to a WIN_CERTIFICATE structure

);
ParameterslpCertificate

Pointer to a WIN_CERTIFICATE structure.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the lpCertificate parameter is invalid, the return value is zero. To get extended error information,
call GetLastError.RemarksA call to WinSubmitCertificate causes WinTrust to load all registered trust providers and submit
the certificate to them. Each trust provider can save a copy of the certificate for future use, or
discard it. For example, Microsoft's Software Publisher Trust Provider might save certificates
related to software publishing, but discard other certificates. WinSubmitCertificate does not
return any indication of whether any trust provider saved the certificate.See AlsoWIN_CERTIFICATE

WinTrustProviderClientInitialize
[New - Windows NT]

The WinTrustProviderClientInitialize function is an initialization function that WinTrust calls
when it loads the client component of a trust provider DLL. Each trust provider must export a
WinTrustProviderClientInitialize function.

BOOL WinTrustProviderClientInitialize(

DWORD dwWinTrustRevision, // WinTrust revision level

LPWINTRUST_CLIENT_TP_INFO lpWinTrustInfo, // pointer to information about WinTrust
LPWSTR lpProviderName, // administrator-assigned name of the trust provider
LPWINTRUST_PROVIDER_CLIENT_INFO *lpTrustProviderInfo // receives information about the trust provider

);
ParametersdwWinTrustRevision

Indicates the revision level of the WinTrust component that calls this function. WinTrust sets
this value to WIN_TRUST_REVISION_1_0.

lpWinTrustInfo

Pointer to a WINTRUST_CLIENT_TP_INFO structure that contains information that WinTrust
passes to the trust provider. This structure includes a dispatch table of functions implemented
by WinTrust for use by the client component of a trust provider.
The information in this buffer is read-only. It is valid until the trust provider DLL is unloaded.
The trust provider can reference the information rather than copy it.

lpProviderName

Pointer to a null-terminated Unicode string that contains the trust provider name. The system
administrator assigned this name to the registry key that stores configuration information for
the trust provider. The pointer is read-only and valid until the trust provider DLL is unloaded.
The trust provider can reference the information rather than copy it.

lpTrustProviderInfo

Pointer to a variable that receives a pointer to a buffer allocated by the trust provider. The
buffer contains a WINTRUST_PROVIDER_CLIENT_INFO structure with information about
the trust provider. The information includes the revision level of the trust provider, a dispatch
table, and an array of GUIDs that identify the action identifiers that the trust provider supports.
WinTrust treats the buffer as read-only, and continues to reference this buffer until it unloads
the trust provider DLL. The trust provider must not change the information in the buffer, or
deallocate the memory before it is unloaded; doing so could corrupt the system.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWhen WinTrust loads a trust provider, it calls the trust provider's
WinTrustProviderClientInitialize function. This gives the trust provider an opportunity to initialize
itself, and to exchange information between WinTrust and the trust provider.

The LPWINTRUST_PROVIDER_CLIENT_INITIALIZE type is a pointer to a
WinTrustProviderClientInitialize function.See AlsoWINTRUST_CLIENT_TP_INFO, WINTRUST_PROVIDER_CLIENT_INFO

WinTrustProviderClientUnload
[New - Windows NT]

The WinTrustProviderClientUnload function indicates that WinTrust is preparing to unload the
trust provider DLL from the client application. However, WinTrust does not guarantee that it will
call this function before the client process exits. Therefore, the trust provider should use other
cleanup mechanisms, if necessary.

VOID WinTrustProviderClientUnload(

LPVOID lpTrustProviderInfo
// pointer to buffer allocated by the trust provider

);
ParameterslpTrustProviderInfo

Pointer to the buffer that the trust provider allocated during its initialization. The trust provider
passed this pointer to WinTrust in the WinTrustProviderClientInitialize call.Return ValuesNone.RemarksThe LPWINTRUST_PROVIDER_CLIENT_UNLOAD type is a pointer to a

WinTrustProviderClientUnload function.See AlsoWinTrustProviderClientInitialize

WinTrustProviderPing
[New - Windows NT]

The WinTrustProviderPing function enables the client component of a trust provider to contact
its server counterpart.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not implement this function and trust provider DLLs do not need to implement it.

DWORD WinTrustProviderPing(

LPWSTR lpProviderName, // administrator-assigned name of the trust provider

DWORD dwClientParameter, // parameter passed by client to server
LPDWORD lpdwServerReturnValue // receives value returned by server

);
ParameterslpProviderName

Pointer to a null-terminated Unicode string that contains the name of the trust provider. The
system administrator assigned this name to the registry key that stores configuration
information for the trust provider. WinTrust passes this name to the client component of the
trust provider in the WinTrustProviderClientInitialize call.

dwClientParameter

A value specified by the client component of the trust provider. WinTrust passes this value to
the server component of the trust provider.

lpdwServerReturnValue

Pointer to a DWORD that receives the value returned by the server component of the trust
provider.RemarksThe LPWINTRUST_PROVIDER_PING type is a pointer to a WinTrustProviderPing function.See AlsoWinTrustProviderClientInitialize, WinTrustProviderServerInitialize

WinTrustProviderServerInitialize
[New - Windows NT]

The WinTrustProviderServerInitialize function is an initialization function that WinTrust calls
when it loads the server component of a trust provider DLL.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not call this function and trust provider DLLs do not need to export it.

BOOL WinTrustProviderServerInitialize(

DWORD dwWinTrustRevision, // WinTrust revision level

LPWINTRUST_SERVER_TP_INFO lpWinTrustInfo, // pointer to information about WinTrust
LPWSTR lpProviderName, // pointer to the name of the trust provider
LPWINTRUST_PROVIDER_SERVER_INFO *lpTrustProviderInfo // pointer to buffer that receives information about

the trust provider
);
ParametersdwWinTrustRevision

Indicates the revision level of the WinTrust component that calls this function. WinTrust sets
this value to WIN_TRUST_REVISION_1_0.

lpWinTrustInfo

Pointer to a WINTRUST_SERVER_TP_INFO structure that contains information that WinTrust
passes to the trust provider. This structure includes a dispatch table of functions implemented
by WinTrust for use by the server component of a trust provider.
The information in this buffer is read-only. It is valid until the trust provider DLL is unloaded.
The trust provider can reference the information rather than copy it.

lpProviderName

Pointer to a null-terminated Unicode string that contains the name that the system
administrator assigned to the registry key that stores configuration information for the trust
provider. The pointer is read-only and valid until the trust provider DLL is unloaded. The trust
provider can reference the information rather than copy it.

lpTrustProviderInfo

Pointer to a variable that receives a pointer to a buffer allocated by the trust provider. The
buffer contains a WINTRUST_PROVIDER_SERVER_INFO structure with information about
the trust provider. The information includes the revision level of the trust provider and a
dispatch table. WinTrust treats the buffer as read-only, and continues to reference this buffer
until it unloads the trust provider DLL. The trust provider must not change the information in
the buffer, or deallocate the memory before it is unloaded; doing so could corrupt the system.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe LPWINTRUST_PROVIDER_SERVER_INITIALIZE type is a pointer to a
WinTrustProviderServerInitialize function.See AlsoWINTRUST_PROVIDER_SERVER_INFO, WINTRUST_SERVER_TP_INFO

WinTrustProviderServerUnload
[New - Windows NT]

The WinTrustProviderServerUnload function indicates that WinTrust is preparing to unload the
trust provider DLL from the WinTrust server process.

The current release of WinTrust does not include the WinTrust server component. Consequently,
a trust provider DLL does not need to implement this function.

VOID WinTrustProviderServerUnload(

LPVOID lpTrustProviderInfo
// pointer to buffer allocated by the trust provider

);
ParameterslpTrustProviderInfo

Pointer to the buffer that the trust provider allocated during its initialization. The trust provider
passed this pointer to WinTrust in the WinTrustProviderServerInitialize call.Return ValuesNone.RemarksThe LPWINTRUST_PROVIDER_SERVER_UNLOAD type is a pointer to a

WinTrustProviderServerUnload function.See AlsoWinTrustProviderServerInitialize

WinTrustProviderSubmitCertificate
[New - Windows NT]

The WinTrustProviderSubmitCertificate function passes a WIN_CERTIFICATE structure to a
trust provider. When an application calls the WinSubmitCertificate function, WinTrust loads and
calls the WinTrustProviderSubmitCertificate function of all registered trust providers.

VOID WinTrustProviderSubmitCertificate (

LPWIN_CERTIFICATE lpCertificate
// pointer to the certificate

);
ParameterslpCertificate

Pointer to a WIN_CERTIFICATE structure that may contain a certificate of interest to the trust
provider.Return ValuesNone.RemarksEach trust provider can either save the certificate for future use, or ignore it.

WinTrust calls the WinTrustProviderSubmitCertificate function only on the client component of
the trust provider.

Each trust provider must implement the WinTrustProviderSubmitCertificate function. The trust
provider provides WinTrust with a pointer to its implementation when WinTrust calls the trust
provider's WinTrustProviderClientInitialize initialization function.

The LPWINTRUST_PROVIDER_SUBMIT_CERTIFICATE type is a pointer to a
WinTrustProviderSubmitCertificate function.See AlsoWIN_CERTIFICATE, WinTrustProviderClientInitialize

WinTrustProviderVerifyTrust
[New - Windows NT]

The WinTrustProviderVerifyTrust function performs a specified verification action on a specified
subject. When an application calls the WinVerifyTrust function, WinTrust calls the
WinTrustProviderVerifyTrust function of the trust provider that supports the specified action
identifier.

LONG WinTrustProviderVerifyTrust(

HWND hwnd, // handle to a window for interacting with the user

GUID *ActionID, // pointer to a trust provider action identifier
LPVOID ActionData // pointer to an action-specific data structure

);
Parametershwnd

Handle to the caller's window. The trust provider can use this value to determine whether it
can interact with the user to perform the verification operation indicated by the action
identifier. However, trust providers typically perform verification operations without input from
the user. This parameter can be one of the following values.

Value Meaning
INVALID_HANDLE_VALUE There is no interactive user. The trust

provider performs the verification
operation without the user's
assistance.

zero The trust provider can use the
interactive desktop to display its user
interface.

A valid window handle The trust provider can assume that
any value other than zero or
INVALID_HANDLE_VALUE is a valid
window handle that it can use to
interact with the user.

ActionID

Pointer to a GUID structure that identifies the action to perform. Each trust provider supports a
unique set of action identifiers. The trust provider determines whether the subject identified by
the ActionData parameter is trusted for the specified action.

ActionData

Pointer to a buffer that contains information that the trust provider needs to process the
specified action identifier. Typically, the data in the buffer includes information that identifies
the subject that the trust provider must evaluate. The format and contents of the buffer
depend on the action identifier and the trust provider.Return ValuesIf the trust provider verifies that the subject is trusted for the specified action, the return value is

ERROR_SUCCESS.

Otherwise, the return value is a status code that indicates the error that occurred. For example, a
trust provider might indicate that the subject is not trusted, or is trusted but with limitations or
warnings. The return value can be a trust-provider - specific value described in the documentation
for an individual trust provider, or it can be one of the following error codes defined in
WINERROR.H.

Value Meaning

TRUST_E_SUBJECT_NOT_TRUSTED The subject is not trusted
for the specified action.
Most trust providers return a
more detailed error code
that describes the reason
that the subject is not

trusted.
TRUST_E_ACTION_UNKNOWN The trust provider does not

support the specified action.
TRUST_E_SUBJECT_FORM_UNKNOWNThe trust provider does not

support the form specified
for the subject.

RemarksEach trust provider DLL must implement the WinTrustProviderVerifyTrust function. WinTrust
gets a pointer to the trust provider's WinTrustProviderVerifyTrust implementation when
WinTrust calls the trust provider's WinTrustProviderClientInitialize initialization function.

A trust provider's WinTrustProviderVerifyTrust function executes in the process of the
application that called the WinVerifyTrust function. The function also executes in the security
context of the application.

The LPWINTRUST_PROVIDER_VERIFY_TRUST type is a pointer to a
WinTrustProviderVerifyTrust function.See AlsoGUID, WinTrustProviderClientInitialize, WinVerifyTrust

WinTrustSipInitialize
[New - Windows NT]

The WinTrustSipInitialize function is an initialization function that WinTrust calls when it loads a
Subject Interface Package (SIP) DLL. Each SIP must export a WinTrustSipInitialize function.

BOOL WinTrustSipInitialize(

DWORD dwWinTrustRevision, // WinTrust revision level

LPWINTRUST_SIP_INFO *lpSipInfo // receives a pointer to a SIP information structure
);
ParametersdwWinTrustRevision

Indicates the revision level of the WinTrust component that calls this function. WinTrust sets
this value to WIN_TRUST_REVISION_1_0.

lpSipInfo

Pointer to a variable that receives a pointer to a buffer allocated by the SIP. The buffer
contains a WINTRUST_SIP_INFO structure that describes the SIP. WinTrust continues to
reference this buffer until it unloads the SIP. The SIP must not change the information in the
buffer, or deallocate the memory before it is unloaded; doing so could corrupt the system.Return ValuesIf the SIP successfully initializes itself, the return value is a nonzero value.

If the SIP did not successfully initialize itself, the return value is zero. In this case, WinTrust makes
no further calls to the SIP. The SIP can use the SetLastError function to provide extended error
information.RemarksThe LPWINTRUST_SUBJECT_PACKAGE_INITIALIZE type is a pointer to a
WinTrustSipInitialize function.See AlsoWINTRUST_SIP_INFO

WinTrustSubjectCheckContentInfo
[New - Windows NT]

The WinTrustSubjectCheckContentInfo function verifies that a specified certificate adequately
represents the contents of the specified subject.

BOOL WinTrustSubjectCheckContentInfo(

LPWIN_TRUST_SIP_SUBJECT lpSubject, // pointer to description of the subject

LPWIN_CERTIFICATE lpSignedData // pointer to a certificate for the subject
);
ParameterslpSubject

Pointer to a WIN_TRUST_SIP_SUBJECT structure that describes the subject to compare to
the certificate.

lpSignedData

Pointer to a WIN_CERT_TYPE_PKCS_SIGNED_DATA type of WIN_CERTIFICATE
structure. The data in the bCertificate member of this structure is in the format of a PKCS #7
Signed Data structure. For details on this data format, see The Public-Key Cryptography
Standards (PKCS), published by RSA Data Security, Inc.
The SIP can use information from the ContentInfo member of this PKCS #7 structure to
determine what must be verified about the subject. For example, a Portable Executable (PE)
image may include resource information and debug information in a digest of the image. If it
does, the SIP can find that information in the ContentInfo member of the corresponding PKCS
#7 Signed Data structure. The SIP should not depend on the contents of the PKCS #7
structure other than the ContentInfo member.Return ValuesIf the information in lpSignedData adequately represents the subject, the return value is nonzero.

Otherwise, the return value is zero.RemarksA trust provider calls the WinTrustSubjectCheckContentInfo function to verify that the signature
in a certificate matches the contents of a specified subject. The trust provider calls the WinTrust
implementation of this function. WinTrust then calls the WinTrustSubjectCheckContentInfo
implementation of the appropriate Subject Interface Package (SIP). The appropriate SIP is the
one registered to handle the type of subject specified by the lpSubject parameter.

To verify a signature, the trust provider first calls the WinTrustSubjectEnumCertificates function
to enumerate the types of certificates contained in the subject. Next, the trust provider calls the
WinTrustSubjectGetCertificate function to get the certificate needed to authenticate the subject.
Typically, this is a certificate that contains a PKCS #7 Signed Data structure from the subject.
Then the trust provider calls WinTrustSubjectCheckContentInfo to determine whether the
ContentInfo member of the PKCS #7 Signed Data structure matches the subject. If the return
value indicates that the SIP has verified the ContentInfo member, the trust provider must also
check the signature of the PKCS #7 Signed Data structure. To do this, the trust provider must
digest the PKCS structure and compare it to the signature value in that structure.

Each Subject Interface Package (SIP) DLL must implement the
WinTrustSubjectCheckContentInfo function. WinTrust gets a pointer to the SIP's
WinTrustSubjectCheckContentInfo implementation when WinTrust calls the SIP's
WinTrustSipInitialize initialization function.

The SIP implementation of WinTrustSubjectCheckContentInfo compares the information in the
PKCS #7's ContentInfo member to information that it retrieves from the subject identified by the
lpSubject parameter. To do this, the SIP generates new ContentInfo information from the subject,
which it then compares to the ContentInfo member of the PKCS #7 Signed Data structure. The
ContentInfo member contains a message digest of the subject that is important in verifying the
validity of the subject. Note that other information in the ContentInfo member may not match the
subject. For example, the name of the file is not important because the name can change without
affecting the integrity of the subject.

The LPWINTRUST_SUBJECT_CHECK_CONTENT_INFO type is a pointer to a
WinTrustSubjectCheckContentInfo function.See AlsoWIN_CERTIFICATE, WIN_TRUST_SIP_SUBJECT, WinTrustSipInitialize,
WinTrustSubjectEnumCertificates, WinTrustSubjectGetCertificate

WinTrustSubjectEnumCertificates
[New - Windows NT]

The WinTrustSubjectEnumCertificates function determines the types of certificates bundled
within a subject. You can retrieve a list of all the certificate types that the subject contains, or you
can determine whether the subject contains a specified certificate type.

BOOL WinTrustSubjectEnumCertificates(

LPWIN_TRUST_SIP_SUBJECT lpSubject, // pointer to description of the subject

DWORD dwTypeFilter, // type of certificate to enumerate
LPDWORD lpCertificateCount, // receives number of certificates of the specified type
LPDWORD lpIndices, // pointer to an array that receives the certificate types
DWORD dwIndexCount // size of the array

);
ParameterslpSubject

Pointer to a WIN_TRUST_SIP_SUBJECT structure that identifies the subject from which to
get certificate information.

dwTypeFilter

Specifies the type of certificate to list. This parameter can be zero to list certificates of all
types, or it can be one of the following values.

Value Meaning
WIN_CERT_TYPE_X509 The certificate contains

an X.509 Certificate.
WIN_CERT_TYPE_PKCS_SIGNED_DATAThe certificate contains a

PKCS SignedData
structure.

WIN_CERT_TYPE_RESERVED_1 Reserved.

lpCertificateCount

Pointer to a DWORD that receives the number of certificates of the specified type in the
subject identified by lpSubject. This value indicates the number that could be returned even if
the lpIndices array is not large enough to hold them all.

lpIndices

Pointer to an array of DWORD values that receives a list of WIN_CERT_TYPE_xxx values
indicating the types of certificates bundled within the subject. You can use these certificate
type values in the WinTrustSubjectGetCertificate function to retrieve the actual certificates.
The value returned in lpCertificateCount indicates the number of valid entries returned in the
array. If dwIndexCount is less than the value returned in lpCertificateCount, the array contains
garbage, and you need to call WinTrustSubjectEnumCertificates again with a larger array.

dwIndexCount

Indicates the number of entries that can be returned in the lpIndices array.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA trust provider calls the WinTrustSubjectEnumCertificates function to retrieve the types of
certificates in the specified subject. The trust provider calls the WinTrust implementation of this
function. WinTrust then calls the WinTrustSubjectEnumCertificates implementation of the
appropriate Subject Interface Package (SIP). The appropriate SIP is the one registered to handle
the type of subject specified by the lpSubject parameter.

Each Subject Interface Package (SIP) DLL must implement the
WinTrustSubjectEnumCertificates function. WinTrust gets a pointer to the SIP's
WinTrustSubjectEnumCertificates implementation when WinTrust calls the SIP's
WinTrustSipInitialize initialization function.

The LPWINTRUST_SUBJECT_ENUM_CERTIFICATES type is a pointer to a
WinTrustSubjectEnumCertificates function.See AlsoWIN_TRUST_SIP_SUBJECT, WinTrustSipInitialize

WinTrustSubjectGetCertHeader
[New - Windows NT]

The WinTrustSubjectGetCertHeader function retrieves the header part of a WIN_CERTIFICATE
structure from the specified subject. The caller specifies the type of certificate to retrieve. The
returned information does not include the data in the bCertificate member of the
WIN_CERTIFICATE structure.

BOOL WinTrustSubjectGetCertHeader(

LPWIN_TRUST_SIP_SUBJECT lpSubject, // pointer to description of the subject

DWORD dwCertificateIndex, // type of certificate to retrieve
LPWIN_CERTIFICATE lpCertificateHeader // pointer to a buffer that receives the certificate header

);
ParameterslpSubject

Pointer to a WIN_TRUST_SIP_SUBJECT structure that identifies the subject from which to
get a certificate header.

dwCertificateIndex

Specifies the type of certificate to retrieve. You can call the
WinTrustSubjectEnumCertificates function to enumerate the types of certificates that the
subject contains.

lpCertificateHeader

Pointer to a WIN_CERTIFICATE structure that receives the certificate header.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA trust provider calls the WinTrust implementation of the WinTrustSubjectGetCertHeader
function. WinTrust then calls the WinTrustSubjectGetCertHeader implementation of the
appropriate Subject Interface Package (SIP). The appropriate SIP is the one registered to handle
the type of subject specified by the lpSubject parameter.

Each Subject Interface Package (SIP) DLL must implement the WinTrustSubjectGetCertHeader
function. WinTrust gets a pointer to the SIP's WinTrustSubjectGetCertHeader implementation
when WinTrust calls the SIP's WinTrustSipInitialize initialization function.

The LPWINTRUST_SUBJECT_GET_CERT_HEADER type is a pointer to a
WinTrustSubjectGetCertHeader function.See AlsoWIN_CERTIFICATE, WIN_TRUST_SIP_SUBJECT, WinTrustSipInitialize,
WinTrustSubjectEnumCertificates

WinTrustSubjectGetCertificate
[New - Windows NT]

The WinTrustSubjectGetCertificate function retrieves a specified certificate from a subject.

BOOL WinTrustSubjectGetCertificate(

LPWIN_TRUST_SIP_SUBJECT lpSubject, // pointer to description of the subject

DWORD dwCertificateIndex, // type of certificate to retrieve
LPWIN_CERTIFICATE lpCertificate, // pointer to a buffer that receives the certificate
LPDWORD lpRequiredLength // pointer to the size, in bytes, of the buffer

);
ParameterslpSubject

Pointer to a WIN_TRUST_SIP_SUBJECT structure that identifies the subject from which to
get a certificate.

dwCertificateIndex

Specifies the type of certificate to retrieve. You can call the
WinTrustSubjectEnumCertificates function to enumerate the types of certificates that the
subject contains.

lpCertificate

Pointer to buffer that receives the WIN_CERTIFICATE structure header and the associated
certificate data.

lpRequiredLength

Pointer to a DWORD. On input, it specifies the size, in bytes, of the lpCertificate buffer. On
output, it receives the length of the returned certificate. If the buffer is not large enough to hold
the certificate, the function fails, and lpRequiredLength returns the required buffer size.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA trust provider calls the WinTrust implementation of the WinTrustSubjectGetCertificate
function. WinTrust then calls the WinTrustSubjectGetCertificate implementation of the
appropriate Subject Interface Package (SIP). The appropriate SIP is the one registered to handle
the type of subject specified by the lpSubject parameter.

Each Subject Interface Package (SIP) DLL must implement the WinTrustSubjectGetCertificate
function. WinTrust gets a pointer to the SIP's WinTrustSubjectGetCertificate implementation
when WinTrust calls the SIP's WinTrustSipInitialize initialization function.

The LPWINTRUST_SUBJECT_GET_CERTIFICATE type is a pointer to a
WinTrustSubjectGetCertificate function.See AlsoWIN_CERTIFICATE, WIN_TRUST_SIP_SUBJECT, WinTrustSipInitialize,
WinTrustSubjectEnumCertificates

WinTrustSubjectGetName
[New - Windows NT]

The WinTrustSubjectGetName function retrieves the name of a subject from a PKCS #7 Signed
Data certificate that represents the subject. A trust provider can use the name to store and
retrieve certificates associated with the subject.

BOOL WinTrustSubjectGetName(

LPWIN_TRUST_SIP_SUBJECT lpSubject, // pointer to description of the subject

LPWIN_CERTIFICATE lpSignedData, // pointer to a signed data certificate
LPWSTR lpBuffer, // pointer to a buffer that receives the subject name
LPDWORD lpRequiredLength // pointer to the size, in bytes, of the buffer

);
ParameterslpSubject

Pointer to a WIN_TRUST_SIP_SUBJECT structure that identifies the type of subject. Note
that the function retrieves the subject's name from the lpSignedData structure, not from the
subject.

lpSignedData

Pointer to a WIN_CERTIFICATE structure that contains a PKCS #7 Signed Data structure.
The function retrieves the subject name from the data associated with this structure.

lpBuffer

Pointer to a buffer that receives a null-terminated, Unicode string that names the subject.
lpRequiredLength

Pointer to a DWORD. On input, it specifies the size, in bytes, of the lpBuffer buffer. On output,
it receives the size, in bytes, of the returned string, including the terminating null character. If
the buffer is not large enough to hold the string, the function fails, and lpRequiredLength
returns the required buffer size.Return ValuesIf the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksA trust provider calls the WinTrust implementation of the WinTrustSubjectGetName function.
WinTrust then calls the WinTrustSubjectGetName implementation of the appropriate Subject
Interface Package (SIP). The appropriate SIP is the one registered to handle the type of subject
specified by the lpSubject parameter.

Each Subject Interface Package (SIP) DLL must implement the WinTrustSubjectGetName
function. WinTrust gets a pointer to the SIP's WinTrustSubjectGetName implementation when
WinTrust calls the SIP's WinTrustSipInitialize initialization function.

A SIP's implementation of WinTrustSubjectGetName returns a name associated with the
subject. This may be a filename, if the subject is a file, or some other string that identifies the
subject. The purpose of this function is to provide a string that a trust provider can use to store
and retrieve certificates associated with the subject. The name does not need to be unique, but it
should identify the subject and be the same each time it is retrieved.

The LPWINTRUST_SUBJECT_GET_NAME type is a pointer to a WinTrustSubjectGetName
function.See AlsoWIN_CERTIFICATE, WIN_TRUST_SIP_SUBJECT, WinTrustSipInitialize

WinVerifyTrust
[New - Windows NT]

The WinVerifyTrust function performs a specified verification action on a specified subject. The
function passes the inquiry to the trust provider, if any, that supports the action identifier.

LONG WinVerifyTrust(

HWND hwnd, // handle to a window for interacting with the user

GUID *ActionID, // pointer to a trust provider action identifier
LPVOID ActionData // pointer to a buffer containing action-specific data

);
Parametershwnd

Handle to the caller's window. The trust provider can use this value to determine whether it
can interact with the user. However, trust providers typically perform verification actions with
input from the user.
This parameter can be one of the following values.

Value Meaning
INVALID_HANDLE_VALUE There is no interactive user. The trust

provider performs the verification
action without the user's assistance.

Zero The trust provider can use the
interactive desktop to display its user
interface.

A valid window handle A trust provider can treat any value
other than
INVALID_HANDLE_VALUE or zero
as a valid window handle that it can
use to interact with the user.

ActionID

Pointer to a GUID structure that identifies an action, and implicitly, the trust provider that
supports the action identifier. This value indicates the type of verification action to perform on
the subject identified by the ActionData parameter.
The WinTrust service is designed to work with trust providers implemented by third parties.
Each trust provider provides its own unique set of action identifiers. For information about the
action identifiers supported by a trust provider, see the documentation for that trust provider.
For example, Microsoft provides a Software Publisher Trust Provider that can establish the
trustworthiness of software being downloaded from a public network, such as the internet. The
Software Publisher Trust Provider supports the following action identifiers.
Value Description
WIN_SPUB_ACTION_TRUSTED_PUBLISHER

The ActionData parameter is a pointer to a
WIN_SPUB_TRUSTED_PUBLISHER_DATA
structure.

WIN_SPUB_ACTION_NT_ACTIVATE_IMAGE
The ActionData parameter is a pointer to a
WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT
structure.

WIN_SPUB_ACTION_PUBLISHED_SOFTWARE
The ActionData parameter is a pointer to a
WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT
structure.

ActionData

Pointer to a buffer that contains information that the trust provider needs to process the
specified action identifier. Typically, the data in the buffer includes information that identifies
the subject that the trust provider must evaluate.
The format of the data depends on the action identifier. For information about the data
required for a specific action identifier, see the documentation for the trust provider that
supports that action.Return ValuesIf the trust provider verifies that the subject is trusted for the specified action, the return value is

ERROR_SUCCESS.

Otherwise, the return value is the status code returned by the trust provider. For example, a trust
provider might indicate that the subject is not trusted, or is trusted but with limitations or warnings.
The return value can be a trust-provider-specific value described in the documentation for an
individual trust provider, or it can be one of the following error codes.

Value Meaning

TRUST_E_SUBJECT_NOT_TRUSTED The subject failed the
specified verification action.
Most trust providers return a
more detailed error code
that describes the reason
for the failure.

TRUST_E_PROVIDER_UNKNOWN The trust provider is not
recognized on this system.

TRUST_E_ACTION_UNKNOWN The trust provider does not
support the specified action.

TRUST_E_SUBJECT_FORM_UNKNOWNThe trust provider does not
support the form specified
for the subject.

RemarksThe WinVerifyTrust function enables applications to invoke a trust provider to verify that a
specified subject satisfies the criteria of a specified verification operation. The ActionID parameter
identifies the verification operation, and the ActionData parameter identifies the subject. A trust
provider is a DLL registered with WinTrust. When you call WinVerifyTrust, the WinTrust service
forwards the call to the registered trust provider, if there is one, that supports the specified action
identifier.

For example, the Software Publisher Trust Provider can verify that an executable image file
comes from a trusted software publisher and that the file has not been modified since it was
published. In this case, the ActionData parameter specifies the name of the file and the type of
file, such as a Microsoft Portable Executable image file or a Java class file.

Each trust provider supports a specific set of actions that it can evaluate. Each action has a
globally unique identifier (GUID) that identifies it. A trust provider can support any number of
action identifiers, but two trust providers cannot support the same action identifier.See AlsoGUID, WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT

WNetAddConnection
The WNetAddConnection function enables the calling application to connect a local device to a
network resource. A successful connection is persistent, meaning that Windows automatically
restores the connection during subsequent logon operations.

This function is provided for compatibility with earlier versions of Microsoft Windows. For new
applications, use the WNetAddConnection2 function.

DWORD WNetAddConnection(

LPTSTR lpRemoteName,
// pointer to network device name

LPTSTR lpPassword, // pointer to password
LPTSTR lpLocalName // pointer to local device name

);
ParameterslpRemoteName

Points to a null-terminated string that specifies the network resource to connect to.
lpPassword

Points to a null-terminated string that specifies the password to be used to make a
connection. This parameter is usually the password associated with the current user.
If this parameter is NULL, the default password is used. If the string is empty, no password is
used.

lpLocalName

Points to a null-terminated string that specifies the name of a local device to be redirected,
such as F: or LPT1. The case of the characters in the string is not important. If the string is
NULL, a connection to the network resource is made without redirecting the local device.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_ACCESS_DENIED Access is denied.
ERROR_ALREADY_ASSIGNED The device specified in

the lpLocalName
parameter is already
connected.

ERROR_BAD_DEV_TYPE The device type and the
resource type do not
match.

ERROR_BAD_DEVICE The value specified in
lpLocalName is invalid.

ERROR_BAD_NET_NAME The value specified in the
lpRemoteName
parameter is not valid or
cannot be located.

ERROR_BAD_PROFILE The user profile is in an
incorrect format.

ERROR_CANNOT_OPEN_PROFILE The system is unable to
open the user profile to
process persistent
connections.

ERROR_DEVICE_ALREADY_REMEMBEREDAn entry for the device
specified in lpLocalName
is already in the user
profile.

ERROR_EXTENDED_ERROR A network-specific error
occurred. To get a
description of the error,

use the
WNetGetLastError
function.

ERROR_INVALID_PASSWORD The specified password is
invalid.

ERROR_NO_NET_OR_BAD_PATH The operation cannot be
performed because either
a network component is
not started or the
specified name cannot be
used.

ERROR_NO_NETWORK The network is not
present.

The function returns error codes and sets the error code values returned by GetLastError.See AlsoWNetAddConnection2, WNetCancelConnection, WNetCancelConnection2,
WNetGetConnection, WNetGetLastError

WNetAddConnection2
The WNetAddConnection2 function makes a connection to a network resource. The function can
redirect a local device to the network resource.

The WNetAddConnection2 function supersedes the WNetAddConnection function. If you pass
a handle to a window that the provider of network resources can use as an owner window for
dialog boxes, use the WNetAddConnection3 function.

DWORD WNetAddConnection2(

LPNETRESOURCE lpNetResource,
// points to structure that specifies connection details

LPCTSTR lpPassword, // points to password string
LPCTSTR lpUsername, // points to user name string
DWORD dwFlags // set of bit flags that specify connection options

);
ParameterslpNetResource

Points to a NETRESOURCE structure that specifies details of the proposed connection:
information about the network resource, the local device, and the network resource provider.
You must specify the following members of the NETRESOURCE structure:

Member Description
dwType Specifies the type of network resource to

connect to. If lpLocalName points to a non-
empty string, this member can be
RESOURCETYPE_DISK or
RESOURCETYPE_PRINT. If lpLocalName is
NULL or points to an empty string, dwType can
be RESOURCETYPE_DISK,
RESOURCETYPE_PRINT, or
RESOURCETYPE_ANY.

lpLocalName Points to a null-terminated string that specifies
the name of a local device to be redirected, such
as "F:" or "LPT1". The string is treated in a case-
insensitive manner. If the string is empty or
lpLocalName is NULL, the function makes a
connection to the network resource without
redirecting a local device.

lpRemoteName Points to a null-terminated string that specifies
the network resource to connect to. The string
can be up to MAX_PATH characters in length.
The string must follow the network provider's
naming conventions.

lpProvider Points to a null-terminated string that specifies
the network provider to connect to. If lpProvider
is NULL or points to an empty string, the
operating system attempts to determine the
correct provider by parsing the string pointed to
by lpRemoteName.
You should set this member only if you know for
sure which network provider you want to use.
Otherwise, let the operating system determine
which provider the network name maps to.
If this member is not NULL, the operating
system attempts to make a connection only to
the named network provider.

The WNetAddConnection2 function ignores the other members of the NETRESOURCE
structure.

lpPassword

Points to a null-terminated string that specifies a password to be used in making the network
connection.
If lpPassword is NULL, the function uses the current default password associated with the
user specified by lpUserName.
If lpPassword points to an empty string, the function does not use a password.

lpUsername

Points to a null-terminated string that specifies a user name to be used in making the
connection.
If lpUserName is NULL, the function uses the default user name. The user context for the
process provides the default user name.
The lpUserName parameter is specified when users want to connect to a network resource for
which they have been assigned a user name or account other than the default user name or
account.
The user-name string represents a security context. It may be specific to a network provider.

dwFlags

A set of bit flags that specify connection options. The following bit flag constant is currently
defined:

Value Meaning
CONNECT_UPDATE_PROFILE The network resource connection

should be remembered.
If this bit flag is set, the operating
system automatically attempts to
restore the connection when the
user logs on.
The operating system remembers
only successful connections that
redirect local devices. It does not
remember unsuccessful
connections or deviceless
connections. A deviceless
connection occurs when
lpLocalName is NULL or points to
an empty string.
If this bit flag is clear, the operating
system will not automatically
restore the connection at logon.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. Returning an error code provides
compatibility with the behavior of the Windows 3.1 function WNetAddConnection. You can also
call the GetLastError function to obtain the (same) error code. One of the following error codes
may be returned when WNetAddConnection2 fails:

Value Meaning

ERROR_ACCESS_DENIED Access to the network
resource was denied.

ERROR_ALREADY_ASSIGNED The local device specified by
lpLocalName is already
connected to a network
resource.

ERROR_BAD_DEV_TYPE The type of local device and
the type of network resource
do not match.

ERROR_BAD_DEVICE The value specified by
lpLocalName is invalid.

ERROR_BAD_NET_NAME The value specified by
lpRemoteName is not
acceptable to any network

resource provider. The
resource name is invalid, or
the named resource cannot
be located.

ERROR_BAD_PROFILE The user profile is in an
incorrect format.

ERROR_BAD_PROVIDER The value specified by
lpProvider does not match
any provider.

ERROR_BUSY The router or provider is
busy, possibly initializing. The
caller should retry.

ERROR_CANCELLED The attempt to make the
connection was cancelled by
the user through a dialog box
from one of the network
resource providers, or by a
called resource.

ERROR_CANNOT_OPEN_PROFILE The system is unable to open
the user profile to process
persistent connections.

ERROR_DEVICE_ALREADY_REMEMBEREDAn entry for the device
specified in lpLocalName is
already in the user profile.

ERROR_EXTENDED_ERROR A network-specific error
occured. Call the
WNetGetLastError function
to get a description of the
error.

ERROR_INVALID_PASSWORD The specified password is
invalid.

ERROR_NO_NET_OR_BAD_PATH A network component has not
started, or the specified name
could not be handled.

ERROR_NO_NETWORK There is no network present.
See AlsoWNetAddConnection, WNetAddConnection3, WNetCancelConnection2,

WNetGetConnection, WNetGetLastError, NETRESOURCE

WNetAddConnection3
The WNetAddConnection3 function makes a connection to a network resource. The function can
redirect a local device to the network resource.

The WNetAddConnection3 function is similar to the WNetAddConnection2 function. The main
difference is that WNetAddConnection3 has an additional parameter, a handle to a window that
the provider of network resources can use as an owner window for dialog boxes.

DWORD WNetAddConnection3(

HWND hwndOwner,
// handle to an owner window for network provider dialog boxes

LPNETRESOURCE lpNetResource, // pointer to structure that specifies connection details
LPTSTR lpPassword, // pointer to password string
LPTSTR lpUserName, // pointer to user name string
DWORD dwFlags // set of bit flags that specify connection options

);
ParametershwndOwner

Specifies a window that the provider of network resources can use as an owner window for
dialog boxes.
The hwndOwner parameter may be NULL. If it is, a call to WNetAddConnection3 is
equivalent to calling the WNetAddConnection2 function.

lpNetResource

Points to a NETRESOURCE data structure that specifies details of the proposed connection:
information about the network resource, the local device, and the network resource provider.
You must specify the following members of the NETRESOURCE structure:

Member Description
dwType Specifies the type of network resource to connect

to. If lpLocalName points to a non-empty string, this
member can be RESOURCETYPE_DISK or
RESOURCETYPE_PRINT. If lpLocalName is
NULL or points to an empty string, dwType can be
RESOURCETYPE_DISK,
RESOURCETYPE_PRINT, or
RESOURCETYPE_ANY.

lpLocalName Points to a null-terminated string that specifies the
name of a local device to be redirected, such as "F:
" or "LPT1". The string is treated in a case-
insensitive manner. If the string is empty or
lpLocalName is NULL, the function makes a
connection to the network resource without
redirecting a local device.

lpRemoteName Points to a null-terminated string that specifies the
network resource to connect to. The string can be
up to MAX_PATH characters in length . The string
must follow the network provider's naming
conventions.

lpProvider Points to a null-terminated string that specifies the
network provider to connect to. If lpProvider is
NULL or points to an empty string, the operating
system attempts to determine the correct provider
by parsing the string pointed to by lpRemoteName.
You should set this member only if you know for
sure which network provider you want to use.
Otherwise, let the operating system determine
which network provider the network name maps to.
If this member is not NULL, the operating system
attempts to make a connection only to the named
network provider.

The WNetAddConnection3 function ignores the other members of the NETRESOURCE
structure.

lpPassword

Points to a null-terminated string that specifies a password to be used in making the network
connection.
If lpPassword is NULL, the function uses the current default password associated with the
user specified by lpUserName.
If lpPassword points to an empty string, the function does not use a password.

lpUserName

Points to a null-terminated string that specifies a user name to be used in making the
connection.
If lpUserName is NULL, the function uses the default user name. The user context for the
process provides the default user name.
The lpUserName parameter is specified when users want to connect to a network resource for
which they have been assigned a user name or account other than the default user name or
account.
The user-name string represents a security context. It may be specific to a network provider.

dwFlags

A set of bit flags that specify connection options. The following bit flag constants are currently
defined:

Value Meaning
CONNECT_UPDATE_PROFILEThe network resource connection

should be remembered.
If this bit flag is set, the operating
system automatically attempts to
restore the connection when the user
logs on.
The operating system remembers only
successful connections that redirect
local devices. It does not remember
unsuccessful connections and
deviceless connections. A deviceless
connection occurs when lpLocalName
is NULL or points to an empty string.
If this bit flag is clear, the operating
system will not automatically restore
the connection at logon.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. Returning an error code provides
compatibility with the behavior of the Windows 3.1 function WNetAddConnection. You can also
call the GetLastError function to obtain the (same) error code. One of the following error codes
may be returned when WNetAddConnection3 fails:

Value Meaning

ERROR_ACCESS_DENIED Access to the network resource was
denied.

ERROR_ALREADY_ASSIGNED The local device specified by
lpLocalName is already connected to
a network resource.

ERROR_BAD_DEV_TYPE The type of local device and the type of
network resource do not match.

ERROR_BAD_DEVICE The value specified by lpLocalName is
invalid.

ERROR_BAD_NET_NAME The value specified by lpRemoteName

is not acceptable to any network
resource provider. The resource name
is invalid, or the named resource
cannot be located.

ERROR_BAD_PROFILE The user profile is in an incorrect
format.

ERROR_BAD_PROVIDER The value specified by lpProvider
does not match any provider.

ERROR_BUSY The router or provider is busy, possibly
initializing. The caller should retry.

ERROR_CANCELLED The attempt to make the connection
was cancelled by the user through a
dialog box from one of the network
resource providers or by a called
resource.

ERROR_CANNOT_OPEN_PROFILE The system is unable to open the user
profile to process persistent
connections.

ERROR_DEVICE_ALREADY_REMEMBEREDAn entry for the device specified in
lpLocalName is already in the user
profile.

ERROR_EXTENDED_ERROR A network-specific error occured. Call
the WNetGetLastError function to get
a description of the error.

ERROR_INVALID_PASSWORD The specified password is invalid.
ERROR_NO_NET_OR_BAD_PATH A network component has not started,

or the specified name could not be
handled.

ERROR_NO_NETWORK There is no network present.
See AlsoNETRESOURCE, WNetAddConnection2, WNetCancelConnection2, WNetGetConnection,

WNetGetLastError

WNetCancelConnection
The WNetCancelConnection function breaks an existing network connection.

The function is provided for compatibility with earlier versions of Microsoft Windows. For new
applications, use the WNetCancelConnection2 function.

DWORD WNetCancelConnection(

LPTSTR lpName,
// pointer to resource name to be disconnected

BOOL fForce // flag for unconditional disconnect
);
ParameterslpName

Points to a null-terminated string that specifies the name of either the redirected local device
or the remote network resource to disconnect from. When this parameter specifies a
redirected local device, only the specified device redirection is broken. If the parameter
specifies a remote network resource, only the connections to remote networks without devices
are broken.

fForce

Specifies whether the disconnection is to occur even if there are open files or jobs on the
connection. If this parameter is FALSE, the function fails if there are open files or jobs.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_BAD_PROFILE The user profile is in an incorrect
format.

ERROR_CANNOT_OPEN_PROFILEThe system is unable to open the
user profile to process persistent
connections.

ERROR_DEVICE_IN_USE The device is in use by an active
process and cannot be
disconnected.

ERROR_EXTENDED_ERROR A network-specific error occurred.
To get a description of the error,
use the WNetGetLastError
function.

ERROR_NOT_CONNECTED The name specified by the
lpName parameter is not a
redirected device, or the system is
not currently connected to the
device specified by the
parameter.

ERROR_OPEN_FILES There are open files, and the
fForce parameter is FALSE.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with the Win32 API, the function also sets the error code value returned by
GetLastError.See AlsoWNetAddConnection, WNetAddConnection2, WNetCancelConnection2,
WNetGetConnection, WNetGetLastError

WNetCancelConnection2
The WNetCancelConnection2 function breaks an existing network connection. It can also be
used to remove remembered network connections that are not currently connected. This function
supersedes WNetCancelConnection.

DWORD WNetCancelConnection2(

LPTSTR lpName,
// pointer to resource name to disconnect

DWORD dwFlags, // connection type flags
BOOL fForce // flag for unconditional disconnect

);
ParameterslpName

Points to a null-terminated string that specifies the name of either the redirected local device
or the remote network resource to disconnect from. If this parameter specifies a redirected
local resource, only the specified redirection is broken; otherwise, all connections to the
remote network resource are broken.

dwFlags

Specifies a bitmask for the connection type. The following values are defined:
Value Meaning
0 No stored information about the

connection is updated. If the
connection was marked as
persistent in the registry, Windows
will still restore the connection at the
next logon. If the connection was not
marked as persistent, the function
ignores the setting of the
CONNECT_UPDATE_PROFILE
flag.

CONNECT_UPDATE_PROFILEThe user profile is updated with the
information that this is no longer a
persistent connection. Windows will
not restore this connection during
subsequent logon operations.
Disconnecting resources using
remote names has no effect on
persistent connections.

fForce

Specifies whether the disconnection should occur even if there are open files or jobs on the
connection. If this parameter is FALSE, the function fails if there are open files or jobs.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_BAD_PROFILE The user profile is in an incorrect
format.

ERROR_CANNOT_OPEN_PROFILEThe system is unable to open the
user profile to process persistent
connections.

ERROR_DEVICE_IN_USE The device is in use by an active
process and cannot be
disconnected.

ERROR_EXTENDED_ERROR A network-specific error
occurred. To get a description of

the error, use the
WNetGetLastError function.

ERROR_NOT_CONNECTED The name specified by the
lpName parameter is not a
redirected device, or the system
is not currently connected to the
device specified by the
parameter.

ERROR_OPEN_FILES There are open files, and the
fForce parameter is FALSE.

See AlsoWNetAddConnection, WNetAddConnection2, WNetAddConnection3,
WNetCancelConnection, WNetGetConnection, WNetGetLastError

WNetCloseEnum
The WNetCloseEnum function ends a network resource enumeration started by the
WNetOpenEnum function.

DWORD WNetCloseEnum(

HANDLE hEnum
// handle to enumeration

);
ParametershEnum

Identifies an enumeration instance. This handle must be returned by the WNetOpenEnum
function.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_NO_NETWORK A network is not present. This condition
is tested before the handle specified in
the hEnum parameter is tested for
validity.

ERROR_INVALID_HANDLE hEnum is not a valid handle.
ERROR_EXTENDED_ERRORA network-specific error occurred. To

get a description of the error, use the
WNetGetLastError function.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with Windows NT, the function also sets the error code value returned by
GetLastError.See AlsoWNetEnumResource, WNetGetLastError, WNetOpenEnum

WNetConnectionDialog
The WNetConnectionDialog function starts a general browsing dialog box for connecting to
network resources.

DWORD WNetConnectionDialog(

HWND hwnd,
// handle to window owning dialog box

DWORD dwType // resource type to allow connections to
);
Parametershwnd

Identifies the owning window.
dwType

Specifies the resource type to allow connections to. This parameter can be the following
value:

Value Meaning
RESOURCETYPE_DISK Connects to disk resources.

Return ValuesIf the function succeeds, the return value is NO_ERROR. If the user cancels the dialog box, it is
0xFFFFFFFF.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_EXTENDED_ERROR A network-specific error occurred.
To get a description of the error,
use the WNetGetLastError
function.

ERROR_INVALID_PASSWORD The specified password is invalid.
ERROR_NO_NETWORK No network is present.
ERROR_NOT_ENOUGH_MEMORYThere is insufficient memory to

start the dialog box.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with the Win32 API, the function also sets the error code value returned by
the GetLastError function.RemarksIf the user chooses OK in the dialog box, the requested network connections will have been
performed when WNetConnectionDialog returns.

If the function attempts to make a connection and the provider returns the message
ERROR_INVALID_PASSWORD, Windows prompts the user to enter a password and uses the
new password in another attempt to make the connection.See AlsoWNetAddConnection2, WNetCancelConnection2, WNetDisconnectDialog,
WNetGetLastError

WNetDisconnectDialog
The WNetDisconnectDialog function starts a general browsing dialog box for disconnecting from
network resources.

DWORD WNetDisconnectDialog(

HWND hwnd,
// handle to window owning dialog box

DWORD dwType // resource type to disconnect from
);
Parametershwnd

Identifies the owning window.
dwType

Specifies the resource type to disconnect from. This parameter may be one of the following
values:

Value Meaning
RESOURCETYPE_DISK Disconnects from disk resources.
RESOURCETYPE_PRINT Disconnects from print resources.

Return ValuesIf the function succeeds, the return value is NO_ERROR. If the user cancels out of the dialog box,
it is 0xFFFFFFFF.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_EXTENDED_ERROR A network-specific error occurred.
To get a description of the error,
use the WNetGetLastError
function.

ERROR_NO_NETWORK No network is present.
ERROR_NOT_ENOUGH_MEMORYThere is insufficient memory to

start the dialog box.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with the Win32 API, the function also sets the error code value returned by
GetLastError.RemarksIf the user chooses OK in the dialog box, the requested network disconnections will have been
performed when WNetDisconnectDialog returns.See AlsoWNetAddConnection2, WNetCancelConnection2, WNetConnectionDialog,
WNetGetLastError

WNetEnumResource
The WNetEnumResource function continues a network-resource enumeration started by the
WNetOpenEnum function.

DWORD WNetEnumResource(

HANDLE hEnum,
// handle to enumeration

LPDWORD lpcCount, // pointer to entries to list
LPVOID lpBuffer, // pointer to buffer for results
LPDWORD lpBufferSize // pointer to buffer size variable

);
ParametershEnum

Identifies an enumeration instance. This handle must be returned by WNetOpenEnum.
lpcCount

Points to a variable specifying the number of entries requested. If the number requested is
0xFFFFFFFF, the function returns as many entries as possible.
When the function finishes successfully, the variable pointed to by this parameter contains the
number of entries actually read.

lpBuffer

Points to the buffer that receives the enumeration results, which are returned as an array of
NETRESOURCE structures. The buffer is valid until the next call using the handle given by
the hEnum parameter. The order of NETRESOURCE structures in the array is not
predictable.

lpBufferSize

Points to a variable that specifies the size, in bytes, of the lpBuffer parameter. If the buffer is
too small to receive even one entry, this parameter receives the required size of the buffer.Return ValuesIf the function succeeds, the return value is one of the following values:

Value Meaning

NO_ERROR The enumeration succeeded, and the
buffer contains the requested data. The
calling application can continue to call
WNetEnumResource to complete the
enumeration.

ERROR_NO_MORE_ITEMSThere are no more entries. The buffer
contents are undefined.

If the function fails, the return value is an error code. To get extended error information,
call GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_MORE_DATA More entries are available with
subsequent calls.

ERROR_INVALID_HANDLE The handle given by the hEnum
parameter is not valid.

ERROR_NO_NETWORK No network is present. This condition is
tested before hEnum is tested for validity.

ERROR_EXTENDED_ERRORA network-specific error occurred. To get
a description of the error, use the
WNetGetLastError function.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with the Win32 API, the function also sets the error code value returned by
GetLastError.

RemarksAn application cannot set the lpBuffer parameter to NULL and retrieve the required buffer size
from the lpBufferSize parameter. Instead, the application should allocate a buffer of a reasonable
size ¾ 16 kilobytes (K) is typical ¾ and use the value of lpBufferSize for error detection.See AlsoNETRESOURCE, WNetCloseEnum, WNetGetLastError, WNetOpenEnum

WNetGetConnection
The WNetGetConnection function retrieves the name of the network resource associated with a
local device.

DWORD WNetGetConnection(

LPCTSTR lpLocalName,
// pointer to local name

LPTSTR lpRemoteName, // pointer to buffer for remote name
LPDWORD lpnLength // pointer to buffer size, in characters

);
ParameterslpLocalName

Points to a null-terminated string that specifies the name of the local device to get the network
name for.

lpRemoteName

Points to a buffer that receives the null-terminated remote name used to make the connection.
lpnLength

Points to a variable that specifies the size, in characters, of the buffer pointed to by the
lpRemoteName parameter. If the function fails because the buffer is not big enough, this
parameter returns the required buffer size.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_BAD_DEVICE The string pointed to by the
lpLocalName parameter is invalid.

ERROR_NOT_CONNECTED The device specified by
lpLocalName is not redirected.

ERROR_MORE_DATA The buffer is too small. The
lpnLength parameter points to a
variable that contains the required
buffer size. More entries are
available with subsequent calls.

ERROR_CONNECTION_UNAVAILThe device is not currently
connected, but it is a persistent
connection.

ERROR_NO_NETWORK No network is present.
ERROR_EXTENDED_ERROR A network-specific error occurred.

To get a description of the error,
use the WNetGetLastError
function.

ERROR_NO_NET_OR_BAD_PATHNone of the providers recognized
this local name as having a
connection. However, the network
is not available for at least one
provider to whom the connection
may belong.

The WNetGetConnection function returns error codes for compatibility with Windows version 3.
1. For compatibility with the Win32 API, the function also sets the error code value returned by
GetLastError.See AlsoWNetAddConnection2, WNetAddConnection3, WNetGetLastError, WNetGetUser

WNetGetLastError
The WNetGetLastError function retrieves the most recent extended error code set by a Windows
network function.

DWORD WNetGetLastError(

LPDWORD lpError,
// pointer to error code

LPTSTR lpErrorBuf, // pointer to string describing error
DWORD nErrorBufSize, // size of description buffer, in characters
LPTSTR lpNameBuf, // pointer to buffer for provider name
DWORD nNameBufSize // size of provider name buffer

);
ParameterslpError

Points to the variable that receives the error code reported by the network provider. The error
code is specific to the network provider.

lpErrorBuf

Points to the buffer that receives the null-terminated string describing the error.
nErrorBufSize

Specifies the size, in characters, of the buffer pointed to by the lpErrorBuf parameter. If the
buffer is too small for the error string, the string is truncated but still null-terminated. A buffer of
at least 256 characters is recommended.

lpNameBuf

Points to the buffer that receives the null-terminated string identifying the network provider
that raised the error.

nNameBufSize

Specifies the size, in characters, of the buffer pointed to by the lpNameBuf parameter. If the
buffer is too small for the error string, the string is truncated but still null-terminated.Return ValuesIf the function successfully obtains the last error reported by the provider, the return value is

NO_ERROR. If the caller supplies an invalid buffer, it is ERROR_INVALID_ADDRESS.RemarksWNetGetLastError is used to obtain errors that are specific to a network provider. It should be
used when a Windows network function (or the GetLastError function) returns
ERROR_EXTENDED_ERROR. Like GetLastError, the function returns extended error
information, which is maintained on a per-thread basis. Unlike GetLastError, the
WNetGetLastError function can also return a string for reporting errors that are not described by
any existing error code.See AlsoGetLastError

WNetGetUniversalName
The WNetGetUniversalName function takes a drive-based path for a network resource and
obtains a data structure that contains a more universal form of the name.

DWORD WNetGetUniversalName(

LPCTSTR lpLocalPath,
// pointer to drive-based path for a network resource

DWORD dwInfoLevel, // specifies form of universal name to be obtained
LPVOID lpBuffer, // pointer to buffer that receives universal name data structure
LPDWORD lpBufferSize // pointer to variable that specifies size of buffer

);
ParameterslpLocalPath

Points to a null-terminated string that is a drive-based path for a network resource.
For example, if drive H has been mapped to a network drive share, and the network resource
of interest is a file named SAMPLE.DOC in the directory \WIN32\EXAMPLES on that share,
the drive-based path is H:\WIN32\EXAMPLES\SAMPLE.DOC.

dwInfoLevel

Specifies the type of data structure that the function will store in the buffer pointed to by
lpBuffer. This parameter can be one of the following values:

Value Meaning
UNIVERSAL_NAME_INFO_LEVELThe function will store a

UNIVERSAL_NAME_INFO data
structure in the buffer.

REMOTE_NAME_INFO_LEVEL_ The function will store a
REMOTE_NAME_INFO data structure
in the buffer.

The UNIVERSAL_NAME_INFO data structure points to a Universal Naming Convention
(UNC) name string.

lpBuffer

Points to a buffer that receives the type of data structure specified by the dwInfoLevel
parameter.

lpBufferSize

Points to a variable that specifies the size in bytes of the buffer pointed to by lpBuffer.
If the function succeeds, it sets the variable pointed to by lpBufferSize to the size in bytes of
the data structure stored in the buffer. If the function fails because the buffer is too small,
indicated by the ERROR_MORE_DATA error code, it sets the variable pointed to by
lpBufferSize to the required buffer size.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_BAD_DEVICE The string pointed to by lpLocalPath is
invalid.

ERROR_CONNECTION_UNAVAIL There is no current connection to the
remote device, but there is a
remembered (persistent) connection to
it.

ERROR_EXTENDED_ERROR A network-specific error occurred. Use
the WNetGetLastError function to
obtain a description of the error.

ERROR_MORE_DATA The buffer pointed to by lpBuffer is too
small. The function sets the variable
pointed to by lpBufferSize to the

required buffer size. More entries are
available with subsequent calls.

ERROR_NOT_SUPPORTED The dwInfoLevel parameter was set to
UNIVERSAL_NAME_INFO_LEVEL,
but the network provider does not
support UNC names. This function is
not supported by any of the network
providers.

ERROR_NO_NET_OR_BAD_PATHNone of the providers recognized this
local name as having a connection.
However, the network is not available
for at least one provider to whom the
connection may belong.

ERROR_NO_NETWORK There is no network present.
ERROR_NOT_CONNECTED The device specified by lpLocalPath is

not redirected.
RemarksA universal form of a local drive-based path identifies a network resource in an unambiguous,

computer-independent manner. The name can then be passed to processes on other computers,
allowing those processes to obtain access to the resource.

The WNetGetUniversalName function currently supports one universal name form: universal
naming convention (UNC) names, which look like the following:\\servername\sharename\path\fileUsing the example from the preceding description of the lpLocalPath parameter, if the shared
network drive is on a server named COOLSERVER, and the share name is HOTSHARE, the UNC
name for the network resource whose drive-based name is H:\WIN32\EXAMPLES\SAMPLE.DOC
would be\\coolserver\hotshare\win32\examples\sample.docThe UNIVERSAL_NAME_INFO data structure contains a pointer to a UNC name string. The
REMOTE_NAME_INFO data structure contains a pointer to a UNC name string. It also includes
pointers to two other useful strings. A process can pass the REMOTE_NAME_INFO structure's
lpszConnectionInfo member into the WNetAddConnection2 function to connect a local device
to the network resource, and then append the string pointed to by the lpszRemainingPath
member to the local device string. The resulting string can be passed to Win32 functions that use
a drive-based path.See AlsoREMOTE_NAME_INFO, UNIVERSAL_NAME_INFO, WNetAddConnection2,
WNetGetLastError

WNetGetUser
The WNetGetUser function retrieves the current default user name or the user name used to
establish a network connection.

DWORD WNetGetUser(

LPCTSTR lpName,
// pointer to local name to get user name for

LPTSTR lpUserName, // pointer to buffer for user name
LPDWORD lpnLength // pointer to buffer size variable

);
ParameterslpName

Points to a null-terminated string that specifies either the name of the local device that has
been redirected to a network resource, or the remote name of a network resource to which a
connection has been made.
If this parameter is NULL, Windows returns the name of the current user for the process.

lpUserName

Points to a buffer that receives the null-terminated user name.
lpnLength

Points to a variable that specifies the size, in characters, of the buffer pointed to by
lpUserName. If the call fails because the buffer is not big enough, this variable contains the
required buffer size.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_NOT_CONNECTED The device specified by lpName is
not a redirected device or a
connected network name.

ERROR_MORE_DATA More entries are available with
subsequent calls.

ERROR_NO_NETWORK No network is present.
ERROR_EXTENDED_ERROR A network-specific error occurred.

To get a description of the error,
use the WNetGetLastError
function.

ERROR_NO_NET_OR_BAD_PATHNone of the providers recognized
this local name as having a
connection. However, the network
is not available for at least one
provider to whom the connection
may belong.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with the Win32 API, the function also sets the error code value returned by
GetLastError.See AlsoWNetGetConnection, WNetGetLastError

WNetOpenEnum
The WNetOpenEnum function starts an enumeration of network resources or existing
connections.

DWORD WNetOpenEnum(

DWORD dwScope,
// scope of enumeration

DWORD dwType, // resource types to list
DWORD dwUsage, // resource usage to list
LPNETRESOURCE lpNetResource, // pointer to resource structure
LPHANDLE lphEnum // pointer to enumeration handle buffer

);
ParametersdwScope

Specifies the scope of the enumeration. This parameter can be one of the following values:
Value Meaning
RESOURCE_CONNECTED All currently connected resources (the

dwUsage parameter is ignored).
RESOURCE_GLOBALNET All resources on the network.
RESOURCE_REMEMBEREDAll remembered (persistent)

connections (dwUsage is ignored).

dwType

Specifies the resource types to enumerate. This parameter can be a combination of the
following values:

Value Meaning
RESOURCETYPE_ANY All resources (this value cannot be

combined with
RESOURCETYPE_DISK or
RESOURCETYPE_PRINT).

RESOURCETYPE_DISK All disk resources.
RESOURCETYPE_PRINT All print resources.

If a network provider cannot distinguish between print and disk resources, it may
enumerate all resources.

dwUsage

Specifies the resource usage to be enumerated. This parameter can be a combination of the
following values:

Value Meaning
0 All resources
RESOURCEUSAGE_CONNECTABLEAll connectable resources
RESOURCEUSAGE_CONTAINER All container resources

This parameter is ignored if the dwScope parameter is not RESOURCE_GLOBALNET.
lpNetResource

Points to a NETRESOURCE structure specifying the container to enumerate.
If this parameter is NULL, the root of the network is assumed. Windows organizes a network
as a hierarchy; the root is the topmost container in the network.
If this parameter is not NULL, it must point to a NETRESOURCE structure. This structure can
be filled in by the application or be returned by a call to the WNetEnumResource function.
The NETRESOURCE structure must specify a container resource; that is, the
RESOURCEUSAGE_CONTAINER value must be specified in the dwUsage member.

To enumerate all network resources, an application can begin the enumeration by calling
WNetOpenEnum with lpNetResource set to NULL and then use the returned handle with
WNetEnumResource to enumerate resources. If one of the resources in the
NETRESOURCE array returned by the WNetEnumResource function is a container
resource, WNetOpenEnum can be used to open the resource for further enumeration.
If the dwScope parameter is not RESOURCE_GLOBALNET, this parameter must be NULL.

lphEnum

Points to a variable filled with an enumeration handle that can be used in a subsequent call to
WNetEnumResource.Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is an error code. To get extended error information, call
GetLastError. GetLastError may return one of the following error codes:

Value Meaning

ERROR_NOT_CONTAINER The lpNetResource parameter does
not point to a container.

ERROR_INVALID_PARAMETEREither the dwScope or dwType
parameter is invalid, or there is a bad
combination of parameters.

ERROR_NO_NETWORK No network is present.
ERROR_EXTENDED_ERROR A network-specific error occurred. To

get a description of the error, use the
WNetGetLastError function.

The function returns error codes for compatibility with Windows version 3.1. For
compatibility with Windows NT, the function also sets the error code value returned by
GetLastError.RemarksThe WNetOpenEnum function is used to begin enumeration of the resources in a single
container. The following examples show the hierarchical structure of a Microsoft LAN Manager
network and a Novell Netware network:LanMan (container, in this case the provider)

ACCOUNTING (container, in this case the domain)
\\ACCTSPAY (container, in this case the server)

PAYFILES (disk)
LASERJET (print)
Netware (container, in this case the provider)
MARKETING (container, in this case the server)
SYS (disk, first one on any Netware server)
ANOTHERVOLUME (disk)
LASERJET (print)

See AlsoNETRESOURCE, WNetCloseEnum, WNetEnumResource, WNetGetLastError

WriteConsole
The WriteConsole function writes a character string to a console screen buffer beginning at the
current cursor location.

BOOL WriteConsole(

HANDLE hConsoleOutput,
// handle to a console screen buffer

CONST VOID *lpBuffer, // pointer to buffer to write from
DWORD nNumberOfCharsToWrite, // number of characters to write
LPDWORD lpNumberOfCharsWritten, // pointer to number of characters written
LPVOID lpReserved // reserved

);
ParametershConsoleOutput

Identifies the console screen buffer to be written to. The handle must have GENERIC_WRITE
access.

lpBuffer

Points to a buffer that contains characters to be written to the screen buffer.
nNumberOfCharsToWrite

Specifies the number of characters to write.
lpNumberOfCharsWritten

Points to a 32-bit variable that receives the number of characters actually written.
lpReserved

Reserved; must be NULL.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWriteConsole writes characters to a console screen buffer. It behaves like the WriteFile function,
except it can write in either Unicode (wide-character) or ANSI mode. To create an application that
maintains a single set of sources compatible with both modes, use WriteConsole rather than
WriteFile. Although WriteConsole can be used only with a console screen buffer handle,
WriteFile can be used with other handles (such as files or pipes). WriteConsole fails if used with
a standard handle that has been redirected to be something other than a console handle.

Although an application can use WriteConsole in ANSI mode to write ANSI characters, consoles
do not support ANSI escape sequences. However, some Win32 functions provide equivalent
functionality: for example, SetCursorPos, SetConsoleTextAttribute, and
GetConsoleCursorInfo.

WriteConsole writes characters to the screen buffer at the current cursor position. The cursor
position advances as characters are written. The SetConsoleCursorPosition function sets the
current cursor position.

Characters are written using the foreground and background color attributes associated with the
screen buffer. The SetConsoleTextAttribute function changes these colors. To determine the
current color attributes and the current cursor position, use GetConsoleScreenBufferInfo.

All of the input modes that affect the behavior of WriteFile have the same effect on
WriteConsole. To retrieve and set the output modes of a console screen buffer, use the
GetConsoleMode and SetConsoleMode functions.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoGetConsoleCursorInfo, GetConsoleMode, GetConsoleScreenBufferInfo, ReadConsole,
SetConsoleCP, SetConsoleCursorPosition, SetConsoleMode, SetConsoleOutputCP,
SetConsoleTextAttribute, SetCursorPos, WriteFile

WriteConsoleInput
The WriteConsoleInput function writes data directly to the console input buffer.

BOOL WriteConsoleInput(

HANDLE hConsoleInput,
// handle to a console input buffer

CONST INPUT_RECORD *lpBuffer, // pointer to the buffer for write data
DWORD nLength, // number of records to write
LPDWORD lpNumberOfEventsWritten // pointer to number of records written

);
ParametershConsoleInput

Identifies the input buffer. The handle must have GENERIC_WRITE access.
lpBuffer

Points to an INPUT_RECORD buffer containing data to be written to the input buffer.
nLength

Specifies the number of input records to be written.
lpNumberOfEventsWritten

Points to a 32-bit variable that receives the number of input records actually written.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWriteConsoleInput places input records into the input buffer behind any pending events in the
buffer. The input buffer grows dynamically, if necessary, to hold as many events as are written.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoINPUT_RECORD, PeekConsoleInput, ReadConsoleInput, SetConsoleCP,
SetConsoleOutputCP

WriteConsoleOutput
The WriteConsoleOutput function writes character and color attribute data to a specified
rectangular block of character cells in a console screen buffer. The data to be written is taken from
a correspondingly sized rectangular block at a specified location in the source buffer.

BOOL WriteConsoleOutput(

HANDLE hConsoleOutput,
// handle to a console screen buffer

CONST CHAR_INFO *lpBuffer, // pointer to buffer with data to write
COORD dwBufferSize, // column-row size of source buffer
COORD dwBufferCoord, // upper-left cell to write from
PSMALL_RECT lpWriteRegion // pointer to rectangle to write to

);
ParametershConsoleOutput

Identifies the screen buffer. The handle must have GENERIC_WRITE access.
lpBuffer

Points to a source buffer that contains the data to be written to the screen buffer. This pointer
is treated as the origin of a two-dimensional array of CHAR_INFO structures whose size is
specified by the dwBufferSize parameter.

dwBufferSize

Specifies the size, in character cells, of the buffer pointed to by the lpBuffer parameter. The X
member of the COORD structure is the number of columns; the Y member is the number of
rows.

dwBufferCoord

Specifies the coordinates of the upper-left cell in the buffer pointed to by the lpBuffer
parameter to write data from. The X member of the COORD structure is the column, and the
Y member is the row.

lpWriteRegion

Points to a SMALL_RECT structure. On input, the structure members specify the upper-left
and lower-right coordinates of the screen buffer rectangle to write to. On output, the structure
members specify the actual rectangle that was written to.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWriteConsoleOutput treats the source buffer and the destination screen buffer as two-
dimensional arrays (columns and rows of character cells). The rectangle pointed to by the
lpWriteRegion parameter specifies the size and location of the block to be written to in the screen
buffer. A rectangle of the same size is located with its upper-left cell at the coordinates of the
dwBufferCoord parameter in the lpBuffer array. Data from the cells that are in the intersection of
this rectangle and the source buffer rectangle (whose dimensions are specified by the
dwBufferSize parameter) is written to the destination rectangle.

Cells in the destination rectangle whose corresponding source location are outside the boundaries
of the source buffer rectangle are left unaffected by the write operation. In other words, these are
the cells for which no data is available to be written.

Before WriteConsoleOutput returns, it sets the members of lpWriteRegion to the actual screen
buffer rectangle affected by the write operation. This rectangle reflects the cells in the destination
rectangle for which there existed a corresponding cell in the source buffer, because
WriteConsoleOutput clips the dimensions of the destination rectangle to the boundaries of the
screen buffer.

If the rectangle specified by lpWriteRegion lies completely outside the boundaries of the screen
buffer, or if the corresponding rectangle is positioned completely outside the boundaries of the
source buffer, no data is written. In this case, the function returns with the members of the
structure pointed to by the lpWriteRegion parameter set such that the Right member is less than
the Left, or the Bottom member is less than the Top. To determine the size of the screen buffer,
use the GetConsoleScreenBufferInfo function.

WriteConsoleOutput has no effect on the cursor position.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoCHAR_INFO, COORD, GetConsoleScreenBufferInfo, ReadConsoleOutput,
ReadConsoleOutputAttribute, ReadConsoleOutputCharacter, SetConsoleCP,
SetConsoleOutputCP, SMALL_RECT, WriteConsoleOutputAttribute,
WriteConsoleOutputCharacter

WriteConsoleOutputAttribute
The WriteConsoleOutputAttribute function copies a number of foreground and background color
attributes to consecutive cells of a console screen buffer, beginning at a specified location.

BOOL WriteConsoleOutputAttribute(

HANDLE hConsoleOutput,
// handle to a console screen buffer

CONST WORD *lpAttribute, // pointer to buffer to write attributes from
DWORD nLength, // number of character cells to write to
COORD wWriteCoord, // coordinates of first cell to write to
LPDWORD lpNumberOfAttrsWritten // pointer to number of cells written to

);
ParametershConsoleOutput

Identifies the screen buffer. The handle must have GENERIC_WRITE access.
lpAttribute

Points to a buffer that contains the attributes to write to the screen buffer.
nLength

Specifies the number of screen buffer character cells to write to.
dwWriteCoord

Specifies the column and row coordinates of the first cell in the screen buffer to write to.
lpNumberOfAttrsWritten

Points to a 32-bit variable that receives the number of attributes actually written to the screen
buffer.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of attributes to be written to extends beyond the end of the specified row in the
screen buffer, attributes are written to the next row. If the number of attributes to be written to
extends beyond the end of the screen buffer, the attributes are written up to the end of the screen
buffer.

The character values at the positions written to are not changed.

Each attribute specifies the foreground (text) and background colors in which that character cell is
drawn. The attribute values are some combination of the following values:
FOREGROUND_BLUE, FOREGROUND_GREEN, FOREGROUND_RED,
FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination
of values produces red text on a white background:FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE
See AlsoReadConsoleOutput, ReadConsoleOutputAttribute, ReadConsoleOutputCharacter,

WriteConsoleOutput, WriteConsoleOutputCharacter

WriteConsoleOutputCharacter
The WriteConsoleOutputCharacter function copies a number of characters to consecutive cells
of a console screen buffer, beginning at a specified location.

BOOL WriteConsoleOutputCharacter(

HANDLE hConsoleOutput,
// handle to a console screen buffer

LPCTSTR lpCharacter, // pointer to buffer to write characters from
DWORD nLength, // number of character cells to write to
COORD dwWriteCoord, // coordinates of first cell to write to
LPDWORD lpNumberOfCharsWritten // pointer to number of cells written to

);
ParametershConsoleOutput

Identifies the screen buffer. The handle must have GENERIC_WRITE access.
lpCharacter

Points to a buffer that contains the characters to write to the screen buffer.
nLength

Specifies the number of screen buffer character cells to write to.
dwWriteCoord

Specifies the column and row coordinates of the first cell in the screen buffer to write to.
lpNumberOfCharsWritten

Points to a 32-bit variable that receives the number of characters actually written.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf the number of characters to be written to extends beyond the end of the specified row in the
screen buffer, characters are written to the next row. If the number of characters to be written to
extends beyond the end of the screen buffer, characters are written up to the end of the screen
buffer.

The attribute values at the positions written to are not changed.

Windows NT: This function uses either Unicode characters or 8-bit characters from the console's
current codepage. The console's codepage defaults initially to the system's OEM codepage. To
change the console's codepage, use the SetConsoleCP or SetConsoleOutputCP functions, or
use the chcp or mode con cp select= commands.See AlsoReadConsoleOutput, ReadConsoleOutputAttribute, ReadConsoleOutputCharacter,
SetConsoleCP, SetConsoleOutputCP, WriteConsoleOutput, WriteConsoleOutputAttribute

WriteFile
The WriteFile function writes data to a file and is designed for both synchronous and
asynchronous operation. The function starts writing data to the file at the position indicated by the
file pointer. After the write operation has been completed, the file pointer is adjusted by the
number of bytes actually written, except when the file is opened with FILE_FLAG_OVERLAPPED.
If the file handle was created for overlapped input and output (I/O), the application must adjust the
position of the file pointer after the write operation is finished.

BOOL WriteFile(

HANDLE hFile,
// handle to file to write to

LPCVOID lpBuffer, // pointer to data to write to file
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPDWORD lpNumberOfBytesWritten, // pointer to number of bytes written
LPOVERLAPPED lpOverlapped // pointer to structure needed for overlapped I/O

);
ParametershFile

Identifies the file to be written to. The file handle must have been created with
GENERIC_WRITE access to the file.
Windows NT

For asynchronous write operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle returned by
the socket or accept functions.

Windows 95

For asynchronous write operations, hFile can be a communications resource, mailslot, or
named pipe handle opened with the FILE_FLAG_OVERLAPPED flag by CreateFile, or a
socket handle returned by the socket or accept functions. Windows 95 does not support
asynchronous write operations on disk files.

lpBuffer

Points to the buffer containing the data to be written to the file.
nNumberOfBytesToWrite

Specifies the number of bytes to write to the file.
Unlike the MS-DOS operating system, Windows NT interprets a value of zero as specifying a
null write operation. A null write operation does not write any bytes but does cause the time
stamp to change.
Named pipe write operations across a network are limited to 65535 bytes.

lpNumberOfBytesWritten

Points to the number of bytes written by this function call. WriteFile sets this value to zero
before doing any work or error checking.
If lpOverlapped is NULL, lpNumberOfBytesWritten cannot be NULL.
If lpOverlapped is not NULL, lpNumberOfBytesWritten can be NULL. If this is an overlapped
write operation, you can get the number of bytes written by calling GetOverlappedResult. If
hFile is associated with an I/O completion port, you can get the number of bytes written by
calling GetQueuedCompletionStatus.

lpOverlapped

Points to an OVERLAPPED structure. This structure is required if hFile was opened with
FILE_FLAG_OVERLAPPED.
If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not
be NULL. It must point to a valid OVERLAPPED structure. If hFile was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report
that the write operation is complete.
If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the write
operation starts at the offset specified in the OVERLAPPED structure and WriteFile may

return before the write operation has been completed. In this case, WriteFile returns FALSE
and the GetLastError function returns ERROR_IO_PENDING. This allows the calling process
to continue processing while the write operation is being completed. The event specified in the
OVERLAPPED structure is set to the signaled state upon completion of the write operation.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the write
operation starts at the current file position and WriteFile does not return until the operation
has been completed.
If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the
write operation starts at the offset specified in the OVERLAPPED structure and WriteFile
does not return until the write operation has been completed.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksIf part of the file is locked by another process and the write operation overlaps the locked portion,
this function fails.

Applications must not read from nor write to the output buffer that a write operation is using until
the write operation completes. Premature access of the output buffer may lead to corruption of the
data written from that buffer.

Characters can be written to the screen buffer using WriteFile with a handle to console output.
The exact behavior of the function is determined by the console mode. The data is written to the
current cursor position. The cursor position is updated after the write operation.

Unlike the MS-DOS operating system, Windows NT interprets zero bytes to write as specifying a
null write operation and WriteFile does not truncate or extend the file. To truncate or extend a file,
use the SetEndOfFile function.

When writing to a nonblocking, byte-mode pipe handle with insufficient buffer space, WriteFile
returns TRUE with *lpNumberOfBytesWritten < nNumberOfBytesToWrite.

When an application uses the WriteFile function to write to a pipe, the write operation may not
finish if the pipe buffer is full. The write operation is completed when a read operation (using the
ReadFile function) makes more buffer space available.

If the anonymous read pipe handle has been closed and WriteFile attempts to write using the
corresponding anonymous write pipe handle, the function returns FALSE and GetLastError
returns ERROR_BROKEN_PIPE.

The WriteFile function may fail with ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O
requests.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle. I/O operations that are
canceled complete with the error ERROR_OPERATION_ABORTED.

If hFile is a handle to a named pipe, the Offset and OffsetHigh members of the OVERLAPPED
structure pointed to by lpOverlapped must be zero, or the function will fail.See AlsoCancelIo, CreateFile, GetLastError, GetOverlappedResult, GetQueuedCompletionStatus,
OVERLAPPED, ReadFile, SetEndOfFile, WriteFileEx

WriteFileEx
The WriteFileEx function writes data to a file. It is designed solely for asynchronous operation,
unlike WriteFile, which is designed for both synchronous and asynchronous operation.

WriteFileEx reports its completion status asynchronously, calling a specified completion routine
when writing is completed and the calling thread is in an alertable wait state.

BOOL WriteFileEx(

HANDLE hFile,
// handle to output file

LPCVOID lpBuffer, // pointer to input buffer
DWORD nNumberOfBytesToWrite, // number of bytes to write
LPOVERLAPPED lpOverlapped, // pointer to async. i/o data
LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine // ptr. to completion routine

);
ParametershFile

An open handle that specifies the file entity to be written to. This file handle must have been
created with the FILE_FLAG_OVERLAPPED flag and with GENERIC_WRITE access to the
file.
Windows NT: hFile can be any handle opened with the FILE_FLAG_OVERLAPPED flag by
the CreateFile function, or a socket handle returned by the socket or accept functions.
Windows 95: hFile can be a communications resource, mailslot, or named pipe handle
opened with the FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned
by the socket or accept functions. Windows 95 does not support asynchronous operations on
disk files.

lpBuffer

Points to the buffer containing the data to be written to the file.
This buffer must remain valid for the duration of the write operation. The caller must not use
this buffer until the write operation is completed.

nNumberOfBytesToWrite

Specifies the number of bytes to write to the file.
If nNumberOfBtyesToWrite is zero, this function does nothing; in particular, it does not
truncate the file. For additional discussion, see the following Remarks section.

lpOverlapped

Points to an OVERLAPPED data structure that supplies data to be used during the
overlapped (asynchronous) write operation.
For files that support byte offsets, you must specify a byte offset at which to start writing to the
file. You specify this offset by setting the Offset and OffsetHigh members of the
OVERLAPPED structure. For files that do not support byte offsets ¾ named pipes, for
example ¾ you must set Offset and OffsetHigh to zero, or WriteFileEx fails.
The WriteFileEx function ignores the OVERLAPPED structure's hEvent member. An
application is free to use that member for its own purposes in the context of a WriteFileEx
call. WriteFileEx signals completion of its writing operation by calling, or queueing a call to,
the completion routine pointed to by lpCompletionRoutine, so it does not need an event
handle.
The WriteFileEx function does use the Internal and InternalHigh members of the
OVERLAPPED structure. You should not change the value of these members.
The OVERLAPPED data structure must remain valid for the duration of the write operation. It
should not be a variable that can go out of scope while the write operation is pending
completion.

lpCompletionRoutine

Points to a completion routine to be called when the write operation has been completed and
the calling thread is in an alertable wait state. For more information about this completion
routine, see FileIOCompletionRoutine.Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the WriteFileEx function succeeds, the calling thread has an asynchronous I/O (input/output)
operation pending: the overlapped write operation to the file. When this I/O operation finishes, and
the calling thread is blocked in an alertable wait state, the operating system calls the function
pointed to by lpCompletionRoutine, and the wait completes with a return code of
WAIT_IO_COMPLETION.

If the function succeeds and the file-writing operation finishes, but the calling thread is not in an
alertable wait state, the system queues the call to *lpCompletionRoutine, holding the call until the
calling thread enters an alertable wait state. See Synchronization for more information about
alertable wait states and overlapped input/output operations.RemarksIf part of the output file is locked by another process, and the specified write operation overlaps
the locked portion, the WriteFileEx function fails.

Applications must not read from nor write to the output buffer that a write operation is using until
the write operation completes. Premature access of the output buffer may lead to corruption of the
data written from that buffer.

The WriteFileEx function may fail, returning the messages ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY if there are too many outstanding asynchronous I/O
requests.

To cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle. I/O operations that are
canceled complete with the error ERROR_OPERATION_ABORTED.

If hFile is a handle to a named pipe, or other file entity that doesn't support byte offsets, the Offset
and OffsetHigh members of the OVERLAPPED structure pointed to by lpOverlapped must be
zero, or the WriteFileEx function fails.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjectsEx, SignalObjectAndWait, and SleepEx functions to enter an
alertable wait state. Refer to Synchronization for more information about alertable wait states and
overlapped input/output operations.

Windows 95: On this platform, neither WriteFileEx nor ReadFileEx can be used by the comm
ports to communicate. However, you can use WriteFile and ReadFile to perform asynchronous
communication.See AlsoCancelIo, CreateFile, FileIOCompletionRoutine, MsgWaitForMultipleObjectsEx,
OVERLAPPED, ReadFileEx, SetEndOfFile, SleepEx, SignalObjectAndWait,
WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFile

WritePrinter
The WritePrinter function informs the print spooler that data should be written to the specified
printer.

BOOL WritePrinter(
HANDLE hPrinter, // handle to printer object
LPVOID pBuf, // pointer to array that contains printer data
DWORD cbBuf, // size, in bytes, of array
LPDWORD pcWritten // addr. of variable with count of bytes written

);ParametershPrinter
Identifies the printer.

pBuf
Points to an array of bytes that contains the data that should be written to the printer.

cbBuf
Specifies the size, in bytes, of the array.

pcWritten
Points to a value that specifies the number of bytes of data that were written to the printer.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.See AlsoOpenPrinter

WritePrivateProfileSection
The WritePrivateProfileSection function replaces the keys and values under the specified
section in an initialization file.

This function is provided for compatibility with 16-bit Windows-based applications. Win32-based
applications should store initialization information in the registry.

BOOL WritePrivateProfileSection(
LPCTSTR lpAppName, // pointer to string with section name
LPCTSTR lpString, // pointer to string with data
LPCTSTR lpFileName // pointer to string with filename

);ParameterslpAppName
Points to a null-terminated string containing the name of the section in which data is written.
This section name is typically the name of the calling application.

lpString
Points to a buffer containing the new key names and associated values that are written to the
named section.

lpFileName
Points to a null-terminated string containing the name of the initialization file. If this parameter
does not contain a full path for the file, the function searches the Windows directory for the
file. If the file does not exist and lpFileName does not contain a full path, the function creates
the file in the Windows directory. The function does not create a file if lpFileName contains the
full path and filename of a file that does not exist.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksThe data in the buffer pointed to by the lpString parameter consists of one or more null-
terminated strings, followed by a final null character. Each string has the following form:

key=string

The WritePrivateProfileSection function is not case-sensitive; the string pointed to by the
lpAppName parameter can be a combination of uppercase and lowercase letters.

If no section name matches the string pointed to by the lpAppName parameter,
WritePrivateProfileSection creates the section at the end of the specified initialization file and
initializes the new section with the specified key name and value pairs.

WritePrivateProfileSection deletes the existing keys and values for the named section and
inserts the key names and values in the buffer pointed to by the lpString parameter. The function
does not attempt to correlate old and new key names; if the new names appear in a different order
from the old names, any comments associated with preexisting keys and values in the
initialization file will probably be associated with incorrect keys and values.

This operation is atomic; no operations that read from or write to the specified initialization file are
allowed while the information is being written.

Windows 95:
Windows 95 keeps a cached version of WIN.INI to improve performance. If all three
parameters are NULL, the function flushes the cache. The function always returns FALSE
after flushing the cache, regardless of whether the flush succeeds or fails.

Windows NT:
Windows NT maps most .INI file references to the registry, using the mapping defined under
the following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
This mapping is likely if an application modifies system-component initialization files, such as
as CONTROL.INI, SYSTEM.INI, and WINFILE.INI. In this case, the
WritePrivateProfileSection function writes information to the registry, not to the initialization
file; the change in the storage location has no effect on the function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:

1. Look in the registry for the name of the initialization file, say myfile.ini, under
IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetPrivateProfileSection, RegCreateKeyEx, RegSetValueEx, WriteProfileSection

WritePrivateProfileString
The WritePrivateProfileString function copies a string into the specified section of the specified
initialization file.

This function is provided for compatibility with 16-bit Windows-based applications. WIn32-based
applications should store initialization information in the registry.

BOOL WritePrivateProfileString(
LPCTSTR lpAppName, // pointer to section name
LPCTSTR lpKeyName, // pointer to key name
LPCTSTR lpString, // pointer to string to add
LPCTSTR lpFileName // pointer to initialization filename

);ParameterslpAppName
Points to a null-terminated string containing the name of the section to which the string will be
copied. If the section does not exist, it is created. The name of the section is case-
independent; the string can be any combination of uppercase and lowercase letters.

lpKeyName
Points to the null-terminated string containing the name of the key to be associated with a
string. If the key does not exist in the specified section, it is created. If this parameter is NULL,
the entire section, including all entries within the section, is deleted.

lpString
Points to a null-terminated string to be written to the file. If this parameter is NULL, the key
pointed to by the lpKeyName parameter is deleted.
Windows 95: This platform does not support the use of the TAB (\t) character as part of this
parameter.

lpFileName
Points to a null-terminated string that names the initialization file.

Return ValuesIf the function successfully copies the string to the initialization file, the return value is nonzero.

If the function fails, or if it flushes the cached version of the most recently accessed initialization
file, the return value is zero. To get extended error information, call GetLastError.RemarksWindows 95:

Windows 95 keeps a cached version of WIN.INI to improve performance. If all three
parameters are NULL, the function flushes the cache. The function always returns FALSE
after flushing the cache, regardless of whether the flush succeeds or fails.
A section in the initialization file must have the following form:
[section]
key=string
.
.
.

If the lpFileName parameter does not contain a full path and filename for the file,
WritePrivateProfileString searches the Windows directory for the file. If the file does not
exist, this function creates the file in the Windows directory.
If lpFileName contains a full path and filename and the file does not exist, WriteProfileString
creates the file. The specified directory must already exist.

Windows NT:
Windows NT maps most .INI file references to the registry, using the mapping defined under
the following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
Windows NT keeps a cache for the IniFileMapping registry key. Calling
WritePrivateProfileStringW with the value of all arguments set to NULL will cause Windows
NT to refresh its cache of the IniFileMappingKey for the specified .INI file.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

An application using the WritePrivateProfileStringW function to enter .INI file information into
the registry should follow these guidelines:
· Ensure that no .INI file of the specified name exists on the system.
· Ensure that there is a key entry in the registry that specifies the .INI file. This entry should

be under the path HKEY_LOCAL_MACHINE\SOFTWARE \Microsoft\Windows NT\
CurrentVersion\IniFileMapping.

· Specify a value for that .INI file key entry that specifies a section. That is to say, an
application must specify a section name, as it would appear within an .INI file or registry
entry. Here is an example: [My Section].

· For system files, specify SYS for an added value.
· For application files, specify USR within the added value. Here is an example: "My

Section: USR: App Name\Section". And, since USR indicates a mapping under
HKEY_CURRENT_USER, the application should also create a key under
HKEY_CURRENT_USER that specifies the application name listed in the added value. For
the example just given, that would be "App Name".

· After following the preceding steps, an application setup program should call
WritePrivateProfileStringW with the first three parameters set to NULL, and the fourth
parameter set to the INI filename. For example:WritePrivateProfileStringW(NULL, NULL, NULL, L"appname.ini");· Such a call causes the mapping of an .INI file to the registry to take effect before the next
system reboot. The operating system re-reads the mapping information into shared
memory. A user will not have to reboot their computer after installing an application in order
to have future invocations of the application see the mapping of the .INI file to the registry.

The following sample code illustrates the preceding guidelines and is based on several
assumptions:

· There is an application named "App Name."
· That application uses an .INI file named "appname.ini."
· There is a section in the .INI file that we want to look like this:[Section1]

FirstKey = It all worked out okay.
SecondKey = By golly, it works.
ThirdKey = Another test.· The user will not have to reboot the system in order to have future invocations of the

application see the mapping of the .INI file to the registry.
Here is the sample code :// include files
#include <stdio.h>
#include <windows.h>
// a main function
main()
{
// local variables
CHAR inBuf[80];
HKEY hKey1, hKey2;
DWORD dwDisposition;
LONG lRetCode;
// try to create the .INI file key
lRetCode = RegCreateKeyEx (HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows NT
\\CurrentVersion\\IniFileMapping\\appname.ini",
0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE,
NULL, &hKey1,
&dwDisposition);
// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS){
printf ("Error in creating appname.ini key\n");
return (0) ;
}

// try to set a section value
lRetCode = RegSetValueEx (hKey1,
"Section1",
0,
REG_SZ,
"USR:App Name\\Section1",
20);

// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS) {
printf ("Error in setting Section1 value\n");
return (0) ;
}

// try to create an App Name key
lRetCode = RegCreateKeyEx (HKEY_CURRENT_USER,

"App Name",
0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE,
NULL, &hKey2,
&dwDisposition);
// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS) {
printf ("Error in creating App Name key\n");
return (0) ;
}

// force the operating system to re-read the mapping into shared
memory
// so that future invocations of the application will see it
// without the user having to reboot the system
WritePrivateProfileStringW(NULL, NULL, NULL, L"appname.ini");
// if we get this far, all has gone well
// let's write some added values
WritePrivateProfileString ("Section1", "FirstKey",
"It all worked out okay.", "appname.ini");

WritePrivateProfileString ("Section1", "SecondKey",
"By golly, it works.", "appname.ini");

WritePrivateProfileSection ("Section1", "ThirdKey = Another Test.",
"appname.ini");
// let's test our work
GetPrivateProfileString ("Section1", "FirstKey",
"Bogus Value: Get didn't work", inBuf, 80,
"appname.ini");
printf ("%s", inBuf);
// okay, we are outta here
return(0);

}
See AlsoGetPrivateProfileString, WriteProfileString

WritePrivateProfileStruct
The WritePrivateProfileStruct function copies data into the specified key in the given section of
an initialization file. As it copies the data, the function calculates a checksum and appends it to the
end of the data. The GetPrivateProfileStruct function uses the checksum to ensure the integrity
of the data. This function is provided for compatibility with 16-bit Windows-based applications.
Win32-based applications should store initialization information in the registry.

BOOL WritePrivateProfileStruct(
LPCTSTR lpszSection, // pointer to section name
LPCTSTR lpszKey, // pointer to key name
LPVOID lpStruct, // pointer to buffer that contains data to add
UINT uSizeStruct, // size, in bytes, of the buffer
LPCTSTR szFile // pointer to initialization filename

);ParameterslpszSection
Points to a null-terminated string containing the name of the section to which the string will be
copied. If the section does not exist, it is created. The name of the section is case
independent, the string can be any combination of uppercase and lowercase letters.

lpszKey
Points to the null-terminated string containing the name of the key to be associated with a
string. If the key does not exist in the specified section, it is created. If this parameter is NULL,
the entire section, including all keys and entries within the section, is deleted.

lpStruct
Points to a buffer that contains the data to copy. If this parameter is NULL, the given key is
deleted.

uSizeStruct
Specifies the size, in bytes, of the buffer pointed to by the lpStruct parameter.

szFile
Points to a null-terminated string that names the initialization file. If this parameter is NULL,
the given information is copied into the WIN.INI file.

Return ValuesIf the function successfully copies the string to the initialization file, the return value is nonzero.

If the function fails, or if it flushes the cached version of the most recently accessed initialization
file, the return value is zero. To get extended error information, call GetLastError.RemarksWindows 95 keeps a cached version of WIN.INI to improve performance. If all three parameters
are NULL, the function flushes the cache. The function always returns FALSE after flushing the
cache, regardless of whether the flush succeeds or fails.

A section in the initialization file must have the following form:[section]
key=string
.
.
.If the szFile parameter does not contain a full path and filename for the file,

WritePrivateProfileString searches the Windows directory for the file. If the file does not exist,
this function creates the file in the Windows directory.

If szFile contains a full path and filename and the file does not exist, WriteProfileString creates
the file. The specified directory must already exist.

The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps
to locate initialization information:

1. Look in the registry for the name of the initialization file, say myfile.ini, under
IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the key
you are looking for does not exist as a named value, then there will be an unnamed value
(shown as "<No Name>") that specifies the default location in the registry where you will find
the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>") under
myfile.ini that specifies the default location in the registry where you will find the keys for the
section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI file
when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested data
is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative
to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

See AlsoGetPrivateProfileString, WriteProfileString

WriteProcessMemory
The WriteProcessMemory function writes memory in a specified process. The entire area to be
written to must be accessible, or the operation fails.

BOOL WriteProcessMemory(
HANDLE hProcess, // handle to process whose memory is written to
LPVOID lpBaseAddress, // address to start writing to
LPVOID lpBuffer, // pointer to buffer to write data to
DWORD nSize, // number of bytes to write
LPDWORD lpNumberOfBytesWritten // actual number of bytes written

);ParametershProcess
Identifies an open handle to a process whose memory is to be written to. The handle must
have PROCESS_VM_WRITE and PROCESS_VM_OPERATION access to the process.

lpBaseAddress
Points to the base address in the specified process to be written to. Before any data transfer
occurs, the system verifies that all data in the base address and memory of the specified size
is accessible for write access. If this is the case, the function proceeds; otherwise, the function
fails.

lpBuffer
Points to the buffer that supplies data to be written into the address space of the specified
process.

nSize
Specifies the requested number of bytes to write into the specified process.

lpNumberOfBytesWritten
Points to the actual number of bytes transferred into the specified process. This parameter is
optional. If lpNumberOfBytesWritten is NULL, the parameter is ignored.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
The function will fail if the requested write operation crosses into an area of the process that is
inaccessible.RemarksWriteProcessMemory copies the data from the specified buffer in the current process to the
address range of the specified process. Any process that has a handle with
PROCESS_VM_WRITE and PROCESS_VM_OPERATION access to the process to be written to
can call the function. The process whose address space is being written to is typically, but not
necessarily, being debugged.

The entire area to be written to must be accessible. If it is not, the function fails as noted
previously.See AlsoReadProcessMemory

WriteProfileSection
The WriteProfileSection function replaces the contents of the specified section in the WIN.INI file
with the specified keys and values.

This function is provided for compatibility with 16-bit Windows applications. Win32-based
applications should store initialization information in the registry.

BOOL WriteProfileSection(
LPCTSTR lpAppName, // pointer to section name
LPCTSTR lpString // pointer to buffer with data

);ParameterslpAppName
Points to a null-terminated string containing the name of the section in which data is written.
This section name is typically the name of the calling application.

lpString
Points to a buffer containing the new key names and associated values that are written to the
named section.

Return ValuesIf the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.RemarksWindows 95:
If there is no section in WIN.INI that matches the specified section name,
WriteProfileSection creates the section at the end of the file and initializes the new section
with the key name and value pairs specified in the lpString parameter.
Keys and values in the lpString buffer consist of one or more null-terminated strings, followed
by a final null character. Each string has the following form:
key=string

The WriteProfileSection function is not case-sensitive; the strings can be a combination of
uppercase and lowercase letters.
WriteProfileSection deletes the existing keys and values for the named section and inserts
the key names and values in the buffer pointed to by lpString. The function does not attempt
to correlate old and new key names; if the new names appear in a different order from the old
names, any comments associated with preexisting keys and values in the initialization file will
probably be associated with incorrect keys and values.
This operation is atomic; no other operations that read from or write to the initialization file are
allowed while the information is being written.

Windows NT:
Windows NT maps most .INI file references to the registry, using the mapping defined under
the following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
When the operation has been mapped, the WriteProfileSection function writes information to
the registry, not to the initialization file; the change in the storage location has no effect on the
function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetProfileSection, WritePrivateProfileSection

WriteProfileString
The WriteProfileString function copies a string into the specified section of the WIN.INI file.

This function is provided for compatibility with 16-bit Windows-based applications. Win32-based
applications should store initialization information in the registry.

BOOL WriteProfileString(
LPCTSTR lpAppName, // pointer to section name
LPCTSTR lpKeyName, // pointer to key name
LPCTSTR lpString // pointer to string to write

);ParameterslpAppName
Points to a null-terminated string that specifies the section to which the string is to be copied.
If the section does not exist, it is created. The name of the section is not case-sensitive; the
string can be any combination of uppercase and lowercase letters.

lpKeyName
Points to a null-terminated string containing the key to be associated with the string. If the key
does not exist in the specified section, it is created. If this parameter is NULL, the entire
section, including all entries in the section, is deleted.

lpString
Points to a null-terminated string to be written to the file. If this parameter is NULL, the key
pointed to by the lpKeyName parameter is deleted.
Windows 95: This platform does not support the use of the TAB (\t) character as part of this
parameter.

Return ValuesIf the function successfully copies the string to the WIN.INI file, the return value is nonzero.

If the function fails, or if it flushes the cached version of WIN.INI, the return value is zero. To get
extended error information, call GetLastError.RemarksWindows 95:

Windows 95 keeps a cached version of WIN.INI to improve performance. If all three
parameters are NULL, the function flushes the cache. The function always returns FALSE
after flushing the cache, regardless of whether the flush succeeds or fails.
A section in the WIN.INI file must have the following form:
[section]
key=string

.

.

.
Windows NT:

Windows NT maps most .INI file references to the registry, using the mapping defined under
the following registry key:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping
When the operation has been mapped, the WriteProfileString function writes information to
the registry, not to the initialization file; the change in the storage location has no effect on the
function's behavior.
The Win32 Profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:
1. Look in the registry for the name of the initialization file, say myfile.ini, under

IniFileMapping:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping\myfile.ini
2. Look for the section name specified by lpAppName. This will be a named value under

myfile.ini, or a subkey of myfile.ini, or will not exist.
3. If the section name specified by lpAppName is a named value under myfile.ini, then that

value specifies where in the registry you will find the keys for the section.
4. If the section name specified by lpAppName is a subkey of myfile.ini, then named values

under that subkey specify where in the registry you will find the keys for the section. If the
key you are looking for does not exist as a named value, then there will be an unnamed
value (shown as "<No Name>") that specifies the default location in the registry where you
will find the key.

5. If the section name specified by lpAppName does not exist as a named value or as a
subkey under myfile.ini, then there will be an unnamed value (shown as "<No Name>")
under myfile.ini that specifies the default location in the registry where you will find the keys
for the section.

6. If there is no subkey for myfile.ini, or if there is no entry for the section name, then look for
the actual myfile.ini on the disk and read its contents.
When looking at values in the registry that specify other registry locations, there are several
prefixes that change the behavior of the ini file mapping:
! - this character forces all writes to go both to the registry and to the .INI file on disk.
- this character causes the registry value to be set to the value in the Windows 3.1 .INI
file when a new user logs in for the first time after setup.
@ - this character prevents any reads from going to the .INI file on disk if the requested
data is not found in the registry.
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is
relative to that key.
SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.See AlsoGetProfileString, WritePrivateProfileString

WriteTapemark
The WriteTapemark function writes a specified number of filemarks, setmarks, short filemarks, or
long filemarks to a tape device. These tapemarks divide a tape partition into smaller areas.

DWORD WriteTapemark(
HANDLE hDevice, // handle to open device
DWORD dwTapemarkType, // type of tapemarks to write
DWORD dwTapemarkCount, // number of tapemarks to write
BOOL bImmediate // return after write begins

);ParametershDevice
Identifies the device on which to write tapemarks. This handle is created by using the
CreateFile function.

dwTapemarkType
Specifies the type of tapemarks to write. This parameter can be one of the following values:

Value Description
TAPE_FILEMARKS Writes the number of filemarks

specified by the dwTapemarkCount
parameter.

TAPE_LONG_FILEMARKS Writes the number of long filemarks
specified by dwTapemarkCount.

TAPE_SETMARKS Writes the number of setmarks
specified by dwTapemarkCount.

TAPE_SHORT_FILEMARKS Writes the number of short filemarks
specified by dwTapemarkCount.

dwTapemarkCount
Specifies the number of tapemarks to write.

bImmediate
Specifies whether to return as soon as the operation begins. If this parameter is TRUE, the
function returns immediately; if it is FALSE, the function does not return until the operation has
been completed.

Return ValuesIf the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data
before the beginning-of-
medium marker failed.

ERROR_BUS_RESET A reset condition was detected
on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was
reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during
an operation.

ERROR_SETMARK_DETECTED A setmark was reached during
an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was
reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be
partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on
a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONEDThe partition information could
not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive

has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.
ERROR_NOT_SUPPORTED The tape driver does not

support a requested function.
ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection

mechanism failed.
ERROR_UNABLE_TO_UNLOAD_MEDIAAn attempt to unload the tape

failed.
ERROR_WRITE_PROTECT The media is write protected.
RemarksFilemarks, setmarks, short filemarks, and long filemarks are special recorded elements that

denote the linear organization of the tape. None of these marks contain user data. Filemarks are
the most general marks; setmarks provide a hierarchy not available with filemarks.

A short filemark contains a short erase gap that cannot be overwritten unless the write operation
is performed from the beginning of the partition or from an earlier long filemark.

A long filemark contains a long erase gap that allows an application to position the tape at the
beginning of the filemark and to overwrite the filemark and the erase gap.See AlsoCreateFile

wsprintf
The wsprintf function formats and stores a series of characters and values in a buffer. Any
arguments are converted and copied to the output buffer according to the corresponding format
specification in the format string. The function appends a terminating null character to the
characters it writes, but the return value does not include the terminating null character in its
character count.

int wsprintf(
LPTSTR lpOut, // pointer to buffer for output
LPCTSTR lpFmt, // pointer to format-control string
... // optional arguments

);ParameterslpOut
Points to a buffer to receive the formatted output.

lpFmt
Points to a null-terminated string that contains the format-control specifications. In addition to
ordinary ASCII characters, a format specification for each argument appears in this string. For
more information about the format specification, see the Remarks section.

...
Specifies one or more optional arguments. The number and type of argument parameters
depend on the corresponding format-control specifications in the lpFmt parameter.

Return ValuesIf the function succeeds, the return value is the number of characters stored in the output buffer,
not counting the terminating null character.

If the function fails, the return value is less than the length of the format-control string. To get
extended error information, call GetLastError.RemarksThe format-control string contains format specifications that determine the output format for the
arguments following the lpFmt parameter. Format specifications, discussed below, always begin
with a percent sign (%). If a percent sign is followed by a character that has no meaning as a
format field, the character is not formatted (for example, %% produces a single percent-sign
character).

The format-control string is read from left to right. When the first format specification (if any) is
encountered, it causes the value of the first argument after the format-control string to be
converted and copied to the output buffer according to the format specification. The second format
specification causes the second argument to be converted and copied, and so on. If there are
more arguments than format specifications, the extra arguments are ignored. If there are not
enough arguments for all of the format specifications, the results are undefined.

A format specification has the following form:

%[-][#][0][width][.precision]type

Each field is a single character or a number signifying a particular format option. The type
characters that appear after the last optional format field determine whether the associated
argument is interpreted as a character, a string, or a number. The simplest format specification
contains only the percent sign and a type character (for example, %s). The optional fields control
other aspects of the formatting. Following are the optional and required fields and their meanings:

Field Meaning

- Pad the output with blanks or zeros to the right to fill the
field width, justifying output to the left. If this field is
omitted, the output is padded to the left, justifying it to
the right.

Prefix hexadecimal values with 0x (lowercase) or 0X
(uppercase).

0 Pad the output value with zeros to fill the field width. If
this field is omitted, the output value is padded with
blank spaces.

width Copy the specified minimum number of characters to the
output buffer. The width field is a nonnegative integer.
The width specification never causes a value to be
truncated; if the number of characters in the output value

is greater than the specified width, or if the width field is
not present, all characters of the value are printed,
subject to the precision specification.

.precision For numbers, copy the specified minimum number of
digits to the output buffer. If the number of digits in the
argument is less than the specified precision, the output
value is padded on the left with zeros. The value is not
truncated when the number of digits exceeds the
specified precision. If the specified precision is 0 or
omitted entirely, or if the period (.) appears without a
number following it, the precision is set to 1.
For strings, copy the specified maximum number of
characters to the output buffer.

type Output the corresponding argument as a character, a
string, or a number. This field can be any of the following
character sequences:

Sequence Insert
c A single character. The wsprintf function ignores

character arguments with a numeric value of zero. This
sequence is interpreted as type WCHAR when the
calling application uses the #define UNICODE compile
flag and as type CHAR otherwise.

C A single character. This sequence is interpreted as type
CHAR when the calling application uses the #define
UNICODE compile flag and as type WCHAR otherwise.

d A signed decimal integer argument. This sequence is
equivalent to the i sequence.

hc, hC A single character. The wsprintf function ignores
character arguments with a numeric value of zero. This
sequence is always interpreted as type CHAR, even
when the calling application uses the #define UNICODE
compile flag.

hs, hS A string. This sequence is always interpreted as type
LPSTR, even when the calling application uses the
#define UNICODE compile flag.

i A signed decimal integer. This sequence is equivalent to
the d sequence.

lc, lC A single character. The wsprintf function ignores
character arguments with a numeric value of zero. This
sequence is always interpreted as type WCHAR, even
when the calling application does not use the #define
UNICODE compile flag.

ld A long signed decimal integer. This sequence is
equivalent to the li sequence.

li A long signed decimal integer. This sequence is
equivalent to the ld sequence.

ls, lS A string. This sequence is always interpreted as type
LPWSTR, even when the calling application does not
use the #define UNICODE compile flag. This sequence
is equivalent to the ws sequence.

lu A long unsigned integer.
lx, lX A long unsigned hexadecimal integer in lowercase or

uppercase.
s A string. This sequence is interpreted as type LPWSTR

when the calling application uses the #define UNICODE
compile flag and as type LPSTR otherwise.

S A string. This sequence is interpreted as type LPSTR
when the calling application uses the #define UNICODE
compile flag and as type LPWSTR otherwise.

u An unsigned integer argument.
x, X An unsigned hexadecimal integer in lowercase or

uppercase.

Note Unlike other Windows functions, wsprintf uses the C calling convention (_cdecl), rather
than the Pascal calling convention. As a result, it is the responsibility of the calling process to
pop arguments off the stack, and arguments are pushed on the stack from right to left. In C-
language modules, the C compiler performs this task.See Alsowvsprintf

wvsprintf
The wvsprintf function formats and stores a series of characters and values in a buffer. The items
pointed to by the argument list are converted and copied to an output buffer according to the
corresponding format specification in the format-control string. The function appends a terminating
null character to the characters it writes, but the return value does not include the terminating null
character in its character count.

int wvsprintf(
LPTSTR lpOutput, // pointer to buffer for output
LPCTSTR lpFormat, // pointer to format-control string
va_list arglist // variable argument list of format-control arguments

);ParameterslpOutput
Points to a buffer to receive the formatted output.

lpFormat
Points to a null-terminated string that contains the format-control specifications. In addition to
ordinary ASCII characters, a format specification for each argument appears in this string. For
more information about the format specification, see the wsprintf function.

arglist
A variable argument list; each element of the list specifies an argument for the format-control
string. The number, type, and interpretation of the arguments depend on the corresponding
format-control specifications in the lpFmt parameter.

Return ValuesIf the function succeeds, the return value is the number of characters stored in the buffer, not
counting the terminating null character.

If the function fails, the return value is less than the length of the format-control string. To get
extended error information, call GetLastError.RemarksThe function copies the format-control string into the output buffer character by character, starting
with the first character in the string. When it encounters a format specification in the string, the
function retrieves the value of the next available argument (starting with the first argument in the
list), converts that value into the specified format, and copies the result to the output buffer. The
function continues to copy characters and expand format specifications in this way until it reaches
the end of the format-control string. If there are more arguments than format specifications, the
extra arguments are ignored. If there are not enough arguments for all of the format specifications,
the results are undefined.See Alsowsprintf

Yield
The Yield function is obsolete. This function is provided only for compatibility with 16-bit versions
of Windows. In the Win32-based application programming interface (API), this function does
nothing.

Threads that contain windows should use the DispatchMessage, PeekMessage, or
TranslateMessage functions. The message-loop functions handle message synchronization
properly and yield at the appropriate times.

Threads that do not contain windows should use the Sleep function with a sleep time of zero
milliseconds to give up the remainder of their current time slice.

Threads that create a process can use WaitForInputIdle to wait until the new process has
finished its initialization.See AlsoDispatchMessage, PeekMessage, Sleep, TranslateMessage, WaitForInputIdle

ZeroMemory
The ZeroMemory function fills a block of memory with zeros.

VOID ZeroMemory(
PVOID Destination, // address of block to fill with zeros
DWORD Length // size, in bytes, of block to fill with zeros

);ParametersDestination
Points to the starting address of the block of memory to fill with zeros.

Length
Specifies the size, in bytes, of the block of memory to fill with zeros.

Return ValuesThis function has no return value.See AlsoCopyMemory, FillMemory, MoveMemory

Interfaces
The following interfaces are arranged in alphabetical order by interface type. The shell interfaces
are used with shell extensions, shell links, name spaces, and appbars. The rich edit OLE
interfaces and methods are used with rich text edit controls.Shell Library InterfacesICommDlgBrowser

IContextMenu
IContextMenu2
ICopyHook
IEnumIDList
IExtractIcon
IFileViewer
IFileViewerSite
INotifyReplica
IPersistFolder
IReconcilableObject
IReconcileInitiator
IShellBrowser
IShellExecuteHook
IShellExtInit
IShellFolder
IShellIcon
IShellLink
IShellPropSheetExt
IShellViewRich Edit OLE InterfacesIRichEditOle
IRichEditOleCallback

ICommDlgBrowser
The ICommDlgBrowser interface is used by the common file dialog boxes to extend the behavior
of the shell browser. This interface is received by calling QueryInterface on the IShellBrowser
object.When to ImplementThis interface is implemented only by the common file-dialog boxes.When to UseUse ICommDlgBrowser when you want to provide special behavior when hosted inside the
common dialog boxes.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

ICommDlgBrowser Methods Description

OnDefaultCommand Called when a user double-clicks in
the view or presses the ENTER key.

OnStateChange Called after a state of change has
occurred in a common dialog box.

IncludeObject Allows common dialog filter objects
that the view presents..

ICommDlgBrowser::OnDefaultCommand
[Now Supported on Windows NT]

OnDefaultCommand is called when a user double-clicks in the view or presses the ENTER key.

HRESULT OnDefaultCommand()

This method has no parameters.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.RemarksThe browser should return S_OK if it has processed the action or S_FALSE to let the view
perform the default action.

Notes to Callers
Allows the default command to be handled by the common dialog box instead of the view.See AlsoICommDlgBrowser

ICommDlgBrowser::OnStateChange
[Now Supported on Windows NT]

OnStateChange is called after a certain state has changed in the IShellView, as identified by the
parameter passed in.

HRESULT OnStateChange(

ULONG uChange
Specifies the change in state

);
ParametersuChange

Specifies the change in the selection state. This parameter can be one of the following values:
Value Meaning
CDBOSC_SETFOCUS The focus has been set to the view.
CDBOSC_KILLFOCUS The focus has been lost from the view.
CDBOSC_SELCHANGE The selection has changed.
CDBOSC_RENAME An item has been renamed.

Return ValuesOnStateChange does not return a value.RemarksOnStateChange is used to let the common file dialogs track the state of the view and change its
UI as needed.

Notes to Callers
When items in the view are selected, or when the view loses the focus, it needs to call this
member to notify the common dialog that either the view state or selection state is changing.See AlsoICommDlgBrowser

ICommDlgBrowser::IncludeObject
[Now Supported on Windows NT]

IncludeObject is used to allow the common dialog filter objects that the view presents.

HRESULT IncludeObject(

LPCITEMIDLIST pidl
//Pointer to an identifier list.

);
Parameterspidl

Pointer to a identifier list (IDLIST) that is relative to the folder.Return ValuesThe browser should return S_OK to include the object in the view, S_FALSE to hide it.RemarksIncludeObject is called by the IEnumIDList implementation when hosted in the file dialogs. The
enumerator should call this function to let the common dialog filter out objects it does not want to
display. Typically, the file dialogs will get the display text of the item, and filter by the extension.

Notes to Callers
Call before returning an object in the shell folder's IDList enumerator.See AlsoICommDlgBrowser

IContextMenu
The IContextMenu interface is used to either create or merge a context menu associated with a
certain object.

Default context menus are available for most objects that are visible within the Explorer's name
space, such as files, folders, and printer objects. System-provided context menus are adaptable to
file objects of any type, provided you have made the appropriate registry entries.When to ImplementImplement IContexMenu in the following situations:

· To add dynamic menu items to a context menu associated with an object in the shell's
name space. Implementation is accomplished by means of a handler located within an COM
in-process server DLL.

· To allow menu items to be dynamically added to non-default drag-and-drop menus.
Implementation is accomplished by means of a handler.

· Applications may either create or merge context menus of items in the shell' name space
(or extended name space). This is accomplished by an application calling IContextMenu
using IShellFolder::GetUIObjectOf.

· A namespace extension should implement IContextMenu so that either the shell or
another application can access context menus belonging to items in its own name space. This
is accomplished by using IShellFolder::GetUIObjectOf.

Shell extensions based on this interface must be initialized by using the IShellExtInit interface
and menu items can be inserted by using either the InsertMenu or InsertMenuItem functions.

Also of note is that shell extensions do not work unless all appropriate registry entries are made.When to UseYou don't call this interface directly. It is called by the shell when a user selects a context menu
item that has been added by a handler registered under the appropriate registry keys, or when an
application includes it as the riid parameter in a call to IShellFolder::GetUIObjectOf.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IContextMenu Methods Description

QueryContextMenu Adds commands to a context menu.
InvokeCommand Carries out a menu command, either

in response to user input or
otherwise. For an example, see
IExtractIcon.

GetCommandString Retrieves the language-independent
name of a menu command or the
help text for a menu command.

IContextMenu::GetCommandString
[Now Supported on Windows NT]

Retrieves the language-independent command string or the help text for a context menu item.

HRESULT GetCommandString(

UINT idCmd,
//Menu item identifier offset

UINT uFlags, //Specifies information to retrieve
UINT *pwReserved, //Reserved; must be NULL
LPSTR pszName, //Address of buffer to receive string
UINT cchMax //Size of the buffer that receives the string

);
ParametersidCmd

Menu item identifier offset.
uFlags

Flag specifying the information to retrieve. This parameter can be one of the following values:
Value Meaning
GCS_HELPTEXT Returns the help text for the menu item.
GCS_VALIDATE Validates that the menu item exists.
GCS_VERB Returns the language-independent

command name for the menu item.

pwReserved

Reserved. Applications must specify NULL when calling this method, and handles must ignore
this parameter when called.

pszName

Address of the buffer that receives the null-terminated string being retrieved.
cchMax

Size of the buffer that receives the null-terminated string.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.CommentsThe language-independent command name is a name that can be passed to the IContextMenu::
InvokeCommand method to activates a command by an application. The help text is a
description that the Explorer displays in its status bar; it should be reasonably short (under 40
characters).See AlsoIContextMenu

IContextMenu::InvokeCommand
[Now Supported on Windows NT]

Carries out the command associated with a context menu item.

HRESULT InvokeCommand(

LPCMINVOKECOMMANDINFO lpici
//Points to a command info structure

);
Parameterslpici

Pointer to a CMINVOKECOMMANDINFO structure containing information about the
command.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.

The shell calls this method when the user chooses a command that the handler added to a
context menu. This method may also be called by an application without any corresponding user
action.See AlsoCMINVOKECOMMANDINFO, IContextMenu

IContextMenu::QueryContextMenu
[Now Supported on Windows NT]

Adds menu items to the specified menu. The menu items should be inserted at a specified
position in the menu, and their menu item identifiers must be in a given range.

HRESULT QueryContextMenu(

HMENU hmenu,
//Handle of the menu

UINT indexMenu, //Location to insert first menu item
UINT idCmdFirst, //Minimum value for a menu item identifier
UINT idCmdLast, //Maximum value for a menu item identifier
UINT uFlags //Specifies zero or more status values
);
Parametershmenu

Handle of the menu. The handler should specify this handle when calling the InsertMenu or
InsertMenuItem function.

indexMenu

Zero-based position at which to insert the first menu item.
idCmdFirst

Minimum value that the handler can specify for a menu item identifier.
idCmdLast

Maximum value that the handler can specify for menu item identifiers.
uFlags

Flag specifying zero or more of the following values:
CMF_DEFAULTONLY The user is activating the default action,

typically by double-clicking. This value
provides a hint for the context menu to
add nothing if it does not modify the
default item in the menu. A context menu
extension or drag-and-drop handler
should not add any menu items if this
value is specified. A name space
extension should add only the default item
(if any).

CMF_EXPLORE Context menu handlers should ignore this
value. It is specified when the context
menu is for an object in the Explorer.

CMF_NORMAL Indicates normal operation. A context
menu extension, name-space extension,
or drag and drop handler can add any
menu items.

CMF_VERBSONLY Context menu handlers should ignore this
value. This value is specified if the context
menu is for a shortcut object. This value is
specified if the context menu is for a
shortcut object.

The remaining bits of the low-order word are reserved by the system. The high-order word
may be used for context-specific communications.Return ValuesReturns an HRESULT structure in which, if the method is successful, the code member contains

the menu identifier offset of the last menu item added plus one.CommentsThe actual identifier of each menu item should be idCmdFirst plus a menu identifier offset in the
range zero through (idCmdLast - idCmdFirst).See AlsoIContextMenu, InsertMenu, InsertMenuItem

IContextMenu2
The IContextMenu2 interface is used to either create or merge a context menu associated with a
certain object when a client of IContextMenu is supposed to handle messages associated with
owner-drawn menu items.When to ImplementImplement IContexMenu2 if your object is a client of IContextMenu when owner-drawn
messages are an issue: Do so if it is possible to receive one of the following messages while
calling TrackPopupMenu in the window procedure of the menu's owner window:

WM_INITPOPUP

WM_DRAWITEM

WM_MEASUREITEM

These messages are sent only if a QueryInterface call for an IContextMenu2 interface pointer is
successful, indicating that the object supports this interface.When to UseYou do not call this interface directly. IContextMenu2 is used by the operating system only when
it has confirmed that the application is aware of this interface.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IContextMenu2 Methods Description

QueryContextMenu Adds commands to a context menu.
HandleMenuMsg Handles messages related to drawing

owner-drawn menu items.
InvokeCommand Carries out a menu command, either

in response to user input or
otherwise. For an example, see
IExtractIcon.

GetCommandString Retrieves the language-independent
name of a menu command or the
help text for a menu command.

IContextMenu2::GetCommandString
[Now Supported on Windows NT]

Retrieves the language-independent command string or the help text for a context menu item.

HRESULT GetCommandString(

UINT idCmd,
//Menu item identifier offset

UINT uFlags, //Specifies information to retrieve
UINT *pwReserved, //Reserved; must be NULL
LPSTR pszName, //Address of buffer to receive string
UINT cchMax //Size of the buffer that receives the string

);
ParametersidCmd

Menu item identifier offset.
uFlags

Flag specifying the information to retrieve. This parameter can be one of the following values:
Value Meaning
GCS_HELPTEXT Returns the help text for the menu item.
GCS_VALIDATE Validates that the menu item exists.
GCS_VERB Returns the language-independent

command name for the menu item.

pwReserved

Reserved. Applications must specify NULL when calling this method, and handles must ignore
this parameter when called.

pszName

Address of the buffer that receives the null-terminated string being retrieved.
cchMax

Size of the buffer that receives the null-terminated string.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.RemarksThe language-independent command name is a name that can be passed to the IContextMenu::
InvokeCommand method to activates a command by an application. The help text is a
description that the Explorer displays in its status bar; it should be reasonably short (under 40
characters).See AlsoIContextMenu2, IContextMenu

IContextMenu2::HandleMenuMsg
[Now Supported on Windows NT]

Allows client objects of IContextMenu to handle messages associated with owner-drawn menu
items.

HRESULT HandleMenuMsg(

UINT uMsg,
//Specifies the message

WPARAM wParam, //Depends on the contents of uMsg
LPARAMlParam //Depends on the contents of uMsg

);
ParametersuMsg

Specifies the message to be processed. If it is either WM_INITPOPUP, WM_DRAWITEM, or
WM_MEASUREITEM, the client object being called may provide owner-drawn menu items.

wParam

Specifies additional message information. The value of this parameter depends on the value
of the uMsg parameter.

lParam

Specifies additional message information. The value of this parameter depends on the value
of the uMsg parameter.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.RemarksHandleMenuMsg is called when a client of IContextMenu is aware of the IContextMenu2

interface and receives one of the messages specified in the description of the uMsg parameter
while the client is processing menu messages.See AlsoIContextMenu2, IContextMenu

IContextMenu2::InvokeCommand
[Now Supported on Windows NT]

Carries out the command associated with a context menu item.

HRESULT InvokeCommand(

LPCMINVOKECOMMANDINFO lpici
//Points to a command info structure

);
Parameterslpici

Pointer to a CMINVOKECOMMANDINFO structure containing information about the
command.Return ValuesReturns NOERROR if successful or an OLE-defined error code otherwise.

The shell calls this method when the user chooses a command that the handler added to a
context menu. This method may also be called by an application without any corresponding user
action.See AlsoCMINVOKECOMMANDINFO, IContextMenu2, IContextMenu

IContextMenu2::QueryContextMenu
[Now Supported on Windows NT]

Adds menu items to the specified menu. The menu items should be inserted at a specified
position in the menu, and their menu item identifiers must be in a given range.

HRESULT QueryContextMenu(

HMENU hmenu,
//Handle of the menu

UINT indexMenu, //Location to insert first menu item
UINT idCmdFirst, //Minimum value for a menu item identifier
UINT idCmdLast, //Maximum value for a menu item identifier
UINT uFlags //Specifies zero or more status values
);
Parametershmenu

Handle of the menu. The handler should specify this handle when calling the InsertMenu or
InsertMenuItem function.

indexMenu

Zero-based position at which to insert the first menu item.
idCmdFirst

Minimum value that the handler can specify for a menu item identifier.
idCmdLast

Maximum value that the handler can specify for menu item identifiers.
uFlags

Flag specifying zero or more of the following values:
CMF_DEFAULTONLY The user is activating the default action,

typically by double-clicking. This value
provides a hint for the context menu to
add nothing if it does not modify the
default item in the menu. A context menu
extension or drag-and-drop handler
should not add any menu items if this
value is specified. A name space
extension should add only the default item
(if any).

CMF_EXPLORE Context menu handlers should ignore this
value. It is specified when the context
menu is for an object in the Explorer.

CMF_NORMAL Indicates normal operation. A context
menu extension, name-space extension,
or drag-and-drop handler can add any
menu items.

CMF_VERBSONLY Context menu handlers should ignore this
value. This value is specified if the context
menu is for a shortcut object. This value is
specified if the context menu is for a
shortcut object.

The remaining bits of the low-order word are reserved by the system. The high-order word
may be used for context-specific communications.Return ValuesReturns an HRESULT structure in which, if the method is successful, the code member contains

the menu identifier offset of the last menu item added plus one.RemarksThe actual identifier of each menu item should be idCmdFirst plus a menu identifier offset in the
range zero through (idCmdLast - idCmdFirst).See AlsoIContextMenu2, IContextMenu, InsertMenu, InsertMenuItem

ICopyHook
The ICopyHook interface is a COM-based interface used to create a copy hook handler, a shell
extension, that determines whether it is all right to move, copy, rename, or delete a shell folder or
printer object. The shell calls ICopyHook::CopyCallback prior to performing one of these
operations.

The copy hook handler, which is an OLE in-process server (a DLL), does not perform the task
itself, but does approve or disapprove the action. If the shell receives approval from the copy hook
handler, it performs the file system operation. Copy hook handlers are not informed about the
success of an operation, so cannot monitor actions taken on folder objects, except via
FindFirstChangeNotify.

A folder object can have multiple copy hook handlers. For example, even if the shell already has a
copy hook handler registered for a particular folder object, you can still register one of your own. If
two or more copy hook handlers are registered for an object, the shell simply calls each of them
before performing one the specified file system operations.

The shell initializes ICopyHook directly, without using the IShellExtInit or IPersistFile interfaces
first.

CopyCallback returns an integer value that indicates whether or not the shell should perform the
operation. The shell will call each copy hook handler registered for a folder object until either all
the handlers have been called or one of them has returned a value other than IDYES. The handler
can also return IDYES to specify that the operation should be performed, or IDNO or IDCANCEL
to specify that the operation should be discontinued.

When to Implement
Implement a copy hook handler, for example for shared folders, when you want to be able to
control when, or if. these file system operations are performed on a given object.

When to Use
You don't call this shell extension directly. ICopyHook::CopyCallback is called by the shell prior
to moving, copying, renaming, or deleting a shell folder object.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

ICopyHook Methods Description

CopyCallback Determines whether a move, copy,
delete, or rename operation on a
folder object should be allowed or
disallowed.

ICopyHook::CopyCallback
[Now Supported on Windows NT]

Either allows the shell to move, copy, delete, or rename a folder or printer object, or disallows the
shell from carrying out the operation. The shell calls each copy hook handler registered (see
Comments below) for a folder or printer object until either all the handlers have been called or one
of them returns IDCANCEL.

UINT CopyCallback(

HWND hwnd,
//Handle of the parent window for displaying UI objects

UINT wFunc, //Operation to perform.
UINT wFlags, //Flags that control the operation
LPCSTR pszSrcFile, //Pointer to the source file
DWORD dwSrcAttribs, //Source file attributes
LPCSTR pszDestFile, //Pointer to the destination file
DWORD dwDestAttribs //Destination file attributes

);
Parametershwnd

Handle of the window that the copy hook handler should use as the parent window for any
user interface elements the handler may need to display. If FOF_SILENT is specified, the
method should ignore this parameter.

wFunc

Operation to perform. This parameter can be one of the following values:
FO_COPY
0x0002

Copies the file specified by pszSrcFile to the
location specified by pszDestFile.

FO_DELETE
0x0003

Deletes the file specified by pszSrcFile.

FO_MOVE
0x0001

Moves the file specified by pszSrcFile to the
location specified by pszDestFile.

FO_RENAME
0x0004

Renames the file specified by pszSrcFile.

PO_DELETE
0x0013

Deletes the printer specified by pszSrcFile.

PO_PORTCHANGE
0x0020

Changes the printer port. The pszSrcFile and
pszDestFile parameters contain double null-
terminated lists of strings. Each list contains the
printer name followed by the port name. The
port name in pszSrcFile is the current printer
port, and the port name in pszDestFile is the
new printer port.

PO_RENAME
0x0014

Renames the printer specified by pszSrcFile.

PO_REN_PORT
0x0034

Combination of PO_RENAME and
PO_PORTCHANGE.

wFlags

Flags that control the operation. This parameter can be a combination of the following values:
FOF_ALLOWUNDO
0x0040

Preserves undo information (when
possible).

FOF_CONFIRMMOUSE
0x0002

Not implemented.

FOF_FILESONLY
0x0080

Not implemented. The shell calls a
copy hook handler only for folder
objects, not files.

FOF_MULTIDESTFILES

0x0001 The SHFileOperation function
specified multiple destination files
(one for each source file) rather than
one directory where all the source
files are to be deposited. A copy hook
handler typically ignores this value.

FOF_NOCONFIRMATION
0x0010

Responds with "yes to all" for any
dialog box that is displayed.

FOF_NOCONFIRMMKDIR
0x0200

Does not confirm the creation of any
needed directories if the operation
requires a new directory to be
created.

FOF_RENAMEONCOLLISION
0x0008

Gives the file being operated on a
new name, such as, "Copy #1 of ...",
in a copy, move, or rename operation
when a file with the target name
already exists.

FOF_SILENT
0x0004

Displays no progress dialog box.

FOF_SIMPLEPROGRESS
0x0100

Displays a progress dialog box, but
the dialog box does not show the
names of the files.

pszSrcFile

Pointer to a string that contains the name of the source file.
dwSrcAttribs

Attributes of the source file. This parameter can be a combination of any of the file attribute
flags (FILE_ATTRIBUTE_*) defined in the Windows header files.

pszDestFile

Pointer to a string that contains the name of the destination file.
dwDestAttribs

Attributes of the destination file. This parameter can be a combination of any of the file
attribute flags (FILE_ATTRIBUTE_*) defined in the Windows header files.Return ValueReturns an integer value that indicates whether or not the shell should perform the operation. It

can be one of the following:

IDYES

Allows the operation.
IDNO

Prevents the operation on this file, but continues with any other operations (for example, a
batch copy operation).

IDCANCEL

Prevents the current operation and cancels any pending operations.CommentsYou need to register your copyhook handler. For example, …\directory copyhook handlers are
registered under HKEY_CLASSES_ROOT\directory\shellex\CopyHookHandlers\your_copyhook\
{copyhook CLSID value}. Other registry keys associated with shell extensions are: *, Folder,
Drives, Printers, Unknown, and AudioCD.

The shell initializes the ICopyHook interface directly, when ICopyHook::CopyCallback is called,
without using an IShellExtInit or IPersistFile interface first.See AlsoICopyHook, SHFileOperation

IEnumIDList
The IEnumIDList interface enumerates item identifiers associated with shell folder objects. First,
use IShellFolder::EnumObjects to create an item enumeration object and then use IEnumIDList
to iterate through the item IDs in the enumeration object.

IEnumIDList has the same methods as all enumerator interfaces: Next, Skip, Reset, and Clone.
Next iterates through the item IDs one or more at a time, Skip passes over the next item ID in the
list, Reset returns to the beginning of the item ID list, and Clone returns a duplicate item
enumeration object.

When to Implement
You can implement this interface when you want a caller to be able to enumerate the item IDs
contained in a folder object. You get a pointer to IEnumIDList through IShellFolder::
EnumObjects.

When to Use
You don't use this interface directly. IShellFolder::EnumObjects creates an enumeration object
of this kind. In this case, the enumeration is a set of item identifiers. The shell calls then
IEnumIDList methods to enumerate the items contained in a enumeration object.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IEnumIDList Methods Description

Next Retrieves the specified number of
item identifiers.

Skip Skip over the specified number of
items.

Reset Return to the beginning of the
enumeration.

Clone Creates a new item enumeration
object identical to the current one.

IEnumIDList::Clone
[Now Supported on Windows NT]

Creates a new item enumeration object with the same contents and state as the current one.

HRESULT Clone(

IEnumIDList FAR * pEnumIDList,
IEnumIDList **ppenum

);

· Returns the NOERROR value if successful or an OLE-defined error value otherwise.ParmeterspEnumIDList

Address of the IEnumIDList interface. In C++, this parameter is implicit.
ppenum

Address that receives a pointer to the new enumeration object. The calling application must
eventually free the new object by calling its Release member function.

This member function makes it possible to record a particular point in the enumeration sequence
and then return to that point at a later time.See AlsoIEnumIDList

IEnumIDList::Next
[Now Supported on Windows NT]

Retrieves the specified number of item identifiers in the enumeration sequence and advances the
current position.

HRESULT Next(

IEnumIDList FAR *pEnumIDList,
ULONG celt,
LPITEMIDLIST *rgelt,
ULONG *pceltFetched

);

· Returns the NOERROR value if successful, the S_FALSE value if there are no more
items in the enumeration sequence, or an OLE-defined error value if an error occurs.ParameterspEnumIDList

Address of the IEnumIDList interface. In C++, this parameter is implicit.
celt

Specifies the number of elements in the array pointed to by the rgelt parameter.
rgelt

Address of an array in which to return the item identifiers. The calling application must free the
item identifiers by using the task allocator (retrieved by the SHGetMalloc function).

pceltFetched

Address of a value that receives a count of the item identifiers actually returned in rgelt. The
count can be smaller than the value specified in the celt parameter. This parameter can be
NULL if, and only if, celt is one.

If this member function returns any value other than NOERROR, no entries in the rgelt array are
valid on exit. They are all in an indeterminate state.See AlsoIEnumIDList

IEnumIDList::Reset
[Now Supported on Windows NT]

Returns to the beginning of the enumeration sequence.

HRESULT Reset(

IEnumIDList FAR *pEnumIDList,
);

· Returns the NOERROR value if successful or an OLE-defined error value otherwise.ParameterspEnumIDList

Address of the IEnumIDList interface. In C++, this parameter is implicit.See AlsoIEnumIDList

IEnumIDList::Skip
[Now Supported on Windows NT]

Skips over the specified number of elements in the enumeration sequence.

HRESULT Skip(

IEnumIDList FAR *pEnumIDList,
ULONG celt

);

· Returns the NOERROR value if successful or an OLE-defined error value otherwise.ParameterspEnumIDList

Address of the IEnumIDList interface. In C++, this parameter is implicit.
celt

Number of item identifiers to skip.See AlsoIEnumIDList

IExtractIcon
The IExtractIcon interface is used by the shell to retrieve icons for objects it displays.

The operating system provides default icons for file objects but you can specify custom icons by
making appropriate registry entries and, in some cases, by using IExtractIcon.When to ImplementYou implement IExtractIcon to provide either instance-specific icons for objects in a particular
class, or icons for subfolders that extend the Explorer's name space. These implementations are
accomplished by writing handler code in an OLE in-process server COM DLL.

In addition, if you implement IShellFolder, you will need to provide an implementation of
IExtractIcon that callers can obtain by using IShellFolder::GetUIObjectOf.

Shell extensions based on IExtractIcon must be initialized by using IPersistFile::Load. You
should also note that shell extensions do not work unless all appropriate registry entries are
made.When to UseIn most cases, you don't call this interface directly. It is usually called by the shell when an icon
has been made available by a properly registered handler. However, you can call IExtractIcon
directly if you want to delegate the task of icon extracting to another object.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IExtractIcon Methods Description

GetIconLocation Retrieves the icon location for an
object.

Extract Extracts an icon from the specified
location.

IExtractIcon::Extract
[Now Supported on Windows NT]

Extracts an icon image from the specified location.

HRESULT Extract(

LPCSTR pszFile,
//Points to the icon location specifier

UINT nIconIndex, //Icon index
HICON *phiconLarge, //Points to variable for large icon handle
HICON *phiconSmall, //Points to variable for small icon handle
UINT nIconSize //Specifies the size of the large icon required

);
ParameterspszFile

Pointer to a null-terminated string specifying the icon location.
nIconIndex

Icon index.
phiconLarge and phiconSmall

Pointer to the variable that receives the handle of the large icon.
phiconSmall

Pointer to the variable that receives the handle of the small icon.
nIconSize

Value specifying the size, in pixels, of the icon required. The LOWORD and HIWORD specify
the size of the large and small icons, respectively. The size specified can be the width or
height. The width of an icon always equals its height.Return ValuesReturns NOERROR if the function extracted the icon or S_FALSE if the calling application should

extract the icon.RemarksThe icon location and index are the same values returned by the IExtractIcon::GetIconLocation
method. If this function returns S_FALSE, these values must specify an icon filename and index
that form legal parameters for a call to ExtractIcon. If this function does not return S_FALSE, the
calling application should make no assumptions about the meanings of the pszFile and
nIconIndex parameters.See AlsoIExtractIcon, IExtractIcon::GetIconLocation

IExtractIcon::GetIconLocation
[Now Supported on Windows NT]

Retrieves the location and index of an icon.

HRESULT GetIconLocation(

UINT uFlags,
//Status values

LPSTR szIconFile, //Address of buffer receiving icon location
INT cchMax, //Size of buffer receiving icon location
int *piIndex, //Pointer that receivs the icon index
UINT *pwFlags //Pointer to zero or more values

);
ParametersuFlags

Flags. This parameter can be zero or the following values:
GIL_FORSHELL The icon is to be displayed in a shell folder.
GIL_OPENICON The icon should be in the "open" state if both

open- and closed-state images are available. If
this flag is not specified the icon should be in the
normal or "closed" state. This flag is typically
used for folder objects.

szIconFile and cchMax

Address of the buffer that receives the icon location. The icon location is a null-terminated
string that identifies the location of the icon.

cchMax

Size of the buffer that receives the icon location.
piIndex

Pointer to an integer that receives the icon index, which further describes the icon location.
pwFlags

Pointer to an unsigned integer that receives zero or more of the following values:
GIL_DONTCACHE The physical image bits for this icon should

not be cached by the caller. This distinction
is important to consider because a
GIL_DONTCACHELOCATION flag may be
introducted in future versions of the shell..

GIL_NOTFILENAME The location is not a filename/index pair.
Callers that decide to extract the icon from
the location must call this object's
IExtractIcon::Extract method to obtain the
desired icon images.

GIL_PERCLASS All objects of this class have the same icon.
This flag is used internally by the shell.
Typical implementations of IExtractIcon do
not require this flag because it implies that
an icon handler is not required to resolve the
icon on a per-object basis. the recommended
method for implementing per-class icons is
to register a DefaultIcon for the class.

GIL_PERINSTANCE Each object of this class has its own icon.
Used internally by the shell to handle cases
like setup.exe where more than one object
with identical names could be known to the
shell and have different icons. Typical
implementations of IExtractIcon do not

require this flag.
GIL_SIMULATEDOC The caller should create a document icon

using the specified icon.
Return ValuesReturns NOERROR if the function returned a valid location or S_FALSE if the shell should use a

default icon.See AlsoIExtractIcon, IExtractIcon::Extract

IFileViewer
Designates an interface that allows a registered file viewer to be notified when it must show or
print a file. The shell calls this interface when the user selects the Quick View command from a
file's context menu and the file is a type that the file viewer recognizes. The IFileViewer interface
has the following member functions:Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IFileViewer Methods Description

PrintTo Prints a file.
Show Displays a file.
ShowInitialize Prepares to display a file.

IFileViewer::PrintTo
[Now Supported on Windows NT]

Prints a file.

The shell specifies the name of the file to print by calling the file viewer's IPersistFile::Load
member function.

HRESULT PrintTo(

IFileViewer FAR *pFileViewer,
LPSTR pszDriver,
BOOL fSuppressUI

);
ParameterspFileViewer

Address of the IFileViewer interface. In C++, this parameter is implicit.
pszDriver

Address of a buffer that contains the name of the printer device driver that should print the file.
If this parameter is NULL, the file viewer determines which device driver to use.

fSuppressUI

User interface suppression flag. If this parameter TRUE, the file viewer should not display any
UI whatsoever, including error messages, during the print operation. If this parameter FALSE,
the file viewer can show dialog boxes, as needed.Return ValuesReturns the NOERROR value if successful or an OLE-defined error value otherwise.See AlsoIFileViewer

IFileViewer::Show
[Now Supported on Windows NT]

Displays a file.

The shell specifies the name of the file to display by calling the file viewer's IPersistFile::Load
member function.

IFileViewer::Show can fail only if IFileViewer::ShowInitialize was not called first, and the return
value must be E_UNEXPECTED in that case. Otherwise, IFileViewer::Show must return
NOERROR.

HRESULT Show(

IFileViewer FAR *pFileViewer,
LPFVSHOWINFO pvsi

);
ParameterspFileViewer

Address of the IFileViewer interface. In C++, this parameter is implicit.
pvsi

Address of an FVSHOWINFO structure containing information that the file viewer uses to
display the file. A file viewer can return information to the shell by modifying the members of
the structure.Return ValuesReturns the NOERROR value if successful or the E_UNEXPECTED value if the IFileViewer::

ShowInitialize member function was not called before IFileViewer::Show.See AlsoIFileViewer

IFileViewer::ShowInitialize
[Now Supported on Windows NT]

Allows a file viewer to determine whether it can display a file and, if it can, to perform initialization
operations before showing the file.

The shell calls this member function before the IFileViewer::Show member function. The shell
specifies the name of the file to display by calling the file viewer's IPersistFile::Load member
function.

IFileViewer::ShowInitialize must perform all operations that are prone to failure so that if it
succeeds, IFileViewer::Show will not fail.

HRESULT ShowInitialize(

IFileViewer FAR *pFileViewer,
LPFILEVIEWERSITE lpfsi

);
ParameterspFileViewer

Address of the IFileViewer interface. In C++, this parameter is implicit.
lpfsi

Address of a IFileViewerSite interface. A file viewer uses this interface to retrieve the handle
of the current pinned window or to specify a new pinned window.Return ValuesReturns the NOERROR value if successful or an OLE-defined error value otherwise.See AlsoIFileViewer

IFileViewerSite
Designates an interface that allows a file viewer to retrieve the handle of the current pinned
window or to set a new pinned window. The pinned window is the window in which the current file
viewer is displaying a file. When the user selects a new file to view, the shell directs the file viewer
to display the new file in the pinned window rather than to create a new window.

The IFileViewerSite interface has the following member functions.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IFileViewerSite Methods Description

GetPinnedWindow Retrives the handle of the current
pinned window.

SetPinnedWindow Sets a new pinned window.

IFileViewerSite::GetPinnedWindow
[Now Supported on Windows NT]

Retrieves the handle of the current pinned window, if it exists.

HRESULT GetPinnedWindow(

IFileViewerSite FAR *pFileVS,
HWND *phwnd

);
ParameterspFileVS

Address of the IFileViewerSite interface. In C++, this parameter is implicit.
phwnd

Address of a window handle of the current pinned window or NULL if no pinned window
exists.Return ValuesReturns the NOERROR value if successful or an OLE-defined error value otherwise.See AlsoIFileViewerSite

IFileViewerSite::SetPinnedWindow
[Now Supported on Windows NT]

Sets a new pinned window.

When the user selects a new file to view, the shell directs the file viewer to display the new file in
the pinned window instead of creating a new window.

HRESULT SetPinnedWindow(

IFileViewerSite FAR *pFileVS,
HWND *hwnd

);
ParameterspFileVs

Address of the IFileViewerSite interface. In C++, this parameter is implicit.
hwnd

Handle of the new pinned window or NULL if there is to be no pinned window.Return ValuesReturns the NOERROR value if successful or an OLE-defined error value otherwise.See AlsoIFileViewerSite

INotifyReplica
The INotifyReplica interface provides the initiator with the means to notify an object that it may be
subject to subsequent reconciliation. This interface has the YouAreAReplica member function.
The briefcase reconciler is responsible for implementing this interface.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

INotifyReplica Methods Description

YouAreAReplica Notifies an object that it may be
subject to reconciliation.

INotifyReplica::YouAreAReplica
[Now Supported on Windows NT]

Notifies an object that it may be subject to subsequent reconciliation through the
IReconilableObject::Reconcile member function.

An object may be notified that it is a replica more than once. Briefcase reconcilers are not required
to implement this interface. Initiators are not required to call this interface if it is implemented.
However, an object's implementation of IReconcilableObject::Reconcile may reasonably fail if
that object has not previously been notified through INotifyReplica::YouAreAReplica that it may
be subject to reconciliation.

Briefcase calls INotifyReplica when objects are added to it.

HRESULT INotifyReplica::YouAreAReplica(

ULONG ulcOtherReplicas,
IMoniker ** rgpmkOtherReplicas

);
ParametersulcOtherReplicas

Number of other replicas of the object. This parameter must not be zero.
rgpmkOtherReplicas

Address of an array that contains the addresses of the monikers to use to access the other
replicas.Return ValuesReturns the S_OK value if successful. Otherwise, the member function returns one of the

following error values:

E_UNEXPECTED Unspecified error.

See AlsoINotifyReplica

IPersistFolder
The IPersistFolder interface is used to initialize shell folder objects.When to ImplementWhen implementing a shell namespace extension, specifically IShellFolder, you need to
implement this interface so the folder object can be initialized this is how the folder is told where it
is in the shell namespace.When to UseYou don't use this interface directly. It is used by the file system implementation of IShellFolder::
BindToObject when it is initializing a shell folder object.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IPersist Method Description

GetClassID Returns the class identifier (CLSID)
for the component object.

IIPersisFolder Method Description

Initialize Called when the Explorer initializes a
shell folder object.

IPersistFolder::Initialize
[Now Supported on Windows NT]

The IPersistFolder::Initialize method is called whenever the Explorer is initializing a shell folder
object.

HRESULT Initialize(

LPCITEMIDLIST pidl,
//Folder's absolute location.

);
Parameterspidl

Pointer to the ITEMIDLIST (tem identifiier list) structure that specifies the absolute location of
the folder.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.Remarks

Notes to ImplementorsAll objects that implement IShellFolder for use in the shell's name space must implement this
method. When a folder's location in the name space is not a relevant consideration, Initialize can
simply return NOERROR. When the location is relevant to the folder, you should store the fully
qualified IDLIST passed in for future reference.

For example, if the folder implementation needs to construct a fully qualified PIDL to elements that
it contains, the PIDL passed to Initialize should be used to construct those fully qualified PIDLs.See AlsoIPersistFolder, IShellExtInit, IShellFolder, ITEMIDLIST

IReconcilableObject
The IReconcilableObject interface carries out the reconciliation of a document. The briefcase
reconciler is responsible for implementing this interface.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IReconcilableObject MethodsDescription

GetProgressFeedbackMaxEstimateReceives estimate of work required to
complete a reconciliation.

Reconcile Reconciles the state of an object with
one or more other objects.

IReconcilableObject::
GetProgressFeedbackMaxEstimate
[Now Supported on Windows NT]

Retrieves an estimated measurement of the amount of work required to complete a reconciliation.
This value corresponds to a similar value that is passed with the IReconcileInitiator::
SetProgressFeedback member function during reconciliation. Reconcilers typically use this
member function to estimate the work needed to reconcile an embedded document.

HRESULT IReconcilableObject::GetProgressFeedbackMaxEstimate(

IMoniker ** pulProgressMax
);
ParameterspulProgressMax

Address of the variable that receives the work estimate value.
The work estimate value, if available, is only approximate.Return ValuesReturns the S_OK value if successful. Otherwise, the member function returns one of the

following error values:
OLE_E_NOTRUNNING The object is an OLE embedded

document that must be run before this
operation can be carried out. The object
state is unchanged as a result of the call.

E_UNEXPECTED Unspecified error.
See AlsoIReconcilableObject

IReconcilableObject::Reconcile
[Now Supported on Windows NT]

Reconciles the state of an object with one or more other objects. The reconciliation updates the
internal state of the object by merging the states of all objects to form a combined state.

HRESULT IReconcilableObject::Reconcile(

IreconcileInitiator *pInitiator,
DWORD dwFlags,
HWND hwndOwner,
HWND hwndProgressFeedback,
ULONG ulcInput,
IMoniker **rgpmkOtherInput,
LONG *plOutIndex,
IStorage *pstgNewResidues,
void *pvReserved

);
ParameterspInitiator

Address of the IReconcileInitiator interface for the initiator of the reconciliation process. This
parameter must not be NULL.

dwFlags

Control flags for the reconciliation. This parameter may be zero or a combination of these
values:

RECONCILEF_FEEDBACKWINDOWVALID
hwndProgressFeedback is valid.

RECONCILEF_MAYBOTHERUSER
The briefcase reconciler can prompt for user interaction if it
is needed. Without this value, user interaction is not
permitted. hwndOwner is valid.

RECONCILEF_NORESIDUESOK
The briefcase reconciler can ignore requests for residues
and carry out reconciliation. Reconcilers that do not
support residues should check for this value whenever an
initiator requests residues. Without this value, a reconciler
that does not support residues must immediately return
REC_E_NORESIDUES.

RECONCILEF_OMITSELFRESIDUE
The briefcase reconciler can discard any residue
associated with this object. Initiators typically use this value
for reconciliations that loop from generation to generation.

RECONCILEF_ONLYYOUWERECHANGED
The Reconcile member function is being called to
propagate changes in the changed object to other
unchanged objects. This value will only be set if the
HKEY_CLASSES_ROOT\CLSID\clsid_of_reconciler\
SingleChangeHook key exists in the registry. If that key is
not present in the registry, the initiator carries out
reconciliation by making the other unchanged objects
binary identical copies of the changed object. The
rgpmkOtherInput monikers identify the other objects. This
value will only be set in dwFlags if
RECONCILEF_YOUMAYDOTHEUPDATES is also set. If
the briefcase reconciler completes the updates itself
successfully, REC_S_IDIDTHEUPDATES should be
returned and the variable pointed to by plOutIndex should
be set to - 1L. Note that S_OK should not be returned on
success if this value is set in dwFlags. The initiator will not

save the source object's storage if Reconcile returns
REC_S_IDIDTHEUPDATES. If the reconciler wishes to fall
back to the initiator's bit copy implementation, it may return
S_FALSE.

RECONCILEF_RESUMEDRECONCILIATION
The briefcase reconciler should resume reconciliation,
using the partial residues provided. Without this value, the
reconciler should ignore any "considered but rejected"
information in any of the input versions.

RECONCILEF_YOUMAYDOTHEUPDATES
The briefcase reconciler may do the updates itself. Without
this value, the reconciler may not do the updates itself. If
reconciliation is completed successfully, the reconciler
should return REC_S_IDIDTHEUPDATES if it did the
updates itself or S_OK if it did not do the updates itself.

hwndOwner

Handle of the parent window to use for child windows that the briefcase reconciler creates.
This parameter is valid only if RECONCILEF_MAYBOTHERUSER is specified in dwFlags.

hwndProgressFeedback

Handle of the progress feedback window displayed by the initiator. This parameter is valid
only if RECONCILEF_FEEDBACKWINDOWVALID is specified in dwFlags. The briefcase
reconciler may call the SetWindowText function using this window handle to display
additional reconciliation status information to the user.

ulcInput

Number of versions or partial residues specified in dwFlags. This parameter must not be zero.
rgpmkOtherInput

Address of an array that contains the addresses of the monikers to use to access the versions
or partial residues to be reconciled.

plOutIndex

Address of the variable that receives an index value indicating whether the result of the
reconciliation is identical to one of the initial versions. The variable is set to - 1L if the
reconciliation result is a combination of two or more versions. Otherwise, it is a zero-based
index, with 0 indicating this object, 1 indicating the first version, 2 indicating the second
version, and so on.

pstgNewResidues

Address of the IStorage interface used to store newly created residues. This parameter may
be NULL to indicate that residues should not be saved.

pvReserved

Reserved; must be NULL.Return ValuesReturns one of the following success values if successful:

S_OK
Reconciliation was completed successfully, and the
changes must be propagated to the other objects.

S_FALSE
No reconciliation actions were performed. The briefcase
reconciler wishes to fall back to the initiator's bit copy
implementation. This value may only be returned if
RECONCILEF_ONLYYOUWERECHANGED is set in
dwFlags.

REC_S_IDIDTHEUPDATES
Reconciliation was completed successfully, and all the
objects involved (the object implementing the Reconcile
member function and all the other objects described by the

passed-in monikers) have been updated appropriately. The
initiator does not need, therefore, to do anything further to
propagate the changes. The variable pointed to by
plOutIndex should be set to - 1L if Reconcile returns this
value. The initiator will not save the source object's storage
if Reconcile returns this value. This value may only be
returned if RECONCILEF_YOUMAYDOTHEUPDATES
was set in dwFlags.

REC_S_NOTCOMPLETE
The briefcase reconciler completed some, but not all, of the
reconciliation. It may need user interaction. The changes
will not be propagated to other objects.

REC_S_NOTCOMPLETEBUTPROPAGATE
The briefcase reconciler completed some, but not all, of the
reconciliation. It may need user interaction. The changes
will be propagated to the other objects.

Otherwise, the member function returns one of the following error values:

REC_E_NORESIDUES
The briefcase reconciler does not support the generation of
residues, so the request for residues is denied. The state
of the object is unchanged.

REC_E_ABORTED
The briefcase reconciler terminated reconciliation in
response to a termination request from the initiator (for
more information, see IReconcileInitiator::
SetAbortCallback). The state of the object is unspecified.

REC_E_TOODIFFERENT
Reconciliation cannot be carried out because the provided
document versions are too dissimilar.

REC_E_INEEDTODOTHEUPDATES
The object's Reconcile implementation was called with
RECONCILEF_YOUMAYDOTHEUPDATES clear in
dwFlags; the object's Reconcile implementation requires
that value to be set in dwFlags.

OLE_E_NOTRUNNING
The object is an OLE embedded object that must be run
before this operation can be carried out. The state of the
object is unchanged.

E_UNEXPECTED
Unspecified error.

See AlsoIReconcilableObject

IReconcileInitiator
The IReconcileInitiator interface provides the briefcase reconciler with the means to notify the
initiator of its progress, to set a termination object, and to request a given version of a document.
The initiator is responsible for implementing this interface.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IReconcileInitiator Methods Description

SetAbortCallback Sets the object through which the
initiator can terminate a reconciliation.

SetProgressFeedback Indicates the amount of progress in
the reconciliation.

IReconcileInitiator::SetAbortCallback
[Now Supported on Windows NT]

Sets the object through which the initiator can asynchronously terminate a reconciliation. A
briefcase reconciler typically sets this object for reconciliations that are lengthy or involve user
interaction.

The initiator can accept or reject the object. If the initiator accepts the object, the briefcase
reconciler must later remove the object by subsequently calling this function with a NULL
parameter when the reconciliation is complete. Because the reconciler removes the object after
completing reconciliation, there may be times when the initiator releases the object after
reconciliation is complete. In such cases, the reconciler ignores the request to terminate.

If the reconciliation is terminated, the IReconcilableObject::Reconcile member function must
return either the REC_E_ABORTED or REC_E_NOTCOMPLETE value.

HRESULT IReconcileInitiator::SetAbortCallback(

IUnknown *pUnkForAbort
);
ParameterespUnkForAbort

Address of the IUnknown interface for the object. The initiator signals a request to terminate
the reconciliation by using the IUnknown::Release member function to release the object.
This parameter may be NULL to direct the initiator to remove the previously specified object.Return ValuesReturns the S_OK value if successful. Otherwise, the member function returns one of the

following error values:

REC_E_NOCALLBACK The initiator does not support termination
of reconciliation operations and does not
hold the specified object.

E_UNEXPECTED Unspecified error.
See AlsoIReconcileInitiator

IReconcileInitiator::SetProgressFeedback
[Now Supported on Windows NT]

Indicates the amount of progress the briefcase reconciler has made toward completing the
reconciliation. The amount is a fraction of 1 and is computed as the quotient of the ulProgress and
ulProgressMax. Reconcilers should call this member function periodically during their
reconciliation process.

The initiator typically uses this measure of progress to update a thermometer gauge or some
other form of visual feedback for the user. The briefcase reconciler can change the value of
ulProgressMax from call to call. This means successive calls to this member function do not
necessarily indicate steady forward progress. Backward progress is legal, although not desirable.
It is the responsibility of the initiator to determine whether backward progress should be revealed
to the user.

HRESULT IReconcileInitiator::SetProgressFeedback(

ULONG ulProgress,
ULONG ulProgressMax

);
ParametersulProgress

Numerator of the progress fraction.
ulProgressMax

Denominator of the progress fraction.Return ValuesReturns the S_OK value if successful or the E_UNEXPECTED value if some unspecified error
occurred.See AlsoIReconcileInitiator

IRichEditOle
Specifies an interface used by the client of a rich text edit control to carry out OLE-related
operations. The IRichEditOle interface has the following methods:Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IRichEditOle Methods Description

GetClientSite Retrieves an IOleClientSite interface
to use when creating a new object.

GetObjectCount Returns the number of objects
contained in a rich edit control.

GetLinkCount Returns the number of objects in a
rich edit control that are links.

GetObject Returns information from a
REOBJECT structure about an
object in a rich edit control.

InsertObject Inserts an object into a rich edit
control.

ConvertObject Converts an object to a new type.
ActivateAs Unloads objects of the old class,

telling OLE to treat those objects as
objects of the new class, and
reloading the objects.

SetHostNames Sets the "host names" to be given to
objects as they are inserted to a rich
edit control.

SetLinkAvailable Sets the value of the link available bit
in the object's flags.

SetDvaspect Sets the aspect that a rich edit
control uses to draw an object.

HandsOffStorage Tells a rich edit control to release its
reference to the storage interface
associated with the specified object.

SaveCompleted Tells a rich edit control that the most
recent save operation has been
completed, and that it should hold on
to a different storage for the object.

InPlaceDeactivate Tells a rich edit control to deactivate
the currently active in-place object, if
any.

ContextSensitiveHelp Tells a rich edit control to transition
into or out of context-sensitive help
mode.

GetClipboardData Retrieves a clipboard object for a
range in an edit control.

ImportDataObject Imports a clipboard object into a rich
edit control, replacing the current
selection.

IRichEditOle::ActivateAs
Handles OLE "Activate As" behavior by unloading all objects of the old class, telling OLE to treat
those objects as objects of the new class, and reloading the objects. If objects cannot be
reloaded, they are deleted.

HRESULT ActivateAs(

REFCLSID rclsid,
REFCLSID rclsidAs

);
Parametersrclsid

Class identifier of the old class.
rclsidAs

Class identifier of the new class.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or an
SCODE returned from OLE.See AlsoIRichEditOle

IRichEditOle::ContextSensitiveHelp
Tells a rich edit control that it should transition into or out of context sensitive help mode. A rich
edit control calls the ContextSensitiveHelp method of any in place object which is currently
active if a state change is occuring.

HRESULT ContextSensitiveHelp(

BOOL fEnterMode
);
ParametersfEnterMode

TRUE if entering context sensitive help mode; otherwise, FALSE.Return ValuesReturns success status. Can use GetScode to retrieve an SCODE. Can be S_OK on success or
some other value returned by OLE.See AlsoIRichEditOle

IRichEditOle::ConvertObject
Converts an object to a new type. This call does reload the object but does not force an update;
the caller must do this.

HRESULT ConvertObject(

LONG iob,
REFCLSID rclsidNew,
LPCSTR lpstrUserTypeNew

);
Parametersiob

Index of the object to convert. If this parameter is REO_IOB_SELECTION, the selected object
is to be converted.

rclsidNew

Class identifier of the class to which the object is to be converted.
szUserTypeNew

User-visible type name of the class to which the object is to be converted.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or
E_INVALIDARG if the index is invalid, or an SCODE returned from OLE.See AlsoIRichEditOle

IRichEditOle::GetClientSite
Retrieves an IOleClientSite interface to be used when creating a new object. All objects inserted
into a rich edit control must use client site interfaces returned by this function. A client site may be
used with exactly one object.

HRESULT GetClientSite(

LPOLECLIENTSITE FAR * lplpolesite
);
Parameterslplpoleclientsite

Pointer to the pointer variable that receives the address of the IOleClientSite interface.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or
E_OUTOFMEMORY if memory could not be allocated for the client site.See AlsoIRichEditOle

IRichEditOle::GetClipboardData
Retrieves a clipboard object for a range in an edit control.

HRESULT GetClipboardData(

CHARRANGE FAR * lpchrg,
DWORD reco,
LPDATAOBJECT FAR * lplpdataobj

);
Parameterslpchrg

Pointer to the CHARRANGE structure specifying the range to create the clipboard object for.
reco

Clipboard operation flag. Can be one of these values.
RECO_COPY Copy to the clipboard.
RECO_CUT Cut to the clipboard.
RECO_DRAG Drag operation (drag and drop)
RECO_DROP Drop operation (drag and drop).
RECO_PASTE Paste from the clipboard.

lplpdataobj

Pointer to the DATAOBJECT structure that receives the clipboard object representing the
range specified in the lpchrg parameter.Return ValuesReturns success status.See AlsoCHARRANGE, IRichEditOle

IRichEditOle::GetLinkCount
Returns the number of objects in a rich edit control that are links.

LONG GetLinkCount();Return ValuesReturns the number of links.See AlsoIRichEditOle

IRichEditOle::GetObject
Returns information from a REOBJECT structure about an object in a rich edit control.

HRESULT GetObject(

LONG iob,
REOBJECT FAR * lpreobject,
DWORD dwFlags

);
Parametersiob

Zero-based index specifying which object to return information about. If this parameter is
REO_IOB_USE_CP, information about the object at the character position specified by the
REOBJECT structure is returned.

lpreobject

Pointer to a REOBJECT structure that receives information about the object. The reference
count of the interfaces returned in this structure has been incremented; it is the responsibility
of the caller to use the Release function to decrement the count.

dwFlags

Operation flags specifying which interfaces to return in the structure. Can be a combination of
these values:

REO_GETOBJ_POLEOBJ Get OLE object interface.
REO_GETOBJ_PSTG Get Storage interface.
REO_GETOBJ_POLESITE Get OLE site interface.
REO_GETOBJ_NO_INTERFACESGet no interfaces.
REO_GETOBJ_ALL_INTERFACESGet all interfaces.

Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or
E_INVALIDARG if no buffer for the REOBJECT structure was given, or the iob or character
position is invalid.See AlsoIRichEditOle, REOBJECT

IRichEditOle::GetObjectCount
Returns the number of objects currently contained in a rich edit control.

LONG GetObjectCount();Return ValuesReturns the number of objects.See AlsoIRichEditOle

IRichEditOle::HandsOffStorage
Tells a rich edit control to release its reference to the storage interface associated with the
specified object. This call does not call the object's IPersistStorage::HandsOffStorage method,
the caller must do that.

HRESULT HandsOffStorage(

LONG iob
);
Parametersiob

Index of the object whose storage is to be released. If this parameter is
REO_IOB_SELECTION, the selected object's storage is to be released.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or

E_INVALIDARG if the index is invalid.See AlsoIPersistStorage::HandsOffStorage, IRichEditOle

IRichEditOle::ImportDataObject
Imports a clipboard object into a rich edit control, replacing the current selection.

HRESULT ImportDataObject(

LPDATAOBJECT lpdataobj,
CLIPFORMAT cf,
HGLOBAL hMetaPict

);
Parameterslpdataobj

Pointer to a DATAOBJECT structure specifying the clipboard object to import.
cf

Clipboard format to use or zero to use the best available format.
hMetaPict

Handle to a metafile containing the icon view of an object. Used only if the DVASPECT_ICON
display aspect is required by Paste Special command.Return ValuesReturns success status.See AlsoIRichEditOle

IRichEditOle::InPlaceDeactivate
Tells a rich edit control to deactivate the currently active in-place object, if any.

HRESULT InPlaceDeactivate();Return ValuesReturns success status. Can use GetScode to retrieve an SCODE. Can be S_OK on success or
some other value returned by OLE. No error is returned if there is no active in-place object.See AlsoIRichEditOle

IRichEditOle::InsertObject
Inserts an object into a rich edit control.

HRESULT InsertObject(

REOBJECT FAR * lpreobject
);
Parameterslpreobject

Pointer to a REOBJECT structure containing the object information and interfaces. The rich
edit control automatically increments the reference count for the interfaces if it holds onto
them, so the caller can safely release the interfaces if not needed.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or

E_OUTOFMEMORY if memory could not be allocated to insert the object.

If the cp member of the REOBJECT structure is REO_CP_SELECTION, the selection is replaced
with the specified object.See AlsoIRichEditOle, REOBJECT

IRichEditOle::SaveCompleted
Tells a rich edit control that the most recent save operation has been completed, and that it should
hold on to a different storage for the object.

HRESULT SaveCompleted(

LONG iob,
LPSTORAGE lpstg

);
Parametersiob

Index of the object whose storage is being specified. If this parameter is
REO_IOB_SELECTION, the selected object is used.

pstg

New storage for the object. If the storage is not NULL, the rich edit control releases any
storage it is currently holding for the object, and uses this new storage instead.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or

E_INVALIDARG if the index is invalid.See AlsoIRichEditOle

IRichEditOle::SetDvaspect
Sets the aspect that a rich edit control uses to draw an object. This call does not change the
drawing information cached in the object; this must be done by the caller. The call does cause the
object to be redrawn.

HRESULT SetDvaspect(

LONG iob,
DWORD dvaspect

);
Parametersiob

Index of the object whose aspect is to be set. If this parameter is REO_IOB_SELECTION, the
aspect of the selected object is to be set.

dvaspect

Aspect to use when drawing. The values are defined by OLE.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or
E_INVALIDARG if the index is invalid.See AlsoIRichEditOle

IRichEditOle::SetHostNames
Sets the "host names" to be given to objects as they are inserted to a rich edit control. The host
names are used in the user interface of servers to describe the container context of opened
objects.

HRESULT SetHostNames(

LPCSTR lpstrContainerApp,
LPCSTR lpstrContainerObj

);
ParametersszContainerApp

Null-terminated name of the container application.
szContainerObj

Null-terminated name of the container document or object.Return ValuesReturns success status. Use GetScode to retrieve an scode. Can be S_OK on success or
E_OUTOFMEMORY if memory could not be allocated to remember the strings.See AlsoIRichEditOle

IRichEditOle::SetLinkAvailable
Sets the value of the link available bit in the object's flags. The link available bit defaults to TRUE.
It should be set to FALSE if any errors occur on the link which would indicate problems connecting
to the linked object or application. When those problems are repaired, the bit should be set to
TRUE again.

HRESULT SetLinkAvailable(

LONG iob,
BOOL fAvailable

);
Parametersiob

Index of object whose bit is to be set. If this parameter is REO_IOB_SELECTION, the bit on
the selected object is to be set.

fAvailable

Value to set the bit to. Can be TRUE or FALSE.Return ValuesReturns success status. Use GetScode to retrieve an SCODE. Can be S_OK on success or
E_INVALIDARG if the index is invalid.See AlsoIRichEditOle

IRichEditOleCallback
Specifies an interface used by a rich text edit control to retrieve OLE-related information from its
client. A rich edit control's client is responsible for implementing this interface and assigning it to
the control by using the EM_SETOLEINTERFACE message. The IRichEditOleCallback interface
has the following methods:Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IRichEditOleCallback MethodsDescription

GetNewStorage Provides storage for a new object
pasted from the clipboard or read in
from an RTF stream.

GetInPlaceContext Provides the application and
document level interfaces and
information required to support in-
place activation.

ShowContainerUI Tells the application whether to
display its container user interface.

QueryInsertObject Queries the application as to whether
an object should be inserted.

DeleteObject Notification that an object is about to
be deleted from a rich edit control.

QueryAcceptData Called on a paste or drag to determine
if the data pasted/dragged should be
accepted.

ContextSensitiveHelp Tells the application that it should
transition into or out of context
sensitive help mode.

GetClipboardData Allows the client to supply its own
clipboard object.

GetDragDropEffect Allows the client to specify the effects
of a drop operation.

GetContextMenu Queries the application for a context
menu to use on a right mouse button
down event.

IRichEditOleCallback::ContextSensitiveHelp
Tells the application that it should transition into or out of context sensitive help mode. This
member should implement the functionality described for IOleInPlaceSite::
ContextSensitiveHelp (as described in the OLE documentation).

HRESULT ContextSensitiveHelp(

BOOL fEnterMode
);
ParametersfEnterMode

TRUE if entering context sensitive help mode; otherwise, FALSE.Return ValuesReturns success status.See AlsoIRichEditOleCallback

IRichEditOleCallback::DeleteObject
Notification that an object is about to be deleted from a rich edit control. The object is not
necessarily being released when this member is called.

HRESULT DeleteObject(

LPOLEOBJECT lpoleobj
);
Parameterslpoleobj

Pointer to the OLEOBJECT structure specifying the object that is being deleted.Return ValuesNo return value.See AlsoIRichEditOleCallback

IRichEditOleCallback::GetClipboardData
Allows the client to supply its own clipboard object.

HRESULT GetClipboardData(

CHARRANGE FAR * lpchrg,
DWORD reco,
LPDATAOBJECT FAR * lplpdataobj

);
Parameterslpchrg

Pointer to the CHARRANGE structure specifying the range the clipboard object is for.
reco

Clipboard operation flag. Can be one of these values.
RECO_COPY Copy to the clipboard.
RECO_CUT Cut to the clipboard.
RECO_DRAG Drag operation (drag and drop)
RECO_DROP Drop operation (drag and drop).
RECO_PASTE Paste from the clipboard.

lplpdataobj

Pointer to the pointer variable that receives the address of the IDataObject implementation
representing the range specified in the lpchrg parameter. The value of lppdataobj is ignored if
an error is returned.Return ValuesReturns success status. If the SCODE of the return value is E_NOTIMPL, the rich edit control

creates its own clipboard object. If the SCODE of the return value is a failure other than
E_NOTIMPL the operation fails.See AlsoCHARRANGE, IDataObject, IRichEditOleCallback

IRichEditOleCallback::GetContextMenu
Queries the application for a context menu to use on a right mouse down.

HRESULT GetContextMenu(

WORD seltyp,
LPOLEOBJECT lpoleobj,
CHARRANGE FAR * lpchrg,
HMENU FAR * lphmenu

);
Parametersseltype

selection type
lpoleobj

Pointer to a OLEOBJECT structure specifying the first selected OLE object if the selection
contains one or more objects NULL otherwise. The caller must use AddRef to increment the
object reference count if it holds onto it.

lpchrg

Pointer to a CHARRANGE structure containing the current selection.
lphmenu

Pointer to a variable containing the handle of a context menu to use. This parameter is
ignored if an error is returned. A rich edit control destroys the menu when it is finished with it
so the client should not.Return ValuesReturns success status.See AlsoCHARRANGE, IRichEditOleCallback

IRichEditOleCallback::GetDragDropEffect
Allows the client to specify the effects of a drop operation.

HRESULT GetDragDropEffect(

BOOL fDrag,
DWORD grfKeyState,
LPDWORD pdwEffect

);
ParametersfDrag

TRUE if the query is for a IDropTarget::DragEnter or IDropTarget::DragOver FALSE if the
query is for IDropTarget::Drop.

grfKeyState

Key state as defined by OLE.
pdwEffect

Pointer to the variable that contains the effect normally used by a rich edit control. On return,
the variable is set to the effect to use.Return ValuesNo return value.See AlsoIDropTarget::DragEnter, IDropTarget::DragOver, IDropTarget::Drop IRichEditOleCallback

IRichEditOleCallback::GetInPlaceContext
Provides the application and document level interfaces and information required to support in-
place activation.

HRESULT GetInPlaceContext(

LPOLEINPLACEFRAME FAR * lplpFrame,
LPOLEINPLACEUIWINDOW FAR * lplpDoc,
LPOLEINPLACEFRAMEINFO lpFrameInfo

);
Parameterslplpframe

Pointer to the pointer variable that receives the address of the IOleInPlaceFrame interface
that represents the frame window of the a rich edit control client. Use the AddRef method to
increment the reference count the rich edit control releases the interface when it no longer
needed.

lplpDoc

Pointer to the pointer variable that receives the address of the IOleInPlaceUIWindow
interface that represents the document window of the rich edit control client. An interface need
not be returned if the frame and document windows are the same. Use the AddRef method to
increment the reference count the rich edit control releases the interface when it no longer
needed.

lpFrameInfo

Pointer to the OLEINPLACEFRAMEINFO structure that receives the accelerator information.Return ValuesReturns success status.See AlsoIOleInPlaceFrame, IRichEditOleCallback, OLEINPLACEFRAMEINFO

IRichEditOleCallback::GetNewStorage
Provides storage for a new object pasted from the clipboard or read in from an RTF stream.

HRESULT GetNewStorage(

LPSTORAGE FAR * lplpstg
);
Parameterslplpstg

Address to the pointer variable that receives the address of the IStorage interface created for
the new object.Return ValuesReturns success status.

This method must be implemented to allow cut/copy/paste and drag and drop of OLE objects.See AlsoIRichEditOleCallback, IStorage

IRichEditOleCallback::QueryAcceptData
Called on a paste or drag to determine if the data pasted/dragged should be accepted.

HRESULT QueryAcceptData(

LPDATAOBJECT lpdataobj,
CLIPFORMAT FAR * lpcfFormat,
DWORD reco,
BOOL fReally,
HGLOBAL hMetaPict

);
Parameterslpdataobj

Pointer to the DATAOBJECT structure specifying the data object being pasted or dragged.
lpcfFormat

Pointer to the clipboard format that will be used for the paste or drop operation. If the value
pointed to by lpcfFormat is zero, the best available format will be used. If the callback changes
the value pointed to by lpcfFormat, the rich edit control only uses that format and the
operation will fail if the format is not available.

reco

Clipboard operation flag. Can be one of these values.
RECO_DROP Drop operation (drag and drop).
RECO_PASTE Paste from the clipboard.

fReally

Nonzero if the paste or drop is actually happening, zero if this is just a query, such as for
EM_CANPASTE.

hMetaPict

Handle to a metafile containing the icon view of an object if DVASPECT_ICON is being
imposed on a object by Paste Special.Return ValuesReturns success status. If the SCODE of the result is a failure SCODE, the rich edit control

refuses the data and terminates the operation. If the SCODE of the result is S_OK, the control
checks the data itself for acceptable formats. A return of a successful SCODE other than S_OK
means that the callback either checked the data itself (if fReally is FALSE) or imported the data
itself (if fReally is TRUE).

If the application returns a successful result other than S_OK, a rich edit control will not check the
read-only state of the edit control.See AlsoIRichEditOleCallback

IRichEditOleCallback::QueryInsertObject
Queries the application as to whether an object should be inserted. This member is called when
pasting and when reading RTF.

HRESULT QueryInsertObject(

LPCLSID lpclsid,
LPSTORAGE lpstg,
LONG cp

);
Parameterslpclsid

Class identifier of the object to be inserted.
lpstg

Storage containing the object.
cp

Character position at which the object will be inserted.Return ValuesReturns success status. If the SCODE of the result is not S_OK, the object is not inserted.See AlsoIRichEditOleCallback

IRichEditOleCallback::ShowContainerUI
Tells the application whether to display its container user interface. The rich edit control looks
ahead for doubleclicks and defers the call if appropriate (as described in the OLE documentation)
. Applications may defer hiding adornments until an IOleInPlaceFrame::SetBorderSpace call is
received.

HRESULT ShowContainerUI(

BOOL fShow
);
ParametersfShow

Show container UI flag. TRUE to show, FALSE otherwise.Return ValuesReturns success status.

This function is called by the OnUIActivate and OnUIDeActivate methods of the IOleInPlaceSite
interface.See AlsoIRichEditOleCallback, OnUIActivate, OnUIDeActivate

IShellBrowser
The IShellBrowser interface provides services for namespace extensions and is the companion
to the IShellView interface implemented by namespace extensions.. It is similar to the "site"
interfaces that are often found in OLE hosting scenarios, such as IOleControl and
IOleControlSite. This allows the extension to communicate with the host of the namespace,
providing UI elements like menus, status text, and tool bars. This interface also provides the
extension with a way to access storage to save its persistent view state.

IShellBrowser derives from IOleWindow and it represents the container's top-level window,
allowing the contained views to insert their menus into the composite menu, install the composite
menu into the appropriate window frame and remove the container's menu elements from the
composite menu. It sets and displays status text relevant to the in-place object. It also enables or
disables the frame's modeless dialog boxes, and translates accelerator keystrokes intended for
the container's frame.When to ImplementYou do not implement this interface directly. IShellBrowser is implemented by the Windows
Explorer and by the Windows File Open Dialog.When to UseWhen implementing a namespace extension, notably IShellView, you will use the IShellBrowser
implementation that is passed to use IShellBrowser::CreateViewWindow to communicate with
the Explorer.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleWindow Methods Description

GetWindow Returns a handle to one of the
windows participating in in-place
activation.

ContextSensitiveHelp Determines whether context-
sensitive help mode should be
entered during an in-place activation
session.

IShellBrowser Methods Description

InsertMenusSB Inserts the Explorer's menu items to
an empty menu created by the view.

SetMenuSB Installs the composite menu in the
Explorer.

RemoveMenusSB Gives the container a chance to
remove its items from a composite
menu. It perform tasks that are the
opposite of InsertMenuSB.

SetStatusTextSB Sets and displays status text in the
Explorer window.

EnableModelessSB Enables or disables modeless
windows of the Explorer, such as a
floating toolbar.

TranslateAcceleratorSB Reserved for future use.
BrowseObject Tells the Explorer to browse in

another folder.
GetViewStateStream Returns a view-specific stream that

can be used to read and write the
persistent data for a view.

GetControlWindow Gets the window handle of an
Explorer control.

SendControlMsg Sends messages to Explorer
controls.

QueryActiveShellView Returns the currently activated
(displayed) shellview object.

OnViewWindowActive Informs the Explorer that the view
was activated.

SetToolbarItems Adds toolbar items to the Explorer's
toolbar.

IShellBrowser::BrowseObject
[Now Supported on Windows NT]

Tells the Explorer to browse to another folder.

HRESULT BrowseObject(

LPCITEMIDLIST pidl,
// Address of item identifier list

UINT *wFlags // Specifies the folder to be browsed
);
Parameterspidl

Address of an ITEMIDLIST (item identifier list) structure that specifies an object's location.
This value is dependent on the wFlags parameter.

wFlags

Flag specifying the folder to be browsed. It can be zero or more of the following values. The
first three specify whether another window is to be created.

SBSP_SAMEBROWSER Browse to another folder with the same
Explorer window.

SBSP_NEWBROWSER Creates another window for the
specified folder.

SBSP_DEFBROWSER The default behavior is to respect the
view option (the user setting to create
new windows or to browse in place). In
most cases, callers should use this flag.

The following flags specify either the open, explore, or default mode. These values are
ignored if SBSP_SAMEBROWSER or (SBSP_DEFBROWSER && (single window browser ||
explorer)).

SBSP_OPENMODE Use a normal folder window.
SBSP_EXPLOREMODE Use an Explorer window.
SBSP_DEFMODE Us the same one as the current

window.

The following flags specify the pidl parameter's category:
SBSP_ABSOLUTE An absolute pidl (relative from the

desktop).
SBSP_RELATIVE A relative pidl (relative from the current

folder).
SBSP_PARENT Browse the parent folder (ignores the

pidl).
Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksViews can use this method to force the Explorer to browse to a specific place in the namespace.

Typically, these are folders contained in the view.See AlsoIShellBrowser

IShellBrowser::EnableModelessSB
[Now Supported on Windows NT]

Tells the Explorer to enable or disable its modeless dialog boxes.

HRESULT EnableModelessSB(

BOOL fEnable
// Enable or disable modeless dialog

);
ParametersfEnable

Specifies whether the modeless dialog boxes are to be enabled by specifying TRUE or
disabled by specifying FALSE.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to IOleInPlaceFrame::EnableModeless. Although the current version of

the Explorer does not have any modeless dialog boxes, the view should call this member
appropriately when it wants to disable or enable modeless dialog boxes associated with the
Explorer window.See AlsoIShellBrowser

IShellBrowser::GetControlWindow
[Now Supported on Windows NT]

GetControlWindow can be called by the shell view object to get the window handle of an
Explorer control, either for a toolbar or for a status window.

HRESULT GetControlWindow(

UINT id,
// Identifier of an Explorer control

HWND *lphwnd // Handle of the control's window
);
Parametersid

Specifies the identifer for either a toolbar (FCW_TOOLBAR), for a status window
(FCW_STATUS), or for a tree (FCW_TREE).

lphwnd

Pointer to the window handle of the Explorer control.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksGetControlWindow is used so views can directly manipulate the toolbar and status bar.
FCW_TREE should be used only to sense whether the tree is present; that is, whether the folder
is in Explorer mode or folder mode.

Notes to Callers
This is used to manipulate and test the state of these windows. Do not send messages directly to
these controls; instead, use IShellBrowser::SendControlMsg. Be prepared for the returns of this
call to be NULL. Future versions of the Explorer may not include a toolbar, status bar, or tree
window.

Notes to Implementors
IShellBrowser::GetControlWindow returns the hwnds of these controls if they exist in your
implementation.See AlsoIShellBrowser

IShellBrowser::GetViewStateStream
[Now Supported on Windows NT]

The browser provides an IStream interface as the storage for view-specific state information.

HRESULT GetViewStateStream(

DWORD grfMode,
// Specifies the mode

LPSTREAM *ppStrm // Points to the LPSTREAM variable
);
ParametersgrfMode

Specifiies the read-write access. This may be set to STGM_READ, STGM_WRITE, or
STGM_READWRITE. For more information about these values see the STGM enumeration.

ppStrm

Pointer to the address of the LPSTREAM variable to be filled.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksUsed to save and restore the persistent state for a view. For example, the icon positions the
column widths, and the current scroll position.

Notes to Callers:
Use GetViewStateStream when the view is being created to read in the saved view state and
when the view is being closed to save any changes to the view state. Typically, the view calls this
member with STGM_READ when creating a view window and with STGM_WRITE when the
SaveViewState method of its IShellView interface is called.

Notes to Implementors:
Each shell view should have its own view stream. The Explorer implements an MRU (most
recently used) list of view streams that are stored on a per-user basis in the registry.See AlsoIShellBrowser

IShellBrowser::InsertMenusSB
[Now Supported on Windows NT]

Allows the Explorer to insert its menu groups into the composite menu being displayed while
viewing or using an extended namespace.

HRESULT InsertMenusSB(

HMENU hmenuShared,
// A handle to an empty menu

LPOLEMENUGROUPWIDTHS lpMenuWidths // Points to OLEMENUGROUPWIDTHS
);
ParametershmenuShared

Specifies a handle to an empty menu.
lpMenuWidths

Points to an OLEMENUGROUPWIDTHS array of 6 LONG values. The container fills in
elements 0,2, and 4 to reflect the number of menu elements it provided in the File, View, and
Window menu groups.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to IOleInPlaceFrame::InsertMenus. The Explorer puts File and Edit

pulldown menus in the File menu group, View and Tools in the Container menu group, and Help in
the Window menu group. Each pulldown menu will have a unique identifier, FCIDM_MENU_FILE/
EDIT/VIEW/TOOLS/HELP. The view is allowed to insert menu items into those submenus by their
identifiers, which is different from OLE's in-place activation mechanism. The command IDs for
menus that the view inserts into either the Explorer's submenus or its own submenus, must be
between FCIDM_SHVIEWFIRST and FCIDM_SHVIEWLAST.

Notes to Callers
This method is called by namespace extensions when they are first being activated so they can
insert their menus into the frame-level user interface.

The object application asks the container to add its menus to the menu specified in hmenuShared
and to set the group counts in the OLEMENUGROUPWIDTHS array pointed to by lpMenuWidths.
The object application then adds its own menus and counts. Objects can call IOleInPlaceFrame:
:InsertMenus as many times as necessary to build up the composite menus. The container
should use the initial menu handle associated with the composite menu for all items in the drop-
down menus.

Notes to Implementors
For IShellBrowser implementations, the menu identifiers must be in the range of
FCIDM_BROWSERFIRST to FCIDM_BROWSERLAST.See AlsoIShellBrowser

IShellBrowser::OnViewWindowActive
[Now Supported on Windows NT]

The shell view window calls OnViewWindowActive when the view window or one of its child
windows gets the focus.

HRESULT OnViewWindowActive(

IShellView *ppshv
// Points to the view's address

);
Parametersppshv

Points to the address of the currently active shell view object.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe view must pass its IShellView implementation to this routine, although the current version of
the Explorer does not use this parameter.

Notes to Callers
The shell view window must call this member before calling IShellBrowser::InsertMenusSB
because it will insert a different set of menu items depending on whether the view has the focus.

Notes to Implementors
Lets you know that the view is getting the focus, for example, on a mouse click.See AlsoIShellBrowser

IShellBrowser::QueryActiveShellView
[Now Supported on Windows NT]

QueryActiveShellView returns the currently activated (displayed) shell view object.

HRESULT QueryActiveShellView(

IShellView **ppshv
// Points to the view's address

);
Parametersppshv

Points to the address of the currently active shell view object.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

Notes to callers
QueryActiveShellView is useful because it is possible for an IShellBrowser to host several shell
views simultaneously. However, the current version of the Explorer does not do this.See AlsoIShellBrowser

IShellBrowser::RemoveMenusSB
[Now Supported on Windows NT]

Gives the container a chance to remove its menu elements from the in-place composite menu and
free all associated resources.

HRESULT RemoveMenusSB(

HMENU hmenuShared
// Handle to in-place composite menu

);
ParametershmenuShared

Specifies a handle to the in-place composite menu that was constructed by calls to
IShellBrowser::InsertMenusSB and the Win32 InsertMenu function.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to IOleInPlaceFrame::RemoveMenus.

The object should always give the container a chance to remove its menu elements from the
composite menu before deactivating the shared user interface.

Notes to Callers
Called by the object application while it is being UI-deactivated to remove its menus.See AlsoIShellBrowser

IShellBrowser::SendControlMsg
[Now Supported on Windows NT]

SendControlMsg can be called by the shell view object to send control messages to an Explorer
control, either for a toobar or for a status bar window.

HRESULT SendControlMsg(

UINT id,
// Identifies a control

UINT uMsg, // Specifies the message to be sent
WPARAM wParam, // Depends on uMsg
LPARAM lParam, // Depends on uMsg
LRESULT *pref // Points to the SendMessage return value

);
Parametersid

Specifies the identifer for either a toolbar (FCW_TOOLBAR) or for a status bar window
(FCW_STATUS).

uMsg

Specifies the message to be sent to the control.
wParam

This value depends on the message specified in the uMsg parameter.
lParam

This value depends on the message specified in the uMsg parameter.
pret

Pointer to the return value of the SendMessage function.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksRefer to the commctrl.h header file to find the messages that can be sent to the toolbar or status
bar control.

Notes to Callers
Use of this call requires diligent attention because leaving either the status bar or toolbar in an
inappropriate state will affect the performance of the Explorer.

Notes to Implementors
If your Explorer does not have these controls you can return E_NOTIMPL.See AlsoIShellBrowser

IShellBrowser::SetMenuSB
[Now Supported on Windows NT]

Installs the composite menu in the view window. Similar to IOleInPlaceFrame::SetMenu.

RESULT SetMenuSB(

HMENU hmenuShared,
// A handle to the composite menu

HOLEMENU holemenuReserved // Reserved for future use
);
ParametershmenuShared

Specifiies a handle to the composite menu constructed by calls to IShellBrowser::
InsertMenusSB and the Win32 InsertMenu function.

holemenuReserved

Reserved for future use.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to IOleInPlaceFrame::SetMenu. However, the Explorer performs menu
dispatch based on the menu item ID.

The availability of specific menu items depends on whether the view has the focus. Accordingly, it
is necessary to call IShellBrowser::OnViewWindowActive whenever the view window (or one of
it's child windows) has the focus.

Notes to Callers
The object calls IShellBrowser::SetMenuSB to ask the container to install the composite menu
structure set up by calls to IShellBrowser::InsertMenusSB.

Notes to Implementers
A container's implementation of this method should call the Windows SetMenu function.See AlsoIShellBrowser

IShellBrowser::SetStatusTextSB
[Now Supported on Windows NT]

Sets and displays status text about the in-place object in the container's frame-window status line.

HRESULT SetStatusTextSB(

LPCOLESTR lpszStatusText
// Address of string with the message

);
ParameterslpszStatusText

Points to a null-terminated character string containing the message to display.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksIt is also possible to send messages directly to the status window by using SendControlMsg.

Notes to Callers
Use this method to set the contents of the status bar.See AlsoIShellBrowser

IShellBrowser::SetToolbarItems
[Now Supported on Windows NT]

The SetToolbarItems method can be called by the view to add toolbar items to the Explorer's
toolbar.

HRESULT SetToolbarItems(

LPTBBUTTON lpButtons,
// Points to an array of items

UINT nButtons, // Number of buttons in the array
UINT uFlags // Specifies button location

);
ParameterslpButtons

Points to an array of toolbar items.
nButtons

Number of buttons in the lpButtons array.
uFlags

Flags specifying where the toolbar buttons should go.
FCT_ADDTOEND Add at the right side of the toolbar.
FCT_CONFIGABLE Not implemented.
FCT_MERGE Merge the toolbar items instead of

replacing all of the buttons with those
provided by the view. This is the
recommended choice.

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis is the way toolbars are merged into the Explorer's toolbar.

Notes to Callers
See the Common Controls TOOLBAR control for the definition of TBBUTTON.See AlsoIShellBrowser

IShellBrowser::TranslateAcceleratorSB
[Now Supported on Windows NT]

This method is not used in the Explorer at this time.

HRESULT TranslateAcceleratorSB(

LPMSG lpmsg,
// Points to an MSG structure

WORD wID // Contains the command identifier value
);
Parameterslpmsg

Points to an MSG structure containing the keystroke message.
wID

Contains the command identifier value corresponding to the keystroke in the container-
provided accelerator table. Containers should use this value instead of translating again.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to IOleInPlaceFrame::TranslateAccelerator but is not used.See AlsoIShellBrowser

IShellExecuteHook
Extends the behavior of ShellExecute or ShellExecuteEx. Typically implemented by subsystems
that expose the names of objects that users might type into the Start.Run... dialog.When to ImplementYou should implement IShellExecuteHook when you have named objects that users would
expect to be able to run in the Start.Run... dialog.When to UseYou do not use this interface directly. It is generally used by the ShellExecuteEx code.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellExecuteHook Description

Execute Fill in this field.

IShellExecuteHook::Execute
[Now Supported on Windows NT]

Provides a hook with an opportunity to intercept a command and perform an alternate action.

HRESULT Execute(

LPSHELLEXECUTEINFO pei
// Points to a SHELLEXECUTEINFO struct.

);
Parameterspei

Pointer to a SHELLEXECUTEINFO structure. This structure is discussed further under
ShellExecuteEx.Return ValuesReturns NOERROR if the hook is implemented in the executable or S_FALSE if it is not. It is an

OLE-defined error value otherwise.RemarksExecute provides the hook the chance to pick off a command to be executed and perform some
other action.See AlsoIShellExecuteHook, IShellExtInit, ITEMIDLIST

IShellExtInit
The IShellExtInit interface is used to initialize shell extensions for property sheets, context
menus, and drag-and-drop handlers (extensions that add items to context menus during non-
default drag-and-drop operations).When to ImplementImplement IShellExtInit when you are writing a handler based on IContextMenu or
IShellPropSheetExt.

Note that shell extensions based on other interfaces do not use this method of initializationWhen to UseYou don't use this interface directly. It is called by the shell to initialize the handler.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellExtInit Method Description

Initialize Initializes the shell extension.

IShellExtInit::Initialize
[Now Supported on Windows NT]

Initializes a property sheet extension, context menu extension, or drag and drop handler.

HRESULT Initialize(

LPCITEMIDLIST pidlFolder,
// Points to an ITEMIDLIST structure

LPDATAOBJECT lpdobj, // Points to an IDataObject interface
HKEY hkeyProgID // Registry key for the file object or folder type

);
ParameterspidlFolder

Pointer to an ITEMIDLIST (item identifier list) structure that uniquely identifies a folder. For
property sheet extensions, this parameter is NULL. For context menu extensions, it is the
IDList for the folder that cotains the item whose context menu is being displayed. For non-
default drag-and-drop menu extensions, this parameter must specify the target folder.

lpdobj

Pointer to an IDataObject interface object that can be used to retrieve the objects being acted
upon.

hkeyProgID

Registry key for the file object or folder type.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe meanings of some parameters depend on the extension type. For drag and drop handlers,
the item identifier list specifies the destination folder (the drop target), the IDataObject interface
identifies the items being dropped, and the registry key specifies the file class of the destination
folder.

For context menu extensions, the item identifier list specifies the folder that contains the selected
file objects, the IDataObject interface identifies the selected file objects, and the registry key
specifies the file class of the file object that has the focus.Notes to ImplementorsThis is the first method that the shell calls after it creates an instance of a property sheet
extension, context menu extension, or drag and drop handler.See AlsoIShellExtInit, ITEMIDLIST

IShellFolder
The IShellFolder interface is used to manage folders.

When to Implement
Implement IShellFolder for objects that extend the shell's namespace. For example, if you create
a separate name space that requires a rooted Explorer; or if you install a new name space directly
within the hierarchy of the system name space.Only you know anything about the contents of your
name space so you are responsible for implementing everything needed to access your data.

When to Use
Use IShellFolder when you need to display or operate on the contents of the shell's namespace.
Objects that support IShellFolder are usually created by other shell folder objects, with the root
object (the Desktop shell folder) being returned from the SHGetDesktopFolder function.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellFolder Methods Description

ParseDisplayName Translates a display name into an
item identifier list.

EnumObjects Enumerates the objects in a folder.
BindToObject Retrieves the IShellFolder interface

for the specified subfolder.
BindToStorage Returns the storage instance of a

subfolder.
CompareIDs Compares two item identifier lists and

returns the result.
CreateViewObject Creates a view object of the folder

itself.
GetAttributesOf Retrieves the attributes of the

specified file object or subfolder.
GetUIObjectOf Creates an OLE interface that can be

used to carry out operations on a file
object or subfolder.

GetDisplayNameOf Retreives the display name of a file
object or subfolder.

SetNameOf Sets the display name of the
specified file object or subfolder and
changes its identifier accordingly.

IShellFolder::BindToObject
[Now Supported on Windows NT]

Creates an IShellFolder object for a subfolder.

HRESULT BindToObject(

LPCITEMIDLIST pidl,
// Pointer to an ITEMIDLIST

LPBC pbcReserved, // Reserved ¾ specify NULL
REFIID riid, // Interface to return
LPVOID *ppvOut // Address that receives interface pointer

);
Parameterspidl

Pointer to an ITEMIDLIST structure that identifies the subfolder relative to its parent folder.
pbcReserved

Reserved. Callers should specify NULL for this parameter; callees should ignore it.
riid

Identifier of the interface to return. This parameter must point to the IID_IShellFolder interface
identifier.

ppvOut

Address that receives the interface pointer. If an error occurs, a NULL pointer is returned in
this address.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksUse BindToObject to access the COM interface to the sub-folder or sub-object.See AlsoIShellFolder, ITEMIDLIST, SHGetDeskTopFolder

IShellFolder::BindToStorage
[Now Supported on Windows NT]

Reserved for a future use. This method should return E_NOTIMPL.

IShellFolder::CompareIDs
[Now Supported on Windows NT]

Determines the relative ordering of two file objects or folders, given their item identifier lists.

HRESULT CompareIDs(

LPARAM lParam,
// Type of comparison to perform

LPCITEMIDLIST pidl1, // Address of ITEMIDLIST structure
LPCITEMIDLIST pidl2 // Address of ITEMIDLIST structure

);
ParameterslParam

Value specifying the type of comparison to perform. The calling application should always
specify zero, indicating that the two items should be sorted by name.

pidl1 and pidl2

Addresses of two ITEMIDLIST structures that uniquely identify the items to be compared.
Both item identifier lists are relative to the parent folder.Return ValuesReturns a handle to a result code. If this method is successful, the CODE field of the status code

(SCODE) has the following meaning:

CODE field Meaning

Less than zero The first item should precede the second (pidl1 <
pidl2).

Greater than zero The first item should follow the second (pidl1 >
pidl2)

Zero The two items are the same (pidl1 = pidl2).
RemarksPassing 0 as the lParam indicates sort by name. 0x00000001-0x7fffffff are for folder specific

sorting rules. 0x80000000-0xfffffff are used the system.See AlsoIShellFolder, ITEMIDLIST

IShellFolder::CreateViewObject
[Now Supported on Windows NT]

Creates a view object of a folder.

HRESULT CreateViewObject(

HWND hwndOwner,
// Handle of owner window

REFIID riid, // Interface identifier
LPVOID *ppvOut // Reserved

);
ParametershwndOwner

Specifies the owner window for any modal dialog boxes or message boxes within this call. It
may be different from hwndParen passed in a call to IShellView::CreateViewWindow.
Handle of the owner window from which to create the view object.

riid

Identifier of the interface to return.
ppvOut

Specifies the address that receives a pointer to the view object.Return ValuesReturns NOERROR if successful or an OLE defined error value otherwiise.RemarksIt is important to remember that the COM object created by CreateViewObject must be a different
object than the shell folder object. The Explorer may call CreateViewObject more than once to
create more than one view object and expects them to behave as independent objects. A new
view object must be created for each call.See AlsoIShellFolder

IShellFolder::EnumObjects
[Now Supported on Windows NT]

Determines the contents of a folder by creating an item enumeration object (a set of item
identifiers) that can be retrieved using the IEnumIDList interface.

HRESULT EnumObjects(

HWND hwndOwner,
// Handle of owner window

DWORD grfFlags, // ems to include in enumeration
LPENUMIDLIST *ppenumIDList // Pointer to IEnumIDList

);
ParametershwndOwner

Handle of the owner window that the client should specify if it displays a dialog box or
message box.

grfFlags

Flags determining which items to iclude in the enumeration. For a list of possible values, see
the description of the SHCONTF type.

ppenumIDList

Address that receives a pointer to the IEnumIDList interface created by this method. If an
error occurs, a NULL pointer is returned in this address.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe calling application must free the returned IEnumIDList object by calling its Release method.

This method is similar to the method defined by OLE.See AlsoIEnumIDList, IOleContainer::EnumObjects, IShellFolder, SHGetDeskTopFolder

IShellFolder::GetAttributesOf
[Now Supported on Windows NT]

Retrieves the attributes of one or more file objects or subfolders.

HRESULT GetAttributesOf(

UINT cidl,
// Number of file objects

LPCITEMIDLIST *apidl, // Pointer to array of pointers to ITEMIDLIST structures
ULONG *rgfInOut // Address of value containing attributes of the file objects

);
Parameterscidl

Number of file objects to get the attributes of.
apidl

Pointer to an array of pointers to ITEMIDLIST structures, each of which uniquely identifies a
file object relative to the parent folder. Each ITEMIDLIST structure must contain exactly one
SHITEMID structure followed by a terminating zero.

rgfInOut

Address of a ULONG value that specifies the common (logically AND'ed) attributes of
specified file objects.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe following tables list the attribute flags that may be returned by this method. File object

attributes include capability flags, display attributes, contents flags, and miscellaneous attributes.

A file object's capability flags may include zero or more of the following values:

SFGAO_CANCOPY The specified file objects or folders
can be copied (same value as the
DROPEFFECT_COPY flag).

SFGAO_CANDELETE The specified file objects or folders
can be deleted.

SFGAO_CANLINK It is possible to create shortcuts for
the specified file objects or folders
(same value as the
DROPEFFECT_LINK flag).

SFGAO_CANMOVE The specified file objects or folders
can be moved (same value as the
DROPEFFECT_MOVE flag).

SFGAO_CANRENAME The specified file objects or folders
can be renamed.

SFGAO_CAPABILITYMASK Mask for the capability flags.
SFGAO_DROPTARGET The specified file objects or folders

are drop targets.
SFGAO_HASPROPSHEET The specified file objects or folders

have property sheets.

A file object's display attributes may include zero or more of the following values:

SFGAO_DISPLAYATTRMASK Mask for the display attributes.

SFGAO_GHOSTED The specified file objects or folders
should be displayed using a ghosted
icon.

SFGAO_LINK The specified file objects are
shortcuts.

SFGAO_READONLY The specified file objects or folders
are read-only.

SFGAO_SHARE The specified folders are shared.

A file object's contents flags may include zero or more of the following values:

SFGAO_CONTENTSMASK Mask for the contents attributes.

SFGAO_HASSUBFOLDER The specified folders have subfolders
(and are, therefore, expandable in the
left pane of Windows Explorer).

A file object may have zero or more of the following miscellaneous attributes:

SFGAO_FILESYSTEM The specified folders or file objects
are part of the file system (that is,
they are files, directories, or root
directories).

SFGAO_FILESYSANCESTOR The specified folders contain one or
more file system folders.

SFGAO_FOLDER The specified items are folders.
SFGAO_REMOVABLE The specified file objects or folders

are on removable media.
SFGAO_VALIDATE Validate cached information.
RemarksYou can optimize this operation by not returning unspecified flags.See AlsoIShellFolder, ITEMIDLIST, SHITEMID

IShellFolder::GetDisplayNameOf
[Now Supported on Windows NT]

Retrieves the display name for the specified file object or subfolder, returning it in a STRRET
structure.

HRESULT GetDisplayNameOf(

LPCITEMIDLIST pidl,
// Pointer to an ITEMIDLIST

DWORD uFlags, // Type of display to return
LPSTRRET lpName // Pointer to a STRRET structure

);
Parameterspidl

Pointer to an ITEMIDLIST structure that uniquely identifies the file object or subfolder relative
to the parent folder.

uFlags

Value indicating the type of display name to return. For a list of possible values, see the
description of the SHGNO enumerated type.

lpName

Pointer to a STRRET structure in which to return the display name. The string returned in this
structure depends on the type of display name requested.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksIf the ID contains the display name (in the local character set), it returns the offset to the name. If

not, it returns a pointer to the display name string (UNICODE) allocated by the task allocator, or it
fills in a buffer. The type of string returned depends on the type of display specified. Values
identifying different types of display names are contained in the enumeration SHGNO.See AlsoIShellFolder, ITEMIDLIST, STRRET, SHGNO

IShellFolder::GetUIObjectOf
[Now Supported on Windows NT]

Creates a COM object that can be used to carry out actions on the specified file objects or folders,
typically, to create context menus or carry out drag-and-drop operations.

HRESULT GetUIObjectOf(

HWND hwndOwner,
// Handle to owner window

UINT cidl, // Number of objects specified in apidl
LPCITEMIDLIST *apidl, // Pointer to an array of pointers to an ITEMIDLIST structure
REFIID riid, // Interface to return
UINT *prgfInOut, // Reserved
LPVOID *ppvOut // Address to receive interface pointer

);
ParametershwndOwner

Handle of the owner window that the client should specify if it displays a dialog box or
message box.

cidl

Number of file objects or subfolders specified by apidl.
apidl

Pointer to an array of pointers to ITEMIDLIST structures, each of which uniquely identifies a
file object or subfolder relative to the parent folder. Each item identifier list must contain
exactly one SHITEMID structure followed by a terminating zero.

riid

Specifies the type and the interface of the COM object to return. This parameter can be a
pointer to the IID_IExtractIcon, IID_IContextMenu, IID_IDataObject, or IID_IDropTarget
interface identifier.

prgfInOut

Reserved.
ppvOut

Address that receives the interface pointer. If an error occurs, a NULL pointer is returned in
this address.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksGetUIObjectOf creates a UI object to be used for specified objects. Either IID_IDataObject

(transfer operations) or IID_IContextMenu (context menu operations) is passed in the riid
parameter.See AlsoIShellFolder, ITEMIDLIST, SHITEMID

IShellFolder::ParseDisplayName
[Now Supported on Windows NT]

Translates a file object or folder's display name into an item identifier.

HRESULT ParseDisplayName(

HWND hwndOwner,
// Handle of owner window

LPBC pbcReserved, // Reserved
LPOLESTR lpszDisplayName, // Pointer to diplay name
ULONG *pchEaten, // Pointer to value for parsed characters
LPITEMIDLIST *ppidl, // Pointer to new item identifier list
ULONG *pdwAttributes // Address receiving attributes of file object

);
ParametershwndOwner

Handle of the owner window that the client should specify if it displays a dialog box or
message box.

pbcReserved

Reserved; this parameter is always NULL.
lpszDisplayName

Pointer to a null-terminated Unicode string specifying the display name. This parameter must
be a display name for parsing ¾ that is, a display name retrieved using the
SHGDN_FORPARSING value.

pchEaten

Pointer to an unsigned long value that receives the number of characters of the display name
that were parsed.

ppidl

Address that receives a pointer to the new item identifier list for the object. If an error occurs,
a NULL is returned in this address.
The returned item identifier list specifies the relative path (from the parent folder) that
corresponds to the specified display name. It contains only one SHITEMID structure followed
by a terminating zero.

pdwAttributes

Address that receives the attributes of the file object. Can be NULL if the caller does not need
attribute data.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is similar to the IParseDisplayName::ParseDisplayName method defined by

OLE.See AlsoIParseDisplayName::ParseDisplayName, IShellFolder, IShellLink, SHITEMID

IShellFolder::SetNameOf
[Now Supported on Windows NT]

Changes the name of a file object or subfolder, changing its item identifier in the process.

HRESULT SetNameOf(

HWND hwndOwner,
// Handle of owner window

LPCITEMIDLIST pidl, // Pointer to an ITEMIDLIST structure
LPCOLESTR lpszName, // Pointer to string specifying new display name
DWORD uFlags, // Type of name specified in lpszName
LPITEMIDLIST *ppidlOut // Pointer to new ITEMIDLIST

);
ParametershwndOwner

Handle of the owner window that the client should specify if it displays a dialog box or
message box.

pidl

Pointer to an ITEMIDLIST structure that uniquely identifies the file object or subfolder relative
to the parent folder.

lpszName

Pointer to a null-terminated string that specifies the new display name.
uFlags

Value indicating the type of name specified by the lpszName parameter. For a list of possible
values, see the description of the SHCONTF enumerated type.

ppidlOut

Address in which the method returns a pointer to the new ITEMIDLIST structure. This
parameter can be NULL, and in that case, the method does not return the new ITEMIDLIST
for the object.
If this parameter is not NULL, this method frees the specified ITEMIDLIST structure and
allocates a new one using the task allocator. The calling application is responsible for freeing
the new ITEMIDLIST structure. If an error occurs, the method returns NULL in this address.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksSetNameOf sets the display name of the specified object. If it also changes the item identifier,

then it returns the new item identifier (a pidl), which is allocated by the task allocator. Changing
the display name of a file system object or folder within renames the file or directory.See AlsoIShellFolder, ITEMIDLIST

IShellIcon
The IShellIcon interface is used to obtain an icon index for an IShellFolder object. Only one
instance of the interface for the folder is required instead of an instance for each object, as is the
case for IExtractIcon.When to ImplementImplement IShellIcon as part of an IShellFolder implementation as a quick way to obtain the icon
for an object in the folder.

If IShellIcon is not implemented by an IShellFolder object, IShellFolder::GetUIObjectOf(...,
IID_IExtractIcon, ...) is used to get an icon for all objects.When to UseUse IShellIcon when getting icon indexes for items in a shell folder.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellIcon Methods Description

GetIconOf Retrieves an icon for an object in a
folder.

IShellIcon::GetIconOf
[Now Supported on Windows NT]

Retrieves an icon for an object inside a specific folder.

HRESULT GetIconOf(

LPCITEMIDLIST pidl,
// Points to an item identifier list

UINT flags, // Flags specifying the display state
LPINT lpIconIndex // Points to where the icon index is to be returned

);
Parameterspidl

Pointer to the ITEMIDLIST (item identifier list) structure that specifies the relative location of
the folder.

flags

This parameter can be zero or one of the following values:
Value Meaning
GIL_FORSHELL The icon is to be displayed in a shell folder.
GIL_OPENICON The icon should be in the "open" state if

both open- and closed-state images are
available. If this flag is not specified the icon
should be in the normal or "closed" state.
This flag is typically used for folder objects.

lpIconIndex

Pointer to the location where the icon index will be returned.Return ValuesReturns NOERROR if lpIconIndex contains the correct system imagelist index. S_FALSE is
returned if an icon cannot be obtained for this object.

The following standard imagelist indexes can be returned:

Value Meaning

0 Document (blank page, not associated)
1 Document (with data on the page)
2 Application (file extension must be .exe, .com, .bat)
3 Folder (plain)
4 Folder (open)

RemarksIf you are unable to get an icon for this object using GetIconOf, use IShellFolder::
GetUIObjectOf to get an object that supports IExtractIcon::Extract.

Notes to Callers
The indexes returned are from the system image list.

Notes to Implementors
This method cannot be implemented external to the shell itself.See AlsoIShellIcon

IShellLink
Designates an interface that allows an application to create and resolve shell links.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellLink Methods Description

GetArguments Retrieves the command-line
arguments associated with a shell link
object.

GetDescription Retrieves the description string for a
shell link object.

GetHotkey Retrieves the hot key for a shell link
object.

GetIconLocation Retrieves the location (path and
index) of the icon for a shell link
object.

GetIDList Retrieves the list of item identifiers for
a shell link object.

GetPath Retrieves the path and filename of a
shell link object.

GetShowCmd Retrieves the show (SW_) command
for a shell link object.

GetWorkingDirectory Retrieves the name of the working
directory for a shell link object.

Resolve Resolves a shell link by searching for
the shell link object and updating the
shell link path and its list of identifiers
(if necessary).

SetArguments Sets the command-line arguments
associated with a shell link object.

SetDescription Sets the description string for a shell
link object.

SetHotkey Sets the hot key for a shell link object.
SetIconLocation Sets the location (path and index) of

the icon for a shell link object.
SetIDList Sets the list of item identifiers for a

shell link object.
SetPath Sets the path and filename of a shell

link object.
SetRelativePath Sets the relative path for a shell link

object.
SetShowCmd Sets the show (SW_) command for a

shell link object.
SetWorkingDirectory Sets the name of the working directory

for a shell link object.

IShellLink::GetArguments
[Now Supported on Windows NT]

Retrieves the command-line arguments associated with a shell link object.

HRESULT STDMETHODCALLTYPE GetArguments(

ISHELLLINK FAR *pShlLnk,
LPSTR pszArgs,
int cchMaxPath

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszArgs

Pointer to a buffer that receives the command-line arguments.
cchMaxPath

Maximum number of characters to copy to the buffer pointed to by pszArgs.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::GetDescription
[Now Supported on Windows NT]

Retrieves the description string for a shell link object.

RESULT STDMETHODCALLTYPE GetDescription(

ISHELLLINK FAR *pShlLnk,
LPSTR pszName,
int cchMaxName

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszName

Pointer to a buffer that receives the description string.
cchMaxName

Maximum number of characters to copy to the buffer pointed to by pszName.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::GetHotkey
[Now Supported on Windows NT]

Retrieves the hot key for a shell link object.

HRESULT STDMETHODCALLTYPE GetHotkey(

ISHELLLINK FAR *pShlLnk,
WORD *pwHotkey

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pwHotkey

Pointer to the hot key. The virtual-key code is in the low-order byte, and the modifier flags are
in the high-order byte. The modifier flags can be a combination of the following values:

HOTKEYF_ALT ALT key
HOTKEYF_CONTROL CTRL key
HOTKEYF_EXT Extended key
HOTKEYF_SHIFT SHIFT key

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::GetIconLocation
[Now Supported on Windows NT]

Retrieves the location (path and index) of the icon for a shell link object.

HRESULT STDMETHODCALLTYPE GetIconLocation(

ISHELLLINK FAR *pShlLnk,
LPSTR pszIconPath,
int cchIconPath,
int *piIcon

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszIconPath

Pointer to a buffer that receives the path of the file containing the icon.
cchIconPath

Maximum number of characters to copy to the buffer pointed to by pszIconPath.
piIcon

Pointer to a value that receives the index of the icon.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::GetIDList
[Now Supported on Windows NT]

Retrieves the list of item identifiers for a shell link object.

HRESULT STDMETHODCALLTYPE GetIDList(

ISHELLLINK FAR *pShlLnk,
LPITEMIDLIST *ppidl

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
ppidl

Pointer to a pointer to a list of item identifiers.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::GetPath
[Now Supported on Windows NT]

Retrieves the path and filename of a shell link object.

HRESULT STDMETHODCALLTYPE GetPath(

IShellLink FAR *pShlLnk,
LPSTR pszFile,
int cchMaxPath,
WIN32_FIND_DATA *pfd,
DWORD fFlags

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszFile

Pointer to a buffer that receives the path and filename of the shell link object.
cchMaxPath

Maximum number of bytes to copy to the buffer pointed to by pszFile.
pfd

Pointer to a WIN32_FIND_DATA structure that contains information about the shell link
object.

fFlags

Flags that specify the type of path information to retrieve. This parameter can be a
combination of the following values:

SLGP_SHORTPATH Retrieves the standard short (8.3)
filename.

SLGP_UNCPRIORITY Retrieves the Universal Naming
Convention (UNC) path name of the file.

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink, WIN32_FIND_DATA

IShellLink::GetShowCmd
[Now Supported on Windows NT]

Retrieves the show command for a shell link object.

HRESULT STDMETHODCALLTYPE GetShowCmd(

ISHELLLINK FAR *pShlLnk,
int *piShowCmd

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
piShowCmd

Pointer to the show command. For a list of show commands, see the description of the
ShowWindow function.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink, ShowWindow

IShellLink::GetWorkingDirectory
[Now Supported on Windows NT]

Retrieves the name of the working directory for a shell link object.

HRESULT STDMETHODCALLTYPE GetWorkingDirectory(

ISHELLLINK FAR *pShlLnk,
LPSTR pszDir,
int cchMaxPath

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszDir

Pointer to a buffer that receives the name of the working directory.
cchMaxPath

Maximum number of characters to copy to the buffer pointed to by pszDir. The name of the
working directory is truncated if it is longer than the maximum specified by this parameter.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::Resolve
[Now Supported on Windows NT]

Resolves a shell link. The system searches for the shell link object and updates the shell link path
and its list of identifiers (if necessary).

HRESULT STDMETHODCALLTYPE Resolve(

ISHELLLINK FAR *pShlLnk,
HWND hwnd,
DWORD fFlags

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
hwnd

Handle of a window that the shell uses as the parent window for a dialog box. The shell
displays the dialog box if it needs to prompt the user for more information while resolving a
shell link.

fFlags

Action flags. This parameter can be a combination of the following values:
SLR_ANY_MATCH Resolves the link, displaying a dialog box if the

system needs information from the user.
SLR_NO_UI Prevents the shell from displaying a dialog box

if it cannot resolve the shell link. When this flag
is specified, the high-order word of fFlags
specifies a timeout duration, in milliseconds.
The function returns if the link cannot be
resolved within the timeout duration. If the high-
order word is set to zero, the timeout duration
defaults to 3000 milliseconds (3 seconds).

SLR_UPDATE Directs the shell to update the path to the link
and the list of identifiers if the link object has
been changed. If this value is used, it is not
necessary to call the IPersistFile::IsDirty
method to determine whether the link object
has changed.

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksWhen this method is called, the system retrieves the path associated with the current link object
and searches for the object in that path. If the system finds the object, it resolves the link. If the
system cannot find the object, it looks in the same directory for an object with the same file
creation time and attributes, but with a different name. This type of search resolves a link to an
object that has been renamed.

If the system still cannot find the link object, it searches the subdirectories of the current directory.
It does a recursive search of the directory tree looking for a match with either the same name or
creation time. If it does not find a match after that, the shell displays a dialog box prompting the
user for a location. An application can suppress the dialog box by specifying the SLR_NO_UI
value in a call to this method.See AlsoIShellLink

IShellLink::SetArguments
[Now Supported on Windows NT]

Sets the command-line arguments for a shell link object.

HRESULT STDMETHODCALLTYPE SetArguments(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszArgs

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszArgs

Pointer to a buffer that contains the new command-line arguments.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

This method is useful when creating a link to an application that takes special flags as arguments,
such as a compiler.See AlsoIShellLink

IShellLink::SetDescription
[Now Supported on Windows NT]

Sets the description for a shell link object. The description can be any application-defined string.

HRESULT STDMETHODCALLTYPE SetDescription(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszName

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszName

Pointer to a buffer containing the new description string.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::SetHotkey
[Now Supported on Windows NT]

Sets a hot key for a shell link object.

HRESULT STDMETHODCALLTYPE SetHotkey(

ISHELLLINK FAR *pShlLnk,
WORD wHotkey

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
wHotkey

Hot key. The virtual-key code is in the low-order byte, and the modifier flags are in the high-
order byte. The modifier flags can be a combination of the values specified in the description
of the IShellLink::GetHotkey method.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

Setting a hot key allows the user to activate the object by pressing a particular combination of
keys.See AlsoIShellLink, IShellLink::GetHotkey

IShellLink::SetIconLocation
[Now Supported on Windows NT]

Sets the location (path and index) of the icon for a shell link object.

HRESULT STDMETHODCALLTYPE SetIconLocation(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszIconPath,
int iIcon

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszIconPath

Pointer to a buffer that contains the path of the file containing the icon.
iIcon

Index of the icon.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::SetIDList
[Now Supported on Windows NT]

Sets the list of item identifiers for a shell link object.

HRESULT STDMETHODCALLTYPE SetIDList(

ISHELLLINK FAR *pShlLnk,
LPCITEMIDLIST pidl

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pidl

Pointer to a list of item identifiers.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

This method is useful when an application needs to set a shell link to an object that is not a file,
such as a Control Panel application, a printer, or another computer.See AlsoIShellLink

IShellLink::SetPath
[Now Supported on Windows NT]

Sets the path and filename of a shell link object.

HRESULT STDMETHODCALLTYPE SetPath(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszFile

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszFile

Pointer to a buffer that contains the new path.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::SetRelativePath
[Now Supported on Windows NT]

Sets the relative path to the shell link object.

HRESULT STDMETHODCALLTYPE SetRelativePath(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszPathRel,
LPCITEMIDLIST pidlRel

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszPathRel

Pointer to a buffer that contains the new relative path.
pidlRel

Pointer to a list of item identifiers that identify the object.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink

IShellLink::SetShowCmd
[Now Supported on Windows NT]

Sets the show command for a shell link object. The show command sets the initial show state of
the window.

HRESULT STDMETHODCALLTYPE SetShowCmd(

ISHELLLINK FAR *pShlLnk,
int iShowCmd

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
iShowCmd

Show command. For a list of the show commands, see the description of the ShowWindow
function.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellLink, ShowWindow

IShellLink::SetWorkingDirectory
[Now Supported on Windows NT]

Sets the name of the working directory for a shell link object.

HRESULT STDMETHODCALLTYPE SetWorkingDirectory(

ISHELLLINK FAR *pShlLnk,
LPCSTR pszDir

);
ParameterspShlLnk

Pointer to the IShellLink interface. In C++, this parameter is implicit.
pszDir

Pointer to a buffer that contains the name of the new working directory.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

The working directory must be set only if the object requires it to be set. For example, if an
application creates a shell link to a Microsoft Word document that uses a template that resides in
a different directory, the application would use this method to set the working directory.See AlsoIShellLink

IShellPropSheetExt
Designates an interface that allows a property sheet handler to add or replace pages in the
property sheet for a file object.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IShellPropSheetExt Methods Description

AddPages Adds one or more pages to a
property sheet for a file object.

ReplacePage Replaces a page in a property sheet
for a control panel object.

IShellPropSheetExt::AddPages
[Now Supported on Windows NT]

Adds one or more pages to a property sheet that the shell displays for a file object. When it is
about to display the property sheet, the shell calls the AddPages method of each property sheet
handler registered to the file type.

HRESULT STDMETHODCALLTYPE AddPages(

IShellPropSheetExt FAR *pProp,
LPFNADDPROPSHEETPAGE lpfnAddPage,
LPARAM lParam

);
ParameterspProp

Pointer to the IShellPropSheetExt interface. In C++, this parameter is implicit.
lpfnAddPage

Pointer to a function that the property sheet handler calls to add a page to the property sheet.
The function takes a property sheet handle returned by the CreatePropertySheetPage
function and the lParam parameter passed to the AddPages method.

lParam

Parameter to pass to the function specified by lpfnAddPage.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

For each page it needs to add to a property sheet, a property sheet handler fills a
PROPSHEETPAGE structure, calls CreatePropertySheetPage, and then calls the function
specified by lpfnAddPage.See AlsoCreatePropertySheetPage, IShellPropSheetExt, PROPSHEETPAGE

IShellPropSheetExt::ReplacePage
[Now Supported on Windows NT]

Replaces a page in a property sheet for a control panel object.

HRESULT STDMETHODCALLTYPE ReplacePage(

IShellPropSheetExt FAR *pProp,
UINT uPageID,
LPFNADDPROPSHEETPAGE lpfnReplacePage,
LPARAM lParam

);
ParameterspProp

Pointer to the IShellPropSheetExt interface. In C++, this parameter is implicit.
uPageID

Identifier of the page to replace. The values for this parameter for control panels can be found
in the CPLEXT.H header file.

lpfnReplacePage

Pointer to a function that the property sheet handler calls to replace a page to the property
sheet. The function takes a property sheet handle returned by the CreatePropertySheetPage
function and the lParam parameter passed to the ReplacePage method.

lParam

Parameter to pass to the function specified by lpfnReplacePage.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

To replace a page, a property sheet handler fills a PROPSHEETPAGE structure, calls
CreatePropertySheetPage, and then calls the function specified by lpfnReplacePage.See AlsoCreatePropertySheetPage, IShellPropSheetExt, PROPSHEETPAGE

IShellView
The IShellView interface is implemented to present a view in the Windows Explorer or folder
windows. The object that exposes IShellView is created by a call to IShellFolder::
CreateViewObject. This provides the channel of communication between a view object and the
Explorer's outermost frame window. The communication involves the translation of messages, the
state of the frame window (activated or deactivated), and the state of the document window
(Activated or deactivated), the merging of menus, and toolbar items.When to ImplementThis interface is implemented by namespace extensions that want to represent themselves in the
Explorer's namespace. This object is created by the IShellFolder object that hosts the view.When to UseThese methods are used by the shell view's Explorer window to manipulate objects while they are
active.Methods in Vtable OrderIUnknown Methods Description
QueryInterface Returns pointers to supported

interfaces.
AddRef Increments reference count.
Release Decrements reference count.

IOleWindow Methods Description

GetWindow Returns a handle to one of the
windows participating in in-place
activation.

ContextSensitiveHelp Determines whether context-
sensitive help mode should be
entered during an in-place activation
session.

IShellView Methods Description

TranslateAccelerator Translates accelerator key strokes
when a namespace extension's view
has the focus.

EnableModeless Enables or disables modeless dialog
boxes. Not in use by the Explorer at
this time.

EnableModelessSV Not in use at this time.
UIActivate Passes a value when the state of the

view window is changed by events
not caused by the shell view itself.

Refresh Responds to user input to refresh the
display.

CreateViewWindow Creates the view window.
DestroyViewWindow Destroys the view window.
GetCurrentInfo Returns the folder settings.
AddPropertySheetPages Allows the view to add pages to the

options property sheet.
SaveViewState Saves the current view state into a

stream obtained by the view by
calling IShellBrowser::
GetViewStateStream.

SelectItem Changes the state of items within the
shell view window.

GetItemObject Allows callers to get an object that
represents something in the view.

IShellView::AddPropertySheetPages
[Now Supported on Windows NT]

Provides a way for the view to add pages to the Options property sheet.

HRESULT AddPropertySheetPages(

DWORD dwReserved,
// Reserved.

LPFNADDPROPSHEETPAGE lpfn, // Points to the callback that adds pages
LPARAM lparam // lparam to be passed to the callback function

);
ParametersdwReserved

This parameter is reserved for future use.
lpfn

Pointer to the callback function used to add the pages.
lparam

Specifies the lParam that must be passed to the callback in the lpfn parameter.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksAllows the view to add property pages to the View.Options... property page.

Notes to implementors
The Explorer calls this method when it is opening the View.Options... property sheet. Views can
add pages by creating them and calling the callback function with the page handles.See AlsoIShellView, CreatePropertySheetPage

IShellView::CreateViewWindow
[Now Supported on Windows NT]

CreateViewWindow creates a view window. This can be either the right pane of the Explorer or
the client window of a folder window.

RESULT CreateViewWindow(

ISHELLLINK *lpPrevView,
// Points to previous view

LPFOLDERSETTINGS lpfs, // Points to FOLDERSETTINGS
IShellBrowser *psb, // Points to shell browser
RECT *prcView, // Points to the rect the defines the view size
HWND *phWnd // Points to the returned window handle

);
ParameterslpPrevView

Pointer to the view window being exited. Views can use it to talk to a previous view of the
same implementation. This can be used to optimize browsing between like views. This pointer
may be NULL.

lpfs

Pointer to a FOLDERSETTINGS structure. The view should use this when creating its view.
psb

Pointer to the current instance of IShellBrowser. The view should AddRef this pointer and
keep it to allow communication with the Explorer window.

prcView

Specifies the dimensions in client coordinates in which the view should create itself.
phWnd

Pointer to the handle of the window being created.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis is the call that creates the view.

Notes to Callers
Call this method when the view needs to be created.

Notes to Implementors
Create your view window and restore any persistent state by calling IShellBrowser::
GetViewStateStream.See AlsoIShellView, IShellBrowser::GetViewStateStream

IShellView::DestroyViewWindow
[Now Supported on Windows NT]

DestroyViewWindow destroys the view window.
HRESULT DestroyViewWindow(

ParametersThis method has no parameters.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe Explorer calls this method when a folder window or the Explorer is being closed.

Notes to Implementors
Clean up all state that represents the view, including the window and any other associated
resources.See AlsoIShellView

IShellView::EnableModeless
[Now Supported on Windows NT]

If the view owns any modeless dialog boxes, it should disable all of them when this member is
called with FALSE and keep them disabled until it is called again with TRUE.

HRESULT EnableModeless(

LPFOLDERSETTINGS fEnable
// Boolean flags

);
ParametersfEnable

Specifies TRUE to enable modeless dialog box windows, FALSE to disable them.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.See AlsoIShellView

IShellView::EnableModelessSV
Currently not in use.

IShellView::GetCurrentInfo
[Now Supported on Windows NT]

Obtains information about the current folder settings.

HRESULT GetCurrentInfo(

LPFOLDERSETTINGS lpfs
// Points to the folder settings

);
Parameterslpfs

Pointer to a FOLDERSETTINGS structure to receive the settings.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe Explorer uses GetCurrentInfo to query the view for standard settings.

Notes to Callers
Used to get the current view settings of the view.

Notes to Implementors
Return as many of the settings as apply. This is intended to let browsing from view to view
maintain the same basic settings. For example, if the user sets Details view, going from one folder
to the other in Explorer mode, it should remain in Details view.See AlsoIShellView

IShellView::GetItemObject
[Now Supported on Windows NT]

Returns an interface that refers to data presented in the view.

HRESULT GetItemObject(

UINT uItem,
// Specifies background object constants

REFIIDriid, // Identifies the interface to return
LPVOID *ppv // Address that receives the interface pointer

);
ParametersuItem

Specifies constants that refer to an aspect of the view. It can be any of the following values.
Value Meaning
SVGIO_BACKGROUND Refers to the background of the view.

It is used with IID_IContextMenu to
get a context menu for the view
background.

SVGIO_SELECTION Refers to the currently selected items.
IID_IDataObject uses this constant to
get a data object that represents the
selected items.

SVGIO_ALLVIEW Same as SVGIO_SELECTION but
refers to all items in the view.

riid

Identifier of the interface to return.
ppv

Address that receives the interface pointer. If an error occurs, the pointer returned must be
NULL.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksUsed by the common dialogs to get the selected items from the view.See AlsoIShellView

IShellView::Refresh
[Now Supported on Windows NT]

Refreshes the view's contents in response to an event such as when a user hits the F5 key.
HRESULT Refresh(

ParametersThis method has no parameters.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksTells the view to refresh its contents, revalidating any view information it has.

Notes to Callers
The Explorer calls this method when F5 is pressed on an already open view.

Notes to Implementors
Refill the view by going to any underlying storage for the contents.See AlsoIShellView

IShellView::SaveViewState
[Now Supported on Windows NT]

Allows the shell view to store its view settings so the current state can be restored during a
subsequent browsing session.

HRESULT SaveViewState(

ParametersThis method has no parameters.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThe shell view is supposed to get a view stream by calling IShellBrowser::GetViewStateStream
and store the current view state in that stream.

Notes to Callers
The Explorer calls this method when it wants to save the view state for a view.

Notes to Implementors
Be sure to make the format of the data stored in the stream robust and versionable.See AlsoIShellBrowser::GetViewStateStream, IShellView

IShellView::SelectItem
[Now Supported on Windows NT]

Changes the selection state of one or more items within the shell view window.

HRESULT SelectItem(

LPCITEMIDLIST pidlItem,
// Points to item ID list

UINT uFlags // Specifies the selection state
);
ParameterspidlItem

Pointer to the item ID list. If this parameter is NULL and uFlags is SVSI_DESELECTOTHERS,
all items should be deselected.

uFlags

Flag specifying what type of selection to apply. This parameter can be one of the following
values:

Value Meaning
SVSI_DESELECT Deselect the specified item.
SVSI_DESELECTOTHERS If pidlItem is NULL, deselect all items.
SVSI_EDIT Put the pidlItem in edit mode.
SVSI_ENSUREVISIBLE Ensure the item is displayed on the

screen.
SVSI_FOCUSED The item should be given the focus.
SVSI_SELECT The item should be selected.

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksThis method is used to implement functionality in the Explorer.

Notes to Implementors
SelectItem is used to implement the File Target command of the shell shortcut property sheet.See AlsoIShellView

IShellView::TranslateAccelerator
[Now Supported on Windows NT]

Processes menu accelerator-key messages from the container's message queue.

HRESULT TranslateAccelerator(

LPMSG lpmsg
// Points to a message that may need translating.

);
Parameterslpmsg

Pointer to the message that might need to be translated.Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.

Returning S_OK indicates that the message was translated and should not be translated or
dispatched by the Explorer.RemarksTranslateAccelerator is called by the Explorer to let the view translate its accelerators.

Notes to Callers
The Explorer calls this method before any other translation if the view has the focus. If the view
does not have the focus (if the tree has it, for example) this is called after the Explorer translates
its own accelerators.

Notes to Implementors
By default, the view should return S_FALSE so that the Explorer can either do it's own accelerator
translation or normal menu dispatching. The view should return S_OK only if it has processed the
message as the accelerator and does not want the Explorer to process it further.See AlsoIShellView

IShellView::UIActivate
[Now Supported on Windows NT]

Called by the Explorer whenever the activation state of the view window is changed by a certain
event that is not caused by the shell view itself. For example, if the TAB key is pressed when the
tree has the focus, the view should be given the focus.

HRESULT UIActivate(

UINT uState
// activation state flag

);
ParametersuState

Flag specifying the activation state of the window. This parameter can be one of the following
values:

Value Meaning
SVUIA_ACTIVATE_FOCUS The Explorer has just created the

view window with the input focus.
This means the shell view should
be able to set menu items
appropriate for the focused state.

SVUIA_ACTIVATE_NOFOCUS The shell view is either losing the
input focus or it has just been
created without the input focus.
The shell view should be able to
set menu items appropriate for
the nonfocused state. This
means no selection-specific items
should be added.

SVUIA_DEACTIVATE The Explorer is about to destroy
the shell view window. The shell
view should remove all extended
UIs, typically merged menu and
modeless popup windows.

Return ValuesReturns NOERROR if successful or an OLE-defined error value otherwise.RemarksTo remerge menu items, the shell view typically hooks the WM_SETFOCUS message and calls
IShellBrowser::OnViewWindowActivated before remerging. The shell view should not hook the
WM_KILLFOCUS message to remerge menu items.

Notes to Callers
Call this method to inform the view of activation state change.

Notes to Implementors
Use this method to track activation state and change any behavior, as appropriate.See AlsoIShellView

ABM_ACTIVATE
Notifies the system that an appbar has been activated. An appbar should call this message in
response to the WM_ACTIVATE message.SHAppBarMessage(ABM_ACTIVATE, pabd);
Parameterspabd

Pointer to an APPBARDATA structure that identifies the appbar to activate. You must specify
the cbSize and hWnd members when sending this message; all other members are ignored.

Return ValuesAlways returns TRUE.RemarksThis message is ignored if the hWnd member of the structure pointed to by pabd identifies an
autohide appbar. The system automatically sets the Z order for an autohide appbar.See AlsoAPPBARDATA

ABM_GETAUTOHIDEBAR
Retrieves the handle of the autohide appbar associated with an edge of the screen.hwndAutoHide = (HWND) SHAppBarMessage(ABM_GETAUTOHIDEBAR, pabd);
Parameterspabd

Pointer to an APPBARDATA structure that specifies the screen edge. You must specify the
cbSize, hWnd, and uEdge members when sending this message; all other members are
ignored.

Return ValuesReturns the handle of the autohide appbar. The return value is NULL if an error occurs or if no
autohide appbar is associated with the given edge.See AlsoAPPBARDATA

ABM_GETSTATE
Retrieves the autohide and always-on-top states of the Windows taskbar.fuState = (UINT) SHAppBarMessage(ABM_GETSTATE, pabd);
Parameterspabd

Pointer to an APPBARDATA structure. You must specify the cbSize and hWnd members
when sending this message; all other members are ignored.

Return ValuesReturns zero if the taskbar is not in the autohide or always-on-top state. Otherwise, the return
value is one or both of the following values:

ABS_ALWAYSONTOP The taskbar is in the always-on-top state.

ABS_AUTOHIDE The taskbar is in the autohide state.
See AlsoAPPBARDATA

ABM_GETTASKBARPOS
Retrieves the bounding rectangle of the Windows taskbar.fResult = (BOOL) SHAppBarMessage(ABM_GETTASKBARPOS, pabd);
Parameterspabd

Pointer to an APPBARDATA structure whose rc member receives the bounding rectangle, in
screen coordinates, of the taskbar. You must specify the cbSize and hWnd when sending this
message; all other members are ignored.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoAPPBARDATA

ABM_NEW
Registers a new appbar and specifies the message identifier that the system should use to send
notification messages to the appbar. An appbar should send this message before sending any
other appbar messages.fRegistered = (BOOL) SHAppBarMessage(ABM_NEW, pabd);
Parameterspabd

Pointer to an APPBARDATA structure that contains the new appbar's window handle and
message identifier. You must specify the cbSize, hWnd, and uCallbackMessage members
when sending this message; all other members are ignored.

Return ValuesReturns TRUE if successful or FALSE if an error occurs or the appbar is already registered.See AlsoAPPBARDATA

ABM_QUERYPOS
Requests a size and screen position for an appbar. The message proposes a screen edge and a
bounding rectangle for the appbar. The system adjusts the bounding rectangle so that the appbar
does not interfere with the Windows taskbar or any other appbars. An appbar should send this
message before sending the ABM_SETPOS message.SHAppBarMessage(ABM_QUERYPOS, pabd);
Parameterspabd

Pointer to an APPBARDATA structure. The uEdge member specifies a screen edge, and the
rc member contains the proposed bounding rectangle. When the SHAppBarMessage
function returns, rc contains the approved bounding rectangle. You must specify the cbSize,
hWnd, uEdge, and rc members when sending this message; all other members are ignored.

Return ValuesAlways returns TRUE.See AlsoAPPBARDATA

ABM_REMOVE
Unregisters an appbar, removing it from the system's internal list. The system no longer sends
notification messages to the appbar nor prevents other applications from using the screen area
occupied by the appbar.SHAppBarMessage(ABM_REMOVE, pabd);
Parameterspabd

Pointer to an APPBARDATA structure that contains the handle of the appbar to unregister.
You must specify the cbSize and hWnd members when sending this message; all other
members are ignored.

Return ValuesAlways returns TRUE.

This message causes the system to send the ABN_POSCHANGED notification message to all
appbars.See AlsoAPPBARDATA

ABM_SETAUTOHIDEBAR
Registers or unregisters an autohide appbar for an edge of the screen. The system allows only
one autohide appbar for each edge on a first come, first served basis.fSuccess = (BOOL) SHAppBarMessage(ABM_SETAUTOHIDEBAR, pabd);
Parameterspabd

Pointer to an APPBARDATA structure. The uEdge member specifies the screen edge. The
lParam parameter is set to TRUE to register the appbar or FALSE to unregister it. You must
specify the cbSize, hWnd, uEdge, and lParam members when sending this message; all
other members are ignored.

Return ValuesReturns TRUE if successful or FALSE if an error occurs or an autohide appbar is already
registered for the given edge.See AlsoAPPBARDATA

ABM_SETPOS
Sets the size and screen position of an appbar. The message specifies a screen edge to and the
bounding rectangle for the appbar. The system may adjust the bounding rectangle so that the
appbar does not interfere with the Windows taskbar or any other appbars.SHAppBarMessage(ABM_SETPOS, pabd);
Parameterspabd

Pointer to an APPBARDATA structure. The uEdge member specifies a screen edge, and the
rc member contains the bounding rectangle. When the SHAppBarMessage function returns,
rc contains the approved bounding rectangle. You must specify the cbSize, hWnd, uEdge,
and rc members when sending this message; all other members are ignored.

Return ValuesAlways returns TRUE.

This message causes the system to send the ABN_POSCHANGED notification message to all
appbars.See AlsoAPPBARDATA

ABM_WINDOWPOSCHANGED
Notifies the system when an appbar's position has changed. An appbar should call this message
in response to the WM_WINDOWPOSCHANGED message.SHAppBarMessage(ABM_WINDOWPOSCHANGED, pabd);
Parameterspabd

Pointer to an APPBARDATA structure that identifies the appbar to activate. You must specify
the cbSize and hWnd members when sending this message; all other members are ignored.

Return ValuesAlways returns TRUE.RemarksThis message is ignored if the hWnd member of the structure pointed to by pabd identifies an
autohide appbar.See AlsoAPPBARDATA

ABN_FULLSCREENAPP
Notifies an appbar when a full-screen application is opening or closing. When a full-screen
application is opening, an appbar must drop to the bottom of the Z order. When it is closing, the
appbar should restore its Z order position. This notification is sent in the form of an application-
defined message that is set by the ABM_NEW message.ABN_FULLSCREENAPP
fOpen = (BOOL) lParam;
ParametersfOpen

Flag specifying whether a full screen application is opening or closing. This parameter is
TRUE if opening or FALSE if closing.

Return ValuesNo return value.

ABN_POSCHANGED
Notifies an appbar when an event has occurred that may effect the appbar's size and position.
Events include changes in the taskbar's size, position, and visibility state, as well as the addition,
removal, or resizing of another appbar on the same side of the screen.Return ValuesNo return value.RemarksAn appbar should respond to this notification message by sending the ABM_QUERYPOS and
ABM_SETPOS messages. If its position has changed, the appbar should call the MoveWindow
function to move itself to the new position.See AlsoMoveWindow

ABN_STATECHANGE
Notifies an appbar that the taskbar's autohide or always-on-top state has changed ¾ that is, the
user has checked or unchecked the "Always on top" or "Auto hide" check box on the taskbar's
property sheet. An appbar can use this notification message to set its state to conform to that of
the taskbar, if desired.ABN_STATECHANGE
Return ValuesNo return value.

ABN_WINDOWARRANGE
Notifies an appbar that the user has selected the Cascade, Tile Horizontally, or Tile Vertically
command from the taskbar's context menu.ABN_WINDOWARRANGE
fBeginning = (BOOL) lParam;
ParametersfBeginning

Flag specifying whether the cascade or tile operation is beginning. This parameter is TRUE if
the operation is beginning and the windows have not yet been moved. It is FALSE if the
operation has completed.

Return ValuesNo return value.RemarksThe system sends this notification message twice ¾ first with lParam set to TRUE and then with
lParam set to FALSE. The first notification is sent before the windows are cascaded or tiled, and
the second is sent after the cascade or tile operation has occurred.

ACM_OPEN
The ACM_OPEN message opens an AVI clip and displays its first frame in an animation control.
You can send this message explicitly or by using the Animate_Open macro.ACM_OPEN
wParam = 0;
lParam = (LPARAM) (LPSTR) lpszName;
ParameterslpszName

Pointer to a buffer that contains the path of the .AVI file or the name of an AVI resource.
Alternatively, this parameter can consist of the AVI resource identifier in the low-order word
and zero in the high-order word. To create this value, use the MAKEINTRESOURCE macro.
The control loads an AVI resource from the module specified by the instance handle passed
to the CreateWindow function, the Animate_Create macro, or the dialog box creation
function that created the control.
The AVI file or resource specified by lpszName must not contain audio. It must be silent.
If this parameter is NULL, the system closes the .AVI file that was previously opened for the
specified animation control, if any.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksYou can only open silent AVI clips. AVI files or resources containing audio will not load.
ACM_OPEN and Animate_Open fail if lpszSource specifies a non-silent AVI clip.

You can use Animate_Close to close an .AVI file or AVI resource that was previously opened for
the specified animation control.

The Animate_Open and Animate_Close macros are defined in COMMCTRL.H.See AlsoAnimate_Close, Animate_Open, MAKEINTRESOURCE

ACM_PLAY
The ACM_PLAY message plays an AVI clip in an animation control. The control plays the clip in
the background while the thread continues executing. You can send this message explicitly or by
using the Animate_Play macro.ACM_PLAY
wParam = (WPARAM) (UINT) cRepeat;
lParam = (LPARAM) MAKELONG(wFrom, wTo);
ParameterscRepeat

Number of times to replay the AVI clip. A value of - 1 means replay the clip indefinitely.
wFrom

Zero-based index of the frame where playing begins. The value must be less than 65,536. A
value of zero means begin with the first frame in the AVI clip.

wTo
Zero-based index of the frame where playing ends. The value must be less than 65,536. A
value of - 1 means end with the last frame in the AVI clip.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksYou can use Animate_Seek to direct the animation control to display a particular frame of the AVI
clip.

The Animate_Play and Animate_Seek macros are defined in COMMCTRL.H.See AlsoAnimate_Play, Animate_Seek

ACM_STOP
The ACM_STOP message stops playing an AVI clip in an animation control. You can send this
message explicitly or by using the Animate_Stop macro.ACM_STOP
wParam = 0;
lParam = 0;
Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.See AlsoAnimate_Stop

ACN_START
The ACN_START notification message notifies an animation control's parent window that the
associated AVI clip has started playing. This notification message is sent in the form of a
WM_COMMAND message.ACN_START
Return ValuesNo return value.See AlsoWM_COMMAND

ACN_STOP
The ACN_STOP notification message notifies an animation control's parent window that the
associated AVI clip has stopped playing. This notification message is sent in the form of a
WM_COMMAND message.ACN_STOP
Return ValuesNo return value.See AlsoWM_COMMAND

BM_CLICK
An application sends a BM_CLICK message to simulate the user clicking a button. This message
causes the button to receive a WM_LBUTTONDOWN and a WM_LBUTTONUP message, and
the button's parent window to receive a BN_CLICKED notification message.BM_CLICK
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.See AlsoBN_CLICKED, WM_LBUTTONDOWN, WM_LBUTTONUP

BM_GETCHECK
An application sends a BM_GETCHECK message to retrieve the check state of a radio button or
check box.BM_GETCHECK
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value from a button created with the BS_AUTOCHECKBOX,

BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE style can be one of the following:

Value Meaning

BST_CHECKED Button is checked.
BST_INDETERMINATE Button is grayed, indicating an indeterminate

state (applies only if the button has the
BS_3STATE or BS_AUTO3STATE style).

BST_UNCHECKED Button is unchecked

If the button has any other style, the return value is zero.See AlsoBM_GETSTATE, BM_SETCHECK

BM_GETIMAGE
An application sends a BM_GETIMAGE message to retrieve the handle of the image (icon or
bitmap) associated with the button.BM_GETIMAGE
wParam = (WPARAM) fImageType; // image-type flag
lParam = 0; // not used, must be zero
ParametersfImageType

Value of wParam. Specifies the type of image to associate with the button. This parameter
can be one of the following values:
IMAGE_BITMAP
IMAGE_ICON

Return ValuesThe return value is the handle of the image, if any; otherwise, it is NULL.See AlsoBM_SETIMAGE

BM_GETSTATE
An application sends a BM_GETSTATE message to determine the state of a button or check box.BM_GETSTATE
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value specifies the current state of the button. You can use the following bitmasks to

extract information about the state:

Value Meaning

0x0003 Specifies the check state (radio buttons and
check boxes only). A value of
BST_UNCHECKED indicates the button is
unchecked; a value of BST_CHECKED
indicates the button is checked. A radio button
is checked when it contains a dot; a check box
is checked when it contains an X. A value of
BST_INDETERMINATE indicates the check
state is indeterminate (applies only if the button
has the BS_3STATE or BS_AUTO3STATE
style). A three-state check box is grayed when
its state is indeterminate.

BST_CHECKED Indicates the button is checked.
BST_FOCUS Specifies the focus state. A nonzero value

indicates that the button has the keyboard
focus.

BST_INDETERMINATEIndicates the button is grayed because the
state of the button is indeterminate. This value
applies only if the button has the BS_3STATE
or BS_AUTO3STATE style.

BST_PUSHED Specifies the highlight state. A nonzero value
indicates that the button is highlighted. A button
is automatically highlighted when the user
positions the cursor over it and presses and
holds the left mouse button. The highlighting is
removed when the user releases the mouse
button.

BST_UNCHECKED Indicates the button is unchecked. Same as the
Windows NT return value of zero.

See AlsoBM_GETCHECK, BM_SETSTATE

BM_SETCHECK
An application sends a BM_SETCHECK message to set the check state of a radio button or
check box.BM_SETCHECK
wParam = (WPARAM) fCheck; // check state
lParam = 0;// not used; must be zero
ParametersfCheck

Value of wParam. Specifies the check state. This parameter can be one of the following
values:

Value Meaning
BST_CHECKED Sets the button state to checked.
BST_INDETERMINATESets the button state to grayed, indicating an

indeterminate state. Use this value only if the
button has the BS_3STATE or
BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to unchecked
Return ValuesThis message always returns zero.RemarksThe BM_SETCHECK message has no effect on push buttons.See AlsoBM_GETCHECK, BM_GETSTATE, BM_SETSTATE

BM_SETIMAGE
An application sends a BM_SETIMAGE message to associate a new image (icon or bitmap) with
the button.BM_SETIMAGE
wParam = (WPARAM) fImageType; // image-type flag
lParam = (LPARAM) (HANDLE) hImage; // handle of the image
ParametersfImageType

Value of wParam. Specifies the type of image to associate with the button. This parameter
can be one of the following values:
IMAGE_BITMAP
IMAGE_ICON

hImage
Value of lParam. Identifies the image to associate with the button.

Return ValuesThe return value is the handle of the image previously associated with the button, if any;
otherwise, it is NULL.See AlsoBM_GETIMAGE

BM_SETSTATE
An application sends a BM_SETSTATE message to change the highlight state of a button. The
highlight state indicates whether the button is highlighted as if the user had pushed it.BM_SETSTATE
wParam = (WPARAM) fState; // highlight state
lParam = 0; // not used; must be zero
ParametersfState

Value of wParam. Specifies whether the button is to be highlighted. A value of TRUE
highlights the button. A value of FALSE removes any highlighting.

Return ValuesThis message always returns zero.RemarksHighlighting only affects the appearance of a button. It has no effect on the check state of a radio
button or check box.

A button is automatically highlighted when the user positions the cursor over it and presses and
holds the left mouse button. The highlighting is removed when the user releases the mouse
button.See AlsoBM_GETSTATE, BM_SETCHECK

BM_SETSTYLE
An application sends a BM_SETSTYLE message to change the style of a button.BM_SETSTYLE
wParam = (WPARAM) LOWORD(dwStyle); // style
lParam = MAKELPARAM(fRedraw, 0); // redraw flag
ParametersdwStyle

Value of wParam. Specifies the button style. For an explanation of button styles, see the
following Remarks section.

fRedraw
Value of the low-order word of lParam. Specifies whether the button is to be redrawn. A value
of TRUE redraws the button; a value of FALSE does not redraw the button.

Return ValuesThis message always returns zero.RemarksFollowing are the available button styles:

Style Meaning

BS_3STATE Creates a button that is the same as a
check box, except that the box can be
grayed as well as checked or unchecked.
Use the grayed state to show that the
state of the check box is not determined.

BS_AUTO3STATE Creates a button that is the same as a
three-state check box, except that the box
changes its state when the user selects it.
The state cycles through checked, grayed,
and unchecked.

BS_AUTOCHECKBOX Creates a button that is the same as a
check box, except that the check state
automatically toggles between checked
and unchecked each time the user selects
the check box.

BS_AUTORADIOBUTTONCreates a button that is the same as a
radio button, except that when the user
selects it, Windows automatically sets the
button's check state to checked and
automatically sets the check state for all
other buttons in the same group to
unchecked.

BS_CHECKBOX Creates a small, empty check box with
text. By default, the text is displayed to the
right of the check box. To display the text
to the left of the check box, combine this
flag with the BS_LEFTTEXT style (or with
the equivalent BS_RIGHTBUTTON style).

BS_DEFPUSHBUTTON Creates a push button that behaves like a
BS_PUSHBUTTON style button, but also
has a heavy black border. If the button is
in a dialog box, the user can select the
button by pressing the ENTER key, even
when the button does not have the input
focus. This style is useful for enabling the
user to quickly select the most likely
(default) option.

BS_GROUPBOX Creates a rectangle in which other controls
can be grouped. Any text associated with
this style is displayed in the rectangle's
upper left corner.

BS_LEFTTEXT Places text on the left side of the radio
button or check box when combined with a
radio button or check box style. Same as
the BS_RIGHTBUTTON style.

BS_OWNERDRAW Creates an owner-drawn button. The
owner window receives a
WM_MEASUREITEM message when the
button is created and a WM_DRAWITEM
message when a visual aspect of the
button has changed. Do not combine the
BS_OWNERDRAW style with any other
button styles.

BS_PUSHBUTTON Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.

BS_RADIOBUTTON Creates a small circle with text. By default,
the text is displayed to the right of the
circle. To display the text to the left of the
circle, combine this flag with the
BS_LEFTTEXT style (or with the
equivalent BS_RIGHTBUTTON style). Use
radio buttons for groups of related, but
mutually exclusive choices.

BS_USERBUTTON Obsolete, but provided for compatibility
with 16-bit versions of Windows. Win32-
based applications should use
BS_OWNERDRAW instead.

BS_BITMAP Specifies that the button displays a
bitmap.

BS_BOTTOM Places text at the bottom of the button
rectangle.

BS_CENTER Centers text horizontally in the button
rectangle.

BS_ICON Specifies that the button displays an icon.
BS_LEFT Left-justifies the text in the button

rectangle. However, if the button is a
check box or radio button that does not
have the BS_RIGHTBUTTON style, the
text is left justified on the right side of the
check box or radio button.

BS_MULTILINE Wraps the button text to multiple lines if
the text string is too long to fit on a single
line in the button rectangle.

BS_NOTIFY Enables a button to send BN_DBLCLK,
BN_KILLFOCUS, and BN_SETFOCUS
notification messages to its parent
window. Note that buttons send the
BN_CLICKED notification message
regardless of whether it has this style.

BS_PUSHLIKE Makes a button (such as a check box,
three-state check box, or radio button)
look and act like a push button. The button
looks raised when it isn't pushed or
checked, and sunken when it is pushed or
checked.

BS_RIGHT Right-justifies text in the button rectangle.
However, if the button is a check box or
radio button that does not have the
BS_RIGHTBUTTON style, the text is right
justified on the right side of the check box
or radio button.

BS_RIGHTBUTTON Positions a radio button's circle or a check
box's square on the right side of the button
rectangle. Same as the BS_LEFTTEXT
style.

BS_TEXT Specifies that the button displays text.
BS_TOP Places text at the top of the button

rectangle.
BS_VCENTER Places text in the middle (vertically) of the

button rectangle.
See AlsoWM_COMMAND, WM_DRAWITEM, WM_MEASUREITEM

BN_CLICKED
The BN_CLICKED notification message is sent when the user clicks a button. The parent window
of the button receives this notification message through the WM_COMMAND message. Unlike the
other button notification messages, this message is intended for applications written for any
version of Windows.BN_CLICKED
idButton = (int) LOWORD(wParam); // identifier of button
hwndButton = (HWND) lParam; // handle of button
RemarksA disabled button does not send a BN_CLICKED notification message to its parent window.See AlsoWM_COMMAND

BN_DBLCLK
The BN_DBLCLK notification message is sent when the user double-clicks a button that has the
BS_OWNERDRAW or BS_RADIOBUTTON style. The parent window of the button receives this
notification message through a WM_COMMAND message.BN_DBLCLK
idButton = (int) LOWORD(wParam); // identifier of button
hwndButton = (HWND) lParam; // handle of buttonBN_DBLCLK is the same as the BN_DOUBLECLICKED notification message.

This notification is provided for compatibility with applications written for versions of Windows
earlier than version 3.0. New applications should use the BS_OWNERDRAW button style and the
DRAWITEMSTRUCT structure for this task.See AlsoBN_CLICKED, BN_DOUBLECLICKED, WM_COMMAND

BN_DISABLE
The BN_DISABLE notification message is sent when a button is disabled. The parent window of
the button receives this notification message through the WM_COMMAND message.BN_DISABLEThis notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.See AlsoDRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_DOUBLECLICKED
The BN_DOUBLECLICKED notification message is sent when the user double-clicks a button that
has the BS_OWNERDRAW or BS_RADIOBUTTON style. The parent window of the button
receives this notification message through the WM_COMMAND message.BN_DOUBLECLICKEDBN_DOUBLECLICKED is the same as the BN_DBLCLK notification message.

This notification is provided for compatibility with applications written for versions of Windows
earlier than version 3.0. New applications should use the BS_OWNERDRAW button style and the
DRAWITEMSTRUCT structure for this task.See AlsoBN_DBLCLK, DRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_HILITE
The BN_HILITE notification message is sent when the user selects a button. The parent window
of the button receives this notification message through the WM_COMMAND message.BN_HILITEThis notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.

BN_HILITE is the same as the BN_PUSHED notification message.See AlsoBN_PUSHED, BN_UNHILITE, DRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_KILLFOCUS
The BN_KILLFOCUS notification message is sent when a button loses the keyboard focus. The
button must have the BS_NOTIFY style to send this notification message. The parent window of
the button receives this notification message through the WM_COMMAND message.BN_KILLFOCUS
See AlsoBN_SETFOCUS, WM_COMMAND

BN_PAINT
The BN_PAINT notification message is sent when a button should be painted. The parent window
of the button receives this notification message through the WM_COMMAND message.BN_PAINTThis notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.See AlsoDRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_PUSHED
The BN_PUSHED notification message is sent when the push state of a button is set to pushed.
The parent window of the button receives this notification message through the WM_COMMAND
message.BN_PUSHEDBN_PUSHED is the same as the BN_HILITE notification message.

This notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.See AlsoBN_HILITE, BN_UNPUSHED, DRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_SETFOCUS
The BN_SETFOCUS notification message is sent when a button receives the keyboard focus.
The button must have the BS_NOTIFY style to send this notification message. The parent window
of the button receives this notification message through the WM_COMMAND message.BN_SETFOCUS
See AlsoBN_KILLFOCUS, WM_COMMAND

BN_UNHILITE
The BN_UNHILITE notification message is sent when the highlight should be removed from a
button. The parent window of the button receives this notification message through the
WM_COMMAND message.BN_HILITEBN_UNHILITE is the same as the BN_UNPUSHED notification message.

This notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.See AlsoBN_HILITE, BN_UNPUSHED, DRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

BN_UNPUSHED
The BN_UNPUSHED notification message is sent when the push state of a button is set to
unpushed. The parent window of the button receives this notification message through the
WM_COMMAND message.BN_PUSHEDBN_UNPUSHED is the same as the BN_UNHILITE notification message.

This notification message is provided for compatibility with applications written for versions of
Windows earlier than version 3.0. New applications should use the BS_OWNERDRAW button
style and the DRAWITEMSTRUCT structure for this task.See AlsoBN_PUSHED, DRAWITEMSTRUCT, WM_COMMAND, WM_DRAWITEM

CB_ADDSTRING
An application sends a CB_ADDSTRING message to add a string to the list box of a combo box.
If the combo box does not have the CBS_SORT style, the string is added to the end of the list.
Otherwise, the string is inserted into the list, and the list is sorted.CB_ADDSTRING
wParam = 0;// not used; must be zero
lParam = (LPARAM) (LPCTSTR) lpsz; // address of string to add
Parameterslpsz

Value of lParam. Points to the null-terminated string to be added. If you create the combo box
with an owner-drawn style but without the CBS_HASSTRINGS style, the value of the lpsz
parameter is stored as item data rather than the string it would otherwise point to. The item
data can be retrieved or modified by sending the CB_GETITEMDATA or CB_SETITEMDATA
message.

Return ValuesThe return value is the zero-based index to the string in the list box of the combo box. If an error
occurs, the return value is CB_ERR. If insufficient space is available to store the new string, it is
CB_ERRSPACE.RemarksIf you create an owner-drawn combo box with the CBS_SORT style but without the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or more times to the
owner of the combo box so the new item can be properly placed in the list.

To insert a string at a specific location within the list, use the CB_INSERTSTRING message.See AlsoCB_DIR, CB_INSERTSTRING, WM_COMPAREITEM

CB_DELETESTRING
An application sends a CB_DELETESTRING message to delete a string in the list box of a combo
box.CB_DELETESTRING
wParam = (WPARAM) index; // item to delete
lParam = 0;// not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string to delete.
Return ValuesThe return value is a count of the strings remaining in the list. If the index parameter specifies an

index greater than the number of items in the list, the return value is CB_ERR.RemarksIf you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,
Windows sends a WM_DELETEITEM message to the owner of the combo box so the application
can free any additional data associated with the item.See AlsoCB_RESETCONTENT, WM_DELETEITEM

CB_DIR
An application sends a CB_DIR message to add a list of filenames to the list box of a combo box.CB_DIR
wParam = (WPARAM) (UINT) uAttrs;// file attributes
lParam = (LPARAM) (LPCTSTR) lpszFileSpec; // address of filename
ParametersuAttrs

Value of wParam. Specifies the attributes of the files to be added to the list box. It can be any
combination of the following values:

Value Meaning
DDL_ARCHIVE Includes archived files.
DDL_DIRECTORY Includes subdirectories. Subdirectory names

are enclosed in square brackets ([]).
DDL_DRIVES Includes drives. Drives are listed in the form [-

x-], where x is the drive letter.
DDL_EXCLUSIVE Includes only files with the specified attributes.

By default, read-write files are listed even if
DDL_READWRITE is not specified.

DDL_HIDDEN Includes hidden files.
DDL_READONLY Includes read-only files.
DDL_READWRITE Includes read-write files with no additional

attributes.
DDL_SYSTEM Includes system files.

lpszFileSpec
Value of lParam. Points to the null-terminated string that specifies the filename to add to the
list. If the filename contains any wildcards (for example, *.*), all files that match and have the
attributes specified by the uAttrs parameter are added to the list.

Return ValuesThe return value is the zero-based index of the last filename added to the list. If an error occurs,
the return value is CB_ERR. If insufficient space is available to store the new strings, it is
CB_ERRSPACE.See AlsoCB_ADDSTRING, CB_INSERTSTRING, DlgDirList, DlgDirListComboBox

CB_FINDSTRING
An application sends a CB_FINDSTRING message to search the list box of a combo box for an
item beginning with the characters in a specified string.CB_FINDSTRING
wParam = (WPARAM) indexStart; // item before start of search
lParam = (LPARAM) (LPCSTR) lpszFind // prefix string address
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item preceding the first item to be
searched. When the search reaches the bottom of the list box, it continues from the top of the
list box back to the item specified by the indexStart parameter. If indexStart is - 1, the entire
list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to search for. The
search is not case sensitive, so this string can contain any combination of uppercase and
lowercase letters.

Return ValuesThe return value is the zero-based index of the matching item. If the search is unsuccessful, it is
CB_ERR.RemarksIf you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,
what the CB_FINDSTRING message does depends on whether your application uses the
CBS_SORT style. If you use the CBS_SORT style, WM_COMPAREITEM messages are sent to
the owner of the combo box to determine which item matches the specified string. If you do not
use the CBS_SORT style, the CB_FINDSTRING message searches for a list item that matches
the value of the lpszFind parameter.See AlsoCB_FINDSTRINGEXACT, CB_SELECTSTRING, CB_SETCURSEL, WM_COMPAREITEM

CB_FINDSTRINGEXACT
An application sends a CB_FINDSTRINGEXACT message to find the first list box string in a
combo box that matches the string specified in the lpszFind parameter.CB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; // item before start of search
lParam = (LPARAM)(LPCSTR)lpszFind; // address of string to search for
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item preceding the first item to be
searched. When the search reaches the bottom of the list box, it continues from the top of the
list box back to the item specified by the indexStart parameter. If indexStart is - 1, the entire
list box is searched from the beginning.

lpszFind
Value of lParam. Points to the null-terminated string to search for. This string can contain a
complete filename, including the extension. The search is not case sensitive, so this string can
contain any combination of uppercase and lowercase letters.

Return ValuesThe return value is the zero-based index of the matching item. If the search is unsuccessful, it is
CB_ERR.RemarksIf you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,
what the CB_FINDSTRINGEXACT message does depends on whether your application uses the
CBS_SORT style. If you use the CBS_SORT style, WM_COMPAREITEM messages are sent to
the owner of the combo box to determine which item matches the specified string. If you do not
use the CBS_SORT style, the CB_FINDSTRINGEXACT message searches for a list item that
matches the value of the lpszFind parameter.See AlsoCB_FINDSTRING, CB_SELECTSTRING, WM_COMPAREITEM

CB_GETCOUNT
An application sends a CB_GETCOUNT message to retrieve the number of items in the list box of
a combo box.CB_GETCOUNT
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the number of items in the list box. If an error occurs, it is CB_ERR.RemarksThe index is zero-based, so the returned count is one greater than the index value of the last item.

CB_GETCURSEL
An application sends a CB_GETCURSEL message to retrieve the index of the currently selected
item, if any, in the list box of a combo box.CB_GETCURSEL
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the zero-based index of the currently selected item. If no item is selected, it is

CB_ERR.See AlsoCB_SELECTSTRING, CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT
An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve the screen
coordinates of the drop-down list box of a combo box.CB_GETDROPPEDCONTROLRECT
wParam = 0;// not used; must be zero
lParam = (LPARAM) (RECT FAR*) lprc; // address of RECT structure
Parameterslprc

Value of lParam. Points to the RECT structure that is to receive the coordinates.
Return ValuesThis message always returns CB_OKAY.See AlsoRECT

CB_GETDROPPEDSTATE
An application sends a CB_GETDROPPEDSTATE message to determine whether the list box of
a combo box is dropped down.CB_GETDROPPEDSTATE
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the list box is visible, the return value is TRUE; otherwise, it is FALSE.See AlsoCB_SHOWDROPDOWN

CB_GETDROPPEDWIDTH
An application sends the CB_GETDROPPEDWIDTH message to retrieve the minimum allowable
width, in pixels, of the list box of a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.CB_GETDROPPEDWIDTH
wParam = 0;// not used, must be zero
lParam = 0;// not used, must be zero
ParametersThis message has no parameters.Return ValuesIf the message succeeds, the return value is the width, in pixels.

If the message fails, the return value is CB_ERR.RemarksBy default, the minimum allowable width of the drop-down list box is 0. The width of the list box is
either the minimum allowable width or the combo box width, whichever is larger.See AlsoCB_SETDROPPEDWIDTH

CB_GETEDITSEL
An application sends a CB_GETEDITSEL message to get the starting and ending character
positions of the current selection in the edit control of a combo box.CB_GETEDITSEL
wParam = (WPARAM) (LPDWORD) lpdwStart; // receives starting position
lParam = (LPARAM) (LPDWORD) lpdwEnd; // receives ending position
ParameterslpdwStart

Value of wParam. Points to a 32-bit value that receives the starting position of the selection.
This parameter can be set to NULL.

lpdwEnd
Value of lParam. Points to a 32-bit value that receives the ending position of the selection.
This parameter can be set to NULL.

Return ValuesThe return value is a zero-based 32-bit value with the starting position of the selection in the low-
order word and with the ending position of the first character after the last selected character in
the high-order word.See AlsoCB_SETEDITSEL

CB_GETEXTENDEDUI
An application sends a CB_GETEXTENDEDUI message to determine whether a combo box has
the default user interface or the extended user interface.CB_GETEXTENDEDUI
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the combo box has the extended user interface, the return value is TRUE; otherwise, it is

FALSE.RemarksBy default, the F4 key opens or closes the list and the DOWN ARROW changes the current
selection. In a combo box with the extended user interface, the F4 key is disabled and pressing
the DOWN ARROW key opens the drop-down list.See AlsoCB_SETEXTENDEDUI

CB_GETHORIZONTALEXTENT
An application sends the CB_GETHORIZONTALEXTENT message to retrieve from a combo box
the width, in pixels, by which the list box can be scrolled horizontally (the scrollable width). This is
applicable only if the list box has a horizontal scroll bar.CB_GETHORIZONTALEXTENT
wParam = 0;// not used, must be zero
lParam = 0;// not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the scrollable width, in pixels.See AlsoCB_SETHORIZONTALEXTENT

CB_GETITEMDATA
An application sends a CB_GETITEMDATA message to a combo box to retrieve the application-
supplied 32-bit value associated with the specified item in the combo box.CB_GETITEMDATA
wParam = (WPARAM) index; // item index
lParam = 0;// not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the item.
Return ValuesThe return value is the 32-bit value associated with the item. If an error occurs, it is CB_ERR.

If the item is in an owner-drawn combo box created without the CBS_HASSTRINGS style, the
return value is the 32-bit value contained in the lParam parameter of the CB_ADDSTRING or
CB_INSERTSTRING message that added the item to the combo box. If the CBS_HASSTRINGS
style was not used, the return value is the lParam parameter contained in a CB_SETITEMDATA
message.See AlsoCB_ADDSTRING, CB_INSERTSTRING, CB_SETITEMDATA

CB_GETITEMHEIGHT
An application sends a CB_GETITEMHEIGHT message to determine the height of list items or
the selection field in a combo box.CB_GETITEMHEIGHT
wParam = (WPARAM) index; // item index
lParam = 0;// not used; must be zero
Parametersindex

Value of wParam. Specifies the combo box component whose height is to be retrieved.
This parameter must be - 1 to retrieve the height of the selection field. It must be zero to
retrieve the height of list items, unless the combo box has the
CBS_OWNERDRAWVARIABLE style. In that case, the index parameter is the zero-based
index of a specific list item.

Return ValuesThe return value is the height, in pixels, of the list items in a combo box. If the combo box has the
CBS_OWNERDRAWVARIABLE style, it is is the height of the item specified by the index
parameter. If index is - 1, the return value is the height of the edit control (or static-text) portion of
the combo box. If an error occurs, the return value is CB_ERR.See AlsoCB_SETITEMHEIGHT, WM_MEASUREITEM

CB_GETLBTEXT
An application sends a CB_GETLBTEXT message to retrieve a string from the list of a combo
box.CB_GETLBTEXT
wParam = (WPARAM) index; // item index
lParam = (LPARAM) (LPCSTR) lpszBuffer; // address of buffer
Parametersindex

Value of wParam. Specifies the zero-based index of the string to retrieve.
lpszBuffer

Value of lParam. Points to the buffer that receives the string. The buffer must have sufficient
space for the string and a terminating null character. You can send a CB_GETLBTEXTLEN
message prior to the CB_GETLBTEXT message to retrieve the length, in bytes, of the string.

Return ValuesThe return value is the length of the string, in bytes, excluding the terminating null character. If the
index parameter does not specify a valid index, the return value is CB_ERR.RemarksIf you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,
the buffer pointed to by the lpszBuffer parameter of the message receives the 32-bit value
associated with the item (the item data).See AlsoCB_GETLBTEXTLEN

CB_GETLBTEXTLEN
An application sends a CB_GETLBTEXTLEN message to retrieve the length, in characters, of a
string in the list of a combo box.CB_GETLBTEXTLEN
wParam = (WPARAM) index; // item index
lParam = 0;// not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string.
Return ValuesThe return value is the length of the string, in characters, excluding the terminating null character.

Under certain conditions, this value may actually be greater than the length of the text. For more
information, see the following Remarks section.

If the index parameter does not specify a valid index, the return value is CB_ERR.RemarksUnder certain conditions, the return value is larger than the actual length of the text. This occurs
with certain mixtures of ANSI and Unicode, and is due to the operating system allowing for the
possible existence of double-byte character set (DBCS) characters within the text. The return
value, however, will always be at least as large as the actual length of the text; so you can always
use it to guide buffer allocation. This behavior can occur when an application uses both ANSI
functions and common dialogs, which use Unicode.

To obtain the exact length of the text, use the WM_GETTEXT, LB_GETTEXT, or
CB_GETLBTEXT messages, or the GetWindowText function.See AlsoCB_GETLBTEXT, GetWindowText, LB_GETTEXT, WM_GETTEXT

CB_GETLOCALE
An application sends a CB_GETLOCALE message to retrieve the current locale of the combo
box. The locale is used to determine the correct sorting order of displayed text for combo boxes
with the CBS_SORT style and text added by using the CB_ADDSTRING message.CB_GETLOCALE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is a 32-bit value that specifies the current locale of the combo box. The high

word contains the country code and the low-order word contains the language identifier.RemarksThe language identifier is made up of a sublanguage identifier and a primary language identifier.
The PRIMARYLANGID macro obtains the primary language identifier and the SUBLANGID
macro obtains the sublanguage identifier.See AlsoCB_ADDSTRING, CB_SETLOCALE, PRIMARYLANGID, SUBLANGID

CB_GETTOPINDEX
An application sends the CB_GETTOPINDEX message to retrieve the zero-based index of the
first visible item in the list box portion of a combo box. Initially the item with index 0 is at the top of
the list box, but if the list box contents have been scrolled, another item may be at the top.CB_GETTOPINDEX
wParam = 0;// not used, must be zero
lParam = 0;// not used, must be zero
ParametersThis message has no parameters.Return ValuesIf the message is successful, the return value is the index of the first visible item in the list box of

the combo box.

If the message fails, the return value is CB_ERR.See AlsoCB_SETTOPINDEX

CB_INITSTORAGE
An application sends the CB_INITSTORAGE message before adding a large number of items to
the list box portion of a combo box. This message allocates memory for storing list box items.CB_INITSTORAGE
wParam = (WPARAM) (int) cItems; // number of items to add
lParam = (LPARAM) (DWORD) cb; // amount of memory to allocate, in
bytes
ParameterscItems

Specifies the number of items to add.
cb

Specifies the amount of memory to allocate for item strings, in bytes.
Return ValuesIf the message is successful, the return value is the maximum number of items that the memory

object can store.

If the message fails, the return value is CB_ERR.RemarksWindows 95: This message helps speed up the initialization of combo boxes that have a large
number of items (over 100). It reserves the specified amount of memory so that subsequent
CB_ADDSTRING, CB_INSERTSTRING, and CB_DIR messages take the shortest possible time.
You can use estimates for the cItems and cb parameters. If you overestimate, the extra memory is
allocated, if you underestimate, the normal allocation is used for items that exceed the requested
amount.

Windows NT: This message is not needed on Windows NT. It does not reserve the specified
amount of memory, because available memory is virtually unlimited. The return value is always
the value specified in the cItems parameter.See AlsoCB_ADDSTRING, CB_DIR, CB_INSERTSTRING

CB_INSERTSTRING
An application sends a CB_INSERTSTRING message to insert a string into the list box of a
combo box. Unlike the CB_ADDSTRING message, the CB_INSERTSTRING message does not
cause a list with the CBS_SORT style to be sorted.CB_INSERTSTRING
wParam = (WPARAM) index;// item index
lParam = (LPARAM) (LPCTSTR) lpsz; // address of string to insert
Parametersindex

Value of wParam. Specifies the zero-based index of the position at which to insert the string. If
this parameter is - 1, the string is added to the end of the list.

lpsz
Value of lParam. Points to the null-terminated string to be inserted. If you create the combo
box with an owner-drawn style but without the CBS_HASSTRINGS style, the value of the lpsz
parameter is stored rather than the string it would otherwise point to.

Return ValuesThe return value is the index of the position at which the string was inserted. If an error occurs, the
return value is CB_ERR. If there is insufficient space available to store the new string, it is
CB_ERRSPACE.See AlsoCB_ADDSTRING, CB_DIR

CB_LIMITTEXT
An application sends a CB_LIMITTEXT message to limit the length of the text the user may type
into the edit control of a combo box.CB_LIMITTEXT
wParam = (WPARAM) cchLimit; // maximum number of characters
lParam = 0; // not used; must be zero
ParameterscchLimit

Value of wParam. Specifies the maximum number of characters the user can enter. If this
parameter is zero, the text length is set to 0x7FFFFFFE characters.

Return ValuesThe return value is always TRUE.RemarksIf the combo box does not have the CBS_AUTOHSCROLL style, setting the text limit to be larger
than the size of the edit control has no effect.

The CB_LIMITTEXT message limits only the text the user can enter. It has no effect on any text
already in the edit control when the message is sent, nor does it affect the length of the text
copied to the edit control when a string in the list box is selected.

The default limit to the text a user can enter in the edit control is 30,000 characters.

CB_RESETCONTENT
An application sends a CB_RESETCONTENT message to remove all items from the list box and
edit control of a combo box.CB_RESETCONTENT
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message always returns CB_OKAY.RemarksIf you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,

the owner of the combo box receives a WM_DELETEITEM message for each item in the combo
box.See AlsoCB_DELETESTRING, WM_DELETEITEM

CB_SELECTSTRING
An application sends a CB_SELECTSTRING message to search the list of a combo box for an
item that begins with the characters in a specified string. If a matching item is found, it is selected
and copied to the edit control.CB_SELECTSTRING
wParam = (WPARAM) indexStart;// item before first selection
lParam = (LPARAM) (LPCSTR) lpszSelect; // address of prefix string
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item preceding the first item to be
searched. When the search reaches the bottom of the list, it continues from the top of the list
back to the item specified by the indexStart parameter. If indexStart is - 1, the entire list is
searched from the beginning.

lpszSelect
Value of lParam. Points to the null-terminated string that contains the prefix to search for. The
search is not case sensitive, so this string can contain any combination of uppercase and
lowercase letters.

Return ValuesIf the string is found, the return value is the index of the selected item. If the search is
unsuccessful, the return value is CB_ERR and the current selection is not changed.RemarksA string is selected only if the characters from the starting point match the characters in the prefix
string.

If you create the combo box with an owner-drawn style but without the CBS_HASSTRINGS style,
what the CB_SELECTSTRING message does depends on whether you use the CBS_SORT
style. If the CBS_SORT style is used, the system sends WM_COMPAREITEM messages to the
owner of the combo box to determine which item matches the specified string. If you do not use
the CBS_SORT style, CB_SELECTSTRING attempts to match the DWORD value against the
value of the lpszSelect parameter.See AlsoCB_FINDSTRING, CB_FINDSTRINGEXACT, CB_SETCURSEL, WM_COMPAREITEM

CB_SETCURSEL
An application sends a CB_SETCURSEL message to select a string in the list of a combo box. If
necessary, the list scrolls the string into view. The text in the edit control of the combo box
changes to reflect the new selection, and any previous selection in the list is removed.CB_SETCURSEL
wParam = (WPARAM) index; // item index
lParam = 0;// not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string to select. If the index parameter
is - 1, any current selection in the list is removed and the edit control is cleared.

Return ValuesIf the message is successful, the return value is the index of the item selected. If index is greater
than the number of items in the list or if index is set to - 1, the return value is CB_ERR and the
selection is cleared.See AlsoCB_FINDSTRING, CB_GETCURSEL, CB_SELECTSTRING

CB_SETDROPPEDWIDTH
An application sends the CB_SETDROPPEDWIDTH message to set the maximum allowable
width, in pixels, of the list box of a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.CB_SETDROPPEDWIDTH
wParam = (WPARAM) wWidth,// width of list box, in pixels
lParam = 0, // not used, must be zero
ParameterswWidth

Specifies the width of the list box, in pixels.
Return ValuesIf the message is successful, The return value is the new width of the list box.

If the message fails, the return value is CB_ERR.RemarksBy default, the minimum allowable width of the drop-zdown list box is 0. The width of the list box is
either the minimum allowable width or the combo box width, whichever is larger.See AlsoCB_GETDROPPEDWIDTH

CB_SETEDITSEL
An application sends a CB_SETEDITSEL message to select characters in the edit control of a
combo box.CB_SETEDITSEL
wParam = 0; // not used; must be zero
lParam = MAKELPARAM((ichStart), (ichEnd); // start and end position
ParametersichStart

Value of the low-order word of lParam; this specifies the starting position. If this parameter is
set to - 1, the selection, if any, is removed.

ichEnd
Value of the high-order word of lParam; this specifies the ending position. If this parameter is
set to - 1, all text from the starting position to the last character in the edit control is selected.

Return ValuesIf the message succeeds, the return value is TRUE. If the message is sent to a combo box with
the CBS_DROPDOWNLIST style, it is CB_ERR.RemarksThe positions are zero-based. The first character of the edit control is in the zero position. The first
character after the last selected character is in the ending position. For example, to select the first
four characters of the edit control, use a starting position of 0 and an ending position of 4.See AlsoCB_GETEDITSEL

CB_SETEXTENDEDUI
An application sends a CB_SETEXTENDEDUI message to select either the default user interface
or the extended user interface for a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.CB_SETEXTENDEDUI
wParam = (WPARAM) (BOOL) fExtended; // extended user interface flag
lParam = 0; // not used; must be zero
ParametersfExtended

Value of wParam. Specifies whether the combo box uses the extended user interface or the
default user interface. A value of TRUE selects the extended user interface; a value of FALSE
selects the standard user interface.

Return ValuesIf the operation succeeds, the return value is CB_OKAY. If an error occurs, it is CB_ERR.RemarksBy default, the F4 key opens or closes the list and the DOWN ARROW changes the current
selection. In the extended user interface, the F4 key is disabled and the DOWN ARROW key opens
the drop-down list.See AlsoCB_GETEXTENDEDUI

CB_SETHORIZONTALEXTENT
An application sends the CB_SETHORIZONTALEXTENT message to set the width, in pixels, by
which a list box can be scrolled horizontally (the scrollable width). If the width of the list box is
smaller than this value, the horizontal scroll bar horizontally scrolls items in the list box. If the
width of the list box is equal to or greater than this value, the horizontal scroll bar is hidden or, if
the combo box has the CBS_DISABLENOSCROLL style, disabled.CB_SETHORIZONTALEXTENT
wParam = (WPARAM) cxExtent; // scrollable width of list box, in pixels
lParam = 0; // not used, must be zero
ParameterscxExtent

Specifies the scrollable width of the list box, in pixels.
Return ValuesNo return value.See AlsoCB_GETHORIZONTALEXTENT

CB_SETITEMDATA
An application sends a CB_SETITEMDATA message to set the 32-bit value associated with the
specified item in a combo box.CB_SETITEMDATA
wParam = (WPARAM) index; // item index
lParam = (LPARAM) (DWORD) dwData; // item data
Parametersindex

Value of wParam. Specifies the item's zero-based index.
dwData

Value of lParam. Specifies the new value to be associated with the item.
Return ValuesIf an error occurs, the return value is CB_ERR.RemarksIf the specified item is in an owner-drawn combo box created without the CBS_HASSTRINGS

style, this message replaces the 32-bit value in the lParam parameter of the CB_ADDSTRING or
CB_INSERTSTRING message that added the item to the combo box.See AlsoCB_ADDSTRING, CB_GETITEMDATA, CB_INSERTSTRING

CB_SETITEMHEIGHT
An application sends a CB_SETITEMHEIGHT message to set the height of list items or the
selection field in a combo box.CB_SETITEMHEIGHT
wParam = (WPARAM) index; // item index
lParam = (LPARAM) (int) height; // item height
Parametersindex

Value of wParam. Specifies the component of the combo box for which to set the height.
This parameter must be - 1 to set the height of the selection field. It must be zero to set the
height of list items, unless the combo box has the CBS_OWNERDRAWVARIABLE style. In
that case, the index parameter is the zero-based index of a specific list item.

height
Value of lParam. Specifies the height, in pixels, of the combo box component identified by
index.

Return ValuesIf the index or height is invalid, the return value is CB_ERR.RemarksThe selection field height in a combo box is set independently of the height of the list items. An
application must ensure that the height of the selection field is not smaller than the height of a
particular list item.See AlsoCB_GETITEMHEIGHT, WM_MEASUREITEM

CB_SETLOCALE
An application sends a CB_SETLOCALE message to set the current locale of the combo box. If
the combo box has the CBS_SORT style and strings are added using CB_ADDSTRING, the
locale of a combo box affects how list items are sorted.CB_SETLOCALE
wParam = (WPARAM) (WORD) wLocaleID; // locale identifier
lParam = 0;// not used; must be zero
ParameterswLocaleID

Value of wParam. Specifies the locale identifier for the combo box to use for sorting when
adding text.

Return ValuesThe return value is the previous locale identifier. If wParam specifies a locale not installed on the
system, the return value is CB_ERR and the current combo box locale is not changed.RemarksUse the MAKELCID macro to construct a locale identifier and the MAKELANGID macro to
construct a language identifier. The language identifier is made up of a primary language identifier
and a sublanguage identifier.See AlsoCB_ADDSTRING, CB_GETLOCALE, MAKELANGID, MAKELCID

CB_SETTOPINDEX
An application sends the CB_SETTOPINDEX message to ensure that a particular item is visible in
the list box of a combo box. The system scrolls the list box contents so that either the specified
item appears at the top of the list box or the maximum scroll range has been reached.CB_SETTOPINDEX
wParam = (WPARAM) index; // zero-based index of item list
lParam = 0;// not used, must be zero
Parametersindex

Specifies the zero-based index of the list item.
Return ValuesIf the message is successful, the return value is zero.

If the message fails, the return value is CB_ERR.See AlsoCB_GETTOPINDEX

CB_SHOWDROPDOWN
An application sends a CB_SHOWDROPDOWN message to show or hide the list box of a combo
box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST style.CB_SHOWDROPDOWN
wParam = (WPARAM) (BOOL) fShow;// the show/hide flag
lParam = 0;// not used; must be zero
ParametersfShow

Value of wParam. Specifies whether the drop-down list box is to be shown or hidden. A value
of TRUE shows the list box; a value of FALSE hides it.

Return ValuesThe return value is always TRUE.RemarksThis message has no effect on a combo box created with the CBS_SIMPLE style.See AlsoCB_GETDROPPEDSTATE

CBN_CLOSEUP
The CBN_CLOSEUP notification message is sent when the list box of a combo box has been
closed. The parent window of the combo box receives this notification message through the
WM_COMMAND message.CBN_CLOSEUP
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksThis notification message is not sent to a combo box that has the CBS_SIMPLE style.

In general, you cannot predict the order in which notifications will be sent. In particular, a
CBN_SELCHANGE notification message may occur either before or after a CBN_CLOSEUP
notification message.See AlsoCBN_DROPDOWN, CBN_SELCHANGE, WM_COMMAND

CBN_DBLCLK
The CBN_DBLCLK notification message is sent when the user double-clicks a string in the list box
of a combo box. The parent window of the combo box receives this notification message through
the WM_COMMAND message.CBN_DBLCLK
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksThis notification message occurs only for a combo box with the CBS_SIMPLE style. In a combo

box with the CBS_DROPDOWN or CBS_DROPDOWNLIST style, a double-click cannot occur
because a single click closes the list box.See AlsoCBN_SELCHANGE, WM_COMMAND

CBN_DROPDOWN
The CBN_DROPDOWN notification message is sent when the list box of a combo box is about to
be made visible. The parent window of the combo box receives this notification message through
the WM_COMMAND message.CBN_DROPDOWN
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksThis notification message can occur only for a combo box with the CBS_DROPDOWN or

CBS_DROPDOWNLIST style.See AlsoCBN_CLOSEUP, WM_COMMAND

CBN_EDITCHANGE
The CBN_EDITCHANGE notification message is sent after the user has taken an action that may
have altered the text in the edit control portion of a combo box. Unlike the CBN_EDITUPDATE
notification message, this notification message is sent after Windows updates the screen. The
parent window of the combo box receives this notification message through the WM_COMMAND
message.CBN_EDITCHANGE
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND)lParam; // handle of combo box
RemarksIf the combo box has the CBS_DROPDOWNLIST style, this notification message does not occur.See AlsoCBN_EDITUPDATE, WM_COMMAND

CBN_EDITUPDATE
The CBN_EDITUPDATE notification message is sent when the edit control portion of a combo
box is about to display altered text. This notification message is sent after the control has
formatted the text, but before it displays the text. The parent window of the combo box receives
this notification message through the WM_COMMAND message.CBN_EDITUPDATE
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksIf the combo box has the CBS_DROPDOWNLIST style, this notification message does not occur.See AlsoCBN_EDITCHANGE, WM_COMMAND

CBN_ERRSPACE
The CBN_ERRSPACE notification message is sent when a combo box cannot allocate enough
memory to meet a specific request. The parent window of the combo box receives this notification
message through the WM_COMMAND message.CBN_ERRSPACE
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
See AlsoWM_COMMAND

CBN_KILLFOCUS
The CBN_KILLFOCUS notification message is sent when a combo box loses the keyboard focus.
The parent window of the combo box receives this notification message through the
WM_COMMAND message.CBN_KILLFOCUS
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
See AlsoCBN_SETFOCUS, WM_COMMAND

CBN_SELCHANGE
The CBN_SELCHANGE notification message is sent when the selection in the list box of a combo
box is about to be changed as a result of the user either clicking in the list box or changing the
selection by using the arrow keys. The parent window of the combo box receives this message
through the WM_COMMAND message.CBN_SELCHANGE
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
See AlsoCBN_DBLCLK, WM_COMMAND

CBN_SELENDCANCEL
The CBN_SELENDCANCEL notification message is sent when the user selects an item, but then
selects another control or closes the dialog box. It indicates the user's initial selection is to be
ignored. The parent window of the combo box receives this notification message through the
WM_COMMAND message.CBN_SELENDCANCEL
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksIn a combo box with the CBS_SIMPLE style, the CBN_SELENDCANCEL notification message is

not sent. The CBN_SELENDOK notification message is sent immediately before every
CBN_SELCHANGE notification message.

If the WS_EX_NOPARENTNOTIFY extended window style is specified for the combo box, the
CBN_SELENDCANCEL notification message is not sent.See AlsoCBN_SELCHANGE, CBN_SELENDOK, WM_COMMAND

CBN_SELENDOK
The CBN_SELENDOK notification message is sent when the user selects a list item, or selects an
item and then closes the list. It indicates that the user's selection is to be processed. The parent
window of the combo box receives this notification message through the WM_COMMAND
message.CBN_SELENDOK
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
RemarksIn a combo box with the CBS_SIMPLE style, the CBN_SELENDOK notification message is sent

immediately before every CBN_SELCHANGE notification message.

If the WS_EX_NOPARENTNOTIFY extended window style is specified for the combo box, the
CBN_SELENDOK notification message is not sent.See AlsoCBN_SELCHANGE, CBN_SELENDCANCEL, WM_COMMAND

CBN_SETFOCUS
The CBN_SETFOCUS notification message is sent when a combo box receives the keyboard
focus. The parent window of the combo box receives this notification message through the
WM_COMMAND message.CBN_SETFOCUS
idComboBox = (int) LOWORD(wParam); // identifier of combo box
hwndComboBox = (HWND) lParam; // handle of combo box
See AlsoCBN_KILLFOCUS, WM_COMMAND

CDM_GETFILEPATH
[New - Windows NT]

The CDM_GETFILEPATH message retrieves the path and filename of the selected file in an
Explorer-style Open or Save As common dialog box. The dialog box must have been created with
the OFN_EXPLORER flag; otherwise, the message fails.CDM_GETFILEPATH
wParam = (WPARAM) cbmax;
lParam = (LPARAM) (LPTSTR) psz;
// Corresponding macro
int CommDlg_OpenSave_GetFilePath(hdlg, psz, cbmax);
Parametershdlg

Handle of the common dialog box window to receive the message.
psz

Pointer to the buffer that receives the filename and path.
cbmax

Size, in bytes (ANSI version) or characters (Unicode version), of the psz buffer.
Return ValuesIf the message succeeds, the return value is the size, in bytes or characters, of the filename and

path string, including the terminating NULL character. This is either the number of bytes or
characters copied to the psz buffer, or the required buffer size if the buffer is too small.

If an error occurs, the return value is less than zero.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_GETFOLDERIDLIST
[New - Windows NT]

The CDM_GETFOLDERIDLIST message retrieves the address of the item identifier list
corresponding to the folder that an Explorer-style Open or Save As common dialog box currently
has open. The dialog box must have been created with the OFN_EXPLORER flag; otherwise, the
message fails.CDM_GETFOLDERIDLIST
wParam = (WPARAM) cbmax;
lParam = (LPARAM) (LPVOID) pidl;
// Corresponding macro
int CommDlg_OpenSave_GetFolderIDList(hdlg, pidl, cbmax);
Parametershdlg

Handle of the common dialog box window to receive the message.
pidl

Pointer to the buffer that receives the list of item identifiers.
cbmax

Size, in bytes, of the pidl buffer.
Return ValuesIf the message succeeds, the return value is the size, in bytes, of the list of item identifiers. This is

either the number of bytes copied to the pidl buffer, or the required buffer size if the buffer is too
small.

If an error occurs, the return value is less than zero.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_GETFOLDERPATH
[New - Windows NT]

The CDM_GETFOLDERPATH message retrieves the path of the currently open folder or
directory for an Explorer-style Open or Save As common dialog box. The dialog box must have
been created with the OFN_EXPLORER flag; otherwise, the message fails.CDM_GETFOLDERPATH
wParam = (WPARAM) cbmax;
lParam = (LPARAM) (LPTSTR) psz;
// Corresponding macro
int CommDlg_OpenSave_GetFolderPath(hdlg, psz, cbmax);
Parametershdlg

Handle of the common dialog box window to receive the message.
psz

Pointer to the buffer that receives the path.
cbmax

Size, in bytes (ANSI version) or characters (Unicode version), of the psz buffer.
Return ValuesIf the message succeeds, the return value is the size, in bytes or characters, of the path string,

including the terminating NULL character. This is either the number of bytes or characters copied
to the psz buffer, or the required buffer size if the buffer is too small.

If an error occurs, the return value is less than zero.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_GETSPEC
[New - Windows NT]

The CDM_GETSPEC message retrieves the filename (not including the path) of the currently
selected file in an Explorer-style Open or Save As common dialog box. The dialog box must have
been created with the OFN_EXPLORER flag; otherwise, the message fails.CDM_GETSPEC
wParam = (WPARAM) cbmax;
lParam = (LPARAM) (LPTSTR) psz;
// Corresponding macro
int CommDlg_OpenSave_GetSpec(hdlg, psz, cbmax);
Parametershdlg

Handle of the common dialog box window to receive the message.
psz

Address of the buffer that receives the filename.
cbmax

Size, in bytes (ANSI version) or characters (Unicode version), of the psz buffer.
Return ValuesIf the message succeeds, the return value is the size, in bytes or characters, of the filename

string, including the terminating NULL character. This is either the number of bytes or characters
copied to the psz buffer, or the required buffer size if the buffer is too small.

If an error occurs, the return value is less than zero.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_HIDECONTROL
[New - Windows NT]

The CDM_HIDECONTROL message hides the specified control in an Explorer-style Open or
Save As common dialog box. The dialog box must have been created with the OFN_EXPLORER
flag; otherwise, the message fails.CDM_HIDECONTROL
wParam = (WPARAM) id;
lParam = 0;
// corresponding macro
void CommDlg_OpenSave_HideControl(hdlg, id);
Parametershdlg

Handle of the common dialog box window to receive the message.
id

Identifier of the control to hide.
Return ValuesNo return value.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_SETCONTROLTEXT
[New - Windows NT]

The CDM_SETCONTROLTEXT message sets the text for the specified control in an Explorer-
style Open or Save As common dialog box. The dialog box must have been created with the
OFN_EXPLORER flag; otherwise, the message fails.CDM_SETCONTROLTEXT
wParam = (WPARAM) id;
lParam = (LPARAM) (LPSTR) text;
// corresponding macro
void CommDlg_OpenSave_SetControlText(hdlg, id, text)
Parametershdlg

Handle of the common dialog box window to receive the message.
id

Identifier of the control to whose text is set.
text

Pointer to a null-terminated string specifying the new text for the control.
Return ValuesNo return value.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDM_SETDEFEXT
[New - Windows NT]

The CDM_SETDEFEXT message sets the default filename extension for an Explorer-style Open
or Save As common dialog box. The dialog box must have been created with the
OFN_EXPLORER flag; otherwise, the message fails.CDM_SETDEFEXT
wParam = 0;
lParam = (LPARAM) (LPSTR) pszext;
// corresponding macro
void CommDlg_OpenSave_SetDefExt(hdlg, pszext)
Parametershdlg

Handle of the common dialog box window to receive the message.
pszext

Pointer to the new filename extension. Must not include the dot (.).
Return ValuesNo return value.See AlsoGetOpenFileName, GetSaveFileName, OPENFILENAME

CDN_FILEOK
[New - Windows NT]

The CDN_FILEOK notification message is sent by an Explorer-style Open or Save As common
dialog box when the user specifies a filename and clicks the OK button. Your OFNHookProc
hook procedure receives this message in the form of a WM_NOTIFY message.CDN_FILEOK
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_FILEOK notification code.
The OFNOTIFY structure also contains a pointer to an OPENFILENAME structure whose
lpstrFile member specifies the address of the selected filename.

Return ValuesIf the hook procedure returns zero, the dialog box accepts the specified filename and closes.

To reject the specified filename and force the dialog box to remain open, return a nonzero value
from the hook procedure and call the SetWindowLong function to set a nonzero
DWL_MSGRESULT value.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.See AlsoGetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc, OFNOTIFY,
OPENFILENAME, SetWindowLong, WM_NOTIFY

CDN_FOLDERCHANGE
[New - Windows NT]

The CDN_FOLDERCHANGE notification message is sent by an Explorer-style Open or Save As
common dialog box when a new folder is opened. Your OFNHookProc hook procedure receives
this message in the form of a WM_NOTIFY message.CDN_FOLDERCHANGE
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_FOLDERCHANGE notification code.

Return ValuesThe return value is ignored.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.

To get the path of the newly opened folder, the hook procedure can send the
CDM_GETFOLDERPATH message to the dialog box.See AlsoCDM_GETFOLDERPATH, GetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc,
OFNOTIFY, WM_NOTIFY

CDN_HELP
[New - Windows NT]

The CDN_HELP notification message is sent by an Explorer-style Open or Save As common
dialog box when the user clicks the Help button. Your OFNHookProc hook procedure receives
this message in the form of a WM_NOTIFY message.CDN_HELP
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_HELP notification code.

Return ValuesThe return value is ignored.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.See AlsoGetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc, OFNOTIFY,
OPENFILENAME, WM_NOTIFY

CDN_INITDONE
[New - Windows NT]

The CDN_INITDONE notification message is sent by an Explorer-style Open or Save As common
dialog box when the system has finished arranging the controls in the dialog box. The system
moves the standard controls to make room for the controls of the child dialog box. Your
OFNHookProc hook procedure receives this message in the form of a WM_NOTIFY message.CDN_INITDONE
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_INITDONE notification code.

Return ValuesThe return value is ignored.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.See AlsoGetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc, OFNOTIFY,
OPENFILENAME, WM_NOTIFY

CDN_SELCHANGE
[New - Windows NT]

The CDN_SELCHANGE notification message is sent by an Explorer-style Open or Save As
common dialog box when the selection changes in the list box that displays the contents of the
currently opened folder or directory. Your OFNHookProc hook procedure receives this message
in the form of a WM_NOTIFY message.CDN_SELCHANGE
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_SELCHANGE notification code.

Return ValuesThe return value is ignored.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.

To get the name of the newly selected file or folder, the hook procedure can send the
CDM_GETFILEPATH or CDM_GETSPEC message to the common dialog box.See AlsoCDM_GETFILEPATH, CDM_GETSPEC, GetOpenFileName, GetSaveFileName, NMHDR,
OFNHookProc, OFNOTIFY, WM_NOTIFY

CDN_SHAREVIOLATION
[New - Windows NT]

The CDN_SHAREVIOLATION notification message is sent by an Explorer-style Open or Save As
common dialog box when the user clicks the OK button and a network sharing violation occurs for
the selected file. Your OFNHookProc hook procedure receives this message in the form of a
WM_NOTIFY message.CDN_SHAREVIOLATION
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Pointer to an OFNOTIFY structure. The pszFile member of this structure points to the name
of the file that had the sharing violation.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_SHAREVIOLATION notification code.

Return ValuesThe return value indicates how the dialog box should handle the sharing violation.

If the hook procedure returns zero, the dialog box displays the standard warning message for a
sharing violation.

To prevent the display of the standard warning message, return a nonzero value from the hook
procedure and call the SetWindowLong function to set one of the following DWL_MSGRESULT
values:

OFN_SHAREFALLTHROUGHCauses the dialog box to return the
filename without warning the user
about the sharing violation.

OFN_SHARENOWARN Causes the dialog box to reject the
filename without warning the user
about the sharing violation.

RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.

The system sends this notification only if the the OFN_SHAREAWARE value was not specified
when the dialog box was created.See AlsoGetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc, OFNOTIFY,
OPENFILENAME, SetWindowLong, WM_NOTIFY

CDN_TYPECHANGE
[New - Windows NT]

The CDN_TYPECHANGE notification message is sent by an Explorer-style Open or Save As
common dialog box when the user selects a new file type from the file types combo box. Your
OFNHookProc hook procedure receives this message in the form of a WM_NOTIFY message.CDN_TYPECHANGE
lpon = (LPOFNOTIFY) lParam;
Parameterslpon

Address of an OFNOTIFY structure.
The OFNOTIFY structure contains an NMHDR structure whose code member indicates the
CDN_TYPECHANGE notification code.
The OFNOTIFY structure also contains a pointer to an OPENFILENAME structure whose
nFilterIndex member indicates the one-based index of the newly selected file type filter.

Return ValuesThe return value is ignored.RemarksThe system sends this notification only if the dialog box was created using the OFN_EXPLORER
value.See AlsoGetOpenFileName, GetSaveFileName, NMHDR, OFNHookProc, OFNOTIFY,
OPENFILENAME, WM_NOTIFY

COLOROKSTRING
A Color dialog box sends the COLOROKSTRING registered message to your hook procedure
when the user selects a color and clicks the OK button. The hook procedure can accept the color
and allow the dialog box to close, or reject the color and force the dialog box to remain open.MessageID = RegisterWindowMessage(COLOROKSTRING);
wParam = 0;
lpcc = (LPCHOOSECOLOR) lParam;
Parameterslpcc

Pointer to a CHOOSECOLOR structure. The rgbResult member of this structure contains the
RGB color value of the selected color.

Return ValuesIf the hook procedure returns zero, the Color dialog box accepts the selected color and closes.

If the hook procedure returns a nonzero value, the Color dialog box rejects the selected color and
remains open.RemarksThe hook procedure must specify the COLOROKSTRING constant in a call to the
RegisterWindowMessage function to get the identifier for the message sent by the dialog box.See AlsoCHOOSECOLOR, RegisterWindowMessage

CPL_DBLCLK
The CPL_DBLCLK message is sent to the CPlApplet function of a Control Panel application
when the user double-clicks the icon of a dialog box supported by the application.CPL_DBLCLK
uAppNum = (UINT) lParam1; // application number
lData = (LONG) lParam2;// application-defined value
ParametersuAppNum

Value of lParam1. Specifies the dialog box number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT - 1).

lData
Value of lParam2. Specifies the value that the Control Panel application loaded into the lData
member of the CPLINFO or NEWCPLINFO structure for the dialog box. The application loads
lData member in response to the CPL_INQUIRE or CPL_NEWINQUIRE message.

Return ValuesIf the CPlApplet function processes this message successfully, the return value is zero;
otherwise, it is nonzero.RemarksIn response to this message, a Control Panel application must display the corresponding dialog
box.See AlsoCPL_GETCOUNT, CPL_INQUIRE, CPL_NEWINQUIRE, CPL_SELECT, CPlApplet, CPLINFO,
NEWCPLINFO

CPL_EXIT
The CPL_EXIT message is sent once to the CPlApplet function of a Control Panel application
before the controlling application releases the DLL containing the application.CPL_EXIT
ParametersThis function has no parameters.Return Values

If the CPlApplet function processes this message successfully, it should return zero.RemarksThis message is sent after the last CPL_STOP message is sent.

In response to this message, a Control Panel application must free any memory that it has
allocated and perform global-level cleanup.See AlsoCPL_STOP, CPlApplet, FreeLibrary

CPL_GETCOUNT
The CPL_GETCOUNT message is sent to the CPlApplet function of a Control Panel application
to retrieve the number of dialog boxes supported by the application.CPL_GETCOUNT
ParametersThis function has no parameters.Return Values

The CPlApplet function should return the number of dialog boxes that the Control Panel
application supports.RemarksThis message is sent immediately after the CPL_INIT message.See AlsoCPL_INIT, CPlApplet

CPL_INIT
The CPL_INIT message is sent to the CPlApplet function of a Control Panel application to prompt
it to perform global initialization, especially memory allocation.CPL_INIT
ParametersThis function has no parameters.Return Values

If initialization succeeds, the CPlApplet function should return a nonzero value. Otherwise, it
should return zero. If CPlApplet returns zero, the controlling application ends communication and
releases the DLL containing the Control Panel application.RemarksBecause this is the only way a Control Panel application can signal an error condition, the
application should allocate memory in response to this message.

This message is sent immediately after the DLL containing the application is loaded.See AlsoCPlApplet, FreeLibrary

CPL_INQUIRE
The CPL_INQUIRE message is sent to the CPlApplet function of a Control Panel application to
request information about a dialog box that the application supports.CPL_INQUIRE
uAppNum = (UINT) lParam1;// application number
lpcpli = (LPCPLINFO) lParam2; // structure for application info.
ParametersuAppNum

Value of lParam1. Specifies the dialog box number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT - 1).

lpcpli
Value of lParam2. Points to a CPLINFO structure. The application must fill this structure with
resource identifiers for the icon, short name, description, and any user-defined value
associated with the dialog box.

Return ValuesIf the CPlApplet function processes this message successfully, it should return zero.RemarksThe Control Panel sends the CPL_INQUIRE message once for each dialog box supported by your
application. The Control Panel also sends a CPL_NEWINQUIRE message for each dialog box.
These messages are sent immediately after the CPL_GETCOUNT message. However, the
system does not guarantee the order in which the CPL_INQUIRE and CPL_NEWINQUIRE
messages are sent.

You can perform initialization for the dialog box when you receive CPL_INQUIRE. If you must
allocate memory, do so in response to the CPL_INIT message.

On Windows 95 and Windows NT version 4.0, the system caches the information returned in the
CPLINFO structure used by CPL_INQUIRE. This provides significantly better performance
because the system only needs to load your application the first time the Control Panel starts up.
On the other hand, the CPL_NEWINQUIRE message returns information in a form that the
system cannot cache. For this reason, most CPlApplet functions should process CPL_INQUIRE
and ignore CPL_NEWINQUIRE.

The only applications that should use CPL_NEWINQUIRE are those that need to change their
icon or display strings based on the state of the computer. In this case, your CPL_INQUIRE
handler should specify the CPL_DYNAMIC_RES value for the idIcon, idName, or idInfo
members of the CPLINFO structure, rather than specifying a valid resource identifier. This causes
the Control Panel to send the CPL_NEWINQUIRE message each time it needs the icon and
display strings, allowing you to specify information based on the current state of the computer. Of
course, this is significantly slower than using cached information.See AlsoCPL_GETCOUNT, CPL_INIT, CPL_NEWINQUIRE, CPlApplet, CPLINFO

CPL_NEWINQUIRE
The CPL_NEWINQUIRE message is sent to the CPlApplet function of a Control Panel
application to request information about a dialog box that the application supports.

For better performance, most applications should ignore CPL_NEWINQUIRE and process the
CPL_INQUIRE message instead. The CPL_NEWINQUIRE message is useful only for applications
that need to change their icon or display strings based on the state of the computer.CPL_NEWINQUIRE
uAppNum = (UINT) lParam1; // application number
lpncpli = (LPNEWCPLINFO) lParam2; // structure for appl. info.
ParametersuAppNum

Value of lParam1. Specifies the dialog box number. This number must be in the range zero
through one less than the value returned in response to the CPL_GETCOUNT message
(CPL_GETCOUNT - 1).

lpncpli
Value of lParam2. Specifies the address of a NEWCPLINFO structure. The Control Panel
application should fill this structure with information about the dialog box.

Return ValuesIf the CPlApplet function processes this message successfully, it should return zero.RemarksThe Control Panel sends the CPL_NEWINQUIRE message once for each dialog box supported
by your application. The Control Panel also sends a CPL_INQUIRE message for each dialog box.
These messages are sent immediately after the CPL_GETCOUNT message. However, the
system does not guarantee the order in which the CPL_INQUIRE and CPL_NEWINQUIRE
messages are sent.

You can perform initialization for the dialog box when you receive CPL_INQUIRE. If you must
allocate memory, do so in response to the CPL_INIT message.

The CPL_NEWINQUIRE message was introduced in Windows version 3.1 as a replacement
for CPL_INQUIRE. However, CPL_INQUIRE is the preferred message for Windows 95 and
Windows NT version 4.0. This is because CPL_NEWINQUIRE returns information in a form
that the system cannot cache. Consequently, applications that process CPL_NEWINQUIRE
must be loaded each time the Control Panel needs the information, resulting in a significant
reduction in performance.

The only applications that should use CPL_NEWINQUIRE are those that need to change their
icon or display strings based on the state of the computer. In this case, your CPL_INQUIRE
handler should specify the CPL_DYNAMIC_RES value for the idIcon, idName, or idInfo
members of the CPLINFO structure, rather than specifying a valid resource identifier. This causes
the Control Panel to send the CPL_NEWINQUIRE message each time it needs the icon and
display strings, allowing you to specify information based on the current state of the computer. Of
course, this is significantly slower than using cached information.See AlsoCPL_GETCOUNT, CPL_INIT, CPL_INQUIRE, CPlApplet, CPLINFO, NEWCPLINFO

CPL_SELECT
The CPL_SELECT message is obsolete. This message was used by versions of Windows earlier
than Windows 95 and Windows NT version 4.0. Current versions of Windows do not send this
message.

CPL_STOP
The CPL_STOP message is sent to the CPlApplet function of a Control Panel application when
the application controlling the Control Panel application closes. The controlling application sends
the message once for each dialog box that the application supports.CPL_STOP
uAppNum = (UINT) lParam1; // application number
lData = (LONG) lParam2;// application-defined value
ParametersuAppNum

Value of lParam1. Specifies the dialog box number.
lData

Value of lParam2. Specifies the value that the Control Panel application loaded into the lData
member of the CPLINFO or NEWCPLINFO structure for the dialog box. The application loads
lData member in response to the CPL_INQUIRE or CPL_NEWINQUIRE message.

Return ValuesIf the CPlApplet function processes this message successfully, it should return zero.RemarksIn response to this message, a Control Panel application must perform cleanup for the given
dialog box.See AlsoCPL_EXIT, CPL_GETCOUNT, CPL_INQUIRE, CPL_NEWINQUIRE, CPlApplet, CPLINFO,
NEWCPLINFO

DBT_CONFIGCHANGECANCELED
The operating system sends the DBT_CONFIGCHANGECANCELED device message when a
request to change the current configuration (dock or undock) has been canceled.

To send the DBT_CONFIGCHANGECANCELED device message, the operating system sends
the WM_DEVICECHANGE message with wParam set to DBT_CONFIGCHANGECANCELED and
lParam set to zero.ParameterslParam

lParam is zero when the WM_DEVICECHANGE message is sent with wParam set to
DBT_CONFIGCHANGECANCELED.

Return ValuesReturn TRUE.See AlsoDBT_CONFIGCHANGED, DBT_QUERYCHANGECONFIG, WM_DEVICECHANGE

DBT_CONFIGCHANGED
The operating system sends the DBT_CONFIGCHANGED device message to indicate that the
current configuration has changed, due to a dock or undock. An application or driver that stores
data in the registry under the HKEY_CURRENT_CONFIG key should update the data.

To send the DBT_CONFIGCHANGED device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_CONFIGCHANGED and lParam set to
zero.ParameterslParam

lParam is zero when the WM_DEVICECHANGE message is sent with wParam set to
DBT_CONFIGCHANGED.

Return ValuesReturn TRUE.See AlsoDBT_CONFIGCHANGECANCELED, DBT_QUERYCHANGECONFIG, WM_DEVICECHANGE

DBT_DEVICEARRIVAL
The operating system sends the DBT_DEVICEARRIVAL device message when a device has
been inserted and becomes available.

To send the DBT_DEVICEARRIVAL device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_DEVICEARRIVAL and lParam set to
the address of a DEV_BROADCAST_HDR structure identifying the device inserted.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device inserted.
Return ValuesReturn TRUE.See AlsoDEV_BROADCAST_HDR, WM_DEVICECHANGE

DBT_DEVICEQUERYREMOVE
The operating system sends the DBT_DEVICEQUERYREMOVE device message to request
permission to remove a device. Any application can deny this request and cancel the removal.

To send the DBT_DEVICEQUERYREMOVE device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_DEVICEQUERYREMOVE and lParam
set to the address of a DEV_BROADCAST_HDR structure identifying the device to remove.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device to remove.
Return ValuesReturn TRUE to grant permission to remove a device.

Return BROADCAST_QUERY_DENY to deny permission to remove a device.See AlsoDEV_BROADCAST_HDR, WM_DEVICECHANGE

DBT_DEVICEQUERYREMOVEFAILED
The operating system sends the DBT_DEVICEQUERYREMOVEFAILED device message when a
request to remove a device has been canceled.

To send the DBT_DEVICEQUERYREMOVEFAILED device message, the operating system
sends the WM_DEVICECHANGE message with wParam set to
DBT_DEVICEQUERYREMOVEFAILED and lParam set to the address of a
DEV_BROADCAST_HDR structure identifying the device.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device.
Return ValuesReturn TRUE.See AlsoDEV_BROADCAST_HDR, WM_DEVICECHANGE

DBT_DEVICEREMOVECOMPLETE
The operating system sends the DBT_DEVICEREMOVECOMPLETE device message when a
device has been removed.

To send the DBT_DEVICEREMOVECOMPLETE device message, the operating system sends
the WM_DEVICECHANGE message with wParam set to DBT_DEVICEREMOVECOMPLETE and
lParam set to the address of a DEV_BROADCAST_HDR structure identifying the device
removed.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device removed.
Return ValuesReturn TRUE.RemarksThe operating system may send a DBT_DEVICEREMOVECOMPLETE message without sending

corresponding DBT_DEVICEQUERYREMOVE and DBT_DEVICEREMOVEPENDING messages.
In such cases, the applications and drivers must recover from the loss of the device as best they
can.See AlsoDBT_DEVICEQUERYREMOVE, DBT_DEVICEREMOVEPENDING, DEV_BROADCAST_HDR,
WM_DEVICECHANGE

DBT_DEVICEREMOVEPENDING
The operating system sends the DBT_DEVICEREMOVEPENDING device message when the
device is about to be removed. This message is the last chance for applications and drivers to
prepare for the removal of the device.

To send the DBT_DEVICEREMOVEPENDING device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_DEVICEREMOVEPENDING and
lParam set to the address of a DEV_BROADCAST_HDR structure identifying the device to
remove.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device to remove.
Return ValuesReturn TRUE.RemarksThis message cannot be denied.See AlsoDEV_BROADCAST_HDR, WM_DEVICECHANGE

DBT_DEVICETYPESPECIFIC
The operating system sends the DBT_DEVICETYPESPECIFIC device message when a device-
specific event occurs.

To send the DBT_DEVICETYPESPECIFIC device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_DEVICETYPESPECIFIC and lParam
set as described in the following.dwData = (DWORD) lParam;
ParametersdwData

Address of a DEV_BROADCAST_HDR structure identifying the device. lParam is application-
defined. May be zero.

Return ValuesReturn TRUE.See AlsoDEV_BROADCAST_HDR, WM_DEVICECHANGE

DBT_QUERYCHANGECONFIG
The operating system sends the DBT_QUERYCHANGECONFIG device message to request
permission to change the current configuration (dock or undock). Any application can deny this
request and cancel the change.

To send the DBT_QUERYCHANGECONFIG device message, the operating system sends the
WM_DEVICECHANGE message with wParam set to DBT_QUERYCHANGECONFIG and lParam
set to zero.ParameterslParam

lParam is zero when the WM_DEVICECHANGE message is sent with wParam set to
DBT_QUERYCHANGECONFIG.

Return ValuesReturn TRUE to grant permission to change the configuration.

Return BROADCAST_QUERY_DENY to deny permission to change the configuration.See AlsoDBT_CONFIGCHANGECANCELED, DBT_CONFIGCHANGED, WM_DEVICECHANGE

DBT_USERDEFINED
The DBT_USERDEFINED device message identifies a user-defined system message.

To send the DBT_USERDEFINED device message, send the WM_DEVICECHANGE message
with wParam set to DBT_USERDEFINED and lParam set as described following.dwData = (DWORD) lParam;
ParametersdwData

Address of the user-defined data. The data must be in the format specified by the
_DEV_BROADCAST_USERDEFINED structure. lParam is application-defined. May be zero.

See Also_DEV_BROADCAST_USERDEFINED, WM_DEVICECHANGE

DL_BEGINDRAG
The DL_BEGINDRAG notification message notifies the parent window of a drag list box that the
user has clicked the left mouse button on a list item. A drag list box sends DL_BEGINDRAG in the
form of a drag list message.DL_BEGINDRAG
idCtl = (int) wParam;
pDragInfo = (LPDRAGLISTINFO) lParam;
ParametersidCtl

Control identifier of the drag list box.
pDragInfo

Pointer to a DRAGLISTINFO structure that contains the DL_BEGINDRAG notification code,
the handle to the drag list box, and the cursor position.

Return ValuesThe parent window should return TRUE to begin a drag operation or FALSE to prevent a drag
operation.RemarksWhen processing this notification message, a window procedure typically determines the list item
at the specified cursor position by using the LBItemFromPt function and then returns TRUE or
FALSE, depending on whether the item should be dragged. Before returning TRUE, the window
procedure should save the index of the list item, so the application knows which item to move or
copy when the drag operation is completed.See AlsoDRAGLISTINFO, LBItemFromPt

DL_CANCELDRAG
The DL_CANCELDRAG notification message signals that the user has canceled a drag operation
by clicking the right mouse button or pressing the ESC key. A drag list box sends
DL_CANCELDRAG to its parent window in the form of a drag list message.DL_CANCELDRAG
idCtl = (int) wParam;
pDragInfo = (LPDRAGLISTINFO) lParam;
ParametersidCtl

Control identifier of the drag list box.
pDragInfo

Pointer to a DRAGLISTINFO structure that contains the DL_CANCELDRAG notification code,
the handle to the drag list box, and the cursor position.

Return ValuesNo return value.RemarksBy processing the DL_CANCELDRAG notification message, an application can reset its internal
state to indicate that dragging is not in effect.See AlsoDRAGLISTINFO

DL_DRAGGING
The DL_DRAGGING notification message signals that the user has moved the mouse while
dragging an item. DL_DRAGGING is also sent periodically during dragging even if the mouse is
not moved. A drag list box sends this notification to its parent window in the form of a drag list
message.DL_DRAGGING
idCtl = (int) wParam;
pDragInfo = (LPDRAGLISTINFO) lParam;
ParametersidCtl

Control identifier of the drag list box.
pDragInfo

Pointer to a DRAGLISTINFO structure that contains the DL_DRAGGING notification code,
the handle to the drag list box, and the cursor position.

Return ValuesThe return value determines the type of mouse cursor that the drag list should set; it can be the
DL_STOPCURSOR, DL_COPYCURSOR, or DL_MOVECURSOR value. If any other value is
returned, the cursor does not change.RemarksA window procedure typically processes the DL_DRAGGING notification message by determining
the item under the cursor and then drawing an insert icon. To get the item under the cursor, use
the LBItemFromPt function, specifying TRUE for the bAutoScroll parameter. This option causes
the drag list box to scroll periodically if the cursor is above or below its client area. To draw the
insert icon, use the DrawInsert function.See AlsoDrawInsert, DRAGLISTINFO, LBItemFromPt

DL_DROPPED
The DL_DROPPED notification message signals that the user has completed a drag operation by
releasing the left mouse button. A drag list box sends DL_DROPPED to its parent window in the
form of a drag list message.DL_BEGINDRAG
idCtl = (int) wParam;
pDragInfo = (LPDRAGLISTINFO) lParam;
ParametersidCtl

Control identifier of the drag list box.
pDragInfo

Pointer to a DRAGLISTINFO structure that contains the DL_DROPPED notification code, the
handle to the drag list box, and the cursor position.

Return ValuesNo return value.RemarksA window procedure typically processes this notification message by inserting or copying the
dragged list item before the list item under the cursor. To retrieve the index of the item at the
cursor position, use the LBItemFromPoint function. Note that the DL_DROPPED notification
message is sent even if the cursor is not on a list item. In that case, LBItemFromPoint returns -
1.See AlsoDRAGLISTINFO

DM_GETDEFID
An application sends a DM_GETDEFID message to retrieve the identifier of the default push
button control for a dialog box.DM_GETDEFID
ParametersThis message has no parameters.Return ValuesIf a default push button exists, the high-order word of the return value contains the value

DC_HASDEFID and the low-order word contains the control identifier. Otherwise, the return value
is zero.RemarksThe DefDlgProc function processes this message.See AlsoDefDlgProc, DM_SETDEFID

DM_REPOSITION
The DM_REPOSITION message repositions a top-level dialog box so that it fits within the desktop
area. An application can send this message to a dialog box after resizing it to ensure that the
entire dialog box remains visible.DM_REPOSITION
wParam = 0;
lParam = 0;
ParametersThis message has no parameters.Return ValuesThis message has no return value.RemarksThis message has no effect if the dialog box is a child window.

DM_SETDEFID
An application sends a DM_SETDEFID message to change the identifier of the default push
button for a dialog box.DM_SETDEFID
wParam = idControl; // identifier of new default push button
ParametersidControl

Value of wParam. Specifies the identifier of a push button control that will become the default.
RemarksThis message is processed by the DefDlgProc function. To set the default push button, the

function can send WM_GETDLGCODE and BM_SETSTYLE messages to the given control and
the current default push button.

Using the DM_SETDEFID message can result in more than one button appearing to have the
default push button state. When Windows brings up a dialog, it draws the first push button in the
dialog template with the default state border. Sending a DM_SETDEFID message to change the
default button will not always remove the default state border from the first push button. In these
cases, the application should send a BM_SETSTYLE message to change the first push button
border style.Return ValuesThe return value is always TRUE.See AlsoBM_SETSTYLE, DefDlgProc, DM_GETDEFID, EM_SETLIMITTEXT, WM_GETDLGCODE

EM_CANPASTE
The EM_CANPASTE message determines whether a rich edit control can paste a specified
clipboard format.EM_CANPASTE
wParam = (WPARAM) (UINT) uFormat;
lParam = 0;
ParametersuFormat

Value identifying the clipboard format to try, or zero to try any format currently on the
clipboard.

Return ValuesReturns a nonzero value if the clipboard format can be pasted or zero otherwise.

EM_CANUNDO
An application sends an EM_CANUNDO message to determine whether an edit-control operation
can be undone; that is, whether the control can respond to the EM_UNDO message.EM_CANUNDO
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the edit control can correctly process the EM_UNDO message, the return value is TRUE;

otherwise, it is FALSE.See AlsoEM_UNDO

EM_CHARFROMPOS
An application sends an EM_CHARFROMPOS message to retrieve the zero-based character
index and zero-based line index of the character nearest the specified point in an edit control.EM_CHARFROMPOS
wParam = 0;
lParam = MAKELPARAM(x, y)
Parametersx

Value of the low-order word of lParam. Specifies the x-coordinate of a point in the edit
control's client area. The coordinate is relative to the upper-left corner of the client area.

y
Value of the high-order word of lParam. Specifies the y-coordinate of a point in the edit
control's client area. The coordinate is relative to the upper-left corner of the client area.

Return ValuesThe return value specifies the character index in the low-order word and the line index in the high-
order word. For single-line edit controls, the line index is always 0. The return value is the last
character in the edit control if the given point is beyond the last character in the control. The return
value is - 1 if the specified point is outside the client area of the edit control.See AlsoEM_POSFROMCHAR

EM_DISPLAYBAND
The EM_DISPLAYBAND message displays a portion of a rich edit control's contents, as
previously formatted for a device using the EM_FORMATRANGE message.EM_DISPLAYBAND
wParam = 0;
lParam = (LPARAM) (LPRECT) lprc;
Parameterslprc

Pointer to a RECT structure specifying the area of the device to display to.
Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksText and OLE objects are clipped by the rectangle. The application does not need to set the
clipping region.See AlsoEM_FORMATRANGE, RECT

EM_EMPTYUNDOBUFFER
An application sends an EM_EMPTYUNDOBUFFER message to reset the undo flag of an edit
control. The undo flag is set whenever an operation within the edit control can be undone.EM_EMPTYUNDOBUFFER
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksThe undo flag is automatically reset whenever the edit control receives a WM_SETTEXT or

EM_SETHANDLE message.See AlsoEM_CANUNDO, EM_SETHANDLE, EM_UNDO, WM_SETTEXT

EM_EXGETSEL
The EM_EXGETSEL message retrieves the starting and ending character positions of the
selection in a rich edit control.EM_EXGETSEL
wParam = 0;
lParam = (LPARAM) (CHARRANGE FAR *) lpchr;
Parameterslpchr

Pointer to a CHARRANGE structure that receives the selection range.
Return ValuesNo return value.See AlsoCHARRANGE

EM_EXLIMITTEXT
The EM_EXLIMITTEXT message sets an upper limit to the amount of text in a rich edit control.EM_EXLIMITTEXT
wParam = 0;
lParam = (LPARAM) (DWORD) cchTextMax;
ParameterscchTextMax

Maximum amount of text or zero for the default maximum. An OLE object counts as a single
character. The default maximum is 32K.

Return ValuesNo return value.

EM_EXLINEFROMCHAR
The EM_EXLINEFROMCHAR message determines which line contains the specified character in
a rich edit control.EM_EXLINEFROMCHAR
wParam = 0;
lParam = (LPARAM) (DWORD) ichCharPos;
ParametersichCharPos

Zero-based index of the character.
Return ValuesReturns the zero-based index of the line.

EM_EXSETSEL
The EM_EXSETSEL message selects a range of characters and/or OLE objects in a rich edit
control.EM_EXSETSEL
wParam = 0;
lParam = (LPARAM) (CHARRANGE FAR *) ichCharRange;
ParametersichCharRange

Zero-based index of the character.
Return ValuesReturns the zero-based index of the line.

EM_FINDTEXT
The EM_FINDTEXT message finds text within a rich edit control.EM_FINDTEXT
wParam = (WPARAM) (UINT) fuFlags;
lParam = (LPARAM) (FINDTEXT FAR *) lpFindText;
ParametersfuFlags

Zero or more of the FT_MATCHCASE and FT_WHOLEWORD values.
lpFindText

Pointer to a FINDTEXT structure containing information about the find operation.
Return ValuesReturns the zero-based character position of the next match, or - 1 if there are no more matches.See AlsoFINDTEXT

EM_FINDTEXTEX
Finds text within a rich edit control.EM_FINDTEXTEX
wParam = (WPARAM) (UINT) fuFlags;
lParam = (LPARAM) (FINDTEXTEX FAR *) lpFindText;
ParametersfuFlags

Zero or more of the FT_MATCHCASE and FT_WHOLEWORD values.
lpFindText

Address of a FINDTEXTEX structure containing information about the find operation.
Return ValuesReturns the zero-based character position of the next match or - 1 if there are no more matches.See AlsoFINDTEXTEX

EM_FINDWORDBREAK
The EM_FINDWORDBREAK message finds the next word break before or after the specified
character position, or retrieves information about the character at that position.EM_FINDWORDBREAK
wParam = (WPARAM) (UINT) code;
lParam = (LPARAM) (DWORD) ichStart;
Parameterscode

Action to take. This parameter can be one of these values:
Value Meaning
WB_CLASSIFY Returns the character class and word

break flags of the character at the
specified position.

WB_ISDELIMITER Returns TRUE if the character at the
specified position is a delimiter, or
FALSE otherwise.

WB_LEFT Finds the nearest character before the
specified position that begins a word.

WB_LEFTBREAK Finds the next word end before the
specified position. Same as
WB_PREVBREAK.

WB_MOVEWORDLEFT Finds the next character that begins a
word before the specified position. This
value is used during CTRL+LEFT key
processing. Same as
WB_MOVEWORDPREV.

WB_MOVEWORDRIGHT Finds the next character that begins a
word after the specified position. This
value is used during CTRL+RIGHT key
processing. Same as
WB_MOVEWORDNEXT.

WB_RIGHT Finds the next character that begins a
word after the specified position.

WB_RIGHTBREAK Finds the next end-of-word delimiter
after the specified position. Same as
WB_NEXTBREAK.

ichStart
Zero-based character position to start from.

Return ValuesReturns the character index of the word break, unless the code parameter is the WB_CLASSIFY
or WB_ISDELIMITER value. For more information, see the description of the code parameter.RemarksIf code is WB_LEFT and WB_RIGHT, the word break procedure finds word breaks only after
delimiters. This matches the functionality of an edit control. If code is WB_MOVEWORDLEFT or
WB_MOVEWORDRIGHT, the word break procedure also compares character classes and word
break flags.

For information about character classes and word break flags, see Word and Line Breaks.

EM_FMTLINES
An application sends an EM_FMTLINES message to set the inclusion flag of soft linebreak
characters on or off within a multiline edit control. A soft linebreak consists of two carriage returns
and a linefeed and is inserted at the end of a line that is broken because of wordwrapping.EM_FMTLINES
wParam = (WPARAM) (BOOL) fAddEOL; // linebreak flag
lParam = 0;// not used; must be zero
ParametersfAddEOL

Value of wParam. Specifies whether soft-linebreak characters are to be inserted. A value of
TRUE inserts the characters; a value of FALSE removes them.

Return ValuesThe return value is identical to the fAddEOL parameter.RemarksThis message affects only the buffer returned by the EM_GETHANDLE message and the text
returned by the WM_GETTEXT message. It has no effect on the display of the text within the edit
control.

The EM_FMTLINES message does not affect a line that ends with a hard linebreak. A hard
linebreak consists of one carriage return and a linefeed.

Note that the size of the text changes when this message is processed.See AlsoEM_GETHANDLE, WM_GETTEXT

EM_FORMATRANGE
The EM_FORMATRANGE message formats a range of text in a rich edit control for a specific
device.EM_FORMATRANGE
wParam = (WPARAM) (BOOL) fRender;
lParam = (LPARAM) (FORMATRANGE FAR *) lpFmt;
ParametersfRender

Value specifying whether to render the text. If this parameter is nonzero, the text is rendered.
Otherwise, the text is just measured.

lpFmt
Pointer to a FORMATRANGE structure containing information about the output device, or
NULL to free information cached by the control.
This message is typically used with the EM_DISPLAYBAND message to format a rich edit
control's contents for an output device such as a printer.
It is very important to free cached information after the last time you use this message by
specifying NULL in lpFmt. In addition, after using this message for one device, you must free
cached information before using it again for a different device.

Return ValuesReturns the index of the last character that fits in the region plus one.See AlsoEM_DISPLAYBAND, FORMATRANGE

EM_GETCHARFORMAT
The EM_GETCHARFORMAT message determines the current character formatting in a rich edit
control.EM_GETCHARFORMAT
wParam = (WPARAM) (BOOL) fSelection;
lParam = (LPARAM) (CHARFORMAT FAR *) lpFmt;
ParametersfSelection

Value specifying whether to get the default character formatting or the current selection's
character formatting. If this parameter is zero, the default formatting is returned. Otherwise,
the current selection's formatting is returned.

lpFmt
Pointer to a CHARFORMAT structure to fill in. If the selection formatting is being retrieved,
the structure receives the attributes of the first character, and the dwMask member specifies
which attributes are consistent throughout the entire selection.

Return ValuesReturns the value of the dwMask member of the CHARFORMAT structure.See AlsoCHARFORMAT

EM_GETEVENTMASK
The EM_GETEVENTMASK message retrieves the event mask for a rich edit control. The event
mask specifies which notification messages the control sends to its parent window.EM_GETEVENTMASK
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the event mask for the rich edit control.

EM_GETFIRSTVISIBLELINE
An application sends an EM_GETFIRSTVISIBLELINE message to determine the uppermost
visible line in an edit control.EM_GETFIRSTVISIBLELINE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the zero-based index of the uppermost visible line in a multiline edit control.

For single-line edit controls, the return value is the zero-based index of the first visible character.

EM_GETHANDLE
An application sends an EM_GETHANDLE message to retrieve a handle of the memory currently
allocated for a multiline edit control's text.EM_GETHANDLE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is a memory handle identifying the buffer that holds the content of the edit

control. If an error occurs, such as sending the message to a single-line edit control, the return
value is zero.RemarksIn a 16-bit Windows-based application, the handle is a local memory handle and can be used only
by functions that take a local memory handle as a parameter. The application can send this
message to a multiline edit control in a dialog box only if it created the dialog box with the
DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style is not set, the return value is still
nonzero, but the return value will not be meaningful.See AlsoEM_SETHANDLE

EM_GETIMECOLOR
Retrieves the IME composition color. This message is available only in Asian-language versions
of the operating system.EM_GETIMECOLOR
wParam = (WPARAM) 0;
lParam = (LPARAM) (COMPCOLOR *) aCompColor;
ParametersaCompColor

Address of a 4-element array of COMPCOLOR structures that receives the composition color.
Return ValuesReturns nonzero if successful, zero otherwise.See AlsoCOMPCOLOR

EM_GETIMEOPTIONS
Retrieves the current IME options. This message is available only in Asian-language versions of
the operating system.EM_GETIMEOPTIONS
wParam = (WPARAM) 0;
lParam = (LPARAM) 0;
Return ValuesReturns a combination of the IME option values described for the EM_SETIMEOPTIONS

message.See AlsoEM_SETIMEOPTIONS

EM_GETLIMITTEXT
An application sends the EM_GETLIMITTEXT message to retrieve the current text limit, in
characters, for an edit control.EM_GETLIMITTEXT
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the text limit.See AlsoEM_SETLIMITTEXT

EM_GETLINE
An application sends an EM_GETLINE message to copy a line of text from an edit control and
place it in a specified buffer.EM_GETLINE
wParam = (WPARAM) line;// line number to retrieve
lParam = (LPARAM) (LPCSTR) lpch; // address of buffer for line
Parametersline

Value of wParam. Specifies the zero-based index of the line to retrieve from a multiline edit
control. A value of zero specifies the topmost line. This parameter is ignored by a single-line
edit control.

lpch
Value of lParam. Points to the buffer that receives a copy of the line. The first word of the
buffer specifies the maximum number of characters that can be copied to the buffer.

Return ValuesThe return value is the number of characters copied. The return value is zero if the line number
specified by the line parameter is greater than the number of lines in the edit control.RemarksThe copied line does not contain a terminating null character.See AlsoEM_LINELENGTH, WM_GETTEXT

EM_GETLINECOUNT
An application sends an EM_GETLINECOUNT message to retrieve the number of lines in a
multiline edit control.EM_GETLINECOUNT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is an integer specifying the number of lines in the multiline edit control. If no text

is in the edit control, the return value is 1.See AlsoEM_GETLINE, EM_LINELENGTH

EM_GETMARGINS
An application sends the EM_GETMARGINS message to retrieve the widths of the left and right
margins for an edit control.EM_GETMARGINS
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesReturns the width of the left margin in the low-order word, and the width of the right margin in the

high-order word.See AlsoEM_SETMARGINS

EM_GETMODIFY
An application sends an EM_GETMODIFY message to determine whether the content of an edit
control has been modified.EM_GETMODIFY
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the content of edit control has been modified, the return value is TRUE; otherwise, it is FALSE.RemarksWindows maintains an internal flag indicating whether the content of the edit control has been

changed. This flag is cleared when the edit control is first created; alternatively, an application can
send an EM_SETMODIFY message to the edit control to clear the flag.See AlsoEM_SETMODIFY

EM_GETOLEINTERFACE
The EM_GETOLEINTERFACE message retrieves an IRichEditOle object that a client can use to
access a rich edit control's OLE functionality.EM_GETOLEINTERFACE
wParam = 0;
lParam = (LPARAM) (LPVOID FAR *) ppObject;
ParametersppObject

Address at which the control stores a pointer to the IRichEditOle object. The control calls the
AddRef function for the object before returning, so the calling application must call the
Release function when it is done with the object.

Return ValuesReturns a nonzero value if successful, or zero otherwise.See AlsoIRichEditOle

EM_GETOPTIONS
Retrieves the rich edit control options.EM_GETOPTIONS
wParam = (WPARAM) 0;
lParam = (LPARAM) 0;
Return ValuesReturns the current option values. Can be a combination of values described for the

EM_SETOPTIONS message.See AlsoEM_SETOPTIONS

EM_GETPARAFORMAT
The EM_GETPARAFORMAT message retrieves the paragraph formatting of the current selection
in a rich edit control.EM_GETPARAFORMAT
wParam = 0;
lParam = (LPARAM) (PARAFORMAT FAR *) lpFmt;
ParameterslpFmt

Pointer to a PARAFORMAT structure that receives the paragraph formatting attributes of the
current selection.
If more than one paragraph is selected, the structure receives the attributes of the first
paragraph, and the dwMask member specifies which attributes are consistent throughout the
entire selection.

Return ValuesReturns the value of the dwMask member of the PARAFORMAT structure.See AlsoPARAFORMAT

EM_GETPASSWORDCHAR
An application sends an EM_GETPASSWORDCHAR message to retrieve the password character
displayed in an edit control when the user enters text.EM_GETPASSWORDCHAR
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value specifies the character to be displayed in place of the character typed by the

user. The return value is NULL if no password character exists.RemarksIf the edit control is created with the ES_PASSWORD style, the default password character is set
to an asterisk (*).See AlsoEM_SETPASSWORDCHAR

EM_GETPUNCTUATION
Gets the current punctuation characters for the rich edit control. This message is available only in
Asian-language versions of the operating system.EM_GETPUNCTUATION
wParam = (WPARAM) (UINT) fType;
lParam = (LPARAM) (PUNCTUATION FAR *) punctTable;
ParametersfType

Punctuation type flag. Can be one of the following values:
Value Meaning
PC_LEADING Leading punctuation characters
PC_FOLLOWING Following punctuation characters
PC_DELIMITER Delimiter

The PC_OVERFLOW value is not supported.
punctTable

Address of a PUNCTUATION structure that receives the punctuation characters.
Return ValuesReturns nonzero if successful; zero otherwise.See AlsoPUNCTUATION

EM_GETRECT
An application sends an EM_GETRECT message to retrieve the formatting rectangle of an edit
control. The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is
independent of the size of the edit-control window.EM_GETRECT
wParam = 0;// not used; must be zero
lParam (LPARAM) (LPRECT) lprc; // address of structure for rectangle
Parameterslprc

Value of lParam. Points to the RECT structure that receives the formatting rectangle.
Return ValuesThe return value is not a meaningful value.RemarksYou can modify the formatting rectangle of a multiline edit control by using the EM_SETRECT and

EM_SETRECTNP messages.See AlsoEM_SETRECT, EM_SETRECTNP, RECT

EM_GETSEL
An application sends an EM_GETSEL message to get the starting and ending character positions
of the current selection in an edit control.EM_GETSEL
wParam = (WPARAM) (LPDWORD) lpdwStart; // receives starting position
lParam = (LPARAM) (LPDWORD) lpdwEnd; // receives ending position
ParameterslpdwStart

Value of wParam. Points to a 32-bit value that receives the starting position of the selection.
This parameter can be NULL.

lpdwEnd
Value of lParam. Points to a 32-bit value that receives the position of the first nonselected
character after the end of the selection. This parameter can be NULL.

Return ValuesThe return value is a zero-based 32-bit value with the starting position of the selection in the low-
order word and the position of the first character after the last selected character in the high-order
word. If either of these values exceeds 65, 535, the return value is -1.RemarksIn a rich edit control, if the selection is not entirely contained in the first 64K, use the message
EM_EXGETSEL.See AlsoEM_EXGETSEL, EM_SETSEL

EM_GETSELTEXT
The EM_GETSELTEXT message retrieves the currently selected text in a rich edit control.EM_GETSELTEXT
wParam = 0;
lParam = (LPARAM) (LPSTR) lpBuf;
ParameterslpBuf

Pointer to a buffer that receives the selected text. The calling application must ensure that the
buffer is large enough to hold the selected text.

Return ValuesReturns the number of characters copied, not including the terminating null character.

EM_GETTEXTRANGE
The EM_GETTEXTRANGE message retrieves a specified range of characters from a rich edit
control.EM_GETTEXTRANGE
wParam = 0;
lParam = (LPARAM) (TEXTRANGE FAR *) lpRange;
ParameterslpRange

Pointer to a TEXTRANGE structure that specifies the range of characters to retrieve and a
buffer to copy the characters to.

Return ValuesReturns the number of characters copied, not including the terminating null character.See AlsoTEXTRANGE

EM_GETTHUMB
An application sends the EM_GETTHUMB message to retrieve the position of the scroll box
(thumb) in a multiline edit control.EM_GETTHUMB
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the position of the scroll box.

EM_GETWORDBREAKPROC
An application sends an EM_GETWORDBREAKPROC message to an edit control to retrieve the
address of the current wordwrap function.EM_GETWORDBREAKPROC
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value specifies the address of the application-defined wordwrap function. The return

value is NULL if no wordwrap function exists.RemarksA wordwrap function scans a text buffer that contains text to be sent to the display, looking for the
first word that does not fit on the current display line. The wordwrap function places this word at
the beginning of the next line on the display. A wordwrap function defines the point at which
Windows should break a line of text for multiline edit controls, usually at a space character that
separates two words.See AlsoEditWordBreakProc, EM_FMTLINES, EM_SETWORDBREAKPROC

EM_GETWORDBREAKPROCEX
Retrieves the address of the currently registered extended word break procedure.EM_GETWORDBREAKPROCEX
wParam = (WPARAM) 0;
lParam = (LPARAM) 0;
Return ValuesReturns the address of the current procedure.

EM_GETWORDWRAPMODE
Gets the current word wrapping and word breaking options for the rich edit control. This message
is available only in Asian-language versions of the operating system.EM_GETWORDWRAPMODE
wParam = (WPARAM) 0;
lParam = (LPARAM) 0:
Return ValuesReturns the current word wrapping and word breaking options.RemarksThis message must not be sent by the application-defined word breaking procedure.

EM_HIDESELECTION
The EM_HIDESELECTION message hides or shows the selection in a rich edit control.EM_HIDESELECTION
wParam = (WPARAM) (BOOL) fHide;
lParam = (LPARAM) (BOOL) fChangeStyle;
ParametersfHide

Value specifying whether to hide or show the selection. If this parameter is zero, the selection
is shown. Otherwise, the selection is hidden.

fChangeStyle
Value specifying whether to change the control's ES_NOHIDESEL window style. If this
parameter is zero, the selection is temporarily shown or hidden. Otherwise, the style is
changed.
If this parameter is nonzero and the control has the focus, the selection is hidden or shown as
appropriate.

Return ValuesNo return value.

EM_LIMITTEXT
An application sends an EM_LIMITTEXT message to limit the amount of text the user may enter
into an edit control.EM_LIMITTEXT
wParam = (WPARAM) cchMax; // text length, in characters
lParam = 0; // not used; must be zero
ParameterscchMax

Value of wParam. Specifies the maximum number of characters the user can enter. If this
parameter is zero, the text length is set to 0x7FFFFFFE characters for single-line edit controls
or 0xFFFFFFFF for multiline edit controls.

Return ValuesThis message does not return a value.RemarksThe EM_LIMITTEXT message limits only the text the user can enter. It has no effect on any text
already in the edit control when the message is sent, nor does it affect the length of the text
copied to the edit control by the WM_SETTEXT message. If an application uses the
WM_SETTEXT message to place more text into an edit control than is specified in the
EM_LIMITTEXT message, the user can edit the entire contents of the edit control.

The default limit to the amount of text a user can enter in an edit control is 30,000 characters.

In a rich edit control, use the message EM_EXLIMITTEXT for text length values greater than 64K.See AlsoEM_EXLIMITTEXT, WM_SETTEXT

EM_LINEFROMCHAR
An application sends an EM_LINEFROMCHAR message to retrieve the index of the line that
contains the specified character index in a multiline edit control. A character index is the number
of characters from the beginning of the edit control.EM_LINEFROMCHAR
wParam = (WPARAM) ich; // character index
lParam = 0; // not used; must be zero
Parametersich

Value of wParam. Specifies the character index of the character contained in the line whose
number is to be retrieved. If the ich parameter is - 1, either the line number of the current line
(the line containing the caret) is retrieved or, if there is a selection, the line number of the line
containing the beginning of the selection is retrieved.

Return ValuesThe return value is the zero-based line number of the line containing the character index specified
by ich.RemarksIn a rich edit control, if the character index is greater than 64K, use the message
EM_EXLINEFROMCHAR.See AlsoEM_EXLINEFROMCHAR, EM_LINEINDEX

EM_LINEINDEX
An application sends an EM_LINEINDEX message to retrieve the character index of a line in a
multiline edit control. The character index is the number of characters from the beginning of the
edit control to the specified line.EM_LINEINDEX
wParam = (WPARAM) line; // line number
lParam = 0; // not used; must be zero
Parametersline

Value of wParam. Specifies the zero-based line number. A value of - 1 specifies the current
line number (the line that contains the caret).

Return ValuesThe return value is the character index of the line specified in the line parameter, or it is - 1 if the
specified line number is greater than the number of lines in the edit control.See AlsoEM_LINEFROMCHAR

EM_LINELENGTH
An application sends an EM_LINELENGTH message to retrieve the length of a line, in characters,
in an edit control.EM_LINELENGTH
wParam = (WPARAM) ich; // character index
lParam = 0; // not used; must be zero
Parametersich

Value of wParam. Specifies the character index of a character in the line whose length is to be
retrieved when EM_LINELENGTH is sent to a multiline edit control. If this parameter is - 1, the
message returns the number of unselected characters on lines containing selected
characters. For example, if the selection extended from the fourth character of one line
through the eighth character from the end of the next line, the return value would be 10 (three
characters on the first line and seven on the next).

Return ValuesThe return value is the length, in characters, of the line specified by the ich parameter when an
EM_LINELENGTH message is sent to a multiline edit control. The return value is the length, in
characters, of the text in the edit control when an EM_LINELENGTH message is sent to a single-
line edit control.RemarksUse the EM_LINEINDEX message to retrieve a character index for a given line number within a
multiline edit control.See AlsoEM_LINEINDEX

EM_LINESCROLL
An application sends an EM_LINESCROLL message to scroll the text vertically or horizontally in a
multiline edit control.EM_LINESCROLL
wParam = (WPARAM) cxScroll; // characters to scroll horizontally
lParam = (LPARAM) cyScroll; // lines to scroll vertically
ParameterscxScroll

Value of wParam. Specifies the number of characters to scroll horizontally.
cyScroll

Value of lParam. Specifies the number of lines to scroll vertically.
Return ValuesIf the message is sent to a multiline edit control, the return value is TRUE; if the message is sent

to a single-line edit control, the return value is FALSE.RemarksThe edit control does not scroll vertically past the last line of text in the edit control. If the current
line plus the number of lines specified by the cyScroll parameter exceeds the total number of lines
in the edit control, the value is adjusted so that the last line of the edit control is scrolled to the top
of the edit-control window.

The EM_LINESCROLL message can be used to scroll horizontally past the last character of any
line.

EM_PASTESPECIAL
The EM_PASTESPECIAL message pastes a specific clipboard format in a rich edit control.EM_PASTESPECIAL
wParam = (WPARAM) (UINT) uFormat;
lParam = (REPASTESPECIAL FAR *) lpRePasteSpecial;
ParametersuFormat

Clipboard format to paste. For a list of clipboard formats, see SetClipboardData.
lpRePasteSpecial

The address of a REPASTESPECIAL structure or NULL. If an object is being pasted in, the
REPASTESPECIAL structure is filled in with the desired display aspect. If lParam is NULL or
REPASTESPECIAL.dwAspect is zero, the display aspect used will be the contents of the
object descriptor.

Return ValuesNo return value.See AlsoREPASTESPECIAL, SetClipboardData

EM_POSFROMCHAR
An application sends the EM_POSFROMCHAR message to retrieve the coordinates of the
specified character in an edit control.EM_POSFROMCHAR
wParam = (LPPOINT) lpPoint; // address of structure
// receiving character position
lParam = (LPARAM) wCharIndex; // zero-based index of character
ParameterslpPoint

Value of wParam. Address of a POINT structure that receives the coordinates of the specified
character. The coordinates in the structure locate the upper-left corner of the character. If the
wCharIndex is greater than the index of the last character in the control, the returned
coordinates are of the position just past the last character of the control. The coordinates are
relative to the upper-left corner of the edit control's client area.

wCharIndex
Value of lParam. Specifies the zero-based index of the character.

Return ValueThis message does not return a value.RemarksFor a single-line edit control, the y-coordinate is always zero. A returned coordinate can be
negative if the character has been scrolled outside the edit control's client area. The coordinates
are truncated to integer values.See AlsoEM_CHARFROMPOS

EM_REPLACESEL
An application sends an EM_REPLACESEL message to replace the current selection in an edit
control with the specified text.EM_REPLACESEL
fCanUndo = (BOOL) wParam ; // flag that specifies whether replacement
can be undone
lpszReplace = (LPCTSTR) lParam ; // pointer to replacement text string
ParametersfCanUndo

Value of wParam. Specifies whether the replacement operation can be undone. If this is
TRUE, the operation can be undone. If this is FALSE , the operation cannot be undone.

lpszReplace
Value of lParam. Points to a null-terminated string containing the replacement text.

Return ValuesThis message does not return a value.RemarksUse the EM_REPLACESEL message to replace only a portion of the text in an edit control. To
replace all of the text, use the WM_SETTEXT message.

If there is no current selection, the replacement text is inserted at the current location of the caret.See AlsoWM_SETTEXT

EM_REQUESTRESIZE
The EM_REQUESTRESIZE message forces a rich edit control to send an EN_REQUESTRESIZE
notification message to its parent window.EM_REQUESTRESIZE
wParam = 0;
lParam = 0;
Return ValuesNo return value.RemarksThis message is useful during WM_SIZE processing for the parent of a bottomless rich edit

control.See AlsoEN_REQUESTRESIZE, WM_SIZE

EM_SCROLL
An application sends an EM_SCROLL message to scroll the text vertically in a multiline edit
control. This message is equivalent to sending a WM_VSCROLL message to the edit control.EM_SCROLL
wParam = (WPARAM) (INT) nScroll; // scroll action
lParam = 0;// not used; must be zero
ParametersnScroll

Value of wParam. Specifies the action the scroll bar is to take. This parameter may be one of
the following values:

Value Meaning
SB_LINEDOWN Scrolls down one line.
SB_LINEUP Scrolls up one line.
SB_PAGEDOWN Scrolls down one page.
SB_PAGEUP Scrolls up one page.

Return ValuesIf the message is successful, the high-order word of the return value is TRUE, and the low-order
word is the number of lines that the command scrolls. The number returned may not be the same
as the actual number of lines scrolled if the scrolling moves to the beginning or the end of the text.
If the nScroll parameter specifies an invalid value, the return value is FALSE.RemarksAn application should use the EM_LINESCROLL message to scroll to a specific line or character
position.

An application should use the EM_SCROLLCARET message to scroll the caret into view.See AlsoEM_LINESCROLL, EM_SCROLLCARET, WM_VSCROLL

EM_SCROLLCARET
An application sends an EM_SCROLLCARET message to scroll the caret into view in an edit
control.EM_SCROLLCARET
wParam = 0 ; // not used now; reserved for future use; must be zero
lParam = 0 ; // not used now; reserved for future use; must be zero
ParameterswParam

This parameter is currently unused. It is reserved for future use. It should be set to zero.
lParam

This parameter is currently unused. It is reserved for future use. It should be set to zero.
Return ValuesThe return value is nonzero if the message is sent to an edit control.RemarksIn previous versions of Windows, scrolling the caret into view was done by specifying wParam =

FALSE in the EM_SETSEL message. A Win32-based application should use the
EM_SCROLLCARET message to scroll the caret into view.See AlsoEM_SETSEL

EM_SELECTIONTYPE
The EM_SELECTIONTYPE message determines the selection type for a rich edit control.EM_SELECTIONTYPE
wParam = 0;
lParam = 0;
Return ValuesReturns SEL_EMPTY if the selection is empty, or one or more of the following values:

Value Contents of the selection

SEL_TEXT Text
SEL_OBJECT At least one OLE object
SEL_MULTICHAR More than one character of text
SEL_MULTIOBJECT More than one OLE object
RemarksThis message is useful during WM_SIZE processing for the parent of a bottomless rich edit

control.See AlsoWM_SIZE

EM_SETBKGNDCOLOR
The EM_SETBKGNDCOLOR message sets the background color for a rich edit control.EM_SETBKGNDCOLOR
wParam = (WPARAM) (BOOL) fUseSysColor;
lParam = (LPARAM) (COLORREF) clr;
ParametersfUseSysColor

Value specifying whether to use the system color. If this parameter is nonzero, the
background is set to the window background system color. Otherwise, the background is set
to the specified color.

clr
COLORREF structure specifying the color if fUseSysColor is zero.

Return ValuesReturns the old background color.See AlsoCOLORREF

EM_SETCHARFORMAT
The EM_SETCHARFORMAT message sets character formatting in a rich edit control.EM_SETCHARFORMAT
wParam = (WPARAM) (UINT) uFlags;
lParam = (LPARAM) (CHARFORMAT FAR *) lpFmt;
ParametersuFlags

Character formatting that applies to the control. If this parameter is zero, the default character
format is set. Otherwise, it can be one of the following values:

Value Meaning
SCF_ALL Applies the formatting to all text in the control.
SCF_SELECTION Applies the formatting to the current selection.

If the selection is empty, the character
formatting is applied to the insertion point, and
the new character format is in effect only until
the insertion point changes.

SCF_WORD |
SCF_SELECTION

Applies the formatting to the selected word or
words. If the selection is empty but the
insertion point is inside a word, the formatting
is applied to the word. The SCF_WORD value
must be used in conjunction with the
SCF_SELECTION value.

lpFmt
Pointer to a CHARFORMAT structure specifying the character formatting to use. Only the
formatting attributes specified by the dwMask member are changed.

Return ValuesReturns a nonzero value if successful or zero otherwise.See AlsoCHARFORMAT

EM_SETEVENTMASK
The EM_SETEVENTMASK message sets the event mask for a rich edit control. The event mask
specifies which notification messages the control sends to its parent window.EM_SETEVENTMASK
wParam = 0;
lParam = (LPARAM) (DWORD) dwMask;
ParametersdwMask

New event mask for the rich edit control.
Return ValuesReturns the previous event mask.RemarksThe default event mask (before any is set) is ENM_NONE.

EM_SETHANDLE
An application sends an EM_SETHANDLE message to set the handle of the memory that will be
used by a multiline edit control.EM_SETHANDLE
wParam = (WPARAM) (HLOCAL) hloc; // handle of memory buffer
lParam = 0; // not used; must be zero
Parametershloc

Value of wParam. Identifies the memory the edit control uses to store the currently displayed
text instead of allocating its own memory. If necessary, the control reallocates this memory.

Return ValuesThis message does not return a value.RemarksBefore an application sets a new memory handle, it should send an EM_GETHANDLE message
to retrieve the handle of the current memory buffer and should free that memory.

An edit control automatically reallocates the given buffer whenever it needs additional space for
text, or it removes enough text so that additional space is no longer needed.

Sending an EM_SETHANDLE message clears the undo buffer (EM_CANUNDO returns zero) and
the internal modification flag (EM_GETMODIFY returns zero). The edit control window is redrawn.

An application can send this message to a multiline edit control in a dialog box only if it has
created the dialog box with the DS_LOCALEDIT style flag set.See AlsoEM_CANUNDO, EM_GETHANDLE, EM_GETMODIFY

EM_SETIMECOLOR
Sets the IME composition color. This message is available only in Asian-language versions of the
operating system.EM_SETIMECOLOR
wParam = (WPARAM) 0;
lParam = (LPARAM) (COMPCOLOR *) aCompColor;
ParametersaCompColor

Address of a four-element array of COMPCOLOR structures that contains the composition
color to be set.

Return ValuesReturns nonzero if successful, zero otherwise.See AlsoEM_GETIMECOLOR, COMPCOLOR

EM_SETIMEOPTIONS
Sets the IME options. This message is available only in Asian-language versions of the operating
system.EM_SETIMEOPTIONS
wParam = (WPARAM) (UINT) fOperation;
lParam = (LPARAM) (int) fOptions;
ParametersfOperation

Operation flag. Can be one of the following values:
ECOOP_SET Set the options to those specified by

fOptions.
ECOOP_OR Combine the specified options with

the current options.
ECOOP_AND Retain only those current options that

are also specified by fOptions.
ECOOP_XOR

Logically Exclusive OR the current
options with those specified by
fOptions.

fOptions
IME option flag. Can be a combination of the following values:

IMF_CLOSESTATUSWINDOWCloses the IME status window when
the control receives the input focus.

IMF_FORCEACTIVE Activates the IME when the control
receives the input focus.

IMF_FORCEDISABLE Disables the IME when the control
receives the input focus.

IMF_FORCEENABLE Enables the IME when the control
receives the input focus.

IMF_FORCEINACTIVE Inactivates the IME when the control
receives the input focus.

IMF_FORCENONE Disables IME handling.
IMF_FORCEREMEMBER Restores the previous IME status

when the control receives the input
focus.

IMF_MULTIPLEEDIT Specifies that the composition string
will not be canceled or determined
by focus changes. This allows an
application to have separate
comosition strings on each rich edit
control.

Return ValuesReturns nonzero if successful, zero otherwise.See AlsoEM_GETIMEOPTIONS

EM_SETLIMITTEXT
An application sends the EM_SETLIMITTEXT message to set the text limit for an edit control. The
text limit is the maximum amount of text, in bytes, that the edit control can contain.EM_SETLIMITTEXT
wParam = (WPARAM) cbMax; // new text limits, in bytes
lParam = 0; // not used, must be zero
ParameterscbMax

Value of wParam. Specifies the new text limit, in bytes. If this parameter is 0, Windows sets
the maximum text limit. The maximum text limit is 32,766 bytes for a single-line edit control,
and 65,535 bytes for a multiline edit control.

Return ValuesThis message does not return a value.RemarksThe EM_SETLIMITTEXT message replaces the EM_LIMITTEXT message.See AlsoEM_GETLIMITTEXT

EM_SETMARGINS
An application sends the EM_SETMARGINS message to set the widths of the left and right
margins for an edit control. The message redraws the control to reflect the new margins.EM_SETMARGINS
wParam = (WPARAM) fwMargin;// left and/or right margins
lParam = (LPARAM) MAKELONG(wLeft, wRight);// width of left or right
margins, in pixels
ParametersfwMargin

Value of wParam. Specifies the margins to set. This parameter can be a combination of the
following values:

Value Meaning
EC_LEFTMARGIN Sets the left margin.
EC_RIGHTMARGIN Sets the right margin.
EC_USEFONTINFO Uses information about the current font of the

edit control to set the margins. For a single-
line edit control, margins are set to the
average width of characters in the font. For a
multiline edit control, the right margin is set to
the "A" width of the font (the distance added to
the current position before drawing a
character), and the left margin is set to the "C"
width (the distance added to the current
position to provide white space to the right of a
character).

If EC_USEFONTINFO is specified, the lParam parameter is ignored.
wLeft

Value of the low-order word of lParam. Specifies the width of the left margin, in pixels. This
value is ignored if fwMargin does not include EC_LEFTMARGIN or if EC_USEFONTINFO is
specified.

wRight
Value of the high-order word of lParam. Specifies the width of the right margin, in pixels. This
value is ignored if fwMargin does not include EC_RIGHTMARGIN or if EC_USEFONTINFO is
specified.

Return ValuesThis message does not return a value.See AlsoEM_GETMARGINS

EM_SETMODIFY
An application sends an EM_SETMODIFY message to set or clear the modification flag for an edit
control. The modification flag indicates whether the text within the edit control has been modified.
It is automatically set whenever the user changes the text. An EM_GETMODIFY message can be
sent to retrieve the value of the modification flag.EM_SETMODIFY
wParam = (WPARAM) (UINT) fModified; // modification flag
lParam = 0; // not used; must be zero
ParametersfModified

Value of wParam. Specifies the new value for the modification flag. A value of TRUE indicates
the text has been modified, and a value of FALSE indicates it has not been modified.

Return ValuesThis message does not return a value.RemarksIn a rich edit control, objects created without the REO_DYNAMICSIZE flag will lock in their extents
when the modify flag is set to FALSE.See AlsoEM_GETMODIFY, REOBJECT

EM_SETOLEINTERFACE
The EM_SETOLEINTERFACE message gives a rich edit control an IRichEditOleCallback object
that the control uses to get OLE-related resources and information from the client.EM_SETOLEINTERFACE
wParam = 0;
lParam = (LPARAM) (IRichEditOleCallback FAR *) lpObj;
ParameterslpObj

Pointer to an IRichEditOleCallback object. The control calls the AddRef function for the
object before returning.

Return ValuesReturns a nonzero value if successful or zero otherwise.

EM_SETOPTIONS
Sets the options for a rich edit control.EM_SETOPTIONS
wParam = (WPARAM) (UINT) fOperation;
lParam = (LPARAM) (UINT) fOptions;
ParametersfOperation

Operation flag. Can be one of these values:
ECOOP_SET Set the options to those specified by

fOptions.
ECOOP_OR Combine the specified options with the

current options.
ECOOP_AND Retain only those current options that are

also specified by fOptions.
ECOOP_XOR Logically Exclusive OR the current options

with those specified by fOptions.

fOptions
Rich edit control options. Can be a combination of these values:

Value Meaning
ECO_AUTOWORDSELECTIONAutomatic selection of word on

doubleclick.
ECO_AUTOVSCROLL Same as ES_AUTOVSCROLL style.
ECO_AUTOHSCROLL Same as ES_AUTOHSCROLL

style.
ECO_NOHIDESEL Same as ES_NOHIDESEL style.
ECO_READONLY Same as ES_READONLY style.
ECO_WANTRETURN Same as ES_WANTRETURN style.
ECO_SAVESEL Same as ES_SAVESEL style.
ECO_SELECTIONBAR Same as ES_SELECTIONBAR

style.
ECO_VERTICAL Same as ES_VERTICAL style.

Available in Asian-language
versions only.

Return ValuesReturns current option of edit control.

EM_SETPARAFORMAT
The EM_SETPARAFORMAT message sets the paragraph formatting for the current selection in a
rich edit control.EM_SETPARAFORMAT
wParam = 0; // not used; must be zero
lParam = (LPARAM) (PARAFORMAT FAR *) lpFmt;
ParameterslpFmt

Pointer to a PARAFORMAT structure specifying the new paragraph formatting attributes.
Only the attributes specified by the dwMask member are changed.

Return ValuesReturns a nonzero value if successful, or zero otherwise.See AlsoPARAFORMAT

EM_SETPASSWORDCHAR
An application sends an EM_SETPASSWORDCHAR message to set or remove the password
character for a single-line edit control when the user types text. When a password character is set,
that character is displayed in place of each character the user types.EM_SETPASSWORDCHAR
wParam = (WPARAM) (UINT) ch; // character to display
lParam = 0; // not used; must be zero
Parametersch

Value of wParam. Specifies the character to be displayed in place of the character typed by
the user. If this parameter is zero, the characters typed by the user are displayed.

Return ValuesThis message does not return a value.RemarksWhen the EM_SETPASSWORDCHAR message is received by an edit control, the edit control
redraws all visible characters by using the character specified by the ch parameter.

If the edit control is created with the ES_PASSWORD style, the default password character is set
to an asterisk (*). This style is removed if an EM_SETPASSWORDCHAR message is sent with
the ch parameter set to zero.See AlsoEM_GETPASSWORDCHAR

EM_SETPUNCTUATION
Sets the punctuation characters for a rich edit control. This message is available only in Asian-
language versions of the operating system.EM_SETPUNCTUATION
wParam = (WPARAM) (UINT) fType;
lParam = (LPARAM) (PUNCTUATION FAR *) punctTable;
ParametersfType

Punctuation type flag. Can be one of the following values:
Value Meaning
PC_LEADING Leading punctuation characters.
PC_FOLLOWING Following punctuation characters.
PC_DELIMITER Delimiter.

The PC_OVERFLOW value is not supported.
punctTable

Address of a PUNCTUATION structure that contains the punctuation characters.
Return ValuesReturns nonzero if successful; zero otherwise.See AlsoPUNCTUATION

EM_SETREADONLY
An application sends an EM_SETREADONLY message to set or remove the read-only style
(ES_READONLY) of an edit control.EM_SETREADONLY
wParam = (WPARAM) (BOOL) fReadOnly; // read-only flag
lParam = 0; // not used; must be zero
ParametersfReadOnly

Value of wParam. Specifies whether to set or remove the ES_READONLY style. A value of
TRUE sets the ES_READONLY style; a value of FALSE removes the ES_READONLY style.

Return ValuesIf the operation succeeds, the return value is nonzero; otherwise, it is zero.RemarksWhen an edit control has the ES_READONLY style, the user cannot change the text within the
edit control.

To determine whether an edit control has the ES_READONLY style, use the GetWindowLong
function with the GWL_STYLE flag.See AlsoGetWindowLong

EM_SETRECT
An application sends an EM_SETRECT message to set the formatting rectangle of a multiline edit
control. The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is
independent of the size of the edit control window. When the edit control is first created, the
formatting rectangle is the same as the client area of the edit control window. By using the
EM_SETRECT message, an application can make the formatting rectangle larger or smaller than
the edit control window.

This message is processed only by multiline edit controls.EM_SETRECT
wParam = 0;// not used; must be zero
lParam = (LPARAM) (LPRECT) lprc; // address of new rectangle
Parameterslprc

Value of lParam. Points to a RECT structure that specifies the new dimensions of the
rectangle.

Return ValuesThis message does not return a value.RemarksThe EM_SETRECT message causes the text of the edit control to be redrawn. To change the size
of the formatting rectangle without redrawing the text, use the EM_SETRECTNP message.

If the edit control does not have a horizontal scroll bar, and the formatting rectangle is set to be
larger than the edit control window, lines of text exceeding the width of the edit control window
(but smaller than the width of the formatting rectangle) are clipped instead of wrapped.

If the edit control contains a border, the formatting rectangle is reduced by the size of the border.
If you are adjusting the rectangle returned by an EM_GETRECT message, you must remove the
size of the border before using the rectangle with the EM_SETRECT message.See AlsoEM_GETRECT, EM_SETRECTNP, RECT

EM_SETRECTNP
An application sends an EM_SETRECTNP message to set the formatting rectangle of a multiline
edit control. The formatting rectangle is the limiting rectangle of the text. The limiting rectangle is
independent of the size of the edit control window. When the edit control is first created, the
formatting rectangle is the same as the client area of the edit control window. By using the
EM_SETRECTNP message, an application can make the formatting rectangle larger or smaller
than the edit control window.

The EM_SETRECTNP message is identical to the EM_SETRECT message, except that the edit
control window is not redrawn.

This message is processed only by multiline edit controls.EM_SETRECTNP
wParam = 0;// not used; must be zero
lParam = (LPARAM) (LPRECT) lprc; // address of new rectangle
Parameterslprc

Value of lParam. Points to a RECT structure that specifies the new dimensions of the
rectangle.

Return ValuesThis message does not return a value.See AlsoEM_SETRECT, RECT

EM_SETSEL
An application sends an EM_SETSEL message to select a range of characters in an edit control.EM_SETSEL
wParam = (WPARAM) (INT) nStart; // starting position
lParam = (LPARAM) (INT) nEnd; // ending position
ParametersnStart

Value of wParam. Specifies the starting character position of the selection.
nEnd

Specifies the ending character position of the selection.
Return ValuesThis message does not return a value.RemarksIn a rich edit control, if the selection is not entirely contained in the first 64K, use the message

EM_EXSETSEL.

If the nStart parameter is 0 and the nEnd parameter is - 1, all the text in the edit control is
selected. If nStart is - 1, any current selection is removed. The caret is placed at the end of the
selection indicated by the greater of the two values nEnd and nStart.

In previous versions of Windows, the wParam parameter is a flag that is set to FALSE to scroll the
caret into view or set to TRUE to omit the scrolling. A Win32-based application should use the
EM_SCROLLCARET message to scroll the caret into view.

In earlier versions of Windows, the starting and ending positions of the selection are indicated by
the low- and high-order words, respectively, of the lParam parameter.See AlsoEM_GETSEL, EM_REPLACESEL, EM_SCROLLCARET, EM_EXSETSEL

EM_SETTABSTOPS
An application sends an EM_SETTABSTOPS message to set the tab stops in a multiline edit
control. When text is copied to the control, any tab character in the text causes space to be
generated up to the next tab stop.

This message is processed only by multiline edit controls.EM_SETTABSTOPS
wParam = (WPARAM) cTabs;// number of tab stops
lParam = (LPARAM) (LPDWORD) lpdwTabs; // tab stop array
ParameterscTabs

Value of wParam. Specifies the number of tab stops contained in the lpdwTabs parameter. If
this parameter is zero, the lpdwTabs parameter is ignored and default tab stops are set at
every 32 dialog box units. If this parameter is 1, tab stops are set at every n dialog box units,
where n is the distance pointed to by the ldpwTabs parameter. If the cTabs parameter is
greater than 1, lpdwTabs points to an array of tab stops.

lpdwTabs
Value of lParam. Points to an array of unsigned integers specifying the tab stops, in dialog
units. If the cTabs parameter is 1, lpdwTabs points to an unsigned integer containing the
distance between all tab stops, in dialog box units.

Return ValuesIf all the tabs are set, the return value is TRUE; otherwise, it is FALSE.RemarksThe EM_SETTABSTOPS message does not automatically redraw the edit control window. If the
application is changing the tab stops for text already in the edit control, it should call the
InvalidateRect function to redraw the edit control window.See AlsoGetDialogBaseUnits, InvalidateRect

EM_SETTARGETDEVICE
The EM_SETTARGETDEVICE message sets the target device and line width used for WYSIWYG
(what you see is what you get) formatting in a rich edit control.EM_SETTARGETDEVICE
wParam = (WPARAM) (HDC) hdcTarget;
lParam = (LPARAM) (int) cxLineWidth;
ParametershdcTarget

Handle to a device context for the target device.
cxLineWidth

Line width to use for formatting.
Return ValuesReturns a nonzero value if successful or zero otherwise.

EM_SETWORDBREAK
The EM_SETWORDBREAK message is not supported. Applications that must replace the default
wordwrap function of a multiline edit control with an application-defined wordwrap function should
use the EM_SETWORDBREAKPROC message.

EM_SETWORDBREAKPROC
An application sends the EM_SETWORDBREAKPROC message to an edit control to replace the
default wordwrap function with an application-defined wordwrap function.EM_SETWORDBREAKPROC
wParam = 0; // not used; must be zero
lParam = (LPARAM)(EDITWORDBREAKPROC)ewbprc; // function address
Parametersewbprc

Value of lParam. Specifies the address of the application-defined wordwrap function. For
more information about breaking lines, see the description of the EditWordBreakProc
callback function.

Return ValuesThis message does not return a value.RemarksA wordwrap function scans a text buffer that contains text to be sent to the screen, looking for the
first word that does not fit on the current screen line. The wordwrap function places this word at
the beginning of the next line on the screen.

A wordwrap function defines the point at which Windows should break a line of text for multiline
edit controls, usually at a space character that separates two words. Either a multiline or a single-
line edit control might call this function when the user presses arrow keys in combination with the
CTRL key to move the caret to the next word or previous word. The default wordwrap function
breaks a line of text at a space character. The application-defined function may define the
wordwrap to occur at a hyphen or a character other than the space character.See AlsoEditWordBreakProc, EM_FMTLINES, EM_GETWORDBREAKPROC

EM_SETWORDBREAKPROCEX
Sets the extended word-break procedure.EM_SETWORDBREAKPROCEX
wParam = (WPARAM) 0;
lParam = (LPARAM) pfnWordBreakProcEx;
ParameterspfnWordBreakprocEx

Address of an EditWordBreakProcEx function or NULL to use the default procedure.
Return ValuesReturns the address of the previous extended word-break procedure.See AlsoEditWordBreakProcEx, EM_GETWORDBREAKPROCEX

EM_SETWORDWRAPMODE
Sets the word-wrapping and word-breaking options for the rich edit control. This message is
available only in Asian-language versions of the operating system.EM_SETWORDWRAPMODE
wParam = (WPARAM) (UINT) fOptions;
lParam = (LPARAM) 0:
ParametersfOptions

Options flag. Can be a combination of the following values:
Value Meaning
WBF_WORDWRAP Enables Asian-specific word-wrap

operation, such as Kinsoku in Japanese.
WBF_WORDBREAK Enables English word-breaking operation

in Japanese and Chinese.
Enables Hangeul word-breaking
operation.

WBF_OVERFLOW Recognizes overflow punctuation. (Not
currently supported.)

WBF_LEVEL1 Sets level 1 punctuation table as default.
WBF_LEVEL2 Sets level 2 punctuation table as default.
WBF_CUSTOM Sets application-defined punctuation table.

Return ValuesReturns the current word-wrapping and word-breaking options.RemarksThis message must not be sent by the application-defined word-breaking procedure.

EM_STREAMIN
The EM_STREAMIN message replaces the contents of a rich edit control with the specified data
stream.EM_STREAMIN
wParam = (WPARAM) (UINT) uFormat;
lParam = (LPARAM) (EDITSTREAM FAR *) lpStream;
ParametersuFormat

One of the following data formats:
Value Meaning
SF_TEXT Text
SF_RTF Rich Text Format (RTF)

Both data formats may be combined with the SFF_SELECTION flag. If the
SFF_SELECTION flag is specified, the stream replaces the contents of the current
selection. Otherwise, the stream replaces the entire contents of the control.
The SF_RTF format may be combined with the SFF_PLAINRTF flag. If the
SFF_PLAINRTF flag is specified, language-specific RTF keywords in the stream are
ignored. Only keywords common to all languages are streamed in.

lpStream
Pointer to an EDITSTREAM structure. The control reads (streams in) the data by repeatedly
calling the function specified by the structure's pfnCallback member.

Return ValuesReturns the number of characters read.See AlsoEDITSTREAM

EM_STREAMOUT
The EM_STREAMOUT message writes (streams out) the contents of a rich edit control to the
specified data stream.EM_STREAMOUT
wParam = (WPARAM) (UINT) uFormat;
lParam = (LPARAM) (EDITSTREAM FAR *) lpStream;
ParametersuFormat

Value specifying one of the following data formats:
Value Meaning
SF_TEXT Text with spaces in place of OLE objects
SF_RTF Rich Text Format (RTF)
SF_RTFNOOBJS RTF with spaces in place of OLE object.
SF_TEXTIZED Text with a text representation of OLE objects.

The SF_RTFNOOBJS option is useful if an application stores OLE objects itself, as RTF
representation of OLE objects is not very compact. The control word \objattph followed
by a space denotes the object position.
All data formats may be combined with the SFF_SELECTION flag. If the
SFF_SELECTION flag is specified, only the contents of the current selection are
streamed out. Otherwise, the entire contents of the control are streamed out.
The SF_RTF and SF_RTFNOOBJS formats may be combined with the SFF_PLAINRTF
flag. If the SFF_PLAINRTF flag is specified, language-specific RTF keywords are
ignored. Only keywords common to all languages are streamed out.

lpStream
Pointer to an EDITSTREAM structure. The control streams out the data by repeatedly calling
the function specified by the structure's pfnCallback member.

Return ValuesReturns the number of characters written to the data stream.See AlsoEDITSTREAM

EM_UNDO
An application sends an EM_UNDO message to undo the last edit control operation.EM_UNDO
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesFor a single-line edit control, the return value is always TRUE. For a multiline edit control, the

return value is TRUE if the undo operation is successful, or FALSE if the undo operation fails.RemarksAn undo operation can also be undone. For example, you can restore deleted text with the first
EM_CANUNDO message, and remove the text again with a second EM_CANUNDO message as
long as there is no intervening edit operation.See AlsoEM_CANUNDO

EN_CHANGE
The EN_CHANGE notification message is sent when the user has taken an action that may have
altered text in an edit control. Unlike the EN_UPDATE notification message, this notification
message is sent after Windows updates the screen. The parent window of the edit control
receives this notification message through the WM_COMMAND message.EN_CHANGE
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoEN_UPDATE, WM_COMMAND

EN_CORRECTTEXT
Notifies a rich edit control's parent window that a SYV_CORRECT gesture occurred. A rich edit
control sends this notification message in the form of a WM_NOTIFY message.EN_CORRECTTEXT
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (ENCORRECTTEXT FAR *) lpEnCorrectText;
ParametersuID

Identifier of the rich edit control.
lpEnCorrectText

Pointer to an ENCORRECTTEXT structure specifying the selection to be corrected.
Return ValuesReturns zero to ignore the action, nonzero to process it.RemarksThis message is sent only if pen capabilities are available.See AlsoENCORRECTTEXT, WM_NOTIFY

EN_DROPFILES
The EN_DROPFILE notification message notifies a rich edit control's parent window that the user
is attempting to drop files into the control. A rich edit control sends this notification message in the
form of a WM_NOTIFY message when it receives the WM_DROPFILES message.EN_DROPFILES
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (ENDROPFILES FAR *) lpEnDropFiles;
ParametersuID

Identifier of the rich edit control.
lpEnDropFiles

Pointer to an ENDROPFILES structure.
Return ValuesReturns a nonzero value to allow the drop operation or zero to ignore the drop.RemarksFor a rich edit control to receive WM_DROPFILES messages, the parent window must register

the control as a drop target by using the DragAcceptFiles function. The control does not register
itself.See AlsoDragAcceptFiles, ENDROPFILES, WM_DROPFILES, WM_NOTIFY

EN_ERRSPACE
The EN_ERRSPACE notification message is sent when an edit control cannot allocate enough
memory to meet a specific request. The parent window of the edit control receives this notification
message through the WM_COMMAND message.EN_ERRSPACE
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoWM_COMMAND

EN_HSCROLL
The EN_HSCROLL notification message is sent when the user clicks an edit control's horizontal
scroll bar. The parent window of the edit control receives this notification message through the
WM_COMMAND message. The parent window is notified before the screen is updated.EN_HSCROLL
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoEN_VSCROLL, WM_COMMAND

EN_IMECHANGE
Notifies a rich edit control's parent that the IME conversion status has changed. This message is
available only for Asian-language versions of the operating system.EN_IMECHANGE
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) 0;
ParametersuID

Identifier of the rich edit control.
Return ValuesReturns zero.

EN_KILLFOCUS
The EN_KILLFOCUS notification message is sent when an edit control loses the keyboard focus.
The parent window of the edit control receives this notification message through the
WM_COMMAND message.EN_KILLFOCUS
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
wNotifyCode = HIWORD(wParam); // notification code
hwndEditCtrl = (HWND) lParam; // handle of edit control
RemarksIn previous versions of Windows, the notification code was in HIWORD(lParam).See AlsoEN_SETFOCUS, WM_COMMAND

EN_MAXTEXT
The EN_MAXTEXT notification message is sent when the current text insertion has exceeded the
specified number of characters for the edit control. The text insertion has been truncated.

This message is also sent when an edit control does not have the ES_AUTOHSCROLL style and
the number of characters to be inserted would exceed the width of the edit control.

This message is also sent when an edit control does not have the ES_AUTOVSCROLL style and
the total number of lines resulting from a text insertion would exceed the height of the edit control.

The parent window of the edit control receives this notification message through the
WM_COMMAND message.EN_MAXTEXT
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoWM_COMMAND

EN_MSGFILTER
The EN_MSGFILTER notification message notifies a rich edit control's parent window of a
keyboard or mouse event in the control. A rich edit control sends this notification message in the
form of a WM_NOTIFY message.EN_MSGFILTER
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (MSGFILTER) lpMsgFilter;
ParametersuID

Identifier of the rich edit control.
lpMsgFilter

Pointer to a MSGFILTER structure containing information about the keyboard or mouse
message. If the parent window modifies this structure and returns a nonzero value, the
modified message is processed instead of the original one.

Return ValuesReturns a nonzero value if the control should process the event, or zero if the control should
ignore the event.See AlsoMSGFILTER, WM_NOTIFY

EN_OLEOPFAILED
Notifies a rich edit control's parent window that a user action on an OLE object has failed.EN_OLEOPFAILED
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (ENOLEOPFAILED *) lpeoof;
ParametersuID

Identifier of the rich edit control.
lpeoof

Pointer to an ENOLEOPFAILED structure that contains information about the failure.
Return ValuesReturns zero.

ENOLEOPFAILED

EN_PROTECTED
The EN_PROTECTED notification message notifies a rich edit control's parent window that the
user is taking an action that would change a protected range of text. A rich edit control sends this
notification message in the form of a WM_NOTIFY message.EN_PROTECTED
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (ENPROTECTED FAR *) lpEnProtected;
ParametersuID

Identifier of the rich edit control.
lpEnProtected

Pointer to an ENPROTECTED structure containing information about the message that
triggered the notification.

Return ValuesReturns zero to allow the operation or a nonzero value to prevent it.RemarksIf zero is returned and the msg, wParam, and lParam members of the ENPROTECTED structure
are changed, the control processes the revised message instead of the original message.See AlsoENPROTECTED, WM_NOTIFY

EN_REQUESTRESIZE
The EN_REQUESTRESIZE notification message notifies a rich edit control's parent window that
the control's contents are either smaller or larger than the control's window size. A rich edit control
sends this notification message in the form of a WM_NOTIFY message.EN_REQUESTRESIZE
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (REQRESIZE FAR *) lpReSize;
ParametersuID

Identifier of the rich edit control.
lpReSize

Pointer to a REQRESIZE structure.
Return ValuesNo return value.RemarksTo support the bottomless behavior of a rich edit control, the parent window must resize the

control when it receives this notification message.See AlsoREQRESIZE, WM_NOTIFY

EN_SAVECLIPBOARD
Notifies the rich edit control's parent window that the control is closing and the clipboard contains
information.EN_SAVECLIPBOARD
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (ENSAVECLIPBOARD *) lpesc;
ParametersuID

Identifier of the rich edit control.
lpesc

Pointer to an ENSAVECLIPBOARD structure that contains information about clipboard
information.

Return ValuesReturns zero if the clipboard should be made available to other applications, nonzero if the
clipboard should not be saved.See AlsoENSAVECLIPBOARD

EN_SELCHANGE
The EN_SELCHANGE notification message notifies a rich edit control's parent window that the
current selection has changed. A rich edit control sends this notification message in the form of a
WM_NOTIFY message.EN_SELCHANGE
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (SELCHANGE FAR *) lpSelChange;
ParametersuID

Identifier of the rich edit control.
lpSelChange

Pointer to a SELCHANGE structure.
Return ValuesNo return value.See AlsoSELCHANGE, WM_NOTIFY

EN_SETFOCUS
The EN_SETFOCUS notification message is sent when an edit control receives the keyboard
focus. The parent window of the edit control receives this notification message through the
WM_COMMAND message.EN_SETFOCUS
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
wNotifyCode = HIWORD(wParam); // notification code
hwndEditCtrl = (HWND) lParam; // handle of edit control
RemarksIn previous versions of Windows, the notification code was in HIWORD(lParam).See AlsoEN_KILLFOCUS, WM_COMMAND

EN_STOPNOUNDO
Notifies a rich edit control's parent window that an action occurred for which the control cannot
allocate enough memory to maintain the undo state. A rich edit control sends this notification
message in the form of a WM_NOTIFY message.EN_STOPNOUNDO
wParam = (WPARAM) (UINT) uID;
lParam = (LPARAM) (NMHDR FAR *) lpNmHdr;
ParametersuID

Identifier of the rich edit control.
lpNmHdr

Pointer to an NMHDR structure.
Return ValuesReturns zero to continue the action, nonzero to stop it.See AlsoNMHDR, WM_NOTIFY

EN_UPDATE
The EN_UPDATE notification message is sent when an edit control is about to display altered
text. This notification message is sent after the control has formatted the text, but before it
displays the text. This makes it possible to resize the edit control window, if necessary. The parent
window of the edit control receives this notification message through the WM_COMMAND
message.EN_UPDATE
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoEN_CHANGE, WM_COMMAND

EN_VSCROLL
The EN_VSCROLL notification message is sent when the user clicks an edit control's vertical
scroll bar. The parent window of the edit control receives this notification message through the
WM_COMMAND message. The parent window is notified before the screen is updated.EN_VSCROLL
idEditCtrl = (int) LOWORD(wParam); // identifier of edit control
hwndEditCtrl = (HWND) lParam; // handle of edit control
See AlsoEN_HSCROLL, WM_COMMAND

FILEOKSTRING
An Open or Save As dialog box sends the FILEOKSTRING registered message to your hook
procedure when the user specifies a filename and clicks the OK button. The hook procedure can
accept the filename and allow the dialog box to close, or reject the filename and force the dialog
box to remain open.

For Explorer-style Open and Save As dialog boxes, this message has been superseded by the
CDN_FILEOK notification message.MessageID = RegisterWindowMessage(FILEOKSTRING);
wParam = 0;
lpofn = (LPOPENFILENAME) lParam;
Parameterslpofn

Pointer to an OPENFILENAME structure. The lpstrFile member of this structure contains the
drive, path, and filename specified by the user.

Return ValuesIf the hook procedure returns zero, the Open or Save As dialog box accepts the specified filename
and closes.

If the hook procedure returns a nonzero value, the Open or Save As dialog box rejects the
specified filename and remains open.RemarksThe hook procedure must specify the FILEOKSTRING constant in a call to the
RegisterWindowMessage function to get the identifier for the message sent by the dialog box.See AlsoCDN_FILEOK, OPENFILENAME, RegisterWindowMessage

FINDMSGSTRING
A Find or Replace dialog box sends the FINDMSGSTRING registered message to the window
procedure of its owner window when the user clicks the Find Next, Replace, or Replace All button,
or closes the dialog box.MessageID = RegisterWindowMessage(FINDMSGSTRING);
wParam = 0;
lpfr = (LPFINDREPLACE) lParam;
Parameterslpfr

Pointer to a FINDREPLACE structure. The members of this structure contain the latest user
input, including the string to search for, the replacement string (if any) and the search-and-
replacement options.

Return ValuesNo return value.RemarksYou must specify the FINDMSGSTRING constant in a call to the RegisterWindowMessage
function to get the identifier for the message sent by the dialog box.

When you create the dialog box, use the hwndOwner member of the FINDREPLACE structure to
identify the window to receive FINDMSGSTRING messages.

The Flags member of the FINDREPLACE structure includes one of the following flags to indicate
the event that caused the message:

Flag Meaning

FR_DIALOGTERM The dialog box is closing. After the owner window
processes this message, the handle of the dialog box is
no longer valid.

FR_FINDNEXT The user clicked the Find Next button in a Find or
Replace dialog box. The lpstrFindWhat member
specifies the string to search for.

FR_REPLACE The user clicked the Replace button in a Replace dialog
box. The lpstrFindWhat member specifies the string to
replace and the lpstrReplaceWith member specifies the
replacement string.

FR_REPLACEALL The user clicked the Replace All button in a Replace
dialog box. The lpstrFindWhat member specifies the
string to replace and the lpstrReplaceWith member
specifies the replacement string.

For a Find Next or Replace All message, the Flags member can include any combination of the
following flags to indicate the search options:

Flag Meaning

FR_DOWN If set, the Down button of the direction radio buttons is
selected indicating that user wants to search from the
current location to the end of the document. If FR_DOWN
is not set, the Up button is selected so the user wants to
search to the beginning of the document.

FR_MATCHCASE If set, the Match Case check box is checked indicating
that the user wants the search to be case-sensitive. If
FR_MATCHCASE is not set, the check box is unchecked
so the search should be case-insensitive.

FR_WHOLEWORD If set, the Match Whole Word Only check box is checked
indicating that the user wants to search only for whole
words that match the search string. If FR_WHOLEWORD
is not set, the check box is unchecked so you should also
search for word fragments that match the search string.

See AlsoFINDREPLACE, RegisterWindowMessage

FM_GETDRIVEINFO
A File Manager extension sends an FM_GETDRIVEINFO message to retrieve drive information
from the active File Manager window.FM_GETDRIVEINFO
wParam = 0;// not used, must be zero
lParam = (LPARAM) (LPFMS_GETDRIVEINFO) lpfmsgdi; // drive data
Parameterslpfmsgdi

Value of lParam. Points to an FMS_GETDRIVEINFO structure that receives drive information.
Return ValuesThe return value is always nonzero.RemarksIf 0xFFFFFFFF is returned in the dwTotalSpace or dwFreeSpace member of the

FMS_GETDRIVEINFO structure, the extension library must compute the value or values.See AlsoFMExtensionProc, FMS_GETDRIVEINFO

FM_GETFILESEL
A File Manager extension sends an FM_GETFILESEL message to retrieve information about a
selected file from the active File Manager window (either the directory window or the Search
Results window).FM_GETFILESEL
wParam = (WPARAM) index; // index of selected file
lParam = (LPARAM) (LPFMS_GETFILESEL) lpfmsgfs; // file data
Parametersindex

Value of wParam. Specifies the zero-based index of the selected file to retrieve.
lpfmsgfs

Value of lParam. Points to an FMS_GETFILESEL structure that receives information about
the selection.

Return ValuesThe return value is the zero-based index of the selected file that was retrieved.RemarksAn extension can use the FM_GETSELCOUNT message to get the count of selected files.See AlsoFMExtensionProc, FMS_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNT,
FM_GETSELCOUNTLFN

FM_GETFILESELLFN
A File Manager extension sends an FM_GETFILESELLFN message to retrieve information about
a selected file from the active File Manager window (either the directory window or the Search
Results window). The selected file can have a long filename.FM_GETFILESELLFN
wParam = (WPARAM) index; // index of selected file
lParam = (LPARAM) (LPFMS_GETFILESEL) lpfmsgfs; // selection data
Parametersindex

Value of wParam. Specifies the zero-based index of the selected file to retrieve.
lpfmsgfs

Value of lParam. Points to an FMS_GETFILESEL structure that receives information about
the selection.

Return ValuesThe return value is the zero-based index of the selected file that was retrieved.RemarksOnly extensions that support long filenames (for example, network-aware extensions) should use
this message.

An extension can use the FM_GETSELCOUNT message to get the count of selected files.See AlsoFMExtensionProc, FM_GETFILESEL, FM_GETSELCOUNT, FM_GETSELCOUNTLFN

FM_GETFOCUS
A File Manager extension sends a FM_GETFOCUS message to retrieve the type of the File
Manager window that has the input focus.FM_GETFOCUS
wParam = 0;// not used, must be zero
lParam = 0;// not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the type of File Manager window that has input focus. It can be one of the

following values:

Value Meaning

FMFOCUS_DIR Directory portion of a directory window
FMFOCUS_TREE Tree portion of a directory window
FMFOCUS_DRIVES Drive bar of a directory window
FMFOCUS_SEARCHSearch Results window

FM_GETSELCOUNT
A File Manager extension sends a FM_GETSELCOUNT message to retrieve a count of the
selected files in the active File Manager window (either the directory window or the Search
Results window).FM_GETSELCOUNT
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the number of selected files.See AlsoFM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNTLFN

FM_GETSELCOUNTLFN
A File Manager extension sends an FM_GETSELCOUNTLFN message to retrieve the number of
selected files in the active File Manager window (either the directory window or the Search
Results window). The count includes files that have long filenames.FM_GETSELCOUNTLFN
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the number of selected files.RemarksOnly extensions that support long filenames (for example, network-aware extensions) should use

this message.See AlsoFM_GETFILESEL, FM_GETFILESELLFN, FM_GETSELCOUNT

FM_REFRESH_WINDOWS
A File Manager extension sends an FM_REFRESH_WINDOWS message to cause File Manager
to repaint either its active window or all of its windows.FM_REFRESH_WINDOWS
wParam = (WPARAM) (BOOL) fRepaint; // repaint flag
lParam = 0;// not used, must be zero
ParametersfRepaint

Value of wParam. Specifies whether File Manager repaints its active window or all of its
windows. If this parameter is TRUE, File Manager repaints all of its windows. Otherwise, File
Manager repaints only its active window.

Return ValuesThis message does not return a meaningful value.RemarksFile-system changes caused by an extension are automatically detected by File Manager. An
extension should use this message only in situations where drive connections are made or
canceled.See AlsoFMExtensionProc

FM_RELOAD_EXTENSIONS
A File Manager extension (or another application) sends an FM_RELOAD_EXTENSIONS
message to cause File Manager to reload all extension DLLs listed in the [AddOns] section of the
WINFILE.INI file.FM_RELOAD_EXTENSIONS
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a meaningful value.RemarksOther applications can use the PostMessage function to send this message to File Manager. To

obtain the appropriate File Manager window handle, an application can specify "WFS_Frame" as
the lpszClassName parameter in a call to the FindWindow function.See AlsoFindWindow, FMExtensionProc, PostMessage

FMEVENT_HELPMENUITEM
The FMEVENT_HELPMENUITEM message is sent to a File Manager extension DLL procedure
when the user presses F1 on a menu or toolbar command item. The extension should call
WinHelp, with that function's hwnd parameter set to the value of the extension procedure's hwnd
parameter.FMEVENT_HELPMENUITEM
uItem = (UINT) lParam; /* command item for which help is sought */
ParametersuItem

Identifies the menu or toolbar command item for which help is sought. The extension
procedure uses this value to determine how best to call WinHelp.

Return ValuesAn extension DLL procedure should return zero if it processes this message.See AlsoFMExtensionProc, WinHelp, FMEVENT_HELPSTRING

FMEVENT_HELPSTRING
The FMEVENT_HELPSTRING message is sent to a File Manager extension DLL procedure when
File Manager wants a help string for a menu or toolbar command item.FMEVENT_HELPSTRING
lpfmshs = (LPFMS_HELPSTRING) lParam; /* pointer to data transfer
structure */
Parameterslpfmshs

Points to an FMS_HELPSTRING structure that communicates command item help string
data.
The FMS_HELPSTRING structure identifies the command item for which a help string is
wanted, along with a handle to its menu. An application then writes the appropriate help string
to the FMS_HELPSTRING structure's szHelp member.

Return ValuesAn extension DLL procedure should return zero if it processes this message.See AlsoFMExtensionProc, FMEVENT_HELPMENUITEM

FMEVENT_INITMENU
The FMEVENT_INITMENU message is sent to an extension DLL when the user selects the menu
for the extension from the File Manager menu bar. The extension can use this notification to
initialize menu items in the menu.FMEVENT_INITMENU
hmenu = (HMENU) lParam; /* handle of File Manager menu */
Parametershmenu

Specifies the handle of the File Manager menu bar.
Return ValuesAn extension DLL should return zero if it processes this message.RemarksAn extension DLL receives this message only when the user selects the top-level menu. If the

extension contains submenus, it must initialize them at the same time it initializes the top-level
menu.See AlsoFMExtensionProc

FMEVENT_LOAD
The FMEVENT_LOAD message is sent to an extension DLL when File Manager is loading the
DLL.FMEVENT_LOAD
lpfmsld = (LPFMS_LOAD) lParam; /* address of struct. with delta */
Parameterslpfmsld

Points to an FMS_LOAD structure that specifies the menu-item delta value. An extension DLL
should save the menu-item delta value and fill the other structure members with information
about the extension.

Return ValuesAn extension DLL must return TRUE to continue loading the DLL. If the DLL returns FALSE, File
Manager calls the FreeLibrary function and ends any communication with the extension DLL.RemarksAn application should fill the dwSize, szMenuName, and hMenu members in the FMS_LOAD
structure. It should also save the value of the wMenuDelta member and use it to identify menu
items when modifying the menu.See AlsoFMExtensionProc, FMS_LOAD, FreeLibrary

FMEVENT_SELCHANGE
The FMEVENT_SELCHANGE message is sent to an extension DLL when the user selects a
filename in the File Manager directory window or Search Results window.FMEVENT_SELCHANGE
ParametersThis message has no parameters.Return ValuesAn extension DLL should return zero if it processes this message.RemarksChanges in the tree portion of the directory window do not produce this message.

Because the user can change the selection many times, the extension DLL must return promptly
after processing this message to avoid slowing the selection process for the user.See AlsoFMExtensionProc

FMEVENT_TOOLBARLOAD
The FMEVENT_TOOLBARLOAD message is sent to an extension DLL when File Manager is
loading its toolbar. This message allows an extension DLL to add a button to the File Manager
toolbar.FMEVENT_TOOLBARLOAD
lpfmstbl = (LPFMS_TOOLBARLOAD) lParam; /* toolbar data */
Parameterslpfmstbl

Points to an FMS_TOOLBARLOAD structure. If the extension DLL adds a button to the
toolbar in File Manager, the DLL should fill the structure with information about the button.

Return ValuesAn extension DLL must return TRUE to add the button to the toolbar. If the DLL returns FALSE,
File Manager does not add the button.See AlsoFMExtensionProc, FMS_TOOLBARLOAD

FMEVENT_UNLOAD
The FMEVENT_UNLOAD message is sent to an extension DLL when File Manager is unloading
the DLL.FMEVENT_UNLOAD
ParametersThis message has no parameters.Return ValuesAn extension DLL should return zero if it processes this message.RemarksThe hwnd and hMenu values passed with the FMEVENT_LOAD and FMEVENT_INITMENU

messages may not be valid at the time this message is sent.See AlsoFMExtensionProc

FMEVENT_USER_REFRESH
The FMEVENT_USER_REFRESH message is sent to an extension DLL when the user chooses
the Refresh command from the Window menu in File Manager. The extension can use this
notification to update its menu.FMEVENT_USER_REFRESH
ParametersThis message has no parameters.Return ValuesAn extension DLL should return zero if it processes this message.See AlsoFMExtensionProc

HDM_DELETEITEM
The HDM_DELETEITEM message deletes an item from a header control. You can send this
message explicitly or by using the Header_DeleteItem macro.HDM_DELETEITEM
wParam = (WPARAM) (int) index;
lParam = 0;
Parametersindex

Index of the item to delete.
Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.See AlsoHeader_DeleteItem

HDM_GETITEM
The HDM_GETITEM message retrieves information about an item in a header control. You can
send this message explicitly or by using the Header_GetItem macro.HDM_GETITEM
wParam = (WPARAM) (int) index;
lParam = (LPARAM) (HD_ITEM FAR*) phdi;
Parametersindex

Index of the item for which information is to be retrieved.
phdi

Pointer to an HD_ITEM structure. When the message is sent, the mask member indicates the
type of information being requested. When the message returns, the other members receive
the requested information. If the mask member specifies zero, the message returns TRUE but
copies no information to the structure.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.See AlsoHD_ITEM, Header_GetItem

HDM_GETITEMCOUNT
The HDM_GETITEMCOUNT message retrieves a count of the items in a header control. You can
send this message explicitly or by using the Header_GetItemCount macro.HDM_GETITEMCOUNT
wParam = 0;
lParam = 0;
Return ValuesIf the operation succeeds, the return value is the number of items.

If the operation fails, the return value is - 1.See AlsoHeader_GetItemCount

HDM_HITTEST
The HDM_HITTEST message tests a point to determine which header item, if any, is at the
specified point.HDM_HITTEST
wParam = 0;
lParam = (LPARAM) (HD_HITTESTINFO FAR *) phdhti;
Parametersphdhti

Pointer to an HD_HITTESTINFO structure that contains the position to test and receives
information about the results of the test.

Return ValuesReturns the index of the item at the specified position, if any, or - 1 otherwise.See AlsoHD_HITTESTINFO

HDM_INSERTITEM
The HDM_INSERTITEM message inserts a new item into a header control. You can send this
message explicitly or by using the Header_InsertItem macro.HDM_INSERTITEM
wParam = (WPARAM) (int) index;
lParam = (LPARAM) (const HD_ITEM FAR*) phdi;
Parametersindex

Index of the item after which the new item is to be inserted. The new item is inserted at the
end of the header control if index is greater than or equal to the number of items in the control.
If index is zero, the new item is inserted at the beginning of the header control.

phdi
Pointer to an HD_ITEM structure that contains information about the new item.

Return ValuesIf the operation succeeds, the return value is the index of the new item.

If the operation fails, the return value is - 1.See AlsoHD_ITEM, Header_InsertItem

HDM_LAYOUT
The HDM_LAYOUT message retrieves the size and position of a header control within a given
rectangle. This message is used to determine the appropriate dimensions for a new header
control that is to occupy the given rectangle. You can send this message explicitly or by using the
Header_Layout macro.HDM_LAYOUT
wParam = 0;
lParam = (LPARAM) (HD_LAYOUT FAR*) playout;
Parametersplayout

Pointer to an HD_LAYOUT structure. The prc member specifies the coordinates of a
rectangle, and the pwpos member receives the size and position for the header control within
the rectangle.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.See AlsoHD_LAYOUT, Header_Layout

HDM_SETITEM
The HDM_SETITEM message sets the attributes of the specified item in a header control. You
can send this message explicitly or by using the Header_SetItem macro.HDM_SETITEM
wParam = (WPARAM) (int) index;
lParam = (LPARAM) (const HD_ITEM FAR*) phdi;
Parametersindex

Index of the item whose attributes are to be changed.
phdi

Pointer to an HD_ITEM structure. When the message is sent, the mask member indicates the
attributes to set. The other members specify new attributes.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe HDN_ITEMCHANGING notification message is sent to the parent window before the item
attributes are changed. The parent window can return FALSE to prevent the changes, and in that
case, HDM_SETITEM returns FALSE. If the parent window returns TRUE, the changes are made
and the parent window receives the HDN_ITEMCHANGED notification message.See AlsoHD_ITEM, HDN_ITEMCHANGED, HDN_ITEMCHANGING, Header_SetItem

HDN_BEGINTRACK
The HDN_BEGINTRACK notification message notifies a header control's parent window that the
user has begun dragging a divider in the control (that is, the user has pressed the left mouse
button while the mouse cursor is on a divider in the header control). This notification message is
sent in the form of a WM_NOTIFY message.HDN_BEGINTRACK
phdn = (HD_NOTIFY FAR *) lParam;
Parametersphdn

Pointer to an HD_NOTIFY structure that contains information about the header control and
the item whose divider is to be dragged.

Return ValuesReturns FALSE to allow tracking of the divider or TRUE to prevent tracking.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_DIVIDERDBLCLICK
The HDN_DIVIDERDBLCLICK notification message notifies a header control's parent window that
the user double-clicked the divider area of the control. This notification message is sent in the
form of a WM_NOTIFY message.HDN_DIVIDERDBLCLICK
phdn = (HD_NOTIFY FAR *) lParam;
Parametersphdn

Pointer to an HD_NOTIFY structure that contains information about the header control and
the item whose divider was double-clicked.

Return ValuesNo return value.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_ENDTRACK
The HDN_ENDTRACK notification message notifies a header control's parent window that the
user has finished dragging a divider. This notification message sent in the form of a WM_NOTIFY
message.HDN_ENDTRACK
phdn = (HD_NOTIFY FAR *) lParam;
Parametersphdn

Pointer to an HD_NOTIFY structure that contains information about the header control and
the item whose divider was dragged.

Return ValuesNo return value.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_ITEMCHANGED
The HDN_ITEMCHANGED notification message notifies a header control's parent window that
the attributes of a header item have changed. This notification message is sent in the form of a
WM_NOTIFY message.HDN_ITEMCHANGED
phdr = (HD_NOTIFY FAR *) lParam;
Parametersphdr

Pointer to an HD_NOTIFY structure that contains information about the header control,
including the attributes that have changed.

Return ValuesNo return value.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_ITEMCHANGING
The HDN_ITEMCHANGING notification message notifies a header control's parent window that
the attributes of a header item are about to change. This notification message is sent in the form
of a WM_NOTIFY message.HDN_ITEMCHANGING
phdr = (HD_NOTIFY FAR *) lParam;
Parametersphdr

Pointer to an HD_NOTIFY structure that contains information about the header control and
the header item, including the attributes that are about to change.

Return ValuesReturns FALSE to allow the changes or TRUE to prevent them.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_ITEMCLICK
The HDN_ITEMCLICK notification message notifies a header control's parent window that the
user clicked the control. This notification message is sent in the form of a WM_NOTIFY message.HDN_ITEMCLICK
phdr = (HD_NOTIFY FAR *) lParam;
Parametersphdr

Pointer to an HD_NOTIFY structure that identifies the header control and specifies the index
of the header item that was clicked and the mouse button used to click the item. The pitem
member is set to NULL.

Return ValuesNo return value.RemarksA header control sends this notification message after the user releases the left mouse button.See AlsoHD_NOTIFY, WM_NOTIFY

HDN_ITEMDBLCLICK
The HDN_ITEMDBLCLICK notification message notifies a header control's parent window that the
user double-clicked the control. This notification message is sent in the form of a WM_NOTIFY
message. Only header controls that have the HDS_BUTTONS style send this notification.HDN_ITEMDBLCLICK
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains the handle and identifier of the header control
and the HDN_ITEMDBLCLICK notification code.

Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

HDN_TRACK
The HDN_TRACK notification message notifies a header control's parent window that the user is
dragging a divider in the header control. This notification message is sent in the form of a
WM_NOTIFY message.HDN_TRACK
phdr = (HD_NOTIFY FAR *) lParam;
Parametersphdr

Pointer to an HD_NOTIFY structure that contains information about the header control and
the item whose divider is being dragged.

Return ValuesReturns FALSE to continue tracking the divider or TRUE to end tracking.See AlsoHD_NOTIFY, WM_NOTIFY

HELPMSGSTRING
A common dialog box sends the HELPMSGSTRING registered message to the window procedure
of its owner window when the user clicks the Help button.

For Explorer-style Open and Save As dialog boxes, this message has been superseded by the
CDN_HELP notification message.MessageID = RegisterWindowMessage(HELPMSGSTRING);
hdlg = (HWND) wParam;
lpStruct = (LPVOID) lParam;
Parametershdlg

Handle of the common dialog box.
lpStruct

Pointer to the initialization structure for the common dialog box. This structure can be a
CHOOSECOLOR, CHOOSEFONT, FINDREPLACE, OPENFILENAME, PRINTDLG or
PAGESETUPDLG structure.

Return ValuesNo return value.RemarksYou must specify the HELPMSGSTRING constant in a call to the RegisterWindowMessage
function to get the identifier for the message sent by the dialog box.

When you create the dialog box, use the hwndOwner member of the initialization structure to
identify the window to receive HELPMSGSTRING messages.See AlsoCDN_HELP, CHOOSECOLOR, CHOOSEFONT, FINDREPLACE, OPENFILENAME,
PRINTDLG, PAGESETUPDLG, RegisterWindowMessage

HKM_GETHOTKEY
The HKM_GETHOTKEY message retrieves the virtual-key code and modifier flags of a hot key
from a hot-key control.HKM_GETHOTKEY
wParam = 0;
lParam = 0;
Return ValuesReturns the virtual-key code and modifier flags. The virtual-key code is in the low-order byte, and

the modifier flags are in the high-order byte. The modifier flags can be a combination of the
following values:

Value Meaning

HOTKEYF_ALT ALT key
HOTKEYF_CONTROL CTRL key
HOTKEYF_EXT Extended key
HOTKEYF_SHIFT SHIFT key
RemarksThe 16-bit value returned by this message can be used as the wParam parameter in the

WM_SETHOTKEY message.See AlsoWM_SETHOTKEY

HKM_SETHOTKEY
The HKM_SETHOTKEY message sets the hot key combination for a hot-key control.HKM_SETHOTKEY
wParam = MAKEWORD(bVKHotKey, bfMods);
lParam = 0;
ParametersbVKHotKey

Virtual-key code of the hot key.
bfMods

Modifier flags indicating the keys that, when used in combination with bVKHotKey, define a
hot-key combination. For a list of modifier flag values, see the description of the
HKM_GETHOTKEY message.

Return ValuesNo return value.See AlsoHKM_GETHOTKEY

HKM_SETRULES
The HKM_SETRULES message defines the invalid combinations and the default modifier
combination for a hot-key control.HKM_SETRULES
wParam = (WPARAM) fwCombInv;
lParam = MAKELPARAM(fwModInv, 0);
ParametersfwCombInv

Array of flags that specify invalid key combinations. This parameter can be a combination of
the following values:

Value Meaning
HKCOMB_A ALT

HKCOMB_C CTRL

HKCOMB_CA CTRL+ALT

HKCOMB_NONE Unmodified keys
HKCOMB_S SHIFT

HKCOMB_SA SHIFT+ALT

HKCOMB_SC SHIFT+CTRL

HKCOMB_SCA SHIFT+CTRL+ALT

fwModInv
Array of flags that specify the key combination to use when the user enters an invalid
combination. For a list of modifier flag values, see the description of the HKM_GETHOTKEY
message.

Return ValuesNo return value.RemarksWhen a user enters an invalid key combination, as defined by flags specified in fwCombInv, the
system uses the bitwise-OR operator to combine the keys entered by the user with the flags
specified in fwModInv. The resulting key combination is converted into a string and then displayed
in the hot-key control.See AlsoHKM_GETHOTKEY

IMC_CLOSESTATUSWINDOW
An application sends the IMC_CLOSESTATUSWINDOW message to the IME window to hide the
status window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_CLOSESTATUSWINDOW;
lParam = (LPARAM) 0;
Return ValuesReturns zero if successful, nonzero otherwise.RemarksWhen the status window of IME is already hidden, this message does nothing. Although an

application may send this message to the IME window, the application does not receive the
corresponding IMN_CLOSESTATUSWINDOW message.

IMC_GETCANDIDATEPOS
An application sends the IMC_GETCANDIDATEPOS message to an IME window to get the
position of the candidate window. Because the IME may adjust the position of a candidate
window, an application uses this message to get the actual position to decide whether to
reposition the window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETCANDIDATEPOS;
lParam = (LPARAM) &CandForm;
ParameterslParam

Pointer to the CANDIDATEFORM structure that receives the position of the candidate
window.

Return ValuesReturns zero if successful, nonzero otherwise.RemarksThe returned position is in window coordinates relative to the window having the current input
focus.See AlsoCANDIDATEFORM

IMC_GETCOMPOSITIONFONT
An application sends the IMC_GETCOMPOSITIONFONT message to an IME window to retrieve
the logical font used for displaying intermediate characters in the composition window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETCOMPOSITIONFONT;
lParam = (LPARAM) &LogFont;
ParameterslParam

Pointer to the LOGFONT structure that receives information about the logical font.
Return ValuesReturns zero if successful, nonzero otherwise.See AlsoLOGFONT

IMC_GETCOMPOSITIONWINDOW
An application sends the IMC_GETCOMPOSITIONWINDOW message to an IME window to get
the position of the composition window. Because the IME may adjust the position of a composition
window, an application uses this message to get the actual position to decide whether to
reposition the window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETCOMPOSITIONWINDOW;
lParam = (LPARAM) &CompForm;
ParameterslParam

Pointer to the COMPOSITIONFORM structure that receives the position of the composition
window.

Return ValuesReturns zero if successful, nonzero otherwise.RemarksThe returned position is in window coordinates relative to the window having the current input
focus.See AlsoCOMPOSITIONFORM

IMC_GETCONVERSIONMODE
An application sends the IMC_GETCONVERSIONMODE message to an IME window to obtain
the current conversion mode. The window retrieves the current conversion mode from the current
input context.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETCONVERSIONMODE;
lParam = 0;
Return ValuesReturns a combination of the values given in the "IME Conversion Modes" table in Input Method

Editor Constants.

IMC_GETOPENSTATUS
An application sends the IMC_GETOPENSTATUS message to an IME window to determine
whether the IME is open.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETOPENSTATUS;
lParam = 0;
Return ValuesReturns nonzero if the current IME is open, zero otherwise.

IMC_GETSENTENCEMODE
An application sends the IMC_GETSENTENCEMODE message to an IME window to obtain
current sentence mode.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETSENTENCEMODE;
lParam = 0;
Return ValuesReturns a combination of the values given in the "IME Sentence Modes" table in Input Method

Editor Constants.

IMC_GETSTATUSWINDOWPOS
An application sends the IMC_GETSTATUSWINDOWPOS message to an IME window to get the
position of the status window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_GETSTATUSWINDOWPOS;
lParam = 0;
Return ValuesReturns a POINTS structure that contains the x- and y-coordinates of the status window position.See AlsoPOINTS

IMC_OPENSTATUSWINDOW
An application sends the IMC_OPENSTATUSWINDOW message to the IME window to show the
status window. This message is ignored if the system is not in the show IME status mode. The
user can set or clear the show IME status mode from the task bar.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_OPENSTATUSWINDOW;
lParam = (LPARAM) 0;
Return ValuesReturns zero if successful, nonzero otherwise.RemarksIf the status window is already shown, this message does nothing. Although the application may

send this message to the IME window, the application does not receive the corresponding
IMN_OPENSTATUSWINDOW message.

IMC_SETCANDIDATEPOS
An application sends the IMC_SETCANDIDATEPOS message to an IME window to set the
position of the candidate window. This message is intended for applications that display
composition characters on their own but use the IME window to display candidates.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETCANDIDATEPOS;
lParam = (LPARAM) &CandForm;
ParameterslParam

Pointer to the CANDIDATEFORM structure that contains the x- and y-coordinates for the
candidate window. The application should set the dwIndex member in the structure.

Return ValuesReturn zero if successful, nonzero otherwise.See AlsoCANDIDATEFORM

IMC_SETCOMPOSITIONFONT
An application sends the IMC_SETCOMPOSITIONFONT message to an IME window to specify
the logical font to use for displaying intermediate characters in the composition window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETCOMPOSITIONFONT;
lParam = (LPARAM) &LogFont;
ParameterslParam

Pointer to the LOGFONT structure that contains information about the logical font.
Return ValuesReturns zero if successful, nonzero otherwise.RemarksWhen processing this message, the IME window changes the current selected font in the input

context.See AlsoLOGFONT

IMC_SETCOMPOSITIONWINDOW
An application sends the IMC_SETCOMPOSITIONWINDOW message to an IME window to set
the style of the composition window. The message set this style in the current input context and
the style is subsequently applied to each IME window that receives that input context.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETCOMPOSITIONWINDOW;
lParam = (LPARAM) &CompForm;
ParameterslParam

Pointer to the COMPOSITIONFORM structure that contains the style information.
Return ValuesReturns zero if successful, nonzero otherwise.RemarksBy default, the IME window has the CFS_POINT style. This means the IME window uses the

current caret position and window client area when it opens composition window.See AlsoCOMPOSITIONFORM

IMC_SETCONVERSIONMODE
An application sends the IMC_SETCONVERSIONMODE message to an IME window to set
current conversion mode.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETCONVERSIONMODE;
lParam = (LPARAM) cMode;
ParameterslParam

Conversion mode. Can be one of the values given in the "IME Conversion Modes" table in
Input Method Editor Constants.

Return ValuesReturns zero if successful, nonzero otherwise.

IMC_SETOPENSTATUS
An application sends the IMC_SETOPENSTATUS message to an IME window to open or close
the current IME.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETOPENSTATUS;
lParam = (LPARAM) bOpen;
ParameterslParam

Open status. If TRUE, the IME is opened, closed otherwise.
Return ValuesReturns zero if successful, nonzero otherwise.RemarksWhen processing this message, the IME window changes the current input context.

IMC_SETSENTENCEMODE
An application sends the IMC_SETSENTENCEMODE message to an IME window to set the
current sentence mode.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETSENTENCEMODE;
lParam = 0;
ParameterslParam

Sentence mode. Can be one of the values given in the "IME Sentence Modes" table in Input
Method Editor Constants.

Return ValuesReturns zero if successful, nonzero otherwise.

IMC_SETSTATUSWINDOWPOS
An application sends the IMC_SETSTATUSWINDOWPOS message to an IME window to set the
position of the status window.msg = (UINT) WM_IME_CONTROL;
wParam = (WPARAM) IMC_SETSTATUSWINDOWPOS;
lParam = (LPARAM) &pts;
ParameterslParam

Pointer to a POINTS structure that contains the x- and y-coordinates of the position of the
status window.

Return ValuesReturns zero if successful, nonzero otherwise.See AlsoPOINTS

IMN_CHANGECANDIDATE
The IMN_CHANGECANDIDATE message is sent to the application when an IME is about to
change the content of the candidate window. An application should process this notification
message if it displays candidates itself. The application receives this notification message through
the WM_IME_NOTIFY message.fCandidates = (DWORD) lParam;
ParametersfCandidates

Candidate lists flag. Each bit corresponds to a candidate list: bit 0 to the first list, bit 1 to the
second, and so on. If a specified bit is 1, the corresponding candidate window is about to be
changed.

Return ValuesNo return value.RemarksThe IME window changes the appearance of the candidate window when it processes this
message. An application can get information about the system window with the
ImmGetCandidateListCount and ImmGetCandidateList functions.See AlsoImmGetCandidateList, ImmGetCandidateListCount, WM_IME_NOTIFY

IMN_CLOSECANDIDATE
The IMN_CLOSECANDIDATE message is sent to the application when an IME is about to close
the candidate window. An application should process this message if it displays candidates itself.
The application receives this notification message through the WM_IME_NOTIFY message.fCandidate = (DWORD) lParam;
ParametersfCandidates

Candidate lists flag. Each bit corresponds to a candidate list: bit 0 to the first list, bit 1 to the
second, and so on. If a specified bit is 1, the corresponding candidate window is about to be
closed.

Return ValuesNo return value.RemarksBy default, the IME window destroys a candidate window when it processes this message.See AlsoWM_IME_NOTIFY

IMN_CLOSESTATUSWINDOW
The IMN_CLOSESTATUSWINDOW message is sent to the application when an IME is about to
close the status window. An application should process this notification message if it displays the
status window for the IME. The application receives this notification message through the
WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe IME window closes the status window when it processes this message.See AlsoWM_IME_NOTIFY

IMN_GUIDELINE
The IMN_GUIDELINE message is sent when an IME is about to show an error message or other
information. An application processes this message by calling the ImmGetGuideLine function to
retrieve the error message or information from the IME. The application receives this notification
message through the WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe IME window displays the error message or information string in an information window.See AlsoImmGetGuideLine, WM_IME_NOTIFY

IMN_OPENCANDIDATE
The IMN_OPENCANDIDATE message is sent to the application when an IME is about to open
the candidate window. An application should process this message if it displays candidates itself.
The application can retrieve a list of candidates to display by using the ImmGetCandidateList
function. The application receives this notification message through the WM_IME_NOTIFY
message.fCandidate = (DWORD) lParam;
ParametersfCandidates

Candidate lists flag. Each bit corresponds to a candidate list: bit 0 to the first list, bit 1 to the
second, and so on. If a specified bit is 1, the corresponding candidate window is about to be
opened.

Return ValuesNo return value.RemarksBy default, the IME window creates a candidate window when it processes this message.See AlsoImmGetCandidateList, WM_IME_NOTIFY

IMN_OPENSTATUSWINDOW
The IMN_OPENSTATUSWINDOW message is sent when an IME is about to create the status
window. An application processes this message to display the status window for the IME by itself.
The application receives this notification message through the WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe IME window creates a status window when it processes this message and sets the strings to
display in the window into the input context. Applications can get information about the status
window by using the ImmGetConversionStatus function.See AlsoImmGetConversionStatus, WM_IME_NOTIFY

IMN_SETCANDIDATEPOS
The IMN_SETCANDIDATEPOS message is sent when the IME is about to move the candidate
window. An application should process this message if it displays the candidate window itself. The
application receives this notification message through the WM_IME_NOTIFY message.fCandidates = (DWORD) lParam;
ParametersfCandidates

Candidate lists flag. Each bit corresponds to a candidate list: bit 0 to the first list, bit 1 to the
second, and so on. If a specified bit is 1, the corresponding candidate window is about to be
moved.

Return ValuesNo return value.RemarksThe IME window moves the candidate window when it processes this message.See AlsoWM_IME_NOTIFY

IMN_SETCOMPOSITIONFONT
The IMN_SETCOMPOSITIONFONT message is sent when the font of the input context is
updated. The application receives this notification message through the WM_IME_NOTIFY
message.Return ValuesNo return value.RemarksThe application can get information about the font by using the ImmGetCompositionFont
function. The IME window subsequently uses the font to draw the composition string.See AlsoImmGetCompositionFont, WM_IME_NOTIFY

IMN_SETCOMPOSITIONWINDOW
The IMN_SETCOMPOSITIONWINDOW message is sent when the style or position of the
composition window is updated. The application receives this notification message through the
WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe application can get information about the composition form by using the
IMC_GETCOMPOSITIONWINDOW message.See AlsoIMC_GETCOMPOSITIONWINDOW, WM_IME_NOTIFY

IMN_SETCONVERSIONMODE
The IMN_SETCONVERSIONMODE message is sent when the conversion mode of the input
context is updated. The application receives this notification message through the
WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe application can get information about the conversion mode by using the
ImmGetConversionStatus function.See AlsoImmGetConversionStatus, WM_IME_NOTIFY

IMN_SETOPENSTATUS
The IMN_SETOPENSTATUS message is sent when the open status of the input context is
updated. The application receives this notification message through the WM_IME_NOTIFY
message.Return ValuesNo return value.RemarksThe application can get information about the open status by using the ImmGetOpenStatus
function.See AlsoImmGetOpenStatus, WM_IME_NOTIFY

IMN_SETSENTENCEMODE
The IMN_SETSENTENCEMODE message is sent when the sentence mode of the input context
is updated. The application receives this notification message through the WM_IME_NOTIFY
message.Return ValuesNo return value.RemarksThe application can get information about the sentence mode by using the
ImmGetConversionStatus function.See AlsoImmGetConversionStatus, WM_IME_NOTIFY

IMN_SETSTATUSWINDOWPOS
The IMN_SETSTATUSWINDOWPOS message is sent when the status window position in the
input context is updated. The application receives this notification message through the
WM_IME_NOTIFY message.Return ValuesNo return value.RemarksThe application can get information about the status window position by using the
IMC_GETSTATUSWINDOWPOS message.See AlsoIMC_GETSTATUSWINDOWPOS, WM_IME_NOTIFY

LB_ADDFILE
An application sends an LB_ADDFILE message to add the specified filename to a list box that
contains a directory listing.LB_ADDFILE
wParam = 0; // not used; must be zero
lParam = (LPARAM) (LPCTSTR) lpszFilename; // name of file to add
ParameterslpszFilename

Value of lParam. Points to the name of the file to add.
Return ValuesThe return value is the zero-based index of the file that was added, or LB_ERR if an error occurs.RemarksThe list box to which lpszFilename is added must have been filled by the DlgDirList function.See AlsoDlgDirList, LB_ADDSTRING

LB_ADDSTRING
An application sends an LB_ADDSTRING message to add a string to a list box. If the list box
does not have the LBS_SORT style, the string is added to the end of the list. Otherwise, the string
is inserted into the list and the list is sorted.LB_ADDSTRING
wParam = 0;// not used; must be zero
lParam = (LPARAM) (LPCTSTR) lpsz; // address of string to add
Parameterslpsz

Value of lParam. Points to the null-terminated string that is to be added.
If you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style,
the value of the lpsz parameter is stored as item data instead of the string it would otherwise
point to. You can send the LB_GETITEMDATA and LB_SETITEMDATA messages to retrieve
or modify the item data.

Return ValuesThe return value is the zero-based index of the string in the list box. If an error occurs, the return
value is LB_ERR. If there is insufficient space to store the new string, the return value is
LB_ERRSPACE.RemarksIf you create an owner-drawn list box with the LBS_SORT style but not the LBS_HASSTRINGS
style, the system sends the WM_COMPAREITEM message one or more times to the owner of the
list box to place the new item properly in the list box.See AlsoLB_DELETESTRING, LB_INSERTSTRING, LB_SELECTSTRING, WM_COMPAREITEM

LB_DELETESTRING
An application sends an LB_DELETESTRING message to delete a string in a list box.LB_DELETESTRING
wParam = (WPARAM) index; // index of string to delete
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string to be deleted.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesThe return value is a count of the strings remaining in the list. The return value is LB_ERR if the
index parameter specifies an index greater than the number of items in the list.RemarksIf an application creates the list box with an owner-drawn style but without the
LBS_HASSTRINGS style, the system sends a WM_DELETEITEM message to the owner of the
list box so the application can free any additional data associated with the item.See AlsoLB_ADDSTRING, LB_INSERTSTRING, WM_DELETEITEM

LB_DIR
An application sends an LB_DIR message to add a list of filenames to a list box.LB_DIR
wParam = (WPARAM) (UINT) uAttrs;// file attributes
lParam = (LPARAM) (LPCTSTR) lpszFileSpec; // filename address
ParametersuAttrs

Value of wParam. Specifies the attributes of the files to be added to the list box. This
parameter can be a combination of the following values:

Value Description
DDL_ARCHIVE Includes archived files.
DDL_DIRECTORY Includes subdirectories. Subdirectory names

are enclosed in square brackets ([]).
DDL_DRIVES Includes drives. Drives are listed in the form [-

x-], where x is the drive letter.
DDL_EXCLUSIVE Includes only files with the specified attributes.

By default, read-write files are listed even if
DDL_READWRITE is not specified.

DDL_HIDDEN Includes hidden files.
DDL_READONLY Includes read-only files.
DDL_READWRITE Includes read-write files with no additional

attributes.
DDL_SYSTEM Includes system files.

lpszFileSpec
Value of lParam. Points to the null-terminated string that specifies the filename to add to the
list. If the filename contains wildcards (for example, *.*), all files that match the wildcards and
have the attributes specified by the uAttrs parameter are added to the list.

Return ValuesThe return value is the zero-based index of the last filename added to the list. If an error occurs,
the return value is LB_ERR. If there is insufficient space to store the new strings, the return value
is LB_ERRSPACE.See AlsoDlgDirList

LB_FINDSTRING
An application sends an LB_FINDSTRING message to find the first string in a list box that
contains the specified prefix.LB_FINDSTRING
wParam = (WPARAM) indexStart; // item before start of search
lParam = (LPARAM) (LPCTSTR) lpszFind; // search string address
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the top of the
list box back to the item specified by the indexStart parameter. If indexStart is - 1, the entire
list box is searched from the beginning.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to search for. The
search is case independent, so this string can contain any combination of uppercase and
lowercase letters.

Return ValuesThe return value is the index of the matching item, or LB_ERR if the search was unsuccessful.RemarksIf you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style, this
message returns the index of the item with a long value (supplied as the lParam parameter of the
LB_ADDSTRING or LB_INSERTSTRING message) that matches the value supplied as the
lpszFind parameter.See AlsoLB_ADDSTRING, LB_INSERTSTRING, LB_SELECTSTRING

LB_FINDSTRINGEXACT
An application sends a LB_FINDSTRINGEXACT message to find the first list box string that
matches the string specified in the lpszFind parameter.LB_FINDSTRINGEXACT
wParam = (WPARAM) indexStart; // item before start of search
lParam = (LPARAM)(LPCSTR)lpszFind; // address of search string
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the top of the
list box back to the item specified by the indexStart parameter. If indexStart is - 1, the entire
list box is searched from the beginning.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpszFind
Value of lParam. Points to the null-terminated string to search for. This string can contain a
complete filename, including the extension. The search is not case sensitive, so this string can
contain any combination of uppercase and lowercase letters.

Return ValuesThe return value is the zero-based index of the matching item, or LB_ERR if the search was
unsuccessful.RemarksIf an application creates the list box with an owner-drawn style but without the
LBS_HASSTRINGS style, the action taken by LB_FINDSTRINGEXACT depends on whether the
LBS_SORT style is used. If LBS_SORT is used, the system sends WM_COMPAREITEM
messages to the list box owner to determine which item matches the specified string. Otherwise,
LB_FINDSTRINGEXACT attempts to match the 32-bit value against the value of the lpszFind
parameter.See AlsoLB_FINDSTRING, LB_SELECTSTRING, WM_COMPAREITEM

LB_GETANCHORINDEX
An application sends an LB_GETANCHORINDEX message to retrieve the index of the anchor
item ¾ that is, the item from which a multiple selection starts. A multiple selection spans all items
from the anchor item to the caret item.LB_GETANCHORINDEX
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the index of the anchor item.See AlsoLB_SETANCHORINDEX

LB_GETCARETINDEX
An application sends an LB_GETCARETINDEX message to determine the index of the item that
has the focus rectangle in a multiple-selection list box. The item may or may not be selected.LB_GETCARETINDEX
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the zero-based index of the list box item that has the focus rectangle. If the list

box is a single-selection list box, the return value is the zero-based index of the item that is
selected, if any.See AlsoLB_SETCARETINDEX

LB_GETCOUNT
An application sends an LB_GETCOUNT message to retrieve the number of items in a list box.LB_GETCOUNT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the number of items in the list box, or LB_ERR if an error occurs.RemarksThe returned count is one greater than the index value of the last item (the index is zero-based).See AlsoLB_SETCOUNT

LB_GETCURSEL
Send an LB_GETCURSEL message to retrieve the index of the currently selected item, if any, in
a single-selection list box.LB_GETCURSEL
wParam = 0;// not used; must be zero
lParam = 0;// not used; must be zero
ParametersThis message has no parameters.Return ValuesIn a single-selection list box, the return value is the zero-based index of the currently selected

item. If there is no selection, the return value is LB_ERR.RemarksDo not send this message to a multiple-selection list box.

To retrieve the indexes of the selected items in a multiple-selection list box, use the
LB_GETSELITEMS message. To determine whether the item that has the focus rectangle in a
multiple selection list box is selected, use the LB_GETSEL message.

If sent to a multiple-selection list box, LB_GETCURSEL returns the index of the item that has the
focus rectangle. If no items are selected, it returns zero.See AlsoLB_GETCARETINDEX, LB_GETSEL, LB_GETSELITEMS, LB_SETCURSEL

LB_GETHORIZONTALEXTENT
An application sends an LB_GETHORIZONTALEXTENT message to retrieve from a list box the
width, in pixels, by which the list box can be scrolled horizontally (the scrollable width) if the list
box has a horizontal scroll bar.LB_GETHORIZONTALEXTENT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the scrollable width, in pixels, of the list box.RemarksTo respond to the LB_GETHORIZONTALEXTENT message, the list box must have been defined

with the WS_HSCROLL style.See AlsoLB_SETHORIZONTALEXTENT

LB_GETITEMDATA
An application sends an LB_GETITEMDATA message to retrieve the application-defined 32-bit
value associated with the specified list box item.LB_GETITEMDATA
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the index of the item.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesThe return value is the 32-bit value associated with the item, or LB_ERR if an error occurs. If the
item is in an owner-drawn list box and was created without the LBS_HASSTRINGS style, this 32-
bit value was in the lParam parameter of the LB_ADDSTRING or LB_INSERTSTRING message
that added the item to the list box. Otherwise, it is the value in the lParam of an
LB_SETITEMDATA message.See AlsoLB_ADDSTRING, LB_INSERTSTRING, LB_SETITEMDATA

LB_GETITEMHEIGHT
An application sends an LB_GETITEMHEIGHT message to retrieve the height of items in a list
box.LB_GETITEMHEIGHT
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the list box item. This index is used only if
the list box has the LBS_OWNERDRAWVARIABLE style; otherwise, it must be zero.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesThe return value is the height, in pixels, of each item in the list box. The return value is the height
of the item specified by the index parameter if the list box has the LBS_OWNERDRAWVARIABLE
style. The return value is LB_ERR if an error occurs.See AlsoLB_SETITEMHEIGHT

LB_GETITEMRECT
An application sends an LB_GETITEMRECT message to retrieve the dimensions of the rectangle
that bounds a list box item as it is currently displayed in the list box.LB_GETITEMRECT
wParam = (WPARAM) index; // item index
lParam = (LPARAM) (RECT FAR*) lprc; // address of rectangle
Parametersindex

Value of wParam. Specifies the zero-based index of the item.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lprc
Value of lParam. Points to a RECT structure that will receive the client coordinates for the
item in the list box.

Return ValuesIf an error occurs, the return value is LB_ERR.See AlsoRECT

LB_GETLOCALE
An application sends an LB_GETLOCALE message to retrieve the current locale of the list box.
You can use the locale to determine the correct sorting order of displayed text (for list boxes with
the LBS_SORT style) and of text added by the LB_ADDSTRING message.LB_GETLOCALE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is a 32-bit value that specifies the current locale of the list box. The high-order

word contains the country code and the low-order word contains the language identifier.RemarksThe language identifier consists of a sublanguage identifier and a primary language identifier. Use
the PRIMARYLANGID macro to extract the primary language identifier from the low-order word of
the return value, and the SUBLANGID macro to extract the sublanguage identifier.See AlsoLB_ADDSTRING, LB_SETLOCALE, PRIMARYLANGID, SUBLANGID

LB_GETSEL
An application sends an LB_GETSEL message to retrieve the selection state of an item.LB_GETSEL
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the item.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesIf an item is selected, the return value is greater than zero; otherwise, it is zero. If an error occurs,
the return value is LB_ERR.See AlsoLB_SETSEL

LB_GETSELCOUNT
An application sends an LB_GETSELCOUNT message to retrieve the total number of selected
items in a multiple-selection list box.LB_GETSELCOUNT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the count of selected items in the list box. If the list box is a single-selection list

box, the return value is LB_ERR.See AlsoLB_SETSEL

LB_GETSELITEMS
An application sends an LB_GETSELITEMS message to fill a buffer with an array of integers that
specify the item numbers of selected items in a multiple-selection list box.LB_GETSELITEMS
wParam = (WPARAM) cItems; // maximum number of items
lParam = (LPARAM) (LPINT) lpnItems; // address of buffer
ParameterscItems

Value of wParam. Specifies the maximum number of selected items whose item numbers are
to be placed in the buffer.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpnItems
Value of lParam. Points to a buffer large enough for the number of integers specified by the
cItems parameter.

Return ValuesThe return value is the number of items placed in the buffer. If the list box is a single-selection list
box, the return value is LB_ERR.See AlsoLB_GETSELCOUNT

LB_GETTEXT
An application sends an LB_GETTEXT message to retrieve a string from a list box.LB_GETTEXT
wParam = (WPARAM) index; // item index
lParam = (LPARAM) (LPCTSTR) lpszBuffer; // address of buffer
Parametersindex

Value of wParam. Specifies the zero-based index of the string to retrieve.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpszBuffer
Value of lParam. Points to the buffer that will receive the string. The buffer must have
sufficient space for the string and a terminating null character. An LB_GETTEXTLEN
message can be sent before the LB_GETTEXT message to retrieve the length, in characters,
of the string.

Return ValuesThe return value is the length of the string, in characters, excluding the terminating null character.
If index does not specify a valid index, the return value is LB_ERR.RemarksIf you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style, the
buffer pointed to by the lpszBuffer parameter will receive the 32-bit value associated with the item
(the item data).See AlsoLB_GETTEXTLEN

LB_GETTEXTLEN
An application sends an LB_GETTEXTLEN message to retrieve the length of a string in a list box.LB_GETTEXTLEN
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesThe return value is the length of the string, in characters, excluding the terminating null character.
Under certain conditions, this value may actually be greater than the length of the text. For more
information, see the following Remarks section.

If the index parameter does not specify a valid index, the return value is LB_ERR.RemarksUnder certain conditions, the return value is larger than the actual length of the text. This occurs
with certain mixtures of ANSI and Unicode, and is due to the operating system allowing for the
possible existence of double-byte character set (DBCS) characters within the text. The return
value, however, will always be at least as large as the actual length of the text; you can thus
always use it to guide buffer allocation. This behavior can occur when an application uses both
ANSI functions and common dialogs, which use Unicode.

To obtain the exact length of the text, use the WM_GETTEXT, LB_GETTEXT, or
CB_GETLBTEXT messages, or the GetWindowText function.See AlsoCB_GETLBTEXT, GetWindowText, LB_GETTEXT, WM_GETTEXT

LB_GETTOPINDEX
An application sends an LB_GETTOPINDEX message to retrieve the index of the first visible item
in a list box. Initially the item with index 0 is at the top of the list box, but if the list box contents
have been scrolled another item may be at the top.LB_GETTOPINDEX
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the index of the first visible item in the list box.See AlsoLB_SETTOPINDEX

LB_INITSTORAGE
Allocates memory for storing list box items. An application sends this message before adding a
large number of items to a list box.LB_INITSTORAGE
wParam = (WPARAM) (int) cItems; // number of items to add
lParam = (LPARAM) (DWORD) cb; // amount of memory to allocate, in
bytes
ParameterscItems

Specifies the number of items to add.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

cb
Specifies the amount of memory, in bytes, to allocate for item strings.

Return ValuesThe return value is the maximum number of items that the memory object can store before
another memory reallocation is needed, if successful. It is LB_ERRSPACE if not enough memory
is available.RemarksWindows 95: This message helps speed up the initialization of list boxes that have a large
number of items (more than 100). It reserves the specified amount of memory so that subsequent
LB_ADDSTRING, LB_INSERTSTRING, LB_DIR, and LB_ADDFILE messages take the shortest
possible time. You can use estimates for the cItems and cb parameters. If you overestimate, the
extra memory is allocated; if you underestimate, the normal allocation is used for items that
exceed the requested amount.

Windows NT: This message is not needed on Windows NT. It does not reserve the specified
amount of memory, because available memory is virtually unlimited. The return value is always
the value specified in the cItems parameter.See AlsoLB_ADDFILE, LB_ADDSTRING, LB_DIR, LB_INSERTSTRING

LB_INSERTSTRING
An application sends an LB_INSERTSTRING message to insert a string into a list box. Unlike the
LB_ADDSTRING message, the LB_INSERTSTRING message does not cause a list with the
LBS_SORT style to be sorted.LB_INSERTSTRING
wParam = (WPARAM) index;// item index
lParam = (LPARAM) (LPCTSTR) lpsz; // address of string to insert
Parametersindex

Value of wParam. Specifies the zero-based index of the position at which to insert the string. If
this parameter is - 1, the string is added to the end of the list.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpsz
Value of lParam. Points to the null-terminated string to be inserted.
If you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style,
the value of the lpsz parameter is stored as item data instead of the string it would otherwise
point to. You can send the LB_GETITEMDATA and LB_SETITEMDATA messages to retrieve
or modify the item data.

Return ValuesThe return value is the index of the position at which the string was inserted. If an error occurs, the
return value is LB_ERR. If there is insufficient space to store the new string, the return value is
LB_ERRSPACE.See AlsoLB_ADDSTRING, LB_SELECTSTRING

LB_ITEMFROMPOINT
An application sends this message to retrieve the zero-based index of the item nearest the
specified point in a list box.LB_ITEMFROMPOINT
wParam = 0; // not used, must be zero
lParam = (LPARAM) MAKELPARAM(xPos, yPos); // coordinates of point
ParametersxPos

Value of the low-order word of lParam. Specifies the x-coordinate of a point, relative to the
upper-left corner of the client area of the list box.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of a point, relative to the
upper-left corner of the client area of the list box.

Return ValuesThe return value contains the index of the nearest item in the low-order word. The high-order word
is zero if the specified point is in the client area of the list box, or one if it is outside the client area.

LB_RESETCONTENT
An application sends an LB_RESETCONTENT to remove all items from a list box.LB_RESETCONTENT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksIf you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style, the

owner of the list box receives a WM_DELETEITEM message for each item in the list box.See AlsoWM_DELETEITEM

LB_SELECTSTRING
An application sends an LB_SELECTSTRING message to search a list box for an item that
begins with the characters in a specified string. If a matching item is found, the item is selected.LB_SELECTSTRING
wParam = (WPARAM) indexStart; // item before start of search
lParam = (LPARAM)(LPCTSTR)lpszFind; // address of search string
ParametersindexStart

Value of wParam. Specifies the zero-based index of the item before the first item to be
searched. When the search reaches the bottom of the list box, it continues from the top of the
list box back to the item specified by the indexStart parameter. If indexStart is - 1, the entire
list box is searched from the beginning.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

lpszFind
Value of lParam. Points to the null-terminated string that contains the prefix to search for. The
search is case independent, so this string can contain any combination of uppercase and
lowercase letters.

Return ValuesIf the search is successful, the return value is the index of the selected item. If the search is
unsuccessful, the return value is LB_ERR and the current selection is not changed.RemarksThe list box is scrolled, if necessary, to bring the selected item into view.

Do not use this message with a list box that has the LBS_MULTIPLESEL style.

An item is selected only if its initial characters from the starting point match the characters in the
string specified by the lpszFind parameter.

If you create the list box with an owner-drawn style but without the LBS_HASSTRINGS style, this
message returns the index of the item whose long value (supplied as the lParam parameter of the
LB_ADDSTRING or LB_INSERTSTRING message) matches the value supplied as the lParam
parameter of LB_SELECTSTRING.See AlsoLB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING

LB_SELITEMRANGE
An application sends an LB_SELITEMRANGE message to select one or more consecutive items
in a multiple-selection list box.LB_SELITEMRANGE
wParam = (WPARAM) (BOOL) fSelect; // selection flag
lParam = MAKELPARAM(wFirst, wLast); // first and last items
ParametersfSelect

Value of wParam. Specifies how to set the selection. If the fSelect parameter is TRUE, the
string is selected and highlighted; if fSelect is zero, the highlight is removed and the string is
no longer selected.

wFirst
Value of the low-order word of lParam. Specifies the zero-based index of the first item to
select.

wLast
Value of the high-order word of lParam. Specifies the zero-based index of the last item to
select.

Return ValuesIf an error occurs, the return value is LB_ERR.RemarksUse this message only with multiple-selection list boxes.

This message can select a range only within the first 65,536 items.See AlsoLB_SELITEMRANGEEX, LB_SETSEL

LB_SELITEMRANGEEX
An application sends an LB_SELITEMRANGEEX message to select one or more consecutive
items in a multiple-selection list box.LB_SELITEMRANGEEX
wParam = (WPARAM) wFirst; // first item
lParam = (LPARAM) wLast); // last item
ParameterswFirst

Value of wParam. Specifies the zero-based index of the first item to select.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

wLast
Value of lParam. Specifies the zero-based index of the last item to select.

Return ValuesIf an error occurs, the return value is LB_ERR.RemarksIf the wFirst parameter is less than the wLast parameter, the specified range of items is selected.
If wFirst is greater than wLast, the selection is removed from the specified range of items.

Use this message only with multiple-selection list boxes.

This message can select a range only within the first 65,536 items.See AlsoLB_SELITEMRANGE, LB_SETSEL

LB_SETANCHORINDEX
An application sends an LB_SETANCHORINDEX message to set the anchor item ¾ that is, the
item from which a multiple selection starts. A multiple selection spans all items from the anchor
item to the caret item.LB_SETANCHORINDEX
wParam = (WPARAM) index; // index to set as anchor
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the index of the new anchor item.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesIf the message succeeds, the return value is zero.

If the message fails, the return value is LB_ERR.See AlsoLB_GETANCHORINDEX

LB_SETCARETINDEX
An application sends an LB_SETCARETINDEX message to set the focus rectangle to the item at
the specified index in a multiple-selection list box. If the item is not visible, it is scrolled into view.LB_SETCARETINDEX
wParam = (WPARAM) index; // item index
lParam = MAKELPARAM(fScroll, 0); // flag for scrolling item
Parametersindex

Value of wParam. Specifies the zero-based index of the list box item that is to receive the
focus rectangle.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

fScroll
Value of lParam. If this value is FALSE, the item is scrolled until it is fully visible; if it is TRUE,
the item is scrolled until it is at least partially visible.

Return ValuesIf an error occurs, the return value is LB_ERR.See AlsoLB_GETCARETINDEX

LB_SETCOLUMNWIDTH
An application sends an LB_SETCOLUMNWIDTH message to a multiple-column list box (created
with the LBS_MULTICOLUMN style) to set the width, in pixels, of all columns in the list box.LB_SETCOLUMNWIDTH
wParam = (WPARAM) cxColumn; // column width in pixels
lParam = 0; // not used; must be zero
ParameterscxColumn

Value of wParam. Specifies the width, in pixels, of all columns.
Return ValuesThis message does not return a value.See AlsoLB_SETTABSTOPS

LB_SETCOUNT
An application sends an LB_SETCOUNT message to set the count of items in a list box created
with the LBS_NODATA style and not created with the LBS_HASSTRINGS style.LB_SETCOUNT
wParam = (WPARAM) (int) cItems; // count of list box items
lParam = 0; // not used; must be zero
ParameterscItems

Value of wParam. Specifies the new count of items in the list box.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesIf an error occurs, the return value is LB_ERR. If there is insufficient memory to store the items,
the return value is LB_ERRSPACE.RemarksThe LB_SETCOUNT message is supported only by list boxes created with the LBS_NODATA
style and not created with the LBS_HASSTRINGS style. All other list boxes return LB_ERR.See AlsoLB_GETCOUNT

LB_SETCURSEL
An application sends an LB_SETCURSEL message to select a string and scroll it into view, if
necessary. When the new string is selected, the list box removes the highlight from the previously
selected string.LB_SETCURSEL
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the string that is selected. If the index
parameter is -1, the list box is set to have no selection.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesIf an error occurs, the return value is LB_ERR. If the index parameter is - 1, the return value is
LB_ERR even though no error occurred.RemarksUse this message only with single-selection list boxes. You cannot use it to set or remove a
selection in a multiple-selection list box.See AlsoLB_GETCURSEL

LB_SETHORIZONTALEXTENT
An application sends an LB_SETHORIZONTALEXTENT message to set the width, in pixels, by
which a list box can be scrolled horizontally (the scrollable width). If the width of the list box is
smaller than this value, the horizontal scroll bar horizontally scrolls items in the list box. If the
width of the list box is equal to or greater than this value, the horizontal scroll bar is hidden.LB_SETHORIZONTALEXTENT
wParam = (WPARAM) cxExtent; // horizontal scroll width
lParam = 0; // not used; must be zero
ParameterscxExtent

Value of wParam. Specifies the number of pixels by which the list box can be scrolled.
Windows 95: The wParam parameter is limited to 16-bit values.

Return ValuesThis message does not return a value.RemarksTo respond to the LB_SETHORIZONTALEXTENT message, the list box must have been defined
with the WS_HSCROLL style.See AlsoLB_GETHORIZONTALEXTENT

LB_SETITEMDATA
An application sends an LB_SETITEMDATA message to set a 32-bit value associated with the
specified item in a list box.LB_SETITEMDATA
wParam = (WPARAM) index; // item index
lParam = (LPARAM) dwData; // value to associate with item
Parametersindex

Value of wParam. Specifies the zero-based index of the item.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

dwData
Value of lParam. Specifies the 32-bit value to be associated with the item.

Return ValuesIf an error occurs, the return value is LB_ERR.RemarksIf the item is in an owner-drawn list box created without the LBS_HASSTRINGS style, this
message replaces the 32-bit value contained in the lParam parameter of the LB_ADDSTRING or
LB_INSERTSTRING message that added the item to the list box.See AlsoLB_ADDSTRING, LB_GETITEMDATA, LB_INSERTSTRING

LB_SETITEMHEIGHT
An application sends an LB_SETITEMHEIGHT message to set the height, in pixels, of items in a
list box. If the list box has the LBS_OWNERDRAWVARIABLE style, this message sets the height
of the item specified by the index parameter. Otherwise, this message sets the height of all items
in the list box.LB_SETITEMHEIGHT
wParam = (WPARAM) index; // item index
lParam = MAKELPARAM(cyItem, 0); // item height
Parametersindex

Value of wParam. Specifies the zero-based index of the item in the list box. Use this
parameter only if the list box has the LBS_OWNERDRAWVARIABLE style; otherwise, set it to
zero.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

cyItem
Value of lParam. Specifies the height, in pixels, of the item.

Return ValuesIf the index or height is invalid, the return value is LB_ERR.See AlsoLB_GETITEMHEIGHT

LB_SETLOCALE
An application sends an LB_SETLOCALE message to set the current locale of the list box. You
can use the locale to determine the correct sorting order of displayed text (for list boxes with the
LBS_SORT style) and of text added by the LB_ADDSTRING message.LB_SETLOCALE
wParam = (WPARAM) wLocaleID; // locale identifier
lParam = 0; // not used; must be zero
ParameterswLocaleID

Value of wParam. Specifies the locale identifier that the list box will use for sorting when
adding text.

Return ValuesThe return value is the previous locale identifier. If the wLocaleID parameter specifies a locale that
is not installed on the system, the return value is LB_ERR and the current list box locale is not
changed.RemarksUse the MAKELCID macro to construct a locale identifier.See AlsoLB_ADDSTRING, LB_GETLOCALE, MAKELCID

LB_SETSEL
An application sends an LB_SETSEL message to select a string in a multiple-selection list box.LB_SETSEL
wParam = (WPARAM) (BOOL) fSelect; // selection flag
lParam = (LPARAM) (UINT) index;// item index
ParametersfSelect

Value of wParam. Specifies how to set the selection. If the fSelect parameter is TRUE, the
string is selected and highlighted; if fSelect is FALSE, the highlight is removed and the string
is no longer selected.

index
Value of lParam. Specifies the zero-based index of the string to set. If index is - 1, the
selection is added to or removed from all strings, depending on the value of fSelect.

Return ValuesIf an error occurs, the return value is LB_ERR.RemarksUse this message only with multiple-selection list boxes.See AlsoLB_GETSEL, LB_SELITEMRANGE

LB_SETTABSTOPS
An application sends an LB_SETTABSTOPS message to set the tab-stop positions in a list box.LB_SETTABSTOPS
wParam = (WPARAM) cTabs; // number of tab stops
lParam = (LPARAM) (LPINT) lpnTabs; // address of tab-stop array
ParameterscTabs

Value of wParam. Specifies the number of tab stops in the list box.
lpnTabs

Value of lParam. Points to the first member of an array of integers containing the tab stops, in
dialog box units. The tab stops must be sorted in ascending order; backward tabs are not
allowed.

Return ValuesIf all the specified tabs are set, the return value is TRUE; otherwise, it is FALSE.RemarksTo respond to the LB_SETTABSTOPS message, the list box must have been created with the
LBS_USETABSTOPS style.

If cTabs parameter is 0 and lpnTabs is NULL, the default tab stop is two dialog box units. If cTabs
is 1, the list box will have tab stops separated by the distance specified by lpnTabs.

If lpnTabs points to more than a single value, a tab stop will be set for each value in lpnTabs, up
to the number specified by cTabs.

A dialog box unit is a horizontal or vertical distance. One horizontal dialog box unit is equal to 0.
25 of the current dialog box base-width unit. These units are computed based on the height and
width of the current system font. The GetDialogBaseUnits function returns the current dialog box
base units, in pixels.See AlsoGetDialogBaseUnits

LB_SETTOPINDEX
An application sends an LB_SETTOPINDEX message to ensure that a particular item in a list box
is visible.LB_SETTOPINDEX
wParam = (WPARAM) index; // item index
lParam = 0; // not used; must be zero
Parametersindex

Value of wParam. Specifies the zero-based index of the item in the list box.
Windows 95: The wParam parameter is limited to 16-bit values. This means list boxes cannot
contain more than 32,767 items. Although the number of items is restricted, the total size in
bytes of the items in a listbox is limited only by available memory.

Return ValuesIf an error occurs, the return value is LB_ERR.RemarksThe system scrolls the list box contents so that either the specified item appears at the top of the
list box or the maximum scroll range has been reached.See AlsoLB_GETTOPINDEX

LBN_DBLCLK
An application sends the LBN_DBLCLK notification message when the user double-clicks a string
in a list box. The parent window of the list box receives this notification message through the
WM_COMMAND message.LBN_DBLCLK
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
RemarksOnly a list box that has the LBS_NOTIFY style will send this notification message.See AlsoLBN_SELCHANGE, WM_COMMAND

LBN_ERRSPACE
An application sends the LBN_ERRSPACE notification message when a list box cannot allocate
enough memory to meet a specific request. The parent window of the list box receives this
notification message through the WM_COMMAND message.LBN_ERRSPACE
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
See AlsoWM_COMMAND

LBN_KILLFOCUS
An application sends the LBN_KILLFOCUS notification message when a list box loses the
keyboard focus. The parent window of the list box receives this notification message through the
WM_COMMAND message.LBN_KILLFOCUS
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
See AlsoLBN_SETFOCUS, WM_COMMAND

LBN_SELCANCEL
An application sends the LBN_SELCANCEL notification message when the user cancels the
selection in a list box. The parent window of the list box receives this notification message through
the WM_COMMAND message.LBN_SELCANCEL
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
RemarksThis notification message applies only to list boxes of the LBS_NOTIFY style.See AlsoLB_SETCURSEL, LBN_DBLCLK, LBN_SELCHANGE, WM_COMMAND

LBN_SELCHANGE
An application sends the LBN_SELCHANGE notification message when the selection in a list box
is about to change. The parent window of the list box receives this notification message through
the WM_COMMAND message.LBN_SELCHANGE
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
RemarksThis notification message is not sent if the LB_SETCURSEL message changes the selection.

This notification message applies only to a list box that has the LBS_NOTIFY style.

For a multiple-selection list box, the LBN_SELCHANGE notification is sent whenever the user
presses an arrow key, even if the selection does not change.See AlsoLB_SETCURSEL, LBN_DBLCLK, LBN_SELCANCEL, WM_COMMAND

LBN_SETFOCUS
An application sends the LBN_SETFOCUS notification message when a list box receives the
keyboard focus. The parent window of the list box receives this notification message through the
WM_COMMAND message.LBN_SETFOCUS
idListBox = (int) LOWORD(wParam); // identifier of list box
hwndListBox = (HWND) lParam; // handle of list box
See AlsoLBN_KILLFOCUS, WM_COMMAND

LBSELCHSTRING
An Open or Save As dialog box sends the LBSELCHSTRING registered message to your hook
procedure when the selection changes in any of the list boxes or combo boxes of the dialog box.

For Explorer-style Open and Save As dialog boxes, this message has been superseded by the
CDN_SELCHANGE and CDN_TYPECHANGE messages.MessageID = RegisterWindowMessage(LBSELCHSTRING);
idListBox = (UINT) wParam;
iItem = LOWORD (lParam);
iType = HIWORD (lParam);
ParametersidListBox

Identifier of the list box or combo box in which the selection changed.
iItem

Item number of the selected string in the list box or combo box.
iType

Type of selection change. This parameter can be one of the following values:
CD_LBSELCHANGE The item identified by iItem is the only item

selected in a single-selection list box.
CD_LBSELADD The item identified by iItem is one of the

items selected in a multiple-selection list box.
CD_LBSELSUB The item identified by iItem is no longer

selected in a multiple-selection list box.
CD_LBSELNOITEMS No items exist in a multiple-selection list box.

Return ValuesNo return value.RemarksThe hook procedure must specify the LBSELCHSTRING constant in a call to the
RegisterWindowMessage function to get the identifier for the message sent by the dialog box.See AlsoCDN_SELCHANGE, CDN_TYPECHANGE, RegisterWindowMessage

LVM_ARRANGE
The LVM_ARRANGE message arranges items in icon view. You can send this message explicitly
or by using the ListView_Arrange macro.LVM_ARRANGE
wParam = (WPARAM) (int) code;
lParam = 0;
Parameterscode

Specifies the alignment, which can be one of the following values:
Value Meaning
LVA_ALIGNLEFT Aligns items along the left edge of the

window.
LVA_ALIGNTOP Aligns items along the top edge of the

window.
LVA_DEFAULT Aligns items according to the list view

control's current alignment styles (the
default value).

LVA_SNAPTOGRID Snaps all icons to the nearest grid
position.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_Arrange

LVM_CREATEDRAGIMAGE
The LVM_CREATEDRAGIMAGE message creates a drag image list for the specified item. You
can send this message explicitly or by using the ListView_CreateDragImage macro.LVM_CREATEDRAGIMAGE
wParam = (WPARAM) (int) iItem;
lParam = (LPARAM) (LPPOINT) lpptUpLeft;
ParametersiItem

Index of the item.
lpptUpLeft

Pointer to a POINT structure that receives the initial location of the upper-left corner of the
image, in view coordinates.

Return ValuesReturns the handle to the drag image list if successful or NULL otherwise.See AlsoListView_CreateDragImage, POINT

LVM_DELETEALLITEMS
The LVM_DELETEALLITEMS message removes all items from a list view control. You can send
this message explicitly or by using the ListView_DeleteAllItems macro.LVM_DELETEALLITEMS
wParam = 0;
lParam = 0;
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_DeleteAllItems

LVM_DELETECOLUMN
The LVM_DELETECOLUMN message removes a column from a list view control. You can send
this message explicitly or by using the ListView_DeleteColumn macro.LVM_DELETECOLUMN
wParam = (WPARAM) (int) iCol;
lParam = 0;
ParametersiCol

Index of the column to delete.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_DeleteColumn

LVM_DELETEITEM
The LVM_DELETEITEM message removes an item from a list view control. You can send this
message explicitly or by using the ListView_DeleteItem macro.LVM_DELETEITEM
wParam = (WPARAM) (int) iItem;
lParam = 0;
ParametersiItem

Index of the list view item to delete.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_DeleteItem

LVM_EDITLABEL
The LVM_EDITLABEL message begins in-place editing of the specified list view item's text. The
message implicitly selects and focuses the specified item. You can send this message explicitly or
by using the ListView_EditLabel macro.LVM_EDITLABEL
wParam = (WPARAM) (int) iItem;
lParam = 0;
ParametersiItem

Index of the list view item. To cancel editing, set iItem to - 1.
Return ValuesReturns the handle of the edit control that is used to edit the item text if successful or NULL

otherwise.RemarksWhen the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but you should not destroy it.

The control must have the focus before you send this message to the control. Focus can be set
using the SetFocus function.See AlsoListView_EditLabel, WM_CANCELMODE, SetFocus

LVM_ENSUREVISIBLE
The LVM_ENSUREVISIBLE message ensures that a list view item is entirely or at least partially
visible, scrolling the list view control if necessary. You can send this message explicitly or by using
the ListView_EnsureVisible macro.LVM_ENSUREVISIBLE
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (BOOL) fPartialOk;
Parametersi

Index of the list view item.
fPartialOK

Value specifying whether the item must be entirely visible. If this parameter is TRUE, no
scrolling occurs if the item is at least partially visible.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_EnsureVisible

LVM_FINDITEM
The LVM_FINDITEM message searches for a list view item with the specified characteristics. You
can send this message explicitly or by using the ListView_FindItem macro.LVM_FINDITEM
wParam = (WPARAM) (int) iStart;
lParam = (LPARAM) (const LV_FINDINFO FAR *) plvfi;
ParametersiStart

Index of the item to begin the search with or - 1 to start from the beginning. The specified item
is itself excluded from the search.

plvfi
Pointer to an LV_FINDINFO structure that contains information about what to search for.

Return ValuesReturns the index of the item if successful or - 1 otherwise.See AlsoListView_FindItem, LV_FINDINFO

LVM_GETBKCOLOR
The LVM_GETBKCOLOR message retrieves the background color of a list view control. You can
send this message explicitly or by using the ListView_GetBkColor macro.LVM_GETBKCOLOR
wParam = 0;
lParam = 0;
Return ValuesReturns the background color of the list view control.See AlsoListView_GetBkColor

LVM_GETCALLBACKMASK
The LVM_GETCALLBACKMASK message retrieves the callback mask for a list view control. You
can send this message explicitly or by using the ListView_GetCallbackMask macro.LVM_GETCALLBACKMASK
wParam = 0;
lParam = 0;
Return ValuesReturns the callback mask.See AlsoListView_GetCallbackMask

LVM_GETCOLUMN
The LVM_GETCOLUMN message retrieves the attributes of a list view control's column. You can
send this message explicitly or by using the ListView_GetColumn macro.LVM_GETCOLUMN
wParam = (WPARAM) (int) iCol;
lParam = (LPARAM) (LV_COLUMN FAR *) pcol;
ParametersiCol

Index of the column.
pcol

Pointer to an LV_COLUMN structure that specifies the information to retrieve and receives
information about the column. The mask member specifies which column attributes to
retrieve.
If the mask member specifies the LVCF_TEXT value, the pszText member must contain the
pointer to the buffer that receives the item text and the cchTextMax member must specify the
size of the buffer.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_GetColumn, LV_COLUMN

LVM_GETCOLUMNWIDTH
The LVM_GETCOLUMNWIDTH message retrieves the width of a column in report or list view.
You can send this message explicitly or by using the ListView_GetColumnWidth macro.LVM_GETCOLUMNWIDTH
wParam = (WPARAM) (int) iCol;
lParam = 0;
ParametersiCol

Index of the column. This parameter is ignored in list view.
Return ValuesReturns the column width if successful or zero otherwise.See AlsoListView_GetColumnWidth

LVM_GETCOUNTPERPAGE
The LVM_GETCOUNTPERPAGE message calculates the number of items that can fit vertically in
the visible area of a list view control when in list or report view. Only fully-visible items are
counted. You can send this message explicitly, or by using the ListView_GetCountPerPage
macro.LVM_GETCOUNTPERPAGE
wParam = 0;
lParam = 0;
Return ValuesReturns the number of fully-visible items if successful. If the current view is icon or small icon

view, the return value is the total number of items in the list view control.See AlsoListView_GetCountPerPage

LVM_GETEDITCONTROL
The LVM_GETEDITCONTROL message retrieves the handle to the edit control being used to edit
a list view item's text. You can send this message explicitly or by using the
ListView_GetEditControl macro.LVM_GETEDITCONTROL
wParam = 0;
lParam = 0;
Return ValuesReturns the handle to the edit control if successful or NULL otherwise.RemarksIf no label is being edited, the return value is NULL. The edit control is not created until after the

LVN_BEGINLABELEDIT notification message is sent.

When the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but you should not destroy it. To cancel
editing, you can send the list view control a WM_CANCELMODE message.

The list view item being edited is the currently focused item ¾ that is, the item in the focused
state. To find an item based on its state, use the LVM_GETNEXTITEM message.See AlsoListView_GetEditControl, LVN_BEGINLABELEDIT, LVM_GETNEXTITEM,
WM_CANCELMODE

LVM_GETIMAGELIST
The LVM_GETIMAGELIST message retrieves the handle to an image list used for drawing list
view items. You can send this message explicitly or by using the ListView_GetImageList macro.LVM_GETIMAGELIST
wParam = (WPARAM) (int) iImageList;
lParam = 0;
ParametersiImageList

Image list to retrieve. This parameter can be one of the following values:
Value Meaning
LVSIL_NORMAL Image list with large icons
LVSIL_SMALL Image list with small icons
LVSIL_STATE Image list with state images

Return ValuesReturns the handle of the specified image list if successful or NULL otherwise.See AlsoListView_GetImageList

LVM_GETISEARCHSTRING
[New - Windows NT]

The LVM_GETISEARCHSTRING message retrieves the incremental search string of a list-view
control. You can send this message explicitly or by using the ListView_GetISearchString macro.LVM_GETISEARCHSTRING
wParam = 0;
lParam = (LPARAM) (LPSTR) lpsz;
Parameterslpsz

Pointer to a buffer that receives the incremental search string.
Return ValuesReturns the number of characters in the incremental search string, or zero if the list-view control is

not in incremental search mode.RemarksThe incremental search string is the character sequence that the user types while the list view has
the input focus. Each time the user types a character, the system appends the character to the
search string and then searches for a matching item. If the system finds a match, it selects the
item and, if necessary, scrolls it into view.

A timeout period is associated with each character that the user types. If the timeout period
elapses before the user types another character, the incremental search string is reset.See AlsoListView_GetISearchString

LVM_GETITEM
The LVM_GETITEM message retrieves some or all of a list view item's attributes. You can send
this message explicitly or by using the ListView_GetItem macro.LVM_GETITEM
wParam = 0;
lParam = (LPARAM) (LV_ITEM FAR*) pitem;
Parameterspitem

Pointer to an LV_ITEM structure that specifies the information to retrieve and receives
information about the list view item.
When the message is sent, the iItem and iSubItem members identify the item or subitem to
retrieve information about and the mask member specifies which attributes to retrieve. For a
list of possible values, see the description of the LV_ITEM structure.
If the mask member specifies the LVIF_TEXT value, the pszText member must contain the
pointer to the buffer that receives the item text and the cchTextMax member must specify the
size of the buffer.
If the mask member specifies the LVIF_STATE value, the stateMask member specifies which
item states are to be returned.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_GetItem, LV_ITEM

LVM_GETITEMCOUNT
The LVM_GETITEMCOUNT message retrieves the number of items in a list view control. You can
send this message explicitly or by using the ListView_GetItemCount macro.LVM_GETITEMCOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns the number of items.See AlsoListView_GetItemCount

LVM_GETITEMPOSITION
The LVM_GETITEMPOSITION message retrieves the position of a list view item. You can send
this message explicitly or by using the ListView_GetItemPosition macro.LVM_GETITEMPOSITION
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (POINT FAR *) ppt;
Parametersi

Index of the list view item.
ppt

Pointer to a POINT structure that receives the position of the item's upper-left corner, in view
coordinates.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_GetItemPosition, POINT

LVM_GETITEMRECT
The LVM_GETITEMRECT message retrieves the bounding rectangle for all or part of an item in
the current view. You can send this message explicitly or by using the ListView_GetItemRect
macro.LVM_GETITEMRECT
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (LPRECT) prc;
Parametersi

Index of the list view item.
prc

Pointer to a RECT structure that receives the bounding rectangle. When the message is sent,
the left member of this structure contains the value of the code parameter.

Return Values
Returns TRUE if successful or FALSE otherwise.RemarksThis parameter is specified by the left member of the RECT structure pointed to by prc.
See AlsoListView_GetItemRect, RECT

LVM_GETITEMSPACING
The LVM_GETITEMSPACING message determines the spacing between items in a list view
control. You can send this message explicitly or by using the ListView_GetItemSpacing macro.LVM_GETITEMSPACING
wParam = (WPARAM) (BOOL) fSmall;
lParam = 0;
ParametersfSmall

View to retrieve the item spacing for. This parameter is TRUE for small icon view, or FALSE
for icon view.

Return ValuesReturns the amount of spacing between items.See AlsoListView_GetItemSpacing

LVM_GETITEMSTATE
The LVM_GETITEMSTATE message retrieves the state of a list view item. You can send this
message explicitly or by using the ListView_GetItemState macro.LVM_GETITEMSTATE
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (UINT) mask;
Parametershwnd

Handle to the list view control.
i

Index of the list view item.
mask

Mask that specifies which of the item's state flags to return.
Return ValuesReturns the item's state flags.See AlsoListView_GetItemState

LVM_GETITEMTEXT
The LVM_GETITEMTEXT message retrieves the text of a list view item or subitem. You can send
this message explicitly or by using the ListView_GetItemText macro.LVM_GETITEMTEXT
wParam = (WPARAM) (int) iItem;
lParam = (LPARAM) (LV_ITEM FAR *) pitem;
ParametersiItem

Index of the list view item.
pitem

Pointer to an LV_ITEM structure. The iSubItem member specifies the index of a subitem, or it
can be zero to get the item label. The pszText member points to a buffer that receives the
text, and the cchTextMax member specifies the size of the buffer.

Return ValuesIf you send this message explicitly, it returns the length of the retrieved string.

If you can send this message implicitly by using the ListView_GetItemText macro, there is no
return value.See AlsoListView_GetItemText, LV_ITEM

LVM_GETNEXTITEM
The LVM_GETNEXTITEM message searches for a list view item that has the specified properties
and bears the specified relationship to a specified item. You can send this message explicitly or
by using the ListView_GetNextItem macro.LVM_GETNEXTITEM
wParam = (WPARAM) (int) iStart;
lParam = MAKELPARAM((UINT) flags, 0);
ParametersiStart

Index of the item to begin the searching with, or - 1 to find the first item that matches the
specified flags. The specified item itself is excluded from the search.

flags
Geometric relation of the requested item to the specified item and, if specified, the state of the
requested item.
The geometric relation can be one of the following values:

Value Meaning
LVNI_ABOVE Searches for an item that is above the specified

item.
LVNI_ALL Searches for a subsequent item by index (the

default value).
LVNI_BELOW Searches for an item that is below the specified

item.
LVNI_TOLEFT Searches for an item to the left of the specified

item.
LVNI_TORIGHT Searches for an item to the right of the

specified item.

The state can be zero, or it can be one or more of the following values:
Value Meaning
LVNI_CUT The item has the LVIS_CUT state flag set.
LVNI_DROPHILITEDThe item has the LVIS_DROPHILITED state

flag set.
LVNI_FOCUSED The item has the LVIS_FOCUSED state flag

set.
LVNI_SELECTED The item has the LVIS_SELECTED state flag

set.

If an item does not have all of the specified state flags set, the search continues with
the next item.

Return ValuesReturns the index of the next item if successful or - 1 otherwise.See AlsoListView_GetNextItem

LVM_GETORIGIN
The LVM_GETORIGIN message retrieves the current view origin for a list view control. You can
send this message explicitly or by using the ListView_GetOrigin macro.LVM_GETORIGIN
wParam = 0;
lParam = (LPARAM) (LPPOINT) lpptOrg;
ParameterslpptOrg

Pointer to a POINT structure that receives the view origin.
Return ValuesReturns TRUE if successful or FALSE if the current view is list or report view.See AlsoListView_GetOrigin, POINT

LVM_GETSELECTEDCOUNT
The LVM_GETSELECTEDCOUNT message determines the number of selected items in a list
view control. You can send this message explicitly or by using the ListView_GetSelectedCount
macro.LVM_GETSELECTEDCOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns the number of selected items.See AlsoListView_GetSelectedCount

LVM_GETSTRINGWIDTH
The LVM_GETSTRINGWIDTH message determines the width of a specified string, using the
specified list view control's current font. You can send this message explicitly or by using the
ListView_GetStringWidth macro.LVM_GETSTRINGWIDTH
wParam = 0;
lParam = (LPARAM) (LPCSTR) psz;
Parameterspsz

Pointer to a null-terminated string.
Return ValuesReturns the string width if successful or zero otherwise.RemarksThe LVM_GETSTRINGWIDTH message returns the exact width, in pixels, of the specified string.

If you use the returned string width as the column width in the LVM_SETCOLUMNWIDTH
message, the string will be truncated. To get the column width that can contain the string without
truncating it, you must add padding to the returned string width.See AlsoListView_GetStringWidth, LVM_SETCOLUMNWIDTH

LVM_GETTEXTBKCOLOR
The LVM_GETTEXTBKCOLOR message retrieves the text background color of a list view control.
You can send this message explicitly or by using the ListView_GetTextBkColor macro.LVM_GETTEXTBKCOLOR
wParam = 0;
lParam = 0;
Return ValuesReturns the background color of the text.See AlsoListView_GetTextBkColor

LVM_GETTEXTCOLOR
The LVM_GETTEXTCOLOR message retrieves the text color of a list view control. You can send
this message explicitly or by using the ListView_GetTextColor macro.LVM_GETTEXTCOLOR
wParam = 0;
lParam = 0;
Return ValuesReturns the text color.See AlsoListView_GetTextColor

LVM_GETTOPINDEX
The LVM_GETTOPINDEX message retrieves the index of the topmost visible item when in list or
report view. You can send this message explicitly or by using the ListView_GetTopIndex macro.LVM_GETTOPINDEX
wParam = 0;
lParam = 0;
Return ValuesReturns the index of the item if successful or zero if the list view control is in icon or small icon

view.See AlsoListView_GetTopIndex

LVM_GETVIEWRECT
The LVM_GETVIEWRECT message retrieves the bounding rectangle of all items in the list view
control. The list view must be in icon or small icon view. You can send this message explicitly or
by using the ListView_GetViewRect macro.LVM_GETVIEWRECT
wParam = 0;
lParam = (LPARAM) (RECT FAR *) prc;
Parametersprc

Pointer to a RECT structure that receives the bounding rectangle. All coordinates are relative
to the visible area of the list view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_GetViewRect, RECT

LVM_HITTEST
The LVM_HITTEST message determines which list view item, if any, is at a specified position.
You can send this message explicitly or by using the ListView_HitTest macro.LVM_HITTEST
wParam = 0;
lParam = (LPARAM) (LV_HITTESTINFO FAR *) pinfo;
Parameterspinfo

Pointer to an LV_HITTESTINFO structure that contains the position to hit test and receives
information about the results of the hit test.

Return ValuesReturns the index of the item at the specified position, if any, or - 1 otherwise.See AlsoListView_HitTest, LV_HITTESTINFO

LVM_INSERTCOLUMN
The LVM_INSERTCOLUMN message inserts a new column in a list view control. You can send
this message explicitly or by using the ListView_InsertColumn macro.LVM_INSERTCOLUMN
wParam = (WPARAM) (int) iCol;
lParam = (LPARAM) (const LV_COLUMN FAR *) pcol;
ParametersiCol

Index of the new column.
pcol

Pointer to an LV_COLUMN structure that contains the attributes of the new column.
Return ValuesReturns the index of the new column if successful or - 1 otherwise.See AlsoListView_InsertColumn, LV_COLUMN

LVM_INSERTITEM
The LVM_INSERTITEM message inserts a new item in a list view control. You can send this
message explicitly or by using the ListView_InsertItem macro.LVM_INSERTITEM
wParam = 0;
lParam = (LPARAM) (const LV_ITEM FAR *) pitem;
Parameterspitem

Pointer to an LV_ITEM structure that specifies the attributes of the list view item. The iItem
member specifies the index of the new item.
You cannot use ListView_InsertItem or LVM_INSERTITEM to insert subitems; the iSubItem
member of the LV_ITEM structure must be zero.

Return ValuesReturns the index of the new item if successful or - 1 otherwise.RemarksIf a list view control has either the LVS_SORTASCENDING or LVS_SORTDESCENDING window
style, an LVM_INSERTITEM message will fail if you try to insert an item that has
LPSTR_TEXTCALLBACK as the pszText member of its LV_ITEM structure.See AlsoListView_InsertItem, LV_ITEM

LVM_REDRAWITEMS
The LVM_REDRAWITEMS message forces a list view control to redraw a range of items. You can
send this message explicitly or by using the ListView_RedrawItems macro.LVM_REDRAWITEMS
wParam = (int) iFirst; // index of first item to redraw
lParam = (int) iLast; // index of last item to redraw
ParametersiFirst

Index of the first item to redraw.
iLast

Index of the last item to redraw.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe specified items are not actually redrawn until the list view window receives a WM_PAINT

message to repaint. To repaint immediately, call the UpdateWindow function after using this
macro.See AlsoListView_RedrawItems, UpdateWindow, WM_PAINT

LVM_SCROLL
The LVM_SCROLL message scrolls the content of a list view control. You can send this message
explicitly or by using the ListView_Scroll macro.LVM_SCROLL
wParam = (int) dx; // amount of horizontal scrolling, in pixels or
columns
lParam = (int) dy; // amount of vertical scrolling, in pixels
Parametersdx

Integer value that specifies the amount of horizontal scrolling.
If the view type of the list view control is icon view, small icon view, or report view, this value
specifies the number of pixels to scroll. If the view type of the list view control is list view, this
value specifies the number of columns to scroll.

dy
Integer value that specifies the amount of vertical scrolling.
If the view type of the list view control is icon view, small icon view, or list view, this value
specifies the number of pixels to scroll. If the view type of the list view control is report view,
this value specifies the number of lines to scroll.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_Scroll

LVM_SETBKCOLOR
The LVM_SETBKCOLOR message sets the background color of a list view control. You can send
this message explicitly or by using the ListView_SetBkColor macro.LVM_SETBKCOLOR
wParam = 0;
lParam = (LPARAM) (COLORREF) clrBk;
ParametersclrBk

Background color to set or the CLR_NONE value for no background color. List view controls
with background colors redraw themselves significantly faster than those without background
colors.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_SetBkColor

LVM_SETCALLBACKMASK
The LVM_SETCALLBACKMASK message changes the callback mask for a list view control. You
can send this message explicitly or by using the ListView_SetCallbackMask macro.LVM_SETCALLBACKMASK
wParam = (WPARAM) (UINT) mask;
lParam = 0;
Parametershwnd

Handle to the list view control.
mask

Specifies the value of the callback mask. The bits of the mask indicate the item states or
images for which the application stores the current state data. This value can be any
combination of the following constants:

Value Meaning
LVIS_CUT The item is marked for a cut-and-paste

operation.
LVIS_DROPHILITED The item is highlighted as a drag-and-

drop target.
LVIS_FOCUSED The item has the focus.
LVIS_SELECTED The item is selected.
LVIS_OVERLAYMASK The application stores the image list

index of the current overlay image for
each item.

LVIS_STATEIMAGEMASK The application stores the image list
index of the current state image for each
item.

For more information about overlay images and state images, see List View Image
Lists.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe callback mask of a list view control is a set of bit flags that specify the item states for which
the application, rather than the control, stores the current data. The callback mask applies to all of
the control's items, unlike the callback item designation, which applies to a specific item. The
callback mask is zero by default, meaning that the list view control stores all item state
information. After creating a list view control and initializing its items, you can send the
LVM_SETCALLBACKMASK message to change the callback mask. To get the current callback
mask, send the LVM_GETCALLBACKMASK message.

For more information, see Callback Items and the Callback Mask.See AlsoListView_SetCallbackMask, LVM_GETCALLBACKMASK, LVN_GETDISPINFO

LVM_SETCOLUMN
The LVM_SETCOLUMN message sets the attributes of a list view column. You can send this
message explicitly or by using the ListView_SetColumn macro.LVM_SETCOLUMN
wParam = (WPARAM) (int) iCol;
lParam = (LPARAM) (const LV_COLUMN FAR *) pcol;
ParametersiCol

Index of the column.
pcol

Pointer to an LV_COLUMN structure that contains the new column attributes. The mask
member specifies which column attributes to set.
If the mask member specifies the LVCF_TEXT value, the pszText member is the pointer to a
null-terminated string and the cchTextMax member is ignored.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_SetColumn, LV_COLUMN

LVM_SETCOLUMNWIDTH
The LVM_SETCOLUMNWIDTH message changes the width of a column in report or list view.
You can send this message explicitly or by using the ListView_SetColumnWidth macro.LVM_SETCOLUMNWIDTH
wParam = (WPARAM) (int) iCol;
lParam = MAKELPARAM((int) cx, 0);
ParametersiCol

Index of the column. In list view, the iCol parameter must be - 1.
cx

New width of the column, in list view coordinates, or one of the following values:
Value Meaning
LVSCW_AUTOSIZE Automatically sizes the column.
LVSCW_AUTOSIZE_USEHEADERAutomatically sizes the column to

fit the header text.
See AlsoListView_SetColumnWidth

LVM_SETIMAGELIST
The LVM_SETIMAGELIST message assigns an image list to a list view control. You can send this
message explicitly or by using the ListView_SetImageList macro.LVM_SETIMAGELIST
wParam = (WPARAM) (int) iImageList;
lParam = (LPARAM) (HIMAGELIST) himl;
Parametershiml

Handle to the image list to assign.
iImageList

Type of image list. This parameter can be one of the following values:
Value Meaning
LVSIL_NORMAL Image list with large icons
LVSIL_SMALL Image list with small icons
LVSIL_STATE Image list with state images

Return ValuesReturns the handle of the image list previously associated with the control if successful; NULL
otherwise.See AlsoListView_SetImageList

LVM_SETITEM
The LVM_SETITEM message sets some or all of a list view item's attributes. You can send this
message explicitly or by using the ListView_SetItem macro.LVM_SETITEM
wParam = 0;
lParam = (LPARAM) (const LV_ITEM FAR *) pitem;
Parameterspitem

Pointer to an LV_ITEM structure that contains the new item attributes. The iItem and
iSubItem members identify the item or subitem, and the mask member specifies which
attributes to set.
If the mask member specifies the LVIF_TEXT value, the pszText member is the pointer to a
null-terminated string and the cchTextMax member is ignored.
If the mask member specifies the LVIF_STATE value, the stateMask member specifies which
item states to change and the state member contains the values for those states.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_SetItem, LV_ITEM

LVM_SETITEMCOUNT
The LVM_SETITEMCOUNT message prepares a list view control for adding a large number of
items. You can send this message explicitly or by using the ListView_SetItemCount macro.LVM_SETITEMCOUNT
wParam = (WPARAM) (int) cItems;
lParam = 0;
ParameterscItems

Number of items that the list view control will ultimately contain.
Return ValuesNo return value.RemarksBy sending the LVM_SETITEMCOUNT message before adding a large number of items, you

enable a list view control to reallocate its internal data structures only once rather than every time
you add an item.See AlsoListView_SetItemCount

LVM_SETITEMPOSITION
The LVM_SETITEMPOSITION message moves an item to a specified position in a list view
control, which must be in icon or small icon view. You can send this message explicitly or by using
the ListView_SetItemPosition macro.LVM_SETITEMPOSITION
wParam = (LPARAM) (int) i;
lParam = MAKELPARAM((int) x, (int) y);
Parametersi

Index of the list view item.
x and y

New position of the item's upper-left corner, in view coordinates.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the list view control has the LVS_AUTOARRANGE style, the list view control is arranged after

the position of the item is set.See AlsoListView_SetItemPosition

LVM_SETITEMPOSITION32
The LVM_SETITEMPOSITION32 message moves an item to a specified position in a list view
control, which must be in icon or small icon view. This message differs from the
LVM_SETITEMPOSITION message in that it uses 32-bit coordinates. You can send this message
explicitly or by using the ListView_SetItemPosition32 macro.LVM_SETITEMPOSITION32
wParam = (WPARAM) (int) iItem;
lParam = (LPARAM) (LPPOINT) lpptNewPos;
ParametersiItem

Index of the list view item to set the position of.
lpptNewPos

Pointer to a POINT structure that contains the new position of the item, in list view
coordinates.

Return ValuesNo return value.

If you send this message by using the ListView_SetItemPosition32 macro, it has no return
value.See AlsoListView_SetItemPosition32, LVM_SETITEMPOSITION, POINT

LVM_SETITEMSTATE
The LVM_SETITEMSTATE message changes the state of an item in a list view control. You can
explicitly send this message or by using the ListView_SetItemState macro.LVM_SETITEMSTATE
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (LV_ITEM FAR *) pitem;
Parametersi

Index of the list view item.
pitem

Pointer to an LV_ITEM structure. The stateMask member specifies which state bits to
change, and the state member contains the new values for those bits. The other members
are ignored.

Return ValuesIf you send this message explicitly, it returns TRUE if successful or FALSE otherwise.

If you send this message implicitly by using the ListView_SetItemState macro, there is no return
value.See AlsoListView_SetItemState, LV_ITEM

LVM_SETITEMTEXT
The LVM_SETITEMTEXT message changes the text of a list view item or subitem. You can send
this message explicitly or by using the ListView_SetItemText macro.LVM_SETITEMTEXT
wParam = (WPARAM) (int) i;
lParam = (LPARAM) (LV_ITEM FAR *) pitem;
Parametersi

Index of the list view item.
pitem

Pointer to an LV_ITEM structure. The iSubItem member is the index of the subitem, or it can
be zero to set the item label. The pszText member is the pointer to a null-terminated string
containing the new text; it can also be NULL.

Return ValuesIf you send this message explicitly, it returns TRUE if successful or FALSE otherwise.

If you send this message implicitly by using the ListView_SetItemText macro, there is no return
value.See AlsoListView_SetItemText, LV_ITEM

LVM_SETTEXTBKCOLOR
The LVM_SETTEXTBKCOLOR message sets the background color of text in a list view control.
You can send this message explicitly or by using the ListView_SetTextBkColor macro.LVM_SETTEXTBKCOLOR
wParam = 0;
lParam = (LPARAM) (COLORREF) clrText;
ParametersclrText

New text color.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_SetTextBkColor

LVM_SETTEXTCOLOR
The LVM_SETTEXTCOLOR message sets the text color of a list view control. You can send this
message explicitly or by using the ListView_SetTextColor macro.LVM_SETTEXTCOLOR
wParam = 0;
lParam = (LPARAM) (COLORREF) clrText;
ParametersclrText

New text color.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_SetTextColor

LVM_SORTITEMS
The LVM_SORTITEMS message uses an application-defined comparison function to sort the
items of a list view control. The index of each item changes to reflect the new sequence. You can
send this message explicitly or by using the ListView_SortItems macro.LVM_SORTITEMS
wParam = (WPARAM) (LPARAM) lParamSort;
lParam = (LPARAM) (PFNLVCOMPARE) pfnCompare;
ParameterslParamSort

Application-defined value that is passed to the comparison function.
pfnCompare

Pointer to the application-defined comparison function. The comparison function is called
during the sort operation each time the relative order of two list items needs to be compared.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe comparison function has the following form:int CALLBACK CompareFunc(LPARAM lParam1, LPARAM lParam2,
LPARAM lParamSort);The lParam1 parameter is the 32-bit value associated with the first item being compared; and the

lParam2 parameter is the value associated with the second item. These are the values that were
specified in the lParam member of the items' LV_ITEM structure when they were inserted into the
list. The lParamSort parameter is the same value passed to the LVM_SORTITEMS message.

The comparison function must return a negative value if the first item should precede the second,
a positive value if the first item should follow the second, or zero if the two items are equivalent.See AlsoListView_SortItems, LV_ITEM

LVM_UPDATE
The LVM_UPDATE message updates a list view item. If the list view control has the
LVS_AUTOARRANGE style, this macro causes the list view control to be arranged. You can send
this message explicitly or by using the ListView_Update macro.LVM_UPDATE
wParam = (WPARAM) iItem;
lParam = 0;
ParametersiItem

Index of the item to update.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoListView_Update

LVN_BEGINDRAG
The LVN_BEGINDRAG notification message notifies a list view control's parent window that a
drag-and-drop operation involving the left mouse button is being initiated. This notification
message is sent in the form of a WM_NOTIFY message.LVN_BEGINDRAG
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member identifies the item being dragged,
and the other members are zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_BEGINLABELEDIT
The LVN_BEGINLABELEDIT notification message notifies a list view control's parent window
about the start of label editing for an item. This notification message is sent in the form of a
WM_NOTIFY message.LVN_BEGINLABELEDIT
pdi = (LV_DISPINFO FAR *) lParam;
Parameterspdi

Pointer to an LV_DISPINFO structure. The item member of this structure is an LV_ITEM
structure whose iItem member identifies the item being edited.

Return ValuesTo allow the user to edit the label, return FALSE.

To prevent the user from editing the label, return TRUE.RemarksWhen the user begins editing an item label, the parent window of the list view control receives an
LVN_BEGINLABELEDIT notification message. When the user cancels or completes the editing,
the parent window receives an LVN_ENDLABELEDIT notification message.See AlsoLV_DISPINFO, LV_ITEM, LVN_ENDLABELEDIT, WM_NOTIFY

LVN_BEGINRDRAG
The LVN_BEGINRDRAG notification message notifies a list view control's parent window that a
drag-and-drop operation involving the right mouse button is being initiated. This notification
message is sent in the form of a WM_NOTIFY message.LVN_BEGINRDRAG
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member identifies the item being dragged,
and the other members are zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_COLUMNCLICK
The LVN_COLUMNCLICK notification message notifies a list view control's parent window that a
column was clicked. This notification message is sent in the form of a WM_NOTIFY message.LVN_COLUMNCLICK
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member is - 1, and the iSubItem member
identifies the column. All other members are zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_DELETEALLITEMS
The LVN_DELETEALLITEMS notification message notifies a list view control's parent window that
all items in the control were deleted. This notification message is sent in the form of a
WM_NOTIFY message.LVN_DELETEALLITEMS
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member is - 1, and the other members are
zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_DELETEITEM
The LVN_DELETEITEM notification message notifies a list view control's parent window that an
item was deleted. This notification message is sent in the form of a WM_NOTIFY message.LVN_DELETEITEM
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member identifies the deleted item, and the
other members are zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_ENDLABELEDIT
The LVN_ENDLABELEDIT notification message notifies a list view control's parent window about
the end of label editing for an item. This notification message is sent in the form of a WM_NOTIFY
message.LVN_ENDLABELEDIT
pdi = (LV_DISPINFO FAR *) lParam;
Parameterspdi

Pointer to an LV_DISPINFO structure. The item member of this structure is an LV_ITEM
structure whose iItem member identifies the item being edited.
If the user cancels editing, the pszText member of the LV_ITEM structure is NULL; otherwise,
pszText is a pointer to the edited text.

Return ValuesIf the pszText member of the LV_ITEM structure is non-NULL, return TRUE to set the item's label
to the edited text. Return FALSE to reject the edited text and revert to the original label.

If the pszText member of the LV_ITEM structure is NULL, the return value is ignored.RemarksWhen the user begins editing an item label, the parent window of the list view control receives an
LVN_BEGINLABELEDIT notification message. When the user cancels or completes the editing,
the parent window receives an LVN_ENDLABELEDIT notification message.

The pszText member of the LV_ITEM structure contained within the LV_DISPINFO structure
pointed to by pdi contains a valid value when the LVN_ENDLABELEDIT message is sent,
regardless of whether the LVIF_TEXT flag is set in the mask member of the LV_ITEM structure.
Note that NULL is a valid value for pszText, indicating the cancellation of the label editing
operation.See AlsoLVN_BEGINLABELEDIT, LV_DISPINFO, LV_ITEM, WM_NOTIFY

LVN_GETDISPINFO
The LVN_GETDISPINFO notification message is sent by a list view control to its parent window. It
is a request for the parent window to provide information needed to display or sort a list view item.
The LVN_GETDISPINFO notification message is sent in the form of a WM_NOTIFY message.LVN_GETDISPINFO
pnmv = (LV_DISPINFO FAR *) lParam;
Parameterspnmv

Pointer to an LV_DISPINFO structure. On input, the LV_ITEM structure contained in this
structure specifies the type of information required and identifies the item or subitem of
interest.
Use the LV_ITEM structure to return the requested information to the control. If your message
handler sets the LVIF_DI_SETITEM flag in the mask member of the LV_ITEM.structure, the
list view control stores the requested information, and will not ask for it again.

Return ValuesNo return value.RemarksA list view control sends the LVN_GETDISPINFO message for items for which the application
stores callback information. The information can be the text or icon information stored for a
callback item. It can also be item state information specified by the list view control's callback
mask.

For more information, see Callback Items and the Callback Mask.See AlsoLV_DISPINFO, LV_ITEM, LVN_SETDISPINFO, WM_NOTIFY

LVN_INSERTITEM
The LVN_INSERTITEM notification message notifies a list view control's parent window that a
new item was inserted. This notification message is sent in the form of a WM_NOTIFY message.LVN_INSERTITEM
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure. The iItem member identifies the new item, and the
other members are zero.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_ITEMCHANGED
The LVN_ITEMCHANGED notification message notifies a list view control's parent window that an
item has changed. This notification message is sent in the form of a WM_NOTIFY message.LVN_ITEMCHANGED
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure that identifies the item and specifies which of its
attributes have changed.

Return ValuesNo return value.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_ITEMCHANGING
The LVN_ITEMCHANGING notification message notifies a list view control's parent window that
an item is changing. This notification message is sent in the form of a WM_NOTIFY message.LVN_ITEMCHANGING
pnmv = (NM_LISTVIEW FAR *) lParam;
Parameterspnmv

Pointer to an NM_LISTVIEW structure that identifies the item and specifies which of its
attributes are changing.

Return ValuesReturns TRUE to prevent the change or FALSE to allow the change.See AlsoNM_LISTVIEW, WM_NOTIFY

LVN_KEYDOWN
The LVN_KEYDOWN notification message notifies a list view control's parent window that a key
has been pressed. This notification message is sent in the form of a WM_NOTIFY message.LVN_KEYDOWN
pnkd = (LV_KEYDOWN FAR *) lParam;
Parameterspnkd

Pointer to an LV_KEYDOWN structure.
Return ValuesNo return value.See AlsoLV_KEYDOWN, WM_NOTIFY

LVN_SETDISPINFO
The LVN_SETDISPINFO notification message notifies a list view control's parent window that it
must update the information it maintains for an item. This notification message is sent in the form
of a WM_NOTIFY message.LVN_SETDISPINFO
pnmv = (LV_DISPINFO FAR *) lParam;
Parameterspnmv

Pointer to an LV_DISPINFO structure that specifies information for the changed item.
Return ValuesNo return value.RemarksThe pszText member of the LV_ITEM structure contained within the LV_DISPINFO structure

pointed to by pnmv contains a valid value when the LVN_SETDISPINFO message is sent,
regardless of whether the LVIF_TEXT flag is set in the mask member of the LV_ITEM structure.See AlsoLV_DISPINFO, LV_ITEM, LVN_GETDISPINFO, WM_NOTIFY

NIM_ADD
Adds an icon to the taskbar status area.fAdded = Shell_NotifyIcon(NIM_ADD, pnid);
Parameterspnid

Address of an NOTIFYICONDATA structure that contains information about the icon to add.
Return ValuesReturns TRUE if successful or FALSE otherwise.

NIM_DELETE
Deletes an icon from the taskbar status area.fDeleted = Shell_NotifyIcon(NIM_DELETE, pnid);
Parameterspnid

Address of an NOTIFYICONDATA structure that contains information about the icon to
delete.

Return ValuesReturns TRUE if successful or FALSE otherwise.

NIM_MODIFY
Changes the icon, tooltip text, or notification message identifier for an icon in the taskbar status
area.fModified = Shell_NotifyIcon(NIM_MODIFY, pnid);
Parameterspnid

Address of an NOTIFYICONDATA structure that contains the information used to change the
icon, tooltip text, or notification message identifier for the icon.

Return ValuesReturns TRUE if successful or FALSE otherwise.

NM_CLICK
The NM_CLICK notification message notifies the parent window of a control that the user has
clicked the left mouse button within the control. NM_CLICK is sent in the form of a WM_NOTIFY
message.NM_CLICK
pnmh = (NMHDR FAR *) lParam;

NM_DBLCLK
The NM_DBLCLK notification message notifies the parent window of a control that the user has
double-clicked the left mouse button within the control. NM_DBLCLK is sent in the form of a
WM_NOTIFY message.NM_DBLCLK
pnmh = (NMHDR FAR *) lParam;

NM_KILLFOCUS
The NM_KILLFOCUS notification message notifies the parent window of a control that the control
has lost the input focus. NM_KILLFOCUS is sent in the form of a WM_NOTIFY message.NM_KILLFOCUS
pnmh = (NMHDR FAR *) lParam;

NM_OUTOFMEMORY
The NM_OUTOFMEMORY notification message notifies the parent window of a control that the
control could not complete an operation because there was not enough memory available.
NM_OUTOFMEMORY is sent in the form of a WM_NOTIFY message.NM_OUTOFMEMORY
pnmh = (NMHDR FAR *) lParam;

NM_RCLICK
The NM_RCLICK notification message notifies the parent window of a control that the user has
clicked the right mouse button within the control. NM_RCLICK is sent in the form of a
WM_NOTIFY message.NM_RCLICK
pnmh = (NMHDR FAR *) lParam;

NM_RDBLCLK
The NM_RDBLCLK notification message notifies the parent window of a control that the user has
double-clicked the right mouse button within the control. NM_RDBLCLK is sent in the form of a
WM_NOTIFY message.NM_RDBLCLK
pnmh = (NMHDR FAR *) lParam;

NM_RETURN
The NM_RETURN notification message notifies the parent window of a control that the control
has the input focus and that the user has pressed the ENTER key. NM_RETURN is sent in the
form of a WM_NOTIFY message.NM_RETURN
pnmh = (NMHDR FAR *) lParam;

NM_SETFOCUS
The NM_SETFOCUS notification message notifies the parent window of a control that the control
has received the input focus. NM_SETFOCUS is sent in the form of a WM_NOTIFY message.NM_SETFOCUS
pnmh = (NMHDR FAR *) lParam;

PBM_DELTAPOS
The PBM_DELTAPOS message advances the current position of a progress bar by a specified
increment and redraws the bar to reflect the new position.PBM_DELTAPOS
wParam = (WPARAM) nIncrement
lParam = 0;
ParametersnIncrement

Amount to advance the position.
Return ValuesReturns the previous position.

PBM_SETPOS
The PBM_SETPOS message sets the current position for a progress bar and redraws the bar to
reflect the new position.PBM_SETPOS
wParam = (WPARAM) nNewPos;
lParam = 0;
ParametersnNewPos

New position.
Return ValuesReturns the previous position.

PBM_SETRANGE
The PBM_SETRANGE message sets the minimum and maximum values for a progress bar and
redraws the bar to reflect the new range.PBM_SETRANGE
wParam = 0;
lParam = MAKELPARAM(nMinRange, nMaxRange);
ParametersnMinRange

Minimum range value. By default, the minimum value is zero.
nMaxRange

Maximum range value. By default, the maximum value is 100.
Return ValuesReturns the previous range values if successful, or zero otherwise. The low-order word specifies

the previous minimum value, and the high-order word specifies the previous maximum value.

PBM_SETSTEP
The PBM_SETSTEP message specifies the step increment for a progress bar. The step
increment is the amount by which the progress bar increases its current position whenever it
receives a PBM_STEPIT message. By default, the step increment is set to 10.PBM_SETSTEP
wParam = (WPARAM) nStepInc;
lParam = 0;
ParametersnStepInc

New step increment.
Return ValuesReturns the previous step increment.See AlsoPBM_STEPIT

PBM_STEPIT
The PBM_STEPIT message advances the current position for a progress bar by the step
increment and redraws the bar to reflect the new position. An application sets the step increment
by sending the PBM_SETSTEP message.PBM_STEPIT
wParam = 0;
lParam = 0;
Return ValuesReturns the previous position.RemarksWhen the position exceeds the maximum range value, this message resets the current position so

that the progress indicator starts over again from the beginning.See AlsoPBM_SETSTEP

PBT_APMBATTERYLOW
The PBT_APMBATTERYLOW message is sent to notify applications that battery power is low. A
window receives this message through the WM_POWERBROADCAST message.PBT_APMBATTERYLOW
dwData = (DWORD) lParam;
ParametersdwData

Reserved, must be zero.
Return ValuesNo return value.RemarksThis message is broadcast when a system's APM BIOS signals an APM battery low notification.

Because some APM BIOS implementations do not provide battery low notifications, this message
may never be sent on some machines.See AlsoWM_POWERBROADCAST

PBT_APMOEMEVENT
The PBT_APMOEMEVENT message is sent when an APM BIOS signals an APM OEM event. A
window receives this message through the WM_POWERBROADCAST message.PBT_APMOEMEVENT
dwEventCode = (DWORD) lParam;
ParametersdwEventCode

OEM-defined event code that was signaled by the system's APM BIOS. OEM event codes are
in the range 0200h - 02FFh.

Return ValuesNo return value.RemarksBecause not all APM BIOS implementations provide OEM event notifications, this message may
never be sent on some machines.See AlsoWM_POWERBROADCAST

PBT_APMPOWERSTATUSCHANGE
The PBT_APMPOWERSTATUSCHANGE message is sent when a change in the power status of
the computer is detected, such as a switch from battery power to A/C or a drop in remaining
battery power below a threshold. A window receives this message through the
WM_POWERBROADCAST message.dwData = (DWORD) lParam;
ParametersdwData

Reserved; must be 0.
Return ValuesNo return value.RemarksAn application should process this message by calling the GetSystemPowerStatus function to

retrieve the current power status of the computer. In particular, the application should check the
ACLineStatus, BatteryFlag, BatteryLifeTime, and BatteryLifePercent members of the
SYSTEM_POWER_STATUS structure for any changes. This message can occur when the
battery life time drops to less than 5 minutes, or when the percentage of battery life drops below
10 percent.See AlsoGetSystemPowerStatus, SYSTEM_POWER_STATUS, WM_POWERBROADCAST

PBT_APMQUERYSUSPEND
The PBT_APMQUERYSUSPEND message is sent to request permission to suspend the
computer. An application that grants permission should carry out preparations for the suspension
before returning. A window receives this message through the WM_POWERBROADCAST
message.Flags = (DWORD) lParam;
ParametersFlags

Action flags. If bit 0 is 1, the application can prompt the user for directions on how to prepare
for the suspension; otherwise, the application must prepare without user interaction. All other
bit values are reserved.

Return ValuesReturn TRUE to grant the request to suspend. To deny the request, return
BROADCAST_QUERY_DENY.RemarksAn application should process this message by first determining whether permission to suspend
can be granted. It must not grant permission if doing so would cause a loss of data. The
application can prompt the user for directions on how to prepare for suspension only if bit 0 in the
Flags parameter is set.See AlsoWM_POWERBROADCAST

PBT_APMQUERYSUSPENDFAILED
The PBT_APMQUERYSUSPENDFAILED message is sent as a notification that permission to
suspend the computer was denied. This message is sent if any application or driver returned
BROADCAST_QUERY_DENY to a previous PBT_APMQUERYSUSPEND message. A window
receives this message through the WM_POWERBROADCAST message.dwData = (DWORD) lParam;
ParametersdwData

Reserved; must be zero.
Return ValuesNo return value.RemarksApplications typically respond to this message by resuming normal operation.See AlsoPBT_APMQUERYSUSPEND, WM_POWERBROADCAST

PBT_APMRESUMECRITICAL
The PBT_APMRESUMECRITICAL message is sent as a notification that the system has resumed
operation after a critical suspension caused by a failing battery. A driver receives this message
through the WM_POWERBROADCAST message.dwData = (DWORD) lParam;
ParametersdwData

Reserved; must be 0.
Return ValuesNo return value.RemarksBecause a critical suspension occurs without prior notification, resources and data previously

available to a driver may not be present when the driver receives this message. The driver should
attempt to restore its state to the best of its ability. While in a critical suspension, the system
maintains the state of the DRAM and local hard disks, but may not maintain net connections. A
driver may have to take action with respect to files that were open on the network prior to the
critical suspension.

This message is not sent to applications.See AlsoWM_POWERBROADCAST

PBT_APMRESUMESUSPEND
The PBT_APMRESUMESUSPEND message is sent as a notification that the system has
resumed opration after being suspended. A window receives this message through the
WM_POWERBROADCAST message.dwData = (DWORD) lParam;
ParametersdwData

Reserved; must be 0.
Return ValuesNo return value.RemarksApplications may receive this message at any time without a preceding PBT_APMSUSPEND

message.See AlsoPBT_APMSUSPEND, WM_POWERBROADCAST

PBT_APMSUSPEND
The PBT_APMSUSPEND is sent immediately before the computer is suspended. This message is
typically sent when all applications and installable drivers have returned TRUE to a previous
PBT_APMQUERYSUSPEND message. A window receives this message through the
WM_POWERBROADCAST message.dwData = (DWORD) lParam;
ParametersdwData

Reserved; must be 0.
Return ValuesNo return value.RemarksAn application should process this message by completing all tasks necessary to save data. This

message may also be sent, without a prior PBT_APMQUERYSUSPEND message, if an
application or device driver uses the SetSystemPowerState function to force suspension.See AlsoPBT_APMQUERYSUSPEND, SetSystemPowerState, WM_POWERBROADCAST

PSM_ADDPAGE
The PSM_ADDPAGE message adds a new page to the end of an existing property sheet. You
can send this message explicitly or by using the PropSheet_AddPage macro.PSM_ADDPAGE
wParam = 0;
lParam = (LPARAM) (HPROPSHEETPAGE) hpage);
Parametershpage

Handle to the page to add. The page must have been created by a previous call to the
CreatePropertySheetPage function.

Return ValuesNo return value.RemarksThe property sheet is not resized to fit the new page. The new page should be no larger than the
largest page currently in the property sheet.See AlsoCreatePropertySheetPage, PropSheet_AddPage

PSM_APPLY
The PSM_APPLY message simulates the choice of the Apply Now button, indicating that one or
more pages have changed and the changes need to be validated and recorded. The property
sheet sends the PSN_KILLACTIVE notification message to the current page. If the current page
returns FALSE, the property sheet sends the PSN_APPLY notification message to all pages. You
can send the PSM_APPLY message explicitly or by using the PropSheet_Apply macro.PSM_APPLY
wParam = 0;
lParam = 0;
Return ValuesReturns TRUE if all pages successfully applied the changes or FALSE otherwise.See AlsoPropSheet_Apply, PSN_APPLY, PSN_KILLACTIVE

PSM_CANCELTOCLOSE
The PSM_CANCELTOCLOSE message disables the Cancel button and changes the text of the
OK button to "Close." An application sends this message after applying a change that cannot be
canceled. You can send this message explicitly or by using the PropSheet_CancelToClose
macro.PSM_CANCELTOCLOSE
wParam = 0;
lParam = 0;
Return ValuesNo return value.See AlsoPropSheet_CancelToClose

PSM_CHANGED
The PSM_CHANGED message informs a property sheet that information in a page has changed.
The property sheet enables the Apply Now button. You can send this macro explicitly or by using
the PropSheet_Changed macro.PSM_CHANGED
wParam = (WPARAM) (HWND) hwndPage;
lParam = 0;
ParametershwndPage

Handle to the page that has changed.
Return ValuesNo return value.See AlsoPropSheet_Changed

PSM_GETCURRENTPAGEHWND
The PSM_GETCURRENTPAGEHWND message retrieves a handle to the window of the current
page of a property sheet. You can send the message explicitly or by using the
PropSheet_GetCurrentPageHwnd macro.PSM_GETCURRENTPAGEHWND
wParam = 0;
lParam = 0;
Return ValuesReturns a handle to the window of the current property sheet page.RemarksUse the PSM_GETCURRENTPAGEHWND message with modeless property sheets to determine

when to destroy the dialog box. When the user selects the OK or Cancel button,
PSM_GETCURRENTPAGEHWND returns NULL, and you can then use the DestroyWindow
function to destroy the dialog box.See AlsoDestroyWindow, PropertySheet, PropSheet_GetCurrentPageHwnd

PSM_GETTABCONTROL
The PSM_GETTABCONTROL message retrieves the handle to the tab control of a property
sheet. You can send this message explicitly or by using the PropSheet_GetTabControl macro.PSM_GETTABCONTROL
wParam = 0;
lParam = 0;
Return ValuesReturns the handle to the tab control.See AlsoPropSheet_GetTabControl

PSM_ISDIALOGMESSAGE
The PSM_ISDIALOGMESSAGE message passes a message to a property sheet dialog box and
indicates whether the dialog processed the message. You can send the
PSM_ISDIALOGMESSAGE message explicitly or by using the PropSheet_IsDialogMessage
macro.PSM_ISDIALOGMESSAGE
wParam = 0;
lParam = (LPARAM)pMsg;
ParameterspMsg

Pointer to a MSG structure that contains the message to be checked.
Return ValuesIf the message has been processed, the return value is TRUE.

If the message has not been processed, the return value is FALSE.RemarksYour message loop should use the PSM_ISDIALOGMESSAGE message with modeless property
sheets to pass messages to the property sheet dialog box.

If the return value indicates that the message was processed, it must not be passed to the
TranslateMessage or DispatchMessage function.See AlsoDispatchMessage, MSG, PropertySheet, PropSheet_IsDialogMessage, TranslateMessage

PSM_PRESSBUTTON
The PSM_PRESSBUTTON message simulates the choice of a property sheet button. You can
send this message explicitly or by using the PropSheet_PressButton macro.PSM_PRESSBUTTON
wParam = (WPARAM) (int) iButton;
lParam = 0;
ParametersiButton

Index of the button to choose. This parameter can be one of the following values:
Value Meaning
PSBTN_APPLYNOW Chooses the Apply Now button.
PSBTN_BACK Chooses the Back button.
PSBTN_CANCEL Chooses the Cancel button.
PSBTN_FINISH Chooses the Finish button.
PSBTN_HELP Chooses the Help button.
PSBTN_NEXT Chooses the Next button.
PSBTN_OK Chooses the OK button.

Return ValuesNo return value.See AlsoPropSheet_PressButton

PSM_QUERYSIBLINGS
The PSM_QUERYSIBLINGS message forwards the message to each page in the property sheet.
If a page returns a nonzero value, the property sheet does not send the message to subsequent
pages. You can send the PSM_QUERYSIBLINGS message explicitly or by using the
PropSheet_QuerySiblings macro.PSM_QUERYSIBLINGS
wParam = (WPARAM) param1;
lParam = (LPARAM) param2;
Parametersparam1

First application-defined parameter.
param2

Second application-defined parameter.
Return ValuesReturns the nonzero value from a page in the property sheet, or zero if no page returns a nonzero

value.See AlsoPropSheet_QuerySiblings

PSM_REBOOTSYSTEM
The PSM_REBOOTSYSTEM message indicates that the system needs to be restarted for the
changes to take effect. An application should send this message only in response to the
PSN_APPLY or PSN_KILLACTIVE notification message. You can send the
PSM_REBOOTSYSTEM message explicitly or by using the PropSheet_RebootSystem macro.PSM_REBOOTSYSTEM
wParam = 0;
lParam = 0;
Return ValuesNo return value.RemarksThis message causes the PropertySheet function to return the ID_PSREBOOTSYSTEM value,

but only if the user chooses the OK button to close the property sheet. It is the application's
responsibility to reboot the system, which can be done by using the ExitWindowsEx function.

This message supersedes all PSM_RESTARTWINDOWS messages that precede or follow it.See AlsoExitWindowsEx, PropertySheet, PropSheet_RebootSystem, PSN_APPLY, PSN_KILLACTIVE,
PSM_RESTARTWINDOWS

PSM_REMOVEPAGE
The PSM_REMOVEPAGE message removes a page from a property sheet. You can send this
message explicitly or by using the PropSheet_RemovePage macro.PSM_REMOVEPAGE
wParam = (WPARAM) (int) index;
lParam = (LPARAM) (HPROPSHEETPAGE) hpage);
Parametershpage and index

Handle to the page to remove, and the zero-based index of the page to remove. An
application can specify the handle or the index, or both. If both are specified, hpage takes
precedence.

Return ValuesNo return value.See AlsoPropSheet_RemovePage

PSM_RESTARTWINDOWS
The PSM_RESTARTWINDOWS message indicates that Windows needs to be restarted for the
changes to take effect. An application should send this message only in response to the
PSN_APPLY or PSN_KILLACTIVE notification message. You can send the
PSM_RESTARTWINDOWS message explicitly or by using the PropSheet_RestartWindows
macro.PSM_RESTARTWINDOWS
wParam = 0;
lParam = 0;
Return ValuesNo return value.RemarksThis message causes the PropertySheet function to return the ID_PSRESTARTWINDOWS

value, but only if the user chooses the OK button to close the property sheet. It is the application's
responsibility to restart Windows, which can be done by using the ExitWindowsEx function.See AlsoExitWindowsEx, PropertySheet, PropSheet_RestartWindows, PSN_APPLY,
PSN_KILLACTIVE

PSM_SETCURSEL
The PSM_SETCURSEL message activates the given page in a property sheet. You can send this
message explicitly or by using the PropSheet_SetCurSel macro.PSM_SETCURSEL
wParam = (WPARAM) (int) index;
lParam = (LPARAM) (HPROPSHEETPAGE) hpage;
Parametershpage

Handle to the page to activate. An application can specify the handle or the index, or both. If
both are specified, hpage takes precedence.

index
Zero-based index of the page to activate.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe window that is losing the activation receives the PSN_KILLACTIVE notification message, and
the window that is gaining the activation receives the PSN_SETACTIVE notification message.See AlsoPropSheet_SetCurSel, PSN_KILLACTIVE, PSN_SETACTIVE

PSM_SETCURSELID
The PSM_SETCURSELID message activates the given page in a property sheet based on the
resource identifier of the page. You can send this message explicitly or by using the
PropSheet_SetCurSelByID macro.PSM_SETCURSELID
wParam = 0;
lParam = (LPARAM) (int) id;
Parametersid

Resource identifier of the page to activate.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe window that is losing the activation receives the PSN_KILLACTIVE notification message, and

the window that is gaining the activation receives the PSN_SETACTIVE notification message.See AlsoPropSheet_SetCurSelByID, PSN_KILLACTIVE, PSN_SETACTIVE

PSM_SETFINISHTEXT
The PSM_SETFINISHTEXT message sets the text of the Finish button in a wizard property sheet,
shows and enables the button, and hides the Next and Back buttons. You can send this message
explicitly or by using the PropSheet_SetFinishText macro.PSM_SETFINISHTEXT
wParam = 0;
lParam = (LPARAM) (LPSTR) lpszText;
ParameterslpszText

Pointer to the new text for the Finish button.
Return ValuesNo return value.RemarksThis message causes the DM_SETDEFID message to be sent to the property sheet dialog box.

The wParam parameter specifies the identifier of the Finish button.See AlsoDM_SETDEFID, PropSheet_SetFinishText

PSM_SETTITLE
The PSM_SETTITLE message sets the title of a property sheet. You can send this message
explicitly or by using the PropSheet_SetTitle macro.PSM_SETTITLE
wParam = (WPARAM) (DWORD) dwStyle
lParam = (LPARAM) (LPCSTR) lpszText;
ParametersdwStyle

Flag that indicates whether to include the prefix "Properties for" with the specified title string. If
dwStyle is the PSH_PROPTITLE value, the prefix is included. Otherwise, the prefix is not
used.

lpszText
Pointer to a buffer that contains the title string. If the high-order word of this parameter is
NULL, the property sheet loads the string resource specified in the low-order word.

Return ValuesNo return value.See AlsoPropSheet_SetTitle

PSM_SETWIZBUTTONS
The PSM_SETWIZBUTTONS message enables or disables the Back, Next, and Finish buttons in
a wizard property sheet. You can send or post this message explicitly to a wizard property sheet,
or you can use the PropSheet_SetWizButtons macro to post the message.PSM_SETWIZBUTTONS
wParam = 0;
lParam = (LPARAM) (DWORD) dwFlags;
ParametersdwFlags

Specifies the buttons to display and enable. A wizard property sheet displays the Back button
and either the Next or Finish button. This parameter can include the PSWIZB_BACK flag and
one of the PSWIZB_NEXT, PSWIZB_FINISH, or PSWIZB_DISABLEDFINISH flags.

Value Meaning
PSWIZB_BACK Enables the Back button.
PSWIZB_NEXT Enables the Next button.
PSWIZB_FINISH Displays an enabled Finish button in

place of the Next button.
PSWIZB_DISABLEDFINISH Displays a disabled Finish button in

place of the Next button.
Return ValuesNo return value.RemarksIf you send the PSM_SETWIZBUTTONS message during your handling of the PSN_SETACTIVE

notification message, use the PostMessage function rather than the SendMessage function.
Otherwise, the system will not update the buttons properly. At any other time, you can use
SendMessage to send PSM_SETWIZBUTTONS.See AlsoPostMessage, PropSheet_SetWizButtons, SendMessage

PSM_UNCHANGED
The PSM_UNCHANGED message informs a property sheet that information in a page has
reverted to the previously saved state. The property sheet disables the Apply Now button if no
other pages have registered changes with the property sheet. You can send this message
explictly or by using the PropSheet_UnChanged macro.PSM_UNCHANGED
wParam = (WPARAM) (HWND) hwndPage;
lParam = 0;
ParametershwndPage

Handle to the page that has reverted to the previously saved state.
Return ValuesNo return value.See AlsoPropSheet_UnChanged

PSN_APPLY
The PSN_APPLY notification message indicates that the user chose the OK or Apply Now button
and wants all changes to take effect. This notification message is sent in the form of a
WM_NOTIFY message.PSN_APPLY
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle to the property sheet.
Return ValuesReturns the PSNRET_INVALID_NOCHANGEPAGE value to prevent the changes from taking

effect and to return the focus to the page, or the PSNRET_NOERROR value to accept the
changes and allow the property sheet to be destroyed.RemarksTo set the return value, the dialog box procedure for the page must use the SetWindowLong
function with the DWL_MSGRESULT value, and the dialog box procedure must return TRUE.

A page should not call the EndDialog function when processing this notification message.

The property sheet is destroyed if the user chooses the OK button and the application returns the
PSNRET_NOERROR value in response to this notification.

To receive this notification, a page must set the DWL_MSGRESULT value to FALSE in response
the PSN_KILLACTIVE notification message.

The PSHNOTIFY structure is supplied with the PSN_APPLY notification message. The lParam
member in this structure is TRUE if the user clicked the Ok or Cancel button, and is FALSE if the
user clicked the Close button.See AlsoEndDialog, NMHDR, PSN_KILLACTIVE, PSHNOTIFY, SetWindowLong, WM_NOTIFY

PSN_HELP
The PSN_HELP notification message notifies a page that the user has chosen the Help button.
This notification message is sent in the form of a WM_NOTIFY message.PSN_HELP
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle to the property sheet.
Return ValuesNo return value.RemarksAn application should display help information for the page.See AlsoNMHDR, WM_NOTIFY

PSN_KILLACTIVE
The PSN_KILLACTIVE notification message notifies a page that it is about to lose the activation
either because another page is being activated or the user has chosen the OK button. This
notification message is sent in the form of a WM_NOTIFY message.PSN_KILLACTIVE
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle to the property sheet.
Return ValuesReturns TRUE to prevent the page from losing the activation or FALSE to allow it.RemarksAn application should validate the information that the user has typed.

To set the return value, the dialog box procedure for the page must use the SetWindowLong
function with the DWL_MSGRESULT value, and the dialog box procedure must return TRUE.

If the dialog box procedure sets DWL_MSGRESULT to TRUE, it should display a message box to
explain the problem to the user.See AlsoSetWindowLong, NMHDR, WM_NOTIFY

PSN_QUERYCANCEL
The PSN_QUERYCANCEL notification message indicates that the user chose the Cancel button.
This notification message is sent in the form of a WM_NOTIFY message.PSN_QUERYCANCEL
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle of the property sheet.
Return ValuesReturns TRUE to prevent the cancel operation or FALSE to allow it.RemarksA property sheet page can use this notification message to ask the user to verify the cancel

operation.See AlsoNMHDR, WM_NOTIFY

PSN_RESET
The PSN_RESET notification message notifies a page that the user has chosen the Cancel
button and the property sheet is about to be destroyed. All changes made since the user last
chose the Apply Now button are canceled. This notification message is sent in the form of a
WM_NOTIFY message.PSN_RESET
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle of the property sheet.
Return ValuesNo return value.RemarksAn application can use this notification message as an opportunity to perform cleanup operations.

A page should not call the EndDialog function when processing this notification message.

The PSHNOTIFY structure is supplied with the PSN_RESET notification message. The lParam
member in this structure is TRUE if the user clicked the Ok or Cancel button, and is FALSE if the
user clicked the Close button.See AlsoEndDialog, NMHDR, PSHNOTIFY, WM_NOTIFY

PSN_SETACTIVE
The PSN_SETACTIVE notification message notifies a page that it is about to be activated. This
notification message is sent in the form of a WM_NOTIFY message.PSN_SETACTIVE
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to the property sheet.
Return ValuesReturns zero to accept the activation or - 1 to activate the next or previous page (depending on

whether the user chose the Next or Back button). To set the activation to a particular page, return
the resource identifier of the page.RemarksThe PSN_SETACTIVE notification message is sent before the page is visible. An application can
use this notification to initialize data in the page.

To set the return value, the dialog box procedure for the page must use the SetWindowLong
function with the DWL_MSGRESULT value, and the dialog box procedure must return TRUE.See AlsoNMHDR, SetWindowLong, WM_NOTIFY

PSN_WIZBACK
The PSN_WIZBACK notification message notifies a page that the user has chosen the Back
button in a wizard property sheet. This notification message is sent in the form of a WM_NOTIFY
message.PSN_WIZBACK
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle of the property sheet.
Return ValuesReturns - 1 to prevent the property sheet from advancing to the previous page.See AlsoNMHDR, WM_NOTIFY

PSN_WIZFINISH
The PSN_WIZFINISH notification message notifies a page that the user has chosen the Finish
button in a wizard property sheet. This notification message is sent in the form of a WM_NOTIFY
message.PSN_WIZFINISH
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle to the property sheet.
Return ValuesReturns a nonzero value to prevent the property sheet from being destroyed.See AlsoNMHDR, WM_NOTIFY

PSN_WIZNEXT
The PSN_WIZNEXT notification message notifies a page that the user has chosen the Next
button in a wizard property sheet. This notification message is sent in the form of a WM_NOTIFY
message.PSN_WIZNEXT
lpnmhdr = (NMHDR FAR *) lParam;
Parameterslpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle to the property sheet.
Return ValuesReturns - 1 to prevent the property sheet from advancing to the next page.See AlsoNMHDR, WM_NOTIFY

SB_GETBORDERS
The SB_GETBORDERS message retrieves the current widths of the horizontal and vertical
borders of a status window.SB_GETBORDERS
wParam = 0;
lParam = (LPARAM) (LPINT) aBorders;
ParametersaBorders

Pointer to an integer array that has three elements. The first element receives the width of the
horizontal border, the second receives the width of the vertical border, and the third receives
the width of the border between rectangles.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe borders determine the spacing between the outside edge of the window and the rectangles
within the window that contain text. The borders also determine the spacing between rectangles.

SB_GETPARTS
The SB_GETPARTS message retrieves a count of the parts in a status window. The message
also retrieves the coordinate of the right edge of the specified number of parts.SB_GETPARTS
wParam = (WPARAM) nParts;
lParam = (LPARAM) (LPINT) aRightCoord;
ParametersnParts

Number of parts for which to retrieve coordinates. If this parameter is greater than the number
of parts in the window, the message retrieves coordinates for existing parts only.

aRightCoord
Pointer to an integer array that has the same number of elements as parts specified by
nParts. Each element in the array receives the client coordinate of the right edge of the
corresponding part. If an element is set to - 1, the position of the right edge for that part
extends to the right edge of the window. To retrieve the current number of parts, set this
parameter to zero.

Return ValuesReturns the number of parts in the window if successful, or zero otherwise.

SB_GETRECT
The SB_GETRECT message retrieves the bounding rectangle of a part in a status window.SB_GETRECT
wParam = (WPARAM) iPart;
lParam = (LPARAM) (LPRECT) lprc;
ParametersiPart

Zero-based index of the part whose bounding rectangle is to be retrieved.
lprc

Pointer to a RECT structure that receives the bounding rectangle.
Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.See AlsoRECT

SB_GETTEXT
The SB_GETTEXT message retrieves the text from the specified part of a status window.SB_GETTEXT
wParam = (WPARAM) iPart;
lParam = (LPARAM) (LPSTR) szText;
ParametersiPart

Zero-based index of the part from which to retrieve text.
szText

Pointer to the buffer that receives the text. This parameter is a null-terminated string.
Return ValuesReturns a 32-bit value that consists of two 16-bit values. The low word specifies the length, in

characters, of the text. The high word specifies the type of operation used to draw the text. The
type can be one of the following values:

Value Meaning

0 The text is drawn with a border to appear lower
than the plane of the window.

SBT_NOBORDERSThe text is drawn without borders.
SBT_POPOUT The text is drawn with a border to appear higher

than the plane of window.
SBT_RTLREADINGDisplays text using right-to-left reading order on

Hebrew or Arabic systems.

If the text has the SBT_OWNERDRAW drawing type, this message returns the 32-bit value
associated with the text instead of the length and operation type.

SB_GETTEXTLENGTH
The SB_GETTEXTLENGTH message retrieves the length, in characters, of the text from the
specified part of a status window.SB_GETTEXTLENGTH
wParam = (WPARAM) iPart;
lParam = 0;
ParametersiPart

Zero-based index of the part from which to retrieve text.
Return ValuesReturns a 32-bit value that consists of two 16-bit values. The low word specifies the length, in

characters, of the text. The high word specifies the type of operation used to draw the text. The
type can be one of the following values:

Value Meaning

0 The text is drawn with a border to appear
lower than the plane of the window.

SBT_NOBORDERS The text is drawn without borders.
SBT_OWNERDRAW The text is drawn by the parent window.
SBT_POPOUT The text is drawn with a border to appear

higher than the plane of the window.
SBT_RTLREADING Displays text using right-to-left reading

order on Hebrew or Arabic systems.

SB_SETMINHEIGHT
The SB_SETMINHEIGHT message sets the minimum height of a status window's drawing area.SB_SETMINHEIGHT
wParam = (WPARAM) minHeight;
lParam = 0;
ParametersminHeight

Minimum height, in pixels, of the window.
Return ValuesNo return value.RemarksThe minimum height is the sum of wParam and twice the width, in pixels, of the vertical border of

the status window. An application must send the WM_SIZE message to the status window to
redraw the window. The wParam and lParam parameters of the WM_SIZE message should be set
to zero.See AlsoWM_SIZE

SB_SETPARTS
The SB_SETPARTS message sets the number of parts in a status window and the coordinate of
the right edge of each part.SB_SETPARTS
wParam = (WPARAM) nParts;
lParam = (LPARAM) (LPINT) aWidths;
ParametersnParts

Number of parts to set. The number of parts cannot be greater than 255.
aWidths

Pointer to an integer array that has the same number of elements as parts specified by
nParts. Each element in the array specifies the position, in client coordinates, of the right edge
of the corresponding part. If an element is - 1, the position of the right edge for that part
extends to the right edge of the window.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.

SB_SETTEXT
The SB_SETTEXT message sets the text in the specified part of a status window.SB_SETTEXT
wParam = (WPARAM) iPart | uType;
lParam = (LPARAM) (LPSTR) szText;
ParametersiPart

Zero-based index of the part to set. If this value is 255, the status window is assumed to be a
simple window having only one part.

uType
Type of drawing operation. This parameter can be one of the following values:

Value Meaning
0 The text is drawn with a border to

appear lower than the plane of the
window.

SBT_NOBORDERS The text is drawn without borders.
SBT_OWNERDRAW The text is drawn by the parent window.
SBT_POPOUT The text is drawn with a border to

appear higher than the plane of the
window.

SBT_RTLREADING Displays text using right-to-left reading
order on Hebrew or Arabic systems.

szText
Pointer to a null-terminated string that specifies the text to set. If uType is
SBT_OWNERDRAW, this parameter represents 32 bits of data. The parent window must
interpret the data and draw the text when it receives the WM_DRAWITEM message.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe message invalidates the portion of the window that has changed, causing it to display the
new text when the window next receives the WM_PAINT message.See AlsoWM_DRAWITEM, WM_PAINT

SB_SIMPLE
The SB_SIMPLE message specifies whether a status window displays simple text or displays all
window parts set by a previous SB_SETPARTS message.SB_SIMPLE
wParam = (WPARAM) (BOOL) fSimple;
lParam = 0;
ParametersfSimple

Display type flag. If this parameter is TRUE, the window displays simple text. If it is FALSE, it
displays multiple parts.

Return ValuesReturns FALSE if an error occurs.RemarksIf the status window is being changed from nonsimple to simple, or vice versa, the window is
immediately redrawn.See AlsoSB_SETPARTS

SBM_ENABLE_ARROWS
An application sends the SBM_ENABLE_ARROWS message to enable or disable one or both
arrows of a scroll bar control.SBM_ENABLE_ARROWS
wParam = (WPARAM) fuArrowFlags; // scroll-bar arrow flags
lParam = 0; // not used; must be zero
ParametersfuArrowFlags

Specifies whether the scroll bar arrows are enabled or disabled and indicates which arrows
are enabled or disabled. This parameter can be one of the following values:

Value Meaning
ESB_DISABLE_BOTH Disables both arrows on a scroll bar.
ESB_DISABLE_DOWN Disables the down arrow on a vertical scroll

bar.
ESB_DISABLE_LTUP Disables the left arrow on a horizontal scroll

bar or the up arrow on a vertical scroll bar.
ESB_DISABLE_LEFT Disables the left arrow on a horizontal scroll

bar.
ESB_DISABLE_RTDN Disables the right arrow on a horizontal

scroll bar or the down arrow on a vertical
scroll bar.

ESB_DISABLE_UP Disables the up arrow on a vertical scroll
bar.

ESB_ENABLE_BOTH Enables both arrows on a scroll bar.
Return ValuesIf the message succeeds, the return value is TRUE; otherwise, it is FALSE.

SBM_GETPOS
An application sends the SBM_GETPOS message to retrieve the current position of the scroll box
of a scroll bar control. The current position is a relative value that depends on the current scrolling
range. For example, if the scrolling range is 0 through 100 and the scroll box is in the middle of
the bar, the current position is 50.SBM_GETPOS
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the message succeeds, the return value is the current position of the scroll box in the scroll bar.See AlsoSBM_GETRANGE, SBM_SETPOS, SBM_SETRANGE, SBM_SETRANGEREDRAW

SBM_GETRANGE
An application sends the SBM_GETRANGE message to a scroll bar control to retrieve the
minimum and maximum position values for the control.SBM_GETRANGE
wParam = (WPARAM) (LPINT) lpnMinPos; // minimum position
lParam = (LPARAM) (LPINT) lpnMaxPos; // maximum position
ParameterslpnMinPos

Points to a value that receives the minimum scrolling position.
lpnMaxPos

Points to a value that receives the maximum scrolling position.
Return ValuesThis message does not return a value.See AlsoSBM_GETPOS, SBM_SETPOS, SBM_SETRANGE, SBM_SETRANGEREDRAW

SBM_GETSCROLLINFO
An application sends the SBM_GETSCROLLINFO message to retrieve the parameters of a scroll
bar.SBM_GETSCROLLINFO
wParam = 0; // not used, must be zero
lParam = (LPARAM) (LPSCROLLINFO) lpsi; // scroll bar parameters
Parameterslpsi

Value of lParam. Points to a SCROLLINFO structure whose fMask member, when the
message is sent, specifies the scroll bar parameters to retrieve. Before returning, the
message copies the specified parameters to the appropriate members of the structure.
The fMask member can be a combination of the following values:

Value Meaning
SIF_ALL Combination of SIF_PAGE, SIF_POS, and

SIF_RANGE.
SIF_PAGE Copies the scroll page to the nPage member of the

SCROLLINFO structure pointed to by lpsi.
SIF_POS Copies the scroll position to the nPos member of the

SCROLLINFO structure pointed to by lpsi.
SIF_RANGE Copies the scroll range to the nMin and nMax

members of the SCROLLINFO structure pointed to
by lpsi.

Return ValuesIf the message retrieved any values, the return value is TRUE; otherwise, it is FALSE.See AlsoSBM_SETSCROLLINFO, SCROLLINFO

SBM_SETPOS
An application sends the SBM_SETPOS message to a scroll bar control to set the position of the
scroll box (thumb) and, if requested, redraw the scroll bar to reflect the new position of the scroll
box.SBM_SETPOS
wParam = (WPARAM) nPos; // new position of scroll box
lParam = (LPARAM) (BOOL) fRedraw; // redraw flag
ParametersnPos

Specifies the new position of the scroll box. It must be within the scrolling range.
fRedraw

Specifies whether the scroll bar should be redrawn to reflect the new scroll box position. If this
parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not redrawn.

Return ValuesIf the position of the scroll box changed, the return value is the previous position of the scroll box;
otherwise, it is zero.RemarksIf the scroll bar control is redrawn by a subsequent call to another function, setting the fRedraw
parameter to FALSE is useful.See AlsoSBM_GETPOS, SBM_GETRANGE, SBM_SETRANGE, SBM_SETRANGEREDRAW

SBM_SETRANGE
An application sends the SBM_SETRANGE message to a scroll bar control to set the minimum
and maximum position values for the control.SBM_SETRANGE
wParam = (WPARAM) nMinPos; // minimum scrolling position
lParam = (LPARAM) nMaxPos; // maximum scrolling position
ParametersnMinPos

Specifies the minimum scrolling position.
fMaxPos

Specifies the maximum scrolling position.
Return ValuesIf the position of the scroll box changed, the return value is the previous position of the scroll box;

otherwise, it is zero.RemarksThe default minimum and maximum position values are zero. The difference between the values
specified by the nMinPos and nMaxPos parameters must not be greater than the value of
MAXLONG.

If the minimum and maximum position values are equal, the scroll bar control is hidden and, in
effect, disabled.See AlsoSBM_GETPOS, SBM_GETRANGE, SBM_SETPOS, SBM_SETRANGEREDRAW

SBM_SETRANGEREDRAW
An application sends the SBM_SETRANGEREDRAW message to a scroll bar control to set the
minimum and maximum position values and to redraw the control.SBM_SETRANGEREDRAW
wParam = (WPARAM) nMinPos; // minimum scrolling position
lParam = (LPARAM) nMaxPos // maximum scrolling position
ParametersnMinPos

Specifies the minimum scrolling position.
fMaxPos

Specifies the maximum scrolling position.
Return ValuesIf the position of the scroll box changed, the return value is the previous position of the scroll box;

otherwise, it is zero.RemarksThe default minimum and maximum position values are zero. The difference between the values
specified by the nMinPos and nMaxPos parameters must not be greater than the value of
MAXLONG.

If the minimum and maximum position values are equal, the scroll bar control is hidden and, in
effect, disabled.See AlsoSBM_GETPOS, SBM_GETRANGE, SBM_SETPOS, SBM_SETRANGE

SBM_SETSCROLLINFO
An application sends the SBM_GETSCROLLINFO message to set the parameters of a scroll bar.SBM_SETSCROLLINFO
wParam = (WPARAM) fRedraw; // redraw flag
lParam = (LPARAM) (LPSCROLLINFO) lpsi; // scroll bar parameters
ParametersfRedraw

Value of wParam. Specifies whether the scroll bar is redrawn to reflect the new scroll box
position. If this parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is
not redrawn.

lpsi
Value of lParam. Points to a SCROLLINFO structure whose fMask member, when the
message is sent, specifies the scroll bar parameters to set.
The fMask member can be a combination of the following values:

Value Meaning
SIF_ALL Combination of SIF_PAGE, SIF_POS, and

SIF_RANGE.
SIF_PAGE Sets the scroll page to the value specified in the

nPage member of the SCROLLINFO structure
pointed to by lpsi.

SIF_POS Sets the scroll position to the value specified in the
nPos member of the SCROLLINFO structure pointed
to by lpsi.

SIF_RANGE Sets the scroll range to the value specified in the
nMin and nMax members of the SCROLLINFO
structure pointed to by lpsi.

Return ValuesThe return value is the current position of the scroll box.See AlsoSBM_GETSCROLLINFO, SCROLLINFO

SETRGBSTRING
The hook procedure of a Color dialog box can send the SETRGBSTRING registered message to
the dialog box to set the current color selection.MessageID = RegisterWindowMessage(SETRGBSTRING);
wParam = 0;
lParam = (COLORREF) rgbColor;
ParametersrgbColor

Specifies the RGB value of the color to select in the Color dialog box. You can use the RGB
macro to specify the red, green, and blue intensities of an RGB color value.

Return ValuesNo return value.RemarksIf rgbColor matches one of the basic colors or one of the 16 custom colors, the dialog box
procedure selects that color. The dialog box procedure also updates all the controls in the custom
color extension of the Color dialog box, if it is open.

If rgbColor does not match a basic or custom color, the dialog box procedure does not change the
current color selection, but it does update the custom color controls, if they are visible.

For example, the following sample code gets the SETRGBSTRING message identifier and then
sets the color selection to blue.UINT uiSetRGB;
uiSetRGB = RegisterWindowMessage(SETRGBSTRING);
SendMessage(hwndDlg, uiSetRGB, 0, (LPARAM) RGB(0, 0, 255));
See AlsoRegisterWindowMessage, RGB, SendMessage

SHAREVISTRING
An Open or Save As dialog box sends the SHAREVISTRING registered message to your hook
procedure if a sharing violation occurs for the selected file when the user clicks the OK button.

For Explorer-style Open and Save As dialog boxes, this message has been superseded by the
CDN_SHAREVIOLATION notification message.MessageID = RegisterWindowMessage(SHAREVISTRING);
wParam = 0;
lpofn = (LPOPENFILENAME) lParam;
Parameterslpofn

Pointer to a OPENFILENAME structure. The lpstrFile member of this structure contains the
filename that caused the sharing violation.

Return ValuesThe hook procedure must return one of the following values to indicate how the dialog box should
handle the sharing violation:

Return value Description

OFN_SHAREFALLTHROUGHAccept the filename
OFN_SHARENOWARN Reject the filename but do not warn the

user. The application is responsible for
displaying a warning message.

OFN_SHAREWARN Rejects the filename and displays a
warning message (the same result as if
there were no hook procedure).

RemarksThe hook procedure must specify the SHAREVISTRING constant in a call to the
RegisterWindowMessage function to get the identifier for the message sent by the dialog box.

The dialog box sends the SHAREVISTRING registered message only if you did not specify the
OFN_SHAREAWARE flag in the Flags member of the OPENFILENAME structure when you
created the dialog.

If the hook procedure returns an undefined value, the dialog box responds as if
OFN_SHAREWARN was returned.See AlsoCDN_SHAREVIOLATION, OPENFILENAME, RegisterWindowMessage

STM_GETICON
An application sends the STM_GETICON message to retrieve the handle of the icon associated
with a static control that has the SS_ICON style.STM_GETICON
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the handle of the icon, or NULL if either the static control has no associated

icon or if an error occurred.See AlsoSTM_SETICON

STM_GETIMAGE
An application sends an STM_GETIMAGE message to retrieve the handle of the image
associated with a static control.STM_GETIMAGE
wParam = (WPARAM) fImageType; // image-type flag
lParam = 0;// not used; must be zero
ParametersfImageType

Value of wParam. Specifies the type of image to retrieve. This parameter can be one of the
following values:
IMAGE_BITMAP
IMAGE_CURSOR
IMAGE_ENHMETAFILE
IMAGE_ICON

Return ValuesThe return value is the handle of the image, if any; otherwise, it is NULL.See AlsoSTM_SETIMAGE

STM_SETICON
An application sends the STM_SETICON message to associate an icon with an icon control.STM_SETICON
wParam = (WPARAM) (HICON) hicon; // handle of the icon
lParam = 0;// not used; must be zero
Parametershicon

Value of wParam. Identifies the icon to associate with the icon control.
Return ValuesThe return value is the handle of the icon previously associated with the icon control, or zero if an

error occurs.See AlsoLoadIcon, STM_GETICON

STM_SETIMAGE
An application sends an STM_SETIMAGE message to associate a new image (icon or bitmap)
with a static control.STM_SETIMAGE
wParam = (WPARAM) fImageType; // image-type flag
lParam = (LPARAM) (HANDLE) hImage; // handle of the image
ParametersfImageType

Value of wParam. Specifies the type of image to associate with the static control. This
parameter can be one of the following values:
IMAGE_BITMAP
IMAGE_CURSOR
IMAGE_ENHMETAFILE
IMAGE_ICON

hImage
Value of lParam. Identifies the image to associate with the static control.

Return ValuesThe return value is the handle of the image previously associated with the static control, if any;
otherwise, it is NULL.See AlsoSTM_GETIMAGE

STN_CLICKED
The STN_CLICKED notification message is sent when the user clicks a static control that has the
SS_NOTIFY style. The parent window of the control receives this notification message through
the WM_COMMAND message.STN_CLICKED
idStatic = (int) LOWORD(wParam); // identifier of static control
hwndStatic = (HWND) LOWORD(lParam); // handle of static control
See AlsoSTN_DBLCLK, WM_COMMAND

STN_DBLCLK
The STN_DBLCLK notification message is sent when the user double-clicks a static control that
has the SS_NOTIFY style. The parent window of the control receives this notification message
through the WM_COMMAND message.STN_DBLCLK
idStatic = (int) LOWORD(wParam); // identifier of static control
hwndStatic = (HWND) LOWORD(lParam); // handle of static control
See AlsoSTN_CLICKED, WM_COMMAND

STN_DISABLE
The STN_DISABLE notification message is sent when a static control is disabled. The static
control must have the SS_NOTIFY style to receive this notification message. The parent window
of the control receives this notification message through the WM_COMMAND message.STN_DISABLE
idStatic = (int) LOWORD(wParam); // identifier of static control
hwndStatic = (HWND) LOWORD(lParam); // handle of static control
See AlsoSTN_ENABLE, WM_COMMAND

STN_ENABLE
The STN_ENABLE notification message is sent when a static control is enabled. The static
control must have the SS_NOTIFY style to receive this notification message. The parent window
of the control receives this notification message through the WM_COMMAND message.STN_ENABLE
idStatic = (int) LOWORD(wParam); // identifier of static control
hwndStatic = (HWND) LOWORD(lParam); // handle of static control
See AlsoSTN_DISABLE, WM_COMMAND

TB_ADDBITMAP
The TB_ADDBITMAP message adds one or more images to the list of button images available for
a toolbar.TB_ADDBITMAP
wParam = (WPARAM) nButtons;
lParam = (LPARAM) (LPTBADDBITMAP) lptbab;
ParametersnButtons

Number of button images in the bitmap.
lptbab

Pointer to a TBADDBITMAP structure that contains the identifier of a bitmap resource and the
handle to the module instance with the executable file that contains the bitmap resource.

Return ValuesReturns the index of the first new image if successful or - 1 otherwise.RemarksIf the toolbar was created by using the CreateWindowEx function, you must send the
TB_BUTTONSTRUCTSIZE message to the toolbar before sending TB_ADDBITMAP.See AlsoCreateWindowEx, TBADDBITMAP, TB_BUTTONSTRUCTSIZE

TB_ADDBUTTONS
The TB_ADDBUTTONS message adds one or more buttons to a toolbar.TB_ADDBUTTONS
wParam = (WPARAM) (UINT) uNumButtons;
lParam = (LPARAM) (LPTBBUTTON) lpButtons;
ParametersuNumButtons

Number of buttons to add.
lpButtons

Pointer to an array of TBBUTTON structures that contains information about the buttons to
add. There must be the same number of elements in the array as buttons specified by
uNumButtons.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the toolbar was created by using the CreateWindowEx function, you must send the
TB_BUTTONSTRUCTSIZE message to the toolbar before sending TB_ADDBUTTONS.See AlsoCreateWindowEx, TBBUTTON, TB_BUTTONSTRUCTSIZE

TB_ADDSTRING
The TB_ADDSTRING message adds a new string to the list of strings available for a toolbar.TB_ADDSTRING
wParam = (WPARAM) (HINSTANCE) hinst;
lParam = (LPARAM) MAKELONG(idString, 0);
Parametershinst

Handle to the module instance with an executable file that contains the string resource. If
idString points to one or more strings to add, this parameter is zero.

idString
Resource identifier for the string resource, or the address of a buffer that contains one or
more null-terminated strings to add to the list, depending on the value of hinst. The last string
must be terminated with two null characters.

Return ValuesReturns the index of the first new string if successful or - 1 otherwise.

TB_AUTOSIZE
The TB_AUTOSIZE message causes a toolbar to be resized.TB_AUTOSIZE
wParam = 0;
lParam = 0;
Return ValuesNo return value.RemarksAn application sends the TB_AUTOSIZE message after causing the size of a toolbar to change

either by setting the button or bitmap size or by adding strings for the first time.

TB_BUTTONCOUNT
The TB_BUTTONCOUNT message retrieves a count of the buttons currently in the toolbar.TB_BUTTONCOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns the count of the buttons.

TB_BUTTONSTRUCTSIZE
The TB_BUTTONSTRUCTSIZE message specifies the size of the TBBUTTON structure.wParam = (WPARAM) cb;
lParam = 0;
Parameterscb

Size, in bytes, of the TBBUTTON structure.
The system uses the size to determine which version of the common control dynamic-link library
(DLL) is being used.

If an application uses the CreateWindowEx function to create the toolbar, the application must
send this message to the toolbar before sending the TB_ADDBITMAP or TB_ADDBUTTONS
message. The CreateToolBarEx function automatically sends TB_BUTTONSTRUCTSIZE, and
the size of the TBBUTTON structure is a parameter of the function.Return ValuesNo return value.See AlsoCreateWindowEx, TB_ADDBITMAP, TB_ADDBUTTONS, TBBUTTON

TB_CHANGEBITMAP
The TB_CHANGEBITMAP message changes the bitmap for a button in a toolbar.TB_CHANGEBITMAP
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELPARAM(iBitmap, 0);
ParametersidButton

Command identifier of the button that is to receive a new bitmap.
iBitmap

Zero-based index of an image in the toolbar's image list. The system displays the specified
image in the button.

Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_CHECKBUTTON
The TB_CHECKBUTTON message checks or unchecks a given button in a toolbar.TB_CHECKBUTTON
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fCheck, 0);
ParametersidButton

Command identifier of the button to check.
fCheck

Check flag. If this parameter TRUE, the check is added. If it is FALSE, the check is removed.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksWhen a button has been checked, it appears to have been pressed.

TB_COMMANDTOINDEX
The TB_COMMANDTOINDEX message retrieves the zero-based index for the button associated
with the specified command identifier.TB_COMMANDTOINDEX
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier associated with the button.
Return ValuesReturns the zero-based index for the button.

TB_CUSTOMIZE
The TB_CUSTOMIZE message displays the Customize Toolbar dialog box.TB_CUSTOMIZE
wParam = 0;
lParam = 0;
Return ValuesNo return value.

TB_DELETEBUTTON
The TB_DELETEBUTTON message deletes a button from the toolbar.TB_DELETEBUTTON
wParam = (WPARAM) iButton;
lParam = 0;
ParametersiButton

Zero-based index of the button to delete.
Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_ENABLEBUTTON
The TB_ENABLEBUTTON message enables or disables the specified button in a toolbar.TB_ENABLEBUTTON
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fEnable, 0);
ParametersidButton

Command identifier of the button to enable or disable.
fEnable

Enable flag. If this parameter is TRUE, the button is enabled. If it is FALSE, the button is
disabled.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksWhen a button has been enabled, it can be pressed and checked.

TB_GETBITMAP
The TB_GETBITMAP message retrieves the index of the bitmap associated with a button in a
toolbar.TB_GETBITMAP
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button whose bitmap index is to be retrieved.
Return ValuesIf successful, the message returns the index of the bitmap. If unsuccessful, it returns zero.

TB_GETBITMAPFLAGS
The TB_GETBITMAPFLAGS message retrieves the bitmap flags.TB_GETBITMAPFLAGS
wParam = 0;
lParam = 0;
Return ValuesReturns the TBBF_LARGE value if the display can handle large bitmaps (that is, if the width of the

display has at least 120 pixels per logical inch). Otherwise, the return value is zero.

TB_GETBUTTON
The TB_GETBUTTON message retrieves information about the specified button in a toolbar.TB_GETBUTTON
wParam = (WPARAM) iButton;
lParam = (LPARAM) (LPTBBUTTON) lpButton;
ParametersiButton

Zero-based index of the button for which to retrieve information.
lpButton

Pointer to the TBBUTTON structure that receives the button information.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTBBUTTON

TB_GETBUTTONTEXT
The TB_GETBUTTONTEXT message retrieves the text of a button in a toolbar.TB_GETBUTTONTEXT
wParam = (WPARAM) idButton;
lParam = (LPARAM) (LPSTR) lpszText;
ParametersidButton

Command identifier of the button whose text is to be retrieved.
lpszText

Pointer to a buffer that receives the button text.
Return ValuesReturns the length, in characters, of the string copied to the specified buffer if successful. The

length does not include the terminating null character. Otherwise, the return value is - 1.

TB_GETITEMRECT
The TB_GETITEMRECT message retrieves the bounding rectangle of a button in a toolbar.wParam = (WPARAM) iButton;
lParam = (LPARAM) (LPRECT) lprc;
ParametersiButton

Zero-based index of the button for which to retrieve information.
lprc

Pointer to a RECT structure that receives the coordinates of the bounding rectangle.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThis message does not retrieve the bounding rectangle for buttons whose state is set to the

TBSTATE_HIDDEN value.See AlsoRECT

TB_GETROWS
The TB_GETROWS message retrieves the number of rows of buttons in a toolbar with the
TBSTYLE_WRAPABLE style.TB_GETROWS
wParam = 0;
lParam = 0;
Return ValuesReturns the number of rows.

TB_GETSTATE
The TB_GETSTATE message retrieves information about the state of the specified button in a
toolbar, such as whether it is enabled, pressed, or checked.TB_GETSTATE
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button for which to retrieve information.
Return ValuesReturns the button state information if successful or - 1 otherwise. The button state information

can be a combination of the values listed in Button States.

TB_GETTOOLTIPS
The TB_GETTOOLTIPS message retrieves the handle to the tooltip control, if any, associated
with the toolbar.TB_GETTOOLTIPS
wParam = 0;
lParam = 0;
Return ValuesReturns the handle to the tooltip control or NULL if the toolbar has no associated tooltip.

TB_HIDEBUTTON
The TB_HIDEBUTTON message hides or shows the specified button in a toolbar.TB_HIDEBUTTON
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fShow, 0);
ParametersidButton

Command identifier of the button to hide or show.
fShow

Show flag. If this parameter is TRUE, the button is hidden. If it is FALSE, the button is shown.
Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_INDETERMINATE
The TB_INDETERMINATE message sets or clears the indeterminate state of the specified button
in a toolbar.TB_INDETERMINATE
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fIndeterminate, 0);
ParametersidButton

Command identifier of the button whose indeterminate state is to be set or cleared.
fIndeterminate

Indeterminate flag. If this parameter is TRUE, the indeterminate state is set. If it is FALSE, the
state is cleared.

Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_INSERTBUTTON
The TB_INSERTBUTTON message inserts a button in a toolbar.TB_INSERTBUTTON
wParam = (WPARAM) iButton;
lParam = (LPARAM) (LPTBBUTTON) lpButton;
ParametersiButton

Zero-based index of a button. The message inserts the new button to the left of this button.
lpButton

Pointer to a TBBUTTON structure containing information about the button to insert.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTBBUTTON

TB_ISBUTTONCHECKED
The TB_ISBUTTONCHECKED message determines whether the specified button in a toolbar is
checked.TB_ISBUTTONCHECKED
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button.
Return ValuesReturns nonzero if the button is checked or zero otherwise.

TB_ISBUTTONENABLED
The TB_ISBUTTONENABLED message determines whether the specified button in a toolbar is
enabled.TB_ISBUTTONENABLED
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button.
Return ValuesReturns nonzero if the button is enabled or zero otherwise.

TB_ISBUTTONHIDDEN
The TB_ISBUTTONHIDDEN message determines whether the specified button in a toolbar is
hidden.TB_ISBUTTONHIDDEN
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button.
Return ValuesReturns nonzero if the button is hidden or zero otherwise.

TB_ISBUTTONINDETERMINATE
The TB_ISBUTTONINDETERMINATE message determines whether the specified button in a
toolbar is indeterminate.TB_ISBUTTONINDETERMINATE
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button.
Return ValuesReturns nonzero if the button is indeterminate or zero otherwise.

TB_ISBUTTONPRESSED
The TB_ISBUTTONPRESSED message determines whether the specified button in a toolbar is
pressed.TB_ISBUTTONPRESSED
wParam = (WPARAM) idButton;
lParam = 0;
ParametersidButton

Command identifier of the button.
Return ValuesReturns nonzero if the button is pressed or zero otherwise.

TB_PRESSBUTTON
The TB_PRESSBUTTON message presses or releases the specified button in a toolbar.TB_PRESSBUTTON
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fPress, 0);
ParametersidButton

Command identifier of the button to press or release.
fPress

Press flag. If this parameter is TRUE, the button is pressed. If it is FALSE, the button is
released.

Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_SAVERESTORE
The TB_SAVERESTORE message saves or restores the state of the toolbar.TB_SAVERESTORE
wParam = (WPARAM) (BOOL) fSave;
lParam = (LPARAM) (TBSAVEPARAMS *)ptbsp;
ParametersfSave

Save or restore flag. If this parameter is TRUE, the information is saved. If it is FALSE, it is
restored.

ptbsp
Pointer to a TBSAVEPARAMS structure that specifies the registry key, subkey, and value
name for the toolbar state information.

Return ValuesNo return value.See AlsoTBSAVEPARAMS

TB_SETBITMAPSIZE
The TB_SETBITMAPSIZE message sets the size of the bitmapped images to be added to a
toolbar.TB_SETBITMAPSIZE
wParam = 0;
lParam = (LPARAM) MAKELONG(dxBitmap, dyBitmap)
ParametersdxBitmap

Width, in pixels, of the bitmapped images.
dyBitmap

Height, in pixels, of the bitmapped images.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe size can be set only before adding any bitmaps to the toolbar. If an application does not

explicitly set the bitmap size, the size defaults to 16 by 15 pixels.

TB_SETBUTTONSIZE
The TB_SETBUTTONSIZE sets the size of the buttons to be added to a toolbar.TB_SETBUTTONSIZE
wParam = 0;
lParam = (LPARAM) MAKELONG(dxButton, dyButton)
ParametersdxButton

Width, in pixels, of the buttons.
dyButton

Height, in pixels, of the buttons.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe size can be set only before adding any buttons to the toolbar. If an application does not

explicitly set the button size, the size defaults to 24 by 22 pixels.

TB_SETCMDID
The TB_SETCMDID message sets the command identifier of a toolbar button.TB_SETCMDID
wParam = (WPARAM) (UINT) index;
lParam = (WPARAM) (UINT) cmdId;
Parametersindex

Zero-based index of the button whose command identifier is to be set.
cmdId

Command identifier.
Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_SETPARENT
The TB_SETPARENT message sets the parent window for a toolbar.TB_SETPARENT
wParam = (WPARAM) (HWND) hwndParent;
lParam = 0;
ParametershwndParent

Handle to the new parent window.
Return ValuesNo return value.

TB_SETROWS
The TB_SETROWS message sets the number of rows of buttons in a toolbar.TB_SETROWS
wParam = (WPARAM) MAKEWPARAM(cRows, fLarger);
lParam = (LPARAM) (LPRECT) lprc;
ParameterscRows

Number of rows requested. The minimum number of rows is one, and the maximum is equal
to the number of buttons in the toolbar.

fLarger
Flag that indicates whether to create more rows than requested when the system cannot
create the number of rows specified by cRows. If this parameter is TRUE, the system creates
more rows. If it is FALSE, the system creates fewer rows.

lprc
Pointer to a RECT structure that receives the bounding rectangle of the toolbar after the rows
are set.

Return ValuesNo return value.RemarksBecause the system does not break up button groups when setting the number of rows, the
resulting number of rows might differ from the number requested.See AlsoRECT

TB_SETSTATE
The TB_SETSTATE message sets the state for the specified button in a toolbar.TB_SETSTATE
wParam = (WPARAM) idButton;
lParam = (LPARAM) MAKELONG(fState, 0);
ParametersidButton

Command identifier of the button.
fState

State flags. This parameter can be a combination of the values listed in Toolbar Button States.
Return ValuesReturns TRUE if successful or FALSE otherwise.

TB_SETTOOLTIPS
The TB_SETTOOLTIPS message associates a tooltip control with a toolbar.TB_SETTOOLTIPS
wParam = (WPARAM) (HWND) hwndToolTip;
lParam = 0;
ParametershwndToolTip

Handle to the tooltip control.
Return ValuesNo return value.RemarksAny buttons added to a toolbar before sending the TB_SETTOOLTIPS message are not

registered with the tooltip control.

TBM_CLEARSEL
The TBM_CLEARSEL message clears the current selection in a trackbar.TBM_CLEARSEL
wParam = (WPARAM) (BOOL) fRedraw;
lParam = 0;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the selection is cleared.
Return ValuesNo return value.

TBM_CLEARTICS
The TBM_CLEARTICS message removes the current tick marks from a trackbar.TBM_CLEARTICS
wParam = (WPARAM) (BOOL) fRedraw;
lParam = 0;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the trackbar is redrawn after the tick marks are
cleared.

Return ValuesNo return value.

TBM_GETCHANNELRECT
The TBM_GETCHANNELRECT message retrieves the size and position of the bounding
rectangle for a trackbar's channel. (The channel is the area over which the slider moves and
which contains the highlight when a range is selected.)TBM_GETCHANNELRECT
wParam = 0;
lParam = (LPARAM) (LPRECT) lprc;
Parameterslprc

Pointer to a RECT structure that contains the size and position of the channel's bounding
rectangle when the function returns.

Return ValuesNo return value.See AlsoRECT

TBM_GETLINESIZE
The TBM_GETLINESIZE message retrieves the size of the line for a trackbar. The line size
affects how much the slider moves for the TB_LINEUP and TB_LINEDOWN notification
messages.TBM_GETLINESIZE
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the size of a line for the trackbar.RemarksThe default setting for the line size is 1.

TBM_GETNUMTICS
The TBM_GETNUMTICS message retrieves the number of tick marks in a trackbar.TBM_GETNUMTICS
wParam = 0;
lParam = 0;
Return ValuesReturns the number of tick marks.RemarksThis message returns all of the tick marks, including the first and last tick marks created by the

trackbar.

TBM_GETPAGESIZE
The TBM_GETPAGESIZE message retrieves the size of the page for a trackbar. The page size
affects how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN notification
messages.TBM_GETPAGESIZE
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the size of a page for the trackbar.

TBM_GETPOS
The TBM_GETPOS message retrieves the current position of the slider in a trackbar.TBM_GETPOS
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the current position.

TBM_GETPTICS
The TBM_GETPTICS message retrieves the pointer to the array that contains the positions of tick
marks for a trackbar.TBM_GETPTICS
wParam = 0;
lParam = 0;
Return ValuesReturns the pointer to the array.

TBM_GETRANGEMAX
The TBM_GETRANGEMAX message retrieves the maximum position for the slider in a trackbar.TBM_GETRANGEMAX
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the maximum position.

TBM_GETRANGEMIN
The TBM_GETRANGEMIN message retrieves the minimum position for the slider in a trackbar.TBM_GETRANGEMIN
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the minimum position.

TBM_GETSELEND
The TBM_GETSELEND message retrieves the ending position of the current selection in a
trackbar.TBM_GETSELEND
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the ending position of the current selection.

TBM_GETSELSTART
The TBM_GETSELSTART message retrieves the starting position of the current selection in a
trackbar.TBM_GETSELSTART
wParam = 0;
lParam = 0;
Return ValuesReturns a 32-bit value that specifies the starting position of the current selection.

TBM_GETTHUMBLENGTH
The TBM_GETTHUMBLENGTH message retrieves the length of the slider in a trackbar.TBM_GETTHUMBLENGTH
wParam = 0;
lParam = 0;
Return ValuesReturns the length, in pixels, of the slider.

TBM_GETTHUMBRECT
The TBM_GETTHUMBRECT message retrieves the size and position of the bounding rectangle
for the slider in a trackbar.TBM_GETTHUMBRECT
wParam = 0;
lParam = (LPARAM) (LPRECT) lprc;
Parameterslprc

Pointer to a RECT structure that contains the bounding rectangle for the slider when the
function returns.

Return ValuesNo return value.See AlsoRECT

TBM_GETTIC
The TBM_GETTIC message retrieves the position of a tick mark in a trackbar.TBM_GETTIC
wParam = (WPARAM) (WORD) iTic;
lParam = 0;
ParametersiTic

Zero-based index identifying a tick mark.
Return ValuesReturns the position of the specified tick mark or - 1 if iTic does not specify a valid index.

TBM_GETTICPOS
The TBM_GETTICPOS message retrieves the current physical position of a tick mark in a
trackbar.TBM_GETTICPOS
wParam = (WPARAM) (WORD) iTic;
lParam = 0;
ParametersiTic

Zero-based index identifying a tick mark.
Return ValuesReturns the physical position, in client coordinates, of the specified tick mark or - 1 if iTic does not

specify a valid index.

TBM_SETLINESIZE
The TBM_SETLINESIZE message sets the size of the line for a trackbar. The line size affects
how much the slider moves for the TB_LINEUP and TB_LINEDOWN notification messages.TBM_SETLINESIZE
wParam = 0;
lParam = (LONG) lLineSize;
ParameterslLineSize

New line size.
Return ValuesReturns a 32-bit value that specifies the previous line size.

TBM_SETPAGESIZE
The TBM_SETPAGESIZE message sets the size of the page for a trackbar. The page size affects
how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN notification messages.TBM_SETPAGESIZE
wParam = 0;
lParam = (LONG) lPageSize;
ParameterslPageSize

New page size.
Return ValuesReturns a 32-bit value that specifies the previous page size.

TBM_SETPOS
The TBM_SETPOS message sets the current position of the slider in a trackbar.TBM_SETPOS
wParam = (WPARAM) (BOOL) fPosition;
lParam = (LPARAM) (LONG) lPosition;
ParametersfPosition

Position flag. If this parameter is TRUE, the message sets the slider to the position given by
lPosition. Otherwise, the message ensures that the current position is within the current
minimum and maximum positions, but it does not move the slider.

lPosition
New position of the slider.

Return ValuesNo return value.

TBM_SETRANGE
The TBM_SETRANGE message sets the range (minimum and maximum positions) for the slider
in a trackbar.TBM_SETRANGE
wParam = (WPARAM) (BOOL) fRedraw;
lParam = (LPARAM) MAKELONG(lMinimum, lMaximum);
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set.
lMinimum

Minimum position for the slider.
lMaximum

Maximum position for the slider.
Return ValuesNo return value.

TBM_SETRANGEMAX
The TBM_SETRANGEMAX message sets the maximum position for the slider in a trackbar.TBM_SETRANGEMAX
wParam = (WPARAM) fRedraw;
lParam = (LPARAM) lMaximum;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set.
lMaximum

Maximum position for the slider.
Return ValuesNo return value.

TBM_SETRANGEMIN
The TBM_SETRANGEMIN message sets the minimum position for the slider in a trackbar.TBM_SETRANGEMIN
wParam = (WPARAM) fRedraw;
lParam = (LPARAM) lMinimum;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set.
lMinimum

Minimum position for the slider.
Return ValuesNo return value.

TBM_SETSEL
The TBM_SETSEL message sets the starting and ending positions for the current selection in a
trackbar.TBM_SETSEL
wParam = (WPARAM) (BOOL) fRedraw;
lParam = (LPARAM) MAKELONG(lMinimum, lMaximum);
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the selection is set.
lMinimum

Starting position for the slider.
lMaximum

Ending position for the slider.
Return ValuesNo return value.

TBM_SETSELEND
The TBM_SETSELEND message sets the ending position of the current selection in a trackbar.TBM_SETSELEND
wParam = (WPARAM) (BOOL) fRedraw;
lParam = (LPARAM) (LONG) lEnd;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the selection is set.
lEnd

Ending position of the selection.
Return ValuesNo return value.

TBM_SETSELSTART
The TBM_SETSELSTART message sets the starting position of the current selection in a
trackbar.TBM_SETSELSTART
wParam = (WPARAM) (BOOL) fRedraw;
lParam = (LPARAM) (LONG) lStart;
ParametersfRedraw

Redraw flag. If this parameter is TRUE, the slider is redrawn after the selection is set.
lStart

Starting position of the selection.
Return ValuesNo return value.

TBM_SETTHUMBLENGTH
The TBM_SETTHUMBLENGTH message sets the length of the slider in a trackbar.TBM_SETTHUMBLENGTH
wParam = (WPARAM) (UINT) iLength;
lParam = 0;
ParametersiLength

Length, in pixels, of the slider.
Return ValuesNo return value.

TBM_SETTIC
The TBM_SETTIC message sets the position of a tick mark in a trackbar.TBM_SETTIC
wParam = 0;
lParam = (LPARAM) (LONG) lPosition;
ParameterslPosition

Position of the tick mark. This parameter must specify a positive value.
Return ValuesReturns TRUE if the tick mark is set or FALSE otherwise.RemarksA trackbar creates its own first and last tick marks. An application should not use this message to

set the first and last marks.

TBM_SETTICFREQ
The TBM_SETTICFREQ message sets the interval frequency for tick marks in a trackbar. For
example, if the frequency is set to two, a tick mark is displayed for every other increment in the
trackbar's range. The default setting for the frequency is one; that is, every increment in the range
is associated with a tick mark.TBM_SETTICFREQ
wParam = (WPARAM) wFreq;
lParam = (LPARAM) (LONG) lPosition;
ParameterswFreq

Frequency of the tick marks.
lPosition

Position of the tick mark. This parameter must specify a positive value.
Return ValuesNo return value.RemarksThe trackbar must have the TBS_AUTOTICKS style to use this message.

TBN_BEGINADJUST
The TBN_BEGINADJUST notification message notifies a toolbar's parent window that the user
has begun customizing a toolbar. This message is sent in the form of a WM_NOTIFY message.TBN_BEGINADJUST
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains information about the notification message.
Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

TBN_BEGINDRAG
The TBN_BEGINDRAG notification message notifies a toolbar's parent window that the user has
begun dragging a button in a toolbar. This message is sent in the form of a WM_NOTIFY
message.TBN_BEGINDRAG
ptbn = (TBNOTIFY FAR *) lParam;
Parametersptbn

Pointer to a TBNOTIFY structure. The iItem member contains the zero-based index of the
button being dragged.

Return ValuesNo return value.See AlsoTBNOTIFY, WM_NOTIFY

TBN_CUSTHELP
The TBN_CUSTHELP notification message notifies a toolbar's parent window that the user has
chosen the Help button in the Customize Toolbar dialog box. This message is sent in the form of a
WM_NOTIFY message.TBN_CUSTHELP
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains information about the notification message.
Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

TBN_ENDADJUST
The TBN_ENDADJUST notification message notifies a toolbar's parent window that the user has
stopped customizing a toolbar. This message is sent in the form of a WM_NOTIFY message.TBN_ENDADJUST
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains information about the notification message.
Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

TBN_ENDDRAG
The TBN_ENDDRAG notification message notifies the toolbar's parent window that the user has
stopped dragging a button in a toolbar. This message is sent in the form of a WM_NOTIFY
message.TBN_ENDDRAG
ptbn = (TBNOTIFY FAR *) lParam;
Parametersptbn

Pointer to a TBNOTIFY structure. The iItem member contains the zero-based index of the
button being dragged.

Return ValuesNo return value.See AlsoTBNOTIFY, WM_NOTIFY

TBN_GETBUTTONINFO
The TBN_GETBUTTONINFO message retrieves toolbar customization information and notifies
the toolbar's parent window of any changes being made to the toolbar. This is sent in the form of a
WM_NOTIFY message.TBN_GETBUTTONINFO
ptbn = (TBNOTIFY FAR *) lParam;
Parametersptbn

Pointer to a TBNOTIFY structure. The iItem member specifies a zero-based index that
provides a count of the buttons the customize dialog box displays as both available and
present on the toolbar.
The pszText member specifies the address of the current button text, and cchText specifies
its length in characters. The application should fill the structure with information about the
button.

Return ValuesReturns TRUE if button information was copied to the specified structure or FALSE otherwise.RemarksThe toolbar control allocates a buffer, and the receiver (parent window) must copy the text into
that buffer. The cchText member contains the length of the buffer allocated by the toolbar when
TBN_GETBUTTONINFO is sent to the parent window.See AlsoTBNOTIFY, WM_NOTIFY

TBN_QUERYDELETE
The TBN_QUERYDELETE notification message notifies the toolbar's parent window whether a
button may be deleted from a toolbar while the user is customizing a toolbar. This message is
sent in the form of a WM_NOTIFY message.TBN_QUERYDELETE
ptbn = (TBNOTIFY FAR *) lParam;
Parametersptbn

Pointer to a TBNOTIFY structure. The iItem member contains the zero-based index of the
button to be deleted.

Return ValuesReturns TRUE to allow the button to be deleted or FALSE to prevent the button from being
deleted.See AlsoTBNOTIFY, WM_NOTIFY

TBN_QUERYINSERT
The TBN_QUERYINSERT notification message notifies the toolbar's parent window whether a
button may be inserted to the left of the specified button while the user is customizing a toolbar.
This message is sent in the form of a WM_NOTIFY message.TBN_QUERYINSERT
ptbn = (TBNOTIFY FAR *) lParam;
Parametersptbn

Pointer to a TBNOTIFY structure. The iItem member contains the zero-based index of the
button to be inserted.

Return ValuesReturns TRUE to allow a button to inserted in front of the given button or FALSE to prevent the
button from being inserted.See AlsoTBNOTIFY, WM_NOTIFY

TBN_RESET
The TBN_RESET notification message notifies the toolbar's parent window that the user has reset
the content of the Customize Toolbar dialog box. This message is sent in the form of a
WM_NOTIFY message.TBN_RESET
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains information about the notification message.
Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

TBN_TOOLBARCHANGE
The TBN_TOOLBARCHANGE notification message notifies the toolbar's parent window that the
user has customized a toolbar. This message is sent in the form of a WM_NOTIFY message.TBN_TOOLBARCHANGE
pnmhdr = (NMHDR FAR *) lParam;
Parameterspnmhdr

Pointer to an NMHDR structure that contains information about the notification message.
Return ValuesNo return value.See AlsoNMHDR, WM_NOTIFY

TCM_ADJUSTRECT
The TCM_ADJUSTRECT message calculates a tab control's display area given a window
rectangle or calculates the window rectangle that would correspond to a specified display area.
You can send this message explicitly or by using the TabCtrl_AdjustRect macro.TCM_ADJUSTRECT
wParam = (WPARAM) (BOOL) fLarger; // operation to perform
lParam = (LPARAM) (LPRECT) prc; // pointer to a RECT structure
ParametersfLarger

Operation to perform. If this parameter is TRUE, prc specifies a display rectangle and
receives the corresponding window rectangle. If this parameter is FALSE, prc specifies a
window rectangle and receives the corresponding display area.

prc
Pointer to a RECT structure that specifies the given rectangle and receives the calculated
rectangle.

Return ValuesNo return value.See AlsoRECT, TabCtrl_AdjustRect

TCM_DELETEALLITEMS
The TCM_DELETEALLITEMS message removes all items from a tab control. You can send this
message explicitly or by using the TabCtrl_DeleteAllItems macro.TCM_DELETEALLITEMS
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTabCtrl_DeleteAllItems

TCM_DELETEITEM
The TCM_DELETEITEM message removes an item from a tab control. You can send this
message explicitly or by using the TabCtrl_DeleteItem macro.TCM_DELETEITEM
wParam = (WPARAM) (int) iItem; // index of the item to delete
lParam = 0; // not used; must be zero
ParametersiItem

Index of the item to delete.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTabCtrl_DeleteItem

TCM_GETCURFOCUS
The TCM_GETCURFOCUS message returns the index of the item that has the focus in a tab
control. You can send this message explicitly or by using the TabCtrl_GetCurFocus macro.TCM_GETCURFOCUS
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the index of the tab item that has the focusRemarksThe item that has the focus may be different than the selected item.See AlsoTabCtrl_GetCurFocus

TCM_GETCURSEL
The TCM_GETCURSEL message determines the currently selected tab in a tab control. You can
send this message explicitly or by using the TabCtrl_GetCurSel macro.TCM_GETCURSEL
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the index of the selected tab if successful or - 1 if no tab is selected.See AlsoTabCtrl_GetCurSel

TCM_GETIMAGELIST
The TCM_GETIMAGELIST message retrieves the image list associated with a tab control. You
can send this message explicitly or by using the TabCtrl_GetImageList macro.TCM_GETIMAGELIST
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the handle to the image list if successful or NULL otherwise.See AlsoTabCtrl_GetImageList

TCM_GETITEM
The TCM_GETITEM message retrieves information about a tab in a tab control. You can send
this message explicitly or by using the TabCtrl_GetItem macro.TCM_GETITEM
wParam = (WPARAM) (int) iItem;
lParam = (LPARAM) (TC_ITEM FAR *) pitem;
ParametersiItem

Index of the tab.
pitem

Pointer to a TC_ITEM structure that specifies the information to retrieve and receives
information about the tab. When the message is sent, the mask member specifies which
attributes to return.
If the mask member specifies the TCIF_TEXT value, the pszText member must contain the
address of the buffer that receives the item text and the cchTextMax member must specify
the size of the buffer.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTabCtrl_GetItem, TC_ITEM

TCM_GETITEMCOUNT
The TCM_GETITEMCOUNT message retrieves the number of tabs in the tab control. You can
send this message explicitly or by using the TabCtrl_GetItemCount macro.TCM_GETITEMCOUNT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the number of items if successful or zero otherwise.See AlsoTabCtrl_GetItemCount

TCM_GETITEMRECT
The TCM_GETITEMRECT message retrieves the bounding rectangle for a tab in a tab control.
You can send this message explicitly or by using the TabCtrl_GetItemRect macro.TCM_GETITEMRECT
wParam = (WPARAM) (int) iItem; // index of the tab
lParam = (LPARAM) (RECT FAR *) prc; // pointer to a structure to
receive rectangle of tab
ParametersiItem

Index of the tab.
prc

Pointer to a RECT structure that receives the bounding rectangle of the tab, in viewport
coordinates.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoRECT, TabCtrl_GetItemRect

TCM_GETROWCOUNT
The TCM_GETROWCOUNT message retrieves the current number of rows of tabs in a tab
control. You can send this message explicitly or by using the TabCtrl_GetRowCount macro.TCM_GETROWCOUNT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the number of rows of tabs.RemarksOnly tab controls that have the TCS_MULTILINE style can have multiple rows of tabs.See AlsoTabCtrl_GetRowCount

TCM_GETTOOLTIPS
The TCM_GETTOOLTIPS message retrieves the handle to the tooltip control associated with a
tab control. You can send this message explicitly or by using the TabCtrl_GetToolTips macro.TCM_GETTOOLTIPS
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
Return ValuesReturns the handle to the tooltip control if successful or NULL otherwise.RemarksA tab control creates a tooltip control if it has the TCS_TOOLTIPS style. You can also assign a

tooltip control to a tab control by using the TCM_SETTOOLTIPS message.See AlsoTabCtrl_GetToolTips, TCM_SETTOOLTIPS

TCM_HITTEST
The TCM_HITTEST message determines which tab, if any, is at a specified screen position. You
can send this message explicitly or by using the TabCtrl_HitTest macro.TCM_HITTEST
wParam = 0; // not used; must be zero
lParam = (LPARAM) (TC_HITTESTINFO FAR *) pinfo; \\pointer to struct
specifying position to test
Parameterspinfo

Pointer to a TC_HITTESTINFO structure that specifies the screen position to test.
Return ValuesReturns the index of the tab or - 1 if no tab is at the specified position.See AlsoTabCtrl_HitTest, TC_HITTESTINFO

TCM_INSERTITEM
The TCM_INSERTITEM message inserts a new tab in a tab control. You can send this message
explicitly or by using the TabCtrl_InsertItem macro.TCM_INSERTITEM
wParam = (WPARAM) (int) iItem; \\index of the new tab
lParam = (LPARAM) (const TC_ITEM FAR*) pitem; \\pointer to struct
specifying tab attributes
ParametersiItem

Index of the new tab.
pitem

Pointer to a TC_ITEM structure that specifies the attributes of the tab.
Return ValuesReturns the index of the new tab if successful or - 1 otherwise.See AlsoTabCtrl_InsertItem, TC_ITEM

TCM_REMOVEIMAGE
The TCM_REMOVEIMAGE message removes an image from a tab control's image list. You can
send this message explicitly or by using the TabCtrl_RemoveImage macro.TCM_REMOVEIMAGE
wParam = (WPARAM) (int) iImage; // index of the image to remove
lParam = 0; // not used; must be zero
ParametersiImage

Index of the image to remove.
Return ValuesNo return value.RemarksThe tab control updates each tab's image index, so each tab remains associated with the same

image it had been.See AlsoTabCtrl_RemoveImage

TCM_SETCURFOCUS
The TCM_SETCURFOCUS message sets the focus to a specified tab in a tab control. You can
send this message explicitly or by using the TabCtrl_SetCurFocus macro.TCM_SETCURFOCUS
wParam = (WPARAM) (int) iItem; // index of the tab that gets the focus
lParam = 0; // not used; must be zero
ParametersiItem

Specifies the index of the tab that gets the focus.
Return ValuesNo return value.RemarksIf the tab control has the TCS_BUTTONS style (button mode), the tab with the focus may be

different from the selected tab. For example, when a tab is selected, the user can press the arrow
keys to set the focus to a different tab without changing the selected tab. In button mode,
TCM_SETCURFOCUS sets the input focus to the button associated with the specified tab, but it
does not change the selected tab.

If the tab control does not have the TCS_BUTTONS style, changing the focus also changes
selected tab. In this case, the tab control sends the TCN_SELCHANGING and
TCN_SELCHANGE notification messages to its parent window.See AlsoTabCtrl_GetCurFocus, TCM_GETCURFOCUS, TCN_SELCHANGE, TCN_SELCHANGING,
TCM_SETCURFOCUS

TCM_SETCURSEL
The TCM_SETCURSEL message selects a tab in a tab control. You can send this message
explicitly or by using the TabCtrl_SetCurSel macro.TCM_SETCURSEL
wParam = (WPARAM) (int) iItem; // index of the tab to select
lParam = 0; // not used; must be zero
ParametersiItem

Index of the tab to select.
Return ValuesReturns the index of the previously selected tab if successful or - 1 otherwise.RemarksA tab control does not send a TCN_SELCHANGING or TCN_SELCHANGE notification message

when a tab is selected using this message.See AlsoTabCtrl_SetCurSel, TCN_SELCHANGE, TCN_SELCHANGING

TCM_SETIMAGELIST
The TCM_SETIMAGELIST message assigns an image list to a tab control. You can send this
message explicitly or by using the TabCtrl_SetImageList macro.TCM_SETIMAGELIST
wParam = 0; // not used; must be zero
lParam = (LPARAM) (HIMAGELIST) himl; // handle of image list to assign
to tab control
Parametershiml

Handle of the image list to assign to the tab control.
Return ValuesReturns the handle to the previous image list or NULL if there is no previous image list.See AlsoTabCtrl_SetImageList

TCM_SETITEM
The TCM_SETITEM message sets some or all of a tab's attributes. You can send this message
explicitly or by using the TabCtrl_SetItem macro.TCM_SETITEM
wParam = (WPARAM) (int) iItem; // index of the item
lParam = (LPARAM) (TC_ITEM FAR *) pitem; // pointer to struct
containing item attributes
ParametersiItem

Index of the item.
pitem

Pointer to a TC_ITEM structure that contains the new item attributes. The mask member
specifies which attributes to set.
If the mask member specifies the LVIF_TEXT value, the pszText member is the address of a
null-terminated string and the cchTextMax member is ignored.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTabCtrl_SetItem, TC_ITEM

TCM_SETITEMEXTRA
The TCM_SETITEMEXTRA message sets the number of bytes per tab reserved for application-
defined data in a tab control. You can send this message explicitly or by using the
TabCtrl_SetItemExtra macro.TCM_SETITEMEXTRA
wParam = (WPARAM) (int) cb; // number of extra bytes
lParam = 0; // not used; must be zero
Parameterscb

Number of extra bytes.
Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksBy default, the number of extra bytes is four. An application that changes the number of extra

bytes cannot use the TC_ITEM structure to retrieve and set the application-defined data for a tab.
Instead, you must define a new structure that consists of the TC_ITEMHEADER structure
followed by application-defined members.

An application should only change the number of extra bytes when a tab control does not contain
any tabs.See AlsoTabCtrl_SetItemExtra, TC_ITEM, TC_ITEMHEADER

TCM_SETITEMSIZE
The TCM_SETITEMSIZE message sets the width and height of tabs in a fixed-width or owner-
drawn tab control. You can send this message explicitly or by using the TabCtrl_SetItemSize
macro.TCM_SETITEMSIZE
wParam = 0; // not used; must be zero
lParam = MAKELPARAM(cx, cy); // new width and height, in pixels
Parameterscx and cy

New width and height, in pixels.
Return ValuesReturns the old width and height. The width is in the low-order word of the return value, and the

height is in the high-order word.See AlsoTabCtrl_SetItemSize

TCM_SETPADDING
The TCM_SETPADDING message sets the amount of space (padding) around each tab's icon
and label in a tab control. You can send this message explicitly or by using the
TabCtrl_SetPadding macro.TCM_SETPADDING
wParam = 0; // not used; must be zero
lParam = MAKELPARAM(cx, cy); // amount of horizontal and vertical
padding, in pixels
Parameterscx and cy

Amount of horizontal and vertical padding, in pixels.
Return ValuesNo return value.See AlsoTabCtrl_SetPadding

TCM_SETTOOLTIPS
The TCM_SETTOOLTIPS message assigns a tooltip control to a tab control. You can send this
message explicitly or by using the TabCtrl_SetToolTips macro.TCM_SETTOOLTIPS
wParam = (WPARAM) (HWND) hwndTT; // handle to the tooltip control
lParam = 0; // not used; must be zero
ParametershwndTT

Handle to the tooltip control.
Return ValuesNo return value.RemarksYou can get the tooltip control associated with a tab control by using the TCM_GETTOOLTIPS

message.See AlsoTabCtrl_SetToolTips, TCM_GETTOOLTIPS

TCN_KEYDOWN
The TCN_KEYDOWN notification message notifies a tab control's parent window that a key has
been pressed. This message is sent in the form of a WM_NOTIFY message.TCN_KEYDOWN
pnm = (TC_KEYDOWN FAR *) lParam;
Parameterspnm

Pointer to a TC_KEYDOWN structure.
Return ValuesNo return value.See AlsoTC_KEYDOWN, WM_NOTIFY

TCN_SELCHANGE
The TCN_SELCHANGE notification message notifies a tab control's parent window that the
currently selected tab has changed. This message is sent in the form of a WM_NOTIFY message.TCN_SELCHANGE
idTabCtl = (int) LOWORD(wParam);
lpnmhdr = (LPNMHDR) lParam;
ParametersidTabCtl

Specifies the child window identifier of the tab control.
lpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle of the tab control. The
idFrom member is the child window identifier of the tab control. The code member is
TCN_SELCHANGE.

Return ValuesNo return value.RemarksTo determine the currently selected tab, use the TabCtrl_GetCurSel macro.See AlsoNMHDR, TabCtrl_GetCurSel, TCN_SELCHANGING, WM_NOTIFY

TCN_SELCHANGING
The TCN_SELCHANGING notification message notifies a tab control's parent window that the
currently selected tab is about to change. This message is sent in the form of a WM_NOTIFY
message.TCN_SELCHANGING
idTabCtl = (int) LOWORD(wParam);
lpnmhdr = (LPNMHDR) lParam;
ParametersidTabCtl

Specifies the child window identifier of the tab control.
lpnmhdr

Pointer to an NMHDR structure. The hwndFrom member is the handle of the tab control. The
idFrom member is the child window identifier of the tab control. The code member is
TCN_SELCHANGING.

Return ValuesReturns TRUE to prevent the selection from changing or FALSE to allow the selection to change.RemarksTo determine the currently selected tab, use the TabCtrl_GetCurSel macro.See AlsoNMHDR, TabCtrl_GetCurSel, TCN_SELCHANGE, WM_NOTIFY

TTM_ACTIVATE
The TTM_ACTIVATE message activates or deactivates a tooltip control.TTM_ACTIVATE
wParam = (WPARAM) (BOOL) fActivate;
lParam = 0;
ParametersfActivate

Activation flag. If this parameter is TRUE, the tooltip control is activated. If it is FALSE, the
tooltip control is deactivated.

Return ValuesNo return value.

TTM_ADDTOOL
The TTM_ADDTOOL message registers a tool with a tooltip control.TTM_ADDTOOL
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure containing information that the tooltip control needs to
display text for the tool. Before sending this message, you must set the cbSize member of this
structure to sizeof(TOOLINFO).

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTOOLINFO

TTM_DELTOOL
The TTM_DELTOOL message removes a tool from a tooltip control.TTM_DELTOOL
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure. The hwnd and uId members identify the tool to remove,
and the cbSize member must specify the size of the structure. All other members are ignored.

Return ValuesNo return value.See AlsoTOOLINFO

TTM_ENUMTOOLS
The TTM_ENUMTOOLS message retrieves the information that a tooltip control maintains about
the current tool; that is, the tool for which the tooltip is currently displaying text.TTM_ENUMTOOLS
wParam = (WPARAM) (UINT) iTool;
lParam = (LPARAM) (LPTOOLINFO) lpti;
ParametersiTool

Zero-based index of the tool for which to retrieve information.
lpti

Pointer to a TOOLINFO structure that receives information about the tool. Before sending this
message, the cbSize member must specify the size of the structure.

Return ValuesReturns TRUE if any tools are enumerated or FALSE otherwise.RemarksRetrieves the information that a tooltip control maintains about a tool.See AlsoTOOLINFO

TTM_GETCURRENTTOOL
The TTM_GETCURRENTTOOL message retrieves the text that a tooltip control maintains for a
tool.TTM_GETCURRENTTOOL
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure that receives information about the current tool. Before
sending this message, you must set the cbSize member of this structure to
sizeof(TOOLINFO).

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTOOLINFO

TTM_GETTEXT
The TTM_GETTEXT message retrieves a count of the tools maintained by a tooltip control.TTM_GETTEXT
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure. When sending the message, the hwnd and uId members
identify a tool. If the tooltip control includes the tool, the lpszText member receives the pointer
to the string. Before sending this message, you must set the cbSize member of this structure
to sizeof(TOOLINFO).

Return ValuesNo return value.See AlsoTOOLINFO

TTM_GETTOOLCOUNT
The TTM_GETTOOLCOUNT message retrieves the information that a tooltip control maintains
about a tool.TTM_GETTOOLCOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns a count of tools.

TTM_GETTOOLINFO
The TTM_GETTOOLINFO message retrieves the information that a tooltip control maintains
about a tool.TTM_GETTOOLINFO
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure. When sending the message, the hwnd and uId members
identify a tool, and the cbSize member must specify the size of the structure. If the tooltip
control includes the tool, the structure receives information about the tool.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTOOLINFO

TTM_HITTEST
The TTM_HITTEST message tests a point to determine whether it is within the bounding
rectangle of the specified tool and, if the point is within, retrieves information about the tool.TTM_HITTEST
wParam = 0;
lParam = (LPARAM) (LPHITTESTINFO) lphti;
Parameterslphti

Pointer to a TTHITTESTINFO structure. When sending the message, the hwnd member must
specify the handle of a tool and the pt member must specify the coordinates of a point. If the
return value is TRUE, the ti member (a TOOLINFO structure) receives information about the
tool that occupies the point. Before sending this message, you must set the cbSize member
of the ti structure to sizeof(TOOLINFO).

Return ValuesReturns TRUE if the tool occupies the specified point or FALSE otherwise.See AlsoTOOLINFO, TTHITTESTINFO

TTM_NEWTOOLRECT
The TTM_NEWTOOLRECT message sets a new bounding rectangle for a tool.TTM_NEWTOOLRECT
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure. The hwnd and uId members identify a tool, and the rect
member specifies the new bounding rectangle. Before sending this message, you must set
the cbSize member of this structure to sizeof(TOOLINFO).

Return ValuesNo return value.See AlsoTOOLINFO

TTM_RELAYEVENT
The TTM_RELAYEVENT message passes a mouse message to a tooltip control for processing.TTM_RELAYEVENT
wParam = 0;
lParam = (LPARAM) (LPMSG) lpmsg;
Parameterslpmsg

Pointer to an MSG structure that contains the message to relay.
Return ValuesNo return value.RemarksA tooltip control processes only the following messages passed to it by the TTM_RELAYEVENT

message.

WM_LBUTTONDOWN WM_MOUSEMOVE

WM_LBUTTONUP WM_RBUTTONDOWN
WM_MBUTTONDOWN WM_RBUTTONUP
WM_MBUTTONUP

All other messages are ignored.See AlsoMSG

TTM_SETDELAYTIME
The TTM_SETDELAYTIME message sets the initial, reshow, and autopopup durations for a
tooltip control.TTM_SETDELAYTIME
wParam = (WPARAM) uFlag;
lParam = (LPARAM) (int) iDelay;
ParametersuFlag

Duration to set. This parameter can be one of the following values:
Value Meaning
TTDT_AUTOMATIC Automatically calculates the initial, reshow,

and autopopup durations based on the
value of iDelay.

TTDT_AUTOPOP Sets the length of time before the tooltip
window is hidden if the cursor remains
stationary in the tool's bounding rectangle
after the tooltip window has appeared.

TTDT_INITIAL Sets the length of time that the cursor must
remain stationary within the bounding
rectangle of a tool before the tooltip window
is displayed.

TTDT_RESHOW Sets the length of the delay before
subsequent tooltip windows are displayed
when the cursor is moved from one tool to
another.

iDelay
New duration, in milliseconds.

Return ValuesNo return value.

TTM_SETTOOLINFO
The TTM_SETTOOLINFO message sets the information that a tooltip control maintains for a tool.TTM_SETTOOLINFO
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure that specifies the information to set. Before sending this
message, you must set the cbSize member of this structure to sizeof(TOOLINFO).

Return ValuesNo return value.See AlsoTOOLINFO

TTM_UPDATETIPTEXT
The TTM_UPDATETIPTEXT message sets the tooltip text for a tool.TTM_UPDATETIPTEXT
wParam = 0;
lParam = (LPARAM) (LPTOOLINFO) lpti;
Parameterslpti

Pointer to a TOOLINFO structure. The hinst and lpszText members must specify the
instance handle and the pointer to the text. The hwnd and uId members identify the tool to
update. Before sending this message, you must set the cbSize member of this structure to
sizeof(TOOLINFO).

Return ValuesNo return value.See AlsoTOOLINFO

TTM_WINDOWFROMPOINT
The TTM_WINDOWFROMPOINT message allows a subclass procedure to cause a tooltip to
display text for a window other than the one beneath the mouse cursor.TTM_WINDOWFROMPOINT
wParam = 0;
lParam = (POINT FAR *) lppt;
Parameterslppt

Pointer to a POINT structure that defines the point to be checked.
Return ValuesThe return value is the handle to the window that contains the point, or NULL if no window exists

at the specified point.RemarksThis message is intended to be processed by an application that subclasses a tooltip. It is not
intended to be sent by an application. A tooltip sends this message to itself before displaying the
text for a window. By changing the coordinates of the point specified by lppt, the subclass
procedure can cause the tooltip to display text for a window other than the one beneath the
mouse cursor.See AlsoPOINT

TTN_NEEDTEXT
The TTN_NEEDTEXT notification message retrieves text for a tool. This notification message is
sent in the form of a WM_NOTIFY message.TTN_NEEDTEXT
idTT = (int) wParam;
lpttt = (LPTOOLTIPTEXT) lParam;
ParametersidTT

Identifier of the tooltip control.
lpttt

Pointer to a TOOLTIPTEXT structure. The hdr member identifies the tool for which text is
needed. The receiving window can specify the string by taking one of the following actions:
· Copying the text to the buffer specified by the szText member.
· Copying the address of the buffer that contains the text to the lpszText member.
· Copying the identifier of a string resource to the lpszText member and copying the handle

of the instance that contains the resource to the hinst member.
Return ValuesNo return value.RemarksThis notification message is sent to the window specified in the hwnd member of the TOOLINFO

structure for the tool. This notification is sent only if the LPSTR_TEXTCALLBACK value is
specified when the tool is added to a tooltip control.

When a TTN_NEEDTEXT notification is received, the application can set or clear the
TTF_RTLREADING value in the uFlags member of the TOOLTIPTEXT structure pointed to by
lpttt as required. This is the only flag that can be changed during the notification callback.See AlsoTOOLINFO, TOOLTIPTEXT, WM_NOTIFY

TTN_POP
The TTN_POP notification message notifies the owner window that a tooltip is about to be hidden.
This notification message is sent in the form of a WM_NOTIFY message.TTN_POP
idTT = (int) wParam;
pnmh = (NMHDR FAR *) lParam;
ParametersidTT

Identifier of the tooltip control.
lptttReturn ValuesNo return value.RemarksAddress of an NMHDR structure.See AlsoNMHDR, WM_NOTIFY

TTN_SHOW
The TTN_SHOW notification message notifies the owner window that a tooltip is about to be
displayed. This notification message is sent in the form of a WM_NOTIFY message.TTN_SHOW
idTT = (int) wParam;
pnmh = (NMHDR FAR *) lParam;
ParametersidTT

Identifier of the tooltip control.
lptttReturn ValuesNo return value.RemarksAddress of an NMHDR structure.See AlsoNMHDR, WM_NOTIFY

TVM_CREATEDRAGIMAGE
The TVM_CREATEDRAGIMAGE message creates a dragging bitmap for the specified item in a
tree-view control, creates an image list for the bitmap, and adds the bitmap to the image list. An
application can display the image when dragging the item by using the image-list functions. You
can send this message explicitly or by using the TreeView_CreateDragImage macro.TVM_CREATEDRAGIMAGE
wParam = 0;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametershitem

Handle to the item that receives the new dragging bitmap.
Return ValuesReturns the handle of the image list to which the dragging bitmap was added if successful or

NULL otherwise.RemarksIf you create a tree-view control without an associated image list, you cannot use the
TVM_CREATEDRAGIMAGE message to create the image to display during a drag operation.
You must implement your own way to support drag and drop cursor.See AlsoTreeView_CreateDragImage

TVM_DELETEITEM
The TVM_DELETEITEM message removes an item from a tree-view control. You can send this
message explicitly or by using the TreeView_DeleteItem or TreeView_DeleteAllItems macro.TVM_DELETEITEM
wParam = 0;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametershitem

Handle to the item to delete. If hitem is the TVI_ROOT value, all items are deleted from the
tree-view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the item label is being edited, the edit operation is canceled and the parent window receives the
TVN_ENDLABELEDIT notification message. The parent window receives a TVN_DELETEITEM
notification message when the item is removed.See AlsoTreeView_DeleteAllItems, TreeView_DeleteItem, TVN_DELETEITEM, TVN_ENDLABELEDIT

TVM_EDITLABEL
The TVM_EDITLABEL message begins in-place editing of the specified item's text, replacing the
text of the item with a single-line edit control containing the text. This message implicitly selects
and focuses the specified item. You can send this message explicitly or by using the
TreeView_EditLabel macro.TVM_EDITLABEL
wParam = 0;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametershitem

Handle to the item to edit.
Return ValuesReturns the handle to the edit control used to edit the item text if successful or NULL otherwise.RemarksThis message sends a TVN_BEGINLABELEDIT notification message to the parent of the tree-

view control.

When the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but do not destroy it.

The control must have the focus before you send this message to the control. Focus can be set
using the SetFocus function.See AlsoTreeView_EditLabel, TVN_BEGINLABELEDIT, SetFocus

TVM_ENDEDITLABELNOW
The TVM_ENDEDITLABELNOW message ends the editing of a tree-view item's label. You can
send this message explicitly or by using the TreeView_EndEditLabelNow macro.TVM_ENDEDITLABELNOW
wParam = (WPARAM) (BOOL) fCancel;
lParam = 0;
ParametersfCancel

Variable that indicates whether the editing is canceled without being saved to the label. If this
parameter is TRUE, the system cancels editing without saving the changes. Otherwise, the
system saves the changes to the label.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThis message causes the TVN_ENDLABELEDIT notification message to be sent to the parent
window of the tree-view control.See AlsoTreeView_EndEditLabelNow, TVN_ENDLABELEDIT

TVM_ENSUREVISIBLE
The TVM_ENSUREVISIBLE message ensures that a tree-view item is visible, expanding the
parent item or scrolling the tree-view control, if necessary. You can send this message explicitly or
by using the TreeView_EnsureVisible macro.TVM_ENSUREVISIBLE
wParam = 0;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametershitem

Handle to the item.
Return ValuesReturns TRUE if the system scrolled the items in the tree-view control to ensure that the specified

item is visible. Otherwise, the message returns FALSE.RemarksIf the TVM_ENSUREVISIBLE message expands the parent item, the parent window receives the
TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification messages.See AlsoTreeView_EnsureVisible, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING

TVM_EXPAND
The TVM_EXPAND message expands or collapses the list of child items, if any, associated with
the specified parent item. You can send this message explicitly or by using the
TreeView_Expand macro.TVM_EXPAND
wParam = (WPARAM) (UINT) flag;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametersflag

Action flag. This parameter can be one of the following values:
Value Meaning
TVE_COLLAPSE Collapses the list.
TVE_COLLAPSERESETCollapses the list and removes the child

items. Note that TVE_COLLAPSE must
also be specified.

TVE_EXPAND Expands the list.
TVE_TOGGLE Collapses the list if it is currently expanded

or expands it if it is currently collapsed.

hitem
Handle to the parent item to expand or collapse.

Return ValuesReturns TRUE if any change took place or FALSE otherwise.RemarksThis message does not send the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification
messages to the parent window.See AlsoTreeView_Expand, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING

TVM_GETCOUNT
The TVM_GETCOUNT message retrieves a count of the items in a tree-view control. You can
send this message explicitly or by using the TreeView_GetCount macro.TVM_GETCOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns the count of items.See AlsoTreeView_GetCount

TVM_GETEDITCONTROL
The TVM_GETEDITCONTROL message retrieves the handle to the edit control being used to edit
a tree-view item's text. You can send this message explicitly or by using the
TreeView_GetEditControl macro.TVM_GETEDITCONTROL
wParam = 0;
lParam = 0;
Return ValuesReturns the handle to the edit control if successful or NULL otherwise.See AlsoTreeView_GetEditControl

TVM_GETIMAGELIST
The TVM_GETIMAGELIST message retrieves the handle to the normal or state image list
associated with a tree-view control. You can send this message explicitly or by using the
TreeView_GetImageList macro.TVM_GETIMAGELIST
wParam = (WPARAM) iImage;
lParam = 0;
ParametersiImage

Type of image list to retrieve. This parameter can be one of the following values:
Value Meaning
TVSIL_NORMAL Retrieves the normal image list, which

contains the selected and unselected
images for the tree-view item.

TVSIL_STATE Retrieves the state image list, which
contains the images for tree-view items that
are in a user-defined state.

Return ValuesReturns the handle to the image list.See AlsoTreeView_GetImageList

TVM_GETINDENT
The TVM_GETINDENT message retrieves the amount, in pixels, that child items are indented
relative to their parent items. You can send this message explicitly or by using the
TreeView_GetIndent macro.TV_GETINDENT
wParam = 0;
lParam = 0;
Return ValuesReturns the amount of indentation.See AlsoTreeView_GetIndent

TVM_GETISEARCHSTRING
The TVM_GETISEARCHSTRING message retrieves the incremental search string for a tree-view
control. The tree-view control uses the incremental search string to select an item based on
characters typed by the user. You can send this message explicitly or by using the
TreeView_GetISearchString macro.TVM_GETISEARCHSTRING
wParam = 0;
lParam = (LPARAM) (LPSTR) lpsz;
Parameterslpsz

Pointer to the buffer that receives the incremental search string.
Return ValuesReturns the number of characters in the incremental search string.

If the tree-view control is not in incremental search mode, the return value is zero.See AlsoTreeView_GetISearchString

TVM_GETITEM
The TVM_GETITEM message retrieves some or all of a tree-view item's attributes. You can send
this message explicitly or by using the TreeView_GetItem macro.TVM_GETITEM
wParam = 0;
lParam = (LPARAM) (TV_ITEM FAR*) pitem;
Parameterspitem

Pointer to a TV_ITEM structure that specifies the information to retrieve and receives
information about the item. When the message is sent, the hItem member identifies the item
to retrieve information about and the mask member specifies the attributes to retrieve.
If mask specifies the TVIF_TEXT value, the pszText member must contain the pointer to the
buffer that receives the item text and the cchTextMax member must specify the size of the
buffer.
If mask specifies the TVIF_STATE value, the stateMask member indicates which item states
are to be returned.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTreeView_GetItem, TV_ITEM

TVM_GETITEMRECT
The TVM_GETITEMRECT message retrieves the bounding rectangle for a tree-view item and
indicates whether the item is visible. You can send this message explicitly or by using the
TreeView_GetItemRect macro.TVM_GETITEMRECT
wParam = (WPARAM) (BOOL) fItemRect;
lParam = (LPARAM) (RECT FAR*) prc;
ParametersfItemRect

Value specifying the portion of the item for which to retrieve the bounding rectangle. If this
parameter is TRUE, the bounding rectangle includes only the text of the item. Otherwise, it
includes the entire line that the item occupies in the tree-view control.

prc
Pointer to a RECT structure that receives the bounding rectangle. The coordinates are relative
to the upper-left corner of the tree-view control.

Return ValuesIf the item is visible and retrieves the bounding rectangle, the return value is TRUE. Otherwise,
the message returns FALSE and does not retrieve the bounding rectangle.See AlsoRECT, TreeView_GetItemRect

TVM_GETNEXTITEM
The TVM_GETNEXTITEM message retrieves the tree-view item that bears the specified
relationship to a specified item. You can send this message explicitly, by using the
TreeView_GetNextItem macro, or by using one of the following related macros:
TreeView_GetChild, TreeView_GetDropHilite, TreeView_GetFirstVisible,
TreeView_GetNextSibling, TreeView_GetNextVisible, TreeView_GetParent,
TreeView_GetPrevSibling, TreeView_GetPrevVisible, TreeView_GetRoot, or
TreeView_GetSelection.TVM_GETNEXTITEM
wParam = (WPARAM) (UINT) flag;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametersflag

Flag specifying the item to retrieve. This parameter can be one of the following values:
Value Message
TVGN_CARET Retrieves the currently selected item.

You can use the
TreeView_GetSelection macro to
send this message.

TVGN_CHILD Retrieves the first child item of the item
specified by the hitem parameter. You
can use the TreeView_GetChild
macro to send this message.

TVGN_DROPHILITE Retrieves the item that is the target of a
drag-and-drop operation. You can use
the TreeView_GetDropHilite macro to
send this message.

TVGN_FIRSTVISIBLE Retrieves the first visible item. You can
use the TreeView_GetFirstVisible
macro to send this message.

TVGN_NEXT Retrieves the next sibling item. You
can use the
TreeView_GetNextSibling macro to
send this message.

TVGN_NEXTVISIBLE Retrieves the next visible item that
follows the specified item. The
specified item must be visible. Use the
TVM_GETITEMRECT message to
determine whether an item is visible.
You can use the
TreeView_GetNextVisible macro to
send this message.

TVGN_PARENT Retrieves the parent of the specified
item. You can use the
TreeView_GetParent macro to send
this message.

TVGN_PREVIOUS Retrieves the previous sibling item.
You can use the
TreeView_GetPrevSibling macro to
send this message.

TVGN_PREVIOUSVISIBLERetrieves the first visible item that
precedes the specified item. The
specified item must be visible. Use the
TVM_GETITEMRECT message to
determine whether an item is visible.
You can use the
TreeView_GetPrevVisible macro to
send this message.

TVGN_ROOT Retrieves the topmost or very first item
of the tree-view control. You can use
the TreeView_GetRoot macro to send
this message.

hitem
Handle to an item.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetChild, TreeView_GetDropHilite, TreeView_GetFirstVisible,
TreeView_GetNextSibling, TreeView_GetNextVisible, TreeView_GetParent,

TreeView_GetPrevSibling, TreeView_GetPrevVisible, TreeView_GetRoot,
TreeView_GetSelection, TVM_GETITEMRECT

TVM_GETVISIBLECOUNT
The TVM_GETVISIBLECOUNT message obtains the number of items that are fully visible in the
client window of a tree-view control. You can send this message explicitly, or by using the
TreeView_GetVisibleCount macro.TVM_GETVISIBLECOUNT
wParam = 0;
lParam = 0;
Return ValuesReturns the number of items that are fully visible in the client window of the tree-view control.RemarksNote that the return value is the number of fully-visible items. If you can see all of 20 items, and

part of one more item, the return value is 20, not 21.See AlsoTreeView_GetVisibleCount

TVM_HITTEST
The TVM_HITTEST message determines the location of the specified point relative to the client
area of a tree-view control. You can send this message explicitly or by using the
TreeView_HitTest macro.TVM_HITTEST
wParam = 0;
lParam = (LPARAM) (LPTV_HITTESTINFO) lpht;
Parameterslpht

Pointer to a TV_HITTESTINFO structure. When the message is sent, the pt member specifies
the coordinates of the point to test. When the message returns, the hItem member is the
handle to the item at the specified point or NULL if no item occupies the point. Also, when the
message returns, the flags member is a hit-test value that indicates the location of the
specified point. For a list of hit-test values, see the description of the TV_HITTESTINFO
structure.

Return ValuesReturns the handle to the tree-view item that occupies the specified point or NULL if no item
occupies the point.See AlsoTreeView_HitTest, TV_HITTESTINFO

TVM_INSERTITEM
The TVM_INSERTITEM message inserts a new item in a tree-view control. You can send this
message explicitly or by using the TreeView_InsertItem macro.TVM_INSERTITEM
wParam = 0;
lParam = (LPARAM) (LPTV_INSERTSTRUCT) lpis;
Parameterslpis

Pointer to a TV_INSERTSTRUCT structure that specifies the attributes of the tree-view item.
Return ValuesReturns the handle to the new item if successful or NULL otherwise.See AlsoTreeView_InsertItem, TV_INSERTSTRUCT, TVN_ENDLABELEDIT

TVM_SELECTITEM
The TVM_SELECTITEM message selects the specified tree-view item, scrolls the item into view,
or redraws the item in the style used to indicate the target of a drag-and-drop operation. You can
send this message explicitly or by using the TreeView_Select, TreeView_SelectItem, or
TreeView_SelectDropTarget macro.TV_SELECTITEM
wParam = (WPARAM) flag;
lParam = (LPARAM) (HTREEITEM) hitem;
Parametersflag

Action flag. This parameter can be one of the following values:
Value Meaning
TVGN_CARET Sets the selection to the given item.
TVGN_DROPHILITE Redraws the given item in the style used to

indicate the target of a drag and drop
operation.

TVGN_FIRSTVISIBLE Scrolls the tree view vertically so that the
given item is the first visible item.

hitem
Handle to an item. If hitem is NULL, the selection is removed from the currently selected item,
if any.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the TVGN_CARET value is specified, the parent window receives the TVN_SELCHANGING
and TVN_SELCHANGED notification messages. Also, if the specified item is the child of a
collapsed parent item, the parent's list of child items is expanded to reveal the specified item. In
this case, the parent window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages.

Using the TreeView_SelectItem macro is equivalent to sending the TVM_SELECTITEM message
with flag set to the TVGN_CARET value. Using the TreeView_SelectDropTarget macro is
equivalent to sending the TVM_SELECTITEM message with flag set to the TVGN_DROPHILITE
value. Using TreeView_SelectSetFirstVisible is equivalent to sending the TVM_SELECTITEM
message with flag set to the TVGN_FIRSTVISIBLE value.See AlsoTreeView_Select, TreeView_SelectItem, or TreeView_SelectDropTarget,
TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_SELCHANGED, TVN_SELCHANGING

TVM_SETIMAGELIST
The TVM_SETIMAGELIST message sets the normal or state image list for a tree-view control and
redraws the control using the new images. You can send this message explicitly or by using the
TreeView_SetImageList macro.TVM_SETIMAGELIST
wParam = (WPARAM) iImage;
lParam = (LPARAM) (HIMAGELIST) himl;
ParametersiImage

Type of image list to set. For a list of possible values, see the description of the
TVM_GETIMAGELIST message.

himl
Handle to the image list. If himl is NULL, all images are removed from the tree-view control.

Return ValuesReturns the handle to the previous image list, if any, or NULL otherwise.See AlsoTreeView_SetImageList, TVM_GETIMAGELIST

TVM_SETINDENT
The TVM_SETINDENT message sets the width of indentation for a tree-view control and redraws
the control to reflect the new width. You can send this message explicitly or by using the
TreeView_SetIndent macro.TVM_SETINDENT
wParam = (WPARAM) indent;
lParam = 0;
Parametersindent

Width, in pixels, of the indentation. If this parameter is less than the system-defined minimum
width, the new width is set to the system-defined minimum.

Return ValuesNo return value.See AlsoTreeView_SetIndent

TVM_SETITEM
The TVM_SETITEM sets some or all of a tree-view item's attributes. You can send this message
explicitly or by using the TreeView_SetItem macro.TVM_SETITEM
wParam = 0;
lParam = (LPARAM) (const TV_ITEM FAR*) pitem;
Parameterspitem

Pointer to a TV_ITEM structure that contains the new item attributes. The hItem member
identifies the item, and the mask member specifies which attributes to set.
If mask specifies the TVIF_TEXT value, the pszText member is the pointer to a null-
terminated string and the cchTextMax member is ignored.
If mask specifies the TVIF_STATE value, the stateMask member indicates which item states
to change and the state member contains the values for those states.

Return ValuesReturns zero if successful or - 1 otherwise.See AlsoTreeView_SetItem, TV_ITEM

TVM_SORTCHILDREN
The TVM_SORTCHILDREN message sorts the child items of the specified parent item in a tree-
view control. You can send this message explicitly or by using the TreeView_SortChildren
macro.TVM_SORTCHILDREN
wParam = 0; // reserved for future use; must be zero
lParam = (LPARAM) (HTREEITEM) hitem;
ParametersfRecurse

Reserved for future use. Must be zero.
hitem

Handle to the parent item whose child items are to be sorted.
Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTreeView_SortChildren

TVM_SORTCHILDRENCB
The TVM_SORTCHILDRENCB message sorts tree-view items using an application-defined
callback function that compares the items. You can send this message explicitly or by using the
TreeView_SortChildrenCB macro.TVM_SORTCHILDRENCB
wParam = 0; // reserved for future use; must be zero
lParam = (LPARAM) (LPTV_SORTCB) psort;
ParametersfRecurse

Reserved for future use. Must be zero.
psort

Pointer to a TV_SORTCB structure. The lpfnCompare member is the pointer to the
application-defined callback function, which is called during the sort operation each time the
relative order of two list items needs to be compared. For more information about the callback
function, see the description of TV_SORTCB.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTreeView_SortChildrenCB, TV_SORTCB

TVN_BEGINDRAG
The TVN_BEGINDRAG notification message notifies a tree-view control's parent window that a
drag-and-drop operation involving the left mouse button is being initiated. This notification
message is sent in the form of a WM_NOTIFY message.TVN_BEGINDRAG
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemNew member is a TV_ITEM structure that
contains valid information about the item being dragged in the hItem, state, and lParam
members. The ptDrag member specifies the current screen coordinates of the mouse.

Return ValuesNo return value.RemarksA tree-view control that has the TVS_DISABLEDRAGDROP style does not send this notification
message.See AlsoNM_TREEVIEW, TV_ITEM, WM_NOTIFY

TVN_BEGINLABELEDIT
The TVN_BEGINLABELEDIT notification message notifies a tree-view control's parent window
about the start of label editing for an item. This notification message is sent in the form of a
WM_NOTIFY message.TVN_BEGINLABELEDIT
ptvdi = (TV_DISPINFO FAR *) lParam
Parametersptvdi

Pointer to a TV_DISPINFO structure. The item member is a TV_ITEM structure that contains
valid information about the item being edited in the hItem, state, lParam, and pszText
members.

Return ValuesReturns TRUE to cancel label editing.See AlsoTV_DISPINFO, TV_ITEM, WM_NOTIFY

TVN_BEGINRDRAG
The TVN_BEGINRDRAG notification message notifies a tree-view control's parent window about
the initiation of a drag-and-drop operation involving the right mouse button. This notification
message is sent in the form of a WM_NOTIFY message.TVN_BEGINRDRAG
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemNew member is a TV_ITEM structure that
contains valid information in the hItem, state, and lParam members about the item to be
dragged. The ptDrag member specifies the current screen coordinates of the mouse.

Return ValuesNo return value.See AlsoNM_TREEVIEW, TV_ITEM, WM_NOTIFY

TVN_DELETEITEM
The TVN_DELETEITEM notification message notifies a tree-view control's parent window that an
item has been deleted. This notification message is sent in the form of a WM_NOTIFY message.TVN_DELETEITEM
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemOld member is a TV_ITEM structure
containing valid information about the item that was deleted in the hItem and lParam
members.

Return ValuesNo return value.See AlsoNM_TREEVIEW, TV_ITEM, WM_NOTIFY

TVN_ENDLABELEDIT
The TVN_ENDLABELEDIT notification message notifies a tree-view control's parent window
about the end of label editing for an item. This notification message is sent in the form of a
WM_NOTIFY message.TVN_ENDLABELEDIT
ptvdi = (TV_DISPINFO FAR *) lParam
Parametersptvdi

Pointer to a TV_DISPINFOstructure. The item member of this structure is a TV_ITEM
structure whose hItem, lParam, and pszText members contain valid information about the
item that was edited.
If label editing was canceled, the pszText member of the TV_ITEM structure is NULL;
otherwise, pszText is a pointer to the edited text.

Return ValuesIf the pszText member is non-NULL, return TRUE to set the item's label to the edited text. Return
FALSE to reject the edited text and revert to the original label.

If the pszText member is NULL, the return value is ignored.See AlsoWM_NOTIFY, TV_DISPINFO, TV_ITEM

TVN_GETDISPINFO
The TVN_GETDISPINFO notification message requests that a tree-view control's parent window
provide information needed to display or sort an item. This notification message is sent in the form
of a WM_NOTIFY message.TVN_GETDISPINFO
ptvdi = (TV_DISPINFO FAR *) lParam
Parametersptvdi

Pointer to a TV_DISPINFO structure. The item member is a TV_ITEM structure whose mask,
hItem, state, and lParam members specify the type of information required. You must fill the
members of the structure with the appropriate information.

Return ValuesNo return value.Remarks
See AlsoTV_DISPINFO, TV_ITEM, WM_NOTIFY

TVN_ITEMEXPANDED
The TVN_ITEMEXPANDED notification message notifies a tree-view control's parent window that
a parent item's list of child items has expanded or collapsed. This notification message is sent in
the form of a WM_NOTIFY message.TVN_ITEMEXPANDED
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemNew member is a TV_ITEM structure that
contains valid information about the parent item in the hItem, state, and lParam members.
The action member indicates whether the list expanded or collapsed. For a list of possible
values, see the description of the TVM_EXPAND message.

Return ValuesNo return value.See AlsoNM_TREEVIEW, TV_ITEM, TVM_EXPAND, WM_NOTIFY

TVN_ITEMEXPANDING
The TVN_ITEMEXPANDING notification message notifies a tree-view control's parent window
that a parent item's list of child items is about to expand or collapse. This notification message is
sent in the form of a WM_NOTIFY message.TVN_ITEMEXPANDING
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemNew member is a TV_ITEM structure that
contains valid information about the parent item in the hItem, state, and lParam members.
The action member indicates whether the list is to expand or collapse. For a list of possible
values, see the description of the TVM_EXPAND message.

Return ValuesReturns TRUE to prevent the list from expanding or collapsing.See AlsoNM_TREEVIEW, TV_ITEM, TVM_EXPAND, WM_NOTIFY

TVN_KEYDOWN
The TVN_KEYDOWN notification message notifies a tree-view control's parent window that the
user pressed a key and the tree-view control has the input focus. This notification message is sent
in the form of a WM_NOTIFY message.TVN_ITEMEXPANDING
ptvkd = (TV_KEYDOWN FAR *) lParam
Parametersptvkd

Pointer to a TV_KEYDOWN structure. The wVKey member specifies the virtual-key code.
Return ValuesNo return value.See AlsoTV_KEYDOWN, WM_NOTIFY

TVN_SELCHANGED
The TVN_SELCHANGED notification message notifies a tree-view control's parent window that
the selection has changed from one item to another. This notification message is sent in the form
of a WM_NOTIFY message.TVN_SELCHANGED
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemOld and itemNew members of the
NM_TREEVIEW structure are TV_ITEM structures that contain information about the
previously selected item and the newly selected item. Only the mask, hItem, state, and
lParam members of these structures are valid. The stateMask members of the TV_ITEM
structures specified by itemOld and itemNew are undefined on input.
The action member of the NM_TREEVIEW structure indicates the type of action that caused
the selection to change. It can be one of the following values:

Value Meaning
TVC_BYKEYBOARD By a key stroke
TVC_BYMOUSE By a mouse click
TVC_UNKNOWN Unknown

Return ValuesNo return value.See AlsoNM_TREEVIEW, WM_NOTIFY

TVN_SELCHANGING
The TVN_SELCHANGING notification message notifies a tree-view control's parent window that
the selection is about to change from one item to another. This notification message is sent in the
form of a WM_NOTIFY message.TVN_SELCHANGING
pnmtv = (NM_TREEVIEW FAR *) lParam
Parameterspnmtv

Pointer to an NM_TREEVIEW structure. The itemOld and itemNew members contain valid
information about the currently selected item and the newly selected item. The action
member indicates whether a mouse or keyboard action is causing the selection to change.
For a list of possible values, see the description of the TVN_SELCHANGED notification
message.

Return ValuesReturns TRUE to prevent the selection from changing.See AlsoNM_TREEVIEW, TVN_SELCHANGED, WM_NOTIFY

TVN_SETDISPINFO
The TVN_SETDISPINFO notification message notifies a tree-view control's parent window that it
must update the information it maintains about an item. This notification message is sent in the
form of a WM_NOTIFY message.TVN_SETDISPINFO
ptvdi = (TV_DISPINFO FAR *) lParam
Parametersptvdi

Pointer to a TV_DISPINFO structure. The item member is a TV_ITEM structure that contains
valid information about the item in the hItem and lParam members.

Return ValuesNo return value.RemarksThe system sends this notification message when the user has finished editing the label of an
item whose text is set to LPSTR_TEXTCALLBACK. The notification gives the parent window the
opportunity to store the new item text.See AlsoTV_DISPINFO, TV_ITEM, WM_NOTIFY

UDM_GETACCEL
The UDM_GETACCEL message retrieves acceleration information for an up-down control.UDM_GETACCEL
wParam = (WPARAM) cAccels;
lParam = (LPARAM) (LPUDACCEL) paAccels;
ParameterscAccels

Number of elements in the array specified by paAccels.
paAccels

Address of an array of UDACCEL structures that receives acceleration information.
Return ValuesThe return value is the number of accelerator structures retrieved.See AlsoUDACCEL

UDM_GETBASE
The UDM_GETBASE message retrieves the current radix base (that is, either base 10 or 16) for
an up-down control.UDM_GETBASE
wParam = 0;
lParam = 0;
Return ValuesThe return value is the current base value.

UDM_GETBUDDY
The UDM_GETBUDDY message retrieves the handle of the current buddy window.UDM_GETBUDDY
wParam = 0;
lParam = 0;
Return ValuesThe return value is the handle of the current buddy window.

UDM_GETPOS
The UDM_GETPOS message retrieves the current position of an up-down control.UDM_GETPOS
wParam = 0;
lParam = 0;
Return ValuesThe return value is the current position in the low-order word. If an error occurred, the high-order

word is nonzero.RemarksWhen processing this message, the up-down control updates its current position based on the
caption of the buddy window. The up-down control returns an error if there is no buddy window or
if the caption specifies an invalid or out-of-range value.

UDM_GETRANGE
The UDM_GETRANGE message retrieves the minimum and maximum positions (range) for an
up-down control.UDM_GETRANGE
wParam = 0;
lParam = 0;
Return ValuesThe return value is a 32-bit value that contains the minimum and maximum positions. The low-

order word is the maximum position for the control, and the high-order word is the minimum
position.

UDM_SETACCEL
The UDM_SETACCEL message sets the acceleration for an up-down control.UDM_SETACCEL
wParam = (WPARAM) nAccels;
lParam = (LPARAM) (LPUDACCEL) aAccels;
ParametersnAccels

Number of UDACCEL structures specified by aAccels.
aAccels

Address of an array of UDACCEL structures that contains acceleration information. Elements
should be sorted in ascending order based on the nSec member.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoUDACCEL

UDM_SETBASE
The UDM_SETBASE message sets the radix base for an up-down control. The base value
determines whether the buddy window displays numbers in decimal or hexadecimal digits.
Hexadecimal numbers are always unsigned, and decimal numbers are signed.UDM_SETBASE
wParam = (WPARAM) nBase;
lParam = 0;
ParametersnBase

New base value for the control. This parameter can be 10 for decimal or 16 for hexadecimal.
Return ValuesThe return value is the previous base value. If an invalid base is given, the return value is zero.

UDM_SETBUDDY
The UDM_SETBUDDY message sets the buddy window for an up-down control.UDM_SETBUDDY
wParam = (WPARAM) (HWND) hwndBuddy;
lParam = 0;
ParametershwndBuddy

Handle of the new buddy window.
Return ValuesThe return value is the handle of the previous buddy window.

UDM_SETPOS
The UDM_SETPOS message sets the current position for an up-down control.UDM_SETPOS
wParam = 0;
lParam = (LPARAM) MAKELONG((short) nPos, 0);
ParametersnPos

New position for the up-down control. This parameter must be in the range specified by the
upper and lower limits for the control.

Return ValuesThe return value is the previous position.

UDM_SETRANGE
The UDM_SETRANGE message sets the minimum and maximum positions (range) for an up-
down control.UDM_SETRANGE
wParam = 0;
lParam = (LPARAM) MAKELONG((short) nUpper, (short) nLower);
ParametersnUpper and nLower

Maximum position and minimum position for the up-down control. Neither position can be
greater than the UD_MAXVAL value or less than the UD_MINVAL value. In addition, the
difference between the two positions cannot exceed UD_MAXVAL.

Return ValuesNo return value.RemarksThe maximum position can be less than the minimum position. Clicking the up arrow moves the
current position closer to the maximum position, and clicking the down arrow moves towards the
minimum position.

UDN_DELTAPOS
The operating system sends the UDN_DELTAPOS notification message to the parent window of
an up-down control when the position of the control is about to change. This happens when the
user requests a change in the value by pressing the control's up or down arrow. The
UDN_DELTAPOS message is sent before the WM_VSCROLL or WM_HSCROLL message that
actually changes the control's position. This lets you examine, allow, modify, or disallow the
change. The UDN_DELTAPOS message is sent in the form of a WM_NOTIFY message.UDN_DELTAPOS
pnmud = (NM_UPDOWN FAR *) lParam
Parameterspnmud

Pointer to an NM_UPDOWN structure that contains information about the position change.
The iPos member of this structure contains the current position of the control.
The iDelta member of the structure is a signed integer that contains the proposed change in
position. If the user has clicked on the up button, this is a positive value. If the user has
clicked on the down button, this is a negative value.

Return ValuesReturn TRUE in response to this message to prevent the change in the control's position.

Return FALSE to allow the change in the control's position.See AlsoNM_UPDOWN, WM_COMMAND, WM_VSCROLL

WM_ACTIVATE
The WM_ACTIVATE message is sent when a window is being activated or deactivated. This
message is sent first to the window procedure of the top-level window being deactivated; it is then
sent to the window procedure of the top-level window being activated.WM_ACTIVATE
fActive = LOWORD(wParam); // activation flag
fMinimized = (BOOL) HIWORD(wParam); // minimized flag
hwndPrevious = (HWND) lParam; // window handle
ParametersfActive

Value of the low-order word of wParam. Specifies whether the window is being activated or
deactivated. This parameter can be one of the following values:

Value Meaning
WA_ACTIVE Activated by some method other than a

mouse click (for example, by a call to the
SetActiveWindow function or by use of the
keyboard interface to select the window).

WA_CLICKACTIVE Activated by a mouse click.
WA_INACTIVE Deactivated.

fMinimized
Value of the high-order word of wParam. Specifies the minimized state of the window being
activated or deactivated. A nonzero value indicates the window is minimized.

hwndPrevious
Value of lParam. Identifies the window being activated or deactivated, depending on the value
of the fActive parameter. If the value of fActive is WA_INACTIVE, hwndPrevious is the handle
of the window being activated. If the value of fActive is WA_ACTIVE or WA_CLICKACTIVE,
hwndPrevious is the handle of the window being deactivated. This handle can be NULL.

Return ValuesIf an application processes this message, it should return zero.Default ActionIf the window is being activated and is not minimized, the DefWindowProc function sets the
keyboard focus to the window.RemarksIf the window is activated by a mouse click, it also receives a WM_MOUSEACTIVATE message.See AlsoDefWindowProc, SetActiveWindow, WM_MOUSEACTIVATE, WM_NCACTIVATE

WM_ACTIVATEAPP
The WM_ACTIVATEAPP message is sent when a window belonging to a different application
than the active window is about to be activated. The message is sent to the application whose
window is being activated and to the application whose window is being deactivated.WM_ACTIVATEAPP
fActive = (BOOL) wParam; // activation flag
dwThreadID = (DWORD) lParam: // thread identifier
ParametersfActive

Value of wParam. Specifies whether the window is being activated or deactivated. This
parameter is TRUE if the window is being activated; it is FALSE if the window is being
deactivated.

dwThreadID
Value of lParam. Specifies a thread identifier. If the fActive parameter is TRUE, dwThreadID is
the identifier of the thread that owns the window being deactivated. If fActive is FALSE,
dwThreadID is the identifier of the thread that owns the window being activated.

Return ValuesIf an application processes this message, it should return zero.See AlsoWM_ACTIVATE

WM_ASKCBFORMATNAME
The WM_ASKCBFORMATNAME message is sent to the clipboard owner by a clipboard viewer
window to request the name of a CF_OWNERDISPLAY clipboard format.WM_ASKCBFORMATNAME
cchName = (DWORD) wParam // size of buffer
lpszFormatName = (LPTSTR) lParam // buffer to receive format name
ParameterscchName

Value of wParam. Specifies the size, in characters, of the buffer pointed to by the
lpszFormatName parameter.

lpszFormatName
Value of lParam. Points to the buffer that is to receive the clipboard format name.

Return ValuesIf an application processes this message, it should return zero.RemarksIn response to this message, the clipboard owner should copy the name of the owner-display
format to the specified buffer, not exceeding the buffer size specified by the cchName parameter.

A clipboard viewer window sends this message to the clipboard owner to determine the name of
the CF_OWNERDISPLAY format ¾ for example, to initialize a menu listing available formats.

WM_CANCELJOURNAL
The WM_CANCELJOURNAL message is posted to an application when a user cancels the
application's journaling activities. The message is posted with a NULL window handle.WM_CANCELJOURNAL
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value. It is meant to be processed from within an application's

main loop or a GetMessage hook procedure, not from a window procedure.RemarksJournal record and playback modes are modes imposed on the system that let an application
sequentially record or play back user input. The system enters these modes when an application
installs a JournalRecordProc or JournalPlaybackProc hook procedure. When the system is in
either of these journaling modes, applications must take turns reading input from the input queue.
If any one application stops reading input while the system is in a journaling mode, other
applications are forced to wait.

To ensure a robust system, one that cannot be hung up by any one application, Windows NT
automatically cancels any journalling activities when a user presses CTRL+ESC or CTRL+ALT+DEL.
The system then unhooks any journaling hook procedures, and posts a WM_CANCELJOURNAL
message, with a NULL window handle, to the application that set the journaling hook.

Since the WM_CANCELJOURNAL has a NULL window handle, it cannot be dispatched to a
window procedure. There are two ways for an application to see a WM_CANCELJOURNAL
message: If the application is running in its own main loop, it must catch the message between its
call to GetMessage or PeekMessage and its call to DispatchMessage. If the application is not
running in its own main loop, it must set a GetMsgProc hook procedure (via a call to
SetWindowsHookEx specifying the WH_GETMESSAGE hook type) that watches for the
message.

When an application sees a WM_CANCELJOURNAL message, it can assume two things: the
user has intentionally cancelled the journal record or playback mode, and the system has already
unhooked any journal record or playback hook procedures.

Note that the key combinations mentioned above (CTRL+ESC or CTRL+ALT+DEL) cause the system
to cancel journaling. If any one application is hung, they give the user a means of recovery. The
VK_CANCEL virtual keycode (usually implemented as the CTRL+BREAK key combination) is what
an application that is in journal record mode should watch for as a signal that the user wishes to
cancel the journaling activity. The difference is that watching for VK_CANCEL is a suggested
behavior for journaling applications, whereas CTRL+ESC or CTRL+ALT+DEL cause the system to
cancel journalling regardless of a journalling application's behavior.See AlsoDispatchMessage, GetMessage, JournalPlaybackProc, JournalRecordProc, GetMsgProc,
PeekMessage, SetWindowsHookEx

WM_CANCELMODE
The WM_CANCELMODE message is sent to the focus window when a dialog box or message
box is displayed; this enables the focus window to cancel modes, such as mouse capture.WM_CANCELMODE
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function cancels internal processing of standard scroll bar input, cancels

internal menu processing, and releases the mouse capture.See AlsoDefWindowProc, ReleaseCapture

WM_CAPTURECHANGED
The WM_CAPTURECHANGED message is sent to the window that is losing the mouse capture.WM_CAPTURECHANGED
hwndNewCapture = (HWND) lParam; // handle of window to gain mouse
capture
ParametershwndNewCapture

Value of lParam. Identifies the window that is gaining the mouse capture.
Return ValuesAn application should return zero if it processes this message.RemarksA window receives this message even if it calls ReleaseCapture itself. An application should not

attempt to set the mouse capture in response to this message.

When it receives this message, a window should redraw itself, if necessary, to reflect the new
mouse-capture state.See AlsoReleaseCapture, SetCapture

WM_CHANGECBCHAIN
The WM_CHANGECBCHAIN message is sent to the first window in the clipboard viewer chain
when a window is being removed from the chain.WM_CHANGECBCHAIN
hwndRemove = (HWND) wParam;// handle of window being removed
hwndNext = (HWND) lParam; // handle of next window in chain
ParametershwndRemove

Value of wParam. Identifies the window being removed from the clipboard viewer chain.
hwndNext

Value of lParam. Identifies the next window in the chain following the window being removed.
This parameter is NULL if the window being removed is the last window in the chain.

Return ValuesIf an application processes this message, it should return zero.RemarksEach clipboard viewer window saves the handle of the next window in the clipboard viewer chain.
Initially, this handle is the return value of the SetClipboardViewer function.

When a clipboard viewer window receives the WM_CHANGECBCHAIN message, it should call
the SendMessage function to pass the message to the next window in the chain, unless the next
window is the window being removed. In this case, the clipboard viewer should save the handle
specified by hwndNext as the next window in the chain.See AlsoSendMessage, SetClipboardViewer

WM_CHAR
The WM_CHAR message is posted to the window with the keyboard focus when a
WM_KEYDOWN message is translated by the TranslateMessage function. WM_CHAR contains
the character code of the key that was pressed.WM_CHAR
chCharCode = (TCHAR) wParam; // character code
lKeyData = lParam; // key data
ParameterschCharCode

Value of wParam. Specifies the character code of the key.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it is
an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is held down while the key is pressed; otherwise, the
value is 0.

30 Specifies the previous key state. The value is 1 if the key
is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is 1 if the key is
being released, or it is 0 if the key is being pressed.

Return ValuesAn application should return zero if it processes this message.RemarksBecause there is not necessarily a one-to-one correspondence between keys pressed and
character messages generated, the information in the high-order word of the lKeyData parameter
is generally not useful to applications. The information in the high-order word applies only to the
most recent WM_KEYDOWN message that precedes the posting of the WM_CHAR message.

For enhanced 101- and 102-key keyboards, extended keys are the right ALT and the right CTRL
keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and
arrow keys in the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in
the numeric keypad. Some other keyboards may support the extended-key bit in the lKeyData
parameter.See AlsoTranslateMessage, WM_KEYDOWN

WM_CHARTOITEM
The WM_CHARTOITEM message is sent by a list box with the LBS_WANTKEYBOARDINPUT
style to its owner in response to a WM_CHAR message.WM_CHARTOITEM
nKey = LOWORD(wParam);// key value
nCaretPos = HIWORD(wParam);// caret position
hwndListBox = (HWND) lParam; // handle of list box
ParametersnKey

Value of the low-order word of wParam. Specifies the value of the key the user pressed.
nCaretPos

Value of the high-order word of wParam. Specifies the current position of the caret.
hwndListBox

Value of lParam. Identifies the list box.
Return ValuesThe return value specifies the action that the application performed in response to the message. A

return value of - 1 or - 2 indicates that the application handled all aspects of selecting the item and
requires no further action by the list box. A return value of 0 or greater specifies the zero-based
index of an item in the list box and indicates that the list box should perform the default action for
the keystroke on the given item.Default ActionThe DefWindowProc function returns - 1.RemarksOnly owner-drawn list boxes that do not have the LBS_HASSTRINGS style can receive this
message.See AlsoDefWindowProc, WM_CHAR, WM_VKEYTOITEM

WM_CHILDACTIVATE
The WM_CHILDACTIVATE message is sent to a multiple document interface (MDI) child window
when the user clicks the window's title bar or when the window is activated, moved, or sized.WM_CHILDACTIVATE
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.See AlsoMoveWindow, SetWindowPos

WM_CHOOSEFONT_GETLOGFONT
Send the WM_CHOOSEFONT_GETLOGFONT message to a Font dialog box to retrieve
information about the user's current font selections.WM_CHOOSEFONT_GETLOGFONT
wParam = 0; // not used, must be zero
lParam = (LPLOGFONT) lplf; // address of struct. with font data
Parameterslplf

Pointer to a LOGFONT structure that receives information about the user's current font
selections.

Return ValuesThis message does not return a value.RemarksThe ChooseFont function creates a Font dialog box. When the user closes the Font dialog box,
the ChooseFont function returns information about the user's font selections in the
CHOOSEFONT structure. The lpLogFont member of the CHOOSEFONT structure is a pointer to
a LOGFONT structure.

Use the WM_CHOOSEFONT_GETLOGFONT message to get information about the user's
current font selections while the Font dialog box is open. For example, if you enable the Apply
button in the Font dialog box, send the message to get the font information to apply to the current
text selection.

Typically, you enable a CFHookProc hook procedure to process WM_COMMAND messages for
the Apply button. When the user clicks the Apply button, the hook procedure sends the
WM_CHOOSEFONT_GETLOGFONT message to the dialog box.See AlsoCFHookProc, ChooseFont, CHOOSEFONT, LOGFONT, WM_COMMAND

WM_CHOOSEFONT_SETFLAGS
Send the WM_CHOOSEFONT_SETFLAGS message to a Font dialog box to set the display
options for the dialog box.WM_CHOOSEFONT_SETFLAGS
wParam = 0; // not used, must be zero
lParam = (LPCHOOSEFONT) lpcf; // address of struct. with flags data
Parameterslpcf

Pointer to a CHOOSEFONT structure that contains new settings in the Flags member.
Return ValuesNo return value.RemarksThe ChooseFont function creates a Font dialog box and uses a CHOOSEFONT structure to

specify the initial values for the Flags member. Use the WM_CHOOSEFONT_SETFLAGS
message to specify different values for the Flags member while the Font dialog box is open.

Typically, you should send the WM_CHOOSEFONT_SETFLAGS message from a CFHookProc
hook procedure.See AlsoCFHookProc, ChooseFont, CHOOSEFONT

WM_CHOOSEFONT_SETLOGFONT
Send the WM_CHOOSEFONT_SETLOGFONT message to a Font dialog box to set the current
logical font information.WM_CHOOSEFONT_SETLOGFONT
wParam = 0; // not used, must be zero
lParam = (LPLOGFONT) lplf; // address of struct. with font data
Parameterslplf

Pointer to a LOGFONT structure that contains information about the current logical font.
Return ValuesNo return value.RemarksWhen you call the ChooseFont function to create a Font dialog box, you can use the lpLogFont

member of the CHOOSEFONT structure to specify a LOGFONT structure containing initial values
for the dialog box. Use the WM_CHOOSEFONT_SETLOGFONT message to specify a
LOGFONT structure with different values while the Font dialog box is open.

Typically, you would send the WM_CHOOSEFONT_SETLOGFONT message from a
CFHookProc hook procedure. The hook procedure can also send the
WM_CHOOSEFONT_GETLOGFONT and WM_CHOOSEFONT_SETFLAGS messages.See AlsoCFHookProc, ChooseFont, CHOOSEFONT, LOGFONT, WM_CHOOSEFONT_GETLOGFONT,
WM_CHOOSEFONT_SETFLAGS

WM_CLEAR
An application sends a WM_CLEAR message to an edit control or combo box to delete (clear) the
current selection, if any, from the edit control.WM_CLEAR
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksThe deletion performed by the WM_CLEAR message can be undone by sending the edit control

an EM_UNDO message.

To delete the current selection and place the deleted content on the clipboard, use the WM_CUT
message.

When sent to a combo box, the WM_CLEAR message is handled by its edit control. This
message has no effect when sent to a combo box with the CBS_DROPDOWNLIST style.See AlsoEM_UNDO, WM_COPY, WM_CUT, WM_PASTE

WM_CLOSE
The WM_CLOSE message is sent as a signal that a window or an application should terminate.WM_CLOSE
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function calls the DestroyWindow function to destroy the window.RemarksAn application can prompt the user for confirmation, prior to destroying a window, by processing

the WM_CLOSE message and calling the DestroyWindow function only if the user confirms the
choice.See AlsoDefWindowProc, DestroyWindow

WM_COMMAND
The WM_COMMAND message is sent when the user selects a command item from a menu,
when a control sends a notification message to its parent window, or when an accelerator
keystroke is translated.WM_COMMAND
wNotifyCode = HIWORD(wParam); // notification code
wID = LOWORD(wParam); // item, control, or accelerator identifier
hwndCtl = (HWND) lParam; // handle of control
ParameterswNotifyCode

Value of the high-order word of wParam. Specifies the notification code if the message is from
a control. If the message is from an accelerator, this parameter is 1. If the message is from a
menu, this parameter is 0.

wID
Value of the low-order word of wParam. Specifies the identifier of the menu item, control, or
accelerator.

hwndCtl
Value of lParam. Identifies the control sending the message if the message is from a control.
Otherwise, this parameter is NULL.

Return ValuesIf an application processes this message, it should return zero.RemarksAccelerator keystrokes that select items from the window menu are translated into
WM_SYSCOMMAND messages.

If an accelerator keystroke occurs that corresponds to a menu item when the window that owns
the menu is minimized, no WM_COMMAND message is sent. However, if an accelerator
keystroke occurs that does not match any of the items in the window's menu or in the window
menu, a WM_COMMAND message is sent, even if the window is minimized.

If an application enables a menu separator, the system sends a WM_COMMAND message with
the low-word of the wParam parameter set to zero when the user selects the separator.See AlsoWM_SYSCOMMAND

WM_COMPACTING
The WM_COMPACTING message is sent to all top-level windows when Windows detects more
than 12.5 percent of system time over a 30- to 60-second interval is being spent compacting
memory. This indicates that system memory is low.WM_COMPACTING
wCompactRatio = wParam; // compacting ratio
ParameterswCompactRatio

Value of wParam. Specifies the ratio of central processing unit (CPU) time currently spent by
Windows compacting memory to CPU time currently spent by Windows performing other
operations. For example, 0x8000 represents 50 percent of CPU time spent compacting
memory.

Return ValuesIf an application processes this message, it should return zero.RemarksWhen an application receives this message, it should free as much memory as possible, taking
into account the current level of activity of the application and the total number of applications
running with Windows.

WM_COMPAREITEM
Windows sends the WM_COMPAREITEM message to determine the relative position of a new
item in the sorted list of an owner-drawn combo box or list box. Whenever the application adds a
new item, Windows sends this message to the owner of a combo box or list box created with the
CBS_SORT or LBS_SORT style.WM_COMPAREITEM
idCtl = wParam; // control identifier
lpcis = (LPCOMPAREITEMSTRUCT) lParam; // structure with items
ParametersidCtl

Value of wParam. Specifies the identifier of the control that sent the WM_COMPAREITEM
message.

lpcis
Value of lParam. Points to a COMPAREITEMSTRUCT structure that contains the identifiers
and application-supplied data for two items in the combo or list box.

Return ValuesThe return value indicates the relative position of the two items. It may be any of the following:

Value Meaning

- 1 Item 1 precedes item 2 in the sorted order.
0 Items 1 and 2 are equivalent in the sorted order.
1 Item 1 follows item 2 in the sorted order.
RemarksWhen the owner of an owner-drawn combo box or list box receives this message, the owner

returns a value indicating which of the items specified by the COMPAREITEMSTRUCT structure
will appear before the other. Typically, Windows sends this message several times until it
determines the exact position for the new item.See AlsoCOMPAREITEMSTRUCT

WM_CONTEXTMENU
The WM_CONTEXTMENU message notifies a window that the user clicked the right mouse
button (right clicked) in the window.hwnd = (HWND) wParam;
xPos = LOWORD(lParam);
yPos = HIWORD(lParam);
Parametershwnd

Handle to the window in which the user right clicked the mouse. This can be a child window of
the window receiving the message. For more information about processing this message, see
the Remarks section.

xPos
Horizontal position of the cursor, in screen coordinates, at the time of the mouse click.

yPos
Vertical position of the cursor, in screen coordinates, at the time of the mouse click.

Return ValuesNo return value.RemarksA window can process this message by displaying a shortcut menu using the TrackPopupMenu
or TrackPopupMenuEx function.

If a window does not display a shortcut menu it should pass this message to the DefWindowProc
function. If a window is a child window, DefWindowProc sends the message to the parent.
Otherwise, DefWindowProc displays a default shortcut menu if the specified position is in the
window's caption.

DefWindowProc generates the WM_CONTEXTMENU message when it processes the
WM_RBUTTONUP or WM_NCRBUTTONUP message.See AlsoDefWindowProc, TrackPopupMenu, TrackPopupMenuEx, WM_NCRBUTTONUP,
WM_RBUTTONUP

WM_COPY
An application sends the WM_COPY message to an edit control or combo box to copy the current
selection to the clipboard in CF_TEXT format.WM_COPY
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksWhen sent to a combo box, the WM_COPY message is handled by its edit control. This message

has no effect when sent to a combo box with the CBS_DROPDOWNLIST style.See AlsoWM_CLEAR, WM_CUT, WM_PASTE

WM_COPYDATA
The WM_COPYDATA message is sent when an application passes data to another application.WM_COPYDATA
wParam = (WPARAM) (HWND) hwnd; // handle of sending window
lParam = (LPARAM) (PCOPYDATASTRUCT) pcds; // pointer to structure with
data
Parametershwnd

Identifies the window passing the data.
pcds

Points to a COPYDATASTRUCT structure that contains the data to be passed.
Return ValuesIf the receiving application processes this message, it should return TRUE; otherwise, it should

return FALSE.RemarksAn application must use the SendMessage function to send this message, not the PostMessage
function.

The data being passed must not contain pointers or other references to objects not accessible to
the application receiving the data.

While this message is being sent, the referenced data must not be changed by another thread of
the sending process.

The receiving application should consider the data read-only. The pcds parameter is valid only
during the processing of the message. The receiving application should not free the memory
referenced by pcds. If the receiving application must access the data after SendMessage returns,
it must copy the data into a local buffer.See AlsoPostMessage, SendMessage, COPYDATASTRUCT

WM_CPL_LAUNCH
An application sends the WM_CPL_LAUNCH message to Windows Control Panel to request that
a Control Panel application be started.WM_CPL_LAUNCH
hwnd = (HWND) wParam;// handle of sending window
lpszAppName = (LPSTR) lParam; // application-name string
Parametershwnd

Value of wParam. Specifies the handle of the window sending the message. The
WM_CPL_LAUNCHED message is sent to this window.

lpszAppName
Value of lParam. Specifies a far pointer to a string containing the name of the Control Panel
application to open.

Return ValuesIf the application starts, the return value is TRUE; otherwise, it is FALSE.See AlsoWM_CPL_LAUNCHED

WM_CPL_LAUNCHED
The WM_CPL_LAUNCHED message is sent when a Control Panel application, started by the
WM_CPL_LAUNCH message, has closed. The WM_CPL_LAUNCHED message is sent to the
window identified by the wParam parameter of the WM_CPL_LAUNCH message that started the
application.WM_CPL_LAUNCHED
fAppStarted = (BOOL) wParam;
ParametersfAppStarted

Value of wParam. Specifies whether the application was started. If the application was
started, this parameter is TRUE; otherwise, it is FALSE.

Return ValuesThe value returned by the application is ignored for this message.See AlsoWM_CPL_LAUNCH

WM_CREATE
The WM_CREATE message is sent when an application requests that a window be created by
calling the CreateWindowEx or CreateWindow function. The window procedure of the new
window receives this message after the window is created, but before the window becomes
visible. The message is sent before the CreateWindowEx or CreateWindow function returns.WM_CREATE
lpcs = (LPCREATESTRUCT) lParam; // structure with creation data
ParameterslParam

Value of lParam. Points to a CREATESTRUCT structure that contains information about the
window being created. The members of CREATESTRUCT are identical to the parameters of
the CreateWindowEx function.

Return ValuesIf an application processes this message, it should return 0 to continue creation of the window. If
the application returns - 1, the window is destroyed and the CreateWindowEx or CreateWindow
function returns a NULL handle.See AlsoCreateWindow, CreateWindowEx, CREATESTRUCT, WM_NCCREATE

WM_CTLCOLORBTN
The WM_CTLCOLORBTN message is sent to the parent window of a button when the button is
about to be drawn. By responding to this message, the parent window can set a button's text and
background colors.WM_CTLCOLORBTN
hdcButton = (HDC) wParam; // handle of button display context
hwndButton = (HWND) lParam; // handle of button
ParametershdcButton

Value of wParam. Identifies the display context for the button.
hwndButton

Value of lParam. Identifies the button.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the button.Default ActionThe DefWindowProc function selects the default system colors for the button.RemarksThe WM_CTLCOLORBTN message is never sent between threads. It is sent only within one
thread.

The text color of a check box or radio button applies to the box or button, its check mark, and the
text. The focus rectangle for these buttons remains the system default color (typically black). The
text color of a group box applies to the text but not to the line that defines the box. The text color
of a push button applies only to its focus rectangle; it does not affect the color of the text.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORDLG, WM_CTLCOLOREDIT,
WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX, WM_CTLCOLORSCROLLBAR,
WM_CTLCOLORSTATIC

WM_CTLCOLORDLG
The WM_CTLCOLORDLG message is sent to a dialog box before Windows draws the dialog box.
By responding to this message, the dialog box can set its text and background colors by using the
given display device context handle.WM_CTLCOLORDLG
hdcDlg = (HDC) wParam; // handle of dialog box display context
hwndDlg = (HWND) lParam; // handle of dialog box
ParametershdcDlg

Value of wParam. Identifies the device context for the dialog box.
hwndDlg

Value of lParam. Identifies the dialog box.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the dialog box.Default ActionThe DefWindowProc function selects the default system colors for the dialog box.RemarksThe WM_CTLCOLORDLG message is never sent between threads. It is sent only within one
thread.

Note that the WM_CTLCOLORDLG message is sent to the dialog box itself; all of the other
WM_CTLCOLOR* messages are sent to the owner of the control.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLOREDIT,
WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX, WM_CTLCOLORSCROLLBAR,
WM_CTLCOLORSTATIC

WM_CTLCOLOREDIT
The WM_CTLCOLOREDIT message is sent to the parent window of an edit control when the
control is about to be drawn. By responding to this message, the parent window can use the given
device context handle to set the text and background colors of the edit control.WM_CTLCOLOREDIT
hdcEdit = (HDC) wParam; // handle of display context
hwndEdit = (HWND) lParam; // handle of static control
ParametershdcEdit

Value of wParam. Identifies the device context for the edit control window.
hwndEdit

Value of lParam. Identifies the edit control.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the edit control.Default ActionThe DefWindowProc function selects the default system colors for the edit control.RemarksThe WM_CTLCOLOREDIT message is never sent between threads, it is only sent within the
same thread.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLORDLG,
WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX, WM_CTLCOLORSCROLLBAR,
WM_CTLCOLORSTATIC

WM_CTLCOLORLISTBOX
The WM_CTLCOLORLISTBOX message is sent to the parent window of a list box before
Windows draws the list box. By responding to this message, the parent window can set the text
and background colors of the list box by using the given display device context handle.WM_CTLCOLORLISTBOX
hdcLB = (HDC) wParam; // handle of list box display context
hwndLB = (HWND) lParam; // handle of list box
ParametershdcLB

Value of wParam. Identifies the device context for the list box.
hwndLB

Value of lParam. Identifies the list box.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the list box.Default ActionThe DefWindowProc function selects the default system colors for the list box.RemarksThe WM_CTLCOLORLISTBOX message is never sent between threads. It is sent only within one
thread.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLORDLG,
WM_CTLCOLOREDIT, WM_CTLCOLORMSGBOX, WM_CTLCOLORSCROLLBAR,
WM_CTLCOLORSTATIC

WM_CTLCOLORMSGBOX
The WM_CTLCOLORMSGBOX message is sent to the owner window of a message box before
Windows draws the message box. By responding to this message, the owner window can set the
text and background colors of the message box by using the given display device context handle.WM_CTLCOLORMSGBOX
hdcMB = (HDC) wParam; // handle of message box display context
hwndMB = (HWND) lParam; // handle of message box
ParametershdcMB

Value of wParam. Identifies the device context for the message box.
hwndMB

Value of lParam. Identifies the message box.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the message box.Default ActionThe DefWindowProc function selects the default system colors for the message box.RemarksThe WM_CTLCOLORMSGBOX message is never sent between threads. It is sent only within one
thread.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLORDLG,
WM_CTLCOLOREDIT, WM_CTLCOLORLISTBOX, WM_CTLCOLORSCROLLBAR,
WM_CTLCOLORSTATIC

WM_CTLCOLORSCROLLBAR
The WM_CTLCOLORSCROLLBAR message is sent to the parent window of a scroll bar control
when the control is about to be drawn. By responding to this message, the parent window can use
the given display context handle to set the background color of the scroll bar control.WM_CTLCOLORSCROLLBAR
hdcSB = (HDC) wParam; // handle of scroll-bar display context
hwndSB = (HWND) lParam; // handle of scroll bar
ParametershdcSB

Value of wParam. Identifies the device context for the scroll bar control.
hwndSB

Value of lParam. Identifies the scroll bar.
Return ValuesIf an application processes this message, it must return the handle of a brush. Windows uses the

brush to paint the background of the scroll bar control.Default ActionThe DefWindowProc function selects the default system colors for the scroll bar control.RemarksThe WM_CTLCOLORSCROLLBAR message is never sent between threads; it is only sent within
the same thread.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLORDLG,
WM_CTLCOLOREDIT, WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX,
WM_CTLCOLORSTATIC

WM_CTLCOLORSTATIC
The WM_CTLCOLORSTATIC message is sent to the parent window of a static control when the
control is about to be drawn. By responding to this message, the parent window can use the given
device context handle to set the text and background colors of the static control.WM_CTLCOLORSTATIC
hdcStatic = (HDC) wParam; // handle of display context
hwndStatic = (HWND) lParam; // handle of static control
ParametershdcStatic

Value of wParam. Identifies the device context for the static control window.
hwndStatic

Value of lParam. Identifies the static control.
Return ValuesIf an application processes this message, the return value is the handle of a brush that Windows

uses to paint the background of the static control.Default ActionThe DefWindowProc function selects the default system colors for the static control.RemarksThe WM_CTLCOLORSTATIC message is never sent between threads; it is sent only within the
same thread.See AlsoDefWindowProc, RealizePalette, SelectPalette, WM_CTLCOLORBTN, WM_CTLCOLORDLG,
WM_CTLCOLOREDIT, WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX,
WM_CTLCOLORSCROLLBAR

WM_CUT
An application sends a WM_CUT message to an edit control or combo box to delete (cut) the
current selection, if any, in the edit control and copy the deleted text to the clipboard in CF_TEXT
format.WM_CUT
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksThe deletion performed by the WM_CUT message can be undone by sending the edit control an

EM_UNDO message.

To delete the current selection without placing the deleted text on the clipboard, use the
WM_CLEAR message.

When sent to a combo box, the WM_CUT message is handled by its edit control. This message
has no effect when sent to a combo box with the CBS_DROPDOWNLIST style.See AlsoEM_UNDO, WM_CLEAR, WM_COPY, WM_PASTE

WM_DDE_ACK
The WM_DDE_ACK message notifies a DDE application of the receipt and processing of a
WM_DDE_POKE, WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE,
WM_DDE_UNADVISE, or WM_DDE_INITIATE message, and in some cases, of a
WM_DDE_REQUEST message.WM_DDE_ACK
// Response to WM_DDE_INITIATE
wParam = (WPARAM) hwnd;// handle of posting application
lParam = MAKELPARAM(aApp, aTopic) // application and topic atoms
// Response to WM_DDE_EXECUTE
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lPackedVal; // packed status flags and data handle
// Response to all other messages
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lPackedVal; // packed status flags and item
ParametersWhen responding to WM_DDE_INITIATE:

hwnd
Value of wParam. Identifies the server window posting the message.

aApp
Value of the low-order word of lParam. Contains an atom that identifies the replying
application.

aTopic
Value of the high-order word of lParam. Contains an atom that identifies the topic for which a
conversation is being established.

When responding to WM_DDE_EXECUTE:
hwnd

Value of wParam. Identifies the server window posting the message.
lPackedVal

Value of lParam. The component parameters that are packed into lPackedVal are extracted
by calling the UnpackDDElParam function. The low-order word is wStatus. The high-order
word is the same hCommands that was received in the WM_DDE_EXECUTE message.

Parameter Description
wStatus Specifies a DDEACK structure containing a

series of flags that indicate the status of the
response.

hCommands Identifies a global memory object that contains
the command string.

When replying to all other messages:
hwnd

Value of wParam. Identifies the client or server window posting the message.
lPackedVal

Value of lParam. The component parameters that are packed into lPackedVal are extracted
by calling the UnpackDDElParam function. The low-order word is wStatus. The high-order
word is aItem.

Parameter Description
wStatus Specifies a DDEACK structure containing a series

of flags that indicate the status of the response.
aItem Contains a global atom that identifies the name of

the data item for which the response is sent.
RemarksPosting

Except in response to the WM_DDE_INITIATE message, the application posts the
WM_DDE_ACK message by calling the PostMessage function, not by calling the SendMessage
function. When responding to WM_DDE_INITIATE, the application sends the WM_DDE_ACK
message by calling SendMessage. In this case, neither the application-name atom nor the topic-
name atom should be NULL (even if the WM_DDE_INITIATE message specified NULL atoms).

When acknowledging any message with an accompanying aItem atom, the application posting
WM_DDE_ACK can either reuse the aItem atom that accompanied the original message, or it can
delete it and create a new one.

When acknowledging WM_DDE_EXECUTE, the application that posts WM_DDE_ACK should
reuse the global memory object identified in the original WM_DDE_EXECUTE message.

All posted WM_DDE_ACK messages must create or reuse the lPackedVal parameter by calling
the PackDDElParam function or the ReuseDDElParam function.

If an application has initiated the termination of a conversation by posting WM_DDE_TERMINATE
and is awaiting confirmation, the waiting application should not acknowledge (positively or
negatively) any subsequent messages sent by the other application. The waiting application
should delete any atoms or shared memory objects received in these intervening messages.
Memory objects should not be freed if the fRelease flag is set to FALSE in WM_DDE_POKE, and
WM_DDE_DATA messages.

Receiving
The application that receives a WM_DDE_ACK message should delete all atoms
accompanying the message. If the application receives a WM_DDE_ACK in response to a
message with an accompanying hData object, and the object was sent with the fRelease flags
set to FALSE, the application is responsible for deleteing the hData object.

If the application receives a negative WM_DDE_ACK message posted in reply to a
WM_DDE_ADVISE message, the application should delete the global memory object posted with

the original WM_DDE_ADVISE message (in hOptions). If the application receives a negative
WM_DDE_ACK message posted in reply to a WM_DDE_DATA, WM_DDE_POKE, or
WM_DDE_EXECUTE message, the application should delete the global memory object posted
with the original WM_DDE_DATA, WM_DDE_POKE, or WM_DDE_EXECUTE message (in
hCommands).

The application that receives a posted WM_DDE_ACK message must free the lPackedVal
parameter by using the FreeDDElParam function.See AlsoDDEACK, FreeDDElParam, PackDDElParam, PostMessage, ReuseDDElParam,
SendMessage, UnpackDDElParam, WM_DDE_ADVISE, WM_DDE_DATA,
WM_DDE_EXECUTE, WM_DDE_INITIATE, WM_DDE_POKE, WM_DDE_REQUEST,
WM_DDE_TERMINATE, WM_DDE_UNADVISE

WM_DDE_ADVISE
A DDE client application posts the WM_DDE_ADVISE message to a DDE server application to
request the server to supply an update for a data item whenever the item changes.WM_DDE_ADVISE
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lPackedVal; // packed DDEADVISE and item atom
Parametershwnd

Value of wParam. Identifies the client window posting the message.
lPackedVal

Value of lParam. The component parameters packed into lPackedVal are extracted by calling
the UnpackDDElParam function. The low-order word is hOptions. The high-order word is
aItem.

Parameter Description
hOptions Identifies a global memory object containing a

DDEADVISE structure that specifies how the data
is to be sent.

aItem Contains an atom that identifies the requested data
item.

RemarksIf a client application supports more than one clipboard format for a single topic and item, it can
post multiple WM_DDE_ADVISE messages for the topic and item, specifying a different clipboard
format with each message. Note that a server can support multiple formats only for hot data links,
not warm data links.

Posting
The client application posts the WM_DDE_ADVISE message by calling the PostMessage
function, not the SendMessage function.

The client application allocates hOptions by calling the GlobalAlloc function with the
GMEM_DDESHARE option. It allocates aItem by calling the GlobalAddAtom function.

The client application must create or reuse the WM_DDE_ADVISE lPackedVal parameter by
calling the PackDDElParam function or the ReuseDDElParam function with hOptions supplied as
the low-order word and aItem supplied as the high-order word.

If the receiving (server) application responds with a negative WM_DDE_ACK message, the
posting (client) application must delete the hOptions object.

The fRelease flag is not used in WM_DDE_ADVISE messages, but their data-freeing behavior is
similar to that of WM_DDE_DATA and WM_DDE_POKE messages where fRelease is TRUE.

Receiving
The server application posts the WM_DDE_ACK message to respond positively or
negatively. When posting WM_DDE_ACK, the application can reuse the aItem atom or delete
it and create a new one. If the WM_DDE_ACK message is positive, the application should delete
the hOptions object; otherwise, the application should not delete the object.

The server must create or reuse the WM_DDE_ACK lPackedVal parameter by calling the
PackDDElParam function or the ReuseDDElParam function with wStatus supplied as the low-
order word and aItem supplied as the high-order word.See AlsoDDEADVISE, FreeDDElParam, GlobalAddAtom, GlobalAlloc, PackDDElParam,
PostMessage, ReuseDDElParam, SendMessage, UnpackDDElParam, WM_DDE_ACK,
WM_DDE_DATA, WM_DDE_POKE, WM_DDE_REQUEST

WM_DDE_DATA
A DDE server application posts a WM_DDE_DATA message to a DDE client application to pass a
data item to the client or to notify the client of the availability of a data item.WM_DDE_DATA
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lPackedVal; // packed DDEDATA and item atom
Parametershwnd

Value of wParam. Identifies the server window posting the message.
lPackedVal

Value of lParam. The component parameters that are packed into lPackedVal are extracted
by calling the UnpackDDElParam function. The low-order word is hData or NULL. The high-
order word is aItem.

Parameter Description
hData Identifies a global memory object containing a

DDEDATA structure with the data and additional
information. The handle should be set to NULL if
the server is notifying the client that the data-item
value has changed during a warm data link. A
warm link is established by the client sending a
WM_DDE_ADVISE message with the fDeferUpd
bit set.

aItem Contains an atom that identifies the data item for
which the data or notification is sent.

RemarksPosting
The server application posts the WM_DDE_DATA message by calling the PostMessage
function, not the SendMessage function.

The server application allocates hData by calling the GlobalAlloc function with the
GMEM_DDESHARE option. It allocates aItem by calling the GlobalAddAtom function.

The server must create or reuse the WM_DDE_DATA lPackedVal parameter by calling the
PackDDElParam function or the ReuseDDElParam function with hData supplied as the low-
order word and aItem supplied as the high-order word.

If the receiving (client) application responds with a negative WM_DDE_ACK message, the posting
(server) application must delete the hData object; otherwise, the client must delete the hData
object after extracting its contents by calling the UnpackDDElParam function.

If the server application sets the fRelease member of the DDEDATA structure to FALSE, the
server is responsible for deleting hData upon receiving either a positive or negative
acknowledgement.

The server application should not set both the fAckReq and fRelease members of the DDEDATA
structure to FALSE. If both members are set to FALSE, it is impossible for the server to determine
when to delete hData.

Receiving
If fAckReq is TRUE, the client application should post the WM_DDE_ACK message to respond
positively or negatively. When posting WM_DDE_ACK, the client can either reuse the aItem atom,
or it can delete it and create a new one.

The client must create or reuse the WM_DDE_ACK lPackedVal parameter by calling the
PackDDElParam function or the ReuseDDElParam function with wStatus supplied as the low-
order word and aItem supplied as the high-order word.

If fAckReq is FALSE, the client application should delete the aItem atom.

If the posting (server) application specified hData as NULL, the receiving (client) application can
request the server to send the data by posting a WM_DDE_REQUEST message.

After processing a WM_DDE_DATA message in which hData is not NULL, the client should free
hData, unless one of the following conditions is true:

· The fRelease member is FALSE.
· The fRelease member is TRUE, but the client application responds with a negative

WM_DDE_ACK message.
See AlsoDDEDATA, FreeDDElParam, GlobalAddAtom, GlobalAlloc, PackDDElParam, PostMessage,

ReuseDDElParam, SendMessage, UnpackDDElParam, WM_DDE_ACK, WM_DDE_ADVISE,
WM_DDE_POKE, WM_DDE_REQUEST

WM_DDE_EXECUTE
A DDE client application posts a WM_DDE_EXECUTE message to a DDE server application to
send a string to the server to be processed as a series of commands. The server application is
expected to post a WM_DDE_ACK message in response.WM_DDE_EXECUTE
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) hCommands; // handle to global object
Parametershwnd

Value of wParam. Identifies the client window posting the message.
hCommands

Value of lParam. Contains a global memory object that references an ANSI or Unicode
command string, depending on the types of windows involved in the conversation.

RemarksThe command string is a null-terminated string consisting of one or more opcode strings enclosed
in single brackets ([]).

Each opcode string has the following syntax, where the parameters list is optional:

opcode parameters

The opcode is any application-defined single token. It cannot include spaces, commas,
parentheses, brackets, or quotation marks.

The parameters list can contain any application-defined value or values. Multiple parameters are
separated by commas, and the entire parameter list is enclosed in parentheses. Parameters
cannot include commas or parentheses except inside a quoted string. If a bracket or parenthesis
character is to appear in a quoted string, it need not be doubled, as was the case under the old
rules.

Following are some valid command strings:[connect][download(query1,results.txt)][disconnect]
[query("sales per employee for each district")]
[open("sample.xlm")][run("r1c1")]
[quote_case("This is a "" character")]
[bracket_or_paren_case("()s or []s should be no problem.")]Note that, under the old rules, parentheses and brackets had to be doubled, as follows:[bracket_or_paren_case("(())s or [[]]s should be no problem.")]Servers should be able to parse commands in either form.

Unicode execute strings should be used only when both the client and server window handles
cause the IsWindowUnicode function to return TRUE.

Posting
The client application posts the WM_DDE_EXECUTE message by calling the PostMessage
function, not the SendMessage function.

The client application allocates hCommands by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

When processing the WM_DDE_ACK message that the server posts in reply to a
WM_DDE_EXECUTE message, the client application must delete the hCommands object sent
back in the WM_DDE_ACK message.

Receiving
The server application posts the WM_DDE_ACK message to respond positively or
negatively. The server should reuse the hCommands object.

Unless specified otherwise by a sub-protocol, the server should not post the WM_DDE_ACK
message until all the actions specified by the execute command string are completed. The one
exception to this rule is when the string causes the server to terminate the conversation.See AlsoGlobalAlloc, IsWindowUnicode, PackDDElParam, PostMessage, ReuseDDElParam,
SendMessage, UnpackDDElParam, WM_DDE_ACK

WM_DDE_INITIATE
A DDE client application sends a WM_DDE_INITIATE message to initiate a conversation with a
server application responding to the specified application and topic names. Upon receiving this
message, all server applications with names that match the specified application and that support
the specified topic are expected to acknowledge it. (For more information, see the WM_DDE_ACK
message.)WM_DDE_INITIATE
wParam = (WPARAM) hwnd; // handle of posting appl.
lParam = MAKELPARAM(aApp, aTopic); // appl. and topic atoms
Parametershwnd

Value of wParam. Identifies the client window sending the message.
aApp

Value of the low-order word of lParam. Contains an atom that identifies the application with
which a conversation is requested. The application name cannot contain slashes (/) or
backslashes (\). These characters are reserved for network implementations. If aApp is NULL,
a conversation with all applications is requested.

aTopic
Value of the high-order word of lParam. Contains an atom that identifies the topic for which a
conversation is requested. If the topic is NULL, conversations for all available topics are
requested.

RemarksIf aApp is NULL, any server application can respond. If aTopic is NULL, any topic is valid. Upon
receiving a WM_DDE_INITIATE request with the aTopic parameter set to NULL, a server must
send a WM_DDE_ACK message for each of the topics it supports.

Sending
The client application sends WM_DDE_INITIATE by calling the SendMessage function, not
the PostMessage function. The client broadcasts the message to all top-level windows by setting
the first parameter of SendMessage to - 1.

If the client application has already obtained the window handle of the desired server, it can send
WM_DDE_INITIATE directly to the server window by passing the server's window handle as the
first parameter of SendMessage.

The client application allocates aApp and aTopic by calling GlobalAddAtom.

When SendMessage returns, the client application must delete the aApp and aTopic atoms.

Receiving
To complete the initiation of a conversation, the server application must respond with one
or more WM_DDE_ACK messages, where each message is for a separate topic. When
sending WM_DDE_ACK message, the server should create new aApp and aTopic atoms; it
should not reuse the atoms sent with WM_DDE_INITIATE.See AlsoGlobalAddAtom, GlobalAlloc, PostMessage, SendMessage, WM_DDE_ACK

WM_DDE_POKE
A DDE client application posts a WM_DDE_POKE message to a DDE server application. A client
uses this message to request the server to accept an unsolicited data item. The server is
expected to reply with a WM_DDE_ACK message indicating whether it accepted the data item.WM_DDE_POKE
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lPackedVal; // packed DDEPOKE and item atom
Parametershwnd

Value of wParam. Identifies the client window posting the message.
lPackedVal

Value of lParam. The component parameters that are packed into lPackedVal are extracted
by calling the UnpackDDElParam function. The low-order word is hData. The high-order word
is aItem.

Parameter Description
hData Identifies a global memory object containing a

DDEPOKE structure with the data and additional
information.

aItem Contains a global atom that identifies the data item
for which the data or notification is being sent.

RemarksPosting
The client application posts the WM_DDE_POKE message by using the PostMessage
function.

The client application must allocate memory for the hData object by using the GlobalAlloc
function with the GMEM_DDESHARE option. The client application must delete the hData object
if either of the following conditions is true:

· The server application responds with a negative WM_DDE_ACK message.
· The fRelease member is FALSE, but the server application responds with either a

positive or negative WM_DDE_ACK.
The client application must create the aItem atom by using the GlobalAddAtom function.

The client application must create or reuse the WM_DDE_POKE lPackedVal parameter by calling
the PackDDElParam function or the ReuseDDElParam function with hData supplied as the low-
order word and aItem supplied as the high-order word.

Receiving
The server application should post the WM_DDE_ACK message to respond positively or
negatively. When posting WM_DDE_ACK, the server can either reuse the aItem atom, or it
can delete it and create a new one.

The server must create or reuse the WM_DDE_ACK lPackedVal parameter by calling the
PackDDElParam function or the ReuseDDElParam function with wStatus supplied as the low-
order word and aItem supplied as the high-order word.

To free the hData object, the server should call the GlobalFree function. Also, if the data format is
either CF_DSPMETAFILEPICT or CF_METAFILEPICT, the server must also call DeleteMetaFile
with the embedded metafile handle. These two formats have an extra level of indirection; that is,
an application must lock hData to get a pointer to a handle, then lock that handle to get a pointer
to a METAFILEPICT structure, and finally call DeleteMetaFile with the handle from the hMF
member of the METAFILEPICT structure.

To free the lPackedVal object, the server should call the FreeDDElParam function.See AlsoDDEPOKE, DeleteMetaFile, FreeDDElParam, GlobalAddAtom, GlobalAlloc, GlobalFree,
METAFILEPICT, PackDDElParam, PostMessage, ReuseDDElParam, SendMessage,
UnpackDDElParam, WM_DDE_ACK

WM_DDE_REQUEST
A DDE client application posts a WM_DDE_REQUEST message to a DDE server application to
request the value of a data item.WM_DDE_REQUEST
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lParam; // holds cfFormat and aItem
Parametershwnd

Value of wParam. Identifies the client window sending the message.
lParam

Holds the cfFormat and aItem parameters.
Parameter Description
cfFormat This is the LOWORD of lParam. Specifies a

standard or registered clipboard format.
aItem This is the HIWORD of lParam. Contains an atom

that identifies the data item requested from the
server.

RemarksPosting
The client application posts the WM_DDE_REQUEST message by calling the PostMessage
function, not the SendMessage function.

The client application allocates aItem by calling the GlobalAddAtom function.

Receiving
If the receiving (server) application can satisfy the request, it responds with a
WM_DDE_DATA message containing the requested data. Otherwise, it responds with a
negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK message, the server
application can either reuse the aItem atom or it can delete the atom and create a new one.See AlsoGlobalAddAtom, PackDDElParam, PostMessage, ReuseDDElParam, SendMessage,
UnpackDDElParam, WM_DDE_ACK, WM_DDE_DATA

WM_DDE_TERMINATE
A DDE application (client or server) posts a WM_DDE_TERMINATE message to terminate a
conversation.WM_DDE_TERMINATE
wParam = (WPARAM) hwnd; // handle of posting window
lParam = 0; // not used, must be zero
Parametershwnd

Value of wParam. Identifies the client or server window posting the message.
RemarksPosting

The client or server application posts the WM_DDE_TERMINATE message by calling the
PostMessage function, not the SendMessage function.

While waiting for confirmation of the termination, the posting application should not post any other
messages to the receiving application. If the sending application receives messages (other than
WM_DDE_TERMINATE) from the receiving application, it should delete any atoms or shared
memory objects accompanying the messages, except hData objects associated with
WM_DDE_POKE or WM_DDE_DATA messages that do not have the fRelease flag set.

Receiving
The client or server application should respond by posting a WM_DDE_TERMINATE
message.See AlsoPostMessage, SendMessage, WM_DDE_DATA, WM_DDE_POKE

WM_DDE_UNADVISE
A DDE client application posts a WM_DDE_UNADVISE message to inform a DDE server
application that the specified item or a particular clipboard format for the item should no longer be
updated. This terminates the warm or hot data link for the specified item.WM_DDE_UNADVISE
wParam = (WPARAM) hwnd; // handle of posting application
lParam = (LPARAM) lParam; // format and item atom
Parametershwnd

Value of wParam. Identifies the client window sending the message.
lParam

Holds the cfFormat and aItem parameters.
Parameter Description
cfFormat This is the LOWORD of lParam. Specifies the

clipboard format of the item for which the update
request is being retracted. If cfFormat is NULL, all
active WM_DDE_ADVISE conversations for the
item are to be terminated.

aItem This is the HIWORD of lParam. Contains a global
atom that identifies the item for which the update
request is being retracted. When aItem is NULL, all
active WM_DDE_ADVISE links associated with the
conversation are to be terminated.

RemarksPosting
The client application posts the WM_DDE_UNADVISE message by calling the PostMessage
function, not the SendMessage function.

The client application allocates aItem by calling the GlobalAddAtom function.

Receiving
The server application posts the WM_DDE_ACK message to respond positively or
negatively. When posting WM_DDE_ACK, the server can either reuse the aItem atom, or it
can delete the atom and create a new one.See AlsoGlobalAddAtom, PackDDElParam, PostMessage, ReuseDDElParam, SendMessage,
UnpackDDElParam, WM_DDE_ACK, WM_DDE_ADVISE

WM_DEADCHAR
WM_DEADCHARchCharCode = (TCHAR) wParam; // character code
lKeyData = lParam; // key dataThe WM_DEADCHAR message is posted to the window with the keyboard focus when a

WM_KEYUP message is translated by the TranslateMessage function. WM_DEADCHAR
specifies a character code generated by a dead key. A dead key is a key that generates a
character, such as the umlaut (double-dot), that is combined with another character to form a
composite character. For example, the umlaut-O character (Ö) is generated by typing the dead
key for the umlaut character, and then typing the O key.ParameterschCharCode

Value of wParam. Specifies the character code generated by the dead key.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is held down while the key is pressed; otherwise, the
value is 0.

30 Specifies the previous key state. The value is 1 if the key
is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is 1 if the key is
being released, or it is 0 if the key is being pressed.

Return ValuesAn application should return zero if it processes this message.RemarksThe WM_DEADCHAR message typically is used by applications to give the user feedback about
each key pressed. For example, an application can display the accent in the current character
position without moving the caret.

Because there is not necessarily a one-to-one correspondence between keys pressed and
character messages generated, the information in the high-order word of the lKeyData parameter
is generally not useful to applications. The information in the high-order word applies only to the
most recent WM_KEYDOWN message that precedes the posting of the WM_DEADCHAR
message.

For enhanced 101- and 102-key keyboards, extended keys are the right ALT and the right CTRL
keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and
arrow keys in the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in
the numeric keypad. Some other keyboards may support the extended-key bit in the lKeyData
parameter.See AlsoTranslateMessage, WM_KEYDOWN, WM_KEYUP, WM_SYSDEADCHAR

WM_DELETEITEM
The WM_DELETEITEM message is sent to the owner of a list box or combo box when the list box
or combo box is destroyed or when items are removed by the LB_DELETESTRING,
LB_RESETCONTENT, CB_DELETESTRING, or CB_RESETCONTENT message. Windows
sends a WM_DELETEITEM message for each deleted item. Windows sends the
WM_DELETEITEM message for any deleted list box or combo box item with nonzero item data.WM_DELETEITEM
idCtl = wParam; // control identifier
lpdis = (LPDELETEITEMSTRUCT) lParam; // structure with item information
ParametersidCtl

Value of wParam. Specifies the identifier of the control that sent the WM_DELETEITEM
message.

lpdis
Value of lParam. Points to a DELETEITEMSTRUCT structure that contains information about
the item deleted from a list box.

Return ValuesAn application should return TRUE if it processes this message.See AlsoCB_DELETESTRING, CB_RESETCONTENT, DELETEITEMSTRUCT, LB_DELETESTRING,
LB_RESETCONTENT

WM_DESTROY
The WM_DESTROY message is sent when a window is being destroyed. It is sent to the window
procedure of the window being destroyed after the window is removed from the screen.

This message is sent first to the window being destroyed and then to the child windows (if any) as
they are destroyed. During the processing of the message, it can be assumed that all child
windows still exist.WM_DESTROY
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.RemarksIf the window being destroyed is part of the clipboard viewer chain (set by calling the

SetClipboardViewer function), the window must remove itself from the chain by processing the
ChangeClipboardChain function before returning from the WM_DESTROY message.See AlsoChangeClipboardChain, DestroyWindow, PostQuitMessage, SetClipboardViewer,
WM_CLOSE

WM_DESTROYCLIPBOARD
The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when a call to the
EmptyClipboard function empties the clipboard.WM_DESTROYCLIPBOARD
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.See AlsoEmptyClipboard

WM_DEVICECHANGE
The WM_DEVICECHANGE device message notifies an application or device driver of a change
to the hardware configuration of a device or the computer.Event = (UINT) wParam;
dwData = (DWORD) lParam;
ParametersEvent

Event type. This parameter can be one of the following values:
Value Meaning
DBT_CONFIGCHANGECANCELED A request to change the current

configuration (dock or undock)
has been canceled.

DBT_CONFIGCHANGED The current configuration has
changed, due to a dock or
undock.

DBT_DEVICEARRIVAL A device has been inserted and
is now available.

DBT_DEVICEQUERYREMOVE Permission is requested to
remove a device. Any application
can deny this request and cancel
the removal.

DBT_DEVICEQUERYREMOVEFAILEDA request to remove a device has
been canceled.

DBT_DEVICEREMOVECOMPLETE A device has been removed.
DBT_DEVICEREMOVEPENDING A device is about to be removed.

Cannot be denied.
DBT_DEVICETYPESPECIFIC A device-specific event has

occurred.
DBT_QUERYCHANGECONFIG Permission is requested to

change the current configuration
(dock or undock).

DBT_USERDEFINED The meaning of this message is
user-defined.

dwData
Address of a structure that contains event-specific data. Its meaning depends on the given
event.

Return ValuesReturn TRUE to grant a requested action.

Return QUERY_BROADCAST_DENY to deny a requested action.RemarksFor devices that offer software-controllable features, such as ejection and locking, the operating
system typically sends a DBT_DEVICEREMOVEPENDING message to let applications and
device drivers end their use of the device gracefully.

If the operating system forcibly removes a device, it may not send a
DBT_DEVICEQUERYREMOVE message before doing so.

DBT_CONFIGCHANGECANCELED, DBT_CONFIGCHANGED, DBT_DEVICEARRIVAL,
DBT_DEVICEQUERYREMOVE, DBT_DEVICEQUERYREMOVEFAILED,
DBT_DEVICEREMOVECOMPLETE, DBT_DEVICEREMOVEPENDING,
DBT_DEVICETYPESPECIFIC, DBT_QUERYCHANGECONFIG, DBT_USERDEFINED

WM_DEVMODECHANGE
The WM_DEVMODECHANGE message is sent to all top-level windows whenever the user
changes device-mode settings.WM_DEVMODECHANGE
lpszDev = (LPCTSTR) lParam; // address of device name
ParameterslpszDev

Value of lParam. Points to the device name specified in the WIN.INI file.
Return ValuesAn application should return zero if it processes this message.RemarksWindows NT: Calls to functions that change the WIN.INI file may be mapped to the registry

instead. This mapping occurs when WIN.INI and the section being changed are specified in the
registry under the following keys:
HKEY_LOCAL_MACHINE\Software\Description\Microsoft\

Windows NT\CurrentVersion\IniFileMapping

The change in the storage location has no effect on the behavior of this message.See AlsoWM_WININICHANGE

WM_DISPLAYCHANGE
The WM_DISPLAYCHANGE message is sent to all windows when the display resolution has
changed.WM_DISPLAYCHANGE
cBitsPerPixel = wParam;
cxScreen = LOWORD(lParam);
cyScreen = HIWORD(lParam);
ParameterscBitsPerPixel

Specifies the new image depth of the display in bits per pixel.
cxScreen

Specifies the new horizontal resolution of the screen.
cyScreen

Specifies the new vertical resolution of the screen.

WM_DRAWCLIPBOARD
The WM_DRAWCLIPBOARD message is sent to the first window in the clipboard viewer chain
when the content of the clipboard changes. This enables a clipboard viewer window to display the
new content of the clipboard.WM_DRAWCLIPBOARD
ParametersThis message has no parameters.RemarksOnly clipboard viewer windows receive this message. These are windows that have been added

to the clipboard viewer chain by using the SetClipboardViewer function.

Each window that receives the WM_DRAWCLIPBOARD message must call the SendMessage
function to pass the message on to the next window in the clipboard viewer chain. The handle of
the next window in the chain is returned by SetClipboardViewer, and may change in response to
a WM_CHANGECBCHAIN message.See AlsoSendMessage, SetClipboardViewer, WM_CHANGECBCHAIN

WM_DRAWITEM
The WM_DRAWITEM message is sent to the owner window of an owner-drawn button, combo
box, list box, or menu when a visual aspect of the button, combo box, list box, or menu has
changed.WM_DRAWITEM
idCtl = (UINT) wParam; // control identifier
lpdis = (LPDRAWITEMSTRUCT) lParam; // item-drawing information
ParametersidCtl

Value of wParam. Specifies the identifier of the control that sent the WM_DRAWITEM
message. If the message was sent by a menu, this parameter is zero.

lpdis
Value of lParam. Points to a DRAWITEMSTRUCT structure containing information about the
item to be drawn and the type of drawing required.

Return ValuesIf an application processes this message, it should return TRUE.Default ActionThe DefWindowProc function draws the focus rectangle for an owner-drawn list box item.RemarksThe itemAction member of the DRAWITEMSTRUCT structure specifies the drawing operation
that an application should perform.

Before returning from processing this message, an application should ensure that the device
context identified by the hDC member of the DRAWITEMSTRUCT structure is in the default state.See AlsoDefWindowProc, DRAWITEMSTRUCT

WM_DROPFILES
The WM_DROPFILES message is sent when the user releases the left mouse button while the
cursor is in the window of an application that has registered itself as a recipient of dropped files.WM_DROPFILES
hDrop = (HANDLE) wParam; // handle of internal drop structure
ParametershDrop

Value of wParam. Identifies an internal structure describing the dropped files. This handle is
used by the DragFinish, DragQueryFile, and DragQueryPoint functions to retrieve
information about the dropped files.

Return ValuesAn application should return zero if it processes this message.See AlsoDragAcceptFiles, DragFinish, DragQueryFile, DragQueryPoint

WM_ENABLE
The WM_ENABLE message is sent when an application changes the enabled state of a window.
It is sent to the window whose enabled state is changing. This message is sent before the
EnableWindow function returns, but after the enabled state (WS_DISABLED style bit) of the
window has changed.WM_ENABLE
fEnabled = (BOOL) wParam; // enabled/disabled flag
ParametersfEnabled

Value of wParam. Specifies whether the window has been enabled or disabled. This
parameter is TRUE if the window has been enabled or FALSE if the window has been
disabled.

Return ValuesIf an application processes this message, it should return zero.See AlsoEnableWindow

WM_ENDSESSION
The WM_ENDSESSION message is sent to an application after Windows processes the results of
the WM_QUERYENDSESSION message. The WM_ENDSESSION message informs the
application whether the Windows session is ending.WM_ENDSESSION
fEndSession = (BOOL) wParam;// end-session flag
fLogOff = lParam // logoff flag
ParametersfEndSession

Value of wParam. Specifies whether the session is being ended. If the session is being
ended, this parameter is TRUE; otherwise, it is FALSE.

fLogOff
Value of lParam. Indicates whether the user is logging off or shutting down the system.
Supported values include: ENDSESSION_LOGOFF.

Return ValuesIf an application processes this message, it should return zero.RemarksIf the fEndSession parameter is TRUE, the Windows session can end any time after all
applications have returned from processing this message. Therefore, an application should
perform all tasks required for termination before returning from this message.

The application need not call the DestroyWindow or PostQuitMessage function when the
session is ending.See AlsoDestroyWindow, PostQuitMessage, WM_QUERYENDSESSION

WM_ENTERIDLE
The WM_ENTERIDLE message is sent to the owner window of a modal dialog box or menu that
is entering an idle state. A modal dialog box or menu enters an idle state when no messages are
waiting in its queue after it has processed one or more previous messages.WM_ENTERIDLE
fuSource = wParam; // idle-source flag
hwnd = (HWND) lParam; // handle of dialog box or owner window
ParametersfuSource

Value of wParam. Specifies whether the message is the result of a dialog box or a menu
being displayed. This parameter can be one of the following values:

Value Meaning
MSGF_DIALOGBOX The system is idle because a dialog box is

displayed.
MSGF_MENU The system is idle because a menu is

displayed.

hwnd
Value of lParam. Contains the handle of the dialog box (if fuSource is MSGF_DIALOGBOX)
or of the window containing the displayed menu (if fuSource is MSGF_MENU).

Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function returns zero.See AlsoDefWindowProc

WM_ENTERMENULOOP
The WM_ENTERMENULOOP message informs an application's main window procedure that a
menu modal loop has been entered.WM_ENTERMENULOOP
wParam = (BOOL) fIsTrackPopupMenu // flags a shortcut menu
lParam = 0 ; // not used; must be zero
ParametersfIsTrackPopupMenu

Specifies whether the menu involved is a shortcut menu. This parameter has a value of TRUE
if it is a shortcut menu, FALSE if it isn't.

Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function returns zero.See AlsoDefWindowProc, WM_EXITMENULOOP

WM_ENTERSIZEMOVE
The WM_ENTERSIZEMOVE message is sent once to a window when it enters the moving or
sizing mode. The window enters the moving or sizing mode when the user clicks the window's title
bar or sizing border, or when the window passes the WM_SYSCOMMAND message to the
DefWindowProc function and the wParam parameter of the message specifies the SC_MOVE or
SC_SIZE value. Windows sends the WM_ENTERSIZEMOVE message regardless of whether the
dragging of full windows is enabled.WM_ENTERSIZEMOVE
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesAn application should return zero if it processes this message.See AlsoDefWindowProc, WM_EXITSIZEMOVE, WM_SYSCOMMAND

WM_ERASEBKGND
An application sends the WM_ERASEBKGND message when the window background must be
erased (for example, when a window is resized). The message is sent to prepare an invalidated
portion of a window for painting.WM_ERASEBKGND
hdc = (HDC) wParam; // handle of device context
Parametershdc

Value of wParam. Identifies the device context.
Return ValuesAn application should return nonzero if it erases the background; otherwise, it should return zero.RemarksThe DefWindowProc function erases the background by using the class background brush

specified by the hbrBackground member of the WNDCLASS structure. If hbrBackground is
NULL, the application should process the WM_ERASEBKGND message and erase the
background.

An application should return nonzero in response to WM_ERASEBKGND if it processes the
message and erases the background; this indicates that no further erasing is required. If the
application returns zero, the window will remain marked for erasing. (Typically, this indicates that
the fErase member of the PAINTSTRUCT structure will be TRUE.)See AlsoBeginPaint, DefWindowProc, PAINTSTRUCT, WM_ICONERASEBKGND, WNDCLASS

WM_EXITMENULOOP
The WM_EXITMENULOOP message informs an application's main window procedure that a
menu modal loop has been exited.WM_EXITLOOP
wParam = (BOOL) fIsTrackPopupMenu // flags a shortcut menu
lParam = 0 ;// not used; must be zero
ParametersfIsTrackPopupMenu

Specifies whether the menu involved is a shortcut menu. This parameter has a value of TRUE
if it is a shortcut menu, FALSE if it isn't.

Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function returns zero.See AlsoDefWindowProc, WM_ENTERMENULOOP

WM_EXITSIZEMOVE
The WM_EXITSIZEMOVE message is sent once to a window after it has exited the moving or
sizing mode.WM_EXITSIZEMOVE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesAn application should return zero if it processes this message.See AlsoWM_ENTERSIZEMOVE

WM_FONTCHANGE
An application sends the WM_FONTCHANGE message to all top-level windows in the system
after changing the pool of font resources.WM_FONTCHANGE
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.RemarksAn application that adds or removes fonts from the system (for example, by using the

AddFontResource or RemoveFontResource function) should send this message to all top-level
windows.

To send the WM_FONTCHANGE message to all top-level windows, an application can call the
SendMessage function with the hwnd parameter set to HWND_BROADCAST.See AlsoAddFontResource, RemoveFontResource, SendMessage

WM_GETDLGCODE
The WM_GETDLGCODE message is sent to the dialog box procedure associated with a control.
Normally, Windows handles all arrow-key and TAB-key input to the control. By responding to the
WM_GETDLGCODE message, an application can take control of a particular type of input and
process the input itself.WM_GETDLGCODE
ParametersThis message has no parameters.Return ValuesThe return value is one or more of the following values, indicating which type of input the

application processes.

Value Meaning

DLGC_BUTTON Button.
DLGC_DEFPUSHBUTTON Default push button.
DLGC_HASSETSEL EM_SETSEL messages.
DLGC_RADIOBUTTON Radio button.
DLGC_STATIC Static control.
DLGC_UNDEFPUSHBUTTONNondefault push button.
DLGC_WANTALLKEYS All keyboard input.
DLGC_WANTARROWS Direction keys.
DLGC_WANTCHARS WM_CHAR messages.
DLGC_WANTMESSAGE All keyboard input (the application

passes this message on to a control).
DLGC_WANTTAB TAB key.
Default ActionThe DefWindowProc function returns zero.RemarksAlthough the DefWindowProc function always returns zero in response to the

WM_GETDLGCODE message, the window procedure for the predefined control classes return a
code appropriate for each class.

The WM_GETDLGCODE message and the returned values are useful only with user-defined
dialog box controls or standard controls modified by subclassing.See AlsoDefWindowProc, EM_SETSEL, WM_CHAR

WM_GETFONT
An application sends a WM_GETFONT message to a control to retrieve the font with which the
control is currently drawing its text.WM_GETFONT
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the handle of the font used by the control, or NULL if the control is using the

system font.See AlsoWM_SETFONT

WM_GETHOTKEY
An application sends a WM_GETHOTKEY message to determine the hot key associated with a
window.WM_GETHOTKEY
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the virtual-key code and modifiers for the hot key, or NULL if no hot key is

associated with the window. The virtual-key code is in the low byte of the return value and the
modifiers are in the high byte. The modifiers can be a combination of the following flags:

Value Meaning

HOTKEYF_ALT ALT key
HOTKEYF_CONTROL CTRL key
HOTKEYF_EXT Extended key
HOTKEYF_SHIFT SHIFT key
RemarksThese hot keys are unrelated to the hot keys set by the RegisterHotKey function.See AlsoRegisterHotKey, WM_SETHOTKEY

WM_GETICON
The WM_GETICON message is sent to a window to retrieve the handle of the large or small icon
associated with a window. Windows retrieves the large icon when drawing a minimized window,
and the small icon when drawing a title bar.WM_GETICON
fType = wParam; // icon type
ParametersfType

Value of wParam. Specifies the type of icon being retrieved. This parameter can be one of the
following values:

Value Meaning
ICON_BIG Retrieve the large icon for the window.
ICON_SMALL Retrieve the small icon for the window.

Return ValuesThe return value is the handle of the large or small icon, depending on the value of fType. When
an application receives this message, it can return the handle of a large or small icon, or pass the
message to DefWindowProc.Default ActionDefWindowProc returns the handle of the large or small icon associated with the window,
depending on the value of fType.RemarksWhen an application receives this message, it can return the handle of a large or small icon, or
pass the message to DefWindowProc.See AlsoDefWindowProc, WM_SETICON

WM_GETMINMAXINFO
The WM_GETMINMAXINFO message is sent to a window when the size or position of the
window is about to change. An application can use this message to override the window's default
maximized size and position, or its default minimum or maximum tracking size.WM_GETMINMAXINFO
lpmmi = (LPMINMAXINFO) lParam; // address of structure
Parameterslpmmi

Value of lParam. Points to a MINMAXINFO structure that contains the default maximized
position and dimensions, and the default minimum and maximum tracking sizes. An
application can override the defaults by setting the members of this structure.

Return ValuesIf an application processes this message, it should return zero.RemarksThe maximum tracking size is the largest window size that can be produced by using the borders
to size the window. The minimum tracking size is the smallest window size that can be produced
by using the borders to size the window.See AlsoMoveWindow, SetWindowPos, MINMAXINFO

WM_GETTEXT
An application sends a WM_GETTEXT message to copy the text that corresponds to a window
into a buffer provided by the caller.WM_GETTEXT
wParam = (WPARAM) cchTextMax; // number of characters to copy
lParam = (LPARAM) lpszText;// address of buffer for text
ParameterscchTextMax

Value of wParam. Specifies the maximum number of characters to be copied, including the
terminating null character.

lpszText
Value of lParam. Points to the buffer that is to receive the text.

Return ValuesThe return value is the number of characters copied.Default ActionThe DefWindowProc function copies the text associated with the window into the specified buffer
and returns the number of characters copied.RemarksFor an edit control, the text to be copied is the content of the edit control. For a combo box, the
text is the content of the edit control (or static-text) portion of the combo box. For a button, the text
is the button name. For other windows, the text is the window title. To copy the text of an item in a
list box, an application can use the LB_GETTEXT message.

When the WM_GETTEXT message is sent to a static control with the SS_ICON style, the handle
of the icon will be returned in the first four bytes of the buffer pointed to by lpszText. This is true
only if the WM_SETTEXT message has been used to set the icon.

In a rich edit control, if the text to be copied exceeds 64K, use either the message
EM_STREAMOUT or EM_GETSELTEXT.See AlsoDefWindowProc, EM_GETSELTEXT, EM_STREAMOUT, GetWindowText,
GetWindowTextLength, LB_GETTEXT, WM_GETTEXTLENGTH, WM_SETTEXT

WM_GETTEXTLENGTH
An application sends a WM_GETTEXTLENGTH message to determine the length, in characters,
of the text associated with a window. The length does not include the terminating null character.WM_GETTEXTLENGTH
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThe return value is the length, in characters, of the text.Default ActionThe DefWindowProc function returns the length, in characters, of the text. Under certain

conditions, this value may actually be greater than the length of the text. For more information,
see the following Remarks section.RemarksFor an edit control, the text to be copied is the content of the edit control. For a combo box, the
text is the content of the edit control (or static-text) portion of the combo box. For a button, the text
is the button name. For other windows, the text is the window title. To determine the length of an
item in a list box, an application can use the LB_GETTEXTLEN message.

Under certain conditions, the DefWindowProc function returns a value that is larger than the
actual length of the text. This occurs with certain mixtures of ANSI and Unicode, and is due to the
operating system allowing for the possible existence of DBCS characters within the text. The
return value, however, will always be at least as large as the actual length of the text; you can
thus always use it to guide buffer allocation. This behavior can occur when an application uses
both ANSI functions and common dialogs, which use Unicode.

To obtain the exact length of the text, use the WM_GETTEXT, LB_GETTEXT, or
CB_GETLBTEXT messages, or the GetWindowText function.See AlsoCB_GETLBTEXT, DefWindowProc, GetWindowText, GetWindowTextLength, LB_GETTEXT,
LB_GETTEXTLEN, WM_GETTEXT

WM_HELP
The WM_HELP message indicates that the user pressed the F1 key. If a menu is active when F1 is
pressed, WM_HELP is sent to the window associated with the menu; otherwise, WM_HELP is
sent to the window that has the keyboard focus. If no Window has the keyboard focus, WM_HELP
is sent to the currently active window.WM_HELP
lphi = (LPHELPINFO) lParam;
Parameterslphi

Pointer to a HELPINFO structure that contains information about the menu item, control,
dialog box, or window for which help is requested.

Return ValuesReturns TRUE.RemarksThe DefWindowProc function passes WM_HELP to the parent window of a child window or to
the owner of a top-level window.See AlsoDefWindowProc, HELPINFO

WM_HOTKEY
The WM_HOTKEY message is posted when the user presses a hot key registered by the
RegisterHotKey function. The message is placed at the top of the message queue associated
with the thread that registered the hot key.WM_HOTKEY
idHotKey = (int) wParam; // identifier of hot key
fuModifiers = (UINT) LOWORD(lParam); // key-modifier flags
uVirtKey = (UINT) HIWORD(lParam);// virtual-key code
ParametersidHotKey

Value of wParam. Specifies the identifier of the hot key that generated the message. If the
message was generated by a system-defined hot key, the idHotKey parameter will be one of
the following values:

Value Meaning
IDHOT_SNAPDESKTOP The "snap desktop" hot key was pressed.
IDHOT_SNAPWINDOW The "snap window" hot key was pressed.

fuModifiers
Specifies the keys that were to be pressed in combination with the key specified by the
nVirtKey parameter to generate the WM_HOTKEY message. The fuModifiers parameter can
be a combination of the following values:

Value Meaning
MOD_ALT Either ALT key was held down.
MOD_CONTROL Either CTRL key was held down.
MOD_SHIFT Either SHIFT key was held down.
MOD_WIN Either WINDOWS key was held down.

These keys appear only on the Microsoft
Ergonomic Keyboard and are labeled with
the Microsoft Windows logo.

uVirtKey
Specifies the virtual key code of the hot key.

RemarksWM_HOTKEY is unrelated to the WM_GETHOTKEY and WM_SETHOTKEY hot keys. The
WM_HOTKEY message is sent for generic hot keys while the WM_SET\GETHOTKEY messages
relate to window activation hot keys.See AlsoRegisterHotKey, WM_GETHOTKEY, WM_SETHOTKEY

WM_HSCROLL
The WM_HSCROLL message is sent to a window when a scroll event occurs in the window's
standard horizontal scroll bar. This message is also sent to the owner of a horizontal scroll bar
control when a scroll event occurs in the control.WM_HSCROLL
nScrollCode = (int) LOWORD(wParam); // scroll bar value
nPos = (short int) HIWORD(wParam); // scroll box position
hwndScrollBar = (HWND) lParam; // handle of scroll bar
ParametersnScrollCode

Value of the low-order word of wParam. Specifies a scroll bar value that indicates the user's
scrolling request. This parameter can be one of the following values:

Value Meaning
SB_BOTTOM Scrolls to the lower right.
SB_ENDSCROLL Ends scroll.
SB_LINELEFT Scrolls left by one unit.
SB_LINERIGHT Scrolls right by one unit.
SB_PAGELEFT Scrolls left by the width of the window.
SB_PAGERIGHT Scrolls right by the width of the window.
SB_THUMBPOSITION Scrolls to the absolute position. The current

position is specified by the nPos parameter.
SB_THUMBTRACK Drags scroll box to the specified position.

The current position is specified by the
nPos parameter.

SB_TOP Scrolls to the upper left.

nPos
Value of the high-order word of wParam. Specifies the current position of the scroll box if the
nScrollCode parameter is SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, nPos is
not used.

hwndScrollBar
Value of lParam. Identifies the control if WM_HSCROLL is sent by a scroll bar control. If
WM_HSCROLL is sent by a window's standard scroll bar, hwndScrollBar is not used.

Return ValuesIf an application processes this message, it should return zero.RemarksThe SB_THUMBTRACK notification message is typically used by applications that provide
feedback as the user drags the scroll box.

If an application scrolls the content of the window, it must also reset the position of the scroll box
by using the SetScrollPos function.

Note that the WM_HSCROLL message carries only 16 bits of scroll box position data. Thus,
applications that rely solely on WM_HSCROLL (and WM_VSCROLL) for scroll position data have
a practical maximum position value of 65,535.

However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange
functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of
the WM_HSCROLL and WM_VSCROLL messages. See GetScrollPos for a description of the
technique and its limits.See AlsoGetScrollPos, GetScrollRange, SetScrollPos, SetScrollRange, WM_VSCROLL

WM_HSCROLLCLIPBOARD
The WM_HSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard viewer
window. This occurs when the clipboard contains data in the CF_OWNERDISPLAY format and an
event occurs in the clipboard viewer's horizontal scroll bar. The owner should scroll the clipboard
image and update the scroll bar values.WM_HSCROLLCLIPBOARD
hwndViewer = (HWND) wParam; // handle of clipboard viewer window
nScrollCode = (int) LOWORD(lParam); // scroll bar code
nPos = (int) HIWORD(lParam); // scroll box position
ParametershwndViewer

Value of wParam. Identifies the clipboard viewer window.
nScrollCode

Value of the low-order word of lParam. Specifies a scroll bar event. This parameter can be
one of the following values:

Value Meaning
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITIONScroll to absolute position. The current

position is specified by the nPos parameter.
SB_TOP Scroll to upper left.

nPos
Value of the high-order word of lParam. Specifies the current position of the scroll box if the
nScrollCode parameter is SB_THUMBPOSITION; otherwise, the nPos parameter is not used.

Return ValuesIf an application processes this message, it should return zero.RemarksThe clipboard owner can use the ScrollWindow function to scroll the image in the clipboard
viewer window and invalidate the appropriate region.See AlsoScrollWindow

WM_ICONERASEBKGND
The WM_ICONERASEBKGND message is sent to a minimized window when the background of
the icon must be filled before painting the icon. A window receives this message only if a class
icon is defined for the window; otherwise, WM_ERASEBKGND is sent.WM_ICONERASEBKGND
hdc = (HDC) wParam; // handle of device context
Parametershdc

Value of wParam. Identifies the device context of the icon.
Return ValuesAn application should return nonzero if it processes this message.RemarksThe DefWindowProc function fills the icon background with the class background brush of the

parent window.See AlsoDefWindowProc, WM_ERASEBKGND

WM_IME_CHAR
The WM_IME_CHAR message is sent to an application when the IME gets a character of the
conversion result. Unlike the WM_CHAR message, this message can include double-byte as well
as single-byte character values.chCharCode1 = (TCHAR) wParam;
chCharCode2 = (TCHAR) wParam>>8;
lKeyData = lParam;
ParameterschCharCode1 and chCharCode2

Single- or double-byte character value.
lKeyData

Repeat count, scan code, extended-key flag, context code, previous key-state flag, and
transition-state flag, as shown following:

Bit Meaning
0 - 15 Repeat count: Since the first byte and second byte is

continuous, this is always 1.
16 - 23 Scan Code: Scan code for complete a FE character.
24 - 28 Not used.
29 Context code.
31 Conversion state.

RemarksIf the WM_IME_CHAR message includes a double-byte character, the DefWindowProc function
converts this message into two WM_CHAR messages, each containing one byte of the double-
byte character.See AlsoDefWindowProc, WM_CHAR

WM_IME_COMPOSITION
The WM_IME_COMPOSITION message is sent to an application when the IME changes
composition status as a result of a key stroke. An application should process this message if it
displays composition characters itself. Otherwise, it should send the message to the IME window.chDBCS = (WORD) wParam;
fFlags = (BOOL) lParam;
ParameterschDBCS

DBCS character representing the latest change to the composition string.
fFlags

Change flag, indicating how the composition string or character changed. This parameter can
be one or more of the following values:

GCS_COMPSTR GCS_SETCURSORPOS
GCS_COMPATTR GCS_RESULTSTR
GCS_COMPCLAUSE GCS_RESULTCLAUSE
GCS_COMPREADSTR GCS_RESULTREADSTR
GCS_COMPREADATTR GCS_RESULTREADCLAUSE
GCS_COMPREADCLAUSE GCR_ERRORSTR
GCS_TYPINGINFO GCR_INFOSTR

Return ValuesNo return value.RemarksFor more information about these values, see the "IME Composition String Values" table in Input
Method Editor Constants.

The fFlags parameter can also be a combination of the following values:

Value Meaning

CS_INSERTCHAR Specifies that the given composition character
should be inserted at the current insertion point.
An application should display the composition
character if it processes this message.

CS_NOMOVECARET Specifies that the application must not move the
caret position as a result of processing the
message. For example, if an IME specifies a
combination of CS_INSERTCHAR and
CS_NOMOVECARET, the application should
insert the given character at the current caret
position but should not move caret to the next
position. A subsequent
WM_IME_COMPOSITION message with
GCS_RESULTSTR will replace this character.

If the application has created an IME window, it should pass this message to that window.
The DefWindowProc function processes this message by passing it to the default IME window.
The IME window processes this message by updating its appearance based on the change flag
given. An application can call ImmGetCompositionString to retrieve the new composition status.

If none of the GCS_ values are set, the message indicates that the current composition has been
canceled and applications that draw the composition string should delete the string.See AlsoDefWindowProc, ImmGetCompositionString

WM_IME_COMPOSITIONFULL
The WM_IME_COMPOSITIONFULL message is sent to an application when the IME window
finds no space to extend the area for the composition window. The application should use the
IMC_SETCOMPOSITIONWINDOW message to specify how to display the window.Return ValuesNo return value.RemarksThe wParam and lParam parameters are not used. The IME window, not the IME, sends this
notification message by using the SendMessage message.See AlsoIMC_SETCOMPOSITIONWINDOW, SendMessage

WM_IME_CONTROL
The WM_IME_CONTROL message directs the IME window to carry out the requested command.
An application uses this message to control the IME window created by the application.wParam = (WPARAM) (DWORD) dwCommand;
lParam = (LPARAM) (DWORD) dwData;
ParametersdwCommand

Command value. This parameter can be one of the following values:
IMC_GETCANDIDATEPOS IMC_OPENSTATUSWINDOW
IMC_GETCOMPOSITIONFONT IMC_SETCANDIDATEPOS
IMC_GETCOMPOSITIONWINDOWIMC_SETCOMPOSITIONFONT
IMC_GETCONVERSIONMODE IMC_SETCOMPOSITIONWINDOW
IMC_GETOPENSTATUS IMC_SETCONVERSIONMODE
IMC_GETSENTENCEMODE IMC_SETOPENSTATUS
IMC_GETSTATUSWINDOWPOSIMC_SETSENTENCEMODE
IMC_CLOSESTATUSWINDOW IMC_SETSTATUSWINDOWPOS

For more information about these commands, see the individual descriptions.
dwData

Command-specific value.
Return ValuesReturns a command-specific value.See AlsoIMC_CLOSESTATUSWINDOW, IMC_GETCANDIDATEPOS, IMC_GETCOMPOSITIONFONT,

IMC_GETCOMPOSITIONWINDOW, IMC_GETCONVERSIONMODE, IMC_GETOPENSTATUS,
IMC_GETSENTENCEMODE, IMC_GETSTATUSWINDOWPOS, IMC_OPENSTATUSWINDOW,
IMC_SETCANDIDATEPOS, IMC_SETCOMPOSITIONFONT,
IMC_SETCOMPOSITIONWINDOW, IMC_SETCONVERSIONMODE, IMC_SETOPENSTATUS,
IMC_SETSENTENCEMODE, IMC_SETSTATUSWINDOWPOS

WM_IME_ENDCOMPOSITION
The WM_IME_ENDCOMPOSITION message is sent to an application when the IME ends
composition. An application should process this message if it displays composition characters
itself.Return ValuesNo return value.RemarksThe wParam and lParam parameters are not used.

If an application has created an IME window, it should pass this message to that window. The
DefWindowProc function processes this message by passing it to default IME window.See AlsoDefWindowProc

WM_IME_KEYDOWN
The WM_IME_KEYDOWN message is sent to an application by the IME to notify the application
of a key press. The parameters and return value for this message are identical to the
WM_KEYDOWN message. An application can process this message or pass it to the
DefWindowProc function to generate a matching WM_KEYDOWN message. This message is
usually generated by the IME to keep message order.nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
See AlsoDefWindowProc

WM_IME_KEYUP
The WM_IME_KEYUP message is sent to an application by the IME to notify the application of a
key release. The parameters and return value for this message are identical to the WM_KEYUP
message. An application can process this message or pass it to the DefWindowProc function to
generate a matching WM_KEYUP message. This message is usually generated by the IME to
keep message order.nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
See AlsoDefWindowProc

WM_IME_NOTIFY
The WM_IME_NOTIFY message is sent to an application to notify it of changes to the IME
window. An application processes this message if it is responsible for managing the IME window.dwCommand = (DWORD) wParam;
dwData = (DWORD) lParam;
ParametersdwCommand

Command value. This parameter may be one of the following values:
IMN_CHANGECANDIDATE IMN_SETCANDIDATEPOS
IMN_CLOSECANDIDATE IMN_SETCOMPOSITIONFONT
IMN_CLOSESTATUSWINDOW IMN_SETCOMPOSITIONWINDOW
IMN_GUIDELINE IMN_SETCONVERSIONMODE
IMN_OPENCANDIDATE IMN_SETOPENSTATUS
IMN_OPENSTATUSWINDOW IMN_SETSENTENCEMODE
IMN_PRIVATE IMN_SETSTATUSWINDOWPOS

For more information about these commands, see the corresponding descriptions.
dwData

Command-specific value.
Return ValuesReturns a command-specific value.

IMN_CHANGECANDIDATE, IMN_OPENCANDIDATE, IMN_OPENSTATUSWINDOW,
IMN_SETCANDIDATEPOS, IMN_SETCOMPOSITIONFONT,
IMN_SETCOMPOSITIONWINDOW, IMN_SETCONVERSIONMODE, IMN_SETOPENSTATUS,
IMN_SETSENTENCEMODE, IMN_SETSTATUSWINDOWPOS

WM_IME_SELECT
The WM_IME_SELECT message is sent to an application when the system is about to change
the current IME. An application that has created an IME window should pass this message to that
window so that it can retrieve the keyboard layout handle for the newly selected IME.fSeleft = (BOOL) wParam;
hKL = (HANDLE) lParam;
ParametersfSelect

Selection flag. If TRUE, the specified IME is selected; if FALSE, the specified IME is no longer
selected.

hKL
Handle to the keyboard layout associated with the IME.

Return ValuesNo return value.RemarksThe DefWindowProc function processes this message by passing the information to the default
IME window.See AlsoDefWindowProc

WM_IME_SETCONTEXT
The WM_IME_SETCONTEXT message is sent to an application when a window of the application
is activated. If the application has created an IME window, it should call the ImmIsUIMessage
function. Otherwise, it should pass this message to the DefWindowProc function.fSet = (BOOL) wParam;
iShow = (DWORD) lParam;
ParametersfSet

Active flag. If TRUE, the input context is active. If FALSE, the context is inactive.
iShow

Show flags. Can be a combination of the following values:
Value Description
ISC_SHOWUICOMPOSITIONWINDOW Shows the composition

window by UI window.
ISC_SHOWUIGUIDWINDOW Shows the guide window by

UI window
ISC_SHOWUISOFTKBD Shows the soft keyboard by

UI window
ISC_SHOWUICANDIDATEWINDOW Shows the candidate window

of Index 0 by UI window.
ISC_SHOWUICANDIDATEWINDOW <<
1

Shows the candidate window
of Index 1 by UI window.

ISC_SHOWUICANDIDATEWINDOW <<
2

Shows the candidate window
of Index 2 by UI window.

ISC_SHOWUICANDIDATEWINDOW <<
3

Shows the candidate window
of Index 3 by UI window.

If the application draws the composition window, the default IME window does not need to
show its composition window. In this case, the application must clear the
ISC_SHOWUICOMPOSITIONWINDOW value from the lParam parameter before passing the
message to the DefWindowProc or ImmIsUIMessage functions.Return ValuesReturns the value returned by DefWindowProc or ImmIsUIMessage.See AlsoDefWindowProc, ImmIsUIMessage

WM_IME_STARTCOMPOSITION
The WM_IME_STARTCOMPOSITION message is sent immediately before the IME generates
composition string as a result of a key stroke. The message is a notification to an IME window to
open its composition window. An application should process this message if it displays
composition characters itself.Return ValuesNo return value.RemarksThe wParam and lParam parameters are not used.

If an application has created an IME window, it should pass the WM_IME_STARTCOMPOSITION
message to that window. The DefWindowProc function processes this message by passing it to
the default IME window.See AlsoDefWindowProc

WM_INITDIALOG
The WM_INITDIALOG message is sent to the dialog box procedure immediately before a dialog
box is displayed. Dialog box procedures typically use this message to initialize controls and carry
out any other initialization tasks that affect the appearance of the dialog box.WM_INITDIALOG
hwndFocus = (HWND) wParam; // handle of control to receive focus
lInitParam = lParam; // initialization parameter
ParametershwndFocus

Value of wParam. Identifies the control to receive the default keyboard focus. Windows
assigns the default keyboard focus only if the dialog box procedure returns TRUE.

lInitParam
Value of lParam. Specifies additional initialization data. This data is passed to Windows as the
lParamInit parameter in a call to the CreateDialogIndirectParam, CreateDialogParam,
DialogBoxIndirectParam, or DialogBoxParam function used to create the dialog box. This
parameter is zero if any other dialog box creation function is used.

Return ValuesThe dialog box procedure should return TRUE to direct Windows to set the keyboard focus to the
control given by hwndFocus. Otherwise, it should return FALSE to prevent Windows from setting
the default keyboard focus.RemarksThe control to receive the default keyboard focus is always the first control in the dialog box that is
visible, not disabled, and that has the WS_TABSTOP style. When the dialog box procedure
returns TRUE, Windows checks the control to ensure that the procedure has not disabled it. If it
has been disabled, Windows sets the keyboard focus to the next control that is visible, not
disabled, and has the WS_TABSTOP.

An application can return FALSE only if it has set the keyboard focus to one of the controls of the
dialog box.See AlsoCreateDialogIndirectParam, CreateDialogParam, DialogBoxIndirectParam,
DialogBoxParam, SetFocus

WM_INITMENU
The WM_INITMENU message is sent when a menu is about to become active. It occurs when the
user clicks an item on the menu bar or presses a menu key. This allows the application to modify
the menu before it is displayed.WM_INITMENU
hmenuInit = (HMENU) wParam; // handle of menu to initialize
ParametershmenuInit

Value of wParam. Identifies the menu to be initialized.
Return ValuesIf an application processes this message, it should return zero.RemarksA WM_INITMENU message is sent only when a menu is first accessed; only one WM_INITMENU

message is generated for each access. For example, moving the mouse across several menu
items while holding down the button does not generate new messages. WM_INITMENU does not
provide information about menu items.See AlsoWM_INITMENUPOPUP

WM_INITMENUPOPUP
The WM_INITMENUPOPUP message is sent when a drop-down menu or submenu is about to
become active. This allows an application to modify the menu before it is displayed, without
changing the entire menu.WM_INITMENUPOPUP
hmenuPopup = (HMENU) wParam; // handle of submenu
uPos = (UINT) LOWORD(lParam); // submenu item position
fSystemMenu = (BOOL) HIWORD(lParam); // window menu flag
ParametershmenuPopup

Value of wParam. Identifies the drop-down menu or submenu.
uPos

Value of the low-order word of lParam. Specifies the zero-based relative position of the menu
item that opens the drop-down menu or submenu.

fSystemMenu
Value of the high-order word of lParam. Specifies whether the drop-down menu is the window
menu (also known as the System menu or the Control menu). If the menu is the window
menu, this parameter is TRUE; otherwise, it is FALSE.

Return ValuesIf an application processes this message, it should return zero.See AlsoWM_INITMENU

WM_INPUTLANGCHANGE
The WM_INPUTLANGCHANGE message is sent to the topmost affected window after a task's
locale has been changed. It should be used to make any application-specific settings and passed
on to the DefWindowProc function to be passed on to any children.WM_INPUTLANGCHANGE
charset = wParam;
hkl = (HKL) lParam;
Parameterscharset

Value of wParam. Specifies the character set of the new keyboard layout.
hkl

Value of lParam. Identifies the new keyboard layout.Return ValuesAn application should return nonzero if it processes this message.See AlsoDefWindowProc, WM_INPUTLANGCHANGEREQUEST

WM_INPUTLANGCHANGEREQUEST
The WM_INPUTLANGCHANGEREQUEST message is posted to the application's top-level
window when the user chooses an input language, either with an input language change hotkey or
from the system languages menu. An application can accept the change by passing the message
to the DefWindowProc function or reject the change (and prevent it from taking place) by
returning immediately.WM_INPUTLANGCHANGEREQUEST
fSysCharSet = (BOOL) wParam
hkl = (HKL) lParam;
ParameterswParam

The lowest bit of this parameter is set if the handle of the keyboard layout can be used with
the system character set. The other bits are reserved. For example, in the Russian-language
version of Windows 95, this parameter has the low bit set for keyboard layout handles for
English (US) and Russian, but cleared for other handles.

hkl
Value of lParam. Identifies the keyboard layout to switch to.

Return ValuesThis message is posted, not sent, to the application, so the return value is ignored. To accept the
change, the application should pass the message on to DefWindowProc. To reject the change,
the application should return zero without calling DefWindowProc.See AlsoDefWindowProc, WM_INPUTLANGCHANGE

WM_KEYDOWN
The WM_KEYDOWN message is posted to the window with the keyboard focus when a
nonsystem key is pressed. A nonsystem key is a key that is pressed when the ALT key is not
pressed.WM_KEYDOWN
nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
ParametersnVirtKey

Value of wParam. Specifies the virtual-key code of the nonsystem key.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:
Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is always 0 for a

WM_KEYDOWN message.
30 Specifies the previous key state. The value is 1 if the key

is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is always 0 for a
WM_KEYDOWN message.

Return ValuesAn application should return zero if it processes this message.Default ActionIf the F10 key is pressed, the DefWindowProc function sets an internal flag. When
DefWindowProc receives the WM_KEYUP message, the function checks whether the internal
flag is set and, if so, sends a WM_SYSCOMMAND message to the top-level window. The
wParam parameter of the message is set to SC_KEYMENU.RemarksBecause of the autorepeat feature, more than one WM_KEYDOWN message may be posted
before a WM_KEYUP message is posted. The previous key state (bit 30) can be used to
determine whether the WM_KEYDOWN message indicates the first down transition or a repeated
down transition.

For enhanced 101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys in
the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric
keypad. Other keyboards may support the extended-key bit in the lKeyData parameter.See AlsoDefWindowProc, WM_CHAR, WM_KEYUP, WM_SYSCOMMAND

WM_KEYUP
The WM_KEYUP message is posted to the window with the keyboard focus when a nonsystem
key is released. A nonsystem key is a key that is pressed when the ALT key is not pressed, or a
keyboard key that is pressed when a window has the keyboard focus.WM_KEYUP
nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
ParametersnVirtKey

Value of wParam. Specifies the virtual-key code of the nonsystem key.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key. The repeat count is always one for
a WM_KEYUP message.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is always 0 for a

WM_KEYUP message.
30 Specifies the previous key state. The value is always 1

for a WM_KEYUP message.
31 Specifies the transition state. The value is always 1 for a

WM_KEYUP message.
Return ValuesAn application should return zero if it processes this message.Default ActionThe DefWindowProc function sends a WM_SYSCOMMAND message to the top-level window if

the F10 key or the ALT key was released. The wParam parameter of the message is set to
SC_KEYMENU.RemarksFor enhanced 101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys in
the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric
keypad. Other keyboards may support the extended-key bit in the lKeyData parameter.See AlsoDefWindowProc, WM_KEYDOWN, WM_SYSCOMMAND

WM_KILLFOCUS
The WM_KILLFOCUS message is sent to a window immediately before it loses the keyboard
focus.WM_KILLFOCUS
hwndGetFocus = (HWND) wParam; // handle of window receiving focus
ParametershwndGetFocus

Value of wParam. Identifies the window that receives the keyboard focus (may be NULL).
Return ValuesAn application should return zero if it processes this message.RemarksIf an application is displaying a caret, the caret should be destroyed at this point.See AlsoSetFocus, WM_SETFOCUS

WM_LBUTTONDBLCLK
The WM_LBUTTONDBLCLK message is posted when the user double-clicks the left mouse
button while the cursor is in the client area of a window. If the mouse is not captured, the message
is posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_LBUTTONDBLCLK
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksOnly windows that have the CS_DBLCLKS style can receive WM_LBUTTONDBLCLK messages,
which Windows generates whenever the user presses, releases, and again presses the left
mouse button within the system's double-click time limit. Double-clicking the left mouse button
actually generates four messages: WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, and WM_LBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, GetDoubleClickTime, MAKEPOINTS, POINTS, SetCapture,
SetDoubleClickTime, WM_LBUTTONDOWN, WM_LBUTTONUP

WM_LBUTTONDOWN
The WM_LBUTTONDOWN message is posted when the user presses the left mouse button while
the cursor is in the client area of a window. If the mouse is not captured, the message is posted to
the window beneath the cursor. Otherwise, the message is posted to the window that has
captured the mouse.WM_LBUTTONDOWN
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_LBUTTONDBLCLK, WM_LBUTTONUP

WM_LBUTTONUP
The WM_LBUTTONUP message is posted when the user releases the left mouse button while
the cursor is in the client area of a window. If the mouse is not captured, the message is posted to
the window beneath the cursor. Otherwise, the message is posted to the window that has
captured the mouse.WM_LBUTTONUP
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_LBUTTONDBLCLK,
WM_LBUTTONDOWN

WM_MBUTTONDBLCLK
The WM_MBUTTONDBLCLK message is posted when the user double-clicks the middle mouse
button while the cursor is in the client area of a window. If the mouse is not captured, the message
is posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_MBUTTONDBLCLK
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksOnly windows that have the CS_DBLCLKS style can receive WM_MBUTTONDBLCLK messages,
which Windows generates whenever the user presses, releases, and again presses the middle
mouse button within the system's double-click time limit. Double-clicking the middle mouse button
actually generates four messages: WM_MBUTTONDOWN, WM_MBUTTONUP,
WM_MBUTTONDBLCLK, and WM_MBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, GetDoubleClickTime, MAKEPOINTS, POINTS, SetCapture,
SetDoubleClickTime, WM_MBUTTONDOWN, WM_MBUTTONUP

WM_MBUTTONDOWN
The WM_MBUTTONDOWN message is posted when the user presses the middle mouse button
while the cursor is in the client area of a window. If the mouse is not captured, the message is
posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_MBUTTONDOWN
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_MBUTTONDBLCLK,
WM_MBUTTONUP

WM_MBUTTONUP
The WM_MBUTTONUP message is posted when the user releases the middle mouse button
while the cursor is in the client area of a window. If the mouse is not captured, the message is
posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_MBUTTONUP
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_MBUTTONDBLCLK,
WM_MBUTTONDOWN

WM_MDIACTIVATE
An application sends the WM_MDIACTIVATE message to a multiple document interface (MDI)
client window to instruct the client window to activate a different MDI child window. As the client
window processes this message, it sends WM_MDIACTIVATE to the child window being
deactivated and to the child window being activated.WM_MDIACTIVATE
// Message sent to MDI client
wParam = (WPARAM) (HWND) hwndChildAct; // child to activate
lParam = 0; // not used; must be zero
// Message received by MDI child
hwndChildDeact = (HWND) wParam; // child being deactivated
hwndChildAct = (HWND) lParam;// child being activated
ParametersIn messages sent to an MDI client window:

hwndChildAct
Value of wParam. Identifies the MDI child window to be activated.

In messages received by an MDI child window:
hwndChildDeact

Value of wParam. Identifies the MDI child window being deactivated.
hwndChildAct

Value of lParam. Identifies the MDI child window being activated.
Return ValuesIf an application sends this message to an MDI client window, the return value is zero. An MDI

child window should return zero if it processes this message.RemarksAn MDI child window is activated independently of the MDI frame window. When the frame
window becomes active, the child window last activated by using the WM_MDIACTIVATE
message receives the WM_NCACTIVATE message to draw an active window frame and title bar;
the child window does not receive another WM_MDIACTIVATE message.See AlsoWM_MDIGETACTIVE, WM_MDINEXT, WM_NCACTIVATE

WM_MDICASCADE
An application sends the WM_MDICASCADE message to a multiple document interface (MDI)
client window to arrange all its child windows in a cascade format.WM_MDICASCADE
wParam = (WPARAM) (UINT) fuCascade; // cascade flag
lParam = 0; // not used; must be zero
ParametersfuCascade

Value of wParam. Specifies a cascade flag. The only flag currently available,
MDITILE_SKIPDISABLED, prevents disabled MDI child windows from being cascaded.

Return ValuesIf the message succeeds, the return value is TRUE.

If the message fails, the return value is FALSE.See AlsoWM_MDIICONARRANGE, WM_MDITILE

WM_MDICREATE
An application sends the WM_MDICREATE message to a multiple document interface (MDI)
client window to create an MDI child window.WM_MDICREATE
wParam = 0; // not used; must be zero
lParam = (LPARAM) (LPMDICREATESTRUCT) lpmdic; // creation data
Parameterslpmdic

Points to an MDICREATESTRUCT structure containing information that Windows uses to
create the MDI child window.Return ValuesIf the message succeeds, the return value is the handle of the new child window.

If the message fails, the return value is NULL.RemarksThe MDI child window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS,
WS_CLIPCHILDREN, WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX,
and WS_MAXIMIZEBOX, plus additional style bits specified in the MDICREATESTRUCT
structure to which the lpmdic parameter points. Windows adds the title of the new child window to
the Window menu of the frame window. An application should use this message to create all child
windows of the client window.

If an MDI client window receives any message that changes the activation of its child windows
while the active child window is maximized, Windows restores the active child window and
maximizes the newly activated child window.

When an MDI child window is created, Windows sends the WM_CREATE message to the
window. The lParam parameter of the WM_CREATE message contains a pointer to a
CREATESTRUCT structure. The lpCreateParams member of this structure contains a pointer to
the MDICREATESTRUCT structure passed with the WM_MDICREATE message that created the
MDI child window.

An application should not send a second WM_MDICREATE message while a WM_MDICREATE
message is still being processed. For example, it should not send a WM_MDICREATE message
while an MDI child window is processing its WM_MDICREATE message.See AlsoCreateMDIWindow, CREATESTRUCT, MDICREATESTRUCT, WM_CREATE,
WM_MDIDESTROY

WM_MDIDESTROY
An application sends the WM_MDIDESTROY message to a multiple document interface (MDI)
client window to close an MDI child window.WM_MDIDESTROY
wParam = (WPARAM) (HWND) hwndChild; // handle of child to close
lParam = 0;// not used; must be zero
ParametershwndChild

Value of wParam. Identifies the MDI child window to be closed.
Return ValuesThis message always returns zero.RemarksThis message removes the title of the MDI child window from the MDI frame window and

deactivates the child window. An application should use this message to close all MDI child
windows.

If an MDI client window receives a message that changes the activation of its child windows and
the active MDI child window is maximized, Windows restores the active child window and
maximizes the newly activated child window.See AlsoWM_MDICREATE

WM_MDIGETACTIVE
An application sends the WM_MDIGETACTIVE message to a multiple document interface (MDI)
client window to retrieve the handle of the active MDI child window.WM_MDIGETACTIVE
wParam = 0; // not used; must be zero
lParam = (LPBOOL) lpfMaximized; // optional pointer to maximized state
flag
ParameterslpfMaximized

Value of lparam. This is an optional pointer to a maximized state flag variable. If lpfMaximized
is non-NULL, the BOOL it points to is set to indicate the maximized state of the MDI child
window. TRUE indicates that the window is maximized, FALSE indicates that it is not. This is
equivalent to the indication supplied by the high-order word of the return value of the
WM_MDIGETACTIVE message under Windows version 3.x. If lpfMaximized is NULL, the
parameter is ignored.

Return ValuesThe return value is the handle of the active MDI child window.RemarksNote carefully a change in how this message indicates maximization. In Windows version 3.x, the
message return value includes a flag indicating whether the MDI child window is maximized. In
the Win32 application programming interface (API), the return value does not include this flag. In
Win32, the MDI child window's maximized state is indicated by setting a BOOL variable via the
optional parameter in lParam, lpfMaximized.

WM_MDIICONARRANGE
An application sends the WM_MDIICONARRANGE message to a multiple document interface
(MDI) client window to arrange all minimized MDI child windows. It does not affect child windows
that are not minimized.WM_MDIICONARRANGE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.See AlsoWM_MDICASCADE, WM_MDITILE

WM_MDIMAXIMIZE
An application sends the WM_MDIMAXIMIZE message to a multiple document interface (MDI)
client window to maximize an MDI child window. Windows resizes the child window to make its
client area fill the client window. Windows places the child window's window menu icon in the
rightmost position of the frame window's menu bar, and places the child window's restore icon in
the leftmost position. Windows also appends the title bar text of the child window to that of the
frame window.WM_MDIMAXIMIZE
wParam = (WPARAM) (HWND) hwndMax; // handle of child to maximize
lParam = 0; // not used; must be zero
ParametershwndMax

Value of wParam. Identifies the MDI child window to be maximized.
Return ValuesThe return value is always zero.RemarksIf an MDI client window receives any message that changes the activation of its child windows

while the currently active MDI child window is maximized, Windows restores the active child
window and maximizes the newly activated child window.See AlsoWM_MDIRESTORE

WM_MDINEXT
An application sends the WM_MDINEXT message to a multiple document interface (MDI) client
window to activate the next or previous child window.WM_MDINEXT
wParam = (WPARAM) (HWND) hwndChild; // handle of child
lParam = (LPARAM) fNext; // next or previous child
ParametershwndChild

Value of wParam. Identifies the MDI child window. Windows activates the child window that is
immediately before or after the given child window, depending on the value of the fNext
parameter. If the hwndChild parameter is NULL, Windows activates the child window that is
immediately before or after the currently active child window.

fNext
Value of lParam. If this parameter is zero, Windows activates the next MDI child window and
places the child window identified by the hwndChild parameter behind all other child windows.
If this parameter is nonzero, Windows activates the previous child window, placing it in front of
the child window identified by hwndChild.

Return ValuesThe return value is always zero.RemarksIf an MDI client window receives any message that changes the activation of its child windows
while the active MDI child window is maximized, Windows restores the active child window and
maximizes the newly activated child window.See AlsoWM_MDIACTIVATE, WM_MDIGETACTIVE

WM_MDIREFRESHMENU
An application sends the WM_MDIREFRESHMENU message to a multiple document interface
(MDI) client window to refresh the Window menu of the MDI frame window.WM_MDIREFRESHMENU
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the message succeeds, the return value is the handle of the frame window menu.

If the message fails, the return value is NULL.RemarksAfter sending this message, an application must call the DrawMenuBar function to update the
menu bar.See AlsoDrawMenuBar, WM_MDISETMENU

WM_MDIRESTORE
An application sends the WM_MDIRESTORE message to a multiple document interface (MDI)
client window to restore an MDI child window from maximized or minimized size.WM_MDIRESTORE
wParam = (WPARAM) (HWND) hwndRes; // handle of child to restore
lParam = 0; // not used; must be zero
ParametershwndRes

Value of wParam. Identifies the MDI child window to be restored.
Return ValuesThe return value is always zero.See AlsoWM_MDIMAXIMIZE

WM_MDISETMENU
An application sends the WM_MDISETMENU message to a multiple document interface (MDI)
client window to replace the entire menu of an MDI frame window, to replace the Window menu of
the frame window, or both.WM_MDISETMENU
wParam = (WPARAM) (HMENU) hmenuFrame; // handle of frame menu
lParam = (LPARAM) (HMENU) hmenuWindow; // handle of Window menu
ParametershmenuFrame

Value of wParam. Identifies the new frame window menu. If this parameter is NULL, the frame
window menu is not changed.

hmenuWindow
Value of lParam. Identifies the new Window menu. If this parameter is NULL, the Window
menu is not changed.

Return ValuesIf the message succeeds, the return value is the handle of the old frame window menu.

If the message fails, the return value is zero.RemarksAfter sending this message, an application must call the DrawMenuBar function to update the
menu bar.

If this message replaces the Window menu, the MDI child window menu items are removed from
the previous Window menu and added to the new Window menu.

If an MDI child window is maximized and this message replaces the MDI frame window menu, the
System menu icon and restore icon are removed from the previous frame window menu and
added to the new frame window menu.See AlsoDrawMenuBar, WM_MDIREFRESHMENU

WM_MDITILE
An application sends the WM_MDITILE message to a multiple document interface (MDI) client
window to arrange all of its MDI child windows in a tile format.WM_MDITILE
wParam = (WPARAM) (UINT) fuTile; // tiling flag
lParam = 0; // not used; must be zero
ParametersfuTile

Specifies a tiling flag. This parameter can be one of the following values:
Value Meaning
MDITILE_HORIZONTAL Tiles MDI child windows so that they

are wide rather than tall.
MDITILE_SKIPDISABLED Prevents disabled MDI child windows

from being tiled.
MDITILE_VERTICAL Tiles MDI child windows so that they

are tall rather than wide.
Return ValuesIf the message succeeds, the return value is TRUE.

If the message fails, the return value is FALSE.See AlsoWM_MDICASCADE, WM_MDIICONARRANGE

WM_MEASUREITEM
The WM_MEASUREITEM message is sent to the owner window of an owner-drawn button,
combo box, list box, list view control, or menu item when the control or menu is created.WM_MEASUREITEM
idCtl = (UINT) wParam; // control identifier
lpmis = (LPMEASUREITEMSTRUCT) lParam; // item-size information
ParametersidCtl

Value of wParam. Contains the value of the CtlID member of the MEASUREITEMSTRUCT
structure pointed to by the lpmis parameter. This value identifies the control that sent the
WM_MEASUREITEM message.
If the value is zero, the message was sent by a menu. If the value is nonzero, the message
was sent by a combo box or by a list box. If the value is nonzero, and the value of the itemID
member of the MEASUREITEMSTRUCT pointed to by lpmis is (UINT) - 1, the message was
sent by a combo edit field.

lpmis
Value of lParam. Points to a MEASUREITEMSTRUCT structure that contains the dimensions
of the owner-drawn control or menu item.

Return ValuesIf an application processes this message, it should return TRUE.RemarksWhen the owner window receives the WM_MEASUREITEM message, the owner fills in the
MEASUREITEMSTRUCT structure pointed to by the lParam parameter of the message and
returns; this informs Windows of the dimensions of the control. If a list box or combo box is
created with the LBS_OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE style, this
message is sent to the owner for each item in the control; otherwise, this message is sent once.

Windows sends the WM_MEASUREITEM message to the owner window of combo boxes and list
boxes created with the OWNERDRAWFIXED style before sending the WM_INITDIALOG
message. As a result, when the owner receives this message, Windows has not yet determined
the height and width of the font used in the control; function calls and calculations requiring these
values should occur in the main function of the application or library.See AlsoMEASUREITEMSTRUCT, WM_INITDIALOG

WM_MENUCHAR
The WM_MENUCHAR message is sent when a menu is active and the user presses a key that
does not correspond to any mnemonic or accelerator key. This message is sent to the window
that owns the menu.WM_MENUCHAR
chUser = (char) LOWORD(wParam); // ASCII character
fuFlag = (UINT) HIWORD(wParam); // menu flag
hmenu = (HMENU) lParam; // handle of menu
ParameterschUser

Value of the low-order word of wParam. Specifies the ASCII character that corresponds to the
key the user pressed.

fuFlag
Value of the high-order word of wParam. Specifies the type of the active menu. This
parameter can be one of the following values:

Value Meaning
MF_POPUP drop-down menu, submenu, or shortcut menu
MF_SYSMENU window menu (System menu or Control menu)

hmenu
Value of lParam. Identifies the active menu.

Return ValuesAn application that processes this message should return one of the following values in the high-
order word of the return value:

Value Meaning

0 Informs Windows that it should discard the character the
user pressed and create a short beep on the system
speaker.

1 Informs Windows that it should close the active menu.
2 Informs Windows that the low-order word of the return value

specifies the zero-based relative position of a menu item.
This item is selected by Windows.

RemarksThe low-order word is ignored if the high-order word contains 0 or 1. An application should
process this message when an accelerator is used to select a menu item that displays a bitmap.

WM_MENUSELECT
The WM_MENUSELECT message is sent to a menu's owner window when the user selects a
menu item.WM_MENUSELECT
uItem = (UINT) LOWORD(wParam); // menu item or submenu index
fuFlags = (UINT) HIWORD(wParam); // menu flags
hmenu = (HMENU) lParam;// handle of menu clicked
ParametersuItem

Value of the low-order word of wParam. If the selected item is a command item, this
parameter contains the identifier of the menu item. If the selected item opens a drop-down
menu or submenu, this parameter contains the menu index of the drop-down menu or
submenu in the main menu, and the hMenu parameter then contains the handle of the main
(clicked) menu; use the GetSubMenu function to get the menu handle of the drop-down menu
or submenu.

fuFlags
Value of the high-order word of wParam. Specifies one or more menu flags. This parameter
can be a combination of the following values:

Value Description
MF_BITMAP Item displays a bitmap.
MF_CHECKED Item is checked.
MF_DISABLED Item is disabled.
MF_GRAYED Item is grayed.
MF_HILITE Item is highlighted.
MF_MOUSESELECT Item is selected with the mouse.
MF_OWNERDRAW Item is an owner-drawn item.
MF_POPUP Item opens a drop-down menu or submenu.
MF_SYSMENU Item is contained in the window menu (also

known as the System menu or Control menu)
. The hmenu parameter identifies the
window menu associated with the message.

hmenu
Value of lParam. Identifies the menu that was clicked.

Return ValuesIf an application processes this message, it should return zero.RemarksIf the fuFlags parameter contains 0xFFFF and the hmenu parameter contains NULL, Windows
has closed the menu.

Do not use the value - 1 for fuFlags. That is because fuFlags is specified as (UINT)
HIWORD(wParam). If HIWORD(wParam) were 0xFFFF, fuFlags (because of the UINT cast)
would be 0x0000FFFF, not - 1.See AlsoGetSubMenu

WM_MOUSEACTIVATE
The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive window and the
user presses a mouse button. The parent window receives this message only if the child window
passes it to the DefWindowProc function.WM_MOUSEACTIVATE
hwndTopLevel = (HWND) wParam; // handle of top-level parent
nHittest = (INT) LOWORD(lParam); // hit-test value
uMsg = (UINT) HIWORD(lParam); // mouse message
ParametershwndTopLevel

Value of wParam. Identifies the top-level parent window of the window being activated.
nHittest

Value of the low-order word of lParam. Specifies the hit-test value returned by the
DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list
of hit-test values, see WM_NCHITTEST.

uMsg
Value of the high-order word of lParam. Specifies the identifier of the mouse message
generated when the user pressed a mouse button. The mouse message is either discarded or
posted to the window, depending on the return value.

Return ValuesThe return value specifies whether the window should be activated and whether the identifier of
the mouse message should be discarded. It must be one of the following values:

Value Meaning

MA_ACTIVATE Activates the window, and does not
discard the mouse message.

MA_ACTIVATEANDEAT Activates the window, and discards the
mouse message.

MA_NOACTIVATE Does not activate the window, and does
not discard the mouse message.

MA_NOACTIVATEANDEAT Does not activate the window, but
discards the mouse message.

Default ActionThe DefWindowProc function passes the message to a child window's parent window before any
processing occurs. The parent window determines whether to activate the child window. If it
activates the child window, the parent window should return TRUE to prevent the system from
processing the message further.See AlsoDefWindowProc, WM_NCHITTEST

WM_MOUSEMOVE
The WM_MOUSEMOVE message is posted to a window when the cursor moves. If the mouse is
not captured, the message is posted to the window that contains the cursor. Otherwise, the
message is posted to the window that has captured the mouse.WM_MOUSEMOVE
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the client area.

RemarksThe MAKEPOINTS macro can be used to convert the lParam parameter to a POINTS structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture

WM_MOUSEWHEEL
[New - Windows NT]

The WM_MOUSEWHEEL message is sent to the focus window when the mouse wheel is rotated.
The DefWindowProc function propagates the message to the window's parent. There should be
no internal forwarding of the message, since DefWindowProc propagates it up the parent chain
until it finds a window that processes it.WM_MOUSEWHEEL
fwKeys = LOWORD(wParam); // key flags
zDelta = (short) HIWORD(wParam); // wheel rotation
xPos = (short) LOWORD(lParam); // horizontal position of pointer
yPos = (short) HIWORD(lParam); // vertical position of pointer
ParametersfwKeys

Value of the low-order word of wParam. Indicates whether various virtual keys are down. This
parameter can be any combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

zDelta
The value of the high-order word of wParam. Indicates the distance that the wheel is rotated,
expressed in multiples or divisions of WHEEL_DELTA, which is 120. A positive value
indicates that the wheel was rotated forward, away from the user; a negative value indicates
that the wheel was rotated backward, toward the user.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the pointer, relative to the
upper-left corner of the screen.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the pointer, relative to
the upper-left corner of the screen.

RemarksThe zDelta parameter will be a multiple of WHEEL_DELTA, which is set at 120. This is the
threshold for action to be taken, and one such action (for example, scrolling one increment)
should occur for each delta.

The delta was set to 120 to allow Microsoft or other vendors to build finer-resolution wheels in the
future, including perhaps a freely-rotating wheel with no notches. The expectation is that such a
device would send more messages per rotation, but with a smaller value in each message. To
support this possibility, you should either add the incoming delta values until WHEEL_DELTA is
reached (so for a given delta-rotation you get the same response), or scroll partial lines in
response to the more frequent messages. You could also choose your scroll granularity and
accumulate deltas until it is reached.See AlsoGetSystemMetrics, mouse_event, SystemParametersInfo

WM_MOVE
The WM_MOVE message is sent after a window has been moved.WM_MOVE
xPos = (int) LOWORD(lParam); // horizontal position
yPos = (int) HIWORD(lParam); // vertical position
ParametersxPos

Value of the low-order word of lParam. Specifies the x-coordinate of the upper-left corner of
the client area of the window.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the upper-left corner of
the client area of the window.

Return ValuesIf an application processes this message, it should return zero.RemarksThe xPos and yPos parameters are given in screen coordinates for overlapped and pop-up
windows and in parent-client coordinates for child windows.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoMAKEPOINTS, POINTS

WM_MOVING
The WM_MOVING message is sent to a window that the user is moving. By processing this
message, an application can monitor the size and position of the drag rectangle and, if needed,
change its size or position.fwSide = wParam; // edge of window to be moved
lprc = (LPRECT) lParam;// screen coordinates of drag rectangle
ParametersfwSide

Value of wParam. Indicates which edge of the window is being moved. This parameter can be
a combination of the following values:

Value Meaning
WMSZ_BOTTOM Bottom edge
WMSZ_BOTTOMLEFT Bottom-left corner
WMSZ_BOTTOMRIGHT Bottom-right corner
WMSZ_LEFT Left edge
WMSZ_RIGHT Right edge
WMSZ_TOP Top edge
WMSZ_TOPLEFT Top-left corner
WMSZ_TOPRIGHT Top-right corner

lprc
Value of lParam. Address of a RECT structure with the screen coordinates of the drag
rectangle. To change the size or position of the drag rectangle, an application must change
the members of this structure.Return ValuesAn application should return TRUE if it processes this message.See AlsoRECT, WM_MOVE, WM_SIZING

WM_NCACTIVATE
The WM_NCACTIVATE message is sent to a window when its nonclient area needs to be
changed to indicate an active or inactive state.WM_NCACTIVATE
fActive = (BOOL) wParam; // new state of the title bar or
icon
ParametersfActive

Value of wParam. Specifies when a title bar or icon needs to be changed to indicate an active
or inactive state. If an active title bar or icon is to be drawn, the fActive parameter is TRUE. It
is FALSE for an inactive title bar or icon.

Return ValuesWhen the fActive parameter is FALSE, an application should return TRUE to indicate that
Windows should proceed with the default processing, or it should return FALSE to prevent the title
bar or icon from being deactivated. When fActive is TRUE, the return value is ignored.Default ActionThe DefWindowProc function draws the title bar or icon title in its active colors when the fActive
parameter is TRUE and in its inactive colors when fActive is FALSE.See AlsoDefWindowProc

WM_NCCALCSIZE
The WM_NCCALCSIZE message is sent when the size and position of a window's client area
must be calculated. By processing this message, an application can control the content of the
window's client area when the size or position of the window changes.WM_NCCALCSIZE
fCalcValidRects = (BOOL) wParam; // valid area flag
lpncsp = (LPNCCALCSIZE_PARAMS) lParam; // points to size calculation
data

or
lpncsp = (LPRECT) lParam;// points to new window coordinates
ParametersfCalcValidRects

Value of wParam. A Boolean value that, if TRUE, specifies that the application should indicate
which part of the client area contains valid information. The operating system copies the valid
information to the specified area within the new client area. Also, if this parameter is TRUE,
lParam points to an NCCALCSIZE_PARAMS structure.
If this parameter is FALSE, the application does not need to indicate the valid part of the client
area. Also, if this parameter is FALSE, lParam points to a RECT structure.

lpncsp
Value of lParam.
If wParam is TRUE, lParam points to an NCCALCSIZE_PARAMS structure that contains
information an application can use to calculate the new size and position of the client
rectangle.
If wParam is FALSE, lParam points to a RECT structure that contains the new coordinates of
the window that has been moved or resized. This is equivalent to rgrc[0] of an
NCCALCSIZE_PARAMS structure.

Return ValuesIf the fCalcValidRects parameter is FALSE, the application should return zero.

If fCalcValidRects is TRUE, the application can return zero or a valid combination of the following
values:

Value Meaning

WVR_ALIGNTOP,
WVR_ALIGNLEFT,
WVR_ALIGNBOTTOM,
WVR_ALIGNRIGHT

These values, used in combination, specify that the client
area of the window is to be preserved and aligned
appropriately relative to the new position of the window. For
example, to align the client area to the lower-left corner,
return the WVR_ALIGNLEFT and WVR_ALIGNTOP values.

WVR_HREDRAW,
WVR_VREDRAW

These values, used in combination with any other values,
cause the window to be completely redrawn if the client
rectangle changes size horizontally or vertically. These
values are similar to the CS_HREDRAW and
CS_VREDRAW class styles.

WVR_REDRAW
This value causes the entire window to be redrawn. It is a
combination of WVR_HREDRAW and WVR_VREDRAW
values.

WVR_VALIDRECTS
This value indicates that, upon return from
WM_NCCALCSIZE, the rectangles specified by the rgrc[1]
and rgrc[2] members of the NCCALCSIZE_PARAMS
structure contain valid source and destination area
rectangles, respectively. Windows combines these
rectangles to calculate the area of the window to be
preserved. Windows copies any part of the window image
that is within the source rectangle and clips the image to the
destination rectangle. Both rectangles are in parent-relative
or screen-relative coordinates.
This return value allows an application to implement more
elaborate client-area preservation strategies, such as
centering or preserving a subset of the client area.

If fCalcValidRects is TRUE and an application returns zero, the old client area is preserved and
is aligned with the upper-left corner of the new client area.Default ActionThe window may be redrawn, depending on whether the CS_HREDRAW or CS_VREDRAW class
style is specified. This is the default, backward-compatible processing of this message by the
DefWindowProc function (in addition to the usual client rectangle calculation described in the
preceding table).See AlsoDefWindowProc, MoveWindow, SetWindowPos, NCCALCSIZE_PARAMS, RECT

WM_NCCREATE
The WM_NCCREATE message is sent prior to the WM_CREATE message when a window is first
created.WM_NCCREATE
lpcs = (LPCREATESTRUCT) lParam; // initialization data
Parameterslpcs

Value of wParam. Points to the CREATESTRUCT structure for the window.
Return ValuesIf an application processes this message, it should return TRUE to continue creation of the

window. If the application returns FALSE, the CreateWindow or CreateWindowEx function will
return a NULL handle.Default ActionThe DefWindowProc function returns TRUE.See AlsoCreateWindow, CreateWindowEx, DefWindowProc, CREATESTRUCT, WM_CREATE

WM_NCDESTROY
The WM_NCDESTROY message informs a window that its nonclient area is being destroyed. The
DestroyWindow function sends the WM_NCDESTROY message to the window following the
WM_DESTROY message. WM_DESTROY is used to free the allocated memory object
associated with the window.WM_NCDESTROY
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.RemarksThis message frees any memory internally allocated for the window.See AlsoDestroyWindow, WM_DESTROY, WM_NCCREATE

WM_NCHITTEST
The WM_NCHITTEST message is sent to a window when the cursor moves, or when a mouse
button is pressed or released. If the mouse is not captured, the message is sent to the window
beneath the cursor. Otherwise, the message is posted to the window that has captured the
mouse.WM_NCHITTEST
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersxPos

Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the screen.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper-left corner of the screen.

Return ValuesThe return value of the DefWindowProc function is one of the following values, indicating the
position of the cursor hot spot:

Value Location of hot spot

HTBORDER In the border of a window that does not have a
sizing border

HTBOTTOM In the lower horizontal border of a window
HTBOTTOMLEFT In the lower-left corner of a window border
HTBOTTOMRIGHT In the lower-right corner of a window border
HTCAPTION In a title bar
HTCLIENT In a client area
HTERROR On the screen background or on a dividing line

between windows (same as HTNOWHERE,
except that the DefWindowProc function
produces a system beep to indicate an error)

HTGROWBOX In a size box (same as HTSIZE)
HTHSCROLL In a horizontal scroll bar
HTLEFT In the left border of a window
HTMENU In a menu
HTNOWHERE On the screen background or on a dividing line

between windows
HTREDUCE In a Minimize button
HTRIGHT In the right border of a window
HTSIZE In a size box (same as HTGROWBOX)
HTSYSMENU In a System menu or in a Close button in a child

window
HTTOP In the upper horizontal border of a window
HTTOPLEFT In the upper-left corner of a window border
HTTOPRIGHT In the upper right corner of a window border
HTTRANSPARENT In a window currently covered by another

window
HTVSCROLL In the vertical scroll bar
HTZOOM In a Maximize button
RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS

structure.See AlsoDefWindowProc, MAKEPOINTS, POINTS

WM_NCLBUTTONDBLCLK
The WM_NCLBUTTONDBLCLK message is posted when the user double-clicks the left mouse
button while the cursor is within the nonclient area of a window. This message is posted to the
window that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCLBUTTONDBLCLK
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function tests the given point to find out the location of the cursor and
performs the appropriate action. If appropriate, DefWindowProc sends the WM_SYSCOMMAND
message to the window.RemarksA window need not have the CS_DBLCLKS style to receive WM_NCLBUTTONDBLCLK
messages.

Windows generates a WM_NCLBUTTONDBLCLK message when the user presses, releases, and
again presses the left mouse button within the system's double-click time limit. Double-clicking the
left mouse button actually generates four messages: WM_NCLBUTTONDOWN,
WM_NCLBUTTONUP, WM_NCLBUTTONDBLCLK, and WM_NCLBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCLBUTTONDOWN,
WM_NCLBUTTONUP, WM_SYSCOMMAND

WM_NCLBUTTONDOWN
The WM_NCLBUTTONDOWN message is posted when the user presses the left mouse button
while the cursor is within the nonclient area of a window. This message is posted to the window
that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCLBUTTONDOWN
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function tests the given point to find out the location of the cursor and
performs the appropriate action. If appropriate, DefWindowProc sends the WM_SYSCOMMAND
message to the window.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCLBUTTONDBLCLK,
WM_NCLBUTTONUP, WM_SYSCOMMAND

WM_NCLBUTTONUP
The WM_NCLBUTTONUP message is posted when the user releases the left mouse button while
the cursor is within the nonclient area of a window. This message is posted to the window that
contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCLBUTTONUP
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // mouse-cursor coordinates
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function tests the given point to find out the location of the cursor and
performs the appropriate action. If appropriate, DefWindowProc sends the WM_SYSCOMMAND
message to the window.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCLBUTTONDBLCLK,
WM_NCLBUTTONDOWN, WM_SYSCOMMAND

WM_NCMBUTTONDBLCLK
The WM_NCMBUTTONDBLCLK message is posted when the user double-clicks the middle
mouse button while the cursor is within the nonclient area of a window. This message is posted to
the window that contains the cursor. If a window has captured the mouse, this message is not
posted.WM_NCMBUTTONDBLCLK
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksA window need not have the CS_DBLCLKS style to receive WM_NCMBUTTONDBLCLK
messages.

Windows generates a WM_NCMBUTTONDBLCLK message when the user presses, releases,
and again presses the middle mouse button within the system's double-click time limit. Double-
clicking the middle mouse button actually generates four messages: WM_NCMBUTTONDOWN,
WM_NCMBUTTONUP, WM_NCMBUTTONDBLCLK, and WM_NCMBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCMBUTTONDOWN,
WM_NCMBUTTONUP, WM_SYSCOMMAND

WM_NCMBUTTONDOWN
The WM_NCMBUTTONDOWN message is posted when the user presses the middle mouse
button while the cursor is within the nonclient area of a window. This message is posted to the
window that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCMBUTTONDOWN
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCMBUTTONDBLCLK,
WM_NCMBUTTONUP, WM_SYSCOMMAND

WM_NCMBUTTONUP
The WM_NCMBUTTONUP message is posted when the user releases the middle mouse button
while the cursor is within the nonclient area of a window. This message is posted to the window
that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCMBUTTONUP
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCMBUTTONDBLCLK,
WM_NCMBUTTONDOWN, WM_SYSCOMMAND

WM_NCMOUSEMOVE
The WM_NCMOUSEMOVE message is posted to a window when the cursor is moved within the
nonclient area of the window. This message is posted to the window that contains the cursor. If a
window has captured the mouse, this message is not posted.WM_NCMOUSEMOVE
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksIf it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_SYSCOMMAND

WM_NCPAINT
An application sends the WM_NCPAINT message to a window when its frame must be painted.WM_NCPAINT
hrgn = (HRGN) wParam; // handle of update region
Parametershrgn

Value of wParam. Identifies the update region of the window. The update region is clipped to
the window frame.

Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame. The clipping
region for a window is always rectangular, even if the shape of the frame is altered.See AlsoDefWindowProc, GetWindowDC, WM_PAINT

WM_NCRBUTTONDBLCLK
The WM_NCRBUTTONDBLCLK message is posted when the user double-clicks the right mouse
button while the cursor is within the nonclient area of a window. This message is posted to the
window that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCRBUTTONDBLCLK
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksA window need not have the CS_DBLCLKS style to receive WM_NCRBUTTONDBLCLK
messages.

Windows generates a WM_NCRBUTTONDBLCLK message when the user presses, releases,
and again presses the right mouse button within the system's double-click time limit. Double-
clicking the right mouse button actually generates four messages: WM_NCRBUTTONDOWN,
WM_NCRBUTTONUP, WM_NCRBUTTONDBLCLK, and WM_NCRBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCRBUTTONDOWN,
WM_NCRBUTTONUP, WM_SYSCOMMAND

WM_NCRBUTTONDOWN
The WM_NCRBUTTONDOWN message is posted when the user presses the right mouse button
while the cursor is within the nonclient area of a window. This message is posted to the window
that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCRBUTTONDOWN
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCRBUTTONDBLCLK,
WM_NCRBUTTONUP, WM_SYSCOMMAND

WM_NCRBUTTONUP
The WM_NCRBUTTONUP message is posted when the user releases the right mouse button
while the cursor is within the nonclient area of a window. This message is posted to the window
that contains the cursor. If a window has captured the mouse, this message is not posted.WM_NCRBUTTONUP
nHittest = (INT) wParam; // hit-test value
pts = MAKEPOINTS(lParam); // position of cursor
ParametersnHittest

Value of wParam. Specifies the hit-test value returned by the DefWindowProc function as a
result of processing the WM_NCHITTEST message. For a list of hit-test values, see
WM_NCHITTEST.

pts
Value of lParam. Specifies a POINTS structure that contains the x- and y-coordinates of the
cursor. The coordinates are relative to the upper-left corner of the screen.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the window.See AlsoDefWindowProc, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_NCRBUTTONDBLCLK,
WM_NCRBUTTONDOWN, WM_SYSCOMMAND

WM_NEXTDLGCTL
The WM_NEXTDLGCTL message is sent to a dialog box procedure to set the keyboard focus to a
different control in the dialog box.WM_NEXTDLGCTL
wCtlFocus = wParam; // identifies control for focus
fHandle = (BOOL) LOWORD(lParam); // wParam handle flag
ParameterswCtlFocus

Value of wParam. If the fHandle parameter is TRUE, the wCtlFocus parameter identifies the
control that receives the focus. If fHandle is FALSE, wCtlFocus is a flag that indicates whether
the next or previous control with the WS_TABSTOP style receives the focus. If wCtlFocus is
zero, the next control receives the focus; otherwise, the previous control with the
WS_TABSTOP style receives the focus.

fHandle
Value of lParam. Contains a flag that indicates how Windows uses the wCtlFocus parameter.
If the fHandle parameter is TRUE, wCtlFocus is a handle associated with the control that
receives the focus; otherwise, wCtlFocus is a flag that indicates whether the next or previous
control with the WS_TABSTOP style receives the focus.

Return ValuesAn application should return zero if it processes this message.RemarksThe effect of this message differs from that of the SetFocus function because
WM_NEXTDLGCTL modifies the border around the control.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if your application
will concurrently process other messages that set the focus. Use the PostMessage function
instead.See AlsoPostMessage, SendMessage, SetFocus

WM_NOTIFY
The WM_NOTIFY message informs the parent window of a control that an event has occurred in
the control or that the control requires some kind of information.WM_NOTIFY
idCtrl = (int) wParam;
pnmh = (LPNMHDR) lParam;
ParametersidCtrl

Identifier of the control sending the message. This identifier is not guaranteed to be unique.
An application should use the hwindFrom or idFrom member of the NMHDR structure (passed
as the lParam parameter) to identify the control.

pnmh
Pointer to an NMHDR structure that contains the notification code and additional information.
For some notification messages, this parameter points to a larger structure that has the
NMHDR structure as its first member.

Return ValuesThe return value is ignored except for notification messages that specify otherwise.See AlsoNMHDR

WM_NOTIFYFORMAT
Common controls, custom controls, and their parent windows use the WM_NOTIFYFORMAT
message to determine whether the control should use ANSI or Unicode structures in the
WM_NOTIFY notification messages that the control uses to communicate with its parent window.
WM_NOTIFYFORMAT messages are sent from a control to its parent window, and from the
parent window to the control.hwndFrom = (HWND) wParam; // handle of the window sending this
message
Command = lParam;// command value specifying the nature of this
message
ParametershwndFrom

Value of wParam. Handle of the window that is sending the WM_NOTIFYFORMAT message.
If Command is NF_QUERY, hwndFrom is the handle of a control. If Command is
NF_REQUERY, this is the handle of the parent window of a control.

Command
Value of lParam. A command value that specifies the nature of the WM_NOTIFYFORMAT
message. The following values are defined:

Value Meaning
NF_QUERY The message is a query to determine whether

ANSI or Unicode structures should be used in
WM_NOTIFY messages. This command is
sent from a control to its parent window. This
command is sent during the creation of a
control, and in response to an NF_REQUERY
command.

NF_REQUERY The message is a request that a control send
an NF_QUERY form of this message to its
parent window. This command is sent from a
control's parent window to the control. The
parent window is asking the control to requery
it about the type of structures to use in
WM_NOTIFY messages.

Return ValuesThe return value is one of the following :

Value Meaning

NFR_ANSI ANSI structures should be used in WM_NOTIFY
messages sent by the control.

NFR_UNICODE Unicode structures should be used in
WM_NOTIFY messages sent by the control.

0 An error occurred.

If Command is NF_REQUERY, the return value is the result of the requery operation.RemarksWhen a common control is created, the control sends a WM_NOTIFYFORMAT message to its
parent window to determine the type of structures to use in WM_NOTIFY messages. If the parent
window does not handle this message, the DefWindowProc function responds according to the
type of the parent window. That is, if the parent window is a Unicode window, DefWindowProc
returns NFR_UNICODE, and if the parent window is an ANSI window, DefWindowProc returns
NFR_ANSI. If the parent window is a dialog box and does not handle this message, the
DefDlgProc function similarly responds according to the type of the dialog box (Unicode or ANSI)
.

A parent window can change the type of structures a common control uses in WM_NOTIFY
messages by setting lParam to NF_REQUERY and sending a WM_NOTIFYFORMAT message to
the control. This causes the control to send an NF_QUERY form of the WM_NOTIFYFORMAT
message to the parent window.See AlsoDefDlgProc, DefWindowProc, WM_NOTIFY

WM_PAINT
An application sends the WM_PAINT message when Windows or another application makes a
request to paint a portion of an application's window. The message is sent when the
UpdateWindow or RedrawWindow function is called, or by the DispatchMessage function when
the application obtains a WM_PAINT message by using the GetMessage or PeekMessage
function.WM_PAINT
hdc = (HDC) wParam; // the device context to draw in
Parametershdc

Identifies the device context to draw in. If this parameter is NULL, use the default device
context. This parameter is used by some common controls to enable drawing in a device
context other than the default device context. Other windows can safely ignore this parameter.Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function validates the update region. The function may also send the

WM_NCPAINT message to the window procedure if the window frame must be painted and send
the WM_ERASEBKGND message if the window background must be erased.

The system sends this message when there are no other messages in the application's message
queue. DispatchMessage determines where to send the message; GetMessage determines
which message to dispatch. GetMessage returns the WM_PAINT message when there are no
other messages in the application's message queue, and DispatchMessage sends the message
to the appropriate window procedure.

A window may receive internal paint messages as a result of calling RedrawWindow with the
RDW_INTERNALPAINT flag set. In this case, the window may not have an update region. An
application should call the GetUpdateRect function to determine whether the window has an
update region. If GetUpdateRect returns zero, the application should not call the BeginPaint and
EndPaint functions.

An application must check for any necessary internal painting by looking at its internal data
structures for each WM_PAINT message, because a WM_PAINT message may have been
caused by both a non-NULL update region and a call to RedrawWindow with the
RDW_INTERNALPAINT flag set.

Windows sends an internal WM_PAINT message only once. After an internal WM_PAINT
message is returned from GetMessage or PeekMessage or is sent to a window by
UpdateWindow, Windows does not post or send further WM_PAINT messages until the window
is invalidated or until RedrawWindow is called again with the RDW_INTERNALPAINT flag set.

For some common controls, the default WM_PAINT message processing checks the wParam
parameter. If wParam is non-NULL, the control assumes that the value is an HDC and paints
using that device context.See AlsoBeginPaint, DefWindowProc, DispatchMessage, EndPaint, GetMessage, GetUpdateRect,
PeekMessage, RedrawWindow, UpdateWindow, WM_ERASEBKGND, WM_NCPAINT

WM_PAINTCLIPBOARD
The WM_PAINTCLIPBOARD message is sent to the clipboard owner by a clipboard viewer
window when the clipboard contains data in the CF_OWNERDISPLAY format and the clipboard
viewer's client area needs repainting.WM_PAINTCLIPBOARD
hwndViewer = (HWND) wParam;// handle of clipboard viewer window
hglbPs = (HGLOBAL) lParam; // handle of PAINTSTRUCT object
ParametershwndViewer

Value of wParam. Identifies the clipboard viewer window.
hglbPs

Value of lParam. Identifies a global DDESHARE object that contains a PAINTSTRUCT
structure. The structure defines the part of the client area to paint.

Return ValuesIf an application processes this message, it should return zero.RemarksTo determine whether the entire client area or just a portion of it needs repainting, the clipboard
owner must compare the dimensions of the drawing area given in the rcpaint member of
PAINTSTRUCT to the dimensions given in the most recent WM_SIZECLIPBOARD message.

The clipboard owner must use the GlobalLock function to lock the memory that contains the
PAINTSTRUCT structure. Before returning, the clipboard owner must unlock that memory by
using the GlobalUnlock function.See AlsoGlobalLock, GlobalUnlock, PAINTSTRUCT, WM_SIZECLIPBOARD

WM_PAINTICON
The WM_PAINTICON message is sent to a minimized window when the icon is to be painted but
only if the application is written for Windows 3.x. A window receives this message only if a class
icon is defined for the window; otherwise, WM_PAINT is sent instead.WM_PAINTICON
ParametersThis message has no parameters.Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function draws the class icon. For compatibility with Windows 3.x, wParam

is TRUE. However, this value has no significance.See AlsoDefWindowProc, WM_ICONERASEBKGND, WM_PAINT

WM_PALETTECHANGED
The WM_PALETTECHANGED message is sent to all top-level and overlapped windows after the
window with the keyboard focus has realized its logical palette, thereby changing the system
palette. This message enables a window that uses a color palette but does not have the keyboard
focus to realize its logical palette and update its client area.WM_PALETTECHANGED
hwndPalChg = (HWND) wParam; // handle of window that changed palette
ParametershwndPalChg

Value of wParam. Identifies the window that caused the system palette to change.
RemarksThis message must be sent to all top-level and overlapped windows, including the one that

changed the system palette. If any child windows use a color palette, this message must be
passed on to them as well.

To avoid creating an infinite loop, a window that receives this message must not realize its palette,
unless it determines that wParam does not contain its own window handle.See AlsoWM_PALETTEISCHANGING, WM_QUERYNEWPALETTE

WM_PALETTEISCHANGING
The WM_PALETTEISCHANGING message informs applications that an application is going to
realize its logical palette.WM_PALETTEISCHANGING
hwndRealize = (HWND) wParam; // window to realize palette
ParametershwndRealize

Value of wParam. Identifies the window that is going to realize its logical palette.
Return ValuesIf an application processes this message, it should return zero.RemarksThe application changing its palette does not wait for acknowledgment of this message before

changing the palette and sending the WM_PALETTECHANGED message. As a result, the palette
may already be changed by the time an application receives this message.

If the application either ignores or fails to process this message and a second application realizes
its palette while the first is using palette indices, there is a strong possibility that the user will see
unexpected colors during subsequent drawing operations.See AlsoWM_PALETTECHANGED, WM_QUERYNEWPALETTE

WM_PARENTNOTIFY
The WM_PARENTNOTIFY message is sent to the parent of a child window when the child
window is created or destroyed, or when the user clicks a mouse button while the cursor is over
the child window. When the child window is being created, the system sends
WM_PARENTNOTIFY just before the CreateWindow or CreateWindowEx function that creates
the window returns. When the child window is being destroyed, Windows sends the message
before any processing to destroy the window takes place.WM_PARENTNOTIFY
fwEvent = LOWORD(wParam); // event flags
idChild = HIWORD(wParam); // identifier of child window
lValue = lParam; // child handle, or cursor coordinates
ParametersfwEvent

Value of the low-order word of wParam. Specifies the event for which the parent is being
notified. This parameter can be one of the following values:

Value Meaning
WM_CREATE The child window is being created.
WM_DESTROY The child window is being destroyed.
WM_LBUTTONDOWN The user has placed the cursor over the

child window and has clicked the left
mouse button.

WM_MBUTTONDOWN The user has placed the cursor over the
child window and has clicked the middle
mouse button.

WM_RBUTTONDOWN The user has placed the cursor over the
child window and has clicked the right
mouse button.

idChild
Value of the high-order word of wParam. If the fwEvent parameter is the WM_CREATE or
WM_DESTROY value, idChild specifies the identifier of the child window. Otherwise, idChild
is undefined.

lValue
Contains the handle of the child window, if the fwEvent parameter is the WM_CREATE or
WM_DESTROY value; otherwise, lValue contains the x- and y-coordinates of the cursor. The
x-coordinate is in the low-order word and the y-coordinate is in the high-order word.

Return ValuesIf an application processes this message, it should return zero.RemarksThis message is also sent to all ancestor windows of the child window, including the top-level
window.

All child windows, except those that have the WS_EX_NOPARENTNOTIFY extended window
style, send this message to their parent windows. By default, child windows in a dialog box have
the WS_EX_NOPARENTNOTIFY style, unless the CreateWindowEx function is called to create
the child window without this style.See AlsoCreateWindow, CreateWindowEx, WM_CREATE, WM_DESTROY, WM_LBUTTONDOWN,
WM_MBUTTONDOWN, WM_RBUTTONDOWN

WM_PASTE
An application sends a WM_PASTE message to an edit control or combo box to copy the current
content of the clipboard to the edit control at the current caret position. Data is inserted only if the
clipboard contains data in CF_TEXT format.WM_PASTE
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesThis message does not return a value.RemarksWhen sent to a combo box, the WM_PASTE message is handled by its edit control. This

message has no effect when sent to a combo box with the CBS_DROPDOWNLIST style.See AlsoWM_CLEAR, WM_COPY, WM_CUT

WM_POWER
The WM_POWER message is sent when the system, typically a battery-powered personal
computer, is about to enter suspended mode.

The WM_POWER message is obsolete. It is provided to simplify porting of 16-bit Windows-based
applications. New Win32-based applications should use the WM_POWERBROADCAST
message.WM_POWER
fwPowerEvt = wParam; // power-event notification message
ParametersfwPowerEvt

Value of wParam. Specifies a power-event notification message. This parameter can be one
of the following values:

Value Meaning
PWR_CRITICALRESUME Indicates that the system is resuming

operation after entering suspended
mode without first sending a
PWR_SUSPENDREQUEST notification
message to the application. An
application should perform any
necessary recovery actions.

PWR_SUSPENDREQUEST Indicates that the system is about to
enter suspended mode.

PWR_SUSPENDRESUME Indicates that the system is resuming
operation after having entered
suspended mode normally ¾ that is, the
system sent a
PWR_SUSPENDREQUEST notification
message to the application before the
system was suspended. An application
should perform any necessary recovery
actions.

Return ValuesThe value an application returns depends on the value of the wParam parameter. If wParam is
PWR_SUSPENDREQUEST, the return value is PWR_FAIL to prevent the system from entering
the suspended state; otherwise, it is PWR_OK. If wParam is PWR_SUSPENDRESUME or
PWR_CRITICALRESUME, the return value is zero.RemarksThis message is sent only to an application that is running on a system that conforms to the
Advanced Power Management (APM) basic input/output system (BIOS) specification. The
message is sent by the power-management driver to each window returned by the
EnumWindows function.

The suspended mode is the state in which the greatest amount of power savings occurs, but all
operational data and parameters are preserved. Random-access memory (RAM) contents are
preserved, but many devices are likely to be turned off.See AlsoEnumWindows, WM_POWERBROADCAST

WM_POWERBROADCAST
The WM_POWERBROADCAST message is sent to an application to notify it of power-
management events.dwPowerEvent = (DWORD) wParam;
dwData = (DWORD) lParam;
ParametersdwPowerEvent

Event notification message. This parameter can be one of the following values:
Value Meaning
PBT_APMBATTERYLOW Battery power is low.
PBT_APMOEMEVENT OEM-defined event occurred.
PBT_APMPOWERSTATUSCHANGEPower status has changed.
PBT_APMQUERYSUSPEND Request for permission to

suspend.
PBT_APMQUERYSUSPENDFAILEDSuspension request denied.
PBT_APMRESUMECRITICAL Operation resuming after critical

suspension.
PBT_APMRESUMESUSPEND Operation resuming after

suspension.
PBT_APMSUSPEND System is suspending operation.

dwData
Function-specific data. For most messages, this parameter is reserved and not used.
However, if wParam is one of the resume notifications (PBT_APMRESUME*), the lParam
parameter can specify the PBTF_APMRESUMEFROMFAILURE flag. This flag indicates that
a suspend operation failed after the PBT_APMSUSPEND message was sent.

Return ValuesReturn TRUE to grant a request.

Return BROADCAST_QUERY_DENY to deny a request.

WM_PRINT
The WM_PRINT message is sent to a window to request that it draw itself in the specified device
context, most commonly in a printer device context.WM_PRINT
hdc = (HDC) wParam;
uFlags = lParam;
Parametershdc

Identifies the device context to draw in.
uFlags

Specifies the drawing options. This parameter can be one or more of these flags:
Value Meaning
PRF_CHECKVISIBLEDraw the window only if it is visible.
PRF_CHILDREN Draw all visible children windows.
PRF_CLIENT Draw the client area of the window.
PRF_ERASEBKGND Erase the background before drawing the

window.
PRF_NONCLIENT Draw the nonclient area of the window.
PRF_OWNED Draw all owned windows.

RemarksThe DefWindowProc function processes this message based on which drawing option is
specified: if PRF_CHECKVISIBLE is specified and the window is not visible, do nothing, if
PRF_NONCLIENT is specified, draw the nonclient area in the given device context, if
PRF_ERASEBKGND is specified, send the window a WM_ERASEBKGND message, if
PRF_PRINTCLIENT is specified, send the window a WM_PRINTCLIENT message, if
PRF_PRINTCHILDREN is set, send each visible child window a WM_PRINT message, if
PRF_OWNED is set, send each visible owned window a WM_PRINT message.See AlsoDefWindowProc, WM_ERASEBKGND, WM_PRINTCLIENT

WM_PRINTCLIENT
The WM_PRINTCLIENT message is sent to a window to request that it draw its client area in the
specified device context, most commonly in a printer device context.WM_PRINTCLIENT
hdc = (HDC) wParam;
uFlags = lParam;
Parametershdc

Identifies the device context to draw in.
uFlags

Specifies drawing options. This parameter can be one or more of these flags:
Value Meaning
PRF_CHECKVISIBLEDraw the window only if it is visible.
PRF_CHILDREN Draw all visible children windows.
PRF_CLIENT Draw the client area of the window.
PRF_ERASEBKGND Erase the background before drawing the

window.
PRF_NONCLIENT Draw the nonclient area of the window.
PRF_OWNED Draw all owned windows.

RemarksA window can process this message in much the same manner as WM_PAINT, except that
BeginPaint and EndPaint need not be called (a device context is provided), and the window
should draw its entire client area rather than just the invalid region.

Windows that can be used anywhere in the system, such as controls, should process this
message. It is probably worthwhile for other windows to process this message as well because it
is relatively easy to implement.See AlsoBeginPaint, EndPaint, WM_PAINT

WM_PSD_ENVSTAMPRECT
The WM_PSD_ENVSTAMPRECT message notifies the hook procedure of a Page Setup dialog
box that the dialog box is about to draw the envelope-stamp rectangle of the sample page.WM_PSD_ENVSTAMPRECT
hDC = (WPARAM) (HDC) wParam; // handle of the device context
lprcEnvStamp = (LPARAM) (LPRECT) lParam; // envelope-stamp rectangle
ParametershDC

Value of wParam. Identifies the device context for the sample page.
lprcMargin

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
envelope-stamp rectangle.

Return ValuesIf the hook procedure returns TRUE, the dialog box does not draw the envelope-stamp portion of
the sample page.

If the hook procedure returns FALSE, the dialog box draws the envelope-stamp portion of the
sample page.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.

A hook procedure receives this message only if the selected paper type is an envelope.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_PSD_FULLPAGERECT
The WM_PSD_FULLPAGERECT message informs a PagePaintHook hook procedure of the
coordinates of the sample page rectangle in the Page Setup dialog box. The dialog box sends this
message when it is about to draw the contents of the sample page.WM_PSD_FULLPAGERECT
hDC = (WPARAM) (HDC) wParam; // handle of the device context
lprcPage = (LPARAM) (LPRECT) lParam; // dimensions of page rectangle
ParametershDC

Value of wParam. Handle of the device context for the sample page.
lprcPage

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
sample page.

Return ValuesIf the hook procedure returns TRUE, the dialog box sends no more WM_PSD* messages and
does not draw in the sample page until the next time the system needs to redraw the sample
page.

If the hook procedure returns FALSE, the dialog box sends the remaining messages of the
drawing sequence.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_PSD_GREEKTEXTRECT
The WM_PSD_GREEKTEXTRECT message notifies the hook procedure of a Page Setup dialog
box that the dialog box is about to draw greek text inside the margin rectangle of the sample page.WM_PSD_GREEKTEXTRECT
hDC = (WPARAM) (HDC) wParam; // handle of the device context
lprcGreekText = (LPARAM) (LPRECT) lParam; // greek text rectangle
ParametershDC

Value of wParam. Identifies the device context for the sample page.
lprcMargin

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
greek text rectangle.

Return ValuesIf the hook procedure returns TRUE, the dialog box does not draw the greek text portion of the
sample page.

If the hook procedure returns FALSE, the dialog box draws the greek text portion of the sample
page.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_PSD_MARGINRECT
The WM_PSD_MARGINRECT message notifies the hook procedure of a Page Setup dialog box
that the dialog box is about to draw the margin rectangle of the sample page.WM_PSD_MARGINRECT
hDC = (WPARAM) (HDC) wParam; // handle of the device context
lprcMargin = (LPARAM) (LPRECT) lParam; // margin rectangle
ParametershDC

Value of wParam. Identifies the device context for the sample page.
lprcMargin

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
margin rectangle.

Return ValuesIf the hook procedure returns TRUE, the dialog box does not draw the margin rectangle in the
sample page.

If the hook procedure returns FALSE, the dialog box draws the margin rectangle in the sample
page.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_PSD_MINMARGINRECT
The WM_PSD_MINMARGINRECT message informs a PagePaintHook hook procedure of the
coordinates of the margin rectangle in the sample page. A Page Setup dialog box sends this
message when it is about to draw the contents of the sample page.WM_PSD_MINMARGINRECT
hDC = (WPARAM) (HDC) wParam; // handle of the device context
lprcMinMargin = (LPARAM) (LPRECT) lParam; // minimum margin rectangle
ParametershDC

Value of wParam. Identifies the device context for the sample page.
lprcMinMargin

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
minimum margin rectangle.

Return ValuesIf the hook procedure returns TRUE, the dialog box sends no more WM_PSD* messages and
does not draw in the sample page until the next time the system needs to redraw the sample
page.

If the hook procedure returns FALSE, the dialog box sends the remaining messages of the
drawing sequence.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_PSD_PAGESETUPDLG
The WM_PSD_PAGESETUPDLG message notifies a PagePaintHook hook procedure that the
Page Setup dialog box is about to draw the contents of the sample page. The hook procedure can
use this message to carry out initialization tasks related to drawing the contents of the sample
page.WM_PSD_PAGESETUPDLG
wPaper = LOWORD(wParam); // paper-size flag
wFlags = HIWORD(wParam); // paper-orientation flag
lppsd = (LPPAGESETUPDLG) lParam; // dialog box information
ParameterswPaper

Value of the low-order word of wParam. Specifies a value that indicates the paper size. This
value can be one of the DMPAPER_ values listed in the description of the DEVMODE
structure.

wFlags
Value of the high-order word of wParam. Indicates the orientation of the paper or envelope,
and whether the printer is a dot matrix or HPPCL (Hewlett Packard Printer Control Language)
device. This parameter can be one of the following values:

0x0001 Paper in landscape mode (dot matrix)
0x0003 Paper in landscape mode (HPPCL)
0x0005 Paper in portrait mode (dot matrix)
0x0007 Paper in portrait mode (HPPCL)
0x000b Envelope in landscape mode (HPPCL)
0x000d Envelope in portrait mode (dot matrix)
0x0019 Envelope in landscape mode (dot matrix)
0x001f Envelope in portrait mode (HPPCL)

lppsd
Value of lParam. Points to a PAGESETUPDLG structure that contains information used to
initialize the Page Setup dialog box.

Return ValuesIf the hook procedure returns TRUE, the dialog box sends no more WM_PSD* messages and
does not draw in the sample page until the next time the system needs to redraw the sample
page.

If the hook procedure returns FALSE, the dialog box sends the remaining messages of the
drawing sequence.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.

The first three messages of a drawing sequence (WM_PSD_PAGESETUPDLG,
WM_PSD_FULLPAGERECT, or WM_PSD_MINMARGINRECT) provide information that the hook
procedure can use to draw the contents of the sample page. The remaining messages
(WM_PSD_MARGINRECT, WM_PSD_GREEKTEXTRECT, WM_PSD_ENVSTAMPRECT,
WM_PSD_YAFULLPAGERECT) notify the hook procedure that the dialog box is about to draw a
specific portion of the sample page. This allows the hook procedure to selectively draw portions of
the sample page.See AlsoDEVMODE, PagePaintHook, PageSetupDlg, PAGESETUPDLG, WM_PSD_ENVSTAMPRECT,
WM_PSD_FULLPAGERECT, WM_PSD_GREEKTEXTRECT, WM_PSD_MARGINRECT,
WM_PSD_MINMARGINRECT, WM_PSD_YAFULLPAGERECT

WM_PSD_YAFULLPAGERECT
The WM_PSD_YAFULLPAGERECT message notifies the hook procedure of a Page Setup dialog
box that the dialog box is about to draw the return address portion of an envelope sample page.WM_PSD_YAFULLPAGERECT
hDC = (WPARAM) (HDC) wParam;// handle of the device context
lprcYaFullPage = (LPARAM) (LPRECT) lParam; // dimensions of page
rectangle
ParametershDC

Value of wParam. Handle of the device context for the sample page.
lprcPage

Value of lParam. Pointer to a RECT structure that contains the coordinates, in pixels, of the
sample page.

Return ValuesIf the hook procedure returns TRUE, the dialog box does not draw the return address portion of an
envelope sample page.

If the hook procedure returns FALSE, the dialog box draws the return address portion of an
envelope sample page.

If the paper type is not an envelope, the return value has no effect.RemarksThe Page Setup dialog box includes an image of a sample page that shows how the user's
selections affect the appearance of the printed output. When you call the PageSetupDlg function,
you can provide a PagePaintHook hook procedure to customize the appearance of the sample
page. Whenever the dialog box is about to draw the contents of the sample page, the dialog box
sends a sequence of WM_PSD* messages to the hook procedure.See AlsoPagePaintHook, PageSetupDlg, RECT, WM_PSD_PAGESETUPDLG

WM_QUERYDRAGICON
The WM_QUERYDRAGICON message is sent to a minimized (iconic) window. The window is
about to be dragged by the user but does not have an icon defined for its class. An application
can return the handle of an icon or cursor. The system displays this cursor or icon while the user
drags the icon.WM_QUERYDRAGICON
ParametersThis message has no parameters.Return ValuesAn application should return the handle of a cursor or icon that Windows is to display while the

user drags the icon. The cursor or icon must be compatible with the display driver's resolution. If
the application returns NULL, the system displays the default cursor.Default ActionThe DefWindowProc function returns the handle of the default cursor.RemarksWhen the user drags the icon of a window without a class icon, Windows replaces the icon with a
default cursor. If the application requires a different cursor to be displayed during dragging, it must
return the handle of the cursor or icon compatible with the display driver's resolution. If an
application returns the handle of a color cursor or icon, the system converts the cursor or icon to
black and white. The application can call the LoadCursor or LoadIcon function to load a cursor
or icon from the resources in its executable (.EXE) file and to retrieve this handle.See AlsoDefWindowProc, LoadCursor, LoadIcon

WM_QUERYENDSESSION
The WM_QUERYENDSESSION message is sent when the user chooses to end the Windows
session or when an application calls the ExitWindows function. If any application returns zero,
the Windows session is not ended. Windows stops sending WM_QUERYENDSESSION
messages as soon as one application returns zero.

After processing this message, Windows sends the WM_ENDSESSION message with the
wParam parameter set to the results of the WM_QUERYENDSESSION message.WM_QUERYENDSESSION
nSource = (UINT) wParam; // source of end-session request
fLogOff = lParam // logoff flag
ParametersnSource

Reserved for future use.
fLogOff

Value of lParam. Indicates whether the user is logging off or shutting down the system.
Supported values include: ENDSESSION_LOGOFF.

Return ValuesIf an application can terminate conveniently, it should return TRUE; otherwise, it should return
FALSE.RemarksBy default, the DefWindowProc function returns TRUE for this message.

Windows NT: When an application returns TRUE for this message, it receives the
WM_ENDSESSION message and it is terminated, regardless of how the other applications
respond to the WM_QUERYENDSESSION message.

Windows 95: After all applications return TRUE for this message, they receive the
WM_ENDSESSION and they are terminated.See AlsoDefWindowProc, ExitWindows, WM_ENDSESSION

WM_QUERYNEWPALETTE
The WM_QUERYNEWPALETTE message informs a window that it is about to receive the
keyboard focus, giving the window the opportunity to realize its logical palette when it receives the
focus.WM_QUERYNEWPALETTE
ParametersThis message has no parameters.Return ValuesIf the window realizes its logical palette, it must return TRUE; otherwise, it must return FALSE.See AlsoWM_PALETTECHANGED, WM_PALETTEISCHANGING

WM_QUERYOPEN
The WM_QUERYOPEN message is sent to an icon when the user requests that the window be
restored to its previous size and position.WM_QUERYOPEN
ParametersThis message has no parameters.Return ValuesIf the icon can be opened, an application that processes this message should return TRUE;

otherwise, it should return FALSE to prevent the icon from being opened.Default ActionThe DefWindowProc function returns TRUE.RemarksWhile processing this message, the application should not perform any action that would cause an
activation or focus change (for example, creating a dialog box).See AlsoDefWindowProc

WM_QUEUESYNC
The WM_QUEUESYNC message is sent by a computer-based training (CBT) application to
separate user-input messages from other messages sent through the WH_JOURNALPLAYBACK
hook procedure.WM_QUEUESYNC
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesA CBT application should return zero if it processes this message.RemarksWhenever a CBT application uses the WH_JOURNALPLAYBACK hook procedure, the first and

last messages are WM_QUEUESYNC. This allows the CBT application to intercept and examine
user-initiated messages without doing so for events that it sends.

If an application specifies a NULL window handle, the message is posted to the message queue
of the active window.

WM_QUIT
The WM_QUIT message indicates a request to terminate an application and is generated when
the application calls the PostQuitMessage function. It causes the GetMessage function to return
zero.WM_QUIT
nExitCode = (int) wParam; // exit code
ParametersnExitCode

Value of wParam. Specifies the exit code given in the PostQuitMessage function.
Return ValuesThis message does not have a return value, because it causes the message loop to terminate

before the message is sent to the application's window procedure.See AlsoGetMessage, PostQuitMessage

WM_RASDIALEVENT
The operating system sends a WM_RASDIALEVENT message to a window procedure when a
change of state event occurs during a RAS connection process, and a window has been specified
to handle notifications of such events by using the notifier parameter of RasDial.

The two message parameters are equivalent to the parameters of the same names that are used
with RasDialFunc and RasDialFunc1 callback functions.WM_RASDIALEVENT
rasconnstate = (RASCONNSTATE) wParam; // connection state about to be
entered
dwError = (DWORD) lParam; // error that may have occurred
Parametersrasconnstate

Value of wParam. Equivalent to the rasconnstate parameter of the RasDialFunc and
RasDialFunc1 callback functions. Specifies a RASCONNSTATE enumerator value that
indicates the state the RasDial remote access connection process is about to enter.

dwError
Value of lParam. Equivalent to the dwError parameter of the RasDialFunc and
RasDialFunc1 callback functions. A nonzero value indicates the error that has occurred, or
zero if no error has occurred.
RasDial sends this message with dwError set to zero upon entry to each connection state. If
an error occurs within a state, the message is sent again for the state, this time with a nonzero
dwError value.

Return ValuesIf an application processes this message, it should return TRUE.See AlsoRasDial, RasDialFunc, RasDialFunc1, RASCONNSTATE

WM_RBUTTONDBLCLK
The WM_RBUTTONDBLCLK message is posted when the user double-clicks the right mouse
button while the cursor is in the client area of a window. If the mouse is not captured, the message
is posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_RBUTTONDBLCLK
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksOnly windows that have the CS_DBLCLKS style can receive WM_RBUTTONDBLCLK messages,
which Windows generates whenever the user presses, releases, and again presses the right
mouse button within the system's double-click time limit. Double-clicking the right mouse button
actually generates four messages: WM_RBUTTONDOWN, WM_RBUTTONUP,
WM_RBUTTONDBLCLK, and WM_RBUTTONUP again.

An application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, GetDoubleClickTime, MAKEPOINTS, POINTS, SetCapture,
SetDoubleClickTime, WM_RBUTTONDOWN, WM_RBUTTONUP

WM_RBUTTONDOWN
The WM_RBUTTONDOWN message is posted when the user presses the right mouse button
while the cursor is in the client area of a window. If the mouse is not captured, the message is
posted to the window beneath the cursor. Otherwise, the message is posted to the window that
has captured the mouse.WM_RBUTTONDOWN
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_RBUTTON Set if the right mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_RBUTTONDBLCLK,
WM_RBUTTONUP

WM_RBUTTONUP
The WM_RBUTTONUP message is posted when the user releases the right mouse button while
the cursor is in the client area of a window. If the mouse is not captured, the message is posted to
the window beneath the cursor. Otherwise, the message is posted to the window that has
captured the mouse.WM_RBUTTONUP
fwKeys = wParam; // key flags
xPos = LOWORD(lParam); // horizontal position of cursor
yPos = HIWORD(lParam); // vertical position of cursor
ParametersfwKeys

Value of wParam. Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value Description
MK_CONTROL Set if the CTRL key is down.
MK_LBUTTON Set if the left mouse button is down.
MK_MBUTTON Set if the middle mouse button is down.
MK_SHIFT Set if the SHIFT key is down.

xPos
Value of the low-order word of lParam. Specifies the x-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

yPos
Value of the high-order word of lParam. Specifies the y-coordinate of the cursor. The
coordinate is relative to the upper left corner of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksAn application can use the MAKEPOINTS macro to convert the lParam parameter to a POINTS
structure.See AlsoGetCapture, MAKEPOINTS, POINTS, SetCapture, WM_RBUTTONDBLCLK,
WM_RBUTTONDOWN

WM_RENDERALLFORMATS
The WM_RENDERALLFORMATS message is sent to the clipboard owner before it is destroyed,
if the clipboard owner has delayed rendering one or more clipboard formats. For the content of the
clipboard to remain available to other applications, the clipboard owner must render data in all the
formats it is capable of generating, and place the data on the clipboard by calling the
SetClipboardData function.WM_RENDERALLFORMATS
ParametersThis message has no parameters.Return ValuesIf an application processes this message, it should return zero.RemarksWhen responding to a WM_RENDERALLFORMATS message, the clipboard owner must call the

OpenClipboard and EmptyClipboard functions before calling SetClipboardData.

When the application returns, the system removes any unrendered formats from the list of
available clipboard formats. For information about delayed rendering, see SetClipboardData.See AlsoEmptyClipboard, OpenClipboard, SetClipboardData, WM_RENDERFORMAT

WM_RENDERFORMAT
The WM_RENDERFORMAT message is sent to the clipboard owner if it has delayed rendering a
specific clipboard format and if an application has requested data in that format. The clipboard
owner must render data in the specified format and place it on the clipboard by calling the
SetClipboardData function.WM_RENDERFORMAT
uFormat = (UINT) wParam; // clipboard format
ParametersuFormat

Specifies the clipboard format to be rendered.
Return ValuesIf an application processes this message, it should return zero.RemarksWhen responding to a WM_RENDERFORMAT message, the clipboard owner must not open the

clipboard before calling SetClipboardData.See AlsoSetClipboardData, WM_RENDERALLFORMATS

WM_SETCURSOR
The WM_SETCURSOR message is sent to a window if the mouse causes the cursor to move
within a window and mouse input is not captured.WM_SETCURSOR
hwnd = (HWND) wParam; // handle of window with cursor
nHittest = LOWORD(lParam); // hit-test code
wMouseMsg = HIWORD(lParam); // mouse-message identifier
Parametershwnd

Value of wParam. Identifies the window that contains the cursor.
nHittest

Value of the low-order word of lParam. Specifies the hit-test code.
wMouseMsg

Value of the high-order word of lParam. Specifies the identifier of the mouse message.
Default ActionThe DefWindowProc function passes the WM_SETCURSOR message to a parent window

before processing. If the parent window returns TRUE, further processing is halted. Passing the
message to a window's parent window gives the parent window control over the cursor's setting in
a child window. The DefWindowProc function also uses this message to set the cursor to an
arrow if it is not in the client area, or to the registered class cursor if it is in the client area. If the
low-order word of the lParam parameter is HTERROR and the high-order word of lParam
specifies that one of the mouse buttons is pressed, DefWindowProc calls the MessageBeep
function.RemarksThe high-order word of lParam is zero when the window enters menu mode.See AlsoDefWindowProc, MessageBeep

WM_SETFOCUS
The WM_SETFOCUS message is sent to a window after it has gained the keyboard focus.WM_SETFOCUS
hwndLoseFocus = (HWND) wParam; // handle of window losing focus
ParametershwndLoseFocus

Value of wParam. Identifies the window that has lost the keyboard focus (may be NULL).
Return ValuesAn application should return zero if it processes this message.RemarksTo display a caret, an application should call the appropriate caret functions when it receives the

WM_SETFOCUS message.See AlsoSetFocus, WM_KILLFOCUS

WM_SETFONT
An application sends a WM_SETFONT message to specify the font that a control is to use when
drawing text.WM_SETFONT
wParam = (WPARAM) hfont; // handle of font
lParam = MAKELPARAM(fRedraw, 0); // redraw flag
Parametershfont

Value of wParam. Identifies the font. If this parameter is NULL, the control uses the default
system font to draw text.

fRedraw
Value of lParam. Specifies whether the control should be redrawn immediately upon setting
the font. Setting the fRedraw parameter to TRUE causes the control to redraw itself.

Return ValuesThis message does not return a value.RemarksThe WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog box control to set the font of the control is when it receives
the WM_INITDIALOG message. The application should call the DeleteObject function to delete
the font when it is no longer needed; for example, after it destroys the control.

The size of the control does not change as a result of receiving this message. To avoid clipping
text that does not fit within the boundaries of the control, the application should correct the size of
the control window before it sets the font.

When a dialog box uses the DS_SETFONT style to set the text in its controls, Windows sends the
WM_SETFONT message to the dialog box procedure before it creates the controls. An
application can create a dialog box that contains the DS_SETFONT style by calling any of the
following functions:

· CreateDialogIndirect
· CreateDialogIndirectParam
· DialogBoxIndirect
· DialogBoxIndirectParam
See AlsoCreateDialogIndirect, CreateDialogIndirectParam, DeleteObject, DialogBoxIndirect,

DialogBoxIndirectParam, WM_INITDIALOG, DLGTEMPLATE

WM_SETHOTKEY
An application sends a WM_SETHOTKEY message to a window to associate a hot key with the
window. When the user presses the hot key, the system activates the window.WM_SETHOTKEY
wParam = (WPARAM) MAKEWORD(vkey, modifiers) // virtual-key code and
modifiers of hot key
lParam = 0;// not used; must be zero
Parametersvkey

Value of wParam. Specifies the virtual-key code and modifiers of the hot key to associate with
the window. The virtual-key code is in the low byte of the parameter and the modifier flags are
in the high byte. Setting this parameter to NULL removes the hot key associated with a
window. The modifier byte can be a combination of the following flags:

Value Meaning
HOTKEYF_ALT ALT key
HOTKEYF_CONTROL CTRL key
HOTKEYF_EXT Extended key
HOTKEYF_SHIFT SHIFT key

Return ValuesThe return value is one of the following:

Value Meaning

- 1 The function is unsuccessful ¾ the hot key is invalid.
..0 The function is unsuccessful ¾ the window is invalid.
..1 The function is successful, and no other window has the

same hot key.
..2 The function is successful, but another window already has

the same hot key.
RemarksA hot key cannot be associated with a child window.

VK_ESCAPE, VK_SPACE, and VK_TAB are invalid hot keys.

When the user presses the hot key, the system generates a WM_SYSCOMMAND message with
wParam equal to SC_HOTKEY.

A window can only have one hot key. If the window already has a hot key associated with it, the
new hot key replaces the old one. If more than one window has the same hot key, the window that
is activated by the hot key is random.

These hot keys are unrelated to the hot keys set by RegisterHotKey.See AlsoRegisterHotKey, WM_GETHOTKEY, WM_SYSCOMMAND

WM_SETICON
An application sends the WM_SETICON message to associate a new large or small icon with a
window. Windows draws the large icon when the window is minimized, and the small icon in the
window's title bar.WM_SETICON
wParam = (WPARAM) fType;// icon type
lParam = (LPARAM) (HICON) hicon; // handle of icon
ParametersfType

Value of wParam. Specifies the type of icon being set. This parameter can be one of the
following values:

Value Meaning

ICON_BIG Set the large icon for the window.

ICON_SMALL Set the small icon for the window.

hicon
Value of lParam. Identifies the new large or small icon. If this parameter is NULL, the icon
indicated by fType is removed.

Return ValuesThe return value is the handle of the previous large or small icon, depending on the value of
fType. It is NULL if the window previously had no icon of the type indicated by fType.Default ActionThe DefWindowProc function returns the handle of the previous large or small icon associated
with the window, depending on the value of fType.

See Also
DefWindowProc, WM_GETICON

WM_SETREDRAW
An application sends the WM_SETREDRAW message to a window to allow changes in that
window to be redrawn or to prevent changes in that window from being redrawn.WM_SETREDRAW
wParam = (WPARAM) fRedraw; // state of redraw flag
lParam = 0; // not used; must be zero
ParametersfRedraw

Value of wParam. Specifies the state of the redraw flag. If this parameter is TRUE, the redraw
flag is set. If the parameter is FALSE, the flag is cleared.

Return ValuesAn application should return zero if it processes this message.RemarksThis message sets or clears the redraw flag. If the redraw flag is cleared, the content of the given
window is not updated after each change, and the window is not repainted until the redraw flag is
set. For example, an application that must add several items to a list box can clear the redraw
flag, add the items, and then set the redraw flag. Finally, the application can call the
InvalidateRect function to cause the list box to be repainted.See AlsoInvalidateRect

WM_SETTEXT
An application sends a WM_SETTEXT message to set the text of a window.WM_SETTEXT
wParam = 0; // not used; must be zero
lParam = (LPARAM)(LPCTSTR)lpsz; // address of window-text string
Parameterslpsz

Value of lParam. Points to a null-terminated string that is the window text.
Return ValuesThe return value is TRUE if the text is set. It is FALSE (for an edit control), LB_ERRSPACE (for a

list box), or CB_ERRSPACE (for a combo box) if insufficient space is available to set the text in
the edit control. It is CB_ERR if this message is sent to a combo box without an edit control.Default ActionThe DefWindowProc function sets and displays the window text.RemarksFor an edit control, the text is the contents of the edit control. For a combo box, the text is the
contents of the edit-control portion of the combo box. For a button, the text is the button name. For
other windows, the text is the window title.

This message does not change the current selection in the list box of a combo box. An application
should use the CB_SELECTSTRING message to select the item in a list box that matches the text
in the edit control.See AlsoDefWindowProc, CB_SELECTSTRING, WM_GETTEXT

WM_SETTINGCHANGE
The system sends the WM_SETTINGCHANGE message to all top-level windows when the
SystemParametersInfo function changes a system-wide setting. The system sends this message
only if the SystemParametersInfo caller specifies the SPIF_SENDCHANGE flag.

An application can send WM_SETTINGCHANGE to all top-level windows when it makes changes
to system parameters. For example, you can send this message after a call to the
WriteProfileString, WriteProfileSection, or SetLocaleInfo functions, or after making changes to
system parameters in the registry.

The WM_SETTINGCHANGE message is the same as the older WM_WININICHANGE message.WM_SETTINGCHANGE
wParam = wFlag;// system-wide parameter flag
lParam = (LPARAM) (LPCTSTR) pszSection; // name of changed section or
registry
ParameterswFlag

Value of wParam. When the system sends the message as a result of a
SystemParametersInfo call, this parameter is a flag that indicates the system parameter that
was changed. For a list of values, see the SystemParametersInfo function.
When an application sends the message, this parameter must be NULL.

pszMetrics
Value of lParam. Pointer to a string that indicates the area containing the system parameter
that was changed. For example, this string can be the name of a registry key or the name of a
section in the WIN.INI file.
This parameter is not particularly useful in determining which system parameter changed. For
example, when the string is a registry name, it typically indicates only the leaf node in the
registry, not the whole path. In addition, some applications send this message with lParam set
to NULL. In general, when you receive this message, you should check and reload any
system parameter settings that are used by your application.Return ValuesIf you process this message, return zero.RemarksTo send the WM_SETTINGCHANGE message to all top-level windows, use the SendMessage

function with the hwnd parameter set to HWND_BROADCAST.

Calls to functions that change the WIN.INI file might be mapped to the registry instead. This
mapping occurs when the WIN.INI file and the section being changed are specified in the registry
under the following keys:
HKEY_LOCAL_MACHINE\Software\Microsoft\

Windows NT\CurrentVersion\IniFileMapping

The change in the storage location has no effect on the behavior of this message.See AlsoSendMessage, SetLocaleInfo, SystemParametersInfo, WM_WININICHANGE,
WriteProfileSection, WriteProfileString

WM_SHOWWINDOW
The WM_SHOWWINDOW message is sent to a window when the window is about to be hidden
or shown.WM_SHOWWINDOW
fShow = (BOOL) wParam; // show/hide flag
fnStatus = (int) lParam; // status flag
ParametersfShow

Value of wParam. Specifies whether a window is being shown. It is TRUE if the window is
being shown or FALSE if the window is being hidden.

fnStatus
Value of lParam. Specifies the status of the window being shown. The fnStatus parameter is
zero if the message is sent because of a call to the ShowWindow function; otherwise,
fnStatus is one of the following values:

Value Meaning
SW_OTHERUNZOOM Window is being uncovered because a

maximize window was restored or
minimized.

SW_OTHERZOOM Window is being covered by another
window that has been maximized.

SW_PARENTCLOSING Window's owner window is being
minimized.

SW_PARENTOPENING Window's owner window is being restored.
Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function hides or shows the window, as specified by the message.RemarksIf a window has the WS_VISIBLE style when it is created, the window receives this message after

it is created, but before it is displayed. A window also receives this message when its visibility
state is changed by the ShowWindow or ShowOwnedPopups function.

The WM_SHOWWINDOW message is not sent under the following circumstances:

· When a top-level, overlapped window is created with the WS_MAXIMIZE or
WS_MINIMIZE style.

· When the SW_SHOWNORMAL flag is specified in the call to the ShowWindow function.
See AlsoDefWindowProc, ShowOwnedPopups, ShowWindow

WM_SIZE
The WM_SIZE message is sent to a window after its size has changed.WM_SIZE
fwSizeType = wParam; // resizing flag
nWidth = LOWORD(lParam); // width of client area
nHeight = HIWORD(lParam); // height of client area
ParametersfwSizeType

Value of wParam. Specifies the type of resizing requested. This parameter can be one of the
following values:

Value Meaning
SIZE_MAXHIDE Message is sent to all pop-up windows when

some other window is maximized.
SIZE_MAXIMIZED Window has been maximized.
SIZE_MAXSHOW Message is sent to all pop-up windows when

some other window has been restored to its
former size.

SIZE_MINIMIZED Window has been minimized.
SIZE_RESTORED Window has been resized, but neither the

SIZE_MINIMIZED nor SIZE_MAXIMIZED
value applies.

nWidth
Value of the low-order word of lParam. Specifies the new width of the client area.

nHeight
Value of the high-order word of lParam. Specifies the new height of the client area.

Return ValuesIf an application processes this message, it should return zero.RemarksIf the SetScrollPos or MoveWindow function is called for a child window as a result of the
WM_SIZE message, the bRedraw parameter should be nonzero to cause the window to be
repainted.

Although the width and height of a window are 32-bit values, the nWidth and nHeight parameters
of the WM_SIZE message contain only the low-order 16 bits.See AlsoMoveWindow, SetScrollPos

WM_SIZECLIPBOARD
The WM_SIZECLIPBOARD message is sent to the clipboard owner by a clipboard viewer window
when the clipboard contains data in the CF_OWNERDISPLAY format and the clipboard viewer's
client area has changed size.WM_SIZECLIPBOARD
hwndViewer = (HWND) wParam; // handle of clipboard viewer window
hglbRc = (HGLOBAL) lParam; // handle of RECT object
ParametershwndViewer

Value of wParam. Identifies the clipboard viewer window.
hglbRc

Value of lParam. Identifies a global memory object that contains a RECT structure. The
structure specifies the new dimensions of the clipboard viewer's client area.

RemarksWhen the clipboard viewer window is about to be destroyed or resized, a WM_SIZECLIPBOARD
message is sent with a null rectangle (0, 0, 0, 0) as the new size. This permits the clipboard owner
to free its display resources.

The clipboard owner must use the GlobalLock function to lock the memory object that contains
RECT. Before returning, the clipboard owner must unlock the object by using the GlobalUnlock
function.See AlsoGlobalLock, GlobalUnlock, RECT

WM_SIZING
The WM_SIZING message is sent to a window that the user is resizing. By processing this
message, an application can monitor the size and position of the drag rectangle and, if needed,
change its size or position.fwSide = wParam; // edge of window being sized
lprc = (LPRECT) lParam; // screen coordinates of drag rectangle
ParametersfwSide

Value of wParam. Indicates which edge of the window is being sized. This parameter can be a
combination of the following values:

Value Meaning
WMSZ_BOTTOM Bottom edge
WMSZ_BOTTOMLEFT Bottom-left corner
WMSZ_BOTTOMRIGHT Bottom-right corner
WMSZ_LEFT Left edge
WMSZ_RIGHT Right edge
WMSZ_TOP Top edge
WMSZ_TOPLEFT Top-left corner
WMSZ_TOPRIGHT Top-right corner

lprc
Address of a RECT structure with the screen coordinates of the drag rectangle. To change the
size or position of the drag rectangle, an application must change the members of this
structure.Return ValuesAn application should return TRUE if it processes this message.See AlsoRECT, WM_MOVING, WM_SIZE

WM_SPOOLERSTATUS
The WM_SPOOLERSTATUS message is sent from Windows Print Manager whenever a job is
added to or removed from the Print Manager queue.WM_SPOOLERSTATUS
fwJobStatus = wParam; // job-status flag
cJobsLeft = LOWORD(lParam); // number of jobs remaining
ParametersfwJobStatus

Value of wParam. Specifies the PR_JOBSTATUS flag.
cJobsLeft

Value of the low-order word of lParam. Specifies the number of jobs remaining in the Print
Manager queue.

Return ValuesAn application should return zero if it processes this message.RemarksThis message is for informational purposes only.

WM_STYLECHANGED
The WM_STYLECHANGED message is sent to a window after the SetWindowLong function has
changed one or more of the window's styles.WM_STYLECHANGED
wStyleType = wParam; // extended or nonextended styles
lpss = (LPSTYLESTRUCT) lParam; // structure containing new styles
ParameterswStyleType

Value of wParam. Specifies whether the window's extended or nonextended styles have
changed. This parameter can be a combination of the following values:

Value Meaning
GWL_EXSTYLE The window's extended styles have changed.
GWL_STYLE The window's nonextended styles have changed.

lpss
Value of lParam. Points to a STYLESTRUCT structure that contains the new styles for the
window. An application can examine the styles, but can not change them.Return ValuesAn application should return zero if it processes this message.See AlsoSetWindowLong, STYLESTRUCT, WM_STYLECHANGING

WM_STYLECHANGING
The WM_STYLECHANGING message is sent to a window when the SetWindowLong function is
about to change one or more of the window's styles.WM_STYLECHANGING
wStyleType = wParam; // extended or nonextended styles
lpss = (LPSTYLESTRUCT) lParam; // structure containing new styles
ParameterswStyleType

Value of wParam. Specifies whether the window's extended or nonextended styles have
changed. This parameter can be a combination of the following values:

Value Meaning
GWL_EXSTYLE The window's extended styles are changing.
GWL_STYLE The window's nonextended styles are changing.

lpss
Value of lParam. Points to a STYLESTRUCT structure that contains the proposed new styles
for the window. An application can examine the styles and, if necessary, change them.Return ValuesAn application should return zero if it processes this message.See AlsoSTYLESTRUCT, WM_STYLECHANGED

WM_SYSCHAR
The WM_SYSCHAR message is posted to the window with the keyboard focus when a
WM_SYSKEYDOWN message is translated by the TranslateMessage function. It specifies the
character code of a system character key ¾ that is, a character key that is pressed while the ALT
key is down.WM_SYSCHAR
chCharCode = (TCHAR) wParam; // character code
lKeyData = lParam; // key data
ParameterschCharCode

Value of wParam. Specifies the character code of the window menu key.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Meaning
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is held down while the key is pressed; otherwise, the
value is 0.

30 Specifies the previous key state. The value is 1 if the key
is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is 1 if the key is
being released, or it is 0 if the key is being pressed.

Return ValuesAn application should return zero if it processes this message.RemarksWhen the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a standard key message instead of a system
character-key message. This allows accelerator keys to be used with the active window even if
the active window does not have the keyboard focus.

For enhanced 101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys in
the clusters to the left of the numeric keypad; the PRINT SCRN key; the BREAK key; the NUMLOCK
key; and the divide (/) and ENTER keys in the numeric keypad. Other keyboards may support the
extended-key bit in the lKeyData parameter.See AlsoTranslateAccelerator, TranslateMessage, WM_SYSKEYDOWN

WM_SYSCOLORCHANGE
The WM_SYSCOLORCHANGE message is sent to all top-level windows when a change is made
to a system color setting.WM_SYSCOLORCHANGE
ParametersThis message has no parameters.RemarksWindows sends a WM_PAINT message to any window that is affected by a system color change.

Applications that have brushes using the existing system colors should delete those brushes and
recreate them using the new system colors.

Top level windows that use common controls must forward the WM_SYSCOLORCHANGE
message to the controls; otherwise, the controls will not be notified of the color change. This
ensures that the colors used by your common controls are consistent with those used by other
user interface objects. For example, a toolbar control uses the "3D Objects" color to draw its
buttons. If the user changes the 3D Objects color but the WM_SYSCOLORCHANGE message is
not forwarded to the toolbar, the toolbar buttons will remain in their original color while the color of
other buttons in the system changes.See AlsoWM_PAINT

WM_SYSCOMMAND
A window receives this message when the user chooses a command from the window menu
(also known as the System menu or Control menu) or when the user chooses the Maximize
button or Minimize button.WM_SYSCOMMAND
uCmdType = wParam; // type of system command requested
xPos = LOWORD(lParam); // horizontal postion, in screen coordinates
yPos = HIWORD(lParam); // vertical postion, in screen coordinates
ParametersuCmdType

Specifies the type of system command requested. This can be one of these values:
Value Meaning
SC_CLOSE Closes the window.
SC_CONTEXTHELP Changes the cursor to a question

mark with a pointer. If the user then
clicks a control in the dialog box, the
control receives a WM_HELP
message.

SC_DEFAULT Selects the default item; the user
double-clicked the window menu.

SC_HOTKEY Activates the window associated with
the application-specified hot key. The
low-order word of lParam identifies
the window to activate.

SC_HSCROLL Scrolls horizontally.
SC_KEYMENU Retrieves the window menu as a

result of a keystroke.
SC_MAXIMIZE (or
SC_ZOOM)

Maximizes the window.

SC_MINIMIZE (or SC_ICON)Minimizes the window.
SC_MONITORPOWER Windows 95 only: Sets the state of

the display. This command supports
devices that have power-saving
features, such as a battery-powered
personal computer.

SC_MOUSEMENU Retrieves the window menu as a
result of a mouse click.

SC_MOVE Moves the window.
SC_NEXTWINDOW Moves to the next window.
SC_PREVWINDOW Moves to the previous window.
SC_RESTORE Restores the window to its normal

position and size.
SC_SCREENSAVE Executes the screen saver

application specified in the [boot]
section of the SYSTEM.INI file.

SC_SIZE Sizes the window.
SC_TASKLIST Executes or activates Windows Task

Manager.
SC_VSCROLL Scrolls vertically.

xPos
Specifies the horizontal position of the cursor, in screen coordinates, if a window menu
command is chosen with the mouse. Otherwise, the xPos parameter is not used.

yPos
Specifies the vertical position of the cursor, in screen coordinates, if a window menu
command is chosen with the mouse. This parameter is - 1 if the command is chosen using a
system accelerator, or zero if using a mnenomic.

Return ValuesAn application should return zero if it processes this message.RemarksThe DefWindowProc function carries out the window menu request for the predefined actions
specified in the previous table.

In WM_SYSCOMMAND messages, the four low-order bits of the uCmdType parameter are used
internally by Windows. To obtain the correct result when testing the value of uCmdType, an
application must combine the value 0xFFF0 with the uCmdType value by using the bitwise AND
operator.

The menu items in a window menu can be modified by using the GetSystemMenu,
AppendMenu, InsertMenu, ModifyMenu, InsertMenuItem, and SetMenuItem functions.
Applications that modify the window menu must process WM_SYSCOMMAND messages.

An application can carry out any system command at any time by passing a WM_SYSCOMMAND
message to DefWindowProc. Any WM_SYSCOMMAND messages not handled by the
application must be passed to DefWindowProc. Any command values added by an application
must be processed by the application and cannot be passed to DefWindowProc.

Accelerator keys that are defined to choose items from the window menu are translated into
WM_SYSCOMMAND messages; all other accelerator keystrokes are translated into
WM_COMMAND messages.See AlsoAppendMenu, DefWindowProc, GetSystemMenu, InsertMenu, ModifyMenu, WM_COMMAND

WM_SYSDEADCHAR
The WM_SYSDEADCHAR message is sent to the window with the keyboard focus when a
WM_SYSKEYDOWN message is translated by the TranslateMessage function.
WM_SYSDEADCHAR specifies the character code of a system dead key ¾ that is, a dead key
that is pressed while holding down the ALT key.WM_SYSDEADCHAR
chCharCode = (TCHAR) wParam; // character code
lKeyData = lParam; // key data
ParameterschCharCode

Value of wParam. Specifies the character code generated by the system dead key ¾ that is, a
dead key that is pressed while holding down the ALT key.

lKeyData
Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is held down while the key is pressed; otherwise, the
value is 0.

30 Specifies the previous key state. The value is 1 if the key
is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is 1 if the key is
being released, or it is 0 if the key is being pressed.

Return ValuesAn application should return zero if it processes this message.RemarksFor enhanced 101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys in
the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric
keypad. Other keyboards may support the extended-key bit in the lKeyData parameter.See AlsoTranslateMessage, WM_DEADCHAR, WM_SYSKEYDOWN

WM_SYSKEYDOWN
The WM_SYSKEYDOWN message is posted to the window with the keyboard focus when the
user holds down the ALT key and then presses another key. It also occurs when no window
currently has the keyboard focus; in this case, the WM_SYSKEYDOWN message is sent to the
active window. The window that receives the message can distinguish between these two
contexts by checking the context code in the lKeyData parameter.WM_SYSKEYDOWN
nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
ParametersnVirtKey

Value of wParam. Specifies the virtual-key code of the key being pressed.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it
is an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is down while the key is pressed; it is 0 if the
WM_SYSKEYDOWN message is posted to the active
window because no window has the keyboard focus.

30 Specifies the previous key state. The value is 1 if the key
is down before the message is sent, or it is 0 if the key is
up.

31 Specifies the transition state. The value is always 0 for a
WM_SYSKEYDOWN message.

Return ValuesAn application should return zero if it processes this message.Default ActionThe DefWindowProc function examines the given key and generates a WM_SYSCOMMAND
message if the key is either TAB or ENTER.RemarksWhen the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a normal key message instead of a system
character-key message. This allows accelerator keys to be used with the active window even if
the active window does not have the keyboard focus.

Because of automatic repeat, more than one WM_SYSKEYDOWN message may occur before a
WM_SYSKEYUP message is sent. The previous key state (bit 30) can be used to determine
whether the WM_SYSKEYDOWN message indicates the first down transition or a repeated down
transition.

For enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and CTRL keys on
the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys
in the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric
keypad. Other keyboards may support the extended-key bit in the lParam parameter.See AlsoDefWindowProc, TranslateAccelerator, WM_SYSCOMMAND, WM_SYSKEYUP

WM_SYSKEYUP
The WM_SYSKEYUP message is posted to the window with the keyboard focus when the user
releases a key that was pressed while the ALT key was held down. It also occurs when no window
currently has the keyboard focus; in this case, the WM_SYSKEYUP message is sent to the active
window. The window that receives the message can distinguish between these two contexts by
checking the context code in the lKeyData parameter.WM_SYSKEYUP
nVirtKey = (int) wParam; // virtual-key code
lKeyData = lParam;// key data
ParametersnVirtKey

Value of wParam. Specifies the virtual-key code of the key being released.
lKeyData

Value of lParam. Specifies the repeat count, scan code, extended-key flag, context code,
previous key-state flag, and transition-state flag, as shown in the following table:

Value Description
0- 15 Specifies the repeat count. The value is the number of

times the keystroke is repeated as a result of the user
holding down the key. The repeat count is always one for
a WM_SYSKEYUP message.

16- 23 Specifies the scan code. The value depends on the
original equipment manufacturer (OEM).

24 Specifies whether the key is an extended key, such as
the right-hand ALT and CTRL keys that appear on an
enhanced 101- or 102-key keyboard. The value is 1 if it is
an extended key; otherwise, it is 0.

25- 28 Reserved; do not use.
29 Specifies the context code. The value is 1 if the ALT key

is down while the key is released; it is 0 if the
WM_SYSKEYDOWN message is posted to the active
window because no window has the keyboard focus.

30 Specifies the previous key state. The value is always 1
for a WM_SYSKEYUP message.

31 Specifies the transition state. The value is always 1 for a
WM_SYSKEYUP message.

Return ValuesAn application should return zero if it processes this message.Default ActionThe DefWindowProc function sends a WM_SYSCOMMAND message to the top-level window if
the F10 key or the ALT key was released. The wParam parameter of the message is set to
SC_KEYMENU.RemarksWhen the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a normal key message instead of a system
character-key message. This allows accelerator keys to be used with the active window even if
the active window does not have the keyboard focus.

For enhanced 101- and 102-key keyboards, extended keys are the right ALT and CTRL keys on the
main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, PAGE DOWN and arrow keys in
the clusters to the left of the numeric keypad; and the divide (/) and ENTER keys in the numeric
keypad. Other keyboards may support the extended-key bit in the lKeyData parameter.

For non-U.S. enhanced 102-key keyboards, the right ALT key is handled as a CTRL+ALT key. The
following table shows the sequence of messages that result when the user presses and releases
this key:

Message Virtual-key code

WM_KEYDOWN VK_CONTROL
WM_KEYDOWN VK_MENU
WM_KEYUP VK_CONTROL
WM_SYSKEYUP VK_MENU
See AlsoDefWindowProc, TranslateAccelerator, WM_SYSCOMMAND, WM_SYSKEYDOWN

WM_TCARD
The WM_TCARD message is sent to an application that has initiated a training card with Windows
Help. The message informs the application when the user clicks an authorable button. An
application initiates a training card by specifying the HELP_TCARD command in a call to the
WinHelp function.WM_TCARD
idAction = wParam;
dwActionData = lParam;
ParametersidAction

Value of wParam. Indicates the action the user has taken. This parameter can be one of these
values:

Value Meaning
IDABORT The user clicked an authorable

Abort button.
IDCANCEL The user clicked an authorable

Cancel button.
IDCLOSE The user closed the training card.
IDHELP The user clicked an authorable

Windows Help button.
IDIGNORE The user clicked an authorable

Ignore button.
IDOK The user clicked an authorable OK

button.
IDNO The user clicked an authorable No

button.
IDRETRY The user clicked an authorable

Retry button.
HELP_TCARD_DATA The user clicked an authorable

button. The lParam parameter
contains a long integer specified
by the help author.

HELP_TCARD_NEXT The user clicked an authorable
Next button.

HELP_TCARD_OTHER_CALLERAnother application has requested
training cards.

IDYES The user clicked an authorable
Yes button.

dwActionData
Value of lParam. If idAction specifies HELP_TCARD_DATA, this parameter is a long integer
specified by the help author. Otherwise, this parameter is zero.

Return ValuesThe return value is ignored; use zero.See AlsoWinHelp

WM_TIMECHANGE
An application sends the WM_TIMECHANGE message to all top-level windows after changing the
system time.WM_TIMECHANGE
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
ParametersThis message has no parameters.Return ValuesAn application should return zero if it processes this message.RemarksAn application that changes the system time should send this message to all top-level windows.

To send the WM_TIMECHANGE message to all top-level windows, an application can use the
SendMessage function with the hwnd parameter set to HWND_TOPMOST.See AlsoSendMessage

WM_TIMER
The WM_TIMER message is posted to the installing thread's message queue or sent to the
appropriate TimerProc callback function after each interval specified in the SetTimer function
used to install a timer.WM_TIMER
wTimerID = wParam; // timer identifier
tmprc = (TIMERPROC *) lParam; // address of timer callback
ParameterswTimerID

Value of wParam. Specifies the timer identifier.
tmprc

Value of lParam. Points to an application-defined callback function that was passed to the
SetTimer function when the timer was installed. If the tmprc parameter is not NULL, Windows
passes the WM_TIMER message to the specified callback function rather than posting the
message to the thread's message queue.

Return ValuesAn application should return zero if it processes this message.RemarksThe DispatchMessage function forwards this message when no other messages are in the
thread's message queue.See AlsoDispatchMessage, SetTimer, TimerProc

WM_UNDO
An application sends a WM_UNDO message to an edit control to undo the last operation. When
this message is sent to an edit control, the previously deleted text is restored or the previously
added text is deleted.WM_UNDO
wParam = 0; // not used; must be zero
lParam = 0; // not used; must be zero
ParametersThis message has no parameters.Return ValuesIf the message succeeds, the return value is TRUE; otherwise, it is FALSE.See AlsoWM_CLEAR, WM_COPY, WM_CUT, WM_PASTE

WM_USER
The WM_USER constant is used by applications to help define private messages.WM_USER
RemarksThe WM_USER constant is used to distinguish between message values that are reserved for

use by Windows and values that can be used by an application to send messages within a private
window class. There are five ranges of message numbers:

Range Meaning

0 through WM_USER - 1 Messages reserved for use by Windows.
WM_USER through
0x7FFF

Integer messages for use by private
window classes.

0x8000 through 0xBFFF Messages reserved for future use by
Windows.

0xC000 through 0xFFFF String messages for use by applications.
Greater than 0xFFFF Reserved by Windows for future use.

Message numbers in the first range (0 through WM_USER - 1) are defined by Windows.
Values in this range that are not explicitly defined are reserved for future use by Windows.

Message numbers in the second range (WM_USER through 0x7FFF) can be defined and used by
an application to send messages within a private window class. These values cannot be used to
define messages that are meaningful throughout an application, because some predefined
window classes already define values in this range. For example, predefined control classes such
as BUTTON, EDIT, LISTBOX, and COMBOBOX may use these values. Messages in this range
should not be sent to other applications unless the applications have been designed to exchange
messages and to attach the same meaning to the message numbers.

Message numbers in the third range (0x8000 through 0xBFFF) are reserved for future use by
Windows.

Message numbers in the fourth range (0xC000 through 0xFFFF) are defined at run time when an
application calls the RegisterWindowMessage function to retrieve a message number for a
string. All applications that register the same string can use the associated message number for
exchanging messages. The actual message number, however, is not a constant and cannot be
assumed to be the same between different Windows sessions.

Message numbers in the fifth range (greater than 0xFFFF) are reserved for future use by
Windows.See AlsoRegisterWindowMessage

WM_USERCHANGED
The WM_USERCHANGED message is sent to all windows after the user has logged on or off.
When the user logs on or off, the system updates the user-specific settings. The system sends
this message immediately after updating the settings.WM_USERCHANGED
wParam = 0; // not used, must be zero
lParam = 0; // not used, must be zero
Return ValuesAn application should return zero if it processes this message.

WM_VKEYTOITEM
The WM_VKEYTOITEM message is sent by a list box with the LBS_WANTKEYBOARDINPUT
style to its owner in response to a WM_KEYDOWN message.WM_VKEYTOITEM
vkey = LOWORD(wParam); // virtual-key code
nCaretPos = HIWORD(wParam); // caret position
hwndLB = lParam; // handle of list box
Parametersvkey

Value of the low-order word of wParam. Specifies the virtual-key code of the key the user
pressed.

nCaretPos
Value of the high-order word of wParam. Specifies the current position of the caret.

hwndLB
Value of lParam. Identifies the list box.

Return ValuesThe return value specifies the action that the application performed in response to the message. A
return value of - 2 indicates that the application handled all aspects of selecting the item and
requires no further action by the list box. A return value of - 1 indicates that the list box should
perform the default action in response to the keystroke. A return value of 0 or greater specifies the
index of an item in the list box and indicates that the list box should perform the default action for
the keystroke on the given item.Default ActionThe DefWindowProc function returns - 1.See AlsoDefWindowProc, WM_CHARTOITEM, WM_KEYDOWN

WM_VSCROLL
The WM_VSCROLL message is sent to a window when a scroll event occurs in the window's
standard vertical scroll bar. This message is also sent to the owner of a vertical scroll bar control
when a scroll event occurs in the control.WM_VSCROLL
nScrollCode = (int) LOWORD(wParam); // scroll bar value
nPos = (short int) HIWORD(wParam); // scroll box position
hwndScrollBar = (HWND) lParam; // handle of scroll bar
ParametersnScrollCode

Value of the low-order word of wParam. Specifies a scroll bar value that indicates the user's
scrolling request. This parameter can be one of the following values:

Value Meaning
SB_BOTTOM Scrolls to the lower right.
SB_ENDSCROLL Ends scroll.
SB_LINEDOWN Scrolls one line down.
SB_LINEUP Scrolls one line up.
SB_PAGEDOWN Scrolls one page down.
SB_PAGEUP Scrolls one page up.
SB_THUMBPOSITION Scrolls to the absolute position. The current

position is specified by the nPos parameter.
SB_THUMBTRACK Drags scroll box to the specified position.

The current position is specified by the
nPos parameter.

SB_TOP Scrolls to the upper left.

nPos
Value of the high-order word of wParam. Specifies the current position of the scroll box if the
nScrollCode parameter is SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, nPos is
not used.

hwndScrollBar
Value of lParam. Identifies the control if WM_VSCROLL is sent by a scroll bar control. If
WM_VSCROLL is sent by a window's standard scroll bar, hwndScrollBar is not used.

Return ValuesIf an application processes this message, it should return zero.RemarksThe SB_THUMBTRACK notification message is typically used by applications that provide
feedback as the user drags the scroll box.

If an application scrolls the content of the window, it must also reset the position of the scroll box
by using the SetScrollPos function.

Note that the WM_VSCROLL message carries only 16 bits of scroll box position data. Thus,
applications that rely solely on WM_VSCROLL (and WM_HSCROLL) for scroll position data have
a practical maximum position value of 65,535.

However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange
functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of
the WM_HSCROLL and WM_VSCROLL messages. See GetScrollPos for a description of the
technique and its limits.See AlsoGetScrollPos, GetScrollRange, SetScrollPos, SetScrollRange, WM_HSCROLL

WM_VSCROLLCLIPBOARD
The WM_VSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard viewer
window when the clipboard contains data in the CF_OWNERDISPLAY format and an event
occurs in the clipboard viewer's vertical scroll bar. The owner should scroll the clipboard image
and update the scroll bar values.WM_VSCROLLCLIPBOARD
hwndViewer = (HWND) wParam; // handle of clipboard viewer window
nScrollCode = (int) LOWORD(lParam); // scroll bar code
nPos = (int) HIWORD(lParam); // scroll box position
ParametershwndViewer

Value of wParam. Identifies the clipboard viewer window.
nScrollCode

Value of the low-order word of lParam. Specifies a scroll bar event. This parameter can be
one of the following values:

Value Meaning
SB_BOTTOM Scroll to lower right.
SB_ENDSCROLL End scroll.
SB_LINEDOWN Scroll one line down.
SB_LINEUP Scroll one line up.
SB_PAGEDOWN Scroll one page down.
SB_PAGEUP Scroll one page up.
SB_THUMBPOSITION Scroll to absolute position. The current

position is specified by the nPos parameter.
SB_TOP Scroll to upper left.

nPos
Value of the high-order word of lParam. Specifies the current position of the scroll box if the
nScrollCode parameter is SB_THUMBPOSITION; otherwise, the nPos parameter is not used.

Return ValuesIf an application processes this message, it should return zero.RemarksThe clipboard owner can use the ScrollWindow function to scroll the image in the clipboard
viewer window and invalidate the appropriate region.See AlsoScrollWindow

WM_WINDOWPOSCHANGED
The WM_WINDOWPOSCHANGED message is sent to a window whose size, position, or place in
the Z order has changed as a result of a call to the SetWindowPos function or another window-
management function.WM_WINDOWPOSCHANGED
lpwp = (LPWINDOWPOS) lParam; // points to size and position data
Parameterslpwp

Value of lParam. Points to a WINDOWPOS structure that contains information about the
window's new size and position.

Return ValuesIf an application processes this message, it should return zero.Default ActionThe DefWindowProc function sends the WM_SIZE and WM_MOVE messages to the window.RemarksThe WM_SIZE and WM_MOVE messages are not sent if an application handles the
WM_WINDOWPOSCHANGED message without calling DefWindowProc. It is more efficient to
perform any move or size change processing during the WM_WINDOWPOSCHANGED message
without calling DefWindowProc.See AlsoDefWindowProc, EndDeferWindowPos, SetWindowPos, WINDOWPOS, WM_MOVE,
WM_SIZE, WM_WINDOWPOSCHANGING

WM_WINDOWPOSCHANGING
The WM_WINDOWPOSCHANGING message is sent to a window whose size, position, or place
in the Z order is about to change as a result of a call to the SetWindowPos function or another
window-management function.WM_WINDOWPOSCHANGING
lpwp = (LPWINDOWPOS) lParam; // points to size and position data
Parameterslpwp

Value of lParam. Points to a WINDOWPOS structure that contains information about the
window's new size and position.

Return ValuesIf an application processes this message, it should return zero.Default ActionFor a window with the WS_OVERLAPPED or WS_THICKFRAME style, the DefWindowProc
function sends the WM_GETMINMAXINFO message to the window. This is done to validate the
new size and position of the window and to enforce the CS_BYTEALIGNCLIENT and
CS_BYTEALIGNWINDOW client styles. By not passing the WM_WINDOWPOSCHANGING
message to the DefWindowProc function, an application can override these defaults.RemarksWhile this message is being processed, modifying any of the values in WINDOWPOS affects the
window's new size, position, or place in the Z order. An application can prevent changes to the
window by setting or clearing the appropriate bits in the flags member of WINDOWPOS.See AlsoDefWindowProc, EndDeferWindowPos, SetWindowPos, WINDOWPOS,
WM_GETMINMAXINFO, WM_MOVE, WM_SIZE, WM_WINDOWPOSCHANGED

WM_WININICHANGE
The WM_WININICHANGE is obsolete. It is included for compatibility with earlier versions of
Windows. New applications should use the WM_SETTINGCHANGE message.

Simple TypesVarious simple data types define the size and meaning of parameters, return values, and
members associated with the functions, messages, and structures of Microsoft Windows. The
following table contains character, integer, and Boolean types; pointer types; and handles. The
character, integer, and Boolean types are common to most C compilers. Many of the pointer-type
names begin with a prefix of P or LP. A Windows-based application uses a handle to refer to a
resource that has been loaded into memory. Windows provides access to these resources
through internally maintained tables that contain individual entries for each handle. Each entry in
the handle table contains the address of the resource and a means of identifying the resource
type.

Type Definition
ABORTPROC Pointer to an application-

defined callback function that
the operating system calls
when a print job is to be
cancelled during spooling. See
AbortProc for information on
functions of this type.

ACMDRIVERENUMCB Pointer to an application-
defined callback function that
is used with the
acmDriverEnum function. See
acmDriverEnumCallback for
information on functions of this
type.

ACMDRIVERPROC Pointer to an application-
defined callback function that
is used with an installable
audio compression manager
(ACM) driver. See
acmDriverProc for information
on functions of this type.

ACMFILTERCHOOSEHOOKPROC Pointer to an application-
defined function that hooks the
acmFilterChoose dialog box.
See
acmFilterChooseHookProc
for information on functions of
this type.

ACMFILTERENUMCB Pointer to an application-
defined callback function that
is used with the
acmFilterEnum function. See
acmFilterEnumCallback for
information on functions of this
type.

ACMFILTERTAGENUMCB Pointer to an application-
defined callback function that
is used with the
acmFilterTagEnum function.
See
acmFilterTagEnumCallback
for information on functions of
this type.

ACMFORMATCHOOSEHOOKPROC Pointer to an application-
defined function that hooks the
acmFormatChoose dialog
box. See
acmFormatChooseHookProc
for information on functions of
this type.

ACMFORMATENUMCB Pointer to an application-
defined callback function that
is used with the
acmFormatEnum function.
See
acmFormatEnumCallback for
information on functions of this
type.

ACMFORMATTAGENUMCB Pointer to an application-
defined callback function that
is used with the
acmFormatTagEnum
function. See
acmFormatTagEnumCallback
for information on functions of
this type.

APPLET_PROC Pointer to a library-defined
callback function that is the
entry point for a Control Panel
application. See CplApplet for
information on functions of this
type.

ATOM Atom (a reference to a
character string in an atom
table).

BOOL Boolean variable (should be
TRUE or FALSE).

BOOLEAN Boolean variable (should be
TRUE or FALSE).

BYTE Byte (8 bits).
CCHAR Windows character.
CHAR Windows character.
COLORREF Red, green, blue (RGB) color

value (32 bits).
CONST Variable whose value is to

remain constant during
execution.

CRITICAL_SECTION Critical-section object.
CTRYID Country identifier.
DLGPROC Pointer to an application-

defined dialog box callback
procedure.

DWORD Doubleword (32 bits).
DWORDLONG Double (64 bits).
EDITWORDBREAKPROC Pointer to an application-

defined callback function that
the operating system calls
when a multiline edit control
needs to break a line of text.
See EditWordBreakProc for
information on functions of this
type.

ENHMFENUMPROC Pointer to an application-
defined callback function that
enumerates enhanced-
metafile records.

ENUMRESLANGPROC Pointer to an application-
defined callback function that
enumerates resource
languages.

ENUMRESNAMEPROC Pointer to an application-
defined callback function that
enumerates resource names.

ENUMRESTYPEPROC Pointer to an application-
defined callback function that
enumerates resource types.

FARPROC Pointer to a callback function.
FLOAT Floating-point variable.
FONTENUMPROC Pointer to an application-

defined callback function that
enumerates fonts.

GLOBALHANDLE Handle of a global memory
block.

GOBJENUMPROC Pointer to an application-
defined callback function that
enumerates graphics device
interface (GDI) objects.

GRAYSTRINGPROC Pointer to an application-
defined callback function that
draws gray text.

HACCEL Handle of an accelerator table.
HANDLE Handle of an object.
HBITMAP Handle of a bitmap.
HBRUSH Handle of a brush.
HCOLORSPACE Windows 95 only: Handle of a

logical color space.
HCONV Handle of a dynamic data

exchange (DDE) conversation.
HCONVLIST Handle of a DDE conversation

list.
HCURSOR Handle of a cursor.
HDC Handle of a device context

(DC).
HDDEDATA Handle of DDE data.
HDWP Handle of a deferred window

position structure.
HENHMETAFILE Handle of an enhanced

metafile.
HFILE Handle of a file.
HFONT Handle of a font.
HGDIOBJ Handle of a GDI object.
HGLOBAL Handle of a global memory

block.
HHOOK Handle of a hook.
HICON Handle of an icon.
HIMAGELIST Handle to an image list.
HINSTANCE Handle of an instance.
HKEY Handle of a registry key.
HKL Handle of a keyboard layout.
HLOCAL Handle of a local memory

block.
HMENU Handle of a menu.
HMETAFILE Handle of a metafile.
HMODULE Handle of a module.
HOOKPROC Pointer to an application-

defined hook function.

HPALETTE Handle of a palette.
HPEN Handle of a pen.
HRGN Handle of a region.
HRSRC Handle of a resource.
HSZ Handle of a DDE string.
HTREEITEM Handle of an item in a tree-

view control.
HWINSTA Handle of a workstation.
HWND Handle of a window.
INT Signed integer.
IPADDR A 32-bit value that contains an

IP address. To convert this
value to the "a.b.c.d" string
form of an IP address, map the
high-order byte to a, the low-
order byte to d, and so on.

LANGID Language identifier.
LCID Locale identifier.
LCSCSTYPE Color space type.
LCSGAMUTMATCH Gamut-matching method.
LCTYPE Locale type.
LINEDDAPROC Pointer to a callback function

that processes line
coordinates.

LOCALHANDLE Handle of a local memory
block.

LONG 32-bit signed value.
LONGLONG Double (64 bits).
LP Pointer to a null-terminated

Unicode™ string.
LPARAM 32-bit message parameter.
LPBOOL Pointer to a Boolean variable.
LPBYTE Pointer to a byte.
LPCCH Pointer to a constant Windows

character.
LPCCHOOKPROC Pointer to an application-

defined hook function.
LPCFHOOKPROC Pointer to an application-

defined hook function.
LPCH Pointer to a Windows

character.
LPCOLORREF Pointer to a COLORREF

value.
LPCRITICAL_SECTION Pointer to a critical-section

object.
LPCSTR Pointer to a constant null-

terminated Windows character
string.

LPCTSTR Pointer to a constant null-
terminated Unicode or
Windows character string.

LPCWCH Pointer to a constant null-
terminated Unicode character.

LPCWSTR Pointer to a constant null-
terminated Unicode character
string.

LPDWORD Pointer to an unsigned

doubleword (32 bits).
LPFRHOOKPROC Pointer to an application-

defined hook function.
LPHANDLE Pointer to a handle.
LPHANDLER_FUNCTION Pointer to a handler function.
LPINT Pointer to a signed integer.
LPLONG Pointer to a signed long (32

bits).
LPOFNHOOKPROC Pointer to an application-

defined hook function.
LPPRINTHOOKPROC Pointer to an application-

defined hook function.
LPSETUPHOOKPROC Pointer to an application-

defined hook function.
LPSTR Pointer to a null-terminated

Windows character string.
LPTCH Pointer to a Unicode character

or a Windows character.
LPTSTR Pointer to a null-terminated

Windows or Unicode character
string.

LRESULT Signed result of message
processing.

LPVOID Pointer to any type.
LPWCH Pointer to a Unicode character.
LPWORD Pointer to an unsigned word

(16 bits).
LPWSTR Pointer to a null-terminated

Unicode character string.
LUID Locally unique identifier.
MFENUMPROC Pointer to an application-

defined callback function that
enumerates metafile records.

NPSTR Pointer to a null-terminated
Windows character string.

NWPSTR Pointer to a null-terminated
Unicode string.

PBOOL Pointer to a Boolean variable.
PBOOLEAN Pointer to a Boolean variable.
PBYTE Pointer to a byte.
PCCH Pointer to a constant Windows

character.
PCH Pointer to a Windows

character.
PCHAR Pointer to a Windows

character.
PCRITICAL_SECTION Pointer to a critical-section

object.
PCSTR Pointer to a constant null-

terminated Windows character
string.

PCWCH Pointer to a constant Unicode
character.

PCWSTR Pointer to a constant null-
terminated Unicode character
string.

PDWORD Pointer to an unsigned

doubleword (32 bits).
PFLOAT Pointer to a floating-point

variable.
PFNCALLBACK Pointer to a callback function.
PHANDLE Pointer to a handle.
PHANDLER_ROUTINE Pointer to a handler routine.
PHKEY Pointer to a registry key.
PINT Pointer to a signed integer.
PLCID Pointer to a locale identifier.
PLONG Pointer to a signed long (32

bits).
PLUID Pointer to a locally unique

identifier (LUID).
PROC Pointer to a callback function.
PROPENUMPROC Pointer to an application-

defined callback function that
enumerates window
properties. See
PropEnumProc for
information on functions of this
type.

PROPENUMPROCEX Pointer to an application-
defined callback function that
enumerates window
properties. See
PropEnumProcEx for
information on functions of this
type.

PSHORT Pointer to a signed short (16
bits).

PSID Pointer to a security identifier
(SID).

PSTR Pointer to a null-terminated
Windows character string.

PSZ Pointer to a null-terminated
Windows character string.

PTBYTE Pointer to a Windows or
Unicode character.

PTCH Pointer to a Windows or
Unicode character.

PTCHAR Pointer to a Windows or
Unicode character.

PTSTR Pointer to a null-terminated
Windows or Unicode character
string.

PUCHAR Pointer to an unsigned
Windows character.

PUINT Pointer to an unsigned integer.
PULONG Pointer to an unsigned long

(32 bits).
PUSHORT Pointer to an unsigned short

(16 bits).
PVOID Pointer to any type.
PWCH Pointer to a Unicode character.
PWCHAR Pointer to a Unicode character.
PWORD Pointer to an unsigned word

(16 bits).
PWSTR Pointer to a null-terminated

Unicode character string.
REGSAM Security access mask for

registry key.
SC_HANDLE Handle of a service.
SENDASYNCPROC Pointer to an application-

defined callback function that
the operating system calls
when the
SendMessageCallback
function is called. The system
passes the message to the
callback function after passing
the message to the destination
window procedure. See
SendAsyncProc for
information on functions of this
type.

SERVICE_STATUS_HANDLE Handle of a service status
value.

SHORT Short integer.
SPHANDLE Pointer to a handle.
TBYTE Windows or Unicode

character.
TCHAR Unicode character or Windows

character.
TIMERPROC Pointer to an application-

defined timer callback function.
UCHAR Unsigned Windows character.
UINT Unsigned integer.
ULONG Unsigned long integer (32 bits)

.
USHORT Unsigned short integer (16

bits).
VOID Any type.
WCHAR Unicode character.
WNDENUMPROC Pointer to an application-

defined callback function that
enumerates windows.

WNDPROC Pointer to an application-
defined window procedure.

WORD Unsigned word (16 bits).
WPARAM 32-bit message parameter.
YIELDPROC Pointer to a yield callback

function.

ABC
The ABC structure contains the width of a character in a TrueType font.typedef struct _ABC { // abc

intabcA;
UINT abcB;
intabcC;

} ABC;
MembersabcA

Specifies the "A" spacing of the character. The "A" spacing is the distance to add to the
current position before drawing the character glyph.

abcB
Specifies the "B" spacing of the character. The "B" spacing is the width of the drawn portion of
the character glyph.

abcC
Specifies the "C" spacing of the character. The "C" spacing is the distance to add to the
current position to provide white space to the right of the character glyph.

RemarksThe total width of a character is the summation of the "A," "B," and "C" spaces. Either the "A" or
the "C" space can be negative to indicate underhangs or overhangs.See AlsoGetCharABCWidths

ABCFLOAT
The ABCFLOAT structure contains the A, B, and C widths of a font character.typedef struct _ABCFLOAT { // abcf

FLOAT abcfA;
FLOAT abcfB;
FLOAT abcfC;

} ABCFLOAT;
MembersabcfA

Specifies the "A" spacing of the character. The "A" spacing is the distance to add to the
current position before drawing the character glyph.

abcfB
Specifies the "B" spacing of the character. The "B" spacing is the width of the drawn portion of
the character glyph.

abcfC
Specifies the "C" spacing of the character. The "C" spacing is the distance to add to the
current position to provide white space to the right of the character glyph.

RemarksThe A, B, and C widths are measured along the base line of the font.

The character increment (total width) of a character is the sum of the "A," "B," and "C" spaces.
Either the "A" or the "C" space can be negative to indicate underhangs or overhangs.See AlsoGetCharABCWidthsFloat

ACCEL
The ACCEL structure defines an accelerator key used in an accelerator table.typedef struct tagACCEL { // accl

BYTE fVirt;
WORD key;
WORD cmd;

} ACCEL;
MembersfVirt

Specifies the accelerator flags. This member can be a combination of the following values:
Value Meaning
FALT The ALT key must be held down when the

accelerator key is pressed.
FCONTROL The CTRL key must be held down when the

accelerator key is pressed.
FNOINVERT Specifies that no top-level menu item is highlighted

when the accelerator is used. If this flag is not
specified, a top-level menu item will be highlighted,
if possible, when the accelerator is used.

FSHIFT The SHIFT key must be held down when the
accelerator key is pressed.

FVIRTKEY The key member specifies a virtual-key code. If this
flag is not specified, key is assumed to specify an
ASCII character code.

key
Specifies the accelerator key. This member can be either a virtual-key code or an ASCII
character code.

cmd
Specifies the accelerator identifier. This value is placed in the low-order word of the wParam
parameter of the WM_COMMAND or WM_SYSCOMMAND message when the accelerator is
pressed.

See AlsoWM_COMMAND, WM_SYSCOMMAND

AccelTableEntry
The AccelTableEntry structure describes the data in an individual accelerator table resource.struct AccelTableEntry {

WORD fFlags;
WORD wAnsi;
WORD wId;
WORD padding;

};
MembersfFlags

Specifies a set of flags that you can use to describe keyboard accelerator characteristics. This
member can have one or more of the following values.

Value Meaning
FVIRTKEY The accelerator key is a virtual-key code. If

this flag is not specified, the accelerator
key is assumed to specify an ASCII
character code.

FNOINVERT A menu item on the menu bar is not
highlighted when an accelerator is used.

FSHIFT The accelerator is activated only if the user
presses the SHIFT key. This flag applies
only to virtual keys.

FCONTROL The accelerator is activated only if the user
presses the CTRL key. This flag applies
only to virtual keys.

FALT The accelerator is activated only if the user
presses the ALT key. This flag applies only
to virtual keys.

0x80 The entry is last in an accelerator table.

wAnsi
Specifies an ANSI character value or a virtual-key code that identifies the accelerator key.

wId
Identifies the keyboard accelerator. This is the value passed to the window procedure when
the user presses the specified key.

padding
The number of bytes inserted to ensure that the structure is aligned on a DWORD boundary.

RemarksThe AccelTableEntry structure is repeated for all accelerator table entries in the resource. The
last entry in the table is flagged with the value 0x0080.

You can compute the number of elements in the table if you divide the length of the resource by
eight. Then your application can randomly access the individual fixed-length entries.See AlsoCreateAcceleratorTable

ACCESS_ALLOWED_ACE
The ACCESS_ALLOWED_ACE structure defines an access-control entry (ACE) for the
discretionary access-control list (ACL) that controls access to an object. An access-allowed ACE
allows access to an object for a specific subject identified by a security identifier (SID).typedef struct _ACCESS_ALLOWED_ACE { // aaace

ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD SidStart;

} ACCESS_ALLOWED_ACE;
MembersHeader

Specifies an ACE_HEADER structure.
Mask

Specifies an ACCESS_MASK structure that specifies the access rights granted by this ACE.
SidStart

Specifies a SID. The access rights specified by the Mask member are granted to any subject
possessing an enabled SID matching this member.

RemarksACE structures must be aligned on doubleword boundaries. All Windows memory-management
functions return doubleword-aligned handles to memory.See AlsoAddAccessAllowedAce, AddAce, GetAce, ACCESS_DENIED_ACE, ACCESS_MASK,
ACE_HEADER, ACL, SID, SYSTEM_ALARM_ACE, SYSTEM_AUDIT_ACE

ACCESS_DENIED_ACE
The ACCESS_DENIED_ACE structure defines an access-control entry (ACE) for the
discretionary access-control list (ACL) controlling access to an object. An access-denied ACE
denies access to an object for a specific subject identified by a security identifier (SID).typedef struct _ACCESS_DENIED_ACE { // adace

ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD SidStart;

} ACCESS_DENIED_ACE;
MembersHeader

Specifies an ACE_HEADER structure.
Mask

Specifies an ACCESS_MASK structure specifying the access rights explicitly denied by this
ACE.

SidStart
Specifies a SID. The access rights specified by the Mask member are denied to any subject
possessing an enabled SID matching this member.

RemarksACE structures must be aligned on doubleword boundaries. All Windows memory-management
functions return doubleword-aligned handles to memory.See AlsoAddAccessDeniedAce, ACCESS_ALLOWED_ACE, ACCESS_MASK, ACE_HEADER, ACL,
SID, SYSTEM_ALARM_ACE, SYSTEM_AUDIT_ACE

ACCESS_MASK
The ACCESS_MASK structure is one doubleword value containing standard, specific, and
generic rights. These rights are used in access-control entries (ACEs) and are the primary means
of specifying the requested or granted access to an object.typedef DWORD ACCESS_MASK;The bits in this value are allocated as follows:

Bits Meaning

0 through 15 Specific rights. Contains the access mask specific to
the object type associated with the mask.

16 through 23 Standard rights. Contains the object's standard
access rights and can be a combination of the
following predefined flags:

Bit Flag Meaning
16 DELETE Delete access
17 READ_CONTROLRead access to the owner,

group, and discretionary
access-control list (ACL) of
the security descriptor

18 WRITE_DAC Write access to the
discretionary access-control
list (ACL)

19 WRITE_OWNER Write access to owner
20 SYNCHRONIZE Windows NT: Synchronize

access

Bits Meaning
24 Access system security

(ACCESS_SYSTEM_SECURITY). This flag is not a
typical access type. It is used to indicate access to a
system ACL. This type of access requires the calling
process to have a specific privilege.

25 Maximum allowed (MAXIMUM_ALLOWED)
26 through 27 Reserved
28 Generic all (GENERIC_ALL)
29 Generic execute (GENERIC_EXECUTE)
30 Generic write (GENERIC_WRITE)
31 Generic read (GENERIC_READ)

The following constants represent the specific and standard access rights:#define SPECIFIC_RIGHTS_ALL 0x0000FFFF
#define STANDARD_RIGHTS_REQUIRED 0x000F0000
#define STANDARD_RIGHTS_ALL 0x001F0000
See AlsoGENERIC_MAPPING

ACCESSTIMEOUT
The ACCESSTIMEOUT structure contains information about the time-out period associated with
the Win32 accessibility features. The accessibility time-out period is the length of time that must
pass without keyboard and mouse input before the operating system automatically turns off
accessibility features. The accessibility features affected by the time-out are the FilterKeys
features (SlowKeys, BounceKeys, and RepeatKeys), MouseKeys, ToggleKeys, and StickyKeys.
The accessibility time-out is designed for computers that are shared by several users so that
options selected by one user do not inconvenience a subsequent user.

Windows 95: The accessibility time-out affects the High Contrast Mode setting.typedef struct tagACCESSTIMEOUT {// ato
UINT cbSize;
DWORD dwFlags;
DWORD iTimeOutMSec;

} ACCESSTIMEOUT;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

A set of bit flags that specify properties of the time-out behavior for accessibility features. The
following values are defined:

Value Meaning
ATF_ONOFFFEEDBACKIf this flag is set, the operating system

plays a descending siren sound when
the time-out period elapses and the
accessibility features are turned off.

ATF_AVAILABLE If this flag is set, you can set a time-out
period for accessibility features. An
application can retrieve this value, but
cannot set it.

ATF_TIMEOUTON If this flag is set, a time-out period has
been set for accessibility features. If this
flag is not set, the features will not time
out even though a time-out period is
specified.

iTimeOutMSec
Specifies the time-out period, in milliseconds.

RemarksUse an ACCESSTIMEOUT structure when calling the SystemParametersInfo function with the
uiAction parameter set to the SPI_GETACCESSTIMEOUT or SPI_SETACCESSTIMEOUT value.
When using SPI_GETACCESSTIMEOUT, you must specify the cbSize member of the
ACCESSTIMEOUT structure; the SystemParametersInfo function fills in the remaining
members. Specify all structure members when using the SPI_SETACCESSTIMEOUT value.See AlsoSystemParametersInfo

ACE
An ACE is an access-control entry (ACE) in an access-control list (ACL).

Following are the currently defined ACE types:

ACE type Structure ACL Type

Access allowed ACCESS_ALLOWED_ACEDiscretionary
Access denied ACCESS_DENIED_ACE Discretionary
System alarm SYSTEM_ALARM_ACE System
System audit SYSTEM_AUDIT_ACE System

System-alarm ACEs are not supported in the current version of Windows NT.RemarksAn ACL contains a list of ACEs. An ACE defines access to an object for a specific user or group
or defines the types of access that generate system-administration messages or alarms for a
specific user or group. The user or group is identified by a security identifier (SID).

Each ACE starts with an ACE_HEADER structure. The format of the data following the header
varies according to the ACE type specified in the header.See AlsoAddAce, ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACL, SYSTEM_ALARM_ACE,
SYSTEM_AUDIT_ACE

ACE_HEADER
The ACE_HEADER structure describes the type and size of an access-control entry (ACE).typedef struct _ACE_HEADER { // acehdr

BYTE AceType;
BYTE AceFlags;
WORD AceSize;

} ACE_HEADER;
MembersAceType

Specifies the ACE type. This member can be one of the following values:
Value ACE type
ACCESS_ALLOWED_ACE_TYPE Access-allowed (defined by the

ACCESS_ALLOWED_ACE
structure)

ACCESS_DENIED_ACE_TYPE Access-denied (defined by the
ACCESS_DENIED_ACE
structure)

SYSTEM_AUDIT_ACE_TYPE System-audit (defined by the
SYSTEM_AUDIT_ACE structure)

System-alarm ACEs are not supported in the current version of Windows NT.
Applications cannot use the SYSTEM_ALARM_ACE_TYPE value or
SYSTEM_ALARM_ACE structure.

AceFlags
Specifies a set of ACE type-specific control flags. This member can be a combination of the
following values:

Value Meaning
CONTAINER_INHERIT_ACE

The ACE is inherited by container objects,
such as directories.

INHERIT_ONLY_ACE
The ACE does not apply to the container
object, but to objects contained by it.

NO_PROPAGATE_INHERIT_ACE
The OBJECT_INHERIT_ACE and
CONTAINER_INHERIT_ACE bits are not
propagated to an inherited ACE.

OBJECT_INHERIT_ACE
The ACE is inherited by noncontainer objects,
such as files created within the container
object to which the ACE is assigned.

FAILED_ACCESS_ACE_FLAG
Used with system-audit and system-alarm
ACEs to indicate a message is generated for
failed access attempts.

SUCCESSFUL_ACCESS_ACE_FLAG
Used with system-audit and system-alarm
ACEs to indicate a message is generated for
successful access attempts.

AceSize
Specifies the size, in bytes, of the ACE.

RemarksAn ACE defines access to an object for a specific user or group or defines the types of access
that generate system-administration messages or alarms for a specific user or group. The user or
group is identified by a security identifier (SID).See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACL, SYSTEM_ALARM_ACE,
SYSTEM_AUDIT_ACE

ACL
The ACL structure is the header of an access-control list (ACL). A complete ACL consists of an
ACL structure followed by an ordered list of zero or more access-control entries (ACEs).typedef struct _ACL { // acl

BYTE AclRevision;
BYTE Sbz1;
WORD AclSize;
WORD AceCount;
WORD Sbz2;

} ACL;
MembersAclRevision

Specifies the ACL's revision level. This value should be ACL_REVISION. All ACEs in an ACL
must be at the same revision level.

Sbz1
Specifies a zero byte of padding that aligns the AclRevision member on a 16-bit boundary.

AclSize
Specifies the size, in bytes, of the ACL. This value includes both the ACL structure and all the
ACEs.

AceCount
Specifies the number of ACEs stored in the ACL.

Sbz2
Specifies two zero bytes of padding that align the ACL structure on a 32-bit boundary.

RemarksAn ACL includes a sequential list of zero or more ACEs. The individual ACEs in an ACL are
numbered from 0 to n, where n+1 is the number of ACEs in the ACL. When editing an ACL, an
application refers to an ACE within the ACL by its index.

There are two types of ACL: discretionary and system.

A discretionary ACL is controlled by the owner of an object or anyone granted WRITE_DAC
access to the object. It specifies the access particular users and groups can have to an object. For
example, the owner of a file can use a discretionary ACL to control which users and groups can
and cannot have access to the file.

An object may also have system-level security information associated with it, in the form of a
system ACL controlled by a system administrator. A system ACL can allow the system
administrator to audit any attempts to gain access to an object.

Three ACE structures are currently defined:

ACE structure Description

ACCESS_ALLOWED_ACE Grants specified rights to a user or
group. This ACE is stored in a
discretionary ACL.

ACCESS_DENIED_ACE Denies specified rights to a user or
group. This ACE is stored in a
discretionary ACL.

SYSTEM_AUDIT_ACE Specifies what types of access will cause
system-level audits. This ACE is stored
in a system ACL.

A fourth ACE structure, SYSTEM_ALARM_ACE, is not currently supported by Windows NT.

The ACL structure is to be treated as though it were opaque and applications are not to attempt to
work with its members directly. To ensure that ACLs are semantically correct, applications can
use the functions listed in the SeeAlso section to create and manipulate ACLs.

Each ACL and ACE structure begins on a doubleword boundary.See AlsoAddAce, DeleteAce, GetAclInformation, GetSecurityDescriptorDacl,
GetSecurityDescriptorSacl, InitializeAcl, IsValidAcl, SetAclInformation,
SetSecurityDescriptorDacl, SetSecurityDescriptorSacl

ACL_REVISION_INFORMATION
The ACL_REVISION_INFORMATION structure contains revision information about an ACL
structure.typedef struct _ACL_REVISION_INFORMATION {

DWORD AclRevision;
} ACL_REVISION_INFORMATION;
MembersAclRevision

Specifies a revision number. The current revision number is ACL_REVISION.
See AlsoGetAclInformation, SetAclInformation, ACL, ACL_INFORMATION_CLASS,

ACL_SIZE_INFORMATION

ACL_SIZE_INFORMATION
The ACL_SIZE_INFORMATION structure contains information about the size of an ACL
structure.typedef struct _ACL_SIZE_INFORMATION {

DWORD AceCount;
DWORD AclBytesInUse;
DWORD AclBytesFree;

} ACL_SIZE_INFORMATION;
MembersAceCount

Specifies the number of access-control entries (ACEs) in the access-control list (ACL).
AclBytesInUse

Specifies the number of bytes in the ACL actually used to store the ACEs and ACL structure.
This may be less than the total number of bytes allocated to the ACL.

AclBytesFree
Specifies the number of unused bytes in the ACL.

See AlsoGetAclInformation, SetAclInformation, ACL, ACL_INFORMATION_CLASS,
ACL_REVISION_INFORMATION

ACTION_HEADER
The ACTION_HEADER structure contains information about an action. This action is an extension
to the standard transport interface.typedef struct _ACTION_HEADER {

ULONG transport_id;
USHORT action_code;
USHORT reserved;

} ACTION_HEADER;
Memberstransport_id

Specifies the transport provider. This member can be used to check the validity of the request
by the transport.
This member is always a four-character string. All strings starting with the letter M are
reserved, as shown in the following example:

String Meaning
M000 All transports
MNBF NBF
MABF AsyBEUI
MXNS XNS

action_code
Specifies the action.

reserved
Reserved.

RemarksThe scope of the action is determined by the ncb_lsn and ncb_num members of the NCB
structure, as follows:

ncb_lsn = 0 ncb_lsn != 0

ncb_num = 0 Action applies to
control channel
associated with the
valid LAN adapter.

Action applies to connection
identifier associated with
the valid local session
number.

ncb_num != 0 Action applies to
address associated
with the valid LAN
adapter.

Illegal combination.

See AlsoNCB

ADAPTER_STATUS
The ADAPTER_STATUS structure contains information about a network adapter. This structure is
pointed to by the ncb_buffer member of the NCB structure. ADAPTER_STATUS is followed by
as many NAME_BUFFER structures as required to describe the network adapters on the system.typedef struct _ADAPTER_STATUS { // adptst

UCHAR adapter_address[6];
UCHAR rev_major;
UCHAR reserved0;
UCHAR adapter_type;
UCHAR rev_minor;
WORD duration;
WORD frmr_recv;
WORD frmr_xmit;
WORD iframe_recv_err;
WORD xmit_aborts;
DWORD xmit_success;
DWORD recv_success;
WORD iframe_xmit_err;
WORD recv_buff_unavail;
WORD t1_timeouts;
WORD ti_timeouts;
DWORD reserved1;
WORD free_ncbs;
WORD max_cfg_ncbs;
WORD max_ncbs;
WORD xmit_buf_unavail;
WORD max_dgram_size;
WORD pending_sess;
WORD max_cfg_sess;
WORD max_sess;
WORD max_sess_pkt_size;
WORD name_count;

} ADAPTER_STATUS;
Membersadapter_address

Specifies encoded address of the adapter.
rev_major

Specifies the major software-release level. This value is 3 for IBM NetBIOS 3. x.
reserved0

Reserved. This value is always zero.
adapter_type

Specifies the adapter type. This value is 0xFF for a Token Ring adapter or 0xFE for an
Ethernet adapter.

rev_minor
Specifies the minor software-release level. This value is zero for IBM NetBIOS x.0.

duration
Specifies the duration of the reporting period, in minutes.

frmr_recv
Specifies the number of FRMR frames received.

frmr_xmit
Specifies the number of FRMR frames transmitted.

iframe_recv_err
Specifies the number of I frames received in error.

xmit_aborts
Specifies the number of aborted transmissions.

xmit_success
Specifies the number of successfully transmitted packets.

recv_success
Specifies the number of successfully received packets.

iframe_xmit_err
Specifies the number of I frames transmitted in error.

recv_buff_unavail
Specifies the number of times a buffer was not available to service a request from a remote
computer.

t1_timeouts
Specifies the number of times that the DLC T1 timer timed out.

ti_timeouts
Specifies the number of times that the ti inactivity timer timed out.The ti timer is used to detect
links that have been broken.

reserved1
Reserved. This value is always zero.

free_ncbs
Specifies the current number of free network control blocks.

max_cfg_ncbs
Undefined for IBM NetBIOS 3.0.

max_ncbs
Undefined for IBM NetBIOS 3.0.

xmit_buf_unavail
Undefined for IBM NetBIOS 3.0.

max_dgram_size
Specifies the maximum size of a datagram packet. This value is always at least 512 bytes.

pending_sess
Specifies the number of pending sessions.

max_cfg_sess
Specifies the configured maximum pending sessions.

max_sess
Undefined for IBM NetBIOS 3.0.

max_sess_pkt_size
Specifies the maximum size of a session data packet.

name_count
Specifies the number of names in the local names table.

See AlsoNAME_BUFFER, NCB

ADDJOB_INFO_1
The ADDJOB_INFO_1 structure identifies a print job as well as the directory and file in which an
application can store that job.typedef struct _ADDJOB_INFO_1 { // aji1

LPTSTR Path;
DWORD JobId;

} ADDJOB_INFO_1;
MembersPath

Points to a null-terminated string that contains the path and filename that the application can
use to store the print job.

JobId
Identifies the print job.

See AlsoAddJob

ADMIN_OTHER_INFO
The ADMIN_OTHER_INFO structure contains error code information in administration messages.typedef struct _ADMIN_OTHER_INFO {

DWORD alrtad_errcode;
DWORD alrtad_numstrings;

}ADMIN_OTHER_INFO, *PADMIN_OTHER_INFO, *LPADMIN_OTHER_INFO;
Membersalrtad_errcode

Specifies the error code for the new message in the administration message.
alrtad_numstrings

Specifies the number (0-9) of consecutive Unicode strings in the administration message.
See AlsoNetAlertRaise

ANIMATIONINFO
The ANIMATIONINFO structure specifies the animation effects associated with user actions. This
structure is used with the SystemParametersInfo function when the SPI_GETANIMATION or
SPI_SETANIMATION action value is specified.typedef struct tagANIMATIONINFO {

UINT cbSize;
int iMinAnimate;

} ANIMATIONINFO, FAR *LPANIMATIONINFO;
MemberscbSize

Specifies the size of the structure, in bytes.
iMinAnimate

Indicates that minimize and restore animation is enabled (if the member is a nonzero value) or
not enabled (if zero).

See AlsoSystemParametersInfo

APPBARDATA
typedef struct _AppBarData { // abdDWORD cbSize; // sizeof(APPBARDATA)

HWND hWnd; // handle of appbar
UINT uCallbackMessage; // see below
UINT uEdge; // see below
RECT rc;// see below
LPARAM lParam; // see below

} APPBARDATA, *PAPPBARDATA;
MembersuCallbackMessage

Application-defined message identifier. The application uses the specified identifier for
notification messages that it sends to the the appbar identified by the hWnd member. This
member is used when sending the ABM_NEW message.

uEdge
Flag that specifies an edge of the screen. This member can be one of the following values:

ABE_BOTTOM Bottom edge
ABE_LEFT Left edge
ABE_RIGHT Right edge
ABE_TOP Top edge

This member is used when sending the ABM_GETAUTOHIDEBAR, ABM_QUERYPOS,
ABM_SETAUTOHIDEBAR, and ABM_SETPOS messages.

rc
RECT structure that contains the bounding rectangle, in screen coordinates, of an appbar or
the Windows taskbar. This member is used when sending the ABM_GETTASKBARPOS,
ABM_QUERYPOS, and ABM_SETPOS messages.

lParam
Message-dependent value. This member is used with the ABM_SETAUTOHIDEBAR
message.

RemarksThis structure is used with the SHAppBarMessage function.See AlsoSHAppBarMessage

AsnAny
The AsnAny structure contains an SNMP variable type and value. This structure is a member of
the RFC1157VarBind structure that is used as a parameter in many of the SNMP functions.
typedef struct {

BYTE asnType;
union {

// RFC 1155 SimpleSyntax (subset of ISO ASN.1)
AsnInteger number;
AsnOctetString string;
AsnObjectIdentifier object;
// ISO ASN.1

AsnSequencesequence;
// RFC 1155 ApplicationSyntax

AsnIPAddress address;
AsnCounter counter;
AsnGauge gauge;
AsnTimeticks ticks;
AsnOpaque arbitrary;

} asnValue;
} AsnAny;
MembersasnType

Indicates the variable's type. This member can be only one of the following values:
Value Meaning Printed as
ASN_INTEGER Indicates an integer

variable.
%ld(long)

ASN_OCTETSTRING Indicates an octet
string variable.

putchar <oct>

ASN_OBJECTIDENTIFIER Indicates an object
identifier variable.

.1.2.3.4

ASN_SEQUENCE Indicates an ASN
sequence variable.

ASN_OCTET
STRING

ASN_RFC1155_IPADDRESSIndicates an IP
address variable.

157.578.160

ASN_RFC1155_COUNTER Indicates a counter
variable.

%lu (unsigned
log)

ASN_RFC1155_GAUGE Indicates a gauge
variable.

%lu (unsigned
log)

ASN_RFC1155_TIMETICKS Indicates a timeticks
variable.

%lu (unsigned
log)

ASN_RFC1155_OPAQUE Indicates an opaque
variable.

0x5 ox3 ox

ASN_RFC1213_DISPSTRINGIndicates a display
string variable.

ASN_OCTET
STRING

asnValue
Contains the variable's value. This member can be only one of the following:

Value Meaning
number Accesses an integer variable
string Accesses an octet string variable
object Accesses an object identifier

variable
sequence Accesses an ASN sequence

variable
address Accesses an IP address variable
counter Accesses a counter variable
gauge Accesses a gauge variable
ticks Accesses a timeticks variable

arbitrary Accesses an opaque variable

For more information, see RFC 1155.See AlsoRFC1157VarBind

AsnObjectIdentifier
The AsnObjectIdentifier structure represents objects as defined in RFC 1155.typedef struct {

UINT idLength;
UINT * ids ;

} AsnObjectIdentifier;
MembersidLength

Specifies the number of integers in the object.
ids

Pointer to an array of integers that represents the object identifier.
RemarksNone.See AlsoRFC 1155

AsnOctetString
The AsnOctetString structure contains octet quantities, usually bytes, as defined in RFC 1155.typedef struct {

BYTE * stream;
UINT length;
BOOL dynamic;

} AsnOctetString;
Membersstream

Pointer to the octet stream.
length

The number of octets in the data stream.
dynamic

Flag that specifies if the data stream has been dynamically allocated with the
SnmpUtilMemAlloc function.

RemarksUse the AsnOctetString structure to transfer string values. For example, use it to transfer the
string that represents a computer name MIB object value.

You must check the flag specified in the dynamic member before you release the data stream of
an octet string. Call the SnmpUtilMemFree function only if the dynamic member is set to TRUE.See AlsoRFC 1155, SnmpUtilMemFree, SnmpUtilMemAlloc

AT_ENUM
The AT_ENUM structure enumerates and returns information about an entire queue of jobs that
have already been submitted.typedef struct _AT_ENUM {

DWORD JobId;
DWORD JobTime;
DWORD DaysOfMonth;
UCHAR DaysOfWeek;
UCHAR Flags;
LPWSTR Command;

} AT_ENUM, *PAT_ENUM, *LPAT_ENUM;
MembersJobID

Job identifier of an already submitted job.
JobTime

Time of day at which a job is scheduled to run. Time is a local time at a computer on which
the Schedule service is running. Time is measured from midnight and is expressed in
milliseconds.

DaysOfMonth
Bitmask for the days of the month on which a job is scheduled to run. The bitmask is NULL if
a job was scheduled to run only once at the first occurrence of JobTime. For each bit that is
set in the bitmask a job will run at JobTime on a corresponding day of the month. Bit 0
corresponds to first day of the month, and so on.

DaysOfWeek
Bitmask for the days of the week on which this job is scheduled to run. The bitmask is NULL if
a job was scheduled to run only once at the first occurrence of JobTime. For each bit that is
set in the bitmask a job will run at JobTime on a corresponding day of the week. Bit 0
corresponds to Monday (first day of the week), and so on.

Flags
Bitmask describing job properties. For job submission (NetScheduleJobAdd), possible
values are:
JOB_RUN_PERIODICALLY

If this flag bit is set, the job runs on every day for which corresponding bits in
DaysOfMonth or DaysOfWeek are set. If this flag bit is clear, the job runs only once for
each bit that was set in DaysOfMonth or DaysOfWeek at the time of job submission.

JOB_ADD_CURRENT_DATE
When this flag bit is set, the job will also execute at the first occurrence of JobTime at the
computer to which the job is submitted. In other words, setting this flag bit is equivalent to
setting the corresponding day bit in the DaysOfMonth bitmask.

For job information retrieval (NetScheduleJobEnum and NetScheduleJobGetInfo), possible
values are:
JOB_RUN_PERIODICALLY

This flag bit is equal to the original value of this flag bit when a job was submitted.
JOB_EXEC_ERROR

This flag bit is set whenever the Schedule service failed to execute successfully this job the
last time this job was supposed to run.

JOB_RUNS_TODAY
This flag bit is set if JobId is larger than the current time of day at the computer at which
this job is queued.

Command
Pointer to a Unicode string that contains the name of the command, batch program, or binary
file to execute.

See AlsoNetScheduleJobEnum

AT_INFO
The AT_INFO structure specifies jobs to be added or scheduled and returns information about a
job that has already been submitted.typedef struct _AT_INFO {

DWORD JobTime;
DWORD DaysOfMonth;
UCHAR DaysOfWeek;
UCHAR Flags;
LPWSTR Command;

} AT_INFO, *PAT_INFO, *LPAT_INFO;
MembersJobTime

Time of day at which a job is scheduled to run. Time is a local time at a computer on which
the Schedule service is running. Time is measured from midnight and is expressed in
milliseconds.

DaysOfMonth
Bitmask for the days of the month on which a job is scheduled to run. The bitmask is NULL if
a job was scheduled to run only once at the first occurrence of JobTime. For each bit that is
set in the bitmask a job will run at JobTime on a corresponding day of the month. Bit 0
corresponds to the first day of the month, and so on.

DaysOfWeek
Bitmask for the days of the week on which the job is scheduled to run. The bitmask is NULL if
a job was scheduled to run only once at the first occurrence of JobTime. For each bit that is
set in the bitmask a job will run at JobTime on a corresponding day of the week. Bit 0
corresponds to Monday (first day of the week), and so on.

Flags
Bitmask describing job properties. For job submission (NetScheduleJobAdd), the possible
values are:
JOB_RUN_PERIODICALLY

If this flag bit is set, the job runs on every day for which corresponding bits in
DaysOfMonth or DaysOfWeek are set. If this flag bit is clear, then job runs only once for
each bit that was set in DaysOfMonth or DaysOfWeek at the time of job submission.

JOB_ADD_CURRENT_DATE
When this flag bit is set, the job will also execute at the first occurrence of JobTime at the
computer to which the job is submitted. In other words, setting this flag bit is equivalent to
setting the corresponding day bit in the DaysOfMonth bitmask.

For job information retrieval (NetScheduleJobEnum and NetScheduleJobGetInfo), possible
values are:
JOB_RUN_PERIODICALLY

This flag bit is equal to the original value of this flag bit when a job was submitted.
JOB_EXEC_ERROR

This flag bit is set whenever Schedule service failed to successfully execute this job the last
time it was supposed to run.

JOB_RUNS_TODAY
This flag bit is set if JobId is larger than the current time of day at the computer at which
this job is queued.

Command
Pointer to a Unicode string that contains the name of the command, batch program, or binary
file to execute.

See AlsoNetScheduleJobAdd, NetScheduleJobGetInfo

AUDIT_ENTRY
The AUDIT_ENTRY structure contains audit entry information about specified servers.typedef struct _AUDIT_ENTRY {
DWORDae_len;
DWORDae_reserved;
DWORDae_time;
DWORDae_type;
DWORDae_data_offset;
DWORDae_data_size;
} AUDIT_ENTRY, *PAUDIT_ENTRY, *LPAUDIT_ENTRY;
Membersae_len

Specifies the length of the audit entry. Both have the same value. This element is included at
the beginning and at the end of the audit entry to enable both backward and forward scanning
of the log.

ae_reserved
Reserved.

ae_time
Specifies when the audit entry was generated. The value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970.

ae_type
Specifies the type of audit entry. Type values from 0x0000 through 0x07FF are reserved.
OEMs and other application programmers can reserve values from 0x0800 through 0xFFFF.

ae_data_offset
Specifies the byte offset from the beginning of the audit entry to the beginning of the variable-
length portion (ae_data) of the audit entry.

ae_data_size
Specifies the variable-length portion of the audit entry; it differs depending on the type of entry
specified by ae_type. The information begins at ae_data_offset bytes from the top of the audit
entry.

See AlsoNetAuditRead

BITMAP
The BITMAP structure defines the type, width, height, color format, and bit values of a bitmap.typedef struct tagBITMAP { // bm

LONG bmType;
LONG bmWidth;
LONG bmHeight;
LONG bmWidthBytes;
WORD bmPlanes;
WORD bmBitsPixel;
LPVOID bmBits;

} BITMAP;
MembersbmType

Specifies the bitmap type. This member must be zero.
bmWidth

Specifies the width, in pixels, of the bitmap. The width must be greater than zero.
bmHeight

Specifies the height, in pixels, of the bitmap. The height must be greater than zero.
bmWidthBytes

Specifies the number of bytes in each scan line. This value must be divisible by 2, because
Windows assumes that the bit values of a bitmap form an array that is word aligned.

bmPlanes
Specifies the count of color planes.

bmBitsPixel
Specifies the number of bits required to indicate the color of a pixel.

bmBits
Points to the location of the bit values for the bitmap. The bmBits member must be a long
pointer to an array of character (1-byte) values.

RemarksThe bitmap formats currently used are monochrome and color. The monochrome bitmap uses a
one-bit, one-plane format. Each scan is a multiple of 32 bits.

Scans are organized as follows for a monochrome bitmap of height n:Scan 0
Scan 1
.
.
.
Scan n-2
Scan n-1The pixels on a monochrome device are either black or white. If the corresponding bit in the

bitmap is 1, the pixel is set to the foreground color; if the corresponding bit in the bitmap is zero,
the pixel is set to the background color.

All devices that have the RC_BITBLT device capability support bitmaps. For more information,
see GetDeviceCaps.

Each device has a unique color format. To transfer a bitmap from one device to another, use the
GetDIBits and SetDIBits functions.See AlsoCreateBitmapIndirect, GetObject

BITMAPCOREHEADER
The BITMAPCOREHEADER structure contains information about the dimensions and color
format of a device-independent bitmap (DIB).typedef struct tagBITMAPCOREHEADER { // bmch

DWORD bcSize;
WORD bcWidth;
WORD bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER;
MembersbcSize

Specifies the number of bytes required by the structure.
bcWidth

Specifies the width of the bitmap, in pixels.
bcHeight

Specifies the height of the bitmap, in pixels.
bcPlanes

Specifies the number of planes for the target device. This value must be 1.
bcBitCount

Specifies the number of bits per pixel. This value must be 1, 4, 8, or 24.
RemarksThe BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and a color

table to provide a complete definition of the dimensions and colors of a DIB. For more information
about specifying a device-independent bitmap, see BITMAPCOREINFO structure.

An application should use the information stored in the bcSize member to locate the color table in
a BITMAPCOREINFO structure, using a method such as the following:pColor = ((LPBYTE) pBitmapCoreInfo +

(WORD) (pBitmapCoreInfo -> bcSize))

BITMAPCOREINFO
The BITMAPCOREINFO structure defines the dimensions and color information for a device-
independent bitmap (DIB).typedef struct _BITMAPCOREINFO { // bmci

BITMAPCOREHEADER bmciHeader;
RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;
MembersbmciHeader

Specifies a BITMAPCOREHEADER structure that contains information about the dimensions
and color format of a DIB.

bmciColors
Specifies an array of RGBTRIPLE structures that define the colors in the bitmap.

RemarksA DIB consists of two parts: a BITMAPCOREINFO structure describing the dimensions and colors
of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits in the array are
packed together, but each scan line must be padded with zeroes to end on a LONG boundary.
The origin of the bitmap is the lower left corner.

The bcBitCount member of the BITMAPCOREHEADER structure determines the number of bits
that define each pixel and the maximum number of colors in the bitmap. This member can be one
of the following values:

Value Meaning

1 The bitmap is monochrome, and the bmciColors member
contains two entries. Each bit in the bitmap array represents
a pixel. If the bit is clear, the pixel is displayed with the color
of the first entry in the bmciColors table; if the bit is set, the
pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the
bmciColors member contains up to 16 entries. Each pixel
in the bitmap is represented by a 4-bit index into the color
table. For example, if the first byte in the bitmap is 0x1F, the
byte represents two pixels. The first pixel contains the color
in the second table entry, and the second pixel contains the
color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the
bmciColors member contains up to 256 entries. In this
case, each byte in the array represents a single pixel.

24 The bitmap has a maximum of 2 (24) colors, and the
bmciColors member is NULL. Each three-byte triplet in the
bitmap array represents the relative intensities of red,
green, and blue, respectively, for a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an array of 16-bit
unsigned integers that specify indices into the currently realized logical palette, instead of explicit
RGB values. In this case, an application using the bitmap must call the DIB functions
(CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with the iUsage parameter
set to DIB_PAL_COLORS.

Note The bmciColors member should not contain palette indices if the bitmap is to be stored
in a file or transferred to another application. Unless the application has exclusive use and
control of the bitmap, the bitmap color table should contain explicit RGB values.See AlsoBITMAPCOREHEADER, CreateDIBitmap, CreateDIBPatternBrush, CreateDIBSection,

RGBTRIPLE

BITMAPFILEHEADER
The BITMAPFILEHEADER structure contains information about the type, size, and layout of a file
that contains a device-independent bitmap (DIB).typedef struct tagBITMAPFILEHEADER { // bmfh

WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;
MembersbfType

Specifies the file type. It must be BM.
bfSize

Specifies the size, in bytes, of the bitmap file.
bfReserved1

Reserved; must be zero.
bfReserved2

Reserved; must be zero.
bfOffBits

Specifies the offset, in bytes, from the BITMAPFILEHEADER structure to the bitmap bits.
RemarksA BITMAPINFO or BITMAPCOREINFO structure immediately follows the BITMAPFILEHEADER

structure in the DIB file.See AlsoBITMAPCOREINFO, BITMAPINFO

BITMAPINFO
The BITMAPINFO structure defines the dimensions and color information for a Windows device-
independent bitmap (DIB).typedef struct tagBITMAPINFO { // bmi

BITMAPINFOHEADER bmiHeader;
RGBQUADbmiColors[1];

} BITMAPINFO;
MembersbmiHeader

Specifies a BITMAPINFOHEADER structure that contains information about the dimensions
and color format of a DIB.

bmiColors
Specifies an array of RGBQUAD or doubleword data types that define the colors in the
bitmap.

RemarksA device-independent bitmap consists of two distinct parts: a BITMAPINFO structure describing
the dimensions and colors of the bitmap, and an array of bytes defining the pixels of the bitmap.
The bits in the array are packed together, but each scan line must be padded with zeroes to end
on a LONG data-type boundary. If the height is positive, the bitmap is a bottom-up DIB and its
origin is the lower left corner. If the height is negative, the bitmap is a top-down DIB and its origin
is the upper left corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits
that define each pixel and the maximum number of colors in the bitmap. This member can be one
of the following values:

Value Meaning

1 The bitmap is monochrome, and the bmiColors member
contains two entries. Each bit in the bitmap array represents
a pixel. If the bit is clear, the pixel is displayed with the color
of the first entry in the bmiColors table; if the bit is set, the
pixel has the color of the second entry in the table.

4 The bitmap has a maximum of 16 colors, and the
bmiColors member contains up to 16 entries. Each pixel in
the bitmap is represented by a 4-bit index into the color
table. For example, if the first byte in the bitmap is 0x1F, the
byte represents two pixels. The first pixel contains the color
in the second table entry, and the second pixel contains the
color in the sixteenth table entry.

8 The bitmap has a maximum of 256 colors, and the
bmiColors member contains up to 256 entries. In this case,
each byte in the array represents a single pixel.

16 The bitmap has a maximum of 2^16 colors. If the
biCompression member of the BITMAPINFOHEADER is
BI_RGB, the bmiColors member is NULL. Each WORD in
the bitmap array represents a single pixel. The relative
intensities of red, green, and blue are represented with 5
bits for each color component. The value for blue is in the
least significant 5 bits, followed by 5 bits each for green and
red, respectively. The most significant bit is not used.
If the biCompression member of the
BITMAPINFOHEADER is BI_BITFIELDS, the bmiColors
member contains three DWORD color masks that specify
the red, green, and blue components, respectively, of each
pixel. Each WORD in the bitmap array represents a single
pixel.
Windows NT: When the biCompression member is
BI_BITFIELDS, bits set in each DWORD mask must be
contiguous and should not overlap the bits of another mask.
All the bits in the pixel do not have to be used.
Windows 95: When the biCompression member is
BI_BITFIELDS, Windows 95 supports only the following
16bpp color masks: A 5-5-5 16-bit image, where the blue
mask is 0x001F, the green mask is 0x03E0, and the red
mask is 0x7C00; and a 5-6-5 16-bit image, where the blue
mask is 0x001F, the green mask is 0x07E0, and the red
mask is 0xF800.

24 The bitmap has a maximum of 2^24 colors, and the
bmiColors member is NULL. Each 3-byte triplet in the
bitmap array represents the relative intensities of blue,
green, and red, respectively, for a pixel.

32 The bitmap has a maximum of 2^32 colors. If the

biCompression member of the BITMAPINFOHEADER is
BI_RGB, the bmiColors member is NULL. Each DWORD
in the bitmap array represents the relative intensities of
blue, green, and red, respectively, for a pixel. The high byte
in each DWORD is not used.
If the biCompression member of the
BITMAPINFOHEADER is BI_BITFIELDS, the bmiColors
member contains three DWORD color masks that specify
the red, green, and blue components, respectively, of each
pixel. Each DWORD in the bitmap array represents a single
pixel.
Windows NT: When the biCompression member is
BI_BITFIELDS, bits set in each DWORD mask must be
contiguous and should not overlap the bits of another mask.
All the bits in the pixel do not have to be used.
Windows 95: When the biCompression member is
BI_BITFIELDS, Windows 95 supports only the following
32bpp color mask: The blue mask is 0x000000FF, the
green mask is 0x0000FF00, and the red mask is
0x00FF0000.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color
indices in the color table that are actually used by the bitmap. If the biClrUsed member is set to
zero, the bitmap uses the maximum number of colors corresponding to the value of the
biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an array of 16-bit
unsigned integers that specify indices into the currently realized logical palette, instead of explicit
RGB values. In this case, an application using the bitmap must call the DIB functions
(CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with the iUsage parameter
set to DIB_PAL_COLORS.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately follows the
BITMAPINFO header and which is referenced by a single pointer), the biClrUsed member must
be set to an even number when using the DIB_PAL_COLORS mode so the DIB bitmap array
starts on a doubleword boundary.

Note The bmiColors member should not contain palette indices if the bitmap is to be stored
in a file or transferred to another application. Unless the application has exclusive use and
control of the bitmap, the bitmap color table should contain explicit RGB values.See AlsoBITMAPINFOHEADER, CreateDIBitmap, CreateDIBPatternBrush, CreateDIBSection,

RGBQUAD

BITMAPINFOHEADER
The BITMAPINFOHEADER structure contains information about the dimensions and color format
of a device-independent bitmap (DIB).typedef struct tagBITMAPINFOHEADER{ // bmih

DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER;
MembersbiSize

Specifies the number of bytes required by the structure.
biWidth

Specifies the width of the bitmap, in pixels.
biHeight

Specifies the height of the bitmap, in pixels. If biHeight is positive, the bitmap is a bottom-up
DIB and its origin is the lower left corner. If biHeight is negative, the bitmap is a top-down DIB
and its origin is the upper left corner.

biPlanes
Specifies the number of planes for the target device. This value must be set to 1.

biBitCount
Specifies the number of bits per pixel. This value must be 1, 4, 8, 16, 24, or 32.

biCompression
Specifies the type of compression for a compressed bottom-up bitmap (top-down DIBs cannot
be compressed). It can be one of the following values:

Value Description
BI_RGB An uncompressed format.
BI_RLE8 A run-length encoded (RLE) format for bitmaps

with 8 bits per pixel. The compression format is a
two-byte format consisting of a count byte
followed by a byte containing a color index. For
more information, see the following Remarks
section.

BI_RLE4 An RLE format for bitmaps with 4 bits per pixel.
The compression format is a two-byte format
consisting of a count byte followed by two word-
length color indices. For more information, see the
following Remarks section.

BI_BITFIELDS Specifies that the bitmap is not compressed and
that the color table consists of three doubleword
color masks that specify the red, green, and blue
components, respectively, of each pixel. This is
valid when used with 16- and 32-bits-per-pixel
bitmaps.

biSizeImage
Specifies the size, in bytes, of the image. This may be set to 0 for BI_RGB bitmaps.

biXPelsPerMeter
Specifies the horizontal resolution, in pixels per meter, of the target device for the bitmap. An
application can use this value to select a bitmap from a resource group that best matches the
characteristics of the current device.

biYPelsPerMeter
Specifies the vertical resolution, in pixels per meter, of the target device for the bitmap.

biClrUsed
Specifies the number of color indices in the color table that are actually used by the bitmap. If
this value is zero, the bitmap uses the maximum number of colors corresponding to the value
of the biBitCount member for the compression mode specified by biCompression.
If biClrUsed is nonzero and the biBitCount member is less than 16, the biClrUsed member
specifies the actual number of colors the graphics engine or device driver accesses. If
biBitCount is 16 or greater, then biClrUsed member specifies the size of the color table used
to optimize performance of Windows color palettes. If biBitCount equals 16 or 32, the optimal
color palette starts immediately following the three doubleword masks.
If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately follows the
BITMAPINFO header and which is referenced by a single pointer), the biClrUsed member
must be either 0 or the actual size of the color table.

biClrImportant
Specifies the number of color indices that are considered important for displaying the bitmap.
If this value is zero, all colors are important.

RemarksThe BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color table to
provide a complete definition of the dimensions and colors of a DIB. For more information about
DIBs, see the description of the BITMAPINFO data structure.

An application should use the information stored in the biSize member to locate the color table in
a BITMAPINFO structure, as follows:pColor = ((LPSTR)pBitmapInfo +

(WORD)(pBitmapInfo->bmiHeader.biSize));Windows supports formats for compressing bitmaps that define their colors with eight or four bits
per pixel. Compression reduces the disk and memory storage required for the bitmap. The
following paragraphs describe these formats.

When the biCompression member is BI_RLE8, the bitmap is compressed by using a run-length
encoding (RLE) format for an 8-bit bitmap. This format can be compressed in encoded or absolute
modes. Both modes can occur anywhere in the same bitmap.

· Encoded mode consists of two bytes: the first byte specifies the number of consecutive
pixels to be drawn using the color index contained in the second byte. In addition, the first
byte of the pair can be set to zero to indicate an escape that denotes an end of line, end of
bitmap, or delta. The interpretation of the escape depends on the value of the second byte of
the pair, which can be one of the following:

Value Meaning
0 End of line.
1 End of bitmap.
2 Delta. The two bytes following the escape contain

unsigned values indicating the horizontal and vertical
offsets of the next pixel from the current position.

· In absolute mode, the first byte is zero and the second byte is a value in the range 03H
through FFH. The second byte represents the number of bytes that follow, each of which
contains the color index of a single pixel. When the second byte is 2 or less, the escape has
the same meaning as in encoded mode. In absolute mode, each run must be aligned on a
word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bitmap.03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
02 78 00 00 09 1E 00 01This bitmap would expand as follows (two-digit values represent a color index for a single pixel):04 04 04
06 06 06 06 06
45 56 67
78 78
move current position 5 right and 1 down
78 78
end of line
1E 1E 1E 1E 1E 1E 1E 1E 1E
end of RLE bitmapWhen the biCompression member is BI_RLE4, the bitmap is compressed by using a run-length

encoding format for a 4-bit bitmap, which also uses encoded and absolute modes:

· In encoded mode, the first byte of the pair contains the number of pixels to be drawn
using the color indices in the second byte. The second byte contains two color indices, one in
its high-order four bits and one in its low-order four bits. The first of the pixels is drawn using
the color specified by the high-order four bits, the second is drawn using the color in the low-
order four bits, the third is drawn using the color in the high-order four bits, and so on, until all
the pixels specified by the first byte have been drawn.

· In absolute mode, the first byte is zero, the second byte contains the number of color
indices that follow, and subsequent bytes contain color indices in their high- and low-order
four bits, one color index for each pixel. In absolute mode, each run must be aligned on a
word boundary. The end-of-line, end-of-bitmap, and delta escapes described for BI_RLE8
also apply to BI_RLE4 compression.
The following example shows the hexadecimal values of a 4-bit compressed bitmap.03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 1E 00 01This bitmap would expand as follows (single-digit values represent a color index for a single
pixel):0 4 0
0 6 0 6 0
4 5 5 6 6 7
7 8 7 8
move current position 5 right and 1 down
7 8 7 8
end of line
1 E 1 E 1 E 1 E 1
end of RLE bitmapIf biHeight is negative, indicating a top-down DIB, biCompression must be either BI_RGB or

BI_BITFIELDS. Top-down DIBs cannot be compressed.See AlsoBITMAPINFO

BITMAPV4HEADER
The BITMAPV4HEADER structure contains information about a Win32 version 4.0 bitmap.typedef struct {

DWORD bV4Size;
LONG bV4Width;
LONG bV4Height;
WORD bV4Planes;
WORD bV4BitCount;
DWORD bV4V4Compression;
DWORD bV4SizeImage;
LONG bV4XPelsPerMeter;
LONG bV4YPelsPerMeter;
DWORD bV4ClrUsed;
DWORD bV4ClrImportant;
DWORD bV4RedMask;
DWORD bV4GreenMask;
DWORD bV4BlueMask;
DWORD bV4AlphaMask;
DWORD bV4CSType;
CIEXYZTRIPLE bV4Endpoints;
DWORD bV4GammaRed;
DWORD bV4GammaGreen;
DWORD bV4GammaBlue;

} BITMAPV4HEADER, FAR *LPBITMAPV4HEADER, *PBITMAPV4HEADER;

BLOB
A BLOB structure contains information about a block of data.typedef struct _BLOB {

ULONG cbSize;
BYTE *pBlobData;

} BLOB;
MemberscbSize

Specifies the size in bytes of the block of data pointed to by pBlobData
Addresses

Points to a block of data.
RemarksThe structure name BLOB comes from the acronym BLOB, which stands for "Binary Large

OBject".

Note that this structure description says nothing about the nature of the data pointed to by
pBlobData.See AlsoSERVICE_INFO

BROWSEINFO
Contains parameters for the the SHBrowseForFolder function and receives information about the
folder selected by the user.typedef struct _browseinfo {

HWND hwndOwner;// see below
LPCITEMIDLIST pidlRoot; // see below
LPSTR pszDisplayName; // see below
LPCSTR lpszTitle; // see below
UINT ulFlags; // see below
BFFCALLBACK lpfn; // see below
LPARAM lParam; // see below
int iImage; // see below

} BROWSEINFO, *PBROWSEINFO, *LPBROWSEINFO;
MembershwndOwner

Handle of the owner window for the dialog box.
pidlRoot

Pointer to an item identifier list (an ITEMIDLIST structure) specifying the location of the "root"
folder to browse from. Only the specified folder and its subfolders appear in the dialog box.
This member can be NULL, and in that case, the name space root (the desktop folder) is
used.

pszDisplayName
Pointer to a buffer that receives the display name of the folder selected by the user. The size
of this buffer is assumed to be MAX_PATH bytes.

lpszTitle
Pointer to a null-terminated string that is displayed above the tree view control in the dialog
box. This string can be used to specify instructions to the user.

ulFlags
Value specifying the types of folders to be listed in the dialog box as well as other options.
This member can include zero or more of the following values:

BIF_BROWSEFORCOMPUTEROnly returns computers. If the user
selects anything other than a
computer, the OK button is grayed.

BIF_BROWSEFORPRINTER Only returns printers. If the user
selects anything other than a
printer, the OK button is grayed.

BIF_DONTGOBELOWDOMAINDoes not include network folders
below the domain level in the tree
view control.

BIF_RETURNFSANCESTORSOnly returns file system ancestors.
If the user selects anything other
than a file system ancestor, the OK
button is grayed.

BIF_RETURNONLYFSDIRS Only returns file system directories.
If the user selects folders that are
not part of the file system, the OK
button is grayed.

BIF_STATUSTEXT Includes a status area in the dialog
box. The callback function can set
the status text by sending
messages to the dialog box.

lpfn
Address an application-defined function that the dialog box calls when events occur. For more
information, see the description of the BrowseCallbackProc function. This member can be
NULL.

lParam
Application-defined value that the dialog box passes to the callback function (if one is
specified).

iImage
Variable that receives the image associated with the selected folder. The image is specified
as an index to the system image list.

See AlsoBrowseCallbackProc, ITEMIDLIST, SHBrowseForFolder

BY_HANDLE_FILE_INFORMATION
The BY_HANDLE_FILE_INFORMATION structure contains information retrieved by the
GetFileInformationByHandle function.typedef struct _BY_HANDLE_FILE_INFORMATION { // bhfi

DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD dwVolumeSerialNumber;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD nNumberOfLinks;
DWORD nFileIndexHigh;
DWORD nFileIndexLow;

} BY_HANDLE_FILE_INFORMATION;
MembersdwFileAttributes

Specifies file attributes. This member can be one or more of the following values:
Value Meaning
FILE_ATTRIBUTE_ARCHIVE

The file is an archive file. Applications use this value to
mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED
The file or directory is compressed. For a file, this means
that all of the data in the file is compressed. For a
directory, this means that compression is the default for
newly created files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY
The file is a directory.

FILE_ATTRIBUTE_HIDDEN
The file is hidden. It is not included in an ordinary
directory listing.

FILE_ATTRIBUTE_NORMAL
The file has no other attributes. This value is valid only if
used alone.

FILE_ATTRIBUTE_OFFLINE
The data of the file is not immediately available. Indicates
that the file data has been physically moved to offline
storage.

FILE_ATTRIBUTE_READONLY
The file is read-only. Applications can read the file but
cannot write to it or delete it.

FILE_ATTRIBUTE_SYSTEM
The file is part of the operating system or is used
exclusively by it.

FILE_ATTRIBUTE_TEMPORARY
The file is being used for temporary storage. Applications
should write to the file only if absolutely necessary. Most
of the file's data remains in memory without being
flushed to the media because the file will soon be
deleted.

ftCreationTime
Specifies the time the file was created. If the underlying file system does not support this time
member, ftCreationTime is zero.

ftLastAccessTime
Specifies the time the file was last accessed. If the underlying file system does not support
this time member, ftLastAccessTime is zero.

ftLastWriteTime
Specifies the last time the file was written to.

dwVolumeSerialNumber
Specifies the serial number of the volume that contains the file.

nFileSizeHigh
Specifies the high-order word of the file size.

nFileSizeLow
Specifies the low-order word of the file size.

nNumberOfLinks
Specifies the number of links to this file. For the FAT file system this member is always 1. For
NTFS, it may be more than 1.

nFileIndexHigh
Specifies the high-order word of a unique identifier associated with the file.

nFileIndexLow
Specifies the low-order word of a unique identifier associated with the file. This identifier and
the volume serial number uniquely identify a file. This number may change when the system
is restarted or when the file is opened. After a process opens a file, the identifier is constant
until the file is closed. An application can use this identifier and the volume serial number to
determine whether two handles refer to the same file.

See AlsoGetFileInformationByHandle

CANDIDATEFORM
The CANDIDATEFORM structure contains position information for the candidate window.typedef _tagCANDIDATEFORM {

DWORD dwIndex;
DWORD dwStyle;
POINT ptCurrentPos;
RECT rcArea;

} CANDIDATEFORM;
MembersdwIndex

Candidate list identifier. Can be 0 for the first list, 1 for the second, and so on. The maximum
index is 31.

dwStyle
Position style. This member can be one of the following values:

CFS_CANDIDATEPOS Display the upper-left corner of the
candidate list window at the position
given by ptCurrentPos. The
coordinates are relative to the upper-
left corner of the window containing the
list window, and are subject to
adjustment by the system.

CFS_EXCLUDE Exclude the candidate window from the
area given by rcArea. The
ptCurrentPos member specifies the
coordinates of the current point of
interest, typically the caret position.

ptCurrentPos
Coordinates of the upper-left corner of the candidate window or the caret position, depending
on the value of dwStyle.

rcArea
Coordinates of the upper-left and lower-right corners of the exclusion area.

CANDIDATELIST
The CANDIDATELIST structure contains information about a candidate list.typedef struct _tagCANDIDATELIST {

DWORD dwSize;
DWORD dwStyle;
DWORD dwCount;
DWORD dwSelection;
DWORD dwPageStart;
DWORD dwPageSize;
DWORD dwOffset[];

} CANDIDATELIST;
MembersdwSize

Size, in bytes, of the structure, the offset array, and all candidate strings.
dwStyle

Candidate style values. This member can be one or more of the following values:
Value Meaning
IME_CAND_UNKNOWN Candidates are in a style other than listed

here.
IME_CAND_READ Candidates are in same reading.
IME_CAND_CODE Candidates are in a code range.
IME_CAND_MEANING Candidates are in same meaning.
IME_CAND_RADICAL Candidates use same radical character.
IME_CAND_STROKES Candidates are in same number of

strokes.

For the IME_CAND_CODE style, the candidate list has a special structure depending on
the value of the dwCount member. If dwCount is 1, the dwOffset member contains a single
DBCS character rather than an offset, and no candidate string is provided. If the dwCount
member is greater than 1, the dwOffset member contains valid offsets, and the candidate
strings are text representations of individual DBCS character values in hexadecimal notation.

dwCount
Number of candidate strings.

dwSelection
Index of the selected candidate string.

dwPageStart
Index of the first candidate string in the candidate window. This varies as the user presses the
PAGE UP and PAGE DOWN keys.

dwPageSize
Number of candidate strings to be shown in one page in the candidate window. The user can
move to the next page by pressing IME-defined keys, such as the PAGE UP or PAGE DOWN
key. If this number is zero, an application can define a proper value by itself.

dwOffset
Offset to the start of the first candidate string, relative to the start of this structure. The offsets
for subsequent strings immediately follow this member, forming an array of 32-bit offsets.

RemarksThe candidate strings immediately follow the last offset in the dwOffset array.

CBT_CREATEWND
The CBT_CREATEWND structure contains information passed to a WH_CBT hook procedure
before a window is created.typedef struct tagCBT_CREATEWND { // cbtcw

LPCREATESTRUCT lpcs;
HWND hwndInsertAfter;

} CBT_CREATEWND;
Memberslpcs

Points to a CREATESTRUCT structure that contains initialization parameters for the window
about to be created.

hwndInsertAfter
Identifies the window whose position in the Z order precedes that of the window being
created.

See AlsoCBTProc, CREATESTRUCT, SetWindowsHookEx

CBTACTIVATESTRUCT
The CBTACTIVATESTRUCT structure contains information passed to a WH_CBT hook
procedure before a window is activated.typedef struct tagCBTACTIVATESTRUCT { // cas

BOOL fMouse;
HWND hWndActive;

} CBTACTIVATESTRUCT;
MembersfMouse

Specifies whether the window is being activated as a result of a mouse click. This value is
TRUE if a mouse click is causing the activation or FALSE if it is not.

hWndActive
Identifies the active window.

See AlsoSetWindowsHookEx

CHAR_INFO
The CHAR_INFO structure specifies the Unicode or ANSI character and the foreground (text) and
background color attributes of a screen buffer character cell. This structure is used by console
functions to read from and write to a console screen buffer.typedef struct _CHAR_INFO { // chi

union { /* Unicode or ANSI character */
WCHAR UnicodeChar;
CHAR AsciiChar;
} Char;
WORD Attributes; // text and background colors

} CHAR_INFO, *PCHAR_INFO;
MembersChar

Specifies either the Unicode (wide-character) or ANSI character of a screen buffer character
cell, depending on whether the Unicode or ANSI version of the function is used.

Attributes
Specifies the foreground (text) and background colors in which a screen buffer character cell
is drawn. This member can be zero, or it can be any combination of the following values:

BACKGROUND_BLUE FOREGROUND_BLUE
BACKGROUND_GREEN FOREGROUND_GREEN
BACKGROUND_RED FOREGROUND_RED
BACKGROUND_INTENSITY FOREGROUND_INTENSITY

See AlsoReadConsoleOutput, ScrollConsoleScreenBuffer, WriteConsoleOutput

CHARFORMAT
The CHARFORMAT structure contains information about character formatting in a rich edit
control.typedef struct _charformat {

UINTcbSize;
_WPAD _wPad1;
DWORD dwMask;
DWORD dwEffects;
LONGyHeight;
LONGyOffset;
COLORREF crTextColor;
BYTEbCharSet;
BYTEbPitchAndFamily;
CHAR szFaceName[LF_FACESIZE];
_WPAD _wPad2;

} CHARFORMAT;
MemberscbSize

Size in bytes of this structure. Must be set before passing the structure to the rich edit control.
dwMask

Members containing valid information or attributes to set. This member can be zero or more of
the following values:

Value Meaning
CFM_BOLD The CFE_BOLD value of the dwEffects

member is valid.
CFM_COLOR The crTextColor member and the

CFE_AUTOCOLOR value of the dwEffects
member are valid.

CFM_FACE The szFaceName member is valid.
CFM_ITALIC The CFE_ITALIC value of the dwEffects

member is valid.
CFM_OFFSET The yOffset member is valid.
CFM_PROTECTED The CFE_PROTECTED value of the

dwEffects member is valid.
CFM_SIZE The yHeight member is valid.
CFM_STRIKEOUT The CFE_STRIKEOUT value of the

dwEffects member is valid.
CFM_UNDERLINE. The CFE_UNDERLINE value of the

dwEffects member is valid.

dwEffects
Character effects. This member can be a combination of the following values:

Value Meaning
CFE_AUTOCOLOR The text color is the return value of

GetSysColor (COLOR_WINDOWTEXT).
CFE_BOLD Characters are bold.
CFE_ITALIC Characters are italic.
CFE_STRIKEOUT Characters are struck out.
CFE_UNDERLINE Characters are underlined.
CFE_PROTECTED Characters are protected; an attempt to

modify them will cause an
EN_PROTECTED notification message.

yHeight
Character height.

yOffset
Character offset from the baseline. If this member is positive, the character is a superscript; if
it is negative, the character is a subscript.

crTextColor
Text color. This member is ignored if the CFE_AUTOCOLOR character effect is specified.

bCharSet
Character set value. Can be one of the values specified for the lfCharSet member of the
LOGFONT structure.

bPitchAndFamily
Font family and pitch. This member is the same as the lfPitchAndFamily member of the
LOGFONT structure.

szFaceName
Null-terminated character array specifying the font face name.

RemarksThis structure is used with the EM_GETCHARFORMAT and EM_SETCHARFORMAT messages.See AlsoGetSysColor, EM_GETCHARFORMAT, EM_SETCHARFORMAT, EN_PROTECTED,
LOGFONT

CHARRANGE
The CHARRANGE structure specifies a range of characters in a rich edit control. This structure is
used with the EM_EXGETSEL and EM_EXSETSEL messages.

If the cpMin and cpMax members are equal, the range is empty. The range includes everything if
cpMin is 0 and cpMax is - 1.typedef struct _charrange {

LONG cpMin;
LONG cpMax;

} CHARRANGE;
MemberscpMin

Index of first intercharacter position.
cpMax

Index of last intercharacter position.
EM_EXGETSEL, EM_EXSETSEL

CHARSET
The CHARSET structure specifies the Unicode blocks and the character sets supported by a
given font.typedef struct tagCHARSET { // chst

DWORD aflBlock[3];
DWORD flLang;

} CHARSET;
MembersaflBlock

Specifies which (if any) of the 96 Unicode blocks are supported by a font. If the font contains
at least one character in the given block, the corresponding bit is set.

flLang
Identifies the character set supported by the font. This member can be one of the following
values:

Value Meaning
CS_UGL Supports the Universal Glyph List (UGL) character

set.
CS_LATIN Supports the Latin character set.
CS_GREEK Supports the Greek character set.
CS_WIN30 Supports the Windows 3.0 character set.

Bits 0 and 31 of flLang are reserved and must be set to zero.

CHARSETINFO
The CHARSETINFO structure contains information about a character set.typedef struct {

UINT ciCharset;
UINT ciACP;
FONTSIGNATURE fs;

} CHARSETINFO;
MembersciCharset

Character set value.
ciACP

ANSI code-page value.
fs

A FONTSIGNATURE structure that identifies the Unicode and code-page font signature
values. Only one Windows code-page will be set when this structure is set by the function.

See AlsoFONTSIGNATURE, TranslateCharsetInfo

CHOOSECOLOR
The CHOOSECOLOR structure contains information the ChooseColor function uses to initialize
the Color common dialog box. After the user closes the dialog box, the system returns information
about the user's selection in this structure.typedef struct { // cc

DWORD lStructSize;
HWND hwndOwner;
HWND hInstance;
COLORREFrgbResult;
COLORREF* lpCustColors;
DWORD Flags;
LPARAM lCustData;
LPCCHOOKPROC lpfnHook;
LPCTSTR lpTemplateName;

} CHOOSECOLOR;
MemberslStructSize

Specifies the length, in bytes, of the structure.
hwndOwner

Identifies the window that owns the dialog box. This member can be any valid window handle,
or it can be NULL if the dialog box has no owner.

hInstance
If the CC_ENABLETEMPLATEHANDLE flag is set in the Flags member, hInstance is the
handle of a memory object containing a dialog box template. If the CC_ENABLETEMPLATE
flag is set, hInstance identifies a module that contains a dialog box template named by the
lpTemplateName member. If neither CC_ENABLETEMPLATEHANDLE nor
CC_ENABLETEMPLATE is set, this member is ignored.

rgbResult
If the CC_RGBINIT flag is set, rgbResult specifies the color initially selected when the dialog
box is created. If the specified color value is not among the available colors, the system
selects the nearest solid color available. If rgbResult is zero or CC_RGBINIT is not set, the
initially selected color is black. If the user clicks the OK button, rgbResult specifies the user's
color selection.

lpCustColors
Pointer to an array of 16 COLORREF values that contain red, green, blue (RGB) values for
the custom color boxes in the dialog box. If the user modifies these colors, the system
updates the array with the new RGB values. To preserve new custom colors between calls to
the ChooseColor function, you should allocate static memory for the array.

Flags
A set of bit flags that you can use to initialize the Color common dialog box. When the dialog
box returns, it sets these flags to indicate the user's input. This member can be a combination
of the following flags:

Flag Meaning
CC_ENABLEHOOK Enables the hook procedure

specified in the lpfnHook
member of this structure. This flag
is used only to initialize the dialog
box.

CC_ENABLETEMPLATE Indicates that the hInstance and
lpTemplateName members
specify a dialog box template to
use in place of the default
template. This flag is used only to
initialize the dialog box.

CC_ENABLETEMPLATEHANDLE Indicates that the hInstance
member identifies a data block
that contains a preloaded dialog
box template. The system ignores
the lpTemplateName member if
this flag is specified. This flag is
used only to initialize the dialog
box.

CC_FULLOPEN Causes the dialog box to display
the additional controls that allow
the user to create custom colors.
If this flag is not set, the user must
click the Define Custom Color
button to display the custom color
controls.

CC_PREVENTFULLOPEN Disables the Define Custom
Colors button.

CC_RGBINIT Causes the dialog box to use the
color specified in the rgbResult
member as the initial color
selection.

CC_SHOWHELP Causes the dialog box to display
the Help button. The hwndOwner
member must specify the window
to receive the HELPMSGSTRING
registered messages that the
dialog box sends when the user
clicks the Help button.

lCustData
Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnHook member. When the system sends the WM_INITDIALOG message to the hook
procedure, the message's lParam parameter is a pointer to the CHOOSECOLOR structure
specified when the dialog was created. The hook procedure can use this pointer to get the
lCustData value.

lpfnHook
Pointer to a CCHookProc hook procedure that can process messages intended for the dialog
box. This member is ignored unless the CC_ENABLEHOOK flag is set in the Flags member.

lpTemplateName
Pointer to a null-terminated string that names the dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard dialog box
template. For numbered dialog box resources, lpTemplateName can be a value returned by
the MAKEINTRESOURCE macro. This member is ignored unless the
CC_ENABLETEMPLATE flag is set in the Flags member.

See AlsoCCHookProc, ChooseColor, MAKEINTRESOURCE, WM_INITDIALOG

CHOOSEFONT
The CHOOSEFONT structure contains information that the ChooseFont function uses to initialize
the Font common dialog box. After the user closes the dialog box, the system returns information
about the user's selection in this structure.typedef struct { // cf

DWORD lStructSize;
HWND hwndOwner;
HDChDC;
LPLOGFONT lpLogFont;
INTiPointSize;
DWORD Flags;
DWORD rgbColors;
LPARAM lCustData;
LPCFHOOKPROC lpfnHook;
LPCTSTR lpTemplateName;
HINSTANCE hInstance;
LPTSTR lpszStyle;
WORD nFontType;
WORD ___MISSING_ALIGNMENT__;
INTnSizeMin;
INTnSizeMax;

} CHOOSEFONT;
MemberslStructSize

Specifies the length, in bytes, of the structure.
hwndOwner

Identifies the window that owns the dialog box. This member can be any valid window handle,
or it can be NULL if the dialog box has no owner.

hDC
Identifies the device context (or information context) of the printer whose fonts will be listed in
the dialog box. This member is used only if the Flags member specifies the
CF_PRINTERFONTS or CF_BOTH flag; otherwise, this member is ignored.

lpLogFont
Pointer to a LOGFONT structure. If you set the CF_INITTOLOGFONTSTRUCT flag in the
Flags member and initialize the LOGFONT members, the ChooseFont function initializes the
dialog box with a font that is the closest possible match. If the user clicks the OK button,
ChooseFont sets the members of the LOGFONT structure based on the user's selections.

iPointSize
Specifies the size of the selected font, in units of 1/10 of a point. The ChooseFont function
sets this value after the user closes the dialog box.

Flags
A set of bit flags that you can use to initialize the Font common dialog box. When the dialog
box returns, it sets these flags to indicate the user's input. This member can be a combination
of the following flags:

Flag Meaning
CF_APPLY Causes the dialog box to display

the Apply button. You should
provide a hook procedure to
process WM_COMMAND
messages for the Apply button. The
hook procedure can send the
WM_CHOOSEFONT_GETLOGFONT
message to the dialog box to
retrieve the address of the
LOGFONT structure that contains
the current selections for the font.

CF_ANSIONLY This flag is obsolete. To limit font
selections to all scripts except those
that use the OEM or Symbol
character sets, use
CF_SCRIPTSONLY. To get the
Windows 3.1 CF_ANSIONLY
behavior, use CF_SELECTSCRIPT
and specify ANSI_CHARSET in the
lfCharSet member of the
LOGFONT structure pointed to by
lpLogFont.

CF_BOTH Causes the dialog box to list the
available printer and screen fonts.
The hDC member identifies the
device context (or information
context) associated with the printer.
This flag is a combination of the
CF_SCREENFONTS and
CF_PRINTERFONTS flags.

CF_TTONLY Specifies that ChooseFont should
only enumerate and allow the
selection of TrueType fonts.

CF_EFFECTS Causes the dialog box to display
the controls that allow the user to
specify strikeout, underline, and text
color options. If this flag is set, you
can use the rgbColors member to
specify the initial text color. You can
use the lfStrikeOut and
lfUnderline members of the
LOGFONT structure pointed to by
lpLogFont to specify the initial
settings of the strikeout and
underline check boxes.
ChooseFont can use these
members to return the user's
selections.

CF_ENABLEHOOK Enables the hook procedure
specified in the lpfnHook member
of this structure.

CF_ENABLETEMPLATE Indicates that the hInstance and
lpTemplateName members specify
a dialog box template to use in
place of the default template.

CF_ENABLETEMPLATEHANDLE Indicates that the hInstance
member identifies a data block that
contains a preloaded dialog box
template. The system ignores the
lpTemplateName member if this
flag is specified.

CF_FIXEDPITCHONLY Specifies that ChooseFont should
select only fixed-pitch fonts.

CF_FORCEFONTEXIST Specifies that ChooseFont should
indicate an error condition if the
user attempts to select a font or
style that does not exist.

CF_INITTOLOGFONTSTRUCT Specifies that ChooseFont should
use the LOGFONT structure
pointed to by the lpLogFont
member to initialize the dialog box
controls.

CF_LIMITSIZE Specifies that ChooseFont should
select only font sizes within the
range specified by the nSizeMin
and nSizeMax members.

CF_NOOEMFONTS Same as the
CF_NOVECTORFONTS flag.

CF_NOFACESEL When using a LOGFONT structure
to initialize the dialog box controls,
use this flag to selectively prevent
the dialog box from displaying an
initial selection for the font name
combo box. This is useful when
there is no single font name that
applies to the text selection.

CF_NOSCRIPTSEL Disables the Script combo box.
When this flag is set, the lfCharSet
member of the LOGFONT structure
is set to DEFAULT_CHARSET
when ChooseFont returns. This
flag is used only to initialize the
dialog box.

CF_NOSTYLESEL When using a LOGFONT structure
to initialize the dialog box controls,
use this flag to selectively prevent
the dialog box from displaying an
initial selection for the font style
combo box. This is useful when
there is no single font style that
applies to the text selection.

CF_NOSIZESEL When using a LOGFONT structure
to initialize the dialog box controls,
use this flag to selectively prevent
the dialog box from displaying an
initial selection for the font size
combo box. This is useful when
there is no single font size that
applies to the text selection.

CF_NOSIMULATIONS Specifies that ChooseFont should
not allow graphics device interface
(GDI) font simulations.

CF_NOVECTORFONTS Specifies that ChooseFont should

not allow vector font selections.
CF_NOVERTFONTS Causes the Font dialog box to list

only horizontally oriented fonts.
CF_PRINTERFONTS Causes the dialog box to list only

the fonts supported by the printer
associated with the device context
(or information context) identified by
the hDC member.

CF_SCALABLEONLY Specifies that ChooseFont should
allow only the selection of scalable
fonts. (Scalable fonts include vector
fonts, scalable printer fonts,
TrueType fonts, and fonts scaled by
other technologies.)

CF_SCREENFONTS Causes the dialog box to list only
the screen fonts supported by the
system.

CF_SCRIPTSONLY Specifies that ChooseFont should
allow selection of fonts for all non-
OEM and Symbol character sets, as
well as the ANSI character set. This
supersedes the CF_ANSIONLY
value.

CF_SELECTSCRIPT When specified on input, only fonts
with the character set identified in
the lfCharSet member of the
LOGFONT structure are displayed.
The user will not be allowed to
change the character set specified
in the Scripts combo box.

CF_SHOWHELP Causes the dialog box to display
the Help button. The hwndOwner
member must specify the window to
receive the HELPMSGSTRING
registered messages that the dialog
box sends when the user clicks the
Help button.

CF_USESTYLE Specifies that the lpszStyle
member points to a buffer that
contains style data that
ChooseFont should use to initialize
the Font Style combo box. When
the user closes the dialog box,
ChooseFont copies style data for
the user's selection to this buffer.

CF_WYSIWYG Specifies that ChooseFont should
allow only the selection of fonts
available on both the printer and the
display. If this flag is specified, the
CF_BOTH and
CF_SCALABLEONLY flags should
also be specified.

rgbColors
If the CF_EFFECTS flag is set, rgbColors specifies the initial text color. When ChooseFont
returns successfully, this member contains the RGB value of the text color the user selected.

lCustData
Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnHook member. When the system sends the WM_INITDIALOG message to the hook
procedure, the message's lParam parameter is a pointer to the CHOOSEFONT structure
specified when the dialog was created. The hook procedure can use this pointer to get the
lCustData value.

lpfnHook
Pointer to a CFHookProc hook procedure that can process messages intended for the dialog
box. This member is ignored unless the CF_ENABLEHOOK flag is set in the Flags member.

lpTemplateName
Pointer to a null-terminated string that names the dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard dialog box
template. For numbered dialog box resources, lpTemplateName can be a value returned by
the MAKEINTRESOURCE macro. This member is ignored unless the
CF_ENABLETEMPLATE flag is set in the Flags member.

hInstance
If the CF_ENABLETEMPLATEHANDLE flag is set in the Flags member, hInstance is the
handle of a memory object containing a dialog box template. If the CF_ENABLETEMPLATE
flag is set, hInstance identifies a module that contains a dialog box template named by the
lpTemplateName member. If neither CF_ENABLETEMPLATEHANDLE nor
CF_ENABLETEMPLATE is set, this member is ignored.

lpszStyle
Pointer to a buffer that contains style data. If the CF_USESTYLE flag is specified,
ChooseFont uses the data in this buffer to initialize the font style combo box. When the user
closes the dialog box, ChooseFont copies the string in the font style combo box into this
buffer.

nFontType
Specifies the type of the selected font when ChooseFont returns. This member can be a
combination of the following values:

Value Meaning
BOLD_FONTTYPE The font weight is bold. This information

is duplicated in the lfWeight member of
the LOGFONT structure and is equivalent
to FW_BOLD.

ITALIC_FONTTYPE The italic font attribute is set. This
information is duplicated in the lfItalic
member of the LOGFONT structure.

PRINTER_FONTTYPE The font is a printer font.
REGULAR_FONTTYPE The font weight is normal. This

information is duplicated in the lfWeight
member of the LOGFONT structure and
is equivalent to FW_REGULAR.

SCREEN_FONTTYPE The font is a screen font.
SIMULATED_FONTTYPE The font is simulated by the graphics

device interface (GDI).

nSizeMin
Specifies the minimum point size a user can select. ChooseFont recognizes this member
only if the CF_LIMITSIZE flag is specified.

nSizeMax
Specifies the maximum point size a user can select. ChooseFont recognizes this member
only if the CF_LIMITSIZE flag is specified.

See AlsoChooseFont, LOGFONT, MAKEINTRESOURCE

CIDA
This structure corresponds to the CF_IDLIST clipboard format.typedef struct _IDA {

UINT cidl; // number array elements
UINT aoffset[1]; // see below

} CIDA, * LPIDA;
Memberaoffset

Array of offsets relative to the beginning of the CIDA structure. The first element is the offset
of the ITEMIDLIST structure for a folder (absolute from the root). Subsequent elements are
offsets of ITEMIDLIST structures for file objects (relative from the parent folder).See AlsoITEMIDLIST

CIEXYZ
The CIEXYZ structure contains the x, y, and z coordinates of a specific color in a specified color
space.typedef struct tagCIEXYZ
{

FXPT2DOT30 ciexyzX;
FXPT2DOT30 ciexyzY;
FXPT2DOT30 ciexyzZ;

} CIEXYZ;
typedef CIEXYZ FAR* LPCIEXYZ;
MembersciexyzX

x coordinate in fix point (2.30).
ciexyzY

y coordinate in fix point (2.30).
ciexyzZ

z coordinate in fix point (2.30).

CIEXYZTRIPLE
The CIEXYZTRIPLE structure contains the x, y, and z coordinates of the three colors that
correspond to the red, green, and blue endpoints for a specified logical color space.typedef struct tagCIEXYZTRIPLE
{

CIEXYZ ciexyzRed;
CIEXYZ ciexyzGreen;
CIEXYZ ciexyzBlue;

} CIEXYZTRIPLE;
typedef CIEXYZTRIPLE FAR* LPCIEXYZTRIPLE;
MembersciexyzRed;

xyz coordinates of red endpoint.
ciexyzGreen

xyz coordinates of green endpoint.
ciexyzBlue

xyz coordinates of blue endpoint.

CLIENTCREATESTRUCT
The CLIENTCREATESTRUCT structure contains information about the menu and first multiple
document interface (MDI) child window of an MDI client window. An application passes a pointer
to this structure as the lpvParam parameter of the CreateWindow function when creating an MDI
client window.typedef struct tagCLIENTCREATESTRUCT { // ccs

HANDLE hWindowMenu;
UINT idFirstChild;

} CLIENTCREATESTRUCT;
MembershWindowMenu

Identifies the handle of the MDI application's Window menu. An MDI application can retrieve
this handle from the menu of the MDI frame window by using the GetSubMenu function.

idFirstChild
Specifies the child window identifier of the first MDI child window created. Windows
increments the identifier for each additional MDI child window the application creates, and
reassigns identifiers when the application destroys a window to keep the range of identifiers
contiguous. These identifiers are used in WM_COMMAND messages sent to the application's
MDI frame window when a child window is chosen from the Window menu; they should not
conflict with any other command identifiers.

See AlsoCreateWindow, GetSubMenu, MDICREATESTRUCT, WM_COMMAND

CMINVOKECOMMANDINFO
Contains information about a context menu command.typedef struct _CMInvokeCommandInfo {

DWORD cbSize; // sizeof(CMINVOKECOMMANDINFO)
DWORD fMask;
HWND hwnd;
LPCSTR lpVerb;
LPCSTR lpParameters;
LPCSTR lpDirectory;
int nShow;
DWORD dwHotKey;
HANDLE hIcon;

} CMINVOKECOMMANDINFO, *LPCMINVOKECOMMANDINFO;
MembersfMask

Value specifying zero or more of the following flags:
CMIC_MASK_HOTKEY Specifies that the dwHotKey member is

valid.
CMIC_MASK_ICON Specifies that the hIcon member is valid.
CMIC_MASK_FLAG_NO_UIPrevents the system from displaying user

interface elements (for example, error
messages) while carrying out a
command.

hwnd
Handle of the window that owned the context menu, such as the desktop, the explorer, or the
tray. An extension might specify this handle as the owner window of any message boxes or
dialog boxes it displays.

lpVerb
32-bit value containing zero in the high-order word and the menu-identifier offset of the
command to carry out in the low-order word. The shell specifies this value (using the
MAKEINTRESOURCE macro) when the user chooses a menu command.
If the high-order word is not zero, this member is the address of a null-terminated string
specifying the language-independent name of the command to carry out. This member is
typically a string when a command is being activated by an application. The system provides
predefined constant values for the following command strings:

Value String
CMDSTR_NEWFOLDER "NewFolder"
CMDSTR_VIEWDETAILS "ViewDetails"
CMDSTR_VIEWLIST "ViewList"

lpParameters
Optional parameters. This member is always NULL for menu items inserted by a shell
extension.

lpDirectory
Optional working directory name. This member is always NULL for menu items inserted by a
shell extension.

nShow
Flag to pass to the ShowWindow function if the command displays a window or starts an
application.

dwHotKey
Optional hot key to assign any application activated by the command. If fMask does not
specify CMIC_MASK_HOTKEY, this member is ignored.

hIcon
Icon to use for any application activated by the command. If the fMask member does not
specify CMIC_MASK_ICON, this member is ignored.

RemarksThe address of this structure is passed to the IContextMenu::InvokeCommand method.See AlsoIContextMenu::InvokeCommand, MAKEINTRESOURCE, ShowWindow

COLORADJUSTMENT
The COLORADJUSTMENT structure defines the color adjustment values used by the StretchBlt
and StretchDIBits functions when the stretch mode is HALFTONE.typedef struct tagCOLORADJUSTMENT { // ca

WORD caSize;
WORD caFlags;
WORD caIlluminantIndex;
WORD caRedGamma;
WORD caGreenGamma;
WORD caBlueGamma;
WORD caReferenceBlack;
WORD caReferenceWhite;
SHORT caContrast;
SHORT caBrightness;
SHORT caColorfulness;
SHORT caRedGreenTint;

} COLORADJUSTMENT;
MemberscaSize

Specifies the size, in bytes, of the structure.
caFlags

Specifies how the output image should be prepared. This member may be set to NULL or any
combination of the following values:

Value Meaning
CA_NEGATIVE Specifies that the negative of the original image

should be displayed.
CA_LOG_FILTER Specifies that a logarithmic function should be

applied to the final density of the output colors.
This will increase the color contrast when the
luminance is low.

caIlluminantIndex
Specifies the type of standard light source under which the image is viewed. This member
may be set to one of the following values:

Value Meaning
ILLUMINANT_DEVICE_DEFAULT Device's default. Standard used by

output devices.
ILLUMINANT_A Tungsten lamp.
ILLUMINANT_B Noon sunlight.
ILLUMINANT_C NTSC daylight.
ILLUMINANT_D50 Normal print.
ILLUMINANT_D55 Bond paper print.
ILLUMINANT_D65 Standard daylight. Standard for

CRTs and pictures.
ILLUMINANT_D75 Northern daylight.
ILLUMINANT_F2 Cool white lamp
ILLUMINANT_TUNGSTEN Same as ILLUMINANT_A.
ILLUMINANT_DAYLIGHT Same as ILLUMINANT_C.
ILLUMINANT_FLUORESCENT Same as ILLUMINANT_F2.
ILLUMINANT_NTSC Same as ILLUMINANT_C.

caRedGamma
Specifies the nth power gamma-correction value for the red primary of the source colors. The
value must be in the range from 2500 to 65,000. A value of 10,000 means no gamma-
correction.

caGreenGamma
Specifies the nth power gamma-correction value for the green primary of the source colors.
The value must be in the range from 2500 to 65,000. A value of 10,000 means no gamma-
correction.

caBlueGamma
Specifies the nth power gamma-correction value for the blue primary of the source colors. The
value must be in the range from 2500 to 65,000. A value of 10,000 means no gamma-
correction.

caReferenceBlack
Specifies the black reference for the source colors. Any colors that are darker than this are
treated as black. The value must be in the range from 0 to 4000.

caReferenceWhite
Specifies the white reference for the source colors. Any colors that are lighter than this are
treated as white. The value must be in the range from 6000 to 10,000.

caContrast
Specifies the amount of contrast to be applied to the source object. The value must be in the
range from - 100 to 100. A value of 0 means no contrast adjustment.

caBrightness
Specifies the amount of brightness to be applied to the source object. The value must be in
the range from - 100 to 100. A value of 0 means no brightness adjustment.

caColorfulness
Specifies the amount of colorfulness to be applied to the source object. The value must be in
the range from - 100 to 100. A value of 0 means no colorfulness adjustment.

caRedGreenTint
Specifies the amount of red or green tint adjustment to be applied to the source object. The
value must be in the range from - 100 to 100. Positive numbers adjust towards red and
negative numbers adjust towards green. Zero means no tint adjustment.

See AlsoSetStretchBltMode, StretchBlt, StretchDIBits

COLORMAP
The COLORMAP structure contains information used by the CreateMappedBitmap function to
map the colors of the bitmap.typedef struct _COLORMAP {

COLORREF from;
COLORREF to;

} COLORMAP, FAR* LPCOLORMAP;
Membersfrom

Color to map from.
to

Color to map to.
See AlsoCreateMappedBitmap

COLORREF
The COLORREF value is a 32-bit value used to specify an RGB color.RemarksWhen specifying an explicit RGB color, the COLORREF value has the following hexadecimal
form:0x00bbggrrThe low-order byte contains a value for the relative intensity of red; the second byte contains a
value for green; and the third byte contains a value for blue. The high-order byte must be zero.
The maximum value for a single byte is 0xFF.See AlsoGetBValue, GetGValue, GetRValue, RGB

COMMCONFIG
The COMMCONFIG structure contains information about the configuration state of a
communications device.typedef struct _COMM_CONFIG {

DWORD dwSize;
WORD wVersion;
WORD wReserved;
DCB dcb;
DWORD dwProviderSubType;
DWORD dwProviderOffset;
DWORD dwProviderSize;
WCHAR wcProviderData[1];

} COMMCONFIG, *LPCOMMCONFIG;
MembersdwSize

Specifies the size, in bytes, of the COMMCONFIG structure.
wVersion

Specifies the version number of the COMMCONFIG structure. This parameter can be 1. The
version of the provider-specific structure should be included in the wcProviderData member.

wReserved

Reserved; do not use.
dcb

Specifies a device-control block (DCB) structure for RS-232 serial devices. A DCB structure is
always present regardless of the port driver subtype specified in the device's COMMPROP
structure.

dwProviderSubType

Identifies the type of communications provider, and thus the format of the provider-specific
data. For a list of communications provider types, see the description of the COMMPROP
structure.

dwProviderOffset

Specifies the offset, in bytes, of the provider-specific data relative to the beginning of the
structure. This member is zero if there is no provider-specific data.

dwProviderSize

Specifies the size, in bytes, of the provider-specific data.
wcProviderData

Contains the provider-specific data, if any. This member may be of any size or may be
omitted. Because the COMMCONFIG structure may be expanded in the future, applications
should use the dwProviderOffset member to determine the location of this member.RemarksIf the provider subtype is PST_RS232 or PST_PARALLELPORT the wcProviderData member is

omitted. If the provider subtype is PST_MODEM, the wcProviderData member contains a
MODEMSETTINGS structure.See AlsoDCB, COMMPROP, GetCommProperties, MODEMSETTINGS

COMMPROP
The COMMPROP structure is used by the GetCommProperties function to return information
about a given communications driver.typedef struct _COMMPROP { // cmmp

WORD wPacketLength; // packet size, in bytes
WORD wPacketVersion; // packet version
DWORD dwServiceMask; // services implemented
DWORD dwReserved1; // reserved
DWORD dwMaxTxQueue; // max Tx bufsize, in bytes
DWORD dwMaxRxQueue; // max Rx bufsize, in bytes
DWORD dwMaxBaud; // max baud rate, in bps
DWORD dwProvSubType; // specific provider type
DWORD dwProvCapabilities; // capabilities supported
DWORD dwSettableParams; // changable parameters
DWORD dwSettableBaud; // allowable baud rates
WORD wSettableData; // allowable byte sizes
WORD wSettableStopParity; // stop bits/parity allowed
DWORD dwCurrentTxQueue; // Tx buffer size, in bytes
DWORD dwCurrentRxQueue; // Rx buffer size, in bytes
DWORD dwProvSpec1; // provider-specific data
DWORD dwProvSpec2; // provider-specific data
WCHAR wcProvChar[1]; // provider-specific data

} COMMPROP;
MemberswPacketLength

Specifies the size, in bytes, of the entire data packet, regardless of the amount of data
requested.

wPacketVersion

Specifies the version of the structure.
dwServiceMask

Specifies a bitmask indicating which services are implemented by this provider. The
SP_SERIALCOMM value is always specified for communications providers, including modem
providers.

dwReserved1

Reserved; do not use.
dwMaxTxQueue

Specifies the maximum size, in bytes, of the driver's internal output buffer. A value of zero
indicates that no maximum value is imposed by the serial provider.

dwMaxRxQueue

Specifies the maximum size, in bytes, of the driver's internal input buffer. A value of zero
indicates that no maximum value is imposed by the serial provider.

dwMaxBaud

Specifies the maximum allowable baud rate, in bits per second (bps). This member can be
one of the following values:

Value Meaning
BAUD_075 75 bps
BAUD_110 110 bps
BAUD_134_5 134.5 bps
BAUD_150 150 bps
BAUD_300 300 bps
BAUD_600 600 bps
BAUD_1200 1200 bps
BAUD_1800 1800 bps
BAUD_2400 2400 bps
BAUD_4800 4800 bps
BAUD_7200 7200 bps
BAUD_9600 9600 bps
BAUD_14400 14400 bps
BAUD_19200 19200 bps
BAUD_38400 38400 bps
BAUD_56K 56K bps
BAUD_57600 57600 bps
BAUD_115200 115200 bps
BAUD_128K 128K bps
BAUD_USER Programmable baud rates available

dwProvSubType

Specifies the specific communications provider type:
Value Meaning
PST_FAX FAX device
PST_LAT LAT protocol
PST_MODEM Modem device
PST_NETWORK_BRIDGE Unspecified network bridge
PST_PARALLELPORT Parallel port
PST_RS232 RS-232 serial port
PST_RS422 RS-422 port
PST_RS423 RS-423 port
PST_RS449 RS-449 port
PST_SCANNER Scanner device
PST_TCPIP_TELNET TCP/IP Telnet® protocol
PST_UNSPECIFIED Unspecified
PST_X25 X.25 standards

dwProvCapabilities

Specifies a bitmask indicating the capabilities offered by the provider. This member can be
one of the following values:

Value Meaning
PCF_16BITMODE Special 16-bit mode supported
PCF_DTRDSR DTR (data-terminal-ready)/DSR (data-

set-ready) supported
PCF_INTTIMEOUTS Interval time-outs supported
PCF_PARITY_CHECK Parity checking supported
PCF_RLSD RLSD (receive-line-signal-detect)

supported
PCF_RTSCTS RTS (request-to-send)/CTS (clear-to-

send) supported
PCF_SETXCHAR Settable XON/XOFF supported
PCF_SPECIALCHARS Special character support provided
PCF_TOTALTIMEOUTS Total (elapsed) time-outs supported
PCF_XONXOFF XON/XOFF flow control supported

dwSettableParams

Specifies a bitmask indicating the communications parameter that can be changed. This
member can be one of the following values:

Value Meaning
SP_BAUD Baud rate
SP_DATABITS Data bits
SP_HANDSHAKING Handshaking (flow control)
SP_PARITY Parity
SP_PARITY_CHECK Parity checking
SP_RLSD RLSD (receive-line-signal-detect)
SP_STOPBITS Stop bits

dwSettableBaud

Specifies a bitmask indicating the baud rates that can be used. For values, see the
dwMaxBaud member.

wSettableData

Specifies a bitmask indicating the number of data bits that can be set. This member can be
one of the following values:

Value Meaning
DATABITS_5 5 data bits
DATABITS_6 6 data bits
DATABITS_7 7 data bits
DATABITS_8 8 data bits
DATABITS_16 16 data bits
DATABITS_16X Special wide path through serial hardware lines

wSettableStopParity

Specifies a bitmask indicating the stop bit and parity settings that can be selected. This
member can be one of the following values:

Value Meaning
STOPBITS_10 1 stop bit
STOPBITS_15 1.5 stop bits
STOPBITS_20 2 stop bits
PARITY_NONE No parity

PARITY_ODD Odd parity
PARITY_EVEN Even parity
PARITY_MARK Mark parity
PARITY_SPACE Space parity

dwCurrentTxQueue

Specifies the size, in bytes, of the driver's internal output buffer. A value of zero indicates that
the value is unavailable.

dwCurrentRxQueue

Specifies the size, in bytes, of the driver's internal input buffer. A value of zero indicates that
the value is unavailable.

dwProvSpec1

Specifies provider-specific data. Applications should ignore this member unless they have
detailed information about the format of the data required by the provider.
Set this member to COMMPROP_INITIALIZED before calling the GetCommProperties
function to indicate that the wPacketLength member is already valid.

dwProvSpec2

Specifies provider-specific data. Applications should ignore this member unless they have
detailed information about the format of the data required by the provider.

wcProvChar

Specifies provider-specific data. Applications should ignore this member unless they have
detailed information about the format of the data required by the provider.RemarksThe contents of the dwProvSpec1, dwProvSpec2, and wcProvChar members depend on the

provider subtype (specified by the dwProvSubType member).

If the provider subtype is PST_MODEM, these members are used as follows:

Value Meaning

dwProvSpec1 Not used.
dwProvSpec2 Not used.
wcProvChar Contains a MODEMDEVCAPS structure.

See AlsoGetCommProperties

COMMTIMEOUTS
The COMMTIMEOUTS structure is used in the SetCommTimeouts and GetCommTimeouts
functions to set and query the time-out parameters for a communications device. The parameters
determine the behavior of ReadFile, WriteFile, ReadFileEx, and WriteFileEx operations on the
device.typedef struct _COMMTIMEOUTS { // ctmo

DWORD ReadIntervalTimeout;
DWORD ReadTotalTimeoutMultiplier;
DWORD ReadTotalTimeoutConstant;
DWORD WriteTotalTimeoutMultiplier;
DWORD WriteTotalTimeoutConstant;

} COMMTIMEOUTS,*LPCOMMTIMEOUTS;
MembersReadIntervalTimeout

Specifies the maximum time, in milliseconds, allowed to elapse between the arrival of two
characters on the communications line. During a ReadFile operation, the time period begins
when the first character is received. If the interval between the arrival of any two characters
exceeds this amount, the ReadFile operation is completed and any buffered data is returned.
A value of zero indicates that interval time-outs are not used.
A value of MAXDWORD, combined with zero values for both the
ReadTotalTimeoutConstant and ReadTotalTimeoutMultiplier members, specifies that the
read operation is to return immediately with the characters that have already been received,
even if no characters have been received.

ReadTotalTimeoutMultiplier

Specifies the multiplier, in milliseconds, used to calculate the total time-out period for read
operations. For each read operation, this value is multiplied by the requested number of bytes
to be read.

ReadTotalTimeoutConstant

Specifies the constant, in milliseconds, used to calculate the total time-out period for read
operations. For each read operation, this value is added to the product of the
ReadTotalTimeoutMultiplier member and the requested number of bytes.
A value of zero for both the ReadTotalTimeoutMultiplier and ReadTotalTimeoutConstant
members indicates that total time-outs are not used for read operations.

WriteTotalTimeoutMultiplier

Specifies the multiplier, in milliseconds, used to calculate the total time-out period for write
operations. For each write operation, this value is multiplied by the number of bytes to be
written.

WriteTotalTimeoutConstant

Specifies the constant, in milliseconds, used to calculate the total time-out period for write
operations. For each write operation, this value is added to the product of the
WriteTotalTimeoutMultiplier member and the number of bytes to be written.
A value of zero for both the WriteTotalTimeoutMultiplier and WriteTotalTimeoutConstant
members indicates that total time-outs are not used for write operations.RemarksIf an application sets ReadIntervalTimeout and ReadTotalTimeoutMultiplier to MAXDWORD

and sets ReadTotalTimeoutConstant to a value greater than zero and less than MAXDWORD,
one of the following occurs when the ReadFile function is called:

· If there are any characters in the input buffer, ReadFile returns immediately with the
characters in the buffer.

· If there are no characters in the input buffer, ReadFile waits until a character arrives and
then returns immediately.

· If no character arrives within the time specified by ReadTotalTimeoutConstant,
ReadFile times out.See AlsoGetCommTimeouts, ReadFile, ReadFileEx, SetCommTimeouts, WriteFile, WriteFileEx

COMPAREITEMSTRUCT
The COMPAREITEMSTRUCT structure supplies the identifiers and application-supplied data for
two items in a sorted, owner-drawn list box or combo box.

Whenever an application adds a new item to an owner-drawn list box or combo box created with
the CBS_SORT or LBS_SORT style, Windows sends the owner a WM_COMPAREITEM
message. The lParam parameter of the message contains a long pointer to a
COMPAREITEMSTRUCT structure. Upon receiving the message, the owner compares the two
items and returns a value indicating which item sorts before the other.typedef struct tagCOMPAREITEMSTRUCT { // cis

UINT CtlType;
UINT CtlID;
HWND hwndItem;
UINT itemID1;
DWORD itemData1;
UINT itemID2;
DWORD itemData2;

} COMPAREITEMSTRUCT;
MembersCtlType

Specifies ODT_LISTBOX (an owner-drawn list box) or ODT_COMBOBOX (an owner-drawn
combo box).

CtlID

Specifies the identifier of the list box or combo box.
hwndItem

Identifies the control.
itemID1

Specifies the index of the first item in the list box or combo box being compared.
itemData1

Specifies application-supplied data for the first item being compared. (This value was passed
as the lParam parameter of the message that added the item to the list box or combo box.)

itemID2

Specifies the index of the second item in the list box or combo box being compared.
itemData2

Specifies application-supplied data for the second item being compared. This value was
passed as the lParam parameter of the message that added the item to the list box or combo
box.See AlsoWM_COMPAREITEM

COMPCOLOR
The COMPCOLOR structure contains color settings for a composition string.typedef struct {

COLORREF crText;
COLORREF crBackground;
DWORD dwEffects;

} COMPCOLOR;
MemberscrText

Color of text.
crBackground

Color of background.
dwEffects

Character effect values as described for the dwEffects member in the CHARFORMAT
structure.See AlsoCHARFORMAT

COMPOSITIONFORM
The COMPOSITIONFORM structure contains position information for a composition window.typedef _tagCOMPOSITIONFORM {

DWORD dwStyle;
POINT ptCurrentPos;
RECT rcArea;

} COMPOSITIONFORM;
MembersdwStyle

Position style. This member can be one of the following values:
Value Meaning
CFS_DEFAULT Move the composition window to the

default position. The IME window can
display the composition window outside
the client area, such as in a floating
window.

CFS_FORCE_POSITION Display the upper-left corner of the
composition window at exactly the
position given by ptCurrentPos. The
coordinates are relative to the upper-
left corner of the window containing the
composition window and are not
subject to adjustment by the IME.

CFS_POINT Display the upper-left corner of the
composition window at the position
given by ptCurrentPos. The
coordinates are relative to the upper-
left corner of the window containing the
composition window and are subject to
adjustment by the IME.

CFS_RECT Display the composition window at the
position given by rcArea. The
coordinates are relative to the upper-
left of the window containing the
composition window.

ptCurrentPos

Coordinates of the upper-left corner of the composition window.
rcArea

Coordinates of the upper-left and lower-right corners of the composition window.RemarksSome IME windows adjust the composition window position specified by the system or the
application. The CFS_FORCE_POSITION directs the IME window to skip this adjustment.

COMSTAT
The COMSTAT structure contains information about a communications device. This structure is
filled by the ClearCommError function.typedef struct _COMSTAT { // cst

DWORD fCtsHold : 1; // Tx waiting for CTS signal
DWORD fDsrHold : 1; // Tx waiting for DSR signal
DWORD fRlsdHold : 1; // Tx waiting for RLSD signal
DWORD fXoffHold : 1; // Tx waiting, XOFF char rec'd
DWORD fXoffSent : 1; // Tx waiting, XOFF char sent
DWORD fEof : 1; // EOF character sent
DWORD fTxim : 1; // character waiting for Tx
DWORD fReserved : 25; // reserved
DWORD cbInQue; // bytes in input buffer
DWORD cbOutQue; // bytes in output buffer

} COMSTAT, *LPCOMSTAT;
MembersfCtsHold

Specifies whether transmission is waiting for the CTS (clear-to-send) signal to be sent. If this
member is TRUE, transmission is waiting.

fDsrHold

Specifies whether transmission is waiting for the DSR (data-set-ready) signal to be sent. If this
member is TRUE, transmission is waiting.

fRlsdHold

Specifies whether transmission is waiting for the RLSD (receive-line-signal-detect) signal to be
sent. If this member is TRUE, transmission is waiting.

fXoffHold

Specifies whether transmission is waiting because the XOFF character was received. If this
member is TRUE, transmission is waiting.

fXoffSent

Specifies whether transmission is waiting because the XOFF character was transmitted. If this
member is TRUE, transmission is waiting. Transmission halts when the XOFF character is
transmitted to a system that takes the next character as XON, regardless of the actual
character.

fEof

Specifies whether the end-of-file (EOF) character has been received. If this member is TRUE,
the EOF character has been received.

fTxim

If this member is TRUE, there is a character queued for transmission that has come to the
communications device by way of the TransmitCommChar function. The communications
device transmits such a character ahead of other characters in the device's output buffer.

fReserved

Reserved; do not use.
cbInQue

Specifies the number of bytes received by the serial provider but not yet read by a ReadFile
operation.

cbOutQue

Specifies the number of bytes of user data remaining to be transmitted for all write operations.
This value will be zero for a nonoverlapped write.See AlsoClearCommError, ReadFile, TransmitCommChar

CONFIG_INFO_0
The CONFIG_INFO_0 structure specifies name strings and values to configure components on
local computers.typedef struct _CONFIG_INFO_0 {
LPTSTR cfgi0_key;
LPTSTR cfgi0_data;
} CONFIG_INFO_0, *PCONFIG_INFO_0, *LPCONFIG_INFO_0;cfgi0_key

Specifies a string with a configuration entry name. The name represents an entry into the
LANMAN.INI file.

cfgi0_data

Specifies values that a user assigns to the configuration entry name.See AlsoNetConfigSet, NetConnectionEnum

CONNECTION_INFO_0
The CONNECTION_INFO_0 structure specifies the identification number of a connection.typedef struct _CONNECTION_INFO_0 {

DWORD coni0_id;
} CONNECTION_INFO_0, *PCONNECTION_INFO_0, *LPCONNECTION_INFO_0;
Membersconi0_id

Connection identification number.See AlsoNetConnectionEnum

CONNECTION_INFO_1
The CONNECTION_INFO_0 structure specifies the identification number of a connection, number
of open files, connection time, number of users on the connection, and the type of connection.typedef struct _CONNECTION_INFO_1 {

DWORDconi1_id;
DWORDconi1_type;
DWORDconi1_num_opens;
DWORDconi1_num_users;
DWORDconi1_time;
LPTSTR coni1_username;
LPTSTR coni1_netname;

} CONNECTION_INFO_1, *PCONNECTION_INFO_1, *LPCONNECTION_INFO_1;
Membersconi1_id

Connection identification number.
coni1_type

Indicates the type of connection made from the local device name to the shared resource.
This member can be one of the following values:

Value Meaning
STYPE_DISKTREE Print queue
STYPE_PRINTQ Disk drive
STYPE_DEVICE Communication device
STYPE_IPC Interprocess Communication

(IPC)

coni1_num_opens

Indicates the number of files currently open as a result of the connection.
coni1_num_users

Indicates the number of users are on the connection.
coni1_time

Indicates the number of seconds the connection has been established.
coni1_username

Points to a Unicode string. If the server sharing the resource is running with user-level
security, the coni1_username member describes which user made the connection. If the
server is running with share-level security, coni1_username describes which computer
(computername) made the connection.

coni1_netname

Points to a Unicode string specifying either the sharename of the server's shared resource or
the computername of the client. The value of this member depends on which name was
specified as the pszQualifier parameter of the NetConnectionEnum function. The name not
specified in the pszQualifier parameter of the NetConnectionEnum function is automatically
supplied to the pszQualifier of coni1_netname.See AlsoNetConnectionEnum

CONSOLE_CURSOR_INFO
The CONSOLE_CURSOR_INFO structure contains information about the console cursor.typedef struct _CONSOLE_CURSOR_INFO { // cci

DWORD dwSize;
BOOL bVisible;

} CONSOLE_CURSOR_INFO, *PCONSOLE_CURSOR_INFO;
MembersdwSize

Specifies a number between 1 and 100, indicating the percentage of the character cell that is
filled by the cursor. The cursor appearance varies, ranging from completely filling the cell to
showing up as a horizontal line at the bottom of the cell.

bVisible

Specifies the visibility of the cursor. If the cursor is visible, this member is TRUE.See AlsoGetConsoleCursorInfo, SetConsoleCursorInfo

CONSOLE_SCREEN_BUFFER_INFO
The CONSOLE_SCREEN_BUFFER_INFO structure contains information about a console screen
buffer.typedef struct _CONSOLE_SCREEN_BUFFER_INFO { // csbi

COORD dwSize;
COORD dwCursorPosition;
WORD wAttributes;
SMALL_RECT srWindow;
COORD dwMaximumWindowSize;

} CONSOLE_SCREEN_BUFFER_INFO ;
MembersdwSize

Specifies the size, in character columns and rows, of the screen buffer.
dwCursorPosition

Specifies the column and row coordinates of the cursor in the screen buffer.
wAttributes

Specifies the foreground (text) and background color attributes to be used for characters that
are written to a screen buffer by the WriteFile and WriteConsole functions, or echoed to a
screen buffer by the ReadFile and ReadConsole functions. The attribute values are some
combination of the following values: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE,
BACKGROUND_GREEN, BACKGROUND_RED, and BACKGROUND_INTENSITY. For
example, the following combination of values produces red text on a white background:

FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUEsrWindow

Specifies a SMALL_RECT structure that contains the screen buffer coordinates of the upper-
left and lower-right corners of the display window.

dwMaximumWindowSize

Specifies the maximum size of the console window, given the current screen buffer size and
font and the screen size.See AlsoGetConsoleScreenBufferInfo, ReadConsole, ReadFile, SMALL_RECT, WriteConsole,

WriteFile

CONTEXT
A CONTEXT structure contains processor-specific register data. The Windows NT operating
system uses CONTEXT structures to perform various internal operations. Currently, there are
CONTEXT structures defined for Intel, MIPS, Alpha, and PowerPC, processors. Refer to the
header file WinNT.h for definitions of these structures.

CONVCONTEXT
The CONVCONTEXT structure contains information supplied by a DDE client application. The
information is useful for specialized or cross-language DDE conversations.typedef struct tagCONVCONTEXT { // cc

UINT cb;
UINT wFlags;
UINT wCountryID;
int iCodePage;
DWORD dwLangID;
DWORD dwSecurity;
SECURITY_QUALITY_OF_SERVICE qos; // client side's quality of

service
} CONVCONTEXT;
Memberscb

Specifies the structure's size, in bytes.
wFlags

Specifies conversation context flags. Currently, no flags are defined for this member.
wCountryID

Specifies the country-code identifier for topic-name and item-name strings.
iCodePage

Specifies the code page for topic-name and item-name strings. Non-multilingual clients should
set this member to CP_WINANSI. Unicode clients should set this value to CP_WINUNICODE.

dwLangID

Specifies the language identifier for topic-name and item-name strings.
dwSecurity

Specifies a private (application-defined) security code.
qos

Specifies the quality of service a DDE client wants from the system during a given
conversation. The quality of service level specified lasts for the duration of the conversation. It
cannot be changed once the conversation is started.

CONVINFO
The CONVINFO structure contains information about a DDE conversation.typedef struct tagCONVINFO { // ci

DWORD cb;
DWORD hUser;
HCONV hConvPartner;
HSZ hszSvcPartner;
HSZ hszServiceReq;
HSZ hszTopic;
HSZ hszItem;
UINT wFmt;
UINT wType;
UINT wStatus;
UINT wConvst;
UINT wLastError;
HCONVLIST hConvList;
CONVCONTEXT ConvCtxt;
HWND hwnd;
HWND hwndPartner;

} CONVINFO;
Memberscb

Specifies the structure's size, in bytes.
hUser

Identifies application-defined data.
hConvPartner

Identifies the partner application in the DDE conversation. This member is zero if the partner
has not registered itself (using the DdeInitialize function) to make DDE Management Library
(DDEML) function calls. An application should not pass this member to any DDEML function
except DdeQueryConvInfo.

hszSvcPartner

Identifies the service name of the partner application.
hszServiceReq

Identifies the service name of the server application that was requested for connection.
hszTopic

Identifies the name of the requested topic.
hszItem

Identifies the name of the requested item. This member is transaction specific.
wFmt

Specifies the format of the data being exchanged. This member is transaction specific.
wType

Specifies the type of the current transaction. This member is transaction specific; it can be one
of the following values:

Value Meaning
XTYP_ADVDATA Informs a client that advise data from

a server has arrived.
XTYP_ADVREQ Requests a server to send updated

data to the client during an advise
loop. This transaction results when
the server calls DdePostAdvise.

XTYP_ADVSTART Requests a server to begin an advise
loop with a client.

XTYP_ADVSTOP Notifies a server that an advise loop is
stopping.

XTYP_CONNECT Requests a server to establish a
conversation with a client.

XTYP_CONNECT_CONFIRM Notifies a server that a conversation
with a client has been established.

XTYP_DISCONNECT Notifies a server that a conversation
has terminated.

XTYP_EXECUTE Requests a server to execute a
command sent by a client.

XTYP_MONITOR Notifies an application registered as
APPCMD_MONITOR that DDE data
is being transmitted.

XTYP_POKE Requests a server to accept
unsolicited data from a client.

XTYP_REGISTER Notifies other DDEML applications
that a server has registered a service
name.

XTYP_REQUEST Requests a server to send data to a
client.

XTYP_UNREGISTER Notifies other DDEML applications
that a server has unregistered a
service name.

XTYP_WILDCONNECT Requests a server to establish
multiple conversations with the same
client.

XTYP_XACT_COMPLETE Notifies a client that an asynchronous
data transaction has been completed.

wStatus

Specifies the status of the current conversation. This member can be a combination of the
following values:

Value Meaning

ST_ADVISE One or more links are in progress.
ST_BLOCKED The conversation is blocked.
ST_BLOCKNEXT The conversation will block after calling the

next callback.
ST_CLIENT The conversation handle passed to the

DdeQueryConvInfo function is a client-side
handle. If the handle is zero, the conversation
handle passed to the DdeQueryConvInfo
function is a server-side handle.

ST_CONNECTED The conversation is connected.
ST_INLIST The conversation is a member of a

conversation list.
ST_ISLOCAL Both sides of the conversation are using the

DDEML.
ST_ISSELF Both sides of the conversation are using the

same instance of the DDEML.
ST_TERMINATED The conversation has been terminated by the

partner.

wConvst

Specifies the conversation state. This member can be one of the following values:
Value Meaning
XST_ADVACKRCVD The advise transaction has just been

completed.
XST_ADVDATAACKRCVD The advise data transaction has just

been completed.
XST_ADVDATASENT Advise data has been sent and is

awaiting an acknowledgement.
XST_ADVSENT An advise transaction is awaiting an

acknowledgement.
XST_CONNECTED The conversation has no active

transactions.
XST_DATARCVD The requested data has just been

received.
XST_EXECACKRCVD An execute transaction has just been

completed.
XST_EXECSENT An execute transaction is awaiting an

acknowledgement.
XST_INCOMPLETE The last transaction failed.
XST_INIT1 Mid-initiate state 1.
XST_INIT2 Mid-initiate state 2.
XST_NULL Pre-initiate state.
XST_POKEACKRCVD A poke transaction has just been

completed.
XST_POKESENT A poke transaction is awaiting an

acknowledgement.
XST_REQSENT A request transaction is awaiting an

acknowledgement.
XST_UNADVACKRCVD An unadvise transaction has just been

completed.
XST_UNADVSENT An unadvise transaction is awaiting an

acknowledgement.

wLastError

Specifies the error value associated with the last transaction.

hConvList

Identifies the conversation list if the handle of the current conversation is in a conversation list.
This member is NULL if the conversation is not in a conversation list.

ConvCtxt

Specifies the conversation context.
hwnd

Identifies the window of the calling application involved in the conversation.
hwndPartner

Identifies the window of the partner application involved in the current conversation.See AlsoCONVCONTEXT, DdeInitialize, DdePostAdvise, DdeQueryConvInfo

COORD
The COORD structure defines the coordinates of a character cell in a console screen buffer. The
origin of the coordinate system (0,0) is at the top, left cell of the buffer.typedef struct _COORD { // coord.

SHORT X; // horizontal coordinate
SHORT Y; // vertical coordinate

} COORD;
MembersX

Horizontal or column value.
Y

Vertical or row value.

COPYDATASTRUCT
The COPYDATASTRUCT structure contains data to be passed to another application by the
WM_COPYDATA message.typedef struct tagCOPYDATASTRUCT { // cds

DWORD dwData;
DWORD cbData;
PVOID lpData;

} COPYDATASTRUCT;
MembersdwData

Specifies up to 32 bits of data to be passed to the receiving application.
cbData

Specifies the size, in bytes, of the data pointed to by the lpData member.
lpData

Points to data to be passed to the receiving application. This member can be NULL.See AlsoWM_COPYDATA

CPINFO
The CPINFO structure contains information about a code page.struct _cpinfo {

UINT MaxCharSize;
BYTE DefaultChar[MAX_DEFAULTCHAR];
BYTE LeadByte[MAX_LEADBYTES];

} CPINFO;
MembersMaxCharSize

Specifies the maximum length, in bytes, of a character in this code page.
DefaultChar

Specifies the default character used in translations into this code page. This character is used
by the WideCharToMultiByte function if an explicit default character is not given.

LeadByte

Specifies a fixed-length array of lead-byte ranges, where the number of lead-byte ranges is
variable. If there are no lead bytes in this code page, then every element of the array is NULL.
If there are lead bytes in this code page, a starting value and ending value is given for each
range. Ranges are inclusive. The maximum number of lead-byte ranges for any code page is
5. The array uses two bytes to describe each range, with a double-byte null terminator after
the last range.RemarksLead bytes are unique to double-byte character sets (DBCS). A lead byte is the first byte of a 2-

byte character in a DBCS. Lead bytes occupy a specific range of byte values.See AlsoGetCPInfo, WideCharToMultiByte

CPLINFO
The CPLINFO structure contains resource information and an application-defined value for a
dialog box supported by a Control Panel application. The CPlApplet function of the Control Panel
application returns this information to the Control Panel in response to a CPL_INQUIRE message.typedef struct tagCPLINFO { // cpli

int idIcon;
int idName;
int idInfo;
LONG lData;

} CPLINFO;
MembersidIcon

Specifies the resource identifier of the icon that represents the dialog box.
idName

Specifies the resource identifier of the string containing the short name for the dialog box. This
name is intended to be displayed below the icon.

idInfo

Specifies the resource identifier of the string containing the description for the dialog box. The
description is the descriptive string that is intended to be displayed when the application icon
is selected.

lData

Specifies data defined by the application. When the Control Panel sends the CPL_DBLCLK
and CPL_STOP messages, it passes this value back to your application.RemarksIf the icon or display strings of the dialog box can change based on the state of the computer, you

can specify the CPL_DYNAMIC_RES value for the idIcon, idName, or idInfo members rather
than specifying a valid resource identifier. This causes the Control Panel to send the
CPL_NEWINQUIRE message each time it needs the icon and display strings. By processing
CPL_NEWINQUIRE, you can specify information based on the current state of the computer.
Using this technique is significantly slower, however, because the Control Panel needs to load
your application each time it sends the CPL_NEWINQUIRE message.See AlsoCPL_DBLCLK, CPL_INQUIRE, CPL_NEWINQUIRE, CPL_STOP, CPlApplet

CREATE_PROCESS_DEBUG_INFO
The CREATE_PROCESS_DEBUG_INFO structure contains process creation information that
can be used by a debugger.typedef struct _CREATE_PROCESS_DEBUG_INFO { // cpdi

HANDLE hFile;
HANDLE hProcess;
HANDLE hThread;
LPVOID lpBaseOfImage;
DWORD dwDebugInfoFileOffset;
DWORD nDebugInfoSize;
LPVOID lpThreadLocalBase;
LPTHREAD_START_ROUTINE lpStartAddress;
LPVOID lpImageName;
WORD fUnicode;

} CREATE_PROCESS_DEBUG_INFO;
MembershFile

Identifies an open handle of the process's image file. If this member is NULL, the handle is not
valid. Otherwise, the debugger can use the member to read from and write to the image file.

hProcess

Identifies an open handle of the process. If this member is NULL, the handle is not valid.
Otherwise, the debugger can use the member to read from and write to the process's
memory.

hThread

Identifies an open handle of the initial thread of the process identified by the hProcess
member. If hThread is NULL, the handle is not valid. Otherwise, the debugger has
THREAD_GET_CONTEXT, THREAD_SET_CONTEXT, and THREAD_SUSPEND_RESUME
access to the thread, allowing the debugger to read from and write to the registers of the
thread and to control execution of the thread.

lpBaseOfImage

Points to the base address of the executable image that the process is running.
dwDebugInfoFileOffset

Specifies the offset to the debugging information in the file identified by the hFile member.
The kernel expects the debugging information to be in Microsoft® CodeView® version 4.0
format. This format is currently a derivative of COFF (Common Object File Format).

nDebugInfoSize

Specifies the size, in bytes, of the debugging information in the file. If this value is zero, there
is no debugging information.

lpThreadLocalBase

Points to a block of data. At offset 0x2C into this block is another pointer, called
ThreadLocalStoragePointer, that points to an array of per-module thread local storage blocks.
This gives a debugger access to per-thread data in the threads of the process being
debugged using the same algorithms that a compiler would use.

lpStartAddress

Points to the starting address of the thread. This value may only be an approximation of the
thread's starting address, because any application with appropriate access to the thread can
change the thread's context by using the SetThreadContext function.

lpImageName

Points to the filename associated with the hFile parameter. This parameter may be NULL, or it
may contain the address of a string pointer in the address space of the process being
debugged. That address may, in turn, either be NULL or point to the actual filename. If
fUnicode is a nonzero value, the name string is Unicode; otherwise, it is ANSI.
This member is strictly optional. Debuggers must be prepared to handle the case where
lpImageName is NULL or *lpImageName (in the address space of the process being
debugged) is NULL. Specifically, Windows does not provide an image name for a create
process event, and will not likely pass an image name for the first DLL event. Windows also
does not provide this information in the case of debug events that originate from a call to the
DebugActiveProcess function.

fUnicode

Indicates whether a file name specified by the lpImageName member is Unicode or ANSI. A
nonzero value indicates Unicode; zero indicates ANSI.See AlsoCREATE_THREAD_DEBUG_INFO, DebugActiveProcess, DEBUG_EVENT,

LOAD_DLL_DEBUG_INFO, SetThreadContext

CREATE_THREAD_DEBUG_INFO
The CREATE_THREAD_DEBUG_INFO structure contains thread-creation information that can
be used by a debugger.typedef struct _CREATE_THREAD_DEBUG_INFO { // ctdi

HANDLE hThread;
LPVOID lpThreadLocalBase;
LPTHREAD_START_ROUTINE lpStartAddress;

} CREATE_THREAD_DEBUG_INFO;
MembershThread

Identifies a handle of the thread whose creation caused the debugging event. If this member
is NULL, the handle is not valid. Otherwise, the debugger has THREAD_GET_CONTEXT,
THREAD_SET_CONTEXT, and THREAD_SUSPEND_RESUME access to the thread,
allowing the debugger to read from and write to the registers of the thread and control
execution of the thread.

lpThreadLocalBase

Points to a block of data. At offset 0x2C into this block is another pointer, called
ThreadLocalStoragePointer, that points to an array of per-module thread local storage blocks.
This gives a debugger access to per-thread data in the threads of the process being
debugged using the same algorithms that a compiler would use.

lpStartAddress

Points to the starting address of the thread. This value may only be an approximation of the
thread's starting address, because any application with appropriate access to the thread can
change the thread's context by using the SetThreadContext function.See AlsoCREATE_PROCESS_DEBUG_INFO, DEBUG_EVENT, LOAD_DLL_DEBUG_INFO,

SetThreadContext

CREATESTRUCT
The CREATESTRUCT structure defines the initialization parameters passed to the window
procedure of an application.typedef struct tagCREATESTRUCT { // cs

LPVOID lpCreateParams;
HINSTANCE hInstance;
HMENUhMenu;
HWND hwndParent;
int cy;
int cx;
int y;
int x;
LONG style;
LPCTSTR lpszName;
LPCTSTR lpszClass;
DWORDdwExStyle;

} CREATESTRUCT;
MemberslpCreateParams

Points to data to be used for creating the window.
Windows NT: This member is the address of a SHORT (16_bit) value that specifies the size,
in bytes, of the window creation data. The value is immediately followed by the creation data.
For more information, see the following Remarks section.

hInstance

Identifies the module that owns the new window.
hMenu

Identifies the menu to be used by the new window.
hwndParent

Identifies the parent window, if the window is a child window. If the window is owned, this
member identifies the owner window. If the window is not a child or owned window, this
member is NULL.

cy

Specifies the height of the new window, in pixels.
cx

Specifies the width of the new window, in pixels.
y

Specifies the y-coordinate of the upper left corner of the new window. If the new window is a
child window, coordinates are relative to the parent window. Otherwise, the coordinates are
relative to the screen origin.

x

Specifies the x-coordinate of the upper left corner of the new window. If the new window is a
child window, coordinates are relative to the parent window. Otherwise, the coordinates are
relative to the screen origin.

style

Specifies the style for the new window.
lpszName

Points to a null-terminated string that specifies the name of the new window.
lpszClass

Points to a null-terminated string that specifies the class name of the new window.
dwExStyle

Specifies the extended style for the new window.RemarksWindows NT: Referring to the lpCreateParams member of the CREATESTRUCT structure,
because the pointer may not be DWORD aligned, an application should access the data using a
pointer that has been declared using the UNALIGNED type, as shown in the following example:typedef struct tagMyData {

. . .; // define creation data here
} MYDATA;
typedef struct tagMyDlgData {

SHORT cbExtra;
MYDATA myData;

} MYDLGDATA, UNALIGNED *PMYDLGDATA;
PMYDLGDATA pMyDlgdata =

(PMYDLGDATA) (((LPCREATESTRUCT) lParam)->lpcreateParams);
See AlsoCreateWindow, CreateWindowEx

CSADDR_INFO
The CSADDR_INFO structure contains Windows Sockets address information for a network
service or name space provider. The GetAddressByName function obtains Windows Sockets
address information using CSADDR_INFO structures.typedef struct _CSADDR_INFO {

SOCKET_ADDRESS LocalAddr;
SOCKET_ADDRESS RemoteAddr;
INT iSocketType;
INT iProtocol;

} CSADDR_INFO;
MembersLocalAddr

Specifies a Windows Sockets local address.
In a client application, pass this address to the bind function to obtain access to a network
service.
In a network service, pass this address to the bind function so that the service is bound to the
appropriate local address.

RemoteAddr

Specifies a Windows Sockets remote address. There are several uses for this remote
address:
· You can use this remote address to connect to the service via the connect function. This

is useful if an application performs send/receive operations that involve connection-
oriented protocols.

· You can use this remote address with the sendto function when you are communicating
over a connectionless (datagram) protocol. If you are using a connectionless protocol, such
as UDP, sendto is typically the way you pass data to the remote system.

iSocketType

Specifies the type of the Windows socket. The following socket types are defined in
WINSOCK.H:

Value Socket Type
SOCK_STREAM Stream.This is a protocol that sends data as

a stream of bytes, with no message
boundaries.

SOCK_DGRAM Datagram. This is a connectionless protocol.
There is no virtual circuit setup. There are
typically no reliability guarantees. Services
use recvfrom to obtain datagrams. The
listen and accept functions do not work with
datagrams.

SOCK_RDM Reliably-Delivered Message. This is a
protocol that preserves message boundaries
in data.

SOCK_SEQPACKET Sequenced packet stream. This is a protocol
that is essentially the same as SOCK_RDM.

iProtocol

Specifies a value to pass as the protocol parameter to the socket function to open a socket
for this service.See Alsobind, connect, GetAddressByName, recv, send, sendto

CURRENCYFMT
The CURRENCYFMT structure contains information that defines the format of a currency string.
The GetCurrencyFormat function uses this information to customize a currency string for a
specified locale.typedef struct _currencyfmt {

UINT NumDigits;
UINT LeadingZero;
UINT Grouping;
LPTSTR lpDecimalSep;
LPTSTR lpThousandSep;
UINT NegativeOrder;
UINT PositiveOrder;
LPTSTR lpCurrencySymbol;

} CURRENCYFMT;
MembersNumDigits

Specifies the number of fractional digits. This is equivalent to the locale information specified
by the LCTYPE constant value LOCALE_IDIGITS.

LeadingZero

Specifies whether to use leading zeroes in decimal fields. This is equivalent to the locale
information specified by the LCTYPE constant value LOCALE_ILZERO.

Grouping

Specifies the size of each group of digits to the left of the decimal. Values in the range 0 - 9
are valid.

lpDecimalSep

Points to a null-terminated decimal separator string.
lpThousandSep

Points to a null-terminated thousand separator string.
NegativeOrder

Specifies the negative currency mode. This is equivalent to the locale information specified by
the LCTYPE constant value LOCALE_INEGCURR.

PositiveOrder

Specifies the positive currency mode. This is equivalent to the locale information specified by
the LCTYPE constant value LOCALE_ICURRENCY.

lpCurrencySymbol

Points to a null-terminated currency symbol string.RemarksFor more information about the LCTYPE constants, see LCTYPE Constants.See AlsoGetCurrencyFormat

CURSORDIR
The CURSORDIR structure contains the dimensions of an individual cursor image in a resource
group.struct CURSORDIR {

WORD Width;
WORD Height;

} CURSORDIR;
MembersWidth

Specifies the width of the cursor, in pixels. Acceptable values are 16, 32, and 64.
Height

Specifies the height of the cursor, in pixels. Acceptable values are 16, 32, and 64.RemarksThe CURSORDIR structure is passed in the RESDIR structure if the RESDIR structure describes
a cursor.See AlsoRESDIR

CURSORSHAPE
The CURSORSHAPE structure contains information about a cursor.typedef struct tagCURSORSHAPE { // cs

intxHotSpot;
intyHotSpot;
intcx;
intcy;
intcbWidth;
BYTE Planes;
BYTE BitsPixel;

} CURSORSHAPE, FAR *LPCURSORSHAPE;
MembersxHotSpot

Specifies the horizontal position of the hot spot, relative to the upper left corner of the cursor
bitmap.

yHotSpot

Specifies the vertical position of the hot spot, relative to the upper left corner of the cursor
bitmap.

cx

Specifies the width, in pixels, of the cursor.
cy

Specifies the height, in pixels, of the cursor.
cbWidth

Width, in bytes, of the cursor bitmap.
Planes

Specifies the number of color planes.
BitsPixel

Specifies the number of bits used to indicate the color of a single pixel in the cursor.RemarksWhen an application passes a cursor handle to the LockResource function, the function returns a
pointer to a buffer containing information about the cursor. An application can use the
CURSORSHAPE structure to access the information.See AlsoLockResource

CWPRETSTRUCT
The CWPRETSTRUCT structure defines the message parameters passed to a
WH_CALLWNDPROCRET hook procedure.typedef struct tagCWPRETSTRUCT { // cwprs

LRESULT lResult;
LPARAM lParam;
WPARAM wParam;
DWORD message;
HWND hwnd;

} CWPRETSTRUCT;
MemberslResult

Specifies the return value of the window procedure that processed the message specified by
the message value.

lParam

Specifies additional information about the message. The exact meaning depends on the
message value.

wParam

Specifies additional information about the message. The exact meaning depends on the
message value.

message

Specifies the message.
hwnd

Identifies the window that processed the message specified by the message value.See AlsoCallWndRetProc, SetWindowsHook, SetWindowsHookEx

CWPSTRUCT
The CWPSTRUCT structure defines the message parameters passed to a WH_CALLWNDPROC
hook procedure.typedef struct tagCWPSTRUCT { // cwps

LPARAM lParam;
WPARAM wParam;
UINT message;
HWND hwnd;

} CWPSTRUCT;
MemberslParam

Specifies additional information about the message. The exact meaning depends on the
message value.

wParam
Specifies additional information about the message. The exact meaning depends on the
message value.

message
Specifies the message.

hwnd
Identifies the window to receive the message.

See AlsoCallWndProc, SetWindowsHook, SetWindowsHookEx

DATATYPES_INFO_1
The DATATYPES_INFO_1 structure contains information about the data type used to record a
print job.typedef struct _DATATYPES_INFO_1 {

LPTSTR pName;
} DATATYPES_INFO_1;
MemberspName

Points to a null-terminated string that identifies the data type used to record a print job.
See AlsoEnumPrintProcessorDataTypes

DCB
The DCB structure defines the control setting for a serial communications device.typedef struct _DCB { // dcb

DWORD DCBlength; // sizeof(DCB)
DWORD BaudRate; // current baud rate
DWORD fBinary: 1;// binary mode, no EOF check
DWORD fParity: 1;// enable parity checking
DWORD fOutxCtsFlow:1; // CTS output flow control
DWORD fOutxDsrFlow:1; // DSR output flow control
DWORD fDtrControl:2; // DTR flow control type
DWORD fDsrSensitivity:1; // DSR sensitivity
DWORD fTXContinueOnXoff:1; // XOFF continues Tx
DWORD fOutX: 1; // XON/XOFF out flow control
DWORD fInX: 1; // XON/XOFF in flow control
DWORD fErrorChar: 1; // enable error replacement
DWORD fNull: 1; // enable null stripping
DWORD fRtsControl:2; // RTS flow control
DWORD fAbortOnError:1;// abort reads/writes on error
DWORD fDummy2:17;// reserved
WORD wReserved; // not currently used
WORD XonLim;// transmit XON threshold
WORD XoffLim; // transmit XOFF threshold
BYTE ByteSize; // number of bits/byte, 4-8
BYTE Parity;// 0-4=no,odd,even,mark,space
BYTE StopBits; // 0,1,2 = 1, 1.5, 2
char XonChar; // Tx and Rx XON character
char XoffChar; // Tx and Rx XOFF character
char ErrorChar; // error replacement character
char EofChar; // end of input character
char EvtChar; // received event character
WORD wReserved1; // reserved; do not use

} DCB;
MembersDCBlength

Specifies the length, in bytes, of the DCB structure.
BaudRate

Specifies the baud rate at which the communications device operates. This member can be
an actual baud rate value, or one of the following baud rate indexes:

CBR_110 CBR_19200
CBR_300 CBR_38400
CBR_600 CBR_56000
CBR_1200 CBR_57600
CBR_2400 CBR_115200
CBR_4800 CBR_128000
CBR_9600 CBR_256000
CBR_14400

fBinary
Specifies whether binary mode is enabled. The Win32 API does not support nonbinary mode
transfers, so this member should be TRUE. Trying to use FALSE will not work.
Under Windows 3.1, if this member is FALSE, nonbinary mode is enabled, and the character
specified by the EofChar member is recognized on input and remembered as the end of data.

fParity
Specifies whether parity checking is enabled. If this member is TRUE, parity checking is
performed and errors are reported.

fOutxCtsFlow
Specifies whether the CTS (clear-to-send) signal is monitored for output flow control. If this
member is TRUE and CTS is turned off, output is suspended until CTS is sent again.

fOutxDsrFlow
Specifies whether the DSR (data-set-ready) signal is monitored for output flow control. If this
member is TRUE and DSR is turned off, output is suspended until DSR is sent again.

fDtrControl
Specifies the DTR (data-terminal-ready) flow control. This member can be one of the following
values:

Value Meaning
DTR_CONTROL_DISABLE Disables the DTR line when the

device is opened and leaves it
disabled.

DTR_CONTROL_ENABLE Enables the DTR line when the
device is opened and leaves it on.

DTR_CONTROL_HANDSHAKE Enables DTR handshaking. If
handshaking is enabled, it is an
error for the application to adjust
the line by using the
EscapeCommFunction function.

fDsrSensitivity
Specifies whether the communications driver is sensitive to the state of the DSR signal. If this
member is TRUE, the driver ignores any bytes received, unless the DSR modem input line is
high.

fTXContinueOnXoff
Specifies whether transmission stops when the input buffer is full and the driver has
transmitted the XoffChar character. If this member is TRUE, transmission continues after the
input buffer has come within XoffLim bytes of being full and the driver has transmitted the
XoffChar character to stop receiving bytes. If this member is FALSE, transmission does not
continue until the input buffer is within XonLim bytes of being empty and the driver has
transmitted the XonChar character to resume reception.

fOutX
Specifies whether XON/XOFF flow control is used during transmission. If this member is
TRUE, transmission stops when the XoffChar character is received and starts again when the
XonChar character is received.

fInX
Specifies whether XON/XOFF flow control is used during reception. If this member is TRUE,
the XoffChar character is sent when the input buffer comes within XoffLim bytes of being full,
and the XonChar character is sent when the input buffer comes within XonLim bytes of being
empty.

fErrorChar
Specifies whether bytes received with parity errors are replaced with the character specified
by the ErrorChar member. If this member is TRUE and the fParity member is TRUE,
replacement occurs.

fNull
Specifies whether null bytes are discarded. If this member is TRUE, null bytes are discarded
when received.

fRtsControl
Specifies the RTS (request-to-send) flow control. If this value is zero, the default is
RTS_CONTROL_HANDSHAKE. This member can be one of the following values:

Value Meaning
RTS_CONTROL_DISABLE Disables the RTS line when the

device is opened and leaves it
disabled.

RTS_CONTROL_ENABLE Enables the RTS line when the
device is opened and leaves it on.

RTS_CONTROL_HANDSHAKE Enables RTS handshaking. The
driver raises the RTS line when the
"type-ahead" (input) buffer is less
than one-half full and lowers the RTS
line when the buffer is more than

three-quarters full. If handshaking is
enabled, it is an error for the
application to adjust the line by using
the EscapeCommFunction
function.

RTS_CONTROL_TOGGLE Specifies that the RTS line will be
high if bytes are available for
transmission. After all buffered bytes
have been sent, the RTS line will be
low.

fAbortOnError
Specifies whether read and write operations are terminated if an error occurs. If this member
is TRUE, the driver terminates all read and write operations with an error status if an error
occurs. The driver will not accept any further communications operations until the application
has acknowledged the error by calling the ClearCommError function.

fDummy2
Reserved; do not use.

wReserved
Not used; must be set to zero.

XonLim
Specifies the minimum number of bytes allowed in the input buffer before the XON character
is sent.

XoffLim
Specifies the maximum number of bytes allowed in the input buffer before the XOFF character
is sent. The maximum number of bytes allowed is calculated by subtracting this value from the
size, in bytes, of the input buffer.

ByteSize
Specifies the number of bits in the bytes transmitted and received.

Parity
Specifies the parity scheme to be used. This member can be one of the following values:

Value Meaning
EVENPARITY Even
MARKPARITY Mark
NOPARITY No parity
ODDPARITY Odd

StopBits
Specifies the number of stop bits to be used. This member can be one of the following values:

Value Meaning
ONESTOPBIT 1 stop bit
ONE5STOPBITS 1.5 stop bits
TWOSTOPBITS 2 stop bits

XonChar
Specifies the value of the XON character for both transmission and reception.

XoffChar
Specifies the value of the XOFF character for both transmission and reception.

ErrorChar
Specifies the value of the character used to replace bytes received with a parity error.

EofChar
Specifies the value of the character used to signal the end of data.

EvtChar
Specifies the value of the character used to signal an event.

wReserved1
Reserved; do not use.

RemarksWhen a DCB structure is used to configure the 8250, the following restrictions apply to the values
specified for the ByteSize and StopBits members:

· The number of data bits must be 5 to 8 bits.

· The use of 5 data bits with 2 stop bits is an invalid combination, as is 6, 7, or 8 data bits
with 1.5 stop bits.

See AlsoBuildCommDCB, ClearCommError, EscapeCommFunction, GetCommState, SetCommState

DDEACK
The DDEACK structure contains status flags that a DDE application passes to its partner as part
of the WM_DDE_ACK message. The flags provide details about the application's response to the
messages WM_DDE_DATA, WM_DDE_POKE, WM_DDE_EXECUTE, WM_DDE_ADVISE,
WM_DDE_UNADVISE, and WM_DDE_REQUEST.typedef struct { // ddeack

unsigned short bAppReturnCode:8,
reserved:6,
fBusy:1,
fAck:1;

} DDEACK;
MembersbAppReturnCode

Specifies an application-defined return code.
fBusy

Indicates whether the application was busy and unable to respond to the partner's message at
the time the message was received. A nonzero value indicates the partner was busy and
unable to respond. The fBusy member is defined only when the fAck member is zero.

fAck
Indicates whether the application accepted the message from its partner. A nonzero value
indicates the partner accepted the message.

See AlsoWM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_EXECUTE,
WM_DDE_REQUEST, WM_DDE_POKE, WM_DDE_UNADVISE

DDEADVISE
The DDEADVISE structure contains flags that specify how a DDE server application should send
data to a client application during an advise loop. A client passes the handle of a DDEADVISE
structure to a server as part of a WM_DDE_ADVISE message. This structure supersedes the
DDELN structure.typedef struct { // ddeadv

unsigned short reserved:14,
fDeferUpd:1,
fAckReq:1;
short cfFormat;

} DDEADVISE;
MembersfDeferUpd

Indicates whether the server should defer sending updated data to the client. If this value is
nonzero, the server should send a WM_DDE_DATA message with a NULL data handle
whenever the data item changes. In response, the client can post a WM_DDE_REQUEST
message to the server to get a handle of the updated data.

fAckReq
Indicates whether the server should set the fAckReq flag in the WM_DDE_DATA messages it
posts to the client. If this value is nonzero, the server should set the fAckReq bit.

cfFormat
Specifies the client application's preferred data format. The format must be a standard or
registered clipboard format. The following standard clipboard formats can be used:
CF_BITMAP
CF_DIB
CF_DIF
CF_ENHMETAFILE
CF_METAFILEPICT
CF_OEMTEXT
CF_PALETTE
CF_PENDATA
CF_RIFF
CF_SYLK
CF_TEXT
CF_TIFF
CF_WAVE
CF_UNICODETEXT

See AlsoWM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_UNADVISE

DDEDATA
The DDEDATA structure contains the data, and information about the data, sent as part of a
WM_DDE_DATA message. This structure supersedes the DDEUP structure.typedef struct { // ddedat

unsigned short unused:12,
fResponse:1,
fRelease:1,
reserved:1,
fAckReq:1;
short cfFormat;
BYTE Value[1];

} DDEDATA;
MembersfResponse

Indicates whether the data was sent in response to a WM_DDE_REQUEST message or a
WM_DDE_ADVISE message. If this value is nonzero, the data was sent in response to a
WM_DDE_REQUEST message.

fRelease
Indicates whether the application receiving the WM_DDE_POKE message should free the
data. If this value is nonzero, the application should free the data.

fAckReq
Indicates whether the application receiving the WM_DDE_DATA message should
acknowledge receipt of the data by sending a WM_DDE_ACK message. If this value is
nonzero, the application should send the acknowledgment.

cfFormat
Specifies the format of the data. The format should be a standard or registered clipboard
format. The following standard clipboard formats can be used:
CF_BITMAP
CF_DIB
CF_DIF
CF_ENHMETAFILE
CF_METAFILEPICT
CF_OEMTEXT
CF_PALETTE
CF_PENDATA
CF_RIFF
CF_SYLK
CF_TEXT
CF_TIFF
CF_WAVE
CF_UNICODETEXT

Value
Contains the data. The length and type of data depend on the cfFormat member.

See AlsoDDEUP, WM_DDE_ACK, WM_DDE_ADVISE, WM_DDE_DATA, WM_DDE_POKE,
WM_DDE_REQUEST

DDELN
The DDELN structure is obsolete. Win32-based applications should use the DDEADVISE
structure.typedef struct { // ddeln

unsigned short unused:13,
fRelease:1,
fDeferUpd:1,
fAckReq:1;
short cfFormat;

} DDELN;
See AlsoDDEADVISE, WM_DDE_ADVISE, WM_DDE_UNADVISE

DDEML_MSG_HOOK_DATA
The DDEML_MSG_HOOK_DATA structure contains information about a DDE message, and
provides read access to the data referenced by the message. This structure is intended to be
used by a DDE Management Library (DDEML) monitoring application.typedef struct tagDDEML_MSG_HOOK_DATA { // dmhd

UINT uiLo;
UINT uiHi;
DWORD cbData;
DWORD Data[8];

} DDEML_MSG_HOOK_DATA;
MembersuiLo

Specifies the unpacked low-order word of the lParam parameter associated with the DDE
message.

uiHi
Specifies the unpacked high-order word of the lParam parameter associated with the DDE
message.

cbData
Specifies the amount, in bytes, of data being passed with the message. This value can be
greater than 32.

Data
Contains the first 32 bytes of data being passed with the message
(8 * sizeof(DWORD)).

See AlsoMONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, MONHSZSTRUCT,
MONLINKSTRUCT, MONMSGSTRUCT

DDEPOKE
The DDEPOKE structure contains the data, and information about the data, sent as part of a
WM_DDE_POKE message. This structure supersedes the DDEUP structure.typedef struct { // ddepok

unsigned short unused:13,
fRelease:1,
fReserved:2;
short cfFormat;
BYTE Value[1];

} DDEPOKE;
MembersfRelease

Indicates whether the application receiving the WM_DDE_POKE message should free the
data. If this value is nonzero, the application should free the data.

fReserved
Reserved; do not use.

cfFormat
Specifies the format of the data. The format should be a standard or registered clipboard
format. The following standard clipboard formats can be used:
CF_BITMAP
CF_DIB
CF_DIF
CF_ENHMETAFILE
CF_METAFILEPICT
CF_OEMTEXT
CF_PALETTE
CF_PENDATA
CF_RIFF
CF_SYLK
CF_TEXT
CF_TIFF
CF_WAVE
CF_UNICODETEXT

Value
Contains the data. The length and type of data depend on the value of the cfFormat member.

See AlsoDDEUP, WM_DDE_POKE

DDEUP
The DDEUP structure is obsolete. Win32-based applications should use the DDEDATA and
DDEPOKE structures.typedef struct { // ddeup

unsigned short unused:12,
fAck:1,
fRelease:1,
fReserved:1,
fAckReq:1;
short cfFormat;
BYTE rgb[1];

} DDEUP;
See AlsoWM_DDE_DATA, WM_DDE_POKE

DEBUG_EVENT
The DEBUG_EVENT structure describes a debugging event.typedef struct _DEBUG_EVENT { // de

DWORD dwDebugEventCode;
DWORD dwProcessId;
DWORD dwThreadId;
union {
EXCEPTION_DEBUG_INFO Exception;
CREATE_THREAD_DEBUG_INFO CreateThread;
CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;
EXIT_THREAD_DEBUG_INFO ExitThread;
EXIT_PROCESS_DEBUG_INFO ExitProcess;
LOAD_DLL_DEBUG_INFO LoadDll;
UNLOAD_DLL_DEBUG_INFO UnloadDll;
OUTPUT_DEBUG_STRING_INFO DebugString;
RIP_INFO RipInfo;
} u;

} DEBUG_EVENT;
MembersdwDebugEventCode

Specifies a debugging event code that identifies the type of debugging event. This parameter
can be one of the following values:

Value Meaning
EXCEPTION_DEBUG_EVENT

Reports an exception debugging event. The value of u.
Exception specifies an EXCEPTION_DEBUG_INFO
structure.

CREATE_THREAD_DEBUG_EVENT
Reports a create-thread debugging event. The value of
u.CreateThread specifies a
CREATE_THREAD_DEBUG_INFO structure.

CREATE_PROCESS_DEBUG_EVENT
Reports a create-process debugging event. The value of
u.CreateProcessInfo specifies a
CREATE_PROCESS_DEBUG_INFO structure.

EXIT_THREAD_DEBUG_EVENT
Reports an exit-thread debugging event. The value of u.
ExitThread specifies an EXIT_THREAD_DEBUG_INFO
structure.

EXIT_PROCESS_DEBUG_EVENT
Reports an exit-process debugging event. The value of
u.ExitProcess specifies an
EXIT_PROCESS_DEBUG_INFO structure.

LOAD_DLL_DEBUG_EVENT
Reports a load-dynamic-link-library (DLL) debugging
event. The value of u.LoadDll specifies a
LOAD_DLL_DEBUG_INFO structure.

UNLOAD_DLL_DEBUG_EVENT
Reports an unload-DLL debugging event. The value of u.
UnloadDll specifies an UNLOAD_DLL_DEBUG_INFO
structure.

OUTPUT_DEBUG_STRING_EVENT
Reports an output-debugging-string debugging event.
The value of u.DebugString specifies an
OUTPUT_DEBUG_STRING_INFO structure.

RIP_EVENT
Reports a RIP-debugging event (system debugging
error). The value of u.RipInfo specifies a RIP_INFO
structure.

dwProcessId
Specifies the identifier of the process in which the debugging event occurred. A debugger
uses this value to locate the debugger's per-process structure. These values are not
necessarily small integers that can be used as table indices.

dwThreadId
Specifies the identifier of the thread in which the debugging event occurred. A debugger uses
this value to locate the debugger's per-thread structure. These values are not necessarily
small integers that can be used as table indices.

u
Specifies additional information relating to the debugging event. This union takes on the type
and value appropriate to the type of debugging event, as described in the
dwDebugEventCode member.

RemarksIf the WaitForDebugEvent function succeeds, it fills in the members of a DEBUG_EVENT
structure.See AlsoCREATE_PROCESS_DEBUG_INFO, CREATE_THREAD_DEBUG_INFO,
EXIT_PROCESS_DEBUG_INFO, EXIT_THREAD_DEBUG_INFO, EXCEPTION_DEBUG_INFO,
LOAD_DLL_DEBUG_INFO, OUTPUT_DEBUG_STRING_INFO, UNLOAD_DLL_DEBUG_INFO,
WaitForDebugEvent

DEBUGHOOKINFO
The DEBUGHOOKINFO structure contains debugging information.typedef struct tagDEBUGHOOKINFO { // dh

DWORD idThread;
DWORD idThreadInstaller;
LPARAM lParam;
WPARAM wParam;
int code;

} DEBUGHOOKINFO;
MembersidThread

Identifies the thread containing the filter function.
idThreadInstaller

Identifies the thread that installed the debugging filter function.
lParam

Specifies the value to be passed to the hook in the lParam parameter of the DebugProc
callback function.

wParam
Specifies the value to be passed to the hook in the wParam parameter of the DebugProc
callback function.

code
Specifies the value to be passed to the hook in the nCode parameter of the DebugProc
callback function.

See AlsoDebugProc, SetWindowsHook, SetWindowsHookEx

DELETEITEMSTRUCT
The DELETEITEMSTRUCT structure describes a deleted list box or combo box item. The lParam
parameter of a WM_DELETEITEM message contains a pointer to this structure. When an item is
removed from a list box or combo box or when a list box or combo box is destroyed, Windows
sends the WM_DELETEITEM message to the owner for each deleted item.

Windows NT: Windows sends a WM_DELETEITEM message only for items deleted from an
owner-drawn list box (with the LBS_OWNERDRAWFIXED or LBS_OWNERDRAWVARIABLE
style) or owner-drawn combo box (with the CBS_OWNERDRAWFIXED or
CBS_OWNERDRAWVARIABLE style).

Windows 95: Windows sends the WM_DELETEITEM message for any deleted list box or combo
box item with nonzero item data.typedef struct tagDELETEITEMSTRUCT { // ditms

UINT CtlType;
UINT CtlID;
UINT itemID;
HWND hwndItem;
UINT itemData;

} DELETEITEMSTRUCT;
MembersCtlType

Specifies one of the following values to indicate whether the item was deleted from a list box
or a combo box:

Value Meaning
ODT_LISTBOX A list box.
ODT_COMBOBOXA combo box.

CtlID
Specifies the identifier of the list box or combo box.

itemID
Specifies index of the item in the list box or combo box being removed.

hwndItem
Identifies the control.

itemData
Specifies application-defined data for the item. This value is passed to the control in the
lParam parameter of the message that adds the item to the list box or combo box.

See AlsoWM_DELETEITEM

DEV_BROADCAST_HDR
The DEV_BROADCAST_HDR structure contains information about the device affected by a
WM_DEVICECHANGE message.typedef struct _DEV_BROADCAST_HDR {

ULONG dbch_size;
ULONG dbch_devicetype;
ULONG dbch_reserved;

} DEV_BROADCAST_HDR;
typedef DEV_BROADCAST_HDR *PDEV_BROADCAST_HDR;
Membersdbch_size

Size of this structure, in bytes.
dbch_devicetype

Type of device. Can be one of these values:
Value Meaning
DBT_DEVTYP_OEM OEM- or IHV-defined device type.
DBT_DEVTYP_VOLUME Logical volume.
DBT_DEVTYP_PORT Port device (serial or parallel).

dbch_reserved
Reserved; do not use.

See AlsoWM_DEVICECHANGE

DEV_BROADCAST_OEM
The DEV_BROADCAST_OEM structure contains information about a OEM-defined device type.typedef struct _DEV_BROADCAST_OEM {

ULONG dbco_size;
ULONG dbco_devicetype;
ULONG dbco_reserved;
ULONG dbco_identifier;
ULONG dbco_suppfunc;

} DEV_BROADCAST_OEM;
typedef DEV_BROADCAST_OEM *PDEV_BROADCAST_OEM;
Membersdbco_size

Size of this structure, in bytes.
dbco_devicetype

DBT_DEVTYPE_OEM.
dbco_reserved

Reserved; do not use.
dbco_identifier

Globally unique identifier (GUID) for the device. Use the uuidgen utility to create this
identifier.

dbco_suppfunc
OEM-specific function value. Possible values depend on the device.

DEV_BROADCAST_PORT
The DEV_BROADCAST_PORT structure contains information about a modem, serial, or parallel
port.typedef struct _DEV_BROADCAST_PORT {

ULONG dbcp_size;
ULONG dbcp_devicetype;
ULONG dbcp_reserved;
char dbcp_name[1];

} DEV_BROADCAST_PORT;
typedef DEV_BROADCAST_PORT *PDEV_BROADCAST_PORT;
Membersdbcp_size

Size of this structure, in bytes.
dbcp_devicetype

DBT_DEVTYP_VOLUME.
dbcp_reserved

Reserved; do not use.
dbcp_name

Null-terminated string specifying the friendly name of the port or the device connected to the
port. Friendly names are intended to help the user quickly and accurately identify the
device¾ for example, "COM1", "Hayes 2400 Smartmodem", and "LPT1" are considered
friendly names.

_DEV_BROADCAST_USERDEFINED
The _DEV_BROADCAST_USERDEFINED structure contains the user-defined message and
optional data associated with the DBT_USERDEFINED device message.struct _DEV_BROADCAST_USERDEFINED {

struct _DEV_BROADCAST_HDR dbud_dbh;
char dbud_szName[1]; // ASCIIZ name

// BYTE dbud_rgbUserDefined[]; // Optional user-defined contents
};
Membersdbud_dbh

Information about the device affected by a WM_DEVICECHANGE message as specified by
the DEV_BROADCAST_HDR structure. Because the _DEV_BROADCAST_USERDEFINED
structure is variable length, dbud_dbh.dbch_size must be the size in bytes of the entire
structure, including the variable length part.

dbud_szName
A case-sensitive, null-terminated string that names the message. The name must consist of
the vendor name, a backslash, followed by arbitrary user-defined null-terminated text. For
example:"WidgetWare\QueryScannerShutdown"or"WidgetWare\Video Q39S\AdapterReady"dbud_rgbUserDefined
Optional user-defined information.

Because this structure contains variable length fields, use this structure tag as a template for
creating a pointer to a user-defined structure. Note that the structure must not contain pointers.
For example:#define NAME_LENGTH 32
#define USER_LENGTH 50
typedef struct tagWIDGET_WARE_DEV_BROADCAST_USERDEFINED
{

struct _DEV_BROADCAST_HDR DBHeader;
char szName[NAME_LENGTH]
BYTE UserDefined[USER_LENGTH];

} WIDGET_WARE_DEV_BROADCAST_USERDEFINED;
See AlsoDBT_USERDEFINED, DEV_BROADCAST_HDR, WM_DEVICECHANGE

DEV_BROADCAST_VOLUME
The DEV_BROADCAST_VOLUME structure contains information about a logical volume.typedef struct _DEV_BROADCAST_VOLUME {

ULONG dbcv_size;
ULONG dbcv_devicetype;
ULONG dbcv_reserved;
ULONG dbcv_unitmask;
USHORT dbcv_flags;

} DEV_BROADCAST_VOLUME;
typedef DEV_BROADCAST_VOLUME *PDEV_BROADCAST_VOLUME;
Membersdbcv_size

Size of this structure, in bytes.
dbcv_devicetype

DBT_DEVTYP_VOLUME.
dbcv_reserved

Reserved; do not use.
dbcv_unitmask

Logical unit mask identifying one or more logical units. Each bit in the mask corresponds to
one logical drive. Bit 0 represents drive A, bit 1 drive B, and so on.

dbcv_flags
Flags indicating whether drive or media.

Value Meaning
DBTF_MEDIA Change affects media in drive. If not set,

change affects physical device or drive.
DBTF_NET Indicated logical volume is a network volume.

RemarksAlthough the dbcv_unitmask member may specify more than one volume in any given message,
this does not guarantee that only message is generated for a given event. Multiple system
components may independently generate messages for logical volumes at the same time.

DEVMODE
The DEVMODE data structure contains information about the device initialization and
environment of a printer.typedef struct _devicemode { // dvmd

BCHAR dmDeviceName[CCHDEVICENAME];
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintQuality;
short dmColor;
short dmDuplex;
short dmYResolution;
short dmTTOption;
short dmCollate;
BCHAR dmFormName[CCHFORMNAME];
WORD dmLogPixels;
DWORD dmBitsPerPel;
DWORD dmPelsWidth;
DWORD dmPelsHeight;
DWORD dmDisplayFlags;
DWORD dmDisplayFrequency;

#if(WINVER >= 0x0400)
DWORD dmICMMethod; // Windows 95 only
DWORD dmICMIntent; // Windows 95 only
DWORD dmMediaType; // Windows 95 only
DWORD dmDitherType; // Windows 95 only
DWORD dmReserved1; // Windows 95 only
DWORD dmReserved2; // Windows 95 only

#endif /* WINVER >= 0x0400 */
} DEVMODE;
MembersdmDeviceName

Specifies the the "friendly" name of the printer; for example, "PCL/HP LaserJet" in the case of
PCL/HP LaserJet®. This string is unique among device drivers. Note that this name may be
truncated to fit in the dmDeviceName array.

dmSpecVersion
Specifies the version number of the initialization data specification on which the structure is
based.

dmDriverVersion
Specifies the printer driver version number assigned by the printer driver developer.

dmSize
Specifies the size, in bytes, of the DEVMODE structure, not including any private driver-
specific data that might follow the structure's public members. You can use this member to
determine the number of bytes of public data regardless of the version of the DEVMODE
structure being used.

dmDriverExtra
Contains the number of bytes of private driver-data that follow this structure. If a device driver
does not use device-specific information, set this member to zero.

dmFields
A set of bit flags that specify whether certain members of the DEVMODE structure have been
initialized. If a field is initialized, its corresponding bit flag is set, otherwise the bit flag is clear.
A printer driver supports only those DEVMODE structure members that are appropriate for the
printer technology.
The following bit flags are defined, and are listed here with the corresponding structure
members:

Value Structure Member
DM_ORIENTATION dmOrientation
DM_PAPERSIZE dmPaperSize
DM_PAPERLENGTH dmPaperLength
DM_PAPERWIDTH dmPaperWidth
DM_SCALE dmScale
DM_COPIES dmCopies
DM_DEFAULTSOURCE dmDefaultSource
DM_PRINTQUALITY dmPrintQuality
DM_COLOR dmColor
DM_DUPLEX dmDuplex
DM_YRESOLUTION dmYResolution
DM_TTOPTION dmTTOption
DM_COLLATE dmCollate
DM_FORMNAME dmFormName
DM_LOGPIXELS dmLogPixels
DM_BITSPERPEL dmBitsPerPel
DM_PELSWIDTH dmPelsWidth
DM_PELSHEIGHT dmPelsHeight
DM_DISPLAYFLAGS dmDisplayFlags
DM_DISPLAYFREQUENCYdmDisplayFrequency
DM_ICMMETHOD Windows 95 only:

dmICMMethod
DM_ICMINTENT Windows 95 only:

dmICMIntent
DM_MEDIATYPE Windows 95 only:

dmMediaType
DM_DITHERTYPE Windows 95 only:

dmDitherType

dmOrientation
Selects the orientation of the paper. This member can be either DMORIENT_PORTRAIT (1)
or DMORIENT_LANDSCAPE (2).

dmPaperSize
Selects the size of the paper to print on. This member can be set to zero if the length and
width of the paper are both set by the dmPaperLength and dmPaperWidth members.
Otherwise, the dmPaperSize member can be set to one of the following predefined values:

Value Meaning
DMPAPER_LETTER Letter, 8 1/2- by 11-inches
DMPAPER_LEGAL Legal, 8 1/2- by 14-inches
DMPAPER_A4 A4 Sheet, 210- by 297-

millimeters
DMPAPER_CSHEET C Sheet, 17- by 22-inches
DMPAPER_DSHEET D Sheet, 22- by 34-inches
DMPAPER_ESHEET E Sheet, 34- by 44-inches
DMPAPER_LETTERSMALL Letter Small, 8 1/2- by 11-

inches
DMPAPER_TABLOID Tabloid, 11- by 17-inches
DMPAPER_LEDGER Ledger, 17- by 11-inches
DMPAPER_STATEMENT Statement, 5 1/2- by 8 1/2-

inches
DMPAPER_EXECUTIVE Executive, 7 1/4- by 10 1/2-

inches
DMPAPER_A3 A3 sheet, 297- by 420-

millimeters
DMPAPER_A4SMALL A4 small sheet, 210- by 297-

millimeters
DMPAPER_A5 A5 sheet, 148- by 210-

millimeters
DMPAPER_B4 B4 sheet, 250- by 354-

millimeters
DMPAPER_B5 B5 sheet, 182- by 257-

millimeter paper
DMPAPER_FOLIO Folio, 8 1/2- by 13-inch paper
DMPAPER_QUARTO Quarto, 215- by 275-

millimeter paper
DMPAPER_10X14 10- by 14-inch sheet
DMPAPER_11X17 11- by 17-inch sheet
DMPAPER_NOTE Note, 8 1/2- by 11-inches
DMPAPER_ENV_9 #9 Envelope, 3 7/8- by 8 7/8-

inches
DMPAPER_ENV_10 #10 Envelope, 4 1/8- by 9 1/

2-inches
DMPAPER_ENV_11 #11 Envelope, 4 1/2- by 10 3/

8-inches
DMPAPER_ENV_12 #12 Envelope, 4 3/4- by 11-

inches
DMPAPER_ENV_14 #14 Envelope, 5- by 11 1/2-

inches
DMPAPER_ENV_DL DL Envelope, 110- by 220-

millimeters
DMPAPER_ENV_C5 C5 Envelope, 162- by 229-

millimeters
DMPAPER_ENV_C3 C3 Envelope, 324- by 458-

millimeters
DMPAPER_ENV_C4 C4 Envelope, 229- by 324-

millimeters
DMPAPER_ENV_C6 C6 Envelope, 114- by 162-

millimeters
DMPAPER_ENV_C65 C65 Envelope, 114- by 229-

millimeters
DMPAPER_ENV_B4 B4 Envelope, 250- by 353-

millimeters
DMPAPER_ENV_B5 B5 Envelope, 176- by 250-

millimeters
DMPAPER_ENV_B6 B6 Envelope, 176- by 125-

millimeters
DMPAPER_ENV_ITALY Italy Envelope, 110- by 230-

millimeters
DMPAPER_ENV_MONARCH Monarch Envelope, 3 7/8- by

7 1/2-inches
DMPAPER_ENV_PERSONAL 6 3/4 Envelope, 3 5/8- by 6 1/

2-inches
DMPAPER_FANFOLD_US US Std Fanfold, 14 7/8- by

11-inches
DMPAPER_FANFOLD_STD_GERMANGerman Std Fanfold, 8 1/2-

by 12-inches
DMPAPER_FANFOLD_LGL_GERMANGerman Legal Fanfold, 8 1/2-

by 13-inches

dmPaperLength
Overrides the length of the paper specified by the dmPaperSize member, either for custom
paper sizes or for devices such as dot-matrix printers, which can print on a page of arbitrary
length. These values, along with all other values in this structure that specify a physical
length, are in tenths of a millimeter.

dmPaperWidth
Overrides the width of the paper specified by the dmPaperSize member.

dmScale

Specifies the factor by which the printed output is to be scaled. The apparent page size is
scaled from the physical page size by a factor of dmScale/100. For example, a letter-sized
page with a dmScale value of 50 would contain as much data as a page of 17- by 22-inches
because the output text and graphics would be half their original height and width.

dmCopies
Selects the number of copies printed if the device supports multiple-page copies.

dmDefaultSource
Reserved; must be zero.

dmPrintQuality
Specifies the printer resolution. There are four predefined device-independent values:
DMRES_HIGH
DMRES_MEDIUM
DMRES_LOW
DMRES_DRAFT
If a positive value is given, it specifies the number of dots per inch (DPI) and is therefore
device dependent.

dmColor
Switches between color and monochrome on color printers. Following are the possible values:
DMCOLOR_COLOR
DMCOLOR_MONOCHROME

dmDuplex
Selects duplex or double-sided printing for printers capable of duplex printing. Following are
the possible values:
DMDUP_SIMPLEX
DMDUP_HORIZONTAL
DMDUP_VERTICAL

dmYResolution
Specifies the y-resolution, in dots per inch, of the printer. If the printer initializes this member,
the dmPrintQuality member specifies the x-resolution, in dots per inch, of the printer.

dmTTOption
Specifies how TrueType® fonts should be printed. This member can be one of the following
values:

Value Meaning
DMTT_BITMAP Prints TrueType fonts as graphics. This is

the default action for dot-matrix printers.
DMTT_DOWNLOAD Downloads TrueType fonts as soft fonts.

This is the default action for Hewlett-
Packard printers that use Printer Control
Language (PCL).

DMTT_SUBDEV Substitute device fonts for TrueType fonts.
This is the default action for PostScript®
printers.

dmUnusedPadding
Used to align the structure to a DWORD boundary. This should not be used or referenced. Its
name and usage is reserved, and can change in future releases.

dmCollate
Specifies whether collation should be used when printing multiple copies. (This member is
ignored unless the printer driver indicates support for collation by setting the dmFields
member to DM_COLLATE.) This member can be be one of the following values:

Value Meaning
DMCOLLATE_TRUE Collate when printing multiple copies.
DMCOLLATE_FALSE Do not collate when printing multiple copies.

Using DMCOLLATE_TRUE provides faster, more efficient output for collation, since the
data is sent to the device driver just once, no matter how many copies are required.
The printer is told to simply print the page again.

dmFormName

Windows NT: Specifies the name of the form to use; for example, "Letter" or "Legal". A
complete set of names can be retrieved by using the EnumForms function.
Windows 95: Printer drivers do not use this member.

dmLogPixels
Specifies the number of pixels per logical inch. Printer drivers do not use this member.

dmBitsPerPel
Specifies the color resolution, in bits per pixel, of the display device (for example: 4 bits for 16
colors, 8 bits for 256 colors, or 16 bits for 65536 colors). Display drivers use this member, for
example, in the ChangeDisplaySettings function. Printer drivers do not use this member.

dmPelsWidth
Specifies the width, in pixels, of the visible device surface. Display drivers use this member,
for example, in the ChangeDisplaySettings function. Printer drivers do not use this member.

dmPelsHeight
Specifies the height, in pixels, of the visible device surface. Display drivers use this member,
for example, in the ChangeDisplaySettings function. Printer drivers do not use this member.

dmDisplayFlags
Specifies the device's display mode. This member can be one of the following values:
Value Meaning
DM_GRAYSCALE Specifies that the display is a noncolor device.

If this flag is not set, color is assumed.
DM_INTERLACED Specifies that the display mode is interlaced. If

the flag is not set, noninterlaced is assumed.

Display drivers use this member, for example, in the ChangeDisplaySettings function.
Printer drivers do not use this member.

dmDisplayFrequency
Specifies the frequency, in hertz (cycles per second), of the display device in a particular
mode. This value is also known as the display device's vertical refresh rate. Display drivers
use this member. It is used, for example, in the ChangeDisplaySettings function. Printer
drivers do not use this member.
When you call the EnumDisplaySettings function, the dmDisplayFrequency member may
return with the value 0 or 1. These values represent the display hardware's default refresh
rate. This default rate is typically set by switches on a display card or computer motherboard,
or by a configuration program that does not use Win32 display functions such as
ChangeDisplaySettings.

dmICMMethod
Windows 95:

Specifies how ICM is handled. For a non-ICM application, this member determines if ICM is
enabled or disabled. For ICM applications, Windows examines this member to determine
how to handle ICM support. This member can be one of the following predefined values, or
a driver-defined value greater than the value of DMICMMETHOD_USER:

Value Meaning
DMICMMETHOD_NONE Windows 95 only: Specifies that

ICM is disabled.
DMICMMETHOD_SYSTEM Windows 95 only: Specifies that

ICM is handled by Windows.
DMICMMETHOD_DRIVER Windows 95 only: Specifies that

ICM is handled by the device driver.
DMICMMETHOD_DEVICE Windows 95 only: Specifies that

ICM is handled by the destination
device.

The printer driver must provide a user interface for setting this member. Most printer
drivers support only the DMICMMETHOD_SYSTEM or DMICMMETHOD_NONE value.
Drivers for PostScript printers support all values.

Windows NT:
This member is not supported on Windows NT.

dmICMIntent
Windows 95:

Specifies which of the three possible color matching methods, or intents, should be used by
default. This member is primarily for non-ICM applications. ICM applications can establish
intents by using the ICM functions. This member can be one of the following predefined
values, or a driver defined value greater than the value of DMICM_USER:

Value Meaning
DMICM_SATURATE Windows 95 only: Color matching

should optimize for color saturation.
This value is the most appropriate
choice for business graphs when
dithering is not desired.

DMICM_CONTRAST Windows 95 only: Color matching
should optimize for color contrast.
This value is the most appropriate
choice for scanned or photographic
images when dithering is desired.

DMICM_COLORMETRIC Windows 95 only: Color matching
should optimize to match the exact
color requested. This value is most
appropriate for use with business
logos or other images when an exact
color match is desired.

Windows NT:
This member is not supported on Windows NT.

dmMediaType
Windows 95:

Specifies the type of media being printed on. The member can be one of the following
predefined values, or a driver-defined value greater than the value of DMMEDIA_USER:

Value Meaning
DMMEDIA_STANDARD Windows 95 only: Plain paper.
DMMEDIA_GLOSSY Windows 95 only: Glossy paper.
DMMEDIA_TRANSPARENCYWindows 95 only: Transparent film.

Windows NT:
This member is not supported on Windows NT.

dmDitherType
Windows 95:

Specifies how dithering is to be done. The member can be one of the following predefined
values, or a driver-defined value greater than the value of DMDITHER_USER:

Value Meaning
DMDITHER_NONE Windows 95 only: No dithering.
DMDITHER_COARSE Windows 95 only: Dithering with a

coarse brush.
DMDITHER_FINE Windows 95 only: Dithering with a

fine brush.
DMDITHER_LINEART Windows 95 only: Line art

dithering, a special dithering method
that produces well defined borders
between black, white, and gray
scalings. It is not suitable for images
that include continuous graduations
in intensisty and hue such as
scanned photographs.

DMDITHER_GRAYSCALE Windows 95 only: Device does
grayscaling.

Windows NT:
This member is not supported on Windows NT.

dmReserved1
Windows 95: Not used; must be zero.

Windows NT: This member is not supported on Windows NT.
dmReserved2

Windows 95: Not used; must be zero.
Windows NT: This member is not supported on Windows NT.

RemarksA device driver's private data follows the public portion of the DEVMODE structure. The size of the
public data can vary for different versions of the structure. The dmSize member specifies the
number of bytes of public data, and the dmDriverExtra member specifies the number of bytes of
private data.See AlsoAdvancedDocumentProperties, CreateDC, CreateIC, DeviceCapabilities,
DocumentProperties, OpenPrinter

DEVNAMES
The DEVNAMES structure contains strings that identify the driver, device, and output port names
for a printer. The PrintDlg function uses these strings to initialize members in the system-defined
Print dialog box. When the user closes the dialog box, information about the selected printer is
returned in this structure.typedef struct tagDEVNAMES { // dvnm

WORD wDriverOffset;
WORD wDeviceOffset;
WORD wOutputOffset;
WORD wDefault;
// driver, device, and port name strings follow wDefault

} DEVNAMES;
MemberswDriverOffset

(Input/Output) Specifies the offset in characters from the beginning of this structure to a null-
terminated string that contains the filename (without the extension) of the device driver. On
input, this string is used to determine the printer to display initially in the dialog box.

wDeviceOffset
(Input/Output) Specifies the offset in characters from the beginning of this structure to the null-
terminated string (maximum of 32 bytes including the null) that contains the name of the
device. This string must be identical to the dmDeviceName member of the DEVMODE
structure.

wOutputOffset
(Input/Output) Specifies the offset in characters from the beginning of this structure to the null-
terminated string that contains the device name for the physical output medium (output port).

wDefault
Specifies whether the strings contained in the DEVNAMES structure identify the default
printer. This string is used to verify that the default printer has not changed since the last print
operation. If any of the strings do not match, a warning message is displayed informing the
user that the document may need to be reformatted.
On output, the wDefault member is changed only if the Print Setup dialog box was displayed
and the user chose the OK button. The DN_DEFAULTPRN flag is used if the default printer
was selected. If a specific printer is selected, the flag is not used. All other flags in this
member are reserved for internal use by the Print Dialog box procedure.

See AlsoDEVMODE, PrintDlg

DIBSECTION
The DIBSECTION structure contains information about a device-independent bitmap created by
calling the CreateDIBSection function. A DIBSECTION structure includes information about the
bitmap's dimensions, color format, color masks, optional file mapping object, and optional bit
values storage offset. An application can obtain a filled-in DIBSECTION structure for a given
device-independent bitmap by calling the GetObject function.typedef struct tagDIBSECTION {

BITMAP dsBm;
BITMAPINFOHEADER dsBmih;
DWORDdsBitfields[3];
HANDLE dshSection;
DWORDdsOffset;

} DIBSECTION;
MembersdsBm

A BITMAP data structure that contains information about the device-independent bitmap: its
type, its dimensions, its color capacities, and a pointer to its bit values.

dsBmih
A BITMAPINFOHEADER data structure that contains information about the color format of
the device-independent bitmap.

dsBitfields
Specifies three DWORD color masks for the device-independent bitmap. This field is only
valid when the biBitCount member of the BITMAPINFOHEADER structure has a value
greater than 8. Each color mask indicates the bits within a bit value doubleword that are used
to encode one of the three color channels (red, green, and blue).

dshSection
Contains a handle to the file mapping object that the CreateDIBSection function used to
create the device-independent bitmap. If CreateDIBSection was called with a NULL value for
its hSection parameter, causing the operating system to allocate memory for the bitmap, the
dshSection member will be NULL.

dsOffset
Specifies the offset to the bitmap's bit values within the file mapping object referenced by
dshSection. If dshSection is NULL, the dsOffset value has no meaning.

See AlsoBITMAP, BITMAPINFOHEADER, CreateDIBSection, GetDIBColorTable, GetObject

DirEntry
The DirEntry structure contains a unique ordinal that identifies an individual font in the font
resource group.struct DirEntry {

WORD fontOrdinal;
};
MemberfontOrdinal

Specifies a unique ordinal identifier for an individual font in a font resource group.
RemarksThe FontDirEntry structure for the specified font directly follows the DirEntry structure for that

font.See AlsoFontDirEntry, FontGroupHdr

DISK_GEOMETRY
The DISK_GEOMETRY structure describes the geometry of disk devices and media.typedef struct _DISK_GEOMETRY {

LARGE_INTEGER Cylinders;
MEDIA_TYPE MediaType;
DWORD TracksPerCylinder;
DWORD SectorsPerTrack;
DWORD BytesPerSector;

} DISK_GEOMETRY ;
MembersCylinders

The number of cylinders.
MediaType

The type of media. See MEDIA_TYPE.
TracksPerCylinder

The number of tracks per cylinder.
SectorsPerTrack

The number of sectors per track.
BytesPerSector

The number of bytes per sector
RemarksThe DeviceIoControl function receives a DISK_GEOMETRY structure in response to an

IOCTL_DISK_GET_DRIVE_GEOMETRY device input and output contol (IOCTL) operation. The
DeviceIoControl function receives an array of DISK_GEOMETRY structures in response to an
IOCTL_DISK_GET_MEDIA_TYPES device I/O operation.See AlsoDeviceIoControl, IOCTL_DISK_GET_DRIVE_GEOMETRY,
IOCTL_DISK_GET_MEDIA_TYPES, MEDIA_TYPE

DISK_PERFORMANCE
The DISK_PERFORMANCE structure provides disk performance information.typedef struct _DISK_PERFORMANCE {

LARGE_INTEGER BytesRead;
LARGE_INTEGER BytesWritten;
LARGE_INTEGER ReadTime;
LARGE_INTEGER WriteTime;
DWORD ReadCount;
DWORD WriteCount;
DWORD QueueDepth;

} DISK_PERFORMANCE ;
MembersBytesRead

Specifies the number of bytes read.
BytesWritten

Specifies the number of bytes written.
ReadTime

Specifies the time it took to complete the read.
WriteTime

Specifies the time it took to complete the write.
ReadCount

Specifies the number of read operations.
WriteCount

Specifies the number of write operations.
QueueDepth

Specifies the depth of the queue.
RemarksThe DeviceIoControl function receives a DISK_PERFORMANCE structure in response to an

IOCTL_DISK_PERFORMANCE device I/O operation.See AlsoDeviceIoControl, IOCTL_DISK_PERFORMANCE

DLGITEMTEMPLATE
The DLGITEMTEMPLATE structure defines the dimensions and style of a control in a dialog box.
One or more of these structures are combined with a DLGTEMPLATE structure to form a
standard template for a dialog box.typedef struct { // dlit

DWORD style;
DWORD dwExtendedStyle;
short x;
short y;
short cx;
short cy;
WORD id;

} DLGITEMTEMPLATE;
Membersstyle

Specifies the style of the control. This member can be a combination of window style values
(such as WS_BORDER) and one or more of the control style values (such as
BS_PUSHBUTTON and ES_LEFT).

dwExtendedStyle
Specifies extended styles for a window. This member is not used to create controls in dialog
boxes, but applications that use dialog box templates can use it to create other types of
windows.

x
Specifies the x-coordinate, in dialog box units, of the upper-left corner of the control. This
coordinate is always relative to the upper-left corner of the dialog box's client area.

y
Specifies the y-coordinate, in dialog box units, of the upper-left corner of the control. This
coordinate is always relative to the upper-left corner of the dialog box's client area.

cx
Specifies the width, in dialog box units, of the control.

cy
Specifies the height, in dialog box units, of the control.

id
Specifies the control identifier.

RemarksIn a standard template for a dialog box, the DLGITEMTEMPLATE structure is always immediately
followed by three variable-length arrays specifying the class, title, and creation data for the
control. Each array consists of one or more 16-bit elements.

Each DLGITEMTEMPLATE structure in the template must be aligned on a DWORD boundary.
The class and title arrays must be aligned on WORD boundaries. The creation data array must be
aligned on a DWORD boundary.

Immediately following each DLGITEMTEMPLATE structure is a class array that identifies the
window class of the control. If the first element of this array is any value other than 0xFFFF, the
system treats the array as a null-terminated Unicode string that specifies the name of a registered
window class. If the first element is 0xFFFF, the array has one additional element that specifies
the ordinal value of a predefined system class. The ordinal can be one of the following atom
values.

Value Meaning

0x0080 Button
0x0081 Edit
0x0082 Static
0x0083 List box
0x0084 Scroll bar
0x0085 Combo box

Following the class array is a title array that contains the initial text or resource identifier of
the control. If the first element of this array is 0xFFFF, the array has one additional element
that specifies an ordinal value of a resource, such as an icon, in an executable file. You can
use a resource identifier for controls, such as static icon controls, that load and display an
icon or other resource rather than text. If the first element is any value other than 0xFFFF,
the system treats the array as a null-terminated Unicode string that specifies the initial text.

The creation data array begins at the next DWORD boundary after the title array. This creation
data can be of any size and format. If the first byte of the creation data array is nonzero, it
indicates the size, in bytes, of the creation data (including the size byte). The control's window
procedure must be able to interpret the data. When the system creates the control, it passes a
pointer to this data in the lParam parameter of the WM_CREATE message that it sends to the
control.

If you specify character strings in the class and title arrays, you must use Unicode strings. To
create code that works on both Windows NT and Windows 95, use the MultiByteToWideChar
function to generate these Unicode strings.

The x, y, cx, and cy members specify values in dialog box units. You can convert these values to
screen units (pixels) by using the MapDialogRect function.See AlsoCreateDialogIndirect, CreateDialogIndirectParam, CreateWindowEx, DialogBoxIndirect,
DialogBoxIndirectParam, DLGITEMTEMPLATEEX, DLGTEMPLATE, DLGTEMPLATEEX,
MapDialogRect, MultiByteToWideChar, WM_CREATE

DLGITEMTEMPLATEEX
The DLGITEMTEMPLATEEX structure is not defined in any standard header file. The structure
definition is provided here to explain the format of an extended template for a dialog box.

For each control in a dialog box, an extended dialog box template has a block of data that uses
the DLGITEMTEMPLATEEX format to describe the control. For a description of the format of an
extended dialog box template, see DLGTEMPLATEEX.// typedef struct {
//DWORD helpID;
//DWORD exStyle;
//DWORD style;
//short x;
//short y;
//short cx;
//short cy;
//WORD id;
//sz_Or_Ord windowClass; // name or ordinal of a window class
//sz_Or_Ord title; // title string or ordinal of a resource
//WORD extraCount;// bytes of following creation data
// } DLGITEMTEMPLATEEX;
MembershelpID

Specifies the help context identifier for the control. When the system sends a WM_HELP
message, it passes the helpID value in the dwContextId member of the HELPINFO
structure.

dwExtendedStyle
Specifies extended styles for a window. This member is not used to create controls in dialog
boxes, but applications that use dialog box templates can use it to create other types of
windows.

style
Specifies the style of the control. This member can be a combination of window style values
(such as WS_BORDER) and one or more of the control style values (such as
BS_PUSHBUTTON and ES_LEFT).

x
Specifies the x-coordinate, in dialog box units, of the upper-left corner of the control. This
coordinate is always relative to the upper-left corner of the dialog box's client area.

y
Specifies the y-coordinate, in dialog box units, of the upper-left corner of the control. This
coordinate is always relative to the upper-left corner of the dialog box's client area.

cx
Specifies the width, in dialog box units, of the control.

cy
Specifies the height, in dialog box units, of the control.

id
Specifies the control identifier.

windowClass
Specifies a variable-length array of 16-bit elements that identifies the window class of the
control. If the first element of this array is any value other than 0xFFFF, the system treats the
array as a null-terminated Unicode string that specifies the name of a registered window
class.
If the first element is 0xFFFF, the array has one additional element that specifies the ordinal
value of a predefined system class. The ordinal can be one of the following atom values.

Value Meaning
0x0080 Button
0x0081 Edit
0x0082 Static
0x0083 List box
0x0084 Scroll bar
0x0085 Combo box

title
Specifies a variable-length array of 16-bit elements that contains the initial text or resource
identifier of the control. If the first element of this array is 0xFFFF, the array has one additional
element that specifies an ordinal value that identifies a resource, such as an icon, in an
executable file. You can use a resource identifier for controls, such as static icon controls, that
load and display an icon or other resource rather than text.
If the first element is any value other than 0xFFFF, the system treats the array as a null-
terminated Unicode string that specifies the initial text.

extraCount
Specifies the number of bytes of creation data that follow this member. If this value is greater
than zero, the creation data begins at the next DWORD boundary. This creation data can be
of any size and format. The control's window procedure must be able to interpret the data.
When the system creates the control, it passes a pointer to this data in the lParam parameter
of the WM_CREATE message that it sends to the control.

RemarksAn extended template for a dialog box consists of a DLGTEMPLATEEX header followed by a
DLGITEMTEMPLATEEX structure for each control in the dialog box.

Each DLGITEMTEMPLATEEX structure must be aligned on a DWORD boundary. The variable-
length windowClass and title arrays must be aligned on WORD boundaries. The creation data
array, if any, must be aligned on a DWORD boundary.

If you specify character strings in the windowClass and title arrays, you must use Unicode
strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

The x, y, cx, and cy members specify values in dialog box units. You can convert these values to
screen units (pixels) by using the MapDialogRect function.

See AlsoCreateDialogIndirect, CreateDialogIndirectParam, CreateWindowEx, DialogBoxIndirect,
DialogBoxIndirectParam, DLGITEMTEMPLATE, DLGTEMPLATE, DLGTEMPLATEEX,
MapDialogRect, MultiByteToWideChar

DLGTEMPLATE
The DLGTEMPLATE structure defines the dimensions and style of a dialog box. This structure,
always the first in a standard template for a dialog box, also specifies the number of controls in the
dialog box and therefore specifies the number of subsequent DLGITEMTEMPLATE structures in
the template.typedef struct { // dltt

DWORD style;
DWORD dwExtendedStyle;
WORD cdit;
short x;
short y;
short cx;
short cy;

} DLGTEMPLATE;
Membersstyle

Specifies the style of the dialog box. This member can be a combination of window style
values (such as WS_CAPTION and WS_SYSMENU) and one or more of the following dialog
box style values:

Value Meaning
DS_3DLOOK Gives the dialog box a nonbold font and

draws three-dimensional borders around
control windows in the dialog box.
The DS_3DLOOK style is required only by
Win32-based applications compiled for
versions of Windows earlier than Windows
95 or Windows NT 4.0. The system
automatically applies the three-dimensional
look to dialog boxes created by applications
compiled for current versions of Windows.

DS_ABSALIGN Indicates that the coordinates of the dialog
box are screen coordinates. If this style is
not specified, Windows assumes they are
client coordinates.

DS_CENTER Centers the dialog box in the working area;
that is, the area not obscured by the tray.

DS_CENTERMOUSE Centers the mouse cursor in the dialog box.
DS_CONTEXTHELP Includes a question mark in the title bar of

the dialog box. When the user clicks the
question mark, the cursor changes to a
question mark with a pointer. If the user
then clicks a control in the dialog box, the
control receives a WM_HELP message.
The control should pass the message to the
dialog box procedure, which should call the
WinHelp function using the
HELP_WM_HELP command. The Help
application displays a pop-up window that
typically contains help for the control.
Note that DS_CONTEXTHELP is only a
placeholder. When the dialog box is
created, the system checks for
DS_CONTEXTHELP and, if it is there, adds
WS_EX_CONTEXTHELP to the extended
style of the dialog box.
WS_EX_CONTEXTHELP cannot be used
with the WS_MAXIMIZEBOX or
WS_MINIMIZEBOX styles.

DS_CONTROL Creates a dialog box that works well as a
child window of another dialog box, much
like a page in a property sheet. This style
allows the user to tab among the control
windows of a child dialog box, use its
accelerator keys, and so on.

DS_FIXEDSYS Causes the dialog box to use the
SYSTEM_FIXED_FONT instead of the
default SYSTEM_FONT.
SYSTEM_FIXED_FONT is a monospace
font compatible with the System font in
Windows versions earlier than 3.0.

DS_LOCALEDIT Applies to 16-bit applications only. This style
directs edit controls in the dialog box to
allocate memory from the application's data
segment. Otherwise, edit controls allocate
storage from a global memory object.

DS_MODALFRAME Creates a dialog box with a modal dialog-
box frame that can be combined with a title
bar and System menu by specifying the
WS_CAPTION and WS_SYSMENU styles.

DS_NOFAILCREATE Windows 95 only: Creates the dialog box
even if errors occur ¾ for example, if a child
window cannot be created or if the system
cannot create a special data segment for an
edit control.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages
that Windows would otherwise send to the
owner of the dialog box while the dialog box
is displayed.

DS_SETFONT Indicates that the header of the dialog box
template contains additional data specifying
the font to use for text in the client area and
controls of the dialog box. The font data
begins on the WORD boundary that follows
the title array. It specifies a 16-bit point size
value and a Unicode font name string. If
possible, the system creates a font
according to the specified values. Then the
system passes the handle of the font to the
dialog box and to each control by sending
them the WM_SETFONT message.
If this style is not specified, the dialog box
template does not include the font data.

DS_SETFOREGROUNDCauses the system to use the
SetForegroundWindow function to bring
the dialog box to the foreground.

DS_SYSMODAL Creates a system-modal dialog box. This
style causes the dialog box to have the
WS_EX_TOPMOST style, but otherwise
has no effect on the dialog box or the
behavior of other windows in the system
when the dialog box is displayed.

dwExtendedStyle
Specifies extended styles for a window. This member is not used to create dialog boxes, but
applications that use dialog box templates can use it to create other types of windows.

cdit
Specifies the number of items in the dialog box.

x
Specifies the x-coordinate, in dialog box units, of the upper-left corner of the dialog box.

y
Specifies the y-coordinate, in dialog box units, of the upper-left corner of the dialog box.

cx
Specifies the width, in dialog box units, of the dialog box.

cy
Specifies the height, in dialog box units, of the dialog box.

RemarksIn a standard template for a dialog box, the DLGTEMPLATE structure is always immediately
followed by three variable-length arrays that specify the menu, class, and title for the dialog box.
When the DS_SETFONT style is given, these arrays are also followed by a 16-bit value specifying
point size and another variable-length array specifying a typeface name. Each array consists of
one or more 16-bit elements. The menu, class, title, and font arrays must be aligned on WORD
boundaries.

Immediately following the DLGTEMPLATE structure is a menu array that identifies a menu
resource for the dialog box. If the first element of this array is 0x0000, the dialog box has no menu
and the array has no other elements. If the first element is 0xFFFF, the array has one additional
element that specifies the ordinal value of a menu resource in an executable file. If the first
element has any other value, the system treats the array as a null-terminated Unicode string that
specifies the name of a menu resource in an executable file.

Following the menu array is a class array that identifies the window class of the control. If the first
element of the array is 0x0000, the system uses the predefined dialog box class for the dialog box
and the array has no other elements. If the first element is 0xFFFF, the array has one additional

element that specifies the ordinal value of a predefined system window class. If the first element
has any other value, the system treats the array as a null-terminated Unicode string that specifies
the name of a registered window class.

Following the class array is a title array that specifies a null-terminated Unicode string that
contains the title of the dialog box. If the first element of this array is 0x0000, the dialog box has
no title and the array has no other elements.

The 16-bit point size value and the typeface array follow the title array, but only if the style
member specifies the DS_SETFONT style. The point size value specifies the point size of the font
to use for the text in the dialog box and its controls. The typeface array is a null-terminated
Unicode string specifying the name of the typeface for the font. When these values are given,
Windows creates a font having the given size and typeface (if possible) and sends a
WM_SETFONT message to the dialog box procedure and the control window procedures as it
creates the dialog box and controls.

Following the DLGTEMPLATE header in a standard dialog box template are one or more
DLGITEMTEMPLATE structures that define the dimensions and style of the controls in the dialog
box. The cdit member specifies the number of DLGITEMTEMPLATE structures in the template.
These DLGITEMTEMPLATE structures must be aligned on DWORD boundaries.

If you specify character strings in the menu, class, title, or typeface arrays, you must use Unicode
strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

The x, y, cx, and cy members specify values in dialog box units. You can convert these values to
screen units (pixels) by using the MapDialogRect function.See AlsoCreateDialogIndirect, CreateDialogIndirectParam, DialogBoxIndirect,
DialogBoxIndirectParam, DLGITEMTEMPLATE, DLGITEMTEMPLATEEX,
DLGTEMPLATEEX, MapDialogRect, MultiByteToWideChar

DLGTEMPLATEEX
The DLGTEMPLATEEX structure is not defined in any standard header file. The structure
definition is provided here to explain the format of an extended template for a dialog box.

An extended dialog box template begins with a DLGTEMPLATEEX header that describes the
dialog box and specifies the number of controls in the dialog box. For each control in a dialog box,
an extended dialog box template has a block of data that uses the DLGITEMTEMPLATEEX
format to describe the control.// typedef struct {
//WORD dlgVer;
//WORD signature;
//DWORD helpID;
//DWORD exStyle;
//DWORD style;
//WORD cDlgItems;
//short x;
//short y;
//short cx;
//short cy;
//sz_Or_Ord menu; // name or ordinal of a menu resource
//sz_Or_Ord windowClass; // name or ordinal of a window class//WCHAR title[titleLen]; // title string of the dialog box
//short pointsize; // only if DS_SETFONT flag is set//short weight;// only if DS_SETFONT flag is set
//short bItalic; // only if DS_SETFONT flag is set//WCHAR font[fontLen]; // typeface name, if DS_SETFONT is set
// } DLGTEMPLATEEX;MembersdlgVer

Indicates whether a template is an extended dialog box template. A value of 0xFFFF indicates
an extended dialog box template. In this case, the signature member specifies the template
version number. If dlgVer is any value other than 0xFFFF, this is a standard template that
uses the DLGTEMPLATE and DLGITEMTEMPLATE structures.

signature
Specifies the version number of the extended dialog box template. This member must specify
1.

helpID
Specifies the help context identifier for the dialog box window. When the system sends a
WM_HELP message, it passes this value in the dwContextId member of the HELPINFO
structure.

exStyle
Specifies extended styles for a window. This member is not used to create dialog boxes, but
applications that use dialog box templates can use it to create other types of windows.

style
Specifies the style of the dialog box. This member can be a combination of window style
values (such as WS_CAPTION and WS_SYSMENU) and one or more of the following dialog
box style values.

Value Meaning
DS_3DLOOK Gives the dialog box a nonbold font and

draws three-dimensional borders around
control windows in the dialog box.
The DS_3DLOOK style is required only by
Win32-based applications compiled for
versions of Windows earlier than Windows
95 or Windows NT 4.0. The system
automatically applies the three-dimensional
look to dialog boxes created by applications
compiled for current versions of Windows.

DS_ABSALIGN Indicates that the coordinates of the dialog
box are screen coordinates. If this style is
not specified, the system treats them as
client coordinates.

DS_CENTER Centers the dialog box in the working area;
that is, the area not obscured by the tray.

DS_CENTERMOUSE Centers the mouse cursor in the dialog box.
DS_CONTEXTHELP Includes a question mark in the title bar of

the dialog box. When the user clicks the
question mark, the cursor changes to a
question mark with a pointer. If the user
then clicks a control in the dialog box, the
control receives a WM_HELP message.
The control should pass the message to the
dialog procedure, which should call the
WinHelp function using the
HELP_WM_HELP command. The Help
application displays a pop-up window that
typically contains help for the control.
Note that DS_CONTEXTHELP is only a
placeholder. When the dialog box is
created, the system checks for
DS_CONTEXTHELP and, if it is there, adds
WS_EX_CONTEXTHELP to the extended
style of the dialog box. You cannot use the
WS_EX_CONTEXTHELP style with the
WS_MAXIMIZEBOX or WS_MINIMIZEBOX
styles.

DS_CONTROL Creates a dialog box that works well as a
child window of another dialog box, much
like a page in a property sheet. This style

allows the user to tab among the control
windows of a child dialog box, use its
accelerator keys, and so on.

DS_FIXEDSYS Causes the dialog box to use the
SYSTEM_FIXED_FONT instead of the
default SYSTEM_FONT.
SYSTEM_FIXED_FONT is a monospace
font compatible with the System font in
Windows versions earlier than 3.0.

DS_LOCALEDIT Applies to 16-bit applications only. This
style directs edit controls in the dialog box
to allocate memory from the application's
data segment. Otherwise, edit controls
allocate storage from a global memory
object.

DS_MODALFRAME Creates a dialog box with a modal dialog-
box frame that can be combined with a title
bar and System menu by specifying the
WS_CAPTION and WS_SYSMENU styles.

DS_NOFAILCREATE Windows 95 only: Creates the dialog box
even if errors occur ¾ for example, if a child
window cannot be created or if the system
cannot create a special data segment for an
edit control.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages
that Windows would otherwise send to the
owner of the dialog box while the dialog box
is displayed.

DS_SETFONT Indicates that the DLGTEMPLATEEX
header of the extended dialog box template
contains four additional members
(pointsize, weight, bItalic, and font) that
describe the font to use for the text in the
client area and controls of the dialog box. If
possible, the system creates a font
according to the values specified in these
members. Then the system passes the
handle of the font to the dialog box and to
each control by sending them the
WM_SETFONT message.
If this style is not specified, the extended
dialog box template does not include the
pointsize, weight, bItalic, and font
members.

DS_SETFOREGROUNDCauses the system to use the
SetForegroundWindow function to bring
the dialog box to the foreground.

DS_SYSMODAL Creates a system-modal dialog box. This
style causes the dialog box to have the
WS_EX_TOPMOST style. Otherwise, it has
no effect on the dialog box or the behavior
of other windows in the system when the
dialog box is displayed.

cDlgItems
Specifies the number of controls in the dialog box.

x
Specifies the x-coordinate, in dialog box units, of the upper-left corner of the dialog box.

y
Specifies the y-coordinate, in dialog box units, of the upper-left corner of the dialog box.

cx

Specifies the width, in dialog box units, of the dialog box.
cy

Specifies the height, in dialog box units, of the dialog box.
menu

Specifies a variable-length array of 16-bit elements that identifies a menu resource for the
dialog box. If the first element of this array is 0x0000, the dialog box has no menu and the
array has no other elements. If the first element is 0xFFFF, the array has one additional
element that specifies the ordinal value of a menu resource in an executable file. If the first
element has any other value, the system treats the array as a null-terminated Unicode string
that specifies the name of a menu resource in an executable file.

windowClass
Specifies a variable-length array of 16-bit elements that identifies the window class of the
dialog box. If the first element of the array is 0x0000, the system uses the predefined dialog
box class for the dialog box and the array has no other elements. If the first element is
0xFFFF, the array has one additional element that specifies the ordinal value of a predefined
system window class. If the first element has any other value, the system treats the array as a
null-terminated Unicode string that specifies the name of a registered window class.

title
Specifies a null-terminated Unicode string that contains the title of the dialog box. If the first
element of this array is 0x0000, the dialog box has no title and the array has no other
elements.

pointsize
Specifies the point size of the font to use for the text in the dialog box and its controls. The
pointsize, weight, bItalic, and font members are present in an extended dialog box template
only if the style member specifies the DS_SETFONT style.

weight
Specifies the weight of the font in the range 0 through 1000. This can be any of the values
listed for the lfWeight member of the LOGFONT structure. This member is present only if the
style member specifies DS_SETFONT.

bItalic
Indicates whether the font is italic. If this value is TRUE, the font is italic. This member is
present only if the style member specifies DS_SETFONT.

font
Specifies a null-terminated Unicode string that contains the name of the typeface for the font.
This member is present only if the style member specifies DS_SETFONT.

RemarksYou can use an extended dialog box template instead of a standard dialog box template in the
CreateDialogIndirectParam and DialogBoxIndirectParam functions and the
CreateDialogIndirect and DialogBoxIndirect macros. A standard dialog box template uses the
DLGTEMPLATE and DLGITEMTEMPLATE structures.

Following the DLGTEMPLATEEX header in an extended dialog box template is one or more
DLGITEMTEMPLATEEX structures that describe the controls of the dialog box. The cDlgItems
member specifies the number of DLGITEMTEMPLATEEX structures in the template.

Each DLGITEMTEMPLATEEX structure in the template must be aligned on a DWORD boundary.
If the style member specifies the DS_SETFONT style, the first DLGITEMTEMPLATEEX structure
begins on the first DWORD boundary after the font string. If DS_SETFONT is not specified, the
first structure begins on the first DWORD boundary after the title string.

The menu, windowClass, title, and font arrays must be aligned on WORD boundaries.

If you specify character strings in the menu, windowClass, title, and font arrays, you must use
Unicode strings. To create code that works on both Windows NT and Windows 95, use the
MultiByteToWideChar function to generate these Unicode strings.

The x, y, cx, and cy members specify values in dialog box units. You can convert these values to
screen units (pixels) by using the MapDialogRect function.See AlsoCreateDialogIndirect, CreateDialogIndirectParam, DialogBoxIndirect,
DialogBoxIndirectParam, DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATE,
MapDialogRect, MultiByteToWideChar, WM_SETFONT

DOC_INFO_1
The DOC_INFO_1 structure describes a document that will be printed.typedef struct _DOC_INFO_1 { // dci1

LPTSTR pDocName;
LPTSTR pOutputFile;
LPTSTR pDatatype;

} DOC_INFO_1;
MemberspDocName

Points to a null-terminated string that specifies the name of the document.
pOutputFile

Points to a null-terminated string that specifies the name of an output file.
pDatatype

Points to a null-terminated string that identifies the type of data used to record the document.
See AlsoStartDocPrinter

DOC_INFO_2
The DOC_INFO_2 structure describes a document that will be printed.typedef struct _DOC_INFO_2 { // dci2

LPTSTR pDocName;
LPTSTR pOutputFile;
LPTSTR pDatatype;
DWORD dwMode;
DWORD JobId;

} DOC_INFO_2;
MemberspDocName

Points to a null-terminated string that specifies the name of the document.
pOutputFile

Points to a null-terminated string that specifies the name of an output file.
pDatatype

Points to a null-terminated string that identifies the type of data used to record the document.
dwMode

Informs the print spooler of the nature of the data to follow. If this value is zero, the print
spooler treats the data sent by subsequent calls to WritePrinter as a normal print job
(whether or not it is spooled depends on the printer property). If this value is DI_CHANNEL,
only a communications channel is opened. In this case, the data passed into subsequent calls
to WritePrinter is sent to the printer or subsequent calls to ReadPrinter retrieve data from the
printer. This mode remains effective until EndDoc is called.

JobId
Reserved for internal use; should be zero.

See AlsoEndDoc, ReadPrinter, StartDocPrinter, WritePrinter

DOCINFO
The DOCINFO structure contains the input and output filenames and other information used by
the StartDoc function.typedef struct { // di

intcbSize;
LPCTSTR lpszDocName;
LPCTSTR lpszOutput;
LPCTSTR lpszDatatype; // Windows 95 only; ignored on Windows NT
DWORD fwType; // Windows 95 only; ignored on Windows NT

} DOCINFO;
MemberscbSize

Specifies the size, in bytes, of the structure.
lpszDocName

Points to a null-terminated string that specifies the name of the document.
lpszOutput

Points to a null-terminated string that specifies the name of an output file. If this pointer is
NULL, the output will be sent to the device identified by the device context handle that was
passed to the StartDoc function.

lpszDatatype
Windows 95: Points to a null-terminated string that specifies the type of data used to record
the print job.
Windows NT: This member is ignored.

fwType
Windows 95: Specifies additional information about the print job. Can be zero or
DI_APPBANDING if the application will use banding. For optimal performance during printing,
banding applications should specify DI_APPBANDING.
Windows NT: This member is ignored.

See AlsoStartDoc

DRAGLISTINFO
The DRAGLISTINFO structure contains information about a drag event. The pointer to
DRAGLISTINFO is passed as the lParam parameter of the drag list message.Typedef struct {

UINT uNotification;
HWND hWnd;
POINT ptCursor;

} DRAGLISTINFO, FAR *LPDRAGLISTINFO;
MembersuNotification

Notification code that specifies the type of drag event. This member can be one of the
following values:

Value Meaning
DL_BEGINDRAG The user has clicked the left mouse button on

a list item.
DL_CANCELDRAG The user has canceled the drag operation by

clicking the right mouse button or pressing
the ESC key.

DL_DRAGGING The user has moved the mouse while
dragging an item.

DL_DROPPED The user has released the left mouse button,
completing a drag operation.

hWnd
Handle to drag list box.

ptCursor
POINT structure that contains the current x- and y-coordinates of the mouse cursor.

See alsoDL_BEGINDRAG, DL_CANCELDRAG, DL_DRAGGING, DL_DROPPED, POINT

DRAWITEMSTRUCT
The DRAWITEMSTRUCT structure provides information the owner window must have to
determine how to paint an owner-drawn control or menu item. The owner window of the owner-
drawn control or menu item receives a pointer to this structure as the lParam parameter of the
WM_DRAWITEM message.typedef struct tagDRAWITEMSTRUCT { // dis

UINT CtlType;
UINT CtlID;
UINT itemID;
UINT itemAction;
UINT itemState;
HWND hwndItem;
HDC hDC;
RECT rcItem;
DWORD itemData;

} DRAWITEMSTRUCT;
MembersCtlType

Specifies the control type. This member can be one of the following values:
Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box
ODT_LISTVIEW List view control
ODT_MENU Owner-drawn menu item
ODT_STATIC Owner-drawn static control
ODT_TAB Tab control

CtlID
Specifies the identifier of the combo box, list box, button, or static control. This member is not
used for a menu item.

itemID
Specifies the menu item identifier for a menu item or the index of the item in a list box or
combo box. For an empty list box or combo box, this member can be - 1. This allows the
application to draw only the focus rectangle at the coordinates specified by the rcItem
member even though there are no items in the control. This indicates to the user whether the
list box or combo box has the focus. How the bits are set in the itemAction member
determines whether the rectangle is to be drawn as though the list box or combo box has the
focus.

itemAction
Specifies the drawing action required. This member can be one or more of the following
values:

Value Meaning
ODA_DRAWENTIRE The entire control needs to be drawn.
ODA_FOCUS The control has lost or gained the keyboard

focus. The itemState member should be
checked to determine whether the control
has the focus.

ODA_SELECT The selection status has changed. The
itemState member should be checked to
determine the new selection state.

itemState
Specifies the visual state of the item after the current drawing action takes place. This
member can be a combination of the following values:

Value Meaning
ODS_CHECKED The menu item is to be checked. This bit is

used only in a menu.
ODS_COMBOBOXEDITThe drawing takes place in the selection

field (edit control) of an ownerdrawn combo
box.

ODS_DEFAULT The item is the default item.
ODS_DISABLED The item is to be drawn as disabled.
ODS_FOCUS The item has the keyboard focus.
ODS_GRAYED The item is to be grayed. This bit is used

only in a menu.
ODS_SELECTED The menu item's status is selected.

hwndItem
Identifies the control for combo boxes, list boxes, buttons, and static controls. For menus, this
member identifies the menu containing the item.

hDC
Identifies a device context; this device context must be used when performing drawing
operations on the control.

rcItem
Specifies a rectangle that defines the boundaries of the control to be drawn. This rectangle is
in the device context specified by the hDC member. Windows automatically clips anything the
owner window draws in the device context for combo boxes, list boxes, and buttons, but does

not clip menu items. When drawing menu items, the owner window must not draw outside the
boundaries of the rectangle defined by the rcItem member.

itemData
Specifies the application-defined 32-bit value associated with the menu item. For a control,
this parameter specifies the value last assigned to the list box or combo box by the
LB_SETITEMDATA or CB_SETITEMDATA message. If the list box or combo box has the
LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is initially zero. Otherwise, this
value is initially the value that was passed to the list box or combo box in the lParam
parameter of one of the following messages:
CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING
If ctlType is ODT_BUTTON or ODT_STATIC, itemData is zero.

See AlsoCB_ADDSTRING, CB_INSERTSTRING, CB_SETITEMDATA, LB_ADDSTRING,
LB_INSERTSTRING, LB_SETITEMDATA, WM_DRAWITEM

DRAWTEXTPARAMS
The DRAWTEXTPARAMS structure contains extended formatting options for the DrawTextEx
function.typedef struct {

UINT cbSize;
int iTabLength;
int iLeftMargin;
int iRightMargin;
UINT uiLengthDrawn;

} DRAWTEXTPARAMS, FAR *LPDRAWTEXTPARAMS;
MemberscbSize

Specifies the structure size, in bytes.
iTabLength

Specifies the size of each tab stop, in units equal to the average character width.
iLeftMargin

Specifies the left margin, in units equal to the average character width.
iRightMargin

Specifies the right margin, in units equal to the average character width.
uiLengthDrawn

Receives the number of characters processed by DrawTextEx, including white-space
characters. The number can be the length of the string or the index of the first line that falls
below the drawing area. Note that DrawTextEx always processes the entire string if the
DT_NOCLIP formatting flag is specified.

See AlsoDrawTextEx

DRIVE_LAYOUT_INFORMATION
The DRIVE_LAYOUT_INFORMATION structure provides information about a drive's partitions.typedef struct _DRIVE_LAYOUT_INFORMATION {

DWORD PartitionCount;
DWORD Signature;
PARTITION_INFORMATION PartitionEntry[1];

} DRIVE_LAYOUT_INFORMATION;
MembersPartitionCount

The number of partitions on the drive.
Signature

A drive signature value.
PartitionEntry

A variable-sized array of PARTITION_INFORMATION structures, one structure for each
partition on the drive.

RemarksThe DeviceIoControl function receives a DRIVE_LAYOUT_INFORMATION structure in
response to an IOCTL_DISK_GET_DRIVE_LAYOUT device I/O operation. The DeviceIoControl
function uses a DRIVE_LAYOUT_INFORMATION structure as input to an
IOCTL_DISK_SET_DRIVE_LAYOUT device I/O operation.See AlsoDeviceIoControl, IOCTL_DISK_GET_DRIVE_LAYOUT, IOCTL_DISK_SET_DRIVE_LAYOUT,
PARTITION_INFORMATION

DRIVER_INFO_1
The DRIVER_INFO_1 structure identifies a printer driver.typedef struct _DRIVER_INFO_1 { // dri1

LPTSTR pName;
} DRIVER_INFO_1;
MemberspName

Points to a null-terminated string that specifies the name of a printer driver.
See AlsoEnumPrinterDrivers

DRIVER_INFO_2
The DRIVER_INFO_2 structure identifies a printer driver, the driver version number, the
environment for which the driver was written, the name of the file in which the driver is stored, and
so on.typedef struct _DRIVER_INFO_2 { // dri2

DWORD cVersion;
LPTSTR pName;
LPTSTR pEnvironment;
LPTSTR pDriverPath;
LPTSTR pDataFile;
LPTSTR pConfigFile;

} DRIVER_INFO_2;
MemberscVersion

Specifies a printer-driver version number.
pName

Points to a null-terminated string that specifies the name of the driver (for example, "QMS
810").

pEnvironment
Points to a null-terminated string that specifies the environment for which the driver was
written (for example, "Windows NT x86" or "Windows NT R4000").

pDriverPath
Points to null-terminated string that specifies a filename or full path and filename for the file
that contains the device driver (for example, "c:\drivers\pscript.dll").

pDataFile
Points to a null-terminated string that specifies a filename or a full path and filename for the
file that contains driver data (for example, "c:\drivers\QMS810.PPD").

pConfigFile
Points to a null-terminated string that specifies a filename or a full path and filename for the
device-driver's configuration DLL (for example, "c:\drivers\PSCRPTUI.DLL").

See AlsoAddPrinterDriver, GetPrinterDriver

DRIVER_INFO_3
The DRIVER_INFO_3 structure contains printer driver information.typedef struct _DRIVER_INFO_3 { // dri3

DWORD cVersion;
LPTSTR pName;
LPTSTR pEnvironment;
LPTSTR pDriverPath;
LPTSTR pDataFile;
LPTSTR pConfigFile;
LPTSTR pHelpFile;
LPTSTR pDependentFiles;
LPTSTR pMonitorName;
LPTSTR pDefaultDataType;

} DRIVER_INFO_3;
MemberscVersion

Specifies a printer-driver version number.
pName

Points to a null-terminated string that specifies the name of the driver (for example, "QMS
810").

pEnvironment
Points to a null-terminated string that specifies the environment for which the driver was
written (for example, "Windows x86" or "Windows NT R4000").

pDriverPath
Points to a null-terminated string that specifies a filename or full path and filename for the file
that contains the device driver (for example, "C:\DRIVERS\PSCRIPT.DLL").

pDataFile
Points to a null-terminated string that specifies a filename or a full path and filename for the
file that contains driver data (for example, "C:\DRIVERS\QMS810.PPD").

pConfigFile
Points to a null-terminated string that specifies a filename or a full path and filename for the
device driver's configuration dynamic-link library (for example, "C:\DRIVERS\PSCRPTUI.
DLL").

pHelpFile
Points to a null-terminated string that specifies a filename or a full path and filename for the
device driver's help file.

pDependentFiles
Points to a null-terminated string that specifies the files the driver is dependent on. Each
filename in the string is also terminated with a null (for example, "PSCRIPT.DLL\0QMS810.
PPD\0PSCRPTUI.DLL\0PSPCRIPTUI.HLP\0PSTEST.TXT\0\0").

pMonitorName
Points to a null-terminated string that specifies a language monitor (for example, "PJL
monitor"). This member can be NULL and should be specified only for printers capable of
bidirectional communication.

pDefaultDataType
Points to a null-terminated string that specifies the default data type of the print job (for
example, "EMF").

See AlsoAddPrinterDriver, EnumPrinterDrivers, GetPrinterDriver

DROPFILES
Defines the CF_HDROP and CF_PRINTERS clipboard formats. In the CF_HDROP case, the data
that follows is a double - null-terminated list of file names. For CF_PRINTERS, the data that
follows are the printer friendly names.typedef struct _DROPFILES {

DWORD pFiles; // offset of file list
POINT pt;// drop point (coordinates depend on fNC)
BOOL fNC;// see below
BOOL fWide; // TRUE if file contains wide characters,
// FALSE otherwise

} DROPFILES, FAR * LPDROPFILES;
MembersfNC

Nonclient area flag. If this member is TRUE, pt specifies the screen coordinates of a point in a
window's nonclient area. If it is FALSE, pt specifies the client coordinates of a point in the
client area.

EDITSTREAM
The EDITSTREAM structure contains information about a data stream used with a rich edit
control.typedef struct _editstream {

DWORD dwCookie;
DWORD dwError;
EDITSTREAMCALLBACK pfnCallback;

} EDITSTREAM;
MembersdwCookie

Application-defined value that is passed to the callback function.
dwError

Error encountered while streaming. If there was no error, this member is zero.
pfnCallback

Pointer to an application-defined function that the control calls to transfer data.
This structure is used with the EM_STREAMIN message to read (stream in) data into a rich edit
control, replacing its contents. It is used with the EM_STREAMOUT message to write (stream out)
the contents of a rich edit control.

The control calls the callback function repeatedly, transferring a portion of the data with each call.
The callback function has the following form:DWORD CALLBACK EditStreamCallback(DWORD dwCookie,

LPBYTE pbBuff, LONG cb, LONG FAR *pcb);dwCookie
Value of the dwCookie member of the EDITSTREAM structure.

pbBuff
Pointer to the buffer to read from or write to.

cb
Count of bytes to read or write.

pcb
Pointer to a variable that receives the number of bytes actually read or written.

Return ValueThe return value is zero to continue to the stream operation, or nonzero to abort it.See AlsoEM_STREAMIN, EM_STREAMOUT

EMR
The EMR structure provides the base structure for all enhanced metafile records. An enhanced
metafile record contains the parameters for a specific GDI function used to create part of a picture
in an enhanced format metafile.typedef struct tagEMR
{

DWORD iType;
DWORD nSize;

} EMR, *PEMR;
MembersiType

Specifies the record type.
nSize

Size of the record, in bytes. This member must be a multiple of four.

EMRANGLEARC
The EMRANGLEARC structure contains members for the AngleArc enhanced metafile record.typedef struct tagEMRANGLEARC
{

EMRemr;
POINTL ptlCenter;
DWORD nRadius;
FLOAT eStartAngle;
FLOAT eSweepAngle;

} EMRANGLEARC, *PEMRANGLEARC;
Membersemr

Base structure for all record types.
ptlCenter

Logical coordinates of circle's center.
nRadius

Circle's radius, in logical units.
eStartAngle

Arc's start angle, in degrees.
eSweepAngle

Arc's sweep angle, in degrees.
See AlsoAngleArc

EMRARC, EMRARCTO, EMRCHORD, EMRPIE
The EMRARC, EMRARCTO, EMRCHORD, and EMRPIE structures contain members for the Arc,
ArcTo, Chord, and Pie enhanced metafile records.typedef struct tagEMRARC
{

EMR emr;
RECTL rclBox;
POINTL ptlStart;
POINTL ptlEnd;

} EMRARC, *PEMRARC,
EMRARCTO, *PEMRARCTO,
EMRCHORD, *PEMRCHORD,
EMRPIE, *PEMRPIE;

Membersemr
Base structure for all record types.

rclBox
Bounding rectangle.

ptlStart
Coordinates of first radial ending point.

ptlEnd
Coordinates of second radial ending point.

See AlsoArc, ArcTo, Chord, Pie

EMRBITBLT
The EMRBITBLT structure contains members for the BitBlt enhanced metafile record. Note that
graphics device interface (GDI) converts the device-dependent bitmap into a device-independent
bitmap (DIB) before storing it in the metafile record.typedef struct tagEMRBITBLT
{

EMR emr;
RECTL rclBounds;
LONGxDest;
LONGyDest;
LONGcxDest;
LONGcyDest;
DWORD dwRop;
LONGxSrc;
LONGySrc;
XFORM xformSrc;
COLORREF crBkColorSrc;
DWORD iUsageSrc;
DWORD offBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;

} EMRBITBLT, *PEMRBITBLT;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
xDest

Logical x-coordinate of the upper-left corner of the destination rectangle.
yDest

Logical y-coordinate of the upper-left corner of the destination rectangle.
dwRop

Raster-operation code. These codes define how the color data of the source rectangle is to be
combined with the color data of the destination rectangle to achieve the final color.

xSrc
Logical x-coordinate of the upper-left corner of the source rectangle.

ySrc
Logical y-coordinate of the upper-left corner of the source rectangle.

xformSrc
World-space to page-space transformation of the source device context.

crBkColorSrc
Background color (the RGB value) of the source device context.

iUsageSrc
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc member can
be either the DIB_PAL_COLORS, DIB_PAL_INDICES or DIB_RGB_COLORS value.

offBmiSrc
Offset to source BITMAPINFO structure.

cbBmiSrc
Size of source BITMAPINFO structure.

offBitsSrc
Offset to source bitmap bits.

cbBitsSrc
Size of source bitmap bits.

See AlsoBitBlt, BITMAPINFO, RGB

EMRCREATEBRUSHINDIRECT
The EMRCREATEBRUSHINDIRECT structure contains members for the CreateBrushIndirect
enhanced metafile record.typedef struct tagEMRCREATEBRUSHINDIRECT
{

EMR emr;
DWORD ihBrush;
LOGBRUSH lb;

} EMRCREATEBRUSHINDIRECT, *PEMRCREATEBRUSHINDIRECT;
Membersemr

Base structure for all record types.
ihBrush

Index of brush in handle table.
lb

LOGBRUSH structure containing information about the brush. The lbStyle member must be
either the BS_SOLID, BS_HOLLOW, BS_NULL, or BS_HATCHED value.

See AlsoCreateBrushIndirect, LOGBRUSH

EMRCREATECOLORSPACE
The EMRCREATECOLORSPACE structure contains members for the CreateColorSpace
enhanced metafile record.typedef struct tagEMRCREATECOLORSPACE
{

EMR emr;
DWORD ihCS;
LOGCOLORSPACE lcs;

} EMRCREATECOLORSPACE, *PEMRCREATECOLORSPACE;
Membersemr

Base structure for all record types
ihCS

Index of the color cpace in handle table
lcs

Logical color space
See AlsoCreateColorSpace

EMRCREATEDIBPATTERNBRUSHPT
The EMRCREATEDIBPATTERNBRUSHPT structure contains members for the
CreateDIBPatternBrushPt enhanced metafile record. The BITMAPINFO structure is followed by
the bitmap bits that form a packed device-independent bitmap (DIB).typedef struct tagEMRCREATEDIBPATTERNBRUSHPT
{

EMR emr;
DWORD ihBrush;
DWORD iUsage;
DWORD offBmi;
DWORD cbBmi;
DWORD offBits;
DWORD cbBits;

} EMRCREATEDIBPATTERNBRUSHPT,
PEMRCREATEDIBPATTERNBRUSHPT;
Membersemr

Base structure for all record types.
ihBrush

Index of brush in handle table.
iUsage

Value specifying whether the bmiColors member of the BITMAPINFO structure was provided
and, if so, whether bmiColors contains explicit red, green, blue (RGB) values or indices. The
iUsage member must be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or
DIB_RGB_COLORS value.

offBmi
Offset to BITMAPINFO structure.

cbBmi
Size of BITMAPINFO structure.

offBits
Offset to bitmap bits.

cbBits
Size of bitmap bits.

See AlsoBITMAPINFO, CreateDIBPatternBrushPt, RGB

EMRCREATEMONOBRUSH
The EMRCREATEMONOBRUSH structure contains members for the CreatePatternBrush (when
passed a monochrome bitmap) or CreateDIBPatternBrush (when passed a monochrome DIB)
enhanced metafile records.typedef struct tagEMRCREATEMONOBRUSH
{

EMR emr;
DWORD ihBrush;
DWORD iUsage;
DWORD offBmi;
DWORD cbBmi;
DWORD offBits;
DWORD cbBits;

} EMRCREATEMONOBRUSH, *PEMRCREATEMONOBRUSH;
Membersemr

Base structure for all record types.
ihBrush

Index of brush in handle table.
iUsage

Value specifying whether the bmiColors member of the BITMAPINFO structure was provided
and, if so, whether bmiColors contains explicit red, green, blue (RGB) values or indices. The
iUsage member must be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or
DIB_RGB_COLORS value.

offBmi
Offset to BITMAPINFO structure.

cbBmi
Size of BITMAPINFO structure.

offBits
Offset to bitmap bits.

cbBits
Size of bitmap bits.

See AlsoBITMAPINFO, CreateDIBPatternBrush, CreatePatternBrush, RGB

EMRCREATEPALETTE
The EMRCREATEPALETTE structure contains members for the CreatePalette enhanced
metafile record.typedef struct tagEMRCREATEPALETTE
{

EMR emr;
DWORD ihPal;
LOGPALETTE lgpl;

} EMRCREATEPALETTE, *PEMRCREATEPALETTE;
Membersemr

Base structure for all record types.
ihPal

Index of palette in handle table.
lgpl

LOGPALETTE structure that contains information about the palette. Note that peFlags
members in the PALETTEENTRY structures do not contain any flags.

See AlsoCreatePalette, LOGPALETTE, PALETTEENTRY

EMRCREATEPEN
The EMRCREATEPEN structure contains members for the CreatePen enhanced metafile record.typedef struct tagEMRCREATEPEN
{

EMR emr;
DWORD ihPen;
LOGPEN lopn;

} EMRCREATEPEN, *PEMRCREATEPEN;
Membersemr

Base structure for all record types
ihPen

Index to pen in handle table
lopn

Logical pen
See AlsoCreatePen

EMRELLIPSE, EMRRECTANGLE
The EMRELLIPSE and EMARRECTANGLE structures contain members for the Ellipse and
Rectangle enhanced metafile records.typedef struct tagEMRELLIPSE
{

EMR emr;
RECTL rclBox;

} EMRELLIPSE, *PEMRELLIPSE,
EMRRECTANGLE, *PEMRRECTANGLE;

Membersemr
Base structure for all record types.

rclBox
Bounding rectangle.

See AlsoEllipse, Rectangle

EMREOF
The EMREOF structure contains data for the enhanced metafile record that indicates the end of
the metafile.typedef struct tagEMREOF
{

EMRemr;
DWORD nPalEntries;
DWORD offPalEntries;
DWORD nSizeLast;

} EMREOF, *PEMREOF;
Membersemr

Base structure for all record types.
nPalEntries

Number of palette entries.
offPalEntires

Offset to palette entries.
nSizeLast

Same size as the nSize member of the EMR structure. This member must be the last
doubleword of the record. If palette entries exist, they precede this member.

See AlsoEMR

EMREXCLUDECLIPRECT,
EMRINTERSECTCLIPRECT
The EMREXCLUDECLIPRECT and EMRINTERSECTCLIPRECTstructures contain members for
the ExcludeClipRect and IntersectClipRect enhanced metafile records.typedef struct tagEMREXCLUDECLIPRECT
{

EMR emr; // base structure for all record types
RECTL rclClip; // clipping rectangle

} EMREXCLUDECLIPRECT, *PEMREXCLUDECLIPRECT,
EMRINTERSECTCLIPRECT, *PEMRINTERSECTCLIPRECT;

Membersemr
Base structure for all record types.

rclClip
Clipping rectangle.

ExcludeClipRect, IntersectClipRect

EMREXTCREATEFONTINDIRECTW
The EMREXTCREATEFONTINDIRECTW structure contains members for the
CreateFontIndirect enhanced metafile record.typedef struct tagEMREXTCREATEFONTINDIRECTW
{

EMR emr;
DWORD ihFont;
EXTLOGFONTW elfw;

} EMREXTCREATEFONTINDIRECTW,
PEMREXTCREATEFONTINDIRECTW;
Membersemr

Base structure for all record types.
ihFont

Index to the font in handle table.
elfw

Logical font.
See AlsoCreateFontIndirect

EMREXTCREATEPEN
The EMREXTCREATEPEN structure contains members for the ExtCreatePen enhanced metafile
record. If the record contains a BITMAPINFO structure, it is followed by the bitmap bits that form a
packed device-independent bitmap (DIB).typedef struct tagEMREXTCREATEPEN
{

EMR emr;
DWORDihPen;
DWORDoffBmi;
DWORDcbBmi;
DWORDoffBits;
DWORDcbBits;
EXTLOGPEN elp;

} EMREXTCREATEPEN, *PEMREXTCREATEPEN;
Membersemr

Base structure for all record types.
ihPen

Index to pen in handle table.
offBmi

Offset to BITMAPINFO structure, if any.
cbBmi

Size of BITMAPINFO structure, if any.
offBits

Offset to brush bitmap bits, if any.
cbBits

Size of brush bitmap bits, if any.
elp

Extended logical pen, including the elpStyleEntry member of the EXTLOGPEN structure.
See AlsoBITMAPINFO, ExtCreatePen, EXTLOGPEN

EMREXTFLOODFILL
The EMREXTFLOODFILL structure contains members for the ExtFloodFill enhanced metafile
record.typedef struct tagEMREXTFLOODFILL
{

EMRemr;
POINTL ptlStart;
COLORREF crColor;
DWORD iMode;

} EMREXTFLOODFILL, *PEMREXTFLOODFILL;
Membersemr

Base structure for all record types.
ptlStart

Coordinates where filling begins.
crColor

Color of fill.
iMode

Type of fill operation to be performed. This member must be either the FLOODFILLBORDER
or FLOODFILLSURFACE value.

See AlsoExtFloodFill

EMREXTSELECTCLIPRGN
The EMREXTSELECTCLIPRGN structure contains members for the ExtSelectClipRgn
enhanced metafile record.typedef struct tagEMREXTSELECTCLIPRGN
{

EMR emr;
DWORD cbRgnData;
DWORD iMode;
BYTE RgnData[1]; //

} EMREXTSELECTCLIPRGN, *PEMREXTSELECTCLIPRGN;
Membersemr

Base structure for all record types.
cbRgnData

Size of region data, in bytes.
iMode

Operation to be performed. This member must be one of the following values: RGN_AND,
RGN_COPY, RGN_DIFF, RGN_OR, or RGN_XOR.

See AlsoExtSelectClipRgn

EMREXTTEXTOUTA, EMREXTTEXTOUTW
The EMREXTTEXTOUTA and EMREXTTEXTOUTW structures contain members for the
ExtTextOut, TextOut, or DrawText enhanced metafile records.typedef struct tagEMREXTTEXTOUTA
{

EMRemr;
RECTL rclBounds;
DWORD iGraphicsMode;
FLOAT exScale;
FLOAT eyScale;
EMRTEXT emrtext;

} EMREXTTEXTOUTA, *PEMREXTTEXTOUTA,
EMREXTTEXTOUTW, *PEMREXTTEXTOUTW;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

iGraphicsMode
Current graphics mode. This member can be either the GM_COMPATIBLE or
GM_ADVANCED value.

exScale
X-scaling factor from page units to .01mm units if the graphics mode is the
GM_COMPATIBLE value.

eyScale
Y-scaling factor from page units to .01mm units if the graphics mode is the
GM_COMPATIBLE value.

emrtext
EMRTEXT structure, which is followed by the string and the intercharacter spacing array.

See AlsoDrawText, ExtTextOut, TextOut, EMRTEXT

EMRFILLPATH, EMRSTROKEANDFILLPATH,
EMRSTROKEPATH
The EMRFILLPATH, EMRSTROKEANDFILLPATH, and EMRSTROKEPATH structures contain
members for the FillPath, StrokeAndFillPath, and StrokePath enhanced metafile records.typedef struct tagEMRFILLPATH
{

EMR emr;
RECTL rclBounds;

} EMRFILLPATH,*PEMRFILLPATH,
EMRSTROKEANDFILLPATH, *PEMRSTROKEANDFILLPATH,
EMRSTROKEPATH, *PEMRSTROKEPATH;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

See AlsoFillPath, StrokeAndFillPath, StrokePath

EMRFILLRGN
The EMRFILLRGN structure contains members for the FillRgn enhanced metafile record.typedef struct tagEMRFILLRGN
{

EMR emr;
RECTL rclBounds;
DWORD cbRgnData;
DWORD ihBrush;
BYTE RgnData[1];

} EMRFILLRGN, *PEMRFILLRGN;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
cbRgnData

Size of region data, in bytes.
ihBrush

Index of brush, in handle table.
RgnData

Buffer containing RGNDATA structure.
See AlsoFillRgn, RGNDATA

EMRFORMAT
The EMRFORMAT structure contains information that identifies graphics data in an enhanced
metafile. A GDICOMMENT_MULTIFORMATS enhanced metafile public comment contains an
array of EMRFORMAT structures.typedef struct tagEMRFORMAT {

DWORD dSignature;
DWORD nVersion;
DWORD cbData;
DWORD offData;

} EMRFORMAT;
MembersdSignature

Contains a picture format identifier. The following identifier values are defined:
Identifier Meaning
ENHMETA_SIGNATURE The picture is in enhanced metafile

format.
0x46535045 The picture is in encapsulated PostScript

file format.

nVersion
Contains a picture version number. The following version number value is defined:

Version Meaning
1 This is the version number of a level 1 encapsulated

PostScript file.

cbData
Specifies the size, in bytes, of the picture data.

offData
Specifies an offset to the picture data. The offset is figured from the start of the
GDICOMMENT_MULTIFORMATS public comment within which this EMRFORMAT structure
is embedded. The offset must be a DWORD offset.

RemarksGdiComment discusses enhanced metafile public comments in general, and the
GDICOMMENT_MULTIFORMATS public comment in particular.See AlsoGdiComment

EMRFRAMERGN
The EMRFRAMERGN structure contains members for the FrameRgn enhanced metafile record.typedef struct tagEMRFRAMERGN
{

EMR emr;
RECTL rclBounds;
DWORD cbRgnData;
DWORD ihBrush;
SIZEL szlStroke;
BYTE RgnData[1];

} EMRFRAMERGN, *PEMRFRAMERGN;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
cbRgnData

Size of region data, in bytes.
ihBrush

Index of brush, in handle table.
szlStroke

Width and height of region frame.
RgnData

Buffer containing RGNDATA structure.
See AlsoFrameRgn, RGNDATA

EMRGDICOMMENT
The EMRGDICOMMENT structure contains application-specific data. This enhanced metafile
record is only meaningful to applications that know the format of the data and how to utilize it. This
record is ignored by graphics device interface (GDI) during playback of the enhanced metafile.typedef struct tagEMRGDICOMMENT
{

EMR emr;
DWORD cbData;
BYTE Data[1];

} EMRGDICOMMENT, *PEMRGDICOMMENT;
Membersemr

Base structure for all record types.
cbData

Size of data buffer, in bytes.
Data[1]

Application-specific data.

EMRINVERTRGN, EMRPAINTRGN
The EMRINVERTRGN and EMRPAINTRGN structures contain members for the InvertRgn and
PaintRgn enhanced metafile records.typedef struct tagEMRINVERTRGN
{

EMR emr;
RECTL rclBounds;
DWORD cbRgnData;
BYTE RgnData[1];

} EMRINVERTRGN, *PEMRINVERTRGN,
EMRPAINTRGN, *PEMRPAINTRGN;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

cbRgnData
Size of region data, in bytes.

RgnData
Buffer containing RGNDATA structure.

See AlsoInvertRgn, PaintRgn

EMRLINETO, EMRMOVETOEX
The EMRLINETO and EMRMOVETOEX structures contains members for the LineTo and
MoveToEx enhanced metafile records.typedef struct tagEMRLINETO
{

EMR emr;
POINTL ptl;

} EMRLINETO, *PEMRLINETO,
EMRMOVETOEX, *PEMRMOVETOEX;

Membersemr
Base structure for all record types.

ptl
Coordinates of the line's ending point for the LineTo function or coordinates of the new
current position for the MoveToEx function.

See AlsoLineTo, MoveToEx

EMRMASKBLT
The EMRMASKBLT structure contains members for the MaskBlt enhanced metafile record. Note
that graphics device interface (GDI) converts the device-dependent bitmap into a device-
independent bitmap (DIB) before storing it in the metafile record.typedef struct tagEMRMASKBLT
{

EMRemr;
RECTL rclBounds;
LONG xDest;
LONG yDest;
LONG cxDest;
LONG cyDest;
DWORD dwRop;
LONG xSrc;
LONG ySrc;
XFORM xformSrc;
COLORREF crBkColorSrc;
DWORD iUsageSrc;
DWORD offBmiSrc;
DWORD cbBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;
LONG xMask;
LONG yMask;
DWORD iUsageMask;
DWORD offBmiMask;
DWORD cbBmiMask;
DWORD offBitsMask;
DWORD cbBitsMask;

} EMRMASKBLT, *PEMRMASKBLT;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
xDest

Logical x-coordinate of the upper-left corner of the destination rectangle.
yDest

Logical y-coordinate of the upper-left corner of the destination rectangle.
cxDest

Logical width of destination rectangle
cyDest

Logical height of destination rectangle
dwRop

Raster-operation code. These codes define how the color data of the source rectangle is to be
combined with the color data of the destination rectangle to achieve the final color.

xSrc
Logical x-coordinate of the upper-left corner of the source rectangle.

ySrc
Logical y-coordinate of the upper-left corner of the source rectangle.

xformSrc
World-space to page-space transformation of the source device context.

crBkColorSrc
Background color (the RGB value) of the source device context.

iUsageSrc
Value of the bmiColors member of the source BITMAPINFO structure. The iUsageSrc
member can be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or DIB_RGB_COLORS
value.

offBmiSrc
Offset to source BITMAPINFO structure.

cbBmiSrc
Size of source BITMAPINFO structure.

offBitsSrc
Offset to source bitmap bits.

cbBitsSrc
Size of source bitmap bits.

xMask
Horizontal pixel offset into mask bitmap

yMask
Vertical pixel offset into mask bitmap

iUsageMask
Value of the bmiColors member of the mask BITMAPINFO structure.

offBmiMask
Offset to mask BITMAPINFO structure.

cbBmiMask
Size of mask BITMAPINFO structure.

offBitsMask
Offset to mask bitmap bits.

cbBitsMask
Size of mask bitmap bits.

See AlsoBITMAPINFO, MaskBlt, RGB

EMRMODIFYWORLDTRANSFORM
The EMRMODIFYWORLDTRANSFORM structure contains members for the
ModifyWorldTransform enhanced metafile record.typedef struct tagEMRMODIFYWORLDTRANSFORM
{

EMR emr;
XFORM xform;
DWORD iMode;

transformation
} EMRMODIFYWORLDTRANSFORM,
PEMRMODIFYWORLDTRANSFORM;
Membersemr

Base structure for all record types.
xform

World-space to page-space transformation data.
iMode

Value specifying how the transformation data modifies the current world transformation. This
member can be one of the following values: MWT_IDENTITY, MWT_LEFTMULTIPLY, or
MWT_RIGHTMULTIPLY.

See AlsoModifyWorldTransform

EMROFFSETCLIPRGN
The EMROFFSETCLIPRGN structure contains members for the OffsetClipRgn enhanced
metafile record.typedef struct tagEMROFFSETCLIPRGN
{

EMR emr;
POINTL ptlOffset;

} EMROFFSETCLIPRGN, *PEMROFFSETCLIPRGN;
Membersemr

Base structure for all record types.
ptlOffset

Logical coordinates of offset.
See AlsoOffsetClipRgn

EMRPLGBLT
The EMRPLGBLT structure contains members for the PlgBlt enhanced metafile record. Note that
graphics device interface (GDI) converts the device-dependent bitmap into a device-independent
bitmap (DIB) before storing it in the metafile record.typedef struct tagEMRPLGBLT
{

EMR emr;
RECTL rclBounds;
POINTL aptlDest[3];
LONG xSrc;
LONG ySrc;
LONGcxSrc;
LONGcySrc;
XFORM xformSrc;
COLORREF crBkColorSrc;
DWORD iUsageSrc;
DWORD offBmiSrc;
DWORD cbBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;
LONG xMask;
LONG yMask;
DWORD iUsageMask;
DWORD offBmiMask;
DWORD cbBmiMask;
DWORD offBitsMask;
DWORD cbBitsMask;

} EMRPLGBLT, *PEMRPLGBLT;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
aptlDest

Array of three points in logical space that identify three corners of the destination
parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this
array, the upper-right corner to the second point in this array, and the lower-left corner to the
third point. The lower-right corner of the source rectangle is mapped to the implicit fourth point
in the parallelogram.

xSrc
Logical x-coordinate of the upper-left corner of the source rectangle.

ySrc
Logical y-coordinate of the upper-left corner of the source rectangle.

cxSrc
Logical width of source

cySrc
Logical height of source

xformSrc
World-space to page-space transformation of the source device context.

crBkColorSrc
Background color (the RGB value) of the source device context.

iUsageSrc
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc member can
be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or DIB_RGB_COLORS value.

offBmiSrc
Offset to source BITMAPINFO structure.

cbBmiSrc
Size of source BITMAPINFO structure.

offBitsSrc
Offset to source bitmap bits.

cbBitsSrc
Size of source bitmap bits.

xMask
Horizontal pixel offset into mask bitmap.

yMask
Vertical pixel offset into mask bitmap.

iUsageMask
Value of the bmiColors member of the mask BITMAPINFO structure.

offBmiMask
Offset to mask BITMAPINFO structure.

cbBmiMask
Size of mask BITMAPINFO structure.

offBitsMask
Offset to mask bitmap bits.

cbBitsMask
Size of mask bitmap bits.

See AlsoBITMAPINFO, PlgBlt, RGB

EMRPOLYDRAW
The EMRPOLYDRAW structure contains members for the PolyDraw enhanced metafile record.typedef struct tagEMRPOLYDRAW
{

EMR emr;
RECTL rclBounds;
DWORD cptl;
POINTL aptl[1];
BYTE abTypes[1];

} EMRPOLYDRAW, *PEMRPOLYDRAW;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
cptl

Number of points.
aptl

Array of 32-bit points.
abTypes

Array of values that specifies how each point in the aptl array is used. This member can be
one of the following values: PT_MOVETO, PT_LINETO, or PT_BEZIERTO. The PT_LINETO
or PT_BEZIERTO value can be combined with the PT_CLOSEFIGURE value by using the
bitwise-xOR operator.

See AlsoPolyDraw

EMRPOLYDRAW16
The EMRPOLYDRAW16 structure contains members for the PolyDraw enhanced metafile
record.typedef struct tagEMRPOLYDRAW16
{

EMR emr;
RECTL rclBounds;
DWORD cpts;
POINTS apts[1];
BYTE abTypes[1];

} EMRPOLYDRAW16, *PEMRPOLYDRAW16;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
cpts

Number of points.
apts

Array of 16-bit points.
abTypes

Array of values that specifies how each point in the apts array is used. This member can be
one of the following values: PT_MOVETO, PT_LINETO, or PT_BEZIERTO. The PT_LINETO
or PT_BEZIERTO value can be combined with the PT_CLOSEFIGURE value by using the
bitwise-OR operator.

See AlsoPolyDraw

EMRPOLYLINE, EMRPOLYBEZIER,
EMRPOLYGON, EMRPOLYBEZIERTO,
EMRPOLYLINETO
The EMRPOLYLINE, EMRPOLYBEZIER, EMRPOLYGON, EMRPOLYBEZIERTO, and
EMRPOLYLINETO structures contain members for the Polyline, PolyBezier, Polygon,
PolyBezierTo, and PolylineTo enhanced metafile records.typedef struct tagEMRPOLYLINE
{

EMR emr;
RECTL rclBounds;
DWORD cptl;
POINTL aptl[1];

} EMRPOLYLINE,*PEMRPOLYLINE,
EMRPOLYBEZIER, *PEMRPOLYBEZIER,
EMRPOLYGON, *PEMRPOLYGON,
EMRPOLYBEZIERTO, *PEMRPOLYBEZIERTO,
EMRPOLYLINETO, *PEMRPOLYLINETO;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

cptl
Number of points array.

aptl
Array of 32-bit points.

See AlsoPolyBezier, PolyBezierTo, Polygon, Polyline, PolylineTo

EMRPOLYLINE16, EMRPOLYBEZIER16,
EMRPOLYGON16, EMRPOLYBEZIERTO16,
EMRPOLYLINETO16
The EMRPOLYLINE16, EMRPOLYBEZIER16, EMRPOLYGON16, EMRPOLYBEZIERTO16, and
EMRPOLYLINETO16 structures contain members for the Polyline, PolyBezier, Polygon,
PolyBezierTo, and PolylineTo enhanced metafile records.typedef struct tagEMRPOLYLINE
{

EMR emr;
RECTL rclBounds;
DWORD cpts;
POINTL apts[1];

} EMRPOLYLINE16,*PEMRPOLYLINE16,
EMRPOLYBEZIER16, *PEMRPOLYBEZIER16,
EMRPOLYGON16, *PEMRPOLYGON16,
EMRPOLYBEZIERTO16, *PEMRPOLYBEZIERTO16,
EMRPOLYLINETO16, *PEMRPOLYLINETO16;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

cpts
Number of points in the array.

apts
Array of 16-bit points.

See AlsoPolyBezier, PolyBezierTo, Polygon, Polyline, PolylineTo

EMRPOLYPOLYLINE, EMRPOLYPOLYGON
The EMRPOLYPOLYLINE and EMRPOLYPOLYGON structures contain members for the
PolyPolyline and PolyPolygon enhanced metafile records.typedef struct tagEMRPOLYPOLYLINE
{

EMRemr;
RECTL rclBounds;
DWORD nPolys;
DWORD cptl;
DWORD aPolyCounts[1];
POINTL aptl[1];

} EMRPOLYPOLYLINE, *PEMRPOLYPOLYLINE,
EMRPOLYPOLYGON, *PEMRPOLYPOLYGON;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

nPolys
Number of polys.

cpt1
Total number of points in all polys.

aPolyCounts
Array of point counts for each poly.

aptl
Array of 32-bit points.

See AlsoPolyPolyline, PolyPolygon

EMRPOLYPOLYLINE16,
EMRPOLYPOLYGON16
The EMRPOLYPOLYLINE16 and EMRPOLYPOLYGON16 structures contain members for the
PolyPolyline and PolyPolygon enhanced metafile records.typedef struct tagEMRPOLYPOLYLINE16
{

EMRemr;
RECTL rclBounds;
DWORD nPolys;
DWORD cpts;
DWORD aPolyCounts[1];
POINTS apts[1];

} EMRPOLYPOLYLINE16, *PEMRPOLYPOLYLINE16,
EMRPOLYPOLYGON16, *PEMRPOLYPOLYGON16;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

nPolys
Number of polys.

cpt1
Total number of points in all polys.

aPolyCounts
Array of point counts for each poly.

aptl
Array of 16-bit points.

See AlsoPolyPolyline, PolyPolygon

EMRPOLYTEXTOUTA, EMRPOLYTEXTOUTW
The EMRPOLYTEXTOUTA and EMRPOLYTEXTOUTW structures contain members for the
PolyTextOut enhanced metafile record.typedef struct tagEMRPOLYTEXTOUTA
{

EMRemr;
RECTL rclBounds;
DWORD iGraphicsMode;
FLOAT exScale;
FLOAT eyScale;
LONG cStrings;
EMRTEXT aemrtext[1];

} EMRPOLYTEXTOUTA, *PEMRPOLYTEXTOUTA,
EMRPOLYTEXTOUTW, *PEMRPOLYTEXTOUTW;

Membersemr
Base structure for all record types.

rclBounds
Bounding rectangle, in device units.

iGraphicsMode
Current graphics mode. This member can be either the GM_COMPATIBLE or
GM_ADVANCED value.

exScale
X-scaling factor from page units to .01mm units if the graphics mode is the
GM_COMPATIBLE value.

eyScale
Y-scaling factor from page units to .01mm units if the graphics mode is the
GM_COMPATIBLE value.

cStrings
Number of strings.

aemrtext
EMRTEXT structure, which is followed by the string and the intercharacter spacing array.

See AlsoEMRTEXT

EMRRESIZEPALETTE
The EMRRESIZEPALETTE structure contains members for the ResizePalette enhanced metafile
record.typedef struct tagEMRRESIZEPALETTE
{

EMR emr;
DWORD ihPal;
DWORD cEntries;

} EMRRESIZEPALETTE, *PEMRRESIZEPALETTE;
Membersemr

Base structure for all record types.
ihPal

Index of palette in handle table.
cEntries

Number of entries in palette after resizing.
See AlsoResizePalette

EMRRESTOREDC
The EMRRESTOREDC structure contains members for the RestoreDC enhanced metafile
record.typedef struct tagEMRRESTOREDC
{

EMR emr;
LONG iRelative;

} EMRRESTOREDC, *PEMRRESTOREDC;
Membersemr

Base structure for all record types.
iRelative

Relative instance to restore.
See AlsoRestoreDC

EMRROUNDRECT
The EMRROUNDRECT structure contains members for the RoundRect enhanced metafile
record.typedef struct tagEMRROUNDRECT
{

EMR emr;
RECTL rclBox;
SIZEL szlCorner;

} EMRROUNDRECT, *PEMRROUNDRECT;
Membersemr

Base structure for all record types.
szlCorner

Width and height of the ellipse used to draw rounded corners.
See AlsoRoundRect

EMRSCALEVIEWPORTEXTEX,
EMRSCALEWINDOWEXTEX
The EMRSCALEVIEWPORTEXTEX and EMRSCALEWINDOWEXTEX structures contain
members for the ScaleViewportExtEx and ScaleWindowExtEx enhanced metafile records.typedef struct tagEMRSCALEVIEWPORTEXTEX
{

EMR emr;
LONG xNum;
LONG xDenom;
LONG yNum;
LONG yDenom;

} EMRSCALEVIEWPORTEXTEX, *PEMRSCALEVIEWPORTEXTEX,
EMRSCALEWINDOWEXTEX, *PEMRSCALEWINDOWEXTEX;

Membersemr
Base structure for all record types.

xNum
Horizontal multiplicand.

xDenom
Horizontal divisor.

yNum
Vertical multiplicand.

yDenom
Vertical divisor.

See AlsoScaleViewportExtEx, ScaleWindowExtEx

EMRSELECTCOLORSPACE,
EMRDELETECOLORSPACE
The EMRSELECTCOLORSPACE and EMRDELETECOLORSPACE structures contain members
for the SelectColorSpace and DeleteColorSpace enhanced metafile records.typedef struct tagEMRSELECTCOLORSPACE
{

EMRemr;
DWORD ihCS;

} EMRSELECTCOLORSPACE, *PEMRSELECTCOLORSPACE,
EMRDELETECOLORSPACE, *PEMRDELETECOLORSPACE;

Membersemr
Base structure for all record types.

ihCS
Color space handle index.

See AlsoDeleteColorSpace

EMRSELECTOBJECT, EMRDELETEOBJECT
The EMRSELECTOBJECT and EMRDELETEOBJECT structures contain members for the
SelectObject and DeleteObject enhanced metafile records.typedef struct tagEMRSELECTOBJECT
{

EMR emr;
DWORD ihObject;

} EMRSELECTOBJECT, *PEMRSELECTOBJECT,
EMRDELETEOBJECT, *PEMRDELETEOBJECT;

Membersemr
Base structure for all record types.

ihObject
Index of object in handle table.

See AlsoSelectObject, DeleteObject

EMRSELECTPALETTE
The EMRSELECTPALETTE structure contains members for the SelectPalette enhanced metafile
record. Note that the bForceBackground parameter in SelectPalette is always recorded as TRUE,
which causes the palette to be realized as a background palette.typedef struct tagEMRSELECTPALETTE
{

EMR emr;
DWORD ihPal;

} EMRSELECTPALETTE, *PEMRSELECTPALETTE;
Membersemr

Base structure for all record types.
ihPal

Index to logical palette in handle table.
See AlsoSelectPalette

EMRSETARCDIRECTION
The EMRSETARCDIRECTION structure contains members for the SetArcDirection enhanced
metafile record.typedef struct tagEMRSETARCDIRECTION
{

EMR emr;
DWORD iArcDirection;

} EMRSETARCDIRECTION, *PEMRSETARCDIRECTION;
Membersemr

Base structure for all record types.
iArcDirection

Arc direction. This member can be either the AD_CLOCKWISE or
AD_COUNTERCLOCKWISE value.

See AlsoArc, SetArcDirection

EMRSETBKCOLOR, EMRSETTEXTCOLOR
The EMRSETBKCOLOR and EMRSETTEXTCOLOR structures contain members for the
SetBkColor and SetTextColor enhanced metafile records.typedef struct tagEMRSETTEXTCOLOR
{

EMR emr;
COLORREF crColor;

} EMRSETBKCOLOR, *PEMRSETBKCOLOR,
EMRSETTEXTCOLOR, *PEMRSETTEXTCOLOR;

Membersemr
Base structure for all record types.

crColor
Color value.

See AlsoSetBkColor, SetTextColor

EMRSETCOLORADJUSTMENT
The EMRSETCOLORADJUSTMENT structure contains members for the SetColorAdjustment
enhanced metafile record.typedef struct tagEMRSETCOLORADJUSTMENT
{

EMR emr;
COLORADJUSTMENT ColorAdjustment;

} EMRSETCOLORADJUSTMENT, *PEMRSETCOLORADJUSTMENT;
Membersemr

Base structure for all record types.
ColorAdjustment

COLORADJUSTMENT structure.
See AlsoSetColorAdjustment

EMRSETDIBITSTODEVICE
The EMRSETDIBITSTODEVICE structure contains members for the SetDIBitsToDevice
enhanced metafile record.typedef struct tagEMRSETDIBITSTODEVICE
{

EMR emr;
RECTL rclBounds;
LONG xDest;
LONG yDest;
LONG xSrc;
LONG ySrc;
LONG cxSrc;
LONG cySrc;
DWORD offBmiSrc;
DWORD cbBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;
DWORD iUsageSrc;
DWORD iStartScan;
DWORD cScans;

} EMRSETDIBITSTODEVICE, *PEMRSETDIBITSTODEVICE;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
xDest

Logical x-coordinate of the upper-left corner of the destination rectangle.
yDest

Logical y-coordinate of the upper-left corner of the destination rectangle.
xSrc

Logical x-coordinate of the lower-left corner of the source device-independent bitmap (DIB).
ySrc

Logical y-coordinate of the lower-left corner of the source DIB.
cxSrc

Width of source rectangle.
cyScr

Height of source rectangle.
offBmiSrc

Offset to source BITMAPINFO structure.
cbBmiSrc

Size of source BITMAPINFO structure.
offBitsSrc

Offset to source bitmap bits.
cbBitsSrc

Size of source bitmap bits.
iUsageSrc

Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc member can
be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or DIB_RGB_COLORS value.

iStartScan
First scan line in array.

cScans
Number of scan lines.

See AlsoBITMAPINFO, SetDIBitsToDevice

EMRSETMAPPERFLAGS
The EMRSETMAPPERFLAGS structure contains members for the SetMapperFlags enhanced
metafile record.typedef struct tagEMRSETMAPPERFLAGS
{

EMR emr;
DWORD dwFlags;

} EMRSETMAPPERFLAGS, *PEMRSETMAPPERFLAGS;
Membersemr

Base structure for all record types.
dwFlags

Font mapper flag.
See AlsoSetMapperFlags

EMRSETMITERLIMIT
The EMRSETMITERLIMIT structure contains members for the SetMiterLimit enhanced metafile
record.typedef struct tagEMRSETMITERLIMIT
{

EMR emr;
FLOAT eMiterLimit;

} EMRSETMITERLIMIT, *PEMRSETMITERLIMIT;
Membersemr

Base structure for all record types.
eMiterLimit

New miter limit.
See AlsoSetMiterLimit

EMRSETPALETTEENTRIES
The EMRSETPALETTEENTRIES structure contains members for the SetPaletteEntries
enhanced metafile record.typedef struct tagEMRSETPALETTEENTRIES
{

EMRemr;
DWORD ihPal;
DWORD iStart;
DWORD cEntries;
PALETTEENTRY aPalEntries[1];

} EMRSETPALETTEENTRIES, *PEMRSETPALETTEENTRIES;
Membersemr

Base structure for all record types.
ihPal

Palette handle index.
iStart

Index of first entry to set.
cEntries

Number of entries.
aPalEntries

Array of PALETTEENTRY structures. Note that peFlags members in the structures do not
contain any flags.

See AlsoPALETTEENTRY, SetPaletteEntries

EMRSETPIXELV
The EMRSETPIXELV structure contains members for the SetPixelV enhanced metafile record.
When an enhanced metafile is created, calls to SetPixel are also recorded in this record.typedef struct tagEMRSETPIXELV
{

EMRemr;
POINTL ptlPixel;
COLORREF crColor;

} EMRSETPIXELV, *PEMRSETPIXELV;
Membersemr

Base structure for all record types.
ptlPixel

Logical coordinates of pixel.
crColor

Color value.
See AlsoSetPixelV, SetPixel

EMRSETVIEWPORTEXTEX,
EMRSETWINDOWEXTEX
The EMRSETVIEWPORTEXTEX and EMRSETWINDOWEXTEX structures contains members for
the SetViewportExtEx and SetWindowExtEx enhanced metafile records.typedef struct tagEMRSETVIEWPORTEXTEX
{

EMR emr;
SIZEL szlExtent;

} EMRSETVIEWPORTEXTEX, *PEMRSETVIEWPORTEXTEX,
EMRSETWINDOWEXTEX, *PEMRSETWINDOWEXTEX;

Membersemr
Base structure for all record types.

szlExtent
Horizontal and vertical extents. For SetViewportExtEx, the extents are in device units, and
for SetWindowExtEx, the extents are in logical units.

See AlsoSetViewportExtEx, SetWindowExtEx

EMRSETVIEWPORTORGEX,
EMRSETWINDOWORGEX,
EMRSETBRUSHORGEX
The EMRSETVIEWPORTORGEX, EMRSETWINDOWORGEX, and EMRSETBRUSHORGEX
structures contain members for the SetViewportOrgEx, SetWindowOrgEx, and SetBrushOrgEx
enhanced metafile records.typedef struct tagEMRSETVIEWPORTORGEX
{

EMR emr;
POINTL ptlOrigin;

} EMRSETVIEWPORTORGEX, *PEMRSETVIEWPORTORGEX,
EMRSETWINDOWORGEX, *PEMRSETWINDOWORGEX,
EMRSETBRUSHORGEX, *PEMRSETBRUSHORGEX;

Membersemr
Base structure for all record types.

ptlOrigin
Coordinate of origin.

See AlsoSetBrushOrgEx, SetViewportOrgEx, SetWindowOrgEx

EMRSETWORLDTRANSFORM
The EMRSETWORLDTRANSFORM structure contains members for the SetWorldTransform
enhanced metafile record.typedef struct tagEMRSETWORLDTRANSFORM
{

EMR emr;
XFORM xform;

} EMRSETWORLDTRANSFORM, *PEMRSETWORLDTRANSFORM;
Membersemr

Base structure for all record types.
xform

World-space to page-space transformation data.
See AlsoSetWorldTransform

EMRSTRETCHBLT
The EMRSTRETCHBLT structure contains members for the StretchBlt enhanced metafile
record. Note that graphics device interface (GDI) converts the device-dependent bitmap into a
device-independent bitmap (DIB) before storing it in the metafile record.typedef struct tagEMRSTRETCHBLT
{

EMR emr;
RECTL rclBounds;
LONGxDest;
LONGyDest;
LONGcxDest;
LONGcyDest;
DWORD dwRop;
LONGxSrc;
LONGySrc;
XFORM xformSrc;
COLORREF crBkColorSrc;
DWORD iUsageSrc;
DWORD offBmiSrc;
DWORD cbBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;
LONGcxSrc;
LONGcySrc;

} EMRSTRETCHBLT, *PEMRSTRETCHBLT;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
xDest

Logical x-coordinate of the upper-left corner of the destination rectangle.
yDest

Logical y-coordinate of the upper-left corner of the destination rectangle.
cxDest

Logical width of destination rectangle
cyDest

Logical height of destination rectangle
dwRop

Raster-operation code. These codes define how the color data of the source rectangle is to be
combined with the color data of the destination rectangle to achieve the final color.

xSrc
Logical x-coordinate of the upper-left corner of the source rectangle.

ySrc
Logical y-coordinate of the upper-left corner of the source rectangle.

xformSrc
World-space to page-space transformation of the source device context.

crBkColorSrc
Background color (the RGB value) of the source device context.

iUsageSrc
Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc member can
be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or DIB_RGB_COLORS value.

offBmiSrc
Offset to source BITMAPINFO structure.

cbBmiSrc
Size of source BITMAPINFO structure.

offBitsSrc
Offset to source bitmap bits.

cbBitsSrc
Size of source bitmap bits.

cxSrc
Width of source rectangle.

cySrc
Height of source rectangle.

See AlsoBITMAPINFO, RGB, StretchBlt

EMRSTRETCHDIBITS
The EMRSTRETCHDIBITS structure contains members for the StretchDIBits enhanced metafile
record.typedef struct tagEMRSTRETCHDIBITS
{

EMR emr;
RECTL rclBounds;
LONG xDest;
LONG yDest;
LONG xSrc;
LONG ySrc;
LONG cxSrc;
LONG cySrc;
DWORD offBmiSrc;
DWORD cbBmiSrc;
DWORD offBitsSrc;
DWORD cbBitsSrc;
DWORD iUsageSrc;
DWORD dwRop;
LONG cxDest;
LONG cyDest;

} EMRSTRETCHDIBITS, *PEMRSTRETCHDIBITS;
Membersemr

Base structure for all record types.
rclBounds

Bounding rectangle, in device units.
xDest

Logical x-coordinate of the upper-left corner of the destination rectangle.
yDest

Logical y-coordinate of the upper-left corner of the destination rectangle.
xSrc

Logical x-coordinate of the upper-left corner of the source rectangle.
ySrc

Logical y-coordinate of the upper-left corner of the source rectangle.
cxSrc

Width of source rectangle.
cyScr

Height of source rectangle.
offBmiSrc

Offset to source BITMAPINFO structure.
cbBmiSrc

Size of source BITMAPINFO structure.
offBitsSrc

Offset to source bitmap bits.
cbBitsSrc

Size of source bitmap bits.
iUsageSrc

Value of the bmiColors member of the BITMAPINFO structure. The iUsageSrc member can
be either the DIB_PAL_COLORS, DIB_PAL_INDICES, or DIB_RGB_COLORS value.

dwRop
Raster-operation code. These codes define how the color data of the source rectangle is to be
combined with the color data of the destination rectangle to achieve the final color.

cxDest
Logical width of destination rectangle

cyDest
Logical height of destination rectangle

See AlsoBITMAPINFO, StretchDIBits

EMRTEXT
The EMRTEXT structure contains members for text output.typedef struct tagEMRTEXT
{

POINTL ptlReference;
DWORD nChars;
DWORD offString;
DWORD fOptions;
RECTL rcl;
DWORD offDx;

} EMRTEXT, *PEMRTEXT;
MembersptlReference

Logical coordinates of the reference point used to position the string.
nChars

Number of characters in string.
offString

Offset to string.
fOptions

Value specifying how to use the application-defined rectangle. This member can be a
combination of the ETO_CLIPPED and ETO_OPAQUE values.

rcl
Optional clipping and/or opaquing rectangle.

offDx
Offset to intercharacter spacing array.

RemarksThe EMRTEXT structure is used as a member in the EMREXTTEXTOUT and
EMRPOLYTEXTOUT structures.

Enhanced Metafile Records with No Parameters
typedef struct tagABORTPATH{

EMR emr;
} EMRABORTPATH, *PEMRABORTPATH,
EMRBEGINPATH, *PEMRBEGINPATH,
EMRENDPATH, *PEMRENDPATH,
EMRCLOSEFIGURE, *PEMRCLOSEFIGURE,
EMRFLATTENPATH, *PEMRFLATTENPATH,
EMRWIDENPATH, *PEMRWIDENPATH,
EMRSETMETARGN,*PEMRSETMETARGN,
EMRSAVEDC, *PEMRSAVEDC,
EMRREALIZEPALETTE, *PEMRREALIZEPALETTE;Contains data for the AbortPath, BeginPath, EndPath, CloseFigure, FlattenPath, WidenPath,

SetMetaRgn, SaveDC, and RealizePalette enhanced metafile records.

Enhanced Metafile Records with One Parameter
Contains parameters for the SelectClipPath, SetBkMode, SetPolyFillMode, SetROP2,
SetStretchBltMode, SetTextAlign, and EnableICM enhanced metafile records.typedef struct tagEMRSELECTCLIPPATH
{

EMR emr;
DWORD iMode;

} EMRSELECTCLIPPATH, *PEMRSELECTCLIPPATH,
EMRSETBKMODE, *PEMRSETBKMODE,
EMRSETMAPMODE, *PEMRSETMAPMODE,
EMRSETPOLYFILLMODE, *PEMRSETPOLYFILLMODE,
EMRSETROP2, *PEMRSETROP2,
EMRSETSTRETCHBLTMODE, *PEMRSETSTRETCHBLTMODE,
EMRSETTEXTALIGN,

*PEMRSETTEXTALIGN,
EMRENABLEICM,

*PEMRENABLEICM
Membersemr

Base structure for all record types.
iMode

Value and meaning that varies depending on the function contained in the enhanced metafile
record. For a description of this member, see the documentation of the functions contained in
this record .

See AlsoSelectClipPath, SetBkMode, SetPolyFillMode, SetROP2, SetStretchBltMode, SetTextAlign

ENCORRECTTEXT
Contains information about the selected text to be corrected.typedef struct _encorrecttext {

NMHDR nmhdr;// notification header
CHARRANGE chrg; // current selection
WORD seltyp;// selection type

} ENCORRECTTEXT;
Membersseltyp

Value specifying the contents of the new selection. This member is SEL_EMPTY if the
selection is empty or one or more of the following values:

Value Meaning
SEL_TEXT Text
SEL_OBJECT At least one OLE object
SEL_MULTICHAR More than one character of text
SEL_MULTIOBJECT More than one OLE object

ENDROPFILES
The ENDDROPFILES structure contains information associated with an EN_DROPFILES
notification message. A rich edit control sends this notification message when it receives a
WM_DROPFILES message.typedef struct _endropfiles {

NMHDR nmhdr;
HANDLE hDrop;
LONG cp;
BOOL fProtected;

} ENDROPFILES;
Membersnmhdr

Notification header.
hDrop

Handle to the dropped files list (same as with WM_DROPFILES). This handle is used with the
DragFinish, DragQueryFile, and DragQueryPoint functions.

cp
Character position at which the dropped files would be inserted.

fProtected
Boolean value specifying whether the specified character position is protected (TRUE) or not
protected (FALSE).

See AlsoDragFinish, DragQueryFile, DragQueryPoint, EN_DROPFILES, WM_DROPFILES

ENHMETAHEADER
The ENHMETAHEADER structure contains enhanced-metafile data such as the dimensions of
the picture stored in the enhanced metafile, the count of records in the enhanced metafile, the
resolution of the device on which the picture was created, and so on.

This structure is always the first record in an enhanced metafile.typedef struct tagENHMETAHEADER { // enmh
DWORD iType;
DWORD nSize;
RECTL rclBounds;
RECTL rclFrame;
DWORD dSignature;
DWORD nVersion;
DWORD nBytes;
DWORD nRecords;
WORD nHandles;
WORD sReserved;
DWORD nDescription;
DWORD offDescription;
DWORD nPalEntries;
SIZEL szlDevice;
SIZEL szlMillimeters;
DWORD cbPixelFormat;
DWORD offPixelFormat;
DWORD bOpenGL;

} ENHMETAHEADER;
MembersiType

Specifies the record type. This member must specify the value assigned to the
EMR_HEADER constant.

nSize
Specifies the structure size, in bytes.

rclBounds
Specifies the dimensions, in device units, of the smallest rectangle that can be drawn around
the picture stored in the metafile. This rectangle is supplied by graphics device interface (GDI)
. Its dimensions include the right and bottom edges.

rclFrame
Specifies the dimensions, in .01 millimeter units, of a rectangle that surrounds the picture
stored in the metafile. This rectangle must be supplied by the application that creates the
metafile. Its dimensions include the right and bottom edges.

dSignature
Specifies a doubleword signature. This member must specify the value assigned to the
ENHMETA_SIGNATURE constant.

nVersion
Specifies the metafile version. The current version value is 0x10000.

nBytes
Specifies the size of the enhanced metafile, in bytes.

nRecords
Specifies the number of records in the enhanced metafile.

nHandles
Specifies the number of handles in the enhanced-metafile handle table. (Index zero in this
table is reserved.)

sReserved
Reserved; must be zero.

nDescription
Specifies the number of characters in the array that contains the description of the enhanced
metafile's contents. This member should be set to zero if the enhanced metafile does not
contain a description string.

offDescription
Specifies the offset from the beginning of the ENHMETAHEADER structure to the array that
contains the description of the enhanced metafile's contents. This member should be set to
zero if the enhanced metafile does not contain a description string.

nPalEntries
Specifies the number of entries in the enhanced metafile's palette.

szlDevice
Specifies the resolution of the reference device, in pixels.

szlMillimeters
Specifies the resolution of the reference device, in millimeters.

cbPixelFormat
Specifies the size of the last recorded pixel format in a metafile. If a pixel format is set in a
reference DC at the start of recording, cbPixelFormat is set to the size of the
PIXELFORMATDESCRIPTOR. When no pixel format is set when a metafile is recorded, this
member is set to zero. If more than a single pixel format is set, the header points to the last
pixel format.

offPixelFormat
Specifies the offset of pixel format used when recording a metafile. If a pixel format is set in a
reference DC at the start of recording or during recording, offPixelFormat is set to the offset of
the PIXELFORMATDESCRIPTOR in the metafile. When no pixel format is set when a
metafile is recorded, this member is set to zero. If more than a single pixel format is set, the
header points to the last pixel format.

bOpenGL
Specifies whether any OpenGL records are present in a metafile. bOpenGL is a simple
Boolean flag that you can use to determine whether an enhanced metafile requires OpenGL
handling. When a metafile contains OpenGL records, bOpenGL is TRUE; otherwise it is
FALSE.

See AlsoENHMETARECORD

ENHMETARECORD
The ENHMETARECORD structure contains data that describes a graphics device interface (GDI)
function used to create part of a picture in an enhanced-format metafile.typedef struct tagENHMETARECORD { // enmr

DWORD iType;
DWORD nSize;
DWORD dParm[1];

} ENHMETARECORD;
MembersiType

Specifies the record type.
nSize

Specifies the size of the record, in bytes.
dParm

Specifies an array of parameters passed to the GDI function identified by the record.See AlsoENHMETAHEADER

ENOLEOPFAILED
Contains information about a failed OLE operation.typedef struct {

NMHDR nmhdr;
LONG iob;
LONG lOper;
HRESULT hr;

} ENOLEOPFAILED;
Membersnmhdr

Notification header.
iob

Object index.
lOper

OLE operation that failed. This can be OLEOP_DOVERB to indicate that IOleObject::
DoVerb failed.

hr

Error code returned by the object on the operation.See AlsoEN_OLEOPFAILED, IOleObject::DoVerb

ENPROTECTED
The ENPROTECTED structure contains information associated with an EN_PROTECTED
notification message. A rich edit control sends this notification when the user attempts to edit
protected text.typedef struct _enprotected {

NMHDR nmhdr;
_WPAD _wPad1;
UINT msg;
_WPAD _wPad2;
WPARAM wParam;
LPARAM lParam;
CHARRANGE chrg;

} ENPROTECTED;
Membersnmhdr

Notification header.
msg

Message that triggered the notification.
wParam

wParam parameter of the message.
lParam

lParam parameter of the message.
chrg

Current selection.See AlsoEN_PROTECTED

ENSAVECLIPBOARD
Contains information about objects and text on the clipboard.typedef struct {

NMHDR nmhdr;
LONG cObjectCount;
LONG cch;

} ENSAVECLIPBOARD;
Membersnmhdr

Notification header.
cObjectCount

Number of objects on the clipboard.
cch

Number of characters on the clipboard.

ENUM_SERVICE_STATUS
The ENUM_SERVICE_STATUS structure is used by the EnumDependentServices and
EnumServicesStatus functions to return the name of a service in a service control manager
database and to return information about that service.typedef struct _ENUM_SERVICE_STATUS { // ess

LPTSTR lpServiceName;
LPTSTR lpDisplayName;
SERVICE_STATUS ServiceStatus;

} ENUM_SERVICE_STATUS, *LPENUM_SERVICE_STATUS;
MemberslpServiceName

Points to a null-terminated string that names a service in a service control manager database.
The maximum string length is 256 characters. The service control manager database
preserves the case of the characters, but service name comparisons are always case
insensitive. A slash (/), backslash (\), comma, and space are invalid service name characters.

lpDisplayName

Points to a null-terminated string that is to be used by user interface programs to identify the
service. This string has a maximum length of 256 characters. The name is case-preserved in
the Service Control Manager. Display name comparisons are always case-insensitive.

ServiceStatus

Specifies a SERVICE_STATUS structure in which status information about the
lpServiceName service is returned.See AlsoEnumDependentServices, EnumServicesStatus, SERVICE_STATUS

ENUMLOGFONT
The ENUMLOGFONT structure defines the attributes of a font, the complete name of a font, and
the style of a font.typedef struct tagENUMLOGFONT { // elf

LOGFONT elfLogFont;
BCHAR elfFullName[LF_FULLFACESIZE];
BCHAR elfStyle[LF_FACESIZE];

} ENUMLOGFONT;
MemberselfLogFont

Specifies a LOGFONT structure that defines the attributes of a font.
elfFullName

Specifies a unique name for the font. For example, "ABCD Font Company TrueType Bold
Italic Sans Serif".

elfStyle

Specifies the style of the font. For example, "Bold Italic".See AlsoEnumFontFamProc, LOGFONT

ENUMLOGFONTEX
The ENUMLOGFONTEX structure contains information about an enumerated font.typedef struct tagENUMLOGFONTEX {

LOGFONT elfLogFont;
BCHAR elfFullName[LF_FULLFACESIZE];
BCHAR elfStyle[LF_FACESIZE];
BCHAR elfScript[LF_FACESIZE];

} ENUMLOGFONTEX;
MemberselfLogFont

Specifies a LOGFONT structure that contains values defining the font attributes.
elfFullName

Specifies a null-terminated string specifying the unique name of the font. For example, "ABC
Font Company TrueType Bold Italic Sans Serif".

elfStyle

Specifies a null-terminated string specifying the style of the font. For example, "Bold Italic".
elfScript

Specifies a null-terminated string specifying the script of the font. For example, "Cyrillic".See AlsoEnumFontFamExProc, EnumFontFamiliesEx, LOGFONT

ERRLOG_OTHER_INFO
The ERRLOG_OTHER_INFO structure contains error log information.type struct _ERRLOG_OTHER_INFO {

DWORD alrter_errcode;
DWORD alrter_offset;

}ERRLOG_OTHER_INFO, *PERRLOG_OTHER_INFO, *LPERRLOG_OTHER_INFO;
Membersalrter_errcode

Specifies the error code that was written to the error log.
alrter_offset

Specifies the offset for the new entry in the errorlog.See AlsoNetAlertRaise

EVENTLOGRECORD
The EVENTLOGRECORD structure contains information about an event record.typedef struct _EVENTLOGRECORD { // evlr

DWORD Length;
DWORD Reserved;
DWORD RecordNumber;
DWORD TimeGenerated;
DWORD TimeWritten;
DWORD EventID;
WORD EventType;
WORD NumStrings;
WORD EventCategory;
WORD ReservedFlags;
DWORD ClosingRecordNumber;
DWORD StringOffset;
DWORD UserSidLength;
DWORD UserSidOffset;
DWORD DataLength;
DWORD DataOffset;
//
// Then follow:
//
// TCHAR SourceName[]
// TCHAR Computername[]
// SID UserSid
// TCHAR Strings[]
// BYTE Data[]
// CHAR Pad[]
// DWORD Length;
//

} EVENTLOGRECORD;
MembersLength

Specifies the length, in bytes, of this event record. Note that this value is stored at both ends
of the entry to ease moving forward or backward through the log. The length includes any pad
bytes inserted at the end of the record for DWORD alignment.

Reserved

Reserved.
RecordNumber

Contains a record number that can be used with the EVENTLOG_SEEK_READ flag passed
in a call to the ReadEventLog function to begin reading at a specified record.

TimeGenerated

The time at which this entry was submitted. This time is measured in the number of seconds
elapsed since 00:00:00 January 1, 1970.

TimeWritten

Specifies the time at which this entry was received by the service to be written to the logfile.
This time is measured in the number of seconds elapsed since 00:00:00 January 1, 1970.

EventID

Identifies the event. This is specific to the source that generated the event log entry, and is
used, together with SourceName, to identify a message in a message file that is presented to
the user while viewing the log.

EventType

Specifies the type of event. This member can be one of the following values:
Value Meaning
EVENTLOG_ERROR_TYPE Error event
EVENTLOG_WARNING_TYPE Warning event
EVENTLOG_INFORMATION_TYPEInformation event
EVENTLOG_AUDIT_SUCCESS Success Audit event
EVENTLOG_AUDIT_FAILURE Failure Audit event

For more information about event types, see Event Logging.
NumStrings

Specifies the number of strings present in the log (at the position indicated by StringOffset).
These strings are merged into the message before it is displayed to the user.

EventCategory

Specifies a subcategory for this event. This subcategory is source specific.
ReservedFlags

Reserved.
ClosingRecordNumber

Reserved.
StringOffset

Specifies the offset of the strings within this event log entry.
UserSidLength

Specifies the length, in bytes, of the UserSid member. This value can be zero if no security
identifier was provided.

UserSidOffset

Specifies the offset of the security identifier within this event record.
DataLength

Specifies the length, in bytes, of the event-specific data (at the position indicated by
DataOffset).

DataOffset

Specifies the offset of the event-specific information within this log. This information could be
something specific (a disk driver might log the number of retries, for example), followed by
binary information specific to the event being logged and to the source that generated the
entry.

SourceName

Contains the variable-length null-terminated string specifying the name of the source
(application, service, driver, subsystem) that generated the entry. This is the name used to
retrieve from the registry the name of the file containing the message strings for this source. It
is used, together with the event identifier, to get the message string that describes this event.

Computername

Contains the variable-length null-terminated string specifying the name of the computer that
generated this event. There may also be some pad bytes after this field to ensure that the
UserSid is aligned on a DWORD boundary.

UserSid

Specifies the security identifier of the active user at the time this event was logged. This
member may be empty if the UserSidLength member is zero.

The defined members are followed by the replacement strings for the message identified by the
event identifier, the binary information, some pad bytes to make sure the full entry is on a

DWORD boundary, and finally the length of the log entry again. Because the strings and the
binary information can be of any length, no structure members are defined to reference them.

The event identifier together with SourceName and a language identifier identify a message
string that describes the event in more detail. The strings are used as replacement strings and are
merged into the message string to make a complete message. The message strings are
contained in a message file specified in the source entry in the registry.

The binary information is information that is specific to the event. It could be the contents of the
processor registers when a device driver got an error, a dump of an invalid packet that was
received from the network, a dump of all the structures in a program (when the data area was
detected to be corrupt), and so on. This information should be useful to the writer of the device
driver or the application in tracking down bugs or unauthorized breaks into the application.See AlsoReadEventLog

EVENTMSG
The EVENTMSG structure contains information about a hardware message sent to the system
message queue. This structure is used to store message information for the
JournalPlaybackProc callback function.typedef struct tagEVENTMSG { // em

UINT message;
UINT paramL;
UINT paramH;
DWORD time;
HWND hwnd;

} EVENTMSG;
Membersmessage

Specifies the message.
paramL

Specifies additional information about the message. The exact meaning depends on the
message value.

paramH

Specifies additional information about the message. The exact meaning depends on the
message value.

time

Specifies the time at which the message was posted.
hwnd

Identifies the window to which the message was posted.See AlsoJournalPlaybackProc, SetWindowsHookEx

EXCEPTION_DEBUG_INFO
The EXCEPTION_DEBUG_INFO structure contains exception information that can be used by a
debugger.typedef struct _EXCEPTION_DEBUG_INFO { // exdi

EXCEPTION_RECORD ExceptionRecord;
DWORD dwFirstChance;

} EXCEPTION_DEBUG_INFO;
MembersExceptionRecord

Contains an EXCEPTION_RECORD structure with information specific to the exception. This
includes the exception code, flags, address, a pointer to a related exception, extra
parameters, and so on.

dwFirstChance

Indicates whether the debugger has previously encountered the exception specified by the
ExceptionRecord member. If the dwFirstChance member is nonzero, this is the first time
the debugger has encountered the exception. Debuggers typically handle breakpoint and
single-step exceptions when they are first encountered. If this member is zero, the debugger
has previously encountered the exception. This occurs only if, during the search for structured
exception handlers, either no handler was found or the exception was continued.See AlsoDEBUG_EVENT, EXCEPTION_RECORD

EXCEPTION_POINTERS
The EXCEPTION_POINTERS structure contains an exception record with a machine-
independent description of an exception and a context record with a machine-dependent
description of the processor context at the time of the exception.typedef struct _EXCEPTION_POINTERS { // exp

PEXCEPTION_RECORD ExceptionRecord;
PCONTEXT ContextRecord;

} EXCEPTION_POINTERS;
MembersExceptionRecord

Points to an EXCEPTION_RECORD structure that contains a machine-independent
description of the exception.

ContextRecord

Points to a CONTEXT structure that contains a processor-specific description of the state of
the processor at the time of the exception.See AlsoGetExceptionInformation, CONTEXT, EXCEPTION_RECORD

EXCEPTION_RECORD
The EXCEPTION_RECORD structure describes an exception.typedef struct _EXCEPTION_RECORD { // exr

DWORD ExceptionCode;
DWORD ExceptionFlags;
struct _EXCEPTION_RECORD *ExceptionRecord;
PVOID ExceptionAddress;
DWORD NumberParameters;
DWORD ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];

} EXCEPTION_RECORD;
MembersExceptionCode

Specifies the reason the exception occurred. This is the code generated by a hardware
exception, or the code specified in the RaiseException function for a software-generated
exception. Following are the exception codes likely to occur due to common programming
errors:

Value Meaning
EXCEPTION_ACCESS_VIOLATION

The thread tried to read from or write to a
virtual address for which it does not have the
appropriate access.

EXCEPTION_ARRAY_BOUNDS_EXCEEDED
The thread tried to access an array element
that is out of bounds and the underlying
hardware supports bounds checking.

EXCEPTION_BREAKPOINT
A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT
The thread tried to read or write data that is
misaligned on hardware that does not provide
alignment. For example, 16-bit values must be
aligned on 2-byte boundaries; 32-bit values on
4-byte boundaries, and so on.

EXCEPTION_FLT_DENORMAL_OPERAND
One of the operands in a floating-point
operation is denormal. A denormal value is
one that is too small to represent as a
standard floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO
The thread tried to divide a floating-point
value by a floating-point divisor of zero.

EXCEPTION_FLT_INEXACT_RESULT
The result of a floating-point operation cannot
be represented exactly as a decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION
This exception represents any floating-point
exception not included in this list.

EXCEPTION_FLT_OVERFLOW
The exponent of a floating-point operation is
greater than the magnitude allowed by the
corresponding type.

EXCEPTION_FLT_STACK_CHECK
The stack overflowed or underflowed as the
result of a floating-point operation.

EXCEPTION_FLT_UNDERFLOW
The exponent of a floating-point operation is
less than the magnitude allowed by the
corresponding type.

EXCEPTION_ILLEGAL_INSTRUCTION
The thread tried to execute an invalid
instruction.

EXCEPTION_IN_PAGE_ERROR
The thread tried to access a page that was not
present, and the system was unable to load
the page. For example, this exception might
occur if a network connection is lost while
running a program over the network.

EXCEPTION_INT_DIVIDE_BY_ZERO
The thread tried to divide an integer value by
an integer divisor of zero.

EXCEPTION_INT_OVERFLOW

The result of an integer operation caused a
carry out of the most significant bit of the
result.

EXCEPTION_INVALID_DISPOSITION
An exception handler returned an invalid
disposition to the exception dispatcher.
Programmers using a high-level language
such as C should never encounter this
exception.

EXCEPTION_NONCONTINUABLE_EXCEPTION
The thread tried to continue execution after a
noncontinuable exception occurred.

EXCEPTION_PRIV_INSTRUCTION
The thread tried to execute an instruction
whose operation is not allowed in the current
machine mode.

EXCEPTION_SINGLE_STEP
A trace trap or other single-instruction
mechanism signaled that one instruction has
been executed.

EXCEPTION_STACK_OVERFLOW
The thread used up its stack.

Another exception code is likely to occur when debugging console processes. It does
not arise because of a programming error. The DBG_CONTROL_C exception code
occurs when CTRL+C is input to a console process that handles CTRL+C signals and is
being debugged. This exception code is not meant to be handled by applications. It is
raised only for the benefit of the debugger, and is raised only when a debugger is
attached to the console process.

ExceptionFlags

Specifies the exception flags. This member can be either zero, indicating a continuable
exception, or EXCEPTION_NONCONTINUABLE indicating a noncontinuable exception. Any
attempt to continue execution after a noncontinuable exception causes the
EXCEPTION_NONCONTINUABLE_EXCEPTION exception.

ExceptionRecord

Points to an associated EXCEPTION_RECORD structure. Exception records can be chained
together to provide additional information when nested exceptions occur.

ExceptionAddress

Specifies the address where the exception occurred.
NumberParameters

Specifies the number of parameters associated with the exception. This is the number of
defined elements in the ExceptionInformation array.

ExceptionInformation

Specifies an array of additional 32-bit arguments that describe the exception. The
RaiseException function can specify this array of arguments. For most exception codes, the
array elements are undefined. For the following exception code, the array elements are
defined as follows:

Exception code Array contents
EXCEPTION_ACCESS_VIOLATION

The first element of the array contains a
read-write flag that indicates the type of
operation that caused the access
violation. If this value is zero, the thread
attempted to read the inaccessible data.
If this value is 1, the thread attempted to

write to an inaccessible address.
The second array element specifies the virtual
address of the inaccessible data.

See AlsoEXCEPTION_DEBUG_INFO, EXCEPTION_POINTERS, GetExceptionInformation,
RaiseException, UnhandledExceptionFilter

EXPLICIT_ACCESS
[New - Windows NT]

The EXPLICIT_ACCESS structure specifies access-control information for a specified trustee.
Access control functions, such as SetEntriesInAcl and GetExplicitEntriesFromAcl, use this
structure to describe the information in an access-control entry (ACE) of an access-control list
(ACL).typedef struct _EXPLICIT_ACCESS {

DWORD grfAccessPermissions;
ACCESS_MODE grfAccessMode;
DWORD grfInheritance;
TRUSTEE Trustee;

} EXPLICIT_ACCESS, *PEXPLICIT_ACCESS;
MembersgrfAccessPermissions

A set of bit flags that use the ACCESS_MASK format to specify the access rights that an ACE
allows, denies, or audits for the trustee. The functions that use the EXPLICIT_ACCESS
structure do not convert, interpret, or validate the bits in this mask.

grfAccessMode

Specifies a value from the ACCESS_MODE enumeration. For a discretionary ACL (DACL),
this flag indicates whether the ACL allows or denies the specified access rights. For a system
ACL (SACL), this flag indicates whether the ACL generates audit messages for successful
attempts to use the specified access rights, or failed attempts, or both. When modifying an
existing ACL, you can specify the REVOKE_ACCESS flag to remove any existing ACEs for
the specified trustee.

grfInheritance

A set of bit flags that determines whether other containers or objects can inherit the ACE from
the primary object to which the ACL is attached. The value of this member corresponds to the
inheritance portion (low-order byte) of the AceFlags member of the ACE_HEADER structure.
This parameter can be NO_INHERITANCE to indicate that the ACE is not inheritable; or it can
be a combination of the following values.

Value Meaning
CONTAINER_INHERIT_ACE

Other containers that are contained by the primary object
inherit the ACE.

INHERIT_ONLY_ACE
The ACE does not apply to the primary object to which
the ACL is attached, but objects contained by the primary
object inherit the ACE.

NO_PROPAGATE_INHERIT_ACE
The OBJECT_INHERIT_ACE and
CONTAINER_INHERIT_ACE flags are not propagated to
an inherited ACE.

OBJECT_INHERIT_ACE
Noncontainer objects contained by the primary object
inherit the ACE.

SUB_CONTAINERS_ONLY_INHERIT
Other containers that are contained by the primary object
inherit the ACE. This flag corresponds to the
CONTAINER_INHERIT_ACE flag.

SUB_OBJECTS_ONLY_INHERIT
Noncontainer objects contained by the primary object
inherit the ACE. This flag corresponds to the
OBJECT_INHERIT_ACE flag.

SUB_CONTAINERS_AND_OBJECTS_INHERIT
Both containers and noncontainer objects that are
contained by the primary object inherit the ACE. This flag
corresponds to the combination of the
CONTAINER_INHERIT_ACE and
OBJECT_INHERIT_ACE flags.

Trustee

A TRUSTEE structure that identifies the user, group, or program (such as a Windows NT
service) to which the ACE applies.See AlsoACCESS_MODE, ACE, ACE_HEADER, ACL, BuildExplicitAccessWithName,

BuildSecurityDescriptor, GetExplicitEntriesFromAcl, LookupSecurityDescriptorParts,
SetEntriesInAcl, TRUSTEE

EXIT_PROCESS_DEBUG_INFO
The EXIT_PROCESS_DEBUG_INFO structure contains an exiting process's exit code.typedef struct _EXIT_PROCESS_DEBUG_INFO { // epdi

DWORD dwExitCode;
} EXIT_PROCESS_DEBUG_INFO;
MembersdwExitCode

Specifies the exit code for the process.See AlsoDEBUG_EVENT

EXIT_THREAD_DEBUG_INFO
The EXIT_THREAD_DEBUG_INFO structure contains an exiting thread's exit code.typedef struct _EXIT_THREAD_DEBUG_INFO { // etdi

DWORD dwExitCode;
} EXIT_THREAD_DEBUG_INFO;
MembersdwExitCode

Specifies the exit code for the thread.See AlsoDEBUG_EVENT

EXT_BUTTON
The EXT_BUTTON structure contains information about a button that a File Manager extension
dynamic-link library is adding to the toolbar of File Manager.typedef struct _EXT_BUTTON { /* extbtn */

WORD idCommand;
WORD idsHelp;
WORD fsStyle;

} EXT_BUTTON;
MembersidCommand

Specifies the command identifier for the button.
idsHelp

Specifies the identifier of the Help string for the button.
fsStyle

Specifies the style of the button.See AlsoFMEVENT_TOOLBARLOAD, FMS_TOOLBARLOAD

EXTLOGFONT
The EXTLOGFONT structure defines the attributes of a font.typedef struct tagEXTLOGFONT {

LOGFONT elfLogFont;
BCHAR elfFullName[LF_FULLFACESIZE];
BCHAR elfStyle[LF_FACESIZE];
DWORD elfVersion;
DWORD elfStyleSize;
DWORD elfMatch;
DWORD elfReserved;
BYTE elfVendorId[ELF_VENDOR_SIZE];
DWORD elfCulture;
PANOSE elfPanose;

} EXTLOGFONT;
MemberselfLogFont

Specifies some of the attributes of the given font. This member is a LOGFONT structure.
elfFullName

Specifies a unique name for the font (for example, ABCD Font Company TrueType Bold Italic
Sans Serif).

elfStyle

Specifies the style of the font (for example, Bold Italic).
elfVersion

Reserved. Must be zero.
elfStyleSize

This member only has meaning for hinted fonts. It specifies the point size at which the font is
hinted. If set to zero, which is its default value, the font is hinted at the point size
corresponding to the lfHeight member of the LOGFONT structure specified by elfLogFont.

elfMatch

A unique identifier for an enumerated font. This will be filled in by the graphics device interface
(GDI) upon font enumeration.

elfReserved

Reserved; must be zero.
elfVendorId

A 4-byte identifier of the font vendor.
elfCulture

Reserved; must be zero.
elfPanose

A PANOSE structure that specifies the shape of the font. If all members of this structure are
set to zero, the elfPanose member is ignored by the font mapper.See AlsoLOGFONT, PANOSE

EXTLOGPEN
The EXTLOGPEN structure defines the pen style, width, and brush attributes for an extended
pen. This structure is used by the GetObject function when it retrieves a description of a pen that
was created when an application called the ExtCreatePen function.typedef struct tagEXTLOGPEN { // exlp

UINTelpPenStyle;
UINTelpWidth;
UINTelpBrushStyle;
COLORREF elpColor;
LONGelpHatch;
DWORD elpNumEntries;
DWORD elpStyleEntry[1];

} EXTLOGPEN;
MemberselpPenStyle

Specifies a combination of pen type, style, end cap style, and join style. The values from each
category can be retrieved by using a bitwise AND with the appropriate mask.
The elpPenStyle member masked with PS_TYPE_MASK has one of the following pen type
values:

Value Meaning
PS_GEOMETRIC The pen is geometric.
PS_COSMETIC The pen is cosmetic.

The elpPenStyle member masked with PS_STYLE_MASK has one of the following pen
styles values:

Value Meaning
PS_SOLID The pen is solid.
PS_DASH The pen is dashed.
PS_DOT The pen is dotted.
PS_DASHDOT The pen has alternating dashes and dots.
PS_DASHDOTDOT The pen has alternating dashes and double

dots.
PS_NULL The pen is invisible.
PS_USERSTYLE The pen will use a styling array supplied by

the user.
PS_INSIDEFRAME The pen is solid. When this pen is used in any

GDI drawing function that takes a bounding
rectangle, the dimensions of the figure are
shrunk so that it fits entirely in the bounding
rectangle, taking into account the width of the
pen. This applies only to PS_GEOMETRIC
pens.

The following category applies only to PS_GEOMETRIC pens. The elpPenStyle member
masked with PS_ENDCAP_MASK has one of the following end cap values:

Value Meaning
PS_ENDCAP_ROUND Line end caps are round.
PS_ENDCAP_SQUARE Line end caps are square.
PS_ENDCAP_FLAT Line end caps are flat.

The following category applies only to PS_GEOMETRIC pens. The elpPenStyle member
masked with PS_JOIN_STYLE has one of the following join values:

Value Meaning
PS_JOIN_BEVEL Line joins are beveled.
PS_JOIN_MITER Line joins are mitered when they are within the

current SetMiterLimit limit. A join is beveled
when it would exceed the limit.

PS_JOIN_ROUND Line joins are round.

elpWidth

Specifies the width of the pen. If the elpPenStyle member specifies geometric lines, this
value is the width, in logical units, of the line. Otherwise, the lines are cosmetic and this value
is 1.

elpBrushStyle

Specifies the brush style of the pen. The elpBrushStyle member values can be one of the
following:

Value Description
BS_DIBPATTERN Specifies a pattern brush defined by a

device-independent bitmap (DIB)
specification. If elpBrushStyle is

BS_DIBPATTERN, the elpHatch member
contains a handle to a packed DIB.

BS_DIBPATTERNPT Specifies a pattern brush defined by a
device-independent bitmap (DIB)
specification. If elpBrushStyle is
BS_DIBPATTERNPT, the elpHatch member
contains a pointer to a packed DIB.

BS_HATCHED Specifies a hatched brush.
BS_HOLLOW Specifies a hollow or NULL brush.
BS_PATTERN Specifies a pattern brush defined by a

memory bitmap.
BS_SOLID Specifies a solid brush.

elpColor

If elpBrushStyle is BS_SOLID or BS_HATCHED, elpColor specifies the color in which the
pen is to be drawn. For BS_HATCHED, the SetBkMode and SetBkColor functions determine
the background color.
If elpBrushStyle is BS_HOLLOW or BS_PATTERN, elpColor is ignored.
If elpBrushStyle is BS_DIBPATTERN or BS_DIBPATTERNPT, the low-order word of
elpColor specifies whether the bmiColors members of the BITMAPINFO structure contain
explicit red, green, blue (RGB) values or indexes into the currently realized logical palette. The
elpColor value must be one of the following:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit

indexes into the currently realized logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.

elpHatch

If elpBrushStyle is BS_PATTERN, elpHatch is a handle to the bitmap that defines the
pattern.
If elpBrushStyle is BS_SOLID or BS_HOLLOW, elpHatch is ignored.
If elpBrushStyle is BS_DIBPATTERN, the elpHatch member is a handle to a packed DIB. To
obtain this handle, an application calls the GlobalAlloc function to allocate a block of global
memory and then fills the memory with the packed DIB. A packed DIB consists of a
BITMAPINFO structure immediately followed by the array of bytes that define the pixels of the
bitmap.
If elpBrushStyle is BS_DIBPATTERNPT, the elpHatch member is a pointer to a packed DIB.
If elpBrushStyle is BS_HATCHED, the elpHatch member specifies the orientation of the
lines used to create the hatch. It can be any one of the following values:

Value Meaning
HS_BDIAGONAL 45-degree upward hatch (left to right)
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree downward hatch (left to right)
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

elpNumEntries

Specifies the number of entries in the style array in the elpStyleEntry member. This value is
zero if elpPenStyle does not specify PS_USERSTYLE.

elpStyleEntry

Specifies a user-supplied style array. The array is specified with a finite length, but it is used
as if it repeated indefinitely. The first entry in the array specifies the length of the first dash.
The second entry specifies the length of the first gap. Thereafter, lengths of dashes and gaps
alternate.
If elpWidth specifies geometric lines, the lengths are in logical units. Otherwise, the lines are
cosmetic and lengths are in device units.See AlsoBITMAPINFO, ExtCreatePen, GetObject, GlobalAlloc, SetBkColor, SetBkMode

FILE_INFO_2
The FILE_INFO_2 structure specifies an identification number to a file, device, or pipe.typedef struct _FILE_INFO_2 {

DWORD fi2_id;
} FILE_INFO_2, *PFILE_INFO_2, *LPFILE_INFO_2;
Membersfi2_id

Specifies the identification number assigned to the resource when it is opened.See AlsoNetFileEnum, NetFileGetInfo

FILE_INFO_3
The FILE_INFO_3 structure specifies pertinent information about files, devices, and pipes.typedef struct _FILE_INFO_3 {

DWORDfi3_id;
DWORDfi3_permissions;
DWORDfi3_num_locks;
LPTSTR fi3_pathname;
LPTSTR fi3_username;

} FILE_INFO_3, *PFILE_INFO_3, *LPFILE_INFO_3;
Membersfi3_id

Specifies the identification number assigned to the resource when it is opened.
fi3_permissions

Specifies the access permissions of the opening application. This member can be any of the
following values:

Value Meaning
PERM_FILE_READ Permission to read a resource

and, by default, execute the
resource.

PERM_FILE_WRITE Permission to write to a resource.
PERM_FILE_CREATE Permission to create a resource;

data can be written when creating
the resource.

fi3_num_locks

Specifies the number of file locks on the file, device, or pipe.
fi3_pathname

Points to a Unicode string that gives the path of the opened resource.
fi3_username

Points to a Unicode string that specifies which user (on servers that have user-level security)
or which computer (on servers that have share-level security) opened the resource.See AlsoNetFileEnum, NetFileGetInfo

FILE_NOTIFY_INFORMATION
The FIND_NOTIFY_INFORMATION structure describes the changes found by the
ReadDirectoryChangesW function.typedef struct _FILE_NOTIFY_INFORMATION {

DWORD NextEntryOffset;
DWORD Action;
DWORD FileNameLength;
WCHAR FileName[1];

} FILE_NOTIFY_INFORMATION;
MembersNextEntryOffset

Specifies the number of bytes that must be skipped to get to the next record. A value of zero
indicates that this is the last record.

Action

Specifies the type of change that occurred.
Value Meaning
FILE_ACTION_ADDED The file was added to the

directory.
FILE_ACTION_REMOVED The file was removed from

the directory.
FILE_ACTION_MODIFIED The file was modified. This

can be a change in the time
stamp or attributes.

FILE_ACTION_RENAMED_OLD_NAMEThe file was renamed and
this is the old name.

FILE_ACTION_RENAMED_NEW_NAMEThe file was renamed and
this is the new name.

FileNameLength

Specifies the length, in bytes, of the filename portion of the record. Note that this length does
not include the terminating null character.

FileName

This is a variable-length field that contains the filename relative to the directory handle. The
filename is in the Unicode character format and is not null-terminated.See AlsoReadDirectoryChangesW

FILEDESCRIPTOR
Describes the properties of a file that is being copied by means of the clipboard during an OLE
drag and drop operation.typedef struct _FILEDESCRIPTOR { // fod

DWORD dwFlags;// see below
CLSID clsid; // file class identifier
SIZEL sizel; // width and height of file icon
POINTL pointl; // screen coordinates of file object
DWORD dwFileAttributes; // file attribute flags

(FILE_ATTRIBUTE_)
FILETIME ftCreationTime; // time of file creation
FILETIME ftLastAccessTime; // time of last access to file
FILETIME ftLastWriteTime; // time of last write operation
DWORD nFileSizeHigh; // high-order word of file size, in

bytes
DWORD nFileSizeLow;// low-order word of file size, in bytes
CHARcFileName[MAX_PATH]; // name of file (null-terminated)

} FILEDESCRIPTOR, *LPFILEDESCRIPTOR;
MembersdwFlags

Array of flags that indicate which of the other structure members contain valid data. This
member can be a combination of these values:

FD_ACCESSTIME The ftLastAccessTime member is valid.
FD_ATTRIBUTES The dwFileAttributes member is valid.
FD_CLSID The clsid member is valid.
FD_CREATETIME The ftCreationTime member is valid.
FD_FILESIZE The nFileSizeHigh and nFileSizeLow

members are valid.
FD_LINKUI Treat the operation as "Link."
FD_SIZEPOINT The sizel and pointl members are valid.
FD_WRITESTIME The ftLastWriteTime member is valid.

FILEGROUPDESCRIPTOR
Defines the CF_FILEGROUPDESCRIPTOR clipboard format.typedef struct _FILEGROUPDESCRIPTOR { // fgd
UINT cItems; // number of elements in fgd
FILEDESCRIPTOR fgd[1]; // array of file descriptor structures
} FILEGROUPDESCRIPTOR, * LPFILEGROUPDESCRIPTOR;

FILETIME
The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals
since January 1, 1601.typedef struct _FILETIME { // ft

DWORD dwLowDateTime;
DWORD dwHighDateTime;

} FILETIME;
MembersdwLowDateTime

Specifies the low-order 32 bits of the file time.
dwHighDateTime

Specifies the high-order 32 bits of the file time.RemarksIt is not recommended that you add and subtract values from the FILETIME structure to obtain
relative times. Instead, you should

· Copy the resulting FILETIME structure to a LARGE_INTEGER structure.
· Use normal 64-bit arithmetic on the LARGE_INTEGER value.See AlsoCompareFileTime, GetFileTime, LARGE_INTEGER

FILTERKEYS
The FILTERKEYS structure contains information about the FilterKeys accessibility feature, which
allow a user with disabilities to set the keyboard repeat rate (RepeatKeys), acceptance delay
(SlowKeys), and bounce rate (BounceKeys).typedef struct tagFILTERKEYS {// fk

UINT cbSize;
DWORD dwFlags;
DWORD iWaitMSec;
DWORD iDelayMSec;
DWORD iRepeatMSec;
DWORD iBounceMSec;

} FILTERKEYS;
MemberscbSize

Specifies the structure size, in bytes.
dwFlags

A set of bit flags that specify properties of the FilterKeys feature. The following bit-flag values
are defined:

Value Meaning
FKF_AVAILABLE The FilterKeys features are

available.
FKF_CLICKON The computer makes a click

sound when a key is pressed or
accepted, that is, if SlowKeys is
on, the acceptance is separated
from the press and gets a
separate click..

FKF_FILTERKEYSON The FilterKeys features are on.
FKF_HOTKEYACTIVE The user can turn the FilterKeys

feature on and off by holding
down the SHIFT key for eight
seconds.

FKF_HOTKEYSOUND If this flag is set, the computer
plays a siren sound when the user
turns the FilterKeys feature on or
off by using the hot key.

FKF_CONFIRMHOTKEY Windows 95 only: A confirmation
dialog box appears when the the
FilterKeys features are activated
by using the hot key.

FKF_INDICATOR Windows 95 only: A visual
indicator is displayed when the
FilterKeys features are on.

iWaitMSec

Specifies the length of time, in milliseconds, that the user must hold down a key before it is
accepted by the computer.

iDelayMSec

Specifies the length of time, in milliseconds, that the user must hold down a key before it
begins to repeat.

iRepeatMSec

Specifies the length of time, in milliseconds, between each repetition of the keystroke.
iBounceMSec

Specifies the amount of time, in milliseconds, that must elapse after releasing a key before the
computer will accept a subsequent press of the same key.RemarksUse a FILTERKEYS structure when calling the SystemParametersInfo function with the wAction

parameter set to the SPI_GETFILTERKEYS or SPI_SETFILTERKEYS value. When using
SPI_GETFILTERKEYS,you must specify the cbSize member of the FILTERKEYS structure; the
SystemParametersInfo function fills the remaining members. Specify all structure members
when using the SPI_SETFILTERKEYS value.

Either iDelayMSec or iBounceMSec, or both, must be zero; they cannot both be nonzero at the
same time.

If iBounceMSec is nonzero, the BounceKeys feature is on and the SlowKeys feature is off (the
iDelayMSec value is ignored). If iBounceMSec is zero, the BounceKeys feature is off.

If iDelayMSec is nonzero and iBounceMSec is zero, the SlowKeys feature is on; otherwise, it is
off.See AlsoSystemParametersInfo

FIND_NAME_BUFFER
The FIND_NAME_BUFFER structure contains information about a local network session. One or
more FIND_NAME_BUFFER structures follows a FIND_NAME_HEADER structure when an
application specifies the NCBFINDNAME command in the ncb_command member of the NCB
structure.typedef struct _FIND_NAME_BUFFER { // fnb

UCHAR length;
UCHAR access_control;
UCHAR frame_control;
UCHAR destination_addr[6];
UCHAR source_addr[6];
UCHAR routing_info[18];

} FIND_NAME_BUFFER;
Memberslength

Specifies the length, in bytes, of the FIND_NAME_BUFFER structure. Although this structure
always occupies 33 bytes, not all of the structure is necessarily valid.

access_control

Specifies the access control for the LAN header.
frame_control

Specifies the frame control for the LAN header.
destination_addr

Specifies the destination address of the remote node where the name was found.
source_addr

Specifies the source address for the remote node where the name was found.
routing_info

Specifies additional routing information.See AlsoFIND_NAME_HEADER, NCB

FIND_NAME_HEADER
The FIND_NAME_HEADER structure contains information about a network name. This structure
is followed by as many FIND_NAME_BUFFER structures as are required to describe the name.typedef struct _FIND_NAME_HEADER { // fnh

WORD node_count;
UCHAR reserved;
UCHAR unique_group;

} FIND_NAME_HEADER;
Membersnode_count

Specifies the number of nodes on which the specified name was found. This structure is
followed by the number of FIND_NAME_BUFFER structures specified by the node_count
member.

reserved

Reserved.
unique_group

Specifies whether the name is unique. This value is 0 to specify a unique name or 1 to specify
a group.RemarksThe FIND_NAME_HEADER structure is pointed to by the ncb_buffer member of the NCB

structure when an application issues an NCBFINDNAME command.See AlsoFIND_NAME_BUFFER, NCB

FINDREPLACE
The FINDREPLACE structure contains information that the FindText and ReplaceText functions
use to initialize the Find and Replace common dialog boxes. The FINDMSGSTRING registered
message uses this structure to pass the user's search or replacement input to the owner window
of a Find or Replace common dialog box.typedef struct { // fr

DWORD lStructSize;
HWND hwndOwner;
HINSTANCE hInstance;
DWORD Flags;
LPTSTR lpstrFindWhat;
LPTSTR lpstrReplaceWith;
WORD wFindWhatLen;
WORD wReplaceWithLen;
LPARAM lCustData;
LPFRHOOKPROC lpfnHook;
LPCTSTR lpTemplateName;

} FINDREPLACE;
MemberslStructSize

Specifies the length, in bytes, of the structure.
hwndOwner

Identifies the window that owns the dialog box. The window procedure of the specified window
receives FINDMSGSTRING messages from the dialog box. This member can be any valid
window handle, but it must not be NULL.

hInstance

If the FR_ENABLETEMPLATEHANDLE flag is set in the Flags member, hInstance is the
handle of a memory object containing a dialog box template. If the FR_ENABLETEMPLATE
flag is set, hInstance identifies a module that contains a dialog box template named by the
lpTemplateName member. If neither flag is set, this member is ignored.

Flags

A set of bit flags that you can use to initialize the dialog box. The dialog box sets these flags
when it sends the FINDMSGSTRING registered message to indicate the user's input. This
member can be a combination of the following flags:

Flag Meaning
FR_DIALOGTERM

If set in a FINDMSGSTRING message,
indicates that the dialog box is closing. When
you receive a message with this flag set, the
dialog box window handle returned by the
FindText or ReplaceText function is no longer
valid.

FR_DOWN
If set, the Down button of the direction radio
buttons in a Find dialog box is selected
indicating that you should search from the
current location to the end of the document. If
not set, the Up button is selected so you
should search to the beginning of the
document. You can set this flag to initialize
the dialog box. If set in a FINDMSGSTRING
message, indicates the user's selection.

FR_ENABLEHOOK
Enables the hook function specified in the
lpfnHook member. This flag is used only to
initialize the dialog box.

FR_ENABLETEMPLATE
Indicates that the hInstance and
lpTemplateName members specify a dialog box
template to use in place of the default template.
This flag is used only to initialize the dialog box.

FR_ENABLETEMPLATEHANDLE
Indicates that the hInstance member identifies
a data block that contains a preloaded dialog box
template. The system ignores the
lpTemplateName member if this flag is specified.

FR_FINDNEXT
If set in a FINDMSGSTRING message,
indicates that the user clicked the Find Next
button in a Find or Replace dialog box. The
lpstrFindWhat member specifies the string to
search for.

FR_HIDEUPDOWN
If set when initializing a Find dialog box, hides
the search direction radio buttons.

FR_HIDEMATCHCASE
If set when initializing a Find or Replace
dialog box, hides the Match Case check box.

FR_HIDEWHOLEWORD
If set when initializing a Find or Replace
dialog box, hides the Match Whole Word Only

check box.
FR_MATCHCASE

If set, the Match Case check box is checked
indicating that the search should be case-
sensitive. If not set, the check box is
unchecked so the search should be case-
insensitive. You can set this flag to initialize
the dialog box. If set in a FINDMSGSTRING
message, indicates the user's selection.

FR_NOMATCHCASE
If set when initializing a Find or Replace
dialog box, disables the Match Case check
box.

FR_NOUPDOWN
If set when initializing a Find dialog box,
disables the search direction radio buttons.

FR_NOWHOLEWORD
If set when initializing a Find or Replace
dialog box, disables the Whole Word check
box.

FR_REPLACE
If set in a FINDMSGSTRING message,
indicates that the user clicked the Replace
button in a Replace dialog box. The
lpstrFindWhat member specifies the string to be
replaced and the lpstrReplaceWith member
specifies the replacement string.

FR_REPLACEALL
If set in a FINDMSGSTRING message,
indicates that the user clicked the Replace All
button in a Replace dialog box. The
lpstrFindWhat member specifies the string to be
replaced and the lpstrReplaceWith member
specifies the replacement string.

FR_SHOWHELP
Causes the dialog box to display the Help
button. The hwndOwner member must specify
the window to receive the HELPMSGSTRING
registered messages that the dialog box sends
when the user clicks the Help button.

FR_WHOLEWORD
If set, the Match Whole Word Only check box
is checked indicating that you should search
only for whole words that match the search
string. If not set, the check box is unchecked
so you should also search for word fragments
that match the search string. You can set this
flag to initialize the dialog box. If set in a
FINDMSGSTRING message, indicates the
user's selection.

lpstrFindWhat

Pointer to a buffer that a FINDMSGSTRING message uses to pass the null terminated search
string that the user typed in the "Find What:" edit control. You must dynamically allocate the
buffer or use a global or static array so it does not go out of scope before the dialog box
closes. The buffer should be at least 80 characters long. If the buffer contains a string when
you initialize the dialog box, the string is displayed in the "Find What:" edit control.
If a FINDMSGSTRING message specifies the FR_FINDNEXT flag, lpstrFindWhat contains
the string to search for. The FR_DOWN, FR_WHOLEWORD, and FR_MATCHCASE flags

indicate the direction and type of search. If a FINDMSGSTRING message specifies the
FR_REPLACE or FR_REPLACE flags, lpstrFindWhat contains the string to be replaced.

lpstrReplaceWith

Pointer to a buffer that a FINDMSGSTRING message uses to pass the null terminated
replacement string that the user typed in the "Replace With:" edit control. You must
dynamically allocate the buffer or use a global or static array so it does not go out of scope
before the dialog box closes. If the buffer contains a string when you initialize the dialog box,
the string is displayed in the "Replace With:" edit control.
If a FINDMSGSTRING message specifies the FR_REPLACE or FR_REPLACEALL flags,
lpstrReplaceWith contains the replacement string .
The FindText function ignores this member.

wFindWhatLen

Specifies the length, in bytes, of the buffer pointed to by the lpstrFindWhat member.
wReplaceWithLen

Specifies the length, in bytes, of the buffer pointed to by the lpstrReplaceWith member.
lCustData

Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnHook member. When the system sends the WM_INITDIALOG message to the hook
procedure, the message's lParam parameter is a pointer to the FINDREPLACE structure
specified when the dialog was created. The hook procedure can use this pointer to get the
lCustData value.

lpfnHook

Pointer to an FRHookProc hook procedure that can process messages intended for the
dialog box. This member is ignored unless the FR_ENABLEHOOK flag is set in the Flags
member.
If the hook procedure returns FALSE in response to the WM_INITDIALOG message, the hook
procedure must display the dialog box or else the dialog box will not be shown. To do this, first
perform any other paint operations, and then call the ShowWindow and UpdateWindow
functions.

lpTemplateName

Pointer to a null-terminated string that names the dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard dialog box
template. For numbered dialog box resources, this can be a value returned by the
MAKEINTRESOURCE macro. This member is ignored unless the FR_ENABLETEMPLATE
flag is set in the Flags member.See AlsoFindText, FRHookProc, MAKEINTRESOURCE, ReplaceText, ShowWindow, UpdateWindow,

WM_INITDIALOG

FINDTEXT
The FINDTEXT structure contains information about text to search for in a rich edit control. This
structure is used with the EM_FINDTEXT message.typedef struct _findtext {

CHARRANGE chrg;
LPSTR lpstrText;

} FINDTEXT;
Memberschrg

Range to search.
lpstrText

Null-terminated string to find.
See AlsoEM_FINDTEXT

FINDTEXTEX
Contains information about text to search for in a rich edit control. This structure is used with the
EM_FINDTEXTEX message.typedef struct _findtextex {

CHARRANGE chrg; // range to search
LPSTR lpstrText;// null-terminated string to find
CHARRANGE chrgText; // range in which text is found

} FINDTEXTEX;

FIXED
The FIXED structure contains the integral and fractional parts of a fixed-point real number.typedef struct _FIXED { // fix

WORD fract;
short value;

} FIXED;
Membersfract

Specifies the fractional part of the number.
value

Specifies the integer part of the number.
RemarksThe FIXED structure is used to describe the elements of the MAT2 structure.See AlsoMAT2

FMS_GETDRIVEINFO
The FMS_GETDRIVEINFO structure contains information about the drive selected in the active
File Manager window (the directory window or the Search Results window).typedef struct _FMS_GETDRIVEINFO { /* fmsgdi */

DWORD dwTotalSpace;
DWORD dwFreeSpace;
TCHAR szPath[260];
TCHAR szVolume[14];
TCHAR szShare[128];

} FMS_GETDRIVEINFO;
MembersdwTotalSpace

Specifies the total amount of storage space, in bytes, on the disk associated with the drive.
dwFreeSpace

Specifies the amount of free storage space, in bytes, on the disk associated with the drive.
szPath

Specifies the null-terminated path of the current directory.
szVolume

Specifies the null-terminated volume label of the disk associated with the drive.
szShare

Specifies the null-terminated name of the sharepoint (if the drive is being accessed through a
network).

See AlsoFMExtensionProc, FM_GETDRIVEINFO

FMS_GETFILESEL
The FMS_GETFILESEL structure contains information about a selected file in the active File
Manager window (the directory window or the Search Results window).typedef struct _FMS_GETFILESEL { /* fmsgfs */

FILETIME ftTime;
DWORD dwSize;
BYTEbAttr;
TCHARszName[260];

} FMS_GETFILESEL;
MembersftTime

Specifies the time and date the file was created.
dwSize

Specifies the size, in bytes, of the file.
bAttr

Specifies the attributes of the file.
szName

Specifies the null-terminated full path and filename of the selected file.
See AlsoFMExtensionProc

FMS_LOAD
The FMS_LOAD structure contains information that File Manager uses to add a custom menu
provided by a File Manager extension DLL. The structure also provides a delta value that the
extension DLL can use to manipulate the custom menu after File Manager has loaded the menu.typedef struct _FMS_LOAD { /* fmsld */

DWORD dwSize;
TCHAR szMenuName[MENU_TEXT_LEN];
HMENU hMenu;
UINT wMenuDelta;

} FMS_LOAD;
MembersdwSize

Specifies the length, in bytes, of the structure.
szMenuName

Specifies the null-terminated name for a menu item that appears on the menu bar in File
Manager.

hMenu
Identifies the pop-up menu added to the menu bar in File Manager.

wMenuDelta
Specifies the menu-item delta value. To avoid conflicts with its own menu items, File Manager
renumbers the menu-item identifiers in the pop-up menu identified by the hMenu member by
adding this delta value to each identifier. An extension DLL that must modify a menu item
must identify the item by adding the delta value to the menu item's identifier. The value of this
member can vary from session to session.

See AlsoFMExtensionProc

FMS_TOOLBARLOAD
The FMS_TOOLBARLOAD structure contains information about custom buttons to be added to
the File Manager toolbar. The buttons are provided by a File Manager extension DLL.typedef struct _FMS_TOOLBARLOAD { /* fmstbl */

DWORD dwSize;
LPEXT_BUTTON lpButtons;
WORD cButtons;
WORD cBitmaps;
WORD idBitmap;
HBITMAP hBitmap;

} FMS_TOOLBARLOAD;
MembersdwSize

Specifies the size, in bytes, of the structure. File Manager sets the size before calling the
extension and checks the size after the extension procedure returns.

lpButtons
Points to an array of EXT_BUTTON structures that specify the style, command identifier, and
Help string identifier for each toolbar button.

cButtons
Specifies the number of EXT_BUTTON structures in the array pointed to by the lpButtons
member. This number equals the number of buttons and separators to add to the toolbar.

cBitmaps
Specifies the number of buttons represented by the given bitmap.

idBitmap
Specifies the identifier of a bitmap resource in the executable file for the extension DLL. The
bitmap resource contains images for the number of buttons specified by cBitmaps. File
Manager loads the bitmap resource, then uses it to display the buttons.

hBitmap
Specifies the handle of a bitmap that the File Manager will use to obtain and display button
images if idBitmap is 0.

See AlsoFMEVENT_TOOLBARLOAD, EXT_BUTTON

FOCUS_EVENT_RECORD
The FOCUS_EVENT_RECORD structure is used to report focus events in a console
INPUT_RECORD structure. These events are used internally and should be ignored.typedef struct _FOCUS_EVENT_RECORD { // fer

BOOL bSetFocus;
} FOCUS_EVENT_RECORD;
MembersbSetFocus

Used internally.
See AlsoINPUT_RECORD

FOLDERSETTINGS
The FOLDERSETTINGS structure is passed from one folder view to another when the user is
browsing. It calls IShellView::GetCurrentInfo to get the current settings and passes them to
IShellView::CreateViewWindow to allow the next folder view to "inherit" it. These setttings
assume a particular UI, which the shell's folder view has. Shell extensions may or may not use
these settings.typedef struct {

UINTViewMode;
UINTfFlags;

}FOLDERSETTINGS; *LPFOLDERSETTINGS;
MembersViewMode

Specifies the view mode. Can be set to any of the following values:
Value Meaning
FVM_ICON The large icon is displayed.
FVM_SMALLICON The small icon is displayed.
FVM_LIST Object names are displayed in a list view.
FVM_DETAILS Object names and other selected information

is shown, such as the size or date last
updated.

fFlags
Specifies the view mode. Can be set to any of the following values:

Value Description
FWF_AUTOARRANGE Automatically arrange the elements

in the view. This implies
LVS_AUTOARRANGE if the
ListView control is used to
implement the view.

FWF_ABBREVIATEDNAMES Names should be abbreviated. This
value is not currently supported.

FWF_SNAPTOGRID Items should be arranged on a grid.
This value is not currently used.

FWF_OWNERDATA This value is not currently used.
FWF_BESTFITWINDOW Enable the best-fit window mode.

Let the view size the window to fit
its contents as well as possible.

FWF_DESKTOP Make the folder behave like the
desktop. This value applies only to
the desktop view and is not used
for typical shell folders.

FWF_SINGLESEL Do not allow more than a single
item to be selected. This is used in
the common dialogs.

FWF_NOSUBFOLDERS Do not show subfolders.
FWF_TRANSPARENT Draw transparently. This is used

only for the desktop.
FWF_NOCLIENTEDGE Do not add WS_EX_CLIENTEDGE

to the folder. This is used only for
the desktop.

FWF_NOSCROLL Do not add scroll bars. This is used
only for the desktop.

See AlsoIShellView::CreateViewWindow, IShellView::GetCurrentInfo

FontDirEntry
The FontDirEntry structure contains information about an individual font in a font resource group.struct FontDirEntry {

WORD dfVersion;
DWORD dfSize;
char dfCopyright[60];
WORD dfType;
WORD dfPoints;
WORD dfVertRes;
WORD dfHorizRes;
WORD dfAscent;
WORD dfInternalLeading;
WORD dfExternalLeading;
BYTE dfItalic;
BYTE dfUnderline;
BYTE dfStrikeOut;
WORD dfWeight;
BYTE dfCharSet;
WORD dfPixWidth;
WORD dfPixHeight;
BYTE dfPitchAndFamily;
WORD dfAvgWidth;
WORD dfMaxWidth;
BYTE dfFirstChar;
BYTE dfLastChar;
BYTE dfDefaultChar;
BYTE dfBreakChar;
WORD dfWidthBytes;
DWORD dfDevice;
DWORD dfFace;
DWORD dfReserved;
char szDeviceName[];
char szFaceName[];

};
MembersdfVersion

Specifies a user-defined version number for the resource data that tools can use to read and
write resource files.

dfSize
Specifies the size of the file, in bytes.

dfCopyright[60]
Contains a 60-character string with the font supplier's copyright information.

dfType
Specifies the type of font file.

dfPoints
Specifies the point size at which this character set looks best.

dfVertRes
Specifies the vertical resolution, in dots per inch, at which this character set was digitized.

dfHorizRes
Specifies the horizontal resolution, in dots per inch, at which this character set was digitized.

dfAscent
Specifies the distance from the top of a character definition cell to the baseline of the
typographical font.

dfInternalLeading
Specifies the amount of leading inside the bounds set by the dfPixHeight member. Accent
marks and other diacritical characters can occur in this area.

dfExternalLeading
Specifies the amount of extra leading that the application adds between rows.

dfItalic
Specifies an italic font if not equal to zero.

dfUnderline
Specifies an underlined font if not equal to zero.

dfStrikeOut
Specifies a strikeout font if not equal to zero.

dfWeight
Specifies the weight of the font in the range 0 through 1000. For example, 400 is roman and
700 is bold. If this value is zero, a default weight is used. For additional defined values, see
the description of the LOGFONT structure.

dfCharSet
Specifies the character set of the font. For predefined values, see the description of the
LOGFONT structure.

dfPixWidth
Specifies the width of the grid on which a vector font was digitized. For raster fonts, if the
member is not equal to zero, it represents the width for all the characters in the bitmap. If the
member is equal to zero, the font has variable-width characters.

dfPixHeight
Specifies the height of the character bitmap for raster fonts or the height of the grid on which a
vector font was digitized.

dfPitchAndFamily
Specifies the pitch and the family of the font. For additional information, see the description of
the LOGFONT structure.

dfAvgWidth
Specifies the average width of characters in the font (generally defined as the width of the
letter x). This value does not include the overhang required for bold or italic characters.

dfMaxWidth
Specifies the width of the widest character in the font.

dfFirstChar
Specifies the first character code defined in the font.

dfLastChar
Specifies the last character code defined in the font.

dfDefaultChar
Specifies the character to substitute for characters not in the font.

dfBreakChar
Specifies the character that will be used to define word breaks for text justification.

dfWidthBytes
Specifies the number of bytes in each row of the bitmap. This value is always even so that the
rows start on word boundaries. For vector fonts, this member has no meaning.

dfDevice
Specifies the offset in the file to a null-terminated string that specifies a device name. For a
generic font, this value is zero.

dfFace
Specifies the offset in the file to a null-terminated string that names the typeface.

dfReserved
This member is reserved.

szDeviceName
Array that contains a null-terminated string that specifies the name of the device if this font file
is designated for a specific device.

szFaceName
Array that contains a null-terminated string that specifies the typeface name of the font.

RemarksThere is one FontDirEntry structure for every font in the .RES file. Applications that generate .
RES files with font resources must also add to the file a FontDirEntry structure for each font.

Font declarations can be mixed with other resource declarations in the .RC file because fonts do
not need to be contiguous in the .RES file.See AlsoDirEntry, FontGroupHdr, LOGFONT

FontGroupHdr
The FontGroupHdr structure contains the information necessary for an application to access a
specific font.struct FontGroupHdr {

WORD NumberOfFonts;
DirEntry DE [1];

};
MembersNumberOfFonts

Specifies the number of individual fonts associated with this resource.
DE [1]

Specifies a DirEntry structure that contains a unique ordinal identifier for each font in the
resource. The DE [1] member is a placeholder for the variable-length array of DirEntry
structures.

RemarksThe FontGroupHdr structure follows the data for the individual fonts in the .RES file. The
resource compiler automatically adds the FontGroupHdr structure, generally as the last entry in
the file.See AlsoDirEntry, FontDirEntry

FONTSIGNATURE
The FONTSIGNATURE structure contains information identifying the code-pages and Unicode
subranges for which a given font provides glyphs.typedef struct tagFONTSIGNATURE {

DWORD fsUsb[4];
DWORD fsCsb[2];

} FONTSIGNATURE;
MembersfsUsb

A 128-bit Unicode subset bitfield (USB) identifying up to 126 Unicode subranges. Each bit,
except the two most significant bits, represents a single subrange. The most significant bit is
always 1 and identifies the bitfield as a font signature; the second most significant bit is
reserved and must be 0. Unicode subranges are numbered in accordance with the ISO 10646
standard.

fsCsb
A 64-bit, code-page bitfield (CPB) that identifies a specific character set or code-page.
Windows code-pages are in the lower 32 bits of this bitfield. The high 32 are used for non-
Windows code-pages. For more information, see Code-Page Bitfields.

RemarksGDI relies on Windows code-pages fitting within a 32-bit value. Furthermore, the highest two bits
within this value are reserved for GDI internal use and may not be assigned to code-pages.

FORM_INFO_1
The FORM_INFO_1 structure contains information about a print form. The information includes
the print form's origin, its name, its dimensions, and the dimensions of its printable area.typedef struct _FORM_INFO_1 { // fi1

DWORD Flags;
LPTSTR pName;
SIZEL Size;
RECTL ImageableArea;

} FORM_INFO_1;
MembersFlags

A set of bit-flags that specify form properties. The following bit-flag is defined:
Value Meaning
FORM_BUILTIN If this bit-flag is set, the form is built-in. If this

bit-flag is clear, the form is user-defined.

pName
Points to a null-terminated string that specifies the name of the form.

Size
Specifies the width and height, in thousandths of millimeters, of the form.

ImageableArea
Specifies the width and height, in thousandths of millimeters, of the form.

See AlsoAddForm, GetForm, SetForm

FORMAT_PARAMETERS
The FORMAT_PARAMETERS structure provides information used in formatting a contiguous set
of disk tracks.typedef struct _FORMAT_PARAMETERS{

MEDIA_TYPE MediaType;
DWORD StartCylinderNumber;
DWORD EndCylinderNumber;
DWORD StartHeadNumber;
DWORD EndHeadNumber;

} FORMAT_PARAMETERS ;
MembersMediaType

Specifies the media type. See MEDIA_TYPE.
StartCylinderNumber

Specifies the cylinder number at which to begin the format.
EndCylinderNumber

Specifies the cylinder number at which to end the format.
StartHeadNumber

Specifies the beginning head location.
EndHeadNumber

Specifies the ending head location.
RemarksThe DeviceIoControl function uses a FORMAT_PARAMETERS structure as input to an

IOCTL_DISK_FORMAT_TRACKS device I/O operation.See AlsoDeviceIoControl, IOCTL_DISK_FORMAT_TRACKS, MEDIA_TYPE

FORMATRANGE
The FORMATRANGE structure contains information that a rich edit control uses to format its
output for a particular device. This structure is used with the EM_FORMATRANGE message.typedef struct _formatrange {

HDC hdc;
HDC hdcTarget;
RECT rc;
RECT rcPage;
CHARRANGE chrg;

} FORMATRANGE;
Membershdc

Device to render to.
hdcTarget

Target device to format for.
rc

Area to render to. Units are in TWIPS
rcPage

Entire area of rendering device. Units are in TWIPS
chrg

Range of text to format.
See AlsoEM_FORMATRANGE

FVSHOWINFO
Contains information that the IFileViewer::Show member function uses to display a file.typedef struct {

DWORDcbSize; // size of structure, in bytes
HWND hwndOwner; // see below
int iShow;// see below
DWORDdwFlags; // see below
RECT rect; // see below
LPUNKNOWN punkrel; // see below
OLECHAR strNewFile[MAX_PATH]; // see below

} FVSHOWINFO, *LPFVSHOWINFO;
MembershwndOwner

Handle of the owner window. When a file viewer creates a window to display a file, it should
specify this handle as the owner of the window.

iShow
Show command. For a list of show commands, see the description of the ShowWindow
function.

dwFlags
Show information flags. This member can be a combination of these values:

FVSIF_CANVIEWIT The file viewer can display the file.
FVSIF_NEWFAILED The file viewer specified a new file to display,

but no viewer could display the file. The file
viewer should either terminate or continue to
display the previous file.

FVSIF_NEWFILE A drag and drop operation has dropped a file
on the file viewer window. The file viewer
passes the name of the file to the shell by
copying the name to strNewFile. The shell
attempts to load a file viewer that can display
the new file.

FVSIF_PINNED A pinned window exists. A file viewer should
either use the pinned window to display the
file or set a new pinned window and display
the file in it.

FVSIF_RECT rect contains valid data.

rect
Address of a RECT structure that specifies the size and position of the file viewer's window.
This member is valid only if dwFlags includes the FVSIF_RECT value.

punkrel
Address of an interface whose Release member function is called by a new file viewer to
release the previous file viewer. This member is used when a drag and drop operation drops a
file on the file viewer's window.

strNewFile
Address of a string that specifies the name of a new file to display. A file viewer sets this
member when a drag and drop operation drops a file on the file viewer's window.

The shell uses this structure to pass information to a file viewer, and a file viewer uses it to return
information to the shell.

GCP_RESULTS
The GCP_RESULTS structure contains information about characters in a string. This structure
receives the results of the GetCharacterPlacement function. For some languages, the first
element in the arrays may contain more, language-dependent information.typedef struct tagGCP_RESULTS {

DWORD lStructSize;
LPTSTR lpOutString;
UINT *lpOrder;
INT *lpDx;
INT *lpCaretPos;
LPTSTR lpClass;
UINT *lpGlyphs;
UINT nGlyphs;
UINT nMaxFit;

} GCP_RESULTS;
MemberslStructSize

Specifies the size, in bytes, of the structure.
lpOutString

Pointer to the buffer that receives the output string or is NULL if the output string is not
needed. The output string is a version of the original string that is in the order that will be
displayed on a given device. Typically the output string is identical to the original string, but
may be different if the string needs reordering and the GCP_REORDER flag is set or if the the
original string exceeds the maximum extent and the GCP_MAXEXTENT flag is set.

lpOrder
Address of the array that receives the ordering indices for the characters in the output string
or is NULL if the ordering indices are not needed. The original string needs reordering if the
GetFontLanguageInfo function returns the GCP_REORDER value. This is typically used
when GetFontLanguageInfo returns the GCP_REORDER flag. For example, in Hebrew, in
which the text runs from right to left, the lpOrder array gives the exact locations of each
element in the original string.

lpDx
Pointer to the array that receives the distances between adjacent character cells or is NULL if
these distances are not needed. If glyph rendering is done, the distances are for the glyphs
not the characters, so the resulting array can be used with the ExtTextOut function.
The distances in this array are in display order. To find the distance for the ith character in the
original string, use the lpOrder array as follows:width = lpDx[lpOrder[i]];On input, this member may contain justification weight values if the GCP_JUSTIFYIN value is
given with the GetCharacterPlacement function.

lpCaretPos
Pointer to the array that receives the caret position values or is NULL if caret positions are not
needed. Each value specifies the caret position immediately before the corresponding
character. In some languages the position of the caret for each character may not be
immediately to the left of the character. For example, in Hebrew, in which the text runs from
right to left, the caret position is to the right of the character. If glyph ordering is done,
lpCaretPos matches the original string not the output string. This means that some adjacent
values may be the same.
The values in this array are in input order. To find the caret position value for the ith character
in the original string, use the array as follows:position = lpCaretPos[i];lpClass
Pointer to the array that contains and/or receives character classifications. The values indicate
how to lay out characters in the string and are similar (but not identical) to the CT_CTYPE2
values returned by the GetStringTypeEx function. Each element of the array can be set to
zero or one of the following values:

Value Meaning
GCPCLASS_ARABIC Arabic character.
GCPCLASS_HEBREW Hebrew character.
GCPCLASS_LATIN Character from a Latin or other

single-byte character set for a
left-to-right language.

GCPCLASS_LATINNUMBER Digit from a Latin or other single-
byte character set for a left-to-
right language.

GCPCLASS_LOCALNUMBER Digit from the character set
associated with the current font.

In addition, the following can be used when supplying values in the lpClass array with
the GCP_CLASSIN flag.

Value Meaning
GCPCLASS_LATINNUMERICSEPARATORInput only. Character used to

separate Latin digits, such as
acomma or decimal point.

GCPCLASS_LATINNUMERICTERMINATORInput only. Character used to
terminate Latin digits, such
as a plus or minus sign.

GCPCLASS_NEUTRAL Input only. character has no
specific classification.

GCPCLASS_NUMERICSEPARATOR Input only. Character used to
separate digits, such as a
comma or decimal point.

For languages that use the GCP_REORDER flag, the following values can also be used
with the GCP_CLASSIN flag. Unlike the preceding values, which can be used anywhere
in the lpClass array, all of the following values are used only in the first location in the array.
All combine with other classifications. Note that GCPCLASS_PREBOUNDLTR and

GCPCLASS_PREBOUNDRTL are mutually exclusive, as are GCPCLASSPOSTBOUNDLTR
and GCPCLASSPOSTBOUNDRTL.

Value Meaning
GCPCLASS_PREBOUNDLTR Set lpClass[0] to

GCP_CLASS_PREBOUNDLTR
to bind the string to left-to-right
reading order before the string.

GCPCLASS_PREBOUNDRTL Set lpClass[0] to
GCP_CLASS_PREBOUNDRTL
to bind the string to right-to-left
reading order before the string.

GCPCLASS_POSTBOUNDLTR Set lpClass[0] to
GCP_CLASS_POSTBOUNDLTR
to bind the string to left-to-right
reading order after the string.

GCPCLASS_POSTBOUNDRTL Set lpClass[0] to
GCP_CLASS_POSTBOUNDRTL
to bind the string to right-to-left
reading order after the string.

To force the layout of a character to be carried out in a specific way, preset the
classification for the corresponding array element; the function leaves such preset
classifications unchanged and computes classifications only for array elements that
have been set to zero. Preset classifications are used only if the GCP_CLASSIN flag is
set and the lpclass array is supplied.
If getFontLanguageInfo does not return GCP_REORDER for the current font, only the
GCPCLASS_LATIN value is meaningful.

lpGlyphs
Pointer to the array that receives the values identifying the glyphs used for rendering the
string or is NULL if glyph rendering is not needed. The number of glyphs in the array may be
less than the number of characters in the original string if the string contains ligated glyphs.
Also if reordering is required, the order of the glyphs may not be sequential.
This array is useful if more than one operation is being done on a string which has any form of
ligation, kerning or order-switching. Using the values in this array for subsequent operations
saves the time otherwise required to generate the glyph indices each time.
This array always contains glyph indices and the ETO_GLYPH_INDEX value must always be
used when this array is used with the ExtTextOut function.
When GCP_LIGATE is used, you can limit the number of characters that will be ligated
together. (In Arabic for example, three-character ligations are common). This is done by
setting the maximum required in lpGcpResults->lpGlyphs[0]. If no maximum is required, you
should set this field to zero.
For languages such as Arabic, where GetFontLanguageInfo returns the
GCP_GLYPHSHAPE flag, the glyphs for a character will be different depending on whether
the character is at the beginning, middle, or end of a word. Typically, the first character in the
input string will also be the first character in a word, and the last character in the input string
will be treated as the last character in a word. However, if the displayed string is a subset of
the complete string, such as when displaying a section of scrolled text, this may not be true. In
these cases, it is desirable to force the first or last characters to be shaped as not being initial
or final forms. To do this, again, the first location in the lpGlyphs array is used by performing
an OR operation of the ligation value above with the values GCPGLYPH_LINKBEFORE and/
or GCPGLYPH_LINKAFTER. For example, a value of GCPGLYPH_LINKBEFORE | 2 means
that two-character ligatures are the maximum required, and the first character in the string
should be treated as if it is in the middle of a word.

nGlyphs
On input, this member must be set to the size of the arrays pointed to by the array pointer
members. On output, this is set to the number of glyphs filled in, in the output arrays. If glyph
substitution is not required (that is, each input character maps to exactly one glyph), this
member is the same as it is on input.

nMaxFit
Number of characters that fit within the extents specified by the nMaxExtent parameter of the
GetCharacterPlacement function. If the GCP_MAXEXTENT or GCP_JUSTIFY value is set,

this value may be less than the number of characters in the original string. This member is set
regardless of whether the GCP_MAXEXTENT or GCP_JUSTIFY value is given. Unlike
nGlyphs, which specifies the number of output glyphs, nMaxFit refers to the number of
characters from the input string. For Latin SBCS languages, this will be the same.

RemarksWhether the lpGlyphs, lpOutString, or neither is required depends on the results of the
GetFontLanguageInfo call.

In the case of a font for a language such as English, in which none of the GCP_DBCS,
GCP_REORDER, GCP_GLYPHSHAPE, GCP_LIGATE, GCP_DIACRITIC, or GCP_KASHIDA
flags are returned, neither of the arrays is required for proper operation. (Though not required,
they can still be used. If the lpOutString array is used, it will be exactly the same as the
lpInputString passed to GetCharacterPlacement.) Note, however, that if GCP_MAXEXTENT is
used, then lpOutString will contain the truncated string if it is used, NOT an exact copy of the
original.

In the case of fonts for languages such as Hebrew, which DO have reordering but do not typically
have extra glyph shapes, lpOutString should be used. This will give the string on the screen-
readable order. However, the lpGlyphs array is not typically needed. (Hebrew can have extra
glyphs, if the font is a TrueType/Open font.)

In the case of languages such as Thai or Arabic, in which GetFontLanguageInfo returns the
GCP_GLYPHSHAPE flag, the lpOutString will give the display-readable order of the string
passed to GetCharacterPlacement, but the values will still be the unshaped characters. For
proper display, the lpGlyphs array must be used.See AlsoExtTextOut, GetCharacterPlacement, GetFontLanguageInfo

GENERIC_MAPPING
The GENERIC_MAPPING structure defines the mapping of generic access rights to specific and
standard access rights for an object. When a client application requests generic access to an
object, that request is mapped to the access rights defined in this structure.typedef struct _GENERIC_MAPPING { // gm

ACCESS_MASK GenericRead;
ACCESS_MASK GenericWrite;
ACCESS_MASK GenericExecute;
ACCESS_MASK GenericAll;

} GENERIC_MAPPING;
MembersGenericRead

Specifies an access mask defining read access to an object.
GenericWrite

Specifies an access mask defining write access to an object.
GenericExecute

Specifies an access mask defining execute access to an object.
GenericAll

Specifies an access mask defining all possible types of access to an object.
See AlsoAccessCheck, AccessCheckAndAuditAlarm, CreatePrivateObjectSecurity,

MapGenericMask, SetPrivateObjectSecurity, ACCESS_MASK

GLYPHMETRICS
The GLYPHMETRICS structure contains information about the placement and orientation of a
glyph in a character cell.typedef struct _GLYPHMETRICS { // glmt

UINT gmBlackBoxX;
UINT gmBlackBoxY;
POINT gmptGlyphOrigin;
short gmCellIncX;
short gmCellIncY;

} GLYPHMETRICS;
MembersgmBlackBoxX

Specifies the width of the smallest rectangle that completely encloses the glyph (its "black
box").

gmBlackBoxY
Specifies the height of the smallest rectangle that completely encloses the glyph (its "black
box").

gmptGlyphOrigin
Specifies the x- and y-coordinates of the upper left corner of the smallest rectangle that
completely encloses the glyph.

gmCellIncX
Specifies the horizontal distance from the origin of the current character cell to the origin of
the next character cell.

gmCellIncY
Specifies the vertical distance from the origin of the current character cell to the origin of the
next character cell.

RemarksValues in the GLYPHMETRICS structure are specified in device units.See AlsoGetGlyphOutline

GROUP_INFO_0
The GROUP_INFO_0 structure renames the global group and specifies information about the
group, including identifier and resource attributes.typedef struct _GROUP_INFO_0 {

LPWSTR grpi0_name;
}GROUP_INFO_0, *PGROUP_INFO_0, *LPGROUP_INFO_0;
Membersgrpi0_name

A Unicode string that specifies the name of the global group. The constant GNLEN specifies
the maximum number of characters in the string. For NetGroupSetInfo, this member
specifies the new name of the global group.

See AlsoNetGroupAdd, NetGroupEnum, NetGroupGetInfo, NetGroupSetInfo

GROUP_INFO_1
The GROUP_INFO_1 structure specifies information about a global group, including name,
identifier, and resource attributes.typedef struct _GROUP_INFO_1 {

LPWSTR grpi1_name;
LPWSTR grpi1_comment;

}GROUP_INFO_1, *PGROUP_INFO_1, *LPGROUP_INFO_1;
Membersgrpi1_name

A Unicode string that specifies the name of the global group. The constant GNLEN specifies
the maximum number of characters in the string. For NetGroupSetInfo, this member is
ignored.

grpi1_comment
A Unicode string that contains a remark for the group. This element can be a null string. The
comment can have as many as MAXCOMMENTSZ characters.

See AlsoNetGroupAdd, NetGroupEnum, NetGroupGetInfo, NetGroupSetInfo

GROUP_INFO_2
The GROUP_INFO_2 structure specifies information about a global group, including name,
identifier, and resource attributes.typedef struct _GROUP_INFO_2 {

LPWSTR grpi2_name;
LPWSTR grpi2_comment;
DWORD grpi2_group_id;
DWORD grpi2_attributes;

}GROUP_INFO_2, *PGROUP_INFO_2;
Membersgrpi2_name

A Unicode string that specifies the name of the global group. The constant GNLEN specifies
the maximum number of characters in the string. For NetGroupSetInfo, this member is
ignored.

grpi2_comment
A Unicode string that contains a remark for the group. This element can be a null string. The
comment can have as many as MAXCOMMENTSZ characters.

grpi2_group_id
The relative identifier of this account.

grpi2_attributes
The attributes of a group (stored in TOKEN_GROUPS). For Windows NT 4.0, you can no
longer set these attributes. They are hardwired to SE_GROUP_MANDATORY,
SE_GROUP_ENABLED, SE_GROUP_ENABLED_BY_DEFAULT:

Value Meaning
SE_GROUP_ENABLED_BY_DEFAULTIndicates that the group is

enabled by default. Use
this value to specify the
initial state of the group.

SE_GROUP_MANDATORY Indicates that the user may
not disable the group.
Disabling a group causes
the group membership to
be ignored by the access
validation routines.

SE_GROUP_OWNER Indicates that the group
can be assigned as the
owner of an object.

See AlsoNetGroupAdd, NetGroupEnum, NetGroupGetInfo, NetGroupSetInfo

GROUP_INFO_1002
The GROUP_INFO_1002 structure specifies information about a group, including name, identifier,
and resource attributes.typedef struct _GROUP_INFO_1002 {
LPWSTR grpi1002_comment;
} GROUP_INFO_1002, *PGROUP_INFO_1002, *LPGROUP_INFO_1002;
Membersgrpi1002_comment

A Unicode string that contains a remark for the group. This element can be a null string. The
comment can have as many as MAXCOMMENTSZ characters.

See AlsoNetGroupSetInfo

GROUP_INFO_1005
The GROUP_INFO_1005 structure specifies information about a group, including name, identifier,
and resource attributes.typedef struct _GROUP_INFO_1005 {
DWORD grpi1005_attributes;
} GROUP_INFO_1005, *PGROUP_INFO_1005, *LPGROUP_INFO_1005;
Membersgrpi1005_attributes

The attributes of a group (stored in TOKEN_GROUPS). For Windows NT 4.0, you can no
longer set these attributes. They are hardwired to SE_GROUP_MANDATORY,
SE_GROUP_ENABLED, SE_GROUP_ENABLED_BY_DEFAULT.

Value Meaning
SE_GROUP_ENABLED_BY_DEFAULTIndicates that the group is

enabled by default. Use
this value to specify the
initial state of the group

SE_GROUP_MANDATORY Indicates that the user may
not disable the group.
Disabling a group causes
the group membership to
be ignored by the access
validation routines.

SE_GROUP_OWNER Indicates that the group
can be assigned as the
owner of an object.

See AlsoNetGroupSetInfo

GROUP_USERS_INFO_0
The GROUP_USERS_INFO_0 structure specifies information about the user of a group, and
resource attributes.typedef struct _GROUP_USERS_INFO_0 {
LPWSTR grui0_name;
} GROUP_USERS_INFO_0, *PGROUP_USERS_INFO_0, *LPGROUP_USERS_INFO_0;
Membersgrui0_name

A Unicode string that specifies the group to which a user belongs. The constant GNLEN
specifies the maximum number of characters in the string.

See AlsoNetGroupGetUsers, NetGroupSetUsers, NetUserGetGroups, NetUserGetInfo,
NetUserSetGroups

GROUP_USERS_INFO_1
The GROUP_USERS_INFO_1 structure specifies information about the user of a group, and
resource attributes.typedef struct _GROUP_USERS_INFO_1 {
LPWSTR grui1_name;
DWORD grui1_attributes;
} GROUP_USERS_INFO_1, *PGROUP_USERS_INFO_1, *LPGROUP_USERS_INFO_1;
Membersgrui1_name

A Unicode string that specifies the group to which a user belongs. The constant GNLEN
specifies the maximum number of characters in the string.

grui1_attributes
The attributes of a group (stored in TOKEN_GROUPS). For Windows NT 4.0, you can no
longer set these attributes. They are hardwired to SE_GROUP_MANDATORY,
SE_GROUP_ENABLED, SE_GROUP_ENABLED_BY_DEFAULT.

Value Meaning
SE_GROUP_ENABLED_BY_DEFAULTIndicates that the group is

enabled by default. Use
this value to specify the
initial state of the group.

SE_GROUP_MANDATORY Indicates that the user may
not disable the group.
Disabling a group causes
the group membership to
be ignored by the access
validation routines.

SE_GROUP_OWNER Indicates that the group
can be assigned as the
owner of an object.

See AlsoNetGroupGetUsers, NetGroupSetUsers, NetUserGetGroups, NetUserGetInfo,
NetUserSetGroups

HANDLE_INFO_1
The HANDLE_INFO_1 structure specifies the number of data bytes and how long it takes to send
the data.typedef struct _HANDLE_INFO_1 {

DWORD hdli1_chartime;
DWORD hdli1_charcount;

}HANDLE_INFO_1, *PHANDLE_INFO_1, *LPHANDLE_INFO_1;
Membershdli1_chartime

Specifies, in milliseconds, the amount of time the workstation collects data to send to a
character device or named pipe.

hdli1_charcount
Specifies, in bytes, the number of characters the workstation stores before it sends data to a
character device or named pipe.

See AlsoNetHandleGetInfo, NetHandleSetInfo

HANDLETABLE
The HANDLETABLE structure is an array of handles, each of which identifies a graphics device
interface (GDI) object.typedef struct tagHANDLETABLE { // ht

HGDIOBJ objectHandle[1];
} HANDLETABLE;
MembersobjectHandle

Contains an array of handles.See AlsoEnhMetaFileProc, EnumMetaFileProc

HD_HITTESTINFO
The HD_HITTESTINFO structure contains information about a hit test.typedef struct _HD_HITTESTINFO {

POINT pt;
UINT flags;
int iItem;

} HD_HITTESTINFO;
Memberspt

Points to test, in client coordinates
flags

Variable that receives information about the results of a hit test. This member can be one or
more of the following values:

Value Meaning
HHT_NOWHERE The point is inside the bounding rectangle

of the header control but is not over a
header item.

HHT_ONDIVIDER The point is on the divider between two
header items.

HHT_ONDIVOPEN The point is on the divider of an item that
has a width of zero. Dragging the divider
reveals the item instead of resizing the
item to the left of the divider.

HHT_ONHEADER The point is inside the bounding rectangle
of the header control.

HHT_TOLEFT The point is to the left of the bounding
rectangle of the header control.

HHT_TORIGHT The point is to the right of the bounding
rectangle of the header control.

Two of these values can be combined, such as when the position is above and to the
left of the client area.

iItem
Receives the index of item at point, if any.

RemarksThis structure is used with the HDM_HITTEST message.See AlsoHDM_HITTEST

HD_ITEM
The HD_ITEM structure contains information about an item in a header control.typedef struct _HD_ITEM { hdi

UINTmask;
int cxy;
LPTSTR pszText;
HBITMAP hbm;
int cchTextMax;
int fmt;
LPARAM lParam;

} HD_ITEM;
Membersmask

Mask flags that indicate which of the other structure members contain valid data. This
member can be a combination of the following values:

Value Meaning
HDI_BITMAP The hbm member is valid.
HDI_FORMAT The fmt member is valid.
HDI_HEIGHT The cxy member is valid and specifies the

height of the item.
HDI_LPARAM The lParam member is valid.
HDI_TEXT The pszText and cchTextMax members are

valid.
HDI_WIDTH The cxy member is valid and specifies the

width of the item.

cxy
Width or height of item.

pszText
Pointer to item string.

hbm
Handle to item bitmap.

cchTextMax
Length of item string, in characters.

fmt
A set of bit flags that specify the item's format.
This member can include one of the following text justification or right-to-left reading order bit
flags:

Value Meaning
HDF_CENTER Centers the contents of the item.
HDF_LEFT Left aligns the contents of the item.
HDF_RIGHT Right aligns the contents of the item.
HDF_RTLREADINGDisplays text using right-to-left reading order

on Hebrew or Arabic systems.

The preceding value is combined with one of the following values:
Value Meaning
HDF_BITMAP The item displays a bitmap.
HDF_OWNERDRAW The owner window of the header control

draws the item.
HDF_STRING The item displays a string.

You can use the HDF_JUSTIFYMASK mask to isolate the text justification portion of the
fmt member.

lParam
Application-defined item data.

HD_LAYOUT
The HD_LAYOUT structure contains information used to set the size and position of a header
control.typedef struct _HD_LAYOUT { // hdl

RECT FAR* prc;
WINDOWPOS FAR* pwpos;

} HD_LAYOUT;
Membersprc

Pointer to a RECT structure that contains the coordinates of a rectangle that the header
control is to occupy.

pwpos
Pointer to a WINDOWPOS structure that receives information about the appropriate size and
position of the header control.

RemarksThis structure is used with the HDM_LAYOUT message.See AlsoHDM_LAYOUT, RECT, WINDOWPOS

HD_NOTIFY
The HD_NOTIFY structure contains information used to process notification messages from a
header control.typedef struct _HD_NOTIFY { // hdn

NMHDR hdr;
int iItem;
int iButton;
HD_ITEM FAR* pitem;

} HD_NOTIFY;
Membershdr

Specifies a NMHDR structure. The code member of this structure identifies the notification
message being sent. It can be one of the following notification codes: HDN_BEGINTRACK,
HDN_DIVIDERDBLCLICK, HDN_ENDTRACK, HDN_ITEMCHANGED,
HDN_ITEMCHANGING, HDN_ITEMCLICK, or HDN_TRACK.

iItem
Specifies the index of item associated with notification.

iButton
Specifies the index of the mouse button involved in generating the notification message. This
member can be one of these values:

Value Meaning
0 Left button
1 Right button
2 Middle button

pitem
Pointer to an HD_ITEM structure that contains information about the header item associated
with the notification message.

RemarksWhen a header control sends the HDN_BEGINTRACK, HDN_DIVIDERDBLCLICK,
HDN_ENDTRACK, HDN_ITEMCHANGED, HDN_ITEMCHANGING, HDN_ITEMCLICK, or
HDN_TRACK notification codes, it passes a pointer to an HD_NOTIFY structure as the lParam
parameter of a WM_NOTIFY message.See AlsoHD_ITEM, HDN_BEGINTRACK, HDN_DIVIDERDBLCLICK, HDN_ENDTRACK,
HDN_ITEMCHANGED, HDN_ITEMCHANGING, HDN_ITEMCLICK, HDN_TRACK, WM_NOTIFY

HELPINFO
The HELPINFO structure contains information about an item for which context-sensitive help has
been requested.typedef struct tagHELPINFO { // hi

UINTcbSize;
int iContextType
int iCtrlId;
HANDLE hItemHandle;
DWORD dwContextId;
POINT MousePos;

} HELPINFO, FAR *LPHELPINFO;
MemberscbSize

Specifies the structure size, in bytes.
iContextType

Specifies the type of context for which help is requested. This member can be one of the
following values:

Value Meaning
HELPINFO_MENUITEMHelp requested for a menu item
HELPINFO_WINDOW Help requested for a control or window

iCtrlId
Specifies the identifier of the window or control if iContextType is HELPINFO_WINDOW.
Specifies the identifier of the menu item if iContextType is HELPINFO_MENUITEM.

hItemHandle
Identifies the child window or control if iContextType is HELPINFO_WINDOW. Identifies the
associated menu if iContextType is HELPINFO_MENUITEM.

dwContextId
Specifies the help context identifier of the window or control.

MousePos
Specifies a POINT structure that contains the screen coordinates of the mouse cursor. This is
useful for providing help based on the position of the mouse cursor.

See AlsoPOINT

HELPWININFO
The HELPWININFO structure contains the size and position of either a primary or a secondary
Help window. An application can set this information by calling the WinHelp function with the
HELP_SETWINPOS value.typedef struct { // hwi

int wStructSize;
int x;
int y;
int dx;
int dy;
int wMax;
TCHAR rgchMember[2];

} HELPWININFO;
MemberswStructSize

Specifies the structure size, in bytes.
x

Specifies the x-coordinate of the upper-left corner of the window, in screen coordinates.
y

Specifies the y-coordinate of the upper-left corner of the window, in screen coordinates.
dx

Specifies the window width, in pixels.
dy

Specifies the window height, in pixels.
wMax

Specifies how to show the window. This member must be one of the following values:
Value Action
SW_HIDE Hides the window and passes

activation to another window.
SW_MINIMIZE Minimizes the specified window and

activates the top-level window in the Z
order.

SW_RESTORE Same as SW_SHOWNORMAL.
SW_SHOW Activates a window and displays it in its

current size and position.
SW_SHOWMAXIMIZED Activates the window and displays it as

a maximized window.
SW_SHOWMINIMIZED Activates the window and displays it as

an icon.
SW_SHOWMINNOACTIVE Displays the window as an icon. The

window that is currently active remains
active.

SW_SHOWNA Displays the window in its current state.
The window that is currently active
remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The window that is
currently active remains active.

SW_SHOWNORMAL Activates and displays the window.
Whether the window is minimized or
maximized, Windows restores it to its
original size and position.

rgchMember
Specifies the name of the window.

RemarksWindows Help divides the display into 1024 units in both the x- and y-directions. To create a
secondary window that fills the upper-left quadrant of the display, for example, an application
would specify zero for the x and y members and 512 for the dx and dy members.See AlsoWinHelp

HIGHCONTRAST
The HIGHCONTRAST structure contains information about the High Contrast Mode accessibility
feature, which sets the appearance scheme of the user interface for maximum visibility for a
visually-impaired user, and advises applications to comply with this appearance scheme.typedef struct tagHIGHCONTRAST {// hc

UINT cbSize;
DWORD dwFlags;
LPTSTR lpszDefaultScheme;

} HIGHCONTRAST, FAR* LPHIGHCONTRAST;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

Specifies a combination of the following values:
Value Meaning
HCF_AVAILABLE The High Contrast Mode is

available.
HCF_CONFIRMHOTKEY A confirmation dialog appears

when the the High Contrast Mode
is activated by using the hot key.

HCF_HIGHCONTRASTON The High Contrast Mode is on.
HCF_HOTKEYACTIVE The user can turn the High

Contrast Mode on and off by
simultaneously pressing the left
ALT, left SHIFT, and PRINT SCREEN
keys.

HCF_HOTKEYAVAILABLE The hot key associated with the
High Contrast Mode can be
enabled. An application can
retrieve this value, but cannot set
it.

HCF_HOTKEYSOUND A siren is played when the user
turns the High Contrast Mode on
or off by using the hot key.

HCF_INDICATOR A visual indicator is displayed
when the High Contrast Mode is
on. This value is not currently
used and is ignored.

lpszDefaultScheme
Points to a string that contains the name of the default color scheme.

RemarksAn application uses this structure when calling the SystemParametersInfo function with the
SPI_GETHIGHCONTRAST or SPI_SETHIGHCONTRAST value. When using
SPI_GETHIGHCONTRAST, an application must specify the cbSize member of the
HIGHCONTRAST structure; the SystemParametersInfo function fills the remaining members. An
application must specify all structure members when using the SPI_SETHIGHCONTRAST value.See AlsoSystemParametersInfo

HSZPAIR
The HSZPAIR structure contains a DDE service name and topic name. A DDE server application
can use this structure during an XTYP_WILDCONNECT transaction to enumerate the service-
topic pairs that it supports.typedef struct tagHSZPAIR { // hp

HSZ hszSvc;
HSZ hszTopic;

} HSZPAIR;
MembershszSvc

Identifies a service name.
hszTopic

Identifies a topic name.

HW_PROFILE_INFO
[New - Windows NT]

The HW_PROFILE_INFO structure contains information about a hardware profile. The
GetCurrentHwProfile function uses this structure to retrieve the current hardware profile for the
local computer.typedef struct tagHW_PROFILE_INFO {

DWORD dwDockInfo;
TCHAR szHwProfileGuid[HW_PROFILE_GUIDLEN];
TCHAR szHwProfileName[MAX_PROFILE_LEN];

} HW_PROFILE_INFO, *LPHW_PROFILE_INFO;
MembersdwDockInfo

A set of bit flags that indicate the docking state of the computer. This member can be a
combination of the following values.

Value Meaning
DOCKINFO_DOCKED The computer is docked. This flag is

always set for desktop systems that
cannot be undocked.

DOCKINFO_UNDOCKED The computer is undocked. This flag
is always set for desktop systems that
cannot be undocked.

DOCKINFO_USER_SUPPLIEDIf this flag is set,
GetCurrentHwProfile retrieved the
current docking state from information
provided by the user in the Hardware
Profiles page of the System control
panel application.
Currently, Windows NT and Windows
95 are not able to detect the docking
state. Consequently, this flag is
always set.

DOCKINFO_USER_DOCKED The computer is docked, according to
information provided by the user. This
value is a combination of the
DOCKINFO_USER_SUPPLIED and
DOCKINFO_DOCKED flags.

DOCKINFO_USER_UNDOCKEDThe computer is undocked, according
to information provided by the user.
This value is a combination of the
DOCKINFO_USER_SUPPLIED and
DOCKINFO_UNDOCKED flags.

szHwProfileGuid
A null-terminated string that contains the globally unique identifier (GUID) string for the current
hardware profile. The string returned by GetCurrentHwProfile encloses the GUID in curly
braces "{}" and includes a null-terminator; for example:

"{12340001-4980-1920-6788-123456789012}"
You can use this string as a registry subkey under your application's configuration settings key
in HKEY_CURRENT_USER. This enables you to store settings for each hardware profile.

szHwProfileName
A null-terminated string that contains the display name for the current hardware profile.

See AlsoGetCurrentHwProfile

ICONINFO
The ICONINFO structure contains information about an icon or a cursor.typedef struct _ICONINFO { // ii

BOOL fIcon;
DWORD xHotspot;
DWORD yHotspot;
HBITMAP hbmMask;
HBITMAP hbmColor;

} ICONINFO;
MembersfIcon

Specifies whether this structure defines an icon or a cursor. A value of TRUE specifies an
icon; FALSE specifies a cursor.

xHotspot
Specifies the x-coordinate of a cursor's hot spot. If this structure defines an icon, the hot spot
is always in the center of the icon, and this member is ignored.

yHotspot
Specifies the y-coordinate of the cursor's hot spot. If this structure defines an icon, the hot
spot is always in the center of the icon, and this member is ignored.

hbmMask
Specifies the icon bitmask bitmap. If this structure defines a black and white icon, this bitmask
is formatted so that the upper half is the icon AND bitmask and the lower half is the icon XOR
bitmask. Under this condition, the height should be an even multiple of two. If this structure
defines a color icon, this mask only defines the AND bitmask of the icon.

hbmColor
Identifies the icon color bitmap. This member can be optional if this structure defines a black
and white icon. The AND bitmask of hbmMask is applied with the SRCAND flag to the
destination; subsequently, the color bitmap is applied (using XOR) to the destination by using
the SRCINVERT flag.

See AlsoCreateIconIndirect, GetIconInfo

ICONMETRICS
The ICONMETRICS structure contains the scalable metrics associated with icons. This structure
is used with the SystemParametersInfo function when the SPI_GETICONMETRICS or
SPI_SETICONMETRICS action is specified.typedef struct tagICONMETRICS {

UINT cbSize;
intiHorzSpacing;
intiVertSpacing;
intiTitleWrap;
LOGFONT lfFont;

} ICONMETRICS, FAR *LPICONMETRICS;
MemberscbSize

Specifies the size of the structure, in bytes.
iHorzSpacing and iVertSpacing

Horizontal and vertical space, in pixels, for each arranged icon.
iTitleWrap

Title-wrapping flag. If this member is nonzero, icon titles wrap to a new line. If this member is
zero, titles do not wrap.

lfFont
Specifies the font to use for icon titles.

See AlsoSystemParametersInfo

ICONRESDIR
The ICONRESDIR structure contains the dimensions and color format of an individual icon image
in a resource group.struct ICONRESDIR {

BYTE Width;
BYTE Height;
BYTE ColorCount;
BYTE reserved;

} ICONRESDIR;
MembersWidth

Specifies the width of the icon, in pixels. Acceptable values are 16, 32, and 64.
Height

Specifies the height of the icon, in pixels. Acceptable values are 16, 32, and 64.
ColorCount

Specifies the number of colors in the icon. Acceptable values are 2, 8, and 16.
reserved

Reserved; must be set to the same value as that of the reserved field in the icon file header.
RemarksThe ICONRESDIR structure is passed in the RESDIR structure if the RESDIR structure describes

an icon.See AlsoRESDIR

IMAGEINFO
The IMAGEINFO structure contains information about an image in an image list. This structure is
used with the ImageList_GetImageInfo function.typedef struct _IMAGEINFO {

HBITMAP hbmImage; // bitmap containing the images
HBITMAP hbmMask; // handle to a monochrome bitmap
intUnused1; // not used
intUnused2; // not used
RECT rcImage; // bounding rectangle of the image

} IMAGEINFO;
MembershbmMask

Handle to a monochrome bitmap that contains the masks for the images. If the image list does
not contain a mask, this member is NULL.

rcImage
Bounding rectangle of the image within the bitmap specified by hbmImage.

INPUT_RECORD
The INPUT_RECORD structure is used to report input events in the console input buffer. These
records can be read from the input buffer by using the ReadConsoleInput or PeekConsoleInput
function, or written to the input buffer by using the WriteConsoleInput function.typedef struct _INPUT_RECORD { // ir

WORD EventType;
union {
KEY_EVENT_RECORD KeyEvent;
MOUSE_EVENT_RECORD MouseEvent;
WINDOW_BUFFER_SIZE_RECORD WindowBufferSizeEvent;
MENU_EVENT_RECORD MenuEvent;
FOCUS_EVENT_RECORD FocusEvent;
} Event;

} INPUT_RECORD;
MembersEventType

Identifies the type of input event and the event record stored in the Event member.
This member can have one of the following values:

Value Meaning
KEY_EVENT

The Event member contains a KEY_EVENT_RECORD
structure with information about a keyboard event.

MOUSE_EVENT
The Event member contains a
MOUSE_EVENT_RECORD structure with information
about a mouse movement or button press event.

WINDOW_BUFFER_SIZE_EVENT
The Event member contains a
WINDOW_BUFFER_SIZE_RECORD structure with
information about the new size of the screen buffer.

MENU_EVENT
The Event member contains a
MENU_EVENT_RECORD structure. These events are
used internally and should be ignored.

FOCUS_EVENT
The Event member contains a
FOCUS_EVENT_RECORD structure. These events are
used internally and should be ignored.

Event
Contains a KEY_EVENT_RECORD, MOUSE_EVENT_RECORD,
WINDOW_BUFFER_SIZE_RECORD, MENU_EVENT_RECORD, or
FOCUS_EVENT_RECORD structure, depending on the event type specified by the
EventType member.

See AlsoFOCUS_EVENT_RECORD, KEY_EVENT_RECORD, MENU_EVENT_RECORD,
MOUSE_EVENT_RECORD, PeekConsoleInput, ReadConsoleInput, WriteConsoleInput

ITEMIDLIST
Contains a list of item identifiers.typedef struct _ITEMIDLIST { // idl

SHITEMID mkid; // list of item identifers
} ITEMIDLIST, * LPITEMIDLIST;
typedef const ITEMIDLIST * LPCITEMIDLIST;

JOB_INFO_1
The JOB_INFO_1 structure specifies print-job information such as the job-identifier value, the
name of the printer for which the job is spooled, the name of the machine that created the print
job, the name of the user that owns the print job, and so on.typedef struct _JOB_INFO_1 { // ji1

DWORD JobId;
LPTSTR pPrinterName;
LPTSTR pMachineName;
LPTSTR pUserName;
LPTSTR pDocument;
LPTSTR pDatatype;
LPTSTR pStatus;
DWORD Status;
DWORD Priority;
DWORD Position;
DWORD TotalPages;
DWORD PagesPrinted;
SYSTEMTIME Submitted;

} JOB_INFO_1;
MembersJobId

Specifies a job identifier.
pPrinterName

Points to a null-terminated string that specifies the name of the printer for which the job is
spooled.

pMachineName
Points to a null-terminated string that specifies the name of the machine that created the print
job.

pUserName
Points to a null-terminated string that specifies the name of the user that owns the print job.

pDocument
Points to a null-terminated string that specifies the name of the print job (for example, "MS-
WORD: Review.doc").

pDatatype
Points to a null-terminated string that specifies the type of data used to record the print job.

pStatus
Points to a null-terminated string that specifies the status of the print job. This member should
be checked prior to Status and, if pStatus is NULL, the status is defined by the contents of
the Status member.

Status
Specifies the job status. This member can be one or more of the following values:
JOB_STATUS_DELETING
JOB_STATUS_ERROR
JOB_STATUS_OFFLINE
JOB_STATUS_PAPEROUT
JOB_STATUS_PAUSED
JOB_STATUS_PRINTED
JOB_STATUS_PRINTING
JOB_STATUS_SPOOLING

Priority
Specifies the job priority. This member can be one of the following values or in the range
between 1 through 99 (MIN_PRIORITY through MAX_PRIORITY):

Value Meaning
MIN_PRIORITY Minimum priority.
MAX_PRIORITY Maximum priority.
DEF_PRIORITY Default priority.

Position
Specifies the job's position in the print queue.

TotalPages
Specifies how many pages the document contains.

PagesPrinted
Specifies the number of pages that have printed.

Submitted
Specifies the time that this document was spooled.

See AlsoEnumJobs, GetJob, SetJob

JOB_INFO_2
The JOB_INFO_2 structure describes a full set of values associated with a job.typedef struct _JOB_INFO_2 { // ji2

DWORD JobId;
LPTSTRpPrinterName;
LPTSTRpMachineName;
LPTSTRpUserName;
LPTSTRpDocument;
LPTSTRpNotifyName;
LPTSTRpDatatype;
LPTSTRpPrintProcessor;
LPTSTRpParameters;
LPTSTRpDriverName;
LPDEVMODE pDevMode;
LPTSTRpStatus;
PSECURITY_DESCRIPTOR pSecurityDescriptor;
DWORD Status;
DWORD Priority;
DWORD Position;
DWORD StartTime;
DWORD UntilTime;
DWORD TotalPages;
DWORD Size;
SYSTEMTIME Submitted;
DWORD Time;
DWORD PagesPrinted ;

} JOB_INFO_2;
MembersJobId

Specifies a job identifier value.
pPrinterName

Points to a null-terminated string that specifies the name of the printer for which the job is
spooled.

pMachineName
Points to a null-terminated string that specifies the name of the machine that created the print
job.

pUserName
Points to a null-terminated string that specifies the name of the user who owns the print job.

pDocument
Points to a null-terminated string that specifies the name of the print job (for example, "MS-
WORD: Review.doc").

pNotifyName
Points to a null-terminated string that specifies the name of the user who should be notified
when the job has been printed or when an error occurs while printing the job.

pDatatype
Points to a null-terminated string that specifies the type of data used to record the print job.

pPrintProcessor
Points to a null-terminated string that specifies the name of the print processor that should be
used to print the job.

pParameters
Points to a null-terminated string that specifies print-processor parameters.

pDriverName
Points to a null-terminated string that specifies the name of the printer driver that should be
used to process the print job.

pDevMode
Points to a DEVMODE structure that contains device-initialization and environment data for
the printer driver.

pStatus
Points to a null-terminated string that specifies the status of the print job. This member should
be checked prior to Status and, if pStatus is NULL, the status is defined by the contents of
the Status member.

pSecurityDescriptor
The value of this member is NULL. Retrieval and setting of document security descriptors is
not supported in this release.

Status
Specifies the job status. This member can be one or more of the following values:
JOB_STATUS_PAUSED
JOB_STATUS_ERROR
JOB_STATUS_DELETING
JOB_STATUS_SPOOLING
JOB_STATUS_PRINTING
JOB_STATUS_OFFLINE
JOB_STATUS_PAPEROUT
JOB_STATUS_PRINTED

Priority
Specifies the job priority. This member can be one of the following values or in the range
between 1 through 99 (MIN_PRIORITY through MAX_PRIORITY):

Value Meaning
MIN_PRIORITY Minimum priority.
MAX_PRIORITY Maximum priority.
DEF_PRIORITY Default priority.

Position
Specifies the job's position in the print queue.

StartTime
Specifies the earliest time that the job can be printed.

UntilTime
Specifies the the latest time that the job can be printed.

TotalPages
Specifies the number of pages required for the job.

Size
Specifies the size, in bytes, of the job.

Submitted
Specifies the time when the job was submitted.

Time
Specifies the total time, in seconds, that has elapsed since the job began printing.

PagesPrinted
Specifies the number of pages that have printed.

See AlsoDEVMODE, EnumJobs, GetJob, SetJob

JOB_INFO_3
[New - Windows NT]

The JOB_INFO_3 structure is used to link together a set of print jobs.typedef struct _JOB_INFO_3 { // ji2
DWORD JobId;
DWORD JobIdNextJob;
DWORD Reserved;

} JOB_INFO_3;
MembersJobId

Print job identifer.
JobIdNextJob

Print job identifier for the next print job in the linked set of print jobs.
Reserved

This value is reserved for future use. You must set it to zero.
See AlsoEnumJobs, GetJob, SetJob

KERNINGPAIR
The KERNINGPAIR structure defines a kerning pair.typedef struct tagKERNINGPAIR { // kp

WORD wFirst;
WORD wSecond;
int iKernAmount;

} KERNINGPAIR;
MemberswFirst

Specifies the character code for the first character in the kerning pair.
wSecond

Specifies the character code for the second character in the kerning pair.
iKernAmount

Specifies the amount this pair will be kerned if they appear side by side in the same font and
size. This value is typically negative, because pair kerning usually results in two characters
being set more tightly than normal. The value is given in logical units ¾ that is, it depends on
the current mapping mode.

See AlsoGetKerningPairs

KEY_EVENT_RECORD
The KEY_EVENT_RECORD structure is used to report keyboard input events in a console
INPUT_RECORD structure.typedef struct _KEY_EVENT_RECORD { // ker

BOOL bKeyDown;
WORD wRepeatCount;
WORD wVirtualKeyCode;
WORD wVirtualScanCode;
union {
WCHAR UnicodeChar;
CHAR AsciiChar;
} uChar;
DWORD dwControlKeyState;

} KEY_EVENT_RECORD;
MembersbKeyDown

Specifies TRUE if the key is being pressed, FALSE if the key is being released.
wRepeatCount

Specifies a count indicating that a key is being held down. For example, when a key is held
down, you might get five events with this member equal to 1, one event with this member
equal to 5, or multiple events with this member greater than or equal to 1.

wVirtualKeyCode
Specifies the virtual-key code that identifies the given key in a device-independent manner.

wVirtualScanCode
Specifies the virtual scan code of the given key that represents the device-dependent value
generated by the keyboard hardware.

uChar
Specifies the translated Unicode or ASCII character, depending on whether the wide-
character (Unicode) or ANSI version of the ReadConsoleInput function was used.

dwControlKeyState
Indicates the state of the control keys. This member can be a combination of the following
values:

Value Meaning
CAPSLOCK_ON The CAPS LOCK light is on.
ENHANCED_KEY The key is enhanced.
LEFT_ALT_PRESSED The left ALT key is pressed.
LEFT_CTRL_PRESSED The left CTRL key is pressed.
NUMLOCK_ON The NUM LOCK light is on.
RIGHT_ALT_PRESSED The right ALT key is pressed.
RIGHT_CTRL_PRESSED The right CTRL key is pressed.
SCROLLLOCK_ON The SCROLL LOCK light is on.
SHIFT_PRESSED The SHIFT key is pressed.

RemarksEnhanced keys for the IBM® 101- and 102-key keyboards are the INS, DEL, HOME, END, PAGE UP,
PAGE DOWN, and direction keys in the clusters to the left of the keypad; and the divide (/) and
ENTER keys in the keypad.

Keyboard input events are generated when any key, including control keys, is pressed or
released. However, the ALT key when pressed and released without combining with another
character, has special meaning to Windows and is not passed through to the application. Also, the
CTRL+C key combination is not passed through if the input handle is in processed mode
(ENABLE_PROCESSED_INPUT).See AlsoPeekConsoleInput, ReadConsoleInput, WriteConsoleInput, INPUT_RECORD

LANA_ENUM
The LANA_ENUM structure contains the numbers for the current LAN adapters.typedef struct _LANA_ENUM { // le

UCHAR length;
UCHAR lana[MAX_LANA];

} LANA_ENUM;
Memberslength

Specifies the number of valid entries in the array of LAN adapter numbers.
lana

Specifies an array of LAN adapter numbers.
RemarksThe LANA_ENUM structure is pointed to by the ncb_buffer member of the NCB structure when

an application issues the NCBENUM command. The NCBENUM command is not part of the IBM
NetBIOS 3.0 specification.See AlsoNCB

LARGE_INTEGER
The LARGE_INTEGER structure is used to represent a 64-bit signed integer value.typedef union _LARGE_INTEGER {

struct {
DWORD LowPart;
LONG HighPart;
};
LONGLONG QuadPart;

} LARGE_INTEGER;
MembersLowPart

Specifies the low-order 32 bits.
HighPart

Specifies the high-order 32 bits.
QuadPart

Specifies a 64-bit signed integer.
RemarksThe LARGE_INTEGER structure is actually a union. If your compiler has built-in support for 64-

bit integers, use the QuadPart member to store the 64-bit integer. Otherwise, use the LowPart
and HighPart members to store the 64-bit integer.See AlsoLUID, ULARGE_INTEGER

LDT_ENTRY
The LDT_ENTRY structure describes an entry in the descriptor table. This structure is valid only
on x86-based systems.typedef struct _LDT_ENTRY { // ldte

WORD LimitLow;
WORD BaseLow;
union {
struct {
BYTE BaseMid;
BYTE Flags1;
BYTE Flags2;
BYTE BaseHi;
} Bytes;
struct {
DWORD BaseMid : 8;
DWORD Type : 5;
DWORD Dpl : 2;
DWORD Pres : 1;
DWORD LimitHi : 4;
DWORD Sys : 1;
DWORD Reserved_0 : 1;
DWORD Default_Big : 1;
DWORD Granularity : 1;
DWORD BaseHi : 8;
} Bits;
} HighWord;

} LDT_ENTRY, *PLDT_ENTRY;
MembersLimitLow

Contains the low 16 bits of the address of the last byte in the segment.
BaseLow

Contains the low 16 bits of the base address of the segment.
HighWord

Contains the high two words of the descriptor. This member may be interpreted as bytes or
collections of bits, depending on the level of detail required.
The members of the Bits structure are as follows:

Member Contents
BaseMid Middle bits (16- 23) of the base address of the

segment.
Type Bitmask that indicates the type of segment. This

member can be one of the following values:

Value Meaning
0 Read-only data segment
1 Read-write data segment
2 Unused segment
3 Read-write expand-down data segment
4 Execute-only code segment
5 Executable-readable code segment
6 Execute-only "conforming" code segment
7 Executable-readable "conforming" code

segment

Dpl Privilege level of the descriptor. This member is an
integer value in the range 0 (most privileged)
through 3 (least privileged).

Pres Present flag. This member is 1 if the segment is
present in physical memory or 0 if it is not.

LimitHi High bits (16 - 19) of the address of the last byte in
the segment.

Sys Space that is available to system programmers.
This member might be used for marking segments
in some system-specific way.

Reserved_0 Reserved.
Default_Big Size of segment. If the segment is a data segment,

this member contains 1 if the segment is larger than
64 kilobytes (K) or 0 if the segment is smaller than
or equal to 64K.
If the segment is a code segment, this member
contains 1 if the segment is a code segment and
runs with the default (native mode) instruction set.
This member contains 0 if the code segment is an
80286 code segment and runs with 16-bit offsets
and the 80286-compatible instruction set.

Granularity Granularity. This member contains 0 if the segment
is byte granular, 1 if the segment is page granular.

BaseHi High bits (24 - 31) of the base address of the
segment.

The members of the Bytes structure are as follows:
Member Contents
BaseMid Middle bits (16- 23) of the base address of the

segment.
Flags1 Values of the Type, Dpl, and Pres members in the

Bits structure.
Flags2 Values of the LimitHi, Sys, Reserved_0,

Default_Big, and Granularity members in the Bits
structure.

BaseHi High bits (24 - 31) of the base address of the segment.
RemarksThe GetThreadSelectorEntry function fills this structure with information from an entry in the

descriptor table. You can use this information to convert a segment-relative address to a linear
virtual address.

The base address of a segment is the address of offset 0 in the segment. To calculate this value,
combine the BaseLow, BaseMid, and BaseHi members.

The limit of a segment is the address of the last byte that can be addressed in the segment. To
calculate this value, combine the LimitLow and LimitHi members.See AlsoGetThreadSelectorEntry

LIST_ENTRY
The LIST_ENTRY structure is available for any entry in a double-linked list.typedef struct _LIST_ENTRY { // le

struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY;
MembersFlink

Points to the preceding entry in a double-linked list.
Blink

Points to the next entry in a double-linked list.
RemarksThis structure can be used as the beginning of a double-linked list or as any subsequent entry in

the list.

LOAD_DLL_DEBUG_INFO
The LOAD_DLL_DEBUG_INFO structure contains information about a dynamic-link library (DLL)
that has just been loaded.typedef struct _LOAD_DLL_DEBUG_INFO { // lddi

HANDLE hFile;
LPVOID lpBaseOfDll;
DWORD dwDebugInfoFileOffset;
DWORD nDebugInfoSize;
LPVOID lpImageName;
WORD fUnicode;

} LOAD_DLL_DEBUG_INFO;
MembershFile

Identifies a handle of the DLL. If this member is NULL, the handle is not valid. Otherwise, the
member is opened for reading and read-sharing in the context of the debugger.

lpBaseOfDll
Points to the base address of the DLL in the address space of the process loading the DLL.

dwDebugInfoFileOffset
Specifies the offset to the debugging information in the file identified by the hFile member.
The kernel expects the debugging information to be in CodeView 4.0 format. This format is
currently a derivative of Common Object File Format (COFF).

nDebugInfoSize
Specifies the size, in bytes, of the debugging information in the file. If this value is zero, there
is no debugging information.

lpImageName
Points to the filename associated with hFile. This member may be NULL, or it may contain
the address of a string pointer in the address space of the process being debugged. That
address may, in turn, either be NULL or point to the actual filename. If fUnicode is a nonzero
value, the name string is Unicode; otherwise, it is ANSI.
This member is strictly optional. Debuggers must be prepared to handle the case where
lpImageName is NULL or *lpImageName (in the address space of the process being
debugged) is NULL. Specifically, this release of Windows NT will never provide an image
name for a create process event, and it will not likely pass an image name for the first DLL
event. This version of Windows NT will also never provide this information in the case of
debugging events that originate from a call to the DebugActiveProcess function.

fUnicode
Indicates whether a filename specified by lpImageName is Unicode or ANSI. A nonzero value
for this member indicates Unicode; zero indicates ANSI.

See AlsoCREATE_PROCESS_DEBUG_INFO, CREATE_THREAD_DEBUG_INFO,
DebugActiveProcess, DEBUG_EVENT

LOCALESIGNATURE
The LOCALESIGNATURE structure contains extended font-signature information, including two
code-page bitfields (CPBs) that define the default and supported character sets and code-pages.
This structure is typically used to represent the relationships between font coverage and locales.typedef struct tagLOCALESIGNATURE {

DWORD lsUsb[4];
DWORD lsCsbDefault[2];
DWORD lsCsbSupported[2];

} LOCALESIGNATURE;
MemberslsUsb

A 128-bit Unicode subset bitfield (USB) identifying up to 126 Unicode subranges. Each bit,
except the two most significant bits, represents a single subrange. The most significant bit is
always 1 and identifies the bitfield as a font signature; the second most significant is reserved
and must be 0. Unicode subranges are numbered in accordance with the ISO 10646
standard.

lsCsbDefault
A code-page bitfield that indicates the default OEM and ANSI code-pages for a locale. The
code-pages may be identified by separate bits or a single bit representing a common ANSI
and OEM code-page. For a list of possible bitfield values, see Code-Page Bitfields.

lsCsbSupported
A code-page bitfield that indicates all the code-pages in which the locale can be supported.
For a list of possible bitfield values, see Code-Page Bitfields.

LOCALGROUP_INFO_0
The LOCALGROUP_INFO_0 structure renames the local group.typedef struct _LOCALGROUP_INFO_0 {

LPWSTR lgrpi0_name;
}LOCALGROUP_INFO_0, *PLOCALGROUP_INFO_0, *LPLOCALGROUP_INFO_0;
Memberslgrpi0_name

A Unicode string that specifies the local group to which a user belongs. The constant GNLEN
specifies the maximum number of characters in the string. For the NetLocalGroupSetInfo
function, this member specifies the new name of the local group.

See AlsoNetLocalGroupAdd, NetLocalGroupEnum, NetLocalGroupGetInfo, NetLocalGroupSetInfo

LOCALGROUP_INFO_1
The LOCALGROUP_INFO_1 structure renames the local group and specifies a comment
describing the local group.typedef struct _LOCALGROUP_INFO_1 {

LPWSTR lgrpi1_name;
LPWSTR lgrpi1_comment;

}LOCALGROUP_INFO_1, *PLOCALGROUP_INFO_1, *LPLOCALGROUP_INFO_1;
Memberslgrpi1_name

A Unicode string that specifies the local group to which a user belongs. The constant GNLEN
specifies the maximum number of characters in the string. For the NetLocalGroupSetInfo
function, this member is ignored

lgrpi1_comment
A Unicode string that points to a Unicode string that contains a remark for the local group.
This element can be a null string. The comment can have as many as MAXCOMMENTSZ
characters.

See AlsoNetLocalGroupAdd, NetLocalGroupEnum, NetLocalGroupGetInfo, NetLocalGroupSetInfo

LOCALGROUP_INFO_1002
The LOCALGROUP_INFO_1002 structure specifies the name of the local group and a comment
describing the local group.typedef struct _LOCALGROUP_INFO_1002 {
LPWSTR lgrpi1002_comment;
}LOCALGROUP_INFO_1002, *PLOCALGROUP_INFO_1002, *
LPLOCALGROUP_INFO_1002;
Memberslgrpi1002_comment

Points to a Unicode string that contains a remark for the local group. This element can be a
null string. The comment can have as many as MAXCOMMENTSZ characters.

See AlsoNetLocalGroupSetInfo

LOCALGROUP_MEMBERS_INFO_0
The LOCALGROUP_MEMBERS_INFO_0 structure is used in the NetLocalGroupAddMembers
and NetLocalGroupDelMembers functions to identify a member of a local group.typedef struct _LOCALGROUP_MEMBERS_INFO_0 {

PSID lgrmi0_sid;
} LOCALGROUP_MEMBERS_INFO_0;
Memberslgrmi0_sid

Points to the security identifier of the member.
See AlsoLOCALGROUP_MEMBERS_INFO_1,

LOCALGROUP_MEMBERS_INFO_2,

LOCALGROUP_MEMBERS_INFO_3, NetLocalGroupAddMembers,
NetLocalGroupDelMembers, NetLocalGroupGetMembers, NetLocalGroupSetMembers

LOCALGROUP_MEMBERS_INFO_1
The LOCALGROUP_MEMBERS_INFO_1 structure is used in the NetLocalGroupAddMembers
and NetLocalGroupDelMembers functions to identify a member of a local group, and account
and security information for the member.typedef struct _LOCALGROUP_MEMBERS_INFO_1 {
PSID lgrmi1_sid;
SID_NAME_USE lgrmi1_sidusage;
LPWSTR lgrmi1_name;
} LOCALGROUP_MEMBERS_INFO_1, *PLOCALGROUP_MEMBERS_INFO_1, *
LPLOCALGROUP_MEMBERS_INFO_1;
Memberslgrmi1_sid

Specifies the security identifier of an account that is a member of this local group. The
account may be a user account or a global group account.

lgrmi1_sidusage
Specifies the account type of the security identifier specified in the lgrmi1_sid member. The
following values are possible.

Value Meaning
SidTypeUser The account is a user account.
SidTypeGroup The account is a global group

account.
SidTypeWellKnownGroup The account is a well-known

group account (such as
Everyone).

SidTypeDeletedAccount The account has been deleted.
SidTypeUnknown The account type cannot be

determined.

lgrmi1_name
Specifies one account name of the account specified by the lgrmi1_sid member. The
account name does not include the domain name.

See AlsoLOCALGROUP_MEMBERS_INFO_0, LOCALGROUP_MEMBERS_INFO_2,
LOCALGROUP_MEMBERS_INFO_3,

NetLocalGroupAddMembers, NetLocalGroupDelMembers, NetLocalGroupGetMembers

LOCALGROUP_MEMBERS_INFO_2
The LOCALGROUP_MEMBERS_INFO_2 structure is used in the NetLocalGroupAddMembers
and NetLocalGroupDelMembers functions to identify a member of a local group, and account
and security information for the member.typedef struct _LOCALGROUP_MEMBERS_INFO_2 {
PSID lgrmi2_sid;
SID_NAME_USE lgrmi2_sidusage;
LPWSTR lgrmi2_domainandname;
} LOCALGROUP_MEMBERS_INFO_2, *PLOCALGROUP_MEMBERS_INFO_2, *
LPLOCALGROUP_MEMBERS_INFO_2;
Memberslgrmi2_sid

Specifies the security identifier of an account that is a member of this local group. The
account may be a user account or a global group account.

Lgrmi2_sidusage
Specifies the account type of the security identifier specified in the lgrmi2_sid member. The
following values are possible.

Value Meaning
SidTypeUser The account is a user account.
SidTypeGroup The account is a global group

account.
SidTypeWellKnownGroup The account is a well-known

group account (such as
Everyone).

SidTypeDeletedAccount The account has been deleted.
SidTypeUnknown The account type cannot be

determined.

lgrmi2_domainandname
Specifies the account name of the account specified by the lgrmi2_sid member. The
account name is of the form.<DomainName>\<AccountName>See AlsoLOCALGROUP_MEMBERS_INFO_0, LOCALGROUP_MEMBERS_INFO_1,

LOCALGROUP_MEMBERS_INFO_3,

NetLocalGroupAddMembers, NetLocalGroupDelMembers, NetLocalGroupGetMembers

LOCALGROUP_MEMBERS_INFO_3
The LOCALGROUP_MEMBERS_INFO_3 structure is used in the NetLocalGroupAddMembers
and NetLocalGroupDelMembers functions to identify a member of a local group.typedef struct _LOCALGROUP_MEMBERS_INFO_3 {

LPWSTR lgrmi3_domainandname;
} LOCALGROUP_MEMBERS_INFO_3;
Memberslgrmi3_domainandname

Points to a null-terminated Unicode string containing the name of the member prefixed by the
domain name and the "\" separator character.

See AlsoLOCALGROUP_MEMBERS_INFO_0, LOCALGROUP_MEMBERS_INFO_1,
LOCALGROUP_MEMBERS_INFO_2,

NetLocalGroupAddMembers, NetLocalGroupDelMembers, NetLocalGroupGetMembers,
NetLocalGroupSetMembers

LOCALGROUP_USERS_INFO_0
The LOCALGROUP_USERS_INFO_0 structure contains user names within a local group.typedef struct _LOCALGROUP_USERS_INFO_0 {
LPWSTR lgrui0_name;
} LOCALGROUP_USERS_INFO_0, *PLOCALGROUP_USERS_INFO_0,
*LPLOCALGROUP_USERS_INFO_0;

Memberslgrui0_name
Pointer to a Unicode string containing a list of user names in the local group.

See AlsoNetUserGetLocalGroups

LOCALHEADER
The LOCALHEADER structure contains the x- and y-coordinates of a hotspot associated with the
cursor identified by a RESDIR structure.typedef struct tagLOCALHEADER {

WORD xHotSpot;
WORD yHotSpot;

} LOCALHEADER;
MembersxHotSpot

Specifies the x-coordinate, in pixels, of the cursor hot spot.
yHotSpot

Specifies the y-coordinate, in pixels, of the cursor hot spot.RemarksThe LOCALHEADER structure is the first data written to the RT_CURSOR resource if a RESDIR
structure contains information about a cursor.See AlsoCURSORDIR, RESDIR

LOGBRUSH
The LOGBRUSH structure defines the style, color, and pattern of a physical brush. It is used by
the CreateBrushIndirect and ExtCreatePen functions.typedef struct tagLOGBRUSH { // lb

UINTlbStyle;
COLORREF lbColor;
LONGlbHatch;

} LOGBRUSH;
MemberslbStyle

Specifies the brush style. The lbStyle member must be one of the following styles:
Value Meaning
BS_DIBPATTERN A pattern brush defined by a device-

independent bitmap (DIB) specification. If
lbStyle is BS_DIBPATTERN, the lbHatch
member contains a handle to a packed DIB.
Windows 95: Creating brushes from
bitmaps or DIBs larger than 8x8 pixels is not
supported. If a larger bitmap is given, only a
portion of the bitmap is used.

BS_DIBPATTERN8X8 Same as BS_DIBPATTERN.
BS_DIBPATTERNPT A pattern brush defined by a device-

independent bitmap (DIB) specification. If
lbStyle is BS_DIBPATTERNPT, the lbHatch
member contains a pointer to a packed DIB.

BS_HATCHED Hatched brush.
BS_HOLLOW Hollow brush.
BS_NULL Same as BS_HOLLOW.
BS_PATTERN Pattern brush defined by a memory bitmap.
BS_PATTERN8X8 Same as BS_PATTERN.
BS_SOLID Solid brush.

lbColor
Specifies the color in which the brush is to be drawn. If lbStyle is the BS_HOLLOW or
BS_PATTERN style, lbColor is ignored.
If lbStyle is BS_DIBPATTERN or BS_DIBPATTERNBT, the low-order word of lbColor
specifies whether the bmiColors members of the BITMAPINFO structure contain explicit red,
green, blue (RGB) values or indices into the currently realized logical palette. The lbColor
member must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit

indices into the currently realized logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.

lbHatch
Specifies a hatch style. The meaning depends on the brush style defined by lbStyle.
If lbStyle is BS_DIBPATTERN, the lbHatch member contains a handle to a packed DIB. If
lbStyle is BS_DIBPATTERNPT, the lbHatch member contains a pointer to a packed DIB.
If lbStyle is BS_HATCHED, the lbHatch member specifies the orientation of the lines used to
create the hatch. It can be one of the following values:

Value Meaning
HS_BDIAGONAL A 45-degree upward, left-to-right hatch
HS_CROSS Horizontal and vertical cross-hatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL A 45-degree downward, left-to-right hatch
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

If lbStyle is BS_PATTERN, lbHatch is a handle to the bitmap that defines the pattern. The
bitmap cannot be a DIB section bitmap, which is created by the CreateDIBSection function.
If lbStyle is BS_SOLID or BS_HOLLOW, lbHatch is ignored.

RemarksAlthough lbColor controls the foreground color of a hatch brush, the SetBkMode and
SetBkColor functions control the background color.See AlsoBITMAPINFO, CreateBrushIndirect, CreateDIBSection, ExtCreatePen, SetBkColor,
SetBkMode

LOGCOLORSPACE
The LOGCOLORSPACE structure contains information that defines a logical color space.typedef struct tagLOGCOLORSPACE {

DWORD lcsSignature;
DWORD lcsVersion;
DWORD lcsSize;
LCSCSTYPElcsCSType;
LCSGAMUTMATCH lcsIntent;
CIEXYZTRIPLE lcsEndpoints;
DWORD lcsGammaRed;
DWORD lcsGammaGreen;
DWORD lcsGammaBlue;
TCHAR lcsFilename[MAX_PATH];

} LOGCOLORSPACE, *LPLOGCOLORSPACE;
MemberslcsSignature

Color space signature.
lcsVersion

Version number; must be 0x400.
lcsSize

Size of this structure, in bytes.
lcsCSType

Color space type. Can be one of the following values:
Value Meaning
LCS_DEVICE_RGB Color values are device RGB

values. The values are passed to
the device without translation.

LCS_DEVICE_CMYK Color values are device CMYK
values. The values are passed to
the device without translation

LCS_CALIBRATED_RGB Color values are calibrated RGB
values. The values are translated
using the endpoints specified by
the lcsEndpoints member before
being passed to the device.

If LCS_CALIBRATED_RGB is not specified, the lcsEndpoints member is ignored.
lcsIntent

The gamut matching method. Can be one of the following values:
Value Meaning
LCS_GM_BUSINESS Maintain saturation. Used for

business charts and other
situations in which undithered
colors are required.

LCS_GM_GRAPHICS Maintain colormetric match. Used
for graphic designs and named
colors.

LCS_GM_IMAGES Maintain contrast. Used for
photographs and natural images.

lcsEndpoints
Red, green, blue endpoints.

lcsGammaRed
Scale of the red coordinate.

lcsGammaGreen
Scale of the green coordinate.

lcsGammaBlue
Scale of the blue coordinate.

lcsFilename
A null-terminated string that names a color profile file. This member is typically set to zero, but
may be used to set the color space to be exactly as specified by the color profile. This is
useful for devices that input color values for a specific printer, or when using an installable
image color matcher. If a color profile is specified, all other members of this structure should
be set to reasonable values, even if the values are not 100 percent accurate.

See AlsoRGB, CMYK

LOGFONT
The LOGFONT structure defines the attributes of a font.typedef struct tagLOGFONT { // lf

LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT;
MemberslfHeight

Specifies the height, in logical units, of the font's character cell or character. The character
height value (also known as the em height) is the character cell height value minus the
internal-leading value. The font mapper interprets the value specified in lfHeight in the
following manner:

Value Meaning
> 0 The font mapper transforms this value into device units

and matches it against the cell height of the available
fonts.

0 The font mapper uses a default height value when it
searches for a match.

< 0 The font mapper transforms this value into device units
and matches its absolute value against the character
height of the available fonts.

For all height comparisons, the font mapper looks for the largest font that does not
exceed the requested size.
This mapping occurs when the font is used for the first time.
For the MM_TEXT mapping mode, you can use the following formula to specify a height
for a font with a given point size:lfHeight = -MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72);lfWidth
Specifies the average width, in logical units, of characters in the font. If lfWidth is zero, the
aspect ratio of the device is matched against the digitization aspect ratio of the available fonts
to find the closest match, determined by the absolute value of the difference.

lfEscapement
Specifies the angle, in tenths of degrees, between the escapement vector and the x-axis of
the device. The escapement vector is parallel to the base line of a row of text.
Windows NT:

When the graphics mode is set to GM_ADVANCED, you can specify the escapement
angle of the string independently of the orientation angle of the string's characters.
When the graphics mode is set to GM_COMPATIBLE, lfEscapement specifies both the
escapement and orientation. You should set lfEscapement and lfOrientation to the same
value.

Windows 95:
The lfEscapement member specifies both the escapement and orientation. You should set
lfEscapement and lfOrientation to the same value.

lfOrientation
Specifies the angle, in tenths of degrees, between each character's base line and the x-axis of
the device.

lfWeight
Specifies the weight of the font in the range 0 through 1000. For example, 400 is normal and
700 is bold. If this value is zero, a default weight is used.
The following values are defined for convenience:

Value Weight
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_HEAVY 900
FW_BLACK 900

lfItalic
Specifies an italic font if set to TRUE.

lfUnderline
Specifies an underlined font if set to TRUE.

lfStrikeOut
Specifies a strikeout font if set to TRUE.

lfCharSet
Specifies the character set. The following values are predefined:

ANSI_CHARSET
DEFAULT_CHARSET

SYMBOL_CHARSET
SHIFTJIS_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
CHINESEBIG5_CHARSET
OEM_CHARSET

Windows 95 only:
JOHAB_CHARSET
HEBREW_CHARSET
ARABIC_CHARSET
GREEK_CHARSET
TURKISH_CHARSET
THAI_CHARSET
EASTEUROPE_CHARSET
RUSSIAN_CHARSET
MAC_CHARSET
BALTIC_CHARSET

The OEM_CHARSET value specifies a character set that is operating-system dependent.
You can use the DEFAULT_CHARSET value to allow the name and size of a font to fully
describe the logical font. If the specified font name does not exist, a font from any character
set can be substituted for the specified font, so you should use DEFAULT_CHARSET
sparingly to avoid unexpected results.
Fonts with other character sets may exist in the operating system. If an application uses a font
with an unknown character set, it should not attempt to translate or interpret strings that are
rendered with that font.
This parameter is important in the font mapping process. To ensure consistent results, specify
a specific character set. If you specify a typeface name in the lfFaceName member, make
sure that the lfCharSet value matches the character set of the typeface specified in
lfFaceName.

lfOutPrecision
Specifies the output precision. The output precision defines how closely the output must
match the requested font's height, width, character orientation, escapement, pitch, and font
type. It can be one of the following values:

Value Meaning
OUT_CHARACTER_PRECISNot used.
OUT_DEFAULT_PRECIS Specifies the default font mapper

behavior.
OUT_DEVICE_PRECIS Instructs the font mapper to choose a

Device font when the system contains
multiple fonts with the same name.

OUT_OUTLINE_PRECIS Windows NT: This value instructs the
font mapper to choose from TrueType
and other outline-based fonts.
Windows 95: This value is not used.

OUT_RASTER_PRECIS Instructs the font mapper to choose a
raster font when the system contains
multiple fonts with the same name.

OUT_STRING_PRECIS This value is not used by the font
mapper, but it is returned when raster
fonts are enumerated.

OUT_STROKE_PRECIS Windows NT: This value is not used by
the font mapper, but it is returned when
TrueType, other outline-based fonts,
and vector fonts are enumerated.
Windows 95: This value is used to map
vector fonts, and is returned when
TrueType or vector fonts are
enumerated.

OUT_TT_ONLY_PRECIS Instructs the font mapper to choose
from only TrueType fonts. If there are no

TrueType fonts installed in the system,
the font mapper returns to default
behavior.

OUT_TT_PRECIS Instructs the font mapper to choose a
TrueType font when the system
contains multiple fonts with the same
name.

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and
OUT_TT_PRECIS values to control how the font mapper chooses a font when the
operating system contains more than one font with a given name. For example, if an
operating system contains a font named Symbol in raster and TrueType form,
specifying OUT_TT_PRECIS forces the font mapper to choose the TrueType version.
Specifying OUT_TT_ONLY_PRECIS forces the font mapper to choose a TrueType font,
even if it must substitute a TrueType font of another name.

lfClipPrecision
Specifies the clipping precision. The clipping precision defines how to clip characters that are
partially outside the clipping region. It can be one or more of the following values:

Value Meaning
CLIP_DEFAULT_PRECIS Specifies default clipping behavior.
CLIP_CHARACTER_PRECISNot used.
CLIP_STROKE_PRECIS Not used by the font mapper, but is

returned when raster, vector, or
TrueType fonts are enumerated.
Windows NT: For compatibility, this
value is always returned when
enumerating fonts.

CLIP_MASK Not used.
CLIP_EMBEDDED You must specify this flag to use an

embedded read-only font.
CLIP_LH_ANGLES When this value is used, the rotation for

all fonts depends on whether the
orientation of the coordinate system is
left-handed or right-handed.
If not used, device fonts always rotate
counterclockwise, but the rotation of
other fonts is dependent on the
orientation of the coordinate system.
For more information about the
orientation of coordinate systems, see
the description of the nOrientation
parameter

CLIP_TT_ALWAYS Not used.

lfQuality
Specifies the output quality. The output quality defines how carefully the graphics device
interface (GDI) must attempt to match the logical-font attributes to those of an actual physical
font. It can be one of the following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not matter.
DRAFT_QUALITY Appearance of the font is less important

than when PROOF_QUALITY is used. For
GDI raster fonts, scaling is enabled, which
means that more font sizes are available,
but the quality may be lower. Bold, italic,
underline, and strikeout fonts are
synthesized if necessary.

PROOF_QUALITY Character quality of the font is more
important than exact matching of the logical-
font attributes. For GDI raster fonts, scaling

is disabled and the font closest in size is
chosen. Although the chosen font size may
not be mapped exactly when
PROOF_QUALITY is used, the quality of
the font is high and there is no distortion of
appearance. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

lfPitchAndFamily
Specifies the pitch and family of the font. The two low-order bits specify the pitch of the font
and can be one of the following values:
DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH
Bits 4 through 7 of the member specify the font family and can be one of the following values:
FF_DECORATIVE
FF_DONTCARE
FF_MODERN
FF_ROMAN
FF_SCRIPT
FF_SWISS
The proper value can be obtained by using the Boolean OR operator to join one pitch
constant with one family constant.
Font families describe the look of a font in a general way. They are intended for specifying
fonts when the exact typeface desired is not available. The values for font families are as
follows:

Value Meaning
FF_DECORATIVE Novelty fonts. Old English is an example.
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width (monospace),

with or without serifs. Monospace fonts are
usually modern. Pica, Elite, and CourierNew®
are examples.

FF_ROMAN Fonts with variable stroke width (proportional)
and with serifs. MS® Serif is an example.

FF_SCRIPT Fonts designed to look like handwriting. Script
and Cursive are examples.

FF_SWISS Fonts with variable stroke width (proportional)
and without serifs. MS® Sans Serif is an
example.

lfFaceName
A null-terminated string that specifies the typeface name of the font. The length of this string
must not exceed 32 characters, including the null terminator. The EnumFontFamilies
function can be used to enumerate the typeface names of all currently available fonts. If
lfFaceName is an empty string, GDI uses the first font that matches the other specified
attributes.

See AlsoCreateFont, CreateFontIndirect, EnumFontFamilies

LOGPALETTE
The LOGPALETTE structure defines a logical color palette.typedef struct tagLOGPALETTE { // lgpl

WORD palVersion;
WORD palNumEntries;
PALETTEENTRY palPalEntry[1];

} LOGPALETTE;
MemberspalVersion

Specifies the Windows version number for the structure (currently 0x300).
palNumEntries

Specifies the number of entries in the logical color palette.
palPalEntry

Specifies an array of PALETTEENTRY structures that define the color and usage of each
entry in the logical palette.RemarksThe colors in the palette-entry table should appear in order of importance because entries earlier

in the logical palette are most likely to be placed in the system palette.See AlsoCreatePalette, PALETTEENTRY

LOGPEN
The LOGPEN structure defines the style, width, and color of a pen. The CreatePenIndirect
function uses the LOGPEN structure.typedef struct tagLOGPEN { // lgpn

UINTlopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

} LOGPEN;
MemberslopnStyle

Specifies the pen style, which can be one of the following values:
Value Meaning
PS_SOLID Pen is solid.
PS_DASH Pen is dashed.
PS_DOT Pen is dotted.
PS_DASHDOT Pen has alternating dashes and dots.
PS_DASHDOTDOT Pen has dashes and double dots.
PS_NULL Pen is invisible.
PS_INSIDEFRAME Pen is solid. When this pen is used in any

graphics device interface (GDI) drawing
function that takes a bounding rectangle, the
dimensions of the figure are shrunk so that it
fits entirely in the bounding rectangle, taking
into account the width of the pen. This applies
only to geometric pens.

lopnWidth
Specifies the POINT structure that contains the pen width, in logical units. If the pointer
member is NULL, the pen is one pixel wide on raster devices. The y member in the POINT
structure for lopnWidth is not used.

lopnColor
Specifies the pen color.

RemarksIf the width of the pen is greater than 1 and the pen style is PS_INSIDEFRAME, the line is drawn
inside the frame of all GDI objects except polygons and polylines. If the pen color does not match
an available red, green, blue (RGB) value, the pen is drawn with a logical (dithered) color. If the
pen width is less than or equal to 1, the PS_INSIDEFRAME style is identical to the PS_SOLID
style.See AlsoCreatePenIndirect, POINT, RGB

LS_CHALLDATA
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LS_CHALLDATA structure is passed in the LS_CHALLENGE structure. The
LS_CHALLDATA structure passes the challenge from the application to the license system, and
passes the response from the license system back to the application.typedef struct _LS_CHALLDATA {

LS_ULONG SecretIndex;
LS_ULONG Random;
LS_MSG_DIGEST MsgDigest;

} LS_CHALLDATA;
MembersSecretIndex

Specifies the index of the secret value to be challenged. Note: The secret index is 1-based, so
the first secret must have an index of 1.

Random
Specifies a random 32-bit value.

MsgDigest
Structure that contains the message digest that is computed by the MD4 Message-Digest
Algorithm from RSA Data Security, Inc.

RemarksIn the basic challenge protocol, the application must choose the index of the secret to be
challenged, and it must generate a random number. It must then compute a message digest using
the MD4 Message-Digest Algorithm. The input to the algorithm is formed by concatenating the
input parameters to the function being called, the random number, the index of the secret to be
challenged, and the actual secret value. The first input parameter should be the name of the
license service function being called, either LSRequest or LSUpdate. All parameters should be in
the order specified in the prototypes for those functions, and you should exclude the values of the
Challenge and LicenseHandle parameters. Copy string parameters without null terminators. The
application then passes the algorithm output to the license system.

The license system authenticates the message digest and computes a new message digest
consisting of the input parameters to the license service function, the output parameters, the
random number, the index of the secret to be challenged, and the actual secret value. The last
output parameter should be the returned status. This new message digest is passed back to the
application, which, in turn, authenticates it. All parameters should be in the order specified in the
prototypes for the LSRequest or LSUpdate function, and you should exclude the values of the
Challenge and LicenseHandle parameters. Note that the actual secret value never passes
between the application and the license system in plain text.

If the function h(x) is the algorithm that, given input x, returns the output of the MD4 Message-
Digest Algorithm, then the following briefly illustrates the basic protocol.

The application passes the LS_CHALLDATA structure to the license system:

R, X, h(in + R + X + S (X))

The license system passes a new LS_MSG_DIGEST to the application:

h(in + out + R + X + S (X))

where R is the random number, X is the index of the secret to be challenged, in is a byte stream
that encodes the input parameters, S indicates a secret, S (X) is the actual secret value, out is a
byte stream that encodes the output parameters, and + denotes concatenation.

This data format can be invalid if the Protocol specified in the LS_CHALLENGE structure is not
LS_BASIC_PROTOCOL. Other protocols may define their own LS_CHALLDATA format.See AlsoLS_CHALLENGE, LS_MSG_DIGEST

LS_CHALLENGE
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LS_CHALLENGE structure is used for both the challenge and the response of the
LSRequest and LSUpdate license service functions. It is the main structure in the challenge/
response mechanism, and it is supported by all challenge/response protocols.typedef struct _LS_CHALLENGE {

LS_ULONG Protocol;
LS_ULONG Size;
LS_CHALLDATA ChallengeData;

} LS_CHALLENGE;
MembersProtocol

Specifies the protocol setting for license authentication.
Size

Specifies the size, in bytes, of the ChallengeData (LS_CHALLDATA) structure.
ChallengeData

Structure that contains the challenge that the application passes to the license system, and
the response the license system returns to the application.

RemarksUse the LS_CHALLDATA structure to pass the challenge to the license system. The license
system also returns the challenge response in the LS_CHALLDATA structure. Therefore, the
number of bytes specified in the Size member on entry must be large enough to accommodate
the challenge response. If the structure is not large enough to accommodate it, the error
LS_BUFFER_TOO_SMALL is returned.

Because the LS_CHALLDATA structure can vary depending on the protocol specified in the
Protocol member, this structure must be a single contiguous entity in memory, and must not
exceed the number of bytes specified in the Size member. It cannot contain any pointers.

LSAPI passes the Protocol, the Size of the LS_CHALLDATA structure, and the actual data
contained in the structure to the license system. The license system, in turn, casts the byte
sequence into the appropriate structure based on the Protocol specified.

The constant value LS_BASIC_PROTOCOL specifies a standard basic challenge protocol that is
supported by all LSAPI-compliant license systems. When the Protocol specified is
LS_OUT_OF_BAND_PROTOCOL, there is no challenge and no response.See AlsoLS_CHALLDATA, LS_MSG_DIGEST

LS_MSG_DIGEST
Notice:This is preliminary documentation for technology that will be supported in future releases
of Microsoft Windows.

The LS_MSG_DIGEST structure is passed in the LS_CHALLDATA structure. The MD4
Message-Digest Algorithm from RSA Data Security, Inc., computes the LS_MSG_DIGEST
structure by using the following elements as input: the input and output parameters to the
LSRequest or LSUpdate license service functions; a random number; the index of an application
secret; and the actual application secret.typedef struct _LS_MSG_DIGEST {

LS_STR MessageDigest[16];
} LS_MSG_DIGEST;
MembersMessageDigest[16]

Specifies a 128-bit message digest that is the output of the MD4 Message-Digest Algorithm.
See AlsoLS_CHALLDATA, LS_CHALLENGE

LUID
An LUID is a 64-bit value guaranteed to be unique only on the system on which it was generated.
The uniqueness of a locally unique identifier (LUID) is guaranteed only until the system is
restarted.

An LUID is not for direct manipulation. Applications are to use functions and structures to
manipulate LUID values.typedef LARGE_INTEGER LUID
See AlsoAllocateLocallyUniqueId, LookupPrivilegeName, LookupPrivilegeValue, PrivilegeCheck,

LUID_AND_ATTRIBUTES, PRIVILEGE_SET

LUID_AND_ATTRIBUTES
The LUID_AND_ATTRIBUTES structure represents a locally unique identifier (LUID) and its
attributes.typedef struct _LUID_AND_ATTRIBUTES { // luaa

LUID Luid;
DWORD Attributes;

} LUID_AND_ATTRIBUTES;
MembersLuid

Specifies an LUID value.
Attributes

Specifies attributes of the LUID. This value contains up to 32 one-bit flags. Its meaning is
dependent on the definition and use of the LUID.

RemarksAn LUID_AND_ATTRIBUTES structure can represent an LUID whose attributes change
frequently, such as when it is used to represent privileges in the PRIVILEGE_SET structure.
Privileges are represented by LUIDs and have attributes indicating whether they are currently
enabled or disabled.See AlsoAllocateLocallyUniqueId, LUID, PRIVILEGE_SET, TOKEN_PRIVILEGES

LV_COLUMN
The LV_COLUMN structure contains information about a column in a list view control. This
structure is also used to receive information about a column.typedef struct _LV_COLUMN {

UINT mask;
int fmt;
int cx;
LPTSTR pszText;
int cchTextMax;
int iSubItem;

} LV_COLUMN;
Membersmask

Specifies which members of this structure contain valid information. This member can be zero,
or one or more of the following values:

Value Meaning
LVCF_FMT The fmt member is valid.
LVCF_SUBITEM The iSubItem member is valid.
LVCF_TEXT The pszText member is valid.
LVCF_WIDTH The cx member is valid.

fmt
Specifies the alignment of the column heading and the subitem text in the column. This
member can be one of the following values:

Value Meaning
LVCFMT_CENTERText is centered.
LVCFMT_LEFT Text is left-aligned.
LVCFMT_RIGHT Text is right-aligned.

The leftmost column in a list view control must be left aligned.
cx

Specifies the width, in pixels, of the column.
pszText

Pointer to a null-terminated string that contains the column heading if the structure contains
information about a column. If the structure is receiving information about a column, this
member specifies the address of the buffer that receives the column heading.

cchTextMax
Specifies the size, in characters, of the buffer pointed to by the pszText member. If the
structure is not receiving information about a column, this member is ignored.

iSubItem
Specifies the index of subitem associated with column.

RemarksThis structure is used with the LVM_GETCOLUMN, LVM_SETCOLUMN, LVM_INSERTCOLUMN,
and LVM_DELETECOLUMN messages.See AlsoLVM_DELETECOLUMN, LVM_GETCOLUMN, LVM_INSERTCOLUMN, LVM_SETCOLUMN

LV_DISPINFO
The LV_DISPINFO structure contains information needed to display an owner-drawn item in a list
view control.typedef struct tagLV_DISPINFO {

NMHDR hdr;
LV_ITEM item;

} LV_DISPINFO;
Membershdr

Specifies a NMHDR structure. The code member of this structure identifies the notification
message being sent. It can be one of the following notification codes: LVN_GETDISPINFO or
LVN_SETDISPINFO.

item
Specifies an LV_ITEM structure that identifies the item or subitem. The structure either
contains or receives information about the item. The mask member contains a set of bit flags
that specify which item attributes are relevant. You can set one or more of the following bit
flags:

Value Meaning
LVIF_IMAGE The iImage member specifies, or is to receive,

the index of the item's icon in the image list.
LVIF_STATE The state member specifies, or is to receive,

the state of the item.
LVIF_TEXT The pszText member specifies the new item

text or the address of a buffer that is to receive
the item text.

If the structure is receiving item text, the pszText and cchTextMax members specify the
address and size of a buffer. You can either copy text to the buffer or assign the address of a
string to the pszText member. In the latter case, you must not change or delete the string until
the corresponding item text is deleted or two additional LVN_GETDISPINFO messages have
been sent.
If you are handling the LVN_GETDISPINFO message, you can set the LVIF_DI_SETITEM
flag in the mask member. This tells the operating system to store the requested list item
information, and not ask for it again.

RemarksWhen a list view control sends the LVN_GETDISPINFO or LVN_SETDISPINFO notification
codes, it passes a pointer to an LV_DISPINFO structure as the lParam parameter of a
WM_NOTIFY message.See AlsoLV_ITEM, LVN_GETDISPINFO, LVN_SETDISPINFO, WM_NOTIFY

LV_FINDINFO
The LV_FINDINFO structure contains information used to search for a list view item.typedef struct _LV_FINDINFO {

UINT flags;
LPCTSTR psz;
LPARAM lParam;
POINT pt;
UINT vkDirection;

} LV_FINDINFO;
Membersflags

Type of search to perform. This member can be one or more of the following values:
Value Meaning
LVFI_PARAM Searches based on the lParam member. The

lParam member of the matching item's
LV_ITEM structure must match the lParam
member of this structure.
If this value is specified, all other values are
ignored.

LVFI_PARTIAL Matches if the item text begins with the string
pointed to by the psz member. This value
implies use of LVFI_STRING.

LVFI_STRING Searches based on the item text. Unless
additional values are specified, the item text of
the matching item must exactly match the
string pointed to by the psz member.

LVFI_WRAP Continues the search at the beginning if no
match is found.

LVFI_NEARESTXYFinds the item nearest the specified position in
the specified direction.

psz
Pointer to a null-terminated string to compare with the item text if flags specifies
LVFI_STRING or LVFI_PARTIAL.

lParam
Value to compare with the lParam member of a list view item's LV_ITEM structure if the flags
member specifies LVFI_PARAM.

pt
POINT structure that specifies the starting position to search from. This member is used only
if LVFI_NEARESTXY is specified.

vkDirection
Direction to search in. This member is used only if LVFI_NEARESTXY is specified. If this
member used, it specifies the virtual-key code of an arrow key.

RemarksThe LV_FINDINFO structure is used with the LVM_FINDITEM message.See AlsoLV_ITEM, LVM_FINDITEM, POINT

LV_HITTESTINFO
The LV_HITTESTINFO structure contains information about a hit test.typedef struct _LV_HITTESTINFO {

POINT pt;
UINT flags;
int iItem;

} LV_HITTESTINFO;
Memberspt

Position to hit test, in client coordinates.
flags

Variable that receives information about the results of a hit test. This member can be one or
more of the following values:

Value Meaning
LVHT_ABOVE The position is above the client area of

the control.
LVHT_BELOW The position is below the client area of

the control.
LVHT_NOWHERE The position is inside the list view

control's client window, but it is not
over a list item.

LVHT_ONITEMICON The position is over a list view item's
icon.

LVHT_ONITEMLABEL The position is over a list view item's
text.

LVHT_ONITEMSTATEICONThe position is over the state image of
a list view item.

LVHT_TOLEFT The position is to the left of the list
view control's client area.

LVHT_TORIGHT The position is to the right of the list
view control's client area.

You can use LVHT_ABOVE, LVHT_BELOW, LVHT_TOLEFT, and LVHT_TORIGHT to
determine whether to scroll the contents of a list view control. Two of these values may
be combined ¾ for example, if the position is above and to the left of the client area.
You can test for LVHT_ONITEM to determine whether a specified position is over a list view
item. This value is a bitwise-OR operation on LVHT_ONITEMICON, LVHT_ONITEMLABEL,
and LVHT_ONITEMSTATEICON.

iItem
Receives the index of the matching item.

RemarksThis structure is used with the LVM_HITTEST message.See AlsoLVM_HITTEST

LV_ITEM
The LV_ITEM structure specifies or receives the attributes of a list view item.typedef struct _LV_ITEM {

UINT mask;
int iItem;
int iSubItem;
UINT state;
UINT stateMask;
LPTSTR pszText;
int cchTextMax;
int iImage; // index of the list view item's icon
LPARAM lParam; // 32-bit value to associate with item

} LV_ITEM;
Membersmask

A set of bit flags that specify attributes of this data structure or of an operation that is using
this structure.
The following bit flags specify the members of the LV_ITEM structure that contain valid data
or need to be filled in. One or more of these bit flags may be set:

Value Meaning
LVIF_TEXT The pszText member is valid or needs to be

filled in.
LVIF_IMAGE The iImage member is valid or needs to be

filled in.
LVIF_PARAM The lParam member is valid or needs to be

filled in.
LVIF_STATE The state member is valid or needs to be filled

in..

The following bit flag is used with the LVN_GETDISPINFO notification message:
Value Meaning
LVIF_DI_SETITEM The operating system should store the

requested list item information, and not ask
for it again.

iItem
Specifies the zero-based index of the item to which this structure refers.

iSubItem
Specifies the one-based index of the subitem to which this structure refers, or zero if this
structure refers to an item rather than a subitem.

state
Specifies the current state of the item if the item's state is being retrieved, or the new state if
the item's state is being set. The stateMask member specifies the bits of the state member
that are valid. This member can be any valid combination of state values. For a list of item
states, see List View Item States.

stateMask
Specifies the bits of the state member that are valid.

pszText
Pointer to a null-terminated string that contains the item text if the structure specifies item
attributes. If this member is the LPSTR_TEXTCALLBACK value, the item is a callback item.
Do not set the pszText member to LPSTR_TEXTCALLBACK if the list view control has
LVS_SORTASCENDING or LVS_SORTDESCENDING style.
If the structure is receiving item attributes, this member is the pointer to the buffer that
receives the item text.

cchTextMax
Size of the buffer pointed to by the pszText member if the structure is receiving item
attributes. If the structure specifies item attributes, this member is ignored.

iImage
Index of the list view item's icon in the icon and small icon image lists.
If this member is the I_IMAGECALLBACK value, the parent window is responsible for storing
the index. In this case, the list view control sends the parent an LVN_GETDISPINFO
notification message to get the index when it needs to display the image.

lParam
A 32-bit value to associate with the item. If you use the LVM_SORTITEMS message, the list
view control passes this value to the application-defined comparison function. You can also
use the LVM_FINDITEM message to search a list view control for an item with a specified
lParam value.

RemarksThe LV_ITEM structure is used with a number of messages, including LVM_GETITEM,
LVM_SETITEM, LVM_INSERTITEM, and LVM_DELETEITEM.See AlsoLVM_DELETEITEM, LVM_GETITEM, LVM_INSERTITEM, LVM_SETITEM

LV_KEYDOWN
The LV_KEYDOWN structure contains information about a keyboard event in a list view control.typedef struct tagLV_KEYDOWN {

NMHDR hdr;
WORD wVKey;
UINT flags;

} LV_KEYDOWN;
Membershdr

Specifies a NMHDR structure. The code member of this structure identifies the notification
message being sent. It can be the LVN_KEYDOWN notification code.

wVKey
Specifies a virtual-key code.

flags
This member is always zero.

RemarksWhen a list view control sends the LVN_KEYDOWN notification code, it passes a pointer to an
LV_KEYDOWN structure as the lParam parameter of a WM_NOTIFY message.See AlsoLVN_KEYDOWN, WM_NOTIFY

MAT2
The MAT2 structure contains the values for a transformation matrix used by the GetGlyphOutline
function.typedef struct _MAT2 { // mt2

FIXED eM11;
FIXED eM12;
FIXED eM21;
FIXED eM22;

} MAT2;
MemberseM11

Specifies a fixed-point value for the M11 component of a 3 by 3 transformation matrix.
eM12

Specifies a fixed-point value for the M12 component of a 3 by 3 transformation matrix.
eM21

Specifies a fixed-point value for the M21 component of a 3 by 3 transformation matrix.
eM22

Specifies a fixed-point value for the M22 component of a 3 by 3 transformation matrix.
RemarksThe identity matrix produces a transformation in which the transformed graphical object is

identical to the source object. In the identity matrix, the value of eM11 is 1, the value of eM12 is
zero, the value of eM21 is zero, and the value of eM22 is 1.See AlsoGetGlyphOutline

MDICREATESTRUCT
The MDICREATESTRUCT structure contains information about the class, title, owner, location,
and size of a multiple document interface (MDI) child window.typedef struct tagMDICREATESTRUCT { // mdic

LPCTSTR szClass;
LPCTSTR szTitle;
HANDLE hOwner;
intx;
inty;
intcx;
intcy;
DWORD style;
LPARAM lParam;

} MDICREATESTRUCT;
MembersszClass

Points to a null-terminated string specifying the name of the window class of the MDI child
window. The class name must have been registered by a previous call to the RegisterClass
function.

szTitle
Points to a null-terminated string that represents the title of the MDI child window. Windows
displays the title in the child window's title bar.

hOwner
Identifies the instance of the application creating the MDI client window.

x
Specifies the initial horizontal position, in client coordinates, of the MDI child window. If this
member is CW_USEDEFAULT, the MDI child window is assigned the default horizontal
position.

y
Specifies the initial vertical position, in client coordinates, of the MDI child window. If this
member is CW_USEDEFAULT, the MDI child window is assigned the default vertical position.

cx
Specifies the initial width, in device units, of the MDI child window. If this member is
CW_USEDEFAULT, the MDI child window is assigned the default width.

cy
Specifies the initial height, in device units, of the MDI child window. If this member is set to
CW_USEDEFAULT, the MDI child window is assigned the default height.

style
Specifies the style of the MDI child window. If the MDI client window was created with the
MDIS_ALLCHILDSTYLES window style, this member can be any combination of the window
styles listed in the description of the CreateWindow function. Otherwise, this member can be
one or more of the following values:

Value Meaning
WS_MINIMIZE Creates an MDI child window that is initially

minimized.
WS_MAXIMIZE Creates an MDI child window that is initially

maximized.
WS_HSCROLL Creates an MDI child window that has a

horizontal scroll bar.
WS_VSCROLL Creates an MDI child window that has a vertical

scroll bar.

lParam
Specifies an application-defined 32-bit value.

RemarksWhen the MDI child window is created, Windows sends the WM_CREATE message to the
window. The lParam parameter of WM_CREATE contains a pointer to a CREATESTRUCT
structure. The lpCreateParams member of this structure contains a pointer to the
MDICREATESTRUCT structure passed with the WM_MDICREATE message that created the
MDI child window.See AlsoCLIENTCREATESTRUCT, CREATESTRUCT, WM_CREATE

MEASUREITEMSTRUCT
The MEASUREITEMSTRUCT structure informs Windows of the dimensions of an owner-drawn
control or menu item. This allows Windows to process user interaction with the control correctly.typedef struct tagMEASUREITEMSTRUCT { // mis

UINT CtlType; // type of control
UINT CtlID; // combo box, list box, or button identifier
UINT itemID; // menu item, variable-height list box, or combo box

identifier
UINT itemWidth; // width of menu item, in pixels
UINT itemHeight; // height of single item in list box menu, in

pixels
DWORD itemData;// application-defined 32-bit value

} MEASUREITEMSTRUCT;
MembersCtlType

Specifies the control type. This member can be one of the following values:
Value Meaning
ODT_BUTTON Owner-drawn button
ODT_COMBOBOX Owner-drawn combo box
ODT_LISTBOX Owner-drawn list box
ODT_LISTVIEW Owner-draw listview control
ODT_MENU Owner-drawn menu

CtlID
Specifies the identifier of the combo box, list box, or button. This member is not used for a
menu.

itemID
Specifies the identifier for a menu item or the position of a list box or combo box item. This
value is specified for a list box only if it has the LBS_OWNERDRAWVARIABLE style; this
value is specified for a combo box only if it has the CBS_OWNERDRAWVARIABLE style.

itemWidth
Specifies the width, in pixels, of a menu item. Before returning from the message, the owner
of the owner-drawn menu item must fill this member.

itemHeight
Specifies the height, in pixels, of an individual item in a list box or a menu. Before returning
from the message, the owner of the owner-drawn combo box, list box, or menu item must fill
out this member.

itemData
Specifies the application-defined 32-bit value associated with the menu item. For a control,
this member specifies the value last assigned to the list box or combo box by the
LB_SETITEMDATA or CB_SETITEMDATA message. If the list box or combo box has the
LB_HASSTRINGS or CB_HASSTRINGS style, this value is initially zero. Otherwise, this value
is initially the value passed to the list box or combo box in the lParam parameter of one of the
following messages:
CB_ADDSTRING
CB_INSERTSTRING
LB_ADDSTRING
LB_INSERTSTRING

RemarksThe owner window of an owner-drawn control receives a pointer to the MEASUREITEMSTRUCT
structure as the lParam parameter of a WM_MEASUREITEM message. The owner-drawn control
sends this message to its owner window when the control is created. The owner then fills in the
appropriate members in the structure for the control and returns. This structure is common to all
owner-drawn controls.

If an application does not fill the appropriate members of MEASUREITEMSTRUCT, the control or
menu item may not be drawn properly.See AlsoCB_ADDSTRING, CB_INSERTSTRING, CB_SETITEMDATA, LB_ADDSTRING,
LB_INSERTSTRING, LB_SETITEMDATA, WM_MEASUREITEM

MEMORY_BASIC_INFORMATION
The MEMORY_BASIC_INFORMATION structure contains information about a range of pages in
the virtual address space of a process. The VirtualQuery and VirtualQueryEx functions use this
structure.typedef struct _MEMORY_BASIC_INFORMATION { // mbi

PVOID BaseAddress; // base address of region
PVOID AllocationBase; // allocation base address
DWORD AllocationProtect; // initial access protection
DWORD RegionSize; // size, in bytes, of region
DWORD State; // committed, reserved, free
DWORD Protect; // current access protection
DWORD Type; // type of pages

} MEMORY_BASIC_INFORMATION;
typedef MEMORY_BASIC_INFORMATION *PMEMORY_BASIC_INFORMATION;
MembersBaseAddress

Points to the base address of the region of pages.
AllocationBase

Points to the base address of a range of pages allocated by the VirtualAlloc function. The
page pointed to by the BaseAddress member is contained within this allocation range.

AllocationProtect
Specifies the access protection given when the region was initially allocated. One of the
following flags can be present, along with the PAGE_GUARD and PAGE_NOCACHE
protection modifier flags:

Flag Meaning
PAGE_READONLY Enables read access to the

committed region of pages. An
attempt to write to the committed
region results in an access violation.
If the system differentiates between
read-only access and execute
access, an attempt to execute code
in the committed region results in an
access violation.

PAGE_READWRITE Enables both read and write access
to the committed region of pages.

PAGE_WRITECOPY Gives copy-on-write access to the
committed region of pages.

PAGE_EXECUTE Enables execute access to the
committed region of pages. An
attempt to read or write to the
committed region results in an
access violation.

PAGE_EXECUTE_READ Enables execute and read access
to the committed region of pages.
An attempt to write to the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write
access to the committed region of
pages.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write
access to the committed region of
pages. The pages are shared read-
on-write and copy-on-write.

PAGE_GUARD Protects the page with the
underlying page protection.
However, access to the region
causes a "guard page entered"
condition to be raised in the subject
process. This flag is a page
protection modifier, only valid when
used with one of the page
protections other than
PAGE_NOACCESS.

PAGE_NOACCESS Disables all access to the
committed region of pages. An
attempt to read from, write to, or
execute in the committed region
results in an access violation
exception, called a general
protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed
regions of pages. The hardware
attributes for the physical memory
should be set to no cache. This is
not recommended for general
usage. It is useful for device drivers;
for example, mapping a video frame
buffer with no caching. This flag is a
page protection modifier, only valid
when used with one of the page

protections other than
PAGE_NOACCESS.

RegionSize
Specifies the size, in bytes, of the region beginning at the base address in which all pages
have identical attributes.

State
Specifies the state of the pages in the region. One of the following states is indicated:

State Meaning
MEM_COMMIT Indicates committed pages for which physical

storage has been allocated, either in memory or
in the paging file on disk.

MEM_FREE Indicates free pages not accessible to the calling
process and available to be allocated. For free
pages, the information in the AllocationBase,
AllocationProtect, Protect, and Type members
is undefined.

MEM_RESERVE Indicates reserved pages where a range of the
process's virtual address space is reserved
without allocating any physical storage. For
reserved pages, the information in the Protect
member is undefined.

Protect
Specifies the access protection of the pages in the region. One of the flags listed for the
AllocationProtect member is specified.

Type
Specifies the type of pages in the region. The following types are defined:

Type Meaning
MEM_IMAGE Indicates that the memory pages within the

region are mapped into the view of an image
section.

MEM_MAPPED Indicates that the memory pages within the
region are mapped into the view of a section.

MEM_PRIVATE Indicates that the memory pages within the
region are private (not shared by other
processes).

See AlsoVirtualAlloc, VirtualQuery, VirtualQueryEx

MEMORYSTATUS
The MEMORYSTATUS structure contains information about current memory availability. The
GlobalMemoryStatus function uses this structure.typedef struct _MEMORYSTATUS { // mst

DWORD dwLength; // sizeof(MEMORYSTATUS)
DWORD dwMemoryLoad; // percent of memory in use
DWORD dwTotalPhys;// bytes of physical memory
DWORD dwAvailPhys;// free physical memory bytes
DWORD dwTotalPageFile; // bytes of paging file
DWORD dwAvailPageFile; // free bytes of paging file
DWORD dwTotalVirtual; // user bytes of address space
DWORD dwAvailVirtual; // free user bytes

} MEMORYSTATUS, *LPMEMORYSTATUS;
MembersdwLength

Indicates the size of the structure. The calling process should set this member prior to calling
GlobalMemoryStatus.

dwMemoryLoad
Specifies a number between 0 and 100 that gives a general idea of current memory utilization,
in which 0 indicates no memory use and 100 indicates full memory use.

dwTotalPhys
Indicates the total number of bytes of physical memory.

dwAvailPhys
Indicates the number of bytes of physical memory available.

dwTotalPageFile
Indicates the total number of bytes that can be stored in the paging file. Note that this number
does not represent the actual physical size of the paging file on disk.

dwAvailPageFile
Indicates the number of bytes available in the paging file.

dwTotalVirtual
Indicates the total number of bytes that can be described in the user mode portion of the
virtual address space of the calling process.

dwAvailVirtual
Indicates the number of bytes of unreserved and uncommitted memory in the user mode
portion of the virtual address space of the calling process.

See AlsoGlobalMemoryStatus

MENU_EVENT_RECORD
The MENU_EVENT_RECORD structure reports menu events in a console INPUT_RECORD
structure. These events are used internally and should be ignored.typedef struct _MENU_EVENT_RECORD { // mer

UINT dwCommandId;
} MENU_EVENT_RECORD, *PMENU_EVENT_RECORD;
MembersdwCommandId

Used internally.
See AlsoINPUT_RECORD

MENUEX_TEMPLATE_HEADER
The MENUEX_TEMPLATE_HEADER structure defines the header for an extended menu
template. The structure definition given here is for explanation only; it is not present in any
standard header file.// typedef struct
//WORD wVersion;
//WORD wOffset;
//DWORD dwHelpId;
// } MENUEX_TEMPLATE_HEADER;
MemberswVersion

Template version number. This member must be 1 for extended menu templates.
wOffset

Offset of the first MENUEX_TEMPLATE_ITEM structure, relative to the end of this structure
member. If the first item definition immediately follows the dwHelpId member, this member
should be 4.

dwHelpId
Help identifier of menu bar

RemarksAn extended menu template consists of a MENUEX_TEMPLATE_HEADER structure followed by
one or more contiguous MENUEX_TEMPLATE_ITEM structures. The
MENUEX_TEMPLATE_ITEM structures, which are variable in length, are aligned on doubleword
boundaries. To create a menu from an extended menu template in memory, use the
LoadMenuIndirect function.See AlsoLoadMenuIndirect, MENUEX_TEMPLATE_ITEM

MENUEX_TEMPLATE_ITEM
The MENUEX_TEMPLATE_ITEM structure defines a menu item in an extended menu template.
The structure definition given here is for explanation only; it is not present in any standard header
file.// typedef struct {
//DWORD dwType;
//DWORD dwState;
//UINT uId;
//WORD bResInfo;
//WCHAR szText[1];
//// DWORD dwHelpId;
// } MENUEX_TEMPLATE_ITEM;
MembersdwType

Menu item type. This member can be a combination of the type (beginning with MFT) values
listed with the MENUITEMINFO structure.

dwState
Menu item state. This member can be a combination of the state (beginning with MFS) values
listed with the MENUITEMINFO structure.

uId
Menu item identifier. This is an application-defined 16-bit value that identifies the menu item.
In an extended menu resource, items that open drop-down menus or submenus as well as
command items can have identifiers.

bResInfo
Value specifying whether the menu item is the last item in the menu bar, drop-down menu,
submenu, or shortcut menu and whether it is an item that opens a drop-down menu or
submenu. This member can be zero or more of these values:

Value Meaning
0x80 The structure defines the last menu item in the

menu bar, drop-down menu, submenu, or shortcut
menu.

0x01 The structure defines a item that opens a drop-
down menu or submenu. Subsequent structures
define menu items in the corresponding drop-
down menu or submenu.

For 32-bit applications, this member is a WORD; for 16-bit applications, it is a BYTE.
szText

Menu item text. This member, which is a null-terminated Unicode string, is aligned on a word
boundary. The size of the menu item definition varies depending on the length of this string.

dwHelpId
Help identifier for a drop-down menu or submenu. This member, which is included only for
items that open drop-down menus or submenus, is located at the first doubleword boundary
following the variable-length szText member.

RemarksAn extended menu template consists of a MENUEX_TEMPLATE_HEADER structure followed by
one or more contiguous MENUEX_TEMPLATE_ITEM structures. The
MENUEX_TEMPLATE_ITEM structures, which are variable in length, are aligned on doubleword
boundaries. To create a menu from an extended menu template in memory, use the
LoadMenuIndirect function.See AlsoLoadMenuIndirect, MENUEX_TEMPLATE_HEADER, MENUITEMINFO

MenuHeader
The MenuHeader structure contains version information for the menu resource.struct MenuHeader {

WORD wVersion;
WORD cbHeaderSize;

};
MemberswVersion

Specifies the version number of the menu template. This member must be equal to zero to
indicate that this is an RT_MENU created with a standard menu template.

cbHeaderSize
Specifies the size of the menu template header. This value is zero for menus you create with
a standard menu template.

See AlsoMENUEX_TEMPLATE_HEADER, MENUEX_TEMPLATE_ITEM, MENUITEMTEMPLATE,
MENUITEMTEMPLATEHEADER, NormalMenuItem, PopupMenuItem

MENUHELPID
The MENUHELPID structure is the final data written to the RT_MENU resource for a menu or
submenu if the resInfo member of the PopupMenuItem structure is set to MFR_POPUP.typedef struct MENUHELPID {

DWORD helpID;
} MENUHELPID;
MemberhelpID

Specifies a numeric expression indicating the identifier used to identify the menu during
WM_HELP processing.See AlsoMenuHeader, PopupMenuItem

MENUITEMINFO
The MENUITEMINFO structure contains information about a menu item.typedef struct tagMENUITEMINFO {

UINT cbSize;
UINT fMask;
UINT fType;
UINT fState;
UINT wID;
HMENU hSubMenu;
HBITMAP hbmpChecked;
HBITMAP hbmpUnchecked;
DWORD dwItemData;
LPTSTR dwTypeData;
UINT cch;

} MENUITEMINFO, FAR *LPMENUITEMINFO;
Memberscbsize

Size of structure, in bytes.
fMask

Members to retrieve or set. This member can be one or more of these values:
Value Meaning
MIIM_CHECKMARKS Retrieves or sets the hbmpChecked and

hbmpUnchecked members.
MIIM_DATA Retrieves or sets the dwItemData

member.
MIIM_ID Retrieves or sets the wID member.
MIIM_STATE Retrieves or sets the fState member.
MIIM_SUBMENU Retrieves or sets the hSubMenu

member.
MIIM_TYPE Retrieves or sets the fType and

dwTypeData members.

fType
Menu item type. This member can be one or more of these values:

Value Meaning
MFT_BITMAP Displays the menu item using a bitmap.

The low-order word of the dwTypeData
member is the bitmap handle, and the
cch member is ignored.

MFT_MENUBARBREAK Places the menu item on a new line (for
a menu bar) or in a new column (for a
drop-down menu, submenu, or shortcut
menu). For a drop-down menu,
submenu, or shortcut menu, a vertical
line separates the new column from the
old.

MFT_MENUBREAK Places the menu item on a new line (for
a menu bar) or in a new column (for a
drop-down menu, submenu, or shortcut
menu). For a drop-down menu,
submenu, or shortcut menu, the columns
are not separated by a vertical line.

MFT_OWNERDRAW Assigns responsibility for drawing the
menu item to the window that owns the
menu. The window receives a
WM_MEASUREITEM message before
the menu is displayed for the first time,
and a WM_DRAWITEM message
whenever the appearance of the menu
item must be updated. If this value is
specified, the dwTypeData member
contains an application-defined 32-bit
value.

MFT_RADIOCHECK Displays checked menu items using a
radio-button mark instead of a check
mark if the hbmpChecked member is
NULL.

MFT_RIGHTJUSTIFY Right-justifies the menu item and any
subsequent items. This value is valid
only if the menu item is in a menu bar.

MFT_SEPARATOR Specifies that the menu item is a
separator. A menu item separator
appears as a horizontal dividing line. The
dwTypeData and cch members are
ignored. This value is valid only in a
drop-down menu, submenu, or shortcut
menu.

MFT_STRING Displays the menu item using a text
string. The dwTypeData member is the
pointer to a null-terminated string, and
the cch member is the length of the
string.

The MFT_BITMAP, MFT_SEPARATOR, and MFT_STRING values cannot be combined
with one another.

fState

Menu item state. This member can be one or more of these values:
Value Meaning
MFS_CHECKED Checks the menu item. For more

information about checked menu items,
see the hbmpChecked member.

MFS_DEFAULT Specifies that the menu item is the
default. A menu can contain only one
default menu item, which is displayed in
bold.

MFS_DISABLED Disables the menu item so that it cannot
be selected, but does not gray it.

MFS_ENABLED Enables the menu item so that it can be
selected. This is the default state.

MFS_GRAYED Disables the menu item and grays it so
that it cannot be selected.

MFS_HILITE Highlights the menu item.
MFS_UNCHECKED Unchecks the menu item. For more

information about unchecked menu
items, see the hbmpUnchecked
member.

MFS_UNHILITE Removes the highlight from the menu
item. This is the default state.

wID
Application-defined 16-bit value that identifies the menu item.

hSubMenu
Handle to the drop-down menu or submenu associated with the menu item. If the menu item
is not an item that opens a drop-down menu or submenu, this member is NULL.

hbmpChecked
Handle to the bitmap to display next to the item if it is checked. If this member is NULL, a
default bitmap is used. If the MFT_RADIOCHECK type value is specified, the default bitmap is
a bullet. Otherwise, it is a check mark.

hbmpUnchecked
Handle to the bitmap to display next to the item if it is not checked. If this member is NULL, no
bitmap is used.

dwItemData
Application-defined value associated with the menu item.

dwTypeData
Content of the menu item. The meaning of this member depends on the menu item type: the
MFT_BITMAP, MFT_SEPARATOR, or MFT_STRING values.

cch
Length of the menu item text, when information is received about a menu item of the
MFT_STRING type. This value is zero for other menu item types. This member is ignored
when the content of a menu item is set.

RemarksThe MENUITEMINFO structure is used with the GetMenuItemInfo, InsertMenuItem, and
SetMenuItemInfo functions.See AlsoGetMenuItemInfo, InsertMenuItem, SetMenuItemInfo, WM_DRAWITEM, WM_MEASUREITEM

MENUITEMTEMPLATE
The MENUITEMTEMPLATE structure defines a menu item in a menu template.typedef struct { // mit

WORD mtOption; // menu item flags
WORD mtID; // menu item identifier (omitted for pop-up items)
WCHAR mtString[1]; // null-terminated string for menu item

} MENUITEMTEMPLATE;
MembersmtOption

Specifies one or more of the following predefined menu options that control the appearance of
the menu item:

Value Meaning
MF_CHECKED Indicates that the menu item has a check

mark next to it.
MF_GRAYED Indicates that the menu item is initially

inactive and drawn with a gray effect.
MF_HELP Indicates that the menu item has a

vertical separator to its left.
MF_MENUBARBREAK Indicates that the menu item is placed in

a new column. The old and new columns
are separated by a bar.

MF_MENUBREAK Indicates that the menu item is placed in
a new column.

MF_OWNERDRAW Indicates that the owner window of the
menu is responsible for drawing all
visual aspects of the menu item,
including highlighted, checked, and
inactive states. This option is not valid
for an item in a menu bar.

MF_POPUP Indicates that the item is one that opens
a drop-down menu or submenu.

mtID
Specifies the menu item identifier of a command item; a command item sends a command
message to its owner window. The MENUITEMTEMPLATE structure for an item that opens a
drop-down menu or submenu does not contain the mtID member.

mtString
Specifies the null-terminated string for the menu item.

See AlsoLoadMenuIndirect, MENUITEMTEMPLATEHEADER

MENUITEMTEMPLATEHEADER
The MENUITEMTEMPLATEHEADER structure defines the header for a menu template. A
complete menu template consists of a header and one or more menu item lists.typedef struct {// mith

WORD versionNumber; // version number; must be zero
WORD offset;// offset first MENUITEMTEMPLATE structure

} MENUITEMTEMPLATEHEADER;
MembersversionNumber

Specifies the version number. This member must be zero.
offset

Specifies the offset, in bytes, from the end of the header. The menu item list begins at this
offset. Usually, this member is zero, and the menu item list follows immediately after the
header.

RemarksOne or more MENUITEMTEMPLATE structures are combined to form the menu item list.See AlsoLoadMenuIndirect, MENUITEMTEMPLATE

MESSAGE_RESOURCE_BLOCK
The MESSAGE_RESOURCE_BLOCK structure contains information about message strings with
identifiers in the range indicated by the LowId and HighId members.typedef struct _MESSAGE_RESOURCE_BLOCK {

ULONG LowId;
ULONG HighId;
ULONG OffsetToEntries;

} MESSAGE_RESOURCE_BLOCK, *PMESSAGE_RESOURCE_BLOCK;
MembersLowId

Specifies the lowest message identifier contained within this
MESSAGE_RESOURCE_BLOCK.

HighId
Specifies the highest message identifier contained within this
MESSAGE_RESOURCE_BLOCK.

OffsetToEntries
Specifies the offset, in bytes, from the beginning of the MESSAGE_RESOURCE_DATA
structure to the MESSAGE_RESOURCE_ENTRY structures in this
MESSAGE_RESOURCE_BLOCK. The MESSAGE_RESOURCE_ENTRY structures contain
the message strings.

See AlsoMESSAGE_RESOURCE_DATA, MESSAGE_RESOURCE_ENTRY

MESSAGE_RESOURCE_DATA
The MESSAGE_RESOURCE_DATA structure contains information about formatted text for
display as an error message or in a message box in a message table resource.typedef struct _MESSAGE_RESOURCE_DATA {

ULONG NumberOfBlocks;
MESSAGE_RESOURCE_BLOCK Blocks[1];

} MESSAGE_RESOURCE_DATA, *PMESSAGE_RESOURCE_DATA;
MembersNumberOfBlocks

Specifies the number of MESSAGE_RESOURCE_BLOCK structures.
Blocks[1]

Array that contains the number of MESSAGE_RESOURCE_BLOCK structures indicated by
the NumberOfBlocks member. The MESSAGE_RESOURCE_BLOCK Blocks[1] member
is a placeholder for the variable length array of Blocks.

RemarksA MESSAGE_RESOURCE_DATA structure can contain one or more
MESSAGE_RESOURCE_BLOCK structures, which can each contain one or more
MESSAGE_RESOURCE_ENTRY structures.See AlsoMESSAGE_RESOURCE_BLOCK, MESSAGE_RESOURCE_ENTRY

MESSAGE_RESOURCE_ENTRY
The MESSAGE_RESOURCE_ENTRY structure contains the error message or message box
display text for a message table resource.typedef struct _MESSAGE_RESOURCE_ENTRY {

USHORT Length;
USHORT Flags;
UCHAR Text[1];

} MESSAGE_RESOURCE_ENTRY, *PMESSAGE_RESOURCE_ENTRY;
MembersLength

Specifies the length, in bytes, of the message string in this structure.
Flags

Indicates that the string is encoded in Unicode if equal to the value 0x0001; indicates that the
string is encoded in ANSI if equal to the value 0x0000.

Text[1]
An array that contains the error message or message box display text. The Text[1] member
is a placeholder for the variable-length Text array.

See AlsoMESSAGE_RESOURCE_BLOCK, MESSAGE_RESOURCE_DATA

METAFILEPICT
The METAFILEPICT structure defines the metafile picture format used for exchanging metafile
data through the clipboard.typedef struct tagMETAFILEPICT { // mfp

LONG mm;
LONG xExt;
LONG yExt;
HMETAFILE hMF;

} METAFILEPICT;
Membersmm

Specifies the mapping mode in which the picture is drawn.
xExt

Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC and
MM_ANISOTROPIC modes. (For more information about these modes, see the yExt
member.) The x-extent specifies the width of the rectangle within which the picture is drawn.
The coordinates are in units that correspond to the mapping mode.

yExt
Specifies the size of the metafile picture for all modes except the MM_ISOTROPIC and
MM_ANISOTROPIC modes. The y-extent specifies the height of the rectangle within which
the picture is drawn. The coordinates are in units that correspond to the mapping mode.
For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be scaled, the xExt and
yExt members contain an optional suggested size in MM_HIMETRIC units. For
MM_ANISOTROPIC pictures, xExt and yExt can be zero when no suggested size is supplied.
For MM_ISOTROPIC pictures, an aspect ratio must be supplied even when no suggested
size is given. (If a suggested size is given, the aspect ratio is implied by the size.) To give an
aspect ratio without implying a suggested size, set xExt and yExt to negative values whose
ratio is the appropriate aspect ratio. The magnitude of the negative xExt and yExt values is
ignored; only the ratio is used.

hMF
Identifies a memory metafile.

See AlsoSetClipboardData

METAHEADER
The METAHEADER structure contains information about a Windows-format metafile.typedef struct tagMETAHEADER { // mh

WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;

} METAHEADER;
MembersmtType

Specifies whether the metafile is in memory or recorded in a disk file. This member can be
one of the following values:

Value Meaning
1 Metafile is in memory.
2 Metafile is in a disk file.

mtHeaderSize
Specifies the size, in words, of the metafile header.

mtVersion
Specifies the Windows version number. The version number for metafiles that support device-
independent bitmaps (DIBs) is 0x0300. Otherwise, the version number is 0x0100.

mtSize
Specifies the size, in words, of the file.

mtNoObjects
Specifies the maximum number of objects that exist in the metafile at the same time.

mtMaxRecord
Specifies the size, in words, of the largest record in the metafile.

mtNoParameters
Reserved.

See AlsoMETARECORD

METARECORD
The METARECORD structure contains a Windows-format metafile record.typedef struct tagMETARECORD { // mr

DWORD rdSize;
WORD rdFunction;
WORD rdParm[1];

} METARECORD;
MembersrdSize

Specifies the size, in words, of the record.
rdFunction

Specifies the function number.
rdParm

Specifies an array of words containing the function parameters, in reverse of the order they
are passed to the function.

See AlsoMETAHEADER

MINIMIZEDMETRICS
The MINIMIZEDMETRICS structure contains the scalable metrics associated with minimized
windows. This structure is used with the SystemParametersInfo function when the
SPI_GETMINIMIZEDMETRICS or SPI_SETMINIMIZEDMETRICS action value is specified.typedef struct tagMINIMIZEDMETRICS {

UINT cbSize;
intiWidth;
intiHorzGap;
intiVertGap;
intiArrange;

} MINIMIZEDMETRICS, FAR *LPMINIMIZEDMETRICS;
MemberscbSize

Specifies the size of the structure, in bytes.
iWidth

Specifies the width, in pixels, of minimized windows.
iHorzGap and iVertGap

Specifies the amount of horizontal and vertical space, in pixels, between arranged minimized
windows.

iArrange
Specifies the starting position and direction used when arranging minimized windows. The
starting position must be one of the following values:

Value Meaning
ARW_BOTTOMLEFT Start at the lower-left corner of the work

area.
ARW_BOTTOMRIGHT Start at the lower-right corner of the work

area.
ARW_TOPLEFT Start at the upper-left corner of the work

area.
ARW_TOPRIGHT Start at the upper-right corner of the work

area.

The direction must be one of the following values:
Value Meaning
ARW_LEFT Arrange left (valid with

ARW_BOTTOMRIGHT and
ARW_TOPRIGHT only).

ARW_RIGHT Arrange right (valid with
ARW_BOTTOMLEFT and ARW_TOPLEFT
only).

ARW_UP Arrange up (valid with ARW_BOTTOMLEFT
and ARW_BOTTOMRIGHT only).

ARW_DOWN Arrange down (valid with ARW_TOPLEFT
and ARW_TOPRIGHT only).

See AlsoSystemParametersInfo

MINMAXINFO
The MINMAXINFO structure contains information about a window's maximized size and position
and its minimum and maximum tracking size.typedef struct tagMINMAXINFO { // mmi

POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

} MINMAXINFO;
MembersptReserved

Reserved; do not use.
ptMaxSize

Specifies the maximized width (point.x) and the maximized height (point.y) of the window.
ptMaxPosition

Specifies the position of the left side of the maximized window (point.x) and the position of the
top of the maximized window (point.y).

ptMinTrackSize
Specifies the minimum tracking width (point.x) and the minimum tracking height (point.y) of
the window.

ptMaxTrackSize
Specifies the maximum tracking width (point.x) and the maximum tracking height (point.y) of
the window.

See AlsoPOINT, WM_GETMINMAXINFO

MODEMDEVCAPS
The MODEMDEVCAPS structure contains information about the capabilities of a modem.typedef struct modemdevcaps_tag {

DWORD dwActualSize;// size of returned data, in bytes
DWORD dwRequiredSize; // total size of structure
DWORD dwDevSpecificOffset; // offset of provider-defined data
DWORD dwDevSpecificSize;// size of provider-defined data
// Product and version identification
DWORD dwModemProviderVersion;// provider version number
DWORD dwModemManufacturerOffset; // offset of manufacturer name
DWORD dwModemManufacturerSize; // length of manufacturer name
DWORD dwModemModelOffset; // offset of model name
DWORD dwModemModelSize; // length of model name
DWORD dwModemVersionOffset; // offset of version name
DWORD dwModemVersionSize; // length of version name
// Local option capabilities
DWORD dwDialOptions; // bitmap of supported values
DWORD dwCallSetupFailTimer; // maximum in seconds
DWORD dwInactivityTimeout; // maximum in tenths of seconds
DWORD dwSpeakerVolume; // bitmap of supported values
DWORD dwSpeakerMode; // bitmap of supported values
DWORD dwModemOptions; // bitmap of supported values
DWORD dwMaxDTERate;// maximum value in bit/s
DWORD dwMaxDCERate;// maximum value in bit/s
// Variable portion for strings and provider-specific data
BYTE abVariablePortion [1]; // variable-length data

} MODEMDEVCAPS, *PMODEMDEVCAPS, *LPMODEMDEVCAPS;
MembersdwActualSize

Specifies the size, in bytes, of the data actually returned to the application. This member may
be less than the dwRequiredSize member, if an application did not allocate enough space for
the variable-length portion of the structure.

dwRequiredSize
Specifies the number of bytes required for the entire MODEMDEVCAPS structure, including
the variable-length portion.

dwDevSpecificOffset
Specifies the offset of the provider-defined portion of the structure, in bytes relative to the
beginning of the structure.

dwDevSpecificSize
Specifies the size of the provider-defined portion of the structure, in bytes.

dwModemProviderVersion
Specifies the version of the service provider. The format and use of this member depends on
the service provider.

dwModemManufacturerOffset
Specifies the offset of a text string that contains the name of the modem manufacturer. The
offset is specified in bytes relative to the beginning of the structure.

dwModemManufacturerSize
Specifies the length of the modem manufacturer name, in bytes. The string is not null-
terminated.

dwModemModelOffset
Specifies the offset of a text string that contains the model of the modem. The offset is
specified in bytes relative to the beginning of the structure.

dwModemModelSize
Specifies the length of the model name, in bytes. The string is not null-terminated.

dwModemVersionOffset
Specifies the offset of a text string that gives the version and revision of the attached modem,
if the provider could determine the information. The offset is specified in bytes relative to the
beginning of the structure.

dwModemVersionSize
Specifies the length of the modem version string, in bytes. The string is not null-terminated.

dwDialOptions
Specifies dialing options that are supported by the modem device. This member can be zero
or more of the following values:

Value Meaning
DIALOPTION_DIALBILLING Specifies that the modem supports

waiting for billing tone (bong).
DIALOPTION_DIALQUIET Specifies that the modem supports

waiting for quiet.
DIALOPTION_DIALDIALTONE Specifies that the modem supports

waiting for a dial tone.

dwCallSetupFailTimer
Specifies the maximum call setup timeout supported by the modem, in seconds. This is the
largest value that can be specified for the corresponding member of the MODEMSETTINGS
structure.

dwInactivityTimeout
Specifies the maximum inactivity timeout supported by the modem, in tenths of seconds. This
is the largest value that can be specified for the corresponding member of the
MODEMSETTINGS structure.

dwSpeakerVolume
Specifies the speaker volume settings supported by the modem. This member can be zero or
more of the following values:

Value Meaning
MDMVOLFLAG_LOW The modem supports low

(MDMVOL_LOW) volume.
MDMVOLFLAG_MEDIUM The modem supports medium

(MDMVOL_MEDIUM) volume.
MDMVOLFLAG_HIGH The modem supports high

(MDMVOL_HIGH) volume.

dwSpeakerMode
Specifies the speaker mode settings supported by the modem. This member can be zero or
more of the following values:

Value Meaning
MDMSPKRFLAG_OFF The modem supports the

MDMSPKR_OFF speaker mode.
MDMSPKRFLAG_DIAL The modem supports the

MDMSPKR_DIAL speaker mode.
MDMSPKRFLAG_ON The modem supports the

MDMSPKR_ON speaker mode.
MDMSPKRFLAG_CALLSETUP The modem supports the

MDMSPKR_CALLSETUP
speaker mode.

dwModemOptions
Specifies supported modem options. This member can be zero or more of the following
values:

MDM_BLIND_DIAL MDM_FLOWCONTROL_SOFT
MDM_CCITT_OVERRIDE MDM_FORCED_EC
MDM_CELLULAR MDM_SPEED_ADJUST
MDM_COMPRESSION MDM_TONE_DIAL

MDM_ERROR_CONTROL MDM_V23_OVERRIDE
MDM_FLOWCONTROL_HARD

When MODEMDEVCAPS is used to set modem options, as part of the MODEMSETTINGS
structure, these values are used as follows:

Value Meaning

MDM_CCITT_OVERRIDE When set, CCITT modulations are
enabled for V.21 and V.22 or V.
23.
When clear, bell modulations are
enabled for 103 and 212A.

MDM_V23_OVERRIDE When set, CCITT modulations are
enabled for V.23.
When clear, CCITT modulations
are enabled for V.21 and V.22.

For V.23 to be set, both MDM_CCITT_OVERRIDE and MDM_V23_OVERRIDE must be set.

dwMaxDTERate
Maximum DTE rate in bits per second.

dwMaxDCERate
Maximum DCE rate in bits per second.

abVariablePortion
Contains variable-length information, including strings and any provider-defined information.See AlsoMODEMSETTINGS

MODEMSETTINGS
The MODEMSETTINGS structure contains information about a modem's configuration.typedef struct modemsettings_tag {

DWORD dwActualSize;// size of returned data, in bytes
DWORD dwRequiredSize; // total size of structure
DWORD dwDevSpecificOffset; // offset of provider-defined data
DWORD dwDevSpecificSize;// size of provider-defined data
// Static local options (read/write)
DWORD dwCallSetupFailTimer; // call setup timeout, in seconds
DWORD dwInactivityTimeout; // inactivity timeout, in tenths of

seconds
DWORD dwSpeakerVolume; // speaker volume level
DWORD dwSpeakerMode; // speaker mode
DWORD dwPreferredModemOptions; // bitmap specifying preferred

options
// negotiated options (read only) for current or last call
DWORD dwNegotiatedModemOptions; // bitmap specifying actual

options
DWORD dwNegotiatedDCERate; // DCE rate, in bits per second
// Variable portion for proprietary expansion
BYTE abVariablePortion[1]; // variable-length data

} MODEMSETTINGS, *PMODEMSETTINGS, *LPMODEMSETTINGS;
MembersdwActualSize

Specifies the size, in bytes, of the data actually returned to the application. This member may
be less than the dwRequiredSize member if an application did not allocate enough space for
the variable-length portion of the structure.

dwRequiredSize
Specifies the number of bytes required for the entire MODEMDEVCAPS structure, including
the variable-length portion.

dwDevSpecificOffset
Specifies the offset of the provider-defined portion of the structure, in bytes relative to the
beginning of the structure.

dwDevSpecificSize
Specifies the size of the provider-defined portion of the structure, in bytes.

dwCallSetupFailTimer
Specifies the maximum number of seconds the modem should wait, after dialing is completed,
for an indication that a modem-to-modem connection has been established. If a connection is
not established in this interval, the call is assumed to have failed. This member is equivalent
to register S7 in Hayes® compatible modems.

dwInactivityTimeout
Specifies the maximum number of seconds of inactivity allowed after a connection is
established. If no data is either transmitted or received for this period of time, the call is
automatically terminated. This time-out is used to avoid excessive long distance charges or
online service charges if an application unexpectedly locks up or the user leaves.

dwSpeakerVolume
Specifies the volume level of the monitor speaker when the speaker is on. This member can
be one of the following values:

Value Meaning
MDMVOL_LOW Low volume.
MDMVOL_MEDIUM Medium volume.
MDMVOL_HIGH High volume.

The MODEMDEVCAPS structure specifies the speaker volumes a modem supports. Actual
volumes are hardware-specific.

dwSpeakerMode
Specifies when the speaker should be on. This member can be one of the following values:

Value Meaning
MDMSPKR_OFF The speaker is always off.
MDMSPKR_CALLSETUPThe speaker is on until a connection is

established.
MDMSPKR_ON The speaker is always on.
MDMSPKR_DIAL The speaker is on until a connection is

established, except that it is off while the
modem is actually dialing.

dwPreferredModemOptions
Specifies the modem options requested by the application. The local and remote modems
negotiate modem options during call setup; this member specifies the initial negotiating
position of the local modem.
The dwModemOptions member of the MODEMDEVCAPSstructure specifies the modem
options supported by the local modem. For a list of modem options, see the description of the
MODEMDEVCAPS structure.

dwNegotiatedModemOptions
Specifies the modem options that are actually in effect. This member is filled in after a
connection is established and the local and remote modems negotiate modem options.
The dwModemOptions member of the MODEMDEVCAPS structure specifies the modem
options supported by the local modem. For a list of modem options, see the description of the
MODEMDEVCAPS structure.

dwNegotiatedDCERate
Specifies the DCE rate that is in effect. This member is filled in after a connection is
established and the local and remote modems negotiate modem modulations.

abVariablePortion
Contains provider-defined information, if any.See AlsoMODEMDEVCAPS

MONCBSTRUCT
The MONCBSTRUCT structure contains information about the current DDE transaction. A DDE
debugging application can use this structure when monitoring transactions that the system passes
to the DDE callback functions of other applications.typedef struct tagMONCBSTRUCT { // mcbst

UINT cb;
DWORD dwTime;
HANDLE hTask;
DWORD dwRet;
UINT wType;
UINT wFmt;
HCONV hConv;
HSZ hsz1;
HSZ hsz2;
HDDEDATA hData;
DWORD dwData1;
DWORD dwData2;
CONVCONTEXT cc;
DWORD cbData;
DWORD Data[8];

} MONCBSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
dwTime

Specifies the Windows time that the transaction occurred. Windows time is the number of
milliseconds that have elapsed since the system was booted.

hTask
Identifies the task (application instance) containing the DDE callback function that received
the transaction.

dwRet
Specifies the value returned by the DDE callback function that processed the transaction.

wType
Identifies the transaction type.

wFmt
Specifies the format of the data exchanged (if any) during the transaction.

hConv
Identifies the conversation in which the transaction took place.

hsz1
Identifies a string.

hsz2
Identifies a string.

hData
Identifies the data exchanged (if any) during the transaction.

dwData1
Specifies additional data.

dwData2
Specifies additional data.

cc
Specifies a CONVCONTEXT structure containing language information used to share data in
different languages.

cbData
Specifies the amount, in bytes, of data being passed with the transaction. This value may be
more than 32 bytes.

Data
Contains the first 32 bytes of data being passed with the transaction
(8 * sizeof(DWORD)).

See AlsoCONVCONTEXT, MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

MONCONVSTRUCT
The MONCONVSTRUCT structure contains information about a DDE conversation. A DDE
monitoring application can use this structure to obtain information about a conversation that has
been established or has terminated.typedef struct tagMONCONVSTRUCT { // mcvst

UINT cb;
BOOL fConnect;
DWORD dwTime;
HANDLE hTask;
HSZ hszSvc;
HSZ hszTopic;
HCONV hConvClient;
HCONV hConvServer;

} MONCONVSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
fConnect

Indicates whether the conversation is currently established. A value of TRUE indicates the
conversation is established; FALSE indicates it is not.

dwTime
Specifies the Windows time at which the conversation was established or terminated.
Windows time is the number of milliseconds that have elapsed since the system was booted.

hTask
Identifies a task (application instance) that is a partner in the conversation.

hszSvc
Identifies the service name on which the conversation is established.

hszTopic
Identifies the topic name on which the conversation is established.

hConvClient
Identifies the client conversation.

hConvServer
Identifies the server conversation.

RemarksBecause string handles are local to the process, the hszSvc and hszTopic members are global
atoms. Similarly, conversation handles are local to the instance; therefore, the hConvClient and
hConvServer members are window handles.

The hConvClient and hConvServer members of the MONCONVSTRUCT structure do not hold
the same value as would be seen by the applications engaged in the conversation. Instead, they
hold a globally unique pair of values that identify the conversation.See AlsoMONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

MONERRSTRUCT
The MONERRSTRUCT structure contains information about the current DDE error. A DDE
monitoring application can use this structure to monitor errors returned by DDE Management
Library functions.typedef struct tagMONERRSTRUCT { // mest

UINT cb;
UINT wLastError;
DWORD dwTime;
HANDLE hTask;

} MONERRSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
wLastError

Identifies the current error.
dwTime

Specifies the Windows time that the error occurred. Windows time is the number of
milliseconds that have elapsed since the system was booted.

hTask
Identifies the task (application instance) that called the DDE function that caused the error.

See AlsoMONCBSTRUCT, MONCONVSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

MONHSZSTRUCT
The MONHSZSTRUCT structure contains information about a DDE string handle. A DDE
monitoring application can use this structure when monitoring the activity of the string manager
component of the DDE Management Library.typedef struct tagMONHSZSTRUCT { // mhst

UINT cb;
BOOL fsAction;
DWORD dwTime;
HSZ hsz;
HANDLE hTask;
TCHAR str[1];

} MONHSZSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
fsAction

Specifies the action being performed on the string identified by the hsz member.
Value Meaning
MH_CLEANUP An application is freeing its DDE resources,

causing the system to delete string handles the
application had created. (The application called
the DdeUninitialize function.)

MH_CREATE An application is creating a string handle. (The
application called the DdeCreateStringHandle
function.)

MH_DELETE An application is deleting a string handle. (The
application called the DdeFreeStringHandle
function.)

MH_KEEP An application is increasing the usage count of a
string handle. (The application called the
DdeKeepStringHandle function.)

dwTime
Specifies the Windows time when the action specified by the fsAction member takes place.
Windows time is the number of milliseconds that have elapsed since the system was booted.

hsz
Identifies the string. Because string handles are local to the process, this member is a global
atom.

hTask
Identifies the task (application instance) performing the action on the string handle.

str
Points to the string identified by the hsz member.

See AlsoMONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT, MONLINKSTRUCT,
MONMSGSTRUCT

MONITOR_INFO_1
The MONITOR_INFO_1 structure identifies an installed monitor.typedef struct _MONITOR_INFO_1 { // mi1

LPTSTR pName;
} MONITOR_INFO_1;
MemberspName

Points to a null-terminated string that identifies an installed monitor.
See AlsoEnumMonitors, MONITOR_INFO_2

MONITOR_INFO_2
The MONITOR_INFO_2 structure identifies a monitor.typedef struct _MONITOR_INFO_2 { // mi2

LPTSTR pName;
LPTSTR pEnvironment ;
LPTSTR pDLLName ;

} MONITOR_INFO_2;
MemberspName

Points to a null-terminated string that is the name of the monitor.
pEnvironment

Points to a null-terminated environment string specifying the environment in which the monitor
dynamic-link library (DLL) is designed to run.

pDLLName
Points to a null-terminated string that is the name of the monitor DLL.

See AlsoEnumMonitors, MONITOR_INFO_1

MONLINKSTRUCT
The MONLINKSTRUCT structure contains information about a DDE advise loop. A DDE
monitoring application can use this structure to obtain information about an advise loop that has
started or ended.typedef struct tagMONLINKSTRUCT { // mlst

UINT cb;
DWORD dwTime;
HANDLE hTask;
BOOL fEstablished;
BOOL fNoData;
HSZ hszSvc;
HSZ hszTopic;
HSZ hszItem;
UINT wFmt;
BOOL fServer;
HCONV hConvServer;
HCONV hConvClient;

} MONLINKSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
dwTime

Specifies the Windows time when the advise loop was started or ended. Windows time is the
number of milliseconds that have elapsed since the system was booted.

hTask
Identifies a task (application instance) that is a partner in the advise loop.

fEstablished
Indicates whether an advise loop was successfully established. A value of TRUE indicates an
advise loop was established; FALSE indicates it was not.

fNoData
Indicates whether the XTYPF_NODATA flag is set for the advise loop. A value of TRUE
indicates the flag is set; FALSE indicates it is not.

hszSvc
Identifies the service name of the server in the advise loop.

hszTopic
Identifies the topic name on which the advise loop is established.

hszItem
Identifies the item name that is the subject of the advise loop.

wFmt
Specifies the format of the data exchanged (if any) during the advise loop.

fServer
Indicates whether the link notification came from the server. A value of TRUE indicates the
notification came from the server; FALSE indicates otherwise.

hConvServer
Identifies the server conversation.

hConvClient
Identifies the client conversation.

RemarksBecause string handles are local to the process, the hszSvc, hszTopic, and hszItem members
are global atoms.

The hConvClient and hConvServer members of the MONLINKSTRUCT structure do not hold
the same value as would be seen by the applications engaged in the conversation. Instead, they
hold a globally unique pair of values that identify the conversation.See AlsoMONCBSTRUCT, MONERRSTRUCT, MONHSZSTRUCT, MONMSGSTRUCT

MONMSGSTRUCT
The MONMSGSTRUCT structure contains information about a DDE message. A DDE monitoring
application can use this structure to obtain information about a DDE message that was sent or
posted.typedef struct tagMONMSGSTRUCT { // mmst

UINT cb;
HWND hwndTo;
DWORD dwTime;
HANDLE hTask;
UINT wMsg;
WPARAM wParam;
LPARAM lParam;
DDEML_MSG_HOOK_DATA dmhd;

} MONMSGSTRUCT;
Memberscb

Specifies the structure's size, in bytes.
hwndTo

Identifies the window that receives the DDE message.
dwTime

Specifies the Windows time at which the message was sent or posted. Windows time is the
number of milliseconds that have elapsed since the system was booted.

hTask
Identifies the task (application instance) containing the window that receives the DDE
message.

wMsg
Specifies the identifier of the DDE message.

wParam
Specifies the wParam parameter of the DDE message.

lParam
Specifies the lParam parameter of the DDE message.

dmhd
Specifies a DDEML_MSG_HOOK_DATA structure that contains additional information about
the DDE message.

See AlsoDDEML_MSG_HOOK_DATA, MONCBSTRUCT, MONCONVSTRUCT, MONERRSTRUCT,
MONHSZSTRUCT, MONLINKSTRUCT

MOUSE_EVENT_RECORD
The MOUSE_EVENT_RECORD structure is used in a console INPUT_RECORD structure to
report mouse input events.typedef struct _MOUSE_EVENT_RECORD { // mer

COORD dwMousePosition;
DWORD dwButtonState;
DWORD dwControlKeyState;
DWORD dwEventFlags;

} MOUSE_EVENT_RECORD;
MembersdwMousePosition

Specifies the location of the cursor in terms of the screen buffer's character-cell coordinates.
dwButtonState

Indicates the status of the mouse buttons. The least significant bit corresponds to the leftmost
mouse button. The next least significant bit corresponds to the rightmost mouse button. The
next bit indicates the next-to-leftmost mouse button. The bits then correspond left to right to
the mouse buttons. A bit is 1 if the button was pressed.
The following constants are defined for the first five mouse buttons:
FROM_LEFT_1ST_BUTTON_PRESSED
RIGHTMOST_BUTTON_PRESSED
FROM_LEFT_2ND_BUTTON_PRESSED
FROM_LEFT_3RD_BUTTON_PRESSED
FROM_LEFT_4TH_BUTTON_PRESSED

dwControlKeyState
Indicates the state of the control keys. This member can be a combination of the following
values:

Value Meaning
RIGHT_ALT_PRESSED The right ALT key is pressed.
LEFT_ALT_PRESSED The left ALT key is pressed.
RIGHT_CTRL_PRESSED The right CTRL key is pressed.
LEFT_CTRL_PRESSED The left CTRL key is pressed.
CAPSLOCK_ON The CAPS LOCK light is on.
ENHANCED_KEY The key is enhanced.
NUMLOCK_ON The NUM LOCK light is on.
SCROLLLOCK_ON The SCROLL LOCK light is on.
SHIFT_PRESSED The SHIFT key is pressed.

dwEventFlags
Indicates the type of mouse event. If this value is zero, it indicates a mouse button being
pressed or released. Otherwise, the value is one of the following:

Value Meaning
DOUBLE_CLICK The second click (button press) of a double-

click occurred. The first click is returned as a
regular button-press event.

MOUSE_MOVED A change in mouse position occurred.
RemarksMouse events are placed in the input buffer when the console is in mouse mode

(ENABLE_MOUSE_INPUT).

Mouse events are generated whenever the user moves the mouse, or presses or releases one of
the mouse buttons. Mouse events are placed in a console's input buffer only when the console
group has the keyboard focus and the cursor is within the borders of the console's window.See AlsoINPUT_RECORD, PeekConsoleInput, ReadConsoleInput, WriteConsoleInput

MOUSEHOOKSTRUCT
The MOUSEHOOKSTRUCT structure contains information about a mouse event.typedef struct tagMOUSEHOOKSTRUCT { // ms

POINT pt;
HWND hwnd;
UINT wHitTestCode;
DWORD dwExtraInfo;

} MOUSEHOOKSTRUCT;
Memberspt

Specifies a POINT structure that contains the x- and y-coordinates of the cursor, in screen
coordinates.

hwnd
Identifies the window that will receive the mouse message corresponding to the mouse event.

wHitTestCode
Specifies the hit-test value. For a list of hit-test values, see the description of the
WM_NCHITTEST message.

dwExtraInfo
Specifies extra information associated with the message.

See AlsoGetMessageExtraInfo, POINT, SetWindowsHook, SetWindowsHookEx, WM_NCHITTEST

MOUSEKEYS
The MOUSEKEYS structure contains information about the MouseKeys accessibility feature.
When the MouseKeys feature is active, the user can use the numeric keypad to control the
mousepointer, and to click, double-click, drag, and drop. By pressing NUMLOCK, the user can
toggle the numeric keypad between mouse control mode and normal operation.typedef struct _MOUSEKEYS {// mk

DWORD cbSize;
DWORD dwFlags;
DWORD iMaxSpeed;
DWORD iTimeToMaxSpeed;
DWORD iCtrlSpeed;
DWORD dwReserved1;
DWORD dwReserved2;

} MOUSEKEYS;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

A set of bit-flags that specify properties of the FilterKeys feature. The following bit-flag values
are defined:

Value Meaning
MKF_AVAILABLE If this flag is set, the MouseKeys feature is

available.
MKF_CONFIRMHOTKEY Windows 95 only: A confirmation dialog

box appears when the MouseKeys feature
is activated by using the hot key.

MKF_HOTKEYACTIVE If this flag is set, the user can turn the
MouseKeys feature on and off by using the
hot key, which is LEFT ALT+LEFT SHIFT+NUM
LOCK.

MKF_HOTKEYSOUND If this flag is set, the system plays a siren
sound when the user turns the MouseKeys
feature on or off by using the hot key.

MKF_INDICATOR Windows 95 only: A visual indicator is
displayed when the MouseKeys feature is
on.

MKF_MOUSEKEYSON If this flag is set, the MouseKeys feature is
on.

MKF_MODIFIERS Windows 95 only: The CTRL key increases
cursor speed by the value specified by the
iCtrlSpeed member, and the SHIFT key
causes the cursor to delay briefly after
moving a single pixel, allowing fine
positioning of the cursor. If this value is not
specified, the CTRL and SHIFT keys are
ignored while the user moves the mouse
cursor using the arrow keys.

MKF_REPLACENUMBERSWindows 95 only:The numeric keypad
moves the mouse when the NUM LOCK key
is on. If this flag is not specified, the
numeric keypad moves the mouse cursor
when the NUM LOCK key is off.

iMaxSpeed
Specifies the maximum speed the mouse cursor attains when an arrow key is held down.

Windows 95: Range checking is not performed.
Windows NT: Valid values are from 10 to 360.

iTimeToMaxSpeed
Specifies the length of time, in milliseconds, that it takes for the mouse cursor to reach
maximum speed when an arrow key is held down. Valid values are from 1000 to 5000.

iCtrlSpeed
Windows 95: Specifies the multiplier to apply to the mouse cursor speed when the user holds
down the CTRL key while using the arrow keys to move the cursor. this value is ignored if
MKF_MODIFIERS is not set.
Windows NT: This member is reserved for future use. It must be set to zero.

dwReserved1
This member is reserved for future use. It must be set to zero.

dwReserved2
This member is reserved for future use. It must be set to zero.

RemarksAn application uses a MOUSEKEYS structure when calling the SystemParametersInfo function
with the wAction parameter set to the SPI_GETMOUSEKEYS or SPI_SETMOUSEKEYS value.
When using SPI_GETMOUSEKEYS, an application must specify the cbSize member of the
MOUSEKEYS structure; the SystemParametersInfo function fills the remaining members. An
application must specify all structure members when using the SPI_SETMOUSEKEYS value.See AlsoSystemParametersInfo

MSG
The MSG structure contains message information from a thread's message queue.typedef struct tagMSG {// msg

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;
Membershwnd

Identifies the window whose window procedure receives the message.
message

Specifies the message number.
wParam

Specifies additional information about the message. The exact meaning depends on the value
of the message member.

lParam
Specifies additional information about the message. The exact meaning depends on the value
of the message member.

time
Specifies the time at which the message was posted.

pt
Specifies the cursor position, in screen coordinates, when the message was posted.

See AlsoGetMessage, PeekMessage

MSG_INFO_0
The MSG_INFO_0 structure specifies a message alias.typedef struct _MSG_INFO_0 {

LPTSTR msgi0_name;
}MSG_INFO_0, *PMSG_INFO_0, *LPMSG_INFO_0;
Membersmsgi0_name

Contains a Unicode string that specifies the alias to which the message is to be sent. The
constant LEN specifies the maximum number of characters in the string.See AlsoNetMessageNameEnum, NetMessageNameGetInfo

MSG_INFO_1
The MSG_INFO_1 structure specifies an alias to retrieve a message from or send a message to.typedef struct _MSG_INFO_1 {

LPTSTR msgi1_name;
DWORD msgi1_forward_flag;
LPTSTR msgi1_forward;

}MSG_INFO_1, *PMSG_INFO_1, *LPMSG_INFO_1;
Membersmsgi1_name

Contains a Unicode string that specifies the alias to which the message is to be sent. The
constant LEN specifies the maximum number of characters in the string.

msgi1_forward_flag

Contains a Unicode string that specifies the alias to which the message is to be sent. The
constant LEN specifies the maximum number of characters in the string.

msgi1_forward

Indicates the number of seconds elapsed since the usri1_password member last changed
one of three values specifying the level of privilege assigned the usri1_name member. This
member can be one of the following values:

Value Meaning
MSGNAME_NOT_FORWARDED Name is not forwarded.
MSGNAME_FORWARDED_TO Name is forwarded to a remote

computer.
MSGNAME_FORWARDED_FROMName is forwarded from a remote

computer.
See AlsoNetMessageNameEnum, NetMessageNameGetInfo

MSGBOXPARAMS
The MSGBOXPARAMS structure contains information used to display a message box. The
MessageBoxIndirect function uses this structure.typedef struct {

UINT cbSize;
HWND hwndOwner;
HINSTANCE hInstance;
LPCSTR lpszText;
LPCSTR lpszCaption;
DWORDdwStyle;
LPCSTR lpszIcon;
DWORDdwContextHelpId;
MSGBOXCALLBACK lpfnMsgBoxCallback;
DWORDdwLanguageId;

} MSGBOXPARAMS, *PMSGBOXPARAMS, FAR *LPMSGBOXPARAMS;
MemberscbSize

Specifies the structure size, in bytes.
hwndOwner

Identifies the owner window. This member can be NULL.
hInstance

Identifies the instance containing the icon resource identified by the lpszIcon member, and
the string resource identified by the lpszText or lpszCaption member.

lpszText

Points to a null-terminated string, or the identifier of a string resource, that contains the
message to be displayed.

lpszCaption

Points to a null-terminated string, or the identifier of a string resource, that contains the
message box title. If this member is NULL, the default title Error is used.

dwStyle

Specifies a set of bit flags that determine the contents and behavior of the dialog box. This
member can be a combination of flags described for the uType parameter of the
MessageBoxEx function.
In addition, you can specify the MB_USERICON flag if you want the message box to display
the icon specified by the lpszIcon member.

lpszIcon

Identifies an icon resource. This parameter can be either a null-terminated string or an integer
resource identifier passed to the MAKEINTRESOURCE macro.
To load one of the Windows predefined icons, set the hInstance member to NULL and set
lpszIcon to one of the values listed with the LoadIcon function.
This member is ignored if the dwStyle member does not specify the MB_USERICON flag.

dwContextHelpId

Identifies a Help context. If a Help event occurs, this value is specified in the HELPINFO
structure that the message box sends to the owner window or callback function.

lpfnMsgBoxCallback

Points to the callback function that processes Help events for the message box. The callback
function has the following form:
VOID CALLBACK MsgBoxCallback(LPHELPINFO lpHelpInfo);If this member is NULL, the message box sends WM_HELP messages to the owner window
when help events occur.

dwLanguageId

Specifies the language in which to display the text contained in the predefined push buttons.
This value must be in the form returned by the MAKELANGID macro.
For a list of the language identifiers supported by Win32, see Language Identifiers. Note that
each localized release of Windows typically contains resources only for a limited set of
languages. Thus, for example, the U.S. version offers LANG_ENGLISH, the French version
offers LANG_FRENCH, the German version offers LANG_GERMAN, and the Japanese
version offers LANG_JAPANESE. Each version offers LANG_NEUTRAL. This limits the set of
values that can be used with the wLanguageId parameter. Before specifying a language
identifier, you should enumerate the locales that are installed on a system.See AlsoHELPINFO, LoadIcon, MAKEINTRESOURCE, MAKELANGID, MessageBoxEx,

MessageBoxIndirect, WM_HELP

MSGFILTER
The MSGFILTER structure contains information about a keyboard or mouse event. A rich edit
control sends this structure to its parent window as part of an EN_MSGFILTER notification
message, enabling the parent to change the message or prevent it from being processed.typedef struct _msgfilter {

NMHDR nmhdr;
UINT msg;
_WPAD _wPad1;
WPARAM wParam;
_WPAD _wPad2;
LPARAM lParam;

} MSGFILTER;
Membersnmhdr

Specifies a NMHDR structure. The code member of the NMHDR structure is the
EN_MSGFILTER notification code that identifies the message being sent.

msg

Specifies the keyboard or mouse message identifier.
wParam

Specifies the wParam parameter of the message.
lParam

Specifies the lParam parameter of the message.See AlsoEN_MSGFILTER

MULTIKEYHELP
The MULTIKEYHELP structure specifies a keyword table and an associated keyword to be used
by Windows Help.typedef struct tagMULTIKEYHELP { // mkh

DWORD mkSize;
TCHAR mkKeylist;
TCHAR szKeyphrase[1];

} MULTIKEYHELP;
MembersmkSize

Specifies the structure size, in bytes.
mkKeylist

Specifies a single character that identifies the keyword table to search.
szKeyphrase

Contains a null-terminated text string that specifies the keyword to locate in the keyword table.See AlsoWinHelp

NAME_BUFFER
The NAME_BUFFER structure contains information about a local network name. One or more
NAME_BUFFER structures follows an ADAPTER_STATUS structure when an application
specifies the NCBASTAT command in the ncb_command member of the NCB structure.typedef struct _NAME_BUFFER { // nb

UCHAR name[NCBNAMSZ];
UCHAR name_num;
UCHAR name_flags;

} NAME_BUFFER;
Membersname

Specifies the local network name. This value is in the ncb_name member of the NCB
structure.

name_num

Specifies the number for the local network name. This value is in the ncb_num member of
the NCB structure.

name_flags

Specifies the current state of the name table entry. This member can be one of the following
values:

Value Meaning
REGISTERING The name specified by the name member is

being added to the network.
REGISTERED The name specified by the name member

has been successfully added to the network.
DEREGISTERED The name specified by the name member

has an active session when an
NCBDELNAME command is issued. The
name will be removed from the name table
when the session is closed.

DUPLICATE A duplicate name was detected during
registration.

DUPLICATE_DEREG A duplicate name was detected with a
pending deregistration.

GROUP_NAME The name specified by the name member
was created by using the NCBADDGRNAME
command.

UNIQUE_NAME The name specified by the name member
was created by using the NCBADDNAME
command.

See AlsoADAPTER_STATUS, NCB

NCB
The NCB structure describes a network control block. A pointer to this structure is passed to the
Netbios function.typedef struct _NCB { // ncb

UCHAR ncb_command;
UCHAR ncb_retcode;
UCHAR ncb_lsn;
UCHAR ncb_num;
PUCHAR ncb_buffer;
WORD ncb_length;
UCHAR ncb_callname[NCBNAMSZ];
UCHAR ncb_name[NCBNAMSZ];
UCHAR ncb_rto;
UCHAR ncb_sto;
void (*ncb_post) (struct _NCB *);
UCHAR ncb_lana_num;
UCHAR ncb_cmd_cplt;
UCHAR ncb_reserve[10];
HANDLE ncb_event;

} NCB;
Membersncb_command

Specifies the command code and a flag that indicates whether the NCB structure is
processed asynchronously. The most significant bit contains the flag. If the ASYNCH constant
is combined with a command code (by using the OR operator), the NCB structure is
processed asynchronously. The following command codes are supported:

Code Meaning
NCBACTION Enables extensions to the transport

interface. NCBACTION commands are
mapped to TdiAction. When this code is
specified, the ncb_buffer member points to
a buffer to be filled with an
ACTION_HEADER structure, which is
optionally followed by data. NCBACTION
commands cannot be canceled by using
NCBCANCEL.

NCBADDGRNAME Adds a group name to the local name table.
NCBADDNAME Adds a unique name to the local name table.
NCBASTAT Retrieves the status of the adapter. When

this code is specified, the ncb_buffer
member points to a buffer to be filled with an
ADAPTER_STATUS structure, followed by
an array of NAME_BUFFER structures.

NCBCALL Opens a session with another name.
NCBCANCEL Cancels a previous command.
NCBCHAINSEND Sends the contents of two data buffers to the

specified session partner.
NCBCHAINSENDNA Sends the contents of two data buffers to the

specified session partner and does not wait
for acknowledgment.

NCBDELNAME Deletes a name from the local name table.
NCBDGRECV Receives a datagram from any name.
NCBDGRECVBC Receives broadcast datagram from any host.
NCBDGSEND Sends datagram to a specified name.
NCBDGSENDBC Sends a broadcast datagram to every host

on the local area network (LAN).
NCBENUM Enumerates LAN adapter (LANA) numbers.

When this code is specified, the ncb_buffer
member points to a buffer to be filled with a
LANA_ENUM structure.

NCBFINDNAME Determines the location of a name on the
network. When this code is specified, the
ncb_buffer member points to a buffer to be
filled with a FIND_NAME_HEADER
structure followed by one or more
FIND_NAME_BUFFER structures.

NCBHANGUP Closes a specified session.
NCBLANSTALERT Notifies the user of LAN failures that last for

more than one minute.
NCBLISTEN Enables a session to be opened with another

name.
NCBRECV Receives data from the specified session

partner.
NCBRECVANY Receives data from any session

corresponding to a specified name.
NCBRESET Resets a LAN adapter. An adapter must be

reset before any other NCB command that
specifies the same number in the
ncb_lana_num member will be accepted.
The IBM NetBIOS 3.0 specification
documents several NCB_RESET NCB's.
Win32 implements the NCB.RESET using
the dynamic link routine interface. Particular
values can be passed in specific bytes of the
NCB, more specifically:

· If ncb_lsn is not 0x00, all resources
associated with ncb_lana_num are to
be freed.

· If ncb_lsn is 0x00, all resources
associated with ncb_lana_num are to
be freed, and new resources are to be

allocated. The ncb_callname[0] byte
specifies the maximum number of
sessions, and the ncb_callname[2] byte
specifies the maximum number of
names. A nonzero value for the
ncb_callname[3] byte requests that the
application use NAME_NUMBER_1.

NCBSEND Sends data to the specified session partner.
NCBSENDNA Sends data to specified session partner and

does not wait for an acknowledgment.
NCBSSTAT Retrieves the status of the session. When

this value is specified, the ncb_buffer
member points to a buffer to be filled with a
SESSION_HEADER structure, followed by
one or more SESSION_BUFFER structures.

NCBTRACE Activates or deactivates NCB tracing.
Support for this command in the system is
optional and system-specific.

NCBUNLINK Unlinks the adapter.

ncb_retcode

Specifies the return code. This value is set to NRC_PENDING while an asynchronous
operation is in progress. One of the following return code values can be specified:

Value Meaning
NRC_GOODRET The operation succeeded.
NRC_BUFLEN An illegal buffer length was supplied.
NRC_ILLCMD An illegal command was supplied.
NRC_CMDTMO The command was timed out.
NRC_INCOMP The message was incomplete. The

application is to issue another command.
NRC_BADDR The buffer address was illegal.
NRC_SNUMOUT The session number was out of range.
NRC_NORES No resource was available.
NRC_SCLOSED The session was closed.
NRC_CMDCAN The command was canceled.
NRC_DUPNAME A duplicate name existed in the local name

table.
NRC_NAMTFUL The name table was full.
NRC_ACTSES The command finished; the name has active

sessions and is no longer registered.
NRC_LOCTFUL The local session table was full.
NRC_REMTFUL The remote session table was full. The

request to open a session was rejected.
NRC_ILLNN An illegal name number was specified.
NRC_NOCALL The system did not find the name that was

called.
NRC_NOWILD Wildcards are not permitted in the

ncb_name member.
NRC_INUSE The name was already in use on the remote

adapter.
NRC_NAMERR The name was deleted.
NRC_SABORT The session ended abnormally.
NRC_NAMCONF A name conflict was detected.
NRC_IFBUSY The interface was busy.
NRC_TOOMANY Too many commands were outstanding; the

application can retry the command later.

NRC_BRIDGE The ncb_lana_num member did not specify
a valid network number.

NRC_CANOCCR The command finished while a cancel
operation was occurring.

NRC_CANCEL The NCBCANCEL command was not valid;
the command was not canceled.

NRC_DUPENV The name was defined by another local
process.

NRC_ENVNOTDEF The environment was not defined. A reset
command must be issued.

NRC_OSRESNOTAV Operating system resources were
exhausted. The application can retry the
command later.

NRC_MAXAPPS The maximum number of applications was
exceeded.

NRC_NOSAPS No service access points (SAPs) were
available for NetBIOS.

NRC_NORESOURCES The requested resources were not
available.

NRC_INVADDRESS The NCB address was not valid.
This return code is not part of the IBM
NetBIOS 3.0 specification and is not
returned in the NCB structure. Instead, it is
returned by the Netbios function.

NRC_INVDDID The NCB DDID was invalid.
NRC_LOCKFAIL The attempt to lock the user area failed.
NRC_OPENERR An error occurred during an open operation

being performed by the device driver. This
return code is not part of the IBM NetBIOS
3.0 specification.

NRC_SYSTEM A system error occurred.
NRC_PENDING An asynchronous operation is not yet

finished.

ncb_lsn

Specifies the local session number. This number uniquely identifies a session within an
environment.

ncb_num

Specifies the number for the local network name. This number is returned by Netbios after a
successful NCBADDNAME or NCBADDGRNAME command. This number, not the name,
must be used with all datagram commands and for NCBRECVANY commands.
The number for NAME_NUMBER_1 (see NCBRESET) is always 0x01. Netbios assigns
values in the range 0x02 to 0xFE for the remaining names.

ncb_buffer

Points to the message buffer.
ncb_length

Specifies the size, in bytes, of the message buffer.
ncb_callname

Specifies the string that contains the remote name. Trailing space characters should be
supplied to make the length of the string equal to NCBNAMSZ.

ncb_name

Specifies the string that contains the local name. Trailing space characters should be supplied
to make the length of the string equal to NCBNAMSZ.

ncb_rto

Specifies the receive time-out period, in 500-millisecond units, for the session. A value of zero
implies no time-out. Specified with the NCBCALL or NCBLISTEN command. Affects
subsequent NCBRECV commands.

ncb_sto

Specifies the send time-out period, in 500-millisecond units, for the session. A value of zero
implies no time-out. Specified with the NCBCALL or NCBLISTEN command. Affects
subsequent NCBSEND and NCBCHAINSEND commands.

ncb_post

Specifies the address of the routine to call when the asynchronous NCB finishes. The
completion routine is passed a pointer to the completed network control block.

ncb_lana_num

Specifies the LAN adapter number. This zero-based number corresponds to a particular
transport provider using a particular LAN adapter board.

ncb_cmd_cplt

Specifies the command complete flag. This value is the same as the ncb_retcode member.
ncb_reserve

Reserved; must be zero.
ncb_event

Specifies a handle to a Windows event that is set to the signaled state when the
asynchronous network control block finishes. The event is signaled if the Netbios function
returns a nonzero value.
The ncb_event member must be zero if the ncb_command member does not have the
ASYNCH value set or if ncb_post is nonzero. Otherwise, NRC_ILLCMD is returned.
The event specified by ncb_event is set to the nonsignaled state by the system when an
asynchronous NetBIOS command is accepted, and it is set to the signaled state when the
asynchronous NetBIOS command finishes.
Using ncb_event to submit asynchronous requests requires fewer system resources than
using ncb_post. Also, when ncb_event is nonzero, the pending request is canceled if the
thread terminates before the request is processed. This is not true for requests sent by using
ncb_post.
Only manual reset events should be used with Netbios. A given event should not be
associated with more than one active asynchronous NetBIOS command.See AlsoACTION_HEADER, ADAPTER_STATUS, FIND_NAME_BUFFER, FIND_NAME_HEADER,

LANA_ENUM, NAME_BUFFER, Netbios, SESSION_BUFFER, SESSION_HEADER

NCCALCSIZE_PARAMS
The NCCALCSIZE_PARAMS structure contains information that an application can use while
processing the WM_NCCALCSIZE message to calculate the size, position, and valid contents of
the client area of a window.typedef struct _NCCALCSIZE_PARAMS { // nccp

RECT rgrc[3];
PWINDOWPOS lppos;

} NCCALCSIZE_PARAMS;
Membersrgrc

Specifies an array of rectangles. The first contains the new coordinates of a window that has
been moved or resized. The second contains the coordinates of the window before it was
moved or resized. The third contains the coordinates of the window's client area before the
window was moved or resized. If the window is a child window, the coordinates are relative to
the client area of the parent window. If the window is a top-level window, the coordinates are
relative to the screen origin.

lppos

Points to a WINDOWPOS structure that contains the size and position values specified in the
operation that moved or resized the window.See AlsoMoveWindow, RECT, SetWindowPos, WINDOWPOS, WM_NCCALCSIZE

NDDESHAREINFO
The NDDESHAREINFO structure gets and sets DDE share attributes maintained by the NetDDE
Share Database Manager (DSDM). The security descriptor associated with each DDE share is not
passed through this structure but is accessed through specific functions. The NetDDE DSDM API
accepts this structure for set functions; for get functions, the DSDM returns the structure packed
into the supplied buffer along with the data referenced by the members lpszShareName,
lpszAppTopicList, and lpszItemList.typedef struct _NDDESHAREINFO {

LONG lRevision;
LPTSTR lpszShareName;
LONG lShareType;
LPTSTR lpszAppTopicList;
LONG fSharedFlag;
LONG fService;
LONG fStartAppFlag;
LONG nCmdShow;
LONG qModifyId[2];
LONG cNumItems;
LPTSTR lpszItemList;

}NDDESHAREINFO;
MemberslRevision

Specifies the revision level of the NDDESHAREINFO structure. Currently, the revision level is
1.

lpszShareName

Points to a buffer containing a null-terminated string that specifies the name of the share. This
string must be no more than MAX_NDDESHARENAME characters long.

lShareType

Specifies the DDE share type(s). A DDE share can assume more than one type. This member
can be a combination of the following supported DDE share types:

Share type Meaning
SHARE_TYPE_OLD Specifies that the share contains a DDE

application/topic pair.
SHARE_TYPE_NEW Specifies that the share contains an OLE

application/topic pair.
SHARE_TYPE_STATIC Specifies that the share contains a static

application/topic pair.

lpszAppTopicList

Points to a buffer containing null-terminated strings for the DDE, OLE, and static application/
topic pairs. The buffer should be in the following format:<DDE application name>|<DDE topic name>\0

<OLE application name>|<OLE topic name>\0
<static application name>|<static topic name>\0\0fSharedFlag

Specifies whether the share is accessible to remote clients for linking. If this flag is set to
FALSE, the DDE share will not allow remote users to communicate through it by using DDE.
However, local users can still communicate through the DDE share. Local client links are
always implied if the associated DACL grants access.

fService

If this flag is set, the DDE share will not check whether the current user has set it as trusted
before before allowing DDE communication through it.

fStartAppFlag

If this flag is set and the share is trusted to start applications, NetDDE will attempt to start the
application specified by lpszAppTopicList if it cannot initially start a DDE conversation with
the application.

nCmdShow

When NetDDE starts an application to initiate a DDE conversation with it, this value is sent to
the application by the nCmdShow parameter of the WinMain function. It defines the preferred
mode for the application window to be shown in. This parameter is significant only if
fStartAppFlag is active. The logged on user in whose context the application is started can
also override this option when promoting the share to trusted status. The default for this
member is SW_SHOWMAXIMIZED.

qModifyId

An 8-byte serial number that indicates the modification serial number of the DDE share. Every
time the DDE share is modified by a NDdeShareSetInfo or NDdeSetShareSecurity call,
these values are changed.

cNumItems

Specifies the number of items listed in lpszItemList. If cNumItems is zero, then lpszItemList
is empty, and the share information and associated security descriptor apply to all items
serviced by the associated application.

lpszItemList

Points to a buffer containing null-terminated strings that specify the items the client application
in a DDE transaction can request or start advise loops on. If no items are listed, the DDE
share allows any item to be used. The number of items in the list must match the cNumItems
count.See AlsoNDdeSetShareSecurity, NDdeShareSetInfo, WinMain

NETCONNECTINFOSTRUCT
The NETCONNECTINFOSTRUCT structure contains information about the expected performance
of a connection used to access a network resource. In the dwSpeed, dwDelay or
dwOptDataSize members, a value of zero means that no information is available. In the
dwSpeed or dwDelay member, a value of one means that the actual value is greater than can be
represented in the unit.typedef struct _NETCONNECTINFOSTRUCT{

DWORD cbStructure;
DWORD dwFlags;
DWORD dwSpeed;
DWORD dwDelay;
DWORD dwOptDataSize;

} NETCONNECTINFOSTRUCT, *LPNETCONNECTINFOSTRUCT;
MemberscbStructure

The size, in bytes, of the NETCONNECTINFOSTRUCT structure. This value is supplied by
the caller to indicate the size of the structure.

dwFlags

A bit mask. This member can be one or more of the following flags.
Value Meaning
WNCON_FORNETCARD If this flag is set, information is

being returned for the
performance of the network card,
in the absence of information
about the actual connection. If
this flag is not set, information is
being returned for the current
connection with the resource,
with any routing degradation
taken into consideration.

WNCON_NOTROUTED If set, the connection is not being
routed. If the flag is not set, the
connection may be going through
routers that limit performance.
Consequently, if
WNCON_FORNETCARD is set,
actual performance may be
much less than the information
returned.

WNCON_SLOWLINK If the flag is set, the connection is
over a medium that is typically
slow (for example, over a modem
using a normal quality phone
line).

WNCON_DYNAMIC If the flag is set, some of the
information being returned is
dynamically recalculated, so
reissuing this request may return
different or more current
information.

dwSpeed

The speed of the media to the network resource in units of 100 bits per second (bps) For
example, a 1200 baud point-to-point link returns 12.

dwDelay

The one-way delay introduced by the network when sending information (that is, the time
between when data starts being sent and the time that it starts being received), in
milliseconds. This delay is additional to any latency that was incorporated into the calculation
of dwSpeed, so the value returned will be zero for accessing most resources.

dwOptDataSize

A recommendation for the size of data, in bytes, that is most efficiently sent through the
network when an application makes a single request to the network resource. For example,
for a disk network resource, this value might be 2048 or 512 when writing a block of dataSee AlsoMultinetGetConnectionPerformance, NetUserAdd

NET_DISPLAY_GROUP
The NET_DISPLAY_GROUP structure contains information that an account manager can access
to determine information about user groups.typedef struct _NET_DISPLAY_GROUP {

LPWSTR grpi3_name;
LPWSTR grpi3_comment;
DWORD grpi3_group_id;
DWORD grpi3_attributes;
DWORD grpi3_next_index;

} NET_DISPLAY_GROUP, *PNET_DISPLAY_GROUP;
Membersusri3_name

A Unicode string that specifies the name of the group.
usri3_comment

A Unicode string that points to a Unicode string that contains a comment. This string can be a
null string, or it can have any number of characters before the terminating null character.

usri3_group_id

Specifies the relative identifier of the group. The relative identifier is determined by the
accounts database when the group is created. It uniquely defines the group to the account
manager within the domain. The NetUserAdd and NetUserSetInfo functions ignore this
member.

usri3_attributes

Lists attributes of the defined group. For NT Windows 4.0, you can no longer set these
attributes. They are hardwired to SE_GROUP_MANDATORY,| SE_GROUP_ENABLED,
SE_GROUP_ENABLED_BY_DEFAULT.

usri3_next_index

Specifies the index of the next entry to return from the NetQueryDisplayInformation
function. Pass this value as the Index parameter of NetQueryDisplayInformation to return
the next logical entry.See AlsoNetUserAdd, NetUserSetInfo, NetQueryDisplayInformation

NET_DISPLAY_MACHINE
The NET_DISPLAY_MACHINE structure contains information that an account manager can
access to determine information about machine names and their attributes.typedef struct _NET_DISPLAY_MACHINE {

LPWSTR usri2_name;
LPWSTR usri2_comment;
DWORD usri2_flags;
DWORD usri2_user_id;
DWORD usri2_next_index;

} NET_DISPLAY_MACHINE, *PNET_DISPLAY_MACHINE;
Membersusri2_name

A Unicode string that specifies the name of the machine to access.
usri2_comment

A Unicode string that points to a Unicode string that contains a comment. This string can be a
null string, or it can have any number of characters before the terminating null character.

usri2_flags

Contains values that determine several features. This member can be any of the following
values.

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

Windows NT ignores this value.
UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out (blocked). For the
NetUserSetInfo function, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously locked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
will never expire on the account.
This value is valid only for
Windows NT.

The following members describe the machine type. Only one member can be set.
You cannot change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a
typical user.

UF_TEMP_DUPLICATE_ACCOUNT This is an account for
users whose primary
account is in another
domain. This account
provides user access to
this domain, but not to any
domain that trusts this
domain. The User
Manager refers to this
account type as a local
user account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer
account for a Windows NT
Workstation or Windows
NT Server that is a
member of this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer
account for a Windows NT
Backup Domain Controller
that is a member of this
domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT

domain that trusts other
domains.

usri2_user_id

Specifies the relative identifier of the machine. The relative identifier is determined by the
accounts database when the machine is defined.

usri2_next_index

Specifies the index of the next entry to return from the NetQueryDisplayInformation
function. Pass this value as the Index parameter of NetQueryDisplayInformation to return
the next logical entry.See AlsoNetUserAdd, NetUserSetInfo, NetQueryDisplayInformation

NET_DISPLAY_USER
The NET_DISPLAY_USER structure contains information that an account manager can access to
determine information about user names, directory information for users, and user passwords.typedef struct _NET_DISPLAY_USER {

LPWSTR usri1_name;
LPWSTR usri1_comment;
DWORD usri1_flags;
LPWSTR usri1_full_name;
DWORD usri1_user_id;
DWORD usri1_next_index;

} NET_DISPLAY_USER, *PNET_DISPLAY_USER;
Membersusri1_name

A Unicode string that specifies the name of the user account.
usri1_comment

A Unicode string that points to a Unicode string that contains a comment. This string can be a
null string, or it can have any number of characters before the terminating null character
(MAXCOMMENTSZ).

usri1_flags

Contains values that determine several features. This member can be any of the following
values.

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

Windows NT ignores this value.
UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out (blocked). For the
NetUserSetInfo function, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously locked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
will never expire on the account.
This value is valid only for
Windows NT.

The following members describe the account type. Only one member can be set.
usri1_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri1_user_id

Specifies the relative identifier of the user. The relative identifier is determined by the
accounts database when the user is created. It uniquely defines this user account to the
account manager within the domain.

usri1_next_index

Specifies the index of the next entry to return from the NetQueryDisplayInformation
function. Pass this value as the Index parameter of NetQueryDisplayInformation to return
the next logical entry.See AlsoNetUserAdd, NetUserSetInfo, NetQueryDisplayInformation

NETRESOURCE
The NETRESOURCE structure is returned during enumeration of resources on the network and
during enumeration of currently connected resources.typedef struct _NETRESOURCE { // nr

DWORD dwScope;
DWORD dwType;
DWORD dwDisplayType;
DWORD dwUsage;
LPTSTR lpLocalName;
LPTSTR lpRemoteName;
LPTSTR lpComment;
LPTSTR lpProvider;

} NETRESOURCE;
MembersdwScope

Specifies the scope of the enumeration. Currently, this member can be one of the following
values:

Value Meaning
RESOURCE_CONNECTED Currently connected resources (the

dwUsage member is undefined).
RESOURCE_GLOBALNET Resources on the network.
RESOURCE_REMEMBEREDRemembered (persistent) connections

(dwUsage is undefined).

dwType

Specifies a bitmask that gives the resource type. Currently, this member can be one of the
following values:

Value Meaning
RESOURCETYPE_ANY All resources
RESOURCETYPE_DISK Disk resources
RESOURCETYPE_PRINT Print resources

dwDisplayType

Specifies how the network object should be displayed in a network browsing user interface.
Currently, this member can be the following values:

Value Meaning
RESOURCEDISPLAYTYPE_DOMAIN

The object should be displayed as a domain.
RESOURCEDISPLAYTYPE_GENERIC

The method used to display the object does not matter.
RESOURCEDISPLAYTYPE_SERVER

The object should be displayed as a server.
RESOURCEDISPLAYTYPE_SHARE

The object should be displayed as a sharepoint.

dwUsage

Specifies a bitmask that gives the resource usage. This member is defined only if dwScope is
RESOURCE_GLOBALNET. Currently, this member can be one of the following values:

Value Meaning
RESOURCEUSAGE_CONNECTABLEThis is a connectable resource;

the name pointed to by the
lpRemoteName member can
be passed to the
WNetAddConnection function
to make a network connection.

RESOURCEUSAGE_CONTAINER This is a container resource; the
name pointed to by the
lpRemoteName member can
be passed to the
WNetOpenEnum function to
enumerate the resources in the
container.

lpLocalName

Points to the name of a local device if the dwScope member is RESOURCE_CONNECTED
or RESOURCE_REMEMBERED. This member is NULL if the connection does not use a
device. Otherwise, it is undefined.

lpRemoteName

Points to a remote network name if the entry is a network resource.

If the entry is a current or persistent connection, lpRemoteName points to the network name
associated with the name pointed to by the lpLocalName member.

lpComment

Points to a provider-supplied comment.
lpProvider

Points to the name of the provider owning this resource. This member can be NULL if the
provider name is unknown.See AlsoWNetAddConnection, WNetCloseEnum, WNetEnumResource, WNetOpenEnum

NEWCPLINFO
The NEWCPLINFO structure contains resource information and an application-defined value for a
dialog box supported by a Control Panel application. The CPlApplet function of the Control Panel
application returns this information to the Control Panel in response to a CPL_NEWINQUIRE
message.typedef struct tagNEWCPLINFO { // ncpli

DWORD dwSize;
DWORD dwFlags;
DWORD dwHelpContext;
LONG lData;
HICON hIcon;
TCHAR szName[32];
TCHAR szInfo[64];
TCHAR szHelpFile[128];

} NEWCPLINFO;
MembersdwSize

Specifies the length of the structure, in bytes.
dwFlags

This member is ignored.
dwHelpContext

This member is ignored.
lData

Specifies data defined by the application. When the Control Panel sends the CPL_DBLCLK
and CPL_STOP messages, it passes this value back to your application.

hIcon

Identifies the icon that represents the dialog box. This icon is intended to be displayed by the
application that controls the Control Panel application.

szName

Specifies a null-terminated string that contains the dialog box name. The name is intended to
be displayed below the icon.

szInfo

Specifies a null-terminated string containing the dialog box description. The description is
intended to be displayed when the icon for the dialog box is selected.

szHelpFile

This member is ignored.See AlsoCPL_DBLCLK, CPL_NEWINQUIRE, CPL_STOP, CPlApplet, CPLINFO

NEWHEADER
The NEWHEADER structure contains the number of icon or cursor components in a resource
group.struct NEWHEADER {

WORD Reserved;
WORD ResType;
WORD ResCount;

} NEWHEADER, *PNEWHEADER;
NEWHEADER NewHeader;
MembersReserved

Reserved; must be zero.
ResType

Specifies the resource type. This member must be 14 for icons and 12 for cursors.
ResCount

Specifies the number of icon or cursor components in the resource group.RemarksOne or more RESDIR structures immediately follow the NEWHEADER structure in the .RES file.
The ResCount member specifies the number of RESDIR structures.See AlsoRESDIR

NEWTEXTMETRIC
The NEWTEXTMETRIC structure contains data that describes a physical font.typedef struct tagNEWTEXTMETRIC { // ntm

LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tmInternalLeading;
LONG tmExternalLeading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
BCHAR tmFirstChar;
BCHAR tmLastChar;
BCHAR tmDefaultChar;
BCHAR tmBreakChar;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
DWORD ntmFlags;
UINT ntmSizeEM;
UINT ntmCellHeight;
UINT ntmAvgWidth;

} NEWTEXTMETRIC;
MemberstmHeight

Specifies the height (ascent + descent) of characters.
tmAscent

Specifies the ascent (units above the base line) of characters.
tmDescent

Specifies the descent (units below the base line) of characters.
tmInternalLeading

Specifies the amount of leading (space) inside the bounds set by the tmHeight member.
Accent marks and other diacritical characters may occur in this area. The designer may set
this member to zero.

tmExternalLeading

Specifies the amount of extra leading (space) that the application adds between rows. Since
this area is outside the font, it contains no marks and is not altered by text output calls in
either OPAQUE or TRANSPARENT mode. The designer may set this member to zero.

tmAveCharWidth

Specifies the average width of characters in the font (generally defined as the width of the
letter x). This value does not include overhang required for bold or italic characters.

tmMaxCharWidth

Specifies the width of the widest character in the font.
tmWeight

Specifies the weight of the font.
tmOverhang

Specifies the extra width per string that may be added to some synthesized fonts. When
synthesizing some attributes, such as bold or italic, graphics device interface (GDI) or a
device may have to add width to a string on both a per-character and per-string basis. For
example, GDI makes a string bold by expanding the spacing of each character and
overstriking by an offset value; it italicizes a font by shearing the string. In either case, there is
an overhang past the basic string. For bold strings, the overhang is the distance by which the
overstrike is offset. For italic strings, the overhang is the amount the top of the font is sheared
past the bottom of the font.
The tmOverhang member enables the application to determine how much of the character
width returned by a GetTextExtentPoint32 function call on a single character is the actual
character width and how much is the per-string extra width. The actual width is the extent
minus the overhang.

tmDigitizedAspectX

Specifies the horizontal aspect of the device for which the font was designed.
tmDigitizedAspectY

Specifies the vertical aspect of the device for which the font was designed. The ratio of the
tmDigitizedAspectX and tmDigitizedAspectY members is the aspect ratio of the device for
which the font was designed.

tmFirstChar

Specifies the value of the first character defined in the font.
tmLastChar

Specifies the value of the last character defined in the font.
tmDefaultChar

Specifies the value of the character to be substituted for characters that are not in the font.
tmBreakChar

Specifies the value of the character to be used to define word breaks for text justification.
tmItalic

Specifies an italic font if it is nonzero.
tmUnderlined

Specifies an underlined font if it is nonzero.
tmStruckOut

Specifies a strikeout font if it is nonzero.
tmPitchAndFamily

Specifies the pitch and family of the selected font. The low-order bit (bit 0) specifies the pitch
of the font. If it is 1, the font is variable pitch (or proportional). If it is 0, the font is fixed pitch (or
monospace). Bits 1 and 2 specify the font type. If both bits are 0, the font is a raster font; if bit
1 is 1 and bit 2 is 0, the font is a vector font; if bit 1 is 0 and bit 2 is set, or if both bits are 1, the
font is some other type. Bit 3 is 1 if the font is a device font; otherwise, it is 0.
The four high-order bits designate the font family. The tmPitchAndFamily member can be
combined with the hexadecimal value 0xF0 by using the bitwise AND operator and can then
be compared with the font family names for an identical match. For more information about
the font families, see the LOGFONT structure.

tmCharSet

Specifies the character set of the font.
ntmFlags

Specifies whether the font is italic, underscored, outlined, bold, and so forth. The following list
shows the bits corresponding to each font type:

Bit Meaning
0 Italic
1 Underscore
2 Negative
3 Outline
4 Strikeout
5 Bold

ntmSizeEM

Specifies the size of the em square for the font. This value is in "notional units" (that is, the
units for which the font was designed).

ntmCellHeight

Specifies the height, in notional units, of the font. This value should be compared with the
value of the ntmSizeEM member.

ntmAvgWidth

Specifies the average width of characters in the font, in notional units. This value should be
compared with the value of the ntmSizeEM member.RemarksThe last four members of the NEWTEXTMETRIC structure are not included in the TEXTMETRIC

structure; in all other respects, the structures are identical.

The sizes in the NEWTEXTMETRIC structure are typically given in logical units; that is, they
depend on the current mapping mode of the display context.See AlsoEnumFontFamilies, GetTextExtentPoint32, GetTextMetrics, LOGFONT

NEWTEXTMETRICEX
The NEWTEXTMETRICEX structure contains information about a physical font.typedef struct tagNEWTEXTMETRICEX {

NEWTEXTMETRIC ntmentm;
FONTSIGNATURE ntmeFontSignature;

} NEWTEXTMETRICEX;
Membersntmentm

Specifies a NEWTEXTMETRIC structure.
ntmeFontSignature

Specifies a FONTSIGNATURE structure indicating the coverage of the font.See AlsoNEWTEXTMETRIC

NM_LISTVIEW
The NM_LISTVIEW structure contains information about a list view notification message.typedef struct tagNM_LISTVIEW {

NMHDR hdr;
int iItem;
int iSubItem;
UINT uNewState;
UINT uOldState;
UINT uChanged;
POINT ptAction;
LPARAM lParam;

} NM_LISTVIEW;
Membershdr

Specifies an NMHDR structure. The code member of the NMHDR structure can one of the
following notification codes that identify the message being sent: LVN_BEGINDRAG,
LVN_BEGINRDRAG, LVN_COLUMNCLICK, LVN_DELETEALLITEMS, LVN_DELETEITEM,
LVN_INSERTITEM, LVN_ITEMCHANGED, or LVN_ITEMCHANGING.

iItem

Identifies the list view item, or - 1 if not used.
iSubItem

Identifies the subitem, or zero if none.
uNewState

Specifies the new item state. This member is zero for notification messages that do not use it.
uOldState

Specifies the old item state. This member is zero for notification messages that do not use it.
uChanged

A set of bit flags that indicate the item attributes that have changed. This member is zero for
notifications that do not use it. Otherwise, it can have the same values as the mask member
of the LV_ITEM structure.

ptAction

Specifies a POINT structure that indicates the location at which the event occurred. This
member is valid only for the LVN_BEGINDRAG and LVN_BEGINRDRAG notification
messages.RemarksThe address of the NM_LISTVIEW structure is specified as the lParam parameter of the

WM_NOTIFY message for several list view notification messages.See AlsoLV_ITEM, LVN_BEGINDRAG, LVN_BEGINRDRAG, LVN_COLUMNCLICK,
LVN_DELETEALLITEMS, LVN_DELETEITEM, LVN_INSERTITEM, LVN_ITEMCHANGED,
LVN_ITEMCHANGING, WM_NOTIFY

NM_TREEVIEW
The NM_TREEVIEW structure contains information about a tree view notification message.typedef struct _NM_TREEVIEW { nmtv

NMHDR hdr;
UINTaction;
TV_ITEM itemOld;
TV_ITEM itemNew;
POINT ptDrag;

} NM_TREEVIEW;
typedef NM_TREEVIEW FAR *LPNM_TREEVIEW;
Membershdr

Specifies an NMHDR structure. The code member of the NMHDR structure can one of the
following notification codes that identify the message being sent: TVN_BEGINDRAG,
TVN_BEGINRDRAG, TVN_DELETEITEM, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING,
TVN_SELCHANGED, TVN_SELCHANGING.

action

Specifies a notification-specific action flag.
itemOld

Specifies a TV_ITEM structure that contains information about the old item state. This
member is zero for notification messages that do not use it.

itemNew

Specifies a TV_ITEM structure that contains information about the new item state. This
member is zero for notification messages that do not use it.

ptDrag

Specifies a POINT structure that contains the client coordinates of the mouse at the time the
event occurred that caused the notification message to be sent.RemarksThe address of this structure is specified as the lParam parameter of the WM_NOTIFY message

for several tree-view notification messages.See AlsoPOINT, TV_ITEM, TVN_BEGINDRAG, TVN_BEGINRDRAG, TVN_DELETEITEM,
TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_SELCHANGED, TVN_SELCHANGING,
WM_NOTIFY

NM_UPDOWN
The NM_UPDOWN structure contains information about an up-down control notification message.typedef struct _NM_UPDOWN { nmud

NMHDR hdr; // notification message header
intiPos; // current position
int iDelta; // proposed change in position

} NM_UPDOWNW;
Membershdr

Specifies an NMHDR structure. The code member of the NMHDR structure can be the
following notification code that identifies the message being sent: UDN_DELTAPOS.

iPos

Signed integer value that is the current position of the up-down control.
iDelta

Signed integer value that is the proposed change in the position of the up-down control.RemarksThe address of this structure is specified as the lParam parameter of the WM_NOTIFY message
for the UDN_DELTAPOS notification message.See AlsoNMHDR, UDN_DELTAPOS, WM_NOTIFY

NMHDR
The NMHDR structure contains information about a notification message. The pointer to this
structure is specified as the lParam member of the WM_NOTIFY message.typedef struct tagNMHDR {

HWND hwndFrom;
UINT idFrom;
UINT code;

} NMHDR;
MembershwndFrom

Window handle of control sending message
idFrom

Identifier of control sending message
code

Specifies the notification code. This member can be a control-specific notification code, or it
can be one of the following common notification values:

Value Meaning
NM_CLICK The user has clicked the left mouse button

within the control.
NM_DBLCLK The user has double-clicked the left mouse

button within the control.
NM_KILLFOCUS The control has lost the input focus.
NM_OUTOFMEMORYThe control could not complete an operation

because there was not enough memory
available.

NM_RCLICK The user has clicked the right mouse button
within the control.

NM_RDBLCLK The user has double-clicked the right mouse
button within the control.

NM_RETURN The control has the input focus, and the user
has pressed the ENTER key.

NM_SETFOCUS The control has received the input focus.

NONCLIENTMETRICS
The NONCLIENTMETRICS structure contains the scalable metrics associated with the nonclient
area of a nonminimized window. This structure is used by the SPI_GETNONCLIENTMETRICS
and SPI_SETNONCLIENTMETRICS actions of SystemParametersInfo.typedef struct tagNONCLIENTMETRICS {

UINT cbSize;
intiBorderWidth;
intiScrollWidth;
intiScrollHeight;
intiCaptionWidth;
intiCaptionHeight;
LOGFONT lfCaptionFont;
intiSmCaptionWidth;
intiSmCaptionHeight;
LOGFONT lfSmCaptionFont;
intiMenuWidth;
intiMenuHeight;
LOGFONT lfMenuFont;
LOGFONT lfStatusFont;
LOGFONT lfMessageFont;

} NONCLIENTMETRICS, FAR* LPNONCLIENTMETRICS;
MemberscbSize

Specifies the size of the structure, in bytes.
iBorderWidth

Specifies the thickness, in pixels, of the sizing border.
iScrollWidth

Specifies the width, in pixels, of a standard vertical scroll bar.
iScrollHeight

Specifies the height, in pixels, of a standard horizontal scroll bar.
iCaptionWidth

Specifies the width, in pixels, of caption buttons.
iCaptionHeight

Specifies the height, in pixels, of caption buttons.
lfCaptionFont

Contains information about the caption font.
iSmCaptionWidth

Specifies the width, in pixels, of small caption buttons.
iSmCaptionHeight

Specifies the height, in pixels, of small captions.
iMenuWidth

Specifies the width, in pixels, of menu-bar buttons.
iMenuHeight

Specifies the height, in pixels, of a menu bar.
lfMenuFont

Contains information about the font used in menu bars.
lfStatusFont

Contains information about the font used in status bars.
lfMessageFont

Contains information about the font used in message boxes.See AlsoSystemParametersInfo

NormalMenuItem
The NormalMenuItem structure contains information about each item in a menu resource that
does not open a menu or a submenu.struct NormalMenuItem {

WORD resInfo;
szOrOrd menuText;

};
MembersresInfo

A set of bit flags that specify the type of menu item. This member can be one of the following
values.

Value Meaning
MFR_END The menu item is the last in this submenu

or menu resource; this flag is used
internally by the system.

MFR_POPUP The menu item opens a menu or a
submenu; the flag is used internally by the
system.

menuText

Specifies a null-terminated Unicode string that contains the text for this menu item. There is
no fixed limit on the size of this string.RemarksThere is one NormalMenuItem structure for each menu item that does not open a menu or a

submenu. Indicate the last menu item on a menu by setting the resInfo member to MFR_END.

A menu separator is a special type of menu item that is inactive but appears as a dividing bar
between two active menu items. Indicate a menu separator by leaving the menuText member
empty.See AlsoMenuHeader, MENUITEMINFO, PopupMenuItem

NOTIFYICONDATA
Contains information that the system needs to process taskbar status area messages.typedef struct _NOTIFYICONDATA { // nid

DWORD cbSize;
HWND hWnd;
UINT uID;
UINT uFlags;
UINT uCallbackMessage;
HICON hIcon;
char szTip[64];

} NOTIFYICONDATA, *PNOTIFYICONDATA;
MemberscbSize

Size of the NOTIFYICONDATA structure.
hWnd

Handle of the window that receives notification messages associated with an icon in the
taskbar status area.

uID

Application-defined identifier of the taskbar icon.
uFlags

Array of flags that indicate which of the other members contain valid data. This member can
be a combination of these values:

NIF_ICON The hIcon member is valid.
NIF_MESSAGE The uCallbackMessage member is valid.
NIF_TIP The szTip member is valid.

uCallbackMessage

Application-defined message identifier. The system uses the specified identifier for notification
messages that it sends to the window identified by hWnd whenever a mouse event occurs in
the bounding rectangle of the icon.

hIcon

Handle of the icon to add, modify, or delete.
szTip

Tooltip text to display for the icon.

NRESARRAY
Defines the CF_NETRESOURCE clipboard format.typedef struct _NRESARRAY { // anr

UINT cItems;
NETRESOURCE nr[1];

} NRESARRAY, * LPNRESARRAY;
MemberscItems

Number of elements in nr.
nr

Array of NETRESOURCE structures that contain information about network resources. The
string members (LPSTR types) in the structure contain offsets instead of addresses.

NS_SERVICE_INFO
The NS_SERVICE_INFO structure contains information about a network service or a network
service type in the context of a specified name space, or a set of default name spaces.typedef struct _NS_SERVICE_INFO {

DWORD dwNameSpace;
SERVICE_INFO ServiceInfo;

} NS_SERVICE_INFO;
MembersdwNameSpace

Specifies the name space or a set of default name spaces to which this service information
applies.
Use one of the following constant values to specify a name space:

Value Name Space
NS_DEFAULT A set of default name spaces. The set of

default name spaces typically includes
all the name spaces installed on the
system. System administrators,
however, can exclude particular name
spaces from the set.

NS_DNS The Domain Name System used in the
Internet to resolve the name of the host.

NS_MS
NS_NDS The NetWare 4 provider.
NS_NETBT The NetBIOS over TCP/IP layer. The

operating system registers their
computer names with NetBIOS. This
name space is used to convert a
computer name to an IP address that
uses this registration.

NS_NIS
NS_SAP The NetWare Service Advertising

Protocol. This can access the Netware
bindery, if appropriate. NS_SAP is a
dynamic name space that enables the
registration of services.

NS_STDA
NS_TCPIP_HOSTS Lookup value in the <systemroot>\

system32\drivers\etc\posts file.
NS_TCPIP_LOCAL Local TCP/IP name resolution

mechanisms, including comparisons
against the local host name and lookup
value in the cache of host to IP address
mappings.

NS_WINS
NS_X500

ServiceInfo

A SERVICE_INFO structure that contains information about a network service or network
service type.See AlsoGetService, SetService, SERVICE_INFO

NUMBERFMT
The NUMBERFMT structure contains information that defines the format of a number string. The
GetNumberFormat function uses this information to customize a number string for a specified
locale.typedef struct _numberfmt {

UINT NumDigits;
UINT LeadingZero;
UINT Grouping;
LPTSTR lpDecimalSep;
LPTSTR lpThousandSep;
UINT NegativeOrder;

} NUMBERFMT;
MembersNumDigits

Specifies the number of fractional digits. This is equivalent to the locale information specified
by the LCTYPE constant value LOCALE_IDIGITS.

LeadingZero

Specifies whether to use leading zeroes in decimal fields. This is equivalent to the locale
information specified by the LCTYPE constant value LOCALE_ILZERO.

Grouping

Specifies the size of each group of digits to the left of the decimal. Values in the range 0 - 9
are valid.

lpDecimalSep

Points to a null-terminated decimal separator string.
lpThousandSep

Points to a null-terminated thousand separator string.
NegativeOrder

Specifies the negative number mode. This is equivalent to the locale information specified by
the LCTYPE constant value LOCALE_INEGNUMBER.RemarksFor more information about the LCTYPE constants, see LCTYPE Constants.See AlsoGetNumberFormat

OFNOTIFY
[New - Windows NT]

The OFNOTIFY structure contains information about the WM_NOTIFY message sent to a hook
procedure from an Explorer-style Open or Save As dialog box. The address of the OFNOTIFY
structure is passed as the lParam parameter of the WM_NOTIFY message.typedef struct _OFNOTIFY { // on

NMHDRhdr;
LPOPENFILENAME lpOFN;
LPTSTR pszFile;

} OFNOTIFY, FAR *LPOFNOTIFY;
Membershdr

Specifies an NMHDR structure. The code member of the NMHDR structure can be one of the
following notification codes that identify the message being sent: CDN_FILEOK,
CDN_FOLDERCHANGE, CDN_HELP, CDN_INITDONE, CDN_SELCHANGE,
CDN_SHAREVIOLATION, CDN_TYPECHANGE.

lpOFN

Pointer to the OPENFILENAME structure that was specified when the Open or Save As
dialog box was created. For some of the notification messages, this structure contains
additional information about the event that caused the notification.

pszFile

Pointer to the filename for which a network sharing violation has occurred. This member is
valid only with the CDN_SHAREVIOLATION notification message.See AlsoCDN_FILEOK, CDN_FOLDERCHANGE, CDN_HELP, CDN_INITDONE, CDN_SELCHANGE,

CDN_SHAREVIOLATION, CDN_TYPECHANGE, NMHDR, OPENFILENAME

OFSTRUCT
The OFSTRUCT structure contains information about a file that the OpenFile function opened or
attempted to open.typedef struct _OFSTRUCT { // of

BYTE cBytes;
BYTE fFixedDisk;
WORD nErrCode;
WORD Reserved1;
WORD Reserved2;
CHAR szPathName[OFS_MAXPATHNAME];

} OFSTRUCT;
MemberscBytes

Specifies the length, in bytes, of the structure.
fFixedDisk

Specifies whether the file is on a hard (fixed) disk. This member is nonzero if the file is on a
hard disk.

nErrCode

Specifies the MS-DOS error code if the OpenFile function failed.
Reserved1

Reserved; do not use.
Reserved2

Reserved; do not use.
szPathName

Specifies the path and filename of the file. This string consists of characters from the
Windows character set.See AlsoOpenFile

OPENFILENAME
The OPENFILENAME structure contains information that the GetOpenFileName and
GetSaveFileName functions use to initialize an Open or Save As common dialog box. After the
user closes the dialog box, the system returns information about the user's selection in this
structure.typedef struct tagOFN { // ofn

DWORD lStructSize;
HWNDhwndOwner;
HINSTANCEhInstance;
LPCTSTR lpstrFilter;
LPTSTR lpstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterIndex;
LPTSTR lpstrFile;
DWORD nMaxFile;
LPTSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCTSTR lpstrInitialDir;
LPCTSTR lpstrTitle;
DWORD Flags;
WORDnFileOffset;
WORDnFileExtension;
LPCTSTR lpstrDefExt;
DWORD lCustData;
LPOFNHOOKPROC lpfnHook;
LPCTSTR lpTemplateName;

} OPENFILENAME;
MemberslStructSize

Specifies the length, in bytes, of the structure.
hwndOwner

Identifies the window that owns the dialog box. This member can be any valid window handle,
or it can be NULL if the dialog box has no owner.

hInstance

If the OFN_ENABLETEMPLATEHANDLE flag is set in the Flags member, hInstance is the
handle of a memory object containing a dialog box template. If the OFN_ENABLETEMPLATE
flag is set, hInstance identifies a module that contains a dialog box template named by the
lpTemplateName member. If neither flag is set, this member is ignored.
If the OFN_EXPLORER flag is set, the system uses the specified template to create a dialog
box that is a child of the default Explorer-style dialog box. If the OFN_EXPLORER flag is not
set, the system uses the template to create an old-style dialog box that replaces the default
dialog box.

lpstrFilter

Pointer to a buffer containing pairs of null-terminated filter strings. The last string in the buffer
must be terminated by two NULL characters.
The first string in each pair is a display string that describes the filter (for example, "Text
Files"), and the second string specifies the filter pattern (for example, "*.TXT"). To specify
multiple filter patterns for a single display string, use a semicolon to separate the patterns (for
example, "*.TXT;*.DOC;*.BAK"). A pattern string can be a combination of valid filename
characters and the asterisk (*) wildcard character. Do not include spaces in the pattern string.
The operating system does not change the order of the filters. It displays them in the File
Types combo box in the order specified in lpstrFilter.
If lpstrFilter is NULL, the dialog box does not display any filters.

lpstrCustomFilter

Pointer to a static buffer that contains a pair of null-terminated filter strings for preserving the
filter pattern chosen by the user. The first string is your display string that describes the
custom filter, and the second string is the filter pattern selected by the user. The first time your
application creates the dialog box, you specify the first string, which can be any nonempty
string. When the user selects a file, the dialog box copies the current filter pattern to the
second string. The preserved filter pattern can be one of the patterns specified in the
lpstrFilter buffer, or it can be a filter pattern typed by the user. The system uses the strings to
initialize the user-defined file filter the next time the dialog box is created. If the nFilterIndex
member is zero, the dialog box uses the custom filter.
If this member is NULL, the dialog box does not preserve user-defined filter patterns.
If this member is not NULL, the value of the nMaxCustFilter member must specify the size, in
bytes (ANSI version) or characters (Unicode version), of the lpstrCustomFilter buffer.

nMaxCustFilter

Specifies the size, in bytes or characters, of the buffer identified by lpstrCustomFilter. This
buffer should be at least 40 characters long. This member is ignored if lpstrCustomFilter is
NULL or points to a NULL string.

nFilterIndex

Specifies the index of the currently selected filter in the File Types control. The buffer pointed
to by lpstrFilter contains pairs of strings that define the filters. The first pair of strings has an
index value of 1, the second pair 2, and so on. An index of zero indicates the custom filter
specified by lpstrCustomFilter. You can specify an index on input to indicate the initial filter
description and filter pattern for the dialog box. When the user selects a file, nFilterIndex
returns the index of the currently displayed filter.
If nFilterIndex is zero and lpstrCustomFilter is NULL, the system uses the first filter in the
lpstrFilter buffer. If all three members are zero or NULL, the system does not use any filters
and does not show any files in the file list control of the dialog box.

lpstrFile

Pointer to a buffer that contains a filename used to initialize the File Name edit control. The
first character of this buffer must be NULL if initialization is not necessary. When the
GetOpenFileName or GetSaveFileName function returns successfully, this buffer contains
the drive designator, path, filename, and extension of the selected file.
If the OFN_ALLOWMULTISELECT flag is set and the user selects multiple files, the buffer
contains the current directory followed by the filenames of the selected files. For Explorer-
style dialog boxes, the directory and filename strings are NULL separated, with an extra NULL
character after the last filename. For old-style dialog boxes, the strings are space separated
and the function uses short filenames for filenames with spaces. You can use the
FindFirstFile function to convert between long and short filenames.
If the buffer is too small, the function returns FALSE and the CommDlgExtendedError
function returns FNERR_BUFFERTOOSMALL. In this case, the first two bytes of the lpstrFile
buffer contain the required size, in bytes or characters.

nMaxFile

Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the buffer
pointed to by lpstrFile. The GetOpenFileName and GetSaveFileName functions return
FALSE if the buffer is too small to contain the file information. The buffer should be at least
256 characters long.

lpstrFileTitle

Pointer to a buffer that receives the filename and extension (without path information) of the
selected file. This member can be NULL.

nMaxFileTitle

Specifies the size, in bytes (ANSI version) or characters (Unicode version), of the buffer
pointed to by lpstrFileTitle. This member is ignored if lpstrFileTitle is NULL.

lpstrInitialDir

Pointer to a string that specifies the initial file directory. If this member is NULL, the system
uses the current directory as the initial directory.

lpstrTitle

Pointer to a string to be placed in the title bar of the dialog box. If this member is NULL, the
system uses the default title (that is, "Save As" or "Open").

Flags

A set of bit flags you can use to initialize the dialog box. When the dialog box returns, it sets
these flags to indicate the user's input. This member can be a combination of the following
flags:
Flag Meaning
OFN_ALLOWMULTISELECT

Specifies that the File Name list box allows multiple
selections. If you also set the OFN_EXPLORER flag, the
dialog box uses the Explorer-style user interface;
otherwise, it uses the old-style user interface.
If the user selects more than one file, the lpstrFile buffer
returns the path to the current directory followed by the
filenames of the selected files. The nFileOffset member
is the offset to the first filename, and the nFileExtension
member is not used. For Explorer-style dialog boxes, the
directory and filename strings are NULL separated, with
an extra NULL character after the last filename. This
format enables the Explorer-style dialogs to return long
filenames that include spaces. For old-style dialog boxes,
the directory and filename strings are separated by
spaces and the function uses short filenames for
filenames with spaces. You can use the FindFirstFile
function to convert between long and short filenames.
If you specify a custom template for an old-style dialog
box, the definition of the File Name list box must contain
the LBS_EXTENDEDSEL value.

OFN_CREATEPROMPT
If the user specifies a file that does not exist,
this flag causes the dialog box to prompt the
user for permission to create the file. If the
user chooses to create the file, the dialog box
closes and the function returns the specified
name; otherwise, the dialog box remains
open.

OFN_ENABLEHOOK
Enables the hook function specified in the
lpfnHook member.

OFN_ENABLETEMPLATE

Indicates that the lpTemplateName member
points to the name of a dialog template resource
in the module identified by the hInstance
member.
If the OFN_EXPLORER flag is set, the system
uses the specified template to create a dialog box
that is a child of the default Explorer-style dialog
box. If the OFN_EXPLORER flag is not set, the
system uses the template to create an old-style
dialog box that replaces the default dialog box.

OFN_ENABLETEMPLATEHANDLE
Indicates that the hInstance member identifies
a data block that contains a preloaded dialog box
template. The system ignores the
lpTemplateName if this flag is specified.
If the OFN_EXPLORER flag is set, the system
uses the specified template to create a dialog box
that is a child of the default Explorer-style dialog
box. If the OFN_EXPLORER flag is not set, the
system uses the template to create an old-style
dialog box that replaces the default dialog box.

OFN_EXPLORER
Indicates that any customizations made to the
Open or Save As dialog box use the new
Explorer-style customization methods. For
more information, see the "Explorer-Style
Hook Procedures" and "Explorer-Style Custom
Templates" sections of the Common Dialog Box
Library overview.
By default, the Open and Save As dialog boxes
use the Explorer-style user interface regardless of
whether this flag is set. This flag is necessary only
if you provide a hook procedure or custom
template, or set the OFN_ALLOWMULTISELECT
flag.
If you want the old-style user interface, omit the
OFN_EXPLORER flag and provide a replacement
old-style template or hook procedure. If you want
the old style but do not need a custom template
or hook procedure, simply provide a hook
procedure that always returns FALSE.

OFN_EXTENSIONDIFFERENT
Specifies that the user typed a filename
extension that differs from the extension
specified by lpstrDefExt. The function does not
use this flag if lpstrDefExt is NULL.

OFN_FILEMUSTEXIST
Specifies that the user can type only names of
existing files in the File Name entry field. If
this flag is specified and the user enters an
invalid name, the dialog box procedure
displays a warning in a message box. If this
flag is specified, the OFN_PATHMUSTEXIST
flag is also used.

OFN_HIDEREADONLY
Hides the Read Only check box.

OFN_LONGNAMES
For old-style dialog boxes, this flag causes
the dialog box to use long filenames. If this
flag is not specified, or if the
OFN_ALLOWMULTISELECT flag is also set,

old-style dialog boxes use short filenames (8.
3 format) for filenames with spaces.
Explorer-style dialog boxes ignore this flag
and always display long filenames.

OFN_NOCHANGEDIR
Restores the current directory to its original
value if the user changed the directory while
searching for files.

OFN_NODEREFERENCELINKS
Directs the dialog box to return the path and
filename of the selected shortcut (.LNK) file. If
this value is not given, the dialog box returns
the path and filename of the file referenced by
the shortcut

OFN_NOLONGNAMES
For old-style dialog boxes, this flag causes
the dialog box to use short filenames (8.3
format).
Explorer-style dialog boxes ignore this flag
and always display long filenames.

OFN_NONETWORKBUTTON
Hides and disables the Network button.

OFN_NOREADONLYRETURN
Specifies that the returned file does not have
the Read Only check box checked and is not
in a write-protected directory.

OFN_NOTESTFILECREATE
Specifies that the file is not created before the
dialog box is closed. This flag should be
specified if the application saves the file on a
create-nonmodify network sharepoint. When
an application specifies this flag, the library
does not check for write protection, a full disk,
an open drive door, or network protection.
Applications using this flag must perform file
operations carefully, because a file cannot be
reopened once it is closed.

OFN_NOVALIDATE
Specifies that the common dialog boxes allow
invalid characters in the returned filename.
Typically, the calling application uses a hook
procedure that checks the filename by using
the FILEOKSTRING message. If the text box in
the edit control is empty or contains nothing
but spaces, the lists of files and directories
are updated. If the text box in the edit control
contains anything else, nFileOffset and
nFileExtension are set to values generated by
parsing the text. No default extension is added to
the text, nor is text copied to the buffer specified
by lpstrFileTitle.
If the value specified by nFileOffset is less than
zero, the filename is invalid. Otherwise, the
filename is valid, and nFileExtension and
nFileOffset can be used as if the
OFN_NOVALIDATE flag had not been specified.

OFN_OVERWRITEPROMPT
Causes the Save As dialog box to generate a
message box if the selected file already
exists. The user must confirm whether to

overwrite the file.
OFN_PATHMUSTEXIST

Specifies that the user can type only valid
paths and filenames. If this flag is used and
the user types an invalid path and filename in
the File Name entry field, the dialog box
function displays a warning in a message box.

OFN_READONLY
Causes the Read Only check box to be
checked initially when the dialog box is
created. This flag indicates the state of the
Read Only check box when the dialog box is
closed.

OFN_SHAREAWARE
Specifies that if a call to the OpenFile function
fails because of a network sharing violation, the
error is ignored and the dialog box returns the
selected filename.
If this flag is not set, the dialog box notifies your
hook procedure when a network sharing violation
occurs for the filename specified by the user. If
you set the OFN_EXPLORER flag, the dialog box
sends the CDN_SHAREVIOLATION message to
the hook procedure. If you do not set
OFN_EXPLORER, the dialog box sends the
SHAREVISTRING registered message to the
hook procedure.

OFN_SHOWHELP
Causes the dialog box to display the Help
button. The hwndOwner member must specify
the window to receive the HELPMSGSTRING
registered messages that the dialog box sends
when the user clicks the Help button.
An Explorer-style dialog box sends a CDN_HELP
notification message to your hook procedure
when the user clicks the Help button.

nFileOffset

Specifies a zero-based offset from the beginning of the path to the filename in the string
pointed to by lpstrFile. For example, if lpstrFile points to the following string, "c:\dir1\dir2\file.
ext", this member contains the value 13 to indicate the offset of the "file.ext" string.

nFileExtension

Specifies a zero-based offset from the beginning of the path to the filename extension in the
string pointed to by lpstrFile. For example, if lpstrFile points to the following string, "c:\dir1\
dir2\file.ext", this member contains the value 18. If the user did not type an extension and
lpstrDefExt is NULL, this member specifies an offset to the terminating null character. If the
user typed "." as the last character in the filename, this member specifies zero.

lpstrDefExt

Points to a buffer that contains the default extension. GetOpenFileName and
GetSaveFileName append this extension to the filename if the user fails to type an extension.
This string can be any length, but only the first three characters are appended. The string
should not contain a period (.). If this member is NULL and the user fails to type an extension,
no extension is appended.

lCustData

Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnHook member. When the system sends the WM_INITDIALOG message to the hook
procedure, the message's lParam parameter is a pointer to the OPENFILENAME structure

specified when the dialog box was created. The hook procedure can use this pointer to get
the lCustData value.

lpfnHook

Pointer to a hook procedure. This member is ignored unless the Flags member includes the
OFN_ENABLEHOOK flag.
If the OFN_EXPLORER flag is not set in the Flags member, lpfnHook is a pointer to an
OFNHookProcOldStyle hook procedure that receives messages intended for the dialog box.
The hook procedure returns FALSE to pass a message to the default dialog box procedure or
TRUE to discard the message.
If OFN_EXPLORER is set, lpfnHook is a pointer to an OFNHookProc hook procedure. The
hook procedure receives notification messages sent from the dialog box. The hook procedure
also receives messages for any additional controls that you defined by specifying a child
dialog template. The hook procedure does not receive messages intended for the standard
controls of the default dialog box.

lpTemplateName

Pointer to a null-terminated string that names a dialog template resource in the module
identified by the hInstance member. For numbered dialog box resources, this can be a value
returned by the MAKEINTRESOURCE macro. This member is ignored unless the
OFN_ENABLETEMPLATE flag is set in the Flags member.
If the OFN_EXPLORER flag is set, the system uses the specified template to create a dialog
box that is a child of the default Explorer-style dialog box. If the OFN_EXPLORER flag is not
set, the system uses the template to create an old-style dialog box that replaces the default
dialog box.See AlsoGetOpenFileName, GetSaveFileName

OSVERSIONINFO
The OSVERSIONINFO data structure contains operating system version information. The
information includes major and minor version numbers, a build number, a platform identifier, and
descriptive text about the operating system. This structure is used with the GetVersionEx
function.typedef struct _OSVERSIONINFO{

DWORD dwOSVersionInfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformId;
TCHAR szCSDVersion[128];

} OSVERSIONINFO;
MembersdwOSVersionInfoSize

Specifies the size, in bytes, of this data structure. Set this member to
sizeof(OSVERSIONINFO) before calling the GetVersionEx function.

dwMajorVersion

Identifies the major version number of the operating system. For example, for Windows NT
version 3.51, the major version number is 3; and for Windows NT version 4.0, the major
version number is 4.

dwMinorVersion

Identifies the minor version number of the operating system. For example, for Windows NT
version 3.51, the minor version number is 51; and for Windows NT version 4.0, the minor
version number is 0.

dwBuildNumber

Windows NT: Identifies the build number of the operating system.
Windows 95: Identifies the build number of the operating system in the low-order word. The
high-order word contains the major and minor version numbers.

dwPlatformId

Identifies the operating system platform. This member can be one of the following values:
Value Platform
VER_PLATFORM_WIN32s Win32s on Windows 3.1.
VER_PLATFORM_WIN32_WINDOWS Win32 on Windows 95.
VER_PLATFORM_WIN32_NT Win32 on Windows NT.

szCSDVersion

Windows NT: Contains a null-terminated string, such as "Service Pack 3", that indicates the
latest Service Pack installed on the system. If no Service Pack has been installed, the string is
empty.
Windows 95: Contains a null-terminated string that provides arbitrary additional information
about the operating system.See AlsoGetVersionEx

OUTLINETEXTMETRIC
The OUTLINETEXTMETRIC structure contains metrics describing a TrueType font.typedef struct _OUTLINETEXTMETRIC { // otm

UINT otmSize;
TEXTMETRIC otmTextMetrics;
BYTE otmFiller;
PANOSE otmPanoseNumber;
UINT otmfsSelection;
UINT otmfsType;
int otmsCharSlopeRise;
int otmsCharSlopeRun;
int otmItalicAngle;
UINT otmEMSquare;
int otmAscent;
int otmDescent;
UINT otmLineGap;
UINT otmsCapEmHeight;
UINT otmsXHeight;
RECT otmrcFontBox;
int otmMacAscent;
int otmMacDescent;
UINT otmMacLineGap;
UINT otmusMinimumPPEM;
POINT otmptSubscriptSize;
POINT otmptSubscriptOffset;
POINT otmptSuperscriptSize;
POINT otmptSuperscriptOffset;
UINT otmsStrikeoutSize;
int otmsStrikeoutPosition;
int otmsUnderscoreSize;
int otmsUnderscorePosition;
PSTR otmpFamilyName;
PSTR otmpFaceName;
PSTR otmpStyleName;
PSTR otmpFullName;

} OUTLINETEXTMETRIC;
MembersotmSize

Specifies the size, in bytes, of the OUTLINETEXTMETRIC structure.
otmTextMetrics

Specifies a TEXTMETRIC structure containing further information about the font.
otmFiller

Specifies a value that causes the structure to be byte aligned.
otmPanoseNumber

Specifies the PANOSE number for this font.
otmfsSelection

Specifies the nature of the font pattern. This member can be a combination of the following
bits:

Bit Meaning
0 Italic
1 Underscore
2 Negative
3 Outline
4 Strikeout
5 Bold

otmfsType
Specifies whether the font is licensed. Licensed fonts must not be modified or exchanged. If
bit 1 is set, the font may not be embedded in a document. If bit 1 is clear, the font can be
embedded. If bit 2 is set, the embedding is read-only.

otmsCharSlopeRise
Specifies the slope of the cursor. This value is 1 if the slope is vertical. Applications can use
this value and the value of the otmsCharSlopeRun member to create an italic cursor that has
the same slope as the main italic angle (specified by the otmItalicAngle member).

otmsCharSlopeRun
Specifies the slope of the cursor. This value is zero if the slope is vertical. Applications can
use this value and the value of the otmsCharSlopeRise member to create an italic cursor
that has the same slope as the main italic angle (specified by the otmItalicAngle member).

otmItalicAngle
Specifies the main italic angle of the font, in tenths of a degree counterclockwise from vertical.
Regular (roman) fonts have a value of zero. Italic fonts typically have a negative italic angle
(that is, they lean to the right).

otmEMSquare
Specifies the number of logical units defining the x- or y-dimension of the em square for this
font. (The number of units in the x- and y-directions are always the same for an em square.)

otmAscent
Specifies the maximum distance characters in this font extend above the base line. This is the
typographic ascent for the font.

otmDescent
Specifies the maximum distance characters in this font extend below the base line. This is the
typographic descent for the font.

otmLineGap
Specifies typographic line spacing.

otmsCapEmHeight
Not supported.

otmsXHeight
Not supported.

otmrcFontBox
Specifies the bounding box for the font.

otmMacAscent
Specifies the maximum distance characters in this font extend above the base line for the
Macintosh® computer.

otmMacDescent
Specifies the maximum distance characters in this font extend below the base line for the
Macintosh® computer.

otmMacLineGap
Specifies line-spacing information for the Macintosh® computer.

otmusMinimumPPEM
Specifies the smallest recommended size for this font, in pixels per em-square.

otmptSubscriptSize
Specifies the recommended horizontal and vertical size for subscripts in this font.

otmptSubscriptOffset
Specifies the recommended horizontal and vertical offset for subscripts in this font. The
subscript offset is measured from the character origin to the origin of the subscript character.

otmptSuperscriptSize
Specifies the recommended horizontal and vertical size for superscripts in this font.

otmptSuperscriptOffset
Specifies the recommended horizontal and vertical offset for superscripts in this font. The
superscript offset is measured from the character base line to the base line of the superscript
character.

otmsStrikeoutSize
Specifies the width of the strikeout stroke for this font. Typically, this is the width of the em
dash for the font.

otmsStrikeoutPosition
Specifies the position of the strikeout stroke relative to the base line for this font. Positive
values are above the base line and negative values are below.

otmsUnderscoreSize
Specifies the thickness of the underscore character for this font.

otmsUnderscorePosition
Specifies the position of the underscore character for this font.

otmpFamilyName
Specifies the offset from the beginning of the structure to a string specifying the family name
for the font.

otmpFaceName
Specifies the offset from the beginning of the structure to a string specifying the typeface
name for the font. (This typeface name corresponds to the name specified in the LOGFONT
structure.)

otmpStyleName
Specifies the offset from the beginning of the structure to a string specifying the style name for
the font.

otmpFullName
Specifies the offset from the beginning of the structure to a string specifying the full name for
the font. This name is unique for the font and often contains a version number or other
identifying information.

RemarksThe sizes returned in OUTLINETEXTMETRIC are given in logical units; that is, they depend on
the current mapping mode of the specified display context.See AlsoGetOutlineTextMetrics, LOGFONT, TEXTMETRIC

OUTPUT_DEBUG_STRING_INFO
The OUTPUT_DEBUG_STRING_INFO structure contains the address, format, and length, in
bytes, of a debugging string.typedef struct _OUTPUT_DEBUG_STRING_INFO { // odsi

LPSTR lpDebugStringData;
WORD fUnicode;
WORD nDebugStringLength;

} OUTPUT_DEBUG_STRING_INFO;
MemberslpDebugStringData

Points to the address of the debugging string in the calling process's address space. The
debugger can use the ReadProcessMemory function to retrieve the value of the string.

fUnicode
Specifies the format of the debugging string. If this member is zero, the debugging string is 8-
bit ASCII; if it is nonzero, the string is 16-bit Unicode™.

nDebugStringLength
Specifies the length, in bytes, of the debugging string. The length includes the string's
terminating null character.

See AlsoDEBUG_EVENT, ReadProcessMemory

OVERLAPPED
The OVERLAPPED structure contains information used in asynchronous input and output (I/O).typedef struct _OVERLAPPED { // o

DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

} OVERLAPPED;
MembersInternal

Reserved for operating system use. This member, which specifies a system-dependent
status, is valid when the GetOverlappedResult function returns without setting the extended
error information to ERROR_IO_PENDING.

InternalHigh
Reserved for operating system use. This member, which specifies the length of the data
transferred, is valid when the GetOverlappedResult function returns TRUE.

Offset
Specifies a file position at which to start the transfer. The file position is a byte offset from the
start of the file. The calling process sets this member before calling the ReadFile or WriteFile
function. This member is ignored when reading from or writing to named pipes and
communications devices.

OffsetHigh
Specifies the high word of the byte offset at which to start the transfer. This member is ignored
when reading from or writing to named pipes and communications devices.

hEvent
Identifies an event set to the signaled state when the transfer has been completed. The calling
process sets this member before calling the ReadFile, WriteFile, ConnectNamedPipe, or
TransactNamedPipe function.

RemarksYou can use the HasOverlappedIoCompleted macro to determine whether an asynchronous I/O
operation has completed. You can use the CancelIo function to cancel an asynchronous I/O
operation.See AlsoCancelIo, ConnectNamedPipe, CreateFile, GetOverlappedResult,
HasOverlappedIoCompleted, ReadFile, ReadFileEx, TransactNamedPipe, WriteFile,
WriteFileEx

PAGESETUPDLG
The PAGESETUPDLG structure contains information the PageSetupDlg function uses to
initialize the Page Setup common dialog box. After the user closes the dialog box, the system
returns information about the user-defined page parameters in this structure.typedef struct tagPSD { // psd

DWORD lStructSize;
HWND hwndOwner;
HGLOBAL hDevMode;
HGLOBAL hDevNames;
DWORD Flags;
POINT ptPaperSize;
RECT rtMinMargin;
RECT rtMargin;
HINSTANCE hInstance;
LPARAMlCustData;
LPPAGESETUPHOOK lpfnPageSetupHook;
LPPAGEPAINTHOOK lpfnPagePaintHook;
LPCTSTR lpPageSetupTemplateName;
HGLOBAL hPageSetupTemplate;

} PAGESETUPDLG, * LPPAGESETUPDLG;
MemberslStructSize

Specifies the size, in bytes, of this structure.
hwndOwner

Identifies the window that owns the dialog box. This member can be any valid window handle,
or it can be NULL if the dialog box has no owner.

hDevMode
Handle to a global memory object that contains a DEVMODE structure. On input, if a handle
is given, the values in the corresponding DEVMODE structure are used to initialize the
controls in the dialog box. On output, the dialog box sets hDevMode to a global memory
handle for a DEVMODE structure that contains values specifying the user's selections. If the
user's selections are not available, the dialog box sets hDevMode to NULL.

hDevNames
Handle to a global memory object that contains a DEVNAMES structure. This structure
contains three strings that specify the driver name, the printer name, and the output port
name. On input, if a handle is given, the strings in the corresponding DEVNAMES structure
are used to initialize controls in the dialog box. On output, the dialog box sets hDevNames to
a global memory handle for a DEVNAMES structure that contains strings specifying the
user's selections. If the user's selections are not available, the dialog box sets hDevNames to
NULL.

Flags
A set of bit flags that you can use to initialize the Page Setup common dialog box. When the
dialog box returns, it sets these flags to indicate the user's input. This member can be a
combination of the following flags:

PSD_DEFAULTMINMARGINS
Sets the minimum values that the user can specify for
the page margins to be the minimum margins allowed
by the printer. This is the default. This flag is ignored if
the PSD_MARGINS and PSD_MINMARGINS flags are
also specified.

PSD_DISABLEMARGINS
Disables the margin controls, preventing the user from
setting the margins.

PSD_DISABLEORIENTATION
Disables the orientation controls, preventing the user
from setting the page orientation.

PSD_DISABLEPAGEPAINTING
Prevents the dialog box from drawing the contents of
the sample page. If you enable a PagePaintHook
hook procedure, you can still draw the contents of the
sample page.

PSD_DISABLEPAPER
Disables the paper controls, preventing the user from
setting page parameters such as the paper size and
source.

PSD_DISABLEPRINTER
Disables the Printer button, preventing the user from
invoking a dialog box that contains additional printer
setup information.

PSD_ENABLEPAGEPAINTHOOK
Enables the hook procedure specified in the
lpfnPagePaintHook member.

PSD_ENABLEPAGESETUPHOOK
Enables the hook procedure specified in the
lpfnPageSetupHook member.

PSD_ENABLEPAGESETUPTEMPLATE
Indicates that the hInstance and
lpPageSetupTemplateName members specify a
dialog box template to use in place of the default
template.

PSD_ENABLEPAGESETUPTEMPLATEHANDLE
Indicates that the hPageSetupTemplate member
identifies a data block that contains a preloaded dialog
box template. The system ignores the
lpPageSetupTemplateName member if this flag is
specified.

PSD_INHUNDREDTHSOFMILLIMETERS
Indicates that hundredths of millimeters are the unit of
measurement for margins and paper size. The values
in the rtMargin, rtMinMargin, and ptPaperSize

members are in hundredths of millimeters. You can set
this flag on input to override the default unit of
measurement for the user's locale. When the function
returns, the dialog box sets this flag to indicate the
units used.

PSD_INTHOUSANDTHSOFINCHES
Indicates that thousandths of inches are the unit of
measurement for margins and paper size. The values
in the rtMargin, rtMinMargin, and ptPaperSize
members are in thousandths of inches. You can set
this flag on input to override the default unit of
measurement for the user's locale. When the function
returns, the dialog box sets this flag to indicate the
units used.

PSD_INWININIINTLMEASURE
Not implemented.

PSD_MARGINS
Causes the system to use the values specified in the
rtMargin member as the initial widths for the left, top,
right, and bottom margins. If PSD_MARGINS is not
set, the system sets the initial widths to one inch for all
margins.

PSD_MINMARGINS
Causes the system to use the values specified in the
rtMinMargin member as the minimum allowable
widths for the left, top, right, and bottom margins. The
system prevents the user from entering a width that is
less than the specified minimum. If
PSD_MINMARGINS is not specified, the system sets
the minimum allowable widths to those allowed by the
printer.

PSD_NOWARNING
Prevents the system from displaying a warning
message when there is no default printer.

PSD_RETURNDEFAULT
PageSetupDlg does not display the dialog box.
Instead, it sets the hDevNames and hDevMode
members to handles to DEVMODE and DEVNAMES
structures that are initialized for the system default
printer. PageSetupDlg returns an error if either
hDevNames or hDevMode is not NULL.

PSD_SHOWHELP
Causes the dialog box to display the Help button. The
hwndOwner member must specify the window to
receive the HELPMSGSTRING registered messages
that the dialog box sends when the user clicks the Help
button.

ptPaperSize
Specifies the dimensions of the paper selected by the user. The
PSD_INTHOUSANDTHSOFINCHES or PSD_INHUNDREDTHSOFMILLIMETERS flag
indicates the units of measurement.

rtMinMargin
Specifies the minimum allowable widths for the left, top, right, and bottom margins. The
system ignores this member if the PSD_MINMARGINS flag is not set. These values must be
less than or equal to the values specified in the rtMargin member. The
PSD_INTHOUSANDTHSOFINCHES or PSD_INHUNDREDTHSOFMILLIMETERS flag
indicates the units of measurement.

rtMargin

Specifies the widths of the left, top, right, and bottom margins. If you set the PSD_MARGINS
flag, rtMargin specifies the initial margin values. When PageSetupDlg returns, rtMargin
contains the margin widths selected by the user. The
PSD_INHUNDREDTHSOFMILLIMETERS or PSD_INTHOUSANDTHSOFINCHES flag
indicates the units of measurement.

hInstance
If the PSD_ENABLEPAGESETUPTEMPLATE flag is set in the Flags member, hInstance is
the handle of the application or module instance that contains the dialog box template named
by the lpPageSetupTemplateName member.

lCustData
Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnPageSetupHook member. When the system sends the WM_INITDIALOG message
to the hook procedure, the message's lParam parameter is a pointer to the PAGESETUPDLG
structure specified when the dialog was created. The hook procedure can use this pointer to
get the lCustData value.

lpfnPageSetupHook
Pointer to a PageSetupHook hook procedure that can process messages intended for the
dialog box. This member is ignored unless the PSD_ENABLEPAGESETUPHOOK flag is set
in the Flags member.

lpfnPagePaintHook
Pointer to a PagePaintHook hook procedure that receives WM_PSD_* messages from the
dialog box whenever the sample page is redrawn. By processing the messages, the hook
procedure can customize the appearance of the sample page. This member is ignored unless
the PSD_ENABLEPAGEPAINTHOOK flag is set in the Flags member.

lpPageSetupTemplateName
Pointer to a null-terminated string that names the dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard dialog box
template. For numbered dialog box resources, lpPageSetupTemplateName can be a value
returned by the MAKEINTRESOURCE macro. This member is ignored unless the
PSD_ENABLEPAGESETUPTEMPLATE flag is set in the Flags member.

hPageSetupTemplate
If the PSD_ENABLEPAGESETUPTEMPLATEHANDLE flag is set in the Flags member,
hPageSetupTemplate is the handle of a memory object containing a dialog box template.

RemarksIf the PSD_INHUNDREDTHSOFMILLIMETERS and PSD_INTHOUSANDTHSOFINCHES flags
are not specified, the system queries the LOCALE_IMEASURE value of the default user locale to
determine the unit of measure (either hundredths of millimeters or thousandths of inches) for the
margin widths and paper size.

If both hDevNames and hDevMode have valid handles and the printer name specified by the
wDeviceOffset member of the DEVNAMES structure is not the same as the name specified by
the dmDeviceName member of the DEVMODE structure, the system uses the name specified by
wDeviceOffset by default.See AlsoDEVMODE, DEVNAMES, MAKEINTRESOURCE, PagePaintHook, PageSetupDlg,
PageSetupHook, WM_INITDIALOG

PAINTSTRUCT
The PAINTSTRUCT structure contains information for an application. This information can be
used to paint the client area of a window owned by that application.typedef struct tagPAINTSTRUCT { // ps

HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT;
Membershdc

Identifies the display DC to be used for painting.
fErase

Specifies whether the background must be erased. This value is nonzero if the application
should erase the background. The application is responsible for erasing the background if a
window class is created without a background brush. For more information, see the
description of the hbrBackground member of the WNDCLASS structure.

rcPaint
Specifies a RECT structure that specifies the upper left and lower right corners of the
rectangle in which the painting is requested.

fRestore
Reserved; used internally by Windows.

fIncUpdate
Reserved; used internally by Windows.

rgbReserved
Reserved; used internally by Windows.

See AlsoBeginPaint, RECT, WNDCLASS

PALETTEENTRY
The PALETTEENTRY structure specifies the color and usage of an entry in a logical color palette.
A logical palette is defined by a LOGPALETTE structure.typedef struct tagPALETTEENTRY { // pe

BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTEENTRY;
MemberspeRed

Specifies a red intensity value for the palette entry.
peGreen

Specifies a green intensity value for the palette entry.
peBlue

Specifies a blue intensity value for the palette entry.
peFlags

Specifies how the palette entry is to be used. The peFlags member may be set to NULL or
one of the following values:

Value Meaning
PC_EXPLICIT Specifies that the low-order word of the logical

palette entry designates a hardware palette
index. This flag allows the application to show
the contents of the display device palette.

PC_NOCOLLAPSE Specifies that the color be placed in an unused
entry in the system palette instead of being
matched to an existing color in the system
palette. If there are no unused entries in the
system palette, the color is matched normally.
Once this color is in the system palette, colors
in other logical palettes can be matched to this
color.

PC_RESERVED Specifies that the logical palette entry be used
for palette animation. This flag prevents other
windows from matching colors to the palette
entry since the color frequently changes. If an
unused system-palette entry is available, the
color is placed in that entry. Otherwise, the
color is not available for animation.

See AlsoLOGPALETTE

PANOSE
The PANOSE structure describes the PANOSE font-classification values for a TrueType font.
These characteristics are then used to associate the font with other fonts of similar appearance
but different names.typedef struct tagPANOSE { // pnse

BYTE bFamilyType;
BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;
BYTE bXHeight;

} PANOSE
MembersbFamilyType

For Latin fonts, bFamilyType can have one of the following values:
Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_FAMILY_TEXT_DISPLAY Text and display
PAN_FAMILY_SCRIPT Script
PAN_FAMILY_DECORATIVE Decorative
PAN_FAMILY_PICTORIAL Pictorial

bSerifStyle
Specifies the serif style. For Latin fonts, bSerifStyle can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_SERIF_COVE Cove
PAN_SERIF_OBTUSE_COVE Obtuse cove
PAN_SERIF_SQUARE_COVE Square cove
PAN_SERIF_OBTUSE_SQUARE_COVEObtuse square cove
PAN_SERIF_SQUARE Square
PAN_SERIF_THIN Thin
PAN_SERIF_BONE Bone
PAN_SERIF_EXAGGERATED Exaggerated
PAN_SERIF_TRIANGLE Triangle
PAN_SERIF_NORMAL_SANS Normal sans serif
PAN_SERIF_OBTUSE_SANS Obtuse sans serif
PAN_SERIF_PERP_SANS Perp sans serif
PAN_SERIF_FLARED Flared
PAN_SERIF_ROUNDED Rounded

bWeight
For Latin fonts, bWeight can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_WEIGHT_VERY_LIGHT Very light
PAN_WEIGHT_LIGHT Light
PAN_WEIGHT_THIN Thin
PAN_WEIGHT_BOOK Book
PAN_WEIGHT_MEDIUM Medium
PAN_WEIGHT_DEMI Demibold
PAN_WEIGHT_BOLD Bold
PAN_WEIGHT_HEAVY Heavy
PAN_WEIGHT_BLACK Black
PAN_WEIGHT_NORD Nord

bProportion
For Latin fonts, bProportion can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_PROP_OLD_STYLE Old style
PAN_PROP_MODERN Modern
PAN_PROP_EVEN_WIDTH Even width
PAN_PROP_EXPANDED Expanded
PAN_PROP_CONDENSED Condensed
PAN_PROP_VERY_EXPANDED Very expanded
PAN_PROP_VERY_CONDENSEDVery condensed
PAN_PROP_MONOSPACED Monospaced

bContrast
For Latin fonts, bContrast can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_CONTRAST_NONE None
PAN_CONTRAST_VERY_LOW Very low
PAN_CONTRAST_LOW Low
PAN_CONTRAST_MEDIUM_LOW Medium low
PAN_CONTRAST_MEDIUM Medium
PAN_CONTRAST_MEDIUM_HIGH Medium high
PAN_CONTRAST_HIGH High
PAN_CONTRAST_VERY_HIGH Very high

bStrokeVariation
For Latin fonts, bStrokeVariation can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_STROKE_GRADUAL_DIAG Gradual/diagonal
PAN_STROKE_GRADUAL_TRAN Gradual/transitional
PAN_STROKE_GRADUAL_VERT Gradual/vertical
PAN_STROKE_GRADUAL_HORZ Gradual/horizontal
PAN_STROKE_RAPID_VERT Rapid/vertical
PAN_STROKE_RAPID_HORZ Rapid/horizontal
PAN_STROKE_INSTANT_VERT Instant/vertical

bArmStyle
For Latin fonts, bArmStyle can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_STRAIGHT_ARMS_HORZ Straight arms/horizontal
PAN_STRAIGHT_ARMS_WEDGE Straight arms/wedge
PAN_STRAIGHT_ARMS_VERT Straight arms/vertical
PAN_STRAIGHT_ARMS_SINGLE_SERIFStraight arms/single-serif
PAN_STRAIGHT_ARMS_DOUBLE_SERIFStraight arms/double-serif
PAN_BENT_ARMS_HORZ Nonstraight arms/

horizontal
PAN_BENT_ARMS_WEDGE Nonstraight arms/wedge
PAN_BENT_ARMS_VERT Nonstraight arms/vertical
PAN_BENT_ARMS_SINGLE_SERIF Nonstraight arms/single-

serif
PAN_BENT_ARMS_DOUBLE_SERIF Nonstraight arms/double-

serif

bLetterform
For Latin fonts, bLetterform can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_LETT_NORMAL_CONTACT Normal/contact
PAN_LETT_NORMAL_WEIGHTED Normal/weighted

PAN_LETT_NORMAL_BOXED Normal/boxed
PAN_LETT_NORMAL_FLATTENED Normal/flattened
PAN_LETT_NORMAL_ROUNDED Normal/rounded
PAN_LETT_NORMAL_OFF_CENTERNormal/off center
PAN_LETT_NORMAL_SQUARE Normal/square
PAN_LETT_OBLIQUE_CONTACT Oblique/contact
PAN_LETT_OBLIQUE_WEIGHTED Oblique/weighted
PAN_LETT_OBLIQUE_BOXED Oblique/boxed
PAN_LETT_OBLIQUE_FLATTENED Oblique/flattened
PAN_LETT_OBLIQUE_ROUNDED Oblique/rounded
PAN_LETT_OBLIQUE_OFF_CENTEROblique/off center
PAN_LETT_OBLIQUE_SQUARE Oblique/square

bMidline
For Latin fonts, bMidline can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_MIDLINE_STANDARD_TRIMMED Standard/trimmed
PAN_MIDLINE_STANDARD_POINTED Standard/pointed
PAN_MIDLINE_STANDARD_SERIFED Standard/serifed
PAN_MIDLINE_HIGH_TRIMMED High/trimmed
PAN_MIDLINE_HIGH_POINTED High/pointed
PAN_MIDLINE_HIGH_SERIFED High/serifed
PAN_MIDLINE_CONSTANT_TRIMMED Constant/trimmed
PAN_MIDLINE_CONSTANT_POINTED Constant/pointed
PAN_MIDLINE_CONSTANT_SERIFED Constant/serifed
PAN_MIDLINE_LOW_TRIMMED Low/trimmed
PAN_MIDLINE_LOW_POINTED Low/pointed
PAN_MIDLINE_LOW_SERIFED Low/serifed

bXHeight
For Latin fonts, bXHeight can have one of the following values:

Value Meaning
PAN_ANY Any
PAN_NO_FIT No fit
PAN_XHEIGHT_CONSTANT_SMALL Constant/small
PAN_XHEIGHT_CONSTANT_STD Constant/standard
PAN_XHEIGHT_CONSTANT_LARGE Constant/large
PAN_XHEIGHT_DUCKING_SMALL Ducking/small
PAN_XHEIGHT_DUCKING_STD Ducking/standard
PAN_XHEIGHT_DUCKING_LARGE Ducking/large

PARAFORMAT
The PARAFORMAT structure contains information about paragraph formatting attributes in a rich
edit control. This structure is used with the EM_GETPARAFORMAT and EM_SETPARAFORMAT
messages.typedef struct _paraformat {

UINT cbSize;
_WPAD _wPad1;
DWORD dwMask;
WORD wNumbering;
WORD wReserved;
LONG dxStartIndent;
LONG dxRightIndent;
LONG dxOffset;
WORD wAlignment;
SHORT cTabCount;
LONG rgxTabs[MAX_TAB_STOPS];

} PARAFORMAT;
MemberscbSize

Size in bytes of this structure. Must be filled before passing to the rich edit control.
dwMask

Members containing valid information or attributes to set. This parameter can be zero or more
of these values:

Value Meaning
PFM_ALIGNMENT The wAlignment member is valid.
PFM_NUMBERING The wNumbering member is valid.
PFM_OFFSET The dxOffset member is valid.
PFM_OFFSETINDENT The dxStartIndent member is valid and

specifies a relative value.
PFM_RIGHTINDENT The dxRightIndent member is valid.
PFM_STARTINDENT The dxStartIndent member is valid.
PFM_TABSTOPS The cTabStobs and rgxTabStops

members are valid.

If both PFM_STARTINDENT and PFM_OFFSETINDENT are specified,
PFM_STARTINDENT takes precedence.

wNumbering
Value specifying numbering options. This member can be zero or PFN_BULLET.

dxStartIndent
Indentation of the first line in the paragraph. If the paragraph formatting is being set and
PFM_OFFSETINDENT is specified, this member is treated as a relative value that is added to
the starting indentation of each affected paragraph.

dxRightIndent
Size of the right indentation, relative to the right margin.

dxOffset
Indentation of the second line and subsequent lines, relative to the starting indentation. The
first line is indented if this member is negative, or outdented is this member is positive.

wAlignment
Value specifying the paragraph alignment. This member can be one of the following values:

Value Meaning
PFA_LEFT Paragraphs are aligned with the left margin.
PFA_RIGHT Paragraphs are aligned with the right margin.
PFA_CENTER Paragraphs are centered.

cTabCount
Number of tab stops.

rgxTabs
Array of absolute tab stop positions.

See AlsoEM_GETPARAFORMAT, EM_SETPARAFORMAT

PARTITION_INFORMATION
The PARTITION_INFORMATION structure provides information about a disk partition.typedef struct _PARTITION_INFORMATION {

LARGE_INTEGER StartingOffset;
LARGE_INTEGER PartitionLength;
DWORD HiddenSectors;
DWORD PartitionNumber;
BYTE PartitionType;
BOOLEAN BootIndicator;
BOOLEAN RecognizedPartition;
BOOLEAN RewritePartition;

} PARTITION_INFORMATION, *PPARTITION_INFORMATION;
MembersStartingOffset

Specifies the starting offset of the partition.
PartitionLength

Specifies the length of the partition.
HiddenSectors

Specifies the number of hidden sectors in the partition.
PartitionNumber

Specifies the number of the partition (1-based).
PartitionType

Specifies the type of partition.
This member can be one of the
following values: Value

Meaning

PARTITION_ENTRY_UNUSED Entry unused.
PARTITION_FAT_12 Specifies a partition with 12-bit FAT

entries.
PARTITION_XENIX_1 Specifies a Xenix type 1 partition.
PARTITION_XENIX_2 Specifies a Xenix type 2 partition.
PARTITION_FAT_16 Specifies a partition with 16-bit FAT

entries.
PARTITION_EXTENDED Specifies an extended partition

entry.
PARTITION_HUGE Specifies an MS-DOS V4 huge

partition.
PARTITION_IFS Specifies an IFS partition.
PARTITION_PREP Specifies a PowerPC Reference

Platform partition.
PARTITION_UNIX Specifies a UNIX partition.
VALID_NTFT Specifies an NTFT partition.
PARTITION_XINT13 Specifies a Windows 95 partition

that uses extended int13 services.
PARTITION_XINT13_EXTENDEDSame as PARTITION_EXTENDED,

but uses extended int13 services.

BootIndicator
Specifies whether the partition is bootable.

RecognizedPartition
Specifies whether the partition is recognized.

RewritePartition
Specifies whether the partition information has changed. When you change a partition (with
IOCTL_DISK_SET_DRIVE_LAYOUT), the system uses this member to determine which
partitions have changed and need their information rewritten.

RemarksThe DeviceIoControl function receives a PARTITION_INFORMATION structure in response to
an IOCTL_DISK_GET_PARTITION_INFO or IOCTL_DISK_GET_DRIVE_LAYOUT device input
and output control (IOCTL) operation. The DeviceIoControl function uses a
PARTITION_INFORMATION structure as input to an IOCTL_DISK_SET_DRIVE_LAYOUT
device IOCTL operation.See AlsoDeviceIoControl, IOCTL_DISK_GET_DRIVE_LAYOUT, IOCTL_DISK_GET_PARTITION_INFO,
IOCTL_DISK_SET_DRIVE_LAYOUT

POINT
The POINT structure defines the x- and y- coordinates of a point.typedef struct tagPOINT { // pt

LONG x;
LONG y;

} POINT;
Membersx

Specifies the x-coordinate of the point.
y

Specifies the y-coordinate of the point.
See AlsoChildWindowFromPoint, GetBrushOrgEx, PtInRect, SetBrushOrgEx, WindowFromPoint

POINTFX
The POINTFX structure contains the coordinates of points that describe the outline of a character
in a TrueType font.typedef struct tagPOINTFX { // ptfx

FIXED x;
FIXED y;

} POINTFX;
Membersx

Specifies the x-component of a point on the outline of a TrueType character.
y

Specifies the y-component of a point on the outline of a TrueType character.
RemarksThe POINTFX structure is a member of the TTPOLYCURVE and TTPOLYGONHEADER

structures. Values in the POINTFX structure are specified in device units.See AlsoFIXED, TTPOLYCURVE, TTPOLYGONHEADER

POINTL
The POINTL structure contains the coordinates of a point.typedef struct _POINTL { // ptl

LONG x;
LONG y;

} POINTL;
Membersx

Specifies the horizontal (x) coordinate of the point.
y

Specifies the vertical (y) coordinate of the point.

POINTS
The POINTS structure defines the coordinates of a point.typedef struct tagPOINTS { // pts

SHORT x;
SHORT y;

} POINTS;
Membersx

Specifies the x-coordinate of the point.
y

Specifies the y-coordinate of the point.
See AlsoChildWindowFromPoint, PtInRect, WindowFromPoint, POINT

POLYTEXT
The POLYTEXT structure describes how the PolyTextOut function should draw a string of text.typedef struct _POLYTEXT { // ptxt

intx;
inty;
UINT n;
LPCTSTR lpstr;
UINT uiFlags;
RECT rcl;
int*pdx;

} POLYTEXT;
Membersx

Specifies the horizontal reference point for the string. The string is aligned to this point using
the current text-alignment mode.

y
Specifies the vertical reference point for the string. The string is aligned to this point using the
current text-alignment mode.

n
Specifies the number of characters in the string.

uiFlags
Specifies whether the string is to be opaque or clipped and whether the string is accompanied
by an array of character-width values. This member can be one or more of the following
values:

Value Meaning
ETO_OPAQUE The rectangles given for each string is to be

opaqued with the current background color.
ETO_CLIPPED Each string is to be clipped to its given

rectangle.

lpstr
Points to a string of text to be drawn by the PolyTextOut function.

rcl
Specifies a rectangle structure that contains the dimensions of the opaquing or clipping
rectangle. This member is ignored if neither of the ETO_OPAQUE nor the ETO_CLIPPED
value is specified for the uiFlags member.

pdx
Specifies in an array the width value for each character in the string.

See AlsoPolyTextOut

PopupMenuItem
The PopupMenuItem structure contains information about the menu items in a menu resource
that open a menu or a submenu.struct PopupMenuItem {

DWORD type;
DWORD state;
DWORD id;
WORD resInfo;
szOrOrd menuText;

};
Memberstype

Specifies a set of type flags that you can use to describe the menu item. Some of the values
this member can have include:

Value Meaning
MF_END The menu item is the last on the menu;

the flag is used internally by the system.
MF_POPUP The menu item opens a menu or a

submenu; the flag is used internally by the
system.

If you specify MF_POPUP, it indicates that the menu item is one that opens a menu or a
submenu.
In addition to the values MF_END and MF_POPUP, this member can also be a
combination of the type values listed with the dwType member of the MENUITEMINFO
structure. The type values are those that begin with MFT_. To use these predefined MFT_*
type values, include the following statement in your .RC file:
#include "WINUSER.H"

state
Specifies a set of state flags that you can use to describe the menu item. This member can be
a combination of the state values listed with the dwState member of the MENUITEMINFO
structure. The state values are those that begin with MFS_. To use these predefined MFS_*
state values, include the following statement in your .RC file:
#include "WINUSER.H"

id
A numeric expression that identifies the menu item that is passed in the WM_COMMAND
message.

resInfo
A set of bit flags that specify the type of menu item. This member can be one of the following
values.

Value Meaning
MFR_END The menu item is the last in this submenu

or menu resource; this flag is used
internally by the system.

MFR_POPUP The menu item opens a menu or a
submenu; the flag is used internally by the
system.

menuText
Specifies a null-terminated Unicode string that contains the text for this menu item. There is
no fixed limit on the size of this string.

RemarksThere is one PopupMenuItem structure for each menu item that opens a menu or a submenu.
Identify this type of menu item by setting the type member to MF_POPUP and by setting the
MFR_POPUP bit in the resInfo member to 0x0001. In this case, the final data written to the
RT_MENU resource for the menu or submenu is the MENUHELPID structure. MENUHELPID
contains a numeric expression that identifies the menu during WM_HELP processing.

Additionally, every PopupMenuItem structure that has the MFR_POPUP bit set in the resInfo
member will be followed by a MENUHELPID structure plus an additional number of
PopupMenuItem structures, one for each menu item in that submenu. The last PopupMenuItem
structure in the submenu will have the MFR_END bit set in the resInfo member. To find the end
of the resource, look for a matching MFR_END for every MFR_POPUP plus one additional
MFR_END that matches the outermost set of menu items.

Indicate the last menu item by setting the type member to MF_END. Because you can nest
submenus, there can be multiple levels of MF_END. In these instances, the menu items are
sequential.See AlsoMenuHeader, MENUHELPID, MENUITEMINFO, NormalMenuItem

PORT_INFO_1
The PORT_INFO_1 structure identifies a supported printer port.typedef struct _PORT_INFO_1 { // pi1

LPTSTR pName;
} PORT_INFO_1;
MemberspName

Points to a null-terminated string that identifies a supported printer port (for example, "LPT1:")
.

See AlsoEnumPorts

PORT_INFO_2
[Now Supported on Windows NT]

The PORT_INFO_2 structure identifies a supported printer port.typedef struct _PORT_INFO_2 { // pi2
LPSTR pPortName;
LPSTR pMonitorName
LPSTR pDescription;
DWORD fPortType;
DWORD Reserved;

} PORT_INFO_2;
MemberspPortName

Points to a null-terminated string that identifies a supported printer port (for example, "LPT1:")
.

pMonitorName
Points to a null-terminated string that identifies an installed monitor (for example, "PJL
monitor").

pDescription
Points to a null-terminated string that describes the port in more detail (for example, if
pPortName is "LPT1:", pDescription is "printer port").

fPortType
Identifies the type of port. Can be one of these values:

PORT_TYPE_WRITE
PORT_TYPE_READ
PORT_TYPE_REDIRECTED
PORT_TYPE_NET_ATTACHED

Reserved
Reserved; must be zero.

RemarksUse the PORT_INFO_2 structure when calling EnumPorts if there are multiple monitors installed
that support the same ports.See AlsoEnumPorts

PORT_INFO_3
[New - Windows NT]

The PORT_INFO_3 structure specifies the status value of a printer port.typedef struct _PORT_INFO_3 { // pi3
DWORD dwStatus;
LPTSTR pszStatus;
DWORD dwSeverity;

} PORT_INFO_3;
MembersdwStatus

Specifies the new port status value. This value is used only if the pszStatus member is NULL.
This member can be one of the following values:

Value Meaning
0 Clears the printer port status.
PORT_STATUS_OFFLINE The port's printer is offline.
PORT_STATUS_PAPER_JAM The port's printer has a paper jam.
PORT_STATUS_PAPER_OUT The port's printer is out of paper.
PORT_STATUS_OUTPUT_BIN_FULL The port's printer's output bin is full.
PORT_STATUS_PAPER_PROBLEM The port's printer has a paper

problem.
PORT_STATUS_NO_TONER The port's printer is out of toner.
PORT_STATUS_DOOR_OPEN The door of the port's printer is open.
PORT_STATUS_OUT_OF_MEMORY The port's printer is out of memory.
PORT_STATUS_TONER_LOW The port's printer is low on toner.
PORT_STATUS_WARMING_UP The port's printer is warming up.
PORT_STATUS_POWER_SAVE The port's printer is in a power-

conservation mode.

pzStatus
Pointer to a new printer port status value string to set. Use this member if there is no suitable
status value among those listed for dwStatus.

dwSeverity
Specifies the severity of the port status value.
This member can be one of the following values:

Value Meaning
PORT_STATUS_TYPE_ERROR The port status value indicates an

error.
PORT_STATUS_TYPE_WARNING The port status value is a warning.
PORT_STATUS_TYPE_INFORMATIONAL The port status value is informational.

RemarksWhen you set a printer port status value with the severity value
PORT_STATUS_TYPE_ERROR, the print spooler stops sending jobs to the port. The print
spooler does not resume sending jobs to the port until another SetPort call is made to clear
the status.See AlsoSetPort

PREVENT_MEDIA_REMOVAL
The PREVENT_MEDIA_REMOVAL structure provides removable media locking data.typedef struct _PREVENT_MEDIA_REMOVAL{

BOOLEAN PreventMediaRemoval;
} PREVENT_MEDIA_REMOVAL ;
MembersPreventMediaRemoval

Specifies whether the media is to be locked (if TRUE) or not (if FALSE).
RemarksThe DeviceIoControl function uses a PREVENT_MEDIA_REMOVAL structure as input to an

IOCTL_DISK_MEDIA_REMOVAL device input and output operation.See AlsoDeviceIoControl, IOCTL_DISK_MEDIA_REMOVAL

PRINT_OTHER_INFO
The PRINT_OTHER_INFO structure contains information about the print job.typedef struct _PRINT_OTHER_INFO {

DWORD alrtpr_jobid;
DWORD alrtpr_status;
DWORD alrtpr_submitted;
DWORD alrtpr_size;

}PRINT_OTHER_INFO, *PPRINT_OTHER_INFO, *LPPRINT_OTHER_INFO;
Membersalrtpr_jobid

Specifies the identification number of the print job.
alrtpr_status

Specifies the status of the print job.
alrtpr_submitted

Specifies the time at which the print job was submitted. This value is stored as the number of
seconds elapsed since 00:00:00, January 1, 1970.

alrtpr_size
Specifies the size, in bytes, of the print job.

See AlsoNetAlertRaise

PRINTDLG
The PRINTDLG structure contains information that the PrintDlg function uses to initialize the Print
common dialog box. After the user closes the dialog box, the system returns information about the
user-defined print selections in this structure.typedef struct tagPD { // pd

DWORDlStructSize;
HWND hwndOwner;
HANDLE hDevMode;
HANDLE hDevNames;
HDC hDC;
DWORDFlags;
WORD nFromPage;
WORD nToPage;
WORD nMinPage;
WORD nMaxPage;
WORD nCopies;
HINSTANCE hInstance;
DWORDlCustData;
LPPRINTHOOKPROC lpfnPrintHook;
LPSETUPHOOKPROC lpfnSetupHook;
LPCTSTR lpPrintTemplateName;
LPCTSTR lpSetupTemplateName;
HANDLE hPrintTemplate;
HANDLE hSetupTemplate;

} PRINTDLG;
MemberslStructSize

Specifies the structure size, in bytes.
hwndOwner

Identifies the window that owns the dialog box. This member can be any valid window handle,
or it can be NULL if the dialog box has no owner.

hDevMode
Identifies a movable global memory object that contains a DEVMODE structure. Before a call
to the PrintDlg function, the structure members may contain data used to initialize the dialog
controls. When PrintDlg returns, the structure members specify the state of the dialog box
controls.
If you use the structure to initialize the dialog box controls, you must allocate space for and
create the DEVMODE structure. (You should allocate a movable block of memory.)
If you do not use the structure to initialize the dialog box controls, hDevMode may be NULL.
In this case, PrintDlg allocates memory for the structure, initializes its members, and returns a
handle that identifies it.
If the device driver for the specified printer does not support extended device modes,
hDevMode is NULL when PrintDlg returns.
If the device name (specified by the dmDeviceName member of the DEVMODE structure)
does not appear in the [devices] section of WIN.INI, PrintDlg returns an error.
Because this structure is a movable global memory object, the value of hDevMode may
change during the execution of PrintDlg.
For a discussion of how the system resolves a possible data collision between values
specified by the hDevMode and hDevNames members, see the following Remarks section.

hDevNames
Identifies a movable global memory object that contains a DEVNAMES structure. This
structure contains three strings that specify the driver name, the printer name, and the output
port name. Before the call to PrintDlg, the structure members contain strings used to initialize
dialog box controls. When PrintDlg returns, the structure members contain the strings typed
by the user. The calling application uses these strings to create a device context or an
information context.
If you use the structure to initialize the dialog box controls, you must allocate space for and
create the DEVNAMES structure. (You should allocate a movable block of global memory.)
If you do not use the structure to initialize the dialog box controls, hDevNames may be NULL.
In this case, PrintDlg allocates memory for the structure, initializes its members (by using the
printer name specified in the DEVMODE structure), and returns a handle that identifies it.
PrintDlg uses the first port name that appears in the [devices] section of WIN.INI when it
initializes the members in the DEVNAMES structure. For example, the function uses "LPT1:"
as the port name if the following string appears in the [devices] section:PCL / HP LaserJet=HPPCL,LPT1:,LPT2:If both hDevMode and hDevNames are NULL, PrintDlg initializes hDevNames using the
current default printer.
Because this structure is a movable global memory object, the value of hDevNames may
change during the execution of PrintDlg.
For a discussion of how the system resolves a possible data collision between values
specified by hDevNames and hDevMode, see the Remarks section later in this topic.

hDC
Identifies a device context or an information context, depending on whether the Flags
member specifies the PD_RETURNDC or PC_RETURNIC flag. If neither flag is specified, the
value of this member is undefined. If both flags are specified, PD_RETURNDC has priority.

Flags
A set of bit flags that you can use to initialize the Print common dialog box. When the dialog
box returns, it sets these flags to indicate the user's input. This member can be a combination
of the following flags:

PD_ALLPAGES
The default flag that indicates that the All radio
button is initially selected. This flag is used as a
placeholder to indicate that the PD_PAGENUMS
and PD_SELECTION flags are not specified.

PD_COLLATE
Places a checkmark in the Collate check box
when set on input. When the PrintDlg function
returns, this flag indicates that the user selected
the Collate option and the printer driver does not
support collation. In this case, the application
must provide collation. If PrintDlg sets the
PD_COLLATE flag on return, the dmCollate
member of the DEVMODE structure is undefined.

PD_DISABLEPRINTTOFILE
Disables the Print to File check box.

PD_ENABLEPRINTHOOK
Enables the hook procedure specified in the
lpfnPrintHook member. This enables the hook
procedure for the Print dialog box.

PD_ENABLEPRINTTEMPLATE
Indicates that the hInstance and
lpPrintTemplateName members specify a dialog

box template to use in place of the default
template for the Print dialog box.

PD_ENABLEPRINTTEMPLATEHANDLE
Indicates that the hPrintTemplate member
identifies a data block that contains a preloaded
dialog box template. The system uses this
template in place of the default template for the
Print dialog box. The system ignores the
lpPrintTemplateName member if this flag is
specified.

PD_ENABLESETUPHOOK
Enables the hook procedure specified in the
lpfnSetupHook member. This enables the hook
procedure for the Print Setup dialog box.

PD_ENABLESETUPTEMPLATE
Indicates that the hInstance and
lpSetupTemplateName members specify a
dialog box template to use in place of the default
template for the Print Setup dialog box.

PD_ENABLESETUPTEMPLATEHANDLE
Indicates that the hSetupTemplate member
identifies a data block that contains a preloaded
dialog box template. The system uses this
template in place of the default template for the
Print Setup dialog box. The system ignores the
lpSetupTemplateName member if this flag is
specified.

PD_HIDEPRINTTOFILE
Hides the Print to File check box.

PD_NOPAGENUMS
Disables the Pages radio button and the
associated edit controls.

PD_NOSELECTION
Disables the Selection radio button.

PD_NOWARNING
Prevents the warning message from being
displayed when there is no default printer.

PD_PAGENUMS
Causes the Pages radio button to be in the
selected state when the dialog box is created.
When PrintDlg returns, this flag is set if the
Pages radio button is in the selected state.

PD_PRINTSETUP
Causes the system to display the Print Setup
dialog box rather than the Print dialog box.

PD_PRINTTOFILE
Causes the Print to File check box to be checked
when the dialog box is created.
When PrintDlg returns, this flag is set if the check
box is checked. In this case, the offset indicated
by the wOutputOffset member of the
DEVNAMES structure contains the string "FILE:
". When you call the StartDoc function to start the
printing operation, specify this "FILE:" string in the
lpszOutput member of the DOCINFO structure.
Specifying this string causes the print subsystem
to query the user for the name of the output file.

PD_RETURNDC
Causes PrintDlg to return a device context

matching the selections the user made in the
dialog box. The device context is returned in
hDC.

PD_RETURNDEFAULT
The PrintDlg function does not display the dialog
box. Instead, it sets the hDevNames and
hDevMode members to handles to DEVMODE
and DEVNAMES structures that are initialized for
the system default printer. Both hDevNames or
hDevMode must be NULL, or PrintDlg returns an
error. If the system default printer is supported by
an old printer driver (earlier than Windows version
3.0), only hDevNames is returned; hDevMode is
NULL.

PD_RETURNIC
Similar to the PD_RETURNDC flag, except that
this flag returns an information context rather than
a device context. If neither PD_RETURNDC nor
PD_RETURNIC is specified, hDC is undefined on
output.

PD_SELECTION
Causes the Selection radio button to be in the
selected state when the dialog box is created.
When PrintDlg returns, this flag is specified if the
Selection radio button is selected. If neither
PD_PAGENUMS nor PD_SELECTION is set, the
All radio button is selected.

PD_SHOWHELP
Causes the dialog box to display the Help button.
The hwndOwner member must specify the
window to receive the HELPMSGSTRING
registered messages that the dialog box sends
when the user clicks the Help button.

PD_USEDEVMODECOPIES
Same as
PD_USEDEVMODECOPIESANDCOLLATE

PD_USEDEVMODECOPIESANDCOLLATE
Disables the Copies edit control if the printer
driver does not support multiple copies, and
disables the Collate checkbox if the printer driver
does not support collation. If this flag is not
specified, PrintDlg stores the user selections for
the Copies and Collate options in the dmCopies
and dmCollate members of the DEVMODE
structure.
If this flag isn't set, the copies and collate
information is returned in the DEVMODE
structure if the driver supports multiple copies and
collation. If the driver doesn't support multiple
copies and collation, the information is returned in
the PRINTDLG structure. This means that an
application only has to look at nCopies and
PD_COLLATE to determine how many copies it
needs to render and whether it needs to print
them collated.

nFromPage
Specifies the initial value for the starting page edit control. When the PrintDlg function
returns, nFromPage specifies the starting page specified by the user. This value is valid only
if the PD_PAGENUMS flag is specified.

nToPage

Specifies the initial value for the ending page edit control. When the PrintDlg function returns,
nToPage specifies the ending page specified by the user. This value is valid only if the
PD_PAGENUMS flag is specified.

nMinPage
Specifies the minimum value for the range of pages specified in the From and To page edit
controls.

nMaxPage
Specifies the maximum value for the range of pages specified in the From and To page edit
controls.

nCopies
Contains the initial number of copies for the Copies edit control if hDevMode is NULL;
otherwise, the dmCopies member of the DEVMODE structure contains the initial value. When
PrintDlg returns, this member contains the actual number of copies to print. If the printer
driver does not support multiple copies, this value may be greater than one and the
application must print all requested copies. If the PD_USEDEVMODECOPIESANDCOLLATE
value is set in the Flags member, nCopies is always set to 1 on return and the dmCopies
member in the DEVMODE receives the actual number of copies to print.

hInstance
If the PD_ENABLEPRINTTEMPLATE or PD_ENABLESETUPTEMPLATE flag is set in the
Flags member, hInstance is the handle of the application or module instance that contains
the dialog box template named by the lpPrintTemplateName or lpSetupTemplateName
member.

lCustData
Specifies application-defined data that the system passes to the hook procedure identified by
the lpfnPrintHook or lpfnSetupHook member. When the system sends the
WM_INITDIALOG message to the hook procedure, the message's lParam parameter is a
pointer to the PRINTDLG structure specified when the dialog was created. The hook
procedure can use this pointer to get the lCustData value.

lpfnPrintHook
Pointer to a PrintHookProc hook procedure that can process messages intended for the Print
dialog box. This member is ignored unless the PD_ENABLEPRINTHOOK flag is set in the
Flags member.

lpfnSetupHook
Pointer to a SetupHookProc hook procedure that can process messages intended for the
Print Setup dialog box. This member is ignored unless the PD_ENABLESETUPHOOK flag is
set in the Flags member.

lpPrintTemplateName
Pointer to a null-terminated string that names a dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard Print dialog
box template. This member is ignored unless the PD_ENABLEPRINTTEMPLATE flag is set in
the Flags member.

lpSetupTemplateName
Pointer to a null-terminated string that names a dialog box template resource in the module
identified by the hInstance member. This template is substituted for the standard Print Setup
dialog box template. This member is ignored unless the PD_ENABLESETUPTEMPLATE flag
is set in the Flags member.

hPrintTemplate
If the PD_ENABLEPRINTTEMPLATEHANDLE flag is set in the Flags member,
hPrintTemplate is the handle of a memory object containing a dialog box template. This
template is substituted for the standard Print dialog box template.

hSetupTemplate
If the PD_ENABLESETUPTEMPLATEHANDLE flag is set in the Flags member,
hSetupTemplate is the handle of a memory object containing a dialog box template. This
template is substituted for the standard Print Setup dialog box template.

RemarksThere might be data collision between the values specified by hDevNames and hDevMode
because the wDeviceOffset member of the DEVNAMES structure is supposed to be identical to
the dmDeviceName member of the DEVMODE structure. If it is not, the system resolves the data
collision by using the value of wDeviceOffset.

If the user checks the Collate check box in the common Print dialog box, but the printer driver
does not support collation, the Flags member of the PRINTDLG structure returned by PrintDlg
includes the PD_COLLATE flag. In addition, the dmCollate member of the DEVMODE structure

identified by the hDevMode member is set to COLLATE_TRUE. If the PD_COLLATE flag is set,
the application must simulate collation.

If the PD_USEDEVMODECOPIESANDCOLLATE flag is set, the Collate check box is grayed out if
the printer driver does not support collation. This ensures that the user can only select one copy,
and nCopies will be one. If the driver does support multiple copies, dmCopies will contain the
number of copies, and nCopies will be one.

On entry to PrintDlg, the nCopies member of the PRINTDLG structure specifies the number of
copies if PD_USEDEVMODECOPIESANDCOLLATE is not set. On exit from PrintDlg, nCopies
contains the number of copies if the printer driver does not support multiple copies. Otherwise it is
set to one. If nCopies is greater than one on exit from PrintDlg, the application must print multiple
copies of the document.See AlsoCreateDC, CreateIC, PrintDlg, DEVMODE, DEVNAMES, WM_INITDIALOG

PRINTER_DEFAULTS
The PRINTER_DEFAULTS structure specifies the default data type, environment, initialization
data, and access rights for a printer.typedef struct _PRINTER_DEFAULTS { // pd

LPTSTR pDatatype;
LPDEVMODE pDevMode;
ACCESS_MASK DesiredAccess;

} PRINTER_DEFAULTS;
MemberspDatatype

Points to a null-terminated string that specifies the default data type for a printer.
pDevMode

Points to a DEVMODE structure that identifies the default environment and initialization data
for a printer.

DesiredAccess
Specifies desired access rights for a printer. The OpenPrinter function uses this member to
set access rights to the printer. These rights can affect the operation of the SetPrinter and
DeletePrinter functions.
This member can be set to PRINTER_ACCESS_ADMINISTER, PRINTER_ACCESS_USE, or
any generic security value (for example, WRITE_DACL). If an application wishes to open a
printer to perform administrative tasks, such as the SetPrinter function, it must open the
printer with PRINTER_ACCESS_ADMINISTER access.

See AlsoDeletePrinter, DEVMODE, OpenPrinter, SetPrinter

PRINTER_INFO_1
The PRINTER_INFO_1 structure specifies general printer information.typedef struct _PRINTER_INFO_1 { // pri1

DWORD Flags;
LPTSTR pDescription;
LPTSTR pName;
LPTSTR pComment;

} PRINTER_INFO_1;
MembersFlags

Specifies information about the returned data. Following are the values for this member
Value Meaning
PRINTER_ENUM_EXPAND A print provider can set this flag as

a hint to a calling application to
enumerate this object further if
default expansion is enabled. For
example, when domains are
enumerated, a print provider might
indicate the user's domain by
setting this flag.

PRINTER_ENUM_CONTAINERIf this flag is set, the printer object
may contain enumerable objects.
For example, the object may be a
print server that contains printers.

PRINTER_ENUM_ICON1 Indicates that, where appropriate,
an application should display an
icon identifying the object as a top-
level network name, such as
Microsoft Windows Network.

PRINTER_ENUM_ICON2 Indicates that, where appropriate,
an application should display an
icon that identifies the object as a
network domain.

PRINTER_ENUM_ICON3 Indicates that, where appropriate,
an application should display an
icon that identifies the object as a
print server.

PRINTER_ENUM_ICON4 Reserved for future use.
PRINTER_ENUM_ICON5 Reserved for future use.
PRINTER_ENUM_ICON6 Reserved for future use.
PRINTER_ENUM_ICON7 Reserved for future use.
PRINTER_ENUM_ICON8 Indicates that, where appropriate,

an application should display an
icon that identifies the object as a
printer.

pDescription
Windows NT: Points to a null-terminated string that describes the contents of the structure.
Windows 95: Points to a null-terminated string that describes the printer. The string contains
the pPrinterName, pDriverName, and pComment members of the PRINTER_INFO_2
structure concatenated and separated by commas.

pName
Windows NT: Points to a null-terminated string that names the contents of the structure.
Windows 95: Points to a null-terminated string that specifies the name of the printer.

pComment
Windows NT: Points to a null-terminated string that contains additional data describing the
structure.
Windows 95: Points to a null-terminated string that provides a brief description of the printer.

See AlsoGetPrinter, EnumPrinters, PRINTER_INFO_2, PRINTER_INFO_3, PRINTER_INFO_4

PRINTER_INFO_2
The PRINTER_INFO_2 structure specifies detailed printer information.typedef struct _PRINTER_INFO_2 { // pri2

LPTSTR pServerName;
LPTSTR pPrinterName;
LPTSTR pShareName;
LPTSTR pPortName;
LPTSTR pDriverName;
LPTSTR pComment;
LPTSTR pLocation;
LPDEVMODE pDevMode;
LPTSTR pSepFile;
LPTSTR pPrintProcessor;
LPTSTR pDatatype;
LPTSTR pParameters;
PSECURITY_DESCRIPTOR pSecurityDescriptor;
DWORDAttributes;
DWORDPriority;
DWORDDefaultPriority;
DWORDStartTime;
DWORDUntilTime;
DWORDStatus;
DWORDcJobs;
DWORDAveragePPM;

} PRINTER_INFO_2;
MemberspServerName

Points to a null-terminated string identifying the server that controls the printer. If this string is
NULL, the printer is controlled locally.

pPrinterName

Points to a null-terminated string that specifies the name of the printer.
pShareName

Points to a null-terminated string that identifies the sharepoint for the printer. (This string is
used only if the PRINTER_ATTRIBUTE_SHARED constant was set for the Attributes
member.)

pPortName

Points to a null-terminated string that identifies the port(s) used to transmit data to the printer.
If a printer is connected to more than one port, the names of each port must be separated by
commas (for example, "LPT1:,LPT2:,LPT3:").

pDriverName

Points to a null-terminated string that specifies the name of the printer driver.
pComment

Points to a null-terminated string that provides a brief description of the printer.
pLocation

Points to a null-terminated string that specifies the physical location of the printer (for
example, "Bldg. 38, Room 1164").

pDevMode

Points to a DEVMODE structure that defines default printer data such as the paper orientation
and the resolution.

pSepFile

Points to a null-terminated string that specifies the name of the file used to create the
separator page. This page is used to separate print jobs sent to the printer.

pPrintProcessor

Points to a null-terminated string that specifies the name of the print processor used by the
printer.

pDatatype

Points to a null-terminated string that specifies the data type used to record the print job.
pParameters

Points to a null-terminated string that specifies the default print-processor parameters.
pSecurityDescriptor

Points to a SECURITY_DESCRIPTOR structure for the printer. This member may be NULL.
Attributes

Specifies the printer attributes. This member can be one of the following values:
PRINTER_ATTRIBUTE_DEFAULT
PRINTER_ATTRIBUTE_DIRECT
PRINTER_ATTRIBUTE_DO_COMPLETE_FIRST
PRINTER_ATTRIBUTE_ENABLE_BIDI (Windows 95 only)
PRINTER_ATTRIBUTE_ENABLE_DEVQ
PRINTER_ATTRIBUTE_KEEPPRINTEDJOBS
PRINTER_ATTRIBUTE_QUEUED
PRINTER_ATTRIBUTE_SHARED
PRINTER_ATTRIBUTE_WORK_OFFLINE (Windows 95 only)

Priority

Specifies a priority value that the spooler uses to route print jobs.
DefaultPriority

Specifies the default priority value assigned to each print job.
StartTime

Specifies the earliest time at which the printer will print a job. This value is expressed as
minutes elapsed since 12:00 A.M. GMT (Greenwich Mean Time).

UntilTime

Specifies the latest time at which the printer will print a job. This value is expressed as
minutes elapsed since 12:00 A.M. GMT (Greenwich Mean Time).

Status

Specifies the printer status. This member can be one of the following values:
Windows NT:

PRINTER_STATUS_PAUSED
PRINTER_STATUS_PENDING_DELETION

Windows 95:
PRINTER_STATUS_BUSY

PRINTER_STATUS_DOOR_OPEN
PRINTER_STATUS_ERROR
PRINTER_STATUS_INITIALIZING
PRINTER_STATUS_IO_ACTIVE
PRINTER_STATUS_MANUAL_FEED
PRINTER_STATUS_NO_TONER
PRINTER_STATUS_NOT_AVAILABLE
PRINTER_STATUS_OFFLINE
PRINTER_STATUS_OUT_OF_MEMORY
PRINTER_STATUS_OUTPUT_BIN_FULL
PRINTER_STATUS_PAGE_PUNT
PRINTER_STATUS_PAPER_JAM
PRINTER_STATUS_PAPER_OUT
PRINTER_STATUS_PAPER_PROBLEM
PRINTER_STATUS_PAUSED
PRINTER_STATUS_PENDING_DELETION
PRINTER_STATUS_PRINTING
PRINTER_STATUS_PROCESSING
PRINTER_STATUS_TONER_LOW
PRINTER_STATUS_UNAVAILABLE
PRINTER_STATUS_USER_INTERVENTION
PRINTER_STATUS_WAITING
PRINTER_STATUS_WARMING_UP

cJobs

Specifies the number of print jobs that have been queued for the printer.
AveragePPM

Specifies the average number of pages per minute that have been printed on the printer.RemarksWindows 95: The PRINTER_STATUS_PAGE_PUNT value specifies that the page is being
"punted" (that is, not printed) because it is too complex for the printer to print.See AlsoDEVMODE, EnumPrinters, PRINTER_INFO_1, PRINTER_INFO_3, PRINTER_INFO_4,
SECURITY_DESCRIPTOR

PRINTER_INFO_3
The PRINTER_INFO_3 structure specifies printer security information.typedef struct _PRINTER_INFO_3 { // pri3

PSECURITY_DESCRIPTOR pSecurityDescriptor;
} PRINTER_INFO_3;
MemberspSecurityDescriptor

Points to a SECURITY_DESCRIPTOR structure that specifies a printer's security information.RemarksThe PRINTER_INFO_3 structure lets an application get and set a printer's security descriptor. The
caller may do so even if it lacks specific printer permissions, as long as it has the standard rights
described in SetPrinter and GetPrinter. Thus, an application may temporarily deny all access to
a printer, while allowing the owner of the printer to have access to the printer's discretionary ACL.See AlsoSetPrinter, GetPrinter, PRINTER_INFO_1, PRINTER_INFO_2, PRINTER_INFO_4,
SECURITY_DESCRIPTOR

PRINTER_INFO_4
The PRINTER_INFO_4 structure specifies general printer information.

The structure can be used to retrieve minimal printer information on a call to EnumPrinters. Such
a call is a fast and easy way to retrieve the names and attributes of all locally installed printers on
a system and all remote printer connections that a user has established.typedef struct _PRINTER_INFO_4 { // pri4

LPTSTR pPrinterName;
LPTSTR pServerName;
DWORD Attributes;

} PRINTER_INFO_4;
MemberspPrinterName

Points to a null-terminated string that specifies the name of the printer (local or remote).
pServerName

Points to a null-terminated string that is the name of the server.
Attributes

Specifies information about the returned data.
Value Meaning
PRINTER_ATTRIBUTE_LOCAL The printer is a local printer.
PRINTER_ATTRIBUTE_NETWORKThe printer is a remote printer.

RemarksThe PRINTER_INFO_4 structure provides an easy and extremely fast way to retrieve the names
of the printers installed on a local machine, as well as the remote connections that a user has
established. When EnumPrinters is called with a PRINTER_INFO_4 data structure, that function
queries the registry for the specified information, then returns immediately. This differs from the
behavior of EnumPrinters when called with other levels of PRINTER_INFO_xxx data structures.
In particular, when EnumPrinters is called with a level 2 (PRINTER_INFO_2) data structure, it
performs an OpenPrinter call on each remote connection. If a remote connection is down, if the
remote server no longer exists, or if the remote printer no longer exists, the function must wait for
RPC to time out and consequently fail the OpenPrinter call. This can take a while. Passing a
PRINTER_INFO_4 structure lets an application retrieve a bare minimium of required information;
if more detailed information is desired, a subsequent EnumPrinter level 2 call can be made.See AlsoGetPrinter, EnumPrinters, OpenPrinter, PRINTER_INFO_1, PRINTER_INFO_2,
PRINTER_INFO_3

PRINTER_INFO_5
[Now Supported on Windows NT]

The PRINTER_INFO_5 structure specifies detailed printer information.typedef struct _PRINTER_INFO_5 { // pri5
LPTSTR pPrinterName;
LPTSTR pPortName;
DWORDAttributes;
DWORDDeviceNotSelectedTimeout;
DWORDTransmissionRetryTimeout;

} PRINTER_INFO_5;
MemberspPrinterName

Pointer to a null-terminated string that specifies the name of the printer.
pPortName

Pointer to a null-terminated string that identifies the port(s) used to transmit data to the printer.
If a printer is connected to more than one port, the names of each port must be separated by
commas (for example, "LPT1:,LPT2:,LPT3:").

Attributes

Specifies the printer attributes. This member can be one of the following values:
PRINTER_ATTRIBUTE_QUEUED
PRINTER_ATTRIBUTE_DIRECT
PRINTER_ATTRIBUTE_DEFAULT
PRINTER_ATTRIBUTE_SHARED
PRINTER_ATTRIBUTE_WORK_OFFLINE

DeviceNotSelectedTimeout

Windows 95: Specifies the maximum time, in milliseconds, allowed to elapse between
attempts to select a device.
Windows NT: This value is not used.

TransmissionRetryTimeout

Windows 95: Specifies the maximum time, in milliseconds, allowed to elapse between
transmission retries.
Windows NT: This value is not used.See AlsoEnumPrinters, GetPrinter, SetPrinter, PRINTER_INFO_1, PRINTER_INFO_2,

PRINTER_INFO_3, PRINTER_INFO_4

PRINTER_INFO_6
[New - Windows NT]

The PRINTER_INFO_6 specifies the status value of a printer.typedef struct _PRINTER_INFO_6 { // pri6
DWORDdwStatus;

} PRINTER_INFO_6;
MembersdwStatus

Specifies the printer status. This member can be one of the following values:
Value Meaning
PRINTER_STATUS_BUSY The printer is busy.
PRINTER_STATUS_DOOR_OPENThe printer door is open.
PRINTER_STATUS_ERROR The printer is in an error state.
PRINTER_STATUS_INITIALIZINGThe printer is initializing.
PRINTER_STATUS_IO_ACTIVE The printer is in an active input/

output state
PRINTER_STATUS_MANUAL_FEEDThe printer is in a manual feed

state.
PRINTER_STATUS_NO_TONER The printer is out of toner.
PRINTER_STATUS_NOT_AVAILABLEThe printer is not available for

printing.
PRINTER_STATUS_OFFLINE The printer is offline.
PRINTER_STATUS_OUT_OF_MEMORYThe printer has run out of

memory.
PRINTER_STATUS_OUTPUT_BIN_FULLThe printer's output bin is full.
PRINTER_STATUS_PAGE_PUNTThe printer cannot print the

current page.
PRINTER_STATUS_PAPER_JAMPaper is jammed in the printer
PRINTER_STATUS_PAPER_OUTThe printer is out of paper.
PRINTER_STATUS_PAPER_PROBLEMThe printer has a paper

problem.
PRINTER_STATUS_PAUSED The printer is paused.
PRINTER_STATUS_PENDING_DELETIONThe printer is deleting a print

job.
PRINTER_STATUS_PRINTING The printer is printing.
PRINTER_STATUS_PROCESSINGThe printer is processing a print

job.
PRINTER_STATUS_TONER_LOWThe printer is low on toner.
PRINTER_STATUS_UNAVAILABLEThe printer is not available for

printing.
PRINTER_STATUS_USER_INTERVENTIONThe user needs to do something

to the printer.
PRINTER_STATUS_WAITING The printer is waiting.
PRINTER_STATUS_WARMING_UPThe printer is warming up.

See AlsoSetPrinter, PRINTER_INFO_1, PRINTER_INFO_2, PRINTER_INFO_3, PRINTER_INFO_4,
PRINTER_INFO_5

PRINTER_NOTIFY_INFO
The PRINTER_NOTIFY_INFO structure contains printer information returned by the
FindNextPrinterChangeNotification function. The function returns this information after a wait
operation on a printer change notification object has been satisfied.typedef struct _PRINTER_NOTIFY_INFO {

DWORD Version;
DWORD Flags;
DWORD Count;
PRINTER_NOTIFY_INFO_DATA aData[1];

} PRINTER_NOTIFY_INFO;
MembersVersion

Specifies the version of this structure. Set this member to 2.
Flags

Contains a bit flag to indicate the state of the notification structure. If the
PRINTER_NOTIFY_INFO_DISCARDED bit is set, it indicates that some notifications had to
be discarded.

Count

Specifies the number of PRINTER_NOTIFY_INFO_DATA elements in the aData array.
aData

An array of PRINTER_NOTIFY_INFO_DATA structures. Each element of the array identifies
a single job or printer information field, and provides the current data for that field.RemarksIf the Flags member has the PRINTER_NOTIFY_INFO_DISCARDED bit set, this indicates that

an overflow or error occured, and notifications may have been lost. In this case, you must call
FindNextPrinterChangeNotification and specify the PRINTER_NOTIFY_OPTIONS_REFRESH
flag to retrieve all current information. Until you request this refresh operation, the system will not
send additional notifications for this change notification object.See AlsoFindNextPrinterChangeNotification, PRINTER_NOTIFY_INFO_DATA

PRINTER_NOTIFY_INFO_DATA
The PRINTER_NOTIFY_INFO_DATA structure identifies a job or printer information field and
provides the current data for that field.

The FindNextPrinterChangeNotification function returns a PRINTER_NOTIFY_INFO structure,
which contains an array of PRINTER_NOTIFY_INFO_DATA structures.typedef struct _PRINTER_NOTIFY_INFO_DATA {

WORD Type;
WORD Field;
DWORD Reserved;
DWORD Id;
union {
DWORD adwData[2];
struct {
DWORD cbBuf;
LPVOID pBuf;
} Data;
} NotifyData;

} PRINTER_NOTIFY_INFO_DATA;
MembersType

Indicates the type of information provided. This member can be one of the following values:
Value Meaning
PRINTER_NOTIFY_TYPEIndicates that the Field member specifies a

PRINTER_NOTIFY_FIELD_* constant.
JOB_NOTIFY_TYPE Indicates that the Field member specifies a

JOB_NOTIFY_FIELD_* constant.

Field

Indicates the field that changed. For a list of possible values, see the following Remarks
section.

Reserved

Reserved.
Id

Indicates the job identifier if the Type member specifies JOB_NOTIFY_TYPE. If the Type
member specfies PRINTER_NOTIFY_TYPE, this member is undefined.

NotifyData

A union of data information based on the Type and Field members. For a description of the
type of data associated with each field, see the following Remarks section.
The NotifyData union can be one of the following members:

Member Meaning
adwData An array of two DWORD values. For information fields

that use only a single DWORD, the data is in
adwData[0]

Data The following members are contained in the Data
structure:

Member Meaning

cbBuf Indicates the size, in bytes, of the buffer
pointed to by pBuf.

pBuf Points to a buffer that contains the field's
current data.

RemarksIf the Type member specifies PRINTER_NOTIFY_TYPE, the Field member can be one of the
following values:

Field Type of data
PRINTER_NOTIFY_FIELD_PRINTER_NAME

pBuf points to a null-terminated string containing the name
of the printer.

PRINTER_NOTIFY_FIELD_SHARE_NAME
pBuf points to a null-terminated string that identifies the
sharepoint for the printer.

PRINTER_NOTIFY_FIELD_DRIVER_NAME
pBuf points to a null-terminated string containing the name
of the printer's driver.

PRINTER_NOTIFY_FIELD_COMMENT
pBuf points to a null-terminated string containing the new
comment string, which is typically a brief description of the
printer.

PRINTER_NOTIFY_FIELD_LOCATION
pBuf points to a null-terminated string containing the new
physical location of the printer (for example, "Bldg. 38,
Room 1164").

PRINTER_NOTIFY_FIELD_DEVMODE
pBuf points to a DEVMODE structure that defines default
printer data such as the paper orientation and the
resolution.

PRINTER_NOTIFY_FIELD_SEPFILE
pBuf points to a null-terminated string that specifies the
name of the file used to create the separator page. This
page is used to separate print jobs sent to the printer.

PRINTER_NOTIFY_FIELD_PRINT_PROCESSOR
pBuf points to a null-terminated string that specifies the
name of the print processor used by the printer.

PRINTER_NOTIFY_FIELD_PARAMETERS
pBuf points to a null-terminated string that specifies the
default print-processor parameters.

PRINTER_NOTIFY_FIELD_DATATYPE
pBuf points to a null-terminated string that specifies the
data type used to record the print job.

PRINTER_NOTIFY_FIELD_SECURITY_DESCRIPTOR
pBuf points to a SECURITY_DESCRIPTOR structure for
the printer. The pointer may be NULL if there is no security
descriptor.

PRINTER_NOTIFY_FIELD_ATTRIBUTES
adwData[0] specifies the printer attributes, which can be
one of the following values:
PRINTER_ATTRIBUTE_QUEUED
PRINTER_ATTRIBUTE_DIRECT
PRINTER_ATTRIBUTE_DEFAULT
PRINTER_ATTRIBUTE_SHARED

PRINTER_NOTIFY_FIELD_PRIORITY
adwData[0] specifies a priority value that the spooler uses
to route print jobs.

PRINTER_NOTIFY_FIELD_DEFAULT_PRIORITY
adwData[0] specifies the default priority value assigned to
each print job.

PRINTER_NOTIFY_FIELD_START_TIME
adwData[0] specifies the earliest time at which the printer
will print a job. (This value is specified in minutes elapsed
since 12:00 A.M.)

PRINTER_NOTIFY_FIELD_UNTIL_TIME
adwData[0] specifies the latest time at which the printer will
print a job. (This value is specified in minutes elapsed since
12:00 A.M.)

PRINTER_NOTIFY_FIELD_STATUS
adwData[0] specifies the printer status. For a list of possible
values, see the PRINTER_INFO_2 structure.

PRINTER_NOTIFY_FIELD_CJOBS
adwData[0] specifies the number of print jobs that have
been queued for the printer.

PRINTER_NOTIFY_FIELD_AVERAGE_PPM
adwData[0] specifies the average number of pages per
minute that have been printed on the printer.

If the Type member specifies JOB_NOTIFY_TYPE, the Field member can be one of the following
values:

Field Type of data
JOB_NOTIFY_FIELD_PRINTER_NAME

pBuf points to a null-terminated string containing the name
of the printer for which the job is spooled.

JOB_NOTIFY_FIELD_MACHINE_NAME

pBuf points to a null-terminated string that specifies the
name of the machine that created the print job.

JOB_NOTIFY_FIELD_PORT_NAME
pBuf points to a null-terminated string that identifies the
port(s) used to transmit data to the printer. If a printer is
connected to more than one port, the names of the ports
are separated by commas (for example, "LPT1:,LPT2:,
LPT3:").

JOB_NOTIFY_FIELD_USER_NAME
pBuf points to a null-terminated string that specifies the
name of the user who sent the print job.

JOB_NOTIFY_FIELD_NOTIFY_NAME
pBuf points to a null-terminated string that specifies the
name of the user who should be notified when the job has
been printed or when an error occurs while printing the job.

JOB_NOTIFY_FIELD_DATATYPE
pBuf points to a null-terminated string that specifies the
type of data used to record the print job.

JOB_NOTIFY_FIELD_PRINT_PROCESSOR
pBuf points to a null-terminated string that specifies the
name of the print processor to be used to print the job.

JOB_NOTIFY_FIELD_PARAMETERS
pBuf points to a null-terminated string that specifies print-
processor parameters.

JOB_NOTIFY_FIELD_DRIVER_NAME
pBuf points to a null-terminated string that specifies the
name of the printer driver that should be used to process
the print job.

JOB_NOTIFY_FIELD_DEVMODE
pBuf points to a DEVMODE structure that contains device-
initialization and environment data for the printer driver.

JOB_NOTIFY_FIELD_STATUS
adwData[0] specifies the job status. For a list of possible
values, see the JOB_INFO_2 structure.

JOB_NOTIFY_FIELD_STATUS_STRING
pBuf points to a null-terminated string that specifies the
status of the print job.

JOB_NOTIFY_FIELD_DOCUMENT
pBuf points to a null-terminated string that specifies the
name of the print job (for example, "MS-WORD: Review.
doc").

JOB_NOTIFY_FIELD_PRIORITY
adwData[0] specifies the job priority.

JOB_NOTIFY_FIELD_POSITION
adwData[0] specifies the job's position in the print queue.

JOB_NOTIFY_FIELD_SUBMITTED
pBuf points to a SYSTEMTIME structure that specifies the
time when the job was submitted.

JOB_NOTIFY_FIELD_START_TIME
adwData[0] specifies the earliest time that the job can be
printed. (This value is specified in minutes elapsed since
12:00 A.M.)

JOB_NOTIFY_FIELD_UNTIL_TIME
adwData[0] specifies the the latest time that the job can be
printed. (This value is specified in minutes elapsed since
12:00 A.M.)

JOB_NOTIFY_FIELD_TIME

adwData[0] specifies the total time, in seconds, that has
elapsed since the job began printing.

JOB_NOTIFY_FIELD_TOTAL_PAGES
adwData[0] specifies the size, in pages, of the job.

JOB_NOTIFY_FIELD_PAGES_PRINTED
adwData[0] specifies the number of pages that have
printed.

JOB_NOTIFY_FIELD_TOTAL_BYTES
adwData[0] specifies the size, in bytes, of the job.

JOB_NOTIFY_FIELD_BYTES_PRINTED
adwData[0] specifies the number of bytes that have been
printed on this job. For this field, the change notification
object is signaled when bytes are sent to the printer.

See AlsoDEVMODE, FindNextPrinterChangeNotification, JOB_INFO_2, PRINTER_INFO_2,
PRINTER_NOTIFY_INFO, SECURITY_DESCRIPTOR, SYSTEMTIME

PRINTER_NOTIFY_OPTIONS
The PRINTER_NOTIFY_OPTIONS structure specifies options for a change notification object that
monitors a printer or print server.typedef struct _PRINTER_NOTIFY_OPTIONS {

DWORD Version;
DWORD Flags;
DWORD Count;
PPRINTER_NOTIFY_OPTIONS_TYPE pTypes;

} PRINTER_NOTIFY_OPTIONS;
MembersVersion

Specifies the version of this structure. Set this member to 2.
Flags

Contains a bit flag. If you set the PRINTER_NOTIFY_OPTIONS_REFRESH flag in a call to
the FindNextPrinterChangeNotification function, the function provides current data for all
monitored printer information fields. The FindFirstPrinterChangeNotification function
ignores the Flags member.

Count

Specifies the number of elements in the pTypes array.
pTypes

Points to an array of PRINTER_NOTIFY_OPTIONS_TYPE structures. Use one element of
this array to specify the printer information fields to monitor, and one element to specify the
job information fields to monitor. You can monitor either printer information, job information, or
both.RemarksUse this structure with the FindFirstPrinterChangeNotification function to specify the set of

printer or job information fields to monitor for change.

Use this structure with the FindNextPrinterChangeNotification function to request the current
data for all monitored printer and job information fields. In this case, the Flags member specifies
the PRINTER_NOTIFY_OPTIONS_REFRESH flag, and the function ignores the other structure
members.See AlsoFindFirstPrinterChangeNotification, FindNextPrinterChangeNotification,
PRINTER_NOTIFY_OPTIONS_TYPE

PRINTER_NOTIFY_OPTIONS_TYPE
The PRINTER_NOTIFY_OPTIONS_TYPE structure specifies the set of printer or job information
fields to be monitored by a printer change notification object.

A call to the FindFirstPrinterChangeNotification function specifies a
PRINTER_NOTIFY_OPTIONS structure, which contains an array of
PRINTER_NOTIFY_OPTIONS_TYPE structures.typedef struct _PRINTER_NOTIFY_OPTIONS_TYPE {

WORD Type;
WORD Reserved0;
DWORD Reserved1;
DWORD Reserved2;
DWORD Count;
PWORD pFields;

} PRINTER_NOTIFY_OPTIONS_TYPE;
MembersType

Specifies the type to watch. This member can be one of the following values:
Value Meaning
PRINTER_NOTIFY_TYPEIndicates that the fields specified in the

pFields array are
PRINTER_NOTIFY_FIELD_* constants.

JOB_NOTIFY_TYPE Indicates that the fields specified in the
pFields array are JOB_NOTIFY_FIELD_*
constants.

Reserved0

Reserved.
Reserved1

Reserved.
Reserved2

Reserved.
Count

Specifies the number of elements in the pFields array.
pFields

Points to an array of 16-bit values. Each element of the array specifies a job or printer
information field of interest. For a list of supported printer and job information fields, see the
PRINTER_NOTIFY_INFO_DATA structure.See AlsoFindFirstPrinterChangeNotification, PRINTER_NOTIFY_INFO_DATA,

PRINTER_NOTIFY_OPTIONS

PRINTPROCESSOR_INFO_1
The PRINTPROCESSOR_INFO_1 structure specifies the name of an installed print processor.typedef struct _PRINTPROCESSOR_INFO_1 { // ppi1

LPTSTR pName;
} PRINTPROCESSOR_INFO_1;
MemberspName

Points to a null-terminated string that specifies the name of an installed print processor.See AlsoEnumPrintProcessors

PRIVILEGE_SET
The PRIVILEGE_SET structure specifies a set of privileges. It is also used to indicate which, if
any, privileges are held by a user or group requesting access to an object.typedef struct _PRIVILEGE_SET { // ps

DWORD PrivilegeCount;
DWORD Control;
LUID_AND_ATTRIBUTES Privilege[ANYSIZE_ARRAY];

} PRIVILEGE_SET;
MembersPrivilegeCount

Specifies the number of privileges in the privilege set.
Control

Specifies a control flag related to the privileges. The PRIVILEGE_SET_ALL_NECESSARY
control flag is currently defined. It indicates that all of the specified privileges must be held by
the process requesting access. If this flag is not set, the presence of any privileges in the
user's access token grants the access.

Privilege

Specifies an array of LUID_AND_ATTRIBUTES structures describing the set's privileges. The
following attributes are defined for privileges:

Attribute Description
SE_PRIVILEGE_ENABLED_BY_DEFAULT

The privilege is enabled by default.
SE_PRIVILEGE_ENABLED

The privilege is enabled.
SE_PRIVILEGE_USED_FOR_ACCESS

The privilege was used to gain access to an
object or service. This flag is used to
identify the relevant privileges in a set
passed by a client application that may
contain unnecessary privileges.

RemarksA privilege is used to control access to an object or service more strictly than is typical with
discretionary access control. A system manager uses privileges to control which users are able to
manipulate system resources. An application uses privileges when it changes a system-wide
resource, such as when it changes the system time or shuts down the system.See AlsoPrivilegeCheck, LUID, LUID_AND_ATTRIBUTES

PROCESS_HEAP_ENTRY
The PROCESS_HEAP_ENTRY structure contains information about a heap element. The
HeapWalk function uses a PROCESS_HEAP_ENTRY structure to enumerate the elements of a
heap.typedef struct _PROCESS_HEAP_ENTRY {

PVOID lpData;
DWORD cbData;
BYTE cbOverhead;
BYTE iRegionIndex;
WORD wFlags;
union {
struct {
HANDLE hMem;
DWORD dwReserved[3];
} Block;
struct {
DWORD dwCommittedSize;
DWORD dwUnCommittedSize;
LPVOID lpFirstBlock;
LPVOID lpLastBlock;
} Region;
};

} PROCESS_HEAP_ENTRY;
MemberslpData

Points to the data portion of the heap element.
To initiate a HeapWalk heap enumeration, set lpData to NULL.
If the PROCESS_HEAP_REGION bit flag is set in the wFlags member, lpData points to the
first virtual address used by the region.
If the PROCESS_HEAP_UNCOMMITTED_RANGE bit flag is set in wFlags, lpData points to
the beginning of the range of uncommitted memory.

cbData

Specifies the size, in bytes, of the data portion of the heap element.
If the PROCESS_HEAP_REGION bit flag is set in wFlags, cbData specifies the total size, in
bytes, of the address space that is reserved for this region.
If the PROCESS_HEAP_UNCOMMITTED_RANGE bit flag is set in wFlags, cbData specifies
the size, in bytes, of the range of uncommitted memory.

cbOverhead

Specifies the size, in bytes, of the data used by the system to maintain information about the
heap element. These overhead bytes are in addition to the cbData bytes of the data portion of
the heap element.
If the PROCESS_HEAP_REGION bit flag is set in wFlags, cbOverhead specifies the size, in
bytes, of the heap control structures that describe the region.
If the PROCESS_HEAP_UNCOMMITTED_RANGE bit flag is set in wFlags, cbOverhead
specifies the size, in bytes, of the control structures that describe this uncommitted range.

iRegionIndex

Identifies the heap region that contains the heap element. A heap consists of one or more
regions of virtual memory, each with a unique region index.
In the first heap entry returned for most heap regions, HeapWalk sets the
PROCESS_HEAP_REGION flag in the wFlags member. When this flag is set, the members
of the Region structure contain additional information about the region.
The HeapAlloc function sometimes uses the VirtualAlloc function to allocate large blocks
from a growable heap. The heap manager treats such a large block allocation as a separate
region with a unique region index. HeapWalk does not set the PROCESS_HEAP_REGION
flag in the heap entry returned for a large block region, so the members of the Region
structure are not valid. You can use the VirtualQuery function to get additional information
about a large block region.

wFlags

A set of bit flags that specify properties of the heap element. Some of these flags affect the
meaning of other members of this PROCESS_HEAP_ENTRY data structure. The following
bit-flag constants are defined:

Value Meaning
PROCESS_HEAP_REGION If this flag is set, the heap element

is located at the beginning of a
region of contiguous virtual
memory in use by the heap.
If this flag is set, the lpData
member of the structure points to
the first virtual address used by
the region; the cbData member
specifies the total size, in bytes, of
the address space that is
reserved for this region; and the
cbOverhead member specifies
the size, in bytes, of the heap
control structures that describe
the region.
If this flag is set, the Region
structure becomes valid. The
dwCommittedSize,
dwUnCommittedSize,
lpFirstBlock, and lpLastBlock
members of the structure contain
additional information about the
region.

PROCESS_HEAP_UNCOMMITTED_RANGEIf this flag is set, the heap element
is located in a range of
uncommitted memory within the
heap region.
If this flag is set, the lpData
member points to the beginning of
the range of uncommitted
memory; the cbData member

specifies the size, in bytes, of the
range of uncommitted memory;
and the cbOverhead member
specifies the size, in bytes, of the
control structures that describe
this uncommitted range.

PROCESS_HEAP_ENTRY_BUSY If this flag is set, the heap element
is an allocated block.
If both this flag and the
PROCESS_HEAP_ENTRY_MOVEABLE
flag are set, the Block structure
becomes valid. The hMem
member of the Block structure
contains a handle to the allocated,
moveable memory block.

PROCESS_HEAP_ENTRY_MOVEABLE This flag is only valid if the
PROCESS_HEAP_ENTRY_BUSY
flag is set, indicating that the heap
element is an allocated block.
If this flag is valid and set, the
block was allocated with the
LMEM_MOVEABLE or
GMEM_MOVEABLE flag, and the
Block structure becomes valid.
The hMem member of the Block
structure contains a handle to the
allocated, moveable memory
block.

PROCESS_HEAP_ENTRY_DDESHARE This flag is only valid if the
PROCESS_HEAP_ENTRY_BUSY
flag is set, indicating that the heap
element is an allocated block.
If this flag is valid and set, the
block was allocated with the
GMEM_DDESHARE flag. For a
discussion of the
GMEM_DDESHARE flag, see
GlobalAlloc .

Block

This structure is valid only if both the PROCESS_HEAP_ENTRY_BUSY and
PROCESS_HEAP_ENTRY_MOVEABLE flags in wFlags are set.
The members of the Block structure are as follows:

Member Description
hMem Contains a handle to the allocated, moveable

memory block.
dwReserved Reserved; not used.

Region

This structure is valid only if the PROCESS_HEAP_REGION flag is set in the wFlags
member.
The members of the Region structure are as follows:

Member Description
dwCommittedSize Specifies the number of bytes in the heap region

that are currently committed as free memory
blocks, busy memory blocks, or heap control
structures.

This is an optional field that is set to zero if the
number of committed bytes is not available.

dwUnCommittedSize Specifies the number of bytes in the heap region
that are currently uncommitted.
This is an optional field that is set to zero if the
number of uncommitted bytes is not available.

lpFirstBlock Pointer to the first valid memory block in this heap
region.

lpLastBlock Pointer to the first invalid memory block in
thisheap region.

See AlsoGlobalAlloc, HeapAlloc, HeapWalk, VirtualAlloc, VirtualQuery

PROCESS_INFORMATION
The PROCESS_INFORMATION structure is filled in by the CreateProcess function with
information about a newly created process and its primary thread.typedef struct _PROCESS_INFORMATION { // pi

HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessId;
DWORD dwThreadId;

} PROCESS_INFORMATION;
MembershProcess

Returns a handle to the newly created process. The handle is used to specify the process in
all functions that perform operations on the process object.

hThread

Returns a handle to the primary thread of the newly created process. The handle is used to
specify the thread in all functions that perform operations on the thread object.

dwProcessId

Returns a global process identifier that can be used to identify a process. The value is valid
from the time the process is created until the time the process is terminated.

dwThreadId

Returns a global thread identifiers that can be used to identify a thread. The value is valid
from the time the thread is created until the time the thread is terminated.See AlsoCreateProcess

PROPSHEETHEADER
The PROPSHEETHEADER structure defines the frame and pages of a property sheet.typedef struct _PROPSHEETHEADER { // psh

DWORD dwSize;
DWORD dwFlags;
HWND hwndParent;
HINSTANCE hInstance;
union {
HICON hIcon;
LPCTSTR pszIcon;
};
LPCTSTRpszCaption;
UINT nPages
union {
UINT nStartPage
LPCTSTR pStartPage;
};
union {
LPCPROPSHEETPAGE ppsp;
HPROPSHEETPAGE FAR *phpage;
};
PFNPROPSHEETCALLBACK pfnCallback;

} PROPSHEETHEADER, FAR *LPPROPSHEETHEADER;
typedef const PROPSHEETHEADER FAR *LPCPROPSHEETHEADER;
MembersdwSize

Size, in bytes, of this structure.
dwFlags

Array of flags that indicate which other members to use and which to ignore. This member can
be a combination of the following values:

Value Meaning
PSH_DEFAULT Uses the default meaning for all structure

members.
PSH_HASHELP Displays the property sheet Help button.

The Help button is enabled only when
the PSP_HASHELP flag is set in the
PROPSHEETPAGE structure for the
active page.
If any of the initial property sheet pages
sets the PSP_HASHELP flag, the Help
button is automatically displayed
regardless of the PSH_HASHELP flag.
However, PSH_HASHELP is useful
when none of the initial pages set
PSP_HASHELP, but pages added later
might.

PSH_MODELESS Causes the PropertySheet function to
create the property sheet as a modeless
dialog instead of the default modal
behavior. When this flag is set,
PropertySheet returns immediately after
the dialog is created and the return value
from PropertySheet is the window
handle of the property sheet dialog.

PSH_NOAPPLYNOW Removes the Apply Now button.
PSH_PROPSHEETPAGEUses ppsp and ignores phpage when

creating the pages for the property sheet.
PSH_PROPTITLE Includes "Properties for" with the string

specified by pszCaption in the title bar
of the property sheet.

PSH_USECALLBACK Calls the function specified by
pfnCallback when initializing the
property sheet defined by this structure.

PSH_USEHICON Uses hIcon as the small icon in the title
bar of the property sheet dialog box.

PSH_USEICONID Uses pszIcon as the name of the icon
resource to load and use as the small
icon in the title bar of the property sheet
dialog box.

PSH_USEPSTARTPAGEUses pStartPage and ignores
nStartPage when displaying the initial
page of the property sheet.

PSH_WIZARD Creates a wizard property sheet.
PSH_RTLREADING Displays the title of the property sheet

dialog using right-to-left reading order on
Hebrew or Arabic systems.

hwndParent

Handle of the owner window.
hInstance

Handle of the instance from which to load the icon or title string resource. If pszIcon or
pszCaption identifies a resource to load, this member must be specified.

hIcon

Handle of the icon to use as the small icon in the title bar of the property sheet dialog box. If
dwFlags does not include the PSH_USEHICON value, this member is ignored.

pszIcon

Icon resource to use as the small icon in the title bar of the property sheet dialog box. This
member can specify either the identifier of the icon resource or the pointer to the string that
specifies the name of the icon resource. If dwFlags does not include the PSH_USEICONID
value, this member is ignored.

pszCaption

Title of the property sheet dialog box. This member can specify either the identifier of a string
resource or the pointer to a string that specifies the title. If dwFlags includes the
PSH_PROPTITLE value, the string "Properties for" is used with the title.

nPages

Number of elements in the phpage array.
nStartPage

Zero-based index of the initial page that appears when the property sheet dialog box is
created.

pStartPage

Name of the initial page that appears when the property sheet dialog box is created. This
member can specify either the identifier of a string resource or the pointer to a string that
specifies the name.

ppsp

Pointer to an array of PROPSHEETPAGE structures that define the pages in the property
sheet. If dwFlags does not include the PSH_PROPSHEETPAGE value, this member is
ignored.

phpage

Pointer to an array that contains handles of property sheet pages. Each handle must have
been created by a previous call to the CreatePropertySheetPage function. If dwFlags
includes the PSH_PROPSHEETPAGE value, this member is ignored.

pfnCallback

Pointer to an application-defined callback function that is called when the property sheet is
initialized. For more information about the callback function, see the description of the
PropSheetProc function. If dwFlags does not include the PSP_USECALLBACK value, this
member is ignored.See AlsoCreatePropertySheetPage, PropertySheet, PROPSHEETPAGE, PropSheetProc

PROPSHEETPAGE
The PROPSHEETPAGE structure defines a page in a property sheet.typedef struct _PROPSHEETPAGE { // psp

DWORDdwSize;
DWORDdwFlags;
HINSTANCE hInstance;
union {
LPCTSTR pszTemplate;
LPCDLGTEMPLATE pResource;
};
union {
HICON hIcon;
LPCTSTR pszIcon;
};
LPCTSTR pszTitle;
DLGPROC pfnDlgProc;
LPARAM lParam;
LPFNPSPCALLBACK pfnCallback;
UINT FAR * pcRefParent;

} PROPSHEETPAGE, FAR *LPPROPSHEETPAGE;
typedef const PROPSHEETPAGE FAR *LPCPROPSHEETPAGE;
MembersdwSize

Size, in bytes, of the structure. The size includes any extra application-defined data at the end
of the structure.

dwFlags

A set of bit flags that enable optional attributes of the property sheet page, and indicate the
valid members of the PROPSHEETPAGE structure. This member can be a combination of the
following values.

Value Meaning
PSP_DEFAULT Uses the default meaning for all

structure members.
PSP_DLGINDIRECT Creates the page from the dialog box

template in memory pointed to by the
pResource member. The
PropertySheet function assumes that
the template is in writeable memory; a
read-only template will cause an
exception on some versions of Windows.
If this flag is not set, the page loads the
dialog box template from the resource
identified by the pszTemplate member.

PSP_HASHELP Enables the property sheet Help button
when this page is active.

PSP_USECALLBACK Calls the function specified by
pfnCallback when creating or
destroying the property sheet page
defined by this structure.

PSP_USEHICON Uses hIcon as the small icon on the tab
for the page.

PSP_USEICONID Uses pszIcon as the name of the icon
resource to load and use as the small
icon on the tab for the page.

PSP_USEREFPARENT Maintains the reference count specified
by pcRefParent for the lifetime of the
property sheet page created from this
structure.

PSP_USETITLE Uses pszTitle as the title of the property
sheet dialog box instead of the title
stored in the dialog box template.

PSP_RTLREADING When this page is active, displays the
text of pszTitle using right-to-left reading
order on Hebrew or Arabic systems.

hInstance

Handle to the instance from which to load the dialog box template, icon, or title string
resource.

pszTemplate

Dialog box template to use to create the page. This member can specify either the resource
identifier of the template or the address of a string that specifies the name of the template. If
dwFlags includes the PSP_DLGINDIRECT value, this member is ignored.

pResource

Pointer to a dialog box template in memory. The PropertySheet function assumes that the
template is in writeable memory; a read-only template will cause an exception on some
versions of Windows. If dwFlags does not include the PSP_DLGINDIRECT value, this
member is ignored.

hIcon

Handle to the icon to use as the small icon in the tab for the page. If dwFlags does not
include the PSP_USEHICON value, this member is ignored.

pszIcon

Icon resource to use as the small icon in the tab for the page. This member can specify either
the identifier of the icon resource or the pointer to the string that specifies the name of the icon
resource. If dwFlags does not include the PSP_USEICONID value, this member is ignored.

pszTitle

Title of the property sheet dialog box. This title overrides the title specified in the dialog box
template. This member can specify either the identifier of a string resource or the pointer to a
string that specifies the title. If dwFlags does not include the PSP_USETITLE value, this
member is ignored.

pfnDlgProc

Pointer to the dialog box procedure for the page. The dialog box procedure must not call the
EndDialog function.

lParam

Application-defined data.
pfnCallback

Pointer to an application-defined callback function that is called when the page is created and
when it is about to be destroyed. For more information about the callback function, see
PropSheetPageProc. If dwFlags does not include the PSP_USECALLBACK value, this
member is ignored.

pcRefParent

Pointer to the reference count value. If dwFlags does not include the
PSP_USERREFPARENT value, this member is ignored.RemarksWhen the PropertySheet function creates the page, the dialog box procedure for the page

receives a WM_INITDIALOG message. The lParam parameter of this message points to the
PROPSHEETPAGE structure used to create the page.See AlsoEndDialog, PropSheetPageProc, PropertySheet, WM_INITDIALOG

PROTOCOL_INFO
The PROTOCOL_INFO structure contains information about a protocol.typedef struct _PROTOCOL_INFO {

DWORD dwServiceFlags;
INT iAddressFamily;
INT iMaxSockAddr;
INT iMinSockAddr;
INT iSocketType;
INT iProtocol;
DWORD dwMessageSize;
LPTSTR lpProtocol;

} PROTOCOL_INFO;
MembersdwServiceFlags

A set of bit flags that specify the services provided by the protocol. One or more of the
following bit flags may be set:

Value Meaning
XP_CONNECTIONLESS If this flag is set, the protocol

providesconnectionless (datagram) service.
If this flag is clear, the protocol provides
connection-oriented data transfer.

XP_GUARANTEED_DELIVERYIf this flag is set, the protocol guarantees
that all data sent will reach the intended
destination. If this flag is clear, there is no
such guarantee.

XP_GUARANTEED_ORDER If this flag is set, the protocol guarantees
that data will arrive in the order in which it
was sent. Note that this characteristic does
not guarantee delivery of the data, but
guarantees only its order. If this flag is
clear, the order of data sent is not
guaranteed.

XP_MESSAGE_ORIENTED If this flag is set, the protocol is message-
oriented. A message-oriented protocol
honors message boundaries. If this flag is
clear, the protocol is stream-oriented, and
the concept of message boundaries is
irrelevant.

XP_PSEUDO_STREAM If this flag is set, the protocol is a message-
oriented protocol that ignores message
boundaries for all receive operations.
This optional capability is useful when you
do not want the protocol to frame
messages. An application that requires
stream-oriented characteristics can open a
socket with type SOCK_STREAM for
transport protocols that support this
functionality, regardless of the value of
iSocketType.

XP_GRACEFUL_CLOSE If this flag is set, the protocol supports two-
phase close operations, also known as
"graceful" close operations. If this flag is
clear, the protocol supports only abortive
close operations.

XP_EXPEDITED_DATA If this flag is set, the protocol supports
expedited data, also known as "urgent data.
"

XP_CONNECT_DATA If this flag is set, the protocol supports
connect data.

XP_DISCONNECT_DATA If this flag is set, the protocol supports
disconnect data.

XP_SUPPORTS_BROADCASTIf this flag is set, the protocol supports a
broadcast mechanism.

XP_SUPPORTS_MULTICASTIf this flag is set, the protocol supports a
multicast mechanism.

XP_BANDWIDTH_ALLOCATIONIf this flag is set, the protocol supports a
mechanism for allocating a guaranteed
bandwidth to an application.

XP_FRAGMENTATION If this flag isset, the protocol supports
message fragmentation; physical network
MTU is hidden from applications.

XP_ENCRYPTS If this flag is set, the protocol supports data
encryption.

iAddressFamily

Specifies the value to pass as the af parameter when you call the socket function to open a

socket for the protocol. This address family value uniquely defines the structure of Protocol
addresses, also known as SOCKADDRs, used by the protocol.

iMaxSockAddr

Specifies the maximum length of a socket address supported by the protocol.
iMinSockAddr

Specifies the minimum length of a socket address supported by the protocol.
iSocketType

Specifies the value to pass as the type parameter when you call the socket function to open a
socket for the protocol.
Note that if XP_PSEUDO_STREAM is set in dwServiceFlags, the application can specify
SOCK_STREAM as the type parameter to socket, regardless of the value of iSocketType.

iProtocol

Specifies the value to pass as the protocol parameter when you call the socket function to
open a socket for the protocol.

dwMessageSize

Specifies the maximum message size supported by the protocol. This is the maximum size of
a message that can be sent from or received by the host. For protocols that do not support
message framing, the actual maximum size of a message that can be sent to a given address
may be less than this value.
The following special message size values are defined:

Value Meaning
0 The protocol is stream-oriented; the concept of

message size is not relevant.
0xFFFFFFFFThe protocol is message-oriented, but there is no

maximum message size.

lpProtocol

Points to a zero-terminated string that supplies a name for the protocol; for example, "SPX2."See AlsoEnumProtocols, socket

PROVIDOR_INFO_1
The PROVIDOR_INFO_1 structure identifies a print provider.typedef struct _PROVIDOR_INFO_1 { // pi1

LPTSTR pName;
LPTSTR pEnvironment ;
LPTSTR pDLLName ;

} PROVIDOR_INFO_1;
MemberspName

Points to a null-terminated string that is the name of the print provider.
pEnvironment

Points to a null-terminated environment string specifying the environment the provider
dynamic-link library (DLL) is designed to run in.

pDLLName

Points to a null-terminated string that is the name of the provider DLL.See AlsoMONITOR_INFO_2

PSHNOTIFY
The PSHNOTIFY structure contains information for the PSN_APPLY and PSN_RESET
notification messages.typedef struct _PSHNOTIFY {

NMHDR hdr;
LPARAM lParam;

} PSHNOTIFY, FAR *LPPSHNOTIFY;
Membershdr

Specifies an NMHDR structure. The code member of the NMHDR structure can be one of the
following notification codes that identify the message being sent: PSN_APPLY or
PSN_RESET.

lParam

Close flag. TRUE if the OK or Cancel button is used to close the property sheet. FALSE if the
Close button used.See AlsoPSN_APPLY, PSN_RESET

PUNCTUATION
The PUNCTUATION structure contains information about the punctuation used in a rich edit
control.typedef struct _punctuation {

UINT iSize;// size of table; see below
LPSTR szPunctuation; // punctuation; see below

} PUNCTUATION;
MembersiSize

Size in bytes of buffer pointed to by the szPunctuation member.
szPunctuation

Address of the buffer containing the punctuation characters.RemarksThis structure is used only in Asian-language versions of the operating system.

QUERY_SERVICE_CONFIG
The QUERY_SERVICE_CONFIG structure is used by the QueryServiceConfig function to return
configuration information about an installed service.typedef struct _QUERY_SERVICE_CONFIG { // qsc

DWORD dwServiceType;
DWORD dwStartType;
DWORD dwErrorControl;
LPTSTR lpBinaryPathName;
LPTSTR lpLoadOrderGroup;
DWORD dwTagId;
LPTSTR lpDependencies;
LPTSTR lpServiceStartName;
LPTSTR lpDisplayName;

} QUERY_SERVICE_CONFIG, LPQUERY_SERVICE_CONFIG;
MembersdwServiceType

The value returned includes one of the following service type flags to indicate the type of
service. In addition, for a SERVICE_WIN32 service, the
SERVICE_INTERACTIVE_PROCESS flag might be set, indicating that the service process
can interact with the desktop.

Value Meaning
SERVICE_WIN32_OWN_PROCESS A service type flag that

indicates a Win32 service that
runs in its own process.

SERVICE_WIN32_SHARE_PROCESSA service type flag that
indicates a Win32 service that
shares a process with other
services.

SERVICE_KERNEL_DRIVER A service type flag that
indicates a Windows NT device
driver.

SERVICE_FILE_SYSTEM_DRIVER A service type flag that
indicates a Windows NT file
system driver.

SERVICE_INTERACTIVE_PROCESSA flag that indicates a Win32
service process that can
interact with the desktop.

dwStartType

Specifies when to start the service. One of the following values is specified:
Value Meaning
SERVICE_BOOT_START Specifies a device driver started by

the operating system loader. This
value is valid only if the service type is
SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_SYSTEM_START Specifies a device driver started by
the IoInitSystem function. This value
is valid only if the service type is
SERVICE_KERNEL_DRIVER or
SERVICE_FILE_SYSTEM_DRIVER.

SERVICE_AUTO_START Specifies a device driver or Win32
service started by the service control
manager automatically during system
startup.

SERVICE_DEMAND_START Specifies a device driver or Win32
service started by the service control
manager when a process calls the
StartService function.

SERVICE_DISABLED Specifies a device driver or Win32
service that can no longer be started.

dwErrorControl

Specifies the severity of the error if this service fails to start during startup, and determines the
action taken by the startup program if failure occurs. One of the following values can be
specified:

Value Meaning
SERVICE_ERROR_IGNORE

The startup (boot) program logs the error but continues
the startup operation.

SERVICE_ERROR_NORMAL
The startup program logs the error and displays a
message box pop-up but continues the startup operation.

SERVICE_ERROR_SEVERE
The startup program logs the error. If the last-known
good configuration is being started, the startup operation
continues. Otherwise, the system is restarted with the

last-known-good configuration.
SERVICE_ERROR_CRITICAL

The startup program logs the error, if possible. If the last-
known good configuration is being started, the startup
operation fails. Otherwise, the system is restarted with
the last-known good configuration.

lpBinaryPathName

Points to a null-terminated string that contains the fully qualified path to the service binary file.
lpLoadOrderGroup

Points to a null-terminated string that names the load ordering group of which this service is a
member. If the pointer is NULL or if it points to an empty string, the service does not belong to
a group. The registry has a list of load ordering groups located at:
HKEY_LOCAL_MACHINE\System
\CurrentControlSet\Control\ServiceGroupOrder.
The startup program uses this list to load groups of services in a specified order with respect
to the other groups in the list. You can place a service in a group so that another service can
depend on the group.
The order in which a service starts is determined by the following criteria:
1. The order of groups in the registry's load-ordering group list. Services in groups in the

load-ordering group list are started first, followed by services in groups not in the load-
ordering group list and then services that do not belong to a group.

2. The service's dependencies listed in the lpszDependencies parameter and the
dependencies of other services dependent on the service.

dwTagId

Specifies a unique tag value for this service in the group specified by the lpLoadOrderGroup
parameter. A value of zero indicates that the service has not been assigned a tag. You can
use a tag for ordering service startup within a load order group by specifying a tag order
vector in the registry located at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Control\GroupOrderList
Tags are only evaluated for SERVICE_KERNEL_DRIVER and
SERVICE_FILE_SYSTEM_DRIVER type services that have SERVICE_BOOT_START or
SERVICE_SYSTEM_START start types.

lpDependencies

Points to an array of null-separated names of services or load ordering groups that must start
before this service. The array is doubly null-terminated. If the pointer is NULL or if it points to
an empty string, the service has no dependencies. If a group name is specified, it must be
prefixed by the SC_GROUP_IDENTIFIER (defined in the WINSVC.H file) character to
differentiate it from a service name, because services and service groups share the same
name space. Dependency on a service means that this service can only run if the service it
depends on is running. Dependency on a group means that this service can run if at least one
member of the group is running after an attempt to start all members of the group.

lpServiceStartName

Points to a null-terminated string. If the service type is SERVICE_WIN32_OWN_PROCESS or
SERVICE_WIN32_SHARE_PROCESS, this name is the account name in the form of
"DomainName\Username", which the service process will be logged on as when it runs. If the
account belongs to the built-in domain, ".\Username" can be specified. If NULL is specified,
the service will be logged on as the LocalSystem account.
If the service type is SERVICE_KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER,
this name is the Windows NT driver object name (that is, \FileSystem\Rdr or \Driver\Xns)
which the input and output (I/O) system uses to load the device driver. If NULL is specified,
the driver is run with a default object name created by the I/O system based on the service
name.

lpDisplayName

Points to a null-terminated string that is to be used by user interface programs to identify the
service. This string has a maximum length of 256 characters. The name is case-preserved in
the service control manager. Display name comparisons are always case-insensitive.RemarksThe configuration information for a service is initially specified when the service is created by a

call to the CreateService function. The information can be modified by calling the
ChangeServiceConfig function.See AlsoChangeServiceConfig, CreateService, QueryServiceConfig, StartService

QUERY_SERVICE_LOCK_STATUS
The QUERY_SERVICE_LOCK_STATUS structure is used by the QueryServiceLockStatus
function to return information about the lock status of a service control manager database.typedef struct _QUERY_SERVICE_LOCK_STATUS { // qsls

DWORD fIsLocked;
LPTSTR lpLockOwner;
DWORD dwLockDuration;

} QUERY_SERVICE_LOCK_STATUS, * LPQUERY_SERVICE_LOCK_STATUS ;
MembersfIsLocked

Specifies whether the database is locked. If this member is nonzero, the database is locked. If
it is zero, the database is unlocked.

lpLockOwner

Points to a null-terminated string containing the name of the user who acquired the lock.
dwLockDuration

Specifies the time, in seconds, since the lock was first acquired.See AlsoQueryServiceLockStatus

RAS_PARAMETERS
[New - Windows NT]

The RAS_PARAMETERS structure is used by the RasAdminPortGetInfo function to return the
name and value of a media-specific parameter associated with a port on a Windows NT RAS
Server.struct RAS_PARAMETERS {

CHAR P_Key [RASSAPI_MAX_PARAM_KEY_SIZE];
RAS_PARAMS_FORMAT P_Type;
BYTE P_Attributes;
RAS_PARAMS_VALUE P_Value;

};
MembersP_Key

Specifies the name of the key that represents the media-specific parameter, such as
MAXCONNECTBPS.

P_Type

Identifies the type of data associated with the parameter. This member can be one of the
following values from the RAS_PARAMS_FORMAT enumeration.

Value Meaning
ParamNumber Indicates that the data associated with the key

is a number.
ParamString Indicates that the data associated with the key

is a string.

P_Attributes

Reserved.
P_Value

Specifies the value associated with the parameter. This member is a RAS_PARAMS_VALUE
union. If the P_Type member is ParamNumber, the Number member of the union contains
the value. If P_Type is ParamString, the String member of the union contains the value.See AlsoRasAdminAcceptNewConnection, RasAdminConnectionHangupNotification,

RasAdminPortGetInfo

RAS_PARAMS_VALUE
[New - Windows NT]

The RAS_PARAMS_VALUE union is used in the RAS_PARAMETERS structure to store the
data associated with a media-specific parameter. The P_Type member of the
RAS_PARAMETERS structure uses a value from the RAS_PARAMS_FORMAT enumeration to
indicate the type of value currently stored in RAS_PARAMS_VALUE.union RAS_PARAMS_VALUE {

DWORD Number;
struct {
DWORD Length ;
PCHAR Data ;
} String;

};
MembersNumber

If the P_Type member of the RAS_PARAMETERS structure is ParamNumber, the Number
member contains the value of the media-specific parameter. For example, the
MAXCONNECTBPS parameter is of type ParamNumber, and the value might be 19200.
If the P_Type member of the RAS_PARAMETERS structure is ParamNumber, the Number
member contains the value of the media-specific parameter. For example, the
MAXCONNECTBPS parameter is of type ParamNumber, and the value might be 19200.

String

If the P_Type member of the RAS_PARAMETERS structure is ParamString, the String
member contains the value of the media-specific parameter.
Length

Specifies the length, in characters, of the string pointed to by the Data member.
Data

Pointer to a buffer that contains the string value of a media-specific parameter.See AlsoRAS_PARAMETERS, RAS_PARAMS_FORMAT

RAS_PORT_0
[New - Windows NT]

The RAS_PORT_0 structure contains information that describes a RAS port.typedef struct _RAS_PORT_0 {
WCHAR wszPortName[RASSAPI_MAX_PORT_NAME];
WCHAR wszDeviceType[RASSAPI_MAX_DEVICETYPE_NAME];
WCHAR wszDeviceName[RASSAPI_MAX_DEVICE_NAME];
WCHAR wszMediaName[RASSAPI_MAX_MEDIA_NAME];
DWORD reserved;
DWORD Flags;
WCHAR wszUserName[UNLEN + 1];
WCHAR wszComputer[NETBIOS_NAME_LEN];
DWORD dwStartSessionTime;
WCHAR wszLogonDomain[DNLEN + 1];
BOOL fAdvancedServer;

} RAS_PORT_0, *PRAS_PORT_0;
MemberswszPortName

A null-terminated Unicode string that specifies the name of the port, such as "COM1".
wszDeviceType

A null-terminated Unicode string that specifies the type of the device on which the connection
was made, such as "Modem" or "ISDN". The list of device types that might be specified in this
member includes all the device types installed on the server, including third-party devices.

wszDeviceName

A null-terminated Unicode string that specifies the name of the device on which the
connection was made, such as "Hayes 9600" or "PCIMACISDN1".

wszMediaName

A null-terminated Unicode string that specifies the name of the media used for the connection,
such as "rasser" or "rastapi".

reserved

This member is reserved.
Flags

A set of bit flags that specify the nature of the connection made on this port. This member can
be a combination of the following flags.

Value Meaning
GATEWAY_ACTIVE If this flag is set, the NetBIOS

gateway is active on the server.
MESSENGER_PRESENT If this flag is set, the Windows NT

messenger service is running on the
remote client.

PORT_MULTILINKED If this flag is set, the port is
multilinked with other ports. You can
use this information for displaying
the connection status as a
multilinked port.
For a multilinked port, the
RAS_PORT_STATISTICS structure
contains two sets of statistics: one
for the port alone, and another for
the combined ports in the multilink
connection.

PPP_CLIENT If this flag is set, the remote client
connected using PPP. If this flag is
not set, the remote client connected
using the AMB protocol.

REMOTE_LISTEN If this flag is set, the RemoteListen
parameter of the NetBIOS gateway
is set to 1 on the server.

USER_AUTHENTICATED If this flag is set, a remote client is
connected to the server and the
user has been authenticated. You
can check this flag to ensure that a
client is actually connected to a port.

If the MESSENGER_PRESENT, GATEWAY_ACTIVE, and REMOTE_LISTEN flags are set,
you can use the Windows NT messenger service to send an administrative message to the
remote client. If MESSENGER_PRESENT and REMOTE_LISTEN are set, but
GATEWAY_ACTIVE is not, you can send a message to the client only if you send the
message from the RAS server the client is dialed in to.

If the MESSENGER_PRESENT, GATEWAY_ACTIVE, and REMOTE_LISTEN flags are set,
you can use the Windows NT messenger service to send an administrative message to the
remote client. If MESSENGER_PRESENT and REMOTE_LISTEN are set, but
GATEWAY_ACTIVE is not, you can send a message to the client only if you send the
message from the RAS server the client is dialed in to.

wszUserName

A null-terminated Unicode string that specifies the name of the remote user connected to this
port.

wszComputer

A null-terminated Unicode string that specifies the name of the remote client computer.
dwStartSessionTime

Specifies the time, in seconds from January 1, 1970, that the client connected to the RAS
server on this port. You can use the standard Win32 time routines to format this value for
display.

wszLogonDomain

A null-terminated Unicode string that specifies the name of the Windows NT domain on which
the remote user was authenticated. This string is the domain name only, with no "\\" prefix.

fAdvancedServer

A flag that is nonzero if the RAS server associated with this port is a Windows NT Advanced
Server. You can use this information to determine the name of the server that has the user
account database. If the RAS server is an Advanced Server, you can get the name of the user
account server by concatenating the prefix "\\" to the name returned in the wszLogonDomain
member. This is because for an Advanced Server the local logon domain name is the same
as the server name. If the RAS server is a Windows NT Workstation, you can use the
RasAdminGetUserAccountServer function to get the name of the user account server.See AlsoRAS_PORT_1, RAS_PORT_STATISTICS, RasAdminGetUserAccountServer,

RasAdminPortEnum

RAS_PORT_1
[New - Windows NT]

The RAS_PORT_1 structure contains information about a RAS port.typedef struct _RAS_PORT_1 {
RAS_PORT_0 rasport0;
DWORD LineCondition;
DWORD HardwareCondition;
DWORD LineSpeed;
WORD NumStatistics;
WORD NumMediaParms;
DWORD SizeMediaParms;
RAS_PPP_PROJECTION_RESULT ProjResult;

} RAS_PORT_1, *PRAS_PORT_1;
MembersrasPort0

A RAS_PORT_0 structure that contains information about the port, such as the name of the
port, the name of the remote user connected to the port, and so on.

LineCondition

Specifies the state of the port. This member can be one of the following values.
Value Meaning
RAS_PORT_NON_OPERATIONALThe port is not operational.

Check the event log for errors
reported by the server.

RAS_PORT_DISCONNECTED The port is currently
disconnected.

RAS_PORT_CALLING_BACK The RAS server is calling back
the RAS client.

RAS_PORT_LISTENING The port is waiting for a client
to call in.

RAS_PORT_AUTHENTICATING The server is in the process of
authenticating the remote
client.

RAS_PORT_AUTHENTICATED The remote client is now
authenticated.

RAS_PORT_INITIALIZING The device attached to the port
is being initialized. The state of
the port will change to
RAS_PORT_LISTENING when
the initialization has been
completed.

HardwareCondition

Specifies one of the following values to indicate the state of the device attached to the port.
Value Meaning
RAS_MODEM_OPERATIONAL The modem attached to this

port is operational and is
ready to receive client calls.

RAS_MODEM_HARDWARE_FAILUREThe modem attached to this
port has a hardware
problem.

LineSpeed

Specifies the speed, in bits per second, with which the computer can communicate with the
port.

NumStatistics

This member is not used. The RAS administration functions, such as the
RasAdminPortGetInfo function, use the RAS_PORT_STATISTICS structure to return port
statistics.

NumMediaParms

Specifies the number of media-specific parameters for this port. For serial media this is
typically the number of values that appear in the SERIAL.INI file.

SizeMediaParms

Specifies the size, in bytes, of the buffer required for all media-specific parameters. The
RasAdminPortGetInfo function returns a buffer containing an array of RAS_PARAMETERS
structures with the media parameters and values for the port.

ProjResult

A RAS_PPP_PROJECTION_RESULT structure that specifies the PPP projection information
for this port. This structure provides information for each protocol that is negotiated when a
RAS client connects to a server.See AlsoRAS_PARAMETERS, RAS_PORT_0, RAS_PORT_STATISTICS,

RAS_PPP_PROJECTION_RESULT, RasAdminAcceptNewConnection,
RasAdminConnectionHangupNotification, RasAdminPortGetInfo

RAS_PORT_STATISTICS
[New - Windows NT]

The RAS_PORT_STATISTICS structure reports the statistics that a RAS server collects for a
connected port. The RAS server resets the various statistic counters each time the port is
connected. You can call the RasAdminPortClearStatistics function to force the RAS server to
reset the statistic counters.

For a port that is part of a multilink connection, this structure provides two sets of statistics. The
first set contains the cumulative statistics for all ports in the connection. These statistics are the
same for all ports in the connection. The second set contains the statistics for just this port. If the
port is not part of a multilink connection, both sets of statistics have the same information. To
determine whether a port is part of a multilink connection, check the PORT_MULTILINKED bit in
the Flags member of the port's RAS_PORT_0 structure.typedef struct _RAS_PORT_STATISTICS
{

// The connection statistics are followed by port statistics
// A connection is across multiple ports.
DWORD dwBytesXmited;
DWORD dwBytesRcved;
DWORD dwFramesXmited;
DWORD dwFramesRcved;
DWORD dwCrcErr;
DWORD dwTimeoutErr;
DWORD dwAlignmentErr;
DWORD dwHardwareOverrunErr;
DWORD dwFramingErr;
DWORD dwBufferOverrunErr;
DWORD dwBytesXmitedUncompressed;
DWORD dwBytesRcvedUncompressed;
DWORD dwBytesXmitedCompressed;
DWORD dwBytesRcvedCompressed;
// the following are the port statistics
DWORD dwPortBytesXmited;
DWORD dwPortBytesRcved;
DWORD dwPortFramesXmited;
DWORD dwPortFramesRcved;
DWORD dwPortCrcErr;
DWORD dwPortTimeoutErr;
DWORD dwPortAlignmentErr;
DWORD dwPortHardwareOverrunErr;
DWORD dwPortFramingErr;
DWORD dwPortBufferOverrunErr;
DWORD dwPortBytesXmitedUncompressed;
DWORD dwPortBytesRcvedUncompressed;
DWORD dwPortBytesXmitedCompressed;
DWORD dwPortBytesRcvedCompressed;

} RAS_PORT_STATISTICS, *PRAS_PORT_STATISTICS;
MembersdwBytesXmited

Specifies the total number of bytes transmitted by the connection.
dwBytesRcved

Specifies the total number of bytes received by the connection.
dwFramesXmited

Specifies the total number of frames transmitted by the connection.
dwFramesRcved

Specifies the total number of frames received by the connection.
dwCrcErr

Specifies the total number of CRC errors on the connection. CRC errors are caused by the
failure of a cyclic redundancy check. A CRC error indicates that one or more characters in the
data packet received were found garbled on arrival.

dwTimeoutErr

Specifies the total number of time-out errors on the connection. Time-out errors occur when
an expected character is not received in time. When this occurs, the software assumes that
the data has been lost and requests that it be resent.

dwAlignmentErr

Specifies the total number of alignment errors on the connection. Alignment errors occur when
a character received is not the one expected. This usually happens when a character is lost or
when a time-out error occurs.

dwHardwareOverrunErr

Specifies the total number of hardware overrun errors on the connection. These errors
indicate the number of times the sending computer has transmitted characters faster than the
receiving computer hardware can process them. If this problem persists, reduce the BPS
connection rate on the client.

dwFramingErr

Specifies the total number of framing errors on the connection. A framing error occurs when
an asynchronous character is received with an invalid start or stop bit.

dwBufferOverrunErr

Specifies the total number of buffer overrun errors on the connection. A buffer overrun error
occurs when the sending computer is transmitting characters faster than the receiving
computer can accommodate them. If this problem persists, reduce the BPS connection rate
on the client.

dwBytesXmitedUncompressed

Specifies the total number of bytes transmitted uncompressed by the connection.
dwBytesRcvedUncompressed

Specifies the total number of bytes received uncompressed by the connection.
dwBytesXmitedCompressed

Specifies the total number of bytes transmitted compressed by the connection.
dwBytesRcvedCompressed

Specifies the total number of bytes received compressed by the connection.
dwPortBytesXmited

Specifies the total number of bytes transmitted by the port.
dwPortBytesRcved

Specifies the total number of bytes received by the port.
dwPortFramesXmited

Specifies the total number of frames transmitted by the port.
dwPortFramesRcved

Specifies the total number of frames received by the port.
dwPortCrcErr

Specifies the total number of CRC errors on the port. CRC errors are caused by the failure of
a cyclic redundancy check. A CRC error indicates that one or more characters in the data
packet received were found garbled on arrival.

dwPortTimeoutErr

Specifies the total number of time-out errors on the port. Time-out errors occur when an
expected character is not received in time. When this occurs, the software assumes that the
data has been lost and requests that it be resent.

dwPortAlignmentErr

Specifies the total number of alignment errors on the port. Alignment errors occur when a
character received is not the one expected. This usually happens when a character is lost or
when a time-out error occurs.

dwPortHardwareOverrunErr

Specifies the total number of hardware overrun errors on the port. These errors indicate the
number of times the sending computer has transmitted characters faster than the receiving
computer hardware can process them. If this problem persists, reduce the BPS connection
rate on the client.

dwPortFramingErr

Specifies the total number of framing errors on the port. A framing error occurs when an
asynchronous character is received with an invalid start or stop bit.

dwPortBufferOverrunErr

Specifies the total number of buffer overrun errors on the port. A buffer overrun error occurs
when the sending computer is transmitting characters faster than the receiving computer can
accommodate them. If this problem persists, reduce the BPS connection rate on the client.

dwPortBytesXmitedUncompressed

Specifies the total number of bytes transmitted uncompressed by the port. If the port is part of
a multilink connection, this member is not valid. Use the compression statistics for the
connection instead.

dwPortBytesRcvedUncompressed

Specifies the total number of bytes received uncompressed by the port. If the port is part of a
multilink connection, this member is not valid. Use the compression statistics for the
connection instead.

dwPortBytesXmitedCompressed

Specifies the total number of bytes transmitted compressed by the port. If the port is part of a
multilink connection, this member is not valid. Use the compression statistics for the
connection instead.

dwPortBytesRcvedCompressed

Specifies the total number of bytes received compressed by the port. If the port is part of a
multilink connection, this member is not valid. Use the compression statistics for the
connection instead.See AlsoRAS_PORT_0, RasAdminAcceptNewConnection, RasAdminConnectionHangupNotification,

RasAdminPortClearStatistics, RasAdminPortGetInfo

RAS_PPP_ATCP_RESULT
[New - Windows NT]

The RAS_PPP_ATCP_RESULT structure is used to report the result of an AppleTalk protocol
projection operation for a port. Windows NT version 4.0 does not use this structure.typedef struct _RAS_PPP_ATCP_RESULT {

DWORD dwError;
WCHAR wszAddress[RAS_ATADDRESSLEN + 1];

} RAS_PPP_ATCP_RESULT;
See AlsoRAS_PPP_PROJECTION_RESULT

RAS_PPP_IPCP_RESULT
[New - Windows NT]

The RAS_PPP_IPCP_RESULT structure is used to report the result of a PPP Internet Protocol
(IP) projection operation for a port.typedef struct _RAS_PPP_IPCP_RESULT {

DWORD dwError;
WCHAR wszAddress[RAS_IPADDRESSLEN + 1];

} RAS_PPP_IPCP_RESULT;
MembersdwError

Indicates the results of the IP projection operation. A value of NO_ERROR indicates success,
in which case, the wszAddress member is valid. If the projection operation was not
successful, dwError is an error code from WINERROR.H or RASERROR.H.

wszAddress

A null-terminated Unicode string that specifies the IP address assigned to the remote client.
This string has the "a.b.c.d" form.See AlsoRAS_PORT_1, RAS_PPP_PROJECTION_RESULT, RasAdminPortGetInfo

RAS_PPP_IPXCP_RESULT
[New - Windows NT]

The RAS_PPP_IPXCP_RESULT structure is used to report the result of a PPP Internetwork
Packet Exchange (IPX) projection operation for a port.typedef struct _RAS_PPP_IPXCP_RESULT {

DWORD dwError;
WCHAR wszAddress[RAS_IPXADDRESSLEN + 1];

} RAS_PPP_IPXCP_RESULT;
MembersdwError

Indicates the results of the IPX projection operation. A value of NO_ERROR indicates
success, in which case, the wszAddress member is valid. If the projection operation was not
successful, dwError is an error code from WINERROR.H or RASERROR.H.

wszAddress

A null-terminated Unicode string that specifies the IPX address assigned to the remote client.
This string has the "net.node" form.See AlsoRAS_PORT_1, RAS_PPP_PROJECTION_RESULT, RasAdminPortGetInfo

RAS_PPP_NBFCP_RESULT
[New - Windows NT]

The RAS_PPP_NBFCP_RESULT structure is used to report the result of a PPP NetBEUI Framer
(NBF) projection operation for a port.typedef struct _RAS_PPP_NBFCP_RESULT {

DWORD dwError;
DWORD dwNetBiosError;
CHAR szName[NETBIOS_NAME_LEN + 1];
WCHAR wszWksta[NETBIOS_NAME_LEN + 1];

} RAS_PPP_NBFCP_RESULT;
MembersdwError

Indicates the results of the NBF projection operation. A value of NO_ERROR indicates
success, in which case, the wszWksta member contains the name of the remote computer. If
the projection operation was not successful, dwError is an error code from WINERROR.H or
RASERROR.H.

dwNetBiosError

Ignore this member on the server; it is relevant only on the client.
szName

Ignore this member on the server; it is relevant only on the client.
wszWksta

A null-terminated Unicode string that specifies the NetBIOS name of the RAS client
workstation.See AlsoRAS_PORT_1, RAS_PPP_PROJECTION_RESULT, RasAdminPortGetInfo

RAS_PPP_PROJECTION_RESULT
[New - Windows NT]

The RAS_PPP_PROJECTION_RESULT structure is used to report the results of the various PPP
projection operations for a port.typedef struct _RAS_PPP_PROJECTION_RESULT {

RAS_PPP_NBFCP_RESULT nbf;
RAS_PPP_IPCP_RESULT ip;
RAS_PPP_IPXCP_RESULT ipx;
RAS_PPP_ATCP_RESULT at;

} RAS_PPP_PROJECTION_RESULT;
Membersnbf

A RAS_PPP_NBFCP_RESULT structure that reports the result of a PPP NetBEUI Framer
(NBF) projection operation.

ip

A RAS_PPP_IPCP_RESULT structure that reports the result of a PPP Internet Protocol (IP)
projection operation.

ipx

A RAS_PPP_IPXCP_RESULT structure that reports the result of a PPP Internetwork Packet
Exchange (IPX) projection operation.

at

A RAS_PPP_ATCP_RESULT structure. Windows NT version 4.0 does not use this member.RemarksThis structure reports the projection results for NetBEUI, TCP/IP, and IPX protocols. Each PPP
structure has a dwError member that indicates whether the other information in the structure is
valid. If dwError is NO_ERROR, the other information is valid. If dwError is one of the error
codes in WINERROR.H or RASERROR.H, the other information is not valid.See AlsoRAS_PORT_1, RAS_PPP_ATCP_RESULT, RAS_PPP_IPCP_RESULT,
RAS_PPP_IPXCP_RESULT, RAS_PPP_NBFCP_RESULT, RasAdminPortGetInfo

RAS_SECURITY_INFO
[New - Windows NT]

The RAS_SECURITY_INFO structure is used with the RasSecurityDialogGetInfo function to
return information about the RAS port associated with a RAS security DLL authentication
transaction.typedef struct _RAS_SECURITY_INFO {

DWORD LastError;
DWORD BytesReceived;
CHAR DeviceName[RASSAPI_MAX_DEVICE_NAME+1];

}RAS_SECURITY_INFO,*PRAS_SECURITY_INFO;
MembersLastError

Specifies an error code that indicates the state of the last RasSecurityDialogReceive call for
the port. If the receive operation failed, LastError is one of the error codes defined in
RASERROR.H or WINERROR.H. Otherwise, LastError is one of the following values.

Value Meaning
SUCCESS The receive operation has been successfully

completed. The BytesReceived member indicates
the number of bytes received.

PENDING The receive operation is pending completion.

BytesReceived

Specifies the number of bytes received in the most recent RasSecurityDialogReceive
operation. This member is valid only if the value of the LastError member is SUCCESS.

DeviceName

Specifies a null-terminated string that contains the user-friendly display name of the device on
the port, such as Hayes SmartModem 9600.See AlsoRasSecurityDialogGetInfo, RasSecurityDialogReceive

RAS_SERVER_0
[New - Windows NT]

The RAS_SERVER_0 structure is used by the RasAdminServerGetInfo function to return
information about the ports configured on a RAS Server.typedef struct _RAS_SERVER_0 {

WORD TotalPorts; // total ports available for connection
WORD PortsInUse; // ports currently in use by remote clients
DWORD RasVersion; // version of RAS server

} RAS_SERVER_0, *PRAS_SERVER_0;
MembersTotalPorts

Specifies the total number of ports configured on the RAS server that are available for remote
clients to connect to. For example, if the total number of ports configured for dialing in to a
server is four, but one of the ports is currently in use for dialing out, TotalPorts will be three.

PortsInUse

Specifies the number of ports currently in use by remote clients.
RasVersion

Specifies the version of the RAS server. You can use this information to take version-specific
action. This member can be one of the following values.

Value Description
RASDOWNLEVEL Indicates a LAN Manager version 1.0

RAS server.
RASADMIN_35 Indicates a Windows NT version 3.5 or 3.

51 RAS server or client.
RASADMIN_CURRENT Indicates a Windows NT version 4.0 RAS

server or client.
See AlsoRasAdminServerGetInfo

RAS_USER_0
[New - Windows NT]

The RAS_USER_0 structure is used in the RasAdminUserSetInfo and RasAdminUserGetInfo
functions to specify information about a user.typedef struct _RAS_USER_0 {

BYTE bfPrivilege;
WCHAR szPhoneNumber[RASSAPI_MAX_PHONENUMBER_SIZE + 1];

} RAS_USER_0, *PRAS_USER_0;
MembersbfPrivilege

A set of bit flags that specify the RAS privileges of the user. This member can be a
combination of the RASPRIV_DialinPrivilege flag and one of the call-back flags. Note that
when you call the RasAdminUserSetInfo function, you must specify one of the call-back
flags. You can use the RASPRIV_CallbackType mask to identify the type of call-back privilege
provided to the user. The following flags are defined.

Value Meaning
RASPRIV_NoCallback The user has no call-back privilege.
RASPRIV_AdminSetCallback The user account is configured to

have the administrator set the call-
back number.

RASPRIV_CallerSetCallback The remote user can specify a call-
back phone number when dialing in.

RASPRIV_DialinPrivilege The user has permission to dial in to
this server.

szPhoneNumber

A null-terminated Unicode string that specifies the call-back phone number for the user.See AlsoRasAdminUserGetInfo, RasAdminUserSetInfo

RASADPARAMS
[New - Windows NT]

The RASADPARAMS structure describes the parameters that AutoDial passes to a RASADFunc
AutoDial handler.typedef struct tagRASADPARAMS {

DWORD dwSize;
HWND hwndOwner;
DWORD dwFlags;
LONG xDlg;
LONG yDlg;

} RASADPARAMS;
MembersdwSize

Specifies the size, in bytes, of the RASADPARAMS structure. The system sets dwSize to
sizeof(RASADPARAMS) to identify the version of the structure.

hwndOwner

Specifies the parent window for the AutoDial user interface. This member can be NULL.
dwFlags

Specifies a flag that indicates how to position the window of your AutoDial user interface. The
following flag is defined.

Flag Description
RASADFLG_PositionDlgIf this flag is set, position your window

according to the coordinates specified by
the xDlg and yDlg members.
If this flag is not set, center your window
on the window specified by the
hwndOwner member. If hwndOwner is
NULL, center your window on the screen.

xDlg

Specifies the horizontal screen coordinate of your window's upper-left corner. Ignore this
member if the RASADFLG_PositionDlg bit is not set in the dwFlags member.

yDlg

Specifies the vertical screen coordinate of your window's upper-left corner. Ignore this
member if the RASADFLG_PositionDlg bit is not set in the dwFlags member.See AlsoRASADFunc

RASAMB
The RASAMB structure contains the result of a remote access server (RAS) Authentication
Message Block (AMB) projection operation.

The RasGetProjectionInfo function returns a RASAMB data structure when its rasprojection
parameter has the value RASP_Amb.typedef struct _RASAMB {

DWORD dwSize;
DWORD dwError;
TCHAR szNetBiosError[NETBIOS_NAME_LEN + 1];

BYTEbLana;
} RASAMB;
MembersdwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionInfo function,
set this member to sizeof(RASAMB). The function can then determine the version of the
RASAMB data structure that the caller of RasGetProjectionInfo is expecting. This allows
backward compatibility for compiled applications if there are future enhancements to the data
structure.

dwError

Contains the result of the PPP control protocol negotiation. A value of zero indicates success.
A nonzero value indicates failure, and is the actual fatal error that occurred during the control
protocol negotiation, the error that prevented the projection from completing successfully.

szNetBiosError

If dwError has the value ERROR_NAME_EXISTS_ON_NET, the szNetBiosError field
contains a zero-terminated string that is the NetBIOS name that caused the conflict. For other
values of dwError, this field contains the null string.

bLana

Identifies the NetBIOS network adapter identifier, or LANA, on which the remote access
connection was established. This member contains the value 0xFF if a connection was not
established.RemarksThe AMB protocol is used with servers that were released before PPP was adopted as the

primary framing protocol; for example, Windows NT 3.1 and OS/2 1.3 RAS servers.See AlsoRasGetProjectionInfo, RASPROJECTION

RASAUTODIALENTRY
[New - Windows NT]

The RASAUTODIALENTRY structure describes an AutoDial entry associated with a network
address in the AutoDial mapping database. An AutoDial entry specifies a phone-book entry that
AutoDial dials in a particular TAPI dialing location.

The RasGetAutodialAddress and RasSetAutodialAddress functions use this structure to set
and retrieve information about an AutoDial entry.typedef struct {

DWORD dwSize;
DWORD dwFlags;
DWORD dwDialingLocation;
TCHAR szEntry[RAS_MaxEntryName + 1];

} RASAUTODIALENTRY;
MembersdwSize

Specifies the size, in bytes, of the RASAUTODIALENTRY structure. Before calling
RasGetAutodialAddress or RasSetAutodialAddress, set dwSize to sizeof
(RASAUTODIALENTRY) to identify the version of the structure.

dwFlags

Reserved; must be zero.
dwDialingLocation

Specifies a TAPI dialing location. For more information about TAPI dialing locations, see the
Win32 Telephony (TAPI) Programmer's Reference.

szEntry

Specifies a null-terminated string that names an existing phone-book entry.See AlsoRasGetAutodialAddress, RasSetAutodialAddress

RASCONN
The RASCONN structure provides information about a remote access connection. The
RasEnumConnections function returns an array of RASCONN structures.typedef struct _RASCONN {

DWORDdwSize;
HRASCONN hrasconn;
TCHARszEntryName[RAS_MaxEntryName + 1];

#if (WINVER >= 0x400)
CHAR szDeviceType[RAS_MaxDeviceType + 1];
CHAR szDeviceName[RAS_MaxDeviceName + 1];

#endif
} RASCONN ;
MembersdwSize

Specifies the size, in bytes, of the RASCONN structure.
hrasconn

Specifies the remote access connection. This handle is used in other remote access API calls.
szEntryName

A string that specifies the phone-book entry used to establish the remote access connection.
If the connection was established using an empty entry name, this string consists of a "."
followed by the connection phone number.

szDeviceType

A null-terminated string that contains the device type through which the connection is made.
szDeviceName

A null-terminated string that contains the device name through which the connection is made.See AlsoRasEnumConnections, RasGetConnectStatus

RASCONNSTATUS
A RASCONNSTATUS structure describes the current status of a remote access connection. It is
returned by the RasGetConnectStatus function.typedef struct _RASCONNSTATUS {

DWORD dwSize;
RASCONNSTATE rasconnstate;
DWORD dwError;
TCHAR szDeviceType[RAS_MaxDeviceType + 1];
TCHAR szDeviceName[RAS_MaxDeviceName + 1];

} RASCONNSTATUS;
MembersdwSize

Specifies the structure size, in bytes.
rasconnstate

Specifies a RASCONNSTATE enumerator value that indicates the current state of the
RasDial connection process; that is, the piece of the RasDial process that is currently
executing.
Two state values are especially significant:

State Meaning
RASCS_Connected Indicates that the connection has been

successfully established.
RASCS_Disconnected Indicates that the connection has failed.

dwError

If nonzero, indicates the reason for failure. The value is one of the error values from the RAS
header file or one of ERROR_NOT_ENOUGH_MEMORY or ERROR_INVALID_HANDLE.

szDeviceType

A string that specifies the type of the current device, if available. For example, common device
types supported by RAS are "modem", "pad", "switch", "isdn", or "null".

szDeviceName

A string that specifies the name of the current device, if available. This would be the name of
the modem ¾ for example, "Hayes Smartmodem 2400"; the name of the PAD, for example
"US Sprint"; or the name of a switch device, for example "Racal-Guardata".See AlsoRasGetConnectStatus, RasDial, RASCONNSTATE

RASCREDENTIALS
[New - Windows NT]

The RASCREDENTIALS structure is used with the RasGetCredentials and RasSetCredentials
functions to specify the user credentials associated with a RAS phone-book entry.typedef struct {

DWORD dwSize;
DWORD dwMask;
TCHAR szUserName[UNLEN + 1];
TCHAR szPassword[PWLEN + 1];
TCHAR szDomain[DNLEN + 1];

} RASCREDENTIALS, *LPRASCREDENTIALS;
MembersdwSize

Specifies the size, in bytes, of the RASCREDENTIALS structure.
dwMask

A set of bit flags that specify the members of this structure that are valid. On input, set the
flags to indicate the members in which you are interested. On output, the function sets the
flags to indicate the members that contain valid data. This member can be a combination of
the following values.

Value Meaning
RASCM_UserName The szUserName member is valid.
RASCM_Password The szPassword member is valid.
RASCM_Domain The szDomain member is valid.

szUserName

A null-terminated string that contains a user name.
szPassword

A null-terminated string that contains a password.
szDomain

A null-terminated string that contains a domain name.See AlsoRasGetCredentials, RasSetCredentials

RASCTRYINFO
[New - Windows NT]

The RASCTRYINFO structure describes the direct dialing procedures for calls placed within a
specified country. The RasGetCountryInfo function uses this structure to retrieve country-
specific dialing information from the Windows Telephony list of country information.

For more information about country-specific dialing information, see the Win32 Telephony (TAPI)
Programmer's Reference.typedef struct RASCTRYINFO {

DWORD dwSize;
DWORD dwCountryID;
DWORD dwNextCountryID;
DWORD dwCountryCode;
DWORD dwCountryNameOffset;

} RASCTRYINFO;
MembersdwSize

Specifies the size, in bytes, of the RASCTRYINFO structure. Before calling
RasGetCountryInfo, set dwSize to sizeof(RASCTRYINFO) to identify the version of the
structure.

dwCountryID

Specifies a TAPI country identifier. Before calling RasGetCountryInfo, set dwCountryID to
identify the country of interest. For more information about TAPI country identifiers, see the
Win32 Telephony (TAPI) Programmer's Reference.
If this member is 1, RasGetCountryInfo returns information about the first country in the
Windows Telephony list of country information.

dwNextCountryID

Specifies the TAPI country identifier of the next country to enumerate in the Windows
Telephony list. This member is zero for the last country in the list.

dwCountryCode

Specifies the country code for the country identified by the dwCountryID member.
dwCountryNameOffset

Specifies the offset, in bytes, from the start of the structure to the start of a null-terminated
string describing the country. The description string is either ANSI or Unicode, depending on
whether you use the ANSI or Unicode version of RasGetCountryInfo.RemarksFor more information on dialing procedures and telephony configuration, see the Win32

Telephony (TAPI) Programmer's Reference.See AlsoRasGetCountryInfo

RASDEVINFO
[New - Windows NT]

The RASDEVINFO structure contains information that describes a TAPI device capable of
establishing a RAS connection. The RasEnumDevices function uses this structure to retrieve
information about RAS-capable devices.typedef struct tagRASDEVINFO {

DWORD dwSize;
TCHAR szDeviceType[RAS_MaxDeviceType + 1];
TCHAR szDeviceName[RAS_MaxDeviceName + 1];

} RASDEVINFOW;
MembersdwSize

Specifies the size, in bytes, of the RASDEVINFO structure. Before calling RasEnumDevices,
set dwSize to sizeof(RASDEVINFO) to identify the version of the structure.

szDeviceType

Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description
RASDT_Modem A modem accessed through a

COM port.
RASDT_Isdn An ISDN card with the

corresponding NDISWAN driver
installed.

RASDT_X25 An X.25 card with the
corresponding NDISWAN driver
installed.

szDeviceName

Specifies a null-terminated string containing the name of a TAPI device.See AlsoRasEnumDevices

RASDIALDLG
[New - Windows NT]

The RASDIALDLG structure is used in the RasDialDlg function to specify additional input and
output parameters.typedef struct tagRASDIALDLG {

IN DWORDdwSize;
IN HWND hwndOwner;
IN DWORDdwFlags;
IN LONG xDlg;
IN LONG yDlg;
IN DWORDdwSubEntry;
OUT DWORDdwError;
IN DWORDreserved;
IN DWORDreserved2;

} RASDIALDLG;
MembersdwSize

Specifies the size of this structure, in bytes. Before calling RasDialDlg, set this member to
sizeof(RASDIALDLG) to indicate the version of the structure. If dwSize is not a valid size,
RasDialDlg fails and sets the dwError member to ERROR_INVALID_SIZE.

hwndOwner

Identifies the window that owns the modal RasDialDlg dialog boxes. This member can be any
valid window handle, or it can be NULL if the dialog box has no owner.

dwFlags

A bit flag that indicates the options that are enabled for the dialog box. You can specify the
following value.

Value Meaning
RASDDFLAG_PositionDlg If this flag is set, RasDialDlg uses

the values specified by the xDlg
and yDlg members to position the
dialog box.
If this flag is not set, the dialog box
is centered on the owner window,
unless hwndOwner is NULL, in
which case, the dialog box is
centered on the screen.

xDlg

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASDDFLAG_PositionDlg flag is set.

yDlg

Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This value is
used only if the RASDDFLAG_PositionDlg flag is set.

dwSubEntry

Indicates the subentry or subentries to dial. If dwSubEntry is zero, RasDialDlg dials all
subentries associated with the specified phone-book entry. Otherwise, to indicate the index of
the individual subentry to dial, dwSubEntry must be a number from one to the number of
subentries.

dwError

The RasDialDlg function sets this member to a system error code or RAS error code if an
error occurs. If no error occurs, the function sets dwError to zero. This value is ignored on
input.

reserved

Reserved; must be zero.
reserved2

Reserved; must be zero.See AlsoRasDialDlg

RASDIALEXTENSIONS
The RASDIALEXTENSIONS structure contains information about extended features of the
RasDial function. You can enable one or more of these extensions by passing a pointer to a
RASDIALEXTENSIONS structure when you call RasDial. If you do not pass a pointer to a
RASDIALEXTENSIONS structure to RasDial, RasDial uses the default settings that are noted
following.typedef struct _RASDIALEXTENSIONS {

DWORD dwSize;
DWORD dwfOptions;
HWND hwndParent;
DWORD reserved;

} RASDIALEXTENSIONS;
MembersdwSize

Specifies the size of this structure, in bytes. Set this member to
sizeof(RASDIALEXTENSIONS). This indicates the version of the structure.

dwfOptions

A set of bit flags that specify RasDial extensions. The following bit flags are defined; you must
set all undefined bits to zero:

Value Description
RDEOPT_UsePrefixSuffix If this bit flag is one, RasDial

uses the prefix and suffix that
is in the RAS phonebook.
If this bit flag is zero, RasDial
ignores the prefix and suffix
that is in the RAS phonebook.
If no phonebook entry name is
specified in the call to
RasDial, the actual value of
this bit flag is ignored, and it is
assumed to be zero.

RDEOPT_PausedStates If this bit flag is one, RasDial
accepts paused states.
Examples of paused states
are terminal mode, retry logon,
change password, and set
callback number.
If this bit flag is zero, RasDial
reports a fatal error if it enters
a paused state.

RDEOPT_IgnoreModemSpeaker If this bit flag is one, RasDial
ignores the modem speaker
setting that is in the RAS
phonebook, and uses the
setting specified by the
RDEOPT_SetModemSpeaker
bit flag.
If this bit flag is zero, RasDial
uses the modem speaker
setting that is in the RAS
phonebook, and ignores the
setting specified by the
RDEOPT_SetModemSpeaker
bit flag.
If no phonebook entry name is
specified in the call to
RasDial, the choice is
between using a default
setting or the setting specified
by the
RDEOPT_SetModemSpeaker
bit flag. The default setting is
used if
RDEOPT_IgnoreModemSpeaker
is zero. The setting specified
by
RDEOPT_SetModemSpeaker
is used if
RDEOPT_IgnoreModemSpeaker
is one.

RDEOPT_SetModemSpeaker If this bit flag is one, and
RDEOPT_IgnoreModemSpeaker

is one, RasDial sets the
modem speaker on.
If this bit flag is zero, and
RDEOPT_IgnoreModemSpeaker
is one, RasDial sets the
modem speaker off.
If
RDEOPT_IgnoreModemSpeaker
is zero, RasDial ignores the
value of
RDEOPT_SetModemSpeaker,
and sets the modem speaker
based on the RAS phonebook
setting or the default setting.

RDEOPT_IgnoreSoftwareCompressionIf this bit flag is one, RasDial
ignores the software
compression setting that is in
the RAS phonebook, and uses
the setting specified by the
RDEOPT_SetSoftwareCompression
bit flag.
If this bit flag is zero, RasDial
uses the software
compression setting that is in
the RAS phonebook, and
ignores the setting specified
by the
RDEOPT_SetSoftwareCompression
bit flag.
If no phonebook entry name is
specified in the call to
RasDial, the choice is
between using a default
setting or the setting specified
by the
RDEOPT_SetSoftwareCompression
bit flag. The default setting is
used if
RDEOPT_IgnoreSoftwareCompression
is zero. The setting specified
by
RDEOPT_SetSoftwareCompression
is used if
RDEOPT_IgnoreSoftwareCompression
is one.

RDEOPT_SetSoftwareCompressionIf this bit flag is one, and
RDEOPT_IgnoreSoftwareCompression
is one, RasDial uses software
compression.
If this bit flag is zero, and
RDEOPT_IgnoreSoftwareCompression
is one, RasDial does not use
software compression.
If
RDEOPT_IgnoreSoftwareCompression
is zero, RasDial ignores the
value of
RDEOPT_SetSoftwareCompression,
and sets the software
compression state based on
the RAS phonebook setting or
the default setting.

RDEOPT_PauseOnScript Used internally by the
RasDialDlg function so that a
Windows-95-style logon script
is executed in a terminal
window visible to the user.
Applications should not set
this flag.

The default value for each of these bit flags is zero.
hwndParent

Handle to a parent window that a security DLL can use for dialog box creation and centering.
Note that this is not the window that receives RasDial progress notifications.
This member is optional; it is not required when no security DLL is defined.
The default value for this member is NULL.

reserved

This member is reserved for future use. It must be set to zero.See AlsoRasDial

RASDIALPARAMS
The RASDIALPARAMS structure contains parameters used by RasDial to establish a remote
access connection.typedef struct _RASDIALPARAMS {

DWORD dwSize;
TCHAR szEntryName[RAS_MaxEntryName + 1];
TCHAR szPhoneNumber[RAS_MaxPhoneNumber + 1];
TCHAR szCallbackNumber[RAS_MaxCallbackNumber + 1];
TCHAR szUserName[UNLEN + 1];
TCHAR szPassword[PWLEN + 1];
TCHAR szDomain[DNLEN + 1] ;

#if (WINVER >= 0x401)
DWORD dwSubEntry;
DWORD dwCallbackId;

#endif
} RASDIALPARAMS;
MembersdwSize

Specifies the structure size, in bytes.
szEntryName

Specifies a string containing the phonebook entry to use to establish the connection. An
empty string ("") specifies a simple modem connection on the first available modem port, in
which case a nonempty szPhoneNumber must be provided.

szPhoneNumber

Specifies a string containing an overriding phone number. An empty string ("") indicates that
the phonebook entry's phone number should be used. If szEntryName is "",
szPhoneNumber cannot be "".

szCallbackNumber

Specifies a string containing a callback phone number. An empty string ("") indicates that
callback should not be used. This string is ignored unless the user has "Set By Caller"
callback permission on the RAS server. An asterisk indicates that the number stored in the
phonebook should be used for callback.

szUserName

Specifies a string containing the user's user name. This string is used to authenticate the
user's access to the remote access server.

szPassword

Specifies a string containing the user's password. This string is used to authenticate the user's
access to the remote access server.
Windows NT: You can use szPassword to send a new password to the remote server when
you restart a RasDial connection from a RASCS_PasswordExpired paused state. When
changing a password on an entry that calls Microsoft Networks, you should limit the new
password to 14 characters in length to avoid down-level compatibility problems.

szDomain

Specifies a string containing the domain on which authentication is to occur. An empty string
("") specifies the domain in which the remote access server is a member. An asterisk specifies
the domain stored in the phonebook for the entry.

dwSubEntry

Specifies the index of the initial subentry to dial. If the phone-book entry has no subentries or
the dial mode of the phone-book entry is RASEDM_DialAll, dwSubEntry is ignored. If the dial
mode is RASEDM_DialAsNeeded, RAS dials the specified subentry. If dwSubEntry is not a
valid subentry index, RAS dials the first subentry. The RASENTRY structure returned by
RasGetEntryProperties indicates the dial mode and number of subentries for the phone-
book entry.

dwCallbackId

Specifies an application-defined value that RAS passes to your RasDialFunc2 callback
function.RemarksThe szUserName and szPassword strings are used to authenticate the user's access to the

remote access server.

Windows NT:

RAS does not actually log the user onto the network. The user does this in the usual manner,
for example, by logging on with cached credentials prior to making the connection or by using
CTRL+ALT+DEL, after the RAS connection is established.
If both the szUserName and szPassword members are empty strings (""), RAS uses the user
name and password of the current logon context for authentication. For a user mode
application, RAS uses the credentials of the currently logged-on interactive user. For a Win32
service process, RAS uses the credentials associated with the service.

Windows 95:

RAS uses the szUserName and szPassword strings to log the user onto the network.
Windows 95 cannot get the password of the currently logged-on user, so if both the
szUserName and the szPassword members are empty strings (""), RAS leaves the user
name and password empty during authentication.See AlsoRasDial

RASENTRY
[New - Windows NT]

The RASENTRY structure describes a phone-book entry. The RasSetEntryProperties and
RasGetEntryProperties functions use this structure to set and retrieve the properties of a phone-
book entry.typedef struct tagRASENTRY {

DWORD dwSize;
DWORD dwfOptions;
//
// Location/phone number.
//
DWORD dwCountryID;
DWORD dwCountryCode;
TCHAR szAreaCode[RAS_MaxAreaCode + 1];
TCHAR szLocalPhoneNumber[RAS_MaxPhoneNumber + 1];
DWORD dwAlternateOffset;
//
// PPP/Ip
//
RASIPADDR ipaddr;
RASIPADDR ipaddrDns;
RASIPADDR ipaddrDnsAlt;
RASIPADDR ipaddrWins;
RASIPADDR ipaddrWinsAlt;
//
// Framing
//
DWORD dwFrameSize;
DWORD dwfNetProtocols;
DWORD dwFramingProtocol;
//
// Scripting
//
TCHAR szScript[MAX_PATH];
//
// AutoDial
//
TCHAR szAutodialDll[MAX_PATH];
TCHAR szAutodialFunc[MAX_PATH];
//
// Device
//
TCHAR szDeviceType[RAS_MaxDeviceType + 1];
TCHAR szDeviceName[RAS_MaxDeviceName + 1];
//
// X.25
//
TCHAR szX25PadType[RAS_MaxPadType + 1];
TCHAR szX25Address[RAS_MaxX25Address + 1];
TCHAR szX25Facilities[RAS_MaxFacilities + 1];
TCHAR szX25UserData[RAS_MaxUserData + 1];
DWORD dwChannels;
//
// Reserved
//
DWORD dwReserved1;
DWORD dwReserved2;

#if (WINVER >= 0x401)
//
// Multilink
//
DWORD dwSubEntries;
DWORD dwDialMode;
DWORD dwDialExtraPercent;
DWORD dwDialExtraSampleSeconds;
DWORD dwHangUpExtraPercent;
DWORD dwHangUpExtraSampleSeconds;
//
// Idle timeout
//
DWORD dwIdleDisconnectSeconds;

#endif
} RASENTRY;
MembersdwSize

Specifies the size, in bytes, of the RASENTRY structure. Before calling
RasSetEntryProperties or RasGetEntryProperties, set dwSize to sizeof(RASENTRY) to
identify the version of the structure.

dwfOptions

A set of bit flags that specify connection options. You can set one or more of the following
flags.

Flag Description
RASEO_UseCountryAndAreaCodesIf this flag is set, the dwCountryID,

dwCountryCode, and
szAreaCode members are used to
construct the phone number. If this
flag is not set, these members are
ignored.
This flag corresponds to the Use
Country and Area Codes check box
in the Phone dialog box.

RASEO_SpecificIpAddr If this flag is set, RAS tries to use
the IP address specified by ipaddr
as the IP address for the dial-up
connection. If this flag is not set,
the value of the ipaddr member is
ignored.
Setting the RASEO_SpecificIpAddr
flag corresponds to selecting the
Specify an IP Address setting in the
TCP/IP settings dialog box.
Clearing the
RASEO_SpecificIpAddr flag
corresponds to selecting the Server
Assigned IP Address setting in the
TCP/IP settings dialog box.
Currently, an IP address set in the
phone-book entry properties or
retrieved from a server overrides
the IP address set in the network
control panel.

RASEO_SpecificNameServers If this flag is set, RAS uses the
ipaddrDns, ipaddrDnsAlt,
ipaddrWins, and ipaddrWinsAlt
members to specify the name
server addresses for the dial-up
connection. If this flag is not set,
RAS ignores these members.
Setting the
RASEO_SpecificNameServers flag
corresponds to selecting the
Specify Name Server Addresses
setting in the TCP/IP Settings
dialog box. Clearing the
RASEO_SpecificNameServers flag
corresponds to selecting the Server
Assigned Name Server Addresses
setting in the TCP/IP Settings
dialog box.

RASEO_IpHeaderCompression If this flag is set, RAS negotiates to
use IP header compression on PPP
connections.
If this flag is not set, IP header
compression is not negotiated.
This flag corresponds to the Use IP
Header Compression check box in
the TCP/IP settings dialog box. It is
generally advisable to set this flag
because IP header compression
significantly improves performance.
The flag should be cleared only
when connecting to a server that
does not correctly negotiate IP
header compression.

RASEO_RemoteDefaultGateway If this flag is set, the default route
for IP packets is through the dial-
up adapter when the connection is
active. If this flag is clear, the
default route is not modified.
This flag corresponds to the Use
Default Gateway on Remote
Network check box in the TCP/IP
settings dialog box.

RASEO_DisableLcpExtensions If this flag is set, RAS disables the
PPP LCP extensions defined in
RFC 1570. This may be necessary
to connect to certain older PPP
implementations, but interferes with
features such as server callback.
Do not set this flag unless
specifically required.

RASEO_TerminalBeforeDial If this flag is set, RAS displays a
terminal window for user input
before dialing the connection.

RASEO_TerminalAfterDial If this flag is set, RAS displays a
terminal window for user input after
dialing the connection.
Do not set this flag if a dial-up
networking script is to be
associated with the connection,
because scripting has its own
terminal implementation.

RASEO_ModemLights This flag is currently ignored.
RASEO_SwCompression If this flag is set, software

compression is negotiated on the
link. Setting this flag causes the
PPP driver to attempt to negotiate
CCP with the server. This flag
should be set by default, but
clearing it can reduce the
negotiation period if the server
does not support a compatible
compression protocol.

RASEO_RequireEncryptedPw If this flag is set, only secure
password schemes can be used to
authenticate the client with the
server. This prevents the PPP
driver from using the PAP plain-
text authentication protocol to
authenticate the client. The CHAP
and SPAP authentication protocols

are also supported. Clear this flag
for increased interoperability, and
set it for increased security.
This flag corresponds to the
Require Encrypted Password check
box in the Security dialog box. See
also
RASEO_RequireMsEncryptedPw.

RASEO_RequireMsEncryptedPw If this flag is set, only Microsoft's
secure password schemes can be
used to authenticate the client with
the server. This prevents the PPP
driver from using the PPP plain-
text authentication protocol, MD5-
CHAP, MS-CHAP, or SPAP. The
flag should be cleared for maximum
interoperability and should be set
for maximum security. This flag
takes precedence over
RASEO_RequireEncryptedPw.
This flag corresponds to the
Require Microsoft Encrypted
Password check box in the Security
dialog box. See also
RASEO_RequireDataEncryption.

RASEO_RequireDataEncryption If this flag is set, data encryption
must be negotiated successfully or
the connection should be dropped.
This flag is ignored unless
RASEO_RequireMsEncryptedPw is
also set.
This flag corresponds to the
Require Data Encryption check box
in the Security dialog box.

RASEO_NetworkLogon If this flag is set, RAS logs on to the
network after the point-to-point
connection is established.
This flag currently has no effect
under Windows NT.

RASEO_UseLogonCredentials If this flag is set, RAS uses the user
name, password, and domain of
the currently logged-on user when
dialing this entry. This flag is
ignored unless
RASEO_RequireMsEncryptedPw is
also set.
Note that this setting is ignored by
the RasDial function, where
specifying empty strings for the
szUserName and szPassword
members of the
RASDIALPARAMS structure gives
the same result.
This flag corresponds to the Use
Current Username and Password
check box in the Security dialog
box.

RASEO_PromoteAlternates This flag has an effect when
alternate phone numbers are
defined by the dwAlternateOffset
member. If this flag is set, an
alternate phone number that

connects successfully becomes the
primary phone number, and the
current primary phone number is
moved to the alternate list.
This flag corresponds to the check
box in the Alternate Numbers
dialog box.

RASEO_SecureLocalFiles Windows NT only: If this flag is
set, RAS checks for existing remote
file system and remote printer
bindings before making a
connection with this entry.
Typically, you set this flag on
phone-book entries for public
networks to remind users to break
connections to their private network
before connecting to a public
network.

dwCountryID

Specifies the TAPI country identifier. Use the RasGetCountryInfo function to enumerate
country identifiers. This member is ignored unless the dwfOptions member specifies the
RASEO_UseCountryAndAreaCodes flag.

dwCountryCode

Specifies the country code portion of the phone number. The country code must correspond
to the country identifier specified by dwCountryID. If dwCountryCode is zero, the country
code is based on the country identifier specified by dwCountryID. This member is ignored
unless dwfOptions specifies the RASEO_UseCountryAndAreaCodes flag.

szAreaCode

Specifies the area code as a null-terminated string. If the dialing location does not have an
area code, specify an empty string (""). Do not include brackets or other delimiters in the area
code string. (For example, "206" is a valid area code; "(206)" is not. This member is ignored
unless the dwfOptions member specifies the RASEO_UseCountryAndAreaCodes flag.

szLocalPhoneNumber

Specifies a null-terminated string containing a telephone number. The way RAS uses this
string depends on whether the dwfOptions member specifies the
RASEO_UseCountryAndAreaCodes flag. If the flag is set, RAS combines
szLocalPhoneNumber with the country and area codes specified by the dwCountryID,
dwCountryCode , and szAreaCode members. If the flag is not set, RAS uses the
szLocalPhoneNumber string as the entire phone number.

dwAlternateOffset

Specifies the offset, in bytes, from the beginning of the structure to a list of consecutive null-
terminated strings. The last string is terminated by two consecutive null characters. The
strings are alternate phone numbers that RAS dials in the order listed if the primary number
(see szLocalPhoneNumber) fails to connect. The alternate phone number strings are ANSI
or Unicode, depending on whether you use the ANSI or Unicode version of the structure.

ipaddr

Specifies the IP address to be used while this connection is active. This member is ignored
unless dwfOptions specifies the RASEO_SpecificIpAddr flag.

ipaddrDns

Specifies the IP address of the DNS server to be used while this connection is active. This
member is ignored unless dwfOptions specifies the RASEO_SpecificNameServers flag.

ipaddrDnsAlt

Specifies the IP address of a secondary or backup DNS server to be used while this

connection is active. This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

ipaddrWins

Specifies the IP address of the WINS server to be used while this connection is active. This
member is ignored unless dwfOptions specifies the RASEO_SpecificNameServers flag.

ipaddrWinsAlt

Specifies the IP address of a secondary WINS server to be used while this connection is
active. This member is ignored unless dwfOptions specifies the
RASEO_SpecificNameServers flag.

dwFrameSize

Specifies the network protocol frame size. The value should be either 1006 or 1500. This
member is ignored unless dwFramingProtocol specifies the RASFP_Slip flag.

dwfNetProtocols

Specifies the network protocols to negotiate. This member can be a combination of the
following flags.

Flag Description
RASNP_Netbeui Negotiate the NetBEUI protocol.
RASNP_Ipx Negotiate the IPX protocol.
RASNP_Ip Negotiate the TCP/IP protocol.

dwFramingProtocol

Specifies the framing protocol used by the server. PPP is the emerging standard. SLIP is
used mainly in UNIX environments. This member can be one of the following flags.

Flag Description
RASFP_Ppp Point-to-Point Protocol (PPP)
RASFP_Slip Serial Line Internet Protocol (SLIP)
RASFP_Ras Microsoft proprietary protocol

implemented in Windows NT 3.1
and Windows for Workgroups 3.11

To use Compressed SLIP, set the RASFP_Slip flag and set the
RASEO_IpHeaderCompression flag in the dwfOptions member.

szScript

Specifies a null-terminated string containing the name of the script file. The filename should
be a full path.
Windows NT: To indicate a Windows NT SWITCH.INF script name, set the first character of
the name to "[".

szAutodialDll

Specifies a null-terminated string containing the full path and filename of the dynamic-link
library (DLL) for the customized AutoDial handler. If szAutodialDll contains an empty string
(""), RAS uses the default dialing user interface and the szAutodialFunc member is ignored.

szAutodialFunc

Specifies a null-terminated string containing the exported name of the RASADFunc function
for the customized AutoDial handler. An AutoDial DLL must provide both ANSI and Unicode
versions of the RASADFunc handler. However, do not include the "A" or "W" suffix in the
name specified by szAutodialFunc.

szDeviceType

Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description
RASDT_Modem A modem accessed through a

COM port.
RASDT_Isdn An ISDN card with corresponding

NDISWAN driver installed.
RASDT_X25 An X.25 card with corresponding

NDISWAN driver installed.

szDeviceName

Contains a null-terminated string containing the name of a TAPI device to use with this phone-
book entry. To enumerate all available RAS-capable devices, use the RasEnumDevices
function.

szX25PadType

Contains a null-terminated string that identifies the X.25 PAD type. Set this member to ""
unless the entry should dial using an X.25 PAD.
Windows NT: Under Windows NT, the szX25PadType string maps to a section name in
PAD.INF.

szX25Address

Contains a null-terminated string that identifies the X.25 address to connect to. Set this
member to "" unless the entry should dial using an X.25 PAD or native X.25 device.

szX25Facilities

Contains a null-terminated string that specifies the facilities to request from the X.25 host at
connection. This member is ignored if szX25Address is an empty string ("").

szX25UserData

Contains a null-terminated string that specifies additional connection information supplied to
the X.25 host at connection. This member is ignored if szX25Address is an empty string ("").

dwChannels;

dwReserved1

Reserved; must be zero.
dwReserved2

Reserved; must be zero.
dwSubEntries

Specifies the number of multilink subentries associated with this entry. When calling
RasSetEntryProperties, set this member to zero. To add subentries to a phone-book entry,
use the RasSetSubEntryProperties function.

dwDialMode

Indicates whether RAS should dial all of this entry's multilink subentries when the entry is first
connected. This member can be one of the following values.

Value Meaning
RASEDM_DialAll Dial all subentries initially.
RASEDM_DialAsNeededAdjust the number of subentries as

bandwidth is needed. RAS uses the
dwDialExtraPercent,
dwDialExtraSampleSeconds,
dwDialHangUpExtraPercent, and
dwHangUpExtraSampleSeconds
members to determine when to dial or
disconnect a subentry.

dwDialExtraPercent

Specifies a percent of the total bandwidth available from the currently connected subentries.
RAS dials an additional subentry when the total bandwidth used exceeds

dwDialExtraPercent percent of the available bandwidth for at least
dwDialExtraSampleSeconds seconds.
This member is ignored unless the dwDialMode member specifies the
RASEDM_DialAsNeeded flag.

dwDialExtraSampleSeconds

Specifies the number of seconds that current bandwidth usage must exceed the threshold
specified by dwDialExtraPercent before RAS dials an additional subentry.
This member is ignored unless the dwDialMode member specifies the
RASEDM_DialAsNeeded flag.

dwHangUpExtraPercent

Specifies a percent of the total bandwidth available from the currently connected subentries.
RAS terminates (hangs up) an existing subentry connection when total bandwidth used is less
than dwHangUpExtraPercent percent of the available bandwidth for at least
dwHangUpExtraSampleSeconds seconds.
This member is ignored unless the dwDialMode member specifies the
RASEDM_DialAsNeeded flag.

dwHangUpExtraSampleSeconds

Specifies the number of seconds that current bandwidth usage must be less than the
threshold specified by dwHangUpExtraPercent before RAS terminates an existing subentry
connection.
This member is ignored unless the dwDialMode member specifies the
RASEDM_DialAsNeeded flag.

dwIdleDisconnectSeconds

Specifies the number of seconds after which the connection is terminated due to inactivity.
Note that unless the idle timeout is disabled, the entire connection is terminated if the
connection is idle for the specified interval. This member can specify a number of seconds, or
one of the following values.

Value Meaning
RASIDS_Disabled There is no idle timeout for this

connection.
RASIDS_UseGlobalValue Use the user preference value as the

default.
See AlsoRASADFunc, RasGetCountryInfo, RasSetEntryProperties, RasSetSubEntryProperties

RASENTRYDLG
[New - Windows NT]

The RASENTRYDLG structure is used in the RasEntryDlg function to specify addtional input and
output parameters.typedef struct tagRASENTRYDLG {

IN DWORD dwSize;
IN HWND hwndOwner;
IN DWORD dwFlags;
IN LONG xDlg;
IN LONG yDlg;
OUT WCHAR szEntry[RAS_MaxEntryName + 1];
OUT DWORD dwError;
IN DWORD reserved;
IN DWORD reserved2;

} RASENTRYDLG;
MembersdwSize

Specifies the size of this structure, in bytes. Before calling RasEntryDlg, set this member to
sizeof(RASENTRYDLG) to indicate the version of the structure. If dwSize is not a valid size,
RasEntryDlg fails and sets the dwError member to ERROR_INVALID_SIZE.

hwndOwner

Identifies the window that owns the modal RasEntryDlg dialog box. This member can be any
valid window handle, or it can be NULL if the dialog box has no owner.

dwFlags

A set of bit flags that indicate the options enabled for the dialog box. This parameter can be a
combination of the RASEDFLAG_PositionDlg flag and one of the other flags listed following to
indicate whether the RasEntryDlg function is creating, copying, or editing a phone-book entry.

Value Meaning
RASEDFLAG_PositionDlg Causes RasEntryDlg to use the

values specified by the xDlg and
yDlg members to position the
dialog box. If this flag is not set, the
dialog box is centered on the owner
window, unless hwndOwner is
NULL, in which case, the dialog
box is centered on the screen.

RASEDFLAG_NewEntry Causes RasEntryDlg to display a
wizard for creating a new phone-
book entry.

RASEDFLAG_CloneEntry Causes RasEntryDlg to create a
new entry by copying the properties
of an existing entry. The function
displays a property sheet
containing the properties
associated with the phone-book
entry specified by the lpszEntry
parameter of RasEntryDlg. The
user can edit the properties and
specify a name for the new entry.

RASEDFLAG_NoRename Causes RasEntryDlg to display a
property sheet for editing the
properties of the phone-book entry
specified by the lpszEntry
parameter of RasEntryDlg. The
user can change the properties of
the entry but not its name.

xDlg

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASEDFLAG_PositionDlg flag is set.

yDlg

Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This value is
used only if the RASEDFLAG_PositionDlg flag is set.

szEntry

On exit, szEntry is set to the name of the phone-book entry that was edited or created.
dwError

The RasEntryDlg function sets this member to a system error code or RAS error code if an
error occurs. If no error occurs, the function sets dwError to zero. This value is ignored on
input.

reserved

Reserved; must be zero.
reserved2

Reserved; must be zero.

See AlsoRasEntryDlg

RASENTRYNAME
The RASENTRYNAME structure contains an entry name from a remote access phonebook. The
RasEnumEntries function returns an array of these structures.typedef struct _RASENTRYNAME {

DWORD dwSize;
TCHAR szEntryName[RAS_MaxEntryName + 1];

}RASENTRYNAME;
MembersdwSize

Specifies the structure size, in bytes.
szEntryName

Specifies a string containing the name of a remote access phonebook entry.See AlsoRasEnumEntries

RASIPADDR
[New - Windows NT]

The RASIPADDR structure contains an IP address. The RASENTRY structure uses this structure
to specify the IP addresses of various servers associated with an entry in a RAS phone book.typedef struct RASIPADDR {

BYTE a;
BYTE b;
BYTE c;
BYTE d;

} RASIPADDR;
Membersa, b, c, and d

These members specify the value of the corresponding location in the "a.b.c.d" IP address.See AlsoRASENTRY

RASMONITORDLG
[New - Windows NT]

The RASMONITORDLG structure is used in the RasMonitorDlg function to specify additional
input and output parameters.typedef struct tagRASMONITORDLG {

IN DWORD dwSize;
IN HWND hwndOwner;
IN DWORD dwFlags;
IN DWORD dwStartPage;
IN LONG xDlg;
IN LONG yDlg;
OUT DWORD dwError;
IN DWORD reserved;
IN DWORD reserved2;

} RASMONITORDLG;
MembersdwSize

Specifies the size of this structure, in bytes. Before calling RasMonitorDlg, set this member
to sizeof(RASMONITORDLG) to indicate the version of the structure. If dwSize is not a valid
size, RasMonitorDlg fails and sets the dwError member to ERROR_INVALID_SIZE.

hwndOwner

Identifies the window that owns the modal RasMonitorDlg property sheet. This member can
be any valid window handle, or it can be NULL if the property sheet has no owner.

dwFlags

A bit flag that indicates the options that are enabled for the property sheet. You can specify
the following value.

Value Meaning
RASMDFLAG_PositionDlg Causes RasMonitorDlg to use the

values specified by the xDlg and
yDlg members to position the
dialog box. If this flag is not set, the
dialog box is centered on the owner
window, unless hwndOwner is
NULL, in which case, the dialog
box is centered on the screen.

dwStartPage

A set of bit flags that indicate the initial page of the property sheet to display on top. You can
specify one of the following values.

Value Meaning
RASMDPAGE_Status Display the Status page on top.

This is the default.
RASMDPAGE_Summary Display the Summary page on top.
RASMDPAGE_Preferences Display the Preferences page on

top.

xDlg

Specifies the horizontal screen coordinate of the upper-left corner of the property sheet. This
value is used only if the RASMDFLAG_PositionDlg flag is set.

yDlg

Specifies the vertical screen coordinate of the upper-left corner of the property sheet. This
value is used only if the RASMDFLAG_PositionDlg flag is set.

dwError

The RasMonitorDlg function sets this member to a system error code or RAS error code if an
error occurs. If no error occurs, the function sets dwError to zero. This value is ignored on
input.

reserved

Reserved; must be zero.
reserved2

Reserved; must be zero.See AlsoRasMonitorDlg

RASNOUSER
[New - Windows NT]

The RASNOUSER structure is used with the RasPBDlgFunc callback function to specify
authentication credentials and other information. This structure enables dial-up networking
operations that begin before a user has logged on. It is provided to support the WinLogon
application, and is not typically used by other applications.typedef struct tagRASNOUSER {

IN DWORD dwSize;
IN DWORD dwFlags;
OUT DWORD dwTimeoutMs;
OUT TCHAR szUserName[UNLEN + 1];
OUT TCHAR szPassword[PWLEN + 1];
OUT TCHAR szDomain[DNLEN + 1];

} RASNOUSER;
MembersdwSize

Specifies the size of this structure, in bytes. This member indicates the version of the
structure.

dwFlags

Reserved; must be zero.
dwTimeoutMs

Specifies the time, in milliseconds, before the RasPhonebookDlg dialog box closes and
returns to the caller as if the user had pressed the Close button. This feature is required for
code that displays a window during WinLogon. If the user leaves his or her terminal for some
time, the dialog box closes and WinLogon reverts to the CTRL+ALT+DEL prompt.

szUserName

Specifies a null-terminated string that contains the name of the user. This string is used to
authenticate the user's right to access the remote access server.

szPassword

Specifies a null-terminated string that contains the user's password. This string is used to
authenticate the user's right to access the remote access server.

szDomain

Specifies a null-terminated string that contains the domain on which authentication is to occur.
An empty string ("") specifies the domain in which the remote access server is a member.See AlsoRasPBDlgFunc, RasPhonebookDlg

RASPBDLG
[New - Windows NT]

The RASPBDLG structure is used with the RasPhonebookDlg function to specify additional input
and output parameters.typedef struct tagRASPBDLG {

IN DWORD dwSize;
IN HWNDhwndOwner;
IN DWORD dwFlags;
IN LONGxDlg;
IN LONGyDlg;
IN DWORD dwCallbackId;
IN RASPBDLGFUNC pCallback;
OUT DWORD dwError;
IN DWORD reserved;
IN DWORD reserved2;

} RASPBDLG;
MembersdwSize

Specifies the size of this structure, in bytes. Before calling RasPhonebookDlg, set this
member to sizeof(RASPBDLG) to indicate the version of the structure. If dwSize is not a
valid size, RasPhonebookDlg fails and sets the dwError member to
ERROR_INVALID_SIZE.

hwndOwner

Identifies the window that owns the modal RasPhonebookDlg dialog box. This member can
be any valid window handle, or it can be NULL if the dialog box has no owner.

dwFlags

A set of bit flags that indicate the options enabled for the dialog box. This parameter can be a
combination of the following values.

Value Meaning
RASPBDFLAG_PositionDlg Causes RasPhonebookDlg to

use the values specified by the
xDlg and yDlg members to
position the dialog box. If this
flag is not set, the dialog box is
centered on the owner window,
unless hwndOwner is NULL, in
which case, the dialog box is
centered on the screen.

RASPBDFLAG_ForceCloseOnDialTurns on the close-on-dial
option, overriding the user's
preference. This option is
appropriate with features such
as RAS AutoDial where the
user's goal is to make a
connection immediately.

RASPBDFLAG_NoUser Causes the RasPBDlgFunc
callback function specified by
the pCallback member to
receive a
RASPBDEVENT_NoUser
notification when the dialog box
is starting up. This flag is for use
in situations in which there is no
logged-on user, as in the
WinLogon application. Typically,
applications should not use this
flag.

RASPBDFLAG_UpdateDefaults Causes the default window
position to be saved on exit.
This flag is used primarily by
RASPHONE.EXE and should
not be used by typical
applications.

xDlg

Specifies the horizontal screen coordinate of the upper-left corner of the dialog box. This
value is used only if the RASPBDFLAG_PositionDlg flag is set.

yDlg

Specifies the vertical screen coordinate of the upper-left corner of the dialog box. This value is
used only if the RASPBDFLAG_PositionDlg flag is set.

dwCallbackId

Specifies an application- defined value that is passed to the callback function specified
by pCallback. You can use dwCallbackId to pass a pointer to application-specific context
information.

pCallback

Pointer to a RasPBDlgFunc callback function that receives notifications of user activity while
the dialog box is open. This member can be NULL if you do not want notifications.

dwError

The RasPhonebookDlg function sets this member to a system error code or RAS error code
if an error occurs. If no error occurs, the function sets dwError to zero. This value is ignored
on input.

reserved

Reserved; must be zero.
reserved2

Reserved; must be zero.See AlsoRasPBDlgFunc, RasPhonebookDlg

RASPPPIP
The RASPPPIP structure contains the result of a PPP Internet Protocol (IP) projection operation.

The RasGetProjectionInfo function returns a RASPPPIP data structure when its rasprojection
parameter has the value RASP_PppIp.typedef struct _RASPPPIP {

DWORD dwSize;
DWORD dwError;
TCHAR szIpAddress[RAS_MaxIpAddress + 1];

} RASPPPIP;
MembersdwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionInfo function,
set this member to indicate the version of the RASPPPIP structure that you are using. For
information about earlier versions of this structure, see the following Remarks section.

dwError

Contains the result of the PPP control protocol negotiation. A value of zero indicates success.
A nonzero value indicates failure, and is the actual fatal error that occurred during the control
protocol negotiation, the error that prevented the projection from completing successfully.

szIpAddress

Contains a zero-terminated string that is the client's IP address on the RAS connection. This
address string has the form a.b.c.d; for example, "11.101.237.71".

szServerIpAddress

Contains a null-terminated string that is the IP address of the remote PPP peer (that is, the
server's IP address). This string is in "a.b.c.d" form. PPP does not require that servers provide
this address, but Windows NT servers will consistently return the address anyway. Other PPP
vendors may not provide the address. If the address is not available, this member returns an
empty string, "".RemarksThe szServerIpAddress member was added to the RASPPPIP structure beginning with Windows

NT 3.51 and the initial release of Windows 95. Beginning with these systems,
RasGetProjectionInfo will support both the current form of the structure and the old form without
the szServerIpAddress member. Use the dwSize member to indicate which version you are
using.

For earlier versions of Windows NT, RasGetProjectionInfo will return ERROR_INVALID_SIZE if
dwSize specifies the current structure size. To retrieve PPP IP information from older systems,
dwSize must specify the size of the old structure without the szServerIpAddress member.See AlsoRasGetProjectionInfo, RASPROJECTION

RASPPPIPX
The RASPPPIPX structure contains the result of a PPP Internetwork Packet Exchange (IPX)
projection operation.

The RasGetProjectionInfo function returns a RASPPPIPX data structure when its rasprojection
parameter has the value RASP_PppIpx.typedef struct _RASPPPIPX {

DWORD dwSize;
DWORD dwError;
TCHAR szIpxAddress[RAS_MaxIpxAddress + 1];

} RASPPPIPX;
MembersdwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionInfo function,
set this member to sizeof(RASPPPIPX). The function can then determine the version of the
RASPPPIPX data structure that the caller of RasGetProjectionInfo is expecting. This allows
backwards compatibility for compiled applications if there are future enhancements to the data
structure.

dwError

Contains the result of the PPP control protocol negotiation. A value of zero indicates success.
A nonzero value indicates failure, and is the actual fatal error that occurred during the control
protocol negotiation, the error that prevented the projection from completing successfully.

szIpxAddress

Contains a zero-terminated string that is the client's IPX address on the RAS connection. This
address string has the form net.node; for example, "1234ABCD.12AB34CD56EF".See AlsoRasGetProjectionInfo, RASPROJECTION

RASPPPNBF
The RASPPPNBF structure contains the result of a PPP NetBEUI Framer (NBF) projection
operation.

The RasGetProjectionInfo function returns a RASPPPNBF data structure when its rasprojection
parameter has the value RASP_PppNbf.typedef struct _RASPPPNBF {

DWORD dwSize;
DWORD dwError;
DWORD dwNetBiosError;
TCHAR szNetBiosError[NETBIOS_NAME_LEN + 1];
TCHAR szWorkstationName[NETBIOS_NAME_LEN + 1];
BYTEbLana;

} RASPPPNBF;
MembersdwSize

Specifies the size of the structure, in bytes. Before calling the RasGetProjectionInfo function,
set this member to sizeof(RASPPPNBF). The function can then determine the version of the
RASPPPNBF data structure that the caller of RasGetProjectionInfo is expecting. This allows
backwards compatibility for compiled applications if there are future enhancements to the data
structure.

dwError

Contains the result of the PPP control protocol negotiation. A value of zero indicates success.
A nonzero value indicates failure, and is the actual fatal error that occurred during the control
protocol negotiation, the error that prevented the projection from completing successfully.

dwNetBiosError

If dwError has the value ERROR_SERVER_NOT_RESPONDING or
ERROR_NETBIOS_ERROR, the dwNetBiosError field contains the NetBIOS error that
occurred. For other values of dwError, this field contains zero.
Windows 95: This member is undefined.

szNetBiosError

If dwError has the value ERROR_NAME_EXISTS_ON_NET, the szNetBiosError field
contains a zero-terminated string that is the NetBIOS name that caused the conflict. For other
values of dwError, this field contains the null string.

szWorkStationName

Contains a zero-terminated string that is the local workstation's computer name. This unique
computer name is the closest NetBIOS equivalent to a client's NetBEUI address on a remote
access connection.

bLana

Identifies the NetBIOS network adapter identifier, or LANA, on which the remote access
connection was established. This member contains the value 0xFF if a connection was not
established.See AlsoRasGetProjectionInfo, RASPROJECTION

RASSLIP
[New - Windows NT]

The RASSLIP structure contains the results of a the Serial Line Internet Protocol (SLIP) projection
operation.RASSLIP {

DWORD dwSize;
DWORD dwError;
TCHAR szIpAddress[RAS_MaxIpAddress + 1];

};
MembersdwSize

Specifies the size, in bytes, of the RASSLIP structure. Before calling the
RasGetProjectionInfo function, set dwSize to sizeof(RASSLIP) to identify the version of
the structure.

dwError

Indicates whether SLIP is configured. If dwError is zero, SLIP framing is configured.
Otherwise, dwError is ERROR_PROTOCOL_NOT_CONFIGURED.

szIpAddress

A null-terminated string that contains the client's IP address on the RAS connection. This
address string has the form a.b.c.d; for example, "11.101.237.71".RemarksIf the RASENTRY structure for the phone-book entry used in a RAS connection specifies SLIP

framing, you can call RasGetProjectionInfo with a RASPROJECTION of RASP_Slip to
determine whether SLIP framing was successfully configured.See AlsoRASENTRY, RasGetProjectionInfo, RASPROJECTION

RASTERIZER_STATUS
The RASTERIZER_STATUS structure contains information about whether TrueType is installed.
This structure is filled when an application calls the GetRasterizerCaps function.typedef struct _RASTERIZER_STATUS { // rs

short nSize;
short wFlags;
short nLanguageID;

} RASTERIZER_STATUS;
MembersnSize

Specifies the size, in bytes, of the RASTERIZER_STATUS structure.
wFlags

Specifies whether at least one TrueType font is installed and whether TrueType is enabled.
This value is TT_AVAILABLE, TT_ENABLED, or both if TrueType is on the system.

nLanguageID

Specifies the language in the system's SETUP.INF file.See AlsoGetRasterizerCaps

REASSIGN_BLOCKS
The REASSIGN_BLOCKS structure provides disk-block reassignment data. It is a variable-
length structure whose last member is an array of block numbers to be reassigned.typedef struct _REASSIGN_BLOCKS {

WORD Reserved;
WORD Count;
DWORD BlockNumber[1];

} REASSIGN_BLOCKS ;
MembersReserved

This member is reserved. Do not use it. Set it to zero.
Count

Specifies the number of blocks to be reassigned. This is the number of elements that are in
the BlockNumber member array.

BlockNumber

An array of Count block numbers, one for each block to be reassigned.RemarksThe DeviceIoControl function uses a REASSIGN_BLOCKS structure as input to an
IOCTL_DISK_REASSIGN_BLOCKS device input and output control operation.See AlsoDeviceIoControl, IOCTL_DISK_REASSIGN_BLOCKS

RASSUBENTRY
[New - Windows NT]

The RASSUBENTRY structure contains information about a subentry of a RAS phone-book entry.
The RasSetSubEntryProperties and RasGetSubEntryProperties functions use this structure to
set and retrieve the properties of a subentry.typedef struct tagRASSUBENTRY {

DWORD dwSize;
DWORD dwfFlags;
//
// Device
//
TCHAR szDeviceType[RAS_MaxDeviceType + 1];
TCHAR szDeviceName[RAS_MaxDeviceName + 1];
//
// Phone numbers
//
TCHAR szLocalPhoneNumber[RAS_MaxPhoneNumber + 1];
DWORD dwAlternateOffset;

} RASSUBENTRY;
MembersdwSize

Specifies the size, in bytes, of the RASSUBENTRY structure. Before calling
RasSetSubEntryProperties or RasGetSubEntryProperties, set dwSize to sizeof
(RASSUBENTRY) to identify the version of the structure.

dwfFlags

Currently unused. The RasSetSubEntryProperties function sets this member to zero. The
RasGetSubEntryProperties function ignores this member.

szDeviceType

Specifies a null-terminated string indicating the RAS device type referenced by
szDeviceName. This member can be one of the following string constants.

String Description
RASDT_Modem A modem accessed through a

COM port.
RASDT_Isdn An ISDN card with the

corresponding NDISWAN driver
installed.

RASDT_X25 An X.25 card with the
corresponding NDISWAN driver
installed.

szDeviceName

Specifies a null-terminated string containing the name of the TAPI device to use with this
phone-book entry. To enumerate all available RAS-capable devices, use the
RasEnumDevices function.

szLocalPhoneNumber

Specifies a null-terminated string containing a telephone number. The way RAS uses this
string depends on whether the RASEO_UseCountryAndAreaCodes flag is set in the
dwfOptions member of the RASENTRY structure for this phone-book entry. If the flag is set,
RAS combines szLocalPhoneNumber with the country and area codes specified in the
RASENTRY structure. If the flag is not set, RAS uses the szLocalPhoneNumber string as
the entire phone number.

dwAlternateOffset

Specifies the offset, in bytes, from the beginning of the structure to a list of consecutive null-
terminated strings. The last string is terminated by two consecutive null characters. The
strings are alternate phone numbers that RAS dials in the order listed if the primary number
(see szLocalPhoneNumber) fails to connect. The alternate phone number strings are ANSI
or Unicode, depending on whether you use the ANSI or Unicode version of the structure.See AlsoRasGetSubEntryProperties, RasSetSubEntryProperties

RECT
The RECT structure defines the coordinates of the upper-left and lower-right corners of a
rectangle.typedef struct _RECT { // rc

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT;
Membersleft

Specifies the x-coordinate of the upper-left corner of the rectangle.
top

Specifies the y-coordinate of the upper-left corner of the rectangle.
right

Specifies the x-coordinate of the lower-right corner of the rectangle.
bottom

Specifies the y-coordinate of the lower-right corner of the rectangle.RemarksWhen RECT is passed to the FillRect function, the rectangle is filled up to, but not including, the
right column and bottom row of pixels. This structure is identical to the RECTL structure.See AlsoFillRect, RECTL, SMALL_RECT

RECTL
The RECTL structure defines the coordinates of the upper-left and lower-right corners of a
rectangle.typedef struct _RECTL { // rcl

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECTL;
Membersleft

Specifies the x-coordinate of the upper-left corner of the rectangle.
top

Specifies the y-coordinate of the upper-left corner of the rectangle.
right

Specifies the x-coordinate of the lower-right corner of the rectangle.
bottom

Specifies the y-coordinate of the lower-right corner of the rectangle.RemarksWhen RECTL is passed to the FillRect function, the rectangle is filled up to, but not including, the
right column and bottom row of pixels. This structure is identical to the RECT structure.See AlsoFillRect, RECT, SMALL_RECT

REGISTERWORD
The REGISTERWORD structure contains reading information or a word to register. You can pass
this structure to the ImmConfigureIME function to have the information or word appear as an
initial value in the configuration dialog box of the input method editor.typedef struct tagREGISTERWORD {

LPTSTR lpReading;
LPTSTR lpWord;

} REGISTERWORD;
MemberslpReading

Pointer to the reading information for the word to register. If the reading information is not
needed, it can be NULL.

lpWord

Pointer to the word to register. If a word is not needed, it can be NULL.See AlsoImmConfigureIME

REMOTE_NAME_INFO
The REMOTE_NAME_INFO data structure contains path and name information about a network
resource. The structure contains a member that points to a Universal Naming Convention (UNC)
name string for the resource, and two members that point to additional network connection
information strings.typedef struct _REMOTE_NAME_INFO { /* rni */

LPTSTR lpUniversalName;
LPTSTR lpConnectionName;
LPTSTR lpRemainingPath;

} REMOTE_NAME_INFO;
MemberslpUniversalName

Points to a zero-terminated UNC name string.
lpConnectionName

Points to a zero-terminated string that is the name of a network connection.
lpRemainingPath

Points to a zero-terminated UNC name string.RemarksThe REMOTE_NAME_INFO data structure contains a pointer to a Universal Naming Convention
(UNC) name string. UNC names look like this:\\servername\sharename\path\fileYou can pass the REMOTE_NAME_INFO structure's lpConnectionName member to the
WNetAddConnection2 function as the lpRemoteName member of the NETRESOURCE
structure pointed to by lpNetResource. This lets you connect a local device to a network resource.
You can then append the string pointed to by the lpRemainingPath member to the local device
string, and pass the resulting string to Win32 functions that use a drive-based path.See AlsoWNetAddConnection2, UNIVERSAL_NAME_INFO

REOBJECT
The REOBJECT structure contains information about an object.typedef struct _reobject {

DWORD cbStruct; // size of structure in bytes
LONG cp; // character position of object
CLSID clsid; // class identifier of object
LPOLEOBJECT poleobj; // OLE object interface
LPSTORAGE pstg;// associated storage interface
LPOLECLIENTSITE polesite; // associated client site interface
SIZEL sizel; // size of object (may be 0,0)
DWORD dvaspect; // display aspect to use
DWORD dwFlags; // object status flags
DWORD dwUser; // user-defined value

} REOBJECT;
MemberscbStruct

Size, in bytes, of this structure.
cp

Character position of the object.
clsid

Class identifier of the object.
poleobj

Points to an instance of the IOleObject interface for the object.
pstg

Points to an instance of the IStorage interface. This is the storage object associated with the
object.

polesite

Points to an instance of the IOleClientSite interface. This is the object's client site in the rich
edit control. This address must have been obtained from the IRichEditOle::GetClientSite
method.

sizel

SIZEL structure specifying the size of the object. A 0,0 on insert indicates that an object is
free to determine its size until the modify flag is turned off.

dvAspect

Display aspect to use.
dwFlags

Object status flags. Can be a combination of the following values:
Value Meaning
REO_BELOWBASELINE Object sits below the baseline of the

surrounding text; the default is to sit
on the baseline.

REO_BLANK Object is brand new. This gives the
object an opportunity to save
nothing and be deleted from the
control automatically.

REO_DONTUSEPALETTE Prevents creation and realization of
a half-tone palette before rendering
the object. Applies to 32-bit
platforms only.

REO_DYNAMICSIZE Object always determines its
extents and may change despite the
modify flag being turned off.

REO_GETMETAFILE The rich edit control retrieved the
metafile from the object to correctly
determine the object's extents. This
flag can be read but not set.

REO_HILITED Object is currently highlighted to
indicate selection. Occurs when
focus is in the control and
REO_SELECTED is set. This flag
can be read but not set.

REO_INPLACEACTIVE Object is currently in place active.
This flag can be read but not set.

REO_INVERTEDSELECT Object is to be drawn entirely
inverted when selected; the default
is to be drawn with a border.

REO_LINK Object is a link. This flag can be
read but not set.

REO_LINKAVAILABLE Object is a link and is believed to be
available. This flag can be read but
not set.

REO_OPEN Object is currently open in its
server. This flag can be read but not
set.

REO_RESIZABLE Object may be resized.
REO_SELECTED Object is currently selected in the

rich edit control. This flag can be
read but not set.

REO_STATIC Object is a static object. This flag
can be read but not set.

dwUser

Reserved for user-defined values.See AlsoIOleClientSite, IOleObject, IRichEditOle::GetClientSite, IStorage

REPASTESPECIAL
Contains information identifying whether the display aspect of a pasted object should be based on
the content of the object or the icon that represent the object.typedef struct _repastespecial {

DWORD dwAspect; // display aspect for object
DWORD dwParam; // aspect data

} REPASTESPECIAL;
MembersdwAspect

Display aspect. Can be DVASPECT_CONTENT if the aspect of the pasted object is based on
the content of the object, or DVASPECT_ICON if the aspect is based on the icon view of the
object.

dwParam

Aspect data. If dwAspect is DVASPECT_ICON, this member contains the handle to the
metafile with the icon view of the object.

REPL_EDIR_INFO_0
The REPL_EDIR_INFO_0 structure selects subdirectories from the main export directory of the
replicator.typedef struct _REPL_EDIR_INFO_0 {

LPWSTR rped0_dirname;
} REPL_EDIR_INFO_0, *PREPL_EDIR_INFO_0, *LPREPL_EDIR_INFO_0;
Membersrped0_dirname

Specifies the name of a particular subdirectory of the main export directory.See AlsoNetReplExportDirEnum, NetReplExportDirGetInfo

REPL_EDIR_INFO_1
The REPL_EDIR_INFO_1 structure selects subdirectories from the main export directories of
replicators with the Wait Until Stabilized feature.typedef struct _REPL_EDIR_INFO_1 {

LPWSTR rped1_dirname;
DWORDrped1_integrity;
DWORDrped1_extent;

} REPL_EDIR_INFO_1, *PREPL_EDIR_INFO_1, *LPREPL_EDIR_INFO_1;
Membersrped1_dirname

Specifies the name of a particular subdirectory of the main export directory.
rped1_integrity

Specifies one of the following Wait Until Stabilized options for the importer.
Value Meaning
REPL_INTEGRITY_TREE When the importer detects a change to

the tree, it copies the entire tree to a
temporary top-level directory, then
renames it in the existing directory. If
any problem occurs while copying the
tree, the importer deletes the temporary
directory. This action guarantees that
the entire tree matches the original tree.

REPL_INTEGRITY_FILE When an importer detects mismatched
file attributes of the tree structure (such
as date, time, name, and size), it copies
the file to a temporary local file, then
renames the local file in the place of the
existing file. This action guarantees the
integrity only of individual files, not of the
entire tree.

rped1_extent

Specifies one of the following flags to select files within the main export directory.
Value Meaning
REPL_EXTENT_FILE Selects a single file in the main export

directory.
REPL_EXTENT_TREE Selects the entire subtree in the main

export directory. If you clear a top-level
directory in the Control panel (Control
Panel -> Server -> Replicator ->
Manage Export), only the files in that
top-level directory will be replicated, and
subdirectories or their contents will not.

See AlsoNetReplExportDirAdd, NetReplExportDirEnum, NetReplExportDirGetInfo,
NetReplExportDirSetInfo

REPL_EDIR_INFO_2
The REPL_EDIR_INFO_2 structure specifies features of the export subdirectories or the entire
subtree of a replicator.typedef struct _REPL_EDIR_INFO_2 {

LPWSTR rped2_dirname;
DWORDrped2_integrity;
DWORDrped2_extent;
DWORDrped2_lockcount;
DWORDrped2_locktime;

} REPL_EDIR_INFO_2, *PREPL_EDIR_INFO_2, *LPREPL_EDIR_INFO_2;
Membersrped2_dirname

Specifies the name of a particular subdirectory of the main export directory.
rped2_integrity

Specifies one of the following Wait Until Stabilized options for the importer.
Value Meaning
REPL_INTEGRITY_TREE When the importer detects a change to

the tree, it copies the entire tree to a
temporary top-level directory, then
renames it in the existing directory. If
any problem occurs while copying the
tree, the importer deletes the temporary
directory. This action guarantees that
the entire tree matches the original tree.

REPL_INTEGRITY_FILE When an importer detects mismatched
file attributes of the tree structure (such
as date, time, name, and size), it copies
the file to a temporary local file, then
renames the local file in the place of the
existing file. This action guarantees the
integrity only of individual files, not of the
entire tree.

rped2_extent

Specifies one of the following flags to select files within the main export directory.
Value Meaning
REPL_EXTENT_FILE Selects a single file in the main export

directory.
REPL_EXTENT_TREE Selects the entire subtree in the main

export directory. If you clear a top-level
directory in the Control panel (Control
Panel -> Server -> Replicator ->
Manage Export), only the files in that
top-level directory will be replicated, and
subdirectories or their contents will not.

rped2_lockcount

This member is the current lock count on the subdirectory; it can be modified only with the
NetReplExportDirLock and NetReplExportDirUnlock functions.

rped2_locktime

This member specifies, in seconds, the time at which the directory was locked since 1970.See AlsoNetReplExportDirLock, NetReplExportDirUnlock

REPL_EDIR_INFO_1000
The REPL_EDIR_INFO_1000 structure specifies flags that verify the integrity of the directory tree
in replicators with the Wait Until Stabilized feature.typedef struct _REPL_EDIR_INFO_1000 {

DWORDrped1000_integrity;
} REPL_EDIR_INFO_1000, *PREPL_EDIR_INFO_1000, *LPREPL_EDIR_INFO_1000;
Membersrped1000_integrity

Specifies one of the following Wait Until Stabilized options for the importer.
Value Meaning
REPL_INTEGRITY_TREEWhen the importer detects a change to

the tree, it copies the entire tree to a
temporary top-level directory, then
renames it in the existing directory. If
any problem occurs while copying the
tree, the importer deletes the temporary
directory. This action guarantees that
the entire tree matches the original tree.

REPL_INTEGRITY_FILE When an importer detects mismatched
file attributes of the tree structure (such
as date, time, name, and size), it copies
the file to a temporary local file, then
renames the local file in the place of the
existing file. This action guarantees the
integrity only of individual files, not of the
entire tree.

See AlsoNetReplExportDirSetInfo

REPL_EDIR_INFO_1001
The REPL_EDIR_INFO_1001 structure specifies flags in the replicator to select files on the
subdirectory of an exporter.typedef struct _REPL_EDIR_INFO_1001 {

DWORDrped1001_extent;
} REPL_EDIR_INFO_1001, *PREPL_EDIR_INFO_1001, *LPREPL_EDIR_INFO_1001;
Membersrped1001_extent

Specifies one of the following flags to select files within the main export directory.
Value Meaning
REPL_EXTENT_FILE Selects a single file in the main export

directory.
REPL_EXTENT_TREE Selects the entire subtree in the main

export directory. If you clear a top-level
directory in the Control panel (Control
Panel -> Server -> Replicator ->
Manage Export), only the files in that
top-level directory will be replicated, and
subdirectories or their contents will not.

See AlsoNetReplExportDirSetInfo

REPL_IDIR_INFO_0
The REPL_IDIR_INFO_0 structure specifies subdirectories in the main import directory of the
replicator.typedef struct _REPL_IDIR_INFO_0 {

LPWSTR rpid0_dirname;
} REPL_IDIR_INFO_0, *PREPL_IDIR_INFO_0, *LPREPL_IDIR_INFO_0;
Membersrpid0_dirname

Specifies the name of a particular subdirectory of the main import directory.See AlsoNetReplImportDirAdd, NetReplImportDirEnum, NetReplImportDirGetInfo

REPL_IDIR_INFO_1
The REPL_IDIR_INFO_1 structure specifies subdirectories and synchronizing states in the main
import directory of the replicator.typedef struct _REPL_IDIR_INFO_1 {

LPWSTR rpid1_dirname;
DWORDrpid1_state;
LPWSTR rpid1_mastername;
DWORDrpid1_last_update_time;
DWORDrpid1_lockcount;
DWORDrpid1_locktime;

} REPL_IDIR_INFO_1, *PREPL_IDIR_INFO_1, *LPREPL_IDIR_INFO_1;
Membersrpid1_dirname

Specifies the name of a particular subdirectory of the main import directory.
rpid1_state

Specifies the state of the named subdirectory within the main import directory. Use only one of
the following values.

Value Meaning
REPL_STATE_OK Selects the current state of

the directory.
REPL_STATE_NO_MASTER Indicates that the selected

directory is not the master
directory.

REPL_STATE_NO_SYNC Indicates that you cannot
synchronize the selected
directory.

REPL_STATE_NEVER_REPLICATEDIndicates that you cannot
replicate the selected
directory.

rpid1_mastername

Specifies the name of the exporter for the selected subdirectory.
rpid1_last_update_time

Displays the time, in seconds since 1970, at which the selected directory was last updated.
rpid1_lockcount

Indicates the current lock count on the subdirectory. You can modify this parameter only with
the NetReplImportDirLock and NetReplImportDirUnlock functions.

rpid1_locktime

Indicates the time at which the directory was locked, in seconds since 1970.See AlsoNetReplImportDirEnum, NetReplImportDirGetInfo, NetReplImportDirLock,
NetReplImportDirUnlock

REPL_INFO_0
The REPL_INFO_0 structure specifies the action of the replicator, including the setting of import
and export paths and parameters.typedef struct _REPL_INFO_0 {

DWORDrp0_role;
LPWSTR rp0_exportpath;
LPWSTR rp0_exportlist;
LPWSTR rp0_importpath;
LPWSTR rp0_importlist;
DWORDrp0_interval;
DWORDrp0_pulse;
DWORDrp0_guardtime;
DWORDrp0_random;

} REPL_INFO_0, *PREPL_INFO_0, *LPREPL_INFO_0;
Membersrp0_role

A Unicode string that specifies either one or both of the following values.
Value Meaning
REPL_ROLE_EXPORT Exports directory control

information.

REPL_ROLE_IMPORT Imports directory control
information on a Windows NT
Workstation.

rp0_exportpath

Specifies the root directory that holds the exportpath parameter.
rp0_exportlist

Specifies the list of computers or domains to export, using semicolon delimiters. If the list is
empty, the function assumes the local domain.

rp0_importpath

Specifies the root directory that holds the importpath parameter. If both the export tree and
import tree are on an NTFS partition, the Windows NT Replicator service will copy the file
permissions as well as the files themselves.

rp0_importlist

Specifies the list of computers or domains to import, using semicolon delimiters. If the list is
empty, the function assumes the local domain.

rp0_interval

Specifies the interval in minutes (the default setting is 5), at which the exporter will contact
each import server for each top-level directory. The exporter sends a sync message if it
detects a change to the directory since the last message, or a pulse message if it has not.

rp0_pulse

Specifies a multiplier count (the default setting is 2) for the rp0_interval. If the exporter fails to
respond to an importer after rp0_pulse times rp0_interval minutes, the importer sends a
message to the exporter asking for an update. If the exporter fails again to respond after the
same amount of time, the importer reports that the top level directory is not synchronized
properly. If the exporter fails again to respond, the importer will no longer notify the exporter.
This state is reset as soon as the importer hears from the exporter and replicates
successfully.

rp0_guardtime

This setting is valid only for top-level directories when the Wait Until Stabilized feature is
enabled. Before sending a synchronizing message with an updated checksum, the exporter
requires that the tree not change for the time in minutes (by default). The rp0_guardtime may
not be more than rp0_interval divided by 2.

rp0_random

Specifies the maximum time (default 60, maximum 120 seconds) the import servers can wait
before requesting an update. An import server generates a random number of seconds (from
0 to the value of rp0_random). After receiving an update notice from the exporter, the import
server waits the generated amount of seconds before requesting the replica from the export
server. This prevents the export server from being overloaded by simultaneous update
requests. The default value is 60. You may want to increase this value substantially if you
increase rp0_interval to 60 or more minutes.See AlsoNetReplGetInfo, NetReplSetInfo

REPL_INFO_1000
The REPL_INFO_1000 structure sets the interval that the exporter uses to access the import
server for each top-level directory.typedef struct _REPL_INFO_1000 {

DWORDrp1000_interval;
} REPL_INFO_1000, *PREPL_INFO_1000, *LPREPL_INFO_1000;
Membersrp1000_interval

Specifies the interval, in minutes (the default setting is 5), at which the exporter will contact
each import server for each top-level directory. The exporter sends a sync message if it
detects a change to the directory since the last message, or a pulse message if it has not.See AlsoNetReplSetInfo

REPL_INFO_1001
The REPL_INFO_1001 structure specifies a count that the replicator uses to synchronize the
importer to the exporter.typedef struct _REPL_INFO_1001 {

DWORDrp1001_pulse;
} REPL_INFO_1001, *PREPL_INFO_1001, *LPREPL_INFO_1001;
Membersrp1001_pulse

Specifies a multiplier count (the default setting is 2) for the rp1000_interval. If the exporter
fails to respond to an importer after rp1001_pulse times rp1000_interval minutes, the
importer sends a message to the exporter asking for an update. If the exporter fails again to
respond after the same amount of time, the importer reports that the top-level directory is not
synchronized properly. If the exporter fails again to respond, the importer will no longer notify
the exporter. This state is reset as soon as the importer hears from the exporter and replicates
successfully.See AlsoNetReplSetInfo

REPL_INFO_1002
The REPL_INFO_1002 structure specifies synchronizing messages for top-level directories with
the Wait Until Stabilized feature.typedef struct _REPL_INFO_1002 {

DWORDrp1002_guardtime;
} REPL_INFO_1002, *PREPL_INFO_1002, *LPREPL_INFO_1002;
Membersrp1002_guardtime

This setting is valid only for top-level directories when the Wait Until Stabilized feature is
enabled. Before sending a synchronizing message with an updated checksum, the exporter
requires that the tree not change for the time in minutes (by default). The rp1002_guardtime
may not be more than rp1000_interval divided by 2.See AlsoNetReplSetInfo

REPL_INFO_1003
The REPL_INFO_1003 structure specifies the time the import servers use to update replicating
data from the export server.typedef struct _REPL_INFO_1003 {

DWORDrp1003_random;
} REPL_INFO_1003, *PREPL_INFO_1003, *LPREPL_INFO_1003;
Membersrp1003_random

Specifies the maximum time the import servers can wait before requesting an update. An
import server generates a random number of seconds (from 0 to the value of rp0_random).
After receiving an update notice from the exporter, the import server waits the generated
amount of seconds before requesting the replica from the export server. This prevents the
export server from being overloaded by simultaneous update requests. The default value is
60. You may want to increase this value substantially if you increase rp1000_interval to 60 or
more minutes.See AlsoNetReplSetInfo

REQRESIZE
The REQRESIZE structure contains the requested size of a rich edit control. A rich edit control
sends this structure to its parent window as part of an EN_REQUESTRESIZE notification
message.typedef struct _reqresize {

NMHDR nmhdr;
RECT rc;

} REQRESIZE;
Membersnmhdr

Notification header.
rc

Requested new size.See AlsoEN_REQUESTRESIZE

RESDIR
The RESDIR structure contains information about an individual icon or cursor component in a
resource group. There is one RESDIR structure for each group component.typedef struct tagRESDIR
{

union
{
ICONRESDIR Icon;
CURSORDIR Cursor;
} ResInfo;
WORD Planes;
WORD BitCount;
DWORD BytesInRes;
WORD IconCursorId;

} RESDIR;MembersIcon

Specifies an ICONRESDIR structure that contains the width, height, and color count of the
indicated icon.

Cursor

Specifies a CURSORDIR structure that contains the width and height of the indicated cursor.
Planes

Specifies the number of color planes in the icon or cursor bitmap.
BitCount

Specifies the number of bits per pixel in the icon or cursor bitmap.
BytesInRes

Specifies the size of the resource, in bytes.
IconCursorId

Specifies the icon or cursor with a unique ordinal identifier.RemarksOne or more RESDIR structures immediately follow the NEWHEADER structure in the .RES file.
The ResCount member of the NEWHEADER structure specifies the number of RESDIR
structures. Note that the RESDIR structure consists of either an ICONRESDIR structure or a
CURSORDIR structure followed by the Planes, BitCount, BytesInRes and IconCursorId
members. If the RESDIR structure contains information about a cursor, the first two WORDS the
resource compiler writes to the RT_CURSOR resource are the xHotSpot and yHotSpot
members of the LOCALHEADER structure.See AlsoCURSORDIR, ICONRESDIR, LOCALHEADER, NEWHEADER

RESOURCEHEADER
The RESOURCEHEADER structure contains information about the resource header itself and the
data specific to this resource. This structure is not a true C-language structure, because it
contains variable-length members. This structure was created solely to depict data organization in
the resource file and does not appear in any of the header files shipped with the Microsoft Win32
Software Development Kit (SDK).struct RESOURCEHEADER {

DWORD DataSize;
DWORD HeaderSize;
[Ordinal or name TYPE];
[Ordinal or name NAME];
DWORD DataVersion;
WORD MemoryFlags;
WORD LanguageId;
DWORD Version;
DWORD Characteristics;

};
MembersDataSize

Specifies the size, in bytes, of the data that follows the resource header for this particular
resource. It does not include any file padding between this resource and any resource that
follows it in the resource file.

HeaderSize

Specifies the size, in bytes, of the resource header data that follows.
TYPE

Identifies the resource type. The TYPE member can either be a numeric value or a null-
terminated Unicode string that specifies the name of the type. See the following Remarks
section for a description of Name or Ordinal type members.
If the TYPE member is a numeric value, it can specify either a standard or a user-defined
resource type. If the member is a string, then it is a user-defined resource type.
Following are the standard Windows resource types.

Resource Type Name Type number
RT_CURSOR 1
RT_BITMAP 2
RT_ICON 3
RT_MENU 4
RT_DIALOG 5
RT_STRING 6
RT_FONTDIR 7
RT_FONT 8
RT_ACCELERATOR 9
RT_RCDATA 10
RT_MESSAGETABLE 11
RT_GROUP_CURSOR 12
RT_GROUP_ICON 14
RT_VERSION 16
RT_DLGINCLUDE 17
RT_PLUGPLAY 19
RT_VXD 20
RT_ANICURSOR 21
RT_ANIICON 22

Values less than 256 are reserved for system use.
NAME

Specifies a name that identifies the particular resource. The NAME member, like the TYPE
member, can either be a numeric value or a null-terminated Unicode string. See the following
Remarks section for a description of Name or Ordinal type members.
You do not need to add padding for DWORD alignment between the TYPE and NAME
members because they contain WORD data. However, you may need to add a WORD of
padding after the NAME member to align the rest of the header on DWORD boundaries.

DataVersion

Specifies a predefined resource data version. This will determine which version of the
resource data the application should use.

MemoryFlags

Specifies a set of attribute flags that can describe the state of the resource. Modifiers in the .
RC script file assign these attributes to the resource. The script identifiers can assign the
following flag values.

Flag description Value
MOVEABLE 0x0010
FIXED ~MOVEABLE
PURE 0x0020
IMPURE ~PURE

PRELOAD 0x0040
LOADONCALL ~PRELOAD
DISCARDABLE 0x1000

The only attribute a Win32-based application uses is the DISCARDABLE attribute. The
remaining attributes are permitted in the script for compatibility with existing scripts,
but they are ignored.
The resource compiler for Windows NT always ignores the MOVEABLE, IMPURE, and
PRELOAD attribute flags. See Resource-Definition Statements for additional information
about resource attributes.

LanguageId

Specifies the language for the resource or set of resources. Set the value for this member with
the optional LANGUAGE Statement resource definition statement. The parameters are
constants from the WINNT.H file.
Each resource includes a language identifier so the system or application can select a
language appropriate for the current locale of the system. If there are multiple resources of the
same type and name that differ only in the language of the strings within the resources, you
will need to specify a LanguageId for each one.

Version

Specifies a user-defined version number for the resource data that tools can use to read and
write resource files. Set this value with the optional VERSION resource definition statement.

Characteristics

Specifies user-defined information about the resource that tools can use to read and write
resource files. Set this value with the optional CHARACTERISTICS resource definition
statement.RemarksA variable type member is called a Name or Ordinal member, and it is used in most places in the

resource file where an identifier appears. The first WORD of a Name or Ordinal type member
indicates whether the member is a numeric value or a string. If the first WORD in the member is
equal to the value 0xffff, which is an invalid Unicode character, then the following WORD is a type
number. Otherwise, the member contains a Unicode string. For additional information about
resource definition statements see Single-Line Statements and Multiline Statements.See AlsoCHARACTERISTICS Statement, LANGUAGE Statement, VERSION Statement

RFC1157VarBind
The RFC1157VarBind structure represents an SNMP variable binding as defined in RFC 1157.typedef struct vb {AsnObjectName name;

AsnObjectSyntax value;
} RFC1157VarBind;Membersname

Indicates the variable's name as an object identifier.
value

Contains the variable's value.
For more information, see RFC 1155 and RFC 1157.

RFC1157VarBindList
The RFC1157VarBindList structure represents an SNMP variable bindings list as defined in RFC
1157.typedef struct {

RFC1157VarBind *list;
UINT len;

} RFC1157VarBindList;
Memberslist

A pointer that references an array to access individual variable bindings.
len

Contains the number of variable bindings in the list.
For more information, see RFC 1157.See AlsoRFC1157VarBind

RGBQUAD
The RGBQUAD structure describes a color consisting of relative intensities of red, green, and
blue.typedef struct tagRGBQUAD { // rgbq

BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;
MembersrgbBlue

Specifies the intensity of blue in the color.
rgbGreen

Specifies the intensity of green in the color.
rgbRed

Specifies the intensity of red in the color.
rgbReserved

Reserved; must be zero.RemarksThe bmiColors member of the BITMAPINFO structure consists of an array of RGBQUAD
structures.See AlsoBITMAPINFO, CreateDIBitmap, CreateDIBSection, GetDIBits, SetDIBits, SetDIBitsToDevice,
StretchDIBits

RGBTRIPLE
The RGBTRIPLE structure describes a color consisting of relative intensities of red, green, and
blue. The bmciColors member of the BITMAPCOREINFO structure consists of an array of
RGBTRIPLE structures.typedef struct tagRGBTRIPLE { // rgbt

BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;

} RGBTRIPLE;
MembersrgbtBlue

Specifies the intensity of blue in the color.
rgbtGreen

Specifies the intensity of green in the color.
rgbtRed

Specifies the intensity of red in the color.See AlsoBITMAPCOREINFO

RGNDATA
The RGNDATA structure contains a header and an array of rectangles that compose a region.
The rectangles are sorted top to bottom, left to right. They do not overlap.typedef struct _RGNDATA { // rgnd

RGNDATAHEADER rdh;
charBuffer[1];

} RGNDATA;
Membersrdh

Specifies a RGNDATAHEADER structure. The members of this structure specify the type of
region (whether it is rectangular or trapezoidal), the number of rectangles that make up the
region, the size of the buffer that contains the rectangle structures, and so on.

Buffer

Specifies an arbitrary-size buffer that contains the RECT structures that make up the region.See AlsoRECT, RGNDATAHEADER

RGNDATAHEADER
The RGNDATAHEADER structure describes the data returned by the GetRegionData function.typedef struct _RGNDATAHEADER { // rgndh

DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER;
MembersdwSize

Specifies the size, in bytes, of the header.
iType

Specifies the type of region. This value must be RDH_RECTANGLES.
nCount

Specifies the number of rectangles that make up the region.
nRgnSize

Specifies the size of the buffer required to receive the RECT structure that specifies the
coordinates of the rectangles that make up the region. If the size is not known, this member
can be zero.

rcBound

Specifies a bounding rectangle for the region.See AlsoGetRegionData, RECT, RGNDATA

RIP_INFO
The RIP_INFO structure contains the error and address, format, and length, in bytes, of a
debugging string.typedef struct _RIP_INFO { /* ri */

DWORD dwError;
DWORD dwType;

} RIP_INFO;
MembersdwError

Specifies the error that caused the RIP debug event. For more information about exception
handling, see Errors.

dwType

Specifies additional information about the type of error that caused the RIP debug event. This
may be one of the following values:

Value Meaning
SLE_ERROR Indicates that invalid data was passed to the

function that failed. This caused the
application to fail.

SLE_MINORERROR Indicates that invalid data was passed to the
function, but the error probably will not cause
the application to fail.

SLE_WARNING Indicates that potentially invalid data was
passed to the function, but the function
completed processing.

0 Indicates that only dwError was set.
See AlsoDEBUG_EVENT

SCROLLINFO
The SCROLLINFO structure contains scroll bar parameters to be set by the SetScrollInfo
function (or SBM_SETSCROLLINFO message), or retrieved by the GetScrollInfo function (or
SBM_GETSCROLLINFO message).typedef struct tagSCROLLINFO { // si

UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;

} SCROLLINFO;
typedef SCROLLINFO FAR *LPSCROLLINFO;
MemberscbSize

Specifies the size, in bytes, of this structure.
fMask

Specifies the scroll bar parameters to set or retrieve. This member can be a combination of
the following values:

Value Meaning
SIF_ALL Combination of SIF_PAGE, SIF_POS, and

SIF_RANGE.
SIF_DISABLENOSCROLLThis value is used only when setting a

scroll bar's parameters. If the scroll bar's
new parameters make the scroll bar
unnecessary, disable the scroll bar instead
of removing it.

SIF_PAGE The nPage member contains the page
size for a proportional scroll bar.

SIF_POS The nPos parameter contains the scroll
box position.

SIF_RANGE The nMin and nMax members contain the
minimum and maximum values for the
scrolling range.

nMin

Specifies the minimum scrolling position.
nMax

Specifies the maximum scrolling position.
nPage

Specifies the page size. A scroll bar uses this value to determine the appropriate size of the
proportional scroll box.

nPos

Specifies the position of the scroll box.
nTrackPos

Specifies the immediate position of a scroll box that the user is dragging. An application can
retrieve this value while processing the SB_THUMBTRACK notification message. An
application cannot set the immediate scroll position; the SetScrollInfo function ignores this
member.See AlsoSBM_GETSCROLLINFO, SBM_SETSCROLLINFO, GetScrollInfo, SetScrollInfo

SECURITY_ATTRIBUTES
The SECURITY_ATTRIBUTES structure contains the security descriptor for an object and
specifies whether the handle retrieved by specifying this structure is inheritable.typedef struct _SECURITY_ATTRIBUTES { // sa

DWORD nLength;
LPVOID lpSecurityDescriptor;
BOOL bInheritHandle;

} SECURITY_ATTRIBUTES;
MembersnLength

Specifies the size, in bytes, of this structure. Set this value to the size of the
SECURITY_ATTRIBUTES structure.
Windows NT: Some functions that use the SECURITY_ATTRIBUTES structure do not verify
the value of the nLength member. However, an application should still set it properly. That
ensures current, future, and cross-platform compatibility.

lpSecurityDescriptor

Points to a security descriptor for the object that controls the sharing of it. If NULL is specified
for this member, the object may be assigned the default security descriptor of the calling
process.

bInheritHandle

Specifies whether the returned handle is inherited when a new process is created. If this
member is TRUE, the new process inherits the handle.RemarksA pointer to a SECURITY_ATTRIBUTES structure is used as a parameter in most kernel and

window-management functions in the Win32 API that return a handle of an object.See AlsoSECURITY_DESCRIPTOR

SECURITY_DESCRIPTOR
The SECURITY_DESCRIPTOR structure contains the security information associated with an
object. Applications use this structure to set and query an object's security status.

Applications are not to modify the SECURITY_DESCRIPTOR structure directly. For creating and
manipulating a security descriptor, use the functions listed in the See Also section.typedef PVOID PSECURITY_DESCRIPTOR;
RemarksA security descriptor includes information that specifies the following components of an object's

security:

· An owner (SID)
· A primary group (SID)
· A discretionary ACL
· A system ACL
· Qualifiers for the preceding items

Security descriptors use access-control lists (ACLs) and security identifiers (SIDs) to specify the
information in this list.

A security descriptor can be in absolute or self-relative form. In self-relative form, all members of
the structure are located contiguously in memory. In absolute form, the structure only contains
pointers to the members.See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorLength, GetSecurityDescriptorOwner, GetSecurityDescriptorSacl,
InitializeSecurityDescriptor, IsValidSecurityDescriptor, SetSecurityDescriptorDacl,
SetSecurityDescriptorGroup, SetSecurityDescriptorOwner, SetSecurityDescriptorSacl

SECURITY_DESCRIPTOR_CONTROL
The SECURITY_DESCRIPTOR_CONTROL structure contains a set of bit flags that qualify the
meaning of a security descriptor or its individual members.typedef WORD SECURITY_DESCRIPTOR_CONTROL;Each security descriptor has an associated SECURITY_DESCRIPTOR_CONTROL structure.
Applications can use the Win32 API functions to set and retrieve a security descriptor's
SECURITY_DESCRIPTOR_CONTROL values. These functions are listed in the See Also
section.

The following constants are defined for setting and retrieving
SECURITY_DESCRIPTOR_CONTROL bit flags:

Value Meaning

SE_OWNER_DEFAULTEDInstead of the original provider of the
security descriptor, a default mechanism
provided the security descriptor's owner
security identifier (SID). This can affect the
treatment of the SID with respect to
inheritance of an owner. This flag is
ignored if the owner member is NULL. The
SetSecurityDescriptorOwner function
sets this flag.

SE_GROUP_DEFAULTEDInstead of the the original provider of the
security descriptor, a default mechanism
provided the security descriptor's group
SID. This can affect the treatment of the
SID with respect to inheritance of a
primary group. This flag is ignored if the
group member is NULL. The
SetSecurityDescriptorGroup function
sets this flag.

SE_DACL_PRESENT The security descriptor contains a
discretionary access-control list (ACL). If
this flag is set and the discretionary ACL is
NULL, an empty ACL is being explicitly
specified. An empty ACL has a size but no
access-control entries (ACEs). A NULL
ACL has no pointer to an ACL. This flag
allows functions to determine whether a
security descriptor points to a NULL ACL
or no ACL at all. The
SetSecurityDescriptorDacl function sets
this flag.

SE_DACL_DEFAULTED Instead of the the original provider of the
security descriptor, a default mechanism
provided the discretionary ACL. This can
affect the treatment of the ACL with
respect to inheritance of an ACL. If the
SE_DACL_PRESENT flag is not set, this
flag is ignored. The
SetSecurityDescriptorDacl function sets
this flag.

SE_SACL_PRESENT The security descriptor contains a system
ACL. If this flag is set and the Sacl
member is NULL, an empty ACL is being
explicitly specified. This flag allows
functions to determine whether a security
descriptor points to a NULL ACL or no
ACL at all. The
SetSecurityDescriptorSacl function sets
this flag.

SE_SACL_DEFAULTED Instead of the the original provider of the
security descriptor, a default mechanism

provided the ACL. This can affect the
treatment of the ACL with respect to
inheritance of an ACL. If the
SE_SACL_PRESENT flag is not set, this
flag is ignored. The
SetSecurityDescriptorSacl function sets
this flag.

SE_SELF_RELATIVE The security descriptor is in self-relative
form and all members of the security
descriptor are contiguous in memory. All
pointer members are expressed as offsets
from the beginning of the security
descriptor. This form is useful for treating
security descriptors as opaque structures
for transmission in a communications
protocol or for storage on secondary
media.

See AlsoGetSecurityDescriptorControl, GetSecurityDescriptorDacl, GetSecurityDescriptorGroup,
GetSecurityDescriptorOwner, GetSecurityDescriptorSacl, SetSecurityDescriptorDacl,
SetSecurityDescriptorGroup, SetSecurityDescriptorOwner, SetSecurityDescriptorSacl

SECURITY_INFORMATION
The SECURITY_INFORMATION structure identifies the object-related security information being
set or queried. This security information includes:

· The owner of an object
· The primary group of an object
· The discretionary access-control list (ACL) of an object
· The system ACL of an objecttypedef DWORD SECURITY_INFORMATION;Each item of security information is designated by a bit flag. The following values specify the bits:

Value Meaning

OWNER_SECURITY_INFORMATIONIndicates the owner identifier of
the object is being referenced.

GROUP_SECURITY_INFORMATIONIndicates the primary group
identifier of the object is being
referenced.

DACL_SECURITY_INFORMATIONIndicates the discretionary ACL of
the object is being referenced.

SACL_SECURITY_INFORMATIONIndicates the system ACL of the
object is being referenced.

See AlsoGetFileSecurity, GetKernelObjectSecurity, GetPrivateObjectSecurity,
GetUserObjectSecurity, SetFileSecurity, SetKernelObjectSecurity,
SetPrivateObjectSecurity, SetUserObjectSecurity

SECURITY_MESSAGE
[New - Windows NT]

The SECURITY_MESSAGE structure is used with the RasSecurityDialogComplete function to
indicate the results of a RAS security DLL authentication transaction.typedef struct _SECURITY_MESSAGE {

DWORD dwMsgId;
HPORT hPort;
DWORD dwError;
CHAR UserName[UNLEN+1];
CHAR Domain[DNLEN+1];

} SECURITY_MESSAGE, *PSECURITY_MESSAGE;
MembersdwMsgId

Indicates whether the RAS server should grant access to the remote user. This member can
be one of the following values.

Value Meaning
SECURITYMSG_SUCCESSThe security DLL successfully

authenticated the remote user identified
by the UserName member. The RAS
server will proceed with its PPP
authentication.

SECURITYMSG_FAILURE The security DLL denied access to the
remote user identified by the UserName
member. The RAS server will hang up
the call and record the failed
authentication in the Windows NT event
log.

SECURITYMSG_ERROR An error occurred that prevented
validation of the remote user. The RAS
server will hang up the call and record
the error in the Windows NT event log.

hPort

Specifies the port handle that the RAS server passed to the security DLL in the
RasSecurityDialogBegin call for this authentication transaction.

dwError

Specifies an error code. If dwMsgId is SECURITYMSG_ERROR, set dwError to one of the
nonzero error codes defined in WINERROR.H or RASERROR.H. The RAS server records this
error code in the Windows NT event log. If the dwMsgId member indicates success or failure,
set dwError to zero.

UserName

Specifies the name of the remote user if dwMsgId is SECURITYMSG_SUCCESS or
SECURITYMSG_FAILURE. This string can be empty if dwMsgId is
SECURITYMSG_ERROR.

Domain

Specifies the name of the logon domain for the remote user if dwMsgId is
SECURITYMSG_SUCCESS or SECURITYMSG_FAILURE. This string can be empty if
dwMsgId is SECURITYMSG_ERROR.See AlsoRasSecurityDialogBegin, RasSecurityDialogComplete

SECURITY_QUALITY_OF_SERVICE
The SECURITY_QUALITY_OF_SERVICE data structure contains information used to support
client impersonation. A client can specify this information when it connects to a server; the
information determines whether or not the server may impersonate the client, and if so, to what
extent.typedef struct _SECURITY_QUALITY_OF_SERVICE { // sqos

DWORD Length;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;
SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode;
BOOLEAN EffectiveOnly;

} SECURITY_QUALITY_OF_SERVICE;
MembersLength

Specifies the size, in bytes, of this structure.
ImpersonationLevel

Specifies what the server may be told about the client, and how the server may represent, or
impersonate, the client. Security impersonation levels govern the degree to which a server
process can act on behalf of a client process. This member is a
SECURITY_IMPERSONATION_LEVEL enumeration type value.

ContextTrackingMode

Specifies whether the server is to be given a snapshot of the client's security context (called
static tracking), or is to be continually updated to track changes to the client's security context
(called dynamic tracking). The value SECURITY_STATIC_TRACKING specifies static
tracking, and the value SECURITY_DYNAMIC_TRACKING specifies dynamic tracking. Not all
communications mechanisms support dynamic tracking; those that do not will default to static
tracking.

EffectiveOnly

Specifies whether or not the server may enable or disable privileges and groups that the
client's security context may include.See AlsoDdeSetQualityOfService, SECURITY_IMPERSONATION_LEVEL

SELCHANGE
The SELCHANGE stucture contains information associated with an EN_SELCHANGE notification
message. A rich edit control sends this notification to its parent window when the current selection
changes.typedef struct _selchange {

NMHDR nmhdr;
CHARRANGE chrg;
WORD seltyp;

} SELCHANGE;
Membersnmhdr

Notification header.
chrg

New selection range.
seltyp

Value specifying the contents of the new selection. This member is SEL_EMPTY if the
selection is empty or one or more of the following values:

Value Contents of the selection
SEL_TEXT Text
SEL_OBJECT At least one OLE object
SEL_MULTICHAR More than one character of text
SEL_MULTIOBJECT More than one OLE object

See AlsoEN_SELCHANGE

SERIALKEYS
The SERIALKEYS structure contains information about the SerialKeys accessibility feature, which
interprets data from a communication aid attached to a serial port as commands causing the
system to simulate keyboard and mouse input.typedef struct tagSERIALKEYS {// sk

DWORD cbSize;
DWORD dwFlags;
LPSTR lpszActivePort;
LPSTR lpszPort;
DWORD iBaudRate;
DWORD iPortState;

} SERIALKEYS, FAR* LPSERIALKEYS;
MemberscbSize

Specifies the structure size, in bytes.
dwFlags

Specifies a combination of the following values:
Value Meaning
SERKF_ACTIVE The SerialKeys feature is currently

receiving input on the serial port specified
by lpszPort.

SERKF_AVAILABLE The SerialKeys feature is available.
SERKF_INDICATOR A visual indicator is displayed when the

SerialKeys feature is on. This value is not
currently used and is ignored.

SERKF_SERIALKEYSONThe SerialKeys feature is on.

lpszActivePort

Points to a string that contains the name of the serial port that receives input from the
communication aid when the SerialKeys feature is on. If no port is being used, this member is
NULL. If this member is "Auto", the system watches all unused serial ports for input from
communication aids.

lpszPort

Reserved; must be NULL.
iBaudRate

Specifies the baud rate setting for the serial port specified by the lpszActivePort member.
This member should be set to one of the CBR_ values defined in the Windows header files. If
lpszActivePort is NULL, this member is zero.

iPortState

Specifies the state of the port specified by the lpszActivePort member. If lpszActivePort is
NULL, iPortState is zero; otherwise, it is one of the following values:

Value Meaning
0 All input on this port is ignored by the SerialKeys feature.
1 Input on this port is watched for SerialKeys activation

sequences when no other application has the port open.
2 All input on this port is treated as SerialKeys commands.

RemarksAn application uses this structure when calling the SystemParametersInfo function with the
SPI_GETSERIALKEYS or SPI_SETSERIALKEYS value. When using SPI_GETSERIALKEYS, an
application must specify the cbSize, lpszActivePort, and lpszPort members of the
SERIALKEYS structure; the SystemParametersInfo function fills the remaining members. An
application must specify all structure members when using the SPI_SETSERIALKEYS value.See AlsoSystemParametersInfo

SERVER_INFO_100
The SERVER_INFO_100 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_100 {

DWORDsv100_platform_id;
LPTSTR sv100_name;

} SERVER_INFO_100, *PSERVER_INFO_100, *LPSERVER_INFO_100;
Memberssv100_platform_id

Indicates the information levels to use for platform-specific information.
sv100_name

A Unicode string containing the name of a server.See AlsoNetServerDiskEnum, NetServerEnum, NetServerGetInfo, NetServerSetInfo

SERVER_INFO_101
The SERVER_INFO_101 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_101 {

DWORDsv101_platform_id;
LPTSTR sv101_name;
DWORDsv101_version_major;
DWORDsv101_version_minor;
DWORDsv101_type;
LPTSTR sv101_comment;

} SERVER_INFO_101, *PSERVER_INFO_101, *LPSERVER_INFO_101;
Memberssv101_platform_id

Indicates the information levels to use for platform-specific information.
sv101_name

A Unicode string containing the name of a server.
sv101_version_major

Specifies, in the least significant 4 bits of the byte, the major release version number of the
LAN Manager software. The most significant 4 bits of the byte specifies the server type. The
mask MAJOR_VERSION_MASK should be used to ensure correct results.

sv101_version_minor

Indicates the minor release version number of the LAN Manager software.
sv101_type

Describes the type of software the computer is running. This member can be one of the
following values.

Symbolic constant Value Meaning
SV_TYPE_WORKSTATION 0x00000001 All LAN Manager

workstations
SV_TYPE_SERVER 0x00000002 All LAN Manager

servers
SV_TYPE_SQLSERVER 0x00000004 Any server

running with
Microsoft SQL
Server

SV_TYPE_DOMAIN_CTRL 0x00000008 Primary domain
controller

SV_TYPE_DOMAIN_BAKCTRL 0x00000010 Backup domain
controller

SV_TYPE_TIMESOURCE 0x00000020 Server running
the Timesource
service

SV_TYPE_AFP 0x00000040 Apple File
Protocol servers

SV_TYPE_NOVELL 0x00000080 Novell servers
SV_TYPE_DOMAIN_MEMBER 0x00000100 LAN Manager 2.

x Domain
Member

SV_TYPE_LOCAL_LIST_ONLY 0x40000000 Servers
maintained by the
browser

SV_TYPE_PRINT 0x00000200 Server sharing
print queue

SV_TYPE_DIALIN 0x00000400 Server running
dial-in service

SV_TYPE_XENIX_SERVER 0x00000800 Xenix server
SV_TYPE_MFPN 0x00004000 Microsoft File and

Print for Netware
SV_TYPE_NT 0x00001000 Windows NT

(either
Workstation or
Server)

SV_TYPE_WFW 0x00002000 Server running
Windows for
Workgroups

SV_TYPE_SERVER_NT 0x00008000 Windows NT non-
DC server

SV_TYPE_POTENTIAL_BROWSER0x00010000 Server that can
run the Browser
service

SV_TYPE_BACKUP_BROWSER 0x00020000 Server running a
Browser service

as backup
SV_TYPE_MASTER_BROWSER 0x00040000 Server running

the master
Browser service

SV_TYPE_DOMAIN_MASTER 0x00080000 Server running
the domain
master Browser

SV_TYPE_DOMAIN_ENUM 0x80000000 Primary Domain
SV_TYPE_WINDOWS 0x00400000 Windows 95 or

later
SV_TYPE_ALL 0xFFFFFFFF All servers

sv101_comment

Points to a Unicode string containing a comment describing the server. The comment can be
null.See AlsoNetServerEnum, NetServerGetInfo, NetServerSetInfo

SERVER_INFO_102
The SERVER_INFO_102 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_102 {

DWORDsv102_platform_id;
LPTSTR sv102_name;
DWORDsv102_version_major;
DWORDsv102_version_minor;
DWORDsv102_type;
LPTSTR sv102_comment;
DWORDsv102_users;
LONG sv102_disc;
BOOL sv102_hidden;
DWORDsv102_announce;
DWORDsv102_anndelta;
LPTSTR sv102_userpath;

} SERVER_INFO_102, *PSERVER_INFO_102, *LPSERVER_INFO_102;
Memberssv102_platform_id

Indicates the information levels to use for platform-specific information.
sv102_name

A Unicode string containing the name of a server.
sv102_version_major

Specifies, in the least significant 4 bits, the major release version number of the LAN Manager
software. The most significant 4 bits specifies the server type. The mask
MAJOR_VERSION_MASK should be used to ensure correct results.

sv102_version_minor

The minor release version number of the LAN Manager software.
sv102_type

Describes the type of software the computer is running. This member can be one of the
following values:

Symbolic constant Value Meaning
SV_TYPE_WORKSTATION 0x00000001 All LAN Manager

workstations
SV_TYPE_SERVER 0x00000002 All LAN Manager

servers
SV_TYPE_SQLSERVER 0x00000004 Any server

running with
Microsoft SQL
Server

SV_TYPE_DOMAIN_CTRL 0x00000008 Primary domain
controller

SV_TYPE_DOMAIN_BAKCTRL 0x00000010 Backup domain
controller

SV_TYPE_TIMESOURCE 0x00000020 Server running
the Timesource
service

SV_TYPE_AFP 0x00000040 Apple File
Protocol servers

SV_TYPE_NOVELL 0x00000080 Novell servers
SV_TYPE_DOMAIN_MEMBER 0x00000100 LAN Manager 2.

x Domain
Member

SV_TYPE_LOCAL_LIST_ONLY 0x40000000 Servers
maintained by the
browser

SV_TYPE_PRINT 0x00000200 Server sharing
print queue

SV_TYPE_DIALIN 0x00000400 Server running
dial-in service

SV_TYPE_XENIX_SERVER 0x00000800 Xenix server
SV_TYPE_MFPN 0x00004000 Microsoft File and

Print for Netware
SV_TYPE_NT 0x00001000 Windows NT

(either
Workstation or
Server)

SV_TYPE_WFW 0x00002000 Server running
Windows for
Workgroups

SV_TYPE_SERVER_NT 0x00008000 Windows NT non-
DC server

SV_TYPE_POTENTIAL_BROWSER0x00010000 Server that can
run the Browser
service

SV_TYPE_BACKUP_BROWSER 0x00020000 Server running a
Browser service
as backup

SV_TYPE_MASTER_BROWSER 0x00040000 Server running
the master
Browser service

SV_TYPE_DOMAIN_MASTER 0x00080000 Server running

the domain
master Browser

SV_TYPE_DOMAIN_ENUM 0x80000000 Primary Domain
SV_TYPE_WINDOWS 0x00400000 Windows 95 or

later
SV_TYPE_ALL 0xFFFFFFFF All servers

sv102_comment

Points to a Unicode string containing a comment describing the server. The comment can be
null.

sv102_users

Indicates the number of users who can attempt to log on to the system server. However, it is
the license server that determines how many of these users can actually log on.

sv102_disc

Indicates the auto-disconnect time, in minutes. A session is disconnected if it is idle longer
than the time specified by the sv102_disc member. If the value of sv102_disc is
SV_NODISC, auto-disconnect is not enabled.

sv102_hidden

Determines whether the server is visible to other computers in the same network domain. This
member can be one of the following values:

Value Meaning
SV_VISIBLE Server is visible.
SV_HIDDEN Server is not visible.

sv102_announce

Specifies the network announce rate, in seconds. This rate determines how often the server is
announced to other computers on the network.

sv102_anndelta

Specifies the delta value or change of the announce rate, in milliseconds. This value specifies
how much the announce rate can vary from the time specified in the sv102_announce
member. The delta value allows randomly varied announce rates. For example, if the
sv102_announce member has the value 10 and the sv102_anndelta member has the value
1, the announce rate can vary from 9.999 seconds to 10.001 seconds.

sv102_userpath

Points to a Unicode string containing the path to user directories.See AlsoNetServerGetInfo, NetServerSetInfo

SERVER_INFO_402
The SERVER_INFO_402 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_402 {
DWORDsv402_ulist_mtime;
DWORDsv402_glist_mtime;
DWORDsv402_alist_mtime;
LPTSTR sv402_alerts;
DWORDsv402_security;
DWORDsv402_numadmin;
DWORDsv402_lanmask;
LPTSTR sv402_guestacct;
DWORDsv402_chdevs;
DWORDsv402_chdevq;
DWORDsv402_chdevjobs;
DWORDsv402_connections;
DWORDsv402_shares;
DWORDsv402_openfiles;
DWORDsv402_sessopens;
DWORDsv402_sessvcs;
DWORDsv402_sessreqs;
DWORDsv402_opensearch;
DWORDsv402_activelocks;
DWORDsv402_numreqbuf;
DWORDsv402_sizreqbuf;
DWORDsv402_numbigbuf;
DWORDsv402_numfiletasks;
DWORDsv402_alertsched;
DWORDsv402_erroralert;
DWORDsv402_logonalert;
DWORDsv402_accessalert;
DWORDsv402_diskalert;
DWORDsv402_netioalert;
DWORDsv402_maxauditsz;
LPTSTR sv402_srvheuristics;
} SERVER_INFO_402, *PSERVER_INFO_402, *LPSERVER_INFO_402;
Memberssv402_ulist_mtime

Indicates the last time (in seconds from 00:00:00, January 1,1970) the user list for servers
running user-level security was modified.

sv402_glist_mtime
Indicates the last time (in seconds from 00:00:00, January 1,1970) the group list for servers
running user-level security was modified.

sv402_alist_mtime
Indicates the last time (in seconds from 00:00:00, January 1,1970) the access control list for
servers running user-level security was modified.

sv402_alerts
Points to a Unicode string containing the list of user names on the server. Spaces separate
the names.

sv402_security
Specifies the security type of the server. This member can be one of the following:

Value Meaning
SV_SHARESECURITY The share level of the security

type.
SV_USERSECURITY The user level of the security type.

sv402_numadmin
Specifies how many administrators a server can accommodate at the same time.

sv402_lanmask
Determines the order in which the network device drivers are served.

sv402_guestacct
A Unicode string containing the name of a reserved guest user account for a server. The
constant UNLEN specifies the maximum number of characters in the string.

sv402_chdevs
Specifies how many character-oriented devices can be shared on the server.

sv402_chdevq
Specifies how many character-oriented device queues can coexist on the server.

sv402_chdevjobs
Specifies how many character-oriented device jobs can be pending on a server.

sv402_connections
Specifies the number of connections to share names allowed on a server.

sv402_shares
Specifies the number of share names a server can accommodate.

sv402_openfiles
Specifies the number of files that can be open at once.

sv402_sessopens
Specifies the number of files that can be open in one session.

sv402_sessvcs
Specifies the maximum number of virtual circuits per client.

sv402_sessreqs
Specifies the number of simultaneous requests a client can make on any virtual circuit.

sv402_opensearch
Specifies the number of searches that can be open at once.

sv402_activelocks
Specifies the number of file locks that can be active at the same time.

sv402_numreqbuf
Specifies the number of server buffers provided.

sv402_sizreqbuf
Specifies the size, in bytes, of each server buffer.

sv402_sizreqbuf
Specifies the size, in bytes, of each server buffer.

sv402_numbigbuf
Specifies the number of 64K server buffers provided.

sv402_numfiletasks
Specifies the number of processes that can access the operating system at one time.

sv402_alertsched
Specifies the interval, in seconds, at which to notify an administrator of a network event.

sv402_erroralert
Specifies how many entries can be written to the error-log file during an interval specified in
the sv402_alertsched before notifying an administrator.

sv402_logonalert
Specifies how many invalid logon attempts to allow a user before notifying an administrator.

sv402_accessalert
Specifies the number of invalid attempts to access a file to allow before notifying an
administrator.

sv402_diskalertf
Specifies the number of kilobytes of free disk space remaining on the disk before the system
sends a message to notify an administrator that free space for a disk is low.

sv402_netioalert
Specifies, in tenths of a percent, the network I/O error ratio allowable before notifying an
administrator.

sv402_maxauditsz
Specifies, in kilobytes, the maximum size of the audit file. The audit file traces activity of the
user.

sv402_srvheuristics
Points to a Unicode string of flags used to control operations on a server.See AlsoNetServerGetInfo, NetServerSetInfo

SERVER_INFO_403
The SERVER_INFO_403 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_403 {
DWORDsv403_ulist_mtime;
DWORDsv403_glist_mtime;
DWORDsv403_alist_mtime;
LPTSTR sv403_alerts;
DWORDsv403_security;
DWORDsv403_numadmin;
DWORDsv403_lanmask;
LPTSTR sv403_guestacct;
DWORDsv403_chdevs;
DWORDsv403_chdevq;
DWORDsv403_chdevjobs;
DWORDsv403_connections;
DWORDsv403_shares;
DWORDsv403_openfiles;
DWORDsv403_sessopens;
DWORDsv403_sessvcs;
DWORDsv403_sessreqs;
DWORDsv403_opensearch;
DWORDsv403_activelocks;
DWORDsv403_numreqbuf;
DWORDsv403_sizreqbuf;
DWORDsv403_numbigbuf;
DWORDsv403_numfiletasks;
DWORDsv403_alertsched;
DWORDsv403_erroralert;
DWORDsv403_logonalert;
DWORDsv403_accessalert;
DWORDsv403_diskalert;
DWORDsv403_netioalert;
DWORDsv403_maxauditsz;
LPTSTR sv403_srvheuristics;
DWORDsv403_auditedevents;
DWORDsv403_autoprofile;
LPTSTR sv403_autopath;
} SERVER_INFO_403, *PSERVER_INFO_403, *LPSERVER_INFO_403;
Memberssv403_ulist_mtime

Indicates the last time (in seconds from 00:00:00, January 1,1970) that the user list for servers
running user-level security was modified.

sv403_glist_mtime
Indicates the last time (in seconds from 00:00:00, January 1,1970) that the group list for
servers running user-level security was modified.

sv403_alist_mtime
Indicates the last time in (seconds from 00:00:00, January 1,1970) that the access-control list
for servers running user-level security was modified.

sv403_alerts
Points to a Unicode string containing the list of user names on the server. Spaces separate
the names.

sv403_security
Specifies the security type of the server as follows:

Value Meaning
SV_SHARESECURITY Specifies the share-level security

type.
SV_USERSECURITY Specifies the user-level security

type.

sv403_numadmin
Specifies the number of administrators a server can accommodate at the same time.

sv403_lanmask
Determines the order in which the network device drivers are served.

sv403_guestacct
A Unicode string containing the name of a reserved guest user account for a server. The
UNLEN constant specifies the maximum number of characters in the string.

sv403_chdevs
Specifies the number of character devices that can be shared on the server.

sv403_chdevq
Specifies the number of character device queues that can coexist on the server.

sv403_chdevjobs
Specifies the number of character device jobs that can be pending on a server.

sv403_connections
Specifies the number of connections to share names allowed on a server.

sv403_shares
Specifies the number of share names a server can accommodate.

sv403_openfiles
Specifies the number of files that can be open at once.

sv403_sessopens
Specifies the number of files that can be open in one session.

sv403_sessvcs
Specifies the maximum number of virtual circuits per client.

sv403_sessreqs
Specifies the number of simultaneous requests a client can make on any virtual circuit.

sv403_opensearch
Specifies the number of searches that can be open at once.

sv403_activelocks
Specifies the number of file locks that can be active at the same time.

sv403_numreqbuf
Specifies the number of server buffers that are provided.

sv403_sizreqbuf
Specifies the size, in bytes, of each server buffer.

sv403_sizreqbuf
Specifies the size, in bytes, of each server buffer.

sv403_numbigbuf
Specifies the number of 64K server buffers provided.

sv403_numfiletasks
Specifies the number of processes that can access the operating system at the same time.

sv403_alertsched
Specifies the alert interval, in seconds, for notifying an administrator of a network event.

sv403_erroralert
Specifies how many entries can be written to the error-log file during the interval specified in
the sv403_alertsched member before notifying an administrator.

sv403_logonalert
Specifies how many invalid attempts that a user tries to logon before notifying an
administrator.

sv403_accessalert
Specifies how many invalid attempts to access a file to allow before notifying an administrator.

sv403_diskalertf
Specifies the number of kilobytes of free disk space remaining on the disk before sending a
message to notify an administrator that free space for a disk is low.

sv403_netioalert
Specifies the network I/O error ratio, n tenths of a percent, to allow before notifying an
administrator.

sv403_maxauditsz
Specifies, in kilobytes, the maximum audit file size.

sv403_srvheuristics
Points to a Unicode string of flags used to control operations on a server.

sv403_auditedevents
Specifies the audit event control mask.

sv403_autoprofile
Controls the action of the server on the profile as follows:

Value Meaning
SW_AUTOPROF_LOAD_MASKThe server loads the profile.
SW_AUTOPROF_SAVE_MASKThe server saves the profile.

sv403_autopath
Points to the path for the profile.See AlsoNetServerGetInfo, NetServerSetInfo

SERVER_INFO_502
The SERVER_INFO_502 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_502 {

DWORD sv502_sessopens;
DWORD sv502_sessvcs;
DWORD sv502_opensearch;
DWORD sv502_sizreqbuf;
DWORD sv502_initworkitems;
DWORD sv502_maxworkitems;
DWORD sv502_rawworkitems;
DWORD sv502_irpstacksize;
DWORD sv502_maxrawbuflen;
DWORD sv502_sessusers;
DWORD sv502_sessconns;
DWORD sv502_maxpagedmemoryusage;
DWORD sv502_maxnonpagedmemoryusage;
BOOLsv502_enableforcedlogoff;
BOOLsv502_timesource;
BOOLsv502_acceptdownlevelapis;
BOOLsv502_lmannounce;

} SERVER_INFO_502, *PSERVER_INFO_502, *LPSERVER_INFO_502;
Memberssv502_sessopens

Specifies the number of files that can be open in one session.
sv502_sessvcs

Specifies the maximum number of virtual circuits per client.
sv502_opensearch

Specifies the number of search operations that can be carried out simultaneously.
sv502_sizreqbuf

Specifies the size, in bytes, of each server buffer.
sv502_initworkitems

Specifies the initial number of receive buffers, or work items, used by the server. Allocating
work items costs a certain amount of memory initially, but not as much as having to allocate
additional buffers later.

sv502_maxworkitems
Specifies the maximum number of receive buffers, or work items, the server can allocate. If
this limit is reached, the transport must initiate flow control at a significant performance cost.

sv502_rawworkitems
Specifies the number of special work items for raw I/O that the server uses. A larger value for
this member can increase performance but costs more memory.

sv502_irpstacksize
Specifies the number of stack locations in IRPs allocated by the server.

sv502_maxrawbuflen
Specifies the maximum raw mode buffer size.

sv502_sessusers
Specifies the maximum number of users that can be logged on to a server using a single
virtual circuit.

sv502_sessconns
Specifies the maximum number of tree connections that can be made on the server using a
single virtual circuit.

sv502_maxpagedmemoryusage
Specifies the maximum size of pageable memory that the server can have allocated at any
time. Adjust this member if you want to administer memory quota control.

sv502_maxnonpagedmemoryusage
Specifies the maximum size of nonpaged memory that the server can have allocated at any
time. Adjust this member if you want to administer memory quota control.

sv502_enableforcedlogoff
Specifies whether the server should force a client to disconnect, even if the client has open
files, once the client's logon time has expired.

sv502_timesource
Specifies whether the server is a reliable time source.

sv502_acceptdownlevelapis
Specifies whether the server will accept function calls from previous generation LAN Manager
clients.

sv502_lmannounce
Specifies the LAN Manager server announcement interval.

See AlsoNetServerGetInfo, NetServerSetInfo

SERVER_INFO_503
The SERVER_INFO_503 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_503 {

DWORDsv503_sessopens;
DWORDsv503_sessvcs;
DWORDsv503_opensearch;
DWORDsv503_sizreqbuf;
DWORDsv503_initworkitems;
DWORDsv503_maxworkitems;
DWORDsv503_rawworkitems;
DWORDsv503_irpstacksize;
DWORDsv503_maxrawbuflen;
DWORDsv503_sessusers;
DWORDsv503_sessconns;
DWORDsv503_maxpagedmemoryusage;
DWORDsv503_maxnonpagedmemoryusage;
BOOL sv503_enableforcedlogoff;
BOOL sv503_timesource;
BOOL sv503_acceptdownlevelapis;
BOOL sv503_lmannounce;
LPTSTR sv503_domain;
DWORDsv503_maxkeepsearch;
DWORDsv503_scavtimeout;
DWORDsv503_minrcvqueue;
DWORDsv503_minfreeworkitems;
DWORDsv503_xactmemsize;
DWORDsv503_threadpriority;
DWORDsv503_maxmpxct;
DWORDsv503_oplockbreakwait;
DWORDsv503_oplockbreakresponsewait;
BOOL sv503_enableoplocks;
BOOL sv503_enablefcbopens;
BOOL sv503_enableraw;
BOOL sv503_enablesharednetdrives;
DWORDsv503_minfreeconnections;
DWORDsv503_maxfreeconnections;

} SERVER_INFO_503, *PSERVER_INFO_503, *LPSERVER_INFO_503;
Memberssv503_sessopens

Specifies the number of files that can be open in one session.
sv503_sessvcs

Specifies the maximum number of virtual circuits per client.
sv503_opensearch

Specifies the number of search operations that can be carried out simultaneously.
sv503_sizreqbuf

Specifies the size, in bytes, of each server buffer.
sv503_initworkitems

Specifies the initial number of receive buffers, or work items, used by the server. Allocating
work items costs a certain amount of memory initially, but not as much as having to allocate
additional buffers later.

sv503_maxworkitems
Specifies the maximum number of receive buffers, or work items, the server can allocate. If
this limit is reached, the transport must initiate flow control at a significant performance cost.

sv503_rawworkitems
Specifies the number of special work items for raw I/O that the server uses. A larger value for
this member can increase performance but costs more memory.

sv503_irpstacksize
Specifies the number of stack locations in IRPs allocated by the server.

sv503_maxrawbuflen
Specifies the maximum raw mode buffer size.

sv503_sessusers
Specifies the maximum number of users that can be logged on to a server using a single
virtual circuit.

sv503_sessconns
Specifies the maximum number of tree connections that can be made on the server using a
single virtual circuit.

sv503_maxpagedmemoryusage
Specifies the maximum size of pageable memory that the server can have allocated at any
time. Adjust this member if you want to administer memory quota control.

sv503_maxnonpagedmemoryusage
Specifies the maximum size of nonpaged memory that the server can have allocated at any
time. Adjust this member if you want to administer memory quota control.

sv503_enableforcedlogoff
Specifies whether the server should force a client to disconnect, even if the client has open
files, once the client's logon time has expired.

sv503_timesource
Specifies whether the server is a reliable time source.

sv503_acceptdownlevelapis
Specifies whether the server will accept function calls from previous generation LAN Manager
clients.

sv503_lmannounce
Specifies the LAN Manager server announcement interval.

sv503_domain
Specifies the name of the server's domain.

sv503_maxkeepsearch
Specifies the length of time the server will retain information about directory searches that
have not ended.

sv503_scavtimeout
Specifies the time that the scavenger remains idle before waking up to service requests. A
smaller value for this member improves the response of the server to various events but costs
CPU cycles.

sv503_minrcvqueue
Specifies the minimum number of free receive work items needed by the server before it
begins allocating more. A larger value for this member helps ensure that there will always be
work items available, but a value that is too large is simply inefficient.

sv503_minfreeworkitems
Specifies the minimum number of available receive work items that are needed for the server
to begin processing a server message block. A larger value for this member ensures that work
items are available more frequently for nonblocking requests, but it also increases the
likelihood that blocking requests will be rejected.

sv503_xactmemsize
Specifies the size of the shared memory region used to process server functions.

sv503_threadpriority
Specifies the priority of all server threads in relation to the base priority of the process. Higher
priority can give better server performance at the cost of local responsiveness. Lower priority
balances server needs with the needs of other processes on the system.

sv503_maxmpxct
Specifies the maximum number of simultaneous requests any one client can send to the
server. For example, 10 means you can have 10 unanswered requests at the server. When
any single client has 10 requests queued within the server, the client must wait for a server
response before sending another request.

sv503_oplockbreakwait
Specifies the time to wait before timing out an opportunistic lock break request.

sv503_oplockbreakresponsewait
Specifies the time to wait before timing out an opportunistic lock break request.

sv503_enableoplocks
Specifies whether the server allows clients to use opportunistic locks on files. Opportunistic
locks are a significant performance enhancement, but have the potential to cause lost cached
data on some networks, particularly wide-area networks.

sv503_enablefcbopens
Specifies whether several MS-DOS File Control Blocks (FCBs) are placed in a single location
accessible by the server. This saves resources on the server.

sv503_enableraw
Specifies whether the server processes raw Server Message Blocks (SMBs). If enabled, this
allows more data to transfer per transaction and also improves performance. However, it is

possible that processing raw SMBs can impede performance on certain networks. The server
maintains the value of this member.

sv503_enablesharednetdrives
Specifies whether the server allows redirected server drives to be shared.

sv503_minfreeconnections
Specifies the minimum number of connection structures the server sets aside to handle bursts
of requests by clients to connect to the server.

sv503_maxfreeconnections
Specifies the maximum number of connection structures the server sets aside to handle
bursts of requests by clients to connect to the server.

See AlsoNetServerGetInfo

SERVER_INFO_1005
The SERVER_INFO_1005 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1005 {

LPTSTR sv1005_comment;
} SERVER_INFO_1005, *PSERVER_INFO_1005, *LPSERVER_INFO_1005;
Memberssv1005_comment

Points to a Unicode string that contains a comment describing the server. The comment can
be null.

See AlsoNetServerGetInfo

SERVER_INFO_1107
The SERVER_INFO_1107 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1107 {

DWORD sv1107_users;
} SERVER_INFO_1107, *PSERVER_INFO_1107, *LPSERVER_INFO_1107;
Memberssv1107_users

Indicates the number of users allowed on the server.
See AlsoNetServerGetInfo

SERVER_INFO_1010
The SERVER_INFO_1010 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1010 {

LONG sv1010_disc;
} SERVER_INFO_1010, *PSERVER_INFO_1010, *LPSERVER_INFO_1010;
Memberssv1010_disc

Indicates the auto-disconnect time, in minutes. A session is disconnected if it is idle longer
than the time specified by this member. If the value of sv1010_disc is SV_NODISC, auto-
disconnect is not enabled.

See AlsoNetServerGetInfo

SERVER_INFO_1016
The SERVER_INFO_1016 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1016 {

BOOL sv1016_hidden;
} SERVER_INFO_1016, *PSERVER_INFO_1016, *LPSERVER_INFO_1016;
Memberssv1016_hidden

Determines whether the server is visible to other computers in the same network domain. This
member can be one of the following values:

Value Meaning
SV_VISIBLE The server is visible.
SV_HIDDEN The server is not visible.

See AlsoNetServerGetInfo

SERVER_INFO_1017
The SERVER_INFO_1017 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1017 {

DWORD sv1017_announce;
} SERVER_INFO_1017, *PSERVER_INFO_1017, *LPSERVER_INFO_1017;
Memberssv1017_announce

Specifies the network announce rate, in seconds. This rate determines how often the server is
announced to other computers on the network.

See AlsoNetServerGetInfo

SERVER_INFO_1018
The SERVER_INFO_1018 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1018 {

DWORD sv1018_anndelta;
} SERVER_INFO_1018, *PSERVER_INFO_1018, *LPSERVER_INFO_1018;
Memberssv1018_anndelta

Specifies the delta or change of the announce rate,in milliseconds. This value specifies how
much the announce rate can vary from the time specified in the sv2_announce member or
sv1017_announce. The delta value allows randomly varied announce rates. For example, if
sv2_announce has the value 10 and sv1018_anndelta has the value 1, the announce rate
can vary from 9.999 seconds to 10.001 seconds.

See AlsoNetServerGetInfo

SERVER_INFO_1501
The SERVER_INFO_1501 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1501 {

DWORD sv1501_sessopens;
} SERVER_INFO_1501, *PSERVER_INFO_1501, *LPSERVER_INFO_1501;
Memberssv1501_sessopens

Specifies the number of files that can be open in one session.
See AlsoNetServerGetInfo

SERVER_INFO_1502
The SERVER_INFO_1502 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1502 {

DWORD sv1502_sessvcs;
} SERVER_INFO_1502, *PSERVER_INFO_1502, *LPSERVER_INFO_1502;
Memberssv1502_sessvcs

Specifies the maximum number of virtual circuits per client.
See AlsoNetServerGetInfo

SERVER_INFO_1503
The SERVER_INFO_1503 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1503 {

DWORD sv1503_opensearch;
} SERVER_INFO_1503, *PSERVER_INFO_1503, *LPSERVER_INFO_1503;
Memberssv1503_opensearch

Specifies the number of search operations that can be carried out simultaneously.
See AlsoNetServerGetInfo

SERVER_INFO_1506
The SERVER_INFO_1506 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1506 {

DWORD sv1506_maxworkitems;
} SERVER_INFO_1506, *PSERVER_INFO_1506, *LPSERVER_INFO_1506;
Memberssv1506_maxworkitems

Specifies the maximum number of receive buffers, or work items, the server can allocate. If
this limit is reached, the transport protocol must initiate flow control at a significant cost to
performance.

See AlsoNetServerGetInfo

SERVER_INFO_1509
The SERVER_INFO_1509 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1509 {

DWORD sv1509_maxrawbuflen;
} SERVER_INFO_1509, *PSERVER_INFO_1509, *LPSERVER_INFO_1509;
Memberssv1509_maxrawbuflen

Specifies the maximum raw mode buffer size.
See AlsoNetServerGetInfo

SERVER_INFO_1510
The SERVER_INFO_1510 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1510 {

DWORD sv1510_sessusers;
} SERVER_INFO_1510, *PSERVER_INFO_1510, *LPSERVER_INFO_1510;
Memberssv1510_sessusers

Specifies the maximum number of users that can be logged on to a server using a single
virtual circuit.

See AlsoNetServerGetInfo

SERVER_INFO_1511
The SERVER_INFO_1511 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1511 {

DWORD sv1511_sessconns;
} SERVER_INFO_1511, *PSERVER_INFO_1511, *LPSERVER_INFO_1511;
Memberssv1511_sessconns

Specifies the maximum number of tree connections that users can make with a single virtual
circuit.

See AlsoNetServerGetInfo

SERVER_INFO_1512
The SERVER_INFO_1512 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1512 {

DWORD sv1512_maxnonpagedmemoryusage;
} SERVER_INFO_1512, *PSERVER_INFO_1512, *LPSERVER_INFO_1512;
Memberssv1512_maxnonpagedmemoryusage

Specifies the maximum size of nonpaged memory that the server can have allocated at any
time. Adjust this member if you want to administer memory quota control.

See AlsoNetServerGetInfo

SERVER_INFO_1513
The SERVER_INFO_1513 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1513 {

DWORD sv1513_maxpagedmemoryusage;
} SERVER_INFO_1513, *PSERVER_INFO_1513, *LPSERVER_INFO_1513;
Memberssv1513_maxpagedmemoryusage

Specifies the maximum size of pageable memory that the server allocates at any particular
time. Adjust this member if you want to administer memory quota control.

See AlsoNetServerGetInfo

SERVER_INFO_1515
The SERVER_INFO_1515 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1515 {

BOOL sv1515_enableforcedlogoff;
} SERVER_INFO_1515, *PSERVER_INFO_1515, *LPSERVER_INFO_1515;
Memberssv1515_enableforcedlogoff

Specifies whether the server should force a client to disconnect, even if the client has open
files, once the client's logon time has expired.

See AlsoNetServerGetInfo

SERVER_INFO_1516
The SERVER_INFO_1516 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1516 {

BOOL sv1516_timesource;
} SERVER_INFO_1516, *PSERVER_INFO_1516, *LPSERVER_INFO_1516;
Memberssv1516_timesource

Specifies whether the server is a reliable time source.
See AlsoNetServerGetInfo

SERVER_INFO_1518
The SERVER_INFO_1518 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1518 {

BOOL sv1518_lmannounce;
} SERVER_INFO_1518, *PSERVER_INFO_1518, *LPSERVER_INFO_1518;
Memberssv1518_lmannounce

Specifies the interval of LAN Manager server announcements, in seconds.
See AlsoNetServerGetInfo

SERVER_INFO_1523
The SERVER_INFO_1523 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1523 {

DWORD sv1523_maxkeepsearch;
} SERVER_INFO_1523, *PSERVER_INFO_1523, *LPSERVER_INFO_1523;
Memberssv1523_maxkeepsearch

Specifies the length of time the server will retain information about directory search operations
that have not ended.

See AlsoNetServerGetInfo

SERVER_INFO_1528
The SERVER_INFO_1528 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1528 {

DWORD sv1528_scavtimeout;
} SERVER_INFO_1528, *PSERVER_INFO_1528, *LPSERVER_INFO_1528;
Memberssv1528_scavtimeout

Specifies the time that the scavenger remains idle before waking up to service requests. A
smaller value for this member improves the response of the server to various events but costs
CPU cycles.

See AlsoNetServerGetInfo

SERVER_INFO_1529
The SERVER_INFO_1529 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1529 {

DWORD sv1529_minrcvqueue;
} SERVER_INFO_1529, *PSERVER_INFO_1529, *LPSERVER_INFO_1529;
Memberssv1529_minrcvqueue

Specifies the minimum number of free receive work items needed by the server before it
begins allocating more. A larger value for this member helps ensure that there will always be
work items available, but a value that is too large is simply inefficient.

See AlsoNetServerGetInfo

SERVER_INFO_1530
The SERVER_INFO_1530 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1530 {

DWORD sv1530_minfreeworkitems;
} SERVER_INFO_1530, *PSERVER_INFO_1530, *LPSERVER_INFO_1530;
Memberssv1530_minfreeworkitems

Specifies the minimum number of available receive work items that are needed for the server
to begin processing a server message block. A larger value for this member ensures that work
items are available more frequently for nonblocking requests, but it also increases the
likelihood that blocking requests will be rejected.See AlsoNetServerGetInfo

SERVER_INFO_1533
The SERVER_INFO_1533 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1533 {

DWORD sv1533_maxmpxct;
} SERVER_INFO_1533, *PSERVER_INFO_1533, *LPSERVER_INFO_1533;
Memberssv1533_maxmpxct

Specifies the maximum number of simultaneous requests any one client can send to the
server. For example, 10 means you can have 10 unanswered requests at the server. When
any single client has 10 requests queued within the server, the client must wait for a server
response before sending another request.See AlsoNetServerGetInfo

SERVER_INFO_1534
The SERVER_INFO_1534 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1534 {

DWORD sv1534_oplockbreakwait;
} SERVER_INFO_1534, *PSERVER_INFO_1534, *LPSERVER_INFO_1534;
Memberssv1534_oplockbreakwait

Specifies the time to wait before timing out a request for an opportunistic lock.See AlsoNetServerGetInfo

SERVER_INFO_1535
The SERVER_INFO_1535 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1535 {

DWORD sv1535_oplockbreakresponsewait;
} SERVER_INFO_1535, *PSERVER_INFO_1535, *LPSERVER_INFO_1535;
Memberssv1535_oplockbreakresponsewait

Specifies the time to wait before timing out a request for an opportunistic lock.See AlsoNetServerGetInfo

SERVER_INFO_1536
The SERVER_INFO_1536 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1536 {

BOOL sv1536_enableoplocks;
} SERVER_INFO_1536, *PSERVER_INFO_1536, *LPSERVER_INFO_1536;
Memberssv1536_enableoplocks

Specifies whether the server allows clients to use oplocks on files. Opportunistic locks are a
significant performance enhancement, but have the potential to cause lost cached data on
some networks, particularly wide-area networks.See AlsoNetServerGetInfo

SERVER_INFO_1538
The SERVER_INFO_1538 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1538 {

BOOL sv1538_enablefcbopens;
} SERVER_INFO_1538, *PSERVER_INFO_1538, *LPSERVER_INFO_1538;
Memberssv1538_enablefcbopens

Specifies whether several MS-DOS File Control Blocks (FCBs) are placed in a single location
accessible by the server. This saves resources on the server.See AlsoNetServerGetInfo

SERVER_INFO_1539
The SERVER_INFO_1539 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1539 {

BOOL sv1539_enableraw;
} SERVER_INFO_1539, *PSERVER_INFO_1539, *LPSERVER_INFO_1539;
Memberssv1539_enableraw

Specifies whether the server processes raw Server Message Blocks (SMBs). If enabled, this
member allows more data to be transferred per transaction and improves performance.
However, it is possible that processing raw SMBs can impede performance on certain
networks. The server maintains the value of this member.See AlsoNetServerGetInfo

SERVER_INFO_1540
The SERVER_INFO_1540 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1540 {

BOOL sv1540_enablesharednetdrives;
} SERVER_INFO_1540, *PSERVER_INFO_1540, *LPSERVER_INFO_1540;
Memberssv1540_enablesharednetdrives

Specifies whether the server allows redirected server drives to be shared.See AlsoNetServerGetInfo

SERVER_INFO_1541
The SERVER_INFO_1541 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1541 {

BOOL sv1541_minfreeconnections;
} SERVER_INFO_1541, *PSERVER_INFO_1541, *LPSERVER_INFO_1541;
Memberssv1541_minfreeconnections

Specifies the minimum number of connection structures the server sets aside to handle bursts
of requests by clients to connect to the server.See AlsoNetServerGetInfo

SERVER_INFO_1542
The SERVER_INFO_1542 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1542 {

BOOL sv1542_maxfreeconnections;
} SERVER_INFO_1542, *PSERVER_INFO_1542, *LPSERVER_INFO_1542;
Memberssv1542_maxfreeconnections

Specifies the maximum number of connection structures the server sets aside to handle
bursts of requests by clients to connect to the server.See AlsoNetServerGetInfo

SERVER_INFO_1544
The SERVER_INFO_1544 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1544 {

DWORD sv1544_initconntable;
} SERVER_INFO_1544, *PSERVER_INFO_1544, *LPSERVER_INFO_1544;
Memberssv1544_initconntable

Specifies the initial number of tree connections to be allocated in the connection table. The
server automatically increases the table as necessary, so setting the member to a higher
value is an optimization.See AlsoNetServerGetInfo

SERVER_INFO_1550
The SERVER_INFO_1550 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1550 {

DWORD sv1550_diskspacethreshold;
} SERVER_INFO_1550, *PSERVER_INFO_1550, *LPSERVER_INFO_1550;
Memberssv1550_diskspacethreshold

Specifies the percentage of free disk space remaining before an alert message is sent.See AlsoNetServerGetInfo

SERVER_INFO_1552
The SERVER_INFO_1552 structure contains information about the specified server, including
name, platform, type of server, and associated software.typedef struct _SERVER_INFO_1552 {

DWORD sv1552_maxlinkdelay;
} SERVER_INFO_1552, *PSERVER_INFO_1552, *LPSERVER_INFO_1552;
Memberssv1552_maxlinkdelay

Specifies the maximum time allowed for a link delay, in seconds. If delays exceed this
number, the server disables raw I/O for this connection.See AlsoNetServerGetInfo

SERVER_TRANSPORT_INFO_0
The SERVER_TRANSPORT_INFO_0 structure contains information about the specified
transporter, including name, address, and location on the network.typedef struct _SERVER_TRANSPORT_INFO_0 {

DWORDsvti0_numberofvcs;
LPTSTR svti0_transportname;
[size_is(svti0_transportaddresslength)] LPBYTE

svti0_transportaddress;
DWORDsvti0_transportaddresslength;
LPTSTR svti0_networkaddress;

} SERVER_TRANSPORT_INFO_0, *PSERVER_TRANSPORT_INFO_0, *
LPSERVER_TRANSPORT_INFO_0;
#else
typedef struct _SERVER_TRANSPORT_INFO_0 {

DWORDsvti0_numberofvcs;
LPTSTR svti0_transportname;
LPBYTE svti0_transportaddress;
DWORDsvti0_transportaddresslength;
LPTSTR svti0_networkaddress;

} SERVER_TRANSPORT_INFO_0, *PSERVER_TRANSPORT_INFO_0, *
LPSERVER_TRANSPORT_INFO_0;
#endif
Memberssvti0_numberofvcs

Specifies the number of clients communicating with the server using this transport.
svti0_transportname

Specifies the device name of the transport.
svti0_transportaddress

Specifies the address of the server on this transport.
svti0_transportaddresslength

Specifies the length, in bytes, of the svti0_transportaddress member.
svti0_networkaddress

A null-terminated string representing the network address.See AlsoNetServerTransportAdd

SERVICE_ADDRESS
The SERVICE_ADDRESS structure contains address information for a service. The structure can
accomodate many types of interprocess communications (IPC) mechanisms and their address
forms, including remote procedure calls (RPCs), named pipes, and sockets.typedef struct _SERVICE_ADDRESS {

DWORD dwAddressType;
DWORD dwAddressFlags;
DWORD dwAddressLength;
DWORD dwPrincipalLength;
BYTE *lpAddress;
BYTE *lpPrincipal;

} SERVICE_ADDRESS;
MembersdwAddressType

Specifies the address family that the socket address pointed to by lpAddress belongs to.
dwAddressFlags

A set of bit flags that specify properties of the address. The following bit flags are defined:
Value Meaning
SERVICE_ADDRESS_FLAG_RPC_CNIf this bit flag is set, the service

supports connection-oriented
RPC over this transport
protocol.

SERVICE_ADDRESS_FLAG_RPC_DGIf this bit flag is set, the service
supports datagram-oriented
RPC over this transport
protocol.

SERVICE_ADDRESS_FLAG_RPC_NBIf this bit flag is set, the service
supports NetBIOS RPC over
this transport protocol.

dwAddressLength

Specifies the size, in bytes, of the address.
dwPrincipalLength

This member is reserved for future use. It must be zero.
lpAddress

Points to a socket address of the appropriate type.
lpPrincipal

This member is reserved for future use. It must be NULL.See AlsoSERVICE_ADDRESSES, SERVICE_INFO

SERVICE_ADDRESSES
The SERVICE_ADDRESSES structure contains an array of SERVICE_ADDRESS data
structures.typedef struct _SERVICE_ADDRESSES {

DWORD dwAddressCount;
SERVICE_ADDRESS Addresses[1];

} SERVICE_ADDRESSES;
MembersdwAddressCount

Specifies the number of SERVICE_ADDRESS structures in the Addresses array.
Addresses

An array of SERVICE_ADDRESS data structures. Each SERVICE_ADDRESS structure
contains information about a network service address.See AlsoSERVICE_ADDRESS, SERVICE_INFO

SERVICE_INFO
The SERVICE_INFO structure contains information about a network service or a network service
type.typedef struct _SERVICE_INFO {

LPGUID lpServiceType;
LPTSTR lpServiceName;
LPTSTR lpComment;
LPTSTR lpLocale;
DWORD dwDisplayHint;
DWORD dwVersion;
DWORD dwTime;
LPTSTR lpMachineName;
LPSERVICE_ADDRESSES lpServiceAddress;
BLOB ServiceSpecificInfo;

} SERVICE_INFO;
MemberslpServiceType

Points to a GUID that is the type of the network service.
lpServiceName

Points to a zero-terminated string that is the name of the network service.
If you are calling the SetService function with the dwNameSpace parameter set to
NS_DEFAULT, the network service name must be a common name A common name is what
the network service is commonly known as. An example of a common name for a network
service is "My SQL Server".
If you are calling the SetService function with the dwNameSpace parameter set to a specific
service name, the network service name can be a common name or a distinguished name. A
distinguished name distinguishes the service to a unique location with a directory service. An
example of a distinguished name for a network service is "MS\\SYS\\NT\\DEV\\My SQL
Server".

lpComment

Points to a zero-terminated string that is a comment or description for the network service. For
example, "Used for development upgrades."

lpLocale

Points to a zero-terminated string that contains locale information.
dwDisplayHint

Specifies a hint as to how to display the network service in a network browsing user interface.
This can be one of the following values:

Value Meaning
RESOURCEDISPLAYTYPE_DOMAIN Display the network service

as a domain.
RESOURCEDISPLAYTYPE_FILE Display the network service

as a file.
RESOURCEDISPLAYTYPE_GENERICThe method used to display

the object does not matter.
RESOURCEDISPLAYTYPE_GROUP Display the network service

as a group.
RESOURCEDISPLAYTYPE_SERVER Display the network service

as a server.
RESOURCEDISPLAYTYPE_SHARE Display the network service

as a sharepoint.
RESOURCEDISPLAYTYPE_TREE Display the network service

as a tree.

dwVersion

Specifies version information for the network service. The high word of this value specifies a
major version number. The low word of this value specifies a minor version number.

dwTime

This member is reserved for future use. It must be set to zero.
lpMachineName

Points to a zero-terminated string that is the name of the computer on which the network
service is running.

lpServiceAddress

Points to a SERVICE_ADDRESSES structure that contains an array of SERVICE_ADDRESS
structures. Each SERVICE_ADDRESS structure contains information about a network service
address.
A network service can call the getsockname function to determine the local address of the
system.

ServiceSpecificInfo

A BLOB structure that specifies service-defined information.
Note that, in general, the data pointed to by the BLOB structure's pBlobData member must
not contain any pointers. That is because only the network service knows the format of the
data; copying the data without such knowledge would lead to pointer invalidation. If the data
pointed to by pBlobData contains variable-sized elements, offsets from pBlobData can be
used to indicate the location of those elements. There is one exception to this general rule:

when pBlobData points to a SERVICE_TYPE_INFO_ABS structure. This is possible because
both the SERVICE_TYPE_INFO_ABS structure, and any SERVICE_TYPE_VALUE_ABS
structures it contains are predefined, and thus their formats are known to the operating
system.See AlsoBLOB, GetService, NS_SERVICE_INFO, SetService, SERVICE_ADDRESS,

SERVICE_ADDRESSES, SERVICE_TYPE_INFO_ABS, SERVICE_TYPE_VALUE_ABS

SERVICE_INFO_0
The SERVICE_INFO_0 structure contains the name of a network service.typedef struct _SERVICE_INFO_0 {

LPWSTR svci0_name;
} SERVICE_INFO_0, *PSERVICE_INFO_0, * LPSERVICE_INFO_0;
Memberssvci0_name

A Unicode string containing the name of the network service to monitor.See AlsoNetServiceEnum, NetServiceGetInfo

SERVICE_INFO_1
The SERVICE_INFO_1 structure contains name, status, service code, and identifcation number of
a network service.typedef struct _SERVICE_INFO_1 {

LPWSTR svci1_name;
DWORD svci1_status;
DWORD svci1_code;
DWORD svci1_pid;

} SERVICE_INFO_1, *PSERVICE_INFO_1, * LPSERVICE_INFO_1;
Memberssvci1_name

A Unicode string containing the name of the network service to monitor.
svci1_status

Specifies the status of the connection.
svci1_code

The return code returned if the designated service fails to install properly.
svci1_pid

Specifies the service process identification.See AlsoNetServiceEnum, NetServiceGetInfo

SERVICE_INFO_2
The SERVICE_INFO_2 structure describes the attributes of LAN Manager services.typedef struct _SERVICE_INFO_2 {

LPWSTR svci2_name;
DWORD svci2_status;
DWORD svci2_code;
DWORD svci2_pid;
LPWSTR svci2_text;
DWORD svci2_specific_error;
LPWSTR svci2_display_name;

} SERVICE_INFO_2, *PSERVICE_INFO_2, * LPSERVICE_INFO_2;
Memberssvci2_name

A Unicode string containing the name of the network service to monitor.
svci2_status

Specifies the status of the connection.
svci2_code

The return code returned if the designated service fails to install properly.
svci2_pid

Specifies the service process identification.
svci2_text

Specifies text describing the service.
svci2_specific_error

Specifies the error returned if the designated service fails to install properly or if an error
occurs during service.

svci2_display_name

Specifies the name of the display type for the net service.See AlsoNetServiceEnum, NetServiceGetInfo, NetServiceInstall

SERVICE_STATUS
The SERVICE_STATUS structure contains information about a service. The ControlService,
EnumDependentServices, EnumServicesStatus, and QueryServiceStatus functions use this
structure to return information about a service. A service uses this structure in the
SetServiceStatus function to report its current status to the service control manager.typedef struct _SERVICE_STATUS { // ss

DWORD dwServiceType;
DWORD dwCurrentState;
DWORD dwControlsAccepted;
DWORD dwWin32ExitCode;
DWORD dwServiceSpecificExitCode;
DWORD dwCheckPoint;
DWORD dwWaitHint;

} SERVICE_STATUS, *LPSERVICE_STATUS;
MembersdwServiceType

The value returned includes one of the following service type flags to indicate the type of
service. In addition, for a SERVICE_WIN32 service, the
SERVICE_INTERACTIVE_PROCESS flag might be set, indicating that the service process
can interact with the desktop.

Value Meaning
SERVICE_WIN32_OWN_PROCESSA service type flag that

indicates a Win32 service that
runs in its own process.

SERVICE_WIN32_SHARE_PROCESSA service type flag that
indicates a Win32 service that
shares a process with other
services.

SERVICE_KERNEL_DRIVER A service type flag that
indicates a Windows NT
device driver.

SERVICE_FILE_SYSTEM_DRIVERA service type flag that
indicates a Windows NT file
system driver.

SERVICE_INTERACTIVE_PROCESSA flag that indicates a Win32
service process that can
interact with the desktop.

dwCurrentState

Indicates the current state of the service. One of the following values is specified:
Value Meaning
SERVICE_STOPPED The service is not running.
SERVICE_START_PENDING The service is starting.
SERVICE_STOP_PENDING The service is stopping.
SERVICE_RUNNING The service is running.
SERVICE_CONTINUE_PENDINGThe service continue is pending.
SERVICE_PAUSE_PENDING The service pause is pending.
SERVICE_PAUSED The service is paused.

dwControlsAccepted

Specifies the control codes that the service will accept and process. A user interface process
can control a service by specifying a control command in the ControlService function. By
default, all services accept the SERVICE_CONTROL_INTERROGATE value. Any or all of the
following flags can be specified to enable the other control codes.

Value Meaning
SERVICE_ACCEPT_STOP

The service can be stopped. This enables the
SERVICE_CONTROL_STOP value.

SERVICE_ACCEPT_PAUSE_CONTINUE
The service can be paused and continued. This
enables the SERVICE_CONTROL_PAUSE and
SERVICE_CONTROL_CONTINUE values.

SERVICE_ACCEPT_SHUTDOWN
The service is notified when system shutdown
occurs. This enables the system to send a
SERVICE_CONTROL_SHUTDOWN value to the
service. The ControlService function cannot send
this control code.

dwWin32ExitCode

Specifies a Win32 error code that the service uses to report an error that occurs when it is
starting or stopping. To return an error code specific to the service, the service must set this
value to ERROR_SERVICE_SPECIFIC_ERROR to indicate that the
dwServiceSpecificExitCode member contains the error code. The service should set this
value to NO_ERROR when it is running and on normal termination.

dwServiceSpecificExitCode

Specifies a service specific error code that the service returns when an error occurs while the
service is starting or stopping. This value is ignored unless the dwWin32ExitCode member is
set to ERROR_SERVICE_SPECIFIC_ERROR.

dwCheckPoint

Specifies a value that the service increments periodically to report its progress during a
lengthy start, stop, or continue operation. For example, the service should increment this
value as it completes each step of its initialization when it is starting up. The user interface
program that invoked the operation on the service uses this value to track the progress of the
service during a lengthy operation. This value is not valid and should be zero when the
service does not have a start, stop, or continue operation pending.

dwWaitHint

Specifies an estimate of the amount of time, in milliseconds, that the service expects a
pending start, stop, or continue operation to take before the service makes its next call to the
SetServiceStatus function with either an incremented dwCheckPoint value or a change in
dwCurrentState. If the amount of time specified by dwWaitHint passes, and dwCheckPoint
has not been incremented, or dwCurrentState has not changed, the service control manager
or service control program can assume that an error has occurred.See AlsoControlService, EnumDependentServices, EnumServicesStatus, QueryServiceStatus,

SetServiceStatus

SERVICE_TABLE_ENTRY
The SERVICE_TABLE_ENTRY structure is used by the StartServiceCtrlDispatcher function to
specify the ServiceMain function for a Win32 service that can run in the calling process.typedef struct _SERVICE_TABLE_ENTRY { // ste

LPTSTR lpServiceName;
LPSERVICE_MAIN_FUNCTION lpServiceProc;

} SERVICE_TABLE_ENTRY, *LPSERVICE_TABLE_ENTRY;
MemberslpServiceName

Points to a null-terminated string that names a service that can run in this service process.
This string is ignored if the service is installed in the service control manager database as a
SERVICE_WIN32_OWN_PROCESS service type. For a
SERVICE_WIN32_SHARE_PROCESS service process, this string names the service that
uses the ServiceMain function pointed to by the lpServiceProc member.

lpServiceProc

Points to a ServiceMain function.See AlsoServiceMain, StartServiceCtrlDispatcher

SERVICE_TYPE_INFO_ABS
The SERVICE_TYPE_INFO_ABS structure contains information about a network service type.
You use a SERVICE_TYPE_INFO_ABS structure to add a network service type to a name space.typedef struct _SERVICE_TYPE_INFO_ABS {

LPTSTR lpTypeName;
DWORD dwValueCount;
SERVICE_TYPE_VALUE_ABS Values[1];

} SERVICE_TYPE_INFO_ABS
MemberslpTypeName

Points to a zero-terminated string that is the name of the network service type. This name is
the same in all name spaces, and is used by the GetTypeByName and GetNameByType
functions.

dwValueCount

Specifies the number of SERVICE_TYPE_VALUE_ABS structures in the Values member
array that follows dwValueCount.

Values[1]

An array of SERVICE_TYPE_VALUE_ABS structures.
Each of these structures contains information about a service type value that the operating
system or network service may need when an instance of this network service type is
registered with a name space.
The information in these structures may be specific to a name-space. For example, if a
network service uses the SAP name space, but does not have a GUID that contains the SAP
identifier (SAPID), it defines the SAPID in a SERVICE_TYPE_VALUE_ABS structure.RemarksWhen you use the SetService function to add a network service type to a name space, the

SERVICE_TYPE_INFO_ABS structure is passed as the ServiceSpecificInfo BLOB member of a
SERVICE_INFO structure. Although the ServiceSpecificInfo member generally should not
contain pointers, an exception is made in the case of the SERVICE_TYPE_INFO_ABS and
SERVICE_TYPE_VALUE_ABS structures.See AlsoSetService, SERVICE_INFO, SERVICE_TYPE_VALUE_ABS

SERVICE_TYPE_VALUE_ABS
The SERVICE_TYPE_VALUE_ABS structure contains information about a network-service type
value. This information may be specific to a name space.typedef struct _SERVICE_TYPE_VALUE_ABS {

DWORD dwNameSpace;
DWORD dwValueType;
DWORD dwValueSize;
LPTSTR lpValueName;
PVOID lpValue;

} SERVICE_TYPE_VALUE_ABS
MembersdwNameSpace

Specifies the name space, or a set of default name spaces, for which the network service type
value is intended. Name-space providers will look only at values intended for their name
space.
Use one of the following constants to specify a name space:

Value Name Space
NS_DEFAULT A set of default name spaces. The

function queries each name space within
this set. The set of default name spaces
typically includes all the name spaces
installed on the system. System
administrators, however, can exclude
particular name spaces from the set.
NS_DEFAULT is the value that most
applications should use for
dwNameSpace.

NS_DNS The Domain Name System used in the
Internet for host name resolution.

NS_NETBT The NetBIOS over TCP/IP layer. All
Windows NT systems register their
computer names with NetBIOS. This
name space is used to convert a
computer name to an IP address that
uses this registration. Note that
NS_NETBT may access a WINS server
to perform the resolution.

NS_SAP The Netware Service Advertising
Protocol. This may access the Netware
bindery if appropriate. NS_SAP is a
dynamic name space that allows
registration of services.

NS_TCPIP_HOSTS Lookup value in the <systemroot>\
system32\drivers\etc\hosts file.

NS_TCPIP_LOCAL Local TCP/IP name resolution
mechanisms, including comparisons
against the local host name and looks up
host names and IP addresses in cache
of host to IP address mappings.

dwValueType

Specifies the type of the value data. You can specify one of the following types:
Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_SZ A null-terminated string.

dwValueSize

Specifies the size, in bytes, of the value data. In the case of REG_SZ and REG_MULTI_SZ
string data, the terminating characters are counted as part of the size.

lpValueName

Points to a zero-terminated string that is the name of the value. This name is specific to a
name space.
Several commonly used value name strings are associated with defined constants. These
name strings include the following:
Constant Name String

SERVICE_TYPE_VALUE_SAPID "SapId"
SERVICE_TYPE_VALUE_CONN "ConnectionOriented"
SERVICE_TYPE_VALUE_TCPPORT"TcpPort"
SERVICE_TYPE_VALUE_UDPPORT"UdpPort"

lpValue

Points to the value data.RemarksWhen you use the SetService function to add a network service type to a name space, a
SERVICE_TYPE_INFO_ABS structure is passed as the ServiceSpecificInfo BLOB member of a
SERVICE_INFO structure. Although the ServiceSpecificInfo member generally should not
contain pointers, an exception is made in the case of the SERVICE_TYPE_INFO_ABS and
SERVICE_TYPE_VALUE_ABS structures.See AlsoSetService, SERVICE_INFO, SERVICE_TYPE_INFO_ABS

SESSION_BUFFER
The SESSION_BUFFER structure contains information about a local network session. One or
more SESSION_BUFFER structures follows a SESSION_HEADER structure when an application
specifies the NCBSSTAT command in the ncb_command member of the NCB structure.typedef struct _SESSION_BUFFER { // sb

UCHAR lsn;
UCHAR state;
UCHAR local_name[NCBNAMSZ];
UCHAR remote_name[NCBNAMSZ];
UCHAR rcvs_outstanding;
UCHAR sends_outstanding;

} SESSION_BUFFER;
Memberslsn

Specifies the local session number.
state

Specifies the state of the session. This member can be one of the following values:
Value Meaning
LISTEN_OUTSTANDING The session is waiting for a call from a

remote computer.
CALL_PENDING The session is attempting to connect to a

remote computer.
SESSION_ESTABLISHED The session connected and is able to

transfer data.
HANGUP_PENDING The session is being deleted due to a

command by the local user.
HANGUP_COMPLETE The session was deleted due to a

command by the local user.
SESSION_ABORTED The session was abandoned due to a

network or user problem.

local_name

Specifies the 16-byte NetBIOS name on the local computer used for this session.
remote_name

Specifies the 16-byte NetBIOS name on the remote computer used for this session.
rcvs_outstanding

Specifies the number of pending NCBRECV commands.
sends_outstanding

Specifies the number of pending NCBSEND and NCBCHAINSEND commands.See AlsoNCB, SESSION_HEADER

SESSION_HEADER
The SESSION_HEADER structure contains information about a network session. This structure is
pointed to by the ncb_buffer member of the NCB structure. SESSION_HEADER is followed by
as many SESSION_BUFFER structures as are required to describe the current network sessions.typedef struct _SESSION_HEADER { // sh

UCHAR sess_name;
UCHAR num_sess;
UCHAR rcv_dg_outstanding;
UCHAR rcv_any_outstanding;

} SESSION_HEADER;
Memberssess_name

Specifies the name number of the session. This value corresponds to the ncb_num member
of the NCB structure.

num_sess

Specifies the number of sessions that have the name specified by the sess_name member.
rcv_dg_outstanding

Specifies the number of outstanding NCBDGRECV and NCBDGRECVBC commands.
rcv_any_outstanding

Specifies the number of outstanding NCBRECVANY commands.See AlsoNCB, SESSION_BUFFER

SESSION_INFO_0
The SESSION_INFO_0 structure contains information about the session, including name of the
computer; name of the user; and files, pipes, and devices on the computer.typedef struct _SESSION_INFO_0 {

LPTSTR sesi0_cname; // client name (no backslashes)
} SESSION_INFO_0, *PSESSION_INFO_0, *LPSESSION_INFO_0;
Memberssesi0_cname

Points to a Unicode string that contains the name of the computer that established the
session.

See AlsoNetSessionEnum, NetSessionGetInfo

SESSION_INFO_1
The SESSION_INFO_1 structure contains information about the session, including name of the
computer; name of the user; and files, pipes, and devices on the computer.typedef struct _SESSION_INFO_1 {LPTSTR sesi1_cname; // client name (no backslashes)

LPTSTR sesi1_username;
DWORDsesi1_time;
DWORDsesi1_idle_time;
DWORDsesi1_user_flags;

} SESSION_INFO_1, *PSESSION_INFO_1, *LPSESSION_INFO_1;Memberssesi1_cname
Points to a Unicode string containing the name of the computer that established the session.

sesi1_username
Points to a Unicode string containing the name of the user who established the session.

sesi1_num_opens
Displays the number of files, devices, and pipes opened during the session.

sesi1_time
Specifies the number of seconds a session has been active.

sesi1_idle_time
Specifies the number of seconds a session has been idle.

sesi1_user_flags
Describes how the user established the session. This member can be one of the following
values:

Value Meaning
SESS_GUEST The sesi1_username member

established the session using a
guest account.

SESS_NOENCRYPTION The sesi1_username member
established the session without
using password encryption.

See AlsoNetSessionEnum, NetSessionGetInfo

SESSION_INFO_2
The SESSION_INFO_2 structure contains information about the session, including name of the
computer; name of the user; and files, pipes, and devices on the computer.typedef struct _SESSION_INFO_2{

LPTSTR sesi2_cname; // client name (no backslashes)
LPTSTR sesi2_username;
DWORDsesi2_num_opens;
DWORDsesi2_time;
DWORDsesi2_idle_time;
DWORDsesi2_user_flags;
LPTSTR sesi2_cltype_name;

} SESSION_INFO_2, *PSESSION_INFO_2, *LPSESSION_INFO_2;
Memberssesi2_cname

Points to a Unicode string containing the name of the computer that established the session.
sesi2_username

Points to a Unicode string containing the name of the user who established the session.
sesi2_num_opens

Displays the number of files, devices, and pipes opened during the session.
sesi2_time

Specifies the number of seconds a session has been active.
sesi2_idle_time

Specifies the number of seconds a session has been idle.
sesi2_user_flags

Describes how the user established the session. This member can be one of the following
values:

Value Meaning
SESS_GUEST The sesi2_username member

established the session using a
guest account.

SESS_NOENCRYPTION The sesi2_username member
established the session without
using password encryption.

sesi2_cltype_name
Points to a Unicode string that specifies the type of client that established the session.
Following are the defined types for LAN Manager servers:

Value Meaning
DOS LM 1.0 LAN Manager for MS-DOS 1.0

clients.
DOS LM 2.0 LAN Manager for MS-DOS 2.0

clients.
OS/2 LM 1.0 LAN Manager for MS-OS/2 1.0

clients.
OS/2 LM 2.0 LAN Manager for MS-OS/2 2.0

clients.

Sessions from LAN Manager servers running UNIX also will appear as LAN Manager 2.
0.

See AlsoNetSessionEnum, NetSessionGetInfo

SESSION_INFO_10
The SESSION_INFO_10 structure contains information about the session, including name of the
computer; name of the user; and files, pipes, and devices on the computer.typedef struct _SESSION_INFO_10 {

LPTSTR sesi10_cname; // client name (no backslashes)
LPTSTR sesi10_username;
DWORDsesi10_time;
DWORDsesi10_idle_time;

} SESSION_INFO_10, *PSESSION_INFO_10, *LPSESSION_INFO_10;
Memberssesi10_cname

Points to a Unicode string containing the name of the computer that established the session.
sesi10_username

Points to a Unicode string containing the name of the user who established the session.
sesi10_time

Specifies the number of seconds a session has been active.
sesi10_idle_time

Specifies the number of seconds a session has been idle.
See AlsoNetSessionEnum, NetSessionGetInfo

SESSION_INFO_502
The SESSION_INFO_502 structure contains information about the session, including name of the
computer; name of the user; and files, pipes, and devices on the computer.typedef struct _SESSION_INFO_502 {

LPTSTR sesi502_cname; // client name (no backslashes)
LPTSTR sesi502_username;
DWORDsesi502_num_opens;
DWORDsesi502_time;
DWORDsesi502_idle_time;
DWORDsesi502_user_flags;
LPTSTR sesi502_cltype_name;
LPTSTR sesi502_transport;

} SESSION_INFO_502, *PSESSION_INFO_502, *LPSESSION_INFO_502;
Memberssesi502_cname

Points to a Unicode string containing the name of the computer that established the session.
sesi502_username

Points to a Unicode string containing the name of the user who established the session.
sesi502_num_opens

Displays the number of files, devices, and pipes opened during the session.
sesi502_time

Specifies the number of seconds a session has been active.
sesi502_idle_time

Specifies the number of seconds a session has been idle.
sesi502_user_flags

Describes how the user established the session. This member can be one of the following
values:

Value Meaning
SESS_GUEST The sesi502_username member

established the session using a
guest account.

SESS_NOENCRYPTION The sesi502_username member
established the session without
using password encryption.

sesi502_cltype_name
Points to a Unicode string that specifies the type of client that established the session.
Following are the defined types for LAN Manager servers:

Value Meaning
DOS LM 1.0 LAN Manager for MS-DOS 1.0

clients.
DOS LM 2.0 LAN Manager for MS-DOS 2.0

clients.
OS/2 LM 1.0 LAN Manager for MS-OS/2 1.0

clients.
OS/2 LM 2.0 LAN Manager for MS-OS/2 2.0

clients.

Sessions from LAN Manager servers running UNIX also will appear as LAN Manager 2.
0.

sesi502_transport
Specifies the name of the transport that the client is using to communicate with the server.

See AlsoNetSessionEnum

SET_PARTITION_INFORMATION
The SET_PARTITION_INFORMATION structure provides information used to set a disk
partition's type.typedef struct _SET_PARTITION_INFORMATION {

BYTE PartitionType;
} SET_PARTITION_INFORMATION ;
MembersPartitionType

Specifies the type of partition.
This member can be one of the
following values: Value

Meaning

PARTITION_ENTRY_UNUSED Entry unused.
PARTITION_FAT_12 Specifies a partition with 12-bit FAT

entries.
PARTITION_XENIX_1 Specifies a Xenix type 1 partition.
PARTITION_XENIX_2 Specifies a Xenix type 2 partition.
PARTITION_FAT_16 Specifies a partition with 16-bit FAT

entries.
PARTITION_EXTENDED Specifies an extended partition

entry.
PARTITION_HUGE Specifies an MS-DOS V4 huge

partition.
PARTITION_IFS Specifies an IFS partition.
PARTITION_UNIX Specifies a UNIX partition.
VALID_NTFT Specifies an NTFT partition.
PARTITION_XINT13 Specifies a Windows 95 partition

that uses extended int13 services.
PARTITION_XINT13_EXTENDEDSame as PARTITION_EXTENDED,

but uses extended int13 services.
RemarksThe DeviceIoControl function uses a SET_PARTITION_INFORMATION structure as input to an

IOCTL_DISK_SET_PARTITION_INFO device input and output control operation.See AlsoDeviceIoControl, IOCTL_DISK_GET_PARTITION_INFO,
IOCTL_DISK_SET_PARTITION_INFO, PARTITION_INFORMATION

SHARE_INFO_0
The SHARE_INFO_0 structure contains information about the shared resource, including name of
the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_0 {

LPTSTR shi0_netname;
} SHARE_INFO_0, *PSHARE_INFO_0, *LPSHARE_INFO_0;
Membersshi0_netname

A Unicode string containing the sharename of a resource.
See AlsoNetShareEnum, NetShareGetInfo

SHARE_INFO_1
The SHARE_INFO_1 structure contains information about the shared resource, including name of
the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_1 {

LPTSTR shi1_netname;
DWORDshi1_type;
LPTSTR shi1_remark;

} SHARE_INFO_1, *PSHARE_INFO_1, *LPSHARE_INFO_1;
Membersshi1_netname

A Unicode string containing the sharename of a resource.
shi1_type

This member can be one of following types.
Value Meaning
STYPE_DISKTREE Disk drive
STYPE_PRINTQ Print queue
STYPE_DEVICE Communication device
STYPE_IPC Interprocess Communication

(IPC)

shi1_remark
Points to a Unicode string containing an optional comment about the shared resource.

See AlsoNetShareEnum, NetShareGetInfo, NetShareSetInfo

SHARE_INFO_2
The SHARE_INFO_2 structure contains information about the shared resource, including name of
the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_2 {

LPTSTR shi2_netname;
DWORDshi2_type;
LPTSTR shi2_remark;
DWORDshi2_permissions;
DWORDshi2_max_uses;
DWORDshi2_current_uses;
LPTSTR shi2_path;
LPTSTR shi2_passwd;

} SHARE_INFO_2, *PSHARE_INFO_2, *LPSHARE_INFO_2;
Membersshi2_netname

A Unicode string containing the sharename of a resource.
shi2_type

This member can be one of the following types:
Value Meaning
STYPE_DISKTREE Disk drive
STYPE_PRINTQ Print queue
STYPE_DEVICE Communication device
STYPE_IPC Interprocess Communication

(IPC)

shi2_remark
Points to a Unicode string that contains an optional comment about the shared resource.

shi2_permissions
Specifies the shared resource's permissions for servers running with share-level security. A
server running user-level security ignores this member.This member can be one or more of
the following values.

Value Meaning
ACCESS_READ Permission to read data from a resource

and, by default, to execute the resource.
ACCESS_WRITE Permission to write data to the resource.
ACCESS_CREATE Permission to create an instance of the

resource (such as a file); data can be
written to the resource as the resource is
created.

ACCESS_EXEC Permission to execute the resource.
ACCESS_DELETE Permission to delete the resource.
ACCESS_ATRIB Permission to modify the resource's

attributes (such as the date and time when
a file was last modified).

ACCESS_PERM Permission to modify the permissions (read,
write, create, execute, and delete) assigned
to a resource for a user or application.

ACCESS_ALL Permission to read, write, create, execute,
and delete resources, and to modify their
attributes and permissions.

shi2_max_uses
Indicates the maximum number of concurrent connections that the shared resource can
accommodate (unlimited if the value specified in shi2_max_uses is -1).

shi2_current_uses
Specifies the number of current connections to the resource.

shi2_path
Points to a Unicode string containing the local path for the shared resource. For disks,
shi2_path is the path being shared. For print queues, shi2_path is the name of the print
queue being shared.

shi2_passwd
Specifies the share's password (when the server is running with share-level security). If the
server is running with user-level security, shi2_passwd is ignored. The shi2_passwd
member can be no longer than SHPWLEN+1 bytes (including a terminating null character).

See AlsoNetShareAdd, NetShareEnum, NetShareGetInfo, NetShareSetInfo

SHARE_INFO_502
The SHARE_INFO_502 structure contains information about the shared resource, including name
of the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_502 {

LPTSTR shi502_netname;
DWORDshi502_type;
LPTSTR shi502_remark;
DWORDshi502_permissions;
DWORDshi502_max_uses;
DWORDshi502_current_uses;
LPTSTR shi502_path;
LPTSTR shi502_passwd;
DWORDshi502_reserved;
PSECURITY_DESCRIPTOR shi502_security_descriptor;

} SHARE_INFO_502, *PSHARE_INFO_502, *LPSHARE_INFO_502;
Membersshi502_netname

A Unicode string containing the sharename of a resource.
shi502_type

One of the following four values specifying the type of share:
Value Meaning
STYPE_DISKTREE Disk Drive
STYPE_PRINTQ Print Queue
STYPE_DEVICE Communication device
STYPE_IPC Interprocess Communication

(IPC)

shi502_remark
Points to a Unicode string containing an optional comment about the shared resource.

shi502_permissions
Specifies the shared resource's permissions for servers running with share-level security.This
member is ignored on a server running user-level security. This member can be any of the
following values:

Value Meaning
ACCESS_READ Permission to read data from a resource

and, by default, to execute the resource.
ACCESS_WRITE Permission to write data to the resource.
ACCESS_CREATE Permission to create an instance of the

resource (such as a file); data can be
written to the resource as the resource is
created.

ACCESS_EXEC Permission to execute the resource.
ACCESS_DELETE Permission to delete the resource.
ACCESS_ATRIB Permission to modify the resource's

attributes (such as the date and time when
a file was last modified).

ACCESS_PERM Permission to modify the permissions (read,
write, create, execute, and delete) assigned
to a resource for a user or application.

ACCESS_ALL Permission to read, write, create, execute,
and delete resources, and to modify their
attributes and permissions.

shi502_max_uses
Indicates the maximum number of concurrent connections that the shared resource can
accommodate (unlimited if the value specified in shi502_max_uses is -1).

shi502_current_uses
Specifies the number of current connections to the resource.

shi502_path
Points to a Unicode string that contains the local path for the shared resource. For disks,
shi502_path is the path being shared. For print queues, shi502_path is the name of the print
queue being shared.

shi502_passwd
Specifies the share's password (when the server is running with share-level security). If the
server is running with user-level security, shi502_passwd is ignored. The shi502_passwd
member can be no longer than SHPWLEN+1 bytes (including a terminating null character).

shi502_reserved
Must be zero.

shi502_security_descriptor
Specifies the Windows NT security descriptor associated with this share.

See AlsoNetShareAdd, NetShareEnum, NetShareGetInfo, NetShareSetInfo

SHARE_INFO_1004
The SHARE_INFO_1004 structure contains information about the shared resource, including
name of the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_1004 {

LPTSTR shi1004_remark;
} SHARE_INFO_1004, *PSHARE_INFO_1004, *LPSHARE_INFO_1004;
Membersshi1004_remark

Points to a Unicode string that contains an optional comment about the shared resource.
See AlsoNetShareSetInfo

SHARE_INFO_1006
The SHARE_INFO_1006 structure contains information about the shared resource, including
name of the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_1006 {

DWORD shi1006_max_uses;
} SHARE_INFO_1006, *PSHARE_INFO_1006, *LPSHARE_INFO_1006;
Membersshi1006_max_uses

Indicates the maximum number of concurrent connections that the shared resource can
accommodate (unlimited if the value specified in shi1006_max_uses is -1).

See AlsoNetShareSetInfo

SHARE_INFO_1501
The SHARE_INFO_1501 structure contains information about the shared resource, including
name of the resource, type and permissions, and number of connections.typedef struct _SHARE_INFO_1501 {

DWORD shi1501_reserved;
PSECURITY_DESCRIPTOR shi1501_security_descriptor;

} SHARE_INFO_1501, *PSHARE_INFO_1501, *LPSHARE_INFO_1501;
Membersshi1501_reserved

Must be zero.
shi1501_security_descriptor

Specifies the Windows NT security descriptor associated with this share.
See AlsoNetShareSetInfo

SHELLEXECUTEINFO
Specifies an enumerated type that defines flags used with the IShellFolder::EnumObjects
method.

The SHELLEXECUTEINFO structure contains information used by the ShellExecuteEx function.typedef struct _SHELLEXECUTEINFO { // sei
DWORDcbSize;
ULONGfMask;
HWND hwnd;
LPCSTR lpVerb;
LPCSTR lpFile;
LPCSTR lpParameters;
LPCSTR lpDirectory;
int nShow;
HINSTANCE hInstApp;
// Optional members
LPVOID lpIDList;
LPCSTR lpClass;
HKEY hkeyClass;
DWORD dwHotKey;
HANDLE hIcon;
HANDLE hProcess;

} SHELLEXECUTEINFO, FAR *LPSHELLEXECUTEINFO;
MemberscbSize

Specifies the size, in bytes, of the structure.
fMask

This is an array of flags that indicate the content and validity of the other structure members.
You can specify a combination of the following values:

Value Meaning
SEE_MASK_CLASSKEY Use the class key given by the

hkeyClass member.
SEE_MASK_CLASSNAME Use the class name given by the

lpClass member.
SEE_MASK_CONNECTNETDRVThe lpFile member is a Universal

Naming Convention (UNC) path of
a file on a network. Validate the
share and connect to a drive letter.

SEE_MASK_DOENVSUBST Expand any environment variables
specified in the string given by the
lpDirectory or lpFile member.

SEE_MASK_FLAG_DDEWAIT Wait for the DDE conversation to
terminate before returning, if the
ShellExecuteEx function causes
a DDE conversation to start.

SEE_MASK_FLAG_NO_UI Do not display an error message
box if an error occurs.

SEE_MASK_HOTKEY Use the hot key given by the
dwHotKey member.

SEE_MASK_ICON Use the icon given by the hIcon
member.

SEE_MASK_IDLIST Use the item identifier list given by
the lpIDList member.

SEE_MASK_INVOKEIDLIST Use the item identifier list given by
the lpIDList member to invoke an
application. If this member is
NULL, the function creates an item
identifier list and invokes the
application.
SEE_MASK_INVOKEIDLIST
overrides SEE_MASK_IDLIST.

SEE_MASK_NOCLOSEPROCESSLeave the process running after
the ShellExecuteEx function
exits. The hProcess member
receives the handle of the
process.

hwnd
Handle to the parent window for any message boxes that the system may produce while
executing this function (for example, for error reporting).

lpVerb
Pointer to a string specifying the name of a verb. The verb specifies an action for the
application to perform. This member defaults to "Open" if no verb is specified.

lpFile
Pointer to a list of null-terminated strings that specify the names of the files to open or print.
The function can open an executable file or a document file. The function can print a
document file. If the path is not included with a name, the current directory is assumed.

lpParameters
Pointer to a null-terminated string containing the application parameters. The parameters
must be separated by spaces. To include double quotation marks, you must enclose the
marks in double quotation marks, as in the following example:sei.lpParameters = "An example: \"\"\"quoted text\"\"\"";In this case, the application receives three parameters: An, example:, and "quoted text".
If lpFile specifies a document file, lpParameters should be NULL.

lpDirectory
Pointer to a null-terminated string that specifies the name of the working directory. If this
member is not specified, the current directory is used as the working directory.

nShow
Show flags. Can be one of the SW_ values described for the ShowWindow function. If lpFile
specifies an executable file, nShow specifies how the application is to be shown when it is
opened. If lpFile specifies a document file, nShow should be zero.

hInstApp
Handle to the instance of the application that was started or an error value if the application
could not be started. (This handle could also be the handle of a dynamic data exchange
[DDE] server application.) This member is set on return. Error values can be one of the
following:

Value Meaning
SE_ERR_FNF File not found

SE_ERR_PNF Path not found
SE_ERR_ACCESSDENIED Access denied
SE_ERR_OOM Out of memory
SE_ERR_DLLNOTFOUND Dynamic-link library not found
SE_ERR_SHARE Cannot share open file
SE_ERR_ASSOCINCOMPLETEFile association information not

complete
SE_ERR_DDETIMEOUT DDE operation timed out
SE_ERR_DDEFAIL DDE operation failed
SE_ERR_DDEBUSY DDE operation busy
SE_ERR_NOASSOC File association not available

lpIDList
Pointer to an ITEMIDLIST structure that contains an item identifier list that uniquely identifies
the file to execute. Ignored if fMask is not set to SEE_MASK_IDLIST.

lpClass
Pointer to a null-terminated string specifying the name of a file class or a globally unique
identifier (GUID). Ignored if fMask is not set to SEE_MASK_CLASSNAME.

hkeyClass
Handle to the registry key for the file class. Ignored if fMask is not set to
SEE_MASK_CLASSKEY.

dwHotKey
Hot key to associate with the application. The low-order word is the virtual-key code, and the
high-order word is a modifier flag (HOTKEYF_). For a list of modifier flags, see the description
of the WM_SETHOTKEY message. Ignored if fMask is not set to SEE_MASK_HOTKEY.

hIcon
Handle to the icon for the file class. Ignored if fMask is not set to SEE_MASK_ICON.

hProcess
Handle to the newly started application. This member is set on return and is always NULL if
fMask is not set to SEE_MASK_NOCLOSEPROCESS.

See AlsoITEMIDLIST, ShellExecuteEx, ShowWindow, WM_SETHOTKEY

SHFILEINFO
Contains information about a file object.typedef struct _SHFILEINFO { // shfi

HICON hIcon;
int iIcon;
DWORD dwAttributes;
char szDisplayName[MAX_PATH];
char szTypeName[80];

} SHFILEINFO;
MembershIcon

Handle of the icon that represents the file.
iIcon

Index of the icon image within the system image list.
dwAttributes

Array of flags that indicates the attributes of the file object. For information about the flags,
see the description of the IShellFolder::GetAttributesOf method.

szDisplayName
String that contains the name of the file as it appears in the Windows shell, or path and
filename of the file that contains the icon representing the file.

szTypeName
String that describes the type of the file.

RemarksThis structure is used with the SHGetFileInfo function.See AlsoIShellFolder::GetAttributesOf, SHGetFileInfo

SHFILEOPSTRUCT
Contains information that the SHFileOperation function uses to perform file operations.typedef struct _SHFILEOPSTRUCT { // shfos

HWND hwnd;
UINT wFunc;
LPCSTR pFrom;
LPCSTR pTo;
FILEOP_FLAGS fFlags;
BOOL fAnyOperationsAborted;
LPVOID hNameMappings;
LPCSTR lpszProgressTitle;

} SHFILEOPSTRUCT, FAR *LPSHFILEOPSTRUCT;
Membershwnd

Handle of the dialog box to use to display information about the status of the operation.
wFunc

Operation to perform. This member can be one of the following values:
FO_COPY Copies the files specified by pFrom to the

location specified by pTo.
FO_DELETE Deletes the files specified by pFrom (pTo is

ignored).
FO_MOVE Moves the files specified by pFrom to the

location specified by pTo.
FO_RENAME Renames the files specified by pFrom.

pFrom
Pointer to a buffer that specifies one or more source file names. Multiple names must be null-
separated. The list of names must be double null-terminated.

pTo
Pointer to a buffer that contains the name of the destination file or directory. The buffer can
contain mutiple destination file names if the fFlags member specifies
FOF_MULTIDESTFILES. Multiple names must be null-separated. The list of names must be
double null-terminated.

fFlags
Flags that control the file operation. This member can be a combination of the following
values:

FOF_ALLOWUNDO Preserves undo information, if
possible.

FOF_CONFIRMMOUSE Not implemented.
FOF_FILESONLY Performs the operation only on files if

a wildcard filename (*.*) is specified.
FOF_MULTIDESTFILES Indicates that the pTo member

specifies multiple destination files
(one for each source file) rather than
one directory where all source files
are to be deposited.

FOF_NOCONFIRMATION Responds with "yes to all" for any
dialog box that is displayed.

FOF_NOCONFIRMMKDIR Does not confirm the creation of a
new directory if the operation requires
one to be created.

FOF_RENAMEONCOLLISIONGives the file being operated on a
new name (such as "Copy #1 of...") in
a move, copy, or rename operation if
a file of the target name already
exists.

FOF_SILENT Does not display a progress dialog
box.

FOF_SIMPLEPROGRESS Displays a progress dialog box, but
does not show the filenames.

FOF_WANTMAPPINGHANDLEFills in the hNameMappings
member. The handle must be freed
by using the SHFreeNameMappings
function.

fAnyOperationsAborted
Value that receives TRUE if the user aborted any file operations before they were completed
or FALSE otherwise.

hNameMappings
Handle of a filename mapping object that contains an array of SHNAMEMAPPING structures.
Each structure contains the old and new path names for each file that was moved, copied, or
renamed. This member is used only if fFlags includes FOF_WANTMAPPINGHANDLE.

lpszProgressTitle
Pointer to a string to use as the title for a progress dialog box. This member is used only if
fFlags includes FOF_SIMPLEPROGRESS.

RemarksIf pFrom or pTo are unqualified names, the current directories are taken from the global current
drive and directory settings as managed by the GetCurrentDirectory and SetCurrentDirectory
functions.See AlsoGetCurrentDirectory, SetCurrentDirectory, SHFileOperation, SHFreeNameMappings,
SHNAMEMAPPING

SHITEMID
Defines an item identifier.typedef struct _SHITEMID { // mkid

USHORT cb; // size of identifier, including cb itself
BYTE abID[1]; // variable length item identifier

} SHITEMID, * LPSHITEMID;
typedef const SHITEMID * LPCSHITEMID;

SHNAMEMAPPING
Contains the old and new path names for each file that was moved, copied, or renamed by the
SHFileOperation function.typedef struct _SHNAMEMAPPING { // shnm

LPSTR pszOldPath; // address of old path name
LPSTR pszNewPath; // pointer to new path name
int cchOldPath; // number of characters in old path name
int cchNewPath; // number of characters in new path name

} SHNAMEMAPPING, FAR *LPSHNAMEMAPPING;
See AlsoSHFileOperation, SHFILEOPSTRUCT

SID
The SID structure is a variable-length structure used to uniquely identify users or groups. SID
stands for security identifier.

Applications are not to modify the SID structure directly. To create and manipulate a security
identifier, use the functions listed in the See Also section.typedef PVOID PSID;
See AlsoAllocateAndInitializeSid, CopySid, EqualSid, FreeSid, GetLengthSid,

GetSidIdentifierAuthority, GetSidLengthRequired, GetSidSubAuthority,
GetSidSubAuthorityCount, InitializeSid, IsValidSid, LookupAccountName,
LookupAccountSid

SID_AND_ATTRIBUTES
The SID_AND_ATTRIBUTES structure represents a security identifier (SID) and its attributes.
SIDs are used to uniquely identify users or groups.typedef struct _SID_AND_ATTRIBUTES { // saa

PSID Sid;
DWORD Attributes;

} SID_AND_ATTRIBUTES ;
MembersSid

Points to a SID structure.
Attributes

Specifies attributes of the SID. This value contains up to 32 one-bit flags. Its meaning
depends on the definition and use of the SID.

RemarksA group is represented by a SID. SIDs have attributes that indicate whether they are currently
enabled, disabled, or mandatory, and how they are used. A SID_AND_ATTRIBUTES structure
can represent a SID whose attributes change frequently. For example, it is used to represent
groups in the TOKEN_GROUPS structure.See AlsoSID, TOKEN_GROUPS, TOKEN_USER

SID_IDENTIFIER_AUTHORITY
The SID_IDENTIFIER_AUTHORITY structure represents the top-level authority of a security
identifier (SID).typedef struct _SID_IDENTIFIER_AUTHORITY { // sia

BYTE Value[6];
} SID_IDENTIFIER_AUTHORITY ;
MembersValue

An array of six bytes specifying a SID's top-level authority.
RemarksThe identifier authority value identifies the agency that issued the SID. Some identifier authorities

are predefined:

Identifier authority Value

SECURITY_NULL_SID_AUTHORITY 0
SECURITY_WORLD_SID_AUTHORITY1
SECURITY_LOCAL_SID_AUTHORITY2
SECURITY_CREATOR_SID_AUTHORITY3
SECURITY_NT_AUTHORITY 5

A SID must contain a top-level authority and at least one relative identifier (RID) value.See AlsoAllocateAndInitializeSid, GetSidIdentifierAuthority, InitializeSid, SID

SINGLE_LIST_ENTRY
The SINGLE_LIST_ENTRY structure is available for any entry in a single-linked list.typedef struct _SINGLE_LIST_ENTRY { // sle

struct _SINGLE_LIST_ENTRY *Next;
} SINGLE_LIST_ENTRY;
MembersNext

Points to the next entry in a single-linked list.
RemarksThis structure can be used as the beginning of a single-linked list or as any subsequent entry in

the list.

SIZE
The SIZE structure specifies the width and height of a rectangle.typedef struct tagSIZE { // siz

LONG cx;
LONG cy;

} SIZE;
Memberscx

Specifies the rectangle's width.
cy

Specifies the rectangle's height.
RemarksThe rectangle dimensions stored in this structure may correspond to viewport extents, window

extents, text extents, bitmap dimensions, or the aspect-ratio filter for some extended functions.See AlsoGetAspectRatioFilterEx, GetBitmapDimensionEx, GetTextExtentPoint32,
GetViewportExtEx, GetWindowExtEx, ScaleViewportExtEx, ScaleWindowExtEx,
SetBitmapDimensionEx, SetViewportExtEx, SetWindowExtEx

SMALL_RECT
The SMALL_RECT structure defines the coordinates of the upper left and lower right corners of a
rectangle.typedef struct _SMALL_RECT { // srct

SHORT Left;
SHORT Top;
SHORT Right;
SHORT Bottom;

} SMALL_RECT;
MembersLeft

Specifies the x-coordinate of the upper left corner of the rectangle.
Top

Specifies the y-coordinate of the upper left corner of the rectangle.
Right

Specifies the x-coordinate of the lower right corner of the rectangle.
Bottom

Specifies the y-coordinate of the lower right corner of the rectangle.
RemarksThis structure is used by console functions to specify rectangular areas of console screen buffers,

where the coordinates specify the rows and columns of screen-buffer character cells.See AlsoRECT, RECTL

SOARCINFO
Contains information defining the arc to be drawn.typedef struct SOARCINFOtag {

SORECT Rect; // see below
SOANGLE StartAngle; // see below
SOANGLE EndAngle; // see below

} SOARCINFO, VWPTR *PSOARCINFO;
MembersRect

Rectangle that bounds the ellipse containing the arc.
StartAngle

Angle specifying the starting point of the arc. The angle is defined in tenths of a degree,
counterclockwise from the positive x-axis. To set this member, use the SOANGLETENTHS
macro.

EndAngle
Angle specifying the ending point of the arc. The angle is defined in tenths of a degree,
counterclockwise from the positive x-axis. To set this member, use the SOANGLETENTHS
macro.

SOBITMAPHEADER
Contains information about the bitmap to be output.typedef struct SOBITMAPHEADERtag {

WORD wStructSize; // see below
WORD wImageFlags; // see below
WORD wImageWidth; // see below
WORD wImageLength; // see below
WORD wTileWidth; // see below
WORD wTileLength; // see below
WORD wBitsPerPixel; // see below
WORD wNPlanes; // see below
WORD wHDpi; // see below
WORD wVDpi; // see below

} SOBITMAPHEADER, VWPTR *PSOBITMAPHEADER;
MemberswStructSize

Size, in bytes, of the structure.
wImageFlags

Image flags. This member can be a combination of one (and only one) color format value and
other attribute values.
The color format can be one of these values:

SO_BGRCOLOR Pixel values are RGB color values (24-
bit only); bytes are stored consecutively
in the order B,G,R.

SO_BLACKANDWHITE Pixels are black or white (1 bit per pixel
only).

SO_COLORPALETTE Pixel values are indexes into the color
palette for the bitmap.

SO_GRAYSCALE Pixel values are gray scale values.
SO_RGBCOLOR Pixel values are RGB color values (24-

bit only); bytes are stored consecutively
in the order R,G,B.

Other attributes can be a combination of these values:
SO_BOTTOMTOTOP The image is provided in scan lines from

the bottom up. The default is top to
bottom.

SO_WHITEZERO For gray scale images and black and
white images only, a pixel with a value of
zero is a white pixel, and increasing pixel
values become darker. By default, a
value of zero is defined as a black pixel
with increasing values becoming lighter.

wImageWidth
Horizontal width, in pixels, of the image.

wImageLength
Vertical length, in pixels, of the image.

wTileWidth
Horizontal width, in pixels, of the tile.

wTileLength
Vertical length, in pixels, of the tile.

wBitsPerPixel
Number of consecutive bits that define the pixel color. The number is currently limited to 1, 4,
8, or 24.

wNPlanes
Color planes. This member must be 1.

wHDpi
Horizontal resolution, in pixels per inch, of the display on which the image originated. If the
resolution is not known, this member can be zero.

wVDpi
Vertical resolution, in pixels per inch, of the display on which the image originated. If the
resolution is not known, this member can be zero.

SOBORDER
Contains information about the border around a cell in table.typedef struct SOBORDERtag {

WORD wWidth; // see below
SOCOLORREF rgbColor; // see below
WORD wFlags; // see below

} SOBORDER, VWPTR * PSOBORDER;
MemberswWidth

Width, in twips, of the border.
rgbColor

Color of the border. This member can be a RGB color value. To set this member, use the
SORGB macro.

wFlags
Type of border and the edges to which it applies. This member can be a combination of the
SO_BORDERNONE, SO_BORDERDOUBLE, SO_BORDERHAIRLINE, SO_BORDERTHICK,
SO_BORDERSHADOW, and SO_BORDERDOTTED values.

SOCOLUMN
Contains information about the columns in a spreadsheet.typedef struct SOCOLUMNtag {

WORD wStructSize; // see below
LONG dwWidth;// see below
char szName[40]; // see below

} SOCOLUMN, VWPTR * PSOCOLUMN;
MemberswStructSize

Size, in bytes, of the structure.
dwWidth

Width, in characters, of the column.
szName

Null-terminated string specifying the name of the column.

SOCPARCANGLE
Contains information defining an arc for use in vector graphics output.typedef struct SOCPARCANGLEtag {

SOPOINT Center;// center point
SOANGLE SweepAngle; // sweep angle

} SOCPARCANGLE, VWPTR *PSOCPARCANGLE;

SOCPPIEANGLE
Contains information defining a pie shape for use in vector graphics output.typedef struct SOCPPIEANGLEtag {

INT nRadius; // radius
SOANGLE StartAngle; // starting angle
SOANGLE SweepAngle; // sweep angle

} SOCPPIEANGLE, VWPTR *PSOCPPIEANGLE;

SOCPTEXTATPOINT
Contains information defining the format and length of text for use in vector graphics output.typedef struct SOCPTEXTATPOINTtag {

WORD wFormat; // format of text
INT nTextLength; // text length

} SOCPTEXTATPOINT, VWPTR *PSOCPTEXTATPOINT;

SODATACELL
Contains information about the data to be placed in a cell of a spreadsheet.typedef struct SODATACELLtag {

WORD wStructSize; //see below
WORD wStorage; //see below
WORD wDisplay; //see below
DWORD dwSubDisplay; //see below
WORD wPrecision; //see below
WORD wAlignment; //see below
WORD wAttribute; //see below
union {
SOINT32S Int32S; //see below
SOINT32U Int32U; //see below
BYTE IEEE4[4]; //see below
BYTE IEEE8[8]; //see below
BYTE IEEE10[10]; //see below
BYTE BCD8[8]; //see below
} uStorage;

} SODATACELL, VWPTR * PSODATACELL;
MemberswStructSize

Size, in bytes, of the structure.
wStorage

Storage type. This member can be one of these values:
SO_CELLBCD8I Packed BCD excess-63.
SO_CELLEMPTY The cell is empty.
SO_CELLERROR The cell has an error condition.
SO_CELLIEEE4I IEEE 4-byte in Intel® (PC) ordering.
SO_CELLIEEE8I IEEE 8-byte in Intel (PC) ordering.
SO_CELLIEEE10I IEEE 10-byte in Intel (PC) ordering.
SO_CELLINT32S 32-bit signed integer.
SO_CELLINT32U 32-bit unsigned integer.

wDisplay
Display type. This member can be one of these values:

SO_CELLBOOL Boolean (0 = FALSE and 1 = TRUE).
SO_CELLDATE Julian Days since the base date. wStorage

may be either an IEEE or integer value.
SO_CELLDATETIMEJulian Days since the base date. wStorage

may be either an IEEE or integer value.
SO_CELLDECIMAL Decimal notation.
SO_CELLDOLLARS Dollar sign.
SO_CELLEXPONENTExponential notation.
SO_CELLNUMBER General number format.
SO_CELLPERCENT Percent (not constrained to 0 - 100).
SO_CELLTIME Decimal part of a day if wStorage is an

IEEE value or seconds since 00:00 if
wStorage is an integer value.

dwSubDisplay
Display subtype. The values depend on wDisplay value.
For SO_CELLNUMBER and SO_CELLDOLLARS, this member can be a combination of one
negative-number format, thousands separator, and cell multiplier.

Negative Number Format
SO_CELLNEG_MINUS Negative numbers have a minus sign.
SO_CELLNEG_MINUSREDNegative numbers have a minus sign

and are red.
SO_CELLNEG_PAREN Negative numbers have parentheses.
SO_CELLNEG_PARENREDNegative numbers have parentheses

and are red.
Thousands Separator
SO_CELL1000SEP_COMMACommas as 1,000s separator.
SO_CELL1000SEP_NONENo 1000s separator.
Cell Multiplier
SO_CELLMULT_1 Used for all file parsers.
SO_CELLMULT_01 Used only for Microsoft® Excel viewer.
SO_CELLMULT_05 Used only for Lotus viewer.
SO_CELLMULT_005 Used only for Lotus viewer.
SO_CELLMULT_0005 Used only for Lotus viewer.
SO_CELLMULT_00005 Used only for Lotus viewer.
SO_CELLMULT_500 Used only for Lotus viewer.
SO_CELLMULT_5000 Used only for Lotus viewer.
SO_CELLMULT_0625 Used only for Lotus viewer.
SO_CELLMULT_015625 Used only for Lotus viewer.

For SO_CELLDATETIME, SO_CELLDATE, and SO_CELLTIME, this member can be a
combination of one date separator, day format, month format, year format, day of week
format, and time format.

Date Separator
SO_CELLDATESEP_MINUS
SO_CELLDATESEP_NONE
SO_CELLDATESEP_PERIOD
SO_CELLDATESEP_SPACE
Day Format
SO_CELLDAY_NONE
SO_CELLDAY_NUMBER

Month Format
SO_CELLMONTH_ABBREV
SO_CELLMONTH_FULL
SO_CELLMONTH_NONE
SO_CELLMONTH_NUMBER
Year Format
SO_CELLYEAR_ABBREV
SO_CELLYEAR_FULL
SO_CELLYEAR_NONE
Day of Week Format
SO_CELLDAYOFWEEK_ABBREV
SO_CELLDAYOFWEEK_FULL
SO_CELLDAYOFWEEK_NONE
Time Format
SO_CELLTIME_HHMM24
SO_CELLTIME_HHMMAM
SO_CELLTIME_HHMMHMS For example, 14h45m
SO_CELLTIME_HHMMSS24
SO_CELLTIME_HHMMSSAM
SO_CELLTIME_HHMMSSHMS For example, 14h45m34s
SO_CELLTIME_NONE

wPrecision
Precision or positioning value, depending on the wDisplay value.
For SO_CELLNUMBER and SO_CELLDOLLARS, this member specifies the number of
places to the right of the decimal point.
For SO_CELLDATETIME, SO_CELLDATE, and SO_CELLTIME, this member specifies the
position in the date time string of each element. It must be a combination of one value for
each of the day of week position, month position, day position, year position, and time
position.

Day of Week Position
SO_CELLDAYOFWEEK_1
SO_CELLDAYOFWEEK_2
SO_CELLDAYOFWEEK_3
SO_CELLDAYOFWEEK_4
SO_CELLDAYOFWEEK_5
Month Position
SO_CELLMONTH_1
SO_CELLMONTH_2
SO_CELLMONTH_3
SO_CELLMONTH_4
SO_CELLMONTH_5
Day Position
SO_CELLDAY_1
SO_CELLDAY_2
SO_CELLDAY_3
SO_CELLDAY_4
SO_CELLDAY_5
Year Position
SO_CELLYEAR_1
SO_CELLYEAR_2
SO_CELLYEAR_3
SO_CELLYEAR_4

SO_CELLYEAR_5
Time Position
SO_CELLTIME_1
SO_CELLTIME_2
SO_CELLTIME_3
SO_CELLTIME_4
SO_CELLTIME_5

wAlignment
Alignment of data in the cell. This member can be the SO_CELLLEFT, SO_CELLRIGHT, or
SO_CELLCENTER value.

wAttribute
Attribute of data in the cell. This member can be a combination of the SO_CELLBOLD,
SO_CELLITALIC, SO_CELLUNDERLINE, and SO_CELLSTRIKEOUT values.

Int32S
Signed 32-bit integer.

Int32U
Unsigned 32-bit integer.

IEEE4
Four-byte array representing an IEEE 4-byte floating-point number.

IEEE8
Eight-byte array representing an IEEE 8-byte floating-point number.

IEEE10
Ten-byte array representing an IEEE 10-byte floating-point number.

BCD8
Eight-byte array representing an excess-63 floating-point packed BCD.

SOEMBEDDEDGRAPHIC
Contains information about the size and positioning of an embedded graphics object.typedef struct SOEMBEDDEDGRAPHICtag {

SOPOINT Size; // see below
SORECT Crop; // see below
SOPOINT ScaledSize; // see below
WORD wBorder; // see below
DWORD dwFlags; // see below

} SOEMBEDDEDGRAPHIC;
MembersSize

Initial size of the image before scaling and cropping.
Crop

Cropping amount on the top, bottom, left, and right edges.
ScaledSize

Final size of the image after scaling and cropping.
wBorder

Border thickness, in twips. If this member is zero, there is no border.
dwFlags

Flags. This member can be a combination of these values:
SO_CENTERIMAGE The image is centered in its final

rectangle.
SO_MAINTAINASPECT The image aspect ratio is preserved.

SOEMBEDDEDOBJECT
Contains information about an embedded object.typedef struct SOEMBEDDEDOBJECTtag {

WORD wStructSize; // see below
WORD wObjectType; // see below
char szFile[144]; // see below
WORD wFIType; // see below
DWORD dwFileOffset; // see below
SOEMBEDINFO Info; // see below

} SOEMBEDDEDOBJECT, VWPTR * PSOEMBEDDEDOBJECT;
MemberswStructSize

Size, in bytes, of the structure.
wObjectType

Type of object type. This member can be the SOEMBED_GRAPHIC or SO_UNKNOWN
value.

szFile
Null-terminated string specifying the path and filename of the file that contains the object. If
the object is in the current file, this member is NULL.

wFIType
File identifier for object's file. If the object type is the SO_UNKNOWN value, this member is
zero.

dwFileOffset
Offset, in bytes, to the embedded object from the start of the given file.

Info
Union containing object-specific information.

SOEMBEDINFO
Contains information specific to embedded graphics objects.typedef union SOEMBEDINFOtag {

SOEMBEDDEDGRAPHIC Graphic; // embedded graphics structure
} SOEMBEDINFO;

SOFIELD
Contains information about a field in a database.typedef struct SOFIELDtag {

WORD wStructSize;
LONG dwWidth;
char szName[40];
WORD wStorage;
WORD wDisplay;
DWORD dwSubDisplay;
WORD wPrecision;
WORD wAlignment;

} SOFIELD, VWPTR * PSOFIELD;
MemberswStructSize

Size, in bytes, of the structure.
dwWidth

Width, in characters, of the column.
szName

Null-terminated string specifying the name of the field.
wStorage

Storage type. This member can be one of these values:
SO_CELLBCD8I Packed BCD excess-63.
SO_CELLEMPTY The cell is empty.
SO_CELLERROR The cell has an error condition.
SO_CELLIEEE4I IEEE 4-byte in Intel (PC) ordering.
SO_CELLIEEE8I IEEE 8-byte in Intel (PC) ordering.
SO_CELLIEEE10I IEEE 10-byte in Intel (PC) ordering.
SO_CELLINT32S 32-bit signed integer.
SO_CELLINT32U 32-bit unsigned integer.
SO_FIELDTEXTFIX The field contains a string of fixed length.
SO_FIELDTEXTVAR The field contains a string of unknown

length.

wDisplay
Display type. For more information, see the wDisplay member in the SODATACELL
structure.

dwSubDisplay
Display subtype. For more information, see the dwSubDisplay member in the SODATACELL
structure.

wPrecision
Precision or positioning value. For more information, see the wPrecision member in the
SODATACELL structure.
If wStorage is the SO_FIELDTEXTFIX value, this member specifies the number of characters
in the string.

wAlignment
Alignment of data in the cell. This member can be the SO_CELLLEFT, SO_CELLRIGHT, or
SO_CELLCENTER value.

SOFILTERINFO
Contains information identifying the file parser.typedef struct SOFILTERINFOtag {

INT wFilterCharSet; // see below
U_BYTE szFilterName[32]; // see below

} SOFILTERINFO;
MemberswFilterCharSet

Character set used for text by the file parser. This member must be the SO_WINDOWS value.
szFilterName

Null-terminated string specifying the name of the file parser. The name should identify either
the format of the files being parsed or the product that created the files.

SOGROUPINFO
Contains information about a group for use with vector graphics output.typedef struct SOGROUPINFOtag {

WORD wStructSize; // see below
SORECT BoundingRect; // see below
INT nTransforms;// see below

} SOGROUPINFO, VWPTR *PSOGROUPINFO;
MemberswStructSize

Size, in bytes, of the structure.
BoundingRect

Rectangle that bounds all points displayed in the group. This rectangle does not cause
clipping to occur. If clipping is needed, a clipping path must be selected.

nTransforms
Number of transformation structures following this structure.

SOLOGBRUSH
Contains information defining a logical brush for use with vector graphics output.typedef struct SOLOGBRUSHtag {

WORD lbStyle; // see below
SOCOLORREF lbColor; // see below
INT lbHatch; // see below

} SOLOGBRUSH, VWPTR *PSOLOGBRUSH;
MemberslbStyle

Brush style. This member can be the SOBS_HATCHED, SOBS_HOLLOW, or SOBS_SOLID
value.

lbColor
Color of the brush. This member can be an RGB or palette-relative value. To set this member,
use the SORGB or SOPALETTERGB macro.

lbHatch
Hatch style. This member is used only if lbStyle is SO_HATCHED. This member can be the
SOHS_BDIAGONAL, SOHS_CROSS, SOHS_DIAGCROSS, SOHS_FDIAGONAL,
SOHS_HORIZONTAL, or SOHS_VERTICAL value.

For a complete definition of the members, see the LOGBRUSH structure.

SOLOGFONT
Contains information that defines a logical font for use with vector graphics output. The lfHeight
and lfWidth members must be in the same logical units as all of the other drawing commands.
For a description of the members, see the LOGFONT structure.typedef struct SOLOGFONTtag {

INT lfHeight; // font height
INT lfWidth;// font width
INT lfEscapement;// angle of text line
INT lfOrientation; // angle of character baseline
INT lfWeight; // font weight
BYTE lfItalic; // italics
BYTE lfUnderline;// underline
BYTE lfStrikeOut;// strikeout
BYTE lfCharSet; // character set
BYTE lfOutputPrecision; // output precision
BYTE lfClipPrecision; // clipping precision
BYTE lfQuality; // output quality
BYTE lfPitchAndFamily;// pitch and family of font
BYTE lfFaceName[SOLF_FACESIZE]; // typeface name of font

} SOLOGFONT, VWPTR *PSOLOGFONT;

SOLOGPEN
Contains information that defines a logical pen for use with vector graphics output. For a complete
definition of the members, see the LOGPEN structure.typedef struct SOLOGPENtag {

INT loPenStyle;// see below
SOPOINT loWidth; // see below
SOCOLORREF loColor; // see below

} SOLOGPEN, VWPTR *PSOLOGPEN;
MemebersloPenStyle

Pen Style. This member can be the SOPS_SOLID, SOPS_DASH, SOPS_DOT,
SOPS_DASHDOT, SOPS_DASHDOTDOT, SOPS_NULL, or SOPS_INSIDEFRAME value.

loWidth
Width, in logical units, of the pen. The x member in the POINT structure is used, and the y
member is ignored.

loColor
Color of the brush. This member can be an RGB or palette-relative value. To set this member,
use the SORGB or SOPALETTERGB macro.

SOPARAINDENTS
Contains information about paragraph indents for use with vector graphics output.typedef struct SOPARAINDENTStag {

INT FirstLineIndent; // see below
INT LeftIndent; // see below
INT RightIndent;// see below

} SOPARAINDENTS, VWPTR *PSOPARAINDENTS;
MembersFirstLineIndent

Distance, from the left edge of the frame, to indent the first line of each paragraph.
LeftIndent

Distance, from the left edge of the frame, to indent all lines but the the first line of each
paragraph.

RightIndent
Distance, from the right edge of the frame, to indent all lines of each paragraph.

SOPATHINFO
Contains information about a path for use with vector graphics output.typedef struct SOPATHINFOtag {

WORD wStructSize; // see below
SORECT BoundingRect; // see below
INT nTransforms;// see below

} SOPATHINFO, VWPTR *PSOPATHINFO;
MemberswStructSize

Size, in bytes, of the structure.
BoundingRect

Rectangle that bounds all points displayed in the path. This rectangle does not cause clipping
to occur. If clipping is needed, a clipping path must be selected.

nTransforms
Number of transformation structures following this structure.

SOPOINT
Contains coordinates for a point.typedef struct SOPOINTtag {

INT x; // x-coordinate
INT y; // y-coordinate

} SOPOINT, VWPTR *PSOPOINT;

SOPOLYINFO
Contains information about the type and number of vertices of a polyline, polygon, spline, or
Bezier curve.typedef struct SOPOLYINFOtag {

WORD wFormat; // see below
INT nPoints; // see below

} SOPOLYINFO, VWPTR *PSOPOLYINFO;
MemberswFormat

Format type. This member can be one of these values:
SOPT_BEZIERCLOSE SOPT_POLYGON
SOPT_BEZIEROPEN SOPT_POLYLINE
SOPT_CPPOLYGON SOPT_SPLINECLOSE
SOPT_CPPOLYLINE SOPT_SPLINEOPEN

nPoints
Number of vertices in the object.

SORECT
Contains the dimensions of a rectangle.typedef struct SORECTtag {

INT left; // x-coordinate of upper left corner
INT top;// y-coordinate of upper left corner
INT right; // x-coordinate of lower right corner
INT bottom; // y-coordinate of lower right corner

} SORECT, VWPTR *PSORECT;

SOTAB
Contains information about tab stops.typedef struct SOTABtag {

WORD wType; // see below
WORD wChar; // see below
WORD wLeader; // see below
LONG dwOffset; // see below

} SOTAB, VWPTR * PSOTAB;
MemberswType

Type of tab stop. This member can be the SO_TABLEFT, SO_TABRIGHT, SO_TABCENTER,
or SO_TABCHAR value.

wChar
Alignment character if wType is SO_TABCHAR. Tabs are aligned on this character.

wLeader
Repeating leader character for the tab. If this member is zero, there is no leader.

dwOffset
Offset of the tab from the left page margin.

SOTABLECELLINFO
Contains information about cells in a table.typedef struct SOTABLECELLINFOtag {

WORD wWidth; // see below
WORD wMerge; // see below
WORD wShading; // see below
PSOBORDER pLeftBorder; // see below
PSOBORDER pRightBorder; // see below
PSOBORDER pTopBorder; // see below
PSOBORDER pBottomBorder; // see below

} SOTABLECELLINFO, VWPTR *PSOTABLECELLINFO;
MemberswWidth

Width, in twips, of the cell.
wMerge

Merge flag specifying whether the cell is merged with any neighboring cells. This member can
be a combination of the SO_MERGELEFT, SO_MERGERIGHT, SO_MERGEABOVE, and
SO_MERGEBELOW values.

wShading
Intensity value for background shading in the range of 0 to 255. If this member is zero, there is
no background shading.

pLeftBorder
Left border.

pRightBorder
Right border.

pTopBorder
Top border.

pBottomBorder
Bottom border.

SOTEXTATARCANGLE
Contains information about text for use with vector graphics output.typedef struct SOTEXTATARCANGLEtag {

SOARCINFO ArcInfo; // see below
WORD wFormat; // see below
INT nTextLength; // see below

} SOTEXTATARCANGLE, VWPTR *PSOTEXTATARCANGLE;
MembersArcInfo

Arc information defining the arc relative to which the text is located. Only the starting angle is
used to locate the point; the ending angle is ignored.

wFormat
Alignment format, indicating the relationship between the given point and the base line or
bounding rectangle of the text. This member can be a combination of these values:

SOTA_BASELINE Aligns the point and base line of the font.
SOTA_BOTTOM Aligns the point and bottom of the bounding

rectangle.
SOTA_CENTER Aligns the point and horizontal center of the

bounding rectangle.
SOTA_LEFT Aligns the point and left side of the bounding

rectangle.
SOTA_RIGHT Aligns the point and right side of the bounding

rectangle.
SOTA_TOP Aligns the point and top of the bounding

rectangle.

nTextLength
Length of text string that follows the structure.

SOTEXTATPOINT
Contains information about text at a point.typedef struct SOTEXTATPOINTtag {

SOPOINT Point; // see below
WORD wFormat; // see below
INT nTextLength; // see below

} SOTEXTATPOINT, VWPTR *PSOTEXTATPOINT;
MembersPoint

Point that locates the text.
wFormat

Alignment format, indicating the relationship between the point and the base line or bounding
rectangle of the text. This member can be a combination of these values:

SOTA_BASELINE Aligns the point and base line of the font.
SOTA_BOTTOM Aligns the point and bottom of the bounding

rectangle.
SOTA_CENTER Aligns the point and horizontal center of the

bounding rectangle.
SOTA_LEFT Aligns the point and left side of the bounding

rectangle.
SOTA_RIGHT Aligns the point and right side of the

bounding rectangle.
SOTA_TOP Aligns the point and top of the bounding

rectangle.

nTextLength
Length of the text string that follows the structure.

SOTEXTCELL
Contains information about the alignment and attributes of text in a spreadsheet cell.typedef struct SOTEXTCELLtag {

WORD wStructSize; // see below
WORD wAlignment; // see below
WORD wAttribute; // see below

} SOTEXTCELL, VWPTR * PSOTEXTCELL;
MemberswStructSize

Size, in bytes, of the structure.
wAlignment

Alignment. This member can be the SO_CELLLEFT, SO_CELLRIGHT, SO_CELLCENTER,
or SO_CELLFILL value.

wAttribute
Attributes. This member can be a combination of the SO_CELLBOLD, SO_CELLITALIC,
SO_CELLUNDERLINE, and SO_CELLSTRIKEOUT values.

SOTEXTINRECT
Contains information about text for use with vector graphics output.
typedef struct SOTEXTINRECTtag {

SORECT Rect;// see below
WORD wFormat; // see below
INT nTextLength; // see below

} SOTEXTINRECT, VWPTR *PSOTEXTINRECT;
MembersRect

Rectangle in which text is formatted.
wFormat

Format of the string. This member can be a combination of these values:
SODT_BOTTOM SODT_NOPREFIX
SODT_CALCRECT SODT_RIGHT
SODT_CENTER SODT_SINGLELINE
SODT_EXPANDTABS SODT_TABSTOP
SODT_EXTERNALLEADING SODT_TOP
SODT_LEFT SODT_VCENTER
SODT_NOCLIP SODT_WORDBREAK

nTextLength
Length of the text string that follows the structure.

SOTRANSFORM
Contains information about a transformation for use with vector graphics output.typedef struct SOTRANSFORMtag {

WORD wTransformFlags; // see below
SOPOINT Origin; // see below
INT xOffset; // see below
INT yOffset; // see below
SORATIO xScale; // see below
SORATIO yScale; // see below
SORATIO xSkew; // see below
SORATIO ySkew; // see below
SOANGLE RotationAngle; // see below

} SOTRANSFORM, VWPTR *PSOTRANSFORM;
MemberswTransformFlags

Type of transformation. This member can be a combination of these values:
SOTF_NOTRANSFORM SOTF_XSKEW
SOTF_ROTATE SOTF_YOFFSET
SOTF_XOFFSET SOTF_YSCALE
SOTF_XSCALE SOTF_YSKEW

TSOTF_ROTATE may be combined only with SOTF_XOFFSET and SOTF_YOFFSET. In
addition, no other values may be combined with SOTF_NOTRANSFORM.

Origin
Point of origin for all transformations, except for SOTF_XOFFSET and SOTF_YOFFSET.

xOffset and yOffset
Offset values to use for the SOTF_XOFFSET and OTF_YOFFSET transformations. The x
and y members of this value are added to the x- and y-coordinates of all points in the
transformed object.

xScale
Ratio to use for SOTF_XSCALE transformations. This ratio is used to scale the image on the
x-axis from the given origin. To set this member, use the SOSETRATIO macro.

yScale
Ratio to use for SOTF_YSCALE transformations. This ratio is used to scale the image on the
y-axis from the given origin. To set this member, use the SOSETRATIO macro.

xSkew
Ratio to use for SOTF_XSKEW transformations. This ratio used to skew the image
horizontally from the given origin. To set this member, use the SOSETRATIO macro.

ySkew
Ratio to use for SOTF_YSKEW transformations. This ratio used to skew the image vertically
from the given origin. To set this member, use the SOSETRATIO macro.

RotationAngle
Angle, in tenths of a degree, to use for SOTF_ROTATE transformations. All points are rotated
this many degrees about the given origin. This value must be set by using the
SOANGLETENTHS macro. A SOANGLE variable should not be set directly. Additional
macros will be made available as needed.

The transformation equation follows.x' = Origin.x + (xScale * (x-Origin.x)) + (xSkew*(y-Origin.y)) +
xOffset
y' = Origin.y + (yScale * (y-Origin.y)) + (ySkew*(x-Origin.x)) +
yOffset

SOVECTORHEADER
Contains information defining the size and attributes of the rectangle in which vector graphics are
drawn.typedef struct SOVECTORHEADERtag {

WORD wStructSize; // see below
SORECT BoundingRect; // see below
WORD wHDPI;// see below
WORD wVDPI;// see below
WORD wImageFlags; // see below
SOCOLOR BkgColor; // see below

} SOVECTORHEADER, VWPTR *PSOVECTORHEADER;
MemberswStructSize

Size, in bytes, of the structure.
BoundingRect

Rectangle that bounds all drawing commands.
wHDpI

Dots per inch resolution along the x-axis.
wVDpI

Dots per inch resolution along the y-axis.
wImageFlags

Image flags. This member can be a combination of these values:
SO_VECTORCOLORPALETTE Uses a color palette. Color values

must be palette entry indexes or
palette-relative RGB values.

SO_VECTORRGBCOLOR Uses RGB color values.
SO_XISLEFT Has positive x-coordinates left of

the y-axis.
SO_YISUP Has positive y-coordinates up

from the x-axis.

BkgColor
Color of the background in the bounding rectangle. This value must be set by using one of the
three color macros: SOPALETTEINDEX, SORGB, or SOPALETTERGB. However, SORGB
should not be used if a palette is defined.

SOUNDSENTRY
The SOUNDSENTRY structure contains information about the SoundSentry accessibility feature.
When the SoundSentry feature is on, the computer displays a visual indication only when a sound
is generated.

Windows 95: The visual indication is displayed when a sound is generated through the
computer's internal speaker.

Windows NT: The visual indication is displayed when a sound is generated through either the
multimedia sound services or through the computer's speaker.typedef struct tagSOUNDSENTRY {// ss

UINT cbSize;
DWORD dwFlags;
DWORD iFSTextEffect;
DWORD iFSTextEffectMSec;
DWORD iFSTextEffectColorBits;
DWORD iFSGrafEffect;
DWORD iFSGrafEffectMSec;
DWORD iFSGrafEffectColor;
DWORD iWindowsEffect;
DWORD iWindowsEffectMSec;
LPTSTR lpszWindowsEffectDLL;
DWORD iWindowsEffectOrdinal;

} SOUNDSENTRY, *LPSOUNDSENTRY;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

A set of bit flags that specify properties of the SoundSentry feature. The following bit-flag
values are defined:

Value Meaning
SSF_AVAILABLE If this flag is set, the SoundSentry

feature is available.
SSF_SOUNDSENTRYON If this flag is set, the SoundSentry

feature is on.

iFSTextEffect
Windows 95: Specifies the visual signal to present when a text-mode application generates a
sound while running in a full-screen virtual machine. This member can be one of the following
values:

Value Meaning
SSTF_BORDER Flash the screen border (that is, the

overscan area), which is unavailable on
some displays.

SSTF_CHARS Flash characters in the corner of the
screen.

SSTF_DISPLAY Flash the entire display.
SSTF_NONE No visual signal.

Windows NT: This member is reserved for future use. It must be set to zero.
iFSTextEffectMSec

Windows 95: Specifies the duration, in milliseconds, of the visual signal that is displayed
when a full-screen, text-mode application generates a sound.
Wndows NT: This member is reserved for future use. It must be set to zero.

iFSTextEffectColorBits
Windows 95: Specifies the RGB value of the color to be used when displaying the visual
signal shown when a full-screen, text-mode application generates a sound.
Windows NT: This member is reserved for future use. It must be set to zero.

iFSGrafEffect
Windows 95: Specifies the visual signal to present when a graphics-mode application
generates a sound while running in a full-screen virtual machine. This member can be one of
the following values:

Value Meaning
SSGF_DISPLAY No visual signal.
SSGF_NONE Flash the entire display.

Windows NT: This member is reserved for future use. It must be set to zero.
iFSGrafEffectMSec

Windows 95: Specifies the duration, in milliseconds, of the visual signal that is displayed
when a full-screen, graphics-mode application generates a sound.
Windows NT: This member is reserved for future use. It must be set to zero.

iFSGrafEffectColor
Windows 95: Specifies the RGB value of the color to be used when displaying the visual
signal shown when a full-screen, graphics-mode application generates a sound.
Windows NT: This member is reserved for future use. It must be set to zero.

iWindowsEffect
Specifies the visual signal to display when a sound is generated by a Windows-based
application or an MS-DOS application running in a window. This member can be one of the
following values:

Value Meaning
SSWF_CUSTOM Call the SoundSentryProc routine exported by

the DLL specified by the
iFSWindowsEffectDLL member.

SSWF_DISPLAY Flash the entire display.
SSWF_NONE No visual signal.

SSWF_TITLE Flash the title bar of the active window.
SSWF_WINDOW Flash the active window.

iWindowsEffectMSec
Windows 95: Specifies the duration, in milliseconds, of the visual signal that is displayed
when a Windows-based application (or a non-Windows-based application running in a
window) generates a sound.
Windows NT: This member is reserved for future use. It must be set to zero.

lpszWindowsEffectDLL
Points to the buffer that contains the name of the DLL that contains a SoundSentryProc
callback function. The length of the name must not exceed the value of MAX_PATH. This
member is NULL if no DLL is used. When retrieving information about the SoundSentry
feature, the size of the buffer must be equal to, or larger than, the value of MAX_PATH.

iWindowsEffectOrdinal
This member is reserved for future use on both platforms. It must be set to zero.

RemarksAn application uses a SOUNDSENTRY structure when calling the SystemParametersInfo
function with the wAction parameter set to SPI_GETSOUNDSENTRY or
SPI_SETSOUNDSENTRY. When using SPI_GETSOUNDSENTRY, an application must specify
the cbSize member of the SOUNDSENTRY structure; the SystemParametersInfo function fills
the remaining members. An application must specify the cbSize, dwFlags, and iWindowsEffect
members when using the SPI_SETSOUNDSENTRY value.See AlsoSoundSentryProc, SystemParametersInfo

STARTUPINFO
The STARTUPINFO structure is used with the CreateProcess function to specify main window
properties if a new window is created for the new process. For graphical user interface (GUI)
processes, this information affects the first window created by the CreateWindow function and
shown by the ShowWindow function. For console processes, this information affects the console
window if a new console is created for the process. A process can use the GetStartupInfo
function to retrieve the STARTUPINFO structure specified when the process was created.typedef struct _STARTUPINFO { // si

DWORD cb;
LPTSTR lpReserved;
LPTSTR lpDesktop;
LPTSTR lpTitle;
DWORD dwX;
DWORD dwY;
DWORD dwXSize;
DWORD dwYSize;
DWORD dwXCountChars;
DWORD dwYCountChars;
DWORD dwFillAttribute;
DWORD dwFlags;
WORD wShowWindow;
WORD cbReserved2;
LPBYTE lpReserved2;
HANDLE hStdInput;
HANDLE hStdOutput;
HANDLE hStdError;

} STARTUPINFO, *LPSTARTUPINFO;
Memberscb

Specifies the size, in bytes, of the structure.
lpReserved

Reserved. Set this member to NULL before passing the structure to CreateProcess.
lpDesktop

Windows NT only: Points to a zero-terminated string that specifies either the name of the
desktop only or the name of both the window station and desktop for this process. A
backslash in the string pointed to by lpDesktop indicates that the string includes both desktop
and window station names. Otherwise, the lpDesktop string is interpreted as a desktop
name. If lpDesktop is NULL, the new process inherits the window station and desktop of its
parent process.

lpTitle
For console processes, this is the title displayed in the title bar if a new console window is
created. If NULL, the name of the executable file is used as the window title instead. This
parameter must be NULL for GUI or console processes that do not create a new console
window.

dwX, dwY
Ignored unless dwFlags specifies STARTF_USEPOSITION. Specifies the x and y offsets, in
pixels, of the upper left corner of a window if a new window is created. The offsets are from
the upper left corner of the screen. For GUI processes, the specified position is used the first
time the new process calls CreateWindow to create an overlapped window if the x parameter
of CreateWindow is CW_USEDEFAULT.

dwXSize, dwYSize
Ignored unless dwFlags specifies STARTF_USESIZE. Specifies the width (dwXSize) and
height (dwYSize), in pixels, of the window if a new window is created. For GUI processes, this
is used only the first time the new process calls CreateWindow to create an overlapped
window if the nWidth parameter of CreateWindow is CW_USEDEFAULT.

dwXCountChars, dwYCountChars
Ignored unless dwFlags specifies STARTF_USECOUNTCHARS. For console processes, if a
new console window is created, dwXCountChars specifies the screen buffer width in
character columns, and dwYCountChars specifies the screen buffer height in character rows.
These values are ignored in GUI processes.

dwFillAttribute
Ignored unless dwFlags specifies STARTF_USEFILLATTRIBUTE. Specifies the initial text
and background colors if a new console window is created in a console application. These
values are ignored in GUI applications. This value can be any combination of the following
values: FOREGROUND_BLUE, FOREGROUND_GREEN, FOREGROUND_RED,
FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following
combination of values produces red text on a whilte background:FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUEdwFlags
This is a bit field that determines whether certain STARTUPINFO members are used when
the process creates a window. Any combination of the following values can be specified:

Value Meaning
STARTF_USESHOWWINDOW If this value is not specified, the

wShowWindow member is
ignored.

STARTF_USEPOSITION If this value is not specified, the
dwX and dwY members are
ignored.

STARTF_USESIZE If this value is not specified, the
dwXSize and dwYSize
members are ignored.

STARTF_USECOUNTCHARS If this value is not specified, the
dwXCountChars and
dwYCountChars members are
ignored.

STARTF_USEFILLATTRIBUTE If this value is not specified, the
dwFillAttribute member is
ignored.

STARTF_FORCEONFEEDBACK If this value is specified, the
cursor is in feedback mode for
two seconds after
CreateProcess is called. If
during those two seconds the
process makes the first GUI call,
the system gives five more
seconds to the process. If during
those five seconds the process
shows a window, the system
gives five more seconds to the
process to finish drawing the
window.
The system turns the feedback

cursor off after the first call to
GetMessage, regardless of
whether the process is drawing.
For more information on
feedback, see the following
Remarks section.

STARTF_FORCEOFFFEEDBACKIf specified, the feedback cursor
is forced off while the process is
starting. The normal cursor is
displayed. For more information
on feedback, see the following
Remarks section.

STARTF_USESTDHANDLES If this value is specified, sets the
standard input of the process,
standard output, and standard
error handles to the handles
specified in the hStdInput,
hStdOutput, and hStdError
members of the STARTUPINFO
structure. The CreateProcess
function's fInheritHandles
parameter must be set to TRUE
for this to work properly.
If this value is not specified, the
hStdInput, hStdOutput, and
hStdError members of the
STARTUPINFO structure are
ignored.

wShowWindow
Ignored unless dwFlags specifies STARTF_USESHOWWINDOW. The wshowWindow
member can be any of the SW_ constants defined in WINUSER.H. For GUI processes,
wShowWindow specifies the default value the first time ShowWindow is called. The
nCmdShow parameter of ShowWindow is ignored. In subsequent calls to ShowWindow, the
wShowWindow member is used if the nCmdShow parameter of ShowWindow is set to
SW_SHOWDEFAULT.

cbReserved2
Reserved; must be zero.

lpReserved2
Reserved; must be NULL.

hStdInput
Ignored unless dwFlags specifies STARTF_USESTDHANDLES. Specifies a handle that will
be used as the standard input handle of the process if STARTF_USESTDHANDLES is
specified.

hStdOutput
Ignored unless dwFlags specifies STARTF_USESTDHANDLES. Specifies a handle that will
be used as the standard output handle of the process if STARTF_USESTDHANDLES is
specified.

hStdError
Ignored unless dwFlags specifies STARTF_USESTDHANDLES. Specifies a handle that will
be used as the standard error handle of the process if STARTF_USESTDHANDLES is
specified.

RemarksIf a GUI process is being started and neither STARTF_FORCEONFEEDBACK or
STARTF_FORCEOFFFEEDBACK is specified, the process feedback cursor is used. A GUI
process is one whose subsystem is specified as "windows."See AlsoCreateProcess, CreateWindow, GetMessage, GetStartupInfo, PeekMessage, ShowWindow,
WinMain

STAT_SERVER_0
The STAT_SERVER_0 structure contains statistical information about the server.typedef struct _STAT_SERVER_0 {
DWORDsts0_start;
DWORDsts0_fopens;
DWORDsts0_devopens;
DWORDsts0_jobsqueued;
DWORDsts0_sopens;
DWORDsts0_stimedout;
DWORDsts0_serrorout;
DWORDsts0_pwerrors;
DWORDsts0_permerrors;
DWORDsts0_syserrors;
DWORDsts0_bytessent_low;
DWORDsts0_bytessent_high;
DWORDsts0_bytesrcvd_low;
DWORDsts0_bytesrcvd_high;
DWORDsts0_avresponse;
DWORDsts0_reqbufneed;
DWORDsts0_bigbufneed;
} STAT_SERVER_0, *PSTAT_SERVER_0, *LPSTAT_SERVER_0;
Memberssts0_start

Specifies the time statistics collection started. This element also indicates when the statistics
were last cleared. The value is stored as the number of seconds elapsed since 00:00:00,
January 1, 1970. To calculate the length of time that statistics have been collected, subtract
this value from the present time.

sts0_fopens
Specifies the number of times a file is opened on a server. This includes the number of times
named pipes are opened.

sts0_devopens
Specifies the number of times a server device is opened.

sts0_jobsqueued
Specifies the number of server print jobs spooled.

sts0_sopens
Specifies the number of times the server session started.

sts0_stimeout
Specifies the number of times the server session automatically disconnected.

sts0_serrorout
Specifies the number of times the server sessions failed with an error.

sts0_pwerrors
Specifies the number of server password violations.

sts0_permerrors
Specifies the number of server access permission errors.

sts0_syserrors
Specifies the number of server system errors.

sts0_bytessent_low
Specifies the number of server bytes sent to the network (low DWORD).

sts0_bytessent_high
Specifies the number of server bytes sent to the network (high DWORD).

sts0_bytesrcvd_low
Specifies the number of server bytes received from the network (low DWORD).

sts0_bytesrcvd_high
Specifies the number of server bytes received from the network (high DWORD).

sts0_avresponse
Specifies the average server response time (in milliseconds).

sts0_regbufneed
Specifies the number of times the server required a request buffer but failed to allocate one.
This value indicates that the server parameters may need adjustment.

sts0_bigbuffneed
Specifies the number of times the server required a big buffer but failed to allocate one. This
value indicates that the server parameters may need adjustment.

See AlsoNetStatisticsGet2

STAT_WORKSTATION_0
The STAT_WORKSTATION_0 structure contains information about the specified workstation,
including name, number of sessions, number of network control blocks, type of applications, and
pertinent software information.typedef struct _STAT_WORKSTATION_0 {
DWORDstw0_start;
DWORDstw0_numNCB_r;
DWORDstw0_numNCB_s;
DWORDstw0_numNCB_a;
DWORDstw0_fiNCB_r;
DWORDstw0_fiNCB_s;
DWORDstw0_fiNCB_a;
DWORDstw0_fcNCB_r;
DWORDstw0_fcNCB_s;
DWORDstw0_fcNCB_a;
DWORDstw0_sesstart;
DWORDstw0_sessfailcon;
DWORDstw0_sessbroke;
DWORDstw0_uses;
DWORDstw0_usefail;
DWORDstw0_autorec;
DWORDstw0_bytessent_r_lo;
DWORDstw0_bytessent_r_hi;
DWORDstw0_bytesrcvd_r_lo;
DWORDstw0_bytesrcvd_r_hi;
DWORDstw0_bytessent_s_lo;
DWORDstw0_bytessent_s_hi;
DWORDstw0_bytesrcvd_s_lo;
DWORDstw0_bytesrcvd_s_hi;
DWORDstw0_bytessent_a_lo;
DWORDstw0_bytessent_a_hi;
DWORDstw0_bytesrcvd_a_lo;
DWORDstw0_bytesrcvd_a_hi;
DWORDstw0_reqbufneed;
DWORDstw0_bigbufneed;
} STAT_WORKSTATION_0, *PSTAT_WORKSTATION_0, *LPSTAT_WORKSTATION_0;
Membersstw0_start

Indicates the last time (in seconds from 00:00:00, January 1,1970) the user list for servers
running user-level security was modified.

stw0_numNCB_r
Indicates the last time (in seconds from 00:00:00, January 1,1970) the group list for servers
running user-level security was modified.

stw0_numNCB_s
Specifies the total number of network control blocks issued by the server.

stw0_numNCB_a
Specifies the total number of network control blocks issued by applications.

stw0_fiNCB_r
Specifies the number of network control blocks that failed when issued by the redirector.

stw0_fiNCB_s
Specifies the number of network control blocks that failed when issued by the server.

stw0_fiNCB_a
Specifies the number of network control blocks that failed when issued by applications.

stw0_fcNCB_r
Specifies the number of network control blocks that were issued by the redirector and that
failed before completion.

stw0_fcNCB_s
Specifies the number of network control blocks that were issued by the server and that failed
before completion.

stw0_fcNCB_a
Specifies the number of network control blocks that were issued by applications and that
failed before completion.

stw0_sesstart
Specifies the number of workstation sessions started.

stw0_sessfailcon
Specifies the number of workstation sessions that failed to connect, not counting those that
failed due to an incorrect naming error.

stw0_sessbroke
Specifies the number of workstation sessions that failed after the session was established.

stw0_uses
Specifies how the workstation is used.

stw0_usefail
Specifies the number of workstation use failures. This is the number of times the tree
connections failed, when a server is found but the resources are not found.

stw0_autorec
Specifies the number of times a workstation is used.

stw0_bytessent_r_lo
Specifies the number of workstation bytes sent to the network (low DWORD).

stw0_bytessent_r_hi
Specifies the number of workstation bytes sent to the network (high DWORD).

stw0_bytesrcvd_r_lo
Specifies the number of workstation bytes received from the network (low DWORD).

stw0_bytesrcvd_r_hi
Specifies the number of workstation bytes received from the network (high DWORD).

stw0_bytessent_s_lo
Specifies the number of server bytes sent to the network (low DWORD).

stw0_bytessent_s_hi
Specifies the number of server bytes sent to the network (high DWORD).

stw0_bytesrcvd_s_lo
Specifies the number of workstation bytes received from the network (low DWORD).

stw0_bytesrcvd_s_hi
Specifies the number of workstation bytes received from the network (high DWORD).

stw0_bytessent_a_lo
Specifies the number of application bytes sent to the network (low DWORD).

stw0_bytessent_a_hi
Specifies the number of application bytes sent to the network (high DWORD).

stw0_bytesrcvd_a_lo
Specifies the number of application bytes received from the network (low DWORD).

stw0_bytesrcvd_a_hi
Specifies the number of application bytes received from the network (high DWORD).

stw0_reqbufneed
Specifies the number of times the workstation required a request buffer but failed to allocate
one. This element indicates that the workstation parameters may need adjustment.

stw0_bigbufneed
Specifies the number of times the workstation required a big buffer but failed to allocate one.
This element indicates that the workstation parameters may need adjustment.

See AlsoNetStatisticsGet2

STD_ALERT
The STD_ALERT structure contains information about the time and date of an event, the type of
event, and the application that is raising the alert message.typedef struct _STD_ALERT {

DWORD alrt_timestamp;
TCHAR alrt_eventname[EVLEN + 1];
TCHAR alrt_servicename[SNLEN + 1];

}STD_ALERT, *PSTD_ALERT, *LPSTD_ALERT;
Membersalrt_timestamp

Indicates the time and date of the event.
alrt_eventname

A Unicode string specifying the alert class (type of event).
alrt_servicename

A Unicode string specifying which application is raising the alert message.
See AlsoNetAlertRaise

STICKYKEYS
The STICKYKEYS structure contains information about the StickyKeys accessibility feature.
When the StickyKeys feature is on, the user can press a modifier key (SHIFT, CTRL, or ALT) and
then another key in sequence rather than at the same time, to enter shifted (modified) characters
and other key combinations.typedef struct tagSTICKYKEYS {// sk

DWORD cbSize;
DWORD dwFlags;

} STICKYKEYS, *LPSTICKYKEYS;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

A set of bit-flags that specify properties of the StickyKeys feature. The following bit-flag values
are defined:

Value Meaning
SKF_AUDIBLEFEEDBACKIf this flag is set, the system plays a

sound when the user latches, locks, or
releases modifier keys using the
StickyKeys feature.

SKF_AVAILABLE If this flag is set, the StickyKeys feature is
available.

SKF_CONFIRMHOTKEY Windows 95 only: A confirmation dialog
appears when the StickyKeys feature is
activated by using the hot key.

SKF_HOTKEYACTIVE If this flag is set, the user can turn the
StickyKeys feature on and off by pressing
the SHIFT key five times.

SKF_HOTKEYSOUND If this flag is set, the system plays a siren
sound when the user turns the
StickyKeys feature on or off by using the
hot key.

SKF_INDICATOR Windows 95 only: A visual indicator
should be displayed when the StickyKeys
feature is on.

SKF_STICKYKEYSON If this flag is set, the StickyKeys feature is
on.

SKF_TRISTATE If this flag is set, pressing a modifier key
twice in a row locks down the key until
the user presses it a third time.

SKF_TWOKEYSOFF If this flag is set, releasing a modifier key
that has been pressed in combination
with any other key turns off the
StickyKeys feature.

RemarksAn application uses a STICKYKEYS structure when calling the SystemParametersInfo function
with the wAction parameter set to SPI_GETSTICKYKEYS or SPI_SETSTICKYKEYS. When using
SPI_GETSTICKYKEYS, an application must specify the cbSize member of the STICKYKEYS
structure; the SystemParametersInfo function fills the remaining members. You must specify all
structure members when using the SPI_SETSTICKYKEYS value.See AlsoSystemParametersInfo

STRRET
Contains strings returned from IShellFolder methods, such as GetDisplayNameOf.typedef struct _STRRET { // str

UINT uType;
union
{
LPWSTR pOleStr; // pointer to OLE string to free
UINT uOffset; // offset into item identifier list
char cStr[MAX_PATH]; // buffer to receive the display name
} DUMMYUNIONNAME;

} STRRET, *LPSTRRET;
MemberuType

Value that specifies the desired format of the string. This member can be one of the following
values:

STRRET_CSTR The string is returned in cStr.
STRRET_OFFSET The string is located at uOffset bytes from the

beginning of the item identifier list.
STRRET_WSTR The string is at the address pointed to by

pOleStr.
RemarksThe system may or may not provide the display name in the desired format. When IShellFolder::

GetDisplayNameOf returns, the uType member indicates the format.See AlsoIShellFolder::GetDisplayNameOf

String
The String structure depicts the organization of data in a file-version resource. This structure is
not a true C-language structure because it contains variable-length members. This structure was
created solely to depict the organization of data in a version resource and does not appear in any
of the header files shipped with the Microsoft® Win32® Software Development Kit (SDK).

The String structure contains a string that describes a specific aspect of a file.String {
WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
WORD Padding[];
String Value[];

} String;
MemberswLength

Specifies the length of the version resource.
wValueLength

Specifies the length of the Value member in the current VS_VERSION_INFO structure. This
value is zero if there is no Value member associated with the current version structure.

wType
Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey
Specifies an arbitrary Unicode string. The szKey member can be one or more of the following
values. These values are guidelines only.

String Meaning
Comments The Value member contains any additional

information that should be displayed for
diagnostic purposes. This string can be an
arbitrary length.

CompanyName The Value member identifies the company that
produced the file. For example, "Microsoft
Corporation" or "Standard Microsystems
Corporation, Inc."

FileDescription The Value member describes the file in such a
way that it can be presented to users. This string
may be presented in a list box when the user is
choosing files to install. For example, "Keyboard
driver for AT-style keyboards" or "Microsoft
Word for Windows".

FileVersion The Value member identifies the version of this
file. For example, Value could be "3.00A" or "5.
00.RC2".

InternalName The Value member identifies the file's internal
name, if one exists. For example, this string
would contain the module name for Windows
dynamic-link libraries (DLLs), a virtual device
name for Windows virtual devices, or a device
name for MS-DOS device drivers.

LegalCopyright The Value member describes all copyright
notices, trademarks, and registered trademarks
that apply to the file. This should include the full
text of all notices, legal symbols, copyright
dates, trademark numbers, and so on. In
English, this string should be in the format
"Copyright Microsoft Corp. 1990 - 1994".

LegalTrademarks The Value member describes all trademarks
and registered trademarks that apply to the file.
This should include the full text of all notices,
legal symbols, trademark numbers, and so on.
In English, this string should be in the format
"Windows is a trademark of Microsoft
Corporation".

OriginalFilename The Value member identifies the original name
of the file, not including a path. This enables an
application to determine whether a file has been
renamed by a user. This name may not be MS-
DOS 8.3-format if the file is specific to a non-
FAT file system.

PrivateBuild The Value member describes by whom, where,
and why this private version of the file was built.
This string should only be present if the
VS_FF_PRIVATEBUILD flag is set in the
dwFileFlags member of the
VS_FIXEDFILEINFO structure. For example,

Value could be "Built by OSCAR on \OSCAR2".
ProductName The Value member identifies the name of the

product with which this file is distributed. For
example, this string could be "Microsoft
Windows".

ProductVersion The Value member identifies the version of the
product with which this file is distributed. For
example, Value could be "3.00A" or "5.00.
RC2".

SpecialBuild The Value member describes how this version
of the file differs from the normal version. This
entry should only be present if the
VS_FF_SPECIALBUILD flag is set in the
dwFileFlags member of the
VS_FIXEDFILEINFO structure. For example,
Value could be "Private build for Olivetti solving
mouse problems on M250 and M250E
computers".

Padding
Contains as many zero words as necessary to align the Value member on a 32-bit boundary.

Value
Specifies a zero-terminated string. See the szKey member description for more information.

RemarksA String structure may have an szKey value of, for example, "CompanyName" and a Value of
"Microsoft Corporation". Another String structure with the same szKey value could contain a
Value of "Microsoft GmbH". This might occur if the second String structure were associated with
a StringTable structure whose szKey value is 040704b0 ¾ that is, German/Unicode. The code
page can be set to 1200 (decimal) or 0x04b0 (hexadecimal) to indicate Unicode. The code page
can also be set to the value that is appropriate for the language component. After you choose the
value for the code page you should continue to use the same value in later revisions to the file.See AlsoStringTable, VS_FIXEDFILEINFO, VS_VERSION_INFO

StringFileInfo
The StringFileInfo structure depicts the organization of data in a file-version resource. This
structure is not a true C-language structure because it contains variable-length members. This
structure was created solely to depict the organization of data in a version resource and does not
appear in any of the header files shipped with the Microsoft Win32 Software Development Kit
(SDK).

The StringFileInfo structure contains version information that must be displayed for a particular
language.StringFileInfo {

WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
WORD Padding[];
StringTable Children[];

};
MemberswLength

Specifies the length of the version resource.
wValueLength

Specifies the length of the Value member in the current VS_VERSION_INFO structure. This
value is zero if there is no Value member associated with the current version structure.

wType
Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey
Contains the Unicode string "StringFileInfo".

Padding
Contains as many zero words as necessary to align the Children member on a 32-bit
boundary.

Children
Specifies a list of one or more Children structures. Each StringTable structure's szKey
member indicates the appropriate language.

RemarksThe Children member of the VS_VERSION_INFO structure may contain zero or more
StringFileInfo structures.See AlsoStringTable, VS_VERSION_INFO

StringTable
The StringTable structure depicts the organization of data in a file-version resource. This
structure is not a true C-language structure because it contains variable-length members. This
structure was created solely to depict the organization of data in a version resource and does not
appear in any of the header files shipped with the Microsoft Win32 Software Development Kit
(SDK).

The StringTable structure contains language and code-page formatting information for the strings
specified by the Children member. A code page is an ordered character set.StringTable {

WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
String Children[];

};
MemberswLength

Specifies the length of the version resource.
wValueLength

Specifies the length of the Value member in the current VS_VERSION_INFO structure. This
value is zero if there is no Value member associated with the current version structure.

wType
Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey
Specifies an 8-digit hexadecimal number stored as a Unicode string. The four most significant
digits represent the language identifier. The four least significant digits represent the code
page for which the data is formatted.
Each Microsoft Standard Language identifier contains two parts: the low-order 10 bits specify
the major language, and the high-order 6 bits specify the sublanguage. For a table of valid
identifiers see Language Identifiers.

Padding
Contains as many zero words as necessary to align the Children member on a 32-bit
boundary.

Children
Specifies a list of zero or more String structures.

RemarksThe Children member of the StringFileInfo structure contains at least one StringTable structure
with an szKey value of "04091200". This value indicates that the language is U.S. English and the
code page is Unicode.

The code page portion of the szKey member can be set to 1200 (decimal) or 0x04b0
(hexadecimal) to indicate Unicode. The code page can also be set to the value that is appropriate
for the language component. After you choose the value for the code page you should continue to
use the same value in later revisions to the file.

An executable file or dynamic-link library (DLL) that supports multiple languages should have a
version resource for each language, rather than a single version resource that contains strings in
several languages.See AlsoString, StringFileInfo, VS_VERSION_INFO

STYLEBUF
The STYLEBUF structure contains the identifier and name of a style.typedef struct _tagSTYLEBUF {

DWORD dwStyle;
CHAR szDescription[32];

} STYLEBUF;
MembersdwStyle

Style of the register string. Can be IME_REGWORD_STYLE_EUDC to indicate a string in the
EUDC range.

szDescription
Description of the style.

STYLESTRUCT
The STYLESTRUCT structure contains the window styles for a window.typedef struct tagSTYLESTRUCT { // ss

DWORD styleOld;
DWORD styleNew;

} STYLESTRUCT, * LPSTYLESTRUCT;
Membersstyle

Specifies an array of window style or extended-style flags.
See AlsoWM_STYLECHANGED, WM_STYLECHANGING

SYSTEM_ALARM_ACE
Reserved for future use.

SYSTEM_AUDIT_ACE
The SYSTEM_AUDIT_ACE structure defines an access-control entry (ACE) for the system
access-control list (ACL) specifying what types of access cause system-level notifications. A
system-audit ACE causes an audit message to be logged when a specified user or group
attempts to gain access to an object. The user or group is identified by a security identifier (SID).typedef struct _SYSTEM_AUDIT_ACE { // sada

ACE_HEADER Header;
ACCESS_MASK Mask;
DWORD SidStart;

} SYSTEM_AUDIT_ACE;
MembersHeader

Specifies an ACE_HEADER structure.
Mask

Specifies an ACCESS_MASK structure that gives the access rights causing audit messages
to be generated. The SUCCESSFUL_ACCESS_ACE_FLAG and
FAILED_ACCESS_ACE_FLAG flags in the AceFlags member of the ACE_HEADER
structure indicate whether messages are generated for successful access attempts,
unsuccessful access attempts, or both.

SidStart
Specifies a SID. An access attempt of a kind specified by the Mask member by any user or
group whose SID matches the SidStart member causes the system to generate an audit
message. If an application does not specify a SID for this member, audit messages are
generated for the specified access rights for all users and groups.

RemarksAudit messages are stored in an event log that can be manipulated by using the Win32 API event-
logging functions or by using Windows NT Event Viewer (EVENTVWR.EXE).

ACE structures should be aligned on doubleword boundaries. All Windows memory-management
functions return doubleword-aligned handles to memory.See AlsoACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, ACCESS_MASK, ACE_HEADER, ACL,
SYSTEM_ALARM_ACE

SYSTEM_INFO
The SYSTEM_INFO structure contains information about the current computer system. This
includes the architecture and type of the processor, the number of processors in the system, the
page size, and other such information.typedef struct _SYSTEM_INFO { // sinf

union {
DWORD dwOemId;
struct {
WORD wProcessorArchitecture;
WORD wReserved;
};
};
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;

} SYSTEM_INFO;
MembersdwOemId

An obsolete member that is retained for compatibility with previous versions of Windows NT.
Beginning with Windows NT 3.51 and the initial release of Windows 95, use the
wProcessorArchitecture branch of the union.
Windows 95: The system always sets this member to zero, the value defined for
PROCESSOR_ARCHITECTURE_INTEL.

wProcessorArchitecture
Specifies the system's processor architecture. This value can be one of the following values:
Value
PROCESSOR_ARCHITECTURE_INTEL
Windows NT only:
PROCESSOR_ARCHITECTURE_MIPS
Windows NT only:
PROCESSOR_ARCHITECTURE_ALPHA
Windows NT only: PROCESSOR_ARCHITECTURE_PPC
Windows NT only:
PROCESSOR_ARCHITECTURE_UNKNOWN

wReserved
Reserved for future use.

dwPageSize
Specifies the page size and the granularity of page protection and commitment. This is the
page size used by the VirtualAlloc function.

lpMinimumApplicationAddress
Pointer to the lowest memory address accessible to applications and dynamic-link libraries
(DLLs).

lpMaximumApplicationAddress
Pointer to the highest memory address accessible to applications and DLLs.

dwActiveProcessorMask
Specifies a mask representing the set of processors configured into the system. Bit 0 is
processor 0; bit 31 is processor 31.

dwNumberOfProcessors
Specifies the number of processors in the system.

dwProcessorType
Windows 95:

Specifies the type of processor in the system.
Windows NT:

This member is no longer relevant, but is retained for compatibility with Windows 95
and previous versions of Windows NT. Use the wProcessorArchitecture,
wProcessorLevel, and wProcessorRevision members to determine the type of
processor.

This member is one of the following values:
Value
PROCESSOR_INTEL_386
PROCESSOR_INTEL_486
PROCESSOR_INTEL_PENTIUM
Windows NT only: PROCESSOR_MIPS_R4000
Windows NT only: PROCESSOR_ALPHA_21064

dwAllocationGranularity
Specifies the granularity with which virtual memory is allocated. For example, a VirtualAlloc
request to allocate 1 byte will reserve an address space of dwAllocationGranularity bytes.
This value was hard coded as 64K in the past, but other hardware architectures may require
different values.

wProcessorLevel
Windows 95: This member is not used.
Windows NT: Specifies the system's architecture-dependent processor level.
If wProcessorArchitecture is PROCESSOR_ARCHITECTURE_INTEL, wProcessorLevel
can be one of the following values:
Value Meaning
3 Intel 80386
4 Intel 80486
5 Pentium

If wProcessorArchitecture is PROCESSOR_ARCHITECTURE_MIPS, wProcessorLevel is
of the form 00xx, where xx is an 8-bit implementation number (bits 8-15 of the PRId register).
The member can be the following value:
Value Meaning
0004 MIPS R4000

If wProcessorArchitecture is PROCESSOR_ARCHITECTURE_ALPHA, wProcessorLevel
is of the form xxxx, where xxxx is a 16-bit processor version number (the low-order 16 bits of
a version number from the firmware). The member can be one of the following values:
Decimal
Value

Meaning

21064 Alpha 21064
21066 Alpha 21066
21164 Alpha 21164

If wProcessorArchitecture is PROCESSOR_ARCHITECTURE_PPC, wProcessorLevel is
of the form xxxx, where xxxx is a 16-bit processor version number (the high-order 16 bits of
the Processor Version Register). The member can be one of the following values:
Decimal
Value

Meaning

1 PPC 601
3 PPC 603
4 PPC 604
6 PPC 603+
9 PPC 604+
20 PPC 620

wProcessorRevision
Windows 95: This member is not used.
Windows NT: Specifies an architecture-dependent processor revision. The following table
shows how the revision value is assembled for each type of processor architecture.
Processor
Architecture

Value

Intel 80386 or 80486 A value of the form xxyz.
If xx is equal to 0xFF, y - 0xA is the
model number, and z is the stepping
identifier. For example, an Intel 80486-
D0 system returns 0xFFD0.
If xx is not equal to 0xFF, xx + 'A' is the
stepping letter and yz is the minor
stepping.

Intel Pentium,
Cyrix, or
NextGen 586

A value of the form xxyy, where xx is the
model number and yy is the stepping. For
example, a value of 0x0201 indicates
Model 2, Stepping 1.

MIPS A value of the form 00xx, where xx is the
8-bit revision number of the processor
(the low-order 8 bits of the PRId register)
.

ALPHA A value of the form xxyy, where xxyy is
the low-order 16 bits of the processor
revision number from the firmware.
Display this value as follows:
Model 'A'+xx, Pass yy

PPC A value of the form xxyy, where xxyy is
the low-order 16 bits of the Processor
Version Register. Display this value as a
fixed point number:
xx.yy

RemarksBeginning with Windows NT 3.51 and the initial release of Windows 95, the SYSTEM_INFO
structure has changed as follows:

· The dwOemId member has been changed to a union. The union supports a new way to

describe processor architecture used by Windows NT, while maintaining compatibility with
Windows 95 and previous versions of Windows NT.

· The dwProcessorType member is now obsolete on Windows NT. It is still used on
Windows 95.

· A previously reserved DWORD member at the end of the structure has been replaced by
the wProcessorLevel and wProcessorRevision members. Windows 95 does not use these
members.

See AlsoGetSystemInfo, MapViewOfFile, MapViewOfFileEx

SYSTEM_POWER_STATUS
The SYSTEM_POWER_STATUS structure contains information about the power status of the
system.typedef struct _SYSTEM_POWER_STATUS {

BYTE ACLineStatus;
BYTE BatteryFlag;
BYTE BatteryLifePercent;
BYTE Reserved1;
DWORD BatteryLifeTime;
DWORD BatteryFullLifeTime;

} SYSTEM_POWER_STATUS;
typedef struct SYSTEM_POWER_STATUS *LPSYSTEM_POWER_STATUS;
MembersACLineStatus

AC power status. This parameter can be one of the following values:
Value Meaning
0 Offline
1 Online
255 Unknown status.

All other values are reserved.
BatteryFlag

Battery charge status. This parameter can be a combination of the following values:
Value Meaning
1 High
2 Low
4 Critical
8 Charging
128 No system battery
255 Unknown status

All other values are reserved.
BatteryLifePercent

Percentage of full battery charge remaining. This member can be a value in the range 0 to
100, or 255 if status is unknown. All other values are reserved.

Reserved1
Reserved; must be zero.

BatteryLifeTime
Number of seconds of battery life remaining, or 0xFFFFFFFF if remaining seconds are
unknown.

BatteryFullLifeTime
Number of seconds of battery life when at full charge, or 0xFFFFFFFF if full lifetime is
unknown.

RemarksWindows 95 is only capable of estimating BatteryFullTime based on calculations on
BatteryLifeTime and BatteryLifePercent. Without smart battery subsystems, this value may not
be accurate enough to be useful.

SYSTEMTIME
The SYSTEMTIME structure represents a date and time using individual members for the month,
day, year, weekday, hour, minute, second, and millisecond.typedef struct _SYSTEMTIME { // st

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} SYSTEMTIME;
MemberswYear

Specifies the current year.
wMonth

Specifies the current month; January = 1, February = 2, and so on.
wDayOfWeek

Specifies the current day of the week; Sunday = 0, Monday = 1, and so on.
wDay

Specifies the current day of the month.
wHour

Specifies the current hour.
wMinute

Specifies the current minute.
wSecond

Specifies the current second.
wMilliseconds

Specifies the current millisecond.
RemarksIt is not recommended that you add and subtract values from the SYSTEMTIME structure to

obtain relative times. Instead, you should

· Convert the SYSTEMTIME structure to a FILETIME structure.
· Copy the resulting FILETIME structure to a LARGE_INTEGER structure.
· Use normal 64-bit arithmetic on the LARGE_INTEGER value.
See AlsoFILETIME, GetSystemTime, LARGE_INTEGER, SetSystemTime

TAPE_ERASE
The TAPE_ERASE structure describes the partition to be erased.typedef struct _TAPE_ERASE { // ter

ULONG Type;
} TAPE_ERASE;
MembersType

Specifies how to erase the tape. This member must have one of the following values:
Value Description
TAPE_ERASE_LONG Erases the entire partition.
TAPE_ERASE_SHORT Erases only the partition's header block.

TAPE_GET_DRIVE_PARAMETERS
The TAPE_GET_DRIVE_PARAMETERS structure describes the tape drive.typedef struct _TAPE_GET_DRIVE_PARAMETERS { // tgdp

BOOLEAN ECC;
BOOLEAN Compression;
BOOLEAN DataPadding;
BOOLEAN ReportSetmarks;
ULONG DefaultBlockSize;
ULONG MaximumBlockSize;
ULONG MinimumBlockSize;
ULONG MaximumPartitionCount;
ULONG FeaturesLow;
ULONG FeaturesHigh;
ULONG EOTWarningZoneSize;

} TAPE_GET_DRIVE_PARAMETERS;
MembersECC

Specifies whether the device supports hardware error correction. This member is TRUE if
hardware error correction is supported.

Compression
Specifies whether hardware data compression is enabled or disabled. This member is TRUE if
hardware data compression is enabled.

DataPadding
Specifies whether data padding is enabled or disabled. Data padding keeps the tape
streaming at a constant speed. This member is TRUE if data padding is enabled.

ReportSetmarks
Specifies whether setmark reporting is enabled or disabled. This member is TRUE if setmark
reporting is enabled.

DefaultBlockSize
Specifies the device's default fixed block size.

MaximumBlockSize
Specifies the device's maximum block size.

MinimumBlockSize
Specifies the device's minimum block size.

MaximumPartitionCount
Specifies the maximum number of partitions that can be created on the device.

FeaturesLow
Specifies the low-order 32 bits of the device features flag. This member can be one or more of
following values:

Value Meaning
TAPE_DRIVE_COMPRESSION The device supports hardware

data compression.
TAPE_DRIVE_ECC The device supports hardware

error correction.
TAPE_DRIVE_ERASE_BOP_ONLY The device performs the erase

operation from the beginning-
of-partition marker only.

TAPE_DRIVE_ERASE_LONG The device performs a long
erase operation.

TAPE_DRIVE_ERASE_IMMEDIATE The device performs an
immediate erase operation ¾
that is, it returns when the
erase operation begins.

TAPE_DRIVE_ERASE_SHORT The device performs a short
erase operation.

TAPE_DRIVE_FIXED The device creates fixed data
partitions.

TAPE_DRIVE_FIXED_BLOCK The device supports fixed-
length block mode.

TAPE_DRIVE_INITIATOR The device creates initiator-
defined partitions.

TAPE_DRIVE_PADDING The device supports data
padding.

TAPE_DRIVE_GET_ABSOLUTE_BLKThe device provides the
current device-specific block
address.

TAPE_DRIVE_GET_LOGICAL_BLK The device provides the
current logical block address
(and logical tape partition).

TAPE_DRIVE_REPORT_SMKS The device supports setmark
reporting.

TAPE_DRIVE_SELECT The device creates select data
partitions.

TAPE_DRIVE_SET_EOT_WZ_SIZE The device supports setting the
end-of-medium warning size.

TAPE_DRIVE_TAPE_CAPACITY The device returns the
maximum capacity of the tape.

TAPE_DRIVE_TAPE_REMAINING The device returns the
remaining capacity of the tape.

TAPE_DRIVE_VARIABLE_BLOCK The device supports variable-
length block mode.

TAPE_DRIVE_WRITE_PROTECT The device returns an error if
the tape is write-enabled or
write-protected.

FeaturesHigh
Contains the high-order 32 bits of the device features flag. This member can be one or more
of the following values:

Value Meaning
TAPE_DRIVE_ABS_BLK_IMMED The device moves the tape

to a device-specific block
address and returns as
soon as the move begins.

TAPE_DRIVE_ABSOLUTE_BLK The device moves the tape
to a device specific block
address.

TAPE_DRIVE_END_OF_DATA The device moves the tape
to the end-of-data marker in
a partition.

TAPE_DRIVE_FILEMARKS The device moves the tape
forward (or backward) a
specified number of
filemarks.

TAPE_DRIVE_LOAD_UNLOAD The device enables and
disables the device for
further operations.

TAPE_DRIVE_LOAD_UNLD_IMMED The device supports
immediate load and unload
operations.

TAPE_DRIVE_LOCK_UNLOCK The device enables and
disables the tape ejection
mechanism.

TAPE_DRIVE_LOCK_UNLK_IMMED The device supports
immediate lock and unlock
operations.

TAPE_DRIVE_LOG_BLK_IMMED The device moves the tape
to a logical block address in
a partition and returns as
soon as the move begins.

TAPE_DRIVE_LOGICAL_BLK The device moves the tape
to a logical block address in
a partition.

TAPE_DRIVE_RELATIVE_BLKS The device moves the tape
forward (or backward) a
specified number of blocks.

TAPE_DRIVE_REVERSE_POSITION The device moves the tape
backward over blocks,
filemarks, or setmarks.

TAPE_DRIVE_REWIND_IMMEDIATE The device supports
immediate rewind operation.

TAPE_DRIVE_SEQUENTIAL_FMKS The device moves the tape
forward (or backward) to the
first occurrence of a
specified number of
consecutive filemarks.

TAPE_DRIVE_SEQUENTIAL_SMKS The device moves the tape
forward (or backward) to the
first occurrence of a
specified number of
consecutive setmarks.

TAPE_DRIVE_SET_BLOCK_SIZE The device supports setting
the size of a fixed-length
logical block or setting the
variable-length block mode.

TAPE_DRIVE_SET_COMPRESSION The device enables and
disables hardware data
compression.

TAPE_DRIVE_SET_ECC The device enables and
disables hardware error
correction.

TAPE_DRIVE_SET_PADDING The device enables and
disables data padding.

TAPE_DRIVE_SET_REPORT_SMKS The device enables and
disables the reporting of
setmarks.

TAPE_DRIVE_SETMARKS The device moves the tape
forward (or reverse) a
specified number of
setmarks.

TAPE_DRIVE_SPACE_IMMEDIATE The device supports
immediate spacing.

TAPE_DRIVE_TENSION The device supports tape
tensioning.

TAPE_DRIVE_TENSION_IMMED The device supports
immediate tape tensioning.

TAPE_DRIVE_WRITE_FILEMARKS The device writes filemarks.
TAPE_DRIVE_WRITE_LONG_FMKS The device writes long

filemarks.
TAPE_DRIVE_WRITE_MARK_IMMED The device supports

immediate writing of short
and long filemarks.

TAPE_DRIVE_WRITE_SETMARKS The device writes setmarks.
TAPE_DRIVE_WRITE_SHORT_FMKS The device writes short

filemarks.

EOTWarningZoneSize
Indicates the number of bytes between the end-of-tape warning and the physical end of the
tape.

TAPE_GET_MEDIA_PARAMETERS
The TAPE_GET_MEDIA_PARAMETERS structure describes the tape in the tape drive.typedef struct _TAPE_GET_MEDIA_PARAMETERS { // tgmp

LARGE_INTEGER Capacity;
LARGE_INTEGER Remaining;
DWORD BlockSize;
DWORD PartitionCount;
BOOLEAN WriteProtected;

} TAPE_GET_MEDIA_PARAMETERS;
MembersCapacity

Specifies the total number of bytes on the current tape partition.
Remaining

Specifies the number of bytes between the current position and the end of the current tape
partition.

BlockSize
Specifies the number of bytes per block.

PartitionCount
Specifies the number of partitions on the tape.

WriteProtected
Specifies whether the tape is write-protected. If this member is TRUE, the tape is write-
protected.

RemarksThe GetTapeParameters function fills the Remaining and Capacity members with estimates of
the tape remaining in the current tape partition and the total capacity of the current tape partition.See AlsoGetTapeParameters

TAPE_GET_POSITION
The TAPE_GET_POSITION structure describes the position of the tape.typedef struct _TAPE_GET_POSITION { // tgpos

ULONG Type;
ULONG Partition;
ULONG OffsetLow;
ULONG OffsetHigh;

} TAPE_GET_POSITION;

MembersType
Specifies the type of position. This member must be one of the following values:

Value Description
TAPE_ABSOLUTE_POSITION The position specified by the

OffsetLow and OffsetHigh
members is an absolute number of
blocks from the beginning of the
partition specified by the Partition
member.

TAPE_LOGICAL_POSITION The position specified by OffsetLow
and OffsetHigh is relative to the
current position in the partition
specified by Partition.

Partition
Specifies the partition to position within. If this member is zero, the current partition is
assumed.

OffsetLow
Specifies the low-order 32 bits of the block address.

OffsetHigh
Specifies the high-order 32 bits of the block address. If the high-order 32 bits are not required,
this member should be zero.

TAPE_PREPARE
The TAPE_PREPARE structure describes how to prepare the tape.typedef struct _TAPE_PREPARE { // tp

ULONG Operation;
} TAPE_PREPARE;
MembersOperation

Specifies how to prepare the tape. This member must be one of the following values:
Value Description
TAPE_LOCK Locks the tape ejection mechanism so that the

tape is not ejected accidentally during a tape
operation.

TAPE_TENSION Moves to the end of the tape and rewinds to the
beginning of the tape. This value is ignored if
the tape device does not support tensioning.

TAPE_UNLOAD Rewinds and unloads the tape.
TAPE_UNLOCK Unlocks the tape ejection mechanism.

TAPE_SET_DRIVE_PARAMETERS
The TAPE_SET_DRIVE_PARAMETERS structure describes the tape drive.typedef struct _TAPE_SET_DRIVE_PARAMETERS { // tsdp

BOOLEAN ECC;
BOOLEAN Compression;
BOOLEAN DataPadding;
BOOLEAN ReportSetmarks;
ULONG EOTWarningZoneSize;

} TAPE_SET_DRIVE_PARAMETERS;
MembersECC

Specifies whether the device supports hardware error correction. This member is TRUE if
hardware error correction is supported.

Compression
Specifies whether hardware data compression is enabled or disabled. This member is TRUE if
hardware data compression is enabled.

DataPadding
Specifies whether data padding is enabled or disabled. Data padding keeps the tape
streaming at a constant speed. This member is TRUE if data padding is enabled.

ReportSetmarks
Specifies whether setmark reporting is enabled or disabled. This member is TRUE if setmarks
are enabled.

EOTWarningZoneSize
Specifies the number of bytes between the end-of-tape warning and the physical end of the
tape.

TAPE_SET_MEDIA_PARAMETERS
The TAPE_SET_MEDIA_PARAMETERS structure describes the tape in the tape drive.typedef struct _TAPE_SET_MEDIA_PARAMETERS { // tsmp

ULONG BlockSize;
} TAPE_SET_MEDIA_PARAMETERS;
MembersBlockSize

Specifies the number of bytes per block. Maximum and minimum block sizes can be obtained
by calling the GetTapeParameters function.

RemarksThere is no longer a requirement that block sizes be powers of 2.See AlsoGetTapeParameters, SetTapeParameters

TAPE_SET_POSITION
The TAPE_SET_POSITION structure describes how and where to position the tape.typedef struct _TAPE_SET_POSITION { // tspos

ULONG Method;
ULONG Partition;
ULONG OffsetLow;
ULONG OffsetHigh;

} TAPE_SET_POSITION;

MembersMethod
Specifies the type of positioning. This member must be one of the following values:

Value Description
TAPE_ABSOLUTE_BLOCK Moves the tape to the device-

specific block address specified
by the OffsetLow and
OffsetHigh members. The
Partition member is ignored.

TAPE_LOGICAL_BLOCK Moves the tape to the block
address specified by
OffsetLow and OffsetHigh in
the partition specified by
Partition.

TAPE_REWIND Moves the tape to the
beginning of the current
partition. The Partition,
OffsetLow, and OffsetHigh
members are ignored.

TAPE_SPACE_END_OF_DATA Moves the tape to the end of
the data on the partition
specified by Partition.

TAPE_SPACE_FILEMARKS Moves the tape forward (or
backward) the number of
filemarks specified by
OffsetLow and OffsetHigh in
the current partition. The
Partition member is ignored.

TAPE_SPACE_RELATIVE_BLOCKS Moves the tape forward (or
backward) the number of blocks
specified by OffsetLow and
OffsetHigh in the current
partition. The Partition member
is ignored.

TAPE_SPACE_SEQUENTIAL_FMKSMoves the tape forward (or
backward) to the first
occurrence of n filemarks in the
current partition, where n is the
number specified by OffsetLow
and OffsetHigh. The Partition
parameter is ignored.

TAPE_SPACE_SEQUENTIAL_SMKSMoves the tape forward (or
backward) to the first
occurrence of n setmarks in the
current partition, where n is the
number specified by OffsetLow
and OffsetHigh. The Partition
member is ignored.

TAPE_SPACE_SETMARKS Moves the tape forward (or
backward) the number of
setmarks specified by
OffsetLow and OffsetHigh in
the current partition. The
Partition member is ignored.

Partition
Specifies the partition to position within. If this member is zero, the current partition is
assumed.

OffsetLow
Specifies the low-order 32 bits of the block address or count for the position operation
specified by the Method member.

OffsetHigh
Specifies the high-order 32 bits of the block address or count for the position operation
specified by the Method member. If the high-order 32 bits are not required, this member
should be zero.

RemarksIf the positioning is relative, a positive offset moves the tape forward (toward the end of the tape)
and a negative offset moves the tape backward (toward the beginning of the tape).

TAPE_WRITE_MARKS
The TAPE_WRITE_MARKS structure describes the type and number of tapemarks to write.typedef struct _TAPE_WRITE_MARKS { // twm

ULONG Type;
ULONG Count;

} TAPE_WRITE_MARKS;
MembersType

Specifies the type of tapemark to write. This member can be one of the following values:
Value Description
TAPE_LONG_FILEMARKS Writes long filemarks.
TAPE_SEQUENTIAL_FILEMARKS Writes sequential filemarks.
TAPE_SETMARKS Writes setmarks.
TAPE_SHORT_FILEMARKS Writes short filemarks.

Count
Specifies the number of tapemarks to write.

TBADDBITMAP
The TBADDBITMAP structure adds a bitmap that contains button images to a toolbar.typedef struct { // tbab

HINSTANCE hInst;
UINT nID;

} TBADDBITMAP, *LPTBADDBITMAP;
MembershInst

Handle to the module instance with the executable file that contains a bitmap resource. You
can add the system-defined button bitmaps to the list by specifying HINST_COMMCTRL as
the hInst member and one of the following values as the nID member:

Value Meaning
IDB_STD_LARGE_COLOR Adds large, color standard

bitmaps.
IDB_STD_SMALL_COLOR Adds small, color standard

bitmaps.
IDB_VIEW_LARGE_COLOR Adds large, color view bitmaps.
IDB_VIEW_SMALL_COLOR Adds small, color view bitmaps.

For more information about the system-defined standard and view bitmaps, see the
following Remarks section.

nID
Resource identifier of the bitmap resource that contains the button images. If hInst is NULL,
this parameter must be the handle to a bitmap that contains the button images.

RemarksThe Windows header files provide the following values that you use as indexes to the standard
and view bitmaps.

STD_COPY STD_PASTE

STD_CUT STD_PRINT
STD_DELETE STD_PRINTPRE
STD_FILENEW STD_PROPERTIES
STD_FILEOPEN STD_REDOW
STD_FILESAVE STD_REPLACE
STD_FIND STD_UNDO
STD_HELP

VIEW_LARGEICONS VIEW_SORTNAME
VIEW_SMALLICONS VIEW_SORTSIZE
VIEW_LIST VIEW_SORTDATE
VIEW_DETAILS VIEW_SORTTYPE

The TBADDBITMAP structure is used with the TB_ADDBITMAP message.See AlsoTB_ADDBITMAP

TBBUTTON
The TBBUTTON structure contains information about a button in a toolbar.typedef struct _TBBUTTON { \\ tbb

int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyle;
DWORD dwData;
int iString;

} TBBUTTON, NEAR* PTBBUTTON, FAR* LPTBBUTTON;
typedef const TBBUTTON FAR* LPCTBBUTTON;
MembersiBitmap

Zero-based index of button image.
idCommand

Command identifier associated with the button. This identifier is used in a WM_COMMAND
message when the button is chosen. If the fsStyle member is the TBSTYLE_SEP value, this
member must be zero.

fsState
Button state flags. This member can be a combination of the values listed in Toolbar Button
States.

fsStyle
Button style. This member can be a combination of values listed in Toolbar Button Styles

dwData
Application-defined value.

iString
Zero-based index of button string.

See AlsoWM_COMMAND

TBNOTIFY
The TBNOTIFY structure contains information used to process notification messages from a
toolbar.typedef struct { \\ tbn

NMHDR hdr;
int iItem;
TBBUTTON tbButton;
int cchText;
LPTSTR pszText;

} TBNOTIFY, FAR* LPTBNOTIFY;
Membershdr

Required for all WM_NOTIFY messages.
iItem

Index of the button associated with notification.
tbButton

Address of a TBBUTTON structure that contains information about the toolbar button
associated with the notification.

cchText
Count of characters in the button text.

pszText
Address of the button text.

See AlsoTBBUTTON, WM_NOTIFY

TBSAVEPARAMS
The TBSAVEPARAMS function specifies the location in the registry where the
TB_SAVERESTORE message stores and retrieves information about the state of a toolbar.typedef struct { \\ tbsr

HKEY hkr;
LPCTSTR pszSubKey;
LPCTSTR pszValueName;

} TBSAVEPARAMS;
Membershkr

Handle to the registry key.
pszSubKey

Subkey name.
pszValueName

Value name.
See AlsoTB_SAVERESTORE

TC_HITTESTINFO
The TC_HITTESTINFO structure contains information about a hit test.typedef struct _TC_HITTESTINFO {

POINT pt;// position to hit test, in client coordinates
UINT flags; // variable to receive hit test results

} TC_HITTESTINFO;
Memberspt

Position to hit test, in client coordinates.
flags

Variable that receives the results of a hit test. The tab control sets this member to one of the
following values:

Value Meaning
TCHT_NOWHERE The position is not over a tab.
TCHT_ONITEM The position is over a tab, but not over its icon

or its text. For owner-drawn tab controls, this
value is specified if the position is anywhere
over a tab.

TCHT_ONITEMICON The position is over a tab's icon.
TCHT_ONITEMLABELThe position is over a tab's text.

TCHT_ONITEM is a bitwise OR operation on TCHT_ONITEMICON and
TCHT_ONITEMLABEL.

RemarksThis structure is used with the TCM_HITTEST message.See AlsoTCM_HITTEST

TC_ITEM
The TC_ITEM structure specifies or receives the attributes of a tab.typedef struct _TC_ITEM {

UINT mask; // value specifying which members to retrieve or set
UINT lpReserved1; // reserved; do not use
UINT lpReserved2; // reserved; do not use
LPSTR pszText;// pointer to string containing tab text
int cchTextMax; // size of buffer pointed to by the pszText

member
int iImage; // index to tab control's image
LPARAM lParam;// application-defined data associated with tab

} TC_ITEM;
Membersmask

Value specifying which members to retrieve or set. This member can be TCIF_ALL (meaning
all members), or zero or more of the following values:

Value Meaning
TCIF_TEXT The pszText member is valid.
TCIF_IMAGE The iImage member is valid.
TCIF_PARAM The lParam member is valid.
TCIF_RTLREADINGDisplays the text of pszText using right-to-left

reading order on Hebrew or Arabic systems.

lpReserved1
Reserved; do not use.

lpReserved2
Reserved; do not use.

pszText
Pointer to a null-terminated string that contains the tab text if the structure contains
information about a tab. If the structure is receiving information, this member specifies the
address of the buffer that receives the tab text.

cchTextMax
Size of the buffer pointed to by the pszText member. If the structure is not receiving
information, this member is ignored.

iImage
Index into the tab control's image list or - 1 if there is no image for the tab.

lParam
Application-defined data associated with the tab. If there are more or less than 4 bytes of
application-defined data per tab, an application must define a structure and use it instead of
the TC_ITEM structure. The first member of the application-defined structure must be a
TC_ITEMHEADER structure.

RemarksThis structure is used with the TCM_INSERTITEM, TCM_GETITEM, and TCM_SETITEM
messages.See AlsoTCM_GETITEM, TCM_INSERTITEM, TC_ITEMHEADER, TCM_SETITEM

TC_ITEMHEADER
The TC_ITEMHEADER structure specifies or receives the attributes of a tab. This structure is the
same as the TC_ITEM structure, that it does not include an lParam member for application-
defined data.typedef struct _TC_ITEMHEADER {

UINT mask; // value specifying which members to retrieve or set
UINT lpReserved1; // reserved; do not use
UINT lpReserved2; // reserved; do not use
LPSTR pszText;// pointer to string containing tab text
int cchTextMax; // size of buffer pointed to by the pszText

member
int iImage; // index to tab control's image

} TC_ITEMHEADER;
Membersmask

Value specifying which members to retrieve or set. This member can be TCIF_ALL (meaning
all members), or zero or more of the following values:

Value Meaning
TCIF_TEXT The pszText member is valid.
TCIF_IMAGE The iImage member is valid.
TCIF_PARAM The lParam member is valid.
TCIF_RTLREADINGDisplays the text of pszText using right-to-

left reading order on Hebrew or Arabic
systems.

lpReserved1
Reserved; do not use.

lpReserved2
Reserved; do not use.

pszText
Pointer to a null-terminated string that contains the tab text if the structure contains
information about a tab. If the structure is receiving information, this member specifies the
address of the buffer that receives the tab text.

cchTextMax
Size of the buffer pointed to by the pszText member. If the structure is not receiving
information, this member is ignored.

iImage
Index into the tab control's image list or - 1 if there is no image for the tab.

RemarksAn application cannot use the TC_ITEM structure to retrieve or set the application-defined data for
tabs in a tab control with more or less than four extra bytes per tab. Instead, you should define a
structure that consists of the TC_ITEMHEADER structure followed by application-defined data.

To set the number of extra bytes per tab, use the TCM_SETITEMEXTRA message.See AlsoTC_ITEM, TCM_SETITEMEXTRA

TC_KEYDOWN
The TC_KEYDOWN structure contains information about a key press in a tab control. This
structure is used with the TCN_KEYDOWN notification message.typedef struct _TC_KEYDOWN {

NMHDR hdr; // notification header
WORD wVKey; // virtual-key code
UINT flags;

} TC_KEYDOWN;
Membershdr

Notification header
wVKey

Virtual key code.
flags

Same as the lParam parameter of the WM_KEYDOWN message.
See AlsoTCN_KEYDOWN, WM_KEYDOWN

TEXTMETRIC
The TEXTMETRIC structure contains basic information about a physical font. All sizes are given
in logical units; that is, they depend on the current mapping mode of the display context.typedef struct tagTEXTMETRIC { // tm

LONG tmHeight;
LONG tmAscent;
LONG tmDescent;
LONG tmInternalLeading;
LONG tmExternalLeading;
LONG tmAveCharWidth;
LONG tmMaxCharWidth;
LONG tmWeight;
LONG tmOverhang;
LONG tmDigitizedAspectX;
LONG tmDigitizedAspectY;
BCHAR tmFirstChar;
BCHAR tmLastChar;
BCHAR tmDefaultChar;
BCHAR tmBreakChar;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmPitchAndFamily;
BYTE tmCharSet;

} TEXTMETRIC;
MemberstmHeight

Specifies the height (ascent + descent) of characters.
tmAscent

Specifies the ascent (units above the base line) of characters.
tmDescent

Specifies the descent (units below the base line) of characters.
tmInternalLeading

Specifies the amount of leading (space) inside the bounds set by the tmHeight member.
Accent marks and other diacritical characters may occur in this area. The designer may set
this member to zero.

tmExternalLeading
Specifies the amount of extra leading (space) that the application adds between rows. Since
this area is outside the font, it contains no marks and is not altered by text output calls in
either OPAQUE or TRANSPARENT mode. The designer may set this member to zero.

tmAveCharWidth
Specifies the average width of characters in the font (generally defined as the width of the
letter x). This value does not include the overhang required for bold or italic characters.

tmMaxCharWidth
Specifies the width of the widest character in the font.

tmWeight
Specifies the weight of the font.

tmOverhang
Specifies the extra width per string that may be added to some synthesized fonts. When
synthesizing some attributes, such as bold or italic, graphics device interface (GDI) or a
device may have to add width to a string on both a per-character and per-string basis. For
example, GDI makes a string bold by expanding the spacing of each character and
overstriking by an offset value; it italicizes a font by shearing the string. In either case, there is
an overhang past the basic string. For bold strings, the overhang is the distance by which the
overstrike is offset. For italic strings, the overhang is the amount the top of the font is sheared
past the bottom of the font.
The tmOverhang member enables the application to determine how much of the character
width returned by a GetTextExtentPoint32 function call on a single character is the actual
character width and how much is the per-string extra width. The actual width is the extent
minus the overhang.

tmDigitizedAspectX
Specifies the horizontal aspect of the device for which the font was designed.

tmDigitizedAspectY
Specifies the vertical aspect of the device for which the font was designed. The ratio of the
tmDigitizedAspectX and tmDigitizedAspectY members is the aspect ratio of the device for
which the font was designed.

tmFirstChar
Specifies the value of the first character defined in the font.

tmLastChar
Specifies the value of the last character defined in the font.

tmDefaultChar
Specifies the value of the character to be substituted for characters not in the font.

tmBreakChar
Specifies the value of the character that will be used to define word breaks for text
justification.

tmItalic
Specifies an italic font if it is nonzero.

tmUnderlined
Specifies an underlined font if it is nonzero.

tmStruckOut
Specifies a strikeout font if it is nonzero.

tmPitchAndFamily
Specifies information about the pitch, the technology, and the family of a physical font.
The four low-order bits of this member specify information about the pitch and the technology
of the font. A constant is defined for each of the four bits:

Constant Meaning
TMPF_FIXED_PITCH If this bit is set the font is a variable pitch

font. If this bit is clear the font is a fixed pitch
font. Note very carefully that those
meanings are the opposite of what the
constant name implies.

TMPF_VECTOR If this bit is set the font is a vector font.
TMPF_TRUETYPE If this bit is set the font is a TrueType font.
TMPF_DEVICE If this bit is set the font is a device font.

An application should carefully test for qualities encoded in these low-order bits,
making no arbitrary assumptions. For example, besides having their own bits set,
TrueType and PostScript fonts set the TMPF_VECTOR bit. A monospace bitmap font
has all of these low-order bits clear; a proportional bitmap font sets the
TMPF_FIXED_PITCH bit. A Postscript printer device font sets the TMPF_DEVICE,
TMPF_VECTOR, and TMPF_FIXED_PITCH bits.

The four high-order bits of tmPitchAndFamily designate the font's font family. An
application can use the value 0xF0 and the bitwise AND operator to mask out the four low-
order bits of tmPitchAndFamily, thus obtaining a value that can be directly compared with
font family names to find an identical match. For information about font families, see the
description of the LOGFONT structure.

tmCharSet
Specifies the character set of the font.

See AlsoGetTextMetrics, GetTextExtentPoint32, LOGFONT

TEXTRANGE
The TEXTRANGE structure receives a range of text from a rich edit control. This structure is filled
in by the EM_GETTEXTRANGE message. The buffer pointed to by the lpstrText member must
be large enough to receive all characters and the teminating null character.pedef struct _textrange {

CHARRANGE chrg;
LPSTR lpstrText;

} TEXTRANGE;
Memberschrg

Range of characters to get.
lpstrText

Pointer to buffer to receive the text.
See AlsoEM_GETTEXTRANGE

TIME_OF_DAY_INFO
The TIME_OF_DAY_INFO structure returns information about the time of day from a remote
server.typedef struct _TIME_OF_DAY_INFO {

DWORD tod_elapsedt;
DWORD tod_msecs;
DWORD tod_hours;
DWORD tod_mins;
DWORD tod_secs;
DWORD tod_hunds;
LONG tod_timezone;
DWORD tod_tinterval;
DWORD tod_day;
DWORD tod_month;
DWORD tod_year;
DWORD tod_weekday;

} TIME_OF_DAY_INFO, *PTIME_OF_DAY_INFO, *LPTIME_OF_DAY_INFO;
Memberstod_elapsedt

Specifies the number of seconds since 00:00:00, January 1, 1970.
tod_msecs

Specifies the number of milliseconds from an arbitrary starting point (system reset). Typically,
this member is read twice, once at the start of a process and again at the end, then
subtracting one value from the other to determine how long the process took.

tod_hours
Specifies the current hour (0-23).

tod_mins
Specifies the current minute (0-59).

tod_secs
Specifies the current second (0-59).

tod_hunds
Specifies the current hundredth second (0.01 second) (0-99).

tod_timezone
Specifies the time zone of the server. This value is calculated, in minutes, from Greenwich
Mean Time (GMT). For time zones west of Greenwich, the value is positive; for time zones
east of Greenwich, the value is negative. A value of -1 indicates that the time zone is
undefined.

tod_interval
Specifies the time interval for each tick of the clock. Each integral integer represents one ten-
thousandth second (0.0001 second).

tod_day
Specifies the day of the month (1-31).

tod_month
Specifies the month of the year (1-12).

tod_year
Specifies the year.

tod_weekday
Specifies the day of the week (0-6, where 0 is Sunday, 1 is Monday, and so on).

See AlsoNetRemoteTOD

TIME_ZONE_INFORMATION
The TIME_ZONE_INFORMATION structure specifies information specific to the time zone.typedef struct _TIME_ZONE_INFORMATION { // tzi

LONG Bias;
WCHAR StandardName[32];
SYSTEMTIME StandardDate;
LONG StandardBias;
WCHAR DaylightName[32];
SYSTEMTIME DaylightDate;
LONG DaylightBias;

} TIME_ZONE_INFORMATION;
MembersBias

Specifies the current bias, in minutes, for local time translation on this computer. The bias is
the difference, in minutes, between Coordinated Universal Time (UTC) and local time. All
translations between UTC and local time are based on the following formula:
UTC = local time + biasThis member is required.

StandardName
Specifies a null-terminated string associated with standard time on this operating system. For
example, this parameter could contain "EST" to indicate Eastern Standard Time. This string is
not used by the operating system, so anything stored there by using the
SetTimeZoneInformation function is returned unchanged by the GetTimeZoneInformation
function. This string can be empty.

StandardDate
Specifies a SYSTEMTIME structure that contains a date and UTC when the transition from
daylight time to standard time occurs on this operating system. If this date is not specified, the
wMonth member in the SYSTEMTIME structure must be zero. If this date is specified, the
DaylightDate value in the TIME_ZONE_INFORMATION structure must also be specified.
Local time translations done during the standard-time range are relative to the supplied
StandardBias value.
This member supports two date formats. Absolute format specifies an exact date and time
when standard time begins. In this form, the wYear, wMonth, wDay, wHour, wMinute,
wSecond, and wMilliseconds members of the SYSTEMTIME structure are used to specify
an exact date.
Day-in-month format is specified by setting the wYear member to zero, setting the
wDayOfWeek member to an appropriate weekday, and using a wDay value in the range 1
through 5 to select the correct day in the month. Using this notation, the first Sunday in April
can be specified, as can the last Thursday in October (5 is equal to "the last").

StandardBias
Specifies a bias value to be used during local time translations that occur during standard
time. This member is ignored if a value for the StandardDate member is not supplied.
This value is added to the value of the Bias member to form the bias used during standard
time. In most time zones, the value of this member is zero.

DaylightName
Specifies a null-terminated string associated with daylight time on this operating system. For
example, this parameter could contain "PDT" to indicate Pacific Daylight Time. This string is
not used by the operating system, so anything stored there by using the
SetTimeZoneInformation function is returned unchanged by the GetTimeZoneInformation
function. This string can be empty.

DaylightDate
Specifies a SYSTEMTIME structure that contains a date and UTC when the transition from
standard time to daylight time occurs on this operating system. If this date is not specified, the
wMonth member in the SYSTEMTIME structure must be zero. If this date is specified, the
StandardDate value in the TIME_ZONE_INFORMATION structure must also be specified.
Local time translations during the daylight-time range are relative to the supplied
DaylightBias value. This member supports the absolute and day-in-month time formats
described for the StandardDate member.

DaylightBias
Specifies a bias value to be used during local time translations that occur during daylight time.
This member is ignored if a value for the DaylightDate member is not supplied.
This value is added to the value of the Bias member to form the bias used during daylight
time. In most time zones, the value of this member is - 60.

See AlsoGetTimeZoneInformation, SetTimeZoneInformation, SYSTEMTIME

TOGGLEKEYS
The TOGGLEKEYS structure contains information about the ToggleKeys accessibility feature.
When the ToggleKeys feature is on, the computer emits a high-pitched tone whenever the user
turns on the CAPS LOCK, NUM LOCK, or SCROLL LOCK key, and a low-pitched tone whenever the
user turns off one of those keys.typedef struct tagTOGGLEKEYS {// tk

DWORD cbSize;
DWORD dwFlags;

} TOGGLEKEYS;
MemberscbSize

Specifies the size, in bytes, of this structure.
dwFlags

A set of bit flags that specify properties of the ToggleKeys feature. The following bit flag
values are defined:

Value Meaning
TKF_AVAILABLE If this flag is set, the ToggleKeys feature

is available.
TKD_CONFIRMHOTKEYWindows 95 only: A confirmation dialog

box appears when the Togglekeys
feature is activated by using the hot key.

TKF_HOTKEYACTIVE If this flag is set, the user can turn the
ToggleKeys feature on and off by holding
down the NUM LOCK key for eight seconds.

TKF_HOTKEYSOUND If this flag is set, the system plays a siren
sound when the user turns the
ToggleKeys feature on or off by using the
hot key.

TKF_TOGGLEKEYSON If this flag is set, the ToggleKeys feature
is on.

RemarksAn application uses a TOGGLEKEYS structure when calling the SystemParametersInfo function
with the wAction parameter set to SPI_GETTOGGLEKEYS or SPI_SETTOGGLEKEYS. When
using SPI_GETTOGGLEKEYS, an application must specify the cbSize member of the
TOGGLEKEYS structure; the SystemParametersInfo function fills the remaining members. An
application must specify all structure members when using the SETTOGGLEKEYS value.See AlsoSystemParametersInfo

TOKEN_CONTROL
The TOKEN_CONTROL structure contains information that identifies an access token.typedef struct _TOKEN_CONTROL { // tc

LUID TokenId;
LUID AuthenticationId;
LUID ModifiedId;
TOKEN_SOURCE TokenSource;

} TOKEN_CONTROL ;
MembersTokenId

Specifies a locally unique identifier (LUID) identifying this instance of the token object.
AuthenticationId

Specifies an LUID assigned to the session this token represents. There can be many tokens
representing a single logon session.

ModifiedId
Specifies an LUID that changes each time the token is modified. An application can use this
value as a test of whether a security context has changed since it was last used.

TokenSource
Specifies a TOKEN_SOURCE structure identifying the agency that issued the token. This
information is used in audit logging.

See AlsoLUID, TOKEN_DEFAULT_DACL, TOKEN_GROUPS, TOKEN_INFORMATION_CLASS,
TOKEN_OWNER, TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE,
TOKEN_STATISTICS, TOKEN_TYPE, TOKEN_USER

TOKEN_DEFAULT_DACL
The TOKEN_DEFAULT_DACL structure specifies a discretionary access-control list (ACL).typedef struct _TOKEN_DEFAULT_DACL { // tdd

PACL DefaultDacl;
} TOKEN_DEFAULT_DACL;
MembersDefaultDacl

Points to an ACL structure assigned by default to any objects created by the user represented
by the access token.

RemarksThe GetTokenInformation function retrieves the default discretionary ACL for an access token, in
the form of a TOKEN_DEFAULT_DACL structure. This structure is also used with the
SetTokenInformation function to set the default discretionary ACL.See AlsoACL, GetTokenInformation, SetTokenInformation, TOKEN_CONTROL, TOKEN_GROUPS,
TOKEN_INFORMATION_CLASS, TOKEN_OWNER, TOKEN_PRIMARY_GROUP,
TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS, TOKEN_TYPE,
TOKEN_USER

TOKEN_GROUPS
The TOKEN_GROUPS structure contains information about a set of groups in an access token.typedef struct _TOKEN_GROUPS { // tg

DWORD GroupCount;
SID_AND_ATTRIBUTES Groups[ANYSIZE_ARRAY];

} TOKEN_GROUPS;
MembersGroupCount

Specifies the number of groups in the access token.
Groups

Specifies an array of SID_AND_ATTRIBUTES structures containing a token's group security
identifiers (SIDs) and corresponding attributes.
The following attributes can be used with this parameter:

Value Meaning
SE_GROUP_MANDATORY The group cannot be disabled.
SE_GROUP_ENABLED_BY_DEFAULTThe group is enabled by

default.
SE_GROUP_ENABLED The group is enabled.
SE_GROUP_OWNER The user is the owner of the

group or the SID can be
assigned as the owner of the
token or objects.

SE_GROUP_LOGON_ID The group is a logon identifier.
See AlsoAdjustTokenGroups, SID_AND_ATTRIBUTES, TOKEN_CONTROL,

TOKEN_DEFAULT_DACL, TOKEN_INFORMATION_CLASS, TOKEN_OWNER,
TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS,
TOKEN_TYPE, TOKEN_USER

TOKEN_OWNER
The TOKEN_OWNER structure contains the default owner SID that will be applied to newly
created objects.typedef struct _TOKEN_OWNER { // to

PSID Owner;
} TOKEN_OWNER;
MembersOwner

Points to a SID structure representing a user who will become the owner of any objects
created by a process using this access token. The security identifier (SID) must be one of the
user or group SIDs already in the token.

See AlsoGetTokenInformation, SetTokenInformation, SID, TOKEN_CONTROL,
TOKEN_DEFAULT_DACL, TOKEN_GROUPS, TOKEN_INFORMATION_CLASS,
TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS,
TOKEN_TYPE, TOKEN_USER

TOKEN_PRIMARY_GROUP
The TOKEN_PRIMARY_GROUP structure specifies a group security identifier (SID) for an
access token.typedef struct _TOKEN_PRIMARY_GROUP { // tpg

PSID PrimaryGroup;
} TOKEN_PRIMARY_GROUP;
MembersPrimaryGroup

Points to a SID structure representing a group that will become the primary group of any
objects created by a process using this access token. The security identifier (SID) must be
one of the group SIDs already in the token.

See AlsoGetTokenInformation, SetTokenInformation, SID, TOKEN_CONTROL,
TOKEN_DEFAULT_DACL, TOKEN_GROUPS, TOKEN_INFORMATION_CLASS,
TOKEN_OWNER, TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS,
TOKEN_TYPE, TOKEN_USER

TOKEN_PRIVILEGES
The TOKEN_PRIVILEGES structure contains information about a set of privileges for an access
token.typedef struct _TOKEN_PRIVILEGES { // tp

DWORD PrivilegeCount;
LUID_AND_ATTRIBUTES Privileges[ANYSIZE_ARRAY];

} TOKEN_PRIVILEGES;
MembersPrivilegeCount

Specifies the number of entries in the Privileges array.
Privileges

Specifies an array of LUID_AND_ATTRIBUTES structures. Each structure contains the LUID
and attributes of a privilege. The attributes of a privilege can be a combination of the following
values:

Attribute Description
SE_PRIVILEGE_ENABLED_BY_DEFAULT

The privilege is enabled by default.
SE_PRIVILEGE_ENABLED

The privilege is enabled.
SE_PRIVILEGE_USED_FOR_ACCESS

The privilege was used to gain access to an
object or service. This flag is used to
identify the relevant privileges in a set
passed by a client application that may
contain unnecessary privileges.

See AlsoAdjustTokenPrivileges, GetTokenInformation, LUID, LUID_AND_ATTRIBUTES,
PrivilegeCheck, PrivilegedServiceAuditAlarm, PRIVILEGE_SET, SetTokenInformation,
TOKEN_CONTROL, TOKEN_DEFAULT_DACL, TOKEN_GROUPS,
TOKEN_INFORMATION_CLASS, TOKEN_OWNER, TOKEN_PRIMARY_GROUP,
TOKEN_SOURCE, TOKEN_STATISTICS, TOKEN_TYPE, TOKEN_USER

TOKEN_SOURCE
The TOKEN_SOURCE structure identifies the source of an access token.typedef struct _TOKEN_SOURCE { // ts

Char Sourcename[8];
LUID SourceIdentifier;

} TOKEN_SOURCE;
MembersSourceName

Specifies an 8-byte character string used to identify the source of an access token. This is
used to distinguish between such sources as Session Manager, LAN Manager, and RPC
Server. A string, rather than a constant, is used to identify the source so users and developers
can make extensions to the system, such as by adding other networks, that act as the source
of access tokens.

SourceIdentifier
Specifies a locally unique identifier (LUID) provided by the source component named by the
SourceName member. This value aids the source component in relating context blocks, such
as session-control structures, to the token. This value is typically, but not necessarily, an
LUID.

See AlsoGetTokenInformation, LUID, TOKEN_CONTROL, TOKEN_DEFAULT_DACL,
TOKEN_GROUPS, TOKEN_INFORMATION_CLASS, TOKEN_OWNER,
TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_STATISTICS, TOKEN_TYPE,
TOKEN_USER

TOKEN_STATISTICS
The TOKEN_STATISTICS structure contains information about an access token. An application
can retrieve this information by calling the GetTokenInformation function.typedef struct _TOKEN_STATISTICS { // tst

LUID TokenId;
LUID AuthenticationId;
LARGE_INTEGER ExpirationTime;
TOKEN_TYPE TokenType;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;
DWORD DynamicCharged;
DWORD DynamicAvailable;
DWORD GroupCount;
DWORD PrivilegeCount;
LUID ModifiedId;

} TOKEN_STATISTICS;
MembersTokenId

Specifies a locally unique identifier (LUID) that identifies this instance of the token object.
AuthenticationId

Specifies an LUID assigned to the session this token represents. There can be many tokens
representing a single logon session.

ExpirationTime
Specifies the time at which this token expires. Expiration times for access tokens are not
supported in the current version of Windows NT.

TokenType
Specifies a TOKEN_TYPE enumerated type indicating whether the token is a primary or
impersonation token.

ImpersonationLevel
Specifies a SECURITY_IMPERSONATION_LEVEL enumerated type indicating the
impersonation level of the token. This member is valid only if the TokenType is
TokenImpersonation.

DynamicCharged
Specifies the amount, in bytes, of memory allocated for storing default protection and a
primary group identifier.

DynamicAvailable
Specifies the portion of memory allocated for storing default protection and a primary group
identifier not already in use. This value is returned as a count of free bytes.

GroupCount
Specifies the number of supplemental group security identifiers (SIDs) included in the token.

PrivilegeCount
Specifies the number of privileges included in the token.

ModifiedId
Specifies an LUID that changes each time the token is modified. An application can use this
value as a test of whether a security context has changed since it was last used.

See AlsoGetTokenInformation, LUID, SECURITY_IMPERSONATION_LEVEL, TOKEN_CONTROL,
TOKEN_DEFAULT_DACL, TOKEN_GROUPS, TOKEN_INFORMATION_CLASS,
TOKEN_OWNER, TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE,
TOKEN_TYPE, TOKEN_USER

TOKEN_USER
The TOKEN_USER structure identifies the user associated with an access token.typedef struct _TOKEN_USER { // tu

SID_AND_ATTRIBUTES User;
} TOKEN_USER;
MembersUser

Specifies an SID_AND_ATTRIBUTES structure representing the user associated with the
access token. There are currently no attributes defined for user security identifiers (SIDs).

See AlsoGetTokenInformation, SID_AND_ATTRIBUTES, TOKEN_CONTROL,
TOKEN_DEFAULT_DACL, TOKEN_GROUPS, TOKEN_INFORMATION_CLASS,
TOKEN_OWNER, TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES, TOKEN_SOURCE,
TOKEN_STATISTICS, TOKEN_TYPE

TOOLINFO
The TOOLINFO structure contains information about a tool in a tooltip control.typedef struct { // ti

UINT cbSize;
UINT uFlags;
HWND hwnd;
UINT uId;
RECT rect;
HINSTANCE hinst;
LPTSTRlpszText;

} TOOLINFO, NEAR *PTOOLINFO, FAR *LPTOOLINFO;
MemberscbSize

Size, in bytes, of the TOOLINFO structure. This member must be specified.
uFlags

A set of bit flags. This member can be a combination of the following values:
Value Meaning
TTF_IDISHWNDIndicates that the uId member is the window

handle to the tool. If this flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIPCenters the tooltip window below the tool
specified by the uId member.

TTF_RTLREADINGDisplays text using right-to-left reading order on
Hebrew or Arabic systems.

TTF_SUBCLASSIndicates that the tooltip control should subclass
the tool's window to intercept messages, such as
WM_MOUSEMOVE. If not set, you need to use
the TTM_RELAYEVENT message to forward
messages to the tooltip control. For a list of
messages that a tooltip control processes, see
TTM_RELAYEVENT.

hwnd
Handle to the window that contains the tool. If lpszText includes the
LPSTR_TEXTCALLBACK value, this member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags includes the TTF_IDISHWND value, uId
must specify the window handle to the tool.

rect
Coordinates of the bounding rectangle of the tool. The coordinates are relative to the upper-
left corner of the client area of the window identified by hwnd. If uFlags includes the
TTF_IDISHWND value, this member is ignored.

hinst
Handle to the instance that contains the string resource for the tool. If lpszText specifies the
identifier of a string resource, this member is used.

lpszText
Pointer to the buffer that contains the text for the tool, or identifier of the string resource that
contains the text. If this member is set to the LPSTR_TEXTCALLBACK value, the control
sends the TTN_NEEDTEXT notification message to the owner window to retrieve the text.

See AlsoTTN_NEEDTEXT

TOOLTIPTEXT
The TOOLTIPTEXT structure identifies a tool for which text is to be displayed and receives the
text for the tool.typedef struct { // ttt

NMHDRhdr;
LPTSTR lpszText;
char szText[80];
HINSTANCE hinst;
UINT uFlags;

} TOOLTIPTEXT, FAR *LPTOOLTIPTEXT;
Membershdr

Specifies a NMHDR structure, which enables the tooltip control to pass a pointer to a
TOOLTIPTEXT structure as the lParam parameter of a WM_NOTIFY message.

lpszText
Pointer to a string that contains or receives the text for a tool. If hinst specifies an instance
handle, this member must be the identifier of a string resource.

szText
Buffer that receives the tooltip text. An application can copy the text to this buffer as an
alternative to specifying a string address or string resource.

hinst
Handle to the instance that contains a string resource to be used as the tooltip text. If
lpszText is the pointer to the tooltip text, this member is NULL.

uFlags
Flag that indicates how to interpret the idFrom member of the NMHDR structure that is
included in the structure. If this member is the TTF_IDISHWND value, idFrom is the handle of
the tool. Otherwise, idFrom is the identifier of the tool.
If this member is the TTF_RTLREADING value, text on Hebrew or Arabic systems is
displayed using right-to-left reading order.

RemarksThis structure is used with the TTN_NEEDTEXT notification message.See AlsoNMHDR, TTN_NEEDTEXT, WM_NOTIFY

TPMPARAMS
The TPMPARAMS structure contains extended parameters for the TrackPopupMenuEx function.typedef struct tagTPMPARAMS {

UINT cbSize;
RECT rcExclude;

} TPMPARAMS, FAR *LPTPMPARAMS;
Memberscbsize

Size of structure, in bytes.
rcExclude

Rectangle to exclude when positioning the window, in screen coordinates.
See AlsoTrackPopupMenuEx, Rectangle

TRACKMOUSEEVENT
[New - Windows NT]

The TRACKMOUSEEVENT structure is used by the TrackMouseEvent function to track when
the mouse pointer leaves a window or hovers over a window for a specified amount of time.typedef struct tagTRACKMOUSEEVENT {

DWORD cbSize;
DWORD dwFlags;
HWND hwndTrack;
DWORD dwHoverTime;

} TRACKMOUSEEVENT, *LPTRACKMOUSEEVENT;
MemberscbSize

Specifies the size of the TRACKMOUSEEVENT structure.
dwFlags

Specifies the services requested. This member can be a combination of the following values:
Value Meaning
TME_CANCEL The caller wants to cancel a prior tracking

request.
The caller should also specify the type of
tracking that it wants to cancel. For example, to
cancel hover tracking, the caller must pass the
TME_CANCEL and TME_HOVER flags.

TME_HOVER The caller wants hover notification. Notification is
delivered as a WM_MOUSEHOVER message.
If the caller requests hover tracking while hover
tracking is already active, the hover timer will be
reset.
This flag is ignored if the mouse pointer is not
over the specified window or area.

TME_LEAVE The caller wants leave notification. Notification is
delivered as a WM_MOUSELEAVE message.
If the mouse is not over the specified window or
area, a leave notification is generated
immediately and no further tracking is
performed.

TME_QUERY The function fills in the structure instead of
treating it as a tracking request. The structure is
filled such that had that structure been passed to
TrackMouseEvent it would generate the current
tracking. The only anomaly is that the hover
timeout returned is always the actual timeout
and not HOVER_DEFAULT, if
HOVER_DEFAULT was specified during the
original TrackMouseEvent request.

hwndTrack

Specifies the handle of the window to track.
dwHoverTime

Specifies the hover timeout (if TME_HOVER was specified in dwFlags), in milliseconds. Can
be HOVER_DEFAULT, which means to use the system default hover timeout.RemarksThe system default hover timeout is initially the menu dropdown time, which is 400 milliseconds.

You can call SystemParametersInfo and use SPI_GETMOUSEHOVERTIME to retrieve the
default hover timeout.

The system default hover rectangle is the same as the double-click rectangle. You can call
SystemParametersInfo and use SPI_GETMOUSEHOVERWIDTH and
SPI_GETMOUSEHOVERHEIGHT to retrieve the size of the rectangle within which the mouse
pointer has to stay for TrackMouseEvent to generate a WM_MOUSEHOVER message.See AlsoSystemParametersInfo,

TrackMouseEvent

TRANSMIT_FILE_BUFFERS
The TRANSMIT_FILE_BUFFERS structure specifies data to be transmitted before and after file
data during a TransmitFile function file transfer operation.typedef struct _TRANSMIT_FILE_BUFFERS {

PVOID Head;
DWORD HeadLength;
PVOID Tail;
DWORD TailLength;

} TRANSMIT_FILE_BUFFERS;
MembersHead

Pointer to a buffer that contains data to be transmitted before the file data is transmitted.
HeadLength

Specifies the number of bytes of data in the buffer pointed to by the Head member that are to
be transmitted.

Tail

Pointer to a buffer that contains data to be transmitted after the file data is transmitted.
TailLength

Specifies the number of bytes of data in the buffer pointed to by the Tail member that are to
be transmitted.See AlsoTransmitFile

TRUSTEE
[New - Windows NT]

The TRUSTEE structure identifies a user account, group account, or a logon account for a
program such as a Windows NT service. The structure can use a name or a security identifier
(SID) to identify the trustee.

Access control functions, such as SetEntriesInAcl and GetExplicitEntriesFromAcl, use this
structure to identify the logon account associated with the access-control or audit-control
information in an EXPLICIT_ACCESS structure.typedef struct _TRUSTEE
{

PTRUSTEEpMultipleTrustee;
MULTIPLE_TRUSTEE_OPERATION MultipleTrusteeOperation;
TRUSTEE_FORM TrusteeForm;
TRUSTEE_TYPE TrusteeType;
LPTSTR ptstrName;

} TRUSTEE;
MemberspMultipleTrustee

Pointer to a TRUSTEE structure that identifies a server account that can impersonate the user
identified by the ptstrName member. Windows NT does not currently support this
functionality; therefore, this member must be NULL.

MultipleTrusteeOperation

Specifies a value from the MULTIPLE_TRUSTEE_OPERATION enumeration type. Currently,
this member must be NO_MULTIPLE_TRUSTEE.

TrusteeForm

Specifies a value from the TRUSTEE_FORM enumeration type that indicates whether the
trustee is identified by name or by a SID.

TrusteeType

Specifies a value from the TRUSTEE_TYPE enumeration type that indicates whether the
trustee is a user account, a group account, or the account type is unknown.

ptstrName

If TrusteeForm is TRUSTEE_IS_NAME, this member is a pointer to a null-terminated string
that contains the name of the trustee.
If TrusteeForm is TRUSTEE_IS_SID, this member is a pointer to the SID of the trustee.RemarksA trustee name can have any of the following formats:

· A fully qualified name, such as "g:\remotedir\abc".
· A Windows NT version 3.x or later domain account, such as "redmond\xyz".
· One of the predefined group names, such as "EVERYONE" or "GUEST".
· One of the following special names.

Name Meaning
"CURRENT_USER" Indicates the owner of the calling

thread or process.
"CREATOR OWNER" Indicates the CREATOR_OWNER

security identifier. This is a SID used in
inheritable ACEs. When a new object
is created, the system replaces this
SID with the SID of the user who
created the object.

"CREATOR GROUP" Indicates the CREATOR_GROUP
security identifier. This is a SID used in
inheritable ACEs. When a new object
is created, the system replaces this
SID with the primary group SID of the
user who created the object.

A trustee SID can be any user or group SID. It can also be any of the universal, well-known
SIDs. For more information, see Security Identifiers (SIDs).See AlsoACL, EXPLICIT_ACCESS, GetExplicitEntriesFromAcl, MULTIPLE_TRUSTEE_OPERATION,
SetEntriesInAcl, SID, TRUSTEE_FORM, TRUSTEE_TYPE

TTHITTESTINFO
The TTHITTESTINFO structure contains information that a tooltip control uses to determine
whether a point is in the bounding rectangle of the specified tool. If the point is in the rectangle,
the structure receives information about the tool.typedef struct _TT_HITTESTINFO { // tthti

HWND hwnd;
POINT pt;
TOOLINFO ti;

} TTHITTESTINFO, FAR * LPHITTESTINFO;
Membershwnd

Handle to the tool or window with the specified tool.
pt

Client coordinates of the point to test.
ti

A TOOLINFO structure. If the point specified by pt is in the tool specified by hwnd, this
structure receives information about the tool. Before sending the TTM_HITTEST message, set
the cbSize member of this structure to sizeof(TOOLINFO).RemarksThis structure is used with the TTM_HITTEST message.See AlsoTOOLINFO, TTM_HITTEST

TTPOLYCURVE
The TTPOLYCURVE structure contains information about a curve in the outline of a TrueType
character.typedef struct tagTTPOLYCURVE { // ttpc

WORD wType;
WORD cpfx;
POINTFX apfx[1];

} TTPOLYCURVE, FAR* LPTTPOLYCURVE;
MemberswType

Specifies the type of curve described by the structure. This member can be one of the
following values:

Value Meaning
TT_PRIM_LINE Curve is a polyline.
TT_PRIM_QSPLINE Curve is a Bézier spline.

cpfx

Specifies the number of POINTFX structures in the array.
apfx

Specifies an array of POINTFX structures that define the polyline or Bézier spline.RemarksWhen an application calls the GetGlyphOutline function, a glyph outline for a TrueType character
is returned in a TTPOLYGONHEADER structure, followed by as many TTPOLYCURVE
structures as are required to describe the glyph. All points are returned as POINTFX structures
and represent absolute positions, not relative moves. The starting point given by the pfxStart
member of the TTPOLYGONHEADER structure is the point at which the outline for a contour
begins. The TTPOLYCURVE structures that follow can be either polyline records or spline
records.

Polyline records are a series of points; lines drawn between the points describe the outline of the
character. Spline records represent the quadratic curves (that is, quadratic b-splines) used by
TrueType.See AlsoGetGlyphOutline, POINTFX, TTPOLYGONHEADER

TTPOLYGONHEADER
The TTPOLYGONHEADER structure specifies the starting position and type of a contour in a
TrueType character outline.typedef struct _TTPOLYGONHEADER { // ttph

DWORD cb;
DWORD dwType;
POINTFX pfxStart;

} TTPOLYGONHEADER, FAR* LPTTPOLYGONHEADER;
Memberscb

Specifies the number of bytes required by the TTPOLYGONHEADER structure and
TTPOLYCURVE structure or structures required to describe the contour of the character.

dwType

Specifies the type of character outline returned. Currently, this value must be
TT_POLYGON_TYPE.

pfxStart

Specifies the starting point of the contour in the character outline.RemarksEach TTPOLYGONHEADER structure is followed by one or more TTPOLYCURVE structures.See AlsoPOINTFX, TTPOLYCURVE

TV_DISPINFO
The TV_DISPINFO structure retrieves and sets information about a tree-view item.typedef struct _TV_DISPINFO { tvdi

NMHDR hdr;
TV_ITEM item;

} TV_DISPINFO;
Membershdr

Specifies a NMHDR structure, which enables a tree-view control to pass a pointer to a
TV_DISPINFO structure as the lParam parameter of a WM_NOTIFY message.

item

Specifies a TV_ITEM structure that identifies and contains information about the tree-view
item. The mask member of the TV_ITEM structure specifies which information is being set or
retrieved; it can be one or more of the following values:

Value Meaning
TVIF_CHILDREN The cChildren member specifies, or is to

receive, a value that indicates whether the
item has child items.

TVIF_IMAGE The iImage member specifies, or is to
receive, the index of the item's non-selected
icon in the image list.

TVIF_SELECTEDIMAGEThe iSelectedImage member specifies, or is
to receive, the index of the item's selected
icon in the image list.

TVIF_TEXT The pszText member specifies the new item
text or the pointer to a buffer that is to receive
the item text.

If the structure is receiving item text, you typically copy the text to the buffer pointed to
by the pszText member of the TV_ITEM structure. However, you can return a string in the
pszText member instead. If you do so, you cannot change or delete the string until the
corresponding item text is deleted or until two additional TVN_GETDISPINFO notification
messages have been sent.RemarksA pointer to a TV_DISPINFO structure is passed as the lParam parameter when a tree-view

control sends a WM_NOTIFY message with the TVN_GETDISPINFO and TVN_SETDISPINFO
notification codes. A tree-view control sends these notifications in the following situations in which
the parent window of the control stores information about a tree-view item:

· If the pszText member of the item's TV_ITEM structure is the LPSTR_TEXTCALLBACK
value, the control sends these notifications to retrieve or set the item's text.

· If the iImage or iSelectedImage member of the item's TV_ITEM structure is the
I_IMAGECALLBACK value, the control sends these notifications to retrieve or set the index of
an item's icons in the control's image list.

· If the cChildren member of the item's TV_ITEM structure is the I_CHILDRENCALLBACK
value, the control sends these notifications to retrieve or set a value that indicates whether the
item has child items.See AlsoNMHDR, TV_ITEM, TVN_GETDISPINFO, TVN_SETDISPINFO, WM_NOTIFY

TV_HITTESTINFO
The TV_HITTESTINFO structure contains information used to determine the location of a point
relative to a tree-view control.typedef struct _TVHITTESTINFO { tvhtst

POINTpt;
UINT flags;
HTREEITEM hItem;

} TV_HITTESTINFO, FAR *LPTV_HITTESTINFO;
Memberspt

Client coordinates of point to test.
flags

Variable that receives information about the results of a hit test. This member can be one or
more of the following values:

Value Meaning
TVHT_ABOVE Above the client area
TVHT_BELOW Below the client area
TVHT_NOWHERE In the client area, but below the last item
TVHT_ONITEM On the bitmap or label associated with

an item
TVHT_ONITEMBUTTON On the button associated with an item
TVHT_ONITEMICON On the bitmap associated with an item
TVHT_ONITEMINDENT In the indentation associated with an

item
TVHT_ONITEMLABEL On the label (string) associated with an

item
TVHT_ONITEMRIGHT In the area to the right of an item
TVHT_ONITEMSTATEICONOn the state icon for a tree-view item

that is in a user-defined state
TVHT_TOLEFT To the right of the client area
TVHT_TORIGHT To the left of the client area

hItem

Handle to the item that occupies the point.RemarksThis structure is used with the TVM_HITTEST message.See AlsoTVM_HITTEST

TV_INSERTSTRUCT
The TV_INSERTSTRUCT structure contains information used to add a new item to a tree-view
control.typedef struct _TV_INSERTSTRUCT { tvins

HTREEITEM hParent;
HTREEITEM hInsertAfter;
TV_ITEM item;

} TV_INSERTSTRUCT, FAR *LPTV_INSERTSTRUCT;
MembershParent

Handle to the parent item. If this member is the TVI_ROOT value or NULL, the item is
inserted at the root of the tree-view control.

hInsertAfter

Handle to the item after which the new item is to be inserted or one of the following values:
Value Meaning
TVI_FIRST Inserts the item at the beginning of the list.
TVI_LAST Inserts the item at the end of the list.
TVI_SORT Inserts the item into the list in alphabetical

order.

item

Information about the item to add.RemarksThis structure is used with the TVM_INSERTITEM message.See AlsoTVM_INSERTITEM

TV_ITEM
The TV_ITEM structure specifies or receives attributes of a tree-view item.typedef struct _TV_ITEM { tvi

UINT mask;
HTREEITEM hItem;
UINT state;
UINT stateMask;LPSTR pszText;
int cchTextMax;
int iImage;
int iSelectedImage;
int cChildren;
LPARAMlParam;

} TV_ITEM, FAR *LPTV_ITEM;Membersmask

Array of flags that indicate which of the other structure members contain valid data. When this
structure is used with the TVM_GETITEM message, the mask member indicates the item
attributes to retrieve. This member can be a combination of the following values:

Value Meaning
TVIF_CHILDREN The cChildren member is valid.
TVIF_HANDLE The hItem member is valid.
TVIF_IMAGE The iImage member is valid.
TVIF_PARAM The lParam member is valid.
TVIF_SELECTEDIMAGEThe iSelectedImage member is valid.
TVIF_STATE The state and stateMask members are

valid.
TVIF_TEXT The pszText and cchTextMax members

are valid.

hItem

Identifies the item to which this structure refers.
state

Specifies the current state of the item if the item's state is being retrieved, or the new state if
the item's state is being set. The stateMask member specifies the bits of the state member
that are valid. This member can be any valid combination of state values. For a list of item
states, see Tree-View Item States.

stateMask

Specifies the bits of the state member that are valid.
pszText

Pointer to a null-terminated string that contains the item text if the structure specifies item
attributes. If this member is the LPSTR_TEXTCALLBACK value, the parent window is
responsible for storing the name. In this case, the tree-view control sends the parent window a
TVN_GETDISPINFO notification message when it needs the item text for displaying, sorting,
or editing, and a TVN_SETDISPINFO notification message when the item text changes.
If the structure is receiving item attributes, this member is the pointer to the buffer that
receives the item text.

cchTextMax

Size of the buffer pointed to by the pszText member if the structure is receiving item
attributes. If the structure specifies item attributes, this member is ignored.

iImage

Index in the tree-view control's image list of the icon image to use when the item is in the non-
selected state.
If this member is the I_IMAGECALLBACK value, the parent window is responsible for storing
the index. In this case, the tree-view control sends the parent a TVN_GETDISPINFO
notification message to get the index when it needs to display the image.

iSelectedImage

Index in the tree-view control's image list of the icon image to use when the item is in the
selected state.

If this member is the I_IMAGECALLBACK value, the parent window is responsible for storing
the index. In this case, the tree-view control sends the parent a TVN_GETDISPINFO
notification message to get the index when it needs to display the image.

cChildren

Flag that indicates whether the item has associated child items. This member is one of the
following values:

Value Meaning
zero The item has no child items.
1 The item has one or more child items.
I_CHILDRENCALLBACKThe parent window keeps track of whether

the item has child items. In this case, when
the tree-view control needs to display the
item, the control sends the parent a
TVN_GETDISPINFO notification message
to determine whether the item has child
items.

If the tree-view control has the TVS_HASBUTTONS style, it uses this member to
determine whether to display the button indicating the presence of child items. You can
use this member to force the control to display the button even though the item does
not have any child items inserted. This allows you to display the button while
minimizing the control's memory usage by inserting child items only when the item is
visible or expanded.

lParam

A 32-bit value to associate with the item.RemarksThis structure is used with the TVM_GETITEM, TVM_SETITEM, and TVM_INSERTITEM
messages. It is also included with many of the notification messages. When the structure is used
to retrieve item information, only the structure members indicated by mask contain valid data. All
other members are invalid.See AlsoTVN_GETDISPINFO, TVM_GETITEM, TVM_INSERTITEM, TVN_SETDISPINFO,
TVM_SETITEM

TV_KEYDOWN
The TV_KEYDOWN structure contains information about a keyboard event in a tree-view control.pedef struct _TV_KEYDOWN { tvkd

NMHDR hdr;
WORD wVKey;
UINT flags;

} TV_KEYDOWN;
Membershdr

Specifies a NMHDR structure, which enables a tree-view control to pass a pointer to a
TV_KEYDOWN structure as the lParam parameter of a WM_NOTIFY message.

sVKey

Virtual key code.
flags

Always zero.RemarksThis structure is used with the TVN_KEYDOWN notification message.See AlsoNMHDR, TVN_KEYDOWN, WM_NOTIFY

TV_SORTCB
The TV_SORTCB structure contains information used to sort child items in a tree-view control.typedef struct _TV_SORTCB { tvscb

HTREEITEM hParent;
PFNTVCOMPARE lpfnCompare;
LPARAM lParam;

} TV_SORTCB, FAR *LPTV_SORTCB;
MemberslpfnCompare

Pointer to an application-defined callback function, which is called during a sort operation
each time the relative order of two list items needs to be compared. The callback function has
the following form:
int CALLBACK CompareFunc(LPARAM lParam1, LPARAM lParam2,

LPARAM lParamSort);The callback function must return a negative value if the first item should precede the second,
a positive value if the first item should follow the second, or zero if the two items are
equivalent.
The lParam1 and lParam2 parameters correspond to the lParam member of the TV_ITEM
structure for the two items being compared. The lParamSort parameter corresponds to the
lParam member of the TV_SORTCB structure that was passed with the
TVM_SORTCHILDRENCB message.

hParent

Handle to the parent item.
lParam

Application-defined 32-bit value.RemarksThis structure is used with the TVM_SORTCHILDRENCB message.See AlsoTV_ITEM, TVM_SORTCHILDRENCB

UDACCEL
The UDACCEL structure contains acceleration information for an up-down control.typedef struct {

UINT nSec;
UINT nInc;

} UDACCEL;
MembersnSec

Amount of elapsed time, in seconds, before the position change increment specified by nInc
is used.

nInc

Position change increment to use after the time specified by nSec elapses.

ULARGE_INTEGER
The ULARGE_INTEGER structure is used to specify a 64-bit unsigned integer value.typedef union _ULARGE_INTEGER {

struct {
DWORD LowPart;
DWORD HighPart;
};
DWORDLONG QuadPart;

} ULARGE_INTEGER;
MembersLowPart

Specifies the low-order 32 bits.
HighPart

Specifies the high-order 32 bits.
QuadPart

Specifies a 64-bit unsigned integer.RemarksThe ULARGE_INTEGER structure is actually a union. If your compiler has built-in support for 64-
bit integers, use the QuadPart member to store the 64-bit integer. Otherwise, use the LowPart
and HighPart members to store the 64-bit integer.See AlsoLARGE_INTEGER

UNIVERSAL_NAME_INFO
The UNIVERSAL_NAME_INFO structure contains a pointer to a Universal Naming Convention
(UNC) name string.typedef struct _UNIVERSAL_NAME_INFO { /* uni */

LPTSTR lpUniversalName;
} UNIVERSAL_NAME_INFO;
MemberslpUniversalName

Points to a zero-terminated UNC name string.RemarksA universal form of a path identifies a network resource in an unambiguous, computer-
independent manner. The path can then be passed to processes on other computers, allowing
those processes to obtain access to the network resource.

Universal Naming Convention (UNC) names look like this:

\\servername\sharename\path\fileSee AlsoWNetGetUniversalName, REMOTE_NAME_INFO

UNLOAD_DLL_DEBUG_INFO
The UNLOAD_DLL_DEBUG_INFO structure contains information about a dynamic-link library
(DLL) that has just been unloaded.typedef struct _UNLOAD_DLL_DEBUG_INFO { // uddi

LPVOID lpBaseOfDll;
} UNLOAD_DLL_DEBUG_INFO;
MemberslpBaseOfDll

Points to the base address of the DLL in the address space of the process unloading the DLL.See AlsoDEBUG_EVENT

USE_INFO_0
The USE_INFO_0 structure contains status information about a remote or local resource.typedef struct _USE_INFO_0 {

LPTSTR ui0_local;
LPTSTR ui0_remote;

}USE_INFO_0, *PUSE_INFO_0, *LPUSE_INFO_0;
Membersui0_local

Specifies a Unicode string that contains the local device name (for example, drive E or LPT1)
being redirected to the shared resource. The constant DEVLEN specifies the maximum
number of characters in the string.

ui0_remote

Points to a Unicode string that specifies the share name of the remote resource. The string is
in the form\\servername\sharenameSee AlsoNetUseEnum, NetUseGetInfo

USE_INFO_1
The USE_INFO_1 structure contains status information about a remote or shared resource and
their associated accounts.typedef struct _USE_INFO_1 {

LPTSTR ui1_local;
LPTSTR ui1_remote;
LPTSTR ui1_password;
DWORD ui1_status;
DWORD ui1_asg_type;
DWORD ui1_refcount;
DWORD ui1_usecount;

}USE_INFO_1, *PUSE_INFO_1, *LPUSE_INFO_1;
Membersui1_local

Specifies a Unicode string that contains the local device name (for example, drive E or LPT1)
being redirected to the shared resource. The constant DEVLEN specifies the maximum
number of characters in the string.

ui1_remote

Points to a Unicode string that specifies the share name of the remote resource. The string is
in the form\e\eservername\e\esharenameui1_password

Points to a Unicode string that contains the password needed to establish a session with a
specific workstation.

ui1_status

Specifies the status of the connection. This element is not used by the NetUseAdd function.
The following values are defined:

Value Meaning
USE_OK The connection is valid.
USE_PAUSED Paused by local workstation.
USE_SESSLOST Disconnected.
USE_DISCONN An error occurred.
USE_NETERR A network error occurred.
USE_CONN Connection is being made.
SE_RECONN Reconnecting.

ui1_asg_type

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
USE_WILDCARD Matches the type of the server's

shared resources. Wildcards can
be used only with the NetUseAdd
function, and only when the
ui1_local member is a null string.

USE_DISKDEV Disk device.
USE_SPOOLDEV Spooled printer.
USE_CHARDEV Communication device.
USE_IPC Interprocess communication (IPC)

.

ui1_refcount

Specifies how many files, directories, and other processes are open on the remote resource.
This element is not used by the NetUseAdd function.

ui1_usecount

Specifies how many explicit connections (redirection with a local device name) or implicit UNC
connections (redirection without a local device name) are established with the resource.See AlsoNetUseAdd, NetUserEnum, NetUseGetInfo

USE_INFO_2
The USE_INFO_2 structure contains usability information about a remote or shared resource and
their associated accounts.typedef struct _USE_INFO_2 {

LPTSTR ui2_local;
LPTSTR ui2_remote;
LPTSTR ui2_password;
DWORD ui2_status;
DWORD ui2_asg_type;
DWORD ui2_refcount;
DWORD ui2_usecount;
LPTSTR ui2_username;
LPTSTR ui2_domainname;

}USE_INFO_2, *PUSE_INFO_2, *LPUSE_INFO_2;
Membersui2_local

Specifies a Unicode string that contains the local device name (for example, drive E or LPT1)
being redirected to the shared resource. The constant DEVLEN specifies the maximum
number of characters in the string.

ui2_remote

Points to a Unicode string that specifies the share name of the remote resource. The string is
in the form\\servername\sharenameui2_password

Points to a Unicode string that contains the password needed to establish a session with a
specific workstation.

ui2_status

Specifies the status of the connection. This element is not used by the NetUseAdd function.
The following values are defined:

Value Meaning
USE_OK The connection is successful.
USE_PAUSED Paused by a local workstation.
USE_SESSLOST The connection is connected.
USE_DISCONN An error occurred.
USE_NETERR A network error occurred.
USE_CONN The connection is being made.
SE_RECONN Reconnecting.

ui2_asg_type

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
USE_WILDCARD Matches the type of the server's

shared resources. Wildcards can
be used only with the NetUseAdd
function, and only when the
ui2_local member is a null string.

USE_DISKDEV Disk device.
USE_SPOOLDEV Spooled printer.
USE_CHARDEV Communication device.
USE_IPC Interprocess communication (IPC)

.

ui2_refcount

Specifies the number of files, directories, and other processes that are open on the remote
resource. This element is not used by the NetUseAdd function.

ui2_usecount

Specifies the number of explicit connections (redirection with a local device name) or implicit
UNC connections (redirection without a local device name) that are established with the
resource.

ui2_username

Specifies the name of user in the domain.
ui2_domainname

Specifies the domain of the resource.See AlsoNetUseAdd, NetUserEnum, NetUseGetInfo

USER_INFO_0
The USER_INFO_0 structure specifies information about a user account.typedef struct _USER_INFO_0 {

LPWSTR usri0_name;
}USER_INFO_0, *PUSER_INFO_0, *LPUSER_INFO_0;
Membersusri0_name

Specifies the name of the user account. For the NetUserSetInfo function, this member
specifies the new name of the user. The number of characters in the name cannot exceed the
value of UNLEN.See AlsoNetUseDel, NetUserEnum, NetUserSetInfo

USER_INFO_1
The USER_INFO_1 structure specifies information about a user account.typedef struct _USER_INFO_1 {

LPWSTR usri1_name;
LPWSTR usri1_password;
DWORDusri1_password_age;
DWORDusri1_priv;
LPWSTR usri1_home_dir;
LPWSTR usri1_comment;
DWORDusri1_flags;
LPWSTR usri1_script_path;

}USER_INFO_1, *PUSER_INFO_1, *LPUSER_INFO_1;
Membersusri1_name

Specifies the name of the user account. For the NetUserSetInfo function, this member is
ignored.

usri1_password

The password of the user specified in the usri1_name member. The length cannot exceed
PWLEN bytes. The NetUserEnum and NetUserGetInfo functions return a NULL pointer to
maintain password security. By convention, Windows NT limits the length of passwords to
LM20_PWLEN characters. This convention allows LAN Manager, Windows 3.x, Windows for
Workgroups 3.x, and Windows 95 clients to access a Windows NT server using the account.

usri1_password_age

Specifies the number of seconds have elapsed since the usri1_password member was last
changed. The NetUserAdd and NetUserSetInfo functions ignore this member.

usri1_priv

One of three values specifying the level of privilege assigned the usri1_name member. For
the NetUserAdd function, this member must be USER_PRIV_USER. For the NetUserSetInfo
function, this member must be the value returned from NetUserGetInfo or NetUserEnum.
This member can be one of the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

usri1_home_dir

Points to a Unicode string containing the path of the home directory for the user specified in
the user_name member. The string can be null.

usri1_comment

Points to a Unicode string that contains a comment. This string can be a null string, or it can
have any number of characters before the terminating null character.

usri1_flags

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously unlocked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a
typical user.

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that
trusts this domain. The
User Manager refers to this
account type as a local
user account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for an Windows NT
Workstation or Windows
NT Server that is a member
of this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for an Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT
domain that trusts other
domains.

usri1_script_path

Points to a Unicode string specifying the path of the user's logon script, .CMD, .EXE, or .BAT
file. The string can be null.See AlsoNetUserAdd, NetUserEnum, NetUserSetInfo

USER_INFO_2
The USER_INFO_2 structure contains user information for network accounts.typedef struct _USER_INFO_2 {

LPWSTR usri2_name;
LPWSTR usri2_password;
DWORDusri2_password_age;
DWORDusri2_priv;
LPWSTR usri2_home_dir;
LPWSTR usri2_comment;
DWORDusri2_flags;
LPWSTR usri2_script_path;
DWORDusri2_auth_flags;
LPWSTR usri2_full_name;
LPWSTR usri2_usr_comment;
LPWSTR usri2_parms;
LPWSTR usri2_workstations;
DWORDusri2_last_logon;
DWORDusri2_last_logoff;
DWORDusri2_acct_expires;
DWORDusri2_max_storage;
DWORDusri2_units_per_week;
PBYTEusri2_logon_hours;
DWORDusri2_bad_pw_count;
DWORDusri2_num_logons;
LPWSTR usri2_logon_server;
DWORDusri2_country_code;
DWORDusri2_code_page;

}USER_INFO_2, *PUSER_INFO_2, *LPUSER_INFO_2;
Membersusri2_name

Specifies the name of the user account. For NetUserSetInfo, this member is ignored. The
number of characters in the name cannot exceed the value of UNLEN.

usri2_password

The password for the user specified in the usri2_name member. The length cannot exceed
PWLEN bytes. The NetUserEnum and NetUserGetInfo functions return a NULL pointer to
maintain password security. By convention, Windows NT limits the length of passwords to
LM20_PWLEN characters. This convention allows LAN Manager, Windows 3.x, Windows for
Workgroups 3.x, and Windows 95 clients to access a Windows NT server using the account.

usri2_password_age

Specifies the number of seconds elapsed since the usri2_password member was last
changed. The NetUserAdd and NetUserSetInfo functions ignore this member.

usri2_priv

One of three values specifying the level of privilege assigned the usri2_name member. For
NetUserAdd, this member must be USER_PRIV_USER. For NetUserSetInfo, this member
must be the value returned from NetUserGetInfo or NetUserEnum. This member can be one
of the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

usri2_home_dir

Points to a Unicode string containing the path of the home directory for the user specified in
the user_name member. The string can be null.

usri2_comment

Points to a Unicode string that contains a comment. The string can be a null string, or it can
have any number of characters before the terminating null character.

usri2_flags

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously unlocked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a
typical user.

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that
trusts this domain. The
User Manager refers to this
account type as a local
user account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for a Windows NT
Workstation or Windows
NT Server that is a member
of this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for a Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT
domain that trusts other
domains.

usri2_script_path

Points to a Unicode string specifying the path of the user's logon script, .CMD, .EXE, or .BAT
file. The string can be null.

usri2_auth_flags

Specifies an unsigned long integer that contains values that specify the user's operator
privileges.

Windows NT: For Windows NT servers, the following restrictions apply:
· For NetUserAdd, this member must be zero.
· For NetUserSetInfo, this member must be the value

returned from NetUserGetInfo or NetUserEnum.

For NetUserGetInfo or NetUserEnum, the appropriate value is returned based on the local
group membership. If the user is a member of Print Operations, AF_OP_PRINT is set. If the
user is a member of Server Operations, AF_OP_SERVER is set. If the user is a member of
the Account Operations, AF_OP_ACCOUNTS is set. AF_OP_COMM is never set.
This member can be one of the following values:

Value Meaning
AF_OP_PRINT The print operator privilege is

enabled.
AF_OP_COMM The communications operator

privilege is enabled.
AF_OP_SERVER The server operator privilege is

enabled.
AF_OP_ACCOUNTS The accounts operator privilege is

enabled.

usri2_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri2_usr_comment

Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

usri2_parms

Points to a Unicode string that is set aside for use by applications. This string can be a null
string, or it can have any number of characters before the terminating null character. Microsoft
products use this member to store user configuration information. Do not modify this
information.

usri2_workstations

Points to a Unicode string that contains the names of workstations from which the user can
log on. As many as eight workstations can be specified; the names must be separated by
commas (,). A null string indicates that there is no restriction. To disable logons from all
workstations to this account, set the UF_ACCOUNTDISABLE value in the usri*_flags
member.

usri2_last_logon

Specifies when the last logon occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. This member is ignored in NetUserAdd and
NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri2_last_logoff

Specifies when the last logoff occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. A value of zero means that the last logoff time is
unknown. This member is maintained separately on each Backup Domain Controller (BDC) in
the domain. To get an accurate value, each BDC in the domain must be queried, and the
largest value is used.

usri2_acct_expires

Specifies when the account will expire. This value is stored as the number of seconds elapsed
since 00:00:00, January 1, 1970. A value of TIMEQ_FOREVER indicates that the account
never expires.

usri2_max_storage

Specifies the maximum amount of disk space the user can use. Use the value specified in
USER_MAXSTORAGE_UNLIMITED to use all available disk space.

usri2_units_per_week

Specifies the number of equal-length time units into which the week is divided in order to
compute the length of the bit string in the usri2_logon_hours member. This value must be
UNITS_PER_WEEK for LAN Manager 2.0. This element is ignored in NetUserAdd and
NetUserSetInfo functions. For Windows NT services, the units must be one of the following:
SAM_DAYS_PER_WEEK, SAM_HOURS_PER_WEEK, or SAM_MINUTES_PER_WEEK.

usri2_logon_hours

Points to a 21-byte (168 bits) bit string that specifies the times during which the user can log
on. Each bit represents a unique hour in the week. The first bit (bit 0, word 0) is Sunday, 0:00
to 0:59; the second bit (bit 1, word 0) is Sunday, 1:00 to 1:59; and so on. A null pointer in this
element for NetUserAdd calls means that there is no time restriction. A null pointer in this
element for NetUserSetInfo calls means that no change is to be made.

usri2_bad_pw_count

Specifies the number of times the user tried to log on to the account using an incorrect
password. A value of 0xFFFFFFFF indicates that the value is unknown. This member is
ignored in NetUserAdd and NetUserSetInfo calls. This member is maintained separately on
each Backup Domain Controller (BDC) in the domain. To get an accurate value, each BDC in
the domain must be queried, and the largest value is used.

usri2_num_logons

Counts the number of successful times the user tried to log on to this account. A value of
0xFFFFFFFF indicates that the value is unknown. This member is ignored in NetUserAdd
and NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri2_logon_server

Points to a Unicode string that contains the name of the server to which logon requests are
sent. Servernames should be preceded by two backslashes (\\). When the servername is
indicated by an asterisk (*), the logon request can be handled by any logon server. A null
string indicates that requests are sent to the domain controller.

Windows NT: For Windows NT Servers, NetUserGetInfo and NetUserEnum return *.
The NetUserAdd and NetUserSetInfo functions ignore this member.

usri2_country_code

Specifies the country code for the user's language of choice.
usri2_code_page

Specifies the code page for the user's language of choice.

See AlsoNetUserAdd, NetUserEnum, NetUserSetInfo

USER_INFO_3
The level 3 data structure is valid only to Windows NT servers and not LAN Manager 2.x servers.typedef struct _USER_INFO_3 {

LPWSTR usri3_name;
LPWSTR usri3_password;
DWORDusri3_password_age;
DWORDusri3_priv;
LPWSTR usri3_home_dir;
LPWSTR usri3_comment;
DWORDusri3_flags;
LPWSTR usri3_script_path;
DWORDusri3_auth_flags;
LPWSTR usri3_full_name;
LPWSTR usri3_usr_comment;
LPWSTR usri3_parms;
LPWSTR usri3_workstations;
DWORDusri3_last_logon;
DWORDusri3_last_logoff;
DWORDusri3_acct_expires;
DWORDusri3_max_storage;
DWORDusri3_units_per_week;
PBYTEusri3_logon_hours;
DWORDusri3_bad_pw_count;
DWORDusri3_num_logons;
LPWSTR usri3_logon_server;
DWORDusri3_country_code;
DWORDusri3_code_page;
DWORDusri3_user_id;
DWORDusri3_primary_group_id;
LPWSTR usri3_profile;
LPWSTR usri3_home_dir_drive;
DWORDusri3_password_expired;

}USER_INFO_3, *PUSER_INFO_3, *LPUSER_INFO_3;
Membersusri3_name

Specifies the name of the user account. For NetUserSetInfo, this member is ignored. The
number of characters in the name cannot exceed the value of UNLEN.

usri3_password

The password for the user specified in the usri3_name member. The length cannot exceed
PWLEN bytes. The NetUserEnum and NetUserGetInfo functions return a NULL pointer to
maintain password security. By convention, Windows NT limits the length of passwords to
LM20_PWLEN characters. This convention allows LAN Manager, Windows 3.x, Windows for
Workgroups 3.x, and Windows 95 clients to access a Windows NT server using the account.

usri3_password_age

Specifies the number of seconds elapsed since the usri3_password member was last
changed. The NetUserAdd and NetUserSetInfo functions ignore this member.

usri3_priv

One of three values to specify the level of privilege assigned the usri3_name member. The
NetUserAdd and NetUserSetInfo functions ignore this member. This member can be one of
the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

usri3_home_dir

Points to a Unicode string containing the path of the home directory of the user specified in
user_name. The string can be null.

usri3_comment

Points to a Unicode string that contains a comment. The string can be a null string, or it can
have any number of characters before the terminating null character.

usri3_flags

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously unlocked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a typical
user.

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that trusts
this domain. The User
Manager refers to this
account type as a local user
account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for a Windows NT
Workstation or Windows NT
Server that is a member of
this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for a Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT

domain that trusts other
domains.

usri3_script_path

Points to a Unicode string specifying the path of the user's logon script, .CMD, .EXE, or .BAT
file. The string can be null.

usri3_auth_flags

Specifies an unsigned long integer that contains values that specify the user's operator
privileges.

Windows NT: For Windows NT servers, NetUserAdd and NetUserSetInfo functions ignore
this member.

For NetUserGetInfo or NetUserEnum, the appropriate value is returned based on the local
group membership. If the user is a member of Print Operations, AF_OP_PRINT is set. If the
user is a member of Server Operations, AF_OP_SERVER is set. If the user is a member of
the Account Operations, AF_OP_ACCOUNTS is set. AF_OP_COMM is never set.
The NetUserAdd and NetUserSetInfo functions ignore this member.
This member can be one of the following values:

Value Meaning
AF_OP_PRINT The print operator privilege is

enabled.
AF_OP_COMM The communications operator

privilege is enabled.
AF_OP_SERVER The server operator privilege is

enabled.
AF_OP_ACCOUNTS The accounts operator privilege is

enabled.

usri3_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri3_usr_comment

Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

usri3_parms

Points to a Unicode string that is set aside for use by applications. This string can be a null
string, or it can have any number of characters before the terminating null character. Microsoft
products use this member to store user configuration information. Do not modify this
information.

usri3_workstations

Points to a Unicode string that contains the names of workstations from which the user can
log on. As many as eight workstations can be specified; the names must be separated by
commas (,). If you do not want to restrict the number of workstations, use a null string. To
disable logons from all workstations to this account, set the UF_ACCOUNTDISABLE value in
the usri*_flags member.

usri3_last_logon

Specifies when the last logon occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. This member is ignored in NetUserAdd and
NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri3_last_logoff

Specifies when the last logoff occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. A value of zero means that the last logoff time is
unknown. This member is maintained separately on each Backup Domain Controller (BDC) in
the domain. To get an accurate value, each BDC in the domain must be queried, and the
largest value is used.

usri3_acct_expires

Specifies when the account will expire. This value is stored as the number of seconds elapsed
since 00:00:00, January 1, 1970. A value of TIMEQ_FOREVER indicates that the account
never expires.

usri3_max_storage

Specifies the maximum amount of disk space the user can use. Use the value specified in
USER_MAXSTORAGE_UNLIMITED to use all available disk space.

usri3_units_per_week

Specifies the number of equal-length time units into which the week is divided in order to
compute the length of the bit string in usri3_logon_hours. This value must be
UNITS_PER_WEEK for LAN Manager 2.0. This element is ignored in NetUserAdd and
NetUserSetInfo calls. For Windows NT services, the units must be one of the following:
SAM_DAYS_PER_WEEK, SAM_HOURS_PER_WEEK, or SAM_MINUTES_PER_WEEK.

usri3_logon_hours

Points to a 21-byte (168 bits) bit string that specifies the times during which the user can log
on. Each bit represents a unique hour in the week. The first bit (bit 0, word 0) is Sunday, 0:00
to 0:59; the second bit (bit 1, word 0) is Sunday, 1:00 to 1:59; and so on. A null pointer in this
member for NetUserAdd calls means there is no time restriction. A null pointer in this member
for NetUserSetInfo calls means that no change is to be made.
Note Bit 0 in word 0 represents Sunday from 0:00 to 0:59 only if you are in the GMT time
zone. In all other cases you must adjust the bits according to your time zone offset (for
example, GMT minus 8 hours for PST).

usri3_bad_pw_count

Specifies the number of times the user tried to log on to the account using an incorrect
password. A value of 0xFFFFFFFF indicates that the value is unknown. This member is
ignored in NetUserAdd and NetUserSetInfo calls. This member is maintained separately on
each Backup Domain Controller (BDC) in the domain. To get an accurate value, each BDC in
the domain must be queried, and the largest value is used.

usri3_num_logons

Counts the number of successful times the user tried to log on to this account. A value of
0xFFFFFFFF indicates that the value is unknown. This member is ignored in NetUserAdd
and NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri3_logon_server

Points to a Unicode string that contains the name of the server to which logon requests are
sent. Servernames should be preceded by two backslashes (\\). A servername of an asterisk
(*) indicates that the logon request can be handled by any logon server. A null string
indicates that requests are sent to the domain controller. For Windows NT Servers,
NetUserGetInfo and NetUserEnum return *. The NetUserAdd and NetUserSetInfo
functions ignore this member.

usri3_country_code

Specifies the country code for the user's language of choice.
usri3_code_page

Specifies the code page for the user's language of choice.
usri3_user_id

Specifies the relative ID (RID) of the user. The RID is determined by the SAM when the user

is created. It uniquely defines this user account to SAM within the domain. The NetUserAdd
and NetUserSetInfo functions ignore this member.

usri3_primary_group_id

Specifies the relative ID (RID) of the Primary Global Group for this user. For NetUserAdd, this
member must be DOMAIN_GROUP_RID_USERS (defined in NTSEAPI.H). For
NetUserSetInfo, this member must be the RID of a global group in which the user is enrolled.

usri3_profile

Specifies a path to the user's profile. This value can be a null string, a local absolute path, or a
UNC path.

usri3_home_dir_drive

Specifies the drive letter assigned to the user's home directory for logon purposes.
usri3_password_expired

Determines whether the password of the user has expired. NetUserGetInfo and NetUserAdd
return zero if the password has not expired (and nonzero if it has). For NetUserAdd or
NetUserSetInfo, specify nonzero to indicate that the user must change password at next
logon. For NetUserSetInfo, specify zero to turn off the message indicating that the user must
change password at next logon . Note that you cannot specify zero to negate the expiration of
a password that has already expired.See AlsoNetUserAdd, NetUserEnum, NetUserSetInfo

USER_INFO_10
The USER_INFO_10 structure contains user information for network accounts.typedef struct _USER_INFO_10 {

LPWSTR usri10_name;
LPWSTR usri10_comment;
LPWSTR usri10_usr_comment;
LPWSTR usri10_full_name;

}USER_INFO_10, *PUSER_INFO_10, *LPUSER_INFO_10;
Membersusri10_name

Specifies the name of the user account. For NetUserSetInfo, this member is ignored. The
number of characters in the name cannot exceed the value of UNLEN.

usri10_comment

Points to a Unicode string that contains a comment. The string can be a null string, or can
have any number of characters before the terminating null character.

usri10_usr_comment

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri10_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.See AlsoNetUserDel, NetUserEnum

USER_INFO_11
The USER_INFO_11 structure contains user information for network accounts.typedef struct _USER_INFO_11 {

LPWSTR usri11_name;
LPWSTR usri11_comment;
LPWSTR usri11_usr_comment;
LPWSTR usri11_full_name;
DWORDusri11_priv;
DWORDusri11_auth_flags;
DWORDusri11_password_age;
LPWSTR usri11_home_dir;
LPWSTR usri11_parms;
DWORDusri11_last_logon;
DWORDusri11_last_logoff;
DWORDusri11_bad_pw_count;
DWORDusri11_num_logons;
LPWSTR usri11_logon_server;
DWORDusri11_country_code;
LPWSTR usri11_workstations;
DWORDusri11_max_storage;
DWORDusri11_units_per_week;
PBYTEusri11_logon_hours;
DWORDusri11_code_page;

}USER_INFO_11, *PUSER_INFO_11, *LPUSER_INFO_11;
Membersusri11_name

Specifies the name of the user account. For NetUserSetInfo, this member is ignored. The
number of characters in the name cannot exceed the value of UNLEN.

usri11_comment

Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

usri11_usr_comment

Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

usri11_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri11_priv

One of three values specifying the level of privilege assigned the usri11_name member. For
NetUserAdd, this member must be USER_PRIV_USER. For NetUserSetInfo, this member
must be the value returned from NetUserGetInfo or NetUserEnum. This member can be one
of the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

usri11_auth_flags

Specifies an unsigned long integer that contains values that specify the user's operator
privileges.
For Windows NT servers, the following restrictions apply; for NetUserAdd, this member must
be 0. For NetUserSetInfo, this member must be the value returned from NetUserGetInfo or
NetUserEnum.
For NetUserGetInfo or NetUserEnum, the appropriate value is returned based on the local
group membership. If the user is a member of Print Operations, AF_OP_PRINT is set. If the
user is a member of Server Operations, AF_OP_SERVER is set. If the user is a member of
the Account Operations, AF_OP_ACCOUNTS is set. AF_OP_COMM is never set.
The NetUserAdd and NetUserSetInfo functions ignore this member.
This member can be one of the following values:

Value Meaning
AF_OP_PRINT The print operator privilege is

enabled.
AF_OP_COMM The communications operator

privilege is enabled.
AF_OP_SERVER The server operator privilege is

enabled.
AF_OP_ACCOUNTS The accounts operator privilege is

enabled.

usri11_password_age

Specifies the number of seconds elapsed since the usri11_password member was last
changed. The NetUserAdd and NetUserSetInfo functions ignore this member.

usri11_home_dir

Points to a Unicode string containing the path of the home directory for the user specified in
the user_name member. The string can be null.

usri11_parms

Points to a Unicode string that is set aside for use by applications. This string can be a null string,
or it can have any number of characters before the terminating null character. Microsoft products
use this member to store user configuration information. Do not modify this information.
usri11_last_logon

Specifies when the last logon occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. This member is ignored in NetUserAdd and
NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri11_last_logoff

Specifies when the last logoff occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. A value of zero means that the last logoff time is
unknown. This element is ignored in NetUserAdd and NetUserSetInfo calls. This member is
maintained separately on each Backup Domain Controller (BDC) in the domain. To get an
accurate value, each BDC in the domain must be queried, and the largest value is used.

usri11_bad_pw_count

Specifies the number of times the user tried to log on to this account using an incorrect
password. A value of 0xFFFFFFFF indicates that the value is unknown. This member is
ignored in NetUserAdd and NetUserSetInfo calls. This member is maintained separately on
each Backup Domain Controller (BDC) in the domain. To get an accurate value, each BDC in
the domain must be queried, and the largest value is used.

usri11_num_logons

Counts the number of successful times the user tried to log on to this account. A value of
0xFFFFFFFF indicates that the value is unknown. This element is ignored in NetUserAdd
and NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the member uses the sum of the values.

usri11_logon_server

Points to a Unicode string that contains the name of the server to which logon requests are
sent. Servernames should be preceded by two backslashes (\\). When a servername is
indicated by an asterisk (*), the logon request can be handled by any logon server. A null
string indicates that requests are sent to the domain controller. For Windows NT Servers,
NetUserGetInfo and NetUserEnum return *. The NetUserAdd and NetUserSetInfo
functions ignore this member.

usri11_country_code

Specifies the country code for the user's language of choice.
usri11_workstations

Points to a Unicode string that contains the names of workstations from which the user can
log on. As many as eight workstations can be specified; the names must be separated by
commas (,). A null string indicates that there is no restriction. To disable logons from all
workstations to this account, set the UF_ACCOUNTDISABLE value in the usri*_flags
member.

usri11_max_storage

Specifies the maximum amount of disk space the user can use. Use the value specified in
USER_MAXSTORAGE_UNLIMITED to use all available disk space.

usri11_units_per_week

Specifies the number of equal-length time units into which the week is divided. The
usri11_units_per_week member uses these time units to compute the length of the bit string
in the usri2_logon_hours member. This value must be UNITS_PER_WEEK for LAN
Manager 2.0. This element is ignored in the NetUserAdd and NetUserSetInfo functions. For
Windows NT services, the units must be one of the following: SAM_DAYS_PER_WEEK,
SAM_HOURS_PER_WEEK, or SAM_MINUTES_PER_WEEK.

usri11_logon_hours

Points to a 21-byte (168 bits) bit string that specifies the times during which the user can log
on. Each bit represents a unique hour in the week. The first bit (bit 0, word 0) is Sunday, 0:00
to 0:59; the second bit (bit 1, word 0) is Sunday, 1:00 to 1:59; and so on. A null pointer in this
member for NetUserAdd calls means that there is no time restriction. A null pointer in this
element for NetUserSetInfo calls means that no change is to be made.

usri11_code_page

Specifies the code page for the user's language of choice.See AlsoNetUserAdd, NetUserDel, NetUserEnum, NetUserGetInfo, NetUserSetInfo

USER_INFO_20
The USER_INFO_20 structure contains user information for network accounts.typedef struct _USER_INFO_20 {

LPWSTR usri20_name;
LPWSTR usri20_full_name;
LPWSTR usri20_comment;
DWORDusri20_flags;
DWORDusri20_user_id;

}USER_INFO_20, *PUSER_INFO_20, *LPUSER_INFO_20;
Membersusri20_name

Specifies the name of the user account. For NetUserSetInfo, this member is ignored. The
number of characters in the name cannot exceed the value of UNLEN.

usri20_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri20_comment

Points to a Unicode string that contains a comment. This string can be a null string, or it can
have any number of characters before the terminating null character.

usri20_flags

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously unlocked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a typical
user

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that trusts
this domain. The User
Manager refers to this
account type as a local user
account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for a Windows NT
Workstation or Windows NT
Server that is a member of
this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for a Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust

account for a Windows NT
domain that trusts other
domains.

usri20_user_id

Specifies the relative ID (RID) of the user. The RID is determined by the SAM when the user
is created. It uniquely defines this user account to SAM within the domain. The NetUserAdd
and NetUserSetInfo functions ignore this member.See AlsoNetUserAdd, NetUserEnum, NetUserSetInfo

USER_INFO_21
The USER_INFO_21 structure contains user information for network accounts.typedef struct _USER_INFO_21 {

BYTE usri21_password[ENCRYPTED_PWLEN];
}USER_INFO_21, *PUSER_INFO_21, *LPUSER_INFO_21;
Membersusri21_password

Specifies a one-way encrypted LAN Manager 2.x-compatible password.See AlsoNetUserSetInfo

USER_INFO_22
The USER_INFO_22 structure contains user information for network accounts.typedef struct _USER_INFO_22 {

LPWSTR usri22_name;
BYTE usri22_password[ENCRYPTED_PWLEN];
DWORDusri22_password_age;
DWORDusri22_priv;
LPWSTR usri22_home_dir;
LPWSTR usri22_comment;
DWORDusri22_flags;
LPWSTR usri22_script_path;
DWORDusri22_auth_flags;
LPWSTR usri22_full_name;
LPWSTR usri22_usr_comment;
LPWSTR usri22_parms;
LPWSTR usri22_workstations;
DWORDusri22_last_logon;
DWORDusri22_last_logoff;
DWORDusri22_acct_expires;
DWORDusri22_max_storage;
DWORDusri22_units_per_week;
PBYTEusri22_logon_hours;
DWORDusri22_bad_pw_count;
DWORDusri22_num_logons;
LPWSTR usri22_logon_server;
DWORDusri22_country_code;
DWORDusri22_code_page;

}USER_INFO_22, *PUSER_INFO_22, *LPUSER_INFO_22;
Membersusri22_name

Specifies the name of the user account. For the NetUserSetInfo function, this member is
ignored.

usri22_password
Specifies a one-way encrypted LAN Manager 2.x-compatible password.

usri22_password_age
Specifies the number of seconds elapsed since the usri22_password member was last
changed. The NetUserAdd and NetUserSetInfo functions ignore this member.

usri22_priv
One of three values specifying the level of privilege assigned the usri22_name member. For
the NetUserAdd function, this member must be USER_PRIV_USER. For the NetUserSetInfo
function, this member must be the value returned from NetUserGetInfo or NetUserEnum.
This member can be one of the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

usri22_home_dir
Points to a Unicode string containing the path of the home directory for the user specified in
the user_name member. The string can be null.

usri22_comment
Points to a Unicode string that contains a comment. This string can be a null string, or it can
have any number of characters before the terminating null character.

usri22_flags
Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously locked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a typical
user

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that trusts
this domain. The User
Manager refers to this
account type as a local user
account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for a Windows NT
Workstation or Windows NT
Server that is a member of
this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for a Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT
domain that trusts other
domains.

usri22_script_path

Points to a Unicode string specifying the path of the user's logon script, .CMD, .EXE, or .BAT
file. The string can be null.

usri22_auth_flags
Specifies an unsigned long integer that contains values that specify the user's operator
privileges.
For Windows NT servers, the following restrictions apply; for NetUserAdd, this member must
be zero. For NetUserSetInfo, this member must be the value returned from NetUserGetInfo
or NetUserEnum.
For NetUsrGetInfo or NetUserEnum, the appropriate value is returned based on the local
group membership. If the user is a member of Print Operations, AF_OP_PRINT is set. If the
user is a member of Server Operations, AF_OP_SERVER is set. If the user is a member of
the Account Operations, AF_OP_ACCOUNTS is set. AF_OP_COMM is never set.
This member can be one of the following values:

Value Meaning
AF_OP_PRINT The print operator privilege is

enabled.
AF_OP_COMM The communiations operator

privilege is enabled.
AF_OP_SERVER The server operator privilege is

enabled.
AF_OP_ACCOUNTS The accounts operator privilege is

enabled.

usri22_full_name
Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

usri22_usr_comment
Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

usri22_parms
Points to a Unicode string that is set aside for use by applications. This string can be a null
string, or it can have any number of characters before the terminating null character. Microsoft
products use this member to store user configuration information. Do not modify this
information.

usri22_workstations
Points to a Unicode string that contains the names of workstations from which the user can
log on. As many as eight workstations can be specified; the names must be separated by
commas (,). A null string indicates that there is no restriction. To disable logons from all
workstations to this account, set the UF_ACCOUNTDISABLE value in the usri*_flags
member.

usri22_last_logon
Specifies when the last logon occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. This element is ignored in NetUserAdd and
NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the largest value is used.

usri22_last_logoff
Specifies when the last logoff occurred. This value is stored as the number of seconds
elapsed since 00:00:00, January 1, 1970. A value of zero means that the last logoff time is
unknown. This element is ignored in NetUserAdd and NetUserSetInfo calls.This member is
maintained separately on each Backup Domain Controller (BDC) in the domain. To get an
accurate value, each BDC in the domain must be queried and the largest value is used.

usri22_acct_expires
Specifies when the account will expire. This value is stored as the number of seconds elapsed
since 00:00:00, January 1, 1970. A value of TIMEQ_FOREVER indicates that the account
never expires.

usri22_max_storage
Specifies the maximum amount of disk space the user can use. Use the value specified in
USER_MAXSTORAGE_UNLIMITED to use all available disk space.

usri22_units_per_week

Specifies the number of equal-length time units into which the week is divided. This member
uses these time units to compute the length of the bit string in the usri22_logon_hours
member. This value must be UNITS_PER_WEEK for LAN Manager 2.0. This element is
ignored in the NetUserAdd and NetUserSetInfo functions. For Windows NT services, the
units must be one of the following: SAM_DAYS_PER_WEEK, SAM_HOURS_PER_WEEK, or
SAM_MINUTES_PER_WEEK.

usri22_logon_hours
Points to a 21-byte (168 bits) bit string that specifies the times during which the user can log
on. Each bit represents a unique hour in the week. The first bit (bit 0, word 0) is Sunday, 0:00
to 0:59; the second bit (bit 1, word 0) is Sunday, 1:00 to 1:59; and so on. A null pointer in this
element for NetUserAdd calls means that there is no time restriction. A null pointer in this
element for NetUserSetInfo calls means that no change is to be made.

usri22_bad_pw_count
Specifies the number of times the user tried to log on to this account using an incorrect
password. A value of 0xFFFFFFFF indicates that the value is unknown. This member is
ignored in NetUserAdd and NetUserSetInfo calls. This member is maintained separately on
each Backup Domain Controller (BDC) in the domain. To get an accurate value, each BDC in
the domain must be queried, and the largest value is used.

usri22_num_logons
Counts the number of successful times the user tried to log on to this account. A value of
0xFFFFFFFF indicates that the value is unknown. This element is ignored in NetUserAdd
and NetUserSetInfo calls. This member is maintained separately on each Backup Domain
Controller (BDC) in the domain. To get an accurate value, each BDC in the domain must be
queried, and the member uses the sum of the values.

usri22_logon_server
Points to a Unicode string that contains the name of the server to which logon requests are
sent. Servernames should be preceded by two backslashes (\\). When a servername is
represented by an asterisk (*), the logon request can be handled by any logon server. A null
string indicates that requests are sent to the domain controller. For Windows NT Servers, the
NetUserGetInfo and NetUserEnum functions return *. The NetUserAdd and
NetUserSetInfo functions ignore this member.

usri22_country_code
Specifies the country code for the user's language of choice. Windows NT does not use the
country code.

usri22_code_page
Specifies the code page for the user's language of choice. Windows NT does not use the
code page.See AlsoNetUserAdd, NetUserEnum, NetUserGetInfo, NetUserSetInfo

USER_INFO_1003
The USER_INFO_1003 structure contains user information for network accounts.typedef struct _USER_INFO_1003 {

LPWSTR usri1003_password;
} USER_INFO_1003, *PUSER_INFO_1003, *LPUSER_INFO_1003;
Membersusri1003_password

The password for the user specified in the usri1003_name member. The length cannot
exceed PWLEN bytes. The NetUserEnum and NetUserGetInfo functions return a NULL
pointer to maintain password security. By convention, Windows NT limits the length of
passwords to LM20_PWLEN characters. This convention allows LAN Manager, Windows 3.x,
Windows for Workgroups 3.x, and Windows 95 clients to access a Windows NT server using
the account.See AlsoNetUserEnum, NetUserGetInfo, NetUserSetInfo

USER_INFO_1005
The USER_INFO_1005 structure contains user information for network accounts.typedef struct _USER_INFO_1005 {

DWORD usri1005_priv;
} USER_INFO_1005, *PUSER_INFO_1005, *LPUSER_INFO_1005;
Membersusri1005_priv

One of three values specifying the level of privilege assigned the usri1_name member. For
NetUserAdd, this member must be USER_PRIV_USER. For NetUserSetInfo, this member
must be the value returned from NetUserGetInfo or NetUserEnum. This member can be one
of the following values:

Value Meaning
USER_PRIV_GUEST Guest
USER_PRIV_USER User
USER_PRIV_ADMIN Administrator

See AlsoNetUserSetInfo

USER_INFO_1006
The USER_INFO_1006 structure contains user information for network accounts.typedef struct _USER_INFO_1006 {

LPWSTR usri1006_home_dir;
} USER_INFO_1006, *PUSER_INFO_1006, *LPUSER_INFO_1006;
Membersusri1006_home_dir

Points to a Unicode string containing the path of the home directory for the user specified in
the user_name member. The string can be null.

See AlsoNetUserSetInfo

USER_INFO_1007
The USER_INFO_1007 structure contains user information for network accounts.typedef struct _USER_INFO_1007 {

LPWSTR usri1007_comment;
} USER_INFO_1007, *PUSER_INFO_1007, *LPUSER_INFO_1007;
Membersusri1007_comment

Points to a Unicode string that contains a comment. This string can be a null string, or it can
have any number of characters before the terminating null character.

See AlsoNetUserSetInfo

USER_INFO_1008
The USER_INFO_1008 structure contains user information for network accounts.typedef struct _USER_INFO_1008 {

DWORD usri1008_flags;
} USER_INFO_1008, *PUSER_INFO_1008, *LPUSER_INFO_1008;
Membersusri1008_flags

Contains values that determine several features. This member can be any of the following
values:

Value Meaning
UF_SCRIPT The logon script executed. This

value must be set for LAN
Manager 2.0 or Windows NT.

UF_ACCOUNTDISABLE The user's account is disabled.
UF_HOMEDIR_REQUIRED The home directory is required.

This value is ignored in Windows
NT.

UF_PASSWRD_NOTREQD No password is required.
UF_PASSWRD_CANT_CHANGEThe user cannot change the

password.
UF_LOCKOUT The account is currently locked

out. For NetUserSetInfo, this
value can be cleared to unlock a
previously locked account. This
value cannot be used to lock a
previously unlocked account.

UF_DONT_EXPIRE_PASSWORDRepresents the password, which
should never expire on the
account. This value is valid only
for Windows NT.

The following values describe the account type. Only one value can be set. You cannot
change the account type using the NetUserSetInfo function.

Value Meaning
UF_NORMAL_ACCOUNT This is a default account

type that represents a typical
user.

UF_TEMP_DUPLICATE_ACCOUNT This is an account for users
whose primary account is in
another domain. This
account provides user
access to this domain, but
not to any domain that trusts
this domain. The User
Manager refers to this
account type as a local user
account.

UF_WORKSTATION_TRUST_ACCOUNTThis is a computer account
for a Windows NT
Workstation or Windows NT
Server that is a member of
this domain.

UF_SERVER_TRUST_ACCOUNT This is a computer account
for a Windows NT Backup
Domain Controller that is a
member of this domain.

UF_INTERDOMAIN_TRUST_ACCOUNTThis is a permit to trust
account for a Windows NT
domain that trusts other
domains.

See AlsoNetUserSetInfo

USER_INFO_1009
The USER_INFO_1009 structure contains user information for network accounts.typedef struct _USER_INFO_1009 {

LPWSTR usri1009_script_path;
} USER_INFO_1009, *PUSER_INFO_1009, *LPUSER_INFO_1009;
Membersusri1009_script_path

Points to a Unicode string specifying the path of the user's logon script, .CMD, .EXE, or .BAT
file. The string can be null.

See AlsoNetUserSetInfo

USER_INFO_1010
The USER_INFO_1010 structure contains user information for network accounts.typedef struct _USER_INFO_1010 {

DWORD usri1010_auth_flags;
} USER_INFO_1010, *PUSER_INFO_1010, *LPUSER_INFO_1010;
Membersusri1010_auth_flags

Specifies an unsigned long integer that contains values that specify the user's operator
privileges.

Windows NT: For Windows NT servers, this member must be the value returned from
NetUserGetInfo or NetUserEnum.

For NetUserGetInfo or NetUserEnum, the appropriate value is returned based on the local
group membership. If the user is a member of Print Operations, AF_OP_PRINT is set. If the
user is a member of Server Operations, AF_OP_SERVER is set. If the user is a member of
the Account Operations, AF_OP_ACCOUNTS is set. AF_OP_COMM is never set.
This member can be one of the following values:

Value Meaning
AF_OP_PRINT If 1, print operator privilege is

enabled
AF_OP_COMM If 1, communications operator

privilege is enabled
AF_OP_SERVER If 1, server operator privilege is

enabled
AF_OP_ACCOUNTS If 1, accounts operator privilege is

enabled
See AlsoNetUserSetInfo

USER_INFO_1011
The USER_INFO_1011 structure contains user information for network accounts.typedef struct _USER_INFO_1011 {

LPWSTR usri1011_full_name;
} USER_INFO_1011, *PUSER_INFO_1011, *LPUSER_INFO_1011;
Membersusri1011_full_name

Points to a Unicode string that contains the full name of the user. This string can be a null
string, or it can have any number of characters before the terminating null character.

See AlsoNetUserSetInfo

USER_INFO_1012
The USER_INFO_1012 structure contains user information for network accounts.typedef struct _USER_INFO_1012 {

LPWSTR usri1012_usr_comment;
} USER_INFO_1012, *PUSER_INFO_1012, *LPUSER_INFO_1012;
Membersusri1012_usr_comment

Points to a Unicode string that contains a user comment. This string can be a null string, or it
can have any number of characters before the terminating null character.

See AlsoNetUserSetInfo

USER_INFO_1013
The USER_INFO_1013 structure contains user information for network accounts.typedef struct _USER_INFO_1013 {

LPWSTR usri1013_parms;
} USER_INFO_1013, *PUSER_INFO_1013, *LPUSER_INFO_1013;
Membersusri1013_parms

Points to a Unicode string that is set aside for use by applications. The string can be a null
string, or it can have any number of characters before the terminating null character. Microsoft
products use this member to store user configuration information. Do not modify this
information. The Windows NT components that use this member are services for Macintosh,
file and print services for Netware, and the Remote Access Server (RAS).

See AlsoNetUserSetInfo

USER_INFO_1014
The USER_INFO_1014 structure contains user information for network accounts.typedef struct _USER_INFO_1014 {

LPWSTR usri1014_workstations;
} USER_INFO_1014, *PUSER_INFO_1014, *LPUSER_INFO_1014;
Membersusri1014_workstations

Points to a Unicode string that contains the names of workstations from which the user can
log on. As many as eight workstations can be specified; the names must be separated by
commas (,). A null string indicates that there is no restriction. To disable logons from all
workstations to this account, set the UF_ACCOUNTDISABLE value in the usri*_flags
member.

See AlsoNetUserSetInfo

USER_INFO_1017
The USER_INFO_1017 structure contains user information for network accounts.typedef struct _USER_INFO_1017 {

DWORD usri1017_acct_expires;
} USER_INFO_1017, *PUSER_INFO_1017, *LPUSER_INFO_1017;
Membersusri1017_acct_expires

Specifies when the account will expire. This value is stored as the number of seconds elapsed
since 00:00:00, January 1, 1970. A value of TIMEQ_FOREVER indicates that the account
never expires.

See AlsoNetUserSetInfo

USER_INFO_1018
The USER_INFO_1018 structure contains user information for network accounts.typedef struct _USER_INFO_1018 {

DWORD usri1018_max_storage;
} USER_INFO_1018, *PUSER_INFO_1018, *LPUSER_INFO_1018;
Membersusri1018_max_storage

Specifies the maximum amount of disk space the user can use. For Windows NT, you must
use the value specified in USER_MAXSTORAGE_UNLIMITED to use all available disk space.

USER_INFO_1020
The USER_INFO_1020 structure contains user information for network accounts.typedef struct _USER_INFO_1020 {

DWORDusri1020_units_per_week;
LPBYTE usri1020_logon_hours;
} USER_INFO_1020, *PUSER_INFO_1020, *LPUSER_INFO_1020;
Membersusri1020_units_per_week

Specifies the number of equal-length time units into which the week is divided in order to
compute the length of the bit string in usri1020_logon_hours. This value must be
UNITS_PER_WEEK for LAN Manager 2.0. This element is ignored in NetUserAdd and
NetUserSetInfo functions.

Windows NT: For Windows NT services, the units must be one of the following:
SAM_DAYS_PER_WEEK, SAM_HOURS_PER_WEEK, or SAM_MINUTES_PER_WEEK.

usri1020_logon_hours
Points to a 21-byte (168 bits) bit string that specifies the times during which the user can log
on. Each bit represents a unique hour in the week. The first bit (bit 0, word 0) is Sunday, 0:00
to 0:59; the second bit (bit 1, word 0) is Sunday, 1:00 to 1:59; and so on. A null pointer in this
element for NetUserAdd calls means that there is no time restriction. A null pointer in this
element for NetUserSetInfo calls means that no change is to be made.See AlsoNetUserAdd, NetUserSetInfo

USER_INFO_1023
The USER_INFO_1023 structure contains user information for network accounts.typedef struct _USER_INFO_1023 {

LPWSTR usri1023_logon_server;
} USER_INFO_1023, *PUSER_INFO_1023, *LPUSER_INFO_1023;
Membersusri1023_logon_server

Points to a Unicode string that contains the name of the server to which logon requests are
sent. Servernames should be preceded by two backslashes (\\). When a servername is
represented by an asterisk (*), the logon request can be handled by any logon server. A null
string indicates that requests are sent to the domain controller.

Windows NT: For Windows NT Servers, the NetUserGetInfo and NetUserEnum functions
return *. The NetUserAdd and NetUserSetInfo functions ignore this member.See AlsoNetUserAdd, NetUserEnum, NetUserGetInfo, NetUserSetInfo

USER_INFO_1024
The USER_INFO_1024 structure contains user information for network accounts.typedef struct _USER_INFO_1024 {

DWORD usri1024_country_code;
} USER_INFO_1024, *PUSER_INFO_1024, *LPUSER_INFO_1024;
Membersusri1024_country_code

Specifies the country code for the user's language of choice. Windows NT does not use the
country code.

See AlsoNetUserSetInfo

USER_INFO_1025
The USER_INFO_1025 structure contains user information for network accounts.typedef struct _USER_INFO_1025 {

DWORD usri1025_code_page;
} USER_INFO_1025, *PUSER_INFO_1025, *LPUSER_INFO_1025;
Membersusri1025_code_page

Specifies the code page for the user's language of choice. Windows NT does not use the
code page.

USER_INFO_1051
The USER_INFO_1051 structure contains user information for network accounts.typedef struct _USER_INFO_1051 {

DWORD usri1051_primary_group_id;
} USER_INFO_1051, *PUSER_INFO_1051, *LPUSER_INFO_1051;
Membersusri1051_primary_group_id

Specifies the relative ID (RID) of the Primary Global Group for this user. For the NetUserAdd
function, this member must be DOMAIN_GROUP_RID_USERS (defined in the NTSEAPI.H
file). For the NetUserSetInfo function, this member must be the RID of a global group that
represents the enrolled user.See AlsoNetUserSetInfo

USER_INFO_1052
The USER_INFO_1052 structure contains user information for network accounts.typedef struct _USER_INFO_1052 {

LPWSTR usri1052_profile;
} USER_INFO_1052, *PUSER_INFO_1052, *LPUSER_INFO_1052;
Membersusri1052_profile

Specifies a path to the user's profile. This value can be a null string, a local absolute path, or a
UNC path.

USER_INFO_1053
The USER_INFO_1053 structure contains user information for network accounts.typedef struct _USER_INFO_1053 {

LPWSTR usri1053_home_dir_drive;
} USER_INFO_1053, *PUSER_INFO_1053, *LPUSER_INFO_1053;
Membersusri1053_home_dir_drive

Specifies the drive letter assigned to the user's home directory for logon purposes.
See AlsoNetUserSetInfo

USER_MODALS_INFO_0
The USER_MODALS_INFO_0 structure contains information about users and global groups in a
security database.typedef struct _USER_MODALS_INFO_0 {

DWORD usrmod0_min_passwd_len;
DWORD usrmod0_max_passwd_age;
DWORD usrmod0_min_passwd_age;
DWORD usrmod0_force_logoff;
DWORD usrmod0_password_hist_len;

}USER_MODALS_INFO_0, *PUSER_MODALS_INFO_0, *LPUSER_MODALS_INFO_0;
Membersusrmod0_min_passwd_len

Specifies the minimum allowable password length. Valid values for this element are zero
through PWLEN.

usrmod0_max_passwd_age
Specifies, in seconds, the maximum allowable password age. A value of TIMEQ_FOREVER
indicates that the password never expires. The minimum valid value for this element is
ONE_DAY. The value specified must be greater than or equal to the value for the
usrmod0_min_passwd_age member.

usrmod0_min_passwd_age
Specifies, in seconds, the minimum elapsed time between when the password was last
changed and when it can be changed again. A value of zero indicates that no delay is
required between password updates. The value specified must be less than or equal to the
value for the usrmod0_max_passwd_age member.

usrmod0_force_logoff
Specifies, in seconds, the amount of time between the end of the valid logon time and the
time when the user is forced to log off the network. A value of TIMEQ_FOREVER indicates
that the user is never forced to log off. A value of zero indicates that the user will be forced to
log off immediately when the valid logon time expires.

usrmod0_password_hist_len
Specifies the length of password history maintained. A new password cannot match any of the
previous usrmod0_password_hist_len passwords. Valid values for this element are zero
through DEF_MAX_PWHIST.

See AlsoNetUserModalsGet, NetUserModalsSet

USER_MODALS_INFO_1
The USER_MODALS_INFO_1 structure contains information about the role and primary use of
logon servers in a security database.typedef struct _USER_MODALS_INFO_1 {

DWORD usrmod1_role;
LPWSTR usrmod1_primary;

}USER_MODALS_INFO_1, *PUSER_MODALS_INFO_1, *LPUSER_MODALS_INFO_1;
Membersusrmod1_role

Specifies the role of the logon server. The following values are defined:
Value Meaning
UAS_ROLE_STANDALONE The logon server is a stand-alone

server.
UAS_ROLE_MEMBER The logon server is a member.
UAS_ROLE_BACKUP The logon server is a backup.
UAS_ROLE_PRIMARY The logon server is a domain

controller.

If the Netlogon service is not being used, the element should be set to
UAS_ROLE_STANDALONE.

usrmod1_primary
A Unicode string that specifies the name of the domain controller that stores the primary copy
of the database for the user account manager.

See AlsoNetUserModalsGet, NetUserModalsSet

USER_MODALS_INFO_2
The USER_MODALS_INFO_2 structure contains information about domains in a security
database.typedef struct _USER_MODALS_INFO_2 {

LPWSTR usrmod2_domain_name;
PSID usrmod2_domain_id;

}USER_MODALS_INFO_2, *PUSER_MODALS_INFO_2, *LPUSER_MODALS_INFO_2;
Membersusrmod2_domain_name

Specifies the name of the Security Account Manager (SAM) domain. For a domain controller,
this is the name of the domain that the controller is a member of. For Windows NT
Workstations, this is the name of the computer.

usrmod2_domain_id
A Unicode string that specifies the domain security identifier of the domain named by the
usrmod2_domain_name member.

See AlsoNetUserModalsGet, NetUserModalsSet

USER_MODALS_INFO_3
The USER_MODALS_INFO_3 structure contains lockout information about users and global
groups in a security database.typedef struct _USER_MODALS_INFO_3 {

DWORD usrmod3_lockout_duration;
DWORD usrmod3_lockout_observation_window;
DWORD usrmod3_lockout_threshold;

}USER_MODALS_INFO_3, *PUSER_MODALS_INFO_3, *LPUSER_MODALS_INFO_3;
Membersusrmod3_lockout_duration

Indicates, in seconds, how long a locked account will remain locked before being
automatically unlocked.

usrmod3_lockout_observation_window
Specifies the maximum time, in seconds, between any two failed logon attempts for lockout to
occur.

usrmod3_lockout_threshold
Specifies the number of invalid password authentications for which an account is to be
marked as locked out.

See AlsoNetUserModalsGet, NetUserModalsSet

USER_MODALS_INFO_1001
The USER_MODALS_INFO_1001 structure contains mimimum length of passwords in a security
database.typedef struct _USER_MODALS_INFO_1001 {

DWORD usrmod1001_min_passwd_len;
}USER_MODALS_INFO_1001, *PUSER_MODALS_INFO_1001, *
LPUSER_MODALS_INFO_1001;
Membersusrmod1001_min_passwd_len

Specifies the minimum allowable password length. Valid values for this element are zero
through PWLEN.

See AlsoNetUserModalsSet

USER_MODALS_INFO_1002
The USER_MODALS_INFO_1002 structure contains maximum duration of passwords in a
security database.typedef struct _USER_MODALS_INFO_1002 {

DWORD usrmod1002_max_passwd_age;
}USER_MODALS_INFO_1002, *PUSER_MODALS_INFO_1002, *
LPUSER_MODALS_INFO_1002;
Membersusrmod1002_max_passwd_age

Specifies, in seconds, the maximum allowable password age. A value of TIMEQ_FOREVER
indicates that the password never expires. The minimum valid value for this element is
ONE_DAY. The value specified must be greater than or equal to the value for the
usrmod1002_min_passwd_age member.

See AlsoNetUserModalsSet

USER_MODALS_INFO_1003
The USER_MODALS_INFO_1003 structure contains the duration of passwords for users and
global groups in a security database.typedef struct _USER_MODALS_INFO_1003 {

DWORD usrmod1003_min_passwd_age;
}USER_MODALS_INFO_1003, *PUSER_MODALS_INFO_1003, *
LPUSER_MODALS_INFO_1003;
Membersusrmod1003_min_passwd_age

Specifies the minimum allowable password age. Valid values for this element are zero through
PWLEN.

See AlsoNetUserModalsSet

USER_MODALS_INFO_1004
The USER_MODALS_INFO_1004 structure contains logoff information about users and global
groups in a security database.typedef struct _USER_MODALS_INFO_1004 {

DWORD usrmod1004_force_logoff;
}USER_MODALS_INFO_1004, *PUSER_MODALS_INFO_1004, *
LPUSER_MODALS_INFO_1004;
Membersusrmod1004_force_logoff

Specifies, in seconds, the amount of time between the end of the valid logon time and the
time when the user is forced to log off the network. A value of TIMEQ_FOREVER indicates
that the user is never forced to log off. A value of zero indicates that the user will be forced to
log off immediately when the valid logon time expires.

See AlsoNetUserModalsSet

USER_MODALS_INFO_1005
The USER_MODALS_INFO_1005 structure contains password history information about users
and global groups in a security database.typedef struct _USER_MODALS_INFO_1005 {

DWORD usrmod1005_password_hist_len;
}USER_MODALS_INFO_1005, *PUSER_MODALS_INFO_1005, *
LPUSER_MODALS_INFO_1005;
Membersusrmod1005_password_hist_len

Specifies the length of password history that the system maintains. A new password cannot
match any of the previous usrmod1001_password_hist_len passwords. Valid values for this
element are zero through DEF_MAX_PWHIST.

See AlsoNetUserModalsSet

USER_MODALS_INFO_1006
The USER_MODALS_INFO_1006 structure contains the various roles of logon servers in a
security database.typedef struct _USER_MODALS_INFO_1006 {
DWORD usrmod1006_role;
} USER_MODALS_INFO_1006, *PUSER_MODALS_INFO_1006, *
LPUSER_MODALS_INFO_1006;
Membersusrmod1006_role

Specifies the role of the logon server as one of the following possible values:
Value Meaning
UAS_ROLE_STANDALONE Logon server is a stand-alone.

Use this value if no logon services
are available

UAS_ROLE_MEMBER Logon server is a member.
UAS_ROLE_BACKUP Logon server is a backup.
UAS_ROLE_PRIMARY Logon server is a domain

controller.
See AlsoNetUserModalsSet

USER_MODALS_INFO_1007
The USER_MODALS_INFO_1007 structure contains user account information about the domain
controller in a security database.typedef struct _USER_MODALS_INFO_1007 {
LPWSTR usrmod1007_primary;
} USER_MODALS_INFO_1007, *PUSER_MODALS_INFO_1007, *
LPUSER_MODALS_INFO_1007;
Membersusrmod1007_primary

A Unicode string that specifies the name of the domain controller that stores the primary copy
of the database for the user account manager.

See AlsoNetUserModalsSet

USEROBJECTFLAGS
The USEROBJECTFLAGS structure contains information about a window station or desktop
handle.typedef struct tagUSEROBJECTFLAGS {

BOOL fInherit;
BOOL fReserved;
DWORD dwFlags;

} USEROBJECTFLAGS;
MembersfInherit

Specifies whether the handle is inherited when a new process is created. If this member is
TRUE, new processes will inherit the handle.

fReserved
Reserved for future use. This member must be FALSE.

dwFlags
For window stations, this member can contain the following window station attribute flag:

Value Description
WSF_VISIBLE Window station has visible display

surfaces.

For desktops, the dwFlags member can contain the following desktop control flag:
Value Description
DF_ALLOWOTHERACCOUNTHOOKAllows processes running in

other accounts on the desktop to
set hooks in this process.

See AlsoCreateDesktop, GetUserObjectInformation, OpenDesktop, OpenInputDesktop,
SetUserObjectInformation

USER_OTHER_INFO
The USER_OTHER_INFO structure contains user error code information in the alert error codes.typedef struct _USER_OTHER_INFO {

DWORD alrtus_errcode;
DWORD alrtus_numstrings;

}USER_OTHER_INFO, *PUSER_OTHER_INFO, *LPUSER_OTHER_INFO;
Membersalrtus_errcode

Specifies the error code for the new message in the message log.
alrtus_numstrings

Specifies the number (0-9) of consecutive Unicode strings in the message log.
See AlsoNetAlertRaise

VALENT
The VALENT structure contains information about a registry value. The
RegQueryMultipleValues function uses this structure.typedef struct value_ent {

LPTSTR ve_valuename;
DWORD ve_valuelen;
DWORD ve_valueptr;
DWORD ve_type;

}VALENT;
Membersve_valuename

Pointer to a null-terminated string. Before calling RegQueryMultipleValues, set this member
to point to the name of a value to retrieve.

ve_valuelen

Specifies the size, in bytes, of the data pointed to by ve_valueptr.
ve_valueptr

Pointer to the data for the value entry. This is a pointer to the value's data returned in the
lpValueBuf buffer filled in by RegQueryMultipleValues.

ve_type

Specifies the type code for the value entry. The type code can be one of the following values:
Value Meaning
REG_BINARY Binary data in any form.
REG_DWORD A 32-bit number.
REG_DWORD_LITTLE_ENDIAN A 32-bit number in little-endian

format (same as REG_DWORD).
In little-endian format, the most
significant byte of a word is the
high-order byte. This is the most
common format for computers
running Windows NT and Windows
95.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian
format. In big-endian format, the
most significant byte of a word is
the low-order byte.

REG_EXPAND_SZ A null-terminated string that
contains unexpanded references to
environment variables (for
example, "%PATH%"). It will be a
Unicode or ANSI string depending
on whether you use the Unicode or
ANSI functions.

REG_LINK A Unicode symbolic link.
REG_MULTI_SZ An array of null-terminated strings,

terminated by two null characters.
REG_NONE No defined value type.
REG_RESOURCE_LIST A device-driver resource list.
REG_SZ A null-terminated string. It will be a

Unicode or ANSI string, depending
on whether you use the Unicode or
ANSI functions.

See AlsoRegQueryMultipleValues

Var
The Var structure depicts the organization of data in a file-version resource. This structure is not a
true C-language structure because it contains variable-length members. This structure was
created solely to depict the organization of data in a version resource and does not appear in any
of the header files shipped with the Microsoft Win32 Software Development Kit (SDK).

The Var structure typically contains a list of languages that the version of the application or
dynamic-link library (DLL) supports.Var {

WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
WORD Padding[];
WORD Value[];

};
MemberswLength

Specifies the length of the version resource.
wValueLength

Specifies the length of the Value member in the current VS_VERSION_INFO structure. This
value is zero if there is no Value member associated with the current version structure.

wType

Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey

Contains the Unicode string "Translation" or a user-defined key string value.
Padding

Contains as many zero words as necessary to align the Value member on a 32-bit boundary.
Value

Specifies a list of one or more values that are typically language identifiers.RemarksIf you use the Var structure to list the languages your application or DLL supports, a suggestion is
that you use the Value member to contain an array of doubleword values indicating the language
and code-page combinations supported by this file. The high-order word of each doubleword
could contain a Microsoft language identifier and the low-order word could contain the IBM® code-
page number. Either high-order or low-order word may be zero, indicating that the file is language
or code-page independent. If this block is omitted, the file will be interpreted as language and
code-page independent.See AlsoVarFileInfo, VS_VERSION_INFO

VarFileInfo
The VarFileInfo structure depicts the organization of data in a file-version resource. This structure
is not a true C-language structure because it contains variable-length members. This structure
was created solely to depict the organization of data in a version resource and does not appear in
any of the header files shipped with the Microsoft Win32 Software Development Kit (SDK).

The VarFileInfo structure contains version information not dependent on a particular language
and code page.VarFileInfo {

WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
WORD Padding[];
Var Children[];

};
MemberswLength

Specifies the length of the version resource.
wValueLength

Specifies the length of the Value member in the current VS_VERSION_INFO structure. This
value is zero if there is no Value member associated with the current version structure.

wType

Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey

Contains the Unicode string "VarFileInfo".
Padding

Contains as many zero words as necessary to align the Children member on a 32-bit
boundary.

Children

Specifies a list of zero or more Var structures.RemarksThe Children member of the VS_VERSION_INFO structure may contain zero or more
VarFileInfo structures.See AlsoVar, VS_VERSION_INFO

VERIFY_INFORMATION
The VERIFY_INFORMATION structure provides information used to logically format a disk extent.typedef struct _VERIFY_INFORMATION {

LARGE_INTEGER StartingOffset;
DWORD Length;

} VERIFY_INFORMATION ;
MembersStartingOffset

Specifies the starting offset of the disk extent.
Length

Length, in bytes, of the disk extent.RemarksThe DeviceIoControl function uses a VERIFY_INFORMATION structure as input to an
IOCTL_DISK_VERIFY device I/O operation.See AlsoDeviceIoControl, IOCTL_DISK_VERIFY

VS_FIXEDFILEINFO
The VS_FIXEDFILEINFO structure contains version information about a file. This information is
language and code-page independent.typedef struct _VS_FIXEDFILEINFO { // vsffi

DWORD dwSignature;
DWORD dwStrucVersion;
DWORD dwFileVersionMS;
DWORD dwFileVersionLS;
DWORD dwProductVersionMS;
DWORD dwProductVersionLS;
DWORD dwFileFlagsMask;
DWORD dwFileFlags;
DWORD dwFileOS;
DWORD dwFileType;
DWORD dwFileSubtype;
DWORD dwFileDateMS;
DWORD dwFileDateLS;

} VS_FIXEDFILEINFO;
MembersdwSignature

Contains the value 0xFEEFO4BD. This is used with the szKey member of
VS_VERSION_INFO data when searching a file for the VS_FIXEDFILEINFO structure.

dwStrucVersion

Specifies the binary version number of this structure. The high-order word of this member
contains the major version number, and the low-order word contains the minor version
number.

dwFileVersionMS

Specifies the most significant 32 bits of the file's binary version number. This member is used
with dwFileVersionLS to form a 64-bit value used for numeric comparisons.

dwFileVersionLS

Specifies the least significant 32 bits of the file's binary version number. This member is used
with dwFileVersionMS to form a 64-bit value used for numeric comparisons.

dwProductVersionMS

Specifies the most significant 32 bits of the binary version number of the product with which
this file was distributed. This member is used with dwProductVersionLS to form a 64-bit
value used for numeric comparisons.

dwProductVersionLS

Specifies the least significant 32 bits of the binary version number of the product with which
this file was distributed. This member is used with dwProductVersionMS to form a 64-bit
value used for numeric comparisons.

dwFileFlagsMask

Contains a bitmask that specifies the valid bits in dwFileFlags. A bit is valid only if it was
defined when the file was created.

dwFileFlags

Contains a bitmask that specifies the Boolean attributes of the file. This member can include
one or more of the following values:
Flag Description
VS_FF_DEBUG The file contains debugging information or

is compiled with debugging features
enabled.

VS_FF_INFOINFERRED The file's version structure was created
dynamically; therefore, some of the
members in this structure may be empty
or incorrect. This flag should never be set
in a file's VS_VERSION_INFO data.

VS_FF_PATCHED The file has been modified and is not
identical to the original shipping file of the
same version number.

VS_FF_PRERELEASE The file is a development version, not a
commercially released product.

VS_FF_PRIVATEBUILD The file was not built using standard
release procedures. If this flag is set, the
StringFileInfo structure should contain a
PrivateBuild entry.

VS_FF_SPECIALBUILD The file was built by the original company
using standard release procedures but is a
variation of the normal file of the same
version number. If this flag is set, the
StringFileInfo structure should contain a
SpecialBuild entry.

dwFileOS

Specifies the operating system for which this file was designed. This member can be one of
the following values:
Flag Description
VOS_UNKNOWN The operating system for which the file was

designed is unknown to Windows.
VOS_NT The file was designed for Windows NT.
VOS_WINDOWS32 The file was designed for the Win32 API.

An application can combine these values to indicate that the file was designed for one
operating system running on another. The following dwFileOS values are examples of
this, but are not a complete list:

Flag Description
VOS_DOS_WINDOWS32 The file was designed for the Win32 API

running on MS-DOS.
VOS_NT_WINDOWS32 The file was designed for the Win32 API

running on Windows NT.

dwFileType

Specifies the general type of file. This member can be one of the following values:
Flag Description
VFT_UNKNOWN The file type is unknown to Windows.
VFT_APP The file contains an application.
VFT_DLL The file contains a dynamic-link library (DLL).
VFT_DRV The file contains a device driver. If dwFileType

is VFT_DRV, dwFileSubtype contains a more
specific description of the driver.

VFT_FONT The file contains a font. If dwFileType is
VFT_FONT, dwFileSubtype contains a more
specific description of the font file.

VFT_VXD The file contains a virtual device.
VFT_STATIC_LIB The file contains a static-link library.

All other values are reserved for future use by Microsoft.
dwFileSubtype

Specifies the function of the file. The possible values depend on the value of dwFileType. For
all values of dwFileType not described in the following list, dwFileSubtype is zero.
If dwFileType is VFT_DRV, dwFileSubtype can be one of the following values:

Flag Description
VFT2_UNKNOWN The driver type is unknown by

Windows.
VFT2_DRV_PRINTER The file contains a printer driver.
VFT2_DRV_KEYBOARD The file contains a keyboard driver.
VFT2_DRV_LANGUAGE The file contains a language driver.
VFT2_DRV_DISPLAY The file contains a display driver.
VFT2_DRV_MOUSE The file contains a mouse driver.
VFT2_DRV_NETWORK The file contains a network driver.
VFT2_DRV_SYSTEM The file contains a system driver.
VFT2_DRV_INSTALLABLE The file contains an installable driver.
VFT2_DRV_SOUND The file contains a sound driver.

If dwFileType is VFT_FONT, dwFileSubtype can be one of the following values:
Flag Description
VFT2_UNKNOWN The font type is unknown by Windows.
VFT2_FONT_RASTER The file contains a raster font.
VFT2_FONT_VECTOR The file contains a vector font.
VFT2_FONT_TRUETYPE The file contains a TrueType font.

If dwFileType is VFT_VXD, dwFileSubtype contains the virtual device identifier included in
the virtual device control block.

All dwFileSubtype values not listed here are reserved for future use by Microsoft.
dwFileDateMS

Specifies the most significant 32 bits of the file's 64-bit binary creation date and time stamp.
dwFileDateLS

Specifies the least significant 32 bits of the file's 64-bit binary creation date and time stamp.RemarksThe Value member of the VS_VERSION_INFO data is a VS_FIXEDFILEINFO structure.See AlsoStringFileInfo, VS_VERSION_INFO

VS_VERSION_INFO
The VS_VERSION_INFO structure depicts the organization of data in a file-version resource. This
structure is not a true C-language structure because it contains variable-length members. This
structure was created solely to depict the organization of data in a version resource and does not
appear in any of the header files shipped with the Microsoft Win32 Software Development Kit
(SDK).VS_VERSION_INFO {

WORD wLength;
WORD wValueLength;
WORD wType;
WCHAR szKey[];
WORD Padding1[];
VS_FIXEDFILEINFO Value;
WORD Padding2[];
WORD Children[];

};
MemberswLength

Specifies the length of the VS_VERSION_INFO structure. This length does not include any
padding that aligns the subsequent version structure on a 32-bit boundary.

wValueLength

Specifies the length of the Value member. This value is zero if there is no Value member
associated with the current version structure.

wType

Specifies the type of data in the version resource. This member is 1 if the version resource
contains text data and 0 if the version resource contains binary data.

szKey

Contains the Unicode string "VS_VERSION_INFO".
Padding1

Contains as many zero words as necessary to align the Value member on a 32-bit boundary.
Value

Contains a VS_FIXEDFILEINFO structure that specifies arbitrary data associated with this
structure. The wValueLength member specifies the length of this member; if wValueLength
is zero, this member does not exist.

Padding2

Contains as many zero words as necessary to align the Children member on a 32-bit
boundary. These bytes are not included in wValueLength. This member is optional.

Children

Specifies a list of zero or more StringFileInfo or VarFileInfo structures (or both) that are
children of the current version structure.RemarksThe VS_VERSION_INFO structure is the root structure that contains all other file information

structures.See AlsoStringFileInfo, VarFileInfo, VS_FIXEDFILEINFO

WIN32_FILE_ATTRIBUTE_DATA
[New - Windows NT]

The WIN32_FILE_ATTRIBUTE_DATA structure contains attribute information for a file or
directory. The GetFileAttributesEx function uses this structure.

The information contained in the WIN32_FILE_ATTRIBUTE_DATA structure is a superset of the
information returned by the GetFileAttributes function.typedef struct _WIN32_FILE_ATTRIBUTE_DATA{

DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;

} WIN32_FILE_ATTRIBUTE_DATA, *LPWIN32_FILE_ATTRIBUTE_DATA;
MembersdwFileAttributes

A set of bit flags that specifies FAT-style attribute information for the file or directory. This is
the same information that the GetFileAttributes function returns.
The following attribute flags are defined:

Value Description
FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive file or

directory. Applications use this flag to mark
files for backup or removal.

FILE_ATTRIBUTE_COMPRESSEDThe file or directory is compressed. For a file,
this means that all data in the file is
compressed. For a directory, this means that
compression is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The "file or directory" is a directory.
FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is not

included in an ordinary directory listing.
FILE_ATTRIBUTE_NORMAL The file or directory has no other attributes

set. This attribute is valid only if used alone.
FILE_ATTRIBUTE_OFFLINE The data of the file is not immediately

available. Indicates that the file data has been
physically moved to offline storage.

FILE_ATTRIBUTE_READONLY The file or directory is read-only. Applications
can read from the file but cannot write to it or
delete it. In the case of a directory,
applications cannot delete it.

FILE_ATTRIBUTE_SYSTEM The file or directory is part of, or is used
exclusively by, the operating system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage.
File systems attempt to keep all of the data in
memory for quicker access rather than
flushing the data back to mass storage. A
temporary file should be deleted by the
application as soon as it is no longer needed.

ftCreationTime

A FILETIME structure that specifies when the file or directory was created.
ftLastAccessTime

A FILETIME structure. For a file, the structure specifies when the file was last read from or
written to. For a directory, the structure specifies when the directory was created. For both
files and directories, the specified date will be correct, but the time of day will always be set to
midnight.

ftLastWriteTime

A FILETIME structure. For a file, the structure specifies when the file was last written to. For a
directory, the structure specifies when the directory was created.

nFileSizeHigh

Specifies the high-order DWORD of the file size. This member has no meaning for directories.
nFileSizeLow

Specifies the low-order DWORD of the file size. This member has no meaning for directories.See AlsoGetFileAttributesEx, GET_FILEEX_INFO_LEVELS

WIN32_FIND_DATA
The WIN32_FIND_DATA structure describes a file found by the FindFirstFile or FindNextFile
function.typedef struct _WIN32_FIND_DATA { // wfd

DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReserved0;
DWORD dwReserved1;
TCHAR cFileName[MAX_PATH];
TCHAR cAlternateFileName[14];

} WIN32_FIND_DATA;
MembersdwFileAttributes

Specifies the file attributes of the file found. This member can be one or more of the following
values:
Value Meaning
FILE_ATTRIBUTE_ARCHIVE

The file is an archive file. Applications use
this value to mark files for backup or removal.

FILE_ATTRIBUTE_COMPRESSED
The file or directory is compressed. For a file,
this means that all of the data in the file is
compressed. For a directory, this means that
compression is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY
The file is a directory.

FILE_ATTRIBUTE_HIDDEN
The file is hidden. It is not included in an
ordinary directory listing.

FILE_ATTRIBUTE_NORMAL
The file has no other attributes set. This value
is valid only if used alone.

FILE_ATTRIBUTE_OFFLINE
The data of the file is not immediately
available. Indicates that the file data has been
physically moved to offline storage.

FILE_ATTRIBUTE_READONLY
The file is read-only. Applications can read the
file but cannot write to it or delete it.

FILE_ATTRIBUTE_SYSTEM
The file is part of the operating system or is
used exclusively by it.

FILE_ATTRIBUTE_TEMPORARY
The file is being used for temporary storage.
Applications should write to the file only if
absolutely necessary. Most of the file's data
remains in memory without being flushed to
the media because the file will soon be
deleted.

ftCreationTime

Specifies a FILETIME structure containing the time the file was created. FindFirstFile and
FindNextFile report file times in Coordinated Universal Time (UTC) format. These functions
set the FILETIME members to zero if the file system containing the file does not support this
time member. You can use the FileTimeToLocalFileTime function to convert from UTC to
local time, and then use the FileTimeToSystemTime function to convert the local time to a
SYSTEMTIME structure containing individual members for the month, day, year, weekday,
hour, minute, second, and millisecond.

ftLastAccessTime

Specifies a FILETIME structure containing the time that the file was last accessed. The time is
in UTC format; the FILETIME members are zero if the file system does not support this time
member.

ftLastWriteTime

Specifies a FILETIME structure containing the time that the file was last written to. The time is
in UTC format; the FILETIME members are zero if the file system does not support this time
member.

nFileSizeHigh

Specifies the high-order DWORD value of the file size, in bytes. This value is zero unless the
file size is greater than MAXDWORD. The size of the file is equal to (nFileSizeHigh *
MAXDWORD) + nFileSizeLow.

nFileSizeLow

Specifies the low-order DWORD value of the file size, in bytes.
dwReserved0

Reserved for future use.
dwReserved1

Reserved for future use.
cFileName

A null-terminated string that is the name of the file.
cAlternateFileName

A null-terminated string that is an alternative name for the file. This name is in the classic 8.3
(filename.ext) filename format.RemarksIf a file has a long filename, the complete name appears in the cFileName field, and the 8.3

format truncated version of the name appears in the cAlternateFileName field. Otherwise,
cAlternateFileName is empty. As an alternative, you can use the GetShortPathName function to
find the 8.3 format version of a filename.See AlsoFindFirstFile, FindNextFile, FILETIME, FileTimeToLocalFileTime, FileTimeToSystemTime,
GetShortPathName

WIN32_STREAM_ID
struct WIN32_STREAM_ID {DWORD dwStreamId;

DWORD dwStreamAttributes;
LARGE_INTEGER Size;
DWORD dwStreamNameSize;
WCHAR cStreamName[] ;

}
MembersdwStreamId

Specifies the type of data. This member can be one of the following values:
Value Meaning
BACKUP_DATA Standard data
BACKUP_EA_DATA Extended attribute data
BACKUP_SECURITY_DATA Windows NT security descriptor

data
BACKUP_ALTERNATE_DATA Alternative data streams
BACKUP_LINK Hard link information

dwStreamAttributes

Specifies the attributes of data to facilitate cross-operating system transfer. This member must
be one or more of the following values:
Value Description
STREAM_MODIFIED_WHEN_READ Attribute set if the stream

contains data that is modified
when read. Allows the backup
application to know that
verification of data will fail.

STREAM_CONTAINS_SECURITY Stream contains security data
(general attributes). Allows the
stream to be ignored on cross-
operations restore.

Size

Specifies the size, in bytes, of data. Note that this is a 64-bit value.
dwStreamNameSize

Specifies the length of the name of the alternative data stream.
cStreamName

Specifies the name of the alternative data stream, in Unicode™.See AlsoBackupRead, BackupSeek, BackupWrite

WIN_CERTIFICATE
[New - Windows NT]

The WIN_CERTIFICATE structure contains the type and data for a WinTrust certificate. You can
use this generic data structure to store certificates for a variety of WinTrust verification operations.
A certificate typically contains encrypted information that can be used to identify and verify the
authenticity of a subject, such as a software publisher or an executable file.typedef struct _WIN_CERTIFICATE {

DWORD dwLength;
WORD wRevision;
WORD wCertificateType;
BYTE bCertificate[ANYSIZE_ARRAY];

} WIN_CERTIFICATE, *LPWIN_CERTIFICATE;
MembersdwLength

Specifies the size, in bytes, of the WIN_CERTIFICATE structure, including the data in the
bCertificate array.

wRevision

Indicates the revision level of the structure. Currently, this value must be
WIN_TRUST_REVISION_1_0.

wCertificateType

Specifies the type of certificate. This member can be one of the following values.
Value Meaning
WIN_CERT_TYPE_X509 The certificate contains

an X.509 Certificate.
WIN_CERT_TYPE_PKCS_SIGNED_DATAThe certificate contains a

PKCS SignedData
structure.

WIN_CERT_TYPE_RESERVED_1 Reserved.

bCertificate

A variable-sized array of bytes that contains the certificate data.See AlsoWinSubmitCertificate, WinTrustProviderSubmitCertificate,
WinTrustSubjectCheckContentInfo, WinTrustSubjectGetCertHeader,
WinTrustSubjectGetCertificate, WinTrustSubjectGetName

WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT
[New - Windows NT]

The WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT structure identifies the subject to be
evaluated in some WinVerifyTrust verification operations. For example, Microsoft's Software
Publisher Trust Provider uses this structure with some of its action identifiers.typedef struct _WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT {

HANDLE hClientToken;
GUID * SubjectType;
WIN_TRUST_SUBJECT Subject;

} WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT, *
LPWIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT ;
MembershClientToken

Handle to the access token of the calling process.SubjectType
Pointer to a GUID structure that identifies the type of subject that a trust provider must
evaluate. The value of this member determines the type of data pointed to by the Subject
member.
The WinTrust service is designed to work with trust providers and subject interface packages
(SIPs) implemented by third parties. Each SIP provides its own unique set of subject type
identifiers, and each trust provider specifies the set of subject types that it can evaluate for a
specified action identifier. For information about the subject and action identifiers supported by
a trust provider, see the documentation for that trust provider.
For example, for the WIN_SPUB_ACTION_PUBLISHED_SOFTWARE action, Microsoft's
Software Publisher Trust Provider supports the following subject types.
Value Description
WIN_TRUST_SUBJTYPE_PE_IMAGE

Microsoft Portable Executable image files.
WIN_TRUST_SUBJTYPE_JAVA_CLASS

Java class files.
WIN_TRUST_SUBJTYPE_CABINET
WIN_TRUST_SUBJTYPE_RAW_FILE

Subject

Pointer to a buffer that a trust provider uses to access the subject. The format of this data
depends on the type of subject. For example, the subject types supported by the
WIN_SPUB_ACTION_PUBLISHED_SOFTWARE action use a
WIN_TRUST_SUBJECT_FILE structure that contains a handle or a path to the file to be
evaluated.RemarksThe WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT structure is one of the data

structures defined in WINBASE.H for use with the ActionData parameter of the WinVerifyTrust
function. Trust providers can use one of the predefined structures, or define their own.See AlsoGUID, WIN_TRUST_ACTDATA_SUBJECT_ONLY, WIN_TRUST_SUBJECT_FILE,
WinVerifyTrust

WIN_TRUST_ACTDATA_SUBJECT_ONLY
[New - Windows NT]

The WIN_TRUST_ACTDATA_SUBJECT_ONLY structure is one of the structures defined in
WINBASE.H for use with the ActionData parameter of the WinVerifyTrust function. Trust
providers can use one of the predefined structures, or define their own.typedef struct _WIN_TRUST_ACTDATA_SUBJECT_ONLY {

GUID * SubjectType;
WIN_TRUST_SUBJECT Subject;

} WIN_TRUST_ACTDATA_SUBJECT_ONLY, *LPWIN_TRUST_ACTDATA_SUBJECT_ONLY;
MembersSubjectType

Pointer to a GUID structure that identifies the type of subject that a trust provider must
evaluate. The value of this member determines the type of data pointed to by the Subject
member.
The WinTrust service is designed to work with trust providers and subject interface packages
(SIPs) implemented by third parties. Each SIP provides its own unique set of subject type
identifiers, and each trust provider specifies the set of subject types that it can evaluate for a
specified action identifier. For information about the subject and action identifiers supported by
a trust provider, see the documentation for that trust provider.

Subject

Pointer to a buffer that a trust provider uses to access the subject. The format of this data
depends on the type of subject.See AlsoGUID, WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT, WinVerifyTrust

WIN_TRUST_SUBJECT_FILE
[New - Windows NT]

The WIN_TRUST_SUBJECT_FILE structure identifies a file to be evaluated in a WinVerifyTrust
verification operation. For example, Microsoft's Software Publisher Trust Provider uses this
structure for verification operations that require access to the software image to be evaluated.typedef struct _WIN_TRUST_SUBJECT_FILE {

HANDLE hFile;
LPCWSTR lpPath;

} WIN_TRUST_SUBJECT_FILE, *LPWIN_TRUST_SUBJECT_FILE;
MembershFile

Handle to the file to evaluate in a WinVerifyTrust operation. The handle must have
FILE_READ_DATA access to the file.

lpPath

Pointer to a null-terminated Unicode string that specifies the complete path of the file to
evaluate.RemarksThe WIN_TRUST_SUBJECT_FILE structure is one of the structures defined for use by trust

providers to specify information about a subject to be evaluated in a trust inquiry. Trust providers
can use this structure, or define their own.See AlsoWIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECT, WinVerifyTrust

WIN_TRUST_SIP_SUBJECT
[New - Windows NT]

The WIN_TRUST_SIP_SUBJECT structure identifies the subject to be evaluated by a Subject
Interface Package (SIP). A SIP is a third-party component of the WinTrust service that can
evaluate a subject to verify its authenticity.typedef struct _WIN_TRUST_SIP_SUBJECT {

GUID * SubjectType;
WIN_TRUST_SUBJECT Subject;

} WIN_TRUST_SIP_SUBJECT, *LPWIN_TRUST_SIP_SUBJECT;
MembersSubjectType

Pointer to a GUID structure that identifies the type of subject to be evaluated. The value of this
member determines the type of data pointed to by the Subject member.
Each SIP supports a unique set of subject types that it can evaluate. For information about
specific subject types, see the documentation for the individual SIPs.

Subject

Pointer to data that the SIP uses to access the subject. The format of this data depends on
the type of subject.See AlsoWinTrustSubjectCheckContentInfo, WinTrustSubjectEnumCertificates,

WinTrustSubjectGetCertHeader, WinTrustSubjectGetCertificate, WinTrustSubjectGetName

WINDOW_BUFFER_SIZE_RECORD
The WINDOW_BUFFER_SIZE_RECORD structure is used in a console INPUT_RECORD
structure to report changes in the size of the screen buffer.typedef struct _WINDOW_BUFFER_SIZE_RECORD { // wbsr

COORD dwSize;
} WINDOW_BUFFER_SIZE_RECORD;
MembersdwSize

Specifies the new size of the screen buffer, in character cell columns and rows.RemarksBuffer size events are placed in the input buffer when the console is in window-aware mode
(ENABLE_WINDOW_INPUT).See AlsoINPUT_RECORD, ReadConsoleInput

WINDOWPLACEMENT
The WINDOWPLACEMENT structure contains information about the placement of a window on
the screen.typedef struct _WINDOWPLACEMENT {// wndpl

UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;

} WINDOWPLACEMENT;
Memberslength

Specifies the length, in bytes, of the structure. Before calling the GetWindowPlacement or
SetWindowPlacement functions, set this member to sizeof(WINDOWPLACEMENT).
GetWindowPlacement and SetWindowPlacement fail if this member is not set correctly.

flags

Specifies flags that control the position of the minimized window and the method by which the
window is restored. This member can be one or both of the following values:

Value Meaning
WPF_RESTORETOMAXIMIZED

Specifies that the restored window will be maximized,
regardless of whether it was maximized before it was
minimized. This setting is only valid the next time the
window is restored. It does not change the default
restoration behavior. This flag is only valid when the
SW_SHOWMINIMIZED value is specified for the
showCmd member.

WPF_SETMINPOSITION
Specifies that the coordinates of the minimized window
may be specified. This flag must be specified if the
coordinates are set in the ptMinPosition member.

showCmd

Specifies the current show state of the window. This member can be one of the following
values:
Value Meaning
SW_HIDE Hides the window and activates

another window.
SW_MINIMIZE Minimizes the specified window and

activates the top-level window in the
system's list.

SW_RESTORE Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as
SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its
current size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a
maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as
an icon.

SW_SHOWMINNOACTIVE Displays a window as an icon. The
active window remains active.

SW_SHOWNA Displays a window in its current state.
The active window remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The active window
remains active.

SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized,
Windows restores it to its original size
and position (same as SW_RESTORE)
.

ptMinPosition

Specifies the coordinates of the window's upper-left corner when the window is minimized.
ptMaxPosition

Specifies the coordinates of the window's upper-left corner when the window is maximized.
rcNormalPosition

Specifies the window's coordinates when the window is in the restored position.See AlsoShowWindow, POINT, RECT

WINDOWPOS
The WINDOWPOS structure contains information about the size and position of a window.typedef struct _WINDOWPOS { // wp

HWND hwnd;
HWND hwndInsertAfter;
int x;
int y;
int cx;
int cy;
UINT flags;

} WINDOWPOS;
Membershwnd

Identifies the window.
hwndInsertAfter

Specifies the position of the window in Z order (front-to-back position). This member can be
the handle of the window behind which this window is placed, or can be one of the special
values listed with the SetWindowPos function.

x

Specifies the position of the left edge of the window.
y

Specifies the position of the top edge of the window.
cx

Specifies the window width, in pixels.
cy

Specifies the window height, in pixels.
flags

Specifies the window position. This member can be one of the following values:
Value Meaning
SWP_DRAWFRAME Draws a frame (defined in the window's

class description) around the window.
SWP_FRAMECHANGED Sends a WM_NCCALCSIZE message to

the window, even if the window's size is
not being changed. If this flag is not
specified, WM_NCCALCSIZE is sent only
when the window's size is being
changed.

SWP_HIDEWINDOW Hides the window.
SWP_NOACTIVATE Does not activate the window. If this flag

is not set, the window is activated and
moved to the top of either the topmost or
non-topmost group (depending on the
setting of the hWndInsertAfter parameter)
.

SWP_NOCOPYBITS Discards the entire contents of the client
area. If this flag is not specified, the valid
contents of the client area are saved and
copied back into the client area after the
window is sized or repositioned.

SWP_NOMOVE Retains the current position (ignores the
X and Y parameters).

SWP_NOOWNERZORDER Does not change the owner window's
position in the Z order.

SWP_NOREDRAW Does not redraw changes. If this flag is
set, no repainting of any kind occurs. This
applies to the client area, the nonclient
area (including the title bar and scroll
bars), and any part of the parent window
uncovered as a result of the window
being moved. When this flag is set, the
application must explicitly invalidate or
redraw any parts of the window and
parent window that need redrawing.

SWP_NOREPOSITION Same as the SWP_NOOWNERZORDER
flag.

SWP_NOSENDCHANGING Prevents the window from receiving the
WM_WINDOWPOSCHANGING
message.

SWP_NOSIZE Retains the current size (ignores the cx
and cy parameters).

SWP_NOZORDER Retains the current Z order (ignores the
hWndInsertAfter parameter).

SWP_SHOWWINDOW Displays the window.
See AlsoEndDeferWindowPos, SetWindowPos, WM_NCCALCSIZE

WINTRUST_CLIENT_TP_DISPATCH_TABLE
[New - Windows NT]

The WINTRUST_CLIENT_TP_DISPATCH_TABLE structure contains a set of pointers to
functions implemented by WinTrust for use by the client component of a trust provider. WinTrust
passes a pointer to this dispatch table when it calls the WinTrustProviderClientInitialize function
that the trust provider exports.typedef struct _WINTRUST_CLIENT_TP_DISPATCH_TABLE
{

LPWINTRUST_PROVIDER_PING ServerPing;
LPWINTRUST_SUBJECT_CHECK_CONTENT_INFO CheckSubjectContentInfo;
LPWINTRUST_SUBJECT_ENUM_CERTIFICATES EnumSubjectCertificates;
LPWINTRUST_SUBJECT_GET_CERTIFICATE GetSubjectCertificate;
LPWINTRUST_SUBJECT_GET_CERT_HEADER GetSubjectCertHeader;
LPWINTRUST_SUBJECT_GET_NAME GetSubjectName;

} WINTRUST_CLIENT_TP_DISPATCH_TABLE, *
LPWINTRUST_CLIENT_TP_DISPATCH_TABLE;
MembersServerPing

Pointer to a WinTrustProviderPing function. The current release of WinTrust sets this
member to NULL because it does not support the WinTrust server component.

CheckSubjectContentInfo

Pointer to a WinTrustSubjectCheckContentInfo function.
EnumSubjectCertificates

Pointer to a WinTrustSubjectEnumCertificates function.
GetSubjectCertificate

Pointer to a WinTrustSubjectGetCertificate function.
GetSubjectCertHeader

Pointer to a WinTrustSubjectGetCertHeader function.
GetSubjectName

Pointer to a WinTrustSubjectGetName function.See AlsoWINTRUST_CLIENT_TP_INFO, WinTrustProviderClientInitialize, WinTrustProviderPing,
WinTrustSubjectCheckContentInfo, WinTrustSubjectEnumCertificates,
WinTrustSubjectGetCertHeader, WinTrustSubjectGetCertificate, WinTrustSubjectGetName

WINTRUST_CLIENT_TP_INFO
[New - Windows NT]

The WINTRUST_CLIENT_TP_INFO structure contains information that WinTrust passes to the
client component of a trust provider. WinTrust passes a pointer to this structure when it calls the
trust provider's WinTrustProviderClientInitialize function.typedef struct _WINTRUST_CLIENT_TP_INFO {

DWORDdwRevision;
LPWINTRUST_CLIENT_TP_DISPATCH_TABLElpServices;

} WINTRUST_CLIENT_TP_INFO, *LPWINTRUST_CLIENT_TP_INFO;
MembersdwRevision

Indicates the revision level of the WinTrust component that calls the trust provider's
WinTrustProviderClientInitialize function. WinTrust sets this value to
WIN_TRUST_REVISION_1_0.

lpServices

Pointer to a WINTRUST_CLIENT_TP_DISPATCH_TABLE structure that contains a set of
pointers to functions implemented by WinTrust for use by the client component of a trust
provider.See AlsoWINTRUST_CLIENT_TP_DISPATCH_TABLE, WinTrustProviderClientInitialize

WINTRUST_PROVIDER_CLIENT_INFO
[New - Windows NT]

The WINTRUST_PROVIDER_CLIENT_INFO structure contains information about the client
component of a trust provider. The trust provider's WinTrustProviderClientInitialize function
passes WinTrust a pointer to this dispatch table.typedef struct _WINTRUST_PROVIDER_CLIENT_INFO {

DWORDdwRevision;
LPWINTRUST_PROVIDER_CLIENT_SERVICESlpServices;
DWORDdwActionIdCount;
GUID * lpActionIdArray;

} WINTRUST_PROVIDER_CLIENT_INFO, *LPWINTRUST_PROVIDER_CLIENT_INFO;
MembersdwRevision

Indicates the revision level of the trust provider. Currently, a trust provider must set this value
to WIN_TRUST_REVISION_1_0.

lpServices

Pointer to a WINTRUST_PROVIDER_CLIENT_SERVICES structure that contains pointers to
a set of functions implemented by the trust provider. WinTrust can call these functions to
access the services of the trust provider.

dwActionIdCount

Specifies the number of action identifier entries in the lpActionIdArray array.
lpActionIdArray

Pointer to an array of GUID pointers. Each GUID structure identifies an action that the trust
provider can handle.See AlsoGUID, WINTRUST_PROVIDER_CLIENT_SERVICES, WinTrustProviderClientInitialize

WINTRUST_PROVIDER_CLIENT_SERVICES
[New - Windows NT]

The WINTRUST_PROVIDER_CLIENT_SERVICES structure contains pointers to a set of
functions implemented by a trust provider to be called by WinTrust. The trust provider's
WinTrustProviderClientInitialize function passes WinTrust a pointer to this dispatch table.typedef struct _WINTRUST_PROVIDER_CLIENT_SERVICES
{

LPWINTRUST_PROVIDER_CLIENT_UNLOAD Unload;
LPWINTRUST_PROVIDER_VERIFY_TRUST VerifyTrust;
LPWINTRUST_PROVIDER_SUBMIT_CERTIFICATE SubmitCertificate;

} WINTRUST_PROVIDER_CLIENT_SERVICES, *
LPWINTRUST_PROVIDER_CLIENT_SERVICES;
MembersUnload

Pointer to a WinTrustProviderClientUnload function.
VerifyTrust

Pointer to a WinTrustProviderVerifyTrust function.
SubmitCertificate

Pointer to a WinTrustProviderSubmitCertificate function.See AlsoWINTRUST_PROVIDER_CLIENT_INFO, WinTrustProviderClientInitialize,
WinTrustProviderClientUnload, WinTrustProviderSubmitCertificate,
WinTrustProviderVerifyTrust

WINTRUST_PROVIDER_SERVER_INFO
[New - Windows NT]

The WINTRUST_PROVIDER_SERVER_INFO structure contains information about the server
component of a trust provider.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not currently use this structure.typedef struct _WINTRUST_PROVIDER_SERVER_INFO {

DWORDdwRevision;
LPWINTRUST_PROVIDER_SERVER_SERVICESlpServices;

} WINTRUST_PROVIDER_SERVER_INFO, *LPWINTRUST_PROVIDER_SERVER_INFO;
MembersdwRevision

Indicates the revision level of the trust provider. Currently, a trust provider must set this value
to WIN_TRUST_REVISION_1_0.

lpServices

Pointer to a WINTRUST_PROVIDER_SERVER_SERVICES structure that contains pointers
to a set of functions implemented by the trust provider. WinTrust can call these functions to
access the services of the trust provider.See AlsoWINTRUST_PROVIDER_SERVER_SERVICES, WinTrustProviderServerInitialize

WINTRUST_PROVIDER_SERVER_SERVICES
[New - Windows NT]

The WINTRUST_PROVIDER_SERVER_SERVICES structure contains a set of pointers to
functions implemented by a trust provider to be called by WinTrust.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not call these functions and trust provider DLLs do not need to implement them.typedef struct _WINTRUST_PROVIDER_SERVER_SERVICES
{

LPWINTRUST_PROVIDER_SERVER_UNLOAD Unload;
LPWINTRUST_PROVIDER_PING Ping;

} WINTRUST_PROVIDER_SERVER_SERVICES, *
LPWINTRUST_PROVIDER_SERVER_SERVICES;
MembersUnload

Pointer to a WinTrustProviderServerUnload function.
Ping

Pointer to a WinTrustProviderPing function.See AlsoWINTRUST_PROVIDER_SERVER_INFO, WinTrustProviderPing,
WinTrustProviderServerInitialize, WinTrustProviderServerUnload

WINTRUST_SERVER_TP_DISPATCH_TABLE
[New - Windows NT]

The WINTRUST_SERVER_TP_DISPATCH_TABLE structure contains a set of pointers to
functions implemented by WinTrust for use by the server component of a trust provider.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not use this structure.typedef struct _WINTRUST_SERVER_TP_DISPATCH_TABLE
{

LPWINTRUST_SUBJECT_CHECK_CONTENT_INFO CheckSubjectContentInfo;
LPWINTRUST_SUBJECT_ENUM_CERTIFICATES EnumSubectCertificates;
LPWINTRUST_SUBJECT_GET_CERTIFICATE GetSubjectCertificate;
LPWINTRUST_SUBJECT_GET_CERT_HEADER GetSubjectCertHeader;
LPWINTRUST_SUBJECT_GET_NAME GetSubjectName;

} WINTRUST_SERVER_TP_DISPATCH_TABLE, *
LPWINTRUST_SERVER_TP_DISPATCH_TABLE;
MembersCheckSubjectContentInfo

Pointer to a WinTrustSubjectCheckContentInfo function.
EnumSubjectCertificates

Pointer to a WinTrustSubjectEnumCertificates function.
GetSubjectCertificate

Pointer to a WinTrustSubjectGetCertificate function.
GetSubjectCertHeader

Pointer to a WinTrustSubjectGetCertHeader function.
GetSubjectName

Pointer to a WinTrustSubjectGetName function.See AlsoWINTRUST_SERVER_TP_INFO, WinTrustProviderServerInitialize,
WinTrustSubjectCheckContentInfo, WinTrustSubjectEnumCertificates,
WinTrustSubjectGetCertHeader, WinTrustSubjectGetCertificate, WinTrustSubjectGetName

WINTRUST_SERVER_TP_INFO
[New - Windows NT]

The WINTRUST_SERVER_TP_INFO structure contains information that WinTrust passes to the
server component of a trust provider.

The current release of WinTrust does not include the WinTrust server component. Consequently,
WinTrust does not use this structure.typedef struct _WINTRUST_SERVER_TP_INFO {

DWORDdwRevision;
LPWINTRUST_SERVER_TP_DISPATCH_TABLElpServices;

} WINTRUST_SERVER_TP_INFO, *LPWINTRUST_SERVER_TP_INFO;
MembersdwRevision

Indicates the revision level of WinTrust. Currently, WinTrust sets this value to
WIN_TRUST_REVISION_1_0.

lpServices

Pointer to a WINTRUST_SERVER_TP_DISPATCH_TABLE structure that contains a set of
pointers to functions implemented by WinTrust for use by the server component of a trust
provider.See AlsoWINTRUST_SERVER_TP_DISPATCH_TABLE, WinTrustProviderServerInitialize

WINTRUST_SIP_DISPATCH_TABLE
[New - Windows NT]

The WINTRUST_SIP_DISPATCH_TABLE structure contains pointers to a set of functions
implemented by a Subject Interface Package (SIP) to be called by WinTrust.

A pointer to this dispatch table is passed to WinTrust by the SIP's WinTrustSipInitialize function.typedef struct _WINTRUST_SIP_DISPATCH_TABLE
{

LPWINTRUST_SUBJECT_CHECK_CONTENT_INFO CheckSubjectContentInfo;
LPWINTRUST_SUBJECT_ENUM_CERTIFICATES EnumSubjectCertificates;
LPWINTRUST_SUBJECT_GET_CERTIFICATE GetSubjectCertificate;
LPWINTRUST_SUBJECT_GET_CERT_HEADER GetSubjectCertHeader;
LPWINTRUST_SUBJECT_GET_NAME GetSubjectName;

} WINTRUST_SIP_DISPATCH_TABLE, *LPWINTRUST_SIP_DISPATCH_TABLE;
MembersCheckSubjectContentInfo

Pointer to a WinTrustSubjectCheckContentInfo function that verifies whether a certificate
adequately represents the contents of a subject.

EnumSubjectCertificates

Pointer to a WinTrustSubjectEnumCertificates function that retrieves the types of
certificates that are bundled within a subject.

GetSubjectCertificate

Pointer to a WinTrustSubjectGetCertificate function that retrieves a certificate from a
subject.

GetSubjectCertHeader

Pointer to a WinTrustSubjectGetCertHeader function that retrieves a certificate header from
a subject.

GetSubjectName

Pointer to a WinTrustSubjectGetCertHeader function that retrieves the name of a subject.See AlsoWINTRUST_SIP_INFO, WinTrustSipInitialize

WINTRUST_SIP_INFO
[New - Windows NT]

The WINTRUST_SIP_INFO structure contains information about a Subject Interface Package
(SIP). A pointer to this structure is passed to WinTrust by the SIP's WinTrustSipInitialize
function.typedef struct _WINTRUST_SIP_INFO {

DWORD dwRevision;
LPWINTRUST_SIP_DISPATCH_TABLE lpServices;
DWORD dwSubjectTypeCount;
GUID *lpSubjectTypeArray;

} WINTRUST_SIP_INFO, *LPWINTRUST_SIP_INFO;
MembersdwRevision

Indicates the revision level of the SIP. A SIP should set this value to
WIN_TRUST_REVISION_1_0.

lpServices

Pointer to a WINTRUST_SIP_DISPATCH_TABLE structure that contains pointers to a set of
functions implemented by the SIP for use by WinTrust.

dwSubjectTypeCount

Specifies the number of subject type entries in the lpSubjectTypeArray array.
lpSubjectTypeArray

Pointer to an array of GUID pointers. Each GUID structure identifies a subject type that the
SIP can handle.See AlsoGUID, WINTRUST_SIP_DISPATCH_TABLE, WinTrustSipInitialize

WKSTA_INFO_100
The WKSTA_INFO_100 structure contains information about a workstation environment, including
platform-specific information, the name of the domain and the local computer, and information
concerning the LAN Manager software.typedef struct _WKSTA_INFO_100 {DWORDwki100_platform_id;

LPTSTR wki100_computername;
LPTSTR wki100_langroup;
DWORDwki100_ver_major;
DWORDwki100_ver_minor;

}WKSTA_INFO_100, *PWKSTA_INFO_100, *LPWKSTA_INFO_100;Memberswki100_platform_id

Indicates the information level to use to retrieve platform-specific information.
wki100_computername

Points to a Unicode string containing the name of the local computer.
wki100_langroup

Points to a Unicode string containing the name of the domain to which the computer belongs.
wki100_ver_major

Specifies the major version number of the LAN Manager software running on the computer.
wki100_ver_minor

Specifies the minor version number of the LAN Manager software running on the computer.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

WKSTA_INFO_101
The WKSTA_INFO_101 structure contains information about a workstation environment, including
platform-specific information, the name of the domain and the local computer, and information
concerning the LAN Manager software.typedef struct _WKSTA_INFO_101 {

DWORDwki101_platform_id;
LPTSTR wki101_computername;
LPTSTR wki101_langroup;
DWORDwki101_ver_major;
DWORDwki101_ver_minor;
LPTSTR wki101_lanroot;

}WKSTA_INFO_101, *PWKSTA_INFO_101, *LPWKSTA_INFO_101;
Memberswki101_platform_id

Indicates the information level to use to retrieve platform-specific information.
wki101_computername

Points to a Unicode string containing the name of the local computer.
wki101_langroup

Points to a Unicode string containing the name of the domain to which the computer belongs.
wki101_ver_major

Specifies the major version number of the LAN Manager software running on the computer.
wki101_ver_minor

Specifies the minor version number of the LAN Manager software running on the computer.
wki101_lanroot

Points to a Unicode string that contains the path to the LANMAN directory.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

WKSTA_INFO_102
The WKSTA_INFO_102 structure contains information about a workstation environment, including
platform-specific information, the name of the domain and the local computer, and information
concerning the LAN Manager software.typedef struct _WKSTA_INFO_102 {

DWORDwki102_platform_id;
LPTSTR wki102_computername;
LPTSTR wki102_langroup;
DWORDwki102_ver_major;
DWORDwki102_ver_minor;
LPTSTR wki102_lanroot;
DWORDwki102_logged_on_users;

}WKSTA_INFO_102, *PWKSTA_INFO_102, *LPWKSTA_INFO_102;
Memberswki102_platform_id

Indicates the information level to use to retrieve platform-specific information.
wki102_computername

Points to a Unicode string containing the name of the local computer.
wki102_langroup

Points to a Unicode string containing the name of the domain to which the computer belongs.
wki102_ver_major

Specifies the major version number of the LAN Manager software running on the computer.
wki102_ver_minor

Specifies the minor version number of the LAN Manager software running on the computer.
wki102_lanroot

Points to a Unicode string that contains the path to the LANMAN directory.
wki102_logged_on_users

Returns the number of users who are logged on to the local computer.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

WKSTA_INFO_302
The WKSTA_INFO_302 structure contains information about a workstation environment, including
platform-specific information, the name of the domain and the local computer, and information
concerning the LAN Manager software.typedef struct _WKSTA_INFO_302{

DWORDwki302_char_wait;
DWORDwki302_collection_time;
DWORDwki302_maximum_collection_count;
DWORDwki302_keep_conn;
DWORDwki302_keep_search;
DWORDwki302_max_cmds;
DWORDwki302_num_work_buf;
DWORDwki302_siz_work_buf;
DWORDwki302_max_wrk_cache;
DWORDwki302_sess_timeout;
DWORDwki302_siz_error;
DWORDwki302_num_alerts;
DWORDwki302_num_services;
DWORDwki302_errlog_sz;
DWORDwki302_print_buf_time;
DWORDwki302_num_char_buf;
DWORDwki302_siz_char_buf;
LPTSTR wki302_wrk_heuristics;
DWORDwki302_mailslots;
DWORDwki302_num_dgram_buf;

}WKSTA_INFO_302, *PWKSTA_INFO_302, *LPWKSTA_INFO_302;
Memberswki302_char_wait

Specifies the number of seconds the computer will wait for a remote resource to become
available.

wki302_collection_time

Specifies the number of milliseconds the computer will collect data before sending the data to
a character device resource. The workstation waits the specified time or collects the number
of characters specified by wki302_maximum_collection_count, whichever comes first.

wki302_maximum_collection_count

Specifies the number of bytes of information the computer will collect before sending the data
to a character device resource. The workstation collects the specified number of bytes or
waits the time specified by wki302_collection_time, whichever comes first.

wki302_keep_conn

Specifies the number of seconds the server will maintain an inactive connection to a resource.
wki302_keep_search

Defines the number of seconds an inactive search will continue.
wki302_max_cmds

Specifies the number of simultaneous network device driver commands that can be sent to
the network.

wki302_num_work_buf

Specifies the number of internal buffers the computer has.
wki302_siz_work_buf

Specifies the size, in bytes, of each internal buffer.
wki302_max_wrk_cache

Specifies the maximum size, in bytes, of an internal cache buffer.
wki302_sess_timeout

Indicates the number of seconds the server waits before disconnecting an inactive session.
wki302_siz_error

Specifies the size, in bytes, of an internal error buffer.
wki302_num_alerts

Specifies the maximum number of clients that can receive alert messages. (This member is
not supported under MS-DOS.) The Alerter service registers at least three clients when it
begins to run.

wki302_num_services

Specifies the number of services that can be installed on the computer at any time.
wki302_errlog_sz

Specifies the maximum size, in kilobytes, of the client's error log file.
wki302_print_buf_time

Specifies the number of seconds the server waits before closing inactive compatibility-mode
print jobs.

wki302_num_char_buf

Specifies the number of character pipe buffers and device buffers the client can have.
wki302_siz_char_buf

Specifies the maximum size, in bytes, of a character pipe buffer and device buffer.
wki302_wrk_heuristics

Points to a Unicode string of flags used to control a client's operation.
wki302_mailslots

Specifies the maximum number of mailslots allowed.
wki302_num_dgram_buf

Specifies the number of buffers to allocate for receiving datagrams.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

WKSTA_INFO_402
The WKSTA_INFO_402 structure contains information about a workstation environment, including
platform-specific information, the name of the domain and the local computer, and information
concerning the LAN Manager software.typedef struct _WKSTA_INFO_402{DWORDwki402_char_wait;

DWORDwki402_collection_time;
DWORDwki402_maximum_collection_count;
DWORDwki402_keep_conn;
DWORDwki402_keep_search;
DWORDwki402_max_cmds;
DWORDwki402_num_work_buf;
DWORDwki402_siz_work_buf;
DWORDwki402_max_wrk_cache;
DWORDwki402_sess_timeout;
DWORDwki402_siz_error;
DWORDwki402_num_alerts;
DWORDwki402_num_services;
DWORDwki402_errlog_sz;
DWORDwki402_print_buf_time;
DWORDwki402_num_char_buf;
DWORDwki402_siz_char_buf;
LPTSTR wki402_wrk_heuristics;
DWORDwki402_mailslots;
DWORDwki402_num_dgram_buf;
DWORDwki402_max_threads;

}WKSTA_INFO_402, *PWKSTA_INFO_402, *LPWKSTA_INFO_402;
Memberswki402_char_wait

Specifies the number of seconds the computer will wait for a remote resource to become
available.

wki402_collection_time

Specifies the number of milliseconds the computer will collect data before sending the data to
a character device resource. The workstation waits the specified time or collects the number
of characters specified by wki402_maximum_collection_count, whichever comes first.

wki402_maximum_collection_count

Specifies the number of bytes of information the computer will collect before sending the data
to a character device resource. The workstation collects the specified number of bytes or
waits the time specified by the wki0_chartime member, whichever comes first.

wki402_keep_conn

Specifies the number of seconds the server will maintain an inactive connection to a server's
resource.

wki402_keep_search

Defines the number of seconds an inactive search will continue.
wki402_max_cmds

Specifies the number of simultaneous network device driver commands that can be sent to
the network.

wki402_num_work_buf

Specifies the number of internal buffers the computer has.
wki402_siz_work_buf

Specifies the size, in bytes, of each internal buffer.
wki402_max_wrk_cache

Specifies the maximum size, in bytes, of an internal cache buffer.
wki402_sess_timeout

Indicates the number of seconds the server waits before disconnecting an inactive session.
wki402_siz_error

Specifies the size, in bytes, of an internal error buffer.
wki402_num_alerts

Specifies the maximum number of clients that can receive alert messages. (This member is
not supported under MS-DOS.) The Alerter service registers at least three clients when it
begins to run.

wki402_num_services

Specifies the number of services that can be installed on the computer at any time.
wki402_errlog_sz

Specifies the maximum size, in kilibytes, of the client's error log file.
wki402_print_buf_time

Specifies the number of seconds the server waits before closing inactive compatibility-mode
print jobs.

wki402_num_char_buf

Specifies the number of character pipe buffers and device buffers the client can have.
wki402_siz_char_buf

Specifies the maximum size, in bytes, of a character pipe buffer and device buffer.
wki402_wrk_heuristics

Points to a Unicode string of flags used to control a client's operation.
wki402_mailslots

Specifies the maximum number of mailslots allowed.
wki402_num_dgram_buf

Specifies the number of buffers to allocate for receiving datagrams.
wki402_max_threads

Specifies the number of threads the computer can dedicate to the network.See AlsoNetWkstaGetInfo, NetWkstaSetInfo

WKSTA_TRANSPORT_INFO_0
The WKSTA_TRANSPORT_INFO_0 structure contains information about the workstation
transport protocol, such as Wide Area Net (WAN) or NetBIOS.typedef struct _WKSTA_TRANSPORT_INFO_0 {

DWORDwkti0_quality_of_service;
DWORDwkti0_number_of_vcs;
LPTSTR wkti0_transport_name;
LPTSTR wkti0_transport_address;
BOOL wkti0_wan_ish;

}WKSTA_TRANSPORT_INFO_0, *PWKSTA_TRANSPORT_INFO_0, *
LPWKSTA_TRANSPORT_INFO_0;
Memberswkti0_quality_of_service

Supplies a value that specifies the search order of the transport protocol with respect to other
transport protocols. The highest value is searched first.

wkti0_number_of_vcs

Specifies the number of clients communicating with the server using this transport protocol.
wkti0_transport_name

Specifies the device name of the transport protocol.
wkti0_transport_address

Specifies the address of the server on this transport protocol.
wkti0_wan_ish

This member is ignored by the NetWkstaTransportAdd function. For the
NetWkstaTransportEnum function, this member indicates that this transport protocol is a
WAN transport protocol. This member is set TRUE for NetBIOS/TCIP; it is set FALSE for Net/
BEUI and NetBIOS/IPX.See AlsoNetWkstaTransportAdd, NetWkstaTransportEnum

WKSTA_USER_INFO_0
The WKSTA_USER_INFO_0 structure contains the name of the users on a specified workstation.typedef struct _WKSTA_USER_INFO_0 {

LPTSTR wkui0_username;
}WKSTA_USER_INFO_0, *PWKSTA_USER_INFO_0, *LPWKSTA_USER_INFO_0;
Memberswkui0_username

Returns the name of the user currently logged on to the workstation.See AlsoNetWkstaUserEnum, NetWkstaUserGetInfo, NetWkstaUserSetInfo

WKSTA_USER_INFO_1
The WKSTA_USER_INFO_1 structure contains user information about a specified workstation,
including the name of the current user, the LAN Manager domains accessed by the workstation,
and user account information.typedef struct _WKSTA_USER_INFO_1 {

LPTSTR wkui1_username;
LPTSTR wkui1_logon_domain;
LPTSTR wkui1_oth_domains;
LPTSTR wkui1_logon_server;

}WKSTA_USER_INFO_1, *PWKSTA_USER_INFO_1, *LPWKSTA_USER_INFO_1;
Memberswkui1_username

Returns the name of the user currently logged on to the workstation.
wkui1_logon_domain

Returns the domain name of the user account of the user currently logged on to the
workstation.

wkui1_oth_domains

Returns the list of other LAN Manager domains browsed by the workstation. The domain
names are separated by blanks.

wkui1_logon_server

Returns the name of the computer that authenticated the server.See AlsoNetWkstaUserEnum, NetWkstaUserGetInfo, NetWkstaUserSetInfo

WKSTA_USER_INFO_1101
The WKSTA_USER_INFO_1101 structure contains user information about the LAN Manager
domains accessed by a workstation.typedef struct _WKSTA_USER_INFO_1101 {

LPTSTR wkui1101_oth_domains;
} WKSTA_USER_INFO_1101, *PWKSTA_USER_INFO_1101, *
LPWKSTA_USER_INFO_1101;
Memberswkui1101_oth_domains

Returns the list of other LAN Manager domains browsed by this workstation. The domain
names are separated by blanks.See AlsoNetWkstaUserGetInfo, NetWkstaUserSetInfo

WNDCLASS
The WNDCLASS structure contains the window class attributes that are registered by the
RegisterClass function.typedef struct _WNDCLASS { // wc

UINT style;
WNDPROC lpfnWndProc;
intcbClsExtra;
intcbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;

} WNDCLASS;
Membersstyle

Specifies the class style(s). Styles can be combined by using the bitwise OR (|) operator. This
member can be any combination of the following values:
Value Action
CS_BYTEALIGNCLIENT Aligns the window's client area on the

byte boundary (in the x direction) to
enhance performance during drawing
operations. This style affects the width
of the window and its horizontal position
on the display.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in
the x direction) to enhance performance
during operations that involve moving or
sizing the window. This style affects the
width of the window and its horizontal
position on the display.

CS_CLASSDC Allocates one device context to be
shared by all windows in the class.
Because window classes are process
specific, it is possible for multiple
threads of a multithreaded application to
create a window of the same class. It is
also possible for the threads to attempt
to use the device context
simultaneously. When this happens, the
operating system allows only one of the
threads to successfully finish its drawing
operation.

CS_DBLCLKS Sends double-click messages to the
window procedure when the user
double-clicks the mouse while the
cursor is within a window belonging to
the class.

CS_GLOBALCLASS Allows an application to create a
window of the class regardless of the
value of the hInstance parameter
passed to the CreateWindow or
CreateWindowEx function. If you do
not specify this style, the hInstance
parameter passed to the
CreateWindow (or CreateWindowEx)
function must be the same as the
hInstance parameter passed to the
RegisterClass function.
You can create a global class by
creating the window class in a dynamic-
link library (DLL) and listing the name of
the DLL in the registry under the
following keys:
HKEY_LOCAL_MACHINE\Software
\Microsoft\Windows NT\
CurrentVersion\Windows\
APPINIT_DLLS
Whenever a process starts, the
operating system loads the specified
DLLs in the context of the newly started
process before calling the main function
in that process. The DLL must register
the class during its initialization
procedure and must specify the
CS_GLOBALCLASS style.

CS_HREDRAW Redraws the entire window if a
movement or size adjustment changes
the width of the client area.

CS_NOCLOSE Disables the Close command on the
System menu.

CS_OWNDC Allocates a unique device context for
each window in the class.

CS_PARENTDC Sets the clipping region of the child
window to that of the parent window so
that the child can draw on the parent. A
window with the CS_PARENTDC style
bit receives a regular device context
from the system's cache of device
contexts. It does not give the child the
parent's device context or device
context settings. Specifying
CS_PARENTDC enhances an
application's performance.

CS_SAVEBITS Saves, as a bitmap, the portion of the
screen image obscured by a window.
Windows uses the saved bitmap to re-
create the screen image when the
window is removed. Windows displays
the bitmap at its original location and
does not send WM_PAINT messages to
windows obscured by the window if the
memory used by the bitmap has not
been discarded and if other screen
actions have not invalidated the stored
image. This style is useful for small
windows (for example, menus or dialog
boxes) that are displayed briefly and
then removed before other screen
activity takes place. This style increases
the time required to display the window,
because the operating system must first
allocate memory to store the bitmap.

CS_VREDRAW Redraws the entire window if a
movement or size adjustment changes
the height of the client area.

lpfnWndProc

Points to the window procedure. For more information, see WindowProc.
cbClsExtra

Specifies the number of extra bytes to allocate following the window-class structure. The
operating system initializes the bytes to zero.

cbWndExtra

Specifies the number of extra bytes to allocate following the window instance. The operating
system initializes the bytes to zero. If an application uses the WNDCLASS structure to
register a dialog box created by using the CLASS directive in the resource file, it must set this
member to DLGWINDOWEXTRA.

hInstance

Identifies the instance that the window procedure of this class is within.
hIcon

Identifies the class icon. This member must be a handle of an icon resource. If this member is
NULL, an application must draw an icon whenever the user minimizes the application's
window.

hCursor

Identifies the class cursor. This member must be a handle of a cursor resource. If this member
is NULL, an application must explicitly set the cursor shape whenever the mouse moves into
the application's window.

hbrBackground

Identifies the class background brush. This member can be a handle to the physical brush to
be used for painting the background, or it can be a color value. A color value must be one of
the following standard system colors (the value 1 must be added to the chosen color). If a
color value is given, you must convert it to one of the following HBRUSH types:
COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_WINDOWFRAME
COLOR_WINDOWTEXT
The operating system automatically deletes class background brushes when the class is
freed. An application should not delete these brushes, because a class may be used by
multiple instances of an application.
When this member is NULL, an application must paint its own background whenever it is
requested to paint in its client area. To determine whether the background must be painted,
an application can either process the WM_ERASEBKGND message or test the fErase
member of the PAINTSTRUCT structure filled by the BeginPaint function.

lpszMenuName

Points to a null-terminated character string that specifies the resource name of the class
menu, as the name appears in the resource file. If you use an integer to identify the menu,
use the MAKEINTRESOURCE macro. If this member is NULL, windows belonging to this
class have no default menu.

lpszClassName

Points to a null-terminated string or is an atom. If this parameter is an atom, it must be a
global atom created by a previous call to the GlobalAddAtom function. The atom, a 16-bit
value, must be in the low-order word of lpszClassName; the high-order word must be zero.
If lpszClassName is a string, it specifies the window class name.See AlsoBeginPaint, CreateWindow, CreateWindowEx, GetDC, GlobalAddAtom,

MAKEINTRESOURCE, PAINTSTRUCT, RegisterClass, WNDCLASSEX, WindowProc,
WM_PAINT

WNDCLASSEX
The WNDCLASSEX structure contains window class information. It is used with the the
RegisterClassEx and GetClassInfoEx functions.

The WNDCLASSEX structure is similar to the WNDCLASS structure. There are two differences.
WNDCLASSEX includes the cbSize member, which specifies the size of the structure, and the
hIconSm member, which contains a handle to a small icon associated with the window class.typedef struct _WNDCLASSEX { // wc

UINT cbSize;
UINT style;
WNDPROC lpfnWndProc;
intcbClsExtra;
intcbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
HICON hIconSm;

} WNDCLASSEX;
MemberscbSize

Specifies the size, in bytes, of this structure. Set this member to sizeof(WINDOWCLASSEX).
Be sure to set this member before calling the GetClassInfoEx function.

style

Specifies the class style(s). Styles can be combined by using the bitwise OR (|) operator. This
member can be any combination of the following values:

Value Action
CS_BYTEALIGNCLIENT Aligns the window's client area on the

byte boundary (in the x direction) to
enhance performance during drawing
operations. This style affects the width
of the window and its horizontal position
on the display.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in
the x direction) to enhance performance
during operations that involve moving or
sizing the window. This style affects the
width of the window and its horizontal
position on the display.

CS_CLASSDC Allocates one device context to be
shared by all windows in the class.
Because window classes are process
specific, it is possible for multiple
threads of a multithreaded application to
create a window of the same class. It is
also possible for the threads to attempt
to use the device context
simultaneously. When this happens, the
operating system allows only one of the
threads to successfully finish its drawing
operation.

CS_DBLCLKS Sends double-click messages to the
window procedure when the user
double-clicks the mouse while the
cursor is within a window belonging to
the class.

CS_GLOBALCLASS Allows an application to create a
window of the class regardless of the
value of the hInstance parameter
passed to the CreateWindow or
CreateWindowEx function. If you do
not specify this style, the hInstance
parameter passed to the
CreateWindow (or CreateWindowEx)
function must be the same as the
hInstance parameter passed to the
RegisterClass function.
You can create a global class by
creating the window class in a dynamic-
link library (DLL) and listing the name of
the DLL in the registry under the
following keys:
HKEY_LOCAL_MACHINE\Software
\Microsoft\Windows NT\
CurrentVersion\Windows\
APPINIT_DLLS
Whenever a process starts, the
operating system loads the specified
DLLs in the context of the newly started
process before calling the main function
in that process. The DLL must register
the class during its initialization
procedure and must specify the
CS_GLOBALCLASS style.

CS_HREDRAW Redraws the entire window if a
movement or size adjustment changes

the width of the client area.
CS_NOCLOSE Disables the Close command on the

System menu.
CS_OWNDC Allocates a unique device context for

each window in the class.
CS_PARENTDC Sets the clipping region of the child

window to that of the parent window so
that the child can draw on the parent. A
window with the CS_PARENTDC style
bit receives a regular device context
from the system's cache of device
contexts. It does not give the child the
parent's device context or device
context settings. Specifying
CS_PARENTDC enhances an
application's performance.

CS_SAVEBITS Saves, as a bitmap, the portion of the
screen image obscured by a window.
Windows uses the saved bitmap to re-
create the screen image when the
window is removed. Windows displays
the bitmap at its original location and
does not send WM_PAINT messages to
windows obscured by the window if the
memory used by the bitmap has not
been discarded and if other screen
actions have not invalidated the stored
image. This style is useful for small
windows (for example, menus or dialog
boxes) that are displayed briefly and
then removed before other screen
activity takes place. This style increases
the time required to display the window,
because the operating system must first
allocate memory to store the bitmap.

CS_VREDRAW Redraws the entire window if a
movement or size adjustment changes
the height of the client area.

lpfnWndProc

Points to the window procedure. For more information, see WindowProc.
cbClsExtra

Specifies the number of extra bytes to allocate following the window-class structure. The
operating system initializes the bytes to zero.

cbWndExtra

Specifies the number of extra bytes to allocate following the window instance. The operating
system initializes the bytes to zero. If an application uses the WNDCLASS structure to
register a dialog box created by using the CLASS directive in the resource file, it must set this
member to DLGWINDOWEXTRA.

hInstance

Identifies the instance that the window procedure of this class is within.
hIcon

Identifies the class icon. This member must be a handle of an icon resource. If this member is
NULL, an application must draw an icon whenever the user minimizes the application's
window.

hCursor

Identifies the class cursor. This member must be a handle of a cursor resource. If this member
is NULL, an application must explicitly set the cursor shape whenever the mouse moves into
the application's window.

hbrBackground

Identifies the class background brush. This member can be a handle to the physical brush to
be used for painting the background, or it can be a color value. A color value must be one of
the following standard system colors (the value 1 must be added to the chosen color). If a
color value is given, you must convert it to one of the following HBRUSH types:
COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_WINDOWFRAME
COLOR_WINDOWTEXT
The operating system automatically deletes class background brushes when the class is
freed. An application should not delete these brushes, because a class may be used by
multiple instances of an application.
When this member is NULL, an application must paint its own background whenever it is
requested to paint in its client area. To determine whether the background must be painted,
an application can either process the WM_ERASEBKGND message or test the fErase
member of the PAINTSTRUCT structure filled by the BeginPaint function.

lpszMenuName

Points to a null-terminated character string that specifies the resource name of the class
menu, as the name appears in the resource file. If you use an integer to identify the menu,
use the MAKEINTRESOURCE macro. If this member is NULL, windows belonging to this
class have no default menu.

lpszClassName

Points to a null-terminated string or is an atom. If this parameter is an atom, it must be a
global atom created by a previous call to the GlobalAddAtom function. The atom, a 16-bit
value, must be in the low-order word of lpszClassName; the high-order word must be zero.
If lpszClassName is a string, it specifies the window class name.

hIconSm

Handle to a small icon that is associated with the window class. If this member is NULL, the
system searches the icon resource specified by the hIcon member for an icon of the
appropriate size to use as the small icon.See AlsoGetClassInfoEx, RegisterClassEx, WNDCLASS

XFORM
The XFORM structure specifies a world-space to page-space transformation.typedef struct _XFORM { // xfrm

FLOAT eM11;
FLOAT eM12;
FLOAT eM21;
FLOAT eM22;
FLOAT eDx;
FLOAT eDy;

} XFORM;
MemberseM11

Specifies the following:
Operation Meaning
Scaling Horizontal scaling component
Rotation Cosine of rotation angle
Reflection Horizontal component

eM12

Specifies the following:
Operation Meaning
Shear Horizontal proportionality constant
Rotation Sine of the rotation angle

eM21

Specifies the following:
Operation Meaning
Shear Vertical proportionality constant
Rotation Negative sine of the rotation angle

eM22

Specifies the following:
Operation Meaning
Scaling Vertical scaling component
Rotation Cosine of rotation angle
Reflection Vertical reflection component

eDx

Specifies the horizontal translation component.
eDy

Specifies the vertical translation component.RemarksThe following list describes how the members are used for each operation:

Operation eM11 eM12 eM21 eM22

Rotation Cosine Sine Negative sine Cosine
Scaling Horizontal

scaling
component

Nothing Nothing Vertical
Scaling
Component

Shear Nothing Horizontal
Proportionality
Constant

Vertical
Proportionality
Constant

Nothing

Reflection Horizontal
Reflection
Component

Nothing Nothing Vertical
Reflection
Component

See AlsoExtCreateRegion, GetWorldTransform, ModifyWorldTransform, PlayEnhMetaFile,
SetWorldTransform

ACCESS_MODE
[New - Windows NT]

The ACCESS_MODE enumeration type contains values that indicate how the access rights in an
EXPLICIT_ACCESS structure apply to the trustee. Functions such as SetEntriesInAcl and
GetExplicitEntriesFromAcl use these values to set or retrieve information in an access-control
entry (ACE).typedef enum _ACCESS_MODE
{

NOT_USED_ACCESS = 0,
GRANT_ACCESS,
SET_ACCESS,
DENY_ACCESS,
REVOKE_ACCESS,
SET_AUDIT_SUCCESS,
SET_AUDIT_FAILURE

} ACCESS_MODE;Enumerator Meaning
GRANT_ACCESS An input flag that creates an

ACCESS_ALLOWED_ACE. The new ACE
combines the specified rights with any
existing allowed or denied rights of the
trustee.

SET_ACCESS Indicates an ACCESS_ALLOWED_ACE
that allows the specified rights.
On input, this flag discards any existing
access-control information for the trustee.

DENY_ACCESS Indicates an ACCESS_DENIED_ACE that
denies the specified rights.
On input, this flag denies the specified rights
in addition to any currently denied rights of
the trustee. It also modifies or deletes any
existing ACCESS_ALLOWED_ACE for the
trustee that allows the specified rights.

REVOKE_ACCESS An input flag that removes all existing
ACCESS_DENIED_ACE,
ACCESS_ALLOWED_ACE, or
SYSTEM_AUDIT_ACEs for the specified
trustee.

SET_AUDIT_SUCCESSIndicates a SYSTEM_AUDIT_ACE that
generates audit messages for successful
attempts to use the specified access rights.
You can combine this value with
SET_AUDIT_FAILURE.
On input, this flag combines the specified
rights with any existing audited access rights
for the trustee.

SET_AUDIT_FAILURE Indicates a SYSTEM_AUDIT_ACE that
generates audit messages for failed attempts
to use the specified access rights. You can
combine this value with
SET_AUDIT_SUCCESS.
On input, this flag combines the specified
rights with any existing audited access rights
for the trustee.

See AlsoACCESS_DENIED_ACE, ACCESS_ALLOWED_ACE, ACE, EXPLICIT_ACCESS,
GetExplicitEntriesFromAcl, SetEntriesInAcl, SYSTEM_AUDIT_ACE

ACL_INFORMATION_CLASS
The ACL_INFORMATION_CLASS enumeration type contains values that specify the type of
information being assigned to or retrieved from an access-control list (ACL).typedef enum _ACL_INFORMATION_CLASS { // aclic

AclRevisionInformation = 1, // ACL revision information
AclSizeInformation // ACL size information

} ACL_INFORMATION_CLASS;
See AlsoACL, ACL_REVISION_INFORMATION, ACL_SIZE_INFORMATION, GetAclInformation,

SetAclInformation

FD_FLAGS
The FD_FLAGS enumeration type defines the flags used with the dwFlags member of the
FILEDESCRIPTOR structure.typedef enum {

FD_CLSID = 0x0001,
FD_SIZEPOINT = 0x0002,
FD_ATTRIBUTES = 0x0004,
FD_CREATETIME = 0x0008,
FD_ACCESSTIME = 0x0010,
FD_WRITESTIME = 0x0020,
FD_FILESIZE = 0x0040,
FD_LINKUI = 0x8000,

} FD_FLAGS;

GET_FILEEX_INFO_LEVELS
[New - Windows NT]

The GET_FILEEX_INFO_LEVELS enumeration type contains values that are used with the
GetFileAttributesEx function to specify the type of attribute information to obtain.typedef enum _GET_FILEEX_INFO_LEVELS {

GetFileExInfoStandard
} GET_FILEEX_INFO_LEVELS ;Currently, one enumerator value is defined:

Enumerator Meaning

GetFileExInfoStandard The GetFileAttributesEx function
obtains a standard set of attribute
information. The data is returned in a
WIN32_FILE_ATTRIBUTE_DATA
structure.

See AlsoGetFileAttributesEx, WIN32_FILE_ATTRIBUTE_DATA

MEDIA_TYPE
The MEDIA_TYPE enumeration type contains values that specify various forms of device media.
The comments explain the enumerators.typedef enum _MEDIA_TYPE {

Unknown, // Format is unknown
F5_1Pt2_512, // 5.25", 1.2MB, 512 bytes/sector
F3_1Pt44_512, // 3.5", 1.44MB, 512 bytes/sector
F3_2Pt88_512, // 3.5", 2.88MB, 512 bytes/sector
F3_20Pt8_512, // 3.5", 20.8MB, 512 bytes/sector
F3_720_512, // 3.5", 720KB, 512 bytes/sector
F5_360_512, // 5.25", 360KB, 512 bytes/sector
F5_320_512, // 5.25", 320KB, 512 bytes/sector
F5_320_1024, // 5.25", 320KB, 1024 bytes/sector
F5_180_512, // 5.25", 180KB, 512 bytes/sector
F5_160_512, // 5.25", 160KB, 512 bytes/sector
RemovableMedia, // Removable media other than floppy
FixedMedia // Fixed hard disk media

} MEDIA_TYPE;
RemarksThe MediaType member of the DISK_GEOMETRY data structure is of type MEDIA_TYPE. The

DeviceIoControl function receives a DISK_GEOMETRY structure in response to an
IOCTL_DISK_GET_DRIVE_GEOMETRY device I/O operation. The DeviceIoControl function
receives an array of DISK_GEOMETRY structures in response to an
IOCTL_DISK_GET_MEDIA_TYPES device I/O operation.See AlsoDeviceIoControl, DISK_GEOMETRY, IOCTL_DISK_GET_DRIVE_GEOMETRY,
IOCTL_DISK_GET_MEDIA_TYPES

MULTIPLE_TRUSTEE_OPERATION
[New - Windows NT]

The MULTIPLE_TRUSTEE_OPERATION enumeration type contains values that indicate whether
a TRUSTEE structure is an impersonate trustee.typedef enum _MULTIPLE_TRUSTEE_OPERATION
{

NO_MULTIPLE_TRUSTEE,
TRUSTEE_IS_IMPERSONATE,

} MULTIPLE_TRUSTEE_OPERATION;
Enumerator Meaning

NO_MULTIPLE_TRUSTEE The trustee is not an impersonate
trustee.

TRUSTEE_IS_IMPERSONATEThe trustee is an impersonate trustee.
The pMultipleTrustee member of the
TRUSTEE structure points to a trustee
for a server that can impersonate the
client trustee.

See AlsoTRUSTEE

RASCONNSTATE
The RASCONNSTATE enumeration type contains values that specify the states that may occur
during a RAS connection operation. If you use the RasDial function to establish a RAS
connection, you can specify a window, or a RasDialFunc, RasDialFunc1, or RasDialFunc2
callback function to receive notification messages that report the current connection state. You
can also use the RasGetConnectStatus function to get the connection state for a specified
connection.typedef enum _RASCONNSTATE {

RASCS_OpenPort = 0,
RASCS_PortOpened,
RASCS_ConnectDevice,
RASCS_DeviceConnected,
RASCS_AllDevicesConnected,
RASCS_Authenticate,
RASCS_AuthNotify,
RASCS_AuthRetry,
RASCS_AuthCallback,
RASCS_AuthChangePassword,
RASCS_AuthProject,
RASCS_AuthLinkSpeed,
RASCS_AuthAck,
RASCS_ReAuthenticate,
RASCS_Authenticated,
RASCS_PrepareForCallback,
RASCS_WaitForModemReset,
RASCS_WaitForCallback,
RASCS_Projected,

#if (WINVER >= 0x400)
RASCS_StartAuthentication, // Windows 95 only
RASCS_CallbackComplete, // Windows 95 only
RASCS_LogonNetwork, // Windows 95 only

#endif
RASCS_SubEntryConnected,
RASCS_SubEntryDisconnected,
RASCS_Interactive = RASCS_PAUSED,
RASCS_RetryAuthentication,
RASCS_CallbackSetByCaller,
RASCS_PasswordExpired,
RASCS_Connected = RASCS_DONE,
RASCS_Disconnected

} RASCONNSTATE ;The enumerator values are listed here in the general order in which the connection states occur.
However, you should not write code that depends on the order or occurrence of particular
RASCONNSTATE connection states, because this may vary between platforms.

Enumerator Meaning

RASCS_OpenPort The communication port is about to be
opened.

RASCS_PortOpened The communication port has been
opened successfully.

RASCS_ConnectDevice A device is about to be connected.
RasGetConnectStatus can be called to
determine the name and type of the
device being connected.

RASCS_DeviceConnected A device has connected successfully.
RasGetConnectStatus can be called to
determine the name and type of the
device being connected.
For a simple modem connection,
RASCS_ConnectDevice and
RASCS_DeviceConnected will be
called only once. For a dial-up X.25 PAD
connection, the pair will be called first for
the modem, then for the PAD. If a
preconnect switch is configured, the pair
will be called for the switch before any
other devices connect. Likewise, the pair
will be called for a postconnect switch
after any other devices connect.
Windows 95: Note that Windows 95
does not currently support multistage
connections such as the X.25 PAD
connection described earlier.

RASCS_AllDevicesConnectedAll devices in the device chain have
successfully connected. At this point, the
physical link is established.

RASCS_Authenticate The authentication process is starting.
Remote access does not allow the
remote client to generate any traffic on
the LAN until authentication has been
successfully completed.
Remote access authentication on a
Windows NT or Windows 95 server
consists of:

· Validating the user name/
password on the specified domain.

· Projecting the client onto the
LAN. This means that the remote
access server does what is
necessary to send and receive data
on the LAN on behalf of the client.
For example, the remote access
server might need to add a NetBIOS
name that corresponds to the
client's computer name.

· Call-back processing in which
the client hangs up and the server
calls back. (The user needs special
permissions on the remote access
server for this.)

· Calculating the link speed. This
is necessary to correctly set
transport time-outs to match the
relatively slow speed of the remote
link.

RASCS_AuthNotify An authentication event has occurred. If
dwError is zero, this event will be
immediately followed by one of the more
specific authentication states following. If
dwError is nonzero, authentication has
failed, and the error value indicates why.

RASCS_AuthRetry The client has requested another
validation attempt with a new user
name/password/domain. This state does
not occur in Windows NT version 3.1.

RASCS_AuthCallback The remote access server has
requested a callback number. This
occurs only if the user has "Set By
Caller" callback privilege on the server.

RASCS_AuthChangePasswordThe client has requested to change the
password on the account. This state
does not occur in Windows NT version
3.1.

RASCS_AuthProject The projection phase is starting.
RASCS_AuthLinkSpeed The link-speed calculation phase is

starting.
RASCS_AuthAck An authentication request is being

acknowledged.
RASCS_ReAuthenticate Reauthentication (after callback) is

starting.
RASCS_Authenticated The client has successfully completed

authentication.
RASCS_PrepareForCallbackThe line is about to disconnect in

preparation for callback.
RASCS_WaitForModemResetThe client is delaying in order to give the

modem time to reset itself in preparation
for callback.

RASCS_WaitForCallback The client is waiting for an incoming call
from the remote access server.

RASCS_Projected This state occurs after the
RASCS_AuthProject state. It indicates
that projection result information is
available. You can access the projection
result information by calling
RasGetProjectionInfo.

RASCS_StartAuthenticationWindows 95 only: Indicates that user
authentication is being initiated or
retried.

RASCS_CallbackComplete Windows 95 only: Indicates that the
client has been called back and is about
to resume authentication.

RASCS_LogonNetwork Windows 95 only: Indicates that the
client is logging on to the network.

RASCS_SubEntryConnectedWhen dialing a multilink phone-book
entry, this state indicates that a subentry
has been connected during the dialing
process. The dwSubEntry parameter of
a RasDialFunc2 callback function
indicates the index of the subentry.
When the final state of all subentries in
the phone-book entry has been
determined, the connection state is
RASCS_Connected if one or more
subentries have been connected
successfully.

RASCS_SubEntryDisconnectedWhen dialing a multilink phone-book
entry, this state indicates that a subentry
has been disconnected during the
dialing process. The dwSubEntry
parameter of a RasDialFunc2 callback
function indicates the index of the
subentry.

RASCS_Interactive This state corresponds to the terminal
state supported by RASPHONE.EXE.
This state does not occur in Windows
NT version 3.1.

RASCS_RetryAuthenticationThis state corresponds to the retry
authentication state supported by
RASPHONE.EXE. This state does not
occur in Windows NT version 3.1.

RASCS_CallbackSetByCallerThis state corresponds to the callback
state supported by RASPHONE.EXE.
This state does not occur in Windows
NT version 3.1.

RASCS_PasswordExpired This state corresponds to the change
password state supported by
RASPHONE.EXE. This state does not
occur in Windows NT version 3.1.

RASCS_Connected Successful connection.
RASCS_Disconnected Disconnection or failed connection.
RemarksThe connection process states are divided into three classes: running states, paused states, and

terminal states.

An application can easily determine the class of a specific state by performing Boolean bit
operations with the RASCS_PAUSED and RASCS_DONE bitmasks. Here are some examples:fDoneState = (state & RASCS_DONE);
fPausedState = (state & RASCS_PAUSED);
fRunState = !(fDoneState || fPausedState);
See AlsoRasDial, RasGetConnectStatus, RasGetProjectionInfo, RASCONNSTATUS

RAS_PARAMS_FORMAT
[New - Windows NT]

The RAS_PARAMS_FORMAT enumeration type is used in the RAS_PARAMETERS structure to
indicate the type of data associated with a media-specific key.enum RAS_PARAMS_FORMAT {

ParamNumber = 0,
ParamString = 1

} ;Value Meaning
ParamNumber Indicates that the data associated with the key

is a number.
ParamString Indicates that the data associated with the key

is a string.
See AlsoRAS_PARAMETERS

RASPROJECTION
The RASPROJECTION enumeration type defines values that specify a particular authentication
protocol or Point-to-Point Protocol control protocol (PPP). An application passes a value of this
type to the RasGetProjectionInfo function to specify the protocol of interest.typedef enum _RASPROJECTION {

RASP_Amb = 0x10000,
RASP_PppNbf = 0x803F,
RASP_PppIpx = 0x802B,
RASP_PppIp = 0x8021
RASP_Slip = 0x20000

} RASPROJECTION ;Each of the RASPROJECTION enumerators has a corresponding data structure; the
RasGetProjectionInfo function returns the specified information in a structure of that type.

Value Meaning

RASP_Amb Specifies the Authentication Message Block
(AMB) authentication protocol. AMB is a
NetBIOS-based protocol used to authenticate
with downlevel remote access servers (all
those prior to Windows NT 3.5). The
corresponding data structure is a RASAMB.

RASP_PppNbf Specifies the NetBEUI Framer (NBF) protocol.
NBFCP is a PPP network control protocol
used to negotiate the parameters necessary to
ship NetBEUI packets on a WAN link. The
corresponding data structure is a
RASPPPNBF.

RASP_PppIpx Specifies the Internetwork Packet Exchange
(IPX) control protocol. IPXCP is a PPP
network control protocol used to negotiate the
parameters necessary to ship IPX packets on
a WAN link. The corresponding data structure
is a RASPPPIPX.

RASP_PppIp Specifies the Internet Protocol (IP) control
protocol. IPCP is a PPP network control
protocol used to negotiate the parameters
necessary to ship IP packets on a WAN link.
The corresponding data structure is a
RASPPPIP.

RASP_Slip Specifies the Serial Line Internet Protocol
(SLIP). SLIP is a framing protocol used
primarily in UNIX environments.

See AlsoRasGetProjectionInfo, RASAMB, RASPPPIP, RASPPPIPX, RASPPPNBF

SE_OBJECT_TYPE
[New - Windows NT]

The SE_OBJECT_TYPE enumeration type contains values that correspond to the types of Win32
objects that support security. The GetSecurityInfo, SetSecurityInfo, GetNamedSecurityInfo,
and SetNamedSecurityInfo functions use these values to indicate the type of object.typedef enum _SE_OBJECT_TYPE
{

SE_UNKNOWN_OBJECT_TYPE = 0,
SE_FILE_OBJECT,
SE_SERVICE,
SE_PRINTER,
SE_REGISTRY_KEY,
SE_LMSHARE,
SE_KERNEL_OBJECT,
SE_WINDOW_OBJECT

} SE_OBJECT_TYPE;Enumerator Meaning
SE_FILE_OBJECT Indicates a file or directory. The name string

that identifies a file or directory object can
be

· A relative path, such as "abc.dat" or
"..\abc.dat"

· An absolute path, such as "\abc.
dat", "c:\dir1\abc.dat", or "g:\
remotedir\abc.dat"

· A UNC name, such as "\\
machinename\sharename\abc.dat".

· A local file system root, such as "\\\
\.\\c:". Security set on a file system
root does not persist when the
system is restarted.

SE_SERVICE Indicates a Windows NT service. A service
object can be a local service, such as
"servicename"; or a remote service, such as
"\\machinename\servicename".

SE_PRINTER Indicates a printer. A printer object can be a
local printer, such as "printername"; or a
remote printer, such as "\\machinename\
printername".

SE_REGISTRY_KEY Indicates a registry key. A registry key
object can be in the local registry, such as
"CLASSES_ROOT\somepath"; or in a
remote registry, such as "\\machinename\
CLASSES_ROOT\somepath".
The names of registry keys must use the
following literal strings to identify the
predefined registry keys:
"CLASSES_ROOT", "CURRENT_USER",
"MACHINE", and "USERS".

SE_LMSHARE Indicates a Windows NT network share. A
share object can be local, such as
"sharename"; or remote, such as "\\
machinename\sharename".

SE_KERNEL_OBJECT Indicates a local kernel object, which can be
any of the following: a process, thread,
semaphore, event, mutex, file mapping, or
waitable timer. Only some kernel objects
can be identified by name.
Note that the GetSecurityInfo,
SetSecurityInfo, GetNamedSecurityInfo,
and SetNamedSecurityInfo functions do
not work with the following types of kernel
objects: access token, console screen
buffer, mailslot, named pipe, and
anonymous pipe.

SE_WINDOW_OBJECT Indicates a window station or desktop object
on the local computer.

See AlsoGetSecurityInfo, SetSecurityInfo, GetNamedSecurityInfo, SetNamedSecurityInfo

SECURITY_IMPERSONATION_LEVEL
The SECURITY_IMPERSONATION_LEVEL enumeration type contains values that specify
security impersonation levels. Security impersonation levels govern the degree to which a server
process can act on behalf of a client process.typedef enum _SECURITY_IMPERSONATION_LEVEL { // sil

SecurityAnonymous,
SecurityIdentification,
SecurityImpersonation,
SecurityDelegation

} SECURITY_IMPERSONATION_LEVEL;Value Meaning
SecurityAnonymous The server process cannot obtain identification

information about the client and it cannot
impersonate the client. It is defined with no
value given, and thus, by ANSI C rules,
defaults to a value of 0.

SecurityIdentification The server process can obtain information
about the client, such as security identifiers
and privileges, but it cannot impersonate the
client. This is useful for servers that export
their own objects ¾ for example, database
products that export tables and views. Using
the retrieved client-security information, the
server can make access-validation decisions
without being able to utilize other services
using the client's security context.

SecurityImpersonationThe server process can impersonate the
client's security context on its local system.
The server cannot impersonate the client on
remote systems.

SecurityDelegation Windows NT security does not support this
impersonation level.

RemarksImpersonation is the ability of a process to take on the security attributes of another process.See AlsoCreatePrivateObjectSecurity, DuplicateToken, DuplicateTokenEx, GetTokenInformation,
ImpersonateSelf, OpenThreadToken

SHCONTF
The SHCONTF enumeration type defines flags used with the IShellFolder::EnumObjects and
IShellFolder::SetNameOf methods.typedef enum tagSHCONTF {

SHCONTF_FOLDERS = 32, // for shell browser
SHCONTF_NONFOLDERS = 64, // for default view
SHCONTF_INCLUDEHIDDEN = 128, // for hidden or system objects

} SHCONTF;
See AlsoIShellFolder::EnumObjects, IShellFolder::SetNameOf

SHGNO
The SHGNO enumeration type defines flags used with the IShellFolder::GetDisplayNameOf and
IShellFolder::SetNameOf methods.typedef enum tagSHGDN {

SHGDN_NORMAL = 0,
SHGDN_INFOLDER = 1,
SHGDN_FORPARSING = 0x8000,

} SHGNO;
MembersSHGDN_NORMAL

Default display name that is suitable for a file object displayed by itself, as shown in the
following examples.

File system path Corresponding display name
C:\WINDOWS\FILE.TXT file
\\COMPUTER\SHARE share on computer
C:\ (where drive C has the
volume name My Drive)

My Drive (C)

SHGDN_INFOLDER
Display name that is suitable for a file object displayed within its respective folder, as
shown in the following examples.

File system path Corresponding display name
C:\WINDOWS\FILE.TXT file
\\COMP\SHARE user
C:\ (where drive C has the
volume name My Drive)

My Drive (C)

SHGDN_FORPARSING
Display name that can be passed to the ParseDisplayName method of the parent folder's
IShellFolder object.

File system path Corresponding display name
C:\WINDOWS\FILE.TXT C:\WINDOWS\FILE.TXT
\\COMP\SHARE \\COMP\SHARE
C:\ (where drive C has the
volume name My Drive)

C:\

See AlsoIShellFolder::GetDisplayNameOf, IShellFolder::SetNameOf, ParseDisplayName

SID_NAME_USE
The SID_NAME_USE enumeration type contains values that specify the type of a security
identifier (SID).typedef enum _SID_NAME_USE {

SidTypeUser = 1,
SidTypeGroup,
SidTypeDomain,
SidTypeAlias,
SidTypeWellKnownGroup,
SidTypeDeletedAccount,
SidTypeInvalid,
SidTypeUnknown

} SID_NAME_USE;Value Meaning
SidTypeUser Indicates a user SID.
SidTypeGroup Indicates a group SID.
SidTypeDomain Indicates a domain SID.
SidTypeAlias Indicates an alias SID.
SidTypeWellKnownGroupIndicates an SID for a well-known group.
SidTypeDeletedAccount Indicates an SID for a deleted account.
SidTypeInvalid Indicates an invalid SID.
SidTypeUnknown Indicates an unknown SID type.
See AlsoLookupAccountName, LookupAccountSid

TOKEN_INFORMATION_CLASS
The TOKEN_INFORMATION_CLASS enumeration type contains values that specify the type of
information being assigned to or retrieved from an access token.typedef enum _TOKEN_INFORMATION_CLASS { // tic

TokenUser = 1,
TokenGroups,
TokenPrivileges,
TokenOwner,
TokenPrimaryGroup,
TokenDefaultDacl,
TokenSource,
TokenType,
TokenImpersonationLevel,
TokenStatistics

} TOKEN_INFORMATION_CLASS;
See AlsoGetTokenInformation, SetTokenInformation, TOKEN_CONTROL, TOKEN_DEFAULT_DACL,

TOKEN_GROUPS, TOKEN_OWNER, TOKEN_PRIMARY_GROUP, TOKEN_PRIVILEGES,
TOKEN_SOURCE, TOKEN_STATISTICS, TOKEN_TYPE, TOKEN_USER

TOKEN_TYPE
The TOKEN_TYPE enumeration type contains values that differentiate between a primary token
and an impersonation token.typedef enum tagTOKEN_TYPE { // tt

TokenPrimary = 1,
TokenImpersonation

} TOKEN_TYPE;
See AlsoGetTokenInformation, TOKEN_CONTROL, TOKEN_DEFAULT_DACL, TOKEN_GROUPS,

TOKEN_INFORMATION_CLASS, TOKEN_OWNER, TOKEN_PRIMARY_GROUP,
TOKEN_PRIVILEGES, TOKEN_SOURCE, TOKEN_STATISTICS, TOKEN_USER

TRUSTEE_FORM
[New - Windows NT]

The TRUSTEE_FORM enumeration type contains values that indicate how a TRUSTEE structure
identifies the trustee.typedef enum _TRUSTEE_FORM
{

TRUSTEE_IS_SID,
TRUSTEE_IS_NAME,

} TRUSTEE_FORM;
Enumerator Meaning

TRUSTEE_IS_SID The trustee is identified by a security
identifier (SID).

TRUSTEE_IS_NAME The trustee is identified by a name.
See AlsoTRUSTEE

TRUSTEE_TYPE
[New - Windows NT]

The TRUSTEE_TYPE enumeration type contains values that indicate the type of trustee identified
by a TRUSTEE structure.typedef enum _TRUSTEE_TYPE
{

TRUSTEE_IS_UNKNOWN,
TRUSTEE_IS_USER,
TRUSTEE_IS_GROUP,

} TRUSTEE_TYPE;Enumerator Meaning
TRUSTEE_IS_UNKNOWN The trustee type is unknown, but not

necessarily invalid. The functions that
use TRUSTEE structures do not validate
the trustee type information.

TRUSTEE_IS_USER The trustee account is a user account.
TRUSTEE_IS_GROUP The trustee account is a group account.
See AlsoTRUSTEE

Animate_Close
The Animate_Close macro closes an AVI clip and displays its first frame in an animation control.
You can use this macro or explicitly send the ACM_OPEN message.

BOOL Animate_Close(
HWND hwnd

);Parametershwnd
Handle to the animation control.

Return ValuesThe Animate_Close macro always returns FALSE.RemarksYou can use Animate_Close to close an .AVI file or AVI resource that was previously opened for
the specified animation control.

The Animate_Close macro is defined in COMMCTRL.H.See AlsoACM_OPEN, Animate_Open, MAKEINTRESOURCE

Animate_Create
The Animate_Create macro creates an animation control. Animate_Create calls the
CreateWindow function.

HWND Animate_Create(
HWND hwndP,
UINT id,
DWORD dwStyle,
HINSTANCE hInstance

);ParametershwndP
Handle to the parent window.

id
Child window identifier of the animation control.

dwStyle
Window styles. For a list of the animation-control style values, see Animation Control Styles.

hInstance
Handle to the instance of the module that is creating the animation control.

Return ValuesReturns the handle to the animation control.RemarksThe Animate_Create macro sets the width and height of the animation control to zero if the
ACS_CENTER style is specified. If the ACS_CENTER style is not specified, Animate_Create
sets the width and height based on the dimensions of a frame in the AVI clip.See AlsoCreateWindow

Animate_Open
The Animate_Open macro opens an AVI clip and displays its first frame in an animation control.
You can use this macro or explicitly send the ACM_OPEN message.

BOOL Animate_Open(
hwnd,
lpszName

);Parametershwnd
Handle to the animation control.

lpszName
Pointer to a buffer that contains the path of the .AVI file or the name of an AVI resource.
Alternatively, this parameter can consist of the AVI resource identifier in the low-order word
and zero in the high-order word. To create this value, use the MAKEINTRESOURCE macro.
The control loads an AVI resource from the module specified by the instance handle passed
to the CreateWindow function, the Animate_Create macro, or the dialog box creation
function that created the control.
The AVI file or resource specified by lpszName must not contain audio. It must be silent.
If this parameter is NULL, the system closes the .AVI file that was previously opened for the
specified animation control, if any.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksYou can only open silent AVI clips. AVI files or resources containing audio will not load.
ACM_OPEN and Animate_Open fail if lpszSource specifies a non-silent AVI clip.

You can use Animate_Close to close an .AVI file or AVI resource that was previously opened for
the specified animation control.

The Animate_Open macro is defined in COMMCTRL.H.See AlsoACM_OPEN, Animate_Close, MAKEINTRESOURCE

Animate_Play
The Animate_Play macro plays an AVI clip in an animation control. The control plays the clip in
the background while the thread continues executing. You can use this macro or explicitly send
the ACM_PLAY message.

BOOL Animate_Play(
hwndAnim,
wFrom,
wTo,
cRepeat

);ParametershwndAnim
Handle to the animation control in which to play the AVI clip.

wFrom
Zero-based index of the frame where playing begins. The value must be less than 65,536. A
value of zero means begin with the first frame in the AVI clip.

wTo
Zero-based index of the frame where playing ends. The value must be less than 65,536. A
value of - 1 means end with the last frame in the AVI clip.

cRepeat
Number of times to replay the AVI clip. A value of - 1 means replay the clip indefinitely.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksYou can use Animate_Seek to direct the animation control to display a particular frame of the AVI
clip.

The Animate_Play macro is defined in COMMCTRL.H.See AlsoACM_PLAY, Animate_Seek

Animate_Seek
The Animate_Seek macro directs an animation control to display a particular frame of an AVI clip.
The control displays the clip in the background while the thread continues executing. You can use
this macro or explicitly send the ACM_PLAY message.

BOOL Animate_Seek(
hwndAnim,
wFrame

);ParametershwndAnim
Handle to the animation control in which to display the AVI frame.

wFrame
Zero-based index of the frame to display.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksThe Animate_Seek macro is defined in COMMCTRL.H.See AlsoACM_PLAY, Animate_Play

Animate_Stop
The Animate_Stop macro stops playing an AVI clip in an animation control. You can use this
macro or explicitly send the ACM_STOP message.

BOOL Animate_Stop(
hwnd

);Parametershwnd
Handle to the animation control.

Return ValuesIf the operation succeeds, the return value is a nonzero value.

If the operation fails, the return value is zero.RemarksThe Animate_Stop macro is defined in COMMCTRL.H.See AlsoACM_STOP

CMYK
The CMYK macro creates a CMYK color value by combining the specified cyan, magenta, yellow,
and black values.

COLORREF CMYK(
c,
m,
y,
k

);See AlsoGetCValue, GetMValue, GetKValue, GetYValue

FORWARD_WM_NOTIFY
The FORWARD_WM_NOTIFY macro sends or posts the WM_NOTIFY message.

VOID FORWARD_WM_NOTIFY(
hwnd,
idFrom,
pnmhdr,
fn

);Parametershwnd
Handle to the window that receives the WM_NOTIFY message.

idFrom
Identifier of the control sending the message.

pnmhdr
Pointer to an NMHDR structure that contains the notification code and additional information.
For some notification messages, this parameter points to a larger structure that has the
NMHDR structure as its first member.

fn
Function that sends or posts the WM_NOTIFY message. This parameter can be either the
SendMessage or PostMessage function.

Return ValuesReturns a value whose meaning depends on the fn parameter.RemarksThe FORWARD_WM_NOTIFY macro is defined as follows:#define FORWARD_WM_NOTIFY(hwnd, idFrom, pnmhdr, fn) \
(void)(fn)((hwnd), WM_NOTIFY, (WPARAM)(int)(id), \
(LPARAM)(NMHDR FAR*)(pnmhdr))

See AlsoNMHDR, PostMessage, SendMessage, WM_NOTIFY

GetBValue
The GetBValue macro retrieves an intensity value for the blue component of a 32-bit red, green,
blue (RGB) value.

BYTE GetBValue(
WORD rgb // 32-bit RGB value

);Parametersrgb
Specifies an RGB color value.

Return ValuesThe return value is the intensity of the blue component of the specified RGB color.RemarksThe intensity value is in the range 0 through 255.

The GetBValue macro is defined as follows:#define GetBValue(rgb) ((BYTE) ((rgb) >> 16))
See AlsoGetGValue, GetRValue, PALETTEINDEX, PALETTERGB, RGB

GetCValue
The GetCValue macro retrieves the cyan color value from a CMYK color value.

BYTE GetCValue(
cmyk

);See AlsoCMYK, GetKValue, GetMValue, GetYValue

GetGValue
The GetGValue macro retrieves an intensity value for the green component of a 32-bit red, green,
blue (RGB) value.

BYTE GetGValue(
DWORD rgb // 32-bit RGB value

);Parametersrgb
Specifies an RGB color value.

Return ValuesThe return value is the intensity of the green component of the specified RGB color.RemarksThe intensity value is in the range 0 through 255.

The GetGValue macro is defined as follows:#define GetGValue(rgb) ((BYTE) (((WORD) (rgb)) >> 8))
See AlsoGetBValue, GetRValue, PALETTEINDEX, PALETTERGB, RGB

GetKValue
The GetKValue macro retrieves the black color value from a CMYK color value.

BYTE GetKValue(
cmyk

);See AlsoCMYK, GetCValue, GetMValue, GetYValue

GetMValue
The GetMValue macro retrieves the magenta color value from a CMYK color value.

BYTE GetMValue(
cmyk

);See AlsoCMYK, GetCValue, GetKValue, GetYValue

GetRValue
The GetRValue macro retrieves an intensity value for the red component of a 32-bit red, green,
blue (RGB) value.

BYTE GetRValue(
DWORD rgb // 32-bit RGB value

);Parametersrgb
Specifies an RGB color value.

Return ValuesThe return value is the intensity of the red component of the specified RGB color.RemarksThe intensity value is in the range 0 through 255.

The GetRValue macro is defined as follows:#define GetRValue(rgb) ((BYTE) (rgb))
See AlsoGetBValue, GetGValue, PALETTEINDEX, PALETTERGB, RGB

GetYValue
The GetYValue macro retrieves the yellow color value from a CMYK color value.

BYTE GetYValue(
cmyk

);See AlsoCMYK, GetCValue, GetMValue, GetKValue

HANDLE_WM_NOTIFY
The HANDLE_WM_NOTIFY macro calls a function that processes the WM_NOTIFY message.

HANDLE_WM_NOTIFY(
hwnd,
wParam,
lParam,
fn

);Parametershwnd
Handle to the window that received WM_NOTIFY.

wParam
First parameter of WM_NOTIFY.

lParam
Second parameter of WM_NOTIFY.

fn
Function that is to process WM_NOTIFY.

Return ValuesReturns a value whose meaning depends on the fn parameter.RemarksThe HANDLE_WM_NOTIFY macro is defined as follows:#define HANDLE_WM_NOTIFY(hwnd, wParam, lParam, fn) \
(fn)((hwnd), (int)(wParam), (NMHDR FAR*)(lParam))

See AlsoWM_NOTIFY

HasOverlappedIoCompleted
[New - Windows NT]

The HasOverlappedIoCompleted macro provides a high performance test operation that can be
used to poll for the completion of an outstanding I/O operation.

BOOL HasOverlappedIoCompleted(

LPOVERLAPPED lpOverlapped
);
ParameterslpOverlapped

Points to an OVERLAPPED structure that was specified when the overlapped I/O operation
was started.

Return ValueReturns TRUE if the I/O operation has completed, and FALSE otherwise.RemarksTo cancel all pending asynchronous I/O operations, use the CancelIO function. This function only
cancels operations issued by the calling thread for the specified file handle. I/O operations that are
canceled complete with the error ERROR_OPERATION_ABORTED.

To get more details about a completed I/O operation, call the GetOverlappedResult or
GetQueuedCompletionStatus function.

The HasOverlappedIoCompleted macro is defined as follows:#define HasOverlappedIoCompleted(lpOverlapped) \
((lpOverlapped)->Internal != STATUS_PENDING)

See AlsoCancelIo, ConnectNamedPipe, DeviceIoControl, OVERLAPPED, ReadFile,
TransactNamedPipe, WaitCommEvent, WriteFile

Header_DeleteItem
The Header_DeleteItem macro deletes an item from a header control. You can use this macro or
explicitly send the HDM_DELETEITEM message.

BOOL Header_DeleteItem(
hwndHD,
index

);ParametershwndHD
Handle to the header control.

index
Index of the item to delete.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe Header_DeleteItem macro is defined as follows:#define Header_DeleteItem(hwndHD, index)\
(BOOL)SendMessage((hwndHD), HDM_DELETEITEM, (WPARAM)(int)(index), 0L)

See AlsoHDM_DELETEITEM

Header_GetItem
The Header_GetItem macro retrieves information about an item in a header control. You can use
this macro or explicitly send the HDM_GETITEM message.

BOOL Header_GetItem(
hwndHD,
index,
phdi

);ParametershwndHD
Handle to the header control.

index
Index of the item for which information is to be retrieved.

phdi
Pointer to an HD_ITEM structure. When the message is sent, the mask member indicates the
type of information being requested. When the message returns, the other members receive
the requested information. If the mask member specifies zero, the message returns TRUE but
copies no information to the structure.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe Header_GetItem macro is defined as follows:#define Header_GetItem(hwndHD, index, phdi) \
(BOOL)SendMessage((hwndHD), HDM_GETITEM, \
(WPARAM)(int)(index), (LPARAM)(HD_ITEM FAR*)(phdi))

See AlsoHD_ITEM, HDM_GETITEM

Header_GetItemCount
The Header_GetItemCount macro retrieves a count of the items in a header control. You can use
this macro or explicitly send the HDM_GETITEMCOUNT message.

int Header_GetItemCount(
hwndHD

);ParametershwndHD
Handle to the header control.

Return ValuesIf the operation succeeds, the return value is the number of items.

If the operation fails, the return value is - 1.RemarksThe Header_GetItemCount macro is defined as follows:#define Header_GetItemCount(hwndHD) \
(int)SendMessage((hwndHD), HDM_GETITEMCOUNT, 0, 0L)

See AlsoHDM_GETITEMCOUNT

Header_InsertItem
The Header_InsertItem macro inserts a new item into a header control. You can use this macro
or explicitly send the HDM_INSERTITEM message.

int Header_InsertItem(
hwndHD,
index,
phdi

);ParametershwndHD
Handle to the header control.

index
Index of the item after which the new item is to be inserted. The new item is inserted at the
end of the header control if index is greater than or equal to the number of items in the control.
If index is zero, the new item is inserted at the beginning of the header control.

phdi
Pointer to an HD_ITEM structure that contains information about the new item.

Return ValuesIf the operation succeeds, the return value is the index of the new item.

If the operation fails, the return value is - 1.RemarksThe Header_InsertItem macro is defined as follows:#define Header_InsertItem(hwndHD, index, phdi) \
(int)SendMessage((hwndHD), HDM_INSERTITEM, (WPARAM)(int)(index), \
(LPARAM)(const HD_ITEM FAR*)(phdi))

See AlsoHDM_INSERTITEM, HD_ITEM

Header_Layout
The Header_Layout macro retrieves the size and position of a header control within a given
rectangle. This macro is used to determine the appropriate dimensions for a new header control
that is to occupy the given rectangle. You can use this macro or explicitly send the HDM_LAYOUT
message.

BOOL Header_Layout(
hwndHD,
playout

);ParametershwndHD
Handle to the header control.

playout
Pointer to an HD_LAYOUT structure. The prc member specifies the coordinates of a
rectangle, and the pwpos member receives the size and position for the header control within
the rectangle.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe Header_Layout macro is defined as follows:#define Header_Layout(hwndHD, playout) \
(BOOL)SendMessage((hwndHD), HDM_LAYOUT, 0, \
(LPARAM)(HD_LAYOUT FAR*)(playout))

See AlsoHD_LAYOUT, HDM_LAYOUT

Header_SetItem
The Header_SetItem macro sets the attributes of the specified item in a header control. You can
use this macro or explicitly send the HDM_SETITEM message.

BOOL Header_SetItem(
hwndHD,
index,
phdi

);ParametershwndHD
Handle to the header control.

index
Index of the item whose attributes are to be changed.

phdi
Pointer to an HD_ITEM structure. When the HDM_SETITEM message is sent, the mask
member indicates the attributes to set. The other members specify new attributes.

Return ValuesIf the operation succeeds, the return value is TRUE.

If the operation fails, the return value is FALSE.RemarksThe HDN_ITEMCHANGING notification message is sent to the parent window before the item
attributes are changed. The parent window can return FALSE to prevent the changes, and in that
case, the Header_SetItem macro returns FALSE. If the parent window returns TRUE, the
changes are made and the parent window receives the HDN_ITEMCHANGED notification
message.

The Header_SetItem macro is defined as follows:#define Header_SetItem(hwndHD, index, phdi) \
(BOOL)SendMessage((hwndHD), HDM_SETITEM, \
(WPARAM)(int)(index), (LPARAM)(const HD_ITEM FAR*)(phdi))

See AlsoHD_ITEM, HDM_SETITEM, HDN_ITEMCHANGED, HDN_ITEMCHANGING

HIBYTE
The HIBYTE macro retrieves the high-order byte from the given 16-bit value.

BYTE HIBYTE(
WORD wValue // value from which high-order byte is retrieved

);ParameterswValue
Specifies the value to be converted.

Return ValuesThe return value is the high-order byte of the specified value.RemarksThe HIBYTE macro is defined as follows:#define HIBYTE(w) ((BYTE) (((WORD) (w) >> 8) & 0xFF))
See AlsoHIWORD, LOBYTE

HIWORD
The HIWORD macro retrieves the high-order word from the given 32-bit value.

WORD HIWORD(
DWORD dwValue // value from which high-order word is retrieved

);ParametersdwValue
Specifies the value to be converted.

Return ValuesThe return value is the high-order word of the specified value.RemarksThe HIWORD macro is defined as follows:#define HIWORD(l) ((WORD) (((DWORD) (l) >> 16) & 0xFFFF))
See AlsoHIBYTE, LOWORD

ImageList_AddIcon
The ImageList_AddIcon macro adds an icon or cursor to an image list. ImageList_AddIcon
calls the ImageList_ReplaceIcon function.

int ImageList_AddIcon(
HIMAGELIST himl, // handle to the image list
HICON hicon // handle to the icon or cursor

);Parametershiml
Handle to the image list. If this parameter identifies a masked image list, the macro copies
both the image and mask bitmaps of the icon or cursor. If this parameter identifies a
nonmasked image list, the macro copies only the image bitmap.

hicon
Handle to the icon or cursor that contains the bitmap and mask for the new image.

Return ValuesIf the macro succeeds, the return value is the index of the new image.

If the macro fails, the return value is - 1.RemarksBecause the system does not save hicon, you can destroy it after the macro returns if the icon or
cursor was created by the CreateIcon function. You do not need to destroy hicon if it was loaded
by the LoadIcon function; the system automatically frees an icon resource when it is no longer
needed.

The ImageList_AddIcon macro is defined as follows:#define ImageList_AddIcon(himl, hicon) ImageList_ReplaceIcon(himl, -
1, hicon)
See AlsoCreateIcon, ImageList_ReplaceIcon, LoadIcon

INDEXTOOVERLAYMASK
[Now Supported on Windows NT]

The INDEXTOOVERLAYMASK macro prepares the index of an overlay mask so that the
ImageList_Draw function can use it.

UINT INDEXTOOVERLAYMASK(
UINT iOverlay

);ParametersiOverlay
Index of an overlay mask.

RemarksThe INDEXTOOVERLAYMASK macro is defined as follows:#define INDEXTOOVERLAYMASK(i) ((i) << 8)

INDEXTOSTATEIMAGEMASK
[Now Supported on Windows NT]

The INDEXTOSTATEIMAGEMASK macro prepares the index of a state image so that a tree-
view control or list-view control can use the index to retrieve the state image for an item.

UINT INDEXTOSTATEIMAGEMASK(
UINT i

);Parametersi
Index of a state image.

RemarksThe INDEXTOSTATEIMAGEMASK macro is defined as follows:#define INDEXTOSTATEIMAGEMASK(i) ((i) << 12)

LANGIDFROMLCID
The LANGIDFROMLCID macro retrieves a language identifier from a locale identifier.

WORD LANGIDFROMLCID(
LCID lcid // locale identifier

);Parameterslcid
Specifies the locale identifier. This parameter may have been created by using the
MAKELCID macro.

Return ValuesThe return value is a language identifier.RemarksThe LANGIDFROMLCID macro is defined as follows:#define LANGIDFROMLCID(lcid) ((WORD) (lcid))
See AlsoMAKELANGID, MAKELCID, PRIMARYLANGID, SUBLANGID

ListView_Arrange
The ListView_Arrange macro arranges items in icon view. You can use this macro or explicitly
send the LVM_ARRANGE message.

BOOL ListView_Arrange(
HWND hwnd,
UINT code

);Parametershwnd
Handle to the list view control.

code
Specifies the alignment, which can be one of the following values:

Value Meaning
LVA_ALIGNLEFT Aligns items along the left edge of the

window.
LVA_ALIGNTOP Aligns items along the top edge of the

window.
LVA_DEFAULT Aligns items according to the list view

control's current alignment styles (the
default value).

LVA_SNAPTOGRID Snaps all icons to the nearest grid
position.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_ARRANGE

ListView_CreateDragImage
The ListView_CreateDragImage macro creates a drag image list for the specified item. You can
use this macro or explicitly send the LVM_CREATEDRAGIMAGE message.

HIMAGELIST ListView_CreateDragImage(
HWND hwnd,
int iItem,
LPPOINT lpptUpLeft

);Parametershwnd
Handle to the list view control.

iItem
Index of the item.

lpptUpLeft
Pointer to a POINT structure that receives the initial location of the upper-left corner of the
image, in view coordinates.

Return ValuesReturns the handle to the drag image list if successful or NULL otherwise.See AlsoLVM_CREATEDRAGIMAGE, POINT

ListView_DeleteAllItems
The ListView_DeleteAllItems macro removes all items from a list view control. You can use this
macro or explicitly send the LVM_DELETEALLITEMS message.

BOOL ListView_DeleteAllItems(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_DELETEALLITEMS

ListView_DeleteColumn
The ListView_DeleteColumn macro removes a column from a list view control. You can use this
macro or explicitly send the LVM_DELETECOLUMN message.

BOOL ListView_DeleteColumn(
HWND hwnd,
int iCol

);Parametershwnd
Handle to the list view control.

iCol
Index of the column to delete.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_DELETECOLUMN

ListView_DeleteItem
The ListView_DeleteItem macro removes an item from a list view control. You can use this
macro or explicitly send the LVM_DELETEITEM message.

BOOL ListView_DeleteItem(
HWND hwnd,
int iItem

);Parametershwnd
Handle to the list view control.

iItem
Index of the list view item to delete.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_DELETEITEM

ListView_EditLabel
The ListView_EditLabel macro begins in-place editing of the specified list view item's text. The
message implicitly selects and focuses the specified item. You can use this macro or explicitly
send the LVM_EDITLABEL message.

HWND ListView_EditLabel(
HWND hwnd,
int iItem

);Parametershwnd
Handle to the list view control.

iItem
Index of the list view item. To cancel editing, set iItem to - 1.

Return ValuesReturns the handle of the edit control that is used to edit the item text if successful or NULL
otherwise.RemarksWhen the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but you should not destroy it.

The control must have the focus before you send this message to the control. Focus can be set
using the SetFocus function.See AlsoLVM_EDITLABEL, WM_CANCELMODE, SetFocus

ListView_EnsureVisible
The ListView_EnsureVisible macro ensures that a list view item is entirely or at least partially
visible, scrolling the list view control if necessary. You can use this macro or explicitly send the
LVM_ENSUREVISIBLE message.

BOOL ListView_EnsureVisible(
HWND hwnd,
nt i,
BOOL fPartialOK

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

fPartialOK
Value specifying whether the item must be entirely visible. If this parameter is TRUE, no
scrolling occurs if the item is at least partially visible.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_ENSUREVISIBLE

ListView_FindItem
The ListView_FindItem macro searches for a list view item with the specified characteristics. You
can use this macro or explicitly send the LVM_FINDITEM message.

int ListView_FindItem(
HWND hwnd,
int iStart,
const LV_FINDINFO FAR* plvfi

);Parametershwnd
Handle to the list view control.

iStart
Index of the item to begin the search with or - 1 to start from the beginning. The specified item
is itself excluded from the search.

plvfi
Pointer to an LV_FINDINFO structure that contains information about what to search for.

Return ValuesReturns the index of the item if successful or - 1 otherwise.See AlsoLV_FINDINFO, LVM_FINDITEM

ListView_GetBkColor
The ListView_GetBkColor macro retrieves the background color of a list view control. You can
use this macro or explicitly send the LVM_GETBKCOLOR message.

COLORREF ListView_GetBkColor(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the background color of the list view control.See AlsoLVM_GETBKCOLOR

ListView_GetCallbackMask
The ListView_GetCallbackMask macro retrieves the callback mask for a list view control. You
can use this macro or explicitly send the LVM_GETCALLBACKMASK message.

UINT ListView_GetCallbackMask(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the callback mask.See AlsoLVM_GETCALLBACKMASK, LVM_SETCALLBACKMASK

ListView_GetColumn
The ListView_GetColumn macro retrieves the attributes of a list view control's column. You can
use this macro or explicitly send the LVM_GETCOLUMN message.

BOOL ListView_GetColumn(
HWND hwnd,
int iCol,
LV_COLUMN FAR* pcol

);Parametershwnd
Handle to the list view control.

iCol
Index of the column.

pcol
Pointer to an LV_COLUMN structure that specifies the information to retrieve and receives
information about the column. The mask member specifies which column attributes to
retrieve.
If the mask member specifies the LVCF_TEXT value, the pszText member must contain the
pointer to the buffer that receives the item text and the cchTextMax member must specify the
size of the buffer.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLV_COLUMN, LVM_GETCOLUMN

ListView_GetColumnWidth
The ListView_GetColumnWidth macro retrieves the width of a column in report or list view. You
can use this macro or explicitly send the LVM_GETCOLUMNWIDTH message.

int ListView_GetColumnWidth(
HWND hwnd,
int iCol

);Parametershwnd
Handle to the list view control.

iCol
Index of the column. This parameter is ignored in list view.

Return ValuesReturns the column width if successful or zero otherwise.See AlsoLVM_GETCOLUMNWIDTH

ListView_GetCountPerPage
The ListView_GetCountPerPage macro calculates the number of items that can fit vertically in
the visible area of a list view control when in list or report view. Only fully visible items are
counted. You can use this macro or explicitly send the LVM_GETCOUNTPERPAGE message.

int ListView_GetCountPerPage(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the number of fully-visible items if successful. If the current view is icon or small icon
view, the return value is the total number of items in the list view control.See AlsoLVM_GETCOUNTPERPAGE

ListView_GetEditControl
The ListView_GetEditControl macro retrieves the handle to the edit control being used to edit a
list view item's text. You can use this macro or explicitly send the LVM_GETEDITCONTROL
message.

HWND ListView_GetEditControl(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the handle to the edit control if successful or NULL otherwise.RemarksIf no label is being edited, the return value is NULL. The edit control is not created until after the
LVN_BEGINLABELEDIT notification message is sent.

When the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but you should not destroy it. To cancel
editing, you can send the list view control a WM_CANCELMODE message.

The list view item being edited is the currently focused item ¾ that is, the item in the focused
state. To find an item based on its state, use the LVM_GETNEXTITEM message.See AlsoLVN_BEGINLABELEDIT, LVM_GETEDITCONTROL, LVM_GETNEXTITEM,
WM_CANCELMODE

ListView_GetImageList
The ListView_GetImageList macro retrieves the handle to an image list used for drawing list
view items. You can use this macro or explicitly send the LVM_GETIMAGELIST message.

HIMAGELIST ListView_GetImageList(
HWND hwnd,
int iImageList

);Parametershwnd
Handle to the list view control.

iImageList
Image list to retrieve. This parameter can be one of the following values:

Value Meaning
LVSIL_NORMAL Image list with large icons
LVSIL_SMALL Image list with small icons
LVSIL_STATE Image list with state images

Return ValuesReturns the handle of the specified image list if successful or NULL otherwise.See AlsoLVM_GETIMAGELIST

ListView_GetISearchString
The ListView_GetISearchString macro retrieves the incremental search string of a list-view
control. You can use this macro or explicitly send the LVM_GETISEARCHSTRING message.

BOOL ListView_GetISearchString(
HWND hwnd,
LPSTR lpsz

);Parametershwnd
Handle to the list view control.

lpsz
Pointer to a buffer that receives the incremental search string.

Return ValuesReturns the number of characters in the incremental search string, or zero if the list-view control is
not in incremental search mode.RemarksThe incremental search string is the character sequence that the user types while the list view has
the input focus. Each time the user types a character, the system appends the character to the
search string and then searches for a matching item. If the system finds a match, it selects the
item and, if necessary, scrolls it into view.

A timeout period is associated with each character that the user types. If the timeout period
elapses before the user types another character, the incremental search string is reset.See AlsoLVM_GETISEARCHSTRING

ListView_GetItem
The ListView_GetItem macro retrieves some or all of a list view item's attributes. You can use
this macro or explicitly send the LVM_GETITEM message.

BOOL ListView_GetItem(
HWND hwnd,
LV_ITEM FAR *pitem

);Parametershwnd
Handle to the list view control.

pitem
Pointer to an LV_ITEM structure that specifies the information to retrieve and receives
information about the list view item.
When the LVM_GETITEM message is sent, the iItem and iSubItem members identify the
item or subitem to retrieve information about and the mask member specifies which attributes
to retrieve. For a list of possible values, see the description of the LV_ITEM structure.
If the mask member specifies the LVIF_TEXT value, the pszText member must contain the
pointer to the buffer that receives the item text and the cchTextMax member must specify the
size of the buffer.
If the mask member specifies the LVIF_STATE value, the stateMask member specifies which
item states are to be returned.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLV_ITEM, LVM_GETITEM

ListView_GetItemCount
The ListView_GetItemCount macro retrieves the number of items in a list view control. You can
use this macro or explicitly send the LVM_GETITEMCOUNT message.

int ListView_GetItemCount(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the number of items.See AlsoLVM_GETITEMCOUNT

ListView_GetItemPosition
The ListView_GetItemPosition macro retrieves the position of a list view item. You can use this
macro or explicitly send the LVM_GETITEMPOSITION message.

BOOL ListView_GetItemPosition(
HWND hwnd,
int i,
POINT FAR *ppt

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

ppt
Pointer to a POINT structure that receives the position of the item's upper-left corner, in view
coordinates.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_GETITEMPOSITION, POINT

ListView_GetItemRect
The ListView_GetItemRect macro retrieves the bounding rectangle for all or part of an item in the
current view. You can use this macro or explicitly send the LVM_GETITEMRECT message.

BOOL ListView_GetItemRect(
HWND hwnd,
int i,
RECT FAR *prc,
int code

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

prc
Pointer to a RECT structure that receives the bounding rectangle. When the
LVM_GETITEMRECT message is sent, the left member of this structure contains the value of
the code parameter.

code
Portion of the list view item for which to retrieve the bounding rectangle. This parameter can
be one of the following values:

Value Meaning
LVIR_BOUNDS Returns the bounding rectangle of the

entire item, including the icon and label.
LVIR_ICON Returns the bounding rectangle of the icon

or small icon.
LVIR_LABEL Returns the bounding rectangle of the item

text.
LVIR_SELECTBOUNDS Returns the union of the LVIR_ICON and

LVIR_LABEL rectangles, but excludes
columns in details view.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThis parameter is specified by the left member of the RECT structure pointed to by prc.See AlsoLVM_GETITEMRECT, RECT

ListView_GetItemSpacing
The ListView_GetItemSpacing macro determines the spacing between items in a list view
control. You can use this macro or explicitly send the LVM_GETITEMSPACING message.

DWORD ListView_GetItemSpacing(
HWND hwnd,
BOOL fSmall

);Parametershwnd
Handle to the list view control.

fSmall
View to retrieve the item spacing for. This parameter is TRUE for small icon view, or FALSE
for icon view.

Return ValuesReturns the amount of spacing between items.See AlsoLVM_GETITEMSPACING

ListView_GetItemState
The ListView_GetItemState macro retrieves the state of a list view item. You can use this macro
or explicitly send the LVM_GETITEMSTATE message.

UINT WINAPI ListView_GetItemState(
HWND hwnd,
int i,
UINT mask

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

mask
Mask that specifies which of the item's state flags to return.

Return ValuesReturns the item's state flags.See AlsoLVM_GETITEMSTATE

ListView_GetItemText
The ListView_GetItem macro retrieves the text of a list view item or subitem. You can use this
macro or explicitly send the LVM_GETITEMTEXT message.

void WINAPI ListView_GetItemText(
HWND hwnd,
int iItem,
int iSubItem,
LPSTR pszText,
int cchTextMax

);Parametershwnd
Handle to the list view control.

iItem
Index of the list view item.

iSubItem
Index of the subitem, or zero to retrieve the item label.

pszText
Pointer to the buffer that receives the item or subitem text.

cchTextMax
Size of the buffer, in bytes.

Return ValuesThe ListView_GetItemText macro does not return a value.

If you send the LVM_GETITEMTEXT message explicitly, it returns the length of the retrieved
string.See AlsoLV_ITEM, LVM_GETITEMTEXT

ListView_GetNextItem
The ListView_GetNextItem macro searches for a list view item that has the specified properties
and bears the specified relationship to a specified item. You can use this macro or explicitly send
the LVM_GETNEXTITEM message.

int ListView_GetNextItem(
HWND hwnd,
int iStart,
UINT flags

);Parametershwnd
Handle to the list view control.

iStart
Index of the item to begin the searching with, or - 1 to find the first item that matches the
specified flags. The specified item itself is excluded from the search.

flags
Geometric relation of the requested item to the specified item and, if specified, the state of the
requested item.
The geometric relation can be one of the following values:

Value Meaning
LVNI_ABOVE Searches for an item that is above the

specified item.
LVNI_ALL Searches for a subsequent item by index (the

default value).
LVNI_BELOW Searches for an item that is below the specified

item.
LVNI_TOLEFT Searches for an item to the left of the specified

item.
LVNI_TORIGHT Searches for an item to the right of the

specified item.

The state can be zero, or it can be one or more of the following values:
Value Meaning
LVNI_CUT The item has the LVIS_CUT state flag set.
LVNI_DROPHILITED The item has the LVIS_DROPHILITED state

flag set.
LVNI_FOCUSED The item has the LVIS_FOCUSED state flag

set.
LVNI_SELECTED The item has the LVIS_SELECTED state flag

set.

If an item does not have all of the specified state flags set, the search continues with
the next item.

Return ValuesReturns the index of the next item if successful or - 1 otherwise.See AlsoLVM_GETNEXTITEM

ListView_GetOrigin
The ListView_GetOrigin macro retrieves the current view origin for a list view control. You can
use this macro or explicitly send the LVM_GETORIGIN message.

BOOL ListView_GetOrigin(
HWND hwnd,
LPPOINT lpptOrg

);Parametershwnd
Handle to the list view control.

lpptOrg
Pointer to a POINT structure that receives the view origin.

Return ValuesReturns TRUE if successful or FALSE if the current view is list or report view.See AlsoLVM_GETORIGIN, POINT

ListView_GetSelectedCount
The ListView_GetSelectedCount macro determines the number of selected items in a list view
control. You can use this macro or explicitly send the LVM_GETSELECTEDCOUNT message.

UINT ListView_GetSelectedCount(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the number of selected items.See AlsoLVM_GETSELECTEDCOUNT

ListView_GetStringWidth
The ListView_GetStringWidth macro determines the width of a specified string, using the
specified list view control's current font. You can use this macro or explicitly send the
LVM_GETSTRINGWIDTH message.

int ListView_GetStringWidth(
HWND hwnd,
LPCSTR psz

);Parametershwnd
Handle to the list view control.

psz
Pointer to a null-terminated string.

Return ValuesReturns the string width if successful or zero otherwise.RemarksThe ListView_GetStringWidth macro returns the exact width, in pixels, of the specified string. If
you use the returned string width as the column width in a call to the ListView_SetColumnWidth
macro, the string will be truncated. To get the column width that can contain the string without
truncating it, you must add padding to the returned string width.See AlsoListView_SetColumnWidth, LVM_GETSTRINGWIDTH

ListView_GetTextBkColor
The ListView_GetTextBkColor macro retrieves the text background color of a list view control.
You can use this macro or explicitly send the LVM_GETTEXTBKCOLOR message.

COLORREF ListView_GetTextBkColor(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the background color of the text.See AlsoLVM_GETTEXTBKCOLOR

ListView_GetTextColor
The ListView_GetTextColor macro retrieves the text color of a list view control. You can use this
macro or explicitly send the LVM_GETTEXTCOLOR message.

COLORREF ListView_GetTextColor(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the text color.See AlsoLVM_GETTEXTCOLOR

ListView_GetTopIndex
The ListView_GetTopIndex macro retrieves the index of the topmost visible item when in list or
report view. You can use this macro or explicitly send the LVM_GETTOPINDEX message.

int ListView_GetTopIndex(
HWND hwnd

);Parametershwnd
Handle to the list view control.

Return ValuesReturns the index of the item if successful or zero if the list view control is in icon or small icon
view.See AlsoLVM_GETTOPINDEX

ListView_GetViewRect
The ListView_GetViewRect macro retrieves the bounding rectangle of all items in the list view
control. The list view must be in icon or small icon view. You can use this macro or explicitly send
the LVM_GETVIEWRECT message.

BOOL ListView_GetViewRect(
HWND hwnd,
RECT FAR *prc

);Parametershwnd
Handle to the list view control.

prc
Pointer to a RECT structure that receives the bounding rectangle. All coordinates are relative
to the visible area of the list view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_GETVIEWRECT, RECT

ListView_HitTest
The ListView_HitTest macro determines which list view item, if any, is at a specified position.
You can use this macro or explicitly send the LVM_HITTEST message.

int ListView_HitTest(
HWND hwnd,
LV_HITTESTINFO FAR *pinfo

);Parametershwnd
Handle to the list view control.

pinfo
Pointer to an LV_HITTESTINFO structure that contains the position to hit test and receives
information about the results of the hit test.

Return ValuesReturns the index of the item at the specified position, if any, or - 1 otherwise.See AlsoLV_HITTESTINFO, LVM_HITTEST

ListView_InsertColumn
The ListView_InsertColumn macro inserts a new column in a list view control. You can use this
macro or explicitly send the LVM_INSERTCOLUMN message.

int ListView_InsertColumn(
HWND hwnd,
int iCol,
const LV_COLUMN FAR *pcol

);Parametershwnd
Handle to the list view control.

iCol
Index of the new column.

pcol
Pointer to an LV_COLUMN structure that contains the attributes of the new column.

Return ValuesReturns the index of the new column if successful or - 1 otherwise.See AlsoLVM_INSERTCOLUMN, LV_COLUMN

ListView_InsertItem
The ListView_InsertItem macro inserts a new item in a list view control. You can use this macro
or explicitly send the LVM_INSERTITEM message.

int ListView_InsertItem(
HWND hwnd,
const LV_ITEM FAR *pitem

);Parametershwnd
Handle to the list view control.

pitem
Pointer to an LV_ITEM structure that specifies the attributes of the list view item. The iItem
member specifies the index of the new item.
You cannot use ListView_InsertItem or LVM_INSERTITEM to insert subitems; the iSubItem
member of the LV_ITEM structure must be zero.

Return ValuesReturns the index of the new item if successful or - 1 otherwise.RemarksIf a list view control has either the LVS_SORTASCENDING or LVS_SORTDESCENDING window
style, an LVM_INSERTITEM message will fail if you try to insert an item that has
LPSTR_TEXTCALLBACK as the pszText member of its LV_ITEM structure.See AlsoLV_ITEM, LVM_INSERTITEM

ListView_RedrawItems
The ListView_RedrawItems macro forces a list view control to redraw a range of items. You can
use this macro or explicitly send the LVM_REDRAWITEMS message.

BOOL ListView_RedrawItems(
HWND hwnd,
int iFirst,
int iLast

);Parametershwnd
Handle to the list view control.

iFirst
Index of the first item to redraw.

iLast
Index of the last item to redraw.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe specified items are not actually redrawn until the list view window receives a WM_PAINT
message to repaint. To repaint immediately, call the UpdateWindow function after using this
macro.See AlsoLVM_REDRAWITEMS, UpdateWindow, WM_PAINT

ListView_Scroll
The ListView_Scroll macro scrolls the content of a list view control. You can use this macro or
explicitly send the LVM_SCROLL message.

BOOL ListView_Scroll(
HWND hwnd,
nt dx,
int dy

);Parametershwnd
Handle to the list view control.

dx
Integer value that specifies the amount of horizontal scrolling.
If the view type of the list view control is icon view, small icon view, or report view, this value
specifies the number of pixels to scroll. If the view type of the list view control is list view, this
value specifies the number of columns to scroll.

dy
Integer value that specifies the amount of vertical scrolling.
If the view type of the list view control is icon view, small icon view, or list view, this value
specifies the number of pixels to scroll. If the view type of the list view control is report view,
this value specifies the number of lines to scroll.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_SCROLL

ListView_SetBkColor
The ListView_SetBkColor macro sets the background color of a list view control. You can use
this macro or explicitly send the LVM_SETBKCOLOR message.

BOOL ListView_SetBkColor(
HWND hwnd,
COLORREF clrBk

);Parametershwnd
Handle to the list view control.

clrBk
Background color to set or the CLR_NONE value for no background color. List view controls
with background colors redraw themselves significantly faster than those without background
colors.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_SETBKCOLOR

ListView_SetCallbackMask
The ListView_SetCallbackMask macro changes the callback mask for a list view control. You
can use this macro or explicitly send the LVM_SETCALLBACKMASK message.

BOOL ListView_SetCallbackMask(
WND hwnd,
UINT mask

);Parametershwnd
Handle to the list view control.

mask
Specifies the value of the callback mask. The bits of the mask indicate the item states or
images for which the application stores the current state data. This value can be any
combination of the following constants:

Value Meaning
LVIS_CUT The item is marked for a cut-and-paste

operation.
LVIS_DROPHILITED The item is highlighted as a drag-and-

drop target.
LVIS_FOCUSED The item has the focus.
LVIS_SELECTED The item is selected.
LVIS_OVERLAYMASK The application stores the image list

index of the current overlay image for
each item.

LVIS_STATEIMAGEMASK The application stores the image list
index of the current state image for each
item.

For more information about overlay images and state images, see List View Image
Lists.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe callback mask of a list view control is a set of bit flags that specify the item states for which
the application, rather than the control, stores the current data. The callback mask applies to all of
the control's items, unlike the callback item designation, which applies to a specific item. The
callback mask is zero by default, meaning that the list view control stores all item state
information. After creating a list view control and initializing its items, you can use the
ListView_SetCallbackMask macro or LVM_SETCALLBACKMASK message to change the
callback mask. To get the current callback mask, send the LVM_GETCALLBACKMASK message.

For more information, see Callback Items and the Callback Mask.See AlsoLVM_GETCALLBACKMASK, LVM_SETCALLBACKMASK, LVN_GETDISPINFO

ListView_SetColumn
The ListView_SetColumn macro sets the attributes of a list view column. You can use this macro
or explicitly send the LVM_SETCOLUMN message.

BOOL ListView_SetColumn(
HWND hwnd,
int iCol,
LV_COLUMN FAR *pcol

);Parametershwnd
Handle to the list view control.

iCol
Index of the column.

pcol
Pointer to an LV_COLUMN structure that contains the new column attributes. The mask
member specifies which column attributes to set.
If the mask member specifies the LVCF_TEXT value, the pszText member is the pointer to a
null-terminated string and the cchTextMax member is ignored.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLV_COLUMN, LVM_SETCOLUMN

ListView_SetColumnWidth
The ListView_SetColumnWidth macro changes the width of a column in report or list view. You
can use this macro or explicitly send the LVM_SETCOLUMNWIDTH message.

BOOL ListView_SetColumnWidth(
HWND hwnd,
int iCol,
int cx

);Parametershwnd
Handle to the list view control.

iCol
Index of the column. In list view, the iCol parameter must be - 1.

cx
New width of the column, in list view coordinates, or one of the following values:

Value Meaning
LVSCW_AUTOSIZE Automatically sizes the column.
LVSCW_AUTOSIZE_USEHEADERAutomatically sizes the column to

fit the header text.
See AlsoLVM_SETCOLUMNWIDTH

ListView_SetImageList
The ListView_SetImageList macro assigns an image list to a list view control. You can use this
macro or explicitly send the LVM_SETIMAGELIST message.

HIMAGELIST ListView_SetImageList(
HWND hwnd,
HIMAGELIST himl,
int iImageList

);Parametershwnd
Handle to the list view control.

himl
Handle to the image list to assign.

iImageList
Type of image list. This parameter can be one of the following values:

Value Meaning
LVSIL_NORMAL Image list with large icons
LVSIL_SMALL Image list with small icons
LVSIL_STATE Image list with state images

Return ValuesReturns the handle of the image list previously associated with the control if successful; NULL
otherwise.See AlsoLVM_SETIMAGELIST

ListView_SetItem
The ListView_SetItem macro sets some or all of a list view item's attributes. You can use this
macro or explicitly send the LVM_SETITEM message.

BOOL ListView_SetItem(
HWND hwnd,
const LV_ITEM FAR *pitem

);Parametershwnd
Handle to the list view control.

pitem
Pointer to an LV_ITEM structure that contains the new item attributes. The iItem and
iSubItem members identify the item or subitem, and the mask member specifies which
attributes to set.
If the mask member specifies the LVIF_TEXT value, the pszText member is the pointer to a
null-terminated string and the cchTextMax member is ignored.
If the mask member specifies the LVIF_STATE value, the stateMask member specifies which
item states to change and the state member contains the values for those states.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLV_ITEM, LVM_SETITEM

ListView_SetItemCount
The ListView_SetItemCount macro prepares a list view control for adding a large number of
items. You can use this macro or explicitly send the LVM_SETITEMCOUNT message.

VOID ListView_SetItemCount(
HWND hwnd,
int cItems

);Parametershwnd
Handle to the list view control.

cItems
Number of items that the list view control will ultimately contain.

Return ValuesNo return value.RemarksBy using the ListView_SetItemCount macro or the LVM_SETITEMCOUNT message before
adding a large number of items, you enable a list view control to reallocate its internal data
structures only once rather than every time you add an item.See AlsoLVM_SETITEMCOUNT

ListView_SetItemPosition
The ListView_SetItemPosition macro moves an item to a specified position in a list view control,
which must be in icon or small icon view. You can use this macro or explicitly send the
LVM_SETITEMPOSITION message.

BOOL ListView_SetItemPosition(
HWND hwnd,
int i,
int x,
int y

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

x and y
New position of the item's upper-left corner, in view coordinates.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the list view control has the LVS_AUTOARRANGE style, the list view control is arranged after
the position of the item is set.See AlsoLVM_SETITEMPOSITION

ListView_SetItemPosition32
The ListView_SetItemPosition32 macro moves an item to a specified position in a list view
control, which must be in icon or small icon view. This macro differs from the
ListView_SetItemPosition macro in that it uses 32-bit coordinates. You can use the
ListView_SetItemPosition32 macro or explicitly send the LVM_SETITEMPOSITION32 message.

void ListView_SetItemPosition32(
HWND hwnd,
int iItem,
nt x,
int y

);Parametershwnd
Handle to the list view control.

iItem
Index of the list view item to set the position of.

x and y
New horizontal and vertical coordinates of the item.

Return ValuesNo return value.See AlsoListView_SetItemPosition, LVM_SETITEMPOSITION32, POINT

ListView_SetItemState
The ListView_SetItemState macro changes the state of an item in a list view control. You can
use this macro or explicitly send the LVM_SETITEMSTATE message.

BOOL WINAPI ListView_SetItemState(
HWND hwnd,
int i,
UINT state,
UINT mask

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

state
New state bits for the item.

mask
Mask specifying which of the item's current state bits to change.

Return ValuesNo return value.See AlsoLVM_SETITEMSTATE

ListView_SetItemText
The ListView_SetItemText macro changes the text of a list view item or subitem. You can use
this macro or explicitly send the LVM_SETITEMTEXT message.

VOID WINAPI ListView_SetItemText(
HWND hwnd,
int i,
int iSubItem,
LPCSTR pszText

);Parametershwnd
Handle to the list view control.

i
Index of the list view item.

iSubItem
Index of the subitem or zero to set the item label.

pszText
Pointer to a null-terminated string that contains the new text. This parameter can be NULL.

Return ValuesNo return value.See AlsoLVM_SETITEMTEXT

ListView_SetTextBkColor
The ListView_SetTextBkColor macro sets the background color of text in a list view control. You
can use this macro or explicitly send the LVM_SETTEXTBKCOLOR message.

BOOL ListView_SetTextBkColor(
HWND hwnd,
COLORREF clrText

);Parametershwnd
Handle to the list view control.

clrText
New text color.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_SETTEXTBKCOLOR

ListView_SetTextColor
The ListView_SetTextColor macro sets the text color of a list view control. You can use this
macro or explicitly send the LVM_SETTEXTCOLOR message.

BOOL ListView_SetTextColor(
HWND hwnd,
COLORREF clrText

);Parametershwnd
Handle to the list view control.

clrText
New text color.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_SETTEXTCOLOR

ListView_SortItems
The ListView_SortItems macro uses an application-defined comparison function to sort the items
of a list view control. The index of each item changes to reflect the new sequence. You can use
this macro or explicitly send the LVM_SORTITEMS message.

BOOL ListView_SortItems(
HWND hwnd,
PFNLVCOMPARE pfnCompare,
LPARAM lParamSort

);Parametershwnd
Handle to the list view control.

pfnCompare
Pointer to the application-defined comparison function. The comparison function is called
during the sort operation each time the relative order of two list items needs to be compared.

lParamSort
Application-defined value that is passed to the comparison function.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe comparison function has the following form:int CALLBACK CompareFunc(LPARAM lParam1, LPARAM lParam2,
LPARAM lParamSort);The lParam1 parameter is the 32-bit value associated with the first item being compared; and the

lParam2 parameter is the value associated with the second item. These are the values that were
specified in the lParam member of the items' LV_ITEM structure when they were inserted into the
list. The lParamSort parameter is the same value passed to the LVM_SORTITEMS message.

The comparison function must return a negative value if the first item should precede the second,
a positive value if the first item should follow the second, or zero if the two items are equivalent.See AlsoLV_ITEM, LVM_SORTITEMS

ListView_Update
The ListView_Update macro updates a list view item. If the list view control has the
LVS_AUTOARRANGE style, this macro causes the list view control to be arranged. You can use
this macro or explicitly send the LVM_UPDATE message.

BOOL ListView_Update(
HWND hwnd,
int iItem

);Parametershwnd
Handle to the list view control.

iItem
Index of the item to update.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoLVM_UPDATE

LOBYTE
The LOBYTE macro retrieves the low-order byte from the given 16-bit value.

BYTE LOBYTE(
WORD wValue // value from which low-order byte is retrieved

);ParameterswValue
Specifies the value to be converted.

Return ValuesThe return value is the low-order byte of the specified value.RemarksThe LOBYTE macro is defined as follows:#define LOBYTE(w) ((BYTE) (w))
See AlsoHIBYTE, LOWORD

LOWORD
The LOWORD macro retrieves the low-order word from the given 32-bit value.

WORD LOWORD(
DWORD dwValue // value from which low-order word is retrieved

);ParametersdwValue
Specifies the value to be converted.

Return ValuesThe return value is the low-order word of the specified value.RemarksThe LOWORD macro is defined as follows:#define LOWORD(l) ((WORD) (l))
See AlsoHIWORD, LOBYTE

MAKEINTATOM
The MAKEINTATOM macro creates an integer atom that represents a character string of decimal
digits.

Integer atoms created by this macro can be added to an atom table by using the AddAtom or
GlobalAddAtom function.

LPTSTR MAKEINTATOM(
WORD wInteger // integer to make into atom

);ParameterswInteger
Specifies the numeric value to be made into an integer atom.

Return ValuesThe return value is a pointer to the atom created for the given integer.RemarksAlthough the return value of the MAKEINTATOM macro is cast as an LPTSTR value, it cannot be
used as a string pointer except when it is passed to atom-management functions that require an
LPTSTR argument.

The DeleteAtom and GlobalDeleteAtom functions always succeed for integer atoms, even
though they do nothing. The string returned by the GetAtomName and GlobalGetAtomName
functions for an integer atom is a null-terminated string in which the first character is a pound sign
(#) and the remaining characters are the decimal digits used in the MAKEINTATOM macro.

The MAKEINTATOM macro is defined as follows:#define MAKEINTATOM(i) (LPTSTR) ((DWORD) ((WORD) (i)))
See AlsoAddAtom, DeleteAtom, GetAtomName, GlobalAddAtom, GlobalDeleteAtom,

GlobalGetAtomName

MAKEINTRESOURCE
The MAKEINTRESOURCE macro converts an integer value to a resource type compatible with
Win32 resource-management functions. This macro is used in place of a string containing the
name of the resource.

LPTSTR MAKEINTRESOURCE(
WORD wInteger // integer to convert

);ParameterswInteger
Specifies the integer value to be converted.

Return ValuesThe return value is the specified value in the low-order word and zero in the high-order word.RemarksThe return value should be passed only to the Win32 resource-management functions, as the
lpType parameter.

The MAKEINTRESOURCE macro is defined as follows:#define MAKEINTRESOURCE(i) (LPTSTR) ((DWORD) ((WORD) (i)))

MAKELANGID
The MAKELANGID macro creates a language identifier from a primary language identifier and a
sublanguage identifier.

WORD MAKELANGID(
USHORT usPrimaryLanguage, // primary language identifier
USHORT usSubLanguage // sublanguage identifier

);ParametersusPrimaryLanguage
Specifies the primary language identifier. This parameter can be one of the following values:
LANG_AFRIKAANS LANG_ICELANDIC
LANG_ALBANIAN LANG_INDONESIAN
LANG_ARABIC LANG_ITALIAN
LANG_BASQUE LANG_JAPANESE
LANG_BELARUSIANLANG_KOREAN
LANG_BULGARIAN LANG_LATVIAN
LANG_CATALAN LANG_LITHUANIAN
LANG_CHINESE LANG_NEUTRAL
LANG_CROATIAN LANG_NORWEGIAN
LANG_CZECH LANG_POLISH
LANG_DANISH LANG_PORTUGUESE
LANG_DUTCH LANG_ROMANIAN
LANG_ENGLISH LANG_RUSSIAN
LANG_ESTONIAN LANG_SERBIAN
LANG_FAEROESE LANG_SLOVAK
LANG_FARSI LANG_SLOVENIAN
LANG_FINNISH LANG_SPANISH
LANG_FRENCH LANG_SWEDISH
LANG_GERMAN LANG_THAI
LANG_GREEK LANG_TURKISH
LANG_HEBREW LANG_UKRANIAN
LANG_HUNGARIAN LANG_VIETNAMESE

For a user-defined language, usPrimaryLanguage can be a value in the range 0x0200 to 0x03FF.
All other values are reserved for system use.

usSubLanguage
Specifies the sublanguage identifier. This parameter can be one of the following values:
SUBLANG_ARABIC_SAUDI_ARABIASUBLANG_GERMAN
SUBLANG_ARABIC_IRAQ SUBLANG_GERMAN_SWISS
SUBLANG_ARABIC_EGYPT SUBLANG_GERMAN_AUSTRIAN
SUBLANG_ARABIC_LIBYA SUBLANG_GERMAN_LUXEMBOURG
SUBLANG_ARABIC_ALGERIA SUBLANG_GERMAN_LIECHTENSTEIN
SUBLANG_ARABIC_MOROCCO SUBLANG_ITALIAN
SUBLANG_ARABIC_TUNISIA SUBLANG_ITALIAN_SWISS
SUBLANG_ARABIC_OMAN SUBLANG_KOREAN
SUBLANG_ARABIC_YEMEN SUBLANG_KOREAN_JOHAB
SUBLANG_ARABIC_SYRIA SUBLANG_NEUTRAL
SUBLANG_ARABIC_JORDAN SUBLANG_NORWEGIAN_BOKMAL
SUBLANG_ARABIC_LEBANON SUBLANG_NORWEGIAN_NYNORSK
SUBLANG_ARABIC_KUWAIT SUBLANG_PORTUGUESE
SUBLANG_ARABIC_UAE SUBLANG_PORTUGUESE_BRAZILIAN
SUBLANG_ARABIC_BAHRAIN SUBLANG_SERBIAN_LATIN
SUBLANG_ARABIC_QATAR SUBLANG_SERBIAN_CYRILLIC

SUBLANG_CHINESE_TRADITIONALSUBLANG_SPANISH
SUBLANG_CHINESE_SIMPLIFIEDSUBLANG_SPANISH_MEXICAN
SUBLANG_CHINESE_HONGKONGSUBLANG_SPANISH_MODERN
SUBLANG_CHINESE_SINGAPORESUBLANG_SPANISH_GUATEMALA
SUBLANG_DEFAULT SUBLANG_SPANISH_COSTA_RICA
SUBLANG_DUTCH SUBLANG_SPANISH_PANAMA
SUBLANG_DUTCH_BELGIAN SUBLANG_SPANISH_DOMINICAN_

REPUBLIC
SUBLANG_ENGLISH_US SUBLANG_SPANISH_VENEZUELA
SUBLANG_ENGLISH_UK SUBLANG_SPANISH_COLOMBIA
SUBLANG_ENGLISH_AUS SUBLANG_SPANISH_PERU
SUBLANG_ENGLISH_CAN SUBLANG_SPANISH_ARGENTINA
SUBLANG_ENGLISH_NZ SUBLANG_SPANISH_ECUADOR
SUBLANG_ENGLISH_EIRE SUBLANG_SPANISH_CHILE
SUBLANG_ENGLISH_SOUTH_
AFRICA

SUBLANG_SPANISH_URUGUAY

SUBLANG_ENGLISH_JAMAICA SUBLANG_SPANISH_PARAGUAY
SUBLANG_ENGLISH_CARIBBEANSUBLANG_SPANISH_BOLIVIA
SUBLANG_ENGLISH_BELIZE SUBLANG_SPANISH_EL_SALVADOR
SUBLANG_ENGLISH_TRINIDAD SUBLANG_SPANISH_HONDURAS
SUBLANG_FRENCH SUBLANG_SPANISH_NICARAGUA
SUBLANG_FRENCH_BELGIAN SUBLANG_SPANISH_PUERTO_RICO
SUBLANG_FRENCH_CANADIAN SUBLANG_SWEDISH
SUBLANG_FRENCH_SWISS SUBLANG_SWEDISH_FINLAND
SUBLANG_FRENCH_LUXEMBOURGSUBLANG_SYS_DEFAULT

For a user-defined sublanguage, usSubLanguage can be a value in the range 0x20 to 0x3F. All
other values are reserved for system use.Return ValuesThe return value is a language identifier.RemarksThe following three combinations of usPrimaryLanguage and usSubLanguage have special
meaning:

Primary language ID Sublanguage ID Meaning

LANG_NEUTRAL SUBLANG_NEUTRAL Language neutral
LANG_NEUTRAL SUBLANG_DEFAULT User default

language
LANG_NEUTRAL SUBLANG_SYS_DEFAULTSystem default

language

The MAKELANGID macro is defined as follows:#define MAKELANGID(p, s) ((((WORD) (s)) << 10) | (WORD) (p))
See AlsoEnumSystemLocales, LANGIDFROMLCID, MAKELCID, PRIMARYLANGID, SUBLANGID

MAKELCID
The MAKELCID macro creates a locale identifier from a language identifier.

DWORD MAKELCID(
WORD wLanguageID, // language identifier
WORD wSortID // sorting identifier

);ParameterswLanguageID
Specifies the language identifier. This parameter is a combination of a primary language
identifier and a sublanguage identifier and is usually created by using the MAKELANGID
macro.

wSortID
Specifies the sort identifier. Use the value SORT_DEFAULT for this parameter.

Return ValuesThe return value is a locale identifier.RemarksThe MAKELCID macro is defined as follows:#define MAKELCID(lgid, srtid) \
((DWORD)((((DWORD)((WORD)(srtid))) << 16) | \

((DWORD)((WORD)(lgid)))))
See AlsoLANGIDFROMLCID, MAKELANGID, SORTIDFROMLCID

MAKELONG
The MAKELONG macro creates an unsigned 32-bit value by concatenating two given 16-bit
values.

DWORD MAKELONG(
WORD wLow, // low-order word of long value
WORD wHigh // high-order word of long value

);ParameterswLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

Return ValuesThe return value is an unsigned 32-bit value.RemarksThe MAKELONG macro is defined as follows:#define MAKELONG(a, b) \
((LONG) (((WORD) (a)) | ((DWORD) ((WORD) (b))) << 16))

MAKELPARAM
The MAKELPARAM macro creates an unsigned 32-bit value for use as an lParam parameter in a
message. The macro concatenates two given 16-bit values.

LPARAM MAKELPARAM(
WORD wLow, // low-order word
WORD wHigh // high-order word

);ParameterswLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

Return ValuesThe return value is an unsigned 32-bit value.RemarksThe MAKELPARAM macro is defined as follows:#define MAKELPARAM(l, h) ((LPARAM) MAKELONG(l, h))
See AlsoMAKELONG, MAKELRESULT, MAKEWPARAM

MAKELRESULT
The MAKELRESULT macro creates an unsigned 32-bit value for use as a return value from a
window procedure. The macro concatenates two given 16-bit values.

LRESULT MAKELRESULT(
WORD wLow, // low-order word
WORD wHigh // high-order word

);ParameterswLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

Return ValuesThe return value is an unsigned 32-bit value.RemarksThe MAKELRESULT macro is defined as follows:#define MAKELRESULT(l, h) ((LRESULT) MAKELONG(l, h))
See AlsoMAKELONG, MAKELPARAM, MAKEWPARAM

MAKEPOINTS
The MAKEPOINTS macro converts a value that contains the x- and y-coordinates of a point into a
POINTS structure.

POINTS MAKEPOINTS(
DWORD dwValue // coordinates of a point

);ParametersdwValue
Specifies the coordinates of a point. The x-coordinate is in the low-order word, and the y-
coordinate is in the high-order word.

Return ValuesThe return value is a pointer to a POINTS structure.RemarksThe MAKEPOINTS macro is defined as follows:#define MAKEPOINTS(l) (*((POINTS FAR *) & (l)))
See AlsoGetMessagePos

MAKEROP4
The MAKEROP4 macro creates a quaternary raster operation code for use with the MaskBlt
function. The macro takes two ternary raster operation codes as input, one for the foreground and
one for the background, and packs their Boolean operation indexes into the high-order word of a
32-bit value. The low-order word of this value will be ignored.

DWORD MAKEROP4(
DWORD fore, // foreground ternary raster operation code
DWORD back // background ternary raster operation code

);Parametersfore
Specifies a foreground ternary raster operation code.

back
Specifies a background ternary raster operation code

Return ValuesThe return value is a DWORD quaternary raster operation code for use with the MaskBlt function.RemarksThe MAKEROP4 macro is defined as follows:#define MAKEROP4(fore,back)
(DWORD)((((back) << 8) & 0xFF000000) | (fore))
See AlsoMaskBlt

MAKEWORD
The MAKEWORD macro creates an unsigned 16-bit integer by concatenating two given unsigned
character values.

WORD MAKEWORD(
BYTE bLow, // low-order byte of short value
BYTE bHigh // high-order byte of short value

);ParametersbLow
Specifies the low-order byte of the new short value.

bHigh
Specifies the high-order byte of the new short value.

Return ValuesThe return value is an unsigned 16-bit integer value.RemarksThe MAKEWORD macro is defined as follows:#define MAKEWORD(a, b) \
((WORD) (((BYTE) (a)) | ((WORD) ((BYTE) (b))) << 8))

MAKEWPARAM
The MAKEWPARAM macro creates an unsigned 32-bit value for use as a wParam parameter in
a message. The macro concatenates two given 16-bit values.

LPARAM MAKEWPARAM(
WORD wLow, // low-order word
WORD wHigh // high-order word

);ParameterswLow
Specifies the low-order word of the new long value.

wHigh
Specifies the high-order word of the new long value.

Return ValuesThe return value is an unsigned 32-bit value.RemarksThe MAKEWPARAM macro is defined as follows:#define MAKEWPARAM(l, h) ((LPARAM) MAKELONG(l, h))
See AlsoMAKELONG, MAKELPARAM, MAKELRESULT

max
The max macro compares two values and returns the larger one. The data type can be any
numeric data type, signed or unsigned. The data type of the arguments and the return value is the
same.

max(
value1, // low-order word
value2 // high-order word

);Parametersvalue1
Specifies the first of two values.

value2
Specifies the second of two values.

Return ValuesThe return value is the greater of the two specified values.RemarksThe max macro is defined as follows:#define max(a, b) (((a) > (b)) ? (a) : (b))
See Alsomin

min
The min macro compares two values and returns the smaller one. The data type can be any
numeric data type, signed or unsigned. The data type of the arguments and the return value is the
same.

min(
value1,
value2

);Parametersvalue1
Specifies the first of two values.

value2
Specifies the second of two values.

Return ValuesThe return value is the smaller of the two specified values.RemarksThe min macro is defined as follows:#define min(a, b) (((a) < (b)) ? (a) : (b))
See Alsomax

PALETTEINDEX
The PALETTEINDEX macro accepts an index to a logical-color palette entry and returns a
palette-entry specifier consisting of a 32-bit COLORREF value that specifies the color associated
with the given index. An application using a logical color palette can pass this specifier, instead of
an explicit red, green, blue (RGB) value, to GDI functions that expect a color. This allows the
function to use the color in the specified palette entry.

COLORREF PALETTEINDEX(
WORD wPaletteIndex // index to palette entry

);ParameterswPaletteIndex
Specifies an index to the palette entry containing the color to be used for a graphics operation.

Return ValuesThe return value is a logical-palette index specifier.RemarksThe PALETTEINDEX macro is defined as follows:#define PALETTEINDEX(i) /
((COLORREF) (0x01000000 | (DWORD) (WORD) (i)))

See AlsoPALETTERGB, RGB

PALETTERGB
The PALETTERGB macro accepts three values that represent the relative intensities of red,
green, and blue and returns a palette-relative red, green, blue (RGB) specifier consisting of 2 in
the high-order byte and an RGB value in the three low-order bytes. An application using a color
palette can pass this specifier, instead of an explicit RGB value, to functions that expect a color.

COLORREF PALETTERGB(
BYTE bRed, // red component of palette-relative RGB
BYTE bGreen, // green component of palette-relative RGB
BYTE bBlue // blue component of palette-relative RGB

);ParametersbRed
Specifies the intensity of the red color field.

bGreen
Specifies the intensity of the green color field.

bBlue
Specifies the intensity of the blue color field.

Return ValuesThe return value is a palette-relative RGB specifier. For output devices that support logical
palettes, Windows matches a palette-relative RGB value to the nearest color in the logical palette
of the device context as though the application had specified an index to that palette entry. If an
output device does not support a system palette, Windows uses the palette-relative RGB as
though it were a conventional RGB doubleword returned by the RGB macro.RemarksThe PALETTERGB macro is defined as follows:#define PALETTERGB(r, g, b) (0x02000000 | RGB(r, g, b))
See AlsoPALETTEINDEX, RGB

POINTSTOPOINT
The POINTSTOPOINT macro copies the contents of a POINTS structure into a POINT structure.

POINTSTOPOINT(
POINT pt, // POINT structure
POINTS pts // POINTS structure

);Parameterspt
Specifies the POINT structure to receive the contents of the POINTS structure.

pts
Specifies the POINTS structure to copy.

RemarksThe POINTSTOPOINT macro is defined as follows:#define POINTSTOPOINT(pt, pts) {(pt).x = (SHORT) LOWORD(pts); \
(pt).y = (SHORT) HIWORD(pts);}

See AlsoMAKEPOINTS, POINTTOPOINTS

POINTTOPOINTS
The POINTTOPOINTS macro converts a POINT structure to a POINTS structure.

POINTS POINTTOPOINTS(
POINT pt // coordinates of a point

);Parameterspt
Specifies the POINT structure to convert.

Return ValuesThe return value is a POINTS structure.RemarksThe POINTTOPOINTS macro is defined as follows:#define POINTTOPOINTS(pt) \
(MAKELONG((short) ((pt).x), (short) ((pt).y)))

See AlsoMAKEPOINTS, POINTSTOPOINT

PRIMARYLANGID
The PRIMARYLANGID macro extracts a primary language identifier from a language identifier.

WORD PRIMARYLANGID(
WORD lgid // language identifier

);Parameterslgid
Specifies the language identifier. This value is a combination of a primary language identifier
and a sublanguage identifier and is usually created by using the MAKELANGID macro.

Return ValuesThe return value is a primary language identifier. The following primary language identifiers are
defined:

LANG_AFRIKAANS LANG_ICELANDIC

LANG_ALBANIAN LANG_INDONESIAN
LANG_ARABIC LANG_ITALIAN
LANG_BASQUE LANG_JAPANESE
LANG_BELARUSIANLANG_KOREAN
LANG_BULGARIAN LANG_LATVIAN
LANG_CATALAN LANG_LITHUANIAN
LANG_CHINESE LANG_NEUTRAL
LANG_CROATIAN LANG_NORWEGIAN
LANG_CZECH LANG_POLISH
LANG_DANISH LANG_PORTUGUESE
LANG_DUTCH LANG_ROMANIAN
LANG_ENGLISH LANG_RUSSIAN
LANG_ESTONIAN LANG_SERBIAN
LANG_FAEROESE LANG_SLOVAK
LANG_FARSI LANG_SLOVENIAN
LANG_FINNISH LANG_SPANISH
LANG_FRENCH LANG_SWEDISH
LANG_GERMAN LANG_THAI
LANG_GREEK LANG_TURKISH
LANG_HEBREW LANG_UKRANIAN
LANG_HUNGARIAN LANG_VIETNAMESE

RemarksThe PRIMARYLANGID macro is defined as follows:#define PRIMARYLANGID(lgid) ((WORD)(lgid) & 0x3ff)
See AlsoEnumSystemLocales, LANGIDFROMLCID, MAKELANGID, SUBLANGID

PropSheet_AddPage
The PropSheet_AddPage macro adds a new page to the end of an existing property sheet. You
can use this macro or explicitly send the PSM_ADDPAGE message.

BOOL PropSheet_AddPage(
hPropSheetDlg,
hpage

);ParametershPropSheetDlg
Handle to the property sheet.

hpage
Handle to the page to add. The page must have been created by a previous call to the
CreatePropertySheetPage function.

Return ValuesNo return value.RemarksThe property sheet is not resized to fit the new page. The new page should be no larger than the
largest page currently in the property sheet.See AlsoCreatePropertySheetPage, PSM_ADDPAGE

PropSheet_Apply
The PropSheet_Apply macro simulates the choice of the Apply Now button, indicating that one
or more pages have changed and the changes need to be validated and recorded. The property
sheet sends the PSN_KILLACTIVE notification message to the current page. If the current page
returns FALSE, the property sheet sends the PSN_APPLY notification message to all pages. You
can use this macro or explicitly send the PSM_APPLY message.

BOOL PropSheet_Apply(
hPropSheetDlg

);ParametershPropSheetDlg
Handle to the property sheet.

Return ValuesReturns TRUE if all pages successfully applied the changes or FALSE otherwise.See AlsoPSM_APPLY, PSN_APPLY, PSN_KILLACTIVE

PropSheet_CancelToClose
The PropSheet_CancelToClose macro disables the Cancel button and changes the text of the
OK button to "Close." An application sends the PSM_CANCELTOCLOSE message after applying
a change that cannot be canceled. You can use this macro or explicitly send the
PSM_CANCELTOCLOSE message.

VOID PropSheet_CancelToClose(
hPropSheetDlg

);ParametershPropSheetDlg
Handle to the property sheet.

Return ValuesNo return value.See AlsoPSM_CANCELTOCLOSE

PropSheet_Changed
The PropSheet_Changed macro informs a property sheet that information in a page has
changed. The property sheet enables the Apply Now button. You can use this macro or explicitly
send the PSM_CHANGED message.

BOOL PropSheet_Changed(
hPropSheetDlg,
hwndPage

);ParametershPropSheetDlg
Handle to the property sheet.

hwndPage
Handle to the page that has changed.

Return ValuesNo return value.See AlsoPSM_CHANGED

PropSheet_GetCurrentPageHwnd
The PropSheet_GetCurrentPageHwnd macro retrieves a handle to the window of the current
page of a property sheet. You can use this macro or explicitly send the
PSM_GETCURRENTPAGEHWND message.

HWND PropSheet_GetCurrentPageHwnd(
hDlg

);ParametershDlg
Handle to the property sheet.

Return ValuesReturns a handle to the window of the current property sheet page.RemarksUse the PropSheet_GetCurrentPageHwnd macro with modeless property sheets to determine
when to destroy the dialog box. When the user selects the OK or Cancel button,
PropSheet_GetCurrentPageHwnd returns NULL, and you can then use the DestroyWindow
function to destroy the dialog box.See AlsoDestroyWindow, PropertySheet, PSM_GETCURRENTPAGEHWND

PropSheet_GetTabControl
The PropSheet_GetTabControl macro retrieves the handle to the tab control of a property sheet.
You can use this macro or explicitly send the PSM_GETTABCONTROL message.

HWND PropSheet_GetTabControl(
hPropSheetDlg

);ParametershPropSheetDlg
Handle to the property sheet.

Return ValuesReturns the handle to the tab control.See AlsoPSM_GETTABCONTROL

PropSheet_IsDialogMessage
The PropSheet_IsDialogMessage macro passes a message to a property sheet dialog box and
indicates whether the dialog processed the message. You can use this macro or explicitly send
the PSM_ISDIALOGMESSAGE message.

BOOL PropSheet_IsDialogMessage(
hDlg,
pMsg

);ParametershDlg
Handle to the property sheet.

pMsg
Pointer to a MSG structure that contains the message to be checked.

Return ValuesIf the macro has been processed, the return value is TRUE.

If the macro has not been processed, the return value is FALSE.RemarksYour message loop should use the PSM_ISDIALOGMESSAGEmessage with modeless property
sheets to pass messages to the property sheet dialog box.

If the return value indicates that the PSM_ISDIALOGMESSAGE message was processed, it must
not be passed to the TranslateMessage or DispatchMessage function.See AlsoDispatchMessage, MSG, PropertySheet, PSM_ISDIALOGMESSAGE, TranslateMessage

PropSheet_PressButton
The PropSheet_PressButton macro simulates the choice of a property sheet button. You can
use this macro or explicitly send the PSM_PRESSBUTTON message.

BOOL PropSheet_PressButton(
hPropSheetDlg,
iButton

);ParametershPropSheetDlg
Handle to the property sheet.

iButton
Index of button to choose. This parameter can be one of the following values:

Value Meaning
PSBTN_APPLYNOW Chooses the Apply Now button.
PSBTN_BACK Chooses the Back button.
PSBTN_CANCEL Chooses the Cancel button.
PSBTN_FINISH Chooses the Finish button.
PSBTN_HELP Chooses the Help button.
PSBTN_NEXT Chooses the Next button.
PSBTN_OK Chooses the OK button.

Return ValuesNo return value.See AlsoPSM_PRESSBUTTON

PropSheet_QuerySiblings
The PropSheet_QuerySiblings macro forwards the PSM_QUERYSIBLINGS message to each
page in the property sheet. If a page returns a nonzero value, the property sheet does not send
the message to subsequent pages. You can use this macro or explicitly send the
PSM_QUERYSIBLINGS message.

int PropSheet_QuerySiblings(
hPropSheetDlg,
param1,
param2

);ParametershPropSheetDlg
Handle to the property sheet.

param1
First application-defined parameter.

param2
Second application-defined parameter.

Return ValuesReturns the nonzero value from a page in the property sheet, or zero if no page returns a nonzero
value.See AlsoPSM_QUERYSIBLINGS

PropSheet_RebootSystem
The PropSheet_RebootSystem macro indicates that the system needs to be restarted for the
changes to take effect. You can use the PropSheet_RebootSystem macro or explicitly send the
PSM_REBOOTSYSTEM message. An application should send the PSM_REBOOTSYSTEM
message only in response to the PSN_APPLY or PSN_KILLACTIVE_win32_PSN_KILLACTIVE
notification message.

VOID PropSheet_RebootSystem(
hPropSheetDlg

);ParametershPropSheetDlg
Handle to the property sheet.

Return ValuesNo return value.RemarksThis macro causes the PropertySheet function to return the ID_PSREBOOTSYSTEM value, but
only if the user chooses the OK button to close the property sheet. It is the application's
responsibility to reboot the system, which can be done by using the ExitWindowsEx function.

This macro supersedes all PropSheet_RebootSystem macros that precede or follow it.See AlsoExitWindowsEx, PropertySheet, PSM_REBOOTSYSTEM, PSM_RESTARTWINDOWS,
PSN_APPLY, PSN_KILLACTIVE

PropSheet_RemovePage
The PropSheet_RemovePage macro removes a page from a property sheet. You can use this
macro or explicitly send the PSM_REMOVEPAGE message.

VOID PropSheet_RemovePage(
hPropSheetDlg,
index,
hpage

);ParametershPropSheetDlg
Handle to the property sheet.

hpage and index
Handle to the page to remove, and the zero-based index of the page to remove. An
application can specify the handle or the index, or both. If both are specified, hpage takes
precedence.

Return ValuesNo return value.See AlsoPSM_REMOVEPAGE

PropSheet_RestartWindows
The PropSheet_RestartWindows macro sends a PSM_RESTARTWINDOWS message
indicating that Windows needs to be restarted for changes to take effect. You can use the
PropSheet_RestartWindows macro or explicitly send the PSM_RESTARTWINDOWS message.
An application should send the PSM_RESTARTWINDOWS message only in response to the
PSN_APPLY or PSN_KILLACTIVE notification message.

VOID PropSheet_RestartWindows(
hPropSheetDlg

);ParametershPropSheetDlg
Handle to the property sheet.

Return ValuesNo return value.RemarksThe PSM_RESTARTWINDOWS message causes the PropertySheet function to return the
ID_PSRESTARTWINDOWS value, but only if the user chooses the OK button to close the
property sheet. It is the application's responsibility to restart Windows, which can be done by using
the ExitWindowsEx function.See AlsoExitWindowsEx, PropertySheet, PSM_RESTARTWINDOWS, PSN_APPLY, PSN_KILLACTIVE

PropSheet_SetCurSel
The PropSheet_SetCurSel macro activates the given page in a property sheet. You can use this
macro or explicitly send the PSM_SETCURSEL message.

BOOL PropSheet_SetCurSel(
hPropSheetDlg,
hpage,
index

);ParametershPropSheetDlg
Handle to the property sheet.

hpage and index
Handle to the page to activate, and the zero-based index of the page to activate. An
application can specify the handle or the index, or both. If both are specified, hpage takes
precedence.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe window that is losing the activation receives the PSN_KILLACTIVE notification message, and
the window that is gaining the activation receives the PSN_SETACTIVE notification message.See AlsoPSM_SETCURSEL, PSN_KILLACTIVE, PSN_SETACTIVE

PropSheet_SetCurSelByID
The PropSheet_SetCurSelByID macro activates the given page in a property sheet based on the
resource identifier of the page. You can use this macro or explicitly send the
PSM_SETCURSELID message.

BOOL PropSheet_SetCurSelByID(
hPropSheetDlg,
id

);ParametershPropSheetDlg
Handle to the property sheet.

id
Resource identifier of the page to activate.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThe window that is losing the activation receives the PSN_KILLACTIVE notification message, and
the window that is gaining the activation receives the PSN_SETACTIVE notification message.See AlsoPSM_SETCURSELID, PSN_KILLACTIVE, PSN_SETACTIVE

PropSheet_SetFinishText
The PropSheet_SetFinishText macro sets the text of the Finish button in a wizard property
sheet, shows and enables the button, and hides the Next and Back buttons. You can use this
macro or explicitly send the PSM_SETFINISHTEXT message.

VOID PropSheet_SetFinishText(
hPropSheetDlg,
lpszText

);ParametershPropSheetDlg
Handle to the property sheet.

lpszText
Pointer to the new text for the Finish button.

Return ValuesNo return value.RemarksThis macro causes the DM_SETDEFID message to be sent to the property sheet dialog box. The
wParam parameter specifies the identifier of the Finish button.See AlsoDM_SETDEFID, PSM_SETFINISHTEXT

PropSheet_SetTitle
The PropSheet_SetTitle macro sets the title of a property sheet. You can use this macro or
explicitly send the PSM_SETTITLE message.

VOID PropSheet_SetTitle(
hPropSheetDlg,
dwStyle,
lpszText

);ParametershPropSheetDlg
Handle to the property sheet.

dwStyle
Flag that indicates whether to include the prefix "Properties for" with the specified title string. If
dwStyle is the PSH_PROPTITLE value, the prefix is included. Otherwise, the prefix is not
used.

lpszText
Pointer to a buffer that contains the title string. If the high-order word of this parameter is
NULL, the property sheet loads the string resource specified in the low-order word.

Return ValuesNo return value.See AlsoPSM_SETTITLE

PropSheet_SetWizButtons
The PropSheet_SetWizButtons macro posts the PSM_SETWIZBUTTONS message to a wizard
property sheet. The PSM_SETWIZBUTTONS message enables or disables the Back, Next, and
Finish buttons in a wizard property sheet. You can use this macro or explicitly send or post the
PSM_SETWIZBUTTONS message.

VOID PropSheet_SetWizButtons(
HWND hPropSheetDlg, // handle to the property sheet
DWORD dwFlags // specifies the buttons to display and enable

);ParametershPropSheetDlg
Handle to the property sheet.

dwFlags
Specifies the buttons to display and enable. A wizard property sheet displays the Back button
and either the Next or Finish button. This parameter can include the PSWIZB_BACK flag and
one of the PSWIZB_NEXT, PSWIZB_FINISH, or PSWIZB_DISABLEDFINISH flags.

Value Meaning
PSWIZB_BACK Enables the Back button.
PSWIZB_NEXT Enables the Next button.
PSWIZB_FINISH Displays an enabled Finish button in

place of the Next button.
PSWIZB_DISABLEDFINISH Displays a disabled Finish button in

place of the Next button.
Return ValuesNo return value.See AlsoPSM_SETWIZBUTTONS

PropSheet_UnChanged
The PropSheet_UnChanged macro informs a property sheet that information in a page has
reverted to the previously saved state. The property sheet disables the Apply Now button if no
other pages have registered changes with the property sheet. You can use this macro or explicitly
send the PSM_UNCHANGED message.

VOID PropSheet_UnChanged(hPropSheetDlg, hwndPage)
hPropSheetDlg,
hwndPage

);ParametershPropSheetDlg
Handle to the property sheet.

hwndPage
Handle to the page that has reverted to the previously saved state.

Return ValuesNo return value.See AlsoPSM_UNCHANGED

RGB
The RGB macro selects a red, green, blue (RGB) color based on the arguments supplied and the
color capabilities of the output device.

COLORREF RGB(
BYTE bRed, // red component of color
BYTE bGreen, // green component of color
BYTE bBlue // blue component of color

);ParameterscRed
Specifies the intensity of the red color.

cGreen
Specifies the intensity of the green color.

cBlue
Specifies the intensity of the blue color.

Return ValuesThe return value is the resultant RGB color.RemarksThe intensity for each argument is in the range 0 through 255. If all three intensities are zero, the
result is black. If all three intensities are 255, the result is white.

For information about using color values in a color palette, see the descriptions of the
PALETTEINDEX and PALETTERGB macros.

The RGB macro is defined as follows:#define RGB(r, g ,b) ((DWORD) (((BYTE) (r) | \
((WORD) (g) << 8)) | \
(((DWORD) (BYTE) (b)) << 16)))

See AlsoPALETTEINDEX, PALETTERGB

SOANGLETENTHS
Sets the angle in tenths of a degree.

SOANGLETENTHS(AngleInTenthsOfADegree)

SOPALETTEINDEX
Creates a palette-index color value. Index must specify a valid palette entry index. When this color
value is used, the system uses the color from the given palette entry.

SOPALETTEINDEX(Index)

SOPALETTERGB
Creates a palette-relative RGB color value. Red, Green, and Blue specify the red, green, and blue
color intensities and must be in the range 0 to 255. When this color value is specified, the system
uses the palette entry that has the color that most closely matches this value.

SOPALETTERGB(Red, Green, Blue)

SORGB
Creates an RGB color value. Red, Green, and Blue specify the red, green, and blue color
intensities and must be in the range 0 to 255.

SORGB(Red, Green, Blue)

SOSETRATIO
Sets the ratio. Numerator and Denominator specify the ratio factors and must be values in the
range 0 to 65,535.

SOSETRATIO(Numerator, Denominator)

SORTIDFROMLCID
The SORTIDFROMLCID macro retrieves a sort identifier from a locale identifier.

WORD SORTIDFROMLCID(
LCID lcid // locale identifier

);Parameterslcid
Specifies the locale identifier. This parameter may have been created by using the
MAKELCID macro.

Return ValuesThe return value is a sort identifier.RemarksThe SORTIDFROMLCID macro is defined as follows:#define SORTIDFROMLCID(lcid) \
((WORD)((((DWORD)(lcid)) & NLS_VALID_LOCALE_MASK) >> 16))The following sort identifiers are defined:

Value Meaning

SORT_DEFAULT Specifies the default sort.
SORT_JAPANESE_XJIS Specifies Japanese XJIS order.
SORT_JAPANESE_UNICODESpecifies Japanese Unicode order.
SORT_CHINESE_BIG5 Specifies Chinese BIG5 order.
SORT_CHINESE_UNICODESpecifies Chinese Unicode order.
SORT_KOREAN_KSC Specifies Korean KSC order.
SORT_KOREAN_UNICODESpecifies Korean Unicode order.

See AlsoMAKELANGID, MAKELCID, PRIMARYLANGID, SUBLANGID

SUBLANGID
The SUBLANGID macro extracts a sublanguage identifier from a language identifier.

WORD SUBLANGID(
WORD lgid // language identifier

);Parameterslgid
Specifies the language identifier. This value is a combination of a primary language identifier
and a sublanguage identifier and is usually created by using the MAKELANGID macro.

Return ValuesThe return value is a sublanguage identifier. The following sublanguage identifiers are defined:

SUBLANG_ARABIC_SAUDI_ARABIASUBLANG_GERMAN

SUBLANG_ARABIC_IRAQ SUBLANG_GERMAN_SWISS
SUBLANG_ARABIC_EGYPT SUBLANG_GERMAN_AUSTRIAN
SUBLANG_ARABIC_LIBYA SUBLANG_GERMAN_LUXEMBOURG
SUBLANG_ARABIC_ALGERIA SUBLANG_GERMAN_LIECHTENSTEIN
SUBLANG_ARABIC_MOROCCO SUBLANG_ITALIAN
SUBLANG_ARABIC_TUNISIA SUBLANG_ITALIAN_SWISS
SUBLANG_ARABIC_OMAN SUBLANG_KOREAN
SUBLANG_ARABIC_YEMEN SUBLANG_KOREAN_JOHAB
SUBLANG_ARABIC_SYRIA SUBLANG_NEUTRAL
SUBLANG_ARABIC_JORDAN SUBLANG_NORWEGIAN_BOKMAL
SUBLANG_ARABIC_LEBANON SUBLANG_NORWEGIAN_NYNORSK
SUBLANG_ARABIC_KUWAIT SUBLANG_PORTUGUESE
SUBLANG_ARABIC_UAE SUBLANG_PORTUGUESE_BRAZILIAN
SUBLANG_ARABIC_BAHRAIN SUBLANG_SERBIAN_LATIN
SUBLANG_ARABIC_QATAR SUBLANG_SERBIAN_CYRILLIC
SUBLANG_CHINESE_TRADITIONALSUBLANG_SPANISH
SUBLANG_CHINESE_SIMPLIFIEDSUBLANG_SPANISH_MEXICAN
SUBLANG_CHINESE_HONGKONGSUBLANG_SPANISH_MODERN
SUBLANG_CHINESE_SINGAPORESUBLANG_SPANISH_GUATEMALA
SUBLANG_DEFAULT SUBLANG_SPANISH_COSTA_RICA
SUBLANG_DUTCH SUBLANG_SPANISH_PANAMA
SUBLANG_DUTCH_BELGIAN SUBLANG_SPANISH_DOMINICAN_

REPUBLIC
SUBLANG_ENGLISH_US SUBLANG_SPANISH_VENEZUELA
SUBLANG_ENGLISH_UK SUBLANG_SPANISH_COLOMBIA
SUBLANG_ENGLISH_AUS SUBLANG_SPANISH_PERU
SUBLANG_ENGLISH_CAN SUBLANG_SPANISH_ARGENTINA
SUBLANG_ENGLISH_NZ SUBLANG_SPANISH_ECUADOR
SUBLANG_ENGLISH_EIRE SUBLANG_SPANISH_CHILE
SUBLANG_ENGLISH_SOUTH_
AFRICA

SUBLANG_SPANISH_URUGUAY

SUBLANG_ENGLISH_JAMAICA SUBLANG_SPANISH_PARAGUAY
SUBLANG_ENGLISH_CARIBBEANSUBLANG_SPANISH_BOLIVIA
SUBLANG_ENGLISH_BELIZE SUBLANG_SPANISH_EL_SALVADOR
SUBLANG_ENGLISH_TRINIDAD SUBLANG_SPANISH_HONDURAS
SUBLANG_FRENCH SUBLANG_SPANISH_NICARAGUA
SUBLANG_FRENCH_BELGIAN SUBLANG_SPANISH_PUERTO_RICO
SUBLANG_FRENCH_CANADIAN SUBLANG_SWEDISH
SUBLANG_FRENCH_SWISS SUBLANG_SWEDISH_FINLAND
SUBLANG_FRENCH_LUXEMBOURGSUBLANG_SYS_DEFAULT

RemarksThe SUBLANGID macro is defined as follows:#define SUBLANGID(lgid) ((WORD)(lgid) >> 10)
See AlsoEnumSystemLocales, LANGIDFROMLCID, MAKELANGID, PRIMARYLANGID

TabCtrl_AdjustRect
The TabCtrl_AdjustRect macro calculates a tab control's display area given a window rectangle
or calculates the window rectangle that would correspond to a specified display area. You can use
this macro or explicitly send the TCM_ADJUSTRECT message.

VOID TabCtrl_AdjustRect(
HWND hwnd,
BOOL fLarger,
RECT FAR *prc

);Parametershwnd
Handle to the tab control.

fLarger
Operation to perform. If this parameter is TRUE, prc specifies a display rectangle and
receives the corresponding window rectangle. If this parameter is FALSE, prc specifies a
window rectangle and receives the corresponding display area.

prc
Pointer to a RECT structure that specifies the given rectangle and receives the calculated
rectangle.

Return ValuesNo return value.See AlsoRECT, TCM_ADJUSTRECT

TabCtrl_DeleteAllItems
The TabCtrl_DeleteAllItems macro removes all items from a tab control. You can use this macro
or explicitly send the TCM_DELETEALLITEMS message.

BOOL TabCtrl_DeleteAllItems(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTCM_DELETEALLITEMS

TabCtrl_DeleteItem
The TabCtrl_DeleteItem macro removes an item from a tab control. You can use this macro or
explicitly send the TCM_DELETEITEM message.

BOOL TabCtrl_DeleteItem(
HWND hwnd,
int iItem

);Parametershwnd
Handle to the tab control.

iItem
Index of the item to delete.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTCM_DELETEITEM

TabCtrl_GetCurFocus
The TabCtrl_GetCurFocus macro returns the index of the item that has the focus in a tab control.
You can use this macro or explicitly send the TCM_GETCURFOCUS message.

int TabCtrl_GetCurFocus(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns the index of the tab item that has the focusRemarksThe item that has the focus may be different than the selected item.See AlsoTCM_GETCURFOCUS

TabCtrl_GetCurSel
The TabCtrl_GetCurSel macro determines the currently selected tab in a tab control. You can
use this macro or explicitly send the TCM_GETCURSEL message.

int TabCtrl_GetCurSel(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns the index of the selected tab if successful or - 1 if no tab is selected.See AlsoTCM_GETCURSEL

TabCtrl_GetImageList
The TabCtrl_GetImageList macro retrieves the image list associated with a tab control. You can
use this macro or explicitly send the TCM_GETIMAGELIST message.

HIMAGELIST TabCtrl_GetImageList(
HWND hwnd

);Return ValuesReturns the handle to the image list if successful or NULL otherwise.See AlsoTCM_GETIMAGELIST

TabCtrl_GetItem
The TabCtrl_GetItem macro retrieves information about a tab in a tab control. You can use this
macro or explicitly send the TCM_GETITEM message.

BOOL TabCtrl_GetItem(
HWND hwnd,
int iItem,
TC_ITEM FAR *pitem

);Parametershwnd
Handle to the tab control.

iItem
Index of the tab.

pitem
Pointer to a TC_ITEM structure that specifies the information to retrieve and receives
information about the tab. When the message is sent, the mask member specifies which
attributes to return.
If the mask member specifies the TCIF_TEXT value, the pszText member must contain the
address of the buffer that receives the item text and the cchTextMax member must specify
the size of the buffer.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTC_ITEM, TCM_GETITEM

TabCtrl_GetItemCount
The TabCtrl_GetItemCount macro retrieves the number of tabs in the tab control. You can use
this macro or explicitly send the TCM_GETITEMCOUNT message.

int TabCtrl_GetItemCount(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns the number of items if successful or zero otherwise.See AlsoTCM_GETITEMCOUNT

TabCtrl_GetItemRect
The TabCtrl_GetItemRect macro retrieves the bounding rectangle for a tab in a tab control. You
can use this macro or explicitly send the TCM_GETITEMRECT message.

BOOL TabCtrl_GetItemRect(
HWND hwnd,
int iItem,
RECT FAR *prc

);Parametershwnd
Handle to the tab control.

iItem
Index of the tab.

prc
Pointer to a RECT structure that receives the bounding rectangle of the tab, in viewport
coordinates.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoRECT, TCM_GETITEMRECT

TabCtrl_GetRowCount
The TabCtrl_GetRowCount macro retrieves the current number of rows of tabs in a tab control.
You can use this macro or explicitly send the TCM_GETROWCOUNT message.

int TabCtrl_GetRowCount(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns the number of rows of tabs.RemarksOnly tab controls that have the TCS_MULTILINE style can have multiple rows of tabs.See AlsoTCM_GETROWCOUNT

TabCtrl_GetToolTips
The TabCtrl_GetToolTips macro retrieves the handle to the tooltip control associated with a tab
control. You can use this macro or explicitly send the TCM_GETTOOLTIPS message.

int TabCtrl_GetToolTips(
HWND hwnd

);Parametershwnd
Handle to the tab control.

Return ValuesReturns the handle to the tooltip control if successful or NULL otherwise.RemarksA tab control creates a tooltip control if it has the TCS_TOOLTIPS style. You can also assign a
tooltip control to a tab control by using the TCM_SETTOOLTIPS message.See AlsoTCM_GETTOOLTIPS, TCM_SETTOOLTIPS

TabCtrl_HitTest
The TabCtrl_HitTest macro determines which tab, if any, is at a specified screen position. You
can use this macro or explicitly send the TCM_HITTEST message.

int TabCtrl_HitTest(
HWND hwnd,
TC_HITTESTINFO FAR *pinfo

);Parametershwnd
Handle to the tab control.

pinfo
Pointer to a TC_HITTESTINFO structure that specifies the screen position to test.

Return ValuesReturns the index of the tab or - 1 if no tab is at the specified position.See AlsoTC_HITTESTINFO, TCM_HITTEST

TabCtrl_InsertItem
The TabCtrl_InsertItem macro inserts a new tab in a tab control. You can use this macro or
explicitly send the TCM_INSERTITEM message.

int TabCtrl_InsertItem(
HWND hwnd,
int iItem,
const TC_ITEM FAR *pitem

);Parametershwnd
Handle to the tab control.

iItem
Index of the new tab.

pitem
Pointer to a TC_ITEM structure that specifies the attributes of the tab.

Return ValuesReturns the index of the new tab if successful or - 1 otherwise.See AlsoTC_ITEM, TCM_INSERTITEM

TabCtrl_RemoveImage
The TabCtrl_RemoveImage macro removes an image from a tab control's image list. You can
use this macro or explicitly send the TCM_REMOVEIMAGE message.

void TabCtrl_RemoveImage(
HWND hwnd,
int iImage

);Parametershwnd
Handle to the tab control.

iImage
Index of the image to remove.

Return ValuesNo return value.RemarksThe tab control updates each tab's image index, so each tab remains associated with the same
image it had been.See AlsoTCM_REMOVEIMAGE

TabCtrl_SetCurFocus
The TabCtrl_SetCurFocus macro sets the focus to a specified tab in a tab control. You can use
this macro, or you can explicitly send the TCM_SETCURFOCUS message.

VOID TabCtrl_SetCurFocus(
HWND hwnd, // handle to the tab control
int iItem // index of the tab that gets the focus

);Parametershwnd
Handle to the tab control.

iItem
Specifies the zero-based index of the tab that gets the focus.

Return ValuessNo return value.RemarksIf the tab control has the TCS_BUTTONS style (button mode), the tab with the focus may be
different from the selected tab. For example, when a tab is selected, the user can press the arrow
keys to set the focus to a different tab without changing the selected tab. In button mode, the
TabCtrl_SetCurFocus macro sets the input focus to the button associated with the specified tab,
but it does not change the selected tab.

If the tab control does not have the TCS_BUTTONS style, changing the focus also changes
selected tab. In this case, the tab control sends the TCN_SELCHANGING and
TCN_SELCHANGE notification messages to its parent window.See AlsoTabCtrl_GetCurFocus, TCM_GETCURFOCUS, TCN_SELCHANGE, TCN_SELCHANGING,
TCM_SETCURFOCUS

TabCtrl_SetCurSel
The TabCtrl_SetCurSel macro selects a tab in a tab control. You can use this macro or explicitly
send the TCM_SETCURSEL message.

int TabCtrl_SetCurSel(
HWND hwnd,
int iItem

);Parametershwnd
Handle to the tab control.

iItem
Index of the tab to select.

Return ValuesReturns the index of the previously selected tab if successful or - 1 otherwise.RemarksA tab control does not send a TCN_SELCHANGING or TCN_SELCHANGE notification message
when a tab is selected using the TCM_SETCURSEL message.See AlsoTCM_SETCURSEL, TCN_SELCHANGE, TCN_SELCHANGING

TabCtrl_SetImageList
The TabCtrl_SetImageList macro assigns an image list to a tab control. You can use this macro
or explicitly send the TCM_SETIMAGELIST message.

BOOL TabCtrl_SetImageList(
HWND hwnd,
HIMAGELIST himl

);Parametershwnd
Handle to the tab control.

himl
Handle of the image list to assign to the tab control.

Return ValuesReturns the handle to the previous image list or NULL if there is no previous image list.See AlsoTCM_SETIMAGELIST

TabCtrl_SetItem
The TabCtrl_SetItem macro sets some or all of a tab's attributes. You can use this macro or
explicitly send the TCM_SETITEM message.

BOOL TabCtrl_SetItem(
HWND hwnd,
int iItem,
TC_ITEM FAR *pitem

);Parametershwnd
Handle to the tab control.

iItem
Index of the item.

pitem
Pointer to a TC_ITEM structure that contains the new item attributes. The mask member
specifies which attributes to set.
If the mask member specifies the LVIF_TEXT value, the pszText member is the address of a
null-terminated string and the cchTextMax member is ignored.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTC_ITEM, TCM_SETITEM

TabCtrl_SetItemExtra
The TabCtrl_SetItemExtra macro sets the number of bytes per tab reserved for application-
defined data in a tab control. You can use this macro or explicitly send the TCM_SETITEMEXTRA
message.

BOOL TabCtrl_SetItemExtra(
HWND hwnd,
int cb

);Parametershwnd
Handle to the tab control.

cb
Number of extra bytes.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksBy default, the number of extra bytes is four. An application that changes the number of extra
bytes cannot use the TC_ITEM structure to retrieve and set the application-defined data for a tab.
Instead, you must define a new structure that consists of the TC_ITEMHEADER structure
followed by application-defined members.

An application should only change the number of extra bytes when a tab control does not contain
any tabs.See AlsoTC_ITEM, TC_ITEMHEADER, TCM_SETITEMEXTRA

TabCtrl_SetItemSize
The TabCtrl_SetItemSize macro sets the width and height of tabs in a fixed-width or owner-
drawn tab control. You can use this macro or explicitly send the TCM_SETITEMSIZE message.

DWORD TabCtrl_SetItemSize(
HWND hwnd,
int cx,
int cy

);Parametershwnd
Handle to the tab control.

cx and cy
New width and height, in pixels.

Return ValuesReturns the old width and height. The width is in the low-order word of the return value, and the
height is in the high-order word.See AlsoTCM_SETITEMSIZE

TabCtrl_SetPadding
The TabCtrl_SetPadding macro sets the amount of space (padding) around each tab's icon and
label in a tab control. You can use this macro or explicitly send the TCM_SETPADDING message.

void TabCtrl_SetPadding(
HWND hwnd,
int cx,
int cy

);Parameterscx and cy
Amount of horizontal and vertical padding, in pixels.

hwnd
Handle to the tab control.

Return ValuesNo return value.See AlsoTCM_SETPADDING

TabCtrl_SetToolTips
The TabCtrl_SetToolTips macro assigns a tooltip control to a tab control. You can use this
macro or explicitly send the TCM_SETTOOLTIPS message.

void TabCtrl_SetToolTips(
HWND hwndTab,
HWND hwndTT

);ParametershwndTab
Handle to the tab control.

hwndTT
Handle to the tooltip control.

Return ValuesNo return value.RemarksYou can get the tooltip control associated with a tab control by using the TCM_GETTOOLTIPS
message.See AlsoTCM_GETTOOLTIPS, TCM_SETTOOLTIPS

TEXT
The TEXT macro identifies a string as Unicode when the UNICODE compile flag is used or as an
ANSI string when Unicode is not defined.

TEXT(
LPTSTR string // address of ANSI or Unicode string

);Parametersstring
Specifies the string to be interpreted as either Unicode or ANSI.

RemarksThe TEXT macro is defined as follows:#define TEXT(quote) L##quote

TreeView_CreateDragImage
The TreeView_CreateDragImage macro creates a dragging bitmap for the specified item in a
tree-view control, creates an image list for the bitmap, and adds the bitmap to the image list. An
application can display the image when dragging the item by using the image list functions. You
can use this macro or explicitly send the TVM_CREATEDRAGIMAGE message.

HIMAGELIST TreeView_CreateDragImage(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the item that receives the new dragging bitmap.

Return ValuesReturns the handle of the image list to which the dragging bitmap was added if successful or
NULL otherwise.RemarksIf you create a tree-view control without an associated image list, you cannot use the
TreeView_CreateDragImage macro to create the image to display during a drag operation. You
must implement your own way to support drag and drop cursor.See AlsoTVM_CREATEDRAGIMAGE

TreeView_DeleteAllItems
The TreeView_DeleteAllItems macro removes an item from a tree-view control. You can use this
macro, the TreeView_DeleteItem macro, or explicitly send the TVM_DELETEITEM message.

BOOL TreeView_DeleteAllItems(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the item label is being edited, the edit operation is canceled and the parent window receives the
TVN_ENDLABELEDIT notification message. The parent window receives a TVN_DELETEITEM
notification message when the item is removed.See AlsoTreeView_DeleteItem, TVM_DELETEITEM, TVN_DELETEITEM, TVN_ENDLABELEDIT

TreeView_DeleteItem
The TreeView_DeleteItem macro removes an item from a tree-view control. You can use this
macro, the TreeView_DeleteAllItems macro, or explicitly send the TVM_DELETEITEM message.

BOOL TreeView_DeleteItem(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the item to delete. If hitem is the TVI_ROOT value, all items are deleted from the
tree-view control.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the item label is being edited, the edit operation is canceled and the parent window receives the
TVN_ENDLABELEDIT notification message. The parent window receives a TVN_DELETEITEM
notification message when the item is removed.See AlsoTreeView_DeleteAllItems, TVM_DELETEITEM, TVN_DELETEITEM, TVN_ENDLABELEDIT

TreeView_EditLabel
The TreeView_EditLabel macro begins in-place editing of the specified item's text, replacing the
text of the item with a single-line edit control containing the text. This macro implicitly selects and
focuses the specified item. You can use this macro or explicitly send the TVM_EDITLABEL
message.

HWND TreeView_EditLabel(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the item to edit.

Return ValuesReturns the handle to the edit control used to edit the item text if successful or NULL otherwise.RemarksThis macro sends a TVN_BEGINLABELEDIT notification message to the parent of the tree-view
control.

When the user completes or cancels editing, the edit control is destroyed and the handle is no
longer valid. You can safely subclass the edit control, but do not destroy it.

The control must have the focus before you send this message to the control. Focus can be set
using the SetFocus function.See AlsoTVM_EDITLABEL, TVN_BEGINLABELEDIT, SetFocus

TreeView_EndEditLabelNow
The TreeView_EndEditLabelNow macro ends the editing of a tree-view item's label. You can
use this macro or explicitly send the TVM_ENDEDITLABELNOW message.

BOOL TreeView_EndEditLabelNow(
hwnd,
fCancel

);Parametershwnd
Handle to the tree-view control.

fCancel
Variable that indicates whether the editing is canceled without being saved to the label. If this
parameter is TRUE, the system cancels editing without saving the changes. Otherwise, the
system saves the changes to the label.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksThis macro causes the TVN_ENDLABELEDIT notification message to be sent to the parent
window of the tree-view control.See AlsoTVM_ENDEDITLABELNOW, TVN_ENDLABELEDIT

TreeView_EnsureVisible
The TreeView_EnsureVisible macro ensures that a tree-view item is visible, expanding the
parent item or scrolling the tree-view control, if necessary. You can use this macro or explicitly
send the TVM_ENSUREVISIBLE message.

BOOL TreeView_EnsureVisible(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the item.

Return ValuesReturns TRUE if the system scrolled the items in the tree-view control to ensure that the specified
item is visible. Otherwise, the macro returns FALSE.RemarksIf the TreeView_EnsureVisible macro expands the parent item, the parent window receives the
TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification messages.See AlsoTVM_ENSUREVISIBLE, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING

TreeView_Expand
The TreeView_Expand macro expands or collapses the list of child items, if any, associated with
the specified parent item. You can use this macro or explicitly send the TVM_EXPAND message.

BOOL TreeView_Expand(
hwnd,
hitem,
flag

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the parent item to expand or collapse.

flag
Action flag. This parameter can be one of the following values:

Value Meaning
TVE_COLLAPSE Collapses the list.
TVE_COLLAPSERESETCollapses the list and removes the child

items. Note that TVE_COLLAPSE must
also be specified.

TVE_EXPAND Expands the list.
TVE_TOGGLE Collapses the list if it is currently expanded

or expands it if it is currently collapsed.
Return ValuesReturns TRUE if any change took place or FALSE otherwise.RemarksThis macro does not send the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification

messages to the parent window.See AlsoTVM_EXPAND, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING

TreeView_GetChild
The TreeView_GetChild macro retrieves the first child item of the specified tree-view item. You
can use this macro, or you can explicitly send the TVM_GETNEXTITEM message with the
TVGN_CHILD flag.

HTREEITEM TreeView_GetChild(
hwnd,
hitem,

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to a tree-view item.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetNextItem, TreeView_GetNextSibling, TreeView_GetParent,
TreeView_GetPrevSibling, TVM_GETNEXTITEM

TreeView_GetCount
The TreeView_GetCount macro retrieves a count of the items in a tree-view control. You can use
this macro or explicitly send the TVM_GETCOUNT message.

UINT TreeView_GetCount(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the count of items.See AlsoTVM_GETCOUNT

TreeView_GetDropHilite
The TreeView_GetDropHilite macro retrieves the tree-view item that is the target of a drag-and-
drop operation. You can use this macro, or you can explicitly send the TVM_GETNEXTITEM
message with the TVGN_DROPHILITE flag.

HTREEITEM TreeView_GetDropHilite(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTVM_GETNEXTITEM

TreeView_GetEditControl
The TreeView_GetEditControl macro retrieves the handle to the edit control being used to edit a
tree-view item's text. You can use this macro or explicitly send the TVM_GETEDITCONTROL
message.

HWND TreeView_GetEditControl(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the handle to the edit control if successful or NULL otherwise.See AlsoTVM_GETEDITCONTROL

TreeView_GetFirstVisible
The TreeView_GetFirstVisible macro retrieves the first visible item in a tree-view control. You
can use this macro, or you can explicitly send the TVM_GETNEXTITEM message with the
TVGN_FIRSTVISIBLE flag.

HTREEITEM TreeView_GetFirstVisible(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetNextVisible, TreeView_GetPrevVisible, TVM_GETITEMRECT,
TVM_GETNEXTITEM

TreeView_GetImageList
The TreeView_GetImageList macro retrieves the handle to the normal or state image list
associated with a tree-view control. You can use this macro or explicitly send the
TVM_GETIMAGELIST message.

HIMAGELIST TreeView_GetImageList(
hwnd,
iImage

);Parametershwnd
Handle to the image list.

iImage
Type of image list to retrieve. This parameter can be one of the following values:

Value Meaning
TVSIL_NORMAL Retrieves the normal image list, which

contains the selected and unselected
images for the tree-view item.

TVSIL_STATE Retrieves the state image list, which
contains the images for tree-view items that
are in a user-defined state.

Return ValuesReturns the handle to the image list.See AlsoTVM_GETIMAGELIST

TreeView_GetIndent
The TreeView_GetIndent macro retrieves the amount, in pixels, that child items are indented
relative to their parent items. You can use this macro or explicitly send the TVM_GETINDENT
message.

UINT TreeView_GetIndent(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the amount of indentation.See AlsoTVM_GETINDENT

TreeView_GetISearchString
The TreeView_GetISearchString macro retrieves the incremental search string for a tree-view
control. The tree-view control uses the incremental search string to select an item based on
characters typed by the user. You can use this macro or explicitly send the
TVM_GETISEARCHSTRING message.

BOOL TreeView_GetISearchString(
hwnd,
lpsz

);Parametershwnd
Handle to the tree-view control.

lpsz
Pointer to the buffer that receives the incremental search string.

Return ValuesReturns the number of characters in the incremental search string.

If the tree-view control is not in incremental search mode, the return value is zero.See AlsoTVM_GETISEARCHSTRING

TreeView_GetItem
The TreeView_GetItem macro retrieves some or all of a tree-view item's attributes. You can use
this macro or explicitly send the TVM_GETITEM message.

BOOL TreeView_GetItem(
hwnd,
pitem

);Parametershwnd
Handle to the tree-view control.

pitem
Pointer to a TV_ITEM structure that specifies the information to retrieve and receives
information about the item. When the TVM_GETITEM message is sent, the hItem member
identifies the item to retrieve information about and the mask member specifies the attributes
to retrieve.
If mask specifies the TVIF_TEXT value, the pszText member must contain the pointer to the
buffer that receives the item text and the cchTextMax member must specify the size of the
buffer.
If mask specifies the TVIF_STATE value, the stateMask member indicates which item states
are to be returned.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTV_ITEM, TVM_GETITEM

TreeView_GetItemRect
The TreeView_GetItemRect macro retrieves the bounding rectangle for a tree-view item and
indicates whether the item is visible. You can use this macro or explicitly send the
TVM_GETITEMRECT message.

BOOL TreeView_GetItemRect(
hwnd,
hitem,
prc,
fItemRect

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the tree-view item.

prc
Pointer to a RECT structure that receives the bounding rectangle. The coordinates are relative
to the upper-left corner of the tree-view control.

fItemRect
Value specifying the portion of the item for which to retrieve the bounding rectangle. If this
parameter is TRUE, the bounding rectangle includes only the text of the item. Otherwise, it
includes the entire line that the item occupies in the tree-view control.

Return ValuesIf the item is visible and retrieves the bounding rectangle, the return value is TRUE. Otherwise,
the TVM_GETITEMRECT message returns FALSE and does not retrieve the bounding rectangle.See AlsoRECT, TVM_GETITEMRECT

TreeView_GetNextItem
The TreeView_GetNextItem macro retrieves the tree-view item that bears the specified
relationship to a specified item. You can use this macro or one of the related macros, or you can
explicitly send the TVM_GETNEXTITEM message.

HTREEITEM TreeView_GetNextItem(
hwnd,
hitem,
flag

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item.

flag
Flag specifying the item to retrieve. This parameter can be one of the following values:

Value Message
TVGN_CARET Retrieves the currently selected item.

You can use the
TreeView_GetSelection macro to send
this message.

TVGN_CHILD Retrieves the first child item of the item
specified by the hitem parameter. You
can use the TreeView_GetChild macro
to send this message.

TVGN_DROPHILITE Retrieves the item that is the target of a
drag-and-drop operation. You can use
the TreeView_GetDropHilite macro to
send this message.

TVGN_FIRSTVISIBLE Retrieves the first visible item. You can
use the TreeView_GetFirstVisible
macro to send this message.

TVGN_NEXT Retrieves the next sibling item. You can
use the TreeView_GetNextSibling
macro to send this message.

TVGN_NEXTVISIBLE Retrieves the next visible item that
follows the specified item. The specified
item must be visible. Use the
TVM_GETITEMRECT message to
determine whether an item is visible. You
can use the TreeView_GetNextVisible
macro to send this message.

TVGN_PARENT Retrieves the parent of the specified
item. You can use the
TreeView_GetParent macro to send this
message.

TVGN_PREVIOUS Retrieves the previous sibling item. You
can use the TreeView_GetPrevSibling
macro to send this message.

TVGN_PREVIOUSVISIBLERetrieves the first visible item that
precedes the specified item. The
specified item must be visible. Use the
TVM_GETITEMRECT message to
determine whether an item is visible. You
can use the TreeView_GetPrevVisible
macro to send this message.

TVGN_ROOT Retrieves the topmost or very first item of
the tree-view control. You can use the
TreeView_GetRoot macro to send this

message.
Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetChild, TreeView_GetDropHilite, TreeView_GetFirstVisible,

TreeView_GetNextSibling, TreeView_GetNextVisible, TreeView_GetParent,
TreeView_GetPrevSibling, TreeView_GetPrevVisible, TreeView_GetRoot,
TreeView_GetSelection, TVM_GETITEMRECT, TVM_GETNEXTITEM

TreeView_GetNextSibling
The TreeView_GetNextSibling macro retrieves the next sibling item of a specified item in a tree-
view control. You can use this macro, or you can explicitly send the TVM_GETNEXTITEM
message with the TVGN_NEXT flag.

HTREEITEM TreeView_GetNextSibling(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetChild, TreeView_GetNextItem, TreeView_GetParent,
TreeView_GetPrevSibling, TVM_GETNEXTITEM

TreeView_GetNextVisible
The TreeView_GetNextVisible macro retrieves the next visible item that follows a specified item
in a tree-view control. You can use this macro, or you can explicitly send the
TVM_GETNEXTITEM message with the TVGN_NEXTVISIBLE flag.

HTREEITEM TreeView_GetNextVisible(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. The specified item must be visible. Use the TVM_GETITEMRECT
message to determine whether an item is visible.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetFirstVisible, TreeView_GetNextItem, TreeView_GetPrevVisible,
TVM_GETITEMRECT, TVM_GETNEXTITEM

TreeView_GetParent
The TreeView_GetParent macro retrieves the parent item of the specified tree-view item. You
can use this macro, or you can explicitly send the TVM_GETNEXTITEM message with the
TVGN_PARENT flag.

HTREEITEM TreeView_GetParent(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetChild, TreeView_GetNextItem, TreeView_GetNextSibling,
TreeView_GetPrevSibling, TVM_GETNEXTITEM

TreeView_GetPrevSibling
The TreeView_GetPrevSibling macro retrieves the previous sibling item of a specified item in a
tree-view control. You can use this macro, or you can explicitly send the TVM_GETNEXTITEM
message with the TVGN_PREVIOUS flag.

HTREEITEM TreeView_GetPrevSibling(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetChild, TreeView_GetNextItem, TreeView_GetNextSibling,
TreeView_GetParent, TVM_GETNEXTITEM

TreeView_GetPrevVisible
The TreeView_GetPrevVisible macro retrieves the first visible item that precedes a specified
item in a tree-view control. You can use this macro, or you can explicitly send the
TVM_GETNEXTITEM message with the TVGN_PREVIOUSVISIBLE flag.

HTREEITEM TreeView_GetPrevVisible(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. The specified item must be visible. Use the TVM_GETITEMRECT
message to determine whether an item is visible.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetFirstVisible, TreeView_GetNextItem, TreeView_GetNextVisible,
TVM_GETITEMRECT, TVM_GETNEXTITEM

TreeView_GetRoot
The TreeView_GetRoot macro retrieves the topmost or very first item of the tree-view control.
You can use this macro, or you can explicitly send the TVM_GETNEXTITEM message with the
TVGN_ROOT flag.

HTREEITEM TreeView_GetRoot(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetNextItem, TVM_GETNEXTITEM

TreeView_GetSelection
The TreeView_GetSelection macro retrieves the currently selected item in a tree-view control.
You can use this macro, or you can explicitly send the TVM_GETNEXTITEM message with the
TVGN_CARET flag.

HTREEITEM TreeView_GetSelection(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the handle to the item if successful or NULL otherwise.See AlsoTreeView_GetNextItem, TVM_GETNEXTITEM

TreeView_GetVisibleCount
The TreeView_GetVisibleCount macro obtains the number of items that are fully visible in the
client window of a tree-view control. You can use this macro or explicitly send the
TVM_GETVISIBLECOUNT message.

UINT TreeView_GetVisibleCount(
hwnd

);Parametershwnd
Handle to the tree-view control.

Return ValuesReturns the number of items that are fully visible in the client window of the tree-view control.RemarksNote that the return value is the number of fully-visible items. If you can see all of 20 items, and
part of one more item, the return value is 20, not 21.See AlsoTVM_GETVISIBLECOUNT

TreeView_HitTest
The TreeView_HitTest macro determines the location of the specified point relative to the client
area of a tree-view control. You can use this macro or explicitly send the TVM_HITTEST
message.

HTREEITEM TreeView_HitTest(
hwnd,
lpht

);Parametershwnd
Handle to the tree-view control.

lpht
Pointer to a TV_HITTESTINFO structure. When the message is sent, the pt member specifies
the coordinates of the point to test. When the message returns, the hItem member is the
handle to the item at the specified point or NULL if no item occupies the point. Also, when the
message returns, the flags member is a hit-test value that indicates the location of the
specified point. For a list of hit-test values, see the description of the TV_HITTESTINFO
structure.

Return ValuesReturns the handle to the tree-view item that occupies the specified point or NULL if no item
occupies the point.See AlsoTV_HITTESTINFO, TVM_HITTEST

TreeView_InsertItem
The TreeView_InsertItem macro inserts a new item in a tree-view control. You can use this
macro or explicitly send the TVM_INSERTITEM message.

HTREEITEM TreeView_InsertItem(
hwnd,
lpis

);Parametershwnd
Handle to the tree-view control.

lpis
Pointer to a TV_INSERTSTRUCT structure that specifies the attributes of the tree-view item.

Return ValuesReturns the handle to the new item if successful or NULL otherwise.See AlsoTV_INSERTSTRUCT, TVM_INSERTITEM, TVN_ENDLABELEDIT

TreeView_Select
The TreeView_Select macro selects the specified tree-view item, scrolls the item into view, or
redraws the item in the style used to indicate the target of a drag-and-drop operation. You can use
this macro, the TreeView_SelectItem or TreeView_SelectDropTarget macro, or explicitly send
the TVM_SELECTITEM message.

BOOL TreeView_Select(
hwnd,
hitem,
flag

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. If the hitem parameter is NULL, the selection is removed from the currently
selected item, if any.

flag
Action flag. This parameter can be one of the following values:

Value Meaning
TVGN_CARET Sets the selection to the given item.
TVGN_DROPHILITE Redraws the given item in the style used to

indicate the target of a drag and drop
operation.

TVGN_FIRSTVISIBLEScrolls the tree view vertically so that the
given item is the first visible item.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the TVGN_CARET value is specified, the parent window receives the TVN_SELCHANGING
and TVN_SELCHANGED notification messages. Also, if the specified item is the child of a
collapsed parent item, the parent's list of child items is expanded to reveal the specified item. In
this case, the parent window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages.See AlsoTreeView_SelectDropTarget, TreeView_SelectItem, TreeView_SelectSetFirstVisible,
TVM_SELECTITEM, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_SELCHANGED,
TVN_SELCHANGING

TreeView_SelectItem
The TreeView_SelectItem macro selects the specified tree-view item, scrolls the item into view,
or redraws the item in the style used to indicate the target of a drag-and-drop operation. You can
use this macro, the TreeView_Select or TreeView_SelectDropTarget macro, or explicitly send
the TVM_SELECTITEM message.

BOOL TreeView_SelectItem(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. If the hitem parameter is NULL, the selection is removed from the currently
selected item, if any.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the TVGN_CARET value is specified, the parent window receives the TVN_SELCHANGING
and TVN_SELCHANGED notification messages. Also, if the specified item is the child of a
collapsed parent item, the parent's list of child items is expanded to reveal the specified item. In
this case, the parent window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages.

Using the TreeView_SelectItem macro is equivalent to sending the TVM_SELECTITEM message
with its flag parameter set to the TVGN_CARET value.See AlsoTreeView_Select, TreeView_SelectDropTarget, TreeView_SelectSetFirstVisible,
TVM_SELECTITEM, TVM_SELECTITEM, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING,
TVN_SELCHANGED, TVN_SELCHANGING

TreeView_SelectDropTarget
The TreeView_SelectDropTarget macro selects the specified tree-view item, scrolls the item into
view, or redraws the item in the style used to indicate the target of a drag-and-drop operation. You
can use this macro, the TreeView_Select or TreeView_SelectItem macro, or explicitly send the
TVM_SELECTITEM message.

BOOL TreeView_SelectDropTarget(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. If the hitem parameter is NULL, the selection is removed from the currently
selected item, if any.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the TVGN_CARET value is specified, the parent window receives the TVN_SELCHANGING
and TVN_SELCHANGED notification messages. Also, if the specified item is the child of a
collapsed parent item, the parent's list of child items is expanded to reveal the specified item. In
this case, the parent window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages.

Using the TreeView_SelectDropTarget macro is equivalent to sending the TVM_SELECTITEM
message with its flag parameter set to the TVGN_DROPHILITE value.See AlsoTreeView_Select, TreeView_SelectItem, TreeView_SelectSetFirstVisible,
TVM_SELECTITEM, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_SELCHANGED,
TVN_SELCHANGING

TreeView_SelectSetFirstVisible
The TreeView_SelectSetFirstVisible macro selects the specified tree-view item, scrolls the item
into view, or redraws the item in the style used to indicate the target of a drag-and-drop operation.
You can use this macro, the TreeView_Select or TreeView_SelectItem macro, or explicitly send
the TVM_SELECTITEM message.

BOOL TreeView_SelectSetFirstVisible(
hwnd,
hitem

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to an item. If the hitem parameter is NULL, the selection is removed from the currently
selected item, if any.

Return ValuesReturns TRUE if successful or FALSE otherwise.RemarksIf the TVGN_CARET value is specified, the parent window receives the TVN_SELCHANGING
and TVN_SELCHANGED notification messages. Also, if the specified item is the child of a
collapsed parent item, the parent's list of child items is expanded to reveal the specified item. In
this case, the parent window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED
notification messages.

Using the TreeView_SelectSetFirstVisible macro is equivalent to sending the
TVM_SELECTITEM message with its flag parameter set to the TVGN_FIRSTVISIBLE value.See AlsoTreeView_Select, TreeView_SelectItem, TreeView_SelectDropTarget, TVM_SELECTITEM,
TVN_ITEMEXPANDED, TVN_ITEMEXPANDING, TVN_SELCHANGED, TVN_SELCHANGING

TreeView_SetImageList
The TreeView_SetImageList macro sets the normal or state image list for a tree-view control and
redraws the control using the new images. You can use this macro or explicitly send the
TVM_SETIMAGELIST message.

HIMAGELIST TreeView_SetImageList(
hwnd,
himl,
iImage

);Parametershwnd
Handle to the tree-view control.

himl
Handle to the image list. If himl is NULL, all images are removed from the tree-view control.

iImage
Type of image list to set. For a list of possible values, see the description of the
TVM_GETIMAGELIST message.

Return ValuesReturns the handle to the previous image list, if any, or NULL otherwise.See AlsoTVM_GETIMAGELIST, TVM_SETIMAGELIST

TreeView_SetIndent
The TreeView_SetIndent macro sets the width of indentation for a tree-view control and redraws
the control to reflect the new width. You can use this macro or explicitly send the
TVM_SETINDENT message.

BOOL TreeView_SetIndent(
hwnd,
indent

);Parametershwnd
Handle to the tree-view control.

indent
Width, in pixels, of the indentation. If this parameter is less than the system-defined minimum
width, the new width is set to the system-defined minimum.

Return ValuesNo return value.See AlsoTVM_SETINDENT

TreeView_SetItem
The TreeView_SetItem macro sets some or all of a tree-view item's attributes. You can use this
macro or explicitly send the TVM_SETITEM message.

BOOL TreeView_SetItem(
hwnd,
pitem

);Parametershwnd
Handle to the tree-view control.

pitem
Pointer to a TV_ITEM structure that contains the new item attributes. The hItem member
identifies the item, and the mask member specifies which attributes to set.
If mask specifies the TVIF_TEXT value, the pszText member is the pointer to a null-
terminated string and the cchTextMax member is ignored.
If mask specifies the TVIF_STATE value, the stateMask member indicates which item states
to change and the state member contains the values for those states.

Return ValuesReturns zero if successful or - 1 otherwise.See AlsoTV_ITEM, TVM_SETITEM

TreeView_SortChildren
The TreeView_SortChildren macro sorts the child items of the specified parent item in a tree-
view control. You can use this macro or explicitly send the TVM_SORTCHILDREN message.

BOOL TreeView_SortChildren(
hwnd,
hitem,
fRecurse

);Parametershwnd
Handle to the tree-view control.

hitem
Handle to the parent item whose child items are to be sorted.

fRecurse
Reserved for future use. Must be zero.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTVM_SORTCHILDREN

TreeView_SortChildrenCB
The TreeView_SortChildrenCB macro sorts tree-view items using an application-defined
callback function that compares the items. You can use this macro or explicitly send the
TVM_SORTCHILDRENCB message.

BOOL TreeView_SortChildrenCB(
hwnd,
psort,
fRecurse

);Parametershwnd
Handle to the tree-view control.

psort
Pointer to a TV_SORTCB structure. The lpfnCompare member is the pointer to the
application-defined callback function, which is called during the sort operation each time the
relative order of two list items needs to be compared. For more information about the callback
function, see the description of TV_SORTCB.

fRecurse
Reserved for future use. Must be zero.

Return ValuesReturns TRUE if successful or FALSE otherwise.See AlsoTV_SORTCB, TVM_SORTCHILDRENCB

XTYP_ADVDATA
XTYP_ADVDATAA dynamic data exchange (DDE) client callback function receives the XTYP_ADVDATA

transaction after establishing an advise loop with a server. This transaction informs the client that
the value of the data item has changed.ParametersuFmt

Specifies the format atom of the data sent from the server.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name.
hdata

Identifies the data associated with the topic name and item name pair. This parameter is
NULL if the client specified the XTYPF_NODATA flag when it requested the advise loop.

dwData1
Not used.

dwData2
Not used.

Return ValuesA DDE callback function should return DDE_FACK if it processes this transaction, DDE_FBUSY if
it is too busy to process this transaction, or DDE_FNOTPROCESSED if it rejects this transaction.RemarksAn application must not free the data handle obtained during this transaction. An application must,
however, copy the data associated with the data handle if the application must process the data
after the callback function returns. An application can use the DdeGetData function to copy the
data.See AlsoDdeClientTransaction, DdeGetData, DdePostAdvise

XTYP_ADVREQ
XTYP_ADVREQThe system sends the XTYP_ADVREQ transaction to a server after the server calls the

DdePostAdvise function. This transaction informs the server that an advise transaction is
outstanding on the specified topic name and item name pair and that data corresponding to the
topic name and item name pair has changed.ParametersuFmt

Specifies the format in which the data should be submitted to the client.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name that has changed.
hdata

Not used.
dwData1

Specifies the count, in the low-order word, of XTYP_ADVREQ transactions that remain to be
processed on the same topic, item, and format name set within the context of the current call
to the DdePostAdvise function. The count is zero if the current XTYP_ADVREQ transaction
is the last one. A server can use this count to determine whether to create an
HDATA_APPOWNED data handle for the advise data.
The low-order word is set to CADV_LATEACK if the Dynamic Data Exchange Management
Library (DDEML) issued the XTYP_ADVREQ transaction because of a late-arriving DDE_ACK
message from a client being outrun by the server.
The high-order word is not used.

dwData2
Not used.

Return ValuesThe server should first call the DdeCreateDataHandle function to create a data handle that
identifies the changed data and then return the handle. The server should return NULL if it is
unable to complete the transaction.RemarksA server cannot block this transaction type; the CBR_BLOCK return code is ignored.See AlsoDdeCreateDataHandle, DdeInitialize, DdePostAdvise

XTYP_ADVSTART
XTYP_ADVSTARTA dynamic data exchange (DDE) server callback function receives the XTYP_ADVSTART

transaction when a client specifies XTYP_ADVSTART as the uType parameter of the
DdeClientTransaction function. A client uses this transaction to establish an advise loop with a
server.ParametersuFmt

Specifies the data format requested by the client.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name.
hdata

Not used.
dwData1

Not used.
dwData2

Not used.
Return ValuesA server callback function should return TRUE to allow an advise loop on the specified topic name

and item name pair, or FALSE to deny the advise loop. If the callback function returns TRUE, any
subsequent calls to the DdePostAdvise function by the server on the same topic name and item
name pair causes the system to send XTYP_ADVREQ transactions to the server.RemarksIf a client requests an advise loop on a topic name, item name, and data format for an advise loop
that is already established, the Dynamic Data Exchange Management Library (DDEML) does not
create a duplicate advise loop but instead alters the advise loop flags (XTYPF_ACKREQ and
XTYPF_NODATA) to match the latest request.

This transaction is filtered if the server application specified the CBF_FAIL_ADVISES flag in the
DdeInitialize function.See AlsoDdeClientTransaction, DdeInitialize, DdePostAdvise

XTYP_ADVSTOP
XTYP_ADVSTOPA dynamic data exchange (DDE) server callback function receives the XTYP_ADVSTOP

transaction when a client specifies XTYP_ADVSTOP in the DdeClientTransaction function. A
client uses this transaction to end an advise loop with a server.ParametersuFmt

Specifies the data format associated with the advise loop being ended.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name.
hdata

Not used.
dwData1

Not used.
dwData2

Not used.
RemarksThis transaction is filtered if the server application specified the CBF_FAIL_ADVISES flag in the

DdeInitialize function.See AlsoDdeClientTransaction, DdeInitialize, DdePostAdvise

XTYP_CONNECT
XTYP_CONNECTA dynamic data exchange (DDE) server callback function receives the XTYP_CONNECT

transaction when a client specifies a service name that the server supports and a topic name that
is not NULL in a call to the DdeConnect function.ParametersuFmt

Not used.
hconv

Not used.
hsz1

Identifies the topic name.
hsz2

Identifies the service name.
hdata

Not used.
dwData1

Points to a CONVCONTEXT structure that contains context information for the conversation. If
the client is not a Dynamic Data Exchange Management Library (DDEML) application, this
parameter is 0.

dwData2
Specifies whether the client is the same application instance as the server. If the parameter is
1, the client is the same instance. If the parameter is 0, the client is a different instance.

Return ValuesA server callback function should return TRUE to allow the client to establish a conversation on
the specified service name and topic name pair, or the function should return FALSE to deny the
conversation. If the callback function returns TRUE and a conversation is successfully
established, the system passes the conversation handle to the server by issuing an
XTYP_CONNECT_CONFIRM transaction to the server's callback function (unless the server
specified the CBF_SKIP_CONNECT_CONFIRMS flag in the DdeInitialize function).RemarksThis transaction is filtered if the server application specified the CBF_FAIL_CONNECTIONS flag
in the DdeInitialize function.

A server cannot block this transaction type; the CBR_BLOCK return code is ignored.See AlsoCONVCONTEXT, DdeConnect, DdeInitialize

XTYP_CONNECT_CONFIRM
XTYP_CONNECT_CONFIRMA dynamic data exchange (DDE) server callback function receives the

XTYP_CONNECT_CONFIRM transaction to confirm that a conversation has been established
with a client and to provide the server with the conversation handle. The system sends this
transaction as a result of a previous XTYP_CONNECT or XTYP_WILDCONNECT transaction.ParametersuFmt

Not used.
hconv

Identifies the new conversation.
hsz1

Identifies the topic name on which the conversation has been established.
hsz2

Identifies the service name on which the conversation has been established.
hdata

Not used.
dwData1

Not used.
dwData2

Specifies whether the client is the same application instance as the server. If the parameter is
1, the client is the same instance. If the parameter is 0, the client is a different instance.

RemarksThis transaction is filtered if the server application specified the
CBF_SKIP_CONNECT_CONFIRMS flag in the DdeInitialize function.

A server cannot block this transaction type; the CBR_BLOCK return code is ignored.See AlsoDdeConnect, DdeConnectList, DdeInitialize

XTYP_DISCONNECT
XTYP_DISCONNECTAn application's dynamic data exchange (DDE) callback function receives the

XTYP_DISCONNECT transaction when the application's partner in a conversation uses the
DdeDisconnect function to terminate the conversation.ParametersuFmt

Not used.
hconv

Identifies that the conversation was terminated.
hsz1

Not used.
hsz2

Not used.
hdata

Not used.
dwData1

Not used.
dwData2

Specifies whether the partners in the conversation are the same application instance. If this
parameter is 1, the partners are the same instance. If this parameter is 0, the partners are
different instances.

RemarksThis transaction is filtered if the application specified the CBF_SKIP_DISCONNECTS flag in the
DdeInitialize function.

The application can obtain the status of the terminated conversation by calling the
DdeQueryConvInfo function while processing this transaction. The conversation handle becomes
invalid after the callback function returns.

An application cannot block this transaction type; the CBR_BLOCK return code is ignored.See AlsoDdeDisconnect, DdeInitialize, DdeQueryConvInfo

XTYP_ERROR
XTYP_ERRORA dynamic data exchange (DDE) callback function receives the XTYP_ERROR transaction when

a critical error occurs.ParametersuFmt
Not used.

hconv
Identifies the conversation associated with the error. This parameter is NULL if the error is not
associated with a conversation.

hsz1
Not used.

hsz2
Not used.

hdata
Not used.

dwData1
Specifies the error code in the low-order word. Currently, only the following error code is
supported:
Error Code Description
DMLERR_LOW_MEMORY Memory is low; advise, poke, or

execute data may be lost, or the system
may fail.

dwData2
Not used.

RemarksAn application cannot block this transaction type; the CBR_BLOCK return code is ignored. The
DDEML attempts to free memory by removing noncritical resources. An application that has
blocked conversations should unblock them.

XTYP_EXECUTE
XTYP_EXECUTEA dynamic data exchange (DDE) server callback function receives the XTYP_EXECUTE

transaction when a client specifies XTYP_EXECUTE in the DdeClientTransaction function. A
client uses this transaction to send a command string to the server.ParametersuFmt

Not used.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Not used.
hdata

Identifies the command string.
dwData1

Not used.
dwData2

Not used.
Return ValuesA server callback function should return DDE_FACK if it processes this transaction, DDE_FBUSY

if it is too busy to process this transaction, or DDE_FNOTPROCESSED if it rejects this
transaction.RemarksThis transaction is filtered if the server application specified the CBF_FAIL_EXECUTES flag in the
DdeInitialize function.

An application must free the data handle obtained during this transaction. An application must,
however, copy the command string associated with the data handle if the application must
process the string after the callback function returns. An application can use the DdeGetData
function to copy the data.

Because most client applications expect a server application to perform an XTYP_EXECUTE
transaction synchonrously, a server should attempt to perform all processing of the
XTYP_EXECUTE transaction either from within the DDE callback function or by returning the
CBR_BLOCK return code. If the hdata parameter is a command that instructs the server to
terminate, the server should do so after processing the XTYP_EXECUTE transaction.See AlsoDdeClientTransaction, DdeGetData, DdeInitialize

XTYP_MONITOR
XTYP_MONITORThe dynamic data exchange (DDE) callback function of a DDE debugging application receives the

XTYP_MONITOR transaction whenever a DDE event occurs in the system. To receive this
transaction, an application must specify the APPCLASS_MONITOR flag when it calls the
DdeInitialize function.ParametersuFmt

Not used.
hconv

Not used.
hsz1

Not used.
hsz2

Not used.
hdata

Identifies a DDE object that contains information about the DDE event. The application should
use the DdeAccessData function to obtain a pointer to the object.

dwData1
Not used.

dwData2
Identifies the DDE event. This parameter may be one of the following values:

Value Meaning
MF_CALLBACKS The system sent a transaction to a DDE

callback function. The DDE object contains a
MONCBSTRUCT structure that provides
information about the transaction.

MF_CONV A DDE conversation was established or
terminated. The DDE object contains a
MONCONVSTRUCT structure that provides
information about the conversation.

MF_ERRORS A DDE error occurred. The DDE object
contains a MONERRSTRUCT structure that
provides information about the error.

MF_HSZ_INFO A DDE application created, freed, or
incremented the usage count of a string
handle, or a string handle was freed as a result
of a call to the DdeUninitialize function. The
DDE object contains a MONHSZSTRUCT
structure that provides information about the
string handle.

MF_LINKS A DDE application started or stopped an
advise loop. The DDE object contains a
MONLINKSTRUCT structure that provides
information about the advise loop.

MF_POSTMSGS The system or an application posted a DDE
message. The DDE object contains a
MONMSGSTRUCT structure that provides
information about the message.

MF_SENDMSGS The system or an application sent a DDE
message. The DDE object contains a
MONMSGSTRUCT structure that provides
information about the message.

Return ValueIf the callback function processes this transaction, it should return 0.See AlsoDdeAccessData, DdeInitialize, DdeUninitialize, MONCBSTRUCT, MONCONVSTRUCT,
MONERRSTRUCT, MONHSZSTRUCT, MONLINKSTRUCT, MONMSGSTRUCT

XTYP_POKE
XTYP_POKEA dynamic data exchange (DDE) server callback function receives the XTYP_POKE transaction

when a client specifies XTYP_POKE in DdeClientTransaction function. A client uses this
transaction to send unsolicited data to the server.ParametersuFmt

Specifies the format of the data sent from the server.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name.
hdata

Identifies the data that the client is sending to the server.
dwData1

Not used.
dwData2

Not used.
Return ValueA server callback function should return the DDE_FACK flag if it processes this transaction, the

DDE_FBUSY flag if it is too busy to process this transaction, or the DDE_FNOTPROCESSED flag
if it rejects this transaction.RemarksThis transaction is filtered if the server application specified the CBF_FAIL_POKES flag in the
DdeInitialize function.See AlsoDdeClientTransaction, DdeInitialize

XTYP_REGISTER
XTYP_REGISTERA dynamic data exchange (DDE) callback function receives the XTYP_REGISTER transaction

type whenever a Dynamic Data Exchange Library (DDEML) server application uses the
DdeNameService function to register a service name, or whenever a non-DDEML application that
supports the System topic is started.ParametersuFmt

Not used.
hconv

Not used.
hsz1

Identifies the base service name being registered.
hsz2

Identifies the instance-specific service name being registered.
hdata

Not used.
dwData1

Not used.
dwData2

Not used.
RemarksThis transaction is filtered if the application specified the CBF_SKIP_REGISTRATIONS flag in the

DdeInitialize function.

A application cannot block this transaction type; the CBR_BLOCK return code is ignored.

An application should use the hsz1 parameter to add the service name to the list of servers
available to the user. An application should use the hsz2 parameter to identify which application
instance has started.See AlsoDdeInitialize, DdeNameService

XTYP_REQUEST
XTYP_REQUESTA dynamic data exchange (DDE) server callback function receives the XTYP_REQUEST

transaction when a client specifies XTYP_REQUEST in the DdeClientTransaction function. A
client uses this transaction to request data from a server.ParametersuFmt

Specifies the format in which the server should submit data to the client.
hconv

Identifies the conversation.
hsz1

Identifies the topic name.
hsz2

Identifies the item name.
hdata

Not used.
dwData1

Not used.
dwData2

Not used.
Return ValueThe server should call the DdeCreateDataHandle function to create a data handle that identifies

the data and then return the handle. The server should return NULL if it is unable to complete the
transaction. If the server returns NULL, the client will receive a DDE_FNOTPROCESSED flag.RemarksThis transaction is filtered if the server application specified the CBF_FAIL_REQUESTS flag in the
DdeInitialize function.

If responding to this transaction requires lengthy processing, the server can return the
CBR_BLOCK return code to suspend future transactions on the current conversation and then
process the transaction asynchronously. When the server has finished and the data is ready to
pass to the client, the server can call the DdeEnableCallback function to resume the
conversation.See AlsoDdeClientTransaction, DdeCreateDataHandle, DdeEnableCallback, DdeInitialize

XTYP_UNREGISTER
XTYP_UNREGISTERA dynamic data exchange (DDE) callback function receives the XTYP_UNREGISTER transaction

whenever a Dynamic Data Exchange Management Library (DDEML) server application uses the
DdeNameService function to unregister a service name, or whenever a non-DDEML application
that supports the System topic is terminated.ParametersuFmt

Not used.
hconv

Not used.
hsz1

Identifies the base service name being unregistered.
hsz2

Identifies the instance-specific service name being unregistered.
hdata

Not used.
dwData1

Not used.
dwData2

Not used.
RemarksThis transaction is filtered if the application specified the CBF_SKIP_REGISTRATIONS flag in the

DdeInitialize function.

A application cannot block this transaction type; the CBR_BLOCK return code is ignored.

An application should use the hsz1 parameter to remove the service name from the list of servers
available to the user. An application should use the hsz2 parameter to identify which application
instance has terminated.See AlsoDdeInitialize, DdeNameService

XTYP_WILDCONNECT
XTYP_WILDCONNECTA dynamic data exchange (DDE) server callback function receives the XTYP_WILDCONNECT

transaction when a client specifies a NULL service name, a NULL topic name, or both in a call to
the DdeConnect or DdeConnectList function. This transaction allows a client to establish a
conversation on each of the server's service name and topic name pairs that match the specified
service name and topic name.ParametersuFmt

Not used.
hconv

Not used.
hsz1

Identifies the topic name. If this parameter is NULL, the client is requesting a conversation on
all topic names that the server supports.

hsz2
Identifies the service name. If this parameter is NULL, the client is requesting a conversation
on all service names that the server supports.

hdata
Not used.

dwData1
Points to a CONVCONTEXT structure that contains context information for the conversation. If
the client is not a Dynamic Data Exchange Management Library (DDEML) application, this
parameter is set to 0.

dwData2
Specifies whether the client is the same application instance as the server. If the parameter is
1, the client is same instance. If the parameter is 0, the client is a different instance.

Return ValueThe server should return a data handle that identifies an array of HSZPAIR structures. The array
should contain one structure for each service-name and topic-name pair that matches the service-
name and topic-name pair requested by the client. The array must be terminated by a NULL string
handle. The system sends the XTYP_CONNECT_CONFIRM transaction to the server to confirm
each conversation and to pass the conversation handles to the server. The server will not receive
these confirmations if it specified the CBF_SKIP_CONNECT_CONFIRMS flag in the DdeInitialize
function.

The server should return NULL to refuse the XTYP_WILDCONNECT transaction.RemarksThis transaction is filtered if the server application specified the CBF_FAIL_CONNECTIONS flag
in the DdeInitialize function.

A server cannot block this transaction type; the CBR_BLOCK return code is ignored.See AlsoCONVCONTEXT, DdeConnect, DdeInitialize, HSZPAIR

XTYP_XACT_COMPLETE
XTYP_XACT_COMPLETEA dynamic data exchange (DDE) client callback function receives the XTYP_XACT_COMPLETE

transaction when an asynchronous transaction, initiated by a call to the DdeClientTransaction
function, has completed.ParametersuFmt

Specifies the format of the data associated with the completed transaction (if applicable) or
NULL if no data was exchanged during the transaction.

hconv
Identifies the conversation.

hsz1
Identifies the topic name involved in the completed transaction.

hsz2
Identifies the item name involved in the completed transaction.

hdata
Identifies the data involved in the completed transaction, if applicable. If the transaction was
successful but involved no data, this parameter is TRUE. This parameter is NULL if the
transaction was unsuccessful.

dwData1
Specifies the transaction identifier of the completed transaction.

dwData2
Specifies any applicable DDE_ status flags in the low word. This parameter provides support
for applications dependent on DDE_APPSTATUS bits. It is recommended that applications no
longer use these bits ¾ future versions of the Dynamic Data Exchange Management Library
(DDEML) may not support them.

RemarksAn application must not free the data handle obtained during this transaction. An application must,
however, copy the data associated with the data handle if the application must process the data
after the callback function returns. An application can use the DdeGetData function to copy the
data.See AlsoDdeClientTransaction, DdeGetData

Obsolete Programming Elements
The following table provides a list of function calls and messages that required implementation
changes in the Win32 API.

Element Support Win32 API Comment

AccessResource Dropped No equivalent.
AllocDSToCSAlias Dropped No equivalent.
AllocResource Dropped No equivalent.
AllocSelector Dropped No equivalent.
ChangeSelector Dropped No equivalent.
CloseSound Dropped Replaced by multimedia

sound support.
CountVoiceNotes Dropped Replaced by multimedia

sound support.
DefineHandleTable Dropped No equivalent.
DeviceMode Dropped Replaced by portable

DocumentProperties.
DlgDirSelect Dropped Replaced by portable

DlgDirSelectEx.
DlgDirSelectComboBox Dropped Replaced by portable

DlgDirSelectComboBoxEx.
DOS3Call Dropped Replaced by named, portable

function.
ExtDeviceMode Dropped Replaced by portable

DocumentProperties.
FlushComm Dropped Replaced by PurgeComm.
FreeSelector Dropped No equivalent.
GetAspectRatioFilter Dropped Replaced by portable

GetAspectRatioFilterEx.
GetBitmapDimension Dropped Replaced by portable

GetBitmapDimensionEx.
GetBrushOrg Dropped Replaced by portable

GetBrushOrgEx.
GetCodeHandle Dropped No equivalent.
GetCodeInfo Dropped No equivalent.
GetCommError Dropped Replaced by GetCommState.
GetCurrentPDB Dropped No equivalent.
GetCurrentPosition Dropped Replaced by portable

GetCurrentPositionEx.
GetDCOrg Dropped Replaced by portable

GetDCOrgEx.
GetDOSEnvironment Dropped No equivalent.
GetEnvironment Dropped No equivalent.
GetFreeSpace Dropped Replaced by

GlobalMemoryStatus.
GetFreeSystemResources Dropped Replaced by

GlobalMemoryStatus.
GetInstanceData Dropped No equivalent; use alternative

supported IPC mechanism.
GetKBCodePage Dropped No function equivalent.
GetMetaFileBits Dropped Replaced by portable

GetEnhMetaFileBits.
GetSystemDebugState Dropped No function equivalent.
GetTempDrive Dropped Replaced by portable

GetTempPath.

GetTextExtent Dropped Replaced by portable
GetTextExtentPoint32.

GetTextExtentEx Dropped Replaced by portable
GetTextExtentExPoint.

GetThresholdEvent Dropped Replaced by multimedia
sound support.

GetThresholdStatus Dropped Replaced by multimedia
sound support.

GetViewportExt Dropped Replaced by portable
GetViewportExtEx.

GetViewportOrg Dropped Replaced by portable
GetViewportOrgEx.

GetWindowExt Dropped Replaced by portable
GetWindowExtEx.

GetWindowOrg Dropped Replaced by portable
GetWindowOrgEx.

GetWinFlags Dropped No equivalent.
GlobalCompact Dropped No equivalent.
GlobalDosAlloc Dropped No equivalent.
GlobalDosFree Dropped No equivalent.
GlobalFix Dropped No equivalent.
GlobalLRUNewest Dropped No equivalent.
GlobalLRUOldest Dropped No equivalent.
GlobalNotify Dropped No equivalent.
GlobalPageLock Dropped No equivalent.
GlobalPageUnlock Dropped No equivalent.
GlobalUnfix Dropped No equivalent.
GlobalUnwire Dropped No equivalent.
GlobalWire Dropped No equivalent.
IsGDIObject Dropped No equivalent.
LimitEmsPages Dropped No equivalent.
LocalCompact Dropped No equivalent.
LocalInit Dropped No equivalent.
LocalNotify Dropped No equivalent.
LocalShrink Dropped No equivalent.
LockInput Dropped No equivalent.
LockSegment Dropped No equivalent.
MoveTo Dropped Replaced by portable

MoveToEx.
NetBIOSCall Dropped Replaced by named, portable

function.
OffsetViewportOrg Dropped Replaced by portable

OffsetViewportOrgEx.
OffsetWindowOrg Dropped Replaced by portable

OffsetWindowOrgEx.
OpenComm Dropped Replaced by CreateFile.
OpenSound Dropped Replaced by multimedia

sound support.
ProfClear Dropped Replaced by profile-string

function.
ProfFinish Dropped Replaced by profile-string

function.
ProfFlush Dropped Replaced by profile-string

function.
ProfInsChk Dropped Replaced by profile-string

function.

ProfSampRate Dropped Replaced by profile-string
function.

ProfSetup Dropped Replaced by profile-string
function.

ProfStart Dropped Replaced by profile-string
function.

ProfStop Dropped Replaced by profile-string
function.

ReadComm Dropped Replaced by ReadFile.
ScaleViewportExt Dropped Replaced by portable

ScaleViewportExtEx.
ScaleWindowExt Dropped Replaced by portable

ScaleWindowExtEx.
SetBitmapDimension Dropped Replaced by portable

SetBitmapDimensionEx.
SetCommEventMask Dropped Replaced by SetCommMask.
SetEnvironment Dropped No equivalent.
SetMetaFileBits Dropped Replaced by portable

SetEnhMetaFileBits.
SetResourceHandler Dropped No equivalent.
SetSoundNoise Dropped Replaced by multimedia

sound support.
SetSwapAreaSize Dropped No equivalent.
SetViewportExt Dropped Replaced by portable

SetViewportExtEx.
SetViewportOrg Dropped Replaced by portable

SetViewportOrgEx.
SetVoiceAccent Dropped Replaced by multimedia

sound support.
SetVoiceEnvelope Dropped Replaced by multimedia

sound support.
SetVoiceNote Dropped Replaced by multimedia

sound support.
SetVoiceQueueSize Dropped Replaced by multimedia

sound support.
SetVoiceSound Dropped Replaced by multimedia

sound support.
SetVoiceThreshold Dropped Replaced by multimedia

sound support.
SetWindowExt Dropped Replaced by portable

SetWindowExtEx.
SetWindowOrg Dropped Replaced by portable

SetWindowOrgEx.
StartSound Dropped Replaced by multimedia

sound support.
StopSound Dropped Replaced by multimedia

sound support.
SwitchStackBack Dropped No equivalent.
SwitchStackTo Dropped No equivalent.
SyncAllVoices Dropped Replaced by multimedia

sound support.
UngetCommChar Dropped No equivalent.
UnlockSegment Dropped No equivalent.
ValidateCodeSegments Dropped No equivalent.
ValidateFreeSpaces Dropped No equivalent.
WaitSoundState Dropped Replaced by multimedia

sound support.

WriteComm Dropped Replaced by WriteFile.
WM_CTLCOLOR Dropped Replaced by

WM_CTLCOLOR<type>
messages.

GCW_HCURSOR Dropped Replaced by
GCL_HCURSOR.

GCW_HBRBACKGROUND Dropped Replaced by
GCL_HBRBACKGROUND.

GCW_HICON Dropped Replaced by GCL_HICON.
GWW_HINSTANCE Dropped Replaced by

GWL_HINSTANCE.
GWW_HWNDPARENT Dropped Replaced by

GWL_HWNDPARENT.
GWW_ID Dropped Replaced by GWL_ID.
GWW_USERDATA Dropped Replaced by

GWL_USERDATA.
READ Dropped Replaced by OF_READ.
WRITE Dropped Replaced by OF_WRITE.
READ_WRITE Dropped Replaced by

OF_READ_WRITE.
MAKEPOINT Dropped Replaced by LONG2POINT.

Windows NT Performance CountersThis appendix describes the Windows NT performance objects and their associated performance
counters. The following objects are covered.

· AppleTalk Object
· Browser Object
· Cache Object
· Client Service for Netware Object
· ICMP Object
· Image Object
· IP Object
· Logical Disk Object
· Memory Object
· NBT Connection Object
· NetBEUI Object
· NetBEUI Resource Object
· Network Interface Object
· Network Segment Object
· NWLink IPX Object
· NWLink NetBIOS Object
· NWLink SPX Object
· Objects Object
· Paging File Object
· Physical Disk Object
· Process Object
· Process Address Space Object
· Processor Object
· RAS Port Object
· RAS Total Object
· Redirector Object
· Server Object
· Server Work Queues Object
· System Object
· TCP Object
· Thread Object
· Thread Details Object
· UDP Object

AppleTalk Object
The AppleTalk performance object.

Packets In/sec

Number of packets received per second by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Packets Out/sec

Number of packets sent per second by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Bytes In/sec

Number of bytes received per second by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Out/sec

Number of bytes sent per second by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Average Time/DDP Packet

Average time in milliseconds to process a DDP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

DDP Packets/sec

Number of DDP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Average Time/AARP Packet

Average time in milliseconds to process an AARP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

AARP Packets/sec

Number of AARP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Average Time/ATP Packet

Average time in milliseconds to process an ATP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

ATP Packets/sec

Number of ATP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Average Time/NBP Packet

Average time in milliseconds to process an NBP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

NBP Packets/sec

Number of NBP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Average Time/ZIP Packet

Average time in milliseconds to process a ZIP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

ZIP Packets/sec

Number of ZIP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Average Time/RTMP Packet

Average time in milliseconds to process an RTMP packet on this port.
Detail Level: Novice

Counter Type: PERF_AVERAGE_BULK

RTMP Packets/sec

Number of RTMP packets per second received by Appletalk on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

ATP Retries Local

Number of ATP requests retransmitted on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

ATP Retries Remote

Number of ATP requests retransmitted to this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

ATP Response Timouts

Number of ATP release timers that have expired on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

ATP XO Response/Sec

Number of ATP Exactly-once transaction responses per second on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

ATP ALO Response/Sec

Number of ATP At-least-once transaction responses per second on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

ATP Recvd Release/Sec

Number of ATP transaction release packets per second received on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Current NonPaged Pool

The current amount of nonpaged memory resources used by AppleTalk.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Packets Routed In/Sec

Number of packets routed in on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Packets Routed Out/Sec

Number of packets routed out on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Packets dropped

Number of packets dropped due to resource limitations on this port.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Browser Object
The Browser performance object consists of counters that measure the rates of announcements,
enumerations, and other Browser transmissions.

Announcements Server/sec

Announcements Server/sec is the rate at which the servers in this domain have announced
themselves to this server.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Announcements Domain/sec

Announcements Domain/sec is the rate at which a Domain has announced itself to the network.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Announcements Total/sec

Announcements Total/sec is the sum of Announcements Server/sec and Announcements
Domain/sec.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Election Packets/sec

Election Packets/sec is the rate of Browser election packets that have been received by this
workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Mailslot Writes/sec

Mailslot Writes/sec is the rate of mailslot messages that have been successfully received.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Server List Requests/sec

Server List Requests/sec is the rate of requests to retrieve a list of browser servers that have
been processed by this workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Enumerations Server/sec

Enumerations Server/sec is the rate of Server browse requests that have been processed by this
workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Enumerations Domain/sec

Enumerations Domain/sec is the rate of Domain browse requests that have been processed by
this workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Enumerations Other/sec

Enumerations Other/sec is the rate of browse requests processed by this workstation that were
not domain or server browse requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Enumerations Total/sec

Enumerations Total/sec is the rate of browse requests that have been processed by this
workstation. This is the sum of Enumerations Server, Enumerations Domain, and Enumerations
Other.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Missed Server Announcements

Missed Server Announcements is the number of server announcements that have been missed
due to configuration or allocation limits.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Missed Mailslot Datagrams

Missed Mailslot Datagrams is the number of Mailslot Datagrams that have been discarded due to
configuration or allocation limits.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Missed Server List Requests

Missed Server List Requests is the number of requests to retrieve a list of browser servers that
were received by this workstation, but could not be processed.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Server Announce Allocations Failed/sec

Server Announce Allocations Failed/sec is the rate of server (or domain) announcements that
have failed due to lack of memory.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Mailslot Allocations Failed

Mailslot Allocations Failed is the number of times the datagram receiver has failed to allocate a
buffer to hold a user mailslot write.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Mailslot Receives Failed

Mailslot Receives Failed indicates the number of mailslot messages that couldn't be received due
to transport failures.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Mailslot Writes Failed

Mailslot Writes Failed is the total number of mailslot messages that have been successfully
received, but that were unable to be written to the mailslot.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Mailslot Opens Failed/sec

Mailslot Opens Failed/sec indicates the rate of mailslot messages received by this workstation
that were to be delivered to mailslots that are not present on this workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Duplicate Master Announcements

Duplicate Master Announcements indicates the number of times that the master browser has
detected another master browser on the same domain.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Illegal Datagrams/sec

Illegal Datagrams/sec is the rate of incorrectly formatted datagrams that have been received by
the workstation.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Cache Object
The Cache performance object consists of counters that monitor the file system cache, an area of
physical memory that stores recently used data as long as possible to permit access to the data
without having to read from the disk. Because applications typically use the cache, the cache is
monitored as an indicator of application I/O operations. When memory is plentiful, the cache can
grow, but when memory is scarce, the cache can become too small to be effective.

Data Maps/sec

Data Maps/sec is the frequency that a file system such as NTFS, maps a page of a file into the file
system cache to read the page.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sync Data Maps/sec

Sync Data Maps/sec counts the frequency that a file system, such as NTFS, maps a page of a file
into the file system cache to read the page, and wishes to wait for the page to be retrieved if it is
not in main memory.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Async Data Maps/sec

Async Data Maps/sec is the frequency that an application using a file system, such as NTFS, to
map a page of a file into the file system cache to read the page, and does not wait for the page to
be retrieved if it is not in main memory.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Data Map Hits %

Data Map Hits is the percentage of data maps in the file system cache that could be resolved
without having to retrieve a page from the disk, because the page was already in physical
memory.
Detail Level: Wizard

Counter Type: PERF_SAMPLE_FRACTION

Data Map Hits %

Data Map Hits is the percentage of data maps in the file system cache that could be resolved
without having to retrieve a page from the disk, because the page was already in physical
memory.
Detail Level: Wizard

Counter Type: PERF_SAMPLE_BASE

Data Map Pins/sec

Data Map Pins/sec is the frequency of data maps in the file system cache that resulted in pinning
a page in main memory, an action usually preparatory to writing to the file on disk. While pinned,
a page's physical address in main memory and virtual address in the file system cache will not be
altered.
Detail Level: Wizard

Counter Type: PERF_SAMPLE_FRACTION

Data Map Pins/sec

Data Map Pins/sec is the frequency of data maps in the file system cache that resulted in pinning
a page in main memory, an action usually preparatory to writing to the file on disk. While pinned,

a page's physical address in main memory and virtual address in the file system cache will not be
altered.
Detail Level: Wizard

Counter Type: PERF_SAMPLE_BASE

Pin Reads/sec

Pin Reads/sec is the frequency of reading data into the file system cache preparatory to writing
the data back to disk. Pages read in this fashion are pinned in memory at the completion of the
read. While pinned, a page's physical address in the file system cache will not be altered.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sync Pin Reads/sec

Sync Pin Reads/sec is the frequency of reading data into the file system cache preparatory to
writing the data back to disk. Pages read in this fashion are pinned in memory at the completion of
the read. The file system will not regain control until the page is pinned in the file system cache, in
particular if the disk must be accessed to retrieve the page. While pinned, a page's physical
address in the file system cache will not be altered.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Async Pin Reads/sec

Async Pin Reads/sec is the frequency of reading data into the file system cache preparatory to
writing the data back to disk. Pages read in this fashion are pinned in memory at the completion of
the read. The file system will regain control immediately even if the disk must be accessed to
retrieve the page. While pinned, a page's physical address will not be altered.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Pin Read Hits %

Pin Read Hits is the percentage of pin read requests that hit the file system cache, i.e., did not
require a disk read in order to provide access to the page in the file system cache. While pinned, a
page's physical address in the file system cache will not be altered. The LAN Redirector uses this
method for retrieving data from the cache, as does the LAN Server for small transfers. This is
usually the method used by the disk file systems as well.
Detail Level: Expert

Counter Type: PERF_SAMPLE_FRACTION

Pin Read Hits %

Pin Read Hits is the percentage of pin read requests that hit the file system cache, i.e., did not
require a disk read in order to provide access to the page in the file system cache. While pinned, a
page's physical address in the file system cache will not be altered. The LAN Redirector uses this
method for retrieving data from the cache, as does the LAN Server for small transfers. This is
usually the method used by the disk file systems as well.
Detail Level: Expert

Counter Type: PERF_SAMPLE_BASE

Copy Reads/sec

Copy Reads/sec is the frequency of reads from pages of the file system cache that involve a
memory copy of the data from the cache to the application's buffer. The LAN Redirector uses this
method for retrieving information from the file system cache, as does the LAN Server for small
transfers. This is a method used by the disk file systems as well.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sync Copy Reads/sec

Sync Copy Reads/sec is the frequency of reads from pages of the file system cache that involve a
memory copy of the data from the cache to the application's buffer. The file system will not regain
control until the copy operation is complete, even if the disk must be accessed to retrieve the
page.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Async Copy Reads/sec

Async Copy Reads/sec is the frequency of reads from pages of the file system cache that involve
a memory copy of the data from the cache to the application's buffer. The application will regain
control immediately even if the disk must be accessed to retrieve the page.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Copy Read Hits %

Copy Read Hits is the percentage of cache copy read requests that hit the cache, that is, they did
not require a disk read in order to provide access to the page in the cache. A copy read is a file
read operation that is satisfied by a memory copy from a page in the cache to the application's
buffer. The LAN Redirector uses this method for retrieving information from the cache, as does
the LAN Server for small transfers. This is a method used by the disk file systems as well.
Detail Level: Expert

Counter Type: PERF_SAMPLE_FRACTION

Copy Read Hits %

Copy Read Hits is the percentage of cache copy read requests that hit the cache, that is, they did
not require a disk read in order to provide access to the page in the cache. A copy read is a file
read operation that is satisfied by a memory copy from a page in the cache to the application's
buffer. The LAN Redirector uses this method for retrieving information from the cache, as does
the LAN Server for small transfers. This is a method used by the disk file systems as well.
Detail Level: Expert

Counter Type: PERF_SAMPLE_BASE

MDL Reads/sec

MDL Reads/sec is the frequency of reads from the file system cache that use a Memory
Descriptor List (MDL) to access the data. The MDL contains the physical address of each page
involved in the transfer, and thus can employ a hardware Direct Memory Access (DMA) device to
effect the copy. The LAN Server uses this method for large transfers out of the server.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sync MDL Reads/sec

Sync MDL Reads/sec is the frequency of reads from the file system cache that use a Memory
Descriptor List (MDL) to access the pages. The MDL contains the physical address of each page
in the transfer, thus permitting Direct Memory Access (DMA) of the pages. If the accessed page
(s) are not in main memory, the caller will wait for the pages to fault in from the disk.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Async MDL Reads/sec

Async MDL Reads/sec is the frequency of reads from the file system cache that use a Memory
Descriptor List (MDL) to access the pages. The MDL contains the physical address of each page
in the transfer, thus permitting Direct Memory Access (DMA) of the pages. If the accessed page
(s) are not in main memory, the calling application program will not wait for the pages to fault in
from disk.

Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

MDL Read Hits %

MDL Read Hits is the percentage of Memory Descriptor List (MDL) read requests to the file
system cache that hit the cache, i.e., did not require disk accesses in order to provide memory
access to the page(s) in the cache.
Detail Level: Expert

Counter Type: PERF_SAMPLE_FRACTION

MDL Read Hits %

MDL Read Hits is the percentage of Memory Descriptor List (MDL) read requests to the file
system cache that hit the cache, i.e., did not require disk accesses in order to provide memory
access to the page(s) in the cache.
Detail Level: Expert

Counter Type: PERF_SAMPLE_BASE

Read Aheads/sec

Read Aheads/sec is the frequency of reads from the file system cache in which the cache detects
sequential access to a file. The read aheads permit the data to be transferred in larger blocks than
those being requested by the application, reducing the overhead per access.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Fast Reads/sec

Fast Reads/sec is the frequency of reads from the file system cache that bypass the installed file
system and retrieve the data directly from the cache. Normally, file I/O requests invoke the
appropriate file system to retrieve data from a file, but this path permits direct retrieval of data from
the cache without file system involvement if the data is in the cache. Even if the data is not in the
cache, one invocation of the file system is avoided.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sync Fast Reads/sec

Sync Fast Reads/sec is the frequency of reads from the file system cache that bypass the
installed file system and retrieve the data directly from the cache. Normally, file I/O requests
invoke the appropriate file system to retrieve data from a file, but this path permits direct retrieval
of data from the cache without file system involvement if the data is in the cache. Even if the data
is not in the cache, one invocation of the file system is avoided. If the data is not in the cache, the
request (application program call) will wait until the data has been retrieved from disk.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Async Fast Reads/sec

Async Fast Reads/sec is the frequency of reads from the file system cache that bypass the
installed file system and retrieve the data directly from the cache. Normally, file I/O requests will
invoke the appropriate file system to retrieve data from a file, but this path permits data to be
retrieved from the cache directly (without file system involvement) if the data is in the cache. Even
if the data is not in the cache, one invocation of the file system is avoided. If the data is not in the
cache, the request (application program call) will not wait until the data has been retrieved from
disk, but will get control immediately.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Fast Read Resource Misses/sec

Fast Read Resource Misses/sec is the frequency of cache misses necessitated by the lack of
available resources to satisfy the request.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Fast Read Not Possibles/sec

Fast Read Not Possibles/sec is the frequency of attempts by an Application Program Interface
(API) function call to bypass the file system to get to data in the file system cache that could not
be honored without invoking the file system.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Lazy Write Flushes/sec

Lazy Write Flushes/sec is the rate at which the Lazy Writer thread has written to disk. Lazy Writing
is the process of updating the disk after the page has been changed in memory, so that the
application that changed the file does not have to wait for the disk write to be complete before
proceeding. More than one page can be transferred by each write operation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Lazy Write Pages/sec

Lazy Write Pages/sec is the rate at which the Lazy Writer thread has written to disk. Lazy Writing
is the process of updating the disk after the page has been changed in memory, so that the
application that changed the file does not have to wait for the disk write to be complete before
proceeding. More than one page can be transferred on a single disk write operation.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Data Flushes/sec

Data Flushes/sec is the rate at which the file system cache has flushed its contents to disk as the
result of a request to flush or to satisfy a write-through file write request. More than one page can
be transferred on each flush operation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Data Flush Pages/sec

Data Flush Pages/sec is the number of pages the file system cache has flushed to disk as a result
of a request to flush or to satisfy a write-through file write request. More than one page can be
transferred on each flush operation.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Client Service For NetWare Object
The Client Service For NetWare performance object consists of counters that measure packet
transmission rates, logons, and connections.

Bytes Total/sec

Bytes Total/sec is the rate the Redirector is processing data bytes. This includes all application
and file data in addition to protocol information such as packet headers.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

File Data Operations/sec

File Data Operations/sec is the rate the Redirector is processing data operations. One operation
includes (hopefully) many bytes. We say hopefully here because each operation has overhead.
You can determine the efficiency of this path by dividing the Bytes/sec by this counter to
determine the average number of bytes transferred/operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Packets/sec

Packets/sec is the rate the Redirector is processing data packets. One packet includes (hopefully)
many bytes. We say hopefully here because each packet has protocol overhead. You can
determine the efficiency of this path by dividing the Bytes/sec by this counter to determine the
average number of bytes transferred/packet. You can also divide this counter by Operations/sec
to determine the average number of packets per operation, another measure of efficiency.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Received/sec

Bytes Received/sec is the rate of bytes coming in to the Redirector from the network. It includes
all application data as well as network protocol information (such as packet headers.)
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Received/sec

Packets Received/sec is the rate at which the Redirector is receiving packets (also called SMBs or
Server Message Blocks). Network transmissions are divided into packets. The average number of
bytes received in a packet can be obtained by dividing Bytes Received/sec by this counter. Some
packets received might not contain incoming data, for example an acknowledgment to a write
made by the Redirector would count as an incoming packet.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Transmitted/sec

Bytes Transmitted/sec is the rate at which bytes are leaving the Redirector to the network. It
includes all application data as well as network protocol information (such as packet headers and
the like.)
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Transmitted/sec

Packets Transmitted/sec is the rate at which the Redirector is sending packets (also called SMBs
or Server Message Blocks). Network transmissions are divided into packets. The average number

of bytes transmitted in a packet can be obtained by dividing Bytes Transmitted/sec by this
counter.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

File Read Operations/sec

File Read Operations/sec is the rate at which applications are asking the Redirector for data. Each
call to a file system or similar Application Program Interface (API) call counts as one operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Read Operations Random/sec

Read Operations Random/sec counts the rate at which, on a file-by-file basis, reads are made
that are not sequential. If a read is made using a particular file handle, and then is followed by
another read that is not immediately the contiguous next byte, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Read Packets/sec

Read Packets/sec is the rate at which read packets are being placed on the network. Each time a
single packet is sent with a request to read data remotely, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

File Write Operations/sec

File Write Operations/sec is the rate at which applications are sending data to the Redirector.
Each call to a file system or similar Application Program Interface (API) call counts as one
operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Write Operations Random/sec

Write Operations Random/sec is the rate at which, on a file-by-file basis, writes are made that are
not sequential. If a write is made using a particular file handle, and then is followed by another
write that is not immediately the next contiguous byte, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Write Packets/sec

Write Packets/sec is the rate at which writes are being sent to the network. Each time a single
packet is sent with a request to write remote data, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Server Sessions

Server Sessions counts the total number of security objects the Redirector has managed. For
example, a logon to a server followed by a network access to the same server will establish one
connection, but two sessions.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Server Reconnects

Server Reconnects counts the number of times your Redirector has had to reconnect to a server
in order to complete a new active request. You can be disconnected by the Server if you remain
inactive for too long. Locally even if all your remote files are closed, the Redirector will keep your
connections intact for (nominally) ten minutes. Such inactive connections are called Dormant
Connections. Reconnecting is expensive in time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connect NetWare 2.x

Connect NetWare 2.x counts connections to NetWare 2.x servers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connect NetWare 3.x

Connect NetWare 3.x counts connections to NetWare 3.x servers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connect NetWare 4.x]

Connect NetWare 4.x counts connections to NetWare 4.x servers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Server Disconnects

Server Disconnects counts the number of times a Server has disconnected your Redirector. See
also Server Reconnects.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Packet Burst Read NCP Count/sec

Packet Burst Read NCP Count/sec is the rate of NetWare Core Protocol requests for Packet Burst
Read. Packet Burst is a windowing protocol that improves performance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packet Burst Read Timeouts/sec

Packet Burst Read Timeouts/sec is the rate the NetWare Service needs to retransmit a Burst
Read Request because the NetWare server took too long to respond.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packet Burst Write NCP Count/sec

Packet Burst Write NCP Count/sec is the rate of NetWare Core Protocol requests for Packet Burst
Write. Packet Burst is a windowing protocol that improves performance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packet Burst Write Timeouts/sec

Packet Burst Write Timeouts/sec is the rate the NetWare Service needs to retransmit a Burst
Write Request because the NetWare server took too long to respond.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packet Burst IO/sec

Packet Burst IO/sec is the sum of Packet Burst Read NCPs/sec and Packet Burst Write NCPs/
sec.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

ICMP Object
The ICMP performance object consists of counters that measure the rates at which ICMP
messages are sent and received by using the ICMP protocols. It also includes counters that
monitor ICMP protocol errors.

Messages/sec

Messages/sec is the total rate at which ICMP messages are sent and received by the entity. The
rate includes those messages received or sent in error.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Messages Received/sec

Messages Received/sec is the rate at which ICMP messages are received by the entity. The rate
includes those messages received in error.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Messages Received Errors

Messages Received Errors is the number of ICMP messages that the entity received but
determined as having errors (bad ICMP checksums, bad length, etc.).
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Received Dest. Unreachable

Received Destination Unreachable is the number of ICMP Destination Unreachable messages
received.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Received Time Exceeded

Received Time Exceeded is the number of ICMP Time Exceeded messages received.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Received Parameter Problem

Received Parameter Problem is the number of ICMP Parameter Problem messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Received Source Quench

Received Source Quench is the number of ICMP Source Quench messages received.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Received Redirect/sec

Received Redirect/sec is the rate of ICMP Redirect messages received.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Received Echo/sec

Received Echo/sec is the rate of ICMP Echo messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Received Echo Reply/sec

Received Echo Reply/sec is the rate of ICMP Echo Reply messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Received Timestamp/sec

Received Timestamp/sec is the rate of ICMP Timestamp (request) messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Received Timestamp Reply/sec

Received Timestamp Reply/sec is the rate of ICMP Timestamp Reply messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Received Address Mask

Received Address Mask is the number of ICMP Address Mask Request messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Received Address Mask Reply

Received Address Mask Reply is the number of ICMP Address Mask Reply messages received.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Messages Sent/sec

Messages Sent/sec is the rate at which ICMP messages are attempted to be sent by the entity.
The rate includes those messages sent in error.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Messages Outbound Errors

Messages Outbound Errors is the number of ICMP messages that this entity did not send due to
problems discovered within ICMP such as lack of buffers. This value does not include errors
discovered outside the ICMP layer, such as those recording the failure of IP to route the resultant
datagram. In some implementations, none of the error types are included in the value of this
counter.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Destination Unreachable

Sent Destination Unreachable is the number of ICMP Destination Unreachable messages sent.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Time Exceeded

Sent Time Exceeded is the number of ICMP Time Exceeded messages sent.

Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Parameter Problem

Sent Parameter Problem is the number of ICMP Parameter Problem messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Source Quench

Sent Source Quench is the number of ICMP Source Quench messages sent.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Redirect/sec

Sent Redirect/sec is the rate of ICMP Redirect messages sent.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Sent Echo/sec

Sent Echo/sec is the rate of ICMP Echo messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sent Echo Reply/sec

Sent Echo Reply/sec is the rate of ICMP Echo Reply messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sent Timestamp/sec

Sent Timestamp/sec is the rate of ICMP Timestamp (request) messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sent Timestamp Reply/sec

Sent Timestamp Reply/sec is the rate of ICMP Timestamp Reply messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Sent Address Mask

Sent Address Mask is the number of ICMP Address Mask Request messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Sent Address Mask Reply

Sent Address Mask Reply is the number of ICMP Address Mask Reply messages sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Image Object
The Image performance object consists of counters that monitor virtual address usage of images
executed by processes on the computer.

No Access

Image Space is the virtual address space in use by the selected image with this protection. No
Access protection prevents a process from writing or reading these pages and will generate an
access violation if either is attempted.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Read Only

Image Space is the virtual address space in use by the selected image with this protection. Read
Only protection prevents the contents of these pages from being modified. Any attempts to write
or modify these pages will generate an access violation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Read/Write

Image Space is the virtual address space in use by the selected image with this protection. Read/
Write protection allows a process to read, modify and write to these pages.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Write Copy

Image Space is the virtual address space in use by the selected image with this protection. Write
Copy protection is used when memory is shared for reading but not for writing. When processes
are reading this memory, they can share the same memory, however, when a sharing process
wants to have read/write access to this shared memory, a copy of that memory is made for writing
to.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Executable

Image Space is the virtual address space in use by the selected image with this protection.
Executable memory is memory that can be executed by programs, but cannot be read or written.
This type of protection is not supported by all processor types.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Exec Read Only

Image Space is the virtual address space in use by the selected image with this protection.
Execute/Read Only memory is memory that can be executed as well as read.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Exec Read/Write

Image Space is the virtual address space in use by the selected image with this protection.
Execute/Read/Write memory is memory that can be executed by programs as well as read and
written.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Exec Write Copy

Image Space is the virtual address space in use by the selected image with this protection.
Execute Write Copy is memory that can be executed by programs as well as read and written.
This type of protection is used when memory needs to be shared between processes. If the
sharing processes only read the memory, then they will all use the same memory. If a sharing
process desires write access, then a copy of this memory will be made for that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

IP Object
The IP performance object includes those counters that describe the rates at which IP datagrams
are sent and received by a certain computer using the IP protocol. It also describes various error
counts for the IP protocol.

Datagrams/sec

Datagrams/sec is the rate at which IP datagrams are received from or sent to the interfaces,
including those in error. Any forwarded datagrams are not included in this rate.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Received/sec

Datagrams Received/sec is the rate at which IP datagrams are received from the interfaces,
including those in error.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Received Header Errors

Datagrams Received Header Errors is the number of input datagrams discarded due to errors in
their IP headers, including bad checksums, version number mismatch, other format errors, time-
to-live exceeded, errors discovered in processing their IP options, etc.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Received Address Errors

Datagrams Received Address Errors is the number of input datagrams discarded because the IP
address in their IP header's destination field was not a valid address to be received at this entity.
This count includes invalid addresses (e.g., 0.0. 0.0) and addresses of unsupported Classes (e.g.
, Class E). For entities that are not IP Gateways and therefore do not forward datagrams, this
counter includes datagrams discarded because the destination address was not a local address.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Forwarded/sec

Datagrams Forwarded/sec is the rate of input datagrams for that this entity was not their final IP
destination, as a result of which an attempt was made to find a route to forward them to that final
destination. In entities that do not act as IP Gateways, this rate will include only those packets that
were Source-Routed via this entity, and the Source-Route option processing was successful.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Received Unknown Protocol

Datagrams Received Unknown Protocol is the number of locally-addressed datagrams received
successfully but discarded because of an unknown or unsupported protocol.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Received Discarded

Datagrams Received Discarded is the number of input IP datagrams for which no problems were
encountered to prevent their continued processing, but which were discarded (e.g., for lack of
buffer space). This counter does not include any datagrams discarded while awaiting re-
assembly.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Received Delivered/sec

Datagrams Received Delivered/sec is the rate at which input datagrams are successfully
delivered to IP user-protocols (including ICMP).
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which IP datagrams are supplied to IP for transmission by local
IP user-protocols (including ICMP). That this counter does not include any datagrams counted in
Datagrams Forwarded.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Outbound Discarded

Datagrams Outbound Discarded is the number of output IP datagrams for which no problems
were encountered to prevent their transmission to their destination, but which were discarded (e.
g., for lack of buffer space.) This counter would include datagrams counted in Datagrams
Forwarded if any such packets met this (discretionary) discard criterion.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Outbound No Route

Datagrams Outbound No Route is the number of IP datagrams discarded because no route could
be found to transmit them to their destination. This counter includes any packets counted in
Datagrams Forwarded that meet this `no route' criterion.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Fragments Received/sec

Fragments Received/sec is the rate at which IP fragments that need to be re-assembled at this
entity are received.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Fragments Re-assembled/sec

Fragments Re-assembled/sec is the rate at which IP fragments are successfully re-assembled.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Fragment Re-assembly Failures

Fragment Re-assembly Failures is the number of failures detected by the IP re-assembly
algorithm (for whatever reason: timed out, errors, etc.) This is not necessarily a count of discarded
IP fragments since some algorithms (notably RFC 815) can lose track of the number of fragments
by combining them as they are received.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Fragmented Datagrams/sec

Fragmented Datagrams/sec is the rate at which datagrams are successfully fragmented at this
entity.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Fragmentation Failures

Fragmentation Failures is the number of IP datagrams that have been discarded because they
needed to be fragmented at this entity but could not be, e.g., because their `Don't Fragment' flag
was set.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Fragments Created/sec

Fragments Created/sec is the rate at which IP datagram fragments have been generated as a
result of fragmentation at this entity.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Logical Disk Object
The Logical Disk performance object consists of counters that monitor logical partitions of a hard
or fixed disk drives. Performance Monitor identifies logical disks by their a drive letter, such as C.

Free Space

Percent Free Space is the ratio of the free space available on the logical disk unit to the total
usable space provided by the selected logical disk drive
Detail Level: Novice

Counter Type: PERF_RAW_FRACTION

% Free Space

Percent Free Space is the ratio of the free space available on the logical disk unit to the total
usable space provided by the selected logical disk drive
Detail Level: Novice

Counter Type: PERF_RAW_BASE

Free Megabytes

Free Megabytes displays the unallocated space on the disk drive in megabytes. One megabyte =
1,048,576 bytes.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Current Disk Queue Length

Current Disk Queue Length is the number of requests outstanding on the disk at the time the
performance data is collected. It includes requests in service at the time of the snapshot. This is
an instantaneous length, not an average over the time interval. Multi-spindle disk devices can
have multiple requests active at one time, but other concurrent requests are awaiting service. This
counter might reflect a transitory high or low queue length, but if there is a sustained load on the
disk drive, it is likely that this will be consistently high. Requests are experiencing delays
proportional to the length of this queue minus the number of spindles on the disks. This difference
should average less than 2 for good performance.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

% Disk Time

Disk Time is the percentage of elapsed time that the selected disk drive is busy servicing read or
write requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Queue Length

Avg. Disk Queue Length is the average number of both read and write requests that were queued
for the selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

% Disk Read Time

Disk Read Time is the percentage of elapsed time that the selected disk drive is busy servicing
read requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Read Queue Length

Avg. Disk Read Queue Length is the average number of read requests that were queued for the
selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

% Disk Write Time

Avg. Disk Read Queue Length is the average number of read requests that were queued for the
selected disk during the sample interval.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Write Queue Length

Avg. Disk Write Queue Length is the average number of write requests that were queued for the
selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

Avg. Disk sec/Transfer

Avg. Disk sec/Transfer is the time in seconds of the average disk transfer.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Transfer

Avg. Disk sec/Transfer is the time in seconds of the average disk transfer.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Avg. Disk sec/Read

Avg. Disk sec/Read is the average time in seconds of a read of data from the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Read

Avg. Disk sec/Read is the average time in seconds of a read of data from the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Avg. Disk sec/Write

Avg. Disk sec/Write is the average time in seconds of a write of data to the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Write

Avg. Disk sec/Write is the average time in seconds of a write of data to the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Disk Transfers/sec

Disk Transfers/sec is the rate of read and write operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Reads/sec

Disk Reads/sec is the rate of read operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Writes/sec

Disk Writes/sec is the rate of write operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Bytes/sec

Disk Bytes/sec is the rate bytes are transferred to or from the disk during write or read operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Disk Read Bytes/sec

Disk Read Bytes/sec is the rate bytes are transferred from the disk during read operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Disk Write Bytes/sec

Disk Write Bytes is rate bytes are transferred to the disk during write operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Avg. Disk Bytes/Transfer

Avg. Disk Bytes/Transfer is the average number of bytes transferred to or from the disk during
write or read operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Transfer

Avg. Disk Bytes/Transfer is the average number of bytes transferred to or from the disk during
write or read operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Avg. Disk Bytes/Read

Avg. Disk Bytes/Read is the average number of bytes transferred from the disk during read
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Read

Avg. Disk Bytes/Read is the average number of bytes transferred from the disk during read
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Avg. Disk Bytes/Write

Avg. Disk Bytes/Write is the average number of bytes transferred to the disk during write
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Write

Avg. Disk Bytes/Write is the average number of bytes transferred to the disk during write
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Memory Object
The Memory performance object consists of counters that describe the behavior of physical and
virtual memory on the computer. Physical memory is the amount of random access memory on
the computer. Virtual memory consists of space in physical memory and on disk. Many of the
memory counters monitor paging, which is the movement of pages of code and data between disk
and physical memory. Excessive paging, a symptom of a memory shortage, can cause delays
which interfere will all system processes.

Available Bytes

Available Bytes is the amount of physical memory available to processes running on the
computer, in bytes. It is calculated by summing space on the Zeroed, Free, and Standby memory
lists. Free memory is ready for use; Zeroed memory is pages of memory filled with zeros to
prevent later processes from seeing data used by a previous process. Standby memory is
memory removed from a process's working set (its physical memory) on route to disk, but is still
available to be recalled.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Committed Bytes

Committed Bytes is the amount of committed virtual memory, in bytes. (Committed memory is
physical memory for which space has been reserved on the disk paging file in case it needs to be
written back to disk.)
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Commit Limit

Commit Limit is the amount of virtual memory that can be committed without having to extend the
paging file(s). It is measured in bytes. (Committed memory is physical memory for which space
has been reserved on the disk paging files. There can be one paging file on each physical drive.)
If the paging file(s) are be expanded, this limit increases accordingly.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Page Faults/sec

Page Faults/sec is overall rate at which of faulted pages are handled by the processor. It is
measured in numbers of pages faulted. A page fault occurs when a process requires code or data
that is not in its working set (its space in physical memory) in main memory. This counter includes
both hard faults (those that require disk access) and soft faults (where the faulted page is found
elsewhere in physical memory.) Most processors can handle large numbers of soft faults without
consequence. However, hard faults can cause significant delays.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Write Copies/sec

Write Copies/sec is the number of page faults caused by attempts to write that have been
satisfied by coping of the page from elsewhere in physical memory. This is an economical way of
sharing data since pages are only copied when they are written to; otherwise, the page is shared.
This counter counts the number of copies, without regard for the number of pages copied in each
operation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Transition Faults/sec

Transition Faults/sec is the number of page faults resolved by recovering pages that were on the
modified page list, on the standby list, or being written to disk at the time of the page fault. The

pages were recovered without additional disk activity. Transition faults are counted in numbers of
faults, without regard for the number of pages faulted in each operation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Cache Faults/sec

Cache Faults/sec is the number of faults which occur when a page sought in the file system cache
is not found there and must be retrieved from elsewhere in memory (a soft fault) or from disk (a
hard fault). The file system cache is an area of physical memory that stores recently used pages
of data for applications. Cache activity is a reliable indicator of most application I/O operations.
This counter counts the number of faults, without regard for the number of pages faulted in each
operation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Demand Zero Faults/sec

Demand Zero Faults/sec is the number of page faults that require a zeroed page to satisfy the
fault. Zeroed pages, pages emptied of previously stored data and filled with zeros, are a security
feature of Windows NT. They prevent processes from seeing data stored by earlier processes that
used the memory space. Windows NT maintains a list of zeroed pages to accelerate this process.
This counter counts numbers of faults, without regard to the numbers of pages retrieved to satisfy
the fault.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Pages/sec

Pages/sec is the number of pages read from or written to disk to resolve hard page faults. (Hard
page faults occur when a process requires code or data that is not in its working set or elsewhere
in physical memory, and must be retrieved from disk.) This counter was designed as a primary
indicator of the kinds of faults that cause system-wide delays. It is the sum of Memory: Pages
Input/sec and Memory: Pages Output/sec. It is counted in numbers of pages, so it can be
compared to other counts of pages, such as Memory: Page Faults/sec, without conversion. It
includes pages retrieved to satisfy faults in the file system cache (usually requested by
applications) non-cached mapped memory files.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Pages Input/sec

Pages Input/sec is the number of pages read from disk to resolve hard page faults. (Hard page
faults occur when a process requires code or data that is not in its working set or elsewhere in
physical memory, and must be retrieved from disk.) This counter was designed as a primary
indicator of the kinds of faults that cause system-wide delays. It includes pages retrieved to satisfy
faults in the file system cache (usually requested by applications) and in non-cached mapped
memory files. This counter counts numbers of pages, and can be compared to other counts of
pages, such as Memory: Page Faults/sec, without conversion.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Page Reads/sec

Page Reads/sec is the number of times the disk was read to resolve hard page faults. (Hard page
faults occur when a process requires code or data that is not in its working set or elsewhere in
physical memory, and must be retrieved from disk.) This counter was designed as a primary
indicator of the kinds of faults that cause system-wide delays. It includes reads to satisfy faults in
the file system cache (usually requested by applications) and in non-cached mapped memory
files. This counter counts numbers of read operations, without regard to the numbers of pages
retrieved by each operation.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Pages Output/sec

Pages Output/sec is the number of pages written to disk to free up space in physical memory.
Pages are written back to disk only if they are changed in physical memory, so they are likely to
hold data, not code. A high rate of pages output might indicate a memory shortage. Windows NT
writes more pages back to disk to free up space when physical memory is in short supply. This
counter counts numbers of pages, and can be compared to other counts of pages, without
conversion.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Page Writes/sec

Page Writes/sec is the number of times pages were written to disk to free up space in physical
memory. Pages are written to disk only if they are changed while in physical memory, so they are
likely to hold data, not code. This counter counts write operations, without regard to the number of
pages written in each operation.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Pool Paged Bytes

Pool Paged Bytes is the number of bytes in the paged pool, an area of system memory (physical
memory used by the operating system) for objects that can be written to disk when they are not
being used. Memory: Pool Paged Bytes is calculated differently than Process: Pool Paged Bytes,
so it might not equal Process: Pool Paged Bytes: _Total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Nonpaged Bytes

Pool Nonpaged Bytes is the number of bytes in the nonpaged pool, an area of system memory
(physical memory used by the operating system) for objects that cannot be written to disk, but
must remain in physical memory as long as they are allocated. Memory: Pool Nonpaged Bytes is
calculated differently than Process: Pool Nonpaged Bytes, so it might not equal Process: Pool
Nonpaged Bytes: _Total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Allocs

Pool Paged Allocs is the number of calls to allocate space in the paged pool. The paged pool is
an area of system memory (physical memory used by the operating system) for objects that can
be written to disk when they are not being used. It is measured in numbers of calls to allocate
space, regardless of the amount of space allocated in each call.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Nonpaged Allocs

Pool Nonpaged Allocs is the number of calls to allocate space in the nonpaged pool. The
nonpaged pool is an area of system memory area for objects that cannot be written to disk, and
must remain in physical memory as long as they are allocated. It is measured in numbers of calls
to allocate space, regardless of the amount of space allocated in each call.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Free System Page Table Entries

The number of Page Table Entries not currently in use by the system.

Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Cache Bytes

Cache Bytes is the number of bytes currently being used by the file system cache. The file system
cache is an area of physical memory that stores recently used pages of data for applications.
Windows NT continually adjusts the size of the cache, making it as large as it can while still
preserving the minimum required number of available bytes for processes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Cache Bytes Peak

Cache Bytes Peak is the maximum number of bytes used by the file system cache since the
system was last restarted. This might be larger than the current size of the cache. Cache. The file
system cache is an area of physical memory that stores recently used pages of data for
applications. Windows NT continually adjusts the size of the cache, making it as large as it can
while still preserving the minimum required number of available bytes for processes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Resident Bytes

Pool Paged Resident Bytes is the current size of paged pool in bytes. The paged pool is an area
of system memory (physical memory used by the operating system) for objects that can be written
to disk when they are not being used. Space used by the paged and nonpaged pools are taken
from physical memory, so a pool that is too large denies memory space to processes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

System Code Total Bytes

System Code Total Bytes is the number of bytes of pageable operating system code currently in
virtual memory. It is a measure of the amount of physical memory being used by the operating
system that can be written to disk when not in use. This value is calculated by summing the bytes
in Ntoskrnl.exe, Hal.dll, the boot drivers, and file systems loaded by Ntldr/osloader. This counter
does not include code that must remain in physical memory and cannot be written to disk.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

System Code Resident Bytes

System Code Resident Bytes is the number of bytes of operating system code currently in
physical memory that can be written to disk when not in use. This value is a component of System
Code Total Bytes, which also includes operating system code on disk. System Code Resident
Bytes (and System Code Total Bytes) does not include code that must remain in physical memory
and cannot be written to disk.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

System Driver Total Bytes

System Driver Total Bytes is the number of bytes of pageable virtual memory currently being used
by device drivers. (Pageable memory can be written to disk when it is not being used.) It includes
physical memory (Memory: System Driver Resident Bytes) and code and data written to disk. It is
a component of Memory: System Code Total Bytes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

System Driver Resident Bytes

System Driver Resident Bytes is the number of bytes of pageable physical memory being used by
device drivers. It is the working set (physical memory area) of the drivers. This value is a
component of Memory: System Driver Total Bytes, which also includes driver memory that has
been written to disk. Neither System Driver Resident Bytes nor System Driver Total Bytes
includes memory that cannot be written to disk.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

System Cache Resident Bytes

System Cache Resident Bytes is the number of bytes of pageable operating system code in the
file system cache. This value is a component of Memory: System Code Resident Bytes which
represents all pageable operating system code that is currently in physical memory.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

% Committed Bytes In Use

% Committed Bytes In Use is the ratio of Memory: Committed Bytes to the Memory: Commit Limit.
(Committed memory is physical memory in use for which space has been reserved in the paging
file should it need to be written to disk. The commit limit is determined by the size of the paging
file. If the paging file is enlarged, the commit limit increases, and the ratio is reduced.)
Detail Level: Expert

Counter Type: PERF_RAW_FRACTION

% Committed Bytes In Use

% Committed Bytes In Use is the ratio of the Committed Bytes to the Commit Limit. This
represents the amount of available virtual memory in use. Note that the Commit Limit might
change if the paging file is extended. This is an instantaneous value, not an average.
Detail Level: Expert

Counter Type: PERF_RAW_BASE

NBT Connection Object
The NBT Connection performance object consists of counters that measure the rates at which
bytes are sent and received over the NBT connection between the local computer and a remote
computer. The connection is identified by the name of the remote computer.

Bytes Received/sec

Bytes Received/sec is the rate at which bytes are received by the local computer over an NBT
connection to some remote computer. All the bytes received by the local computer over the
particular NBT connection are counted.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Sent/sec

Bytes Sent/sec is the rate at which bytes are sent by the local computer over an NBT connection
to some remote computer. All the bytes sent by the local computer over the particular NBT
connection are counted.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Total/sec

Total Bytes/sec is the rate at which bytes are sent or received by the local computer over an NBT
connection to some remote computer. All the bytes sent or received by the local computer over
the particular NBT connection are counted.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

NetBEUI Object
The NetBEUI performance object consists of counters that measure data transmission for network
activity which conforms to the NetBIOS End User Interface standard.

Datagrams/sec

Datagrams/sec is the rate at which datagrams are processed by the computer. This counter
displays the sum of datagrams sent and datagrams received. A datagram is a connectionless
packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes/sec

Datagram Bytes/sec is the rate at which datagram bytes are processed by the computer. This
counter is the sum of datagram bytes that are sent as well as received. A datagram is a
connectionless packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets/sec

Packets/sec is the rate at which packets are processed by the computer. This count is the sum of
Packets Sent and Packets Received per second. This counter includes all packets processed:
control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frames/sec

Frames/sec is the rate at which data frames (or packets) are processed by the computer. This
counter is the sum of data frames sent and data frames received. This counter only counts those
frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes/sec

Frame Bytes/sec is the rate at which data bytes are processed by the computer. This counter is
the sum of data frame bytes sent and received. This counter only counts the byte in frames
(packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Total/sec

Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is the total rate of
bytes sent to or received from the network by the protocol, but only counts the bytes in frames (i.
e., packets) which carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Connections Open

Connections Open is the number of connections currently open for this protocol. This counter
shows the current count only and does not accumulate over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections No Retries

Connections No Retries is the total count of connections that were successfully made on the first
try. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections With Retries

Connections With Retries is the total count of connections that were made after retrying the
attempt. A retry occurs when the first connection attempt failed. This number is an accumulator
and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Local

Disconnects Local is the number of session disconnections that were initiated by the local
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Remote

Disconnects Remote is the number of session disconnections that were initiated by the remote
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Link

Failures Link is the number of connections that were dropped due to a link failure. This number is
an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Adapter

Failures Adapter is the number of connections that were dropped due to an adapter failure. This
number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connection Session Timeouts

Connection Session Timeouts is the number of connections that were dropped due to a session
time out. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Canceled

Connections Canceled is the number of connections that were canceled. This number is an
accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Remote

Failures Resource Remote is the number of connections that failed because of resource problems
or shortages on the remote computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Local

Failures Resource Local is the number of connections that failed because of resource problems or
shortages on the local computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Not Found

Failures Not Found is the number of connection attempts that failed because the remote computer
could not be found. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures No Listen

Failures No Listen is the number of connections that were rejected because the remote computer
was not listening for connection requests.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which datagrams are sent from the computer. A datagram is a
connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Sent/sec]

Datagram Bytes Sent/sec is the rate at which datagram bytes are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Datagrams Received/sec

Datagrams Received/sec is the rate at which datagrams are received by the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Received/sec

Datagram Bytes Received/sec is the rate at which datagram bytes are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Sent/sec

Packets Sent/sec is the rate at which packets are sent by the computer. This counter counts all
packets sent by the computer, i.e. control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received/sec

Packets Received/sec is the rate at which packets are received by the computer. This counter
counts all packets processed, control as well as data packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frames Sent/sec

Frames Sent/sec is the rate at which data frames are sent by the computer. This counter only
counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Sent/sec

Frame Bytes Sent/sec is the rate at which data bytes are sent by the computer. This counter only
counts the bytes in frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Received/sec

Frames Received/sec is the rate at which data frames are received by the computer. This counter
only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Received/sec

Frame Bytes Received/sec is the rate at which data bytes are received by the computer. This
counter only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Re-Sent/sec

Frames Re-Sent/sec is the rate at which data frames (packets) are re-sent by the computer. This
counter only counts the frames or packets that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Re-Sent/sec

Frame Bytes Re-Sent/sec is the rate at which data bytes are re-sent by the computer. This
counter only counts the bytes in frames that carry data.
Detail Level: Wizard

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Rejected/sec

Frames Rejected/sec is the rate at which data frames are rejected. This counter only counts the
frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Rejected/sec

Frame Bytes Rejected/sec is the rate at which data bytes are rejected. This counter only counts
the bytes in data frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Expirations Response

Expirations Response is the count of T1 timer expirations.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Expirations Ack

Expirations Ack is the count of T2 timer expirations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Maximum

Window Send Maximum is the maximum number of bytes of data that will be sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Average

Window Send Average is the running average number of data bytes that were sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Piggyback Ack Queued/sec

Piggyback Ack Queued/sec is the rate at which piggybacked acknowledgments are queued.
Piggyback acknowledgments are acknowledgments to received packets that are to be included in
the next outgoing packet to the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Piggyback Ack Timeouts

Piggyback Ack Timeouts is the number of times that a piggyback acknowledgment could not be
sent because there was no outgoing packet to the remote on which to piggyback. A piggyback ack
is an acknowledgment to a received packet that is sent along in an outgoing data packet to the
remote computer. If no outgoing packet is sent within the time-out period, then an ack packet is
sent and this counter is incremented.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

NetBEUI Resource Object
The NetBEUI Resource performance object consists of counters that track the use of buffers by
the NetBEUI protocol.

Used Maximum

Used Maximum is the maximum number of NetBEUI resources (buffers) in use at any point in
time. This value is useful in sizing the maximum resources provided. The number in parentheses
following the resource name is used to identify the resource in Event Log messages.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Used Average

Used Average is the current number of resources (buffers) in use at this time. The number in
parentheses following the resource name is used to identify the resource in Event Log messages.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Times Exhausted

Times Exhausted is the number of times all the resources (buffers) were in use. The number in
parentheses following the resource name is used to identify the resource in Event Log messages.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Network Interface Object
The Network Interface performance object consists of counters that measure the rates at which
bytes and packets are sent and received over a TCP/IP connection. It includes counters that
monitor connection errors.

Bytes Total/sec

Bytes Total/sec is the rate at which bytes are sent and received on the interface, including framing
characters.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets/sec

Packets/sec is the rate at which packets are sent and received on the network interface.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received/sec

Packets Received/sec is the rate at which packets are received on the network interface.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Sent/sec

Packets Sent/sec is the rate at which packets are sent on the network interface.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Current Bandwidth

Current Bandwidth is an estimate of the interface's current bandwidth in bits per second (BPS).
For interfaces that do not vary in bandwidth or for those where no accurate estimation can be
made, this value is the nominal bandwidth.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Received/sec

Bytes Received/sec is the rate at which bytes are received on the interface, including framing
characters.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received Unicast/sec

Packets Received Unicast/sec is the rate at which (subnet) unicast packets are delivered to a
higher-layer protocol.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Packets Received Non-Unicast/sec

Packets Received Non-Unicast/sec is the rate at which non-unicast (i.e., subnet broadcast or
subnet multicast) packets are delivered to a higher-layer protocol.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Packets Received Discarded

Packets Received Discarded is the number of inbound packets that were chosen to be discarded
even though no errors had been detected to prevent their being deliverable to a higher-layer
protocol. One possible reason for discarding such a packet could be to free up buffer space.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Packets Received Errors

Packets Received Errors is the number of inbound packets that contained errors preventing them
from being deliverable to a higher-layer protocol.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Packets Received Unknown

Packets Received Unknown is the number of packets received via the interface that were
discarded because of an unknown or unsupported protocol.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Sent/sec

Bytes Sent/sec is the rate at which bytes are sent on the interface, including framing characters.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Sent Unicast/sec

Packets Sent Unicast/sec is the rate at which packets are requested to be transmitted to subnet-
unicast addresses by higher-level protocols. The rate includes the packets that were discarded or
not sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Packets Sent Non-Unicast/sec

Packets Sent Non-Unicast/sec is the rate at which packets are requested to be transmitted to non-
unicast (i.e., subnet broadcast or subnet multicast) addresses by higher-level protocols. The rate
includes the packets that were discarded or not sent.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Packets Outbound Discarded

Packets Outbound Discarded is the number of outbound packets that were chosen to be
discarded even though no errors had been detected to prevent their being transmitted. One
possible reason for discarding such a packet could be to free up buffer space.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Packets Outbound Errors

Packets Outbound Errors is the number of outbound packets that could not be transmitted
because of errors.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Output Queue Length

Output Queue Length is the length of the output packet queue (in packets.) If this is longer than 2,
delays are being experienced and the bottleneck should be found and eliminated if possible.
Since the requests are queued by NDIS in this implementations, this will always be 0.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Network Segment Object
The network segment performance object provides network statistics for the local network
segment via the Network Monitor service.

Total frames received/second

The total number of frames received per second on this network segment.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Total bytes received/second

The number of bytes received per second on this network segment.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Broadcast frames received/second

The number of Broadcast frames received per second on this network segment.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Multicast frames received/second

The number of Multicast frames received per second on this network segment.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

% Network utilization

Percentage of network bandwidth in use on this network segment.
Detail Level: Advanced

Counter Type: PERF_COUNTER_MULTI_TIMER

(null)
Detail Level: Advanced

Counter Type: PERF_COUNTER_MULTI_BASE

% Broadcast Frames

Percentage of network bandwidth which is made up of broadcast traffic on this network segment.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BULK

% Broadcast Frames

Percentage of network bandwidth which is made up of broadcast traffic on this network segment.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

% Multicast Frames

Percentage of network bandwidth which is made up of multicast traffic on this network segment.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BULK

% Multicast Frames

Percentage of network bandwidth which is made up of multicast traffic on this network segment.

Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

NWLink IPX Object
The NWLink IPX performance object consists of counter that measure datagram transmission to
and from computers using the IPX protocol.

Datagrams/sec

Datagrams/sec is the rate at which datagrams are processed by the computer. This counter
displays the sum of datagrams sent and datagrams received. A datagram is a connectionless
packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes/sec

Datagram Bytes/sec is the rate at which datagram bytes are processed by the computer. This
counter is the sum of datagram bytes that are sent as well as received. A datagram is a
connectionless packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets/sec

Packets/sec is the rate at which packets are processed by the computer. This count is the sum of
Packets Sent and Packets Received per second. This counter includes all packets processed:
control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frames/sec

Frames/sec is the rate at which data frames (or packets) are processed by the computer. This
counter is the sum of data frames sent and data frames received. This counter only counts those
frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes/sec

Frame Bytes/sec is the rate at which data bytes are processed by the computer. This counter is
the sum of data frame bytes sent and received. This counter only counts the byte in frames
(packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Total/sec

Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is the total rate of
bytes sent to or received from the network by the protocol, but only counts the bytes in frames (i.
e., packets) which carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Connections Open

Connections Open is the number of connections currently open for this protocol. This counter
shows the current count only and does not accumulate over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections No Retries

Connections No Retries is the total count of connections that were successfully made on the first
try. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections With Retries

Connections With Retries is the total count of connections that were made after retrying the
attempt. A retry occurs when the first connection attempt failed. This number is an accumulator
and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Local

Disconnects Local is the number of session disconnections that were initiated by the local
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Remote

Disconnects Remote is the number of session disconnections that were initiated by the remote
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Link

Failures Link is the number of connections that were dropped due to a link failure. This number is
an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Adapter

Failures Adapter is the number of connections that were dropped due to an adapter failure. This
number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connection Session Timeouts

Connection Session Timeouts is the number of connections that were dropped due to a session
time out. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Canceled

Connections Canceled is the number of connections that were canceled. This number is an
accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Remote

Failures Resource Remote is the number of connections that failed because of resource problems
or shortages on the remote computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Local

Failures Resource Local is the number of connections that failed because of resource problems or
shortages on the local computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Not Found

Failures Not Found is the number of connection attempts that failed because the remote computer
could not be found. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures No Listen

Failures No Listen is the number of connections that were rejected because the remote computer
was not listening for connection requests.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which datagrams are sent from the computer. A datagram is a
connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Sent/sec

Datagram Bytes Sent/sec is the rate at which datagram bytes are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Datagrams Received/sec

Datagrams Received/sec is the rate at which datagrams are received by the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Received/sec

Datagram Bytes Received/sec is the rate at which datagram bytes are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Sent/sec

Packets Sent/sec is the rate at which packets are sent by the computer. This counter counts all
packets sent by the computer, i.e. control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received/sec

Packets Received/sec is the rate at which packets are received by the computer. This counter
counts all packets processed: control as well as data packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frames Sent/sec

Frames Sent/sec is the rate at which data frames are sent by the computer. This counter only
counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Sent/sec

Frame Bytes Sent/sec is the rate at which data bytes are sent by the computer. This counter only
counts the bytes in frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Received/sec

Frames Received/sec is the rate at which data frames are received by the computer. This counter
only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Received/sec

Frame Bytes Received/sec is the rate at which data bytes are received by the computer. This
counter only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Re-Sent/sec

Frames Re-Sent/sec is the rate at which data frames (packets) are re-sent by the computer. This
counter only counts the frames or packets that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Re-Sent/sec

Frame Bytes Re-Sent/sec is the rate at which data bytes are re-sent by the computer. This
counter only counts the bytes in frames that carry data.
Detail Level: Wizard

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Rejected/sec

Frames Rejected/sec is the rate at which data frames are rejected. This counter only counts the
frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Rejected/sec

Frame Bytes Rejected/sec is the rate at which data bytes are rejected. This counter only counts
the bytes in data frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Expirations Response

Expirations Response is the count of T1 timer expirations.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Expirations Ack

Expirations Ack is the count of T2 timer expirations
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Maximum

Window Send Maximum is the maximum number of bytes of data that will be sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Average

Window Send Average is the running average number of data bytes that were sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Piggyback Ack Queued/sec

Piggyback Ack Queued/sec is the rate at which piggybacked acknowledgments are queued.
Piggyback acknowledgments are acknowledgments to received packets that are to be included in
the next outgoing packet to the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Piggyback Ack Timeouts

Piggyback Ack Timeouts is the number of times that a piggyback acknowledgment could not be
sent because there was no outgoing packet to the remote on which to piggyback. A piggyback ack
is an acknowledgment to a received packet that is sent along in an outgoing data packet to the
remote computer. If no outgoing packet is sent within the time-out period, then an ack packet is
sent and this counter is incremented.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

NWLink NetBIOS Object
The NWLink NetBIOS performance object consists of counters that monitor IPX transport rates
and connections.

Datagrams/sec

Datagrams/sec is the rate at which datagrams are processed by the computer. This counter
displays the sum of datagrams sent and datagrams received. A datagram is a connectionless
packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes/sec

Datagram Bytes/sec is the rate at which datagram bytes are processed by the computer. This
counter is the sum of datagram bytes that are sent as well as received. A datagram is a
connectionless packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets/sec

Packets/sec is the rate at which packets are processed by the computer. This count is the sum of
Packets Sent and Packets Received per second. This counter includes all packets processed:
control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frames/sec

Frames/sec is the rate at which data frames (or packets) are processed by the computer. This
counter is the sum of data frames sent and data frames received. This counter only counts those
frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes/sec

Frame Bytes/sec is the rate at which data bytes are processed by the computer. This counter is
the sum of data frame bytes sent and received. This counter only counts the byte in frames
(packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Total/sec

Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is the total rate of
bytes sent to or received from the network by the protocol, but only counts the bytes in frames (i.
e., packets) which carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Connections Open

Connections Open is the number of connections currently open for this protocol. This counter
shows the current count only and does not accumulate over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections No Retries

Connections No Retries is the total count of connections that were successfully made on the first
try. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections With Retries

Connections With Retries is the total count of connections that were made after retrying the
attempt. A retry occurs when the first connection attempt failed. This number is an accumulator
and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Local

Disconnects Local is the number of session disconnections that were initiated by the local
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Remote

Disconnects Remote is the number of session disconnections that were initiated by the remote
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Link

Failures Link is the number of connections that were dropped due to a link failure. This number is
an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Adapter

Failures Adapter is the number of connections that were dropped due to an adapter failure. This
number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connection Session Timeouts

Connection Session Timeouts is the number of connections that were dropped due to a session
time out. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Canceled

Connections Canceled is the number of connections that were canceled. This number is an
accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Remote

Failures Resource Remote is the number of connections that failed because of resource problems
or shortages on the remote computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Local

Failures Resource Local is the number of connections that failed because of resource problems or
shortages on the local computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Not Found

Failures Not Found is the number of connection attempts that failed because the remote computer
could not be found. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures No Listen

Failures No Listen is the number of connections that were rejected because the remote computer
was not listening for connection requests.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which datagrams are sent from the computer. A datagram is a
connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Sent/sec

Datagram Bytes Sent/sec is the rate at which datagram bytes are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Datagrams Received/sec

Datagrams Received/sec is the rate at which datagrams are received by the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Received/sec

Datagram Bytes Received/sec is the rate at which datagram bytes are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Sent/sec

Packets Sent/sec is the rate at which packets are sent by the computer. This counter counts all
packets sent by the computer, i.e. control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received/sec

Packets Received/sec is the rate at which packets are received by the computer. This counter
counts all packets processed: control as well as data packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frames Sent/sec

Frames Sent/sec is the rate at which data frames are sent by the computer. This counter only
counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Sent/sec

Frame Bytes Sent/sec is the rate at which data bytes are sent by the computer. This counter only
counts the bytes in frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Received/sec

Frames Received/sec is the rate at which data frames are received by the computer. This counter
only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Received/sec

Frame Bytes Received/sec is the rate at which data bytes are received by the computer. This
counter only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Re-Sent/sec

Frames Re-Sent/sec is the rate at which data frames (packets) are re-sent by the computer. This
counter only counts the frames or packets that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Re-Sent/sec

Frame Bytes Re-Sent/sec is the rate at which data bytes are re-sent by the computer. This
counter only counts the bytes in frames that carry data.
Detail Level: Wizard

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Rejected/sec

Frames Rejected/sec is the rate at which data frames are rejected. This counter only counts the
frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Rejected/sec

Frame Bytes Rejected/sec is the rate at which data bytes are rejected. This counter only counts
the bytes in data frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Expirations Response

Expirations Response is the count of T1 timer expirations.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Expirations Ack

Expirations Ack is the count of T2 timer expirations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Maximum

Window Send Maximum is the maximum number of bytes of data that will be sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Average

Window Send Average is the running average number of data bytes that were sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Piggyback Ack Queued/sec

Piggyback Ack Queued/sec is the rate at which piggybacked acknowledgments are queued.
Piggyback acknowledgments are acknowledgments to received packets that are to be included in
the next outgoing packet to the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Piggyback Ack Timeouts

Piggyback Ack Timeouts is the number of times that a piggyback acknowledgment could not be
sent because there was no outgoing packet to the remote on which to piggyback. A piggyback ack
is an acknowledgment to a received packet that is sent along in an outgoing data packet to the
remote computer. If no outgoing packet is sent within the time-out period, then an ack packet is
sent and this counter is incremented.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

NWLink SPX Object
The NWLink SPX performance object consists of counters that measure data transmission and
session connections for computers using the SPX protocol.

Datagrams/sec

Datagrams/sec is the rate at which datagrams are processed by the computer. This counter
displays the sum of datagrams sent and datagrams received. A datagram is a connectionless
packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes/sec

Datagram Bytes/sec is the rate at which datagram bytes are processed by the computer. This
counter is the sum of datagram bytes that are sent as well as received. A datagram is a
connectionless packet whose delivery to a remote is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets/sec

Packets/sec is the rate at which packets are processed by the computer. This count is the sum of
Packets Sent and Packets Received per second. This counter includes all packets processed:
control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frames/sec

Frames/sec is the rate at which data frames (or packets) are processed by the computer. This
counter is the sum of data frames sent and data frames received. This counter only counts those
frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes/sec

Frame Bytes/sec is the rate at which data bytes are processed by the computer. This counter is
the sum of data frame bytes sent and received. This counter only counts the byte in frames
(packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Total/sec

Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is the total rate of
bytes sent to or received from the network by the protocol, but only counts the bytes in frames (i.
e., packets) which carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Connections Open

Connections Open is the number of connections currently open for this protocol. This counter
shows the current count only and does not accumulate over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections No Retries

Connections No Retries is the total count of connections that were successfully made on the first
try. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections With Retries

Connections With Retries is the total count of connections that were made after retrying the
attempt. A retry occurs when the first connection attempt failed. This number is an accumulator
and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Local

Disconnects Local is the number of session disconnections that were initiated by the local
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Disconnects Remote

Disconnects Remote is the number of session disconnections that were initiated by the remote
computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Link

Failures Link is the number of connections that were dropped due to a link failure. This number is
an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Adapter

Failures Adapter is the number of connections that were dropped due to an adapter failure. This
number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connection Session Timeouts

Connection Session Timeouts is the number of connections that were dropped due to a session
time out. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Canceled

Connections Canceled is the number of connections that were canceled. This number is an
accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Remote

Failures Resource Remote is the number of connections that failed because of resource problems
or shortages on the remote computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Resource Local

Failures Resource Local is the number of connections that failed because of resource problems or
shortages on the local computer. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures Not Found

Failures Not Found is the number of connection attempts that failed because the remote computer
could not be found. This number is an accumulator and shows a running total.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Failures No Listen

Failures No Listen is the number of connections that were rejected because the remote computer
was not listening for connection requests.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which datagrams are sent from the computer. A datagram is a
connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Sent/sec
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Datagrams Received/sec

Datagrams Received/sec is the rate at which datagrams are received by the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagram Bytes Received/sec

Datagram Bytes Received/sec is the rate at which datagram bytes are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is not guaranteed.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Sent/sec

Packets Sent/sec is the rate at which packets are sent by the computer. This counter counts all
packets sent by the computer, i.e. control as well as data packets.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Packets Received/sec

Packets Received/sec is the rate at which packets are received by the computer. This counter
counts all packets processed: control as well as data packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frames Sent/sec

Frames Sent/sec is the rate at which data frames are sent by the computer. This counter only
counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Sent/sec

Frame Bytes Sent/sec is the rate at which data bytes are sent by the computer. This counter only
counts the bytes in frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Received/sec

Frames Received/sec is the rate at which data frames are received by the computer. This counter
only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Received/sec

Frame Bytes Received/sec is the rate at which data bytes are received by the computer. This
counter only counts the frames (packets) that carry data.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Re-Sent/sec

Frames Re-Sent/sec is the rate at which data frames (packets) are re-sent by the computer. This
counter only counts the frames or packets that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Re-Sent/sec

Frame Bytes Re-Sent/sec is the rate at which data bytes are re-sent by the computer. This
counter only counts the bytes in frames that carry data.
Detail Level: Wizard

Counter Type: PERF_COUNTER_BULK_COUNT

Frames Rejected/sec

Frames Rejected/sec is the rate at which data frames are rejected. This counter only counts the
frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Frame Bytes Rejected/sec

Frame Bytes Rejected/sec is the rate at which data bytes are rejected. This counter only counts
the bytes in data frames (packets) that carry data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Expirations Response

Expirations Response is the count of T1 timer expirations.

Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Expirations Ack

Expirations Ack is the count of T2 timer expirations
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Maximum

Window Send Maximum is the maximum number of bytes of data that will be sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Window Send Average

Window Send Average is the running average number of data bytes that were sent before waiting
for an acknowledgment from the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Piggyback Ack Queued/sec

Piggyback Ack Queued/sec is the rate at which piggybacked acknowledgments are queued.
Piggyback acknowledgments are acknowledgments to received packets that are to be included in
the next outgoing packet to the remote computer.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Piggyback Ack Timeouts

Piggyback Ack Timeouts is the number of times that a piggyback acknowledgment could not be
sent because there was no outgoing packet to the remote on which to piggyback. A piggyback ack
is an acknowledgment to a received packet that is sent along in an outgoing data packet to the
remote computer. If no outgoing packet is sent within the time-out period, then an ack packet is
sent and this counter is incremented.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Objects Object
The Objects performance object consists of counters that monitor logical objects in the system,
such as processes, threads, mutexes, and semaphores. This information can be used to detect
the unnecessary consumption of computer resources. Each object requires memory to store basic
information about the object.

Processes

Processes is the number of processes in the computer at the time of data collection. Notice that
this is an instantaneous count, not an average over the time interval. Each process represents the
running of a program.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Threads

Threads is the number of threads in the computer at the time of data collection. Notice that this is
an instantaneous count, not an average over the time interval. A thread is the basic executable
entity that can execute instructions in a processor.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Events

Events is the number of events in the computer at the time of data collection. Notice that this is an
instantaneous count, not an average over the time interval. An event is used when two or more
threads wish to synchronize execution.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Semaphores

Semaphores is the number of semaphores in the computer at the time of data collection. Notice
that this is an instantaneous count, not an average over the time interval. Threads use
semaphores to obtain exclusive access to data structures that they share with other threads.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Mutexes

Mutexes counts the number of mutexes in the computer at the time of data collection. This is an
instantaneous count, not an average over the time interval. Mutexes are used by threads to
assure only one thread is executing some section of code.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Sections

Sections is the number of sections in the computer at the time of data collection. Notice that this is
an instantaneous count, not an average over the time interval. A section is a portion of virtual
memory created by a process for a storing data. A process might share sections with other
processes.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Paging File Object
The Paging File performance object consists of counters that monitor the paging file(s) on the
computer. The paging file is a reserved space on disk that backs up committed physical memory
on the computer.

Usage

The amount of the Page File instance in use in percent. See also Process:Page File Bytes.
Detail Level: Advanced

Counter Type: PERF_RAW_FRACTION

% Usage

The amount of the Page File instance in use in percent. See also Process:Page File Bytes.
Detail Level: Advanced

Counter Type: PERF_RAW_BASE

% Usage Peak

The peak usage of the Page File instance in percent. See also Process:Page File Bytes Peak.
Detail Level: Advanced

Counter Type: PERF_RAW_FRACTION

% Usage Peak

The peak usage of the Page File instance in percent. See also Process:Page File Bytes Peak.
Detail Level: Advanced

Counter Type: PERF_RAW_BASE

Physical Disk Object
The Physical Disk performance object consists of counters that monitor hard or fixed disk drive on
a computer. Disks are used to store file, program, and paging data and are read to retrieve these
items, and written to record changes to them. The values of physical disk counters are sums of
the values of the logical disks (or partitions) into which they are divided.

Current Disk Queue Length

Current Disk Queue Length is the number of requests outstanding on the disk at the time the
performance data is collected. It includes requests in service at the time of the snapshot. This is
an instantaneous length, not an average over the time interval. Multi-spindle disk devices can
have multiple requests active at one time, but other concurrent requests are awaiting service. This
counter might reflect a transitory high or low queue length, but if there is a sustained load on the
disk drive, it is likely that this will be consistently high. Requests are experiencing delays
proportional to the length of this queue minus the number of spindles on the disks. This difference
should average less than 2 for good performance.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

% Disk Time

Disk Time is the percentage of elapsed time that the selected disk drive is busy servicing read or
write requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Queue Length

Avg. Disk Queue Length is the average number of both read and write requests that were queued
for the selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

% Disk Read Time

Disk Read Time is the percentage of elapsed time that the selected disk drive is busy servicing
read requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Read Queue Length

Avg. Disk Read Queue Length is the average number of read requests that were queued for the
selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

% Disk Write Time

Disk Write Time is the percentage of elapsed time that the selected disk drive is busy servicing
write requests.
Detail Level: Novice

Counter Type: PERF_COUNTER_TIMER

Avg. Disk Write Queue Length

Avg. Disk Write Queue Length is the average number of write requests that were queued for the
selected disk during the sample interval.
Detail Level: Novice

Counter Type: 0x450500,

Avg. Disk sec/Transfer

Avg. Disk sec/Transfer is the time in seconds of the average disk transfer.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Transfer

Avg. Disk sec/Transfer is the time in seconds of the average disk transfer.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Avg. Disk sec/Read

Avg. Disk sec/Read is the average time in seconds of a read of data from the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Read

Avg. Disk sec/Read is the average time in seconds of a read of data from the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Avg. Disk sec/Write

Avg. Disk sec/Write is the average time in seconds of a write of data to the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_TIMER

Avg. Disk sec/Write

Avg. Disk sec/Write is the average time in seconds of a write of data to the disk.
Detail Level: Advanced

Counter Type: PERF_AVERAGE_BASE

Disk Transfers/sec

Disk Transfers/sec is the rate of read and write operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Reads/sec

Disk Reads/sec is the rate of read operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Writes/sec

Disk Writes/sec is the rate of write operations on the disk.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Disk Bytes/sec

Disk Bytes/sec is the rate bytes are transferred to or from the disk during write or read operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Disk Read Bytes/sec

Disk Read Bytes/sec is the rate bytes are transferred from the disk during read operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Disk Write Bytes/sec

Disk Write Bytes is rate bytes are transferred to the disk during write operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Avg. Disk Bytes/Transfer

Avg. Disk Bytes/Transfer is the average number of bytes transferred to or from the disk during
write or read operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Transfer

Avg. Disk Bytes/Transfer is the average number of bytes transferred to or from the disk during
write or read operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Avg. Disk Bytes/Read

Avg. Disk Bytes/Read is the average number of bytes transferred from the disk during read
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Read

Avg. Disk Bytes/Read is the average number of bytes transferred from the disk during read
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Avg. Disk Bytes/Write

Avg. Disk Bytes/Write is the average number of bytes transferred to the disk during write
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BULK

Avg. Disk Bytes/Write

Avg. Disk Bytes/Write is the average number of bytes transferred to the disk during write
operations.
Detail Level: Expert

Counter Type: PERF_AVERAGE_BASE

Process Object
The Process performance object consists of counters that monitor running application program
and system processes. All the threads in a process share the same address space and have
access to the same data.

Processor Time

Processor Time is the percentage of elapsed time that all of the threads of this process used the
processor to execute instructions. An instruction is the basic unit of execution in a computer, a
thread is the object that executes instructions, and a process is the object created when a
program is run. Code executed to handle some hardware interrupts and trap conditions are
included in this count.
Detail Level: Novice

Counter Type: PERF_100NSEC_TIMER

% User Time

User Time is the percentage of elapsed time that this process's threads have spent executing
code in user mode. Applications, environment subsystems, and integral subsystems execute in
user mode. Code executing in User Mode cannot damage the integrity of the Windows NT
Executive, Kernel, and device drivers. Unlike some early operating systems, Windows NT uses
process boundaries for subsystem protection in addition to the traditional protection of user and
privileged modes. These subsystem processes provide additional protection. Therefore, some
work done by Windows NT on behalf of your application might appear in other subsystem
processes in addition to the privileged time in your process.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

% Privileged Time

Privileged Time is the percentage of elapsed time that the threads of the process have spent
executing code in privileged mode. When a Windows NT system service is called, the service will
often run in Privileged Mode to gain access to system-private data. Such data is protected from
access by threads executing in user mode. Calls to the system can be explicit or implicit, such as
page faults or interrupts. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of user and privileged
modes. These subsystem processes provide additional protection. Therefore, some work done by
Windows NT on behalf of your application might appear in other subsystem processes in addition
to the privileged time in your process.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Virtual Bytes Peak

Virtual Bytes Peak is the maximum number of bytes of virtual address space the process has
used at any one time. Use of virtual address space does not necessarily imply corresponding use
of either disk or main memory pages. Virtual space is however finite, and by using too much, the
process might limit its ability to load libraries.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Virtual Bytes

Virtual Bytes is the current size in bytes of the virtual address space the process is using. Use of
virtual address space does not necessarily imply corresponding use of either disk or main memory
pages. Virtual space is finite, and by using too much, the process can limit its ability to load
libraries.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Page Faults/sec

Page Faults/sec is the rate of Page Faults by the threads executing in this process. A page fault
occurs when a thread refers to a virtual memory page that is not in its working set in main
memory. This will not cause the page to be fetched from disk if it is on the standby list and hence
already in main memory, or if it is in use by another process with whom the page is shared.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Working Set Peak

Working Set Peak is the maximum number of bytes in the Working Set of this process at any point
in time. The Working Set is the set of memory pages touched recently by the threads in the
process. If free memory in the computer is above a threshold, pages are left in the Working Set of
a process even if they are not in use. When free memory falls below a threshold, pages are
trimmed from Working Sets. If they are needed they will then be soft-faulted back into the Working
Set before they leave main memory.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Working Set

Working Set is the current number of bytes in the Working Set of this process. The Working Set is
the set of memory pages touched recently by the threads in the process. If free memory in the
computer is above a threshold, pages are left in the Working Set of a process even if they are not
in use. When free memory falls below a threshold, pages are trimmed from Working Sets. If they
are needed they will then be soft-faulted back into the Working Set before they leave main
memory.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Page File Bytes Peak

Page File Bytes Peak is the maximum number of bytes this process has used in the paging file(s)
. Paging files are used to store pages of memory used by the process that are not contained in
other files. Paging files are shared by all processes, and lack of space in paging files can prevent
other processes from allocating memory.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Page File Bytes

Page File Bytes is the current number of bytes this process has used in the paging file(s). Paging
files are used to store pages of memory used by the process that are not contained in other files.
Paging files are shared by all processes, and lack of space in paging files can prevent other
processes from allocating memory.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Private Bytes

Private Bytes is the current number of bytes this process has allocated that cannot be shared with
other processes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Thread Count

The number of threads currently active in this process. An instruction is the basic unit of execution
in a processor, and a thread is the object that executes instructions. Every running process has at
least one thread.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Priority Base

The current base priority of this process. Threads within a process can raise and lower their own
base priority relative to the process's base priority.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Elapsed Time

The total elapsed time (in seconds) this process has been running.
Detail Level: Advanced

Counter Type: PERF_ELAPSED_TIME

ID Process

ID Process is the unique identifier of this process. ID Process numbers are reused, so they only
identify a process for the lifetime of that process.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Bytes

Pool Paged Bytes is the number of bytes in the Paged Pool, a system memory area where space
is acquired by operating system components as they accomplish their appointed tasks. Paged
Pool pages can be paged out to the paging file when not accessed by the system for sustained
periods of time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Nonpaged Bytes

Pool Nonpaged Bytes is the number of bytes in the nonpaged pool, a system memory area where
space is acquired by operating system components as they accomplish their appointed tasks.
Nonpaged pool pages cannot be paged out to the paging file, but instead remain in main memory
as long as they are allocated.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Handle Count

The total number of handles currently open by this process. This number is the sum of the
handles currently open by each thread in this process.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Process Address Space Object
The Process Address Space performance object consists of counters that monitor memory
allocation and use for a selected process.

Bytes Image Reserved

Bytes Image Reserved is the sum of all virtual memory reserved by images run within this
process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

ID Process

ID Process is the unique identifier of this process. ID Process numbers are reused, so they only
identify a process for the lifetime of that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Image Free

Bytes Image Free is the amount of virtual address space that is not in use or reserved by images
within this process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Reserved

Bytes Reserved is the total amount of virtual memory reserved for future use by this process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Free
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Free is the total unused virtual address space of this process.

Mapped Space No Access

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. No Access protection prevents a
process from writing to or reading from these pages and will generate an access violation if either
is attempted.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Read Only

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Read Only protection prevents the
contents of these pages from being modified. Any attempts to write or modify these pages will
generate an access violation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Read/Write

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Read/Write protection allows a process
to read, modify and write to these pages.

Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Write Copy

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Write Copy protection is used when
memory is shared for reading but not for writing. When processes are reading this memory, they
can share the same memory, however, when a sharing process wants to have write access to this
shared memory, a copy of that memory is made.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Executable

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Executable memory is memory that can
be executed by programs, but cannot be read or written. This type of protection is not supported
by all processor types.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Exec Read Only

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Execute/Read Only memory is memory
that can be executed as well as read.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Exec Read/Write

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Execute/Read/Write memory is memory
that can be executed by programs as well as read and modified.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Mapped Space Exec Write Copy

Mapped Space is virtual memory that has been mapped to a specific virtual address (or range of
virtual addresses) in the process's virtual address space. Execute Write Copy is memory that can
be executed by programs as well as read and written. This type of protection is used when
memory needs to be shared between processes. If the sharing processes only read the memory,
then they will all use the same memory. If a sharing process desires write access, then a copy of
this memory will be made for that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space No Access

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. No Access protection prevents a process from writing to or reading
from these pages and will generate an access violation if either is attempted.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Read Only

Reserved Space is virtual memory that has been reserved for future use by a process, but has not

been mapped or committed. Read Only protection prevents the contents of these pages from
being modified. Any attempts to write or modify these pages will generate an access violation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Read/Write

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Read/Write protection allows a process to read, modify and write to
these pages.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Write Copy

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Write Copy protection is used when memory is shared for reading but
not for writing. When processes are reading this memory, they can share the same memory,
however, when a sharing process wants to have read/write access to this shared memory, a copy
of that memory is made.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Executable

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Executable memory is memory that can be executed by programs,
but cannot be read or written. This type of protection is not supported by all processor types.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Exec Read Only

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Execute/Read Only memory is memory that can be executed as well
as read.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Exec Read/Write

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Execute/Read/Write memory is memory that can be executed by
programs as well as read and modified.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Reserved Space Exec Write Copy

Reserved Space is virtual memory that has been reserved for future use by a process, but has not
been mapped or committed. Execute Write Copy is memory that can be executed by programs as
well as read and written. This type of protection is used when memory needs to be shared
between processes. If the sharing processes only read the memory, then they will all use the
same memory. If a sharing process desires write access, then a copy of this memory will be made
for that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space No Access

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. No Access protection
prevents a process from writing to or reading from these pages and will generate an access
violation if either is attempted.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Read Only

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Read Only protection
prevents the contents of these pages from being modified. Any attempts to write or modify these
pages will generate an access violation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Read/Write

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Read/Write protection allows
a process to read, modify and write to these pages.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Write Copy

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Write Copy protection is used
when memory is shared for reading but not for writing. When processes are reading this memory,
they can share the same memory, however, when a sharing process wants to have read/write
access to this shared memory, a copy of that memory is made for writing to.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Executable

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Executable memory is
memory that can be executed by programs, but cannot be read or written. This type of protection
is not supported by all processor types.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Exec Read Only

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Execute/Read Only memory
is memory that can be executed as well as read.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Exec Read/Write

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Execute/Read/Write memory
is memory that can be executed by programs as well as read and written.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Unassigned Space Exec Write Copy

Unassigned Space is mapped and committed virtual memory in use by the process that is not
attributable to any particular image being executed by that process. Execute Write Copy is
memory that can be executed by programs as well as read and written. This type of protection is
used when memory needs to be shared between processes. If the sharing processes only read
the memory, then they will all use the same memory. If a sharing process desires write access,
then a copy of this memory will be made for that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space No Access

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process No Access protection prevents a process from writing to or reading from these
pages and will generate an access violation if either is attempted.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Read Only

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Read Only protection prevents the contents of these pages from being modified.
Any attempts to write or modify these pages will generate an access violation.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Read/Write

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Read/Write protection allows a process to read, modify and write to these
pages.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Write Copy

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Write Copy protection is used when memory is shared for reading but not for
writing. When processes are reading this memory, they can share the same memory, however,
when a sharing process wants to have read/write access to this shared memory, a copy of that
memory is made for writing to.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Executable

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Executable memory is memory that can be executed by programs, but cannot
be read or written. This type of protection is not supported by all processor types.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Exec Read Only

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Execute/Read Only memory is memory that can be executed as well as read.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Exec Read/Write

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Execute/Read/Write memory is memory that can be executed by programs as
well as read and written and modified.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Image Space Exec Write Copy

Image Space is the virtual address space in use by the images being executed by the process.
This is the sum of all the address space with this protection allocated by images run by the
selected process Execute Write Copy is memory that can be executed by programs as well as
read and written. This type of protection is used when memory needs to be shared between
processes. If the sharing processes only read the memory, then they will all use the same
memory. If a sharing process desires write access, then a copy of this memory will be made for
that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Processor Object
The Processor performance object consists of counters that measure aspects of processor activity
The processor is the part of the computer that performs arithmetic and logical computations,
initiates operations on peripherals, and runs the threads of processes. A computer can have
multiple processors. The processor object represents each processor as an instance of the object.

%Processor Time

%Processor Time is the percentage of time that the processor is executing a non-Idle thread. This
counter was designed as a primary indicator of processor activity. It is calculated by measuring
the time that the processor spends executing the thread of the Idle process in each sample
interval, and subtracting that value from 100%. (Each processor has an Idle thread which
consumes cycles when no other threads are ready to run.) It can be viewed as the fraction of the
time spent doing useful work.
Detail Level: Novice

Counter Type: PERF_100NSEC_TIMER_INV

%User Time

%User Time is the percentage of non-idle processor time spent in user mode. (User mode is a
restricted processing mode designed for applications, environment subsystems, and integral
subsystems. The alternative, privileged mode, is designed for operating system components and
allows direct access to hardware and all memory. The operating system switches application
threads to privileged mode to obtain operating system services.)
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

% Privileged Time

Privileged Time is the percentage of non-idle processor time spent in privileged mode. (Privileged
mode is a processing mode designed for operating system components and hardware-
manipulating drivers. It allows direct access to hardware and all memory. The alternative, user
mode, is a restricted processing mode designed for applications, environment subsystems, and
integral subsystems. The operating system switches application threads to privileged mode to
obtain operating system services.) % Privileged Time includes time servicing interrupts and DPCs.
A high rate of privileged time might be attributable to a large number of interrupts generated by a
failing device.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Interrupts/sec

Interrupts/sec is the average number of hardware interrupts the processor is receiving and
servicing in each second. It does not include DPCs, which are counted separately. This value is
an indirect indicator of the activity of devices that generate interrupts, such as the system clock,
the mouse, disk drivers, data communication lines, network interface cards and other peripheral
devices. These devices normally interrupt the processor when they have completed a task or
require attention. Normal thread execution is suspended during interrupts. Most system clocks
interrupt the processor every 10 milliseconds, creating a background of interrupt activity.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

% DPC Time

% DPC Time is the percentage of time that the processor spent receiving and servicing deferred
procedure calls (DPCs) during the sample interval.(DPCs are interrupts that run at a lower priority
than standard interrupts.) % DPC Time is a component of % Privileged Time because DPCs are
executed in privileged mode. They are counted separately and are not a component of the
interrupt counters.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

% Interrupt Time

% Interrupt Time is the percentage of time the processor spent receiving and servicing hardware
interrupts during the sample interval. This value is an indirect indicator of the activity of devices
that generate interrupts, such as the system clock, the mouse, disk drivers, data communication
lines, network interface cards and other peripheral devices. These devices normally interrupt the
processor when they have completed a task or require attention. Normal thread execution is
suspended during interrupts. Most system clocks interrupt the processor every 10 milliseconds,
creating a background of interrupt activity.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

DPCs Queued/sec

DPCs Queued/sec is the overall rate at which deferred procedure calls (DPC) are added to the
processor's DPC queue. (DPCs are interrupts that run at a lower priority than standard interrupts.
Each processor has its own DPC queue.) This counter measures the rate at which DPCs are
added to the queue, not the number of DPCs in the queue.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

DPC Rate

DPC Rate is the rate at which deferred procedure calls (DPC) are added to the processor's DPC
queue between the timer tics of the processor clock. DPC objects are queued to this processor's
DPC queue per clock tick. (DPCs are interrupts that run at a lower priority than standard
interrupts. Each processor has its own DPC queue.) This counter measures the rates at which
DPCs are added to the queue, not the number of DPCs in the queue.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

DPC Bypasses/sec
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

DPC Bypasses/sec is the rate at which deferred procedure calls (DPC) on all processors were
avoided. (DPCs are interrupts that run at a lower priority than standard interrupts.

APC Bypasses/sec
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

APC Bypasses/sec is the rate at which kernel APC interrupts were avoided. APC Bypasses/sec is
the rate at which kernel APC interrupts were short-circuited. .

RAS Port Object
The RAS Port performance object consists of counters that monitor individual Remote Access
Service (RAS) ports of the RAS device on the system.

Bytes Transmitted

The number of bytes transmitted total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Received

The number of bytes received total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Frames Transmitted

The number of data frames transmitted total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Frames Received

The number of data frames received total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Percent Compression Out

The compression ratio for bytes being transmitted.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Percent Compression In

The compression ratio for bytes being received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

CRC Errors

The total number of CRC Errors for this connection. CRC Errors occur when the frame received
contains erroneous data.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Timeout Errors

The total number of Timeout Errors for this connection. Timeout Errors occur when an expected is
not received in time.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Serial Overrun Errors

The total number of Serial Overrun Errors for this connection. Serial Overrun Errors occur when
the hardware cannot handle the rate at which data is received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Alignment Errors

The total number of Alignment Errors for this connection. Alignment Errors occur when a byte
received is different from the byte expected.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Buffer Overrun Errors

The total number of Buffer Overrun Errors for this connection. Buffer Overrun Errors when the
software cannot handle the rate at which data is received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Total Errors

The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer Overrun Errors for this
connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Transmitted/Sec

The number of bytes transmitted per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Bytes Received/Sec

The number of bytes received per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Frames Transmitted/Sec

The number of frames transmitted per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Frames Received/Sec

The number of frames received per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Total Errors/Sec

The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer Overrun Errors per
second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

RAS Total Object
The RAS Total performance object consists of counters that combine values for all ports of the
Remote Access Service (RAS) device on the computer.

Bytes Transmitted

The number of bytes transmitted total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Received

The number of bytes received total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Frames Transmitted

The number of data frames transmitted total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Frames Received

The number of data frames received total for this connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Percent Compression Out

The compression ratio for bytes being transmitted.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Percent Compression In

The compression ratio for bytes being received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

CRC Errors

The total number of CRC Errors for this connection. CRC Errors occur when the frame received
contains erroneous data.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Timeout Errors

The total number of Timeout Errors for this connection. Timeout Errors occur when an expected is
not received in time.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Serial Overrun Errors

The total number of Serial Overrun Errors for this connection. Serial Overrun Errors occur when
the hardware cannot handle the rate at which data is received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Alignment Errors

The total number of Alignment Errors for this connection. Alignment Errors occur when a byte
received is different from the byte expected.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Buffer Overrun Errors

The total number of Buffer Overrun Errors for this connection. Buffer Overrun Errors when the
software cannot handle the rate at which data is received.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Total Errors

The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer Overrun Errors for this
connection.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Transmitted/Sec

The number of bytes transmitted per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Bytes Received/Sec

The number of bytes received per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Frames Transmitted/Sec

The number of frames transmitted per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Frames Received/Sec

The number of frames received per second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Total Errors/Sec

The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer Overrun Errors per
second.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Total Connections

The total number of Remote Access connections.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Redirector Object
The Redirector performance object consists of counter that monitor network connections
originating at the local computer.

Bytes Total/sec

Bytes Total/sec is the rate the Redirector is processing data bytes. This includes all application
and file data in addition to protocol information such as packet headers.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

File Data Operations/sec

File Data Operations/sec is the rate the Redirector is processing data operations. One operation
includes (hopefully) many bytes. We say hopefully here because each operation has overhead.
You can determine the efficiency of this path by dividing the Bytes/sec by this counter to
determine the average number of bytes transferred/operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Packets/sec

Packets/sec is the rate the Redirector is processing data packets. One packet includes (hopefully)
many bytes. We say hopefully here because each packet has protocol overhead. You can
determine the efficiency of this path by dividing the Bytes/sec by this counter to determine the
average number of bytes transferred/packet. You can also divide this counter by Operations/sec
to determine the average number of packets per operation, another measure of efficiency.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Received/sec

Bytes Received/sec is the rate of bytes coming in to the Redirector from the network. It includes
all application data as well as network protocol information (such as packet headers.)
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Received/sec

Packets Received/sec is the rate at which the Redirector is receiving packets (also called SMBs or
Server Message Blocks). Network transmissions are divided into packets. The average number of
bytes received in a packet can be obtained by dividing Bytes Received/sec by this counter. Some
packets received might not contain incoming data, for example an acknowledgment to a write
made by the Redirector would count as an incoming packet.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Read Bytes Paging/sec

Read Bytes Paging/sec is the rate at which the Redirector is attempting to read bytes in response
to page faults. Page faults are caused by loading of modules (such as programs and libraries), by
a miss in the Cache (see Read Bytes Cache/sec), or by files directly mapped into the address
space of applications (a high-performance feature of Windows NT.)
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Read Bytes Non-Paging/sec

Read Bytes Non-Paging/sec are those bytes read by the Redirector in response to normal file
requests by an application when they are redirected to come from another computer. In addition to

file requests, this counter includes other methods of reading across the network such as Named
Pipes and Transactions. This counter does not count network protocol information, just application
data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Read Bytes Cache/sec

Read Bytes Cache/sec is the rate at which applications are accessing the file system cache by
using the Redirector. Some of these data requests are satisfied by retrieving the data from the
cache. Requests that miss the cache cause a page fault (see Read Bytes Paging/sec).
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Read Bytes Network/sec

Read Bytes Network/sec is the rate at which applications are reading data across the network.
This occurs when data sought in the file system cache is not found there and must be retrieved
from the network. Dividing this value by Bytes Received/sec indicates the proportion of application
data traveling across the network (see Bytes Received/sec.)
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Transmitted/sec

Bytes Transmitted/sec is the rate at which bytes are leaving the Redirector to the network. It
includes all application data as well as network protocol information (such as packet headers and
the like.)
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Packets Transmitted/sec

Packets Transmitted/sec is the rate at which the Redirector is sending packets (also called SMBs
or Server Message Blocks). Network transmissions are divided into packets. The average number
of bytes transmitted in a packet can be obtained by dividing Bytes Transmitted/sec by this
counter.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Write Bytes Paging/sec

Write Bytes Paging/sec is the rate at which the Redirector is attempting to write bytes changed in
the pages being used by applications. The program data changed by modules (such as programs
and libraries) that were loaded over the network are 'paged out' when no longer needed. Other
output pages come from the cache (see Write Bytes Cache/sec).
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Write Bytes Non-Paging/sec

Write Bytes Non-Paging/sec is the rate at which bytes are written by the Redirector in response to
normal file outputs by an application when they are redirected to another computer. In addition to
file requests this counter includes other methods of writing across the network such as Named
Pipes and Transactions. This counter does not count network protocol information, just application
data.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Write Bytes Cache/sec

Write Bytes Cache/sec is the rate at which applications on your computer are writing to the file
system cache using the Redirector. The data might not leave your computer immediately; it can
be retained in the cache for further modification before being written to the network. This saves
network traffic. Each write of a byte into the cache is counted here.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

Write Bytes Network/sec

Write Bytes Network/sec is the rate at which applications are writing data across the network. This
occurs when the file system cache is, such as for named pipes or transactions, or else the cache
writes the bytes to disk to make room for other data. Dividing this counter by Bytes Transmitted/
sec will indicate the proportion of application data being written to the network (see Transmitted
Bytes/sec.)
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

File Read Operations/sec

File Read Operations/sec is the rate at which applications are asking the Redirector for data. Each
call to a file system or similar Application Program Interface (API) call counts as one operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Read Operations Random/sec

Read Operations Random/sec counts the rate at which, on a file-by-file basis, reads are made
that are not sequential. If a read is made using a particular file handle, and then is followed by
another read that is not immediately the contiguous next byte, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Read Packets/sec

Read Packets/sec is the rate at which read packets are being placed on the network. Each time a
single packet is sent with a request to read data remotely, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Reads Large/sec

Reads Large/sec is the rate at which reads over 2 times the server's negotiated buffer size are
made by applications. Too many of these could place a strain on server resources. This counter is
incremented once for each read. It does not count packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Read Packets Small/sec

Read Packets Small/sec is the rate at which reads less than one-fourth of the server's negotiated
buffer size are made by applications. Too many of these could indicate a waste of buffers on the
server. This counter is incremented once for each read. It does not count packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

File Write Operations/sec

File Write Operations/sec is the rate at which applications are sending data to the Redirector.
Each call to a file system or similar Application Program Interface (API) call counts as one
operation.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Write Operations Random/sec

Write Operations Random/sec is the rate at which, on a file-by-file basis, writes are made that are
not sequential. If a write is made using a particular file handle, and then is followed by another
write that is not immediately the next contiguous byte, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Write Packets/sec

Write Packets/sec is the rate at which writes are being sent to the network. Each time a single
packet is sent with a request to write remote data, this counter is incremented by one.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Writes Large/sec

Writes Large/sec is the rate at which writes are made by applications that are over 2 times the
server's negotiated buffer size. Too many of these could place a strain on server resources. This
counter is incremented once for each write: it counts writes, not packets.
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Write Packets Small/sec

Write Packets Small/sec is the rate at which writes are made by applications that are less than
one-fourth of the server's negotiated buffer size. Too many of these could indicate a waste of
buffers on the server. This counter is incremented once for each write: it counts writes, not
packets!
Detail Level: Expert

Counter Type: PERF_COUNTER_COUNTER

Reads Denied/sec

Reads Denied/sec is the rate at which the server is unable to accommodate requests for Raw
Reads. When a read is much larger than the server's negotiated buffer size, the Redirector
requests a Raw Read which, if granted, would permit the transfer of the data without lots of
protocol overhead on each packet. To accomplish this the server must lock out other requests, so
the request is denied if the server is really busy.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Writes Denied/sec

Writes Denied/sec is the rate at which the server is unable to accommodate requests for Raw
Writes. When a write is much larger than the server's negotiated buffer size, the Redirector
requests a Raw Write which, if granted, would permit the transfer of the data without lots of
protocol overhead on each packet. To accomplish this the server must lock out other requests, so
the request is denied if the server is really busy.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Network Errors/sec

Network Errors/sec counts serious unexpected errors that generally indicate the Redirector and
one or more Servers are having serious communication difficulties. For example an SMB (Server
Manager Block) protocol error will generate a Network Error. These result in an entry in the
system Event Log, so look there for details.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Server Sessions

Server Sessions counts the total number of security objects the Redirector has managed. For
example, a logon to a server followed by a network access to the same server will establish one
connection, but two sessions.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Server Reconnects

Server Reconnects counts the number of times your Redirector has had to reconnect to a server
in order to complete a new active request. You can be disconnected by the Server if you remain
inactive for too long. Locally even if all your remote files are closed, the Redirector will keep your
connections intact for (nominally) ten minutes. Such inactive connections are called Dormant
Connections. Reconnecting is expensive in time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connects Core

Connects Core counts the number of connections you have to servers running the original MS-
Net SMB protocol, including MS-Net itself and Xenix and VAXs.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connects LAN Manager 2.0

Connects LAN Manager 2.0 counts connections to LAN Manager 2.0 servers, including LMX
servers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connects LAN Manager 2.1

Connects LAN Manager 2.1 counts connections to LAN Manager 2.1 servers, including LMX
servers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connects Windows NT

Connects Windows NT counts the connections to Windows NT computers.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Server Disconnects

Server Disconnects counts the number of times a Server has disconnected your Redirector. See
also Server Reconnects.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Server Sessions Hung

Server Sessions Hung counts the number of active sessions that are timed out and unable to
proceed due to a lack of response from the remote server.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Current Commands

Current Commands counts the number of requests to the Redirector that are currently queued for
service. If this number is much larger than the number of network adapter cards installed in the
computer, then the network(s) and/or the server(s) being accessed are seriously bottlenecked.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Server Object
The Server performance object consists of counters that measure communication between the
local computer and the network.

Bytes Total/sec

The number of bytes the server has sent to and received from the network. This value provides an
overall indication of how busy the server is.
Detail Level: Novice

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Received/sec

The number of bytes the server has received from the network. Indicates how busy the server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Transmitted/sec

The number of bytes the server has sent on the network. Indicates how busy the server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Sessions Timed Out

The number of sessions that have been closed due to their idle time exceeding the
AutoDisconnect parameter for the server. Shows whether the AutoDisconnect setting is helping to
conserve resources.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sessions Errored Out

The number of sessions that have been closed due to unexpected error conditions. Indicates how
frequently network problems are causing dropped sessions on the server.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sessions Logged Off

The number of sessions that have terminated normally. Useful in interpreting the Sessions Times
Out and Sessions Errored Out statistics--allows percentage calculations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Sessions Forced Off

The number of sessions that have been forced to logoff. Can indicate how many sessions were
forced to logoff due to logon time constraints.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Errors Logon

The number of failed logon attempts to the server. Can indicate whether password guessing
programs are being used to crack the security on the server.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Errors Access Permissions

The number of times opens on behalf of clients have failed with STATUS_ACCESS_DENIED.
Can indicate whether somebody is randomly attempting to access files in hopes of getting at
something that was not properly protected.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Errors Granted Access

The number of times accesses to files opened successfully were denied. Can indicate attempts to
access files without proper access authorization.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Errors System

The number of times an internal Server Error was detected. Unexpected errors usually indicate a
problem with the Server.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Blocking Requests Rejected

The number of times the server has rejected blocking SMBs due to insufficient count of free work
items. Indicates whether the MaxWorkItem or MinFreeWorkItems server parameters might need
tuning.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Work Item Shortages

The number of times STATUS_DATA_NOT_ACCEPTED was returned at receive indication time.
This occurs when no work item is available or can be allocated to service the incoming request.
Indicates whether the InitWorkItems or MaxWorkItems parameters might need to be adjusted.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Files Opened Total

The number of successful open attempts performed by the server of behalf of clients. Useful in
determining the amount of file I/O, determining overhead for path-based operations, and for
determining the effectiveness of open locks.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Files Open

The number of files currently opened in the server. Indicates current server activity.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Server Sessions

The number of sessions currently active in the server. Indicates current server activity.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

File Directory Searches

The number of searches for files currently active in the server. Indicates current server activity.

Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Nonpaged Bytes

The number of bytes of non-pageable computer memory the server is currently using. This value
is useful for determining good values for the MaxNonpagedMemoryUsage parameter.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Nonpaged Failures

The number of times allocations from nonpaged pool have failed. Indicates that the computer's
physical memory is too small.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Pool Nonpaged Peak

The maximum number of bytes of nonpaged pool the server has had in use at any one point.
Indicates how much physical memory the computer should have.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Bytes

The number of bytes of pageable computer memory the server is currently using. Can help in
determining good values for the MaxPagedMemoryUsage parameter.
Detail Level: Expert

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Failures

The number of times allocations from paged pool have failed. Indicates that the computer's
physical memory or page file are too small.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Pool Paged Peak

The maximum number of bytes of paged pool the server has had allocated. Indicates the proper
sizes of the Page File(s) and physical memory.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Context Blocks Queued/sec

Context Blocks Queued per second is the rate at which work context blocks had to be placed on
the server's FSP queue to await server action.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Logon/sec

Logon/sec includes the rate of all interactive logons, network logons, service logons, successful
logon, and failed logons.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

Logon Total

Logon Total includes all interactive logons, network logons, service logons, successful logon, and
failed logons since the machine is last rebooted.
Detail Level: Novice

Counter Type: PERF_COUNTER_RAWCOUNT

Server Work Queues Object
The Server Work Queues performance object consists of counters that monitor the length of the
queues and objects in the queues.

Queue Length

Queue Length is the current length of the server work queue for this CPU. A sustained queue
length greater than four might indicate processor congestion. This is an instantaneous count, not
an average over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Active Threads

Active Threads is the number of threads currently working on a request from the server client for
this CPU. The system keeps this number as low as possible to minimize unnecessary context
switching. This is an instantaneous count for the CPU, not an average over time.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Available Threads

Available Threads is the number of server threads on this CPU not currently working on requests
from a client. The server dynamically adjusts the number of threads to maximize server
performance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Available Work Items

Every request from a client is represented in the server as a 'work item,' and the server maintains
a pool of available work items per CPU to speed processing. This is the instantaneous number of
available work items for this CPU. A sustained near-zero value indicates the need to increase the
MinFreeWorkItems registry value for the Server service. This value will always be 0 in the
Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Borrowed Work Items

Every request from a client is represented in the server as a 'work item,' and the server maintains
a pool of available work items per CPU to speed processing. When a CPU runs out of work items,
it borrows a free work item from another CPU. An increasing value of this running counter might
indicate the need to increase the 'MaxWorkItems' or 'MinFreeWorkItems' registry values for the
Server service. This value will always be 0 in the Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Work Item Shortages

Every request from a client is represented in the server as a 'work item,' and the server maintains
a pool of available work items per CPU to speed processing. A sustained value greater than zero
indicates the need to increase the 'MaxWorkItems' registry value for the Server service. This value
will always be 0 in the Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Current Clients

Current Clients is the instantaneous count of the clients being serviced by this CPU. The server
actively balances the client load across all of the CPU's in the system. This value will always be 0
in the Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Bytes Received/sec

The rate at which the Server is receiving bytes from the network clients on this CPU. This value is
a measure of how busy the Server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Sent/sec

The rate at which the Server is sending bytes to the network clients on this CPU. This value is a
measure of how busy the Server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Bytes Transferred/sec

The rate at which the Server is sending and receiving bytes with the network clients on this CPU.
This value is a measure of how busy the Server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Read Operations/sec

Read Operations/sec is the rate the server is performing file read operations for the clients on this
CPU. This value is a measure of how busy the Server is. This value will always be 0 in the
Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Read Bytes/sec

Read Bytes/sec is the rate the server is reading data from files for the clients on this CPU. This
value is a measure of how busy the Server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Write Operations/sec

Write Operations/sec is the rate the server is performing file write operations for the clients on this
CPU. This value is a measure of how busy the Server is. This value will always be 0 in the
Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Write Bytes/sec

Write Bytes/sec is the rate the server is writing data to files for the clients on this CPU. This value
is a measure of how busy the Server is.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Total Bytes/sec

Total Bytes/sec is the rate the Server is reading and writing data to and from the files for the
clients on this CPU. This value is a measure of how busy the Server is.

Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Total Operations/sec

Total Operations/sec is the rate the Server is performing file read and file write operations for the
clients on this CPU. This value is a measure of how busy the Server is. This value will always be 0
in the Blocking Queue instance.
Detail Level: Advanced

Counter Type: PERF_COUNTER_BULK_COUNT

Context Blocks Queued/sec

Context Blocks Queued per second is the rate at which work context blocks had to be placed on
the server's FSP queue to await server action.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

System Object
The System performance object consists of those counters that apply to more than one
component on the computer

File Read Operations/sec

File Read Operations/sec is the combined rate of file system read requests to all devices on the
computer, including requests to read from the file system cache. It is measured in numbers of
reads.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

File Write Operations/sec

File Write Operations/sec is the combined rate of the file system write requests to all devices on
the computer, including requests to write to data in the file system cache. It is measured in
numbers of writes.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

File Control Operations/sec

File Control Operations/sec is the combined rate of file system operations that are neither reads
nor writes, such as file system control requests and requests for information about device
characteristics or status. This is the inverse of System: File Data Operations/sec and is measured
in numbers of operations.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

File Read Bytes/sec

File Read Bytes/sec is the overall rate at which bytes are read to satisfy file system read requests
to all devices on the computer, including reads from the file system cache. It is measured in
numbers of bytes.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

File Write Bytes/sec

File Write Bytes/sec is the overall rate at which bytes are written to satisfy file system write
requests to all devices on the computer, including writes to the file system cache. It is measured in
numbers of bytes.
Detail Level: Expert

Counter Type: PERF_COUNTER_BULK_COUNT

File Control Bytes/sec

File Control Bytes/sec is the overall rate at which bytes are transferred for all file system
operations that are neither reads nor writes, including file system control requests and requests
for information about device characteristics or status. It is measured in numbers of bytes.
Detail Level: Wizard

Counter Type: PERF_COUNTER_BULK_COUNT

Context Switches/sec

Context Switches/sec is the combined rate at which all processors on the computer are switched
from one thread to another. Context switches occur when a running thread voluntarily relinquishes
the processor, is preempted by a higher priority ready thread, or switches between user-mode and
privileged (kernel) mode to use an Executive or subsystem service. It is the sum of Thread:

Context Switches/sec for all threads running on all processors in the computer and is measured in
numbers of switches. There are context switch counters on the System and Thread objects.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

System Calls/sec

Systems Calls/sec is the combined rate of calls to Windows NT system service routines by all
processes running on the computer. These routines perform all of the basic scheduling and
synchronization of activities on the computer, and provide access to non-graphic devices, memory
management, and name space management.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Total Processor Time

% Total Processor Time is the average percentage of time that all processors on the computer are
executing non-idle threads. This counter was designed as the primary indicator of processor
activity on multiprocessor computers. It is equal to the sum of Process: % Processor Time for all
processors, divided by the number of processors. It is calculated by summing the time that all
processors spend executing the thread of the Idle process in each sample interval, subtracting
that value from 100%, and dividing the difference by the number of processors on the computer.
(Each processor has an Idle thread which consumes cycles when no other threads are ready to
run.) For example, on a multiprocessor computer, a value of 50% means that all processors are
busy for half of the sample interval, or that half of the processors are busy for all of the sample
interval.
Detail Level: Novice

Counter Type: PERF_100NSEC_TIMER_INV

Total User Time

% Total User Time is the average percentage of non-idle time all processors spent in User mode.
It is the sum of Processor: % User Time for all processors on the computer, divided by the number
of processors. System: % Total User Time and System: % Total Privileged Time sum to % Total
Processor Time, but not always to 100%. (User mode is a restricted processing mode designed
for applications, environment subsystems, and integral subsystems. The alternative, privileged
mode, is designed for operating system components and allows direct access to hardware and all
memory. The operating system switches application threads to privileged mode to obtain
operating system services.)
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Total Privileged Time

% Total Privileged Time is the average percentage of non-idle time all processors spent in
privileged (kernel) mode. It is the sum of Processor: % Privileged Time for all processors on the
computer, divided by the number of processors. System: % Total User Time and System: % Total
Privileged Time sum to % Total Processor Time, but not always to 100%. (Privileged mode is an
processing mode designed for operating system components which allows direct access to
hardware and all memory. The operating system switches application threads to privileged mode
to obtain operating system services. The alternative, user mode, is a restricted processing mode
designed for applications and environment subsystems.)
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Total Interrupts/sec

Total Interrupts/sec is the combined rate of hardware interrupts received and serviced by all
processors on the computer It is the sum of Processor: Interrupts/sec for all processors, and
divided by the number of processors, and is measured in numbers of interrupts. It does not
include DPCs, which are counted separately. This value is an indirect indicator of the activity of
devices that generate interrupts, such as the system timer, the mouse, disk drivers, data

communication lines, network interface cards and other peripheral devices. These devices
normally interrupt the processor when they have completed a task or require attention. Normal
thread execution is suspended during interrupts. Most system clocks interrupt the processor every
10 milliseconds, creating a background of interrupt activity.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

File Data Operations/sec

File Data Operations/sec is the combined rate of read and write operations on all logical disks on
the computer. This is the inverse of System: File Control Operations/sec.
Detail Level: Novice

Counter Type: PERF_COUNTER_COUNTER

System Up Time

Total Time (in seconds) that the computer has been operational since it was last started.
Detail Level: Novice

Counter Type: PERF_ELAPSED_TIME

Processor Queue Length

Processor Queue Length is the number of threads in the processor queue. There is a single
queue for processor time even on computers with multiple processors. Unlike the disk counters,
this counter counts ready threads only, not threads that are running. A sustained processor queue
of greater than two threads generally indicates processor congestion.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Alignment Fixups/sec

Alignment Fixups/sec is the rate of alignment faults fixed by the system.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Exception Dispatches/sec

Exception Dispatches/sec is the rate of exceptions dispatched by the system.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

Floating Emulations/sec

Floating Emulations/sec is the rate of floating emulations performed by the system.
Detail Level: Wizard

Counter Type: PERF_COUNTER_COUNTER

% Total DPC Time

% Total DPC Time is the average percentage of time that all processors spent receiving and
servicing deferred procedure calls (DPC). (DPCs are interrupts that run at a lower priority than the
standard interrupts.) it is the sum of Processor: %DPC Time for all processors on the computer,
divided by the number of processors. System: %Total DPC Time is a component of System:
%Total Privileged Time because DPCs are executed in privileged mode. DPCs are counter
separately and are not a component of the interrupt count.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

% Total Interrupt Time

% Total Interrupt Time is the average percentage of time that all processors spent servicing
interrupts. It is the sum of Processor: % Interrupt Time for of all processors on the computer,
divided by the number of processors. DPCs are counted separately and are not a component of
the interrupt count. This value is an indirect indicator of the activity of devices that generate
interrupts, such as the system timer, the mouse, disk drivers, data communication lines, network
interface cards and other peripheral devices.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Total DPCs Queued/sec

Total DPCs Queued/sec is the combined rate at which deferred procedure calls (DPC) are added
to the DPC queue of all processors on the computer. (DPCs are interrupts that run at a lower
priority than standard interrupts.) Each processor has its own DPC queue. This counter measures
the rates at which DPCs are added to the queue, not the number of DPCs in the queue. It is the
sum of Processor: DPCs Queued/sec for all processors on the computer, divided by the number
of processors.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Total DPC Rate

Total DPC Rate is the combined rate at which deferred procedure calls (DPCs) are added to the
DPC queues of all processors between timer tics of each processor's system clock. (DPCs are
interrupts that run at a lower priority than standard interrupts.) Each processor has its own DPC
queue. clock on the processor. This counter measures the rate at which DPCs are added to the
queue, not the number of DPCs in the queue. It is the sum of Processor: DPC Rate for all
processors on the computer, divided by the number of processors.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Total DPC Bypasses/sec

Total DPC Bypasses/sec is the combined rate at which deferred procedure calls (DPCs) on all
processors were avoided. (DPCs are interrupts that run at a lower priority than standard
interrupts.) . This value is the sum of Processor: DPC Bypasses/sec for all processors, divided by
the number of processors.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Total APC Bypasses/sec

Total APC Bypasses/sec is the combined rate at which kernel asynchronous procedure call (APC)
interrupts on all processors were avoided. This value is the sum of Processor: APC Bypasses/sec
for all processors, divided by the number of processors.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

%Registry Quota In Use

% Registry Quota In Use is the percentage of the Total Registry Quota Allowed that is currently
being used by the system.
Detail Level: Advanced

Counter Type: PERF_RAW_FRACTION

Registry Quota In Use

% Registry Quota In Use indicates the percentage of the Total Registry Quota Allowed currently in
use by the system.
Detail Level: Advanced

Counter Type: PERF_RAW_BASE

TCP Object
The TCP performance object consists of counters that measure the rates at which TCP Segments
are sent and received by using the TCP protocol. It includes counters that monitor the number of
TCP connections in each TCP connection state.

Segments/sec

Segments/sec is the rate at which TCP segments are sent or received using the TCP protocol.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Connections Established

Connections Established is the number of TCP connections for which the current state is either
ESTABLISHED or CLOSE-WAIT.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Active

Connections Active is the number of times TCP connections have made a direct transition to the
SYN-SENT state from the CLOSED state.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Passive

Connections Passive is the number of times TCP connections have made a direct transition to the
SYN-RCVD state from the LISTEN state.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connection Failures

Connection Failures is the number of times TCP connections have made a direct transition to the
CLOSED state from the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP
connections have made a direct transition to the LISTEN state from the SYN-RCVD state.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Connections Reset

Connections Reset is the number of times TCP connections have made a direct transition to the
CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Segments Received/sec

Segments Received/sec is the rate at which segments are received, including those received in
error. This count includes segments received on currently established connections.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Segments Sent/sec

Segments Sent/sec is the rate at which segments are sent, including those on current
connections, but excluding those containing only retransmitted bytes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Segments Retransmitted/sec

Segments Retransmitted/sec is the rate at which segments are retransmitted, that is, segments
transmitted containing one or more previously transmitted bytes.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Thread Object
The Thread performance object consists of counters that measure aspects of thread behavior. A
thread is the basic object that executes instructions on a processor. All running processes have at
least one thread.

Processor Time

Processor Time is the percentage of elapsed time that this thread used the processor to execute
instructions. An instruction is the basic unit of execution in a processor, and a thread is the object
that executes instructions. Code executed to handle some hardware interrupts and trap conditions
are included in this count.
Detail Level: Novice

Counter Type: PERF_100NSEC_TIMER

% User Time

User Time is the percentage of elapsed time that this thread has spent executing code in user
mode. Applications, environment subsystems, and integral subsystems execute in user mode.
Code executing in user mode cannot damage the integrity of the Windows NT Executive, Kernel,
and device drivers. Unlike some early operating systems, Windows NT uses process boundaries
for subsystem protection in addition to the traditional protection of user and privileged modes.
These subsystem processes provide additional protection. Therefore, some work done by
Windows NT on behalf of your application might appear in other subsystem processes in addition
to the privileged time in your process.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

% Privileged Time

Privileged Time is the percentage of elapsed time that this thread has spent executing code in
privileged mode. When a Windows NT system service is called, the service will often run in
privileged mode in order to gain access to system-private data. Such data is protected from
access by threads executing in user mode. Calls to the system can be explicit or implicit, such as
page faults or interrupts. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of user and privileged
modes. These subsystem processes provide additional protection. Therefore, some work done by
Windows NT on behalf of your application might appear in other subsystem processes in addition
to the privileged time in your process.
Detail Level: Advanced

Counter Type: PERF_100NSEC_TIMER

Context Switches/sec

Context Switches/sec is the rate of switches from one thread to another. Thread switches can
occur either inside of a single process or across processes. A thread switch can be caused either
by one thread asking another for information, or by a thread being preempted by another, higher
priority thread becoming ready to run. Unlike some early operating systems, Windows NT uses
process boundaries for subsystem protection in addition to the traditional protection of user and
privileged modes. These subsystem processes provide additional protection. Therefore, some
work done by Windows NT on behalf of an application might appear in other subsystem
processes in addition to the privileged time in the application. Switching to the subsystem process
causes one context switch in the application thread. Switching back causes another context
switch in the subsystem thread.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Elapsed Time

The total elapsed time (in seconds) this thread has been running.
Detail Level: Advanced

Counter Type: PERF_ELAPSED_TIME

Priority Current

The current dynamic priority of this thread. The system can raise the thread's dynamic priority
above the base priority if the thread is handling user input, or lower it towards the base priority if
the thread becomes compute bound.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Priority Base

The current base priority of this thread. The system can raise the thread's dynamic priority above
the base priority if the thread is handling user input, or lower it towards the base priority if the
thread becomes compute bound.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Start Address

Starting virtual address for this thread.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Thread State

Thread State is the current state of the thread. It is 0 for Initialized, 1 for Ready, 2 for Running, 3
for Standby, 4 for Terminated, 5 for Wait, 6 for Transition, 7 for Unknown. A Running thread is
using a processor; a Standby thread is about to use one. A Ready thread wants to use a
processor, but is waiting for a processor because none are free. A thread in Transition is waiting
for a resource in order to execute, such as waiting for its execution stack to be paged in from disk.
A Waiting thread has no use for the processor because it is waiting for a peripheral operation to
complete or a resource to become free.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Thread Wait Reason

Thread Wait Reason is only applicable when the thread is in the Wait state (see Thread State.) It
is 0 or 7 when the thread is waiting for the Executive, 1 or 8 for a Free Page, 2 or 9 for a Page In,
3 or 10 for a Pool Allocation, 4 or 11 for an Execution Delay, 5 or 12 for a Suspended condition, 6
or 13 for a User Request, 14 for an Event Pair High, 15 for an Event Pair Low, 16 for an LPC
Receive, 17 for an LPC Reply, 18 for Virtual Memory, 19 for a Page Out; 20 and higher are not
assigned at the time of this writing. Event Pairs are used to communicate with protected
subsystems (see Context Switches.)
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

ID Process

ID Process is the unique identifier of this process. ID Process numbers are reused, so they only
identify a process for the lifetime of that process.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

ID Thread

ID Thread is the unique identifier of this thread. ID Thread numbers are reused, so they only
identify a thread for the lifetime of that thread.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

Thread Details Object
Thread Details performance object consists of counters that measure aspects of thread behavior
that are difficult or time-consuming to collect. These counters are distinguished from those in the
Thread performance object by their high overhead.

User PC

Current User Program Counter for this thread.
Detail Level: Wizard

Counter Type: PERF_COUNTER_RAWCOUNT

UDP Object
The UDP performance object consists of counters that measure the rates at which UDP
datagrams are sent and received by using the UDP protocol. It includes counters that monitor
UDP protocol errors.

Datagrams/sec

Datagrams/sec is the rate at which UDP datagrams are sent or received by the entity.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Received/sec

Datagrams Received/sec is the rate at which UDP datagrams are delivered to UDP users.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams No Port/sec

Datagrams No Port/sec is the rate of received UDP datagrams for which there was no application
at the destination port.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Datagrams Received Errors

Datagrams Received Errors is the number of received UDP datagrams that could not be delivered
for reasons other than the lack of an application at the destination port.
Detail Level: Advanced

Counter Type: PERF_COUNTER_RAWCOUNT

Datagrams Sent/sec

Datagrams Sent/sec is the rate at which UDP datagrams are sent from the entity.
Detail Level: Advanced

Counter Type: PERF_COUNTER_COUNTER

Virtual-Key CodesThe following table shows the symbolic constant names, hexadecimal values, and keyboard
equivalents for the virtual-key codes used by the Microsoft Windows operating system. The codes
are listed in numeric order.

Symbolic constant
name

Value (hexadecimal)Mouse or keyboard
equivalent

VK_LBUTTON 01 Left mouse button
VK_RBUTTON 02 Right mouse button
VK_CANCEL 03 Control-break

processing
VK_MBUTTON 04 Middle mouse button

(three-button mouse)
¾ 05- 07 Undefined

VK_BACK 08 BACKSPACE key
VK_TAB 09 TAB key
¾ 0A - 0B Undefined

VK_CLEAR 0C CLEAR key
VK_RETURN 0D ENTER key
¾ 0E - 0F Undefined

VK_SHIFT 10 SHIFT key
VK_CONTROL 11 CTRL key
VK_MENU 12 ALT key
VK_PAUSE 13 PAUSE key
VK_CAPITAL 14 CAPS LOCK key
¾ 15- 19 Reserved for Kanji

systems
¾ 1A Undefined

VK_ESCAPE 1B ESC key
¾ 1C - 1F Reserved for Kanji

systems
VK_SPACE 20 SPACEBAR
VK_PRIOR 21 PAGE UP key
VK_NEXT 22 PAGE DOWN key
VK_END 23 END key
VK_HOME 24 HOME key
VK_LEFT 25 LEFT ARROW key
VK_UP 26 UP ARROW key
VK_RIGHT 27 RIGHT ARROW key
VK_DOWN 28 DOWN ARROW key
VK_SELECT 29 SELECT key
¾ 2A Original equipment

manufacturer (OEM)
specific

VK_EXECUTE 2B EXECUTE key
VK_SNAPSHOT 2C PRINT SCREEN key for

Windows 3.0 and later
VK_INSERT 2D INS key
VK_DELETE 2E DEL key
VK_HELP 2F HELP key
VK_0 30 0 key
VK_1 31 1 key
VK_2 32 2 key
VK_3 33 3 key

VK_4 34 4 key
VK_5 35 5 key
VK_6 36 6 key
VK_7 37 7 key
VK_8 38 8 key
VK_9 39 9 key
¾ 3A - 40 Undefined

VK_A 41 A key
VK_B 42 B key
VK_C 43 C key
VK_D 44 D key
VK_E 45 E key
VK_F 46 F key
VK_G 47 G key
VK_H 48 H key
VK_I 49 I key
VK_J 4A J key
VK_K 4B K key
VK_L 4C L key
VK_M 4D M key
VK_N 4E N key
VK_O 4F O key
VK_P 50 P key
VK_Q 51 Q key
VK_R 52 R key
VK_S 53 S key
VK_T 54 T key
VK_U 55 U key
VK_V 56 V key
VK_W 57 W key
VK_X 58 X key
VK_Y 59 Y key
VK_Z 5A Z key
VK_LWIN 5B Left Windows key

(Microsoft Natural
Keyboard)

VK_RWIN 5C Right Windows key
(Microsoft Natural
Keyboard)

VK_APPS 5D Applications key
(Microsoft Natural
Keyboard)

¾ 5E - 5F Undefined
VK_NUMPAD0 60 Numeric keypad 0 key
VK_NUMPAD1 61 Numeric keypad 1 key
VK_NUMPAD2 62 Numeric keypad 2 key
VK_NUMPAD3 63 Numeric keypad 3 key
VK_NUMPAD4 64 Numeric keypad 4 key
VK_NUMPAD5 65 Numeric keypad 5 key
VK_NUMPAD6 66 Numeric keypad 6 key
VK_NUMPAD7 67 Numeric keypad 7 key
VK_NUMPAD8 68 Numeric keypad 8 key
VK_NUMPAD9 69 Numeric keypad 9 key

VK_MULTIPLY 6A Multiply key
VK_ADD 6B Add key
VK_SEPARATOR 6C Separator key
VK_SUBTRACT 6D Subtract key
VK_DECIMAL 6E Decimal key
VK_DIVIDE 6F Divide key
VK_F1 70 F1 key
VK_F2 71 F2 key
VK_F3 72 F3 key
VK_F4 73 F4 key
VK_F5 74 F5 key
VK_F6 75 F6 key
VK_F7 76 F7 key
VK_F8 77 F8 key
VK_F9 78 F9 key
VK_F10 79 F10 key
VK_F11 7A F11 key
VK_F12 7B F12 key
VK_F13 7C F13 key
VK_F14 7D F14 key
VK_F15 7E F15 key
VK_F16 7F F16 key
VK_F17 80H F17 key
VK_F18 81H F18 key
VK_F19 82H F19 key
VK_F20 83H F20 key
VK_F21 84H F21 key
VK_F22 85H F22 key
VK_F23 86H F23 key
VK_F24 87H F24 key
¾ 88- 8F Unassigned

VK_NUMLOCK 90 NUM LOCK key
VK_SCROLL 91 SCROLL LOCK key
¾ 92- B9 Unassigned
¾ BA - C0 OEM specific
¾ C1 - DA Unassigned
¾ DB - E4 OEM specific
¾ E5 Unassigned
¾ E6 OEM specific
¾ E7 - E8 Unassigned
¾ E9 - F5 OEM specific

VK_ATTN F6 Attn key
VK_CRSEL F7 CrSel key
VK_EXSEL F8 ExSel key
VK_EREOF F9 Erase EOF key
VK_PLAY FA Play key
VK_ZOOM FB Zoom key
VK_NONAME FC Reserved for future

use.
VK_PA1 FD PA1 key
VK_OEM_CLEAR FE Clear key

Locale IdentifiersThis appendix contains detailed information about national language support in Microsoft®
Windows®. The information presented here pertains to locale identifiers, LCTYPE constants,
country codes, and language identifiers.

A locale identifier (LCID) is a DWORD value containing the language identifier in the lower word
and a reserved value in the upper word. The identifier supplied in an LCID is a standard
international numeric abbreviation. This LCID has the components necessary to uniquely identify
one of the installed system-defined locales.

Applications can use the MAKELCID macro to create LCID values.

There are two predefined LCID values: LOCALE_SYSTEM_DEFAULT is the system default
locale, and LOCALE_USER_DEFAULT is the current user's locale.

LCTYPE Constants
An LCTYPE constant is a constant that specifies a particular piece of locale information.

The values in the following list correspond to the names of these values in the configuration
registry, under both the user's preferences (as values in the registry key
HKEY_CURRENT_USER\Control Panel\International) and the system's installed languages (as
files pointed to by registry keys, one key per language installed, under
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NLS). All values are null-
terminated Unicode™ strings. If no maximum length is indicated, the strings may vary in length.

Constant Description

LOCALE_ILANGUAGE Language identifier indicating the
language. The maximum number
of characters allowed for this
string is 5.

LOCALE_SLANGUAGE Full localized name of the
language.

LOCALE_SENGLANGUAGE Full English name of the language
from the International
Organization for Standardization
(ISO) Standard 639. This is
always restricted to characters
mappable into the ASCII 127-
character subset.

LOCALE_SABBREVLANGNAME Abbreviated name of the
language, created by taking the 2-
letter language abbreviation from
the ISO Standard 639 and adding
a third letter, as appropriate, to
indicate the sublanguage.

LOCALE_SNATIVELANGNAME Native name of the language.
LOCALE_ICOUNTRY Country code, based on

international phone codes, also
referred to as IBM country codes.
The maximum number of
characters allowed for this string
is 6.

LOCALE_SCOUNTRY Full localized name of the country.
LOCALE_SENGCOUNTRY Full English name of the country.

This is always restricted to
characters mappable into the
ASCII 127-character subset.

LOCALE_SABBREVCTRYNAME Abbreviated name of the country
from the ISO Standard 3166.

LOCALE_SNATIVECTRYNAME Native name of the country.
LOCALE_IDEFAULTLANGUAGE Language identifier for the

principal language spoken in this
locale. This is provided so that
partially specified locales can be
completed with default values.
The maximum number of
characters allowed for this string
is 5.

LOCALE_IDEFAULTCOUNTRY Country code for the principal
country in this locale. This is
provided so that partially specified
locales can be completed with
default values. The maximum
number of characters allowed for
this string is 6.

LOCALE_IDEFAULTCODEPAGE Original equipment manufacturer
(OEM) code page associated with
the country. The maximum
number of characters allowed for
this string is 6.

LOCALE_SLIST Character(s) used to separate list
items. For example, a comma is
used in many locales.

LOCALE_IMEASURE System of measurement. This
value is 0 if the metric system
(Systéme International d'Unités,
or S.I.) is used and 1 if the U.S.
system is used. The maximum
number of characters allowed for
this string is 2.

LOCALE_SDECIMAL Character(s) used as the decimal
separator.

LOCALE_STHOUSAND Character(s) used to separate
groups of digits to the left of the
decimal.

LOCALE_SGROUPING Sizes for each group of digits to
the left of the decimal. An explicit
size is needed for each group;
sizes are separated by
semicolons. If the last value is
zero, the preceding value is
repeated. To group thousands,
specify 3;0, for example.

LOCALE_IDIGITS Number of fractional digits. The
maximum number of characters
allowed for this string is 3.

LOCALE_ILZERO Specifier for leading zeros in
decimal fields. The maximum
number of characters allowed for
this string is 2. The specifier can
be one of the following values:

ValueMeaning
0 No leading zeros
1 Leading zeros

LOCALE_SNATIVEDIGITS Native equivalents to ASCII 0
through 9.

LOCALE_SCURRENCY String used as the local
monetary symbol.

LOCALE_SINTLSYMBOL Three characters of the
international monetary symbol
specified in ISO 4217, "Codes
for the Representation of
Currencies and Funds,"
followed by the character
separating this string from the
amount.

LOCALE_SMONDECIMALSEP Character(s) used as the
monetary decimal separator.

LOCALE_SMONTHOUSANDSEP Character(s) used as the
monetary separator between
groups of digits to the left of
the decimal.

LOCALE_SMONGROUPING Sizes for each group of

monetary digits to the left of
the decimal. An explicit size is
needed for each group; sizes
are separated by semicolons. If
the last value is zero, the
preceding value is repeated. To
group thousands, specify 3;0,
for example.

LOCALE_ICURRDIGITS Number of fractional digits for
the local monetary format. The
maximum number of characters
allowed for this string is 3.

LOCALE_IINTLCURRDIGITS Number of fractional digits for
the international monetary
format. The maximum number
of characters allowed for this
string is 3.

LOCALE_ICURRENCY Positive currency mode. The
maximum number of characters
allowed for this string is 2. The
mode can be one of the
following values:

ValueMeaning
0 Prefix, no separation
1 Suffix, no separation
2 Prefix, 1-char.

separation
3 Suffix, 1-char.

separation

LOCALE_INEGCURR Negative currency mode. The
maximum number of characters
allowed for this string is 3. The
mode can be one of the
following values:

ValueExample
0 ($1.1)
1 - $1.1
2 $- 1.1
3 $1.1-
4 (1.1$)
5 - 1.1$
6 1.1- $
7 1.1$-
8 - 1.1 $ (space before

$)
9 - $ 1.1 (space after $)
10 1.1 $- (space before

$)
11 $ 1.1- (space after $)
12 $ - 1.1 (space after $)
13 1.1- $ (space before

$)
14 ($ 1.1) (space after $)
15 (1.1 $) (space before

$)

LOCALE_SDATE Character(s) for the date
separator.

LOCALE_STIME Character(s) for the time
separator.

LOCALE_STIMEFORMAT Time formatting strings for this
locale.

LOCALE_SSHORTDATE Short date formatting string for
this locale.

LOCALE_SLONGDATE Long date formatting string for
this locale.

LOCALE_IDATE Short date format-ordering
specifier. The maximum
number of characters allowed
for this string is 2. The specifier
can be one of the following
values:

ValueMeaning
0 Month-Day-Year
1 Day-Month-Year
2 Year-Month-Day

LOCALE_ILDATE Long date format-ordering
specifier. The maximum
number of characters allowed
for this string is 2. The specifier
can be one of the following
values:

ValueMeaning
0 Month-Day-Year
1 Day-Month-Year
2 Year-Month-Day

LOCALE_ITIME Time format specifier. The
maximum number of characters
allowed for this string is 2. The
specifier can be one of the
following values:

ValueMeaning
0 AM / PM 12-hour

format
1 24-hour format

LOCALE_ICENTURY Specifier for full 4-digit century.
The maximum number of
characters allowed for this
string is 2. The specifier can be
one of the following values:

ValueMeaning
0 Abbreviated 2-digit

century
1 Full 4-digit century

LOCALE_ITLZERO Specifier for leading zeros in
time fields. The maximum
number of characters allowed
for this string is 2. The specifier
can be one of the following
values:

ValueMeaning
0 No leading zeros for

hours
1 Leading zeros for

hours

LOCALE_IDAYLZERO Specifier for leading zeros in
day fields. The maximum
number of characters allowed
for this string is 2. The specifier
can be one of the following
values:

ValueMeaning
0 No leading zeros for

days
1 Leading zeros for days

LOCALE_IMONLZERO Specifier for leading zeros in
month fields. The maximum
number of characters allowed
for this string is 2. The specifier
can be one of the following
values:

ValueMeaning
0 No leading zeros for

months
1 Leading zeros for

months

LOCALE_S1159 String for the AM designator.
LOCALE_S2359 String for the PM designator.
LOCALE_SDAYNAME1 Native long name for Monday.
LOCALE_SDAYNAME2 Native long name for Tuesday.
LOCALE_SDAYNAME3 Native long name for

Wednesday.
LOCALE_SDAYNAME4 Native long name for Thursday.
LOCALE_SDAYNAME5 Native long name for Friday.
LOCALE_SDAYNAME6 Native long name for Saturday.
LOCALE_SDAYNAME7 Native long name for Sunday.
LOCALE_SABBREVDAYNAME1 Native abbreviated name for

Monday.
LOCALE_SABBREVDAYNAME2 Native abbreviated name for

Tuesday.
LOCALE_SABBREVDAYNAME3 Native abbreviated name for

Wednesday.
LOCALE_SABBREVDAYNAME4 Native abbreviated name for

Thursday.
LOCALE_SABBREVDAYNAME5 Native abbreviated name for

Friday.
LOCALE_SABBREVDAYNAME6 Native abbreviated name for

Saturday.
LOCALE_SABBREVDAYNAME7 Native abbreviated name for

Sunday.
LOCALE_SMONTHNAME1 Native long name for January.
LOCALE_SMONTHNAME2 Native long name for February.
LOCALE_SMONTHNAME3 Native long name for March.
LOCALE_SMONTHNAME4 Native long name for April.
LOCALE_SMONTHNAME5 Native long name for May.
LOCALE_SMONTHNAME6 Native long name for June.
LOCALE_SMONTHNAME7 Native long name for July.
LOCALE_SMONTHNAME8 Native long name for August.
LOCALE_SMONTHNAME9 Native long name for

September.
LOCALE_SMONTHNAME10 Native long name for October.
LOCALE_SMONTHNAME11 Native long name for

November.
LOCALE_SMONTHNAME12 Native long name for

December.
LOCALE_SABBREVMONTHNAME1Native abbreviated name for

January.
LOCALE_SABBREVMONTHNAME2Native abbreviated name for

February.
LOCALE_SABBREVMONTHNAME3Native abbreviated name for

March.
LOCALE_SABBREVMONTHNAME4Native abbreviated name for

April.
LOCALE_SABBREVMONTHNAME5Native abbreviated name for

May.
LOCALE_SABBREVMONTHNAME6Native abbreviated name for

June.
LOCALE_SABBREVMONTHNAME7Native abbreviated name for

July.
LOCALE_SABBREVMONTHNAME8Native abbreviated name for

August.
LOCALE_SABBREVMONTHNAME9Native abbreviated name for

September.
LOCALE_SABBREVMONTHNAME10Native abbreviated name for

October.
LOCALE_SABBREVMONTHNAME11Native abbreviated name for

November.
LOCALE_SABBREVMONTHNAME12Native abbreviated name for

December.
LOCALE_SPOSITIVESIGN String value for the positive

sign.
LOCALE_SNEGATIVESIGN String value for the negative

sign.
LOCALE_IPOSSIGNPOSN Formatting index for positive

values. The maximum number
of characters allowed for this
string is 2. The index can be
one of the following values:

ValueMeaning
0 Parentheses surround

the amount and the

monetary symbol.
1 The sign string

precedes the amount
and the monetary
symbol.

2 The sign string
succeeds the amount
and the monetary
symbol.

3 The sign string
immediately precedes
the monetary symbol.

4 The sign string
immediately succeeds
the monetary symbol.

LOCALE_INEGSIGNPOSN Formatting index for negative
values. This index uses the
same values as
LOCALE_IPOSSIGNPOSN. The
maximum number of characters
allowed for this string is 2.

LOCALE_IPOSSYMPRECEDES Position of monetary symbol in
a positive monetary value. This
value is 1 if the monetary
symbol precedes the positive
amount, 0 if it follows it. The
maximum number of characters
allowed for this string is 2.

LOCALE_IPOSSEPBYSPACE Separation of monetary symbol
in a positive monetary value.
This value is 1 if the monetary
symbol is separated by a space
from a positive amount, 0 if it is
not. The maximum number of
characters allowed for this
string is 2.

LOCALE_INEGSYMPRECEDES Position of monetary symbol in
a negative monetary value. This
value is 1 if the monetary
symbol precedes the negative
amount, 0 if it follows it. The
maximum number of characters
allowed for this string is 2.

LOCALE_INEGSEPBYSPACE Separation of monetary symbol
in a negative monetary value.
This value is 1 if the monetary
symbol is separated by a space
from the negative amount, 0 if it
is not. The maximum number of
characters allowed for this
string is 2.

LOCALE_NOUSEROVERRIDE This constant may be OR'ed
with any other LCTYPE constant
in a call to the GetLocaleInfo
function. This always causes the
function to bypass any user
overrides, and return the system
default value for the other
LCTYPE specified in the function
call, based on the given LCID.

Language Identifiers and Locales
Applications can use the MAKELANGID macro to create a language identifier.

The first release of Windows NT supports 35 sublanguages/locales.

The following 28 sublanguages/locales use the Latin 1 script:Latin 1 Script
Identifier Language Sublanguage/Locale Language

Code
0x0406 Danish Danish DAN
0x0413 Dutch Dutch (Standard) NLD
0x0813 Dutch Belgian (Flemish) NLB
0x0409 English American ENU
0x0809 English British ENG
0x0c09 English Australian ENA
0x1009 English Canadian ENC
0x1409 English New Zealand ENZ
0x1809 English Ireland ENI
0x040b Finnish Finnish FIN
0x040c French French (Standard) FRA
0x080c French Belgian FRB
0x0c0c French Canadian FRC
0x100c French Swiss FRS
0x0407 German German (Standard) DEU
0x0807 German Swiss DES
0x0c07 German Austrian DEA
0x040f Icelandic Icelandic ISL
0x0410 Italian Italian (Standard) ITA
0x0810 Italian Swiss ITS
0x0414 Norwegian Norwegian (Bokmal) NOR
0x0814 Norwegian Norwegian (Nynorsk) NON
0x0416 Portuguese Portuguese (Brazilian) PTB
0x0816 Portuguese Portuguese (Standard) PTG
0x041D Swedish Swedish SVE
0x040a Spanish Spanish (Standard/

Traditional)
ESP

0x080a Spanish Mexican ESM
0x0c0a Spanish Spanish (Modern) ESN

The following 5 sublanguages/locales use the Latin 2 script:Latin 2 Script
Identifier Sublanguage/

Locale
Language Code

0x041f Turkish TRK
0x0415 Polish PLK
0x0405 Czech CSY
0x041b Slovak SKY
0x040e Hungarian HUN

The following sublanguage/locale uses the Cyrillic script:Cyrillic Script
Identifier Sublanguage/

Locale
Language Code

0x0419 Russian RUS

The following sublanguage/locale uses an other script:

Other Script
Identifier Sublanguage/

Locale
Language Code

0x0408 Greek ELL

The following special identifiers are also defined:Special Identifiers
Identifier Sublanguage/Locale
0x0000 Language-Neutral
0x0400 Process Default Language

Raster Operation CodesRaster-operation codes define how the graphics device interface (GDI) combines the bits from the
selected pen with the bits in the destination bitmap. This appendix lists and describes the binary
and ternary raster operations used by GDI.

About Raster Operation Codes
This appendix lists and describes the binary and ternary raster operations used by graphics
device interface (GDI). A binary raster operation involves two operands: a pen and a destination
bitmap. A ternary raster operation involves three operands: a source bitmap, a brush, and a
destination bitmap. Both binary and ternary raster operations use Boolean operators.

Binary Raster Operations
This section lists the binary raster-operation codes used by the GetROP2 and SetROP2
functions. Raster-operation codes define how GDI combines the bits from the selected pen with
the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
selected pen and the destination bitmap are combined. Following are the two operands used in
these operations:

Operand Meaning

P Selected pen
D Destination bitmap

The Boolean operators used in these operations follow:

Operator Meaning

a Bitwise AND
n Bitwise NOT (inverse)
o Bitwise OR
x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following
operation replaces the values of the pixels in the destination bitmap with a combination of
the pixel values of the pen and the selected brush:DPoEach raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index
and whose low-order word is the operation code. The 16-bit operation index is a zero-extended 8-
bit value that represents all possible outcomes resulting from the Boolean operation on two
parameters (in this case, the pen and destination values). For example, the operation indexes for
the DPo and DPan operations are shown in the following list:

P D DPo DPan

0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 0

The following list outlines the drawing modes and the Boolean operations that they
represent:

Raster operation Boolean operation

R2_BLACK 0
R2_COPYPEN P
R2_MASKNOTPEN DPna
R2_MASKPEN DPa
R2_MASKPENNOT PDna
R2_MERGENOTPENDPno
R2_MERGEPEN DPo
R2_MERGEPENNOTPDno
R2_NOP D
R2_NOT Dn
R2_NOTCOPYPEN Pn
R2_NOTMASKPEN DPan
R2_NOTMERGEPENDPon
R2_NOTXORPEN DPxn
R2_WHITE 1
R2_XORPEN DPx

For a monochrome device, GDI maps the value zero to black and the value 1 to white. If an
application attempts to draw with a black pen on a white destination by using the available
binary raster operations, the following results occur:

Raster operation Result

R2_BLACK Visible black line
R2_COPYPEN Visible black line
R2_MASKNOTPEN No visible line
R2_MASKPEN Visible black line
R2_MASKPENNOT Visible black line
R2_MERGENOTPENNo visible line
R2_MERGEPEN Visible black line
R2_MERGEPENNOTVisible black line
R2_NOP No visible line
R2_NOT Visible black line
R2_NOTCOPYPEN No visible line
R2_NOTMASKPEN No visible line
R2_NOTMERGEPENVisible black line
R2_NOTXORPEN Visible black line
R2_WHITE No visible line
R2_XORPEN No visible line

For a color device, GDI uses RGB values to represent the colors of the pen and the
destination. An RGB color value is a long integer that contains a red, a green, and a blue
color field, each specifying the intensity of the given color. Intensities range from 0
through 255. The values are packed in the three low-order bytes of the long integer. The
color of a pen is always a solid color, but the color of the destination may be a mixture of
any two or three colors. If an application attempts to draw with a white pen on a blue
destination by using the available binary raster operations, the following results occur:

Raster operation Result

R2_BLACK Visible black line
R2_COPYPEN Visible white line
R2_MASKNOTPEN Visible black line
R2_MASKPEN Invisible blue line
R2_MASKPENNOT Visible red/green line
R2_MERGENOTPENInvisible blue line
R2_MERGEPEN Visible white line
R2_MERGEPENNOTVisible white line
R2_NOP Invisible blue line
R2_NOT Visible red/green line
R2_NOTCOPYPEN Visible black line
R2_NOTMASKPEN Visible red/green line
R2_NOTMERGEPENVisible black line
R2_NOTXORPEN Invisible blue line
R2_WHITE Visible white line
R2_XORPEN Visible red/green line

Ternary Raster Operations
This section lists the ternary raster-operation codes used by the BitBlt, PatBlt, and StretchBlt
functions. Ternary raster-operation codes define how GDI combines the bits in a source bitmap
with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Following are the three operands
used in these operations:

Operand Meaning

D Destination bitmap
P Selected brush (also called pattern)
S Source bitmap

Boolean operators used in these operations follow:

Operator Meaning

a Bitwise AND
n Bitwise NOT (inverse)
o Bitwise OR
x Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following
operation replaces the values of the pixels in the destination bitmap with a combination of
the pixel values of the source and brush:PSoThe following operation combines the values of the pixels in the source and brush with the pixel
values of the destination bitmap (there are alternative spellings of the same function, so although
a particular spelling may not be in the list, an equivalent form would be):DPSooEach raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index
and whose low-order word is the operation code. The 16-bit operation index is a zero-extended, 8-
bit value that represents the result of the Boolean operation on predefined brush, source, and
destination values. For example, the operation indexes for the PSo and DPSoo operations are
shown in the following list:

P S D PSo DPSoo

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
Operation index: 00FCh 00FEh

In this case, PSo has the operation index 00FC (read from the bottom up); DPSoo has the
operation index 00FE. These values define the location of the corresponding raster-
operation codes, as shown in Table A.1, "Raster-Operation Codes." The PSo operation is in
line 252 (00FCh) of the table; DPSoo is in line 254 (00FEh).

The most commonly used raster operations have been given special names in the
Windows include file, WINDOWS.H. You should use these names whenever possible in
your applications.

When the source and destination bitmaps are monochrome, a bit value of zero represents a
black pixel and a bit value of 1 represents a white pixel. When the source and the
destination bitmaps are color, those colors are represented with RGB values. For more
information about RGB values, see RGBRaster-Operation Codes
Boolean
function
(hexadecimal)

Raster
operation
(hexadecimal)

Boolean
function in
reverse Polish

Common name

00 00000042 0 BLACKNESS
01 00010289 DPSoon -
02 00020C89 DPSona -
03 000300AA PSon -
04 00040C88 SDPona -
05 000500A9 DPon -
06 00060865 PDSxnon -
07 000702C5 PDSaon -
08 00080F08 SDPnaa -
09 00090245 PDSxon -
0A 000A0329 DPna -
0B 000B0B2A PSDnaon -
0C 000C0324 SPna -
0D 000D0B25 PDSnaon -
0E 000E08A5 PDSonon -
0F 000F0001 Pn -
10 00100C85 PDSona -
11 001100A6 DSon NOTSRCERASE
12 00120868 SDPxnon -
13 001302C8 SDPaon -
14 00140869 DPSxnon -
15 001502C9 DPSaon -
16 00165CCA PSDPSanaxx -
17 00171D54 SSPxDSxaxn -
18 00180D59 SPxPDxa -
19 00191CC8 SDPSanaxn -
1A 001A06C5 PDSPaox -
1B 001B0768 SDPSxaxn -
1C 001C06CA PSDPaox -
1D 001D0766 DSPDxaxn -
1E 001E01A5 PDSox -
1F 001F0385 PDSoan -
20 00200F09 DPSnaa -
21 00210248 SDPxon -
22 00220326 DSna -
23 00230B24 SPDnaon -
24 00240D55 SPxDSxa -
25 00251CC5 PDSPanaxn -
26 002606C8 SDPSaox -
27 00271868 SDPSxnox -
28 00280369 DPSxa -
29 002916CA PSDPSaoxxn -
2A 002A0CC9 DPSana -
2B 002B1D58 SSPxPDxaxn -
2C 002C0784 SPDSoax -
2D 002D060A PSDnox -
2E 002E064A PSDPxox -
2F 002F0E2A PSDnoan -
30 0030032A PSna -
31 00310B28 SDPnaon -
32 00320688 SDPSoox -
33 00330008 Sn NOTSRCCOPY

34 003406C4 SPDSaox -
35 00351864 SPDSxnox -
36 003601A8 SDPox -
37 00370388 SDPoan -
38 0038078A PSDPoax -
39 00390604 SPDnox -
3A 003A0644 SPDSxox -
3B 003B0E24 SPDnoan -
3C 003C004A PSx -
3D 003D18A4 SPDSonox -
3E 003E1B24 SPDSnaox -
3F 003F00EA PSan -
40 00400F0A PSDnaa -
41 00410249 DPSxon -
42 00420D5D SDxPDxa -
43 00431CC4 SPDSanaxn -
44 00440328 SDna SRCERASE
45 00450B29 DPSnaon -
46 004606C6 DSPDaox -
47 0047076A PSDPxaxn -
48 00480368 SDPxa -
49 004916C5 PDSPDaoxxn -
4A 004A0789 DPSDoax -
4B 004B0605 PDSnox -
4C 004C0CC8 SDPana -
4D 004D1954 SSPxDSxoxn -
4E 004E0645 PDSPxox -
4F 004F0E25 PDSnoan -
50 00500325 PDna -
51 00510B26 DSPnaon -
52 005206C9 DPSDaox -
53 00530764 SPDSxaxn -
54 005408A9 DPSonon -
55 00550009 Dn DSTINVERT
56 005601A9 DPSox -
57 00570389 DPSoan -
58 00580785 PDSPoax -
59 00590609 DPSnox -
5A 005A0049 DPx PATINVERT
5B 005B18A9 DPSDonox -
5C 005C0649 DPSDxox -
5D 005D0E29 DPSnoan -
5E 005E1B29 DPSDnaox -
5F 005F00E9 DPan -
60 00600365 PDSxa -
61 006116C6 DSPDSaoxxn -
62 00620786 DSPDoax -
63 00630608 SDPnox -
64 00640788 SDPSoax -
65 00650606 DSPnox -
66 00660046 DSx SRCINVERT
67 006718A8 SDPSonox -

68 006858A6 DSPDSonoxxn -
69 00690145 PDSxxn -
6A 006A01E9 DPSax -
6B 006B178A PSDPSoaxxn -
6C 006C01E8 SDPax -
6D 006D1785 PDSPDoaxxn -
6E 006E1E28 SDPSnoax -
6F 006F0C65 PDSxnan -
70 00700CC5 PDSana -
71 00711D5C SSDxPDxaxn -
72 00720648 SDPSxox -
73 00730E28 SDPnoan -
74 00740646 DSPDxox -
75 00750E26 DSPnoan -
76 00761B28 SDPSnaox -
77 007700E6 DSan -
78 007801E5 PDSax -
79 00791786 DSPDSoaxxn -
7A 007A1E29 DPSDnoax -
7B 007B0C68 SDPxnan -
7C 007C1E24 SPDSnoax -
7D 007D0C69 DPSxnan -
7E 007E0955 SPxDSxo -
7F 007F03C9 DPSaan -
80 008003E9 DPSaa -
81 00810975 SPxDSxon -
82 00820C49 DPSxna -
83 00831E04 SPDSnoaxn -
84 00840C48 SDPxna -
85 00851E05 PDSPnoaxn -
86 008617A6 DSPDSoaxx -
87 008701C5 PDSaxn -
88 008800C6 DSa SRCAND
89 00891B08 SDPSnaoxn -
8A 008A0E06 DSPnoa -
8B 008B0666 DSPDxoxn -
8C 008C0E08 SDPnoa -
8D 008D0668 SDPSxoxn -
8E 008E1D7C SSDxPDxax -
8F 008F0CE5 PDSanan -
90 00900C45 PDSxna -
91 00911E08 SDPSnoaxn -
92 009217A9 DPSDPoaxx -
93 009301C4 SPDaxn -
94 009417AA PSDPSoaxx -
95 009501C9 DPSaxn -
96 00960169 DPSxx -
97 0097588A PSDPSonoxx -
98 00981888 SDPSonoxn -
99 00990066 DSxn -
9A 009A0709 DPSnax -
9B 009B07A8 SDPSoaxn -

9C 009C0704 SPDnax -
9D 009D07A6 DSPDoaxn -
9E 009E16E6 DSPDSaoxx -
9F 009F0345 PDSxan -
A0 00A000C9 DPa -
A1 00A11B05 PDSPnaoxn -
A2 00A20E09 DPSnoa -
A3 00A30669 DPSDxoxn -
A4 00A41885 PDSPonoxn -
A5 00A50065 PDxn -
A6 00A60706 DSPnax -
A7 00A707A5 PDSPoaxn -
A8 00A803A9 DPSoa -
A9 00A90189 DPSoxn -
AA 00AA0029 D -
AB 00AB0889 DPSono -
AC 00AC0744 SPDSxax -
AD 00AD06E9 DPSDaoxn -
AE 00AE0B06 DSPnao -
AF 00AF0229 DPno -
B0 00B00E05 PDSnoa -
B1 00B10665 PDSPxoxn -
B2 00B21974 SSPxDSxox -
B3 00B30CE8 SDPanan -
B4 00B4070A PSDnax -
B5 00B507A9 DPSDoaxn -
B6 00B616E9 DPSDPaoxx -
B7 00B70348 SDPxan -
B8 00B8074A PSDPxax -
B9 00B906E6 DSPDaoxn -
BA 00BA0B09 DPSnao -
BB 00BB0226 DSno MERGEPAINT
BC 00BC1CE4 SPDSanax -
BD 00BD0D7D SDxPDxan -
BE 00BE0269 DPSxo -
BF 00BF08C9 DPSano -
C0 00C000CA PSa MERGECOPY
C1 00C11B04 SPDSnaoxn -
C2 00C21884 SPDSonoxn -
C3 00C3006A PSxn -
C4 00C40E04 SPDnoa -
C5 00C50664 SPDSxoxn -
C6 00C60708 SDPnax -
C7 00C707AA PSDPoaxn -
C8 00C803A8 SDPoa -
C9 00C90184 SPDoxn -
CA 00CA0749 DPSDxax -
CB 00CB06E4 SPDSaoxn -
CC 00CC0020 S SRCCOPY
CD 00CD0888 SDPono -
CE 00CE0B08 SDPnao -
CF 00CF0224 SPno -

D0 00D00E0A PSDnoa -
D1 00D1066A PSDPxoxn -
D2 00D20705 PDSnax -
D3 00D307A4 SPDSoaxn -
D4 00D41D78 SSPxPDxax -
D5 00D50CE9 DPSanan -
D6 00D616EA PSDPSaoxx -
D7 00D70349 DPSxan -
D8 00D80745 PDSPxax -
D9 00D906E8 SDPSaoxn -
DA 00DA1CE9 DPSDanax -
DB 00DB0D75 SPxDSxan -
DC 00DC0B04 SPDnao -
DD 00DD0228 SDno -
DE 00DE0268 SDPxo -
DF 00DF08C8 SDPano -
E0 00E003A5 PDSoa -
E1 00E10185 PDSoxn -
E2 00E20746 DSPDxax -
E3 00E306EA PSDPaoxn -
E4 00E40748 SDPSxax -
E5 00E506E5 PDSPaoxn -
E6 00E61CE8 SDPSanax -
E7 00E70D79 SPxPDxan -
E8 00E81D74 SSPxDSxax -
E9 00E95CE6 DSPDSanaxxn -
EA 00EA02E9 DPSao -
EB 00EB0849 DPSxno -
EC 00EC02E8 SDPao -
ED 00ED0848 SDPxno -
EE 00EE0086 DSo SRCPAINT
EF 00EF0A08 SDPnoo -
F0 00F00021 P PATCOPY
F1 00F10885 PDSono -
F2 00F20B05 PDSnao -
F3 00F3022A PSno -
F4 00F40B0A PSDnao -
F5 00F50225 PDno -
F6 00F60265 PDSxo -
F7 00F708C5 PDSano -
F8 00F802E5 PDSao -
F9 00F90845 PDSxno -
FA 00FA0089 DPo -
FB 00FB0A09 DPSnoo PATPAINT
FC 00FC008A PSo -
FD 00FD0A0A PSDnoo -
FE 00FE02A9 DPSoo -
FF 00FF0062 1 WHITENESS

Error Codes
Alphabetic listing

Numerical listing

Alphabetical List of Error Codes
EPT_S_CANT_CREATE

The endpoint mapper database could not be created.
EPT_S_CANT_PERFORM_OP

The operation cannot be performed.
EPT_S_INVALID_ENTRY

The entry is invalid.
EPT_S_NOT_REGISTERED

There are no more endpoints available from the endpoint mapper.
ERROR_ACCESS_DENIED

Access is denied.
ERROR_ACCOUNT_DISABLED

The referenced account is currently disabled and cannot be logged on to.
ERROR_ACCOUNT_EXPIRED

The user's account has expired.
ERROR_ACCOUNT_LOCKED_OUT

The referenced account is currently locked out and may not be logged on to.
ERROR_ACCOUNT_RESTRICTION

Indicates a referenced user name and authentication information are valid, but some user
account restriction has prevented successful authentication (such as time-of-day restrictions).

ERROR_ACTIVE_CONNECTIONS
Active connections still exist.

ERROR_ADAP_HDW_ERR
A network adapter hardware error occurred.

ERROR_ADDRESS_ALREADY_ASSOCIATED
The network transport endpoint already has an address associated with it.

ERROR_ADDRESS_NOT_ASSOCIATED
An address has not yet been associated with the network endpoint.

ERROR_ALIAS_EXISTS
The specified alias already exists.

ERROR_ALLOTTED_SPACE_EXCEEDED
When a block of memory is allotted for future updates, such as the memory allocated to hold
discretionary access control and primary group information, successive updates may exceed
the amount of memory originally allotted. Since quota may already have been charged to
several processes that have handles of the object, it is not reasonable to alter the size of the
allocated memory. Instead, a request that requires more memory than has been allotted must
fail and the ERROR_ALLOTTED_SPACE_EXCEEDED error returned.

ERROR_ALREADY_ASSIGNED
The local device name is already in use.

ERROR_ALREADY_EXISTS
Attempt to create file that already exists.

ERROR_ALREADY_INITIALIZED
An attempt was made to perform an initialization operation when initialization has already
been completed.

ERROR_ALREADY_REGISTERED
The service is already registered.

ERROR_ALREADY_RUNNING_LKG
The system is currently running with the last-known-good configuration.

ERROR_ALREADY_WAITING
The specified Printer handle is already being waited on

ERROR_APP_WRONG_OS
The specified program is not a Windows or MS-DOS program.

ERROR_ARENA_TRASHED
The storage control blocks were destroyed.

ERROR_ARITHMETIC_OVERFLOW
Arithmetic result exceeded 32-bits.

ERROR_ATOMIC_LOCKS_NOT_SUPPORTED

The file system does not support atomic changing of the lock type.
ERROR_AUTODATASEG_EXCEEDS_64k

The operating system cannot run this application program.
ERROR_BAD_ARGUMENTS

The argument string passed to DosExecPgm is incorrect.
ERROR_BAD_COMMAND

The device does not recognize the command.
ERROR_BAD_DESCRIPTOR_FORMAT

Indicates a security descriptor is not in the required format (absolute or self-relative).
ERROR_BAD_DEV_TYPE

The network resource type is incorrect.
ERROR_BAD_DEVICE

The specified device name is invalid.
ERROR_BAD_DRIVER

The specified driver is invalid.
ERROR_BAD_DRIVER_LEVEL

The system does not support the requested command.
ERROR_BAD_ENVIRONMENT

The environment is incorrect.
ERROR_BAD_EXE_FORMAT

%1 is not a valid Windows-based application.
ERROR_BAD_FORMAT

An attempt was made to load a program with an incorrect format.
ERROR_BAD_IMPERSONATION_LEVEL

A specified impersonation level is invalid. Also used to indicate a required impersonation level
was not provided.

ERROR_BAD_INHERITANCE_ACL
Indicates that an attempt to build either an inherited ACL or ACE did not succeed. One of the
more probable causes is the replacement of a CreatorId with an SID that didn't fit into the
ACE or ACL.

ERROR_BAD_LENGTH
The program issued a command but the command length is incorrect.

ERROR_BAD_LOGON_SESSION_STATE
The logon session is not in a state consistent with the requested operation.

ERROR_BAD_NET_NAME
The network name cannot be found.

ERROR_BAD_NET_RESP
The specified server cannot perform the requested operation.

ERROR_BAD_NETPATH
The network path was not found.

ERROR_BAD_PATHNAME
The specified path name is invalid.

ERROR_BAD_PIPE
The pipe state is invalid.

ERROR_BAD_PROFILE
The network connection profile is damaged.

ERROR_BAD_PROVIDER
The specified network provider name is invalid.

ERROR_BAD_REM_ADAP
The remote adapter is not compatible.

ERROR_BAD_THREADID_ADDR
The address for the thread ID is incorrect.

ERROR_BAD_TOKEN_TYPE
The type of token object is inappropriate for its attempted use.

ERROR_BAD_UNIT
The system cannot find the specified device.

ERROR_BAD_USERNAME
The specified user name is invalid.

ERROR_BAD_VALIDATION_CLASS
The requested validation information class is invalid.

ERROR_BADDB
The configuration registry database is damaged.

ERROR_BADKEY
The configuration registry key is invalid.

ERROR_BEGINNING_OF_MEDIA
The beginning of the tape or partition was encountered.

ERROR_BOOT_ALREADY_ACCEPTED
The current boot has already been accepted for use as the last-known-good control set.

ERROR_BROKEN_PIPE
The pipe was ended.

ERROR_BUFFER_OVERFLOW
The file name is too long.

ERROR_BUS_RESET
The I/O bus was reset.

ERROR_BUSY
The requested resource is in use.

ERROR_BUSY_DRIVE
The system cannot perform a JOIN or SUBST at this time.

ERROR_CALL_NOT_IMPLEMENTED
The Application Program Interface (API) entered will only work in Windows/NT mode.

ERROR_CAN_NOT_COMPLETE
Cannot complete function for some reason.

ERROR_CAN_NOT_DEL_LOCAL_WINS
The local WINS can not be deleted.

ERROR_CANCEL_VIOLATION
A lock request was not outstanding for the supplied cancel region.

ERROR_CANCELLED
The operation was cancelled by the user.

ERROR_CANNOT_COPY
The Copy API cannot be used.

ERROR_CANNOT_FIND_WND_CLASS
Cannot find window class.

ERROR_CANNOT_IMPERSONATE
Indicates that an attempt was made to impersonate via a named pipe was not yet read from.

ERROR_CANNOT_MAKE
The directory or file cannot be created.

ERROR_CANNOT_OPEN_PROFILE
Unable to open the network connection profile.

ERROR_CANT_ACCESS_DOMAIN_INFO
Indicates a domain controller could not be contacted or that objects within the domain are
protected and necessary information could not be retrieved.

ERROR_CANT_DISABLE_MANDATORY
A mandatory group cannot be disabled.

ERROR_CANT_OPEN_ANONYMOUS
An attempt was made to open an anonymous level token. Anonymous tokens cannot be
opened.

ERROR_CANTOPEN
The configuration registry key cannot be opened.

ERROR_CANTREAD
The configuration registry key cannot be read.

ERROR_CANTWRITE
The configuration registry key cannot be written.

ERROR_CHILD_MUST_BE_VOLATILE
An attempt was made to create a stable subkey under a volatile parent key.

ERROR_CHILD_NOT_COMPLETE
The %1 application cannot be run in Windows mode.

ERROR_CHILD_WINDOW_MENU
Child windows can't have menus.

ERROR_CIRCULAR_DEPENDENCY
Circular service dependency was specified.

ERROR_CLASS_ALREADY_EXISTS
Class already exists.

ERROR_CLASS_DOES_NOT_EXIST
Class does not exist.

ERROR_CLASS_HAS_WINDOWS
Class still has open windows.

ERROR_CLIPBOARD_NOT_OPEN
Thread doesn't have clipboard open.

ERROR_CLIPPING_NOT_SUPPORTED
The requested clipping operation is not supported.

ERROR_COMMITMENT_LIMIT
The paging file is too small for this operation to complete.

ERROR_CONNECTION_ABORTED
The network connection was aborted by the local system.

ERROR_CONNECTION_ACTIVE
An invalid operation was attempted on an active network connection.

ERROR_CONNECTION_COUNT_LIMIT
A connection to the server could not be made because the limit on the number of concurrent
connections for this account has been reached.

ERROR_CONNECTION_INVALID
An operation was attempted on a non-existent network connection.

ERROR_CONNECTION_REFUSED
The remote system refused the network connection.

ERROR_CONNECTION_UNAVAIL
The device is not currently connected but is a remembered connection.

ERROR_CONTINUE
Return that wants caller to continue with work in progress.

ERROR_CONTROL_ID_NOT_FOUND
Control ID not found.

ERROR_COUNTER_TIMEOUT
A serial I/O operation completed because the time-out period expired. (The
IOCTL_SERIAL_XOFF_COUNTER did not reach zero.)

ERROR_CRC
Data error (cyclic redundancy check).

ERROR_CURRENT_DIRECTORY
The directory cannot be removed.

ERROR_DATABASE_DOES_NOT_EXIST
The database specified does not exist.

ERROR_DC_NOT_FOUND
Invalid HDC passed to ReleaseDC.

ERROR_DDE_FAIL
An error occurred in sending the command to the application.

ERROR_DEPENDENT_SERVICES_RUNNING
A stop control has been sent to a service which other running services are dependent on.

ERROR_DESTROY_OBJECT_OF_OTHER_THREAD
Cannot destroy object created by another thread.

ERROR_DEV_NOT_EXIST
The specified network resource is no longer available.

ERROR_DEVICE_ALREADY_REMEMBERED
An attempt was made to remember a device that was previously remembered.

ERROR_DEVICE_IN_USE
The device is in use by an active process and cannot be disconnected.

ERROR_DEVICE_NOT_PARTITIONED
Tape partition information could not be found when loading a tape.

ERROR_DIFFERENT_SERVICE_ACCOUNT
The account specified for this service is different from the account specified for other services
running in the same process.

ERROR_DIR_NOT_EMPTY
The directory is not empty.

ERROR_DIR_NOT_ROOT
The directory is not a subdirectory of the root directory.

ERROR_DIRECT_ACCESS_HANDLE
Attempt to use a file handle to an open disk partition for an operation other than raw disk I/O.

ERROR_DIRECTORY
The directory name is invalid.

ERROR_DISCARDED
The segment is already discarded and cannot be locked.

ERROR_DISK_CHANGE
Program stopped because alternate disk was not inserted.

ERROR_DISK_CORRUPT
The disk structure is damaged and nonreadable.

ERROR_DISK_FULL
There is not enough space on the disk.

ERROR_DISK_OPERATION_FAILED
While accessing the hard disk, a disk operation failed even after retries.

ERROR_DISK_RECALIBRATE_FAILED
While accessing the hard disk, a recalibrate operation failed, even after retries.

ERROR_DISK_RESET_FAILED
While accessing the hard disk, a disk controller reset was needed, but even that failed.

ERROR_DLL_INIT_FAILED
A DLL initialization routine failed.

ERROR_DLL_NOT_FOUND
One of the library files needed to run this application cannot be found.

ERROR_DOMAIN_CONTROLLER_NOT_FOUND
Could not find the domain controller for this domain.

ERROR_DOMAIN_EXISTS
The specified domain already exists.

ERROR_DOMAIN_LIMIT_EXCEEDED
An attempt to exceed the limit on the number of domains per server for this release.

ERROR_DOMAIN_TRUST_INCONSISTENT
The name or security ID (SID) of the domain specified is inconsistent with the trust information
for that domain.

ERROR_DRIVE_LOCKED
The disk is in use or locked by another process.

ERROR_DUP_DOMAINNAME
The workgroup or domain name is already in use by another computer on the network.

ERROR_DUP_NAME
A duplicate name exists on the network.

ERROR_DUPLICATE_SERVICE_NAME
The name is already in use as either a service name or a service display name.

ERROR_DYNLINK_FROM_INVALID_RING
The operating system cannot run this application program.

ERROR_EA_ACCESS_DENIED
Access to the EA is denied.

ERROR_EA_FILE_CORRUPT
The EA file on the mounted file system is damaged.

ERROR_EA_LIST_INCONSISTENT
The EAs are inconsistent.

ERROR_EA_TABLE_FULL
The EA table in the EA file on the mounted file system is full.

ERROR_EAS_DIDNT_FIT
The EAs did not fit in the buffer.

ERROR_EAS_NOT_SUPPORTED
The mounted file system does not support extended attributes.

ERROR_END_OF_MEDIA
The physical end of the tape has been reached.

ERROR_ENVVAR_NOT_FOUND
The system could not find the environment option entered.

ERROR_EOM_OVERFLOW
Physical end of tape encountered.

ERROR_EVENTLOG_CANT_START
No event log file could be opened, so the event logging service did not start.

ERROR_EVENTLOG_FILE_CHANGED
The event log file has changed between reads.

ERROR_EVENTLOG_FILE_CORRUPT
One of the Eventlog logfiles is damaged.

ERROR_EXCEPTION_IN_SERVICE
An exception occurred in the service when handling the control request.

ERROR_EXCL_SEM_ALREADY_OWNED
The exclusive semaphore is owned by another process.

ERROR_EXE_MARKED_INVALID
The operating system cannot run %1.

ERROR_EXTENDED_ERROR
An extended error has occurred.

ERROR_FAIL_I24
Fail on INT 24.

ERROR_FAILED_SERVICE_CONTROLLER_CONNECT
The service process could not connect to the service controller.

ERROR_FILE_CORRUPT
The file or directory is damaged and nonreadable.

ERROR_FILE_EXISTS
The file exists.

ERROR_FILE_INVALID
The volume for a file was externally altered and the opened file is no longer valid.

ERROR_FILE_NOT_FOUND
The system cannot find the file specified.

ERROR_FILEMARK_DETECTED
A tape access reached a filemark.

ERROR_FILENAME_EXCED_RANGE
The file name or extension is too long.

ERROR_FLOPPY_BAD_REGISTERS
The floppy disk controller returned inconsistent results in its registers.

ERROR_FLOPPY_ID_MARK_NOT_FOUND
No ID address mark was found on the floppy disk.

ERROR_FLOPPY_WRONG_CYLINDER
Mismatch between the floppy disk sector ID field and the floppy disk controller track address.

ERROR_FLOPPY_UNKNOWN_ERROR
The floppy disk controller reported an error that is not recognized by the floppy disk driver.

ERROR_FULL_BACKUP
The backup failed. Check the directory that you are backing the database to.

ERROR_FULLSCREEN_MODE
The requested operation cannot be performed in full-screen mode.

ERROR_GEN_FAILURE
A device attached to the system is not functioning.

ERROR_GENERIC_NOT_MAPPED
Indicates generic access types were contained in an access mask that should already be
mapped to non-generic access types.

ERROR_GLOBAL_ONLY_HOOK
This hook can only be set globally.

ERROR_GRACEFUL_DISCONNECT

The network connection was gracefully closed.
ERROR_GROUP_EXISTS

The specified group already exists.
ERROR_HANDLE_DISK_FULL

The disk is full.
ERROR_HANDLE_EOF

Reached End Of File.
ERROR_HOOK_NEEDS_HMOD

Cannot set non-local hook without an module handle.
ERROR_HOOK_NOT_INSTALLED

Hook is not installed.
ERROR_HOOK_TYPE_NOT_ALLOWED

Hook type not allowed.
ERROR_HOST_UNREACHABLE

The remote system is not reachable by the transport.
ERROR_HOTKEY_ALREADY_REGISTERED

Hotkey is already registered.
ERROR_HOTKEY_NOT_REGISTERED

Hotkey is not registered.
ERROR_HWNDS_HAVE_DIFFERENT_PARENT

All DeferWindowPos HWNDs must have same parent.
ERROR_ILL_FORMED_PASSWORD

When trying to update a password, this return status indicates the value provided for the new
password contains values not allowed in passwords.

ERROR_INC_BACKUP
The backup failed. Was a full backup done before ?

ERROR_INCORRECT_ADDRESS
The network address could not be used for the operation requested.

ERROR_INFLOOP_IN_RELOC_CHAIN
The operating system cannot run %1.

ERROR_INSUFFICIENT_BUFFER
The data area passed to a system call is too small.

ERROR_INTERNAL_DB_CORRUPTION
This error indicates the requested operation cannot be completed due to a catastrophic media
failure or on-disk data structure corruption.

ERROR_INTERNAL_DB_ERROR
The Local Security Authority (LSA) database contains in internal inconsistency.

ERROR_INTERNAL_ERROR
This error indicates the SAM server has encounterred an internal consistency error in its
database. This catastrophic failure prevents further operation of SAM.

ERROR_INVALID_ACCEL_HANDLE
Invalid accelerator-table handle.

ERROR_INVALID_ACCESS
The access code is invalid.

ERROR_INVALID_ACCOUNT_NAME
The name provided is not a properly formed account name.

ERROR_INVALID_ACL
Indicates the ACL structure is not valid.

ERROR_INVALID_ADDRESS
Attempt to access invalid address.

ERROR_INVALID_AT_INTERRUPT_TIME
Cannot request exclusive semaphores at interrupt time.

ERROR_INVALID_BLOCK
The storage control block address is invalid.

ERROR_INVALID_BLOCK_LENGTH
When accessing a new tape of a multivolume partition, the current block size is incorrect.

ERROR_INVALID_CATEGORY
The IOCTL call made by the application program is incorrect.

ERROR_INVALID_COMBOBOX_MESSAGE
Invalid Message, combo box doesn't have an edit control.

ERROR_INVALID_COMPUTERNAME
The format of the specified computer name is invalid.

ERROR_INVALID_CURSOR_HANDLE
The cursor handle is invalid.

ERROR_INVALID_DATA
The data is invalid.

ERROR_INVALID_DATATYPE
The specified datatype is invalid.

ERROR_INVALID_DLL
One of the library files needed to run this application is damaged.

ERROR_INVALID_DOMAINNAME
The format of the specified domain name is invalid.

ERROR_INVALID_DOMAIN_ROLE
Indicates the requested operation cannot be completed with the domain in its present role.

ERROR_INVALID_DOMAIN_STATE
Indicates the domain is in the wrong state to perform the desired operation.

ERROR_INVALID_DRIVE
The system cannot find the specified drive.

ERROR_INVALID_DWP_HANDLE
The DeferWindowPos handle is invalid.

ERROR_INVALID_EA_HANDLE
The specified EA handle is invalid.

ERROR_INVALID_EA_NAME
The specified EA name is invalid.

ERROR_INVALID_EDIT_HEIGHT
Height must be less than 256.

ERROR_INVALID_ENVIRONMENT
The Environment specified is invalid.

ERROR_INVALID_EVENT_COUNT
The number of specified semaphore events is incorrect.

ERROR_INVALID_EVENTNAME
The format of the specified event name is invalid.

ERROR_INVALID_EXE_SIGNATURE
%1 cannot be run in Windows/NT mode.

ERROR_INVALID_FILTER_PROC
The filter proc is invalid.

ERROR_INVALID_FLAG_NUMBER
The flag passed is incorrect.

ERROR_INVALID_FLAGS
The flags are invalid.

ERROR_INVALID_FUNCTION
The function is incorrect.

ERROR_INVALID_GROUP_ATTRIBUTES
The specified attributes are invalid, or incompatible with the attributes for the group as a
whole.

ERROR_INVALID_GROUPNAME
The format of the specified group name is invalid.

ERROR_INVALID_GW_COMMAND
The GW_* command is invalid.

ERROR_INVALID_FORM_NAME
The specified Form name is invalid.

ERROR_INVALID_FORM_SIZE
The specified Form size is invalid

ERROR_INVALID_HANDLE
The internal file identifier is incorrect.

ERROR_INVALID_HOOK_FILTER

The hook filter type is invalid.
ERROR_INVALID_HOOK_HANDLE

The hook handle is invalid.
ERROR_INVALID_ICON_HANDLE

The icon handle is invalid.
ERROR_INVALID_ID_AUTHORITY

The value provided is an invalid value for an identifier authority.
ERROR_INVALID_INDEX

The index is invalid.
ERROR_INVALID_KEYBOARD_HANDLE

Invalid keyboard layout handle.
ERROR_INVALID_LB_MESSAGE

The message for single-selection list box is invalid.
ERROR_INVALID_LEVEL

The system call level is incorrect.
ERROR_INVALID_LIST_FORMAT

The list is not correct.
ERROR_INVALID_LOGON_HOURS

The user account has time restrictions and cannot be logged onto at this time.
ERROR_INVALID_LOGON_TYPE

Indicates an invalid value has been provided for LogonType has been requested.
ERROR_INVALID_MEMBER

A new member could not be added to an alias because the member has the wrong account
type.

ERROR_INVALID_MENU_HANDLE
The menu handle is invalid.

ERROR_INVALID_MESSAGE
Window can't handle sent message.

ERROR_INVALID_MESSAGEDEST
The format of the specified message destination is invalid.

ERROR_INVALID_MESSAGENAME
The format of the specified message name is invalid.

ERROR_INVALID_MINALLOCSIZE
The operating system cannot run %1.

ERROR_INVALID_MODULETYPE
The operating system cannot run %1.

ERROR_INVALID_MSGBOX_STYLE
The message box style is invalid.

ERROR_INVALID_NAME
The file name, directory name, or volume label is syntactically incorrect.

ERROR_INVALID_NETNAME
The format of the specified network name is invalid.

ERROR_INVALID_ORDINAL
The operating system cannot run %1.

ERROR_INVALID_OWNER
Indicates a particular Security ID cannot be assigned as the owner of an object.

ERROR_INVALID_PARAMETER
The parameter is incorrect.

ERROR_INVALID_PASSWORD
The specified network password is incorrect.

ERROR_INVALID_PASSWORDNAME
The format of the specified password is invalid.

ERROR_INVALID_PIXEL_FORMAT
The pixel format is invalid.

ERROR_INVALID_PRIMARY_GROUP
Indicates a particular Security ID cannot be assigned as the primary group of an object.

ERROR_INVALID_PRINT_MONITOR
The specified print monitor does not have the required functions.

ERROR_INVALID_PRINTER_COMMAND
The printer command is invalid.

ERROR_INVALID_PRINTER_NAME
The printer name is invalid.

ERROR_INVALID_PRINTER_STATE
The state of the Printer is invalid

ERROR_INVALID_PRIORITY
The specified priority is invalid.

ERROR_INVALID_SCROLLBAR_RANGE
Scrollbar range greater than 0x7FFF.

ERROR_INVALID_SECURITY_DESCR
Indicates the SECURITY_DESCRIPTOR structure is invalid.

ERROR_INVALID_SEGDPL
The operating system cannot run %1.

ERROR_INVALID_SEGMENT_NUMBER
The system detected a segment number that is incorrect.

ERROR_INVALID_SEPARATOR_FILE
The specified separator file is invalid.

ERROR_INVALID_SERVER_STATE
Indicates the Sam Server was in the wrong state to perform the desired operation.

ERROR_INVALID_SERVICE_ACCOUNT
The account name is invalid or does not exist.

ERROR_INVALID_SERVICE_CONTROL
The requested control is not valid for this service

ERROR_INVALID_SERVICE_LOCK
The specified service database lock is invalid.

ERROR_INVALID_SERVICENAME
The format of the specified service name is invalid.

ERROR_INVALID_SHARENAME
The format of the specified share name is invalid.

ERROR_INVALID_SHOWWIN_COMMAND
The ShowWindow command is invalid.

ERROR_INVALID_SID
Indicates the SID structure is invalid.

ERROR_INVALID_SIGNAL_NUMBER
The signal being posted is incorrect.

ERROR_INVALID_SPI_VALUE
The SPI_* parameter is invalid.

ERROR_INVALID_STACKSEG
The operating system cannot run %1.

ERROR_INVALID_STARTING_CODESEG
The operating system cannot run %1.

ERROR_INVALID_SUB_AUTHORITY
Indicates the sub-authority value is invalid for the particular use.

ERROR_INVALID_TARGET_HANDLE
The target internal file identifier is incorrect.

ERROR_INVALID_THREAD_ID
The thread ID is invalid.

ERROR_INVALID_TIME
The specified time is invalid.

ERROR_INVALID_USER_BUFFER
The supplied user buffer is invalid for the requested operation.

ERROR_INVALID_VERIFY_SWITCH
The verify-on-write switch parameter value is incorrect.

ERROR_INVALID_WINDOW_HANDLE
The window handle invalid.

ERROR_INVALID_WINDOW_STYLE
The window style or class attribute is invalid for this operation.

ERROR_INVALID_WORKSTATION
The user account is restricted and cannot be used to log on from the source workstation.

ERROR_IO_DEVICE
The request could not be performed because of an I/O device error.

ERROR_IO_INCOMPLETE
Overlapped IO event not in signaled state.

ERROR_IO_PENDING
Overlapped IO operation in progress.

ERROR_IOPL_NOT_ENABLED
The operating system is not presently configured to run this application.

ERROR_IRQ_BUSY
Unable to open a device that was sharing an interrupt request (IRQ) with other devices. At
least one other device that uses that IRQ was already opened.

ERROR_IS_JOIN_PATH
Not enough resources are available to process this command.

ERROR_IS_JOIN_TARGET
A JOIN or SUBST command cannot be used for a drive that contains previously joined drives.

ERROR_IS_JOINED
An attempt was made to use a JOIN or SUBST command on a drive that is already joined.

ERROR_IS_SUBST_PATH
The path specified is being used in a substitute.

ERROR_IS_SUBST_TARGET
An attempt was made to join or substitute a drive for which a directory on the drive is the
target of a previous substitute.

ERROR_IS_SUBSTED
An attempt was made to use a JOIN or SUBST command on a drive already substituted.

ERROR_ITERATED_DATA_EXCEEDS_64k
The operating system cannot run %1.

ERROR_JOIN_TO_JOIN
The system tried to join a drive to a directory on a joined drive.

ERROR_JOIN_TO_SUBST
The system tried to join a drive to a directory on a substituted drive.

ERROR_JOURNAL_HOOK_SET
The journal hook is already installed.

ERROR_KEY_DELETED
Illegal operation attempted on a registry key that has been marked for deletion.

ERROR_KEY_HAS_CHILDREN
An attempt was made to create a symbolic link in a registry key that already has subkeys or
values.

ERROR_LABEL_TOO_LONG
The volume label entered exceeds the 11 character limit. The first 11 characters were written
to disk. Any characters that exceeded the 11 character limit were automatically deleted.

ERROR_LAST_ADMIN
Indicates the requested operation would disable or delete the last remaining administration
account. This is not allowed to prevent creating a situation where the system will not be
administrable.

ERROR_LB_WITHOUT_TABSTOPS
This list box doesn't support tab stops.

ERROR_LICENSE_QUOTA_EXCEEDED
The service being accessed is licensed for a particular number of connections. No more
connections can be made to the service at this time because there are already as many
connections as the service can accept.

ERROR_LISTBOX_ID_NOT_FOUND
List box ID not found.

ERROR_LM_CROSS_ENCRYPTION_REQUIRED
An attempt was made to change a user password in the security account manager without
providing the required LM cross-encrypted password.

ERROR_LOCAL_USER_SESSION_KEY

A user session key was requested for a local RPC connection. The session key returned is a
constant value and not unique to this connection.

ERROR_LOCK_FAILED
Attempt to lock a region of a file failed.

ERROR_LOCK_VIOLATION
The process cannot access the file because another process has locked a portion of the file.

ERROR_LOCKED
The segment is locked and cannot be reallocated.

ERROR_LOG_FILE_FULL
The event log file is full.

ERROR_LOGIN_TIME_RESTRICTION
Attempting to login during an unauthorized time of day for this account.

ERROR_LOGIN_WKSTA_RESTRICTION
The account is not authorized to login from this station.

ERROR_LOGON_FAILURE
The attempted logon is invalid. This is due to either a bad user name or authentication
information.

ERROR_LOGON_NOT_GRANTED
A requested type of logon, such as Interactive, Network, or Service, is not granted by the
target system's local security policy. The system administrator can grant the required form of
logon.

ERROR_LOGON_SESSION_COLLISION
The logon session ID is already in use.

ERROR_LOGON_SESSION_EXISTS
An attempt was made to start a new session manager or LSA logon session with an ID
already in use.

ERROR_LOGON_TYPE_NOT_GRANTED
A user has requested a type of logon, such as interactive or network, that was not granted. An
administrator has control over who may logon interactively and through the network.

ERROR_LUIDS_EXHAUSTED
Indicates there are no more LUID to allocate.

ERROR_MAPPED_ALIGNMENT
The base address or the file offset specified does not have the proper alignment.

ERROR_MAX_THRDS_REACHED
No more threads can be created in the system.

ERROR_MEDIA_CHANGED
Media in drive may have changed.

ERROR_MEMBER_IN_ALIAS
The specified account name is not a member of the alias.

ERROR_MEMBER_IN_GROUP
The specified user account is already in the specified group account. Also used to indicate a
group can not be deleted because it contains a member.

ERROR_MEMBER_NOT_IN_ALIAS
The specified account name is not a member of the alias.

ERROR_MEMBER_NOT_IN_GROUP
The specified user account is not a member of the specified group account.

ERROR_MEMBERS_PRIMARY_GROUP
Indicates a member cannot be removed from a group because the group is currently the
member's primary group.

ERROR_MENU_ITEM_NOT_FOUND
A menu item was not found.

ERROR_META_EXPANSION_TOO_LONG
The global filename characters * or ? are entered incorrectly, or too many global filename
characters are specified.

ERROR_METAFILE_NOT_SUPPORTED
The requested metafile operation is not supported.

ERROR_MOD_NOT_FOUND
The specified module cannot be found.

ERROR_MORE_DATA

More data is available.
ERROR_MORE_WRITES

A serial I/O operation was completed by another write to the serial port. (The
IOCTL_SERIAL_XOFF_COUNTER reached zero.)

ERROR_MR_MID_NOT_FOUND
The system cannot find message for message number 0x%1 in message file for %2.

ERROR_NEGATIVE_SEEK
An attempt was made to move the file pointer before the beginning of the file.

ERROR_NESTING_NOT_ALLOWED
Can't nest calls to LoadModule.

ERROR_NETLOGON_NOT_STARTED
An attempt was made to logon, but the network logon service was not started.

ERROR_NET_WRITE_FAULT
A write fault occurred on the network.

ERROR_NETNAME_DELETED
The specified network name is no longer available.

ERROR_NETWORK_ACCESS_DENIED
Network access is denied.

ERROR_NETWORK_BUSY
The network is busy.

ERROR_NETWORK_UNREACHABLE
The remote network is not reachable by the transport.

ERROR_NO_ASSOCIATION
No application is associated with the specified file for this operation.

ERROR_NO_BROWSER_SERVERS_FOUND
The list of servers for this workgroup is not currently available

ERROR_NO_DATA
Pipe close in progress.

ERROR_NO_DATA_DETECTED
During a tape access, the end of the data marker was reached.

ERROR_NO_IMPERSONATION_TOKEN
An attempt was made to operate on an impersonation token by a thread was not currently
impersonating a client.

ERROR_NO_INHERITANCE
Indicates an ACL contains no inheritable components.

ERROR_NO_LOG_SPACE
System could not allocate required space in a registry log.

ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT
The account used is an interdomain trust account. Use your normal user account or remote
user account to access this server.

ERROR_NOLOGON_SERVER_TRUST_ACCOUNT
The account used is an server trust account. Use your normal user account or remote user
account to access this server.

ERROR_NO_LOGON_SERVERS
There are currently no logon servers available to service the logon request.

ERROR_NOLOGON_WORKSTATION_TRUST_ACCOUNT
The account used is a workstation trust account. Use your normal user account or remote
user account to access this server.

ERROR_NO_MEDIA_IN_DRIVE
Tape query failed because of no media in drive.

ERROR_NO_MORE_DEVICES
No more local devices.

ERROR_NO_MORE_FILES
There are no more files.

ERROR_NO_MORE_ITEMS
No more data is available.

ERROR_NO_MORE_SEARCH_HANDLES
No more internal file identifiers available.

ERROR_NO_NET_OR_BAD_PATH
No network provider accepted the given network path.

ERROR_NO_NETWORK
The network is not present or not started.

ERROR_NO_PROC_SLOTS
The system cannot start another process at this time.

ERROR_NO_QUOTAS_FOR_ACCOUNT
No system quota limits are specifically set for this account.

ERROR_NO_SCROLLBARS
Window does not have scroll bars.

ERROR_NO_SECURITY_ON_OBJECT
Indicates an attempt was made to operate on the security of an object that does not have
security associated with it.

ERROR_NO_SHUTDOWN_IN_PROGRESS
An attempt to abort the shutdown of the system failed because no shutdown was in progress.

ERROR_NO_SIGNAL_SENT
No process in the command subtree has a signal handler.

ERROR_NO_SPOOL_SPACE
Space to store the file waiting to be printed is not available on the server.

ERROR_NO_SUCH_ALIAS
The specified alias does not exist.

ERROR_NO_SUCH_DOMAIN
The specified domain does not exist.

ERROR_NO_SUCH_GROUP
The specified group does not exist.

ERROR_NO_SUCH_LOGON_SESSION
A specified logon session does not exist. It may already have been terminated.

ERROR_NO_SUCH_MEMBER
A new member cannot be added to an alias because the member does not exist.

ERROR_NO_SUCH_PACKAGE
A specified authentication package is unknown.

ERROR_NO_SUCH_PRIVILEGE
A specified privilege does not exist.

ERROR_NO_SUCH_USER
The specified user does not exist.

ERROR_NO_SYSTEM_MENU
Window does not have system menu.

ERROR_NO_SYSTEM_RESOURCES
Insufficient system resources exist to complete the requested service.

ERROR_NO_TOKEN
An attempt was made to reference a token that does not exist.

ERROR_NO_TRUST_LSA_SECRET
The workstation does not have a trust secret.

ERROR_NO_TRUST_SAM_ACCOUNT
The domain controller does not have an account for this workstation.

ERROR_NO_UNICODE_TRANSLATION
No mapping for the Unicode character exists in the target multi-byte code page.

ERROR_NO_USER_SESSION_KEY
There is no user session key for the specified logon session.

ERROR_NO_VOLUME_LABEL
The disk has no volume label.

ERROR_NO_WILDCARD_CHARACTERS
No wildcard characters found.

ERROR_NOACCESS
Invalid access to memory location.

ERROR_NON_MDICHILD_WINDOW
DefMDIChildProc called with a non-MDI child window.

ERROR_NONE_MAPPED

None of the information to be mapped has been translated.
ERROR_NONPAGED_SYSTEM_RESOURCES

Insufficient system resources exist to complete the requested service.
ERROR_NOT_ALL_ASSIGNED

Indicates not all privileges referenced are assigned to the caller. This allows, for example, all
privileges to be disabled without having to know exactly which privileges are assigned.

ERROR_NOT_AUTHENTICATED
The operation being requested was not performed because the user has not been
authenticated.

ERROR_NOT_CHILD_WINDOW
Window is not a child window.

ERROR_NOT_CONNECTED
This network connection does not exist.

ERROR_NOT_CONTAINER
Cannot enumerate a non-container.

ERROR_NOT_DOS_DISK
The specified disk cannot be accessed.

ERROR_NOT_ENOUGH_MEMORY
Not enough storage is available to process this command.

ERROR_NOT_ENOUGH_QUOTA
Not enough quota is available to process this command.

ERROR_NOT_ENOUGH_SERVER_MEMORY
Not enough server storage is available to process this command.

ERROR_NOT_JOINED
The system attempted to delete the JOIN of a drive not previously joined.

ERROR_NOT_LOCKED
The segment is already unlocked.

ERROR_NOT_LOGGED_ON
The operation being requested was not performed because the user has not logged on to the
network.

ERROR_NOT_LOGON_PROCESS
The requested action is restricted for use by logon processes only. The calling process has
not registered as a logon process.

ERROR_NOT_OWNER
Attempt to release mutex not owned by caller.

ERROR_NOT_READY
The drive is not ready.

ERROR_NOT_REGISTRY_FILE
The system attempted to load or restore a file into the registry, and the specified file is not in
the format of a registry file.

ERROR_NOT_SAME_DEVICE
The system cannot move the file to a different disk drive.

ERROR_NOT_SUBSTED
The system attempted to delete the substitution of a drive not previously substituted.

ERROR_NOT_SUPPORTED
The network request is not supported.

ERROR_NOTIFY_ENUM_DIR
This indicates that a notify change request is being completed and the information is not being
returned in the caller's buffer. The caller now needs to enumerate the files to find the changes.

ERROR_NT_CROSS_ENCRYPTION_REQUIRED
An attempt was made to change a user password in the security account manager without
providing the necessary NT cross-encrypted password.

ERROR_NULL_LM_PASSWORD
The Windows NT password is too complex to be converted to a Windows-networking
password. The Windows-networking password returned is a NULL string.

ERROR_OLD_WIN_VERSION
The specified program requires a newer version of Windows.

ERROR_OPEN_FAILED
The system cannot open the specified device or file.

ERROR_OPEN_FILES
There are open files or requests pending on this connection.

ERROR_OPERATION_ABORTED
The I/O operation was aborted due to either thread exit or application request.

ERROR_OUT_OF_PAPER
The printer is out of paper.

ERROR_OUT_OF_STRUCTURES
Storage to process this request is not available.

ERROR_OUTOFMEMORY
Not enough storage is available to complete this operation.

ERROR_PAGED_SYSTEM_RESOURCES
Insufficient system resources exist to complete the requested service.

ERROR_PAGEFILE_QUOTA
Insufficient quota to complete the requested service.

ERROR_PARTIAL_COPY
Only part of a Read/WriteProcessMemory request was completed.

ERROR_PARTITION_FAILURE
Tape could not be partitioned.

ERROR_PASSWORD_EXPIRED
The user account's password has expired.

ERROR_PASSWORD_MUST_CHANGE
The user must change his password before he logs on the first time.

ERROR_PASSWORD_RESTRICTION
When trying to update a password, this status indicates that some password update rule was
violated. For example, the password may not meet length criteria.

ERROR_PATH_BUSY
The specified path cannot be used at this time.

ERROR_PATH_NOT_FOUND
The system cannot find the specified path.

ERROR_PIPE_BUSY
All pipe instances busy.

ERROR_PIPE_CONNECTED
There is a process on other end of the pipe.

ERROR_PIPE_LISTENING
Waiting for a process to open the other end of the pipe.

ERROR_PIPE_NOT_CONNECTED
No process on other end of pipe.

ERROR_POPUP_ALREADY_ACTIVE
Pop-up menu already active.

ERROR_PORT_UNREACHABLE
No service is operating at the destination network endpoint on the remote system.

ERROR_POSSIBLE_DEADLOCK
A potential deadlock condition has been detected.

ERROR_PRINT_CANCELLED
File waiting to be printed was deleted.

ERROR_PRINT_MONITOR_ALREADY_INSTALLED
The specified print monitor has already been installed.

ERROR_PRINT_MONITOR_IN_USE
The specified print monitor is currently in use.

ERROR_PRINT_PROCESSOR_ALREADY_INSTALLED
The specified print processor has already been installed.

ERROR_PRINTER_ALREADY_EXISTS
The printer already exists.

ERROR_PRINTER_DELETED
The specified Printer has been deleted

ERROR_PRINTER_DRIVER_ALREADY_INSTALLED
The specified printer driver is already installed.

ERROR_PRINTER_DRIVER_IN_USE

The specified printer driver is currently in use.
ERROR_PRINTER_HAS_JOBS_QUEUED

The requested operation is not allowed when there are jobs queued to the printer.
ERROR_PRINTQ_FULL

The printer queue is full.
ERROR_PRIVATE_DIALOG_INDEX

Using private DIALOG window words.
ERROR_PRIVILEGE_NOT_HELD

A required privilege is not held by the client.
ERROR_PROC_NOT_FOUND

The specified procedure could not be found.
ERROR_PROCESS_ABORTED

The process terminated unexpectedly.
ERROR_PROTOCOL_UNREACHABLE

The remote system does not support the transport protocol.
ERROR_READ_FAULT

The system cannot read from the specified device.
ERROR_REC_NON_EXISTENT

The name does not exist in the WINS database.
ERROR_REDIR_PAUSED

The specified printer or disk device has been paused.
ERROR_REDIRECTOR_HAS_OPEN_HANDLES

The redirector is in use and cannot be unloaded.
ERROR_REGISTRY_CORRUPT

The registry is damaged. The structure of one of the files that contains registry data is
damaged, or the system's in memory image of the file is damaged, or the file could not be
recovered because its alternate copy or log was absent or damaged.

ERROR_REGISTRY_IO_FAILED
The registry initiated an I/O operation that had an unrecoverable failure. The registry could not
read in, or write out, or flush, one of the files that contain the system's image of the registry.

ERROR_REGISTRY_RECOVERED
One of the files containing the system's registry data had to be recovered by use of a log or
alternate copy. The recovery succeeded.

ERROR_RELOC_CHAIN_XEEDS_SEGLIM
The operating system cannot run %1.

ERROR_REM_NOT_LIST
The remote computer is not available.

ERROR_REMOTE_SESSION_LIMIT_EXCEEDED
An attempt was made to establish a session to a LAN Manager server, but there are already
too many sessions established to that server.

ERROR_REQ_NOT_ACCEP
The network request was not accepted.

ERROR_REQUEST_ABORTED
The request was aborted.

ERROR_RESOURCE_DATA_NOT_FOUND
The specified image file did not contain a resource section.

ERROR_RESOURCE_LANG_NOT_FOUND
The specified resource language ID cannot be found in the image file.

ERROR_RESOURCE_NAME_NOT_FOUND
The specified resource name can not be found in the image file.

ERROR_RESOURCE_TYPE_NOT_FOUND
The specified resource type can not be found in the image file.

ERROR_RETRY
The operation could not be completed. A retry should be performed.

ERROR_REVISION_MISMATCH
Indicates two revision levels are incompatible.

ERROR_RING2_STACK_IN_USE
The ring 2 stack is in use.

ERROR_RING2SEG_MUST_BE_MOVABLE
The code segment cannot be greater than or equal to 64KB.

ERROR_RMODE_APP
The specified program was written for an older version of Windows.

ERROR_RPL_NOT_ALLOWED
Replication with a non-configured partner is not allowed.

ERROR_RXACT_COMMIT_FAILURE
Indicates an error occurred during a registry transaction commit. The database has been left
in an unknown state. The state of the registry transaction is left as COMMITTING. This status
value is returned by the runtime library (RTL) registry transaction package (RXact).

ERROR_RXACT_INVALID_STATE
Indicates that the transaction state of a registry sub-tree is incompatible with the requested
operation. For example, a request has been made to start a new transaction with one already
in progress, or a request to apply a transaction when one is not currently in progress. This
status value is returned by the runtime library (RTL) registry transaction package (RXact).

ERROR_SAME_DRIVE
The system cannot join or substitute a drive to or for a directory on the same drive.

ERROR_SCREEN_ALREADY_LOCKED
Screen already locked.

ERROR_SECRET_TOO_LONG
The length of a secret exceeds the maximum length allowed. The length and number of
secrets is limited to satisfy the United States State Department export restrictions.

ERROR_SECTOR_NOT_FOUND
The drive cannot find the requested sector.

ERROR_SEEK
The drive cannot locate a specific area or track on the disk.

ERROR_SEEK_ON_DEVICE
The file pointer cannot be set on the specified device or file.

ERROR_SEM_IS_SET
The semaphore is set and cannot be closed.

ERROR_SEM_NOT_FOUND
The specified system semaphore name was not found.

ERROR_SEM_OWNER_DIED
The previous ownership of this semaphore has ended.

ERROR_SEM_TIMEOUT
The semaphore timeout period has expired.

ERROR_SEM_USER_LIMIT
Insert the disk for drive 1.

ERROR_SERIAL_NO_DEVICE
No serial device was successfully initialized. The serial driver will unload.

ERROR_SERVER_DISABLED
The GUID allocation server is already disabled at the moment.

ERROR_SERVER_HAS_OPEN_HANDLES
The server is in use and cannot be unloaded.

ERROR_SERVER_NOT_DISABLED
The GUID allocation server is already enabled at the moment.

ERROR_SERVICE_ALREADY_RUNNING
An instance of the service is already running.

ERROR_SERVICE_CANNOT_ACCEPT_CTRL
The service cannot accept control messages at this time.

ERROR_SERVICE_DATABASE_LOCKED
The service database is locked.

ERROR_SERVICE_DEPENDENCY_DELETED
The dependency service does not exist or has been marked for deletion.

ERROR_SERVICE_DEPENDENCY_FAIL
The dependency service or group failed to start.

ERROR_SERVICE_DISABLED
The specified service is disabled and cannot be started.

ERROR_SERVICE_DOES_NOT_EXIST
The specified service does not exist as an installed service.

ERROR_SERVICE_EXISTS
The specified service already exists.

ERROR_SERVICE_LOGON_FAILED
The service did not start due to a logon failure.

ERROR_SERVICE_MARKED_FOR_DELETE
The specified service has been marked for deletion.

ERROR_SERVICE_NEVER_STARTED
No attempts to start the service have been made since the last boot.

ERROR_SERVICE_NO_THREAD
A thread could not be created for the service.

ERROR_SERVICE_NOT_ACTIVE
The service has not been started.

ERROR_SERVICE_NOT_FOUND
The specified service does not exist.

ERROR_SERVICE_REQUEST_TIMEOUT
The service did not respond to the start or control request in a timely fashion.

ERROR_SERVICE_SPECIFIC_ERROR
The service has returned a service-specific error code.

ERROR_SERVICE_START_HANG
After starting, the service hung in a start-pending state.

ERROR_SESSION_CREDENTIAL_CONFLICT
The credentials supplied conflict with an existing set of credentials.

ERROR_SET_POWER_STATE_FAILED
The system BIOS failed an attempt to change the system power state.

ERROR_SET_POWER_STATE_VETOED
An attempt to change the system power state was vetoed by another application or driver.

ERROR_SETCOUNT_ON_BAD_LB
LB_SETCOUNT sent to non-lazy list box.

ERROR_SETMARK_DETECTED
A tape access reached a setmark.

ERROR_SHARING_BUFFER_EXCEEDED
Too many files opened for sharing.

ERROR_SHARING_PAUSED
The remote server is paused or is in the process of being started.

ERROR_SHARING_VIOLATION
The process cannot access the file because it is being used by another process.

ERROR_SHUTDOWN_IN_PROGRESS
A system shutdown is in progress.

ERROR_SIGNAL_PENDING
A signal is already pending.

ERROR_SIGNAL_REFUSED
The recipient process has refused the signal.

ERROR_SINGLE_INSTANCE_APP
Cannot start more than one instance of the specified program.

ERROR_SOME_NOT_MAPPED
Some of the information to be mapped has not been translated.

ERROR_SPECIAL_ACCOUNT
Indicates an operation was attempted on a built-in (special) SAM account that is incompatible
with built-in accounts. For example, built-in accounts cannot be renamed or deleted.

ERROR_SPECIAL_GROUP
The requested operation cannot be performed on the specified group because it is a built-in
special group.

ERROR_SPECIAL_USER
The requested operation cannot be performed on the specified user because it is a built-in
special user.

ERROR_SPL_NO_ADDJOB

An AddJob call was not issued.
ERROR_SPL_NO_STARTDOC

A StartDocPrinter call was not issued.
ERROR_SPOOL_FILE_NOT_FOUND

The spool file was not found.
ERROR_STACK_OVERFLOW

Recursion too deep, stack overflowed.
ERROR_STATIC_INIT

The importation from the file failed.
ERROR_SUBST_TO_JOIN

The system attempted to SUBST a drive to a directory on a joined drive.
ERROR_SUBST_TO_SUBST

The system attempted to substitute a drive to a directory on a substituted drive.
ERROR_SUCCESS

The operation was successfully completed.
ERROR_SUCCESS_REBOOT_REQUIRED

The requested operation is successful. Changes will not be effective until the system is
rebooted.

ERROR_SUCCESS_RESTART_REQUIRED
The requested operation is successful. Changes will not be effective until the service is
restarted.

ERROR_SWAPERROR
Error accessing paging file.

ERROR_SYSTEM_TRACE
System trace information not specified in your CONFIG.SYS file, or tracing is not allowed.

ERROR_TRANSFORM_NOT_SUPPORTED
The requested transformation operation is not supported.

ERROR_THREAD_1_INACTIVE
The signal handler cannot be set.

ERROR_TLW_WITH_WSCHILD
CreateWindow failed, creating top-level window with WS_CHILD style.

ERROR_TOKEN_ALREADY_IN_USE
An attempt was made to establish a token for use as a primary token but the token is already
in use. A token can only be the primary token of one process at a time.

ERROR_TOO_MANY_CMDS
The network BIOS command limit has been reached.

ERROR_TOO_MANY_CONTEXT_IDS
During a logon attempt, the user's security context accumulated too many security IDs.
Remove the user from some groups or aliases to reduce the number of security ids to
incorporate into the security context.

ERROR_TOO_MANY_LINKS
An attempt was made to create more links on a file than the file system supports.

ERROR_TOO_MANY_LUIDS_REQUESTED
The number of LUID requested cannot be allocated with a single allocation.

ERROR_TOO_MANY_MODULES
Too many dynamic link modules are attached to this program or dynamic link module.

ERROR_TOO_MANY_MUXWAITERS
Too many semaphores are already set.

ERROR_TOO_MANY_NAMES
The name limit for the local computer network adapter card exceeded.

ERROR_TOO_MANY_OPEN_FILES
The system cannot open the file.

ERROR_TOO_MANY_POSTS
Too many posts made to a semaphore.

ERROR_TOO_MANY_SECRETS
The maximum number of secrets that can be stored in a single system was exceeded. The
length and number of secrets is limited to satisfy the United States State Department export
restrictions.

ERROR_TOO_MANY_SEM_REQUESTS
The semaphore cannot be set again.

ERROR_TOO_MANY_SEMAPHORES
Cannot create another system semaphore.

ERROR_TOO_MANY_SESS
The network BIOS session limit exceeded.

ERROR_TOO_MANY_SIDS
Too many SIDs specified.

ERROR_TOO_MANY_TCBS
Cannot create another thread.

ERROR_TRUST_FAILURE
The network logon failed.

ERROR_TRUSTED_DOMAIN_FAILURE
The trust relationship between the primary domain and the trusted domain failed.

ERROR_TRUSTED_RELATIONSHIP_FAILURE
The trust relationship between this workstation and the primary domain failed.

ERROR_UNABLE_TO_LOCK_MEDIA
Attempt to lock the eject media mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA
Unload media failed.

ERROR_UNEXP_NET_ERR
An unexpected network error occurred.

ERROR_UNKNOWN_PORT
The specified port is unknown.

ERROR_UNKNOWN_PRINT_MONITOR
The specified print monitor is unknown.

ERROR_UNKNOWN_PRINTPROCESSOR
The print processor is unknown.

ERROR_UNKNOWN_PRINTER_DRIVER
The printer driver is unknown.

ERROR_UNKNOWN_REVISION
Indicates an encountered or specified revision number is not one known by the service. The
service may not be aware of a more recent revision.

ERROR_UNRECOGNIZED_MEDIA
The disk media is not recognized. It may not be formatted.

ERROR_UNRECOGNIZED_VOLUME
The volume does not contain a recognized file system. Make sure that all required file system
drivers are loaded and the volume is not damaged.

ERROR_USER_EXISTS
The specified user already exists.

ERROR_USER_MAPPED_FILE
The requested operation cannot be performed on a file with a user mapped section open.

ERROR_VC_DISCONNECTED
The session was canceled.

ERROR_WAIT_NO_CHILDREN
There are no child processes to wait for.

ERROR_WINDOW_NOT_COMBOBOX
The window is not a combo box.

ERROR_WINDOW_NOT_DIALOG
The window is not a valid dialog window.

ERROR_WINDOW_OF_OTHER_THREAD
Invalid window, belongs to other thread.

ERROR_WINS_INTERNAL
WINS encountered an error while processing the command.

ERROR_WORKING_SET_QUOTA
Insufficient quota to complete the requested service.

ERROR_WRITE_FAULT
The system cannot write to the specified device.

ERROR_WRITE_PROTECT
The media is write protected.

ERROR_WRONG_DISK
The wrong disk is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1.

ERROR_WRONG_PASSWORD
When trying to update a password, this return status indicates the value provided as the
current password is incorrect.

LZERROR_BADINHANDLE
Invalid input handle.

LZERROR_BADOUTHANDLE
Invalid output handle.

LZERROR_BADVALUE
Input parameter out of acceptable range.

LZERROR_GLOBALLOC
Insufficient memory for LZFile structure.

LZERROR_GLOBLOCK
Bad global handle.

LZERROR_READ
Corrupt compressed file format.

LZERROR_WRITE
Out of space for output file.

LZERROR_UNKNOWNALG
Compression algorithm not recognized.

NO_ERROR
No error.

OR_INVALID_OID
The object specified was not found.

OR_INVALID_OXID
The object exporter specified was not found.

OR_INVALID_SET
The object resolver set specified was not found.

RPC_S_ADDRESS_ERROR
An addressing error occurred in the server.

RPC_S_ALREADY_LISTENING
The server is already listening.

RPC_S_ALREADY_REGISTERED
The object UUID already registered.

RPC_S_BINDING_HAS_NO_AUTH
The binding does not contain any authentication information.

RPC_S_BINDING_INCOMPLETE
The binding handle does not contain all required information.

RPC_S_CALL_CANCELLED
The server was altered while processing this call.

RPC_S_CALL_FAILED
The remote procedure call failed.

RPC_S_CALL_FAILED_DNE
The remote procedure call failed and did not execute.

RPC_S_CALL_IN_PROGRESS
A remote procedure call is already in progress for this thread.

RPC_S_CANNOT_SUPPORT
The requested operation is not supported.

RPC_S_CANT_CREATE_ENDPOINT
The endpoint cannot be created.

RPC_S_COMM_FAILURE
Communications failure.

RPC_S_DUPLICATE_ENDPOINT
The endpoint is a duplicate.

RPC_S_ENTRY_ALREADY_EXISTS

The entry already exists.
RPC_S_ENTRY_NOT_FOUND

The entry is not found.
RPC_S_FP_DIV_ZERO

A floating point operation at the server caused a divide by zero.
RPC_S_FP_OVERFLOW

A floating point overflow occurred at the server.
RPC_S_FP_UNDERFLOW

A floating point underflow occurred at the server.
RPC_S_GROUP_MEMBER_NOT_FOUND

The group member was not found.
RPC_S_INCOMPLETE_NAME

The entry name is incomplete.
RPC_S_INTERFACE_NOT_FOUND

The interface was not found.
RPC_S_INTERNAL_ERROR

An internal error occurred in RPC.
RPC_S_INVALID_AUTH_IDENTITY

The security context is invalid.
RPC_S_INVALID_BINDING

The binding handle is invalid.
RPC_S_INVALID_BOUND

The array bounds are invalid.
RPC_S_INVALID_ENDPOINT_FORMAT

The endpoint format is invalid.
RPC_S_INVALID_NAME_SYNTAX

The name syntax is invalid.
RPC_S_INVALID_NET_ADDR

The network address is invalid.
RPC_S_INVALID_NETWORK_OPTIONS

The network options are invalid.
RPC_S_INVALID_OBJECT

The object universal unique identifier (UUID) is the nil UUID.
RPC_S_INVALID_RPC_PROTSEQ

The RPC protocol sequence is invalid.
RPC_S_INVALID_STRING_BINDING

The string binding is invalid.
RPC_S_INVALID_STRING_UUID

The string UUID is invalid.
RPC_S_INVALID_TAG

The tag is invalid.
RPC_S_INVALID_TIMEOUT

The timeout value is invalid.
RPC_S_INVALID_VERS_OPTION

The version option is invalid.
RPC_S_MAX_CALLS_TOO_SMALL

The maximum number of calls is too small.
RPC_S_NAME_SERVICE_UNAVAILABLE

The name service is unavailable.
RPC_S_NO_BINDINGS

There are no bindings.
RPC_S_NO_CALL_ACTIVE

There is not a remote procedure call active in this thread.
RPC_S_NO_CONTEXT_AVAILABLE

No security context is available to allow impersonation.
RPC_S_NO_ENDPOINT_FOUND

No endpoint was found.
RPC_S_NO_ENTRY_NAME

The binding does not contain an entry name.
RPC_S_NO_MORE_BINDINGS

There are no more bindings.
RPC_S_NO_MORE_MEMBERS

There are no more members.
RPC_S_NO_PRINC_NAME

No principal name registered.
RPC_S_NO_PROTSEQS

There are no protocol sequences.
RPC_S_NO_PROTSEQS_REGISTERED

No protocol sequences were registered.
RPC_S_NOT_LISTENING

The server is not listening.
RPC_S_NOT_ALL_OBJS_UNEXPORTED

There is nothing to unexport.
RPC_S_NOT_CANCELLED

Thread is not cancelled.
RPC_S_NOT_RPC_ERROR

The error specified is not a valid Windows RPC error code.
RPC_S_OBJECT_NOT_FOUND

The object UUID was not found.
RPC_S_OUT_OF_RESOURCES

Not enough resources are available to complete this operation.
RPC_S_PROCNUM_OUT_OF_RANGE

The procedure number is out of range.
RPC_S_PROTOCOL_ERROR

An RPC protocol error occurred.
RPC_S_PROTSEQ_NOT_FOUND

The RPC protocol sequence was not found.
RPC_S_PROTSEQ_NOT_SUPPORTED

The RPC protocol sequence is not supported.
RPC_S_SEC_PKG_ERROR

A security package specific error occurred.
RPC_S_SEND_INCOMPLETE

Some data remains to be sent in the request buffer.
RPC_S_SERVER_OUT_OF_MEMORY

The server has insufficient memory to complete this operation.
RPC_S_SERVER_TOO_BUSY

The server is too busy to complete this operation.
RPC_S_SERVER_UNAVAILABLE

The server is unavailable.
RPC_S_STRING_TOO_LONG

The string is too long.
RPC_S_TYPE_ALREADY_REGISTERED

The type UUID is already registered.
RPC_S_UNKNOWN_AUTHN_LEVEL

The authentication level is unknown.
RPC_S_UNKNOWN_AUTHN_SERVICE

The authentication service is unknown.
RPC_S_UNKNOWN_AUTHN_TYPE

The authentication type is unknown.
RPC_S_UNKNOWN_AUTHZ_SERVICE

The authorization service is unknown.
RPC_S_UNKNOWN_IF

The interface is unknown.
RPC_S_UNKNOWN_MGR_TYPE

The manager type is unknown.
RPC_S_UNSUPPORTED_AUTHN_LEVEL

The requested authentication level is not supported.
RPC_S_UNSUPPORTED_NAME_SYNTAX

The name syntax is not supported.
RPC_S_UNSUPPORTED_TRANS_SYN

The transfer syntax is not supported by the server.
RPC_S_UNSUPPORTED_TYPE

The type UUID is not supported.
RPC_S_UUID_LOCAL_ONLY

A UUID that is valid only on this computer has been allocated.
RPC_S_UUID_NO_ADDRESS

No network address is available to use to construct a UUID.
RPC_S_WRONG_KIND_OF_BINDING

The binding handle is the incorrect type.
RPC_S_ZERO_DIVIDE

The server attempted an integer divide by zero.
RPC_X_BAD_STUB_DATA

The stub received bad data.
RPC_X_BYTE_COUNT_TOO_SMALL

The byte count is too small.
RPC_X_ENUM_VALUE_OUT_OF_RANGE

The enumeration value is out of range.
RPC_X_INVALID_ES_ACTION

Invalid operation on the encoding/decoding handle.
RPC_X_INVALID_PIPE_OBJECT

The idl pipe object is invalid or corrupted.
RPC_X_INVALID_PIPE_OPERATION

The operation is invalid for a given idl pipe object.
RPC_X_NO_MORE_ENTRIES

The list of servers available for auto_handle binding was exhausted.
RPC_X_NULL_REF_POINTER

A null reference pointer was passed to the stub.
RPC_X_SS_CANNOT_GET_CALL_HANDLE

The stub is unable to get the call handle.
RPC_X_SS_CHAR_TRANS_OPEN_FAIL

The file designated by DCERPCCHARTRANS cannot be opened.
RPC_X_SS_CHAR_TRANS_SHORT_FILE

The file containing the character translation table has fewer than 512 bytes.
RPC_X_SS_CONTEXT_DAMAGED

The context handle changed during a call.
RPC_X_SS_CONTEXT_MISMATCH

The context handle does not match any known context handles.
RPC_X_SS_HANDLES_MISMATCH

The binding handles passed to a remote procedure call do not match.
RPC_X_SS_IN_NULL_CONTEXT

A null context handle is passed as an [in] parameter.
RPC_X_WRONG_ES_VERSION

Incompatible version of the serializing package.
RPC_X_WRONG_PIPE_VERSION

The idl pipe version is not supported.
RPC_X_WRONG_STUB_VERSION

Incompatible version of the RPC stub.

Numerical List of Error Codes
-8 LZERROR_UNKNOWNALG-7 LZERROR_BADVALUE
-6 LZERROR_GLOBLOCK
-5 LZERROR_GLOBALLOC
-4 LZERROR_WRITE
-3 LZERROR_READ
-2 LZERROR_BADOUTHANDLE
-1 LZERROR_BADINHANDLE
0L NO_ERROR
0L ERROR_SUCCESS
1L ERROR_INVALID_FUNCTION
2L ERROR_FILE_NOT_FOUND
3L ERROR_PATH_NOT_FOUND
4L ERROR_TOO_MANY_OPEN_FILES
5L ERROR_ACCESS_DENIED
6L ERROR_INVALID_HANDLE
7L ERROR_ARENA_TRASHED
8L ERROR_NOT_ENOUGH_MEMORY
9L ERROR_INVALID_BLOCK
10L ERROR_BAD_ENVIRONMENT
11L ERROR_BAD_FORMAT
12L ERROR_INVALID_ACCESS
13L ERROR_INVALID_DATA
14L ERROR_OUTOFMEMORY
15L ERROR_INVALID_DRIVE
16L ERROR_CURRENT_DIRECTORY
17L ERROR_NOT_SAME_DEVICE
18L ERROR_NO_MORE_FILES
19L ERROR_WRITE_PROTECT
20L ERROR_BAD_UNIT
21L ERROR_NOT_READY
22L ERROR_BAD_COMMAND
23L ERROR_CRC
24L ERROR_BAD_LENGTH
25L ERROR_SEEK
26L ERROR_NOT_DOS_DISK
27L ERROR_SECTOR_NOT_FOUND
28L ERROR_OUT_OF_PAPER
29L ERROR_WRITE_FAULT
30L ERROR_READ_FAULT
31L ERROR_GEN_FAILURE
32L ERROR_SHARING_VIOLATION
33L ERROR_LOCK_VIOLATION
34L ERROR_WRONG_DISK
36L ERROR_SHARING_BUFFER_EXCEEDED
38L ERROR_HANDLE_EOF
39L ERROR_HANDLE_DISK_FULL
50L ERROR_NOT_SUPPORTED
51L ERROR_REM_NOT_LIST
52L ERROR_DUP_NAME
53L ERROR_BAD_NETPATH
54L ERROR_NETWORK_BUSY
55L ERROR_DEV_NOT_EXIST
56L ERROR_TOO_MANY_CMDS
57L ERROR_ADAP_HDW_ERR
58L ERROR_BAD_NET_RESP
59L ERROR_UNEXP_NET_ERR
60L ERROR_BAD_REM_ADAP
61L ERROR_PRINTQ_FULL
62L ERROR_NO_SPOOL_SPACE
63L ERROR_PRINT_CANCELLED
64L ERROR_NETNAME_DELETED
65L ERROR_NETWORK_ACCESS_DENIED
66L ERROR_BAD_DEV_TYPE
67L ERROR_BAD_NET_NAME
68L ERROR_TOO_MANY_NAMES
69L ERROR_TOO_MANY_SESS
70L ERROR_SHARING_PAUSED
71L ERROR_REQ_NOT_ACCEP
72L ERROR_REDIR_PAUSED
80L ERROR_FILE_EXISTS
82L ERROR_CANNOT_MAKE
83L ERROR_FAIL_I24
84L ERROR_OUT_OF_STRUCTURES
85L ERROR_ALREADY_ASSIGNED
86L ERROR_INVALID_PASSWORD
87L ERROR_INVALID_PARAMETER
88L ERROR_NET_WRITE_FAULT
89L ERROR_NO_PROC_SLOTS
100L ERROR_TOO_MANY_SEMAPHORES
101L ERROR_EXCL_SEM_ALREADY_OWNED
102L ERROR_SEM_IS_SET
103L ERROR_TOO_MANY_SEM_REQUESTS
104L ERROR_INVALID_AT_INTERRUPT_TIME
105L ERROR_SEM_OWNER_DIED
106L ERROR_SEM_USER_LIMIT
107L ERROR_DISK_CHANGE
108L ERROR_DRIVE_LOCKED
109L ERROR_BROKEN_PIPE
110L ERROR_OPEN_FAILED
111L ERROR_BUFFER_OVERFLOW
112L ERROR_DISK_FULL
113L ERROR_NO_MORE_SEARCH_HANDLES
114L ERROR_INVALID_TARGET_HANDLE
117L ERROR_INVALID_CATEGORY
118L ERROR_INVALID_VERIFY_SWITCH
119L ERROR_BAD_DRIVER_LEVEL
120L ERROR_CALL_NOT_IMPLEMENTED
121L ERROR_SEM_TIMEOUT
122L ERROR_INSUFFICIENT_BUFFER
123L ERROR_INVALID_NAME
124L ERROR_INVALID_LEVEL
125L ERROR_NO_VOLUME_LABEL
126L ERROR_MOD_NOT_FOUND
127L ERROR_PROC_NOT_FOUND
128L ERROR_WAIT_NO_CHILDREN
129L ERROR_CHILD_NOT_COMPLETE
130L ERROR_DIRECT_ACCESS_HANDLE
131L ERROR_NEGATIVE_SEEK
132L ERROR_SEEK_ON_DEVICE
133L ERROR_IS_JOIN_TARGET
134L ERROR_IS_JOINED
135L ERROR_IS_SUBSTED
136L ERROR_NOT_JOINED
137L ERROR_NOT_SUBSTED
138L ERROR_JOIN_TO_JOIN
139L ERROR_SUBST_TO_SUBST
140L ERROR_JOIN_TO_SUBST
141L ERROR_SUBST_TO_JOIN
142L ERROR_BUSY_DRIVE
143L ERROR_SAME_DRIVE
144L ERROR_DIR_NOT_ROOT
145L ERROR_DIR_NOT_EMPTY
146L ERROR_IS_SUBST_PATH
147L ERROR_IS_JOIN_PATH
148L ERROR_PATH_BUSY
149L ERROR_IS_SUBST_TARGET
150L ERROR_SYSTEM_TRACE
151L ERROR_INVALID_EVENT_COUNT
152L ERROR_TOO_MANY_MUXWAITERS
153L ERROR_INVALID_LIST_FORMAT
154L ERROR_LABEL_TOO_LONG
155L ERROR_TOO_MANY_TCBS
156L ERROR_SIGNAL_REFUSED
157L ERROR_DISCARDED
158L ERROR_NOT_LOCKED
159L ERROR_BAD_THREADID_ADDR
160L ERROR_BAD_ARGUMENTS
161L ERROR_BAD_PATHNAME
162L ERROR_SIGNAL_PENDING
164L ERROR_MAX_THRDS_REACHED
167L ERROR_LOCK_FAILED
170L ERROR_BUSY
173L ERROR_CANCEL_VIOLATION
174L ERROR_ATOMIC_LOCKS_NOT_SUPPORTED
180L ERROR_INVALID_SEGMENT_NUMBER
182L ERROR_INVALID_ORDINAL
183L ERROR_ALREADY_EXISTS
186L ERROR_INVALID_FLAG_NUMBER
187L ERROR_SEM_NOT_FOUND
188L ERROR_INVALID_STARTING_CODESEG
189L ERROR_INVALID_STACKSEG
190L ERROR_INVALID_MODULETYPE
191L ERROR_INVALID_EXE_SIGNATURE
192L ERROR_EXE_MARKED_INVALID
193L ERROR_BAD_EXE_FORMAT
194L ERROR_ITERATED_DATA_EXCEEDS_64k
195L ERROR_INVALID_MINALLOCSIZE
196L ERROR_DYNLINK_FROM_INVALID_RING
197L ERROR_IOPL_NOT_ENABLED
198L ERROR_INVALID_SEGDPL
199L ERROR_AUTODATASEG_EXCEEDS_64k
200L ERROR_RING2SEG_MUST_BE_MOVABLE
201L ERROR_RELOC_CHAIN_XEEDS_SEGLIM
202L ERROR_INFLOOP_IN_RELOC_CHAIN
203L ERROR_ENVVAR_NOT_FOUND
205L ERROR_NO_SIGNAL_SENT
206L ERROR_FILENAME_EXCED_RANGE
207L ERROR_RING2_STACK_IN_USE
208L ERROR_META_EXPANSION_TOO_LONG
209L ERROR_INVALID_SIGNAL_NUMBER
210L ERROR_THREAD_1_INACTIVE
212L ERROR_LOCKED
214L ERROR_TOO_MANY_MODULES
215L ERROR_NESTING_NOT_ALLOWED
230L ERROR_BAD_PIPE
231L ERROR_PIPE_BUSY
232L ERROR_NO_DATA
233L ERROR_PIPE_NOT_CONNECTED
234L ERROR_MORE_DATA
240L ERROR_VC_DISCONNECTED
254L ERROR_INVALID_EA_NAME
255L ERROR_EA_LIST_INCONSISTENT
259L ERROR_NO_MORE_ITEMS
266L ERROR_CANNOT_COPY
267L ERROR_DIRECTORY
275L ERROR_EAS_DIDNT_FIT
276L ERROR_EA_FILE_CORRUPT
277L ERROR_EA_TABLE_FULL
278L ERROR_INVALID_EA_HANDLE
282L ERROR_EAS_NOT_SUPPORTED
288L ERROR_NOT_OWNER
298L ERROR_TOO_MANY_POSTS
299L ERROR_PARTIAL_COPY
317L ERROR_MR_MID_NOT_FOUND
487L ERROR_INVALID_ADDRESS
534L ERROR_ARITHMETIC_OVERFLOW
535L ERROR_PIPE_CONNECTED
536L ERROR_PIPE_LISTENING
994L ERROR_EA_ACCESS_DENIED
995L ERROR_OPERATION_ABORTED
996L ERROR_IO_INCOMPLETE
997L ERROR_IO_PENDING
998L ERROR_NOACCESS
999L ERROR_SWAPERROR
1001LERROR_STACK_OVERFLOW
1002LERROR_INVALID_MESSAGE
1003LERROR_CAN_NOT_COMPLETE
1004LERROR_INVALID_FLAGS
1005LERROR_UNRECOGNIZED_VOLUME
1006LERROR_FILE_INVALID
1007LERROR_FULLSCREEN_MODE
1008LERROR_NO_TOKEN
1009LERROR_BADDB
1010LERROR_BADKEY
1011LERROR_CANTOPEN
1012LERROR_CANTREAD
1013LERROR_CANTWRITE
1014LERROR_REGISTRY_RECOVERED
1015LERROR_REGISTRY_CORRUPT
1016LERROR_REGISTRY_IO_FAILED
1017LERROR_NOT_REGISTRY_FILE
1018LERROR_KEY_DELETED
1019LERROR_NO_LOG_SPACE
1020LERROR_KEY_HAS_CHILDREN
1021LERROR_CHILD_MUST_BE_VOLATILE
1022LERROR_NOTIFY_ENUM_DIR
1051LERROR_DEPENDENT_SERVICES_RUNNING
1052LERROR_INVALID_SERVICE_CONTROL
1053LERROR_SERVICE_REQUEST_TIMEOUT
1054LERROR_SERVICE_NO_THREAD
1055LERROR_SERVICE_DATABASE_LOCKED
1056LERROR_SERVICE_ALREADY_RUNNING
1057LERROR_INVALID_SERVICE_ACCOUNT
1058LERROR_SERVICE_DISABLED
1059LERROR_CIRCULAR_DEPENDENCY
1060LERROR_SERVICE_DOES_NOT_EXIST
1061LERROR_SERVICE_CANNOT_ACCEPT_CTRL
1062LERROR_SERVICE_NOT_ACTIVE
1063LERROR_FAILED_SERVICE_CONTROLLER_CONNECT
1064LERROR_EXCEPTION_IN_SERVICE
1065LERROR_DATABASE_DOES_NOT_EXIST
1066LERROR_SERVICE_SPECIFIC_ERROR
1067LERROR_PROCESS_ABORTED
1068LERROR_SERVICE_DEPENDENCY_FAIL
1069LERROR_SERVICE_LOGON_FAILED
1070LERROR_SERVICE_START_HANG
1071LERROR_INVALID_SERVICE_LOCK
1072LERROR_SERVICE_MARKED_FOR_DELETE
1073LERROR_SERVICE_EXISTS
1074LERROR_ALREADY_RUNNING_LKG
1075LERROR_SERVICE_DEPENDENCY_DELETED
1076LERROR_BOOT_ALREADY_ACCEPTED
1077LERROR_SERVICE_NEVER_STARTED
1078LERROR_DUPLICATE_SERVICE_NAME
1079LERROR_DIFFERENT_SERVICE_ACCOUNT
1100LERROR_END_OF_MEDIA
1101LERROR_FILEMARK_DETECTED
1102LERROR_BEGINNING_OF_MEDIA
1103LERROR_SETMARK_DETECTED
1104LERROR_NO_DATA_DETECTED
1105LERROR_PARTITION_FAILURE
1106LERROR_INVALID_BLOCK_LENGTH
1107LERROR_DEVICE_NOT_PARTITIONED
1108LERROR_UNABLE_TO_LOCK_MEDIA
1109LERROR_UNABLE_TO_UNLOAD_MEDIA
1110LERROR_MEDIA_CHANGED
1111LERROR_BUS_RESET
1112LERROR_NO_MEDIA_IN_DRIVE
1113LERROR_NO_UNICODE_TRANSLATION
1114LERROR_DLL_INIT_FAILED
1115LERROR_SHUTDOWN_IN_PROGRESS
1116LERROR_NO_SHUTDOWN_IN_PROGRESS
1117LERROR_IO_DEVICE
1118LERROR_SERIAL_NO_DEVICE
1119LERROR_IRQ_BUSY
1120LERROR_MORE_WRITES
1121LERROR_COUNTER_TIMEOUT
1122LERROR_FLOPPY_ID_MARK_NOT_FOUND
1123LERROR_FLOPPY_WRONG_CYLINDER
1124LERROR_FLOPPY_UNKNOWN_ERROR
1125LERROR_FLOPPY_BAD_REGISTERS
1126LERROR_DISK_RECALIBRATE_FAILED
1127LERROR_DISK_OPERATION_FAILED
1128LERROR_DISK_RESET_FAILED
1129LERROR_EOM_OVERFLOW
1130LERROR_NOT_ENOUGH_SERVER_MEMORY
1131LERROR_POSSIBLE_DEADLOCK
1132LERROR_MAPPED_ALIGNMENT
1140LERROR_SET_POWER_STATE_VETOED
1141LERROR_SET_POWER_STATE_FAILED
1142LERROR_TOO_MANY_LINKS
1150LERROR_OLD_WIN_VERSION
1151LERROR_APP_WRONG_OS
1152LERROR_SINGLE_INSTANCE_APP
1153LERROR_RMODE_APP
1154LERROR_INVALID_DLL
1155LERROR_NO_ASSOCIATION
1156LERROR_DDE_FAIL
1157LERROR_DLL_NOT_FOUND
1200LERROR_BAD_DEVICE
1201LERROR_CONNECTION_UNAVAIL
1202LERROR_DEVICE_ALREADY_REMEMBERED
1203LERROR_NO_NET_OR_BAD_PATH
1204LERROR_BAD_PROVIDER
1205LERROR_CANNOT_OPEN_PROFILE
1206LERROR_BAD_PROFILE
1207LERROR_NOT_CONTAINER
1208LERROR_EXTENDED_ERROR
1209LERROR_INVALID_GROUPNAME
1210LERROR_INVALID_COMPUTERNAME
1211LERROR_INVALID_EVENTNAME
1212LERROR_INVALID_DOMAINNAME
1213LERROR_INVALID_SERVICENAME
1214LERROR_INVALID_NETNAME
1215LERROR_INVALID_SHARENAME
1216LERROR_INVALID_PASSWORDNAME
1217LERROR_INVALID_MESSAGENAME
1218LERROR_INVALID_MESSAGEDEST
1219LERROR_SESSION_CREDENTIAL_CONFLICT
1220LERROR_REMOTE_SESSION_LIMIT_EXCEEDED
1221LERROR_DUP_DOMAINNAME
1222LERROR_NO_NETWORK
1223LERROR_CANCELLED
1224LERROR_USER_MAPPED_FILE
1225LERROR_CONNECTION_REFUSED
1226LERROR_GRACEFUL_DISCONNECT
1227LERROR_ADDRESS_ALREADY_ASSOCIATED
1228LERROR_ADDRESS_NOT_ASSOCIATED
1229LERROR_CONNECTION_INVALID
1230LERROR_CONNECTION_ACTIVE
1231LERROR_NETWORK_UNREACHABLE
1232LERROR_HOST_UNREACHABLE
1233LERROR_PROTOCOL_UNREACHABLE
1234LERROR_PORT_UNREACHABLE
1235LERROR_REQUEST_ABORTED
1236LERROR_CONNECTION_ABORTED
1237LERROR_RETRY
1238LERROR_CONNECTION_COUNT_LIMIT
1239LERROR_LOGIN_TIME_RESTRICTION
1240LERROR_LOGIN_WKSTA_RESTRICTION
1241LERROR_INCORRECT_ADDRESS
1242LERROR_ALREADY_REGISTERED
1243LERROR_SERVICE_NOT_FOUND
1244LERROR_NOT_AUTHENTICATED
1245LERROR_NOT_LOGGED_ON
1246LERROR_CONTINUE
1247LERROR_ALREADY_INITIALIZED
1248LERROR_NO_MORE_DEVICES
1300LERROR_NOT_ALL_ASSIGNED
1301LERROR_SOME_NOT_MAPPED
1302LERROR_NO_QUOTAS_FOR_ACCOUNT
1303LERROR_LOCAL_USER_SESSION_KEY
1304LERROR_NULL_LM_PASSWORD
1305LERROR_UNKNOWN_REVISION
1306LERROR_REVISION_MISMATCH
1307LERROR_INVALID_OWNER
1308LERROR_INVALID_PRIMARY_GROUP
1309LERROR_NO_IMPERSONATION_TOKEN
1310LERROR_CANT_DISABLE_MANDATORY
1311LERROR_NO_LOGON_SERVERS
1312LERROR_NO_SUCH_LOGON_SESSION
1313LERROR_NO_SUCH_PRIVILEGE
1314LERROR_PRIVILEGE_NOT_HELD
1315LERROR_INVALID_ACCOUNT_NAME
1316LERROR_USER_EXISTS
1317LERROR_NO_SUCH_USER
1318LERROR_GROUP_EXISTS
1319LERROR_NO_SUCH_GROUP
1320LERROR_MEMBER_IN_GROUP
1321LERROR_MEMBER_NOT_IN_GROUP
1322LERROR_LAST_ADMIN
1323LERROR_WRONG_PASSWORD
1324LERROR_ILL_FORMED_PASSWORD
1325LERROR_PASSWORD_RESTRICTION
1326LERROR_LOGON_FAILURE
1327LERROR_ACCOUNT_RESTRICTION
1328LERROR_INVALID_LOGON_HOURS
1329LERROR_INVALID_WORKSTATION
1330LERROR_PASSWORD_EXPIRED
1331LERROR_ACCOUNT_DISABLED
1332LERROR_NONE_MAPPED
1333LERROR_TOO_MANY_LUIDS_REQUESTED
1334LERROR_LUIDS_EXHAUSTED
1335LERROR_INVALID_SUB_AUTHORITY
1336LERROR_INVALID_ACL
1337LERROR_INVALID_SID
1338LERROR_INVALID_SECURITY_DESCR
1340LERROR_BAD_INHERITANCE_ACL
1341LERROR_SERVER_DISABLED
1342LERROR_SERVER_NOT_DISABLED
1343LERROR_INVALID_ID_AUTHORITY
1344LERROR_ALLOTTED_SPACE_EXCEEDED
1345LERROR_INVALID_GROUP_ATTRIBUTES
1346LERROR_BAD_IMPERSONATION_LEVEL
1347LERROR_CANT_OPEN_ANONYMOUS
1348LERROR_BAD_VALIDATION_CLASS
1349LERROR_BAD_TOKEN_TYPE
1350LERROR_NO_SECURITY_ON_OBJECT
1351LERROR_CANT_ACCESS_DOMAIN_INFO
1352LERROR_INVALID_SERVER_STATE
1353LERROR_INVALID_DOMAIN_STATE
1354LERROR_INVALID_DOMAIN_ROLE
1355LERROR_NO_SUCH_DOMAIN
1356LERROR_DOMAIN_EXISTS
1357LERROR_DOMAIN_LIMIT_EXCEEDED
1358LERROR_INTERNAL_DB_CORRUPTION
1359LERROR_INTERNAL_ERROR
1360LERROR_GENERIC_NOT_MAPPED
1361LERROR_BAD_DESCRIPTOR_FORMAT
1362LERROR_NOT_LOGON_PROCESS
1363LERROR_LOGON_SESSION_EXISTS
1364LERROR_NO_SUCH_PACKAGE
1365LERROR_BAD_LOGON_SESSION_STATE
1366LERROR_LOGON_SESSION_COLLISION
1367LERROR_INVALID_LOGON_TYPE
1368LERROR_CANNOT_IMPERSONATE
1369LERROR_RXACT_INVALID_STATE
1370LERROR_RXACT_COMMIT_FAILURE
1371LERROR_SPECIAL_ACCOUNT
1372LERROR_SPECIAL_GROUP
1373LERROR_SPECIAL_USER
1374LERROR_MEMBERS_PRIMARY_GROUP
1375LERROR_TOKEN_ALREADY_IN_USE
1376LERROR_NO_SUCH_ALIAS
1377LERROR_MEMBER_NOT_IN_ALIAS
1378LERROR_MEMBER_IN_ALIAS
1379LERROR_ALIAS_EXISTS
1380LERROR_LOGON_NOT_GRANTED
1381LERROR_TOO_MANY_SECRETS
1382LERROR_SECRET_TOO_LONG
1383LERROR_INTERNAL_DB_ERROR
1384LERROR_TOO_MANY_CONTEXT_IDS
1385LERROR_LOGON_TYPE_NOT_GRANTED
1386LERROR_NT_CROSS_ENCRYPTION_REQUIRED
1387LERROR_NO_SUCH_MEMBER
1388LERROR_INVALID_MEMBER
1389LERROR_TOO_MANY_SIDS
1390LERROR_LM_CROSS_ENCRYPTION_REQUIRED
1391LERROR_NO_INHERITANCE
1392LERROR_FILE_CORRUPT
1393LERROR_DISK_CORRUPT
1394LERROR_NO_USER_SESSION_KEY
1395LERROR_LICENSE_QUOTA_EXCEEDED
1400LERROR_INVALID_WINDOW_HANDLE
1401LERROR_INVALID_MENU_HANDLE
1402LERROR_INVALID_CURSOR_HANDLE
1403LERROR_INVALID_ACCEL_HANDLE
1404LERROR_INVALID_HOOK_HANDLE
1405LERROR_INVALID_DWP_HANDLE
1406LERROR_TLW_WITH_WSCHILD
1407LERROR_CANNOT_FIND_WND_CLASS
1408LERROR_WINDOW_OF_OTHER_THREAD
1409LERROR_HOTKEY_ALREADY_REGISTERED
1410LERROR_CLASS_ALREADY_EXISTS
1411LERROR_CLASS_DOES_NOT_EXIST
1412LERROR_CLASS_HAS_WINDOWS
1413LERROR_INVALID_INDEX
1414LERROR_INVALID_ICON_HANDLE
1415LERROR_PRIVATE_DIALOG_INDEX
1416LERROR_LISTBOX_ID_NOT_FOUND
1417LERROR_NO_WILDCARD_CHARACTERS
1418LERROR_CLIPBOARD_NOT_OPEN
1419LERROR_HOTKEY_NOT_REGISTERED
1420LERROR_WINDOW_NOT_DIALOG
1421LERROR_CONTROL_ID_NOT_FOUND
1422LERROR_INVALID_COMBOBOX_MESSAGE
1423LERROR_WINDOW_NOT_COMBOBOX
1424LERROR_INVALID_EDIT_HEIGHT
1425LERROR_DC_NOT_FOUND
1426LERROR_INVALID_HOOK_FILTER
1427LERROR_INVALID_FILTER_PROC
1428LERROR_HOOK_NEEDS_HMOD
1429LERROR_GLOBAL_ONLY_HOOK
1430LERROR_JOURNAL_HOOK_SET
1431LERROR_HOOK_NOT_INSTALLED
1432LERROR_INVALID_LB_MESSAGE
1433LERROR_SETCOUNT_ON_BAD_LB
1434LERROR_LB_WITHOUT_TABSTOPS
1435LERROR_DESTROY_OBJECT_OF_OTHER_THREAD
1436LERROR_CHILD_WINDOW_MENU
1437LERROR_NO_SYSTEM_MENU
1438LERROR_INVALID_MSGBOX_STYLE
1439LERROR_INVALID_SPI_VALUE
1440LERROR_SCREEN_ALREADY_LOCKED
1441LERROR_HWNDS_HAVE_DIFFERENT_PARENT
1442LERROR_NOT_CHILD_WINDOW
1443LERROR_INVALID_GW_COMMAND
1444LERROR_INVALID_THREAD_ID
1445LERROR_NON_MDICHILD_WINDOW
1446LERROR_POPUP_ALREADY_ACTIVE
1447LERROR_NO_SCROLLBARS
1448LERROR_INVALID_SCROLLBAR_RANGE
1449LERROR_INVALID_SHOWWIN_COMMAND
1450LERROR_NO_SYSTEM_RESOURCES
1451LERROR_NONPAGED_SYSTEM_RESOURCES
1452LERROR_PAGED_SYSTEM_RESOURCES
1453LERROR_WORKING_SET_QUOTA
1454LERROR_PAGEFILE_QUOTA
1455LERROR_COMMITMENT_LIMIT
1456LERROR_MENU_ITEM_NOT_FOUND
1457LERROR_INVALID_KEYBOARD_HANDLE
1458LERROR_HOOK_TYPE_NOT_ALLOWED
1500LERROR_EVENTLOG_FILE_CORRUPT
1501LERROR_EVENTLOG_CANT_START
1502LERROR_LOG_FILE_FULL
1503LERROR_EVENTLOG_FILE_CHANGED
1700LRPC_S_INVALID_STRING_BINDING
1701LRPC_S_WRONG_KIND_OF_BINDING
1702LRPC_S_INVALID_BINDING
1703LRPC_S_PROTSEQ_NOT_SUPPORTED
1704LRPC_S_INVALID_RPC_PROTSEQ
1705LRPC_S_INVALID_STRING_UUID
1706LRPC_S_INVALID_ENDPOINT_FORMAT
1707LRPC_S_INVALID_NET_ADDR
1708LRPC_S_NO_ENDPOINT_FOUND
1709LRPC_S_INVALID_TIMEOUT
1710LRPC_S_OBJECT_NOT_FOUND
1711LRPC_S_ALREADY_REGISTERED
1712LRPC_S_TYPE_ALREADY_REGISTERED
1713LRPC_S_ALREADY_LISTENING
1714LRPC_S_NO_PROTSEQS_REGISTERED
1715LRPC_S_NOT_LISTENING
1716LRPC_S_UNKNOWN_MGR_TYPE
1717LRPC_S_UNKNOWN_IF
1718LRPC_S_NO_BINDINGS
1719LRPC_S_NO_PROTSEQS
1720LRPC_S_CANT_CREATE_ENDPOINT
1721LRPC_S_OUT_OF_RESOURCES
1722LRPC_S_SERVER_UNAVAILABLE
1723LRPC_S_SERVER_TOO_BUSY
1724LRPC_S_INVALID_NETWORK_OPTIONS
1725LRPC_S_NO_CALL_ACTIVE
1726LRPC_S_CALL_FAILED
1727LRPC_S_CALL_FAILED_DNE
1728LRPC_S_PROTOCOL_ERROR
1730LRPC_S_UNSUPPORTED_TRANS_SYN
1731LRPC_S_SERVER_OUT_OF_MEMORY
1732LRPC_S_UNSUPPORTED_TYPE
1733LRPC_S_INVALID_TAG
1734LRPC_S_INVALID_BOUND
1735LRPC_S_NO_ENTRY_NAME
1736LRPC_S_INVALID_NAME_SYNTAX
1737LRPC_S_UNSUPPORTED_NAME_SYNTAX
1739LRPC_S_UUID_NO_ADDRESS
1740LRPC_S_DUPLICATE_ENDPOINT
1741LRPC_S_UNKNOWN_AUTHN_TYPE
1742LRPC_S_MAX_CALLS_TOO_SMALL
1743LRPC_S_STRING_TOO_LONG
1744LRPC_S_PROTSEQ_NOT_FOUND
1745LRPC_S_PROCNUM_OUT_OF_RANGE
1746LRPC_S_BINDING_HAS_NO_AUTH
1747LRPC_S_UNKNOWN_AUTHN_SERVICE
1748LRPC_S_UNKNOWN_AUTHN_LEVEL
1749LRPC_S_INVALID_AUTH_IDENTITY
1750LRPC_S_UNKNOWN_AUTHZ_SERVICE
1751LEPT_S_INVALID_ENTRY
1752LEPT_S_CANT_PERFORM_OP
1753LEPT_S_NOT_REGISTERED
1755LRPC_S_INCOMPLETE_NAME
1756LRPC_S_INVALID_VERS_OPTION
1757LRPC_S_NO_MORE_MEMBERS
1758LRPC_S_NOT_ALL_OBJS_UNEXPORTED
1759LRPC_S_INTERFACE_NOT_FOUND
1760LRPC_S_ENTRY_ALREADY_EXISTS
1761LRPC_S_ENTRY_NOT_FOUND
1762LRPC_S_NAME_SERVICE_UNAVAILABLE
1764LRPC_S_CANNOT_SUPPORT
1765LRPC_S_NO_CONTEXT_AVAILABLE
1766LRPC_S_INTERNAL_ERROR
1767LRPC_S_ZERO_DIVIDE
1768LRPC_S_ADDRESS_ERROR
1769LRPC_S_FP_DIV_ZERO
1770LRPC_S_FP_UNDERFLOW
1771LRPC_S_FP_OVERFLOW
1772LRPC_X_NO_MORE_ENTRIES
1773LRPC_X_SS_CHAR_TRANS_OPEN_FAIL
1774LRPC_X_SS_CHAR_TRANS_SHORT_FILE
1775LRPC_X_SS_IN_NULL_CONTEXT
1776LRPC_X_SS_CONTEXT_MISMATCH
1777LRPC_X_SS_CONTEXT_DAMAGED
1778LRPC_X_SS_HANDLES_MISMATCH
1779LRPC_X_SS_CANNOT_GET_CALL_HANDLE
1780LRPC_X_NULL_REF_POINTER
1781LRPC_X_ENUM_VALUE_OUT_OF_RANGE
1782LRPC_X_BYTE_COUNT_TOO_SMALL
1783LRPC_X_BAD_STUB_DATA
1784LERROR_INVALID_USER_BUFFER
1785LERROR_UNRECOGNIZED_MEDIA
1786LERROR_NO_TRUST_LSA_SECRET
1787LERROR_NO_TRUST_SAM_ACCOUNT
1788LERROR_TRUSTED_DOMAIN_FAILURE
1789LERROR_TRUSTED_RELATIONSHIP_FAILURE
1790LERROR_TRUST_FAILURE
1791LRPC_S_CALL_IN_PROGRESS
1792LERROR_NETLOGON_NOT_STARTED
1793LERROR_ACCOUNT_EXPIRED
1794LERROR_REDIRECTOR_HAS_OPEN_HANDLES
1795LERROR_PRINTER_DRIVER_ALREADY_INSTALLED
1796LERROR_UNKNOWN_PORT
1797LERROR_UNKNOWN_PRINTER_DRIVER
1798LERROR_UNKNOWN_PRINTPROCESSOR
1799LERROR_INVALID_SEPARATOR_FILE
1800LERROR_INVALID_PRIORITY
1801LERROR_INVALID_PRINTER_NAME
1802LERROR_PRINTER_ALREADY_EXISTS
1803LERROR_INVALID_PRINTER_COMMAND
1804LERROR_INVALID_DATATYPE
1805LERROR_INVALID_ENVIRONMENT
1806LRPC_S_NO_MORE_BINDINGS
1807LERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT
1808LERROR_NOLOGON_WORKSTATION_TRUST_ACCOUNT
1809LERROR_NOLOGON_SERVER_TRUST_ACCOUNT
1810LERROR_DOMAIN_TRUST_INCONSISTENT
1811LERROR_SERVER_HAS_OPEN_HANDLES
1812LERROR_RESOURCE_DATA_NOT_FOUND
1813LERROR_RESOURCE_TYPE_NOT_FOUND
1814LERROR_RESOURCE_NAME_NOT_FOUND
1815LERROR_RESOURCE_LANG_NOT_FOUND
1816LERROR_NOT_ENOUGH_QUOTA
1817LRPC_S_NO_INTERFACES
1818LRPC_S_CALL_CANCELLED
1819LRPC_S_BINDING_INCOMPLETE
1820LRPC_S_COMM_FAILURE
1821LRPC_S_UNSUPPORTED_AUTHN_LEVEL
1822LRPC_S_NO_PRINC_NAME
1823LRPC_S_NOT_RPC_ERROR
1824LRPC_S_UUID_LOCAL_ONLY
1825LRPC_S_SEC_PKG_ERROR
1826LRPC_S_NOT_CANCELLED
1827LRPC_X_INVALID_ES_ACTION
1828LRPC_X_WRONG_ES_VERSION
1829LRPC_X_WRONG_STUB_VERSION
1830LRPC_X_INVALID_PIPE_OBJECT
1831LRPC_X_INVALID_PIPE_OPERATION
1832LRPC_X_WRONG_PIPE_VERSION
1898LRPC_S_GROUP_MEMBER_NOT_FOUND
1899LEPT_S_CANT_CREATE
1900LRPC_S_INVALID_OBJECT
1901LERROR_INVALID_TIME
1902LERROR_INVALID_FORM_NAME
1903LERROR_INVALID_FORM_SIZE
1904LERROR_ALREADY_WAITING
1905LERROR_PRINTER_DELETED
1906LERROR_INVALID_PRINTER_STATE
1907LERROR_PASSWORD_MUST_CHANGE
1908LERROR_DOMAIN_CONTROLLER_NOT_FOUND
1909LERROR_ACCOUNT_LOCKED_OUT
1910LOR_INVALID_OXID
1911LOR_INVALID_OID
1912LOR_INVALID_SET
1913LRPC_S_SEND_INCOMPLETE
2000LERROR_INVALID_PIXEL_FORMAT
2001LERROR_BAD_DRIVER
2002LERROR_INVALID_WINDOW_STYLE
2003LERROR_METAFILE_NOT_SUPPORTED
2004LERROR_TRANSFORM_NOT_SUPPORTED
2005LERROR_CLIPPING_NOT_SUPPORTED
2138LERROR_NO_NETWORK
2202LERROR_BAD_USERNAME
2250LERROR_NOT_CONNECTED
2401LERROR_OPEN_FILES
2402LERROR_ACTIVE_CONNECTIONS
2404LERROR_DEVICE_IN_USE
3000LERROR_UNKNOWN_PRINT_MONITOR
3001LERROR_PRINTER_DRIVER_IN_USE
3002LERROR_SPOOL_FILE_NOT_FOUND
3003LERROR_SPL_NO_STARTDOC
3004LERROR_SPL_NO_ADDJOB
3005LERROR_PRINT_PROCESSOR_ALREADY_INSTALLED
3006LERROR_PRINT_MONITOR_ALREADY_INSTALLED
3007LERROR_INVALID_PRINT_MONITOR
3008LERROR_PRINT_MONITOR_IN_USE
3009LERROR_PRINTER_HAS_JOBS_QUEUED
3010LERROR_SUCCESS_REBOOT_REQUIRED
3011LERROR_SUCCESS_RESTART_REQUIRED
4000LERROR_WINS_INTERNAL
4001LERROR_CAN_NOT_DEL_LOCAL_WINS
4002LERROR_STATIC_INIT
4003LERROR_INC_BACKUP
4004LERROR_FULL_BACKUP
4005LERROR_REC_NON_EXISTENT
4006LERROR_RPL_NOT_ALLOWED
6118LERROR_NO_BROWSER_SERVERS_FOUND

A

ABC width
The amount of spacing required for a single glyph in a font. "A" spacing is added to the
current position before drawing the glyph. "B" spacing is the width of the black part of the
glyph. "C" spacing is added to the current position to account for the white space to the right
of the glyph. The total advanced width is given by A+B+C. See also glyph.

absolute security descriptorA security descriptor structure that contains pointers to the security information associated
with an object. See also security descriptor, self-relative security descriptor.

accelerator tableAn array of ACCEL data structures, each of which defines a keyboard accelerator. See also
keyboard accelerator.

access-control entry (ACE)An entry in an access-control list (ACL). An access-control entry contains a security identifier
and may also contain a set of access rights. Access-control entries are used to grant or deny
access to a user or group and to audit the access attempts of a user or group. See also
access-control list (ACL), security identifier (SID).

access-control list (ACL)A list of security protections that applies to an object. (An object can be a file, process, event,
or anything else having a security descriptor.) An entry in an access-control list (ACL) is an
access-control entry (ACE). There are two types of access-control list: discretionary and
system. See also access-control entry (ACE), discretionary access-control list (DACL),
security descriptor, system access-control list (SACL).

access maskA 32-bit value that specifies the rights that are granted or denied in an access-control entry
(ACE). An access mask is also used to request access rights when an object is opened. See
also access-control entry (ACE).

access timeThe last time a file was written to, read from, or run, if the file is executable.

access tokenA group of security attributes permanently attached to a process when a user logs on to the
operating system. An access token contains privileges and security identifiers for a user,
global group, or local group. The privileges regulate the use of some system services and the
security identifiers regulate access to objects that are protected by access-control lists (ACLs)
. There are two kinds of access token: primary and impersonation. See also impersonation
token, primary token, privilege, process, security identifier (SID).

ACESee access-control entry (ACE).

ACLSee access-control list (ACL).

active screen bufferThe screen buffer that is currently displayed in a console's window.

active windowA top-level window of the application with which the user is working. Windows identifies the
active window by positioning it at the top of the Z order and highlighting its title bar and
border. See also window.

Adaptive Differential Pulse Code Modulation (ADPCM)An audio-compression technique.

additive color technologyThe color technology, used by video displays, that is based on the three primary colors red,
green, and blue (RGB). Other colors (except black) are a combination of two or more of the
primaries in varying amounts. Black is defined as the absence of the primaries.

ADPCMSee Adaptive Differential Pulse Code Modulation (ADPCM).

alertable wait(1) A wait operation initiated when a thread calls either the WaitForSingleObjectEx,
WaitForMultipleObjectsEx, or SleepEx function with the function's fAlertable flag set to
TRUE. In an alertable wait, the wait function returns when a ReadFileEx or WriteFileEx
function completion routine is queued for execution.

(2) A wait function operation in which the function can return when the specified conditions
are satisfied, or when the system queues a completion routine for execution by the waiting
thread. See also completion routine, wait function.

animationThe display of a series of graphic images that simulates motion. Animation can be frame
based or cast based.

anonymous pipeAn unnamed, one-way pipe that transfers data between a parent and child process, or
between two child processes of the same parent process. An anonymous pipe is created by
the CreatePipe function that returns two handles (one to the read end and one to the write
end of the pipe). The creating parent process controls whether these handles are inherited by
its child processes. See also child process, handle, parent process, pipe.

application-defined controlA control belonging to a window class supplied by an application.

application-defined resourceA resource whose format is defined and recognized by a specific application. See also
custom resource.

associationThe process of matching a filename extension with a specific application. When an extension
and an application have been associated, applications can use the association to find and
start other applications or to open and print files.

asynchronous input and output (I/O)A type of I/O in which some file I/O functions return immediately, even though an I/O request
is still pending. This enables an application to continue with other processing and wait for the
I/O to finish at a later time. See also overlapped input and output (I/O).

asynchronous procedure call (APC)A function that executes asynchronously in the context of a particular thread. When an APC
is queued to a thread, the system issues a software interrupt. The next time the thread is
scheduled, it will run the APC. APCs made by the system are called "kernel-mode APCs."
APCs made by an application are called "user-mode APCs." A thread must be in an alertable
state to run a user-mode APC.

asynchronous task handleThe handle returned by the WSAAsyncGetXByY routines. This handle is used to identify the
outstanding operation and allow the application to cancel it if needed.

atomAn integer that identifies a character string in an atom table.

atom nameThe character string identified by an atom.

atom tableA table, defined by the operating system, that stores character strings and their associated
atoms. A global atom table is available to all applications. A local atom table can be used only
by the application that created it.

attributeA characteristic of a file. The six Windows file attributes indicate whether a file is read only,
hidden, system, archived, a directory, or normal. See also directory.

auto-reset event objectSee event object.

auxiliary audio deviceAudio devices whose output is mixed with the Musical Instrument Digital Interface (MIDI) and
waveform output devices in a multimedia computer. An example of an auxiliary audio device
is the compact disc audio output from a CD-drive.

B

background window
Any window created by a thread other than the foreground thread.

base characterA character followed by a nonspacing character; typically, this is a letter that receives an
accent mark. For example, in the character è, an accented e, the e is the base character. See
also nonspacing character.

base classThe window class an application uses as the starting point when creating a superclass. See
also superclass.

base lineAn imaginary line where the capital letters for a given font rest. See also font.

base priorityA thread priority value that provides the basis for calculating the thread's dynamic priority.
This value is set to one of the five levels within the priority class of the thread's process. The
scheduler can temporarily boost the priority of a thread, but it cannot reduce it below this
base. See also dynamic priority, priority class, process, thread.

basic challenge protocolA security mechanism that all LSAPI-compliant license systems support. It requires
independent maintenance of a minimum of four secret values by both the licensed application
and the license server, and mutual authentication of one value before the license server
grants licensing resources. See also License Service Application Programming Interface
(LSAPI), MD4 Message-Digest Algorithm, secret.

beginning-of-medium markerThe position on a tape where you can begin recording data.

beginning-of-partition markerThe position in a partition where you can begin recording data. If there is only one partition,
this position is usually equivalent to the beginning-of-medium marker.

Bezier splineAn irregular curve defined by four points: two endpoints and two control points. The endpoints
determine where the curve begins and ends. The control points determine the shape of the
curve; however, unlike the endpoints, the control points do not intersect the curve.

bit countThe number of bits of data in a color plane that represent a single pixel. See also pixel.

bitmapAn array of bits that contains data that describes the colors found in a rectangular region on
the screen (or the rectangular region found on a page of printer paper). See also rectangular
region.

bitmapped imageA rectangular image on a video display (or page of printer paper) represented by the color
data in a bitmap.

blink timeThe elapsed time, in milliseconds, required to invert the caret display. This value is half of the
flash time. See also caret, flash time.

blocking input and output (I/O)A wait mode for I/O operations on a named pipe where functions wait for a process on the
other end of the pipe to perform an action. In nonblocking wait mode, the functions return if
their operations are not finished immediately. See also named pipe, pipe, process.

bottom-up DIBA device-independent bitmap (DIB) whose origin lies at the bottom-left corner. See also top-
down DIB.

bounding rectangleA Windows or graphics device interface (GDI) object. In the case of some GDI objects, the
dimensions of this rectangle are inclusive-exclusive when no world transformation has been
set, and inclusive-inclusive when a world transformation has been set.

break keyIn Media Control Interface (MCI), a keystroke that interrupts a wait operation. By default, MCI
defines this key as ^CTRL+BREAK^. An application can redefine this key by using the
MCI_BREAK command message.

breakpointA location in a process where execution is stopped to allow the developer to examine the
process's code, variables, and register values, and, as necessary, make changes, continue
execution, or terminate execution.

brushA bitmap that is used to fill the interior of closed shapes, polygons, ellipses, and paths. See
also bitmap, ellipse, path, polygon.

brush originA coordinate that specifies the location of one of the pixels in a brush's bitmap. Windows
maps this pixel to the upper left corner of the window that contains the object to be painted.
See also bitmap, pixel, window.

buttonAn element in the Windows user interface that enables a user to provide input to an
application. Buttons are typically used in dialog boxes.

byte-order markA special Unicode character (0xFEFF) that is placed at the beginning of Unicode text files to
indicate that the text is in Unicode format.

byte reversedA Unicode file in which the most significant byte is first (as on Motorola architectures).

byte type pipeA named pipe where data is written as a stream of bytes. See also named pipe.

C

caret
A flashing line, block, or bitmap that marks the location of the insertion point in a window's
client area. See also bitmap.

CD-ROM extended architecture (CD-XA)An extension of the CD-ROM standard that provides for storage of compressed audio data
along with other data on a compact disc. This standard also defines the way data is read from
a disc. Audio signals are combined with text and graphic data on a single track so they can
be read at virtually the same time.

channelA method, provided by Musical Instrument Digital Interface (MIDI), for sending messages to
an individual device within a MIDI setup. There are 16 MIDI channel numbers. Devices in a
MIDI setup can be directed to respond only to messages marked with a channel number
specific to the device.

channel mapA channel map, provided by the MIDI Mapper, that can redirect Musical Instrument Digital
Interface (MIDI) messages from one channel to another. See also MIDI Mapper, Musical
Instrument Digital Interface (MIDI).

character codeA numeric value that represents a particular character in a set, such as the ASCII character
set. See also code page.

character setA mapping of characters to their identifying numeric values. See also multibyte character
set, single-byte character set, Unicode.

character-mode applicationAn application that does not provide its own graphical user interface (GUI). The Win32 API
provides consoles for managing input and output (I/O) for character-mode applications. See
also console.

check boxA square box operated by the user to choose from a set of related but independent options. A
checked check box contains an X. Repeatedly checking a check box toggles it from state to
state. A standard check box has two states: checked and unchecked. A three-state check box
has an additional state: disabled (grayed). In versions of standard and three-state check
boxes, Windows is responsible for changing the state of the check box.

child processA process (child) initiated by another process (the parent). The child process can operate
independently from the parent process. Further, the parent process can suspend or terminate
without affecting the child process. See also parent process.

child windowA window that has the WS_CHILD style. A child window always appears within the client area
of its parent window.

child-window identifierAn application-defined value assigned to a child window. An application that creates multiple
child windows of the same class uses the identifiers to distinguish among the child windows.

chordA region bounded by the intersection of an ellipse and a secant. In Windows, a chord is
outlined by using the current pen and filled by using the current brush. See also ellipse,
secant.

chunkThe basic building block of a Resource Interchange File Format (RIFF) file, consisting of an
identifier (called a chunk identifier), a chunk-size variable, and a chunk data area of variable
size.

class cursorThe default cursor for a window class. The class cursor is specified by the hCursor member
of a WNDCLASS structure. See also cursor.

class iconThe default icon for a window class. The class icon is identified by the hIcon member of a
WNDCLASS structure. See also icon.

class menuThe default menu for a window class. All windows of a given class use the same menu unless
the application specifies a different menu when creating a window of that class. See also
menu, window.

clickTo press and release a mouse button.

client areaThe part of a window where the application displays output such as text or graphics.

client coordinatesCoordinates relative to the upper left corner of a window's client area.

clip pathOne or more irregular shapes in a window's client area where clipped output appears. The
edges of a clip path can be straight lines, Bezier curves, or combinations of the two. See also
irregular shape.

clipboardA set of functions and messages used to transfer information between applications or within
an application.

clipboard formatThe format of data on the clipboard. A window can copy information to the clipboard using
multiple clipboard formats. A clipboard format is identified by a unique unsigned integer value.
See also clipboard, window.

clipboard ownerThe window associated with the information on the clipboard. It is possible for there to be no
clipboard owner. See also clipboard, window.

clipboard viewerA window that displays the contents of the clipboard. See also clipboard, window.

clippingThe process of limiting output to part of the client area in a window. See also window.

clipping regionA polygon or ellipse in a window's client area where clipped output appears. See also ellipse,
polygon.

CMY formatSee cyan, magenta, yellow (CMY) format.

code pageA mapping of characters to 256 8-bit character codes. See also character code.

coherentA description of file views that contain identical data at a given time. File views are coherent if
they are derived from the same file-mapping object.

Color common dialog boxA common dialog box that displays available colors and controls that let the user define a
custom color. See also common dialog box.

color paletteAn array containing the RGB (red, green, blue) values identifying the colors that can currently
be displayed or drawn on the output device. Color palettes are used by devices that are
capable of generating many colors but can only display or draw a subset of these at any
given time.

color planeAn array of bits that represents the red, green, blue, or intensity components for the pixels in
a bitmapped image. See also bitmapped image, pixel.

command itemA menu item that, when chosen, sends a command message to the window procedure of the
window that owns the menu. See also menu item, window.

command messageIn Media Control Interface (MCI), a symbolic constant that represents a unique command for
an MCI device. Command messages have associated data structures that provide
information a device requires to carry out a request.

command stringIn Media Control Interface (MCI), a null-terminated character string that represents a
command for an MCI device. The text string contains all the information that an MCI device
needs to carry out a request. MCI parses the text string and translates it into an equivalent
command message and data structure that it then sends to an MCI device driver.

commentA string of text inserted between records in a metafile. See also metafile.

committed pageA page of memory in a process's virtual address space for which physical storage has been
allocated. The storage is either in RAM or on disk.

common dialog boxA dialog box that an application displays by calling a single function rather than by creating a
dialog box procedure and a resource file containing the dialog box template. See also
resource file.

common display contextThe default display context assigned to a window that does not specify CS_OWNDC or
CS_CLASSDC as the window's class style. See also display context, window.

communications resourceA physical or logical device that provides a single bidirectional, asynchronous data stream.
Serial ports, parallel ports, fax machines, and modems are examples of communications
resources. For each communications resource, there is a service provider, consisting of a
library or driver, that enables applications to access the resource.

compact disc - digital audio (CD-DA)
An optical data-storage format that provides for the storage of up to 73 minutes of high-
quality digital-audio data on a compact disc. Also known as Red Book audio.

compact disc - read-only memory (CD-ROM)
An optical data-storage technology that allows large quantities of data to be stored on a
compact disc.

compatible device context (DC)A virtual-device context that provides a means of storing an image that was created on a
physical screen. (Compatible DCs are sometimes referred to as "memory" DCs.) See also
device context.

completion routineA function specified in a call to either the ReadFileEx or WriteFileEx function. A completion
routine is queued for execution when the read or write operation is finished. The completion
routine is not executed until the thread that called the ReadFileEx and WriteFileEx function
enters an alertable wait. See also alertable wait.

composite characterAn accented character represented by two character values, one for the base character and
another for the nonspacing accent character. See also base character, nonspacing
character, precomposed character.

compound deviceA Media Control Interface (MCI) device that requires a device element, usually a data file. An
example of a compound device is the MCI waveform audio driver. See also device element.

compound fileA number of individual files bound together in one physical file. Each individual file in a
compound file can be accessed as if it were a single physical file.

consoleAn interface that provides input and output to character-mode applications. See also
character-mode application.

console modesSettings associated with a console that determine the behavior of some of its input and output
operations.

console processA character-mode process whose entry point is the main function. A console process uses
the console functions or the file input and output (I/O) functions for I/O, while a graphical user
interface (GUI) process uses the USER/graphic device interface (GDI) functions. See also
process.

console windowA window managed by the system that a console uses to receive input and display output.

containerA network resource that contains other network resources. The contained resources can be
such objects as servers or printers, or containers that can also contain further objects and
containers. See also sharepoint.

context recordA record of the machine state created when an exception occurs. The context record is saved
in a CONTEXT structure.

controlA child window used in conjunction with another window to carry out simple input and output
(I/O) tasks.

control changeSee MIDI control-change message.

control identifierA number that an application uses to uniquely identify a control.

control messageA message sent to a control to request information or perform an action.

control setA set of configurable options for a computer. See also profile.

control styleA value, similar to a window style, that specifies the appearance and behavior of a control.
The window procedure for the control uses the style to determine how to draw the control and
process input.

coordinate spaceA planar space based on the Cartesian coordinate system. This system requires two axes
that are perpendicular and equal in length. There are four coordinate spaces in Windows:
world, page, device, and physical device (client area, or desktop, or page of printer paper).

Coordinated Universal TimeThe standard international time used internally by Windows NT.

cosmetic penA pen with dimensions specified in device units. See also pen.

counterA general term referring to an incrementing variable.

critical sectionAn object used to synchronize the threads of a single process. Only one thread at a time can
own a critical-section object.

current directoryThe directory at the end of the active path. This is the directory where the active application
started, unless explicitly changed. See also directory.

current positionThe starting point for any line-drawing or curve-drawing operations.

current selectionThe portion of a document the user has marked in preparation for carrying out a command.

cursorA small bitmap whose location on the screen is controlled by a pointing device, such as a
mouse, pen, or trackball. See also bitmap.

cursor handleA unique value of the HCURSOR type that identifies a cursor.

custom cursorA cursor designed for use in a specific application.

custom iconAn icon designed for use in a specific application. See also icon.

custom resourceSee application-defined resource.

cyan, magenta, yellow (CMY) formatA color format that identifies a given color with a cyan, magenta, yellow (CMY) format triplet.
This format is used by printers and other ink-based devices.

D

DACL
See discretionary access-control list.

DBCSSee double-byte character set.

DCSee device context.

DDESee dynamic data exchange.

DDE client applicationAn application that requests a conversation with a dynamic data exchange (DDE) server
application, and receives data from the server during the conversation. See also DDE server
application.

DDE conversationThe interaction between a dynamic data exchange (DDE) client and a DDE server
application.

DDE server applicationAn application that provides data to a dynamic data exchange (DDE) client application during
a DDE conversation. See also DDE client application, DDE conversation.

DDE transactionAn exchange of messages or data between a dynamic data exchange (DDE) client
application and a DDE server application. See also DDE client application.

dead keyA key used with another key to create an accented character. A dead key, when pressed,
produces no visible character but indicates that the accent mark it represents is to be
combined with the character produced by the next letter key pressed. See also key.

deadlockA bug where the execution of thread A is blocked indefinitely waiting for thread B to perform
some action, while thread B is blocked waiting for thread A. For example, two threads on
opposite ends of a named pipe can become deadlocked if each thread waits to read data
written by the other thread. A single thread can also deadlock itself. See also named pipe,
thread.

debuggerAn application that enables a developer to observe and correct programming errors by
stepping through an application program, examining data, and checking conditions.

debuggingThe process of observing and correcting logical and syntactical errors in an application.

debugging eventAn event that occurs in a process being debugged that causes the kernel to notify the
debugger. Also, the notification the kernel sends to the debugger. See also debugger,
process.

default color paletteAn array of RGB values identifying the colors that can be used with a device context by
default. Windows associates the default color palette with a context whenever an application
creates a context for a device that supports color palettes. The default color palette ensures
that colors are available for use by an application without requiring additional action by the
application.

default window procedureA system-defined function that provides default processing for messages an application-
defined window procedure does not process. See also window procedure.

desktop wallpaperThe pattern created by the bitmap that the desktop window uses to paint the background of
the screen.

desktop windowA system-defined window that paints the background of the screen and serves as the base
for all windows displayed by all Windows applications.

detached processA console process that does not have access to the console of its parent process. Typically, a
detached process runs in the background, but it can use the AllocConsole function to create
a new console if it needs to print a message to the screen or get input from the user. See also
console process, parent process.

device capabilitiesThe curve-, line-, polygon-, raster-, and text-drawing capabilities of a display or printer.

device contextA data structure defining the graphic objects, their associated attributes, and the graphic
modes affecting output on a device. See also graphic modes, graphic objects.

device coordinate spaceOne of four coordinate spaces used for all graphic device interface (GDI) drawing operations.

device-dependent bitmapAn array of bits that can only be used with a particular display or printer.

device elementData required for operation of Media Control Interface (MCI) compound devices. The device
element is generally an input or output data file.

device-independent bitmap (DIB)An array of bits combined with several structures that specify the width and height of the
bitmapped image (in pixels), the color format of the device where the image was created, and
the resolution of the device used to create that image. See also bitmapped image, pixel.

device typeA class of Media Control Interface (MCI) devices that respond to a common set of
commands.

DIB paletteThe logical color palette created when a device-independent bitmap (DIB) was created. See
also color palette.

DIB pattern-brushA logical brush created from a device-independent bitmap (DIB). See also device-
independent bitmap (DIB), logical brush.

digital differential analyzer (DDA)An algorithm that determines which pixels on a video display (or dots on a printed page) are
part of a line or curve. See also pixel.

directoryAn organizational construct supported by most disk-based operating systems. Rather than
listing all the files on a volume at once, users can create multiple directories to contain groups
of files. Directories can also contain other directories.

disabled windowA window that cannot receive input from keyboard, mouse, or other input device.

discretionary access-control list (DACL)An access-control list that is controlled by the owner of an object and that specifies the
access particular users or groups can have to the object. See also access-control list (ACL)
, system access-control list.

disk driveA physical device that reads from or writes to disks. Disk drives are referenced by letters,
typically A for the first floppy-disk drive, B for the second floppy-disk, C for the first fixed-disk
drive, D for the second fixed-disk drive, and so on. Each drive on an operating system is
assigned a unique letter to distinguish it from other drives.

display contextA special device context that treats each window like a separate screen surface. See also
device context, window.

display driverA Windows dynamic-link library (DLL) that contains functions that process input from the
graphics engine and convert that input into device-specific commands. These commands are
processed by the display adapter. See also dynamic-link library (DLL).

display elementThe parts of a window and the Windows display that appear on the system display screen.

division typeThe technique used to represent the time between Musical Instruments Digital Interface
(MIDI) events in a MIDI sequencer.

DLLSee dynamic-link library (DLL).

domainA group of workstations and servers that share a single group name.

double-byte character set (DBCS)A mapping of characters to their identifying numeric values, in which each value is 2 bytes
wide. Double-byte character sets are sometimes used for languages that have more than 256
characters. For example, a double-byte character set is used to encode Japanese (Kanji)
characters. See also multibyte character set.

double-clickTo press and release a mouse button twice in quick succession.

dragTo move the mouse while holding down a mouse button.

drag-dropTo select one or more files in File Manager, drag them to an open application, and drop them
there.

driver serviceA service that follows the device driver protocols for Windows NT rather than using the
Service Control Manager interface.

drop-down combo boxA combo box, created by using the CBS_DROPDOWN style, containing a drop-down list and
a selection field that can be edited by the user.

drop-down listA list in a combo box that is visible only when it is opened by the user. Combo boxes with the
CBS_DROPDOWN and CBS_DROPDOWNLIST styles contain drop-down lists.

drop-down list boxA combo box, created by using the CBS_DROPDOWNLIST style, containing a drop-down list
and a selection field that cannot be edited by the user. A drop-down list box can be used in
place of a list box when screen space is tight.

due timeThe time at which the state of the waitable timer is to be set to signaled. This value is
specified when the timer is started. A positive value indicates an absolute time. A negative
value indicates a relative time.

dynamic data exchange (DDE)A form of interprocess communications that uses shared memory to exchange data between
applications. Applications can use DDE for one-time data transfers and for ongoing
exchanges in applications that send updates to one another as new data becomes available.

dynamic-link library (DLL)A .DLL file that contains one or more functions compiled, linked, and stored separately from
the processes that use them. The operating system maps the DLLs into the process's
address space when the process is starting up or while it is running. The process then
executes functions in the DLL. See also process.

dynamic priorityA thread priority value used by the scheduler in making scheduling decisions. The value for
each thread can never be lower than the thread's base priority, but it can be raised and then
lowered to enhance responsiveness to input or other significant events. See also base
priority, thread.

E

early-warning position
A physical mark or device-computed position immediately before the end-of-partition marker.

edit controlAn element of the Windows user interface that allows the user to enter and edit text. Edit
controls are typically used in dialog boxes.

ellipseA closed curve defined by two fixed points such that the sum of the distances from any point
on the curve to the two fixed points is constant.

elliptical regionA region with the shape of an ellipse. See also ellipse, region.

embedded fontA TrueType font stored as part of a document. (By storing a font in a document, the
document's author is guaranteed that the original appearance and format of the document
remain intact.) See also TrueType font.

end capA geometric pen attribute that specifies the shape of the pen. There are three types of end
caps: flat, round, and square.

end-of-medium markerThe last position on a tape where you can record data.

end-of-partition markerThe last position on a partition where you can record data.

end-of-tape markerSame as end-of-medium marker.

enhanced metafileOne of two metafile formats. This format, used in applications written to run with the Win32
application programming interface (API), consists of a header, a table of handles to graphics
device interface (GDI) objects, a private palette, and an array of metafile records. See also
handle.

environment variableA symbolic variable that represents some element of the operating system, such as a path, a
filename, or other literal data. For example, the environment variable PATH represents the
directories to search for executable files. See also directory, path.

erase gapAn area of erased tape or a pattern that the device does not recognize as a marker or as user
data; it is used to locate a filemark to be overwritten.

escapementAn angle defined by the escapement vector and the x-axis of a device. The base line of a
string of text is parallel to the escapement vector. See also x-axis.

event objectAn interprocess synchronization object whose state is explicitly set to signaled by the
SetEvent or PulseEvent function. A manual-reset event object's state must be explicitly reset
to the nonsignaled state by the ResetEvent function. A wait function resets an auto-reset
event object's state to nonsignaled before returning. See also synchronization object, wait
function.

exceptionAn event that occurs during the execution of a program and that requires the execution of
software outside the normal flow of control.

exception recordA record of an exception. The exception record is saved in an EXCEPTION_RECORD
structure.

F

family name
One of two attributes used to organize TrueType fonts. Family names include Courier New,
Arial, and Times New Roman. (The other attribute used to organize TrueType fonts is the
style name.) See also TrueType font.

FATSee file allocation table (FAT).

fileA named, ordered collection of information, such as a program, a set of data used by a
program, or a user-created document. A file is the basic unit of storage that enables a
computer to distinguish one set of information from another.

file allocation table (FAT)A table that contains the status of various segments of disk space used for file storage. Also,
the file system that maintains the table.

file elementA complete file contained in a Resource Interchange File Format (RIFF) compound file.

file handleA unique identifier that Windows assigns to a file when the file is opened or created. A file
handle is valid until the file is closed.

file-mapping objectAn object whose handle can be used to create a view to a file or piece of memory. The
CreateFileMapping function creates file-mapping objects. See also handle.

file pointerA pointer to the next byte to be read or written in a file.

file systemA part of the operating system that enables you to store, access, and organize files on
storage devices, such as hard or floppy disks or tape drives. File allocation table (FAT) and
New Technology file system (NTFS) are examples of file systems.

file timeA 64-bit value representing the number of 100-nanosecond intervals that have elapsed since
January 1, 1601.

file viewA copy of a file or piece of memory that appears in a process's virtual address space. The
MapViewOfFile function creates a file view in the process's address space and returns a
pointer to the file view.

filemarkA special recorded element that contains no user data and is used to provide a segmentation
scheme. A normal filemark does not contain an erase gap.

filled pathA path that is filled by using the brush currently selected into an application's device context.
See also device context, path.

filter expressionAn expression that is part of a frame-based exception handler. When an exception occurs
during the execution of the guarded body of code in a frame-based exception handler, the
system evaluates the filter expression to determine whether the exception handler code is to
be executed. See also frame-based exception handler, guarded body of code.

filter functionA function called by a filter expression in a frame-based exception handler. See also frame-
based exception handler.

Find common dialog boxA common dialog box that displays an edit control in which the user can type a string that the
application should search. See also common dialog box.

first-chance notificationThe first time the kernel notifies the debugger of an exception. See also debugger.

flash timeThe elapsed time, in milliseconds, required to display, invert, and restore the caret display.
This value is twice as much as the blink time. See also blink time, caret.

flattened pathA path altered by converting each curve (in the path) into a series of line segments. See also
path.

floating pop-up menuA pop-up menu that is not attached to a menu bar. See also pop-up menu.

FM synthesizerSee frequency modulation (FM) synthesizer.

font(1) A collection of characters and symbols that share a common design.

(2) A drawing object used to write text on a display surface.

Font common dialog boxA common dialog box that displays lists of fonts and point sizes that correspond to available
fonts. See also common dialog box.

font mapperAn algorithm that Windows uses to determine which available font most closely matches a
requested font. See also font.

font tableAn array that identifies each of the fonts whose resources have been loaded. Only fonts
whose resources have been loaded can be used for text output. See also font.

foreground windowThe window with which the user is currently working. The system assigns a slightly higher
priority to the thread that created the foreground window than it does to other threads.

form typeA four-character code (FOURCC) identifying the type of data contained in a Resource
Interchange File Format (RIFF) chunk. For example, a RIFF chunk with a form type of WAVE
contains waveform audio data.

FOURCC (Four-Character Code)A code used to identify Resource Interchange File Format (RIFF) chunks. A FOURCC is a
32-bit quantity represented as a sequence of one to four ASCII alphanumeric characters,
padded on the right with blank characters.

frame-based exception handlerA mechanism used by a developer to deal with the possibility that an exception may occur in
a certain sequence of code. A frame-based exception handler consists of a guarded body of
code, a filter expression, and an exception handler. See also filter expression, guarded
body of code.

free pageA page of memory in a process's virtual address space that is available to be reserved or
committed. A process cannot access a free page. See also committed page, reserved
page.

frequencyWith respect to the high-resolution performance counter, the number of counts per second.
This value is processor dependent.

frequency modulation (FM) synthesizerA synthesizer that creates sounds by combining the output of digital oscillators using a
frequency modulation technique.

G

General MIDI
A synthesizer specification created by the MIDI Manufacturers Association (MMA) defining a
common configuration and set of capabilities for consumer Musical Instrument Digital
Interface (MIDI) synthesizers.

geometric penA pen with dimensions that are specified in world units. A geometric pen may possess
attributes usually associated with a brush, such as pattern and hatch. See also brush,
geometric pen, pen.

global atomAn atom stored in the global atom table. The value of a global atom is unique among all
others in the operating system. See also atom.

global atom tableSee atom table.

global subclassingA type of subclassing in which an application replaces the window-procedure address stored
in the WNDCLASS structure of a window class with the address of a subclass procedure. All
subsequent windows created with the class use the subclass procedure rather than the
original window procedure. See also subclassing, window, window procedure.

glyphThe bitmap, collection of points, or collection of graphic commands that define a single
character or symbol in a font. See also bitmap, font.

graceful disconnectIn a graceful disconnect, all the data sent by both sides are delivered and there is full
acknowledgment of the session termination by both sides. This contrasts with an abortive
disconnect, in which one side unilaterally terminates the connection, disregarding any queued
data. As a result, in an abortive disconnect there may be data loss.

graphic modesA set of modes that define how the Win32 API draws output with the objects found in a device
context. See also device context.

graphic objectsThe pen, brush, bitmap, palette, region, and path associated with a device context. See also
bitmap, brush, device context, palette, path, region.

graphical user interface (GUI) processA process whose entry point is the WinMain function. A GUI process uses the USER/
graphics device interface (GDI) functions for input and output (I/O), while a console process
uses the console functions or the file I/O functions. See also console process.

graphics device interfaceA dynamic-link library that processes graphics function calls from a Windows-based
application and passes those calls to the appropriate device driver. See also dynamic-link
library (DLL).

group boxA rectangle used to group related controls (usually check boxes or radio buttons). Because its
sole purpose is to organize other controls, a group box cannot be selected. See also check
box, radio button.

guarded body of codeA set of one or more statements for which an exception or termination handler provides
protection.

GUI processSee graphical user interface (GUI) process.

H

handle
A variable that identifies an object; an indirect reference to an operating system resource.

hatched brushA logical brush created from one of twenty predefined bitmaps. See also bitmap, logical
brush.

hidden windowA window that does not have the WS_VISIBLE style. A hidden window does not appear on
the screen. As a result, it cannot receive user input or display output, although it can receive
input from Windows and other applications.

high-performance file system (HPFS)A file system that supports extended attributes and long, mixed-case filenames, and improves
operating system performance by implementing several levels of caching. HPFS files are not
supported on 32-bit versions of Microsoft Windows.

high-resolution performance counterHardware that provides high-resolution timing useful in improving the performance of
applications.

hit testing(1) The process of detecting user input by using the position of the mouse cursor hot spot.
See also hot spot.

(2) A procedure for determining the current cursor position related to a given region. See also
region.

hiveA discrete body of registry information, typically rooted at the top of the registry hierarchy.
Each hive is usually supported by a single file of registry data.

HLS formatA color format that identifies a given color with a HLS (hue, luminosity, and saturation) triplet.

HMS time formatA time format used by Media Control Interface (MCI) to express time in hours, minutes, and
seconds. The HMS time format is used primarily by videodisc devices.

hollow brushSee null brush.

hookA point in the Windows message-handling mechanism where an application can install a
subroutine to monitor messages.

hook chainA list of pointers to the hook procedures associated with a hook. When a message occurs
that is monitored by the hook, Windows calls the first hook procedure in the chain.

hook procedureAn application-defined callback function whose address has been installed in a hook chain.

hot keyA key combination that generates a WM_HOTKEY message.

hot spotThe pixel in a cursor that marks the exact screen location affected by a mouse action, such
as a button click. Mouse messages include the coordinates of the hot spot. See also cursor,
pixel.

HPFSSee high-performance file system (HPFS).

I

icon
A small bitmap that usually represents a minimized application. Icons may also serve as
symbols in warning messages or other windows. See also bitmap.

icon handleA unique value of the HICON type that identifies an icon. See also icon.

iconicMinimized. If an icon represents a minimized application, the application's window is said to
be iconic. See also icon, window.

ideographicA single character that represents a word, object or a phrase ¾ for example, a single
character that means "month." This term would apply to the Han script.

IMASee Interactive Multimedia Association (IMA) and International MIDI Association (IMA).

imageA rectangular region on a video display that contains a graphical representation of an object.
See also rectangular region.

impersonation tokenAn access token that has been created to capture the security information of a client process,
allowing a server to "impersonate" the client process in security operations. See also access
token, primary token.

import libraryA .LIB file that contains information about one or more dynamic-link libraries (DLLs), but does
not contain the DLL's executable code. The linker uses an import library when building an
executable module of a process, to provide the information needed to resolve the external
references to DLL functions. See also dynamic-link library, process.

information contextA device context used strictly for data retrieval; it cannot be used for any drawing operations.
See also device context.

input bufferA buffer containing a queue of input records with information about keyboard, mouse, and
window-sizing events for a console. See also console.

input eventAn event--such as a keystroke, mouse movement, or mouse-button click--that causes a
console to place an INPUT_RECORD structure in its input buffer. A console process can get
information about an input event by reading from the console's input buffer.

instanceAn instantiation of a particular object type in a class, such as a specific process or thread. All
instances of a given type have identical performance counters.

instance subclassingA type of subclassing where an application replaces the window-procedure address of a
single instance of a window with the address of a subclass procedure. See also subclassing,
window.

integer atomAn atom that identifies an integer value. See also atom.

Interactive Multimedia Association (IMA)A professional trade association of companies, institutions, and individuals involved in
producing and using interactive multimedia technology.

interlocked operationThe thread that performs an interlocked operation on a LONG variable is guaranteed to have
exclusive access to the variable until the operation is complete.

International MIDI Association (IMA)The nonprofit organization that circulates information about the Musical Instrument Digital
Interface (MIDI) specification.

irregular curveA curve that does not fit the perimeter of a conic section.

irregular shapeA shape composed of curves and straight line segments.

item nameA string that identifies a unit of data a server can pass to a client during a transaction.

J

join style
A geometric pen attribute that specifies how the ends of connected lines are joined. See also
geometric pen.

K

key
An entry (or node) in the registry. A key may have one or more values, subkeys, or both. With
the exception of four predefined keys, all keys are subkeys of other keys. See also registry,
subkey.

keyboard acceleratorA keystroke or combination of keystrokes that sends a command message to the specified
application window.

keyboard focusA property of the window currently receiving keyboard input. Only one window at a time can
have the keyboard focus. See also window.

L

language identifier
A 16-bit value that identifies a language and, where appropriate, the variant of the language
being used. A language identifier is a combination of a primary language identifier and a
sublanguage identifier. For example, if the primary language identifier specifies English, the
sublanguage identifier might specify Australian English.

last-chance notificationThe last time the kernel notifies the debugger of an exception. If the debugger does not
handle an exception after last-chance notification, the kernel terminates the process being
debugged. See also debugger, process.

last-error codeA per-thread value set by Win32 functions when an error occurs. The last-error code can be
retrieved by using the GetLastError function.

LCIDSee locale identifier.

licenseThe certificate that grants a software product the permission to run. It can be in the form of a
paper certificate with manually entered information, a binary file, or a combination of the two.
An LSAPI-compliant license must contain a minimum of the software publisher name, the
product name, the version, four secret values, and a license policy. See also License
Service Application Programming Interface (LSAPI), secret.

license policyThe terms under which a software product is granted permission to run. Examples of types of
license policy include concurrent use, dynamic allocation, personal use, time-restricted, and
site license.

license serverThe part of a license system that runs on a file or applications server. See also license
system.

License Service Application Programming Interface (LSAPI)A standardized set of functions that provides license-tracking services within applications.
These services include the ability to request that the licensing system grant the application
software rights to run, release those rights when they are no longer needed, and update the
state of the licensing resources granted to the software product. The LSAPI specification
provides a standard interface between LSAPI-enabled software and LSAPI-compliant
software licensing products. See also basic challenge protocol.

license systemA software product that tracks the use of desktop applications. See also license server.

lineA set of highlighted pixels on a video display (or a series of dots on a printed page) that is
defined by two points: a starting point and an ending point. See also pixel.

line and curve attributesThe width, color, style, and (in the case of lines or curves drawn with a geometric pen) end
cap, join style, and transformation of a line or curve. See also end cap, geometric pen, join
style, transformation.

list boxA control window that contains a list of items that can be selected by the user.

LIST chunkA Resource Interchange File Format (RIFF) chunk with a chunk identifier of LIST. LIST
chunks contain a series of subchunks.

list typeA four-character code (FOURCC) identifying the type of data contained in a Resource
Interchange File Format (RIFF) chunk with a chunk identifier of LIST. For example, a LIST
chunk with a list type of INFO contains a list of information about a file, such as the creation
date and author.

load-time linkingDynamic linking that occurs when a program (either an application or another dynamic-link
library [DLL]) makes an explicit call to a DLL function. This requires that the executable
module of the program be built by linking with the DLL's import library. When the program is
executed, the operating system uses the information provided by the import library to locate
the executable module of the DLL, which is mapped into the address space of the process.
See also import library, process.

local atomAn atom stored in an application's atom table. The value of a local atom is unique within the
application but may not be unique throughout the operating system. See also atom, atom
table.

local atom tableSee atom table.

locale identifier (LCID)A DWORD value containing the language identifer in the lower word and a reserved value in
the upper word. The identifier supplied in an LCID is a standard international numeric
abbreviation. This LCID has the components necessary to uniquely identify one of the
installed system-defined locales.

locally unique identifier (LUID)A 64-bit value guaranteed to be unique on the operating system that generated it (until the
system is restarted).

LocatorSee Microsoft Locator.

logfileA configuration registry key that specifies the filename of an event log. Logfiles are subkeys
of the EventLog registration key. See also key, subkey.

logging offThe action of stopping all processes running in the security context of the process that called
the Exit function.

logical brushA description of a bitmap. A logical brush can be selected into a device context. See also
bitmap, device context.

logical coordinate spaceAnother name for the world or page coordinate space. If an application has set a world-
space to page-space transformation, the logical space is the world space; otherwise, the
logical space is the page space.

logical paletteAn array of colors, or "color palette," that an application creates and associates with a device
context and uses for graphics output. See also device context.

logical volumeSee partition.

long filemarkA filemark that contains a long erase gap that enables an application to position the tape at
the beginning of the filemark and to overwrite the filemark and the erase gap. See also erase
gap.

LSAPISee License Service Application Programming Interface

LSAPI-enabled applicationA desktop application that makes calls to the LSAPI function layer to register license usage.
See also License Service Application Programming Interface (LSAPI).

LSAPI-compliant licensing systemA software licensing product that conforms to the LSAPI standard and supports the LSAPI
interface. See also License Service Application Programming Interface (LSAPI).

LUIDSee locally unique identifier.

M

mailslot
A pseudofile used for one-way interprocess communications.

mailslot clientA process that writes a message to a mailslot.

mailslot serverA process that creates and owns a mailslot and can read messages from it. See also
process.

main windowThe window that serves as the primary interface between the user and an application.

manual-reset event objectSee event object.

mappingA representation of the elements (or points) from a source coordinate space on a target
coordinate space.

mapping modeAn algorithm that specifies the size of the units used for any drawing operations associated
with a particular device context.

matrixAn n-dimensional array that is used to specify a transformation. Transformations in a two-
dimensional space require either a two-dimensional or a three-dimensional array.

maximize boxA window component that, when clicked, causes Windows to enlarge the window to the size
of the screen.

maximized windowA window that has the WS_MAXIMIZE style. A maximized top level window fills the screen; a
maximized child window fills the client area of its parent window.

maximum tracking sizeThe largest window size the user can produce by dragging the sizing border.

MCISee Media Control Interface.

MD4 Message-Digest AlgorithmAn algorithm that LSAPI uses in the basic challenge protocol security mechanism. The MD4
Message-Digest Algorithm from RSA Data Security, Inc., uses a message of arbitrary length
as input, and returns a 128-bit message digest. See also basic challenge protocol, License
Service Application Programming Interface (LSAPI), secret.

MDI client windowSee multiple document interface client window.

MDI frame windowSee multiple document interface frame window.

Media Control Interface (MCI)High-level control software that provides a device-independent interface to multimedia
devices and media files. MCI includes a command-message interface and a command-string
interface.

memory device context (DC)See compatible device context (DC).

menuA list of items that represent an application's commands. A menu item can be either a string
or a bitmap. See also bitmap, menu item.

menu barThe topmost menu in a hierarchy of menus. A menu bar typically contains one or more menu
items that the user can select to display pop-up menus. See also menu, menu item, pop-up
menu.

menu handleA unique value of the type HMENU used to identify a menu. See also menu.

menu itemA string or bitmap displayed in a menu. Choosing a menu item either sends a command
message or activates a pop-up menu. See also bitmap, pop-up menu.

messageA data packet used for communicating information or a request. Messages can be passed
between the operating system and an application, different applications, threads within an
application, and windows within an application. See also thread, window.

message loopA program loop that retrieves messages from a thread's message queue and dispatches
them to the appropriate window procedures. See also message queue.

message parametersA pair of 32-bit values that contains information a window procedure uses while processing a
message.

message queueAn operating system-defined memory object that holds an ordered list of messages awaiting
processing. The system message queue holds mouse and keyboard input waiting to be
passed to a thread's message queue. A thread's message queue holds messages waiting to
be retrieved by a thread's message loop. See also message loop.

message-type pipeA named pipe where data is written as a stream of messages. See also named pipe.

metafileA collection of structures that stores a picture in a device-independent format. (There are two
metafile formats: the enhanced format and the Windows format.)

metafile bitsThe binary representation of a metafile. The bits include the header, an optional palette, an
optional text description of the metafile contents, and the metafile records. See also metafile
record, palette.

metafile device context (DC)A device context that is used for metafile operations. See also device context.

metafile handle tableAn array of handles that identify pens, brushes, fonts, and other objects used to create the
picture stored in the metafile. See also brush, font, handle, metafile, pen.

metafile headerA structure that specifies the size of the picture stored in the metafile, the size of the metafile
(in bytes), the number of entries in the metafile palette, the number of records in the metafile,
a pointer to the metafile description (if one exists), and a pointer to the metafile palette (if one
exists). See also metafile, metafile palette, palette.

metafile paletteAn array of red, green, blue (RGB) values that represent the colors used to create the picture
stored in a metafile. See also metafile.

metafile recordA variable-length structure. In most cases, this structure represents a call made to a graphics
device interface (GDI) function to create part of the picture stored in the metafile. See also
metafile.

Microsoft LocatorA Windows NT implementation of the Microsoft RPC name-service interface (NSI) for
distributed applications. The server application registers its availability, in the form of a name-
service entry, with the Locator database. Client applications query the Locator for information
such as interface UUIDs, object UUIDs, and network addresses.

MIDISee Musical Instrument Digital Interface.

MIDI control-change messageA Musical Instrument Digital Interface (MIDI) message sent to a synthesizer to change
different synthesizer control settings. An example of a control-change message is the volume
controller message, which changes the volume of a specific MIDI channel.

MIDI Manufacturers Association (MMA)A collective organization composed of Musical Instrument Digital Interface (MIDI) instrument
manufacturers and MIDI software companies. The MMA works with the MIDI Standard
Committee to maintain the MIDI specification.

MIDI MapperWindows systems software that modifies Musical Instrument Digital Interface (MIDI) output
messages and redirects them to a MIDI output device using values stored in a MIDI setup
map. The MIDI Mapper can change the destination channel and output device for a message,
as well as modify program-change messages, volume values, and key values.

MIDI mappingThe process of translating and redirecting Musical Instrument Digital Interface (MIDI)
messages according to data defined in a MIDI map setup.

MIDI program-change messageA Musical Instrument Digital Interface (MIDI) message sent to a synthesizer to change the
patch on a specific MIDI channel.

MIDI sequenceMusical Instrument Digital Interface (MIDI) data that can be played by a MIDI sequencer.

MIDI sequencerA program that creates or plays songs stored as Musical Instrument Digital Interface (MIDI)
files. When a sequencer plays MIDI files, it sends MIDI data from the file to a MIDI
synthesizer, which produces the sounds. Windows provides a MIDI sequencer, accessible
through media control interface (MCI), that plays MIDI files. See also Media Control
Interface (MCI).

MIDI setup mapA complete set of data for the Musical Instrument Digital Interface (MIDI) Mapper to use when
redirecting MIDI messages. Only one setup map can be in effect at a given time, but the user
can have several setup maps available and can choose between them by using the MIDI
Mapper Control Panel option.

minimize boxA window component that, when clicked, causes Windows to reduce the window to the size
of an icon.

minimized windowA window that has the WS_MINIMIZE style. A minimized window is the same size as an icon.
Windows displays a minimized top-level window at the bottom of the screen; Windows
displays a minimized child window at the bottom of its parent window's client area.

minimum tracking sizeThe smallest window size the user can produce by dragging the window's sizing border.

MMASee MIDI Manufacturers Association.

module-definition fileA text file (.DEF) that contains one or more statements describing various attributes of an
executable module. A dynamic-link library (DLL) must have a .DEF file to specify the DLL's
name and a list of its exported functions. See also dynamic-link library (DLL).

mouse captureThe act of channeling mouse input to a specific window without regard to the position of the
mouse-cursor hot spot. See also hot spot, window.

MS-DOS dateA date in the format used by MS-DOS. The date is a packed 16-bit value in which bits in the
value represent the day, month, and year.

MS-DOS timeA time in the format used by MS-DOS. The time is a packed 16-bit value in which bits in the
value represent the hour, minute, and second.

MSF time formatA time format used by Media Control Interface (MCI) to express time in minutes, seconds,
and frames. The number of frames in a second depends on the type of device being used;
compact disc audio devices use 75 frames per second. The MSF time format is used
primarily by compact disc audio devices.

multibyte character setA character set in which each character is identified by using more than one byte--for
example, a double-byte character set (DBCS). Although Unicode characters are 2 bytes wide,
the Unicode character set is not referred to by this term. See also double-byte character set
(DBCS), single-byte character set, Unicode.

multiple document interface (MDI) client windowA window that belongs to the MDICLIENT window class. An MDI client window serves as the
background for MDI child windows, and it provides support for creating and manipulating child
windows. See also window.

multiple document interface (MDI) frame windowThe main window of a multiple document interface (MDI) application. See also window.

multiple-selection list boxA list box in which more than one item can be selected at the same time.

Musical Instrument Digital Interface (MIDI)A standard protocol for communication between musical instruments and computers.

mutex object
An interprocess synchronization object whose state is set to signaled when it is not owned by
any thread, and nonsignaled when it is owned. Only one thread at a time can own a mutex.
See also nonsignaled, signaled, synchronization object.

N

named pipe
A one-way or two-way pipe used for communications between a server process and one or
more client processes. A server process specifies a name when it creates one or more
instances of a named pipe. Each instance of the pipe can be connected to a client process
that uses the pipe name to open a handle to the other end of the pipe. See also handle,
pipe.

network providerThe supplier of a complete implementation of a networking system: for example, Microsoft
Server or Novell Netware.

network rootThe topmost container resource in a network hierarchy. The network root can contain the
network providers on a system.

New Technology file system (NTFS)A file system that supports object-oriented applications by treating all files as objects with
user-defined and system-defined attributes. NTFS provides all the capabilities of the file
allocation table (FAT) file system without many of its limitations.

nonclient areaThe parts of a window that are not a part of the client area. A window's nonclient area
consists of the border, menu bar, title bar, scroll bar, System menu, Minimize button, and
Maximize button. See also menu bar, scroll bar, window.

nonqueued messageA message sent directly to a window procedure.

nonsignaledThe state of an object used for synchronization in one of the wait functions is either signaled
or nonsignaled. A nonsignaled state can prevent the wait function from returning. See also
signaled, wait function.

nonspacing characterA character that prints over the preceding character--typically, an accent mark. See also base
character.

normal filemarkA filemark that does not contain an erase gap. See also erase gap.

notification messageA message a control sends to its parent window when events, such as input from the user,
occur.

NTFSSee New Technology File System (NTFS).

null brushA logical brush created from a bitmap that matches the current window background colors. (A
null brush is identical to a hollow brush.) See also bitmap, hollow brush, logical brush.

O

object
(1) An internal structure that represents a system resource, such as a file, a thread, or a
graphic image. See also thread.

(2) A network resource that does not contain any further network resources. It is not
necessarily possible to connect to an object.

object typeA measurable entity, such as a processor, disk, or thread.

Open common dialog boxA common dialog box that displays a list of filenames matching any specified extensions,
directories, or drives. By selecting one of the listed filenames, the user indicates the file an
application should open. See also common dialog box, directory.

overlapped input and output (I/O)See asynchronous input and output (I/O).

overlapped windowA style of window meant to serve as an application's main window.

owned windowA window that has an owner. Being owned affects the window's position in the Z order and its
visibility and can determine when the window is destroyed.

owner windowA window that affects aspects of another window's appearance and behavior.

owner-drawn buttonA button with the style BS_OWNERDRAW. Unlike all other button types, an owner-drawn
button has no predefined appearance or behavior. Also, the application, not Windows, is
responsible for painting it. See also button.

owner-drawn controlA predefined control that sends messages to its parent window when it must be drawn.

owner-drawn itemA menu item whose appearance is controlled by a menu's owner window rather than by
Windows. See also menu item, window.

P

page
A unit of memory that is used by the system in managing memory. The size of a page is
computer dependent and can be determined by using the GetSystemInfo function. The
system manages memory by assigning pages of memory to specific processes, moving
pages to and from a paging file on disk to keep the most recently used pages in physical
memory (RAM), and maintaining a page map for each process that keeps track of the current
physical location of each committed page in a process's virtual address space. See also
committed page, page map.

page coordinate spaceThe coordinate space in which all graphics device interface (GDI) drawing operations begin if
an application has not set the world-space to page-space transformation.

page mapAn internal data structure maintained by the system for each process that maps the pages of
a process's virtual address space with the corresponding pages of physical storage. See also
page.

paging fileA disk file that the system uses to increase the amount of physical storage.

paletteAn array of colors currently available on a device.

palette animationA method of updating the colors in the logical palette.

PANOSE numbersSpecial values specified by an application to select a particular font.

parent processA process (parent) that initiates and controls another process (child) in a multitasking
environment. The parent process defines the environment for the child process. The parent
process can suspend or complete its own processing while the child process continues its
operation. See also child process.

parent windowA window that has one or more child windows.

partitionA logically distinct portion of memory or a storage device that the system references as
though it were a physically separate unit. The partition is referenced as a separate volume.
For example, a single fixed disk may be divided into two partitions, referred to as C and D,
even though they exist on the same physical volume.

parts per quarter note (PPQN)A time format used for Musical Instrument Digital Interface (MIDI) sequences. PPQN is the
most common time format used with standard MIDI files.

patchA particular setup of a Musical Instrument Digital Interface (MIDI) synthesizer that results in a
particular sound, usually a sound simulating a specific musical instrument. Patches are also
called programs. A MIDI program-change message changes the patch setting in a
synthesizer. Patch also refers to the connection or connections between MIDI devices. See
also Musical Instrument Digital Interface (MIDI).

patch cachingA technique that enables some internal Musical Instrument Digital Interface (MIDI)
synthesizer device drivers to preload their patch data, reducing the delay between the
moment the synthesizer receives a MIDI program-change message and the moment it plays
a note using the new patch. Patch caching also ensures that required patches are available
(the synthesizer might load only a subset of its patches). See also Musical Instrument
Digital Interface (MIDI), patch.

path(1) A string that describes the location of a file or directory on a volume relative to the current
directory or the root directory.

(2) One or more figures that are filled, outlined, or filled and outlined. See also directory,
volume.

path bracketOne or more graphics device interface (GDI) functions embedded between a BeginPath and
an EndPath function. (The BeginPath function defines the start of the bracket; the EndPath
function defines the end.)

pattern brushA logical brush created from an application-defined bitmap. See also bitmap, logical brush.

penA drawing tool used to draw lines and curves.

pen styleOne of the cosmetic and geometric pen attributes that define the appearance of lines drawn
with the pen. There are eight possible styles: solid, dashed, dotted, dashed and dotted, dash
followed by two dots, invisible, inside frame, and user defined. See also cosmetic pen,
geometric pen, pen.

pen typeAn attribute that determines whether the pen's dimensions are specified in world units or
device units.

performance monitoringThe process of determining the system resources an application consumes, such as
processor time and memory.

persistent connectionA network connection that Windows restores automatically when the user logs on.

physical brushA bitmap that Windows uses to paint the interior of filled shapes. A physical brush is a device
driver's approximation of a logical brush. See also bitmap, logical brush.

physical deviceThe fourth and final coordinate space for most graphics device interface (GDI) drawing
operations. (The points in this coordinate space may correspond to the desktop, a client area,
or a page of printer paper.)

physical paletteSee system palette.

picture frameA rectangle defining the width and height of the picture stored in a metafile. (The dimensions
of this rectangle are always specified in .01-mm units.) See also metafile.

pieA region bounded by the intersection of an ellipse and two radials. In Windows, a pie is
outlined by using the current pen and filled by using the current brush. See also ellipse,
radial.

pipeA communication conduit with two ends. A process with a handle to one end can
communicate through a pipe with a process having a handle to the other end. Pipes can be
one way (where one end is read only and the other end is write only) or two way (where both
ends of the pipe can be used for reading or writing). The Win32 application programming
interface (API) provides both anonymous (unnamed) pipes and named pipes. See also
anonymous pipe, handle, named pipe, process.

pipe instanceA separate conduit for named pipe communications between a client and a server process. A
named pipe can have multiple instances, where all instances share the same pipe name but
each instance has its own buffers and handles. See also handle, named pipe.

pitch scale factorIn waveform audio, the amount by which a waveform audio driver scales the pitch. A scale
factor of two results in a one-octave increase in pitch. Pitch scaling requires specialized
hardware. The playback rate and sample rate are not changed.

pixelThe smallest definable unit on a video display. (A pixel's size is a function of video-display
technology.)

playback rate scale factorIn waveform audio, the amount by which the waveform audio driver scales the playback rate.
Playback scaling is accomplished through software; the sample rate is not changed, but the
driver interpolates by skipping or synthesizing samples. For example, if the playback rate is
changed by a factor of two, the driver skips every other sample.

playing a metafileThe process of converting the records in a metafile into the respective device commands and
drawing the corresponding picture on the device. See also metafile.

Point-to-Point Protocol (PPP)The Point-to-Point Protocol, or PPP, is an industry-standard suite of control protocols that
allow multiple network protocols to be carried on a point-to-point link. Windows NT supports
IP, IPX, and NBF connections using PPP. This allows the use of applications that write to a
network-specific interface, connections to third-party PPP servers, and remote access to the
Internet.

polygonA closed figure with straight sides. In Windows, a polygon is outlined by using the current pen
and filled by using the current brush. See also brush, pen.

polygon fill modeAn algorithm that determines the parts of a region that can be filled, painted, inverted, or
clipped. See also region.

polygonal regionA region with the shape of a polygon. See also polygon, region.

polyphonyThe maximum number of notes that a Musical Instrument Digital Interface (MIDI) output
device can play simultaneously.

pop-up itemA menu item that, when chosen, displays a pop-up menu. See also menu item, pop-up
menu.

pop-up menuA menu that is hidden until the user performs an action that causes Windows to display the
menu. See also menu.

pop-up windowA special type of overlapped window typically used for dialog boxes, message boxes, and
other temporary windows that appear outside an application's main window.

PPPSee Point-to-Point Protocol.

PPQNSee parts per quarter note.

precomposed characterAn accented character represented by a single character value. See also base character,
composite character, nonspacing character.

predefined controlA control belonging to a window class supplied by Windows.

preimagingThe process of building a movie frame in a memory buffer before it is displayed.

primary domainThe domain used by the local computer as its usual and default network environment. See
also domain.

primary language identifierAn 8-bit value identifying the primary language in a language identifier. See also language
identifier, sublanguage identifier.

primary threadThe initial thread of a process. Also called the main thread or thread 1. When the main or
WinMain function of a primary thread returns, the ExitProcess function is called implicitly,
terminating all other threads of the process. A primary thread does not differ from other
threads with respect to signals because all signals are delivered to the thread that caused
them. See also process, thread.

primary tokenAn access token that is typically created only by the Windows NT® executive layer. It may be
assigned to a process to represent the default security information for that process. See also
access token, impersonation token.

Print common dialog boxA common dialog box that displays information about the installed printer and its
configuration. By altering and selecting controls in this dialog box, the user specifies how
output should be printed and starts the printing process. See also common dialog box.

Print-setup common dialog boxA common dialog box that displays the current printer configuration and provides options for
setting the paper orientation, size, and source. See also common dialog box.

priority classA process priority category (high, normal, or idle) used to determine the scheduling priorities
of a process's threads. Each priority class has five levels. See also thread.

private memoryPages of a process's memory that cannot be accessed by other processes. All memory
objects allocated by the GlobalAlloc, LocalAlloc, VirtualAlloc, and HeapAlloc functions are
in private pages.

privilegeA locally unique identifier used to regulate the use of some system services. See also locally
unique identifier (LUID).

processAn executing application that consists of a private virtual address space, code, data, and
other operating system resources, such as files, pipes, and synchronization objects that are
visible to the process. A process also contains one or more threads that run in the context of
the process. See also pipe, process, thread.

profileA set of configurable options for a user. See also control set.

push buttonA rounded rectangle used by the user to start or cancel an operation by clicking the rectangle,
which "pushes" the button. A default push button is "pushed" when the user presses the
ENTER key. See also button.

Q

queued message
A message in a message queue. See also message queue.

R

race condition
A bug in a multithreaded process where the code of thread A relies on thread B to complete
some action, but where there is no synchronization between the two threads. The process
works if thread B wins the race by completing its action before thread A needs it, but the
process fails if thread A wins the race. See also process, thread.

radialA line drawn from the center of an ellipse to a point on the ellipse. See also ellipse.

radio buttonA round button operated by the user to choose from a set of related but mutually exclusive
options. The check mark for a radio button is a black dot. A radio button can assume two
states: checked (dot) or unchecked (no dot). In automatic radio buttons, Windows is
responsible for changing the state of the radio button.

raster deviceA device that creates text and graphics output by highlighting rows and columns of pixels (in
the case of video displays) or rows and columns of dots (in the case of printers). See also
pixel.

rasterizerA Windows dynamic-link library that converts the graphics commands and hints for TrueType
glyphs into actual bitmaps that are drawn on a video display or page of paper. See also
bitmap, glyph, dynamic-link library (DLL).

rectangular regionA region with the shape of a rectangle. See also region.

Red Book audioSee compact disc - digital audio (CD-DA).

red, green, blue (RGB) formatA color format that identifies a given color with a red, green, blue (RGB) triplet. This format is
used by video displays.

reference countThe number of times a string has been added to or deleted from an atom table. The
AddAtom or GlobalAddAtom function increments the count; the DeleteAtom or
GlobalDeleteAtom function decrements the count. See also atom table.

reference deviceThe device where the original picture was created.

reference device context (DC)The device context associated with the reference device.

reflectionA transformation that creates a mirror image of an object.

regionA rectangle, polygon, ellipse (or a combination of two or more of these shapes) used by
Windows-based applications to define a part of the client area to be painted, inverted, filled
with output, framed, or used for hit testing. See also ellipse, hit testing, polygon.

region operationA procedure such as inverting, painting, clipping, or hit testing. See also clipping, hit testing.

registered clipboard formatA clipboard format registered by an application, as opposed to a standard clipboard format.

registryThe database in which configuration information is registered. This database takes the place
of most configuration and initialization files for Windows and new Windows-based
applications.

regular curveA curve that defines the perimeter of a conic section.

relative identifier (RID)The portion of a security identifier (SID) that identifies a user or group in relation to the
authority that issued the SID. See also security identifier (SID).

renderTo make data available in a specific clipboard format. See also clipboard format.

Replace common dialog boxA common dialog box that displays two edit controls where the user can type strings: The first
string identifies a word or value that the application should replace, and the second string
identifies the replacement word or value. See also common dialog box, edit control.

reserved pageA page of memory in a process's virtual address space that has been set aside for future use.
The page is not accessible and has no physical storage associated with it. A reserve page
reserves a range of virtual addresses that cannot be used subsequently by other allocation
operations.

resolution(1) For joysticks, the minimum and maximum intervals between joystick messages sent for a
captured joystick.

(2) For timers, the accuracy of the timer event. A resolution value of zero means that the
event must occur at the exact time requested; a resolution value of ten means that the event
must occur within ten milliseconds of the requested time.

resourceBinary data the resource compiler or developer adds to an application's executable file.
Windows resources include icons, cursors, menus, dialog boxes, bitmaps, fonts, keyboard-
accelerator tables, message-table entries, string-table entries, version data, and user-defined
data.

resource compilerAn application that creates a binary resource file based on the resource-definition file. The
resource compiler can also append binary resource data to an executable file and create a
resource table in the executable file's header. See also resource table.

resource-definition fileA text file containing descriptions of an application's resources. The resource compiler
creates a binary resource file based on the contents of the resource-definition file. Resource-
definition files usually have a .RC extension.

resource fileA binary file created by the resource compiler that contains an application's resource data.
Resource files usually have a .RES extension. See also resource compiler.

Resource Interchange File Format (RIFF)A tagged-file specification used to define standard formats for multimedia files. Tagged-file
structure helps prevent compatibility problems that often occur when file-format definitions
change over time. Because each piece of data in the file is identified by a standard header,
an application that does not recognize a given data element can skip over the unknown
information. See also tagged file format.

resource objectAn object file that consists of the resource file and the resource table. The linker links the
resource object to the executable file. See also resource file.

resource tableData the resource compiler adds to the header of an application's executable file. This data
includes the location, name, type, language, and so on, of each resource in the executable
file. See also resource compiler.

restore boxA bitmap that, when clicked, restores the window to its previous size and position.

restored windowA window that does not have the WS_MAXIMIZE or WS_MINIMIZE style.

RGB formatSee red, green, blue (RGB) format.

RIDSee relative identifier (RID).

RIFFSee Resource Interchange File Format (RIFF).

RIFF chunkA chunk with chunk identifier Resource Interchange File Format (RIFF) that includes an
identifying code and zero or more subchunks, the contents of which depend on the form type.

RIFF fileA file whose format complies with one of the published Resource Interchange File Format
(RIFF) forms. Examples of RIFF files include WAVE files for waveform audio data, RMID files
for Musical Instrument Digital Interface (MIDI) sequences, and RDIB files for device-
independent bitmaps.

RIFF formA file-format specification based on the Resource Interchange File Format (RIFF) standard.

root directoryThe topmost directory on a volume. Files and directories on a volume are organized in a tree
structure whose entry point is the root directory. The root directory is referenced in a path by
a single backslash (\\) or a leading backslash in a longer path (\\MYDIR\\MYFILE.TXT). See
also directory, path, volume.

rotationA transformation that rotates an object with respect to the coordinate-space origin.

run-time linkingDynamic linking that occurs when the LoadLibrary and GetProcAddress functions are used
to get the starting address of a dynamic-link library (DLL) function.

S

SACL
See system access control list.

sampleA discrete piece of waveform data represented by a single numerical value. Sampling is the
process of converting analog data to digital data by taking samples of the analog waveform at
regular intervals.

sampling rateThe rate at which a waveform audio driver performs audio-to-digital or digital-to-audio
conversion. For compact disc - digital audio (CD-DA), the sampling rate is 44.1 kHz. See also
compact disc - digital audio

Save As common dialog boxA common dialog box that displays a list of filenames matching any specified extensions,
directories, or drives. By selecting one of the listed filenames, the user indicates what file an
application should save. See also common dialog box.

scalable fontA TrueType font. See also TrueType font.

scalingA transformation that alters the apparent size of an object.

scan codeA device-dependent value that identifies a physical key on the keyboard. Each key on a
keyboard generates two unique scan codes--one when the user presses the key and the
other when the user releases the key.

scan lineA single row of adjacent pixels on a video display. See also pixel.

schedulerThe component of the operating system that determines which of the competing threads
receives the next slice of the processor's time. See also thread.

screen bufferA two-dimensional array of character and color data for output in a console window. A screen
buffer can be accessed for reading and writing whether it is active or inactive. Its character
data can be either a Unicode™ or ANSI value. See also console window.

screen coordinatesCoordinates relative to the upper left corner of the screen.

scroll barAn element of the Windows user interface that converts mouse or keyboard input into values
that a window procedure can use to shift the contents of a window's client area either
horizontally or vertically. See also window procedure.

scroll bar controlA predefined control window that belongs to the SCROLLBAR window class. See also
window.

scroll boxA movable area in a scroll bar that indicates the position of the information currently displayed
in the associated window. The position of the scroll box is relative to the total amount of
information available for display. See also scroll bar.

scrollingThe process of shifting a data object in a window's client area in order to see parts of the
object that extend beyond the border of the client area.

scrolling rangeThe minimum and maximum values that a scroll bar can report. See also scroll bar.

secantA line drawn through two points on an ellipse. See also ellipse.

secretA key value that the software publisher chooses and then typically encrypts within the
software license. An LSAPI-compliant license must have a minimum of four secrets, each 4
bytes (32 bits) long. See also basic challenge protocol, License Service Application
Programming Interface (LSAPI), MD4 Message-Digest Algorithm.

security descriptorA structure that contains the security information associated with an object. An absolute
security descriptor contains pointers to the information, and a self-relative security descriptor
stores the structure and associated information contiguously in memory. See also absolute
security descriptor, self-relative security descriptor.

security domainA collection of nodes in a security database that share a common set of user and group
accounts.

security identifier (SID)A structure of variable length that uniquely identifies a user or group on all Windows NT®
implementations.

seek(1) With file input and output (I/O), to change the current position in the file. (The current
position is the location where the next read or write operation will take place.)

(2) With a media device (such as a hard disk), to position the medium so a certain sector can
be accessed. The seek operation involves a physical movement of the device, so the time it
takes can often be perceived by the user.

selection fieldThe portion of a combo box that displays the currently selected item. Selecting an item in the
list causes that item to appear in the selection field. In simple and drop-down combo boxes,
the selection field is an edit control and can be used to enter input not in the list.

self-relative security descriptorSee security descriptor.

semaphore objectAn interprocess synchronization object that maintains a count between zero and some
maximum value. The object's state is set to signaled when its count is greater than zero, and
nonsignaled when its count is zero. See also synchronization object.

sequenceSee MIDI sequence.

sequencerSee MIDI sequencer.

serviceAn executable object that is installed in a registry database maintained by the Service Control
Manager. The executable file associated with a service can be started at boot time by a boot
program or by the system, or it can be started on demand by the Service Control Manager.
The two types of service are Win32 service and driver service. See also driver service,
Win32 service.

service control managerA Windows NT system process that provides a unified and secure means of controlling
Win32 and driver services. Each computer that is running Windows NT has a service control
manager process that is started during system startup.

service nameA string that a server application responds to when a client attempts to establish a
conversation with the server.

setmarkA special recorded element that contains no user data and is used to provide a segmentation
scheme hierarchically superior to filemarks. Setmarks typically provide faster positioning on
high-capacity tapes.

share modeA condition that indicates whether a file is to be shared for reading, writing, both, or neither.

shared arenaThe Windows 95 shared arena (or shared address space) is the memory in the address
range between 2 GB and 3 GB. It contains components that must be mapped into the
address space of every process, such as the 16-bit global heap, shared system DLLs, and
file views of file mapping objects. The DPMI server also allocates memory in this address
range.

shared memoryMemory that two or more processes can read from and write to. If the file-mapping object that
references the shared memory has a name, the memory is referred to as "named shared
memory."

sharepointA network resource that remote applications can address specifically and use across a
network--for example, a printer or a shared directory. See also container.

shearingA transformation that alters the apparent length and orientation of vertical or horizontal lines
in an object.

shellAn application that enables users to group, start, and otherwise control other applications.

short filemarkA filemark that contains a short erase gap that cannot be overwritten unless the write
operation is performed from the beginning of the partition or from an earlier long filemark.

show stateThe collective qualities of a window at a given time (whether active or visible; minimized;
maximized; or restored).

shut downTo stop all processes, flush all file-system buffers to disk, and bring the system to a condition
in which it is safe to turn off the computer.

sibling windowA child window that has the same parent window as one or more other child windows.

SIDSee security identifier (SID).

signaledThe state of an object used for synchronization in one of the wait functions. A signaled state
can enable the wait function to return. See also nonsignaled, wait function.

signatureA 4-byte value that identifies an enhanced metafile. See also enhanced metafile.

simple combo boxA combo box in which the list box is visible at all times.

simple deviceA media control interface (MCI) device that does not require a device element (data file) for
playback. The MCI compact disc audio driver is an example of a simple device.

simple listA list in a combo box that is always visible. Combo boxes with the CBS_SIMPLE style contain
simple lists.

single-byte character setto their identifying numeric values, in which each value is one byte wide. The ANSI and
original equipment manufacturer (OEM) character sets are single-byte character sets. See
also character set, multibyte character set, Unicode.

single-selection list boxA list box in which only one item can be selected at a time.

sizing border A type of window border that enables the user to size the window by clicking
and dragging the border.

SMPTESee Society of Motion Picture and Television Engineers.

SMPTE division typeOne of four SMPTE timing formats. SMPTE time is expressed in hours, minutes, seconds,
and frames. The SMPTE division type specifies the frames-per-second value corresponding
to a given SMPTE time. For example, a SMPTE time of one hour, 30 minutes, 24 seconds,
and 15 frames is useful only if the frames-per-second value, or SMPTE division type, is
known.

SMPTE offsetA Musical Instrument Digital Interface (MIDI) event that designates the SMPTE time at which
playback of a MIDI file is to start. SMPTE offsets are used only with MIDI files using SMPTE
division type.

SMPTE timeA standard representation of time developed for the video and film industries. SMPTE time is
used with Musical Instrument Digital Interface (MIDI) audio because many people use MIDI to
score films and video. SMPTE time is an absolute time format expressed in hours, minutes,
seconds, and frames. Standard SMPTE division types are 24, 25, and 30 frames per second.

Society of Motion Picture and Television Engineers (SMPTE)An association of engineers involved in movie, television, and video production. SMPTE also
refers to SMPTE time, the timing standard that this group adopted.

solid brushA logical brush created from a bitmap that contains pixels of the same color. See also
bitmap, logical brush, pixel.

sourceA configuration registry key that specifies message-file names for replacement strings in
events logged by an application, service, or group of applications. Sources are subkeys of
logfile keys. See also key, logfile, subkey.

square-wave synthesizerA synthesizer that produces sound by adding square waves of various frequencies. A square
wave is a rectangular waveform.

standard cursorsThe default cursors that Windows automatically displays when users move windows or icons,
resize windows, or wait. Standard cursors include an arrow, hourglass, crosshair, and I-
beam. Standard cursors are also known as system cursors. See also cursor, icon, window.

standard iconsThe default icons that Windows displays in system message boxes. Standard icons include,
among other bitmaps, a stop sign and a circled exclamation point. See also icon.

standard resourceA resource whose format is defined and recognized by Windows. Standard resources include
icons, cursors, menus, dialog boxes, bitmaps, fonts, keyboard accelerator tables, message-
table entries, string-table entries, and version data.

standard scroll barA scroll bar created as part of the nonclient area of an overlapped, pop-up, or child window.
See also scroll bar.

standard VGAA video adapter that supports a resolution of 640 by 480 pixels and 16 simultaneous colors.
See also pixel.

static controlAn element of the Windows user interface used to display text and graphics that require no
response from the user. Static controls are typically used in dialog boxes.

stock brushOne of seven logical brushes maintained by Windows. See also logical brush.

stock penA cosmetic pen created and maintained by the window manager. There are three kinds of
stock pens: black, white, and invisible. See also cosmetic pen.

streamingThe process of transferring information from a storage device, such as a hard disk or CD-
ROM, to a device driver.

string atomAn atom that identifies a character string in an atom table. See also atom, atom table.

string handleA doubleword value, assigned by the operating system, that identifies a string passed
between a dynamic data exchange (DDE) client and a DDE server. See also dynamic data
exchange (DDE).

stroked pathA path that is outlined by using the pen that is currently selected into an application's device
context. See also device context, path, pen.

structured exception handlingA mechanism for handling hardware- and software-generated exceptions. Structured
exception handling gives developers complete control over the handling of exceptions,
provides support for debuggers, and is usable across all programming languages and
computers.

style namesOne of two attributes used to organize TrueType® fonts. Style names include extra-bold, bold,
and italic. (The other attribute used to organize TrueType fonts is the family name.) See also
TrueType font.

subclass procedureAn application-defined window procedure that replaces a window's original window procedure
when the window is subclassed. See also subclassing, window procedure.

subclassingA technique that allows an application to intercept and process messages sent or posted to a
particular window before the window has a chance to process them. See also subclass
procedure.

subdirectoryA directory within another directory. See also directory.

subkeyAn entry (or node) in the registry subordinate to a given key. With the exception of four
predefined keys, all keys are subkeys of other keys. See also key, registry.

sublanguage identifierAn 8-bit value identifying the variant of a language in a language identifier. See also
language identifier, primary language identifier.

subtractive color technologyThe color technology, used by ink-based printers, that is based on the three primary colors
cyan, yellow, and magenta. Other colors (except white) are obtained by combining two or
more of the primaries in varying amounts. White is defined as the absence of the primaries.
Black is defined as the presence of all the primaries.

super VGAA video adapter that supports resolutions higher than 640-by-480 pixels or more than 16
simultaneous colors (or both).

superclass procedureAn application-defined window procedure that replaces the window procedure for a window of
a particular window class when the class is superclassed. See also superclassing, window
procedure.

superclassingA technique that allows an application to create a new window class that has the basic
functionality of the existing class, but with enhancements provided by the application. See
also superclass procedure.

syllabaryA single character that represents what we would call a syllable, using consonant/vowel
combinations as their linguistically-discrete units ¾ for example, the sound created by "ta."
This term would apply to Kana (Katakana and Hiragana) and Hangul scripts. Linguists use
the word "syllabary" to define a system of phonemic (linguistically-distinct) syllabic units used
in a language.

synchronization objectAn object whose handle can be specified in one of the wait functions to coordinate the
execution of multiple threads. Synchronization objects include change notification, console
input, event, mutex, process, thread, and semaphore objects. See also object, wait
function.

system access-control list (SACL)An access-control list (ACL) that is controlled by a system administrator and used to control
the generation of audit messages. See also access-control list (ACL), discretionary
access-control list (DACL).

system directoryThe directory that contains Windows libraries, drivers, and font files. See also directory.

system-exclusive dataIn Musical Instrument Digital Interface (MIDI), messages understood only by MIDI devices
from a specific manufacturer. MIDI device manufacturers can use system-exclusive data to
define custom messages that can be exchanged between their MIDI devices. (The standard
MIDI specification defines only a framework for system-exclusive messages.) See also
Musical Instrument Digital Interface.

System menuA pop-up menu, defined mainly by the operating system, that typically contains commands
used to set a window's size or position, close a window or application, or activate a different
application. See also pop-up menu.

system metricA dimension of a Windows display element, such as the border width, scroll bar arrow height,
icon height, and so on. System metrics may also describe other aspects of the operating
system, such as whether a mouse is installed, whether the current version of Windows
supports double-byte characters, and so on. See also scroll bar.

system paging fileThe storage file that the kernel uses to hold pages of memory swapped out of RAM.

system paletteAn array that identifies all of the colors that can be displayed simultaneously on a device. For
most displays, this array is a subset of all possible colors that can appear on the display.

system timeThe "real-time" clock format. System time uses a structure containing individual members for
the date and time.

T

tagged file format
A file format in which data is tagged using standard headers that identify information type and
length. See also Resource Interchange File Format (RIFF).

tape driveA device that reads from and writes to a tape.

tape volumeA recording medium and its physical carrier.

tempoThe speed at which a Musical Instrument Digital Interface (MIDI) file is played. Tempo is
measured in beats per minute (BPM); typical MIDI tempo is 120 BPM. See also Musical
Instrument Digital Interface.

tensionTo move the tape to the end-of-medium marker and back to the beginning-of-medium marker
in one command.

termination handlerA mechanism by which a developer ensures that a block of termination code is executed. A
termination handler consists of a guarded body of code and a termination block. See also
guarded body of code.

threadThe basic entity to which the operating system allocates CPU time. A thread can execute any
part of the application's code, including a part currently being executed by another thread. All
threads of a process share the virtual address space, global variables, and operating system
resources of the process. See also process.

thread affinity maskA bit vector in which each bit represents the processors that a thread is allowed to run on.

thread local storageA storage method in which an index can be used by multiple threads of the same process to
store and retrieve a different value for each thread. See also thread.

thresholdFor the joystick interface, the amount, in device units, that the stick coordinates must change
before the application is notified of the movement. A high threshold reduces the number of
joystick messages sent to an application, but it also reduces the sensitivity of the joystick.

time-out valueThe interval, in milliseconds, measured by a timer.

timerAn internal routine that causes the system to send a WM_TIMER message whenever a
specified interval elapses.

timer objectAn interprocess synchronization object whose state is set to signaled when the specified due
time arrives. See also due time, synchronization object.

time sliceA unit of processor time (in clock ticks) allocated to a thread. See also thread.

time stampA tag that enables a Musical Instrument Digital Interface (MIDI) sequencer to replay recorded
MIDI data at the proper moment. See also Musical Instrument Digital Interface.

title barA window component that displays an application-defined line of text. Typically, the text
identifies the application or indicates the purpose of the window.

TLSSee thread local storage.

TMSF time formatA time format used by Media Control Interface (MCI) to express time in tracks, minutes,
seconds, and frames. The number of frames in a second depends on the type of device being
used; compact disc audio devices use 75 frames per second. The TMSF time format is used
primarily by compact disc audio devices. See also Media Control Interface (MCI).

tokenSee access token.

top-down DIBA device-independent bitmap (DIB) whose origin lies at the top-left corner. See also bottom-
up DIB.

top-level windowA window that has no parent window.

topic nameA string that identifies the type of data requested by a dynamic data exchange (DDE) client
application.

topmost windowA window with the WS_EX_TOPMOST style. A topmost window overlaps all other non-
topmost windows.

trackA sequence of sound on a compact disc - digital audio (CD-DA) disc. With a Musical
Instrument Digital Interface (MIDI) file, information can be separated into tracks, defined by
the creator of the file. MIDI file tracks can correspond to MIDI channels, or they can
correspond to parts of a song (such as melody or chorus); a CD-DA track usually
corresponds to a song. See also compact disc - digital audio.

transaction filterA flag that prevents the Data Exchange Management Library (DDEML) from passing an
unwanted type of transaction to an application's dynamic data exchange (DDE) callback
function. See also dynamic data exchange (DDE).

transformationAn algorithm that alters ("transforms") the size, orientation, and shape of objects.

translationA transformation that shifts an object farther from or closer to the coordinate-space origin.

TrueType fontA font whose glyphs are stored as a collection of line and curve commands plus a collection
of hints. Windows uses the line and curve commands to define the outline of the glyph's
bitmap. Windows uses the hints to adjust the length of the lines and shapes of the curves.
These hints and the respective adjustments are based on the amount of scaling used to
reduce or increase the size of the bitmap. See also bitmap, font, glyph.

try blockA guarded body of code in a try-except frame-based exception handler or try-finally
termination handler. See also frame-based exception handler, guarded body of code,
termination handler.

U

Unicode
A 16-bit character set capable of encoding all known characters and used as a worldwide
character-encoding standard. Windows uses Unicode exclusively at the system level.

universal well-known security identifier (SID)An SID that is meaningful on all secure systems using the security model implemented in
Windows NT®.

user-defined penA cosmetic or geometric pen that uses a unique series of dashes, dots, or dashes and dots
defined by the user. See also cosmetic pen, geometric pen.

UTCSee Coordinated Universal Time.

V

value
Data associated with a key. A key may have zero or more values. Each value has three parts:
a name, a type, and data. See also key.

vector deviceA device that creates text and graphics output by drawing lines.

viewportA rectangle in device space that is used to specify a transformation between page and device
space. The viewport extents are always measured in pixels for a video display or dots for
printers.

viewport extentThe width or height of the viewport.

viewport originThe corner of the viewport from which the extents are measured. (The viewport-origin
coordinates are specified with respect to the device-space origin.)

virtual-key codeA device-independent value that identifies the purpose of a keystroke as interpreted by the
Windows keyboard device driver.

visible regionThe part of the client area that is visible to the user.

visible windowA window that has the WS_VISIBLE style. A visible window is displayed on the screen and
can receive user input.

volatile keyA key that is valid only until the next time the operating system is started. See also key.

volumeA storage medium, such as a disk or tape, that is formatted to contain files and directories. A
volume is accessed through a disk drive. In a path, a volume is referenced by the letter of the
disk drive that accesses the volume. For example, a fixed disk may be referred to as C. A
single volume may be divided into more than one logical volume, also called a partition. Each
partition is referenced by a unique volume identifier.

volume scalarA component of a Musical Instrument Digital Interface (MIDI) Mapper patch map that adjusts
the volume of a patch on a synthesizer. For example, if the bass patch on a synthesizer is too
loud relative to the piano patch, the volume scalar can reduce the volume for the bass or
increase the volume for the piano. (Applications playing waveform audio can also adjust the
output volume.) See also MIDI Mapper, patch.

W

waitable timer object
See timer object.

wait functionA function that blocks the execution of the calling thread until a specified set of conditions has
been met.

waiting threadA thread whose execution is blocked while waiting for a wait function to return. See also wait
function.

WAVE fileA Microsoft standard file format for storing waveform audio data. WAVE files have a .WAV
filename extension.

waveform audioA technique of recreating an audio waveform from digital samples of the waveform.

wide characterA synonym for a Unicode™ character; Unicode characters are 2 bytes wide.

widened pathA modified path. See also path.

wildcard charactersCharacters that represent one or more characters in a filename. The Windows wildcard
characters are the question mark (?) and the asterisk (*). The question mark matches any
single character; the asterisk matches any combination of characters. For example, if a
directory contains files with the names BAT, B12, BOAT, and CAT, the pattern b* matches
the names BAT, B12, and BOAT. The pattern b?t matches only the name BAT.

Win32 serviceA service that conforms to the interface rules of the Service Control Manger. This enables the
Service Control Manager to start the service at system startup or on demand and enables
communication between the service and service control programs. A Win32 service can
execute in its own process, or it can share a process with other Win32 services.

windowA rectangle in page space that is used to specify a transformation between page and device
space.

window extentThe width or height of the window.

window handleA 32-bit value, assigned by Windows, that uniquely identifies a window.

window nameA text string that identifies a window for the user.

window origin(1) The upper left corner of a window's client area.

(2) The corner of the window from which the extents are measured. (The window-origin
coordinates are specified with respect to the page-space origin.)

window procedureA function, called by the operating system, that controls the appearance and behavior of its
associated windows. The procedure receives and processes all messages to these windows.

window styleA named constant that defines an aspect of the window's appearance and behavior not
specified by the window's class.

window textSee window name.

Windows directoryThe directory that contains Windows-based applications, initialization files, and Help files.
See also directory.

Windows metafileOne of two metafile formats. This format, used for applications written to run with Windows
version 3.x, consists of a header and an array of metafile records. See also metafile record.

Windows timeThe number of milliseconds since Windows started running. This time is recorded as a 32-bit
value, so it overflows to zero every 49.7 days.

world coordinate spaceThe coordinate space in which all graphics device interface (GDI) drawing operations begin if
an application has set the world-space to page-space transformation.

world spaceThe coordinate space in which all graphics device interface (GDI) drawing operations begin if
an application has set the world-space to page-space transformation. Applications use world
space to rotate shear, or reflect graphics output. World space measures 2^(32) units high by
2^(32) units wide, and is one of four coordinate spaces used in the Win32 API. See also
device coordinate space, page coordinate space, and physical device.

X

x-axis
The axis that normally extends horizontally across a coordinate space.

Y

y-axis
The axis that normally extends vertically across a coordinate space.

Z

Z order
A stack of overlapping windows. Each window has a unique position in the Z order.

RasAdminAcceptNewConnectionWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminConnectionHangupNotificationWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminGetIpAddressForUserWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminReleaseIpAddressWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File rassapi.hUnicode WinNTPlatform Notes None

RasSecurityDialogBeginWindows NT YesWin95 NoWin32s NoImport Library -Header File rasshost.hUnicode NoPlatform Notes None

RasSecurityDialogEndWindows NT YesWin95 NoWin32s NoImport Library -Header File rasshost.hUnicode NoPlatform Notes None

WinTrustProviderClientInitializeWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode Unicode onlyPlatform Notes None

WinTrustProviderServerInitializeWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode Unicode onlyPlatform Notes None

WinTrustSipInitializeWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustProviderClientUnloadWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustProviderPingWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode Unicode onlyPlatform Notes None

WinTrustProviderServerUnloadWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustProviderSubmitCertificateWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustProviderVerifyTrustWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustSubjectCheckContentInfoWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustSubjectEnumCertificatesWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustSubjectGetCertHeaderWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustSubjectGetCertificateWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode NoPlatform Notes None

WinTrustSubjectGetNameWindows NT YesWin95 NoWin32s NoImport Library -Header File wintrust.hUnicode Unicode onlyPlatform Notes None

AbortProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes ABORTPROC

acmDriverEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode NoPlatform Notes ACMDRIVERENUMCB

acmDriverProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode NoPlatform Notes ACMDRIVERPROC

acmFilterChooseHookProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFILTERCHOOSEHOOKPROC

acmFilterEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFILTERENUMCB

acmFilterTagEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFILTERTAGENUMCB

acmFormatChooseHookProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFORMATCHOOSEHOOKPROC

acmFormatEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFORMATENUMCB

acmFormatTagEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File msacm.hUnicode WinNTPlatform Notes ACMFORMATTAGENUMCB

acmStreamConvertCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

AddPropSheetPageProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File prsht.hUnicode NoPlatform Notes LPFNADDPROPSHEETPAGEPROC

BrowseCallbackProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File shlobj.hUnicode NoPlatform Notes BFFCALLBACK

CallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ddraw.hUnicode NoPlatform Notes None

CALLERRELEASEWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapiutil.hUnicode NoPlatform Notes None

CallWndProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

CallWndRetProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

capControllCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

capErrorCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

capStatusCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

capVideoStreamCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

capWaveStreamCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

capYieldCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

CBTProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

CCHookProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPCCHOOKPROC

CFHookProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPCFHOOKPROC

CopyProgressRoutineWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

CplAppletWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File cpl.hUnicode NoPlatform Notes APPLET_PROC

D3DENUMDEVICESCALLBACKWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DENUMTEXTUREFORMATSCALLBACKWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DRMDEVICEPALETTECALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMFRAMEMOVECALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMFREEFUNCTIONWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMLOADCALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMLOADTEXTURECALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMMALLOCFUNCTIONWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMOBJECTCALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMREALLOCFUNCTIONWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMUPDATECALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMUSERVISUALCALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMWRAPCALLBACKWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File d3drm.hUnicode NoPlatform Notes None

D3DVALIDATECALLBACKWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DdeCallbackWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File ddeml.hUnicode NoPlatform Notes PFNCALLBACK

DebugProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

DialogProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes DLGPROC

DISMISSMODELESSWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapidefs.hUnicode NoPlatform Notes None

DrawStateProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes DRAWSTATEPROC

DriverProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mmsystem.hUnicode NoPlatform Notes DRIVERPROC

DSEnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File dsound.hUnicode NoPlatform Notes None

EditWordBreakProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode WinNTPlatform Notes EDITWORDBREAKPROC

EditWordBreakProcExWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

EnhMetaFileProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes ENHMFENUMPROC

EnumCalendarInfoProcWindows NT YesWin95 NoWin32s YesImport Library user-definedHeader File winnls.hUnicode WinNTPlatform Notes CALINFO_ENUMPROC

EnumCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ddraw.hUnicode NoPlatform Notes None

EnumChildProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes WNDENUMPROC

EnumCodePagesProcWindows NT YesWin95 NoWin32s YesImport Library user-definedHeader File winnls.hUnicode WinNTPlatform Notes CODEPAGE_ENUMPROC

EnumDateFormatsProcWindows NT YesWin95 NoWin32s YesImport Library user-definedHeader File winnls.hUnicode WinNTPlatform Notes DATEFMT_ENUMPROC

EnumDesktopProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File winuser.hUnicode WinNTPlatform Notes DESKTOPENUMPROC

EnumDPCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File dplay.hUnicode NoPlatform Notes None

EnumFontFamExProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes FONTENUMPROC

EnumFontFamProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes FONTENUMPROC

EnumFontsProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes FONTENUMPROC

EnumICMProfilesProcWindows NT NoWin95 YesWin32s NoImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes ICMENUMPROC

EnumLocalesProcWindows NT YesWin95 NoWin32s YesImport Library user-definedHeader File winnls.hUnicode WinNTPlatform Notes LOCALE_ENUMPROC

EnumMetaFileProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes MFENUMPROC

EnumModesCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ddraw.hUnicode NoPlatform Notes None

EnumObjectsProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes GOBJENUMPROC

EnumPlayersCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File dplay.hUnicode NoPlatform Notes None

EnumRegisterWordProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File imm.hUnicode WinNTPlatform Notes REGISTERWORDENUMPROC

EnumResLangProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winbase.hUnicode NoPlatform Notes ENUMRESLANGPROC

EnumResNameProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winbase.hUnicode NoPlatform Notes ENUMRESNAMEPROC

EnumResTypeProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winbase.hUnicode NoPlatform Notes ENUMRESTYPEPROC

EnumSessionsCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File dplay.hUnicode NoPlatform Notes None

EnumSurfacesCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ddraw.hUnicode NoPlatform Notes None

EnumThreadWndProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes WNDENUMPROC

EnumTimeFormatsProcWindows NT YesWin95 NoWin32s YesImport Library user-definedHeader File winnls.hUnicode WinNTPlatform Notes TIMEFMT_ENUMPROC

EnumWindowsProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes WNDENUMPROC

EnumWindowStationProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File winuser.hUnicode WinNTPlatform Notes WINSTAENUMPROC

ExtensionPropSheetPageProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File prsht.hUnicode NoPlatform Notes LPFNADDPROPSHEETPAGES

FileIOCompletionRoutineWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

FMExtensionProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File wfext.hUnicode WinNTPlatform Notes Windows 95: Only supports
16-bit FileManager

fnCallbackWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ddraw.hUnicode NoPlatform Notes None

FNIDLEWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ForegroundIdleProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

FRHookProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPFRHOOKPROC

GetMsgProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

IOProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File mmsystem.hUnicode NoPlatform Notes MMIOPROC

JournalPlaybackProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

JournalRecordProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

KeyboardProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

LINECALLBACKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LineDDAProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File wingdi.hUnicode NoPlatform Notes LINEDDAPROC

LPFNBUTTONWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapidefs.hUnicode NoPlatform Notes None

MessageProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

MidiInProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

MidiOutProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

MMIOProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File mmsystem.hUnicode NoPlatform Notes MMIOPROC

MouseProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

MSGCALLRELEASEWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File imessage.hUnicode NoPlatform Notes None

MSGSERVICEENTRYWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

MyStatusProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

NOTIFCALLBACKWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapidefs.hUnicode NoPlatform Notes May not be supported in
future versions

OFNHookProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes LPOFNHOOKPROC

OFNHookProcOldStyleWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File -Unicode NoPlatform Notes LPOFNHOOKPROC

OPTIONCALLBACKWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

ORASADFuncWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File ras.hUnicode NoPlatform Notes None

OutputProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes GRAYSTRINGPROC

PagePaintHookWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPPAGEPAINTHOOK

PageSetupHookWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPPAGESETUPHOOK

PHONECALLBACKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PreprocessMessageWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

PrintHookProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPPRINTHOOKPROC

PropEnumProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode WinNTPlatform Notes PROPENUMPROC

PropEnumProcExWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode WinNTPlatform Notes PROPENUMPROCEX

PropSheetPageProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File prsht.hUnicode WinNTPlatform Notes LPFNPSPCALLBACK

PropSheetProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File prsht.hUnicode NoPlatform Notes PFNPROPSHEETCALLBACK

RASADFuncWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File ras.hUnicode WinNTPlatform Notes None

RasDialFuncWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ras.hUnicode NoPlatform Notes None

RasDialFunc1Windows NT YesWin95 YesWin32s NoImport Library user-definedHeader File ras.hUnicode NoPlatform Notes None

RasDialFunc2Windows NT YesWin95 NoWin32s NoImport Library user-definedHeader File ras.hUnicode NoPlatform Notes None

RasPBDlgFuncWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File rasdlg.hUnicode WinNTPlatform Notes None

RemovePreprocessInfoWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

SendAsyncProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes SENDASYNCPROC

ServiceMainWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

SERVICEWIZARDDLGPROCWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapiwz.hUnicode NoPlatform Notes None

SetupHookProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File commdlg.hUnicode NoPlatform Notes LPSETUPHOOKPROC

ShellProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

SnmpExtensionInitWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

SnmpExtensionQueryWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

SnmpExtensionTrapWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

SoundSentryProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

SP_FILE_CALLBACKWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode YesPlatform Notes None

SymbolRegisteredCallbackWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymEnumModulesCallbackWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymEnumSymbolsCallbackWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SysMsgProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes HOOKPROC

TimeProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mmsystem.hUnicode NoPlatform Notes TIMECALLBACK

TimerProcWindows NT YesWin95 NoWin32s NoImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes TIMERPROC

waveInProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

waveOutProcWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File -Unicode NoPlatform Notes None

WindowProcWindows NT YesWin95 YesWin32s YesImport Library user-definedHeader File winuser.hUnicode NoPlatform Notes WNDPROC

WIZARDENTRYWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapiwz.hUnicode NoPlatform Notes None

MCI_BREAKWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_CAPTUREWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_CONFIGUREWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_COPYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_CUEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_CUTWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_DELETEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ESCAPEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_FREEZEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_GETDEVCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_INDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_LISTWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_LOADWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_MARKWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_MONITORWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_PASTEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_PAUSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_PLAYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_PUTWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_QUALITYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_REALIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_RECORDWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_RESERVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_RESTOREWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_RESUMEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SAVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SEEKWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SETWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SETAUDIOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SETTIMECODEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SETTUNERWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SETVIDEOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SIGNALWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SPINWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_STATUSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_STEPWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_STOPWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SYSINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_UNDOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_UNFREEZEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_UPDATEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_WHEREWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_WINDOWWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

breakWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

capabilityWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

captureWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

closeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

configureWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

copyWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

cueWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

cutWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

deleteWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

escapeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

freezeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

indexWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

infoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

listWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

loadWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

markWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

monitorWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

openWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

pasteWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

pauseWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

playWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

putWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

qualityWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

realizeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

recordWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

reserveWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

restoreWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

resumeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

saveWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

seekWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

setWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

setaudioWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

settimecodeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

settunerWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

setvideoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

signalWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

spinWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

statusWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

stepWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

stopWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

sysinfoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

undoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

unfreezeWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

updateWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

whereWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

windowWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

CMC_X_COM_ATTACH_CHARPOSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_CAN_SEND_RECIPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_CONFIG_DATAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_PRIORITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_RECIP_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_SAVE_MESSAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_SENT_MESSAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_SUPPORT_EXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_TIME_RECEIVEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_MS_ADDRESS_UIWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

CMC_X_MS_ATTACH_DATAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

CMC_X_MS_FUNCTION_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

CMC_X_MS_MESSAGE_DATAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

CMC_X_MS_SESSION_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

CMC_XS_COMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_XS_MSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsxt.hUnicode NoPlatform Notes None

XTYP_ADVDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_ADVREQWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_ADVSTARTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_ADVSTOPWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_CONNECTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_CONNECT_CONFIRMWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_DISCONNECTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_ERRORWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_EXECUTEWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_MONITORWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_POKEWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_REGISTERWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_REQUESTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_UNREGISTERWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_WILDCONNECTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

XTYP_XACT_COMPLETEWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

FSCTL_DISMOUNT_VOLUMEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

FSCTL_GET_COMPRESSIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

FSCTL_LOCK_VOLUMEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

FSCTL_SET_COMPRESSIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

FSCTL_UNLOCK_VOLUMEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_CHECK_VERIFYWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_EJECT_MEDIAWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_FORMAT_TRACKSWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_GET_DRIVE_GEOMETRYWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_GET_DRIVE_LAYOUTWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_GET_MEDIA_TYPESWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_GET_PARTITION_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_LOAD_MEDIAWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_MEDIA_REMOVALWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_PERFORMANCEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_REASSIGN_BLOCKSWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_SET_DRIVE_LAYOUTWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_SET_PARTITION_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_DISK_VERIFYWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

IOCTL_SERIAL_LSRMST_INSERTWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

ABProviderInitWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

HPProviderInitWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapihook.hUnicode NoPlatform Notes None

MSProviderInitWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

XPProviderInitWindows NT YesWin95 YesWin32s NoImport Library user-definedHeader File mapispi.hUnicode NoPlatform Notes None

ACCESS_MODEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

MULTIPLE_TRUSTEE_OPERATIONWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

SE_OBJECT_TYPEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

TRUSTEE_FORMWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

TRUSTEE_TYPEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

ACL_INFORMATION_CLASSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACTIVATEFLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ADVFWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

BIND_FLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

BINDSPEEDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

CALLTYPEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

CLSCTXWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

COINITWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objbase.hUnicode YesPlatform Notes None

D3DBLENDWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DCMPFUNCWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DCOLORMODELWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DCULLWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DFILLMODEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DFOGMODEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTSTATETYPEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTTYPEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DOPCODEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DRENDERSTATETYPEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DRMCOLORSOURCEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMCOMBINETYPEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMFILLMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMFOGMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMFRAMECONSTRAINTWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMLIGHTMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMLIGHTTYPEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMMATERIALMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMPALETTEFLAGSWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMPROJECTIONTYPEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMRENDERQUALITYWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMSHADEMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMSORTMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMTEXTUREQUALITYWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMUSERVISUALREASONWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMWRAPTYPEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMXOFFORMATWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMZBUFFERMODEWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DSHADEMODEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTEXTUREADDRESSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTEXTUREBLENDWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTEXTUREFILTERWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTRANSFORMSTATETYPEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DATADIRWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

DISCARDCACHEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

DROPEFFECTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

DVASPECTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

DVASPECT2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

DVASPECTINFOFLAGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

DVEXTENTMODEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

EXTCONNWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

FD_FLAGSWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

GET_FILEEX_INFO_LEVELSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

GUIDKINDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

HITRESULTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

KEYMODIFIERSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File controls.idlUnicode YesPlatform Notes None

LOCKTYPEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

MEDIA_TYPEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

MKRREDUCEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

MKSYSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

MSHCTXWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

MSHLFLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

OLECLOSEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLECONTFWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLECREATEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ole2.hUnicode YesPlatform Notes None

OLEDCFLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

OLEGETMONIKERWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLELINKBINDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEMISCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLERENDERWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEUIPASTEFLAGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUPDATEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEVERBATTRIBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEWHICHMKWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

PENDINGMSGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

PENDINGTYPEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

PICTUREWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

PICTYPEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

POINTERINACTIVEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

PROPSETFLAGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

QACONTAINERFLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

RAS_PARAMS_FORMATWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode NoPlatform Notes None

RASCONNSTATEWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

RASPROJECTIONWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

REGCLSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objbase.hUnicode YesPlatform Notes None

RPC_C_AUTHN_LEVEL_xxxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File rpcdce.hUnicode YesPlatform Notes None

RPC_C_AUTHN_xxxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File rpcdce.hUnicode YesPlatform Notes None

RPC_C_AUTHZ_xxxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File rpcdce.hUnicode YesPlatform Notes None

RPC_C_IMP_LEVEL_xxxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File rpcdce.hUnicode YesPlatform Notes None

SECURITY_IMPERSONATION_LEVELWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SERVERCALLWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

SHCONTFWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

SHGNOWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

SID_NAME_USEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

STATFLAGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

STGCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

STGFMTWindows NT YesWin95 YesWin32s YesImport LibraryHeader FileUnicode YesPlatform Notes None

STGMWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objbase.hUnicode YesPlatform Notes None

STGMOVEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wtypes.hUnicode YesPlatform Notes None

STGTYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STREAM_SEEKWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

TOKEN_INFORMATION_CLASSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_TYPEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TYMEDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

UASFLAGSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

USERCLASSTYPEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

VIEWSTATUSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

__WSAFDIsSetWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes Win32s supports WS 1.1

_hreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_hwriteWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_lcloseWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_lcreatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_llseekWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_lopenWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_lreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

_lwriteWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

AbnormalTerminationWindows NT YesWin95 YesWin32s YesImport LibraryHeader FileUnicode NoPlatform Notes None

AbortDocWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

AbortPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

AbortPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File wingdi.hUnicode NoPlatform Notes None

AbortSystemShutdownWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

ACCELERATEABSDIWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapidefs.hUnicode NoPlatform Notes None

acceptWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

AcceptExWindows NT YesWin95 YesWin32s YesImport Library mswsock.libHeader File mswsock.hUnicode NoPlatform Notes Microsoft-specific extension

AccessCheckWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AccessCheckAndAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

acmDriverAddWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmDriverCloseWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverDetailsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmDriverEnumWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverIDWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverMessageWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverOpenWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverPriorityWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmDriverRemoveWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmFilterChooseWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFilterDetailsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFilterEnumWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFilterTagDetailsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFilterTagEnumWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFormatChooseWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFormatDetailsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFormatEnumWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFormatSuggestWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmFormatTagDetailsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmFormatTagEnumWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode WinNTPlatform Notes None

acmGetVersionWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmMetricsWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamCloseWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamConvertWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamMessageWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamOpenWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamPrepareHeaderWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamResetWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamSizeWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

acmStreamUnprepareHeaderWindows NT YesWin95 YesWin32s NoImport Library msacm32.libHeader File msacm.hUnicode NoPlatform Notes None

AcsLanWindows NT YesWin95 NoWin32s NoImport Library dlcapi.libHeader File dlcapi.hUnicode NoPlatform Notes None

ActivateKeyboardLayoutWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

AddAccessAllowedAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AddAccessDeniedAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AddAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AddAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

AddAuditAccessAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AddFontResourceWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

AddFormWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddJobWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddMonitorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPortWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPrinterConnectionWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPrinterDriverWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPrintProcessorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AddPrintProvidorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AdjustTokenGroupsWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AdjustTokenPrivilegesWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AdjustWindowRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

AdjustWindowRectExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

AdvancedDocumentPropertiesWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

AllocateAndInitializeSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AllocateLocallyUniqueIdWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AllocConsoleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

AngleArcWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

AnimatePaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

AnyPopupWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

AppendMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

ArcWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ArcToWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

AreAllAccessesGrantedWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AreAnyAccessesGrantedWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

AreFileApisANSIWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes On Win32s the file APIs are
always ANSI

ArrangeIconicWindowsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

AttachThreadInputWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

auxGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

auxGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

auxGetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

auxOutMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

auxSetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

AVIBuildFilterWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIClearClipboardWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileAddRefWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileCreateStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileEndRecordWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileExitWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileGetStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIFileInitWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileOpenWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIFileReadDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileReleaseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIFileWriteDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIGetFromClipboardWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIMakeCompressedStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIMakeFileFromStreamsWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIMakeStreamFromClipboardWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIPutFileOnClipboardWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVISaveWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVISaveOptionsWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVISaveOptionsFreeWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVISaveVWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIStreamAddRefWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamBeginStreamingWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamCreateWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamEndStreamingWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamFindSampleWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamGetFrameWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamGetFrameCloseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamGetFrameOpenWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIStreamLengthWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamOpenFromFileWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

AVIStreamReadWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamReadDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamReadFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamReleaseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamSampleToTimeWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamSetFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamStartWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamTimeToSampleWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamWriteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

AVIStreamWriteDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

BackupEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

BackupReadWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

BackupSeekWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

BackupWriteWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

BeepWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

BeginDeferWindowPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

BeginPaintWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

BeginPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

BeginUpdateResourceWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

bindWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

BindImageWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

BindImageExWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

BindMonikerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

BitBltWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

BringWindowToTopWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

BroadcastSystemMessageWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

BuildCommDCBWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

BuildCommDCBAndTimeoutsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

BuildDisplayTableWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

BuildExplicitAccessWithNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

BuildImpersonateExplicitAccessWithNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

BuildImpersonateTrusteeWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

BuildSecurityDescriptorWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

BuildTrusteeWithNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

BuildTrusteeWithSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

CallMsgFilterWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CallNamedPipeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CallNextHookExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CallWindowProcWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CancelDCWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CancelIoWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CancelWaitableTimerWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

capCreateCaptureWindowWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

capGetDriverDescriptionWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

CascadeWindowsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ChangeClipboardChainWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ChangeDisplaySettingsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

ChangeIdleRoutineWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ChangeMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

ChangeServiceConfigWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

char_array_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

char_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

CharLowerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharLowerBuffWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharNextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharNextExAWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CharPrevWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharPrevExAWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CharToOemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharToOemBuffWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharUpperWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CharUpperBuffWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CheckColorsInGamutWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CheckDlgButtonWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CheckMenuItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CheckMenuRadioItemWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CheckParametersWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes Intel only

CheckParmsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes None

CheckRadioButtonWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CheckSumMappedFileWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ChildWindowFromPointWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ChildWindowFromPointExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ChooseColorWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

ChooseFontWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

ChoosePixelFormatWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

ChordWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ClearCommBreakWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ClearCommErrorWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ClearEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ClientToScreenWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ClipCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CloseClipboardWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CloseDesktopWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CloseDriverWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

CloseEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CloseEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

CloseFigureWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CloseHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CloseIMsgSessionWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes May not be supported in
future versions

CloseMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

ClosePrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

CloseServiceHandleWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

closesocketWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

CloseWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CloseWindowStationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CLSIDFromProgIDWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CLSIDFromStringWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

cmc_act_onWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_freeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_listWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_logoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_logonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_look_upWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_query_configurationWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_readWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_sendWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

cmc_send_documentsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CoBuildVersionWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

CoCopyProxyWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoCreateFreeThreadedMarshalerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoCreateGuidWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoCreateInstanceWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoCreateInstanceExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoDisconnectObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoDosDateTimeToFileTimeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoFileTimeNowWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoFileTimeToDosDateTimeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoFreeAllLibrariesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoFreeLibraryWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoFreeUnusedLibrariesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetCallContextWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetClassObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetCurrentProcessWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetInstanceFromFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetInstanceFromIStorageWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetInterfaceAndReleaseStreamWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetMallocWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetMarshalSizeMaxWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetStandardMarshalWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoGetStateWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

CoGetTreatAsClassWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoImpersonateClientWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoInitializeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoInitializeExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoInitializeSecurityWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoIsHandlerConnectedWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

CoIsOle1ClassWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

CoLoadLibraryWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoLockObjectExternalWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

ColorMatchToTargetWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

ColsHandlerConnectedWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

ColsOle1ClassWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoMarshalHresultWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoMarshalInterfaceWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoMarshalInterTheadInterfaceInStreamWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CombineRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CombineTransformWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CommandLineToArgvWWindows NT YesWin95 NoWin32s YesImport Library shell32.libHeader File shellapi.hUnicode NoPlatform Notes None

CommConfigDialogWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CommDlgExtendedErrorWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode NoPlatform Notes None

CompareFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CompareStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

ConfigurePortWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

connectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

ConnectNamedPipeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ConnectToPrinterDlgWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

ContinueDebugEventWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ControlServiceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

ConvertDefaultLocaleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

ConvertThreadToFiberWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CopyAcceleratorTableWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CopyCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CopyEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

CopyFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CopyFileExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CopyIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CopyImageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CopyMemoryWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

CopyMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CopyRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CopySidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

CoQueryAuthenticationServicesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoQueryClientBlanketWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoQueryProxyBlanketWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRegisterClassObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRegisterMallocSpyWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRegisterMessageFilterWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoReleaseMarshalDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRevertToSelfWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRevokeClassObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoRevokeMallocSpyWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoSetProxyBlanketWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoTaskMemAllocWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoTaskMemFreeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoTaskMemReallocWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoTreatAsClassWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoUninitializeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoUnmarshalHresultWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CoUnmarshalInterfaceWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CountClipboardFormatsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateAcceleratorTableWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateAntiMonikerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateBindCtxWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateBitmapWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateBitmapIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateBrushIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateCaretWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateColorSpaceWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CreateCompatibleBitmapWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateCompatibleDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateConsoleScreenBufferWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

CreateCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateDataAdviseHolderWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateDataCacheWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateDesktopWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateDialogIndirectParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateDialogParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateDIBitmapWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateDIBPatternBrushWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateDIBPatternBrushPtWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CreateDIBSectionWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CreateDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateDirectoryExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateDiscardableBitmapWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateDispTypeInfoWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode AllPlatform Notes All 32-bit OLE Apis are
UNICODE only

CreateEditableStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

CreateEllipticRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreateEllipticRgnIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreateEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

CreateErrorInfoWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

CreateEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateFiberWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateFileMappingWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateFileMonikerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateFontWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateFontIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateGenericCompositeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateHalftonePaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

CreateHatchBrushWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateICWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateIconFromResourceWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateIconFromResourceExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateIconIndirectWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateILockBytesOnHGlobalWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

CreateIoCompletionPortWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateIPropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

CreateItemMonikerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreateMailslotWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateMappedBitmapWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

CreateMDIWindowWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreateMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateMutexWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateNamedPipeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateOleAdviseHolderWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

CreatePaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreatePatternBrushWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreatePenWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreatePenIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreatePipeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreatePointerMonikerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

CreatePolygonRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreatePolyPolygonRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreatePopupMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

CreatePrivateObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateProcessWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateProcessAsUserWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreatePropertySheetPageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File prsht.hUnicode WinNTPlatform Notes None

CreateRectRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreateRectRgnIndirectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreateRemoteThreadWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateRoundRectRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

CreateScalableFontResourceWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

CreateSemaphoreWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateServiceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

CreateSolidBrushWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

CreateStatusWindowWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode WinNTPlatform Notes None

CreateStdDispatchWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

CreateStreamOnHGlobalWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

CreateTableWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

CreateTapePartitionWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateThreadWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

CreateToolbarExWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

CreateTypeLibWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode AllPlatform Notes All 32-bit OLE Apis are
UNICODE only

CreateUpDownControlWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

CreateWaitableTimerWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

CreateWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateWindowExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes hMenu limited to WORD on
Win32s

CreateWindowStationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CryptAcquireContextWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptCreateHashWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptDecryptWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptDeriveKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptDestroyHashWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptDestroyKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptEncryptWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptExportKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGenKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGenRandomWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGetHashParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGetKeyParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGetProvParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptGetUserKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptHashDataWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptHashSessionKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptImportKeyWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptReleaseContextWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptSetHashParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptSetKeyParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptSetProviderWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptSetProvParamWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptSignHashWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

CryptVerifySignatureWindows NT YesWin95 OSR2Win32s NoImport Library advapi32.libHeader File wincrypt.hUnicode WinNTPlatform Notes None

D3DRMColorGetAlphaWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMColorGetBlueWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMColorGetGreenWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMColorGetRedWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMCreateColorRGBWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMCreateColorRGBAWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMMatrixFromQuaternionWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMQuaternionFromRotationWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMQuaternionMultiplyWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMQuaternionSlerpWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorAddWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorCrossProductWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorDotProductWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorModulusWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorNormalizeWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorRandomWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorReflectWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorRotateWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorScaleWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMVectorSubtractWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

data_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

data_into_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

data_size_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

DceErrorInqTextWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

DdeAbandonTransactionWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeAccessDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeAddDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeClientTransactionWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeCmpStringHandlesWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeConnectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeConnectListWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeCreateDataHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeCreateStringHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode WinNTPlatform Notes None

DdeDisconnectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeDisconnectListWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeEnableCallbackWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeFreeDataHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeFreeStringHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeGetDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeGetLastErrorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeImpersonateClientWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeInitializeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode WinNTPlatform Notes None

DdeKeepStringHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeNameServiceWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdePostAdviseWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeQueryConvInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeQueryNextServerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeQueryStringWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode WinNTPlatform Notes None

DdeReconnectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeSetQualityOfServiceWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

DdeSetUserHandleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeUnaccessDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DdeUninitializeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ddeml.hUnicode NoPlatform Notes None

DebugActiveProcessWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DebugBreakWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DefDlgProcWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DefDriverProcWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

DeferWindowPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DefFrameProcWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DefineDosDeviceWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DefMDIChildProcWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DefScreenSaverProcWindows NT YesWin95 YesWin32s NoImport Library scrnsave.libHeader File scrnsave.hUnicode NoPlatform Notes None

DefWindowProcWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DeinitMapiUtilWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

DeleteAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

DeleteAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DeleteColorSpaceWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

DeleteCriticalSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DeleteDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

DeleteEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

DeleteFiberWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DeleteFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

DeleteFormWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeleteMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DeleteMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

DeleteMonitorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeleteObjectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

DeletePortWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeletePrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

DeletePrinterConnectionWindows NT YesWin95 NoWin32s NoImport Library -Header File -Unicode WinNTPlatform Notes None

DeletePrinterDataWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeletePrinterDriverWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeletePrintProcessorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeletePrintProvidorWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DeleteServiceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

DeregisterEventSourceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

DeregisterIdleRoutineWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

DescribePixelFormatWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

DestroyAcceleratorTableWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DestroyCaretWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DestroyCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DestroyIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DestroyMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DestroyPrivateObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

DestroyPropertySheetPageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File prsht.hUnicode NoPlatform Notes None

DestroyWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DeviceCapabilitiesWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File wingdi.hUnicode NoPlatform Notes None

DeviceIoControlWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DialogBoxIndirectParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DialogBoxParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

Direct3DRMCreateWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

DirectDrawCreateWindows NT YesWin95 YesWin32s NoImport Library ddraw.libHeader File ddraw.hUnicode NoPlatform Notes None

DirectDrawCreateClipperWindows NT YesWin95 YesWin32s NoImport Library ddraw.libHeader File ddraw.hUnicode NoPlatform Notes None

DirectDrawEnumerateWindows NT YesWin95 YesWin32s NoImport Library ddraw.libHeader File ddraw.hUnicode NoPlatform Notes None

DirectPlayCreateWindows NT YesWin95 YesWin32s NoImport Library dplay.libHeader File dplay.hUnicode NoPlatform Notes None

DirectPlayEnumerateWindows NT YesWin95 YesWin32s NoImport Library dplay.libHeader File dplay.hUnicode NoPlatform Notes None

DirectSoundCreateWindows NT YesWin95 YesWin32s NoImport Library dsound.libHeader File dsound.hUnicode NoPlatform Notes None

DirectSoundEnumerateWindows NT YesWin95 YesWin32s NoImport Library dsound.libHeader File dsound.hUnicode NoPlatform Notes None

DirectXSetupWindows NT YesWin95 YesWin32s NoImport Library dsetup.libHeader File dsetup.hUnicode NoPlatform Notes None

DisableThreadLibraryCallsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DisconnectNamedPipeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DispatchMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DispGetIDsOfNamesWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

DispGetParamWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

DispInvokeWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

DlgDirListWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DlgDirListComboBoxWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DlgDirSelectComboBoxExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DlgDirSelectExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DllCanUnloadNowWindows NT YesWin95 YesWin32s YesImport Library oleaut32.dllHeader File objbase.hUnicode YesPlatform Notes None

DllEntryPointWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

DllGetClassObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

DllRegisterServerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

DllUnregisterServerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

DocumentPropertiesWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

DocumentPropertySheetsWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winspool.hUnicodePlatform Notes None

DoDragDropWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

DosDateTimeToFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DosDateTimeToVariantTimeWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

double_array_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

double_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

DPtoLPWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

DragAcceptFilesWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode NoPlatform Notes None

DragDetectWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DragFinishWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode NoPlatform Notes None

DragObjectWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DragQueryFileWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

DragQueryPointWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode NoPlatform Notes None

DrawAnimatedRectsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawCaptionWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawDibBeginWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibChangePaletteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibCloseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibDrawWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibEndWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibGetBufferWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibGetPaletteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibOpenWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibProfileDisplayWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibRealizeWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibSetPaletteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibStartWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibStopWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawDibTimeWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

DrawEdgeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawEscapeWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

DrawFocusRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawFrameControlWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawIconExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawInsertWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

DrawMenuBarWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawStateWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DrawStatusTextWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode WinNTPlatform Notes None

DrawTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DrawTextExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

DriverCallbackWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File digitalv.hUnicode NoPlatform Notes None

DrvGetModuleHandleWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

DuplicateHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

DuplicateIconWindows NT YesWin95 YesWin32s NoImport Library shell32.libHeader File shellapi.hUnicode NoPlatform Notes None

DuplicateTokenWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

DuplicateTokenExWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

EditStreamCloneWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

EditStreamCopyWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

EditStreamCutWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

EditStreamPasteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

EditStreamSetInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

EditStreamSetNameWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

EllipseWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

EmptyClipboardWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnableEUDCWindows NT YesWin95 YesWin32s NoImport LibraryHeader FileUnicodePlatform Notes None

EnableIdleRoutineWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

EnableMenuItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnableScrollBarWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnableWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EndDeferWindowPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EndDialogWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EndDocWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

EndDocPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

EndPageWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

EndPagePrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

EndPaintWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EndPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

EndUpdateResourceWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

EnterCriticalSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

enum_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

EnumCalendarInfoWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

EnumChildWindowsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnumClipboardFormatsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnumDateFormatsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

EnumDependentServicesWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

EnumDesktopsWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

EnumDesktopWindowsWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnumDisplaySettingsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

EnumDPCallbackWindows NT YesWin95 YesWin32s NoImport Library dplay.libHeader File dplay.hUnicode NoPlatform Notes None

EnumEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

EnumFontFamiliesWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

EnumFontFamiliesExWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode Win95Platform Notes None

EnumFontsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

EnumFormsWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumICMProfilesWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

EnumJobsWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

EnumMonitorsWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumObjectsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

EnumPortsWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPrinterDataWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPrinterDriversWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPrintersWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPrintProcessorDatatypesWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPrintProcessorsWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

EnumPropsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

EnumPropsExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

EnumProtocolsWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Microsoft-specific extension

EnumResourceLanguagesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

EnumResourceNamesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

EnumResourceTypesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

EnumServicesStatusWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

EnumSystemCodePagesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

EnumSystemLocalesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

EnumThreadWindowsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnumTimeFormatsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

EnumWindowsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EnumWindowStationsWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

EqualPrefixSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

EqualRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

EqualRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

EqualSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

EraseTapeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

EscapeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

EscapeCommFunctionWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ExcludeClipRectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ExcludeUpdateRgnWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ExitProcessWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ExitThreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ExitWindowsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ExitWindowsExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ExpandEnvironmentStringsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ExtCreatePenWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Only supports
solid colors (e.g., BS_SOLID
brushes); also int == 16 bits

ExtCreateRegionWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Fails if the
transform involves a
shearing or rotation; int == 16
bits

ExtEscapeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

ExtFloodFillWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ExtractAssociatedIconWindows NT YesWin95 YesWin32s NoImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

ExtractIconWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

ExtractIconExWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode WinNTPlatform Notes None

ExtSelectClipRgnWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ExtTextOutWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: 16-bit
coordinates only

FatalAppExitWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FatalExitWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FBadColumnSetWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadEntryListWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadPropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadPropTagWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadRestrictionWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadRglpNameIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadRglpszWWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadRowWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadRowSetWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBadSortOrderSetWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes May not be supported in
future versions

FBinFromHexWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FEqualNamesWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FileTimeToDosDateTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FileTimeToLocalFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Win32s always uses
LocalTime never UTC

FileTimeToSystemTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FillConsoleOutputAttributeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

FillConsoleOutputCharacterWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

FillMemoryWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

FillPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

FillRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

FillRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

FindAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FindCloseWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FindCloseChangeNotificationWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FindClosePrinterChangeNotificationWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

FindDebugInfoFileWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

FindExecutableWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

FindExecutableImageWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

FindFirstChangeNotificationWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FindFirstFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes Win32s returns times in
LocalTime

FindFirstFileExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FindFirstFreeAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

FindFirstPrinterChangeNotificationWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

FindNextChangeNotificationWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FindNextFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes Win32s returns times in
LocalTime

FindNextPrinterChangeNotificationWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

FindResourceWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

FindResourceExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

FindTextWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

FindWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

FindWindowExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

FlashWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

FlattenPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

float_array_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

float_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

FloodFillWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

FlushConsoleInputBufferWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

FlushFileBuffersWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FlushInstructionCacheWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes This is valid on SMP
platforms only; Windows 95
returns a constant

FlushViewOfFileWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FoldStringWindows NT YesWin95 NoWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

FormatMessageWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FPropComparePropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FPropContainsPropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FPropExistsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FrameRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

FrameRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

FreeConsoleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

FreeDDElParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

FreeEnvironmentStringsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

FreeImageColorMatcherWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

FreeLibraryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FreeLibraryAndExitThreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

FreePadrlistWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

FreePrinterNotifyInfoWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

FreePropVariantArrayWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objidl.hUnicode YesPlatform Notes None

FreeProwsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

FreeSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

FtAddFtWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FtgRegisterIdleRoutineWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FtMulDwWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FtMulDwDwWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FtNegFtWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

FtSubFtWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

GdiCommentWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GdiFlushWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GdiGetBatchLimitWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GdiSetBatchLimitWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GenerateConsoleCtrlEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetAcceptExSockaddrsWindows NT YesWin95 YesWin32s YesImport Library mswsock.libHeader File mswsock.hUnicode NoPlatform Notes Microsoft-specific extension

GetAceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetAclInformationWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetACPWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetActiveObjectWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

GetActiveWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetAddressByNameWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Microsoft-specific extension

GetArcDirectionWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetAspectRatioFilterExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetAsyncKeyStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetAtomNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetAttribIMsgOnIStgWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes None

GetAuditedPermissionsFromAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetBinaryTypeWindows NT YesWin95 NoWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetBitmapDimensionExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetBkColorWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetBkModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetBoundsRectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetBrushOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetCaptureWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetCaretBlinkTimeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetCaretPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetCharABCWidthsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetCharABCWidthsFloatWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

GetCharacterPlacementWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetCharWidthWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: int == 16 bits

GetCharWidth32Windows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetCharWidthFloatWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetClassFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

GetClassInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetClassInfoExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetClassLongWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetClassNameWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetClassWordWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClientRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClipboardDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClipboardFormatNameWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetClipboardOwnerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClipboardViewerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClipBoxWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetClipCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetClipRgnWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetColorAdjustmentWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetColorSpaceWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetCommandLineWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

GetCommConfigWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCommMaskWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCommModemStatusWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCommPropertiesWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCommStateWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCommTimeoutsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCompressedFileSizeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetComputerNameWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetConsoleCPWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes Windows 95 limitations

GetConsoleCursorInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetConsoleModeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetConsoleOutputCPWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes Windows 95 limitations

GetConsoleScreenBufferInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetConsoleTitleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

GetConvertStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

GetCPInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetCurrencyFormatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetCurrentDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetCurrentFiberWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winnt.hUnicode NoPlatform Notes None

GetCurrentHwProfileWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetCurrentObjectWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetCurrentPositionExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetCurrentProcessWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCurrentProcessIdWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCurrentThreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCurrentThreadIdWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCurrentTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetCursorPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDateFormatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetDCWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDCExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDCOrgExWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetDefaultCommConfigWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetDesktopWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDeviceCapsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetDeviceGammaRampWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetDialogBaseUnitsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDIBColorTableWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetDIBitsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetDiskFreeSpaceWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetDiskFreeSpaceExWindows NT YesWin95 OSR2Win32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetDlgCtrlIDWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDlgItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDlgItemIntWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDlgItemTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetDoubleClickTimeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetDriverModuleHandleWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

GetDriveTypeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetEffectiveClientRectWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

GetEffectiveRightsFromAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

GetEnhMetaFileBitsWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetEnhMetaFileDescriptionWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

GetEnhMetaFileHeaderWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetEnhMetaFilePaletteEntriesWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetEnvironmentStringsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetEnvironmentVariableWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetErrorInfoWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

GetExceptionCodeWindows NT YesWin95 YesWin32s YesImport Library -Header File -UnicodePlatform Notes None

GetExceptionInformationWindows NT YesWin95 YesWin32s YesImport Library -Header File -UnicodePlatform Notes None

GetExitCodeProcessWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetExitCodeThreadWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetExpandedNameWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode WinNTPlatform Notes None

GetExplicitEntriesFromAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetFiberDataWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winnt.hUnicode NoPlatform Notes None

GetFileAttributesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetFileAttributesExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetFileInformationByHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetFileSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetFileSizeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetFileTitleWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

GetFileTypeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetFileVersionInfoWindows NT YesWin95 YesWin32s YesImport Library version.libHeader File winver.hUnicode WinNTPlatform Notes None

GetFileVersionInfoSizeWindows NT YesWin95 YesWin32s YesImport Library version.libHeader File winver.hUnicode WinNTPlatform Notes None

GetFocusWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetFontAssocStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader FileUnicodePlatform Notes None

GetFontDataWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetFontLanguageInfoWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetForegroundWindowWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetFormWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetFullPathNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetGlyphOutlineWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetGraphicsModeWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Only
GM_COMPATIBLE is
supported

GetHandleInformationWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetHGlobalFromILockBytesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

GetHGlobalFromStreamWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

gethostbyaddrWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

gethostbynameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

gethostnameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

GetICMProfileWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

GetIconInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetImageConfigInformationWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

GetImageUnusedHeaderBytesWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

GetInputStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetInstanceWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

GetJobWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetKBCodePageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetKernelObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetKerningPairsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetKeyboardLayoutWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetKeyboardLayoutListWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetKeyboardLayoutNameWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetKeyboardStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetKeyboardTypeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetKeyNameTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetKeyStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetLargestConsoleWindowSizeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetLastActivePopupWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetLastErrorWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetLengthSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetLocaleInfoWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetLocalTimeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetLogColorSpaceWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

GetLogicalDrivesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetLogicalDriveStringsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetMailslotInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetMapModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuCheckMarkDimensionsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuContextHelpIdWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuDefaultItemWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuItemCountWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuItemIDWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuItemInfoWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetMenuItemRectWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMenuStringWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetMessageExtraInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMessagePosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMessageTimeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetMetaFileBitsExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetMetaRgnWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetMiterLimitWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetModuleFileNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetModuleHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetMultipleTrusteeWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetMultipleTrusteeOperationWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetNameByTypeWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Microsoft-specific extension

GetNamedPipeHandleStateWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetNamedPipeInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetNamedSecurityInfoWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetNearestColorWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetNearestPaletteIndexWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetNextDlgGroupItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetNextDlgTabItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetNextWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetNumberFormatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetNumberOfConsoleInputEventsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetNumberOfConsoleMouseButtonsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

GetNumberOfEventLogRecordsWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetObjectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetObjectTypeWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetOEMCPWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetOldestEventLogRecordWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetOpenClipboardWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetOpenFileNameWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

GetOpenFileNamePreviewWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

GetOutlineTextMetricsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetOverlappedResultWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95: Only on serial
and IOCTL devices

GetPaletteEntriesWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetParentWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

getpeernameWindows NT NoWin95 NoWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

GetPixelWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetPixelFormatWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

GetPolyFillModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetPrinterDataWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetPrinterDriverWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetPrinterDriverDirectoryWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetPrintProcessorDirectoryWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

GetPriorityClassWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetPriorityClipboardFormatWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetPrivateObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetPrivateProfileIntWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetPrivateProfileSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetPrivateProfileSectionNamesWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetPrivateProfileStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetPrivateProfileStructWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetProcAddressWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessAffinityMaskWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes This is valid on SMP
platforms only; Windows 95
returns a constant

GetProcessHeapWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessHeapsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessPriorityBoostWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessShutdownParametersWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessTimesWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessVersionWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProcessWindowStationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetProcessWorkingSetSizeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetProfileIntWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetProfileSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetProfileStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetPropWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

getprotobynameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

getprotobynumberWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

GetQueuedCompletionStatusWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetQueueStatusWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetRasterizerCapsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetRegionDataWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetRgnBoxWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetROP2Windows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetRunningObjectTableWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

GetSaveFileNameWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

GetSaveFileNamePreviewWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

GetScrollInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetScrollPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetScrollRangeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetSecurityDescriptorControlWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityDescriptorDaclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityDescriptorGroupWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityDescriptorLengthWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityDescriptorOwnerWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityDescriptorSaclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSecurityInfoWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode NoPlatform Notes None

getservbynameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

getservbyportWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

GetServiceWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Microsoft-specific extension

GetServiceDisplayNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

GetServiceKeyNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

GetShortPathNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetSidIdentifierAuthorityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSidLengthRequiredWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSidSubAuthorityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSidSubAuthorityCountWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

getsocknameWindows NT NoWin95 NoWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

getsockoptWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

GetStartupInfoWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetStdHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetStockObjectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetStretchBltModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetStringTypeAWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetStringTypeExWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetStringTypeWWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetSubMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetSysColorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetSysColorBrushWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes Win32s: supports only
Windows 3.1 system colors.

GetSystemDefaultLangIDWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetSystemDefaultLCIDWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetSystemDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetSystemInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSystemMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetSystemMetricsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetSystemPaletteEntriesWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetSystemPaletteUseWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetSystemPowerStatusWindows NT NoWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSystemTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSystemTimeAdjustmentWindows NT YesWin95 NoWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetSystemTimeAsFileTimeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTabbedTextExtentWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetTapeParametersWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTapePositionWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTapeStatusWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTempFileNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetTempPathWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetTextAlignWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetTextCharacterExtraWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetTextCharsetWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetTextCharsetInfoWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetTextColorWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

GetTextExtentExPointWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: int == 16 bits

GetTextExtentPointWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: int == 16 bits

GetTextExtentPoint32Windows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: int == 16 bits

GetTextFaceWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetTextMetricsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

GetThreadContextWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetThreadDesktopWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes Windows 95: NOP; only one
desktop

GetThreadLocaleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes Windows 95: Locales are
static & can change only at
system boot

GetThreadPriorityWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetThreadPriorityBoostWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetThreadSelectorEntryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetThreadTimesWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTickCountWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTimeFormatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

GetTimestampForLoadedLibraryWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

GetTimeZoneInformationWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTokenInformationWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

GetTopWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetTrusteeFormWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetTrusteeNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetTrusteeTypeWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

GetTypeByNameWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Microsoft-specific extension

GetUpdateRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetUpdateRgnWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetUserDefaultLangIDWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetUserDefaultLCIDWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

GetUserNameWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetUserObjectInformationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetUserObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetVersionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetVersionExWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GetViewportExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetViewportOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetVolumeInformationWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowContextHelpIdWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowDCWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetWindowLongWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetWindowOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

GetWindowPlacementWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowRgnWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowsDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GetWindowTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetWindowTextLengthWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

GetWindowThreadProcessIdWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWindowWordWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

GetWinMetaFileBitsWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

GetWorldTransformWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

glAccumWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glAddSwapHintRectWINWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glAlphaFuncWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glArrayElementEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glBeginWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glBitmapWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glBlendFuncWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glCallListWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glCallListsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearAccumWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearColorWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearDepthWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearIndexWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClearStencilWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glClipPlaneWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3bWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3bvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3ubWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3ubvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3uiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3uivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3usWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor3usvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4bWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4bvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4ubWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4ubvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4uiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4uivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4usWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColor4usvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColorMaskWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColorMaterialWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glColorPointerEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glCopyPixelsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glCullFaceWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDeleteListsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDepthFuncWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDepthMaskWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDepthRangeWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDisableWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDrawArraysEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDrawBufferWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glDrawPixelsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEdgeFlagWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEdgeFlagPointerEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEdgeFlagvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEnableWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEndWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEndListWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord1dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord1dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord1fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord1fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord2dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalCoord2fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalMesh1Windows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalMesh2Windows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalPoint1Windows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glEvalPoint2Windows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFeedbackBufferWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFinishWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFlushWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFogfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFogfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFogiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFogivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFrontFaceWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glFrustumWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGenListsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetBooleanvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetClipPlaneWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetDoublevWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetErrorWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetFloatvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetIntegervWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetLightfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetLightivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetMapdvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetMapfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetMapivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetMaterialfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetMaterialivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetPixelMapfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetPixelMapuivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetPixelMapusvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetPointervEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetPolygonStippleWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetStringWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexEnvfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexEnvivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexGendvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexGenfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexGenivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexImageWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexLevelParameterfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexLevelParameterivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexParameterfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glGetTexParameterivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glHintWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexdWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexdvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexMaskWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexPointEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIndexsvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glInitNamesWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIsEnabledWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glIsListWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightModelfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightModelfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightModeliWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLightModelivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLineStippleWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLineWidthWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glListBaseWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLoadIdentityWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLoadMatrixdWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLoadMatrixfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLoadNameWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glLogicOpWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMap1dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMap1fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMap2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMap2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMapGrid1dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMapGrid1fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMapGrid2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMapGrid2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMaterialfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMaterialfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMaterialiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMaterialivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMatrixModeWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMultMatrixdWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glMultMatrixfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNewListWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3bWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3bvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormal3svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glNormalPointerEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

GlobalAddAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GlobalAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes GMEM_FIXED is expensive
(locks pages) on Win32s -
use GMEM_MOVEABLE

GlobalDeleteAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalDiscardWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

GlobalFindAtomWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GlobalFlagsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalFreeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalGetAtomNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

GlobalHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalLockWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalMemoryStatusWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalReAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalSizeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

GlobalUnlockWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

glOrthoWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPassThroughWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelMapfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelMapuivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelMapusvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelStorefWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelStoreiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelTransferfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelTransferiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPixelZoomWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPointSizeWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPolygonModeWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPolygonStippleWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPopAttribWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPopMatrixWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPopNameWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPushAttribWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPushMatrixWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glPushNameWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos2svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos3svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRasterPos4svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glReadBufferWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glReadPixelsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectdWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectdvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectiWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRectsvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRenderModeWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRotatedWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glRotatefWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glScaledWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glScalefWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glScissorWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glSelectBufferWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glShadeModelWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glStencilFuncWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glStencilMaskWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glStencilOpWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord1svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord2svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord3svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoord4svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexCoordPointerEXTWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexEnvfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexEnvfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexEnviWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexEnvivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGendWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGendvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGenfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGenfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGeniWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexGenivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexImage1DWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexImage2DWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexParameterfWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexParameterfvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexParameteriWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTexParameterivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTranslatedWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glTranslatefWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBeginCurveWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBeginPolygonWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBeginSurfaceWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBeginTrimWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBuild1DMipmapsWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluBuild2DMipmapsWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluCylinderWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluDeleteNurbsRendererWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluDeleteQuadricWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluDeleteTessWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluDiskWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluEndCurveWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluEndPolygonWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluEndSurfaceWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluEndTrimWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluErrorStringWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluErrorUnicodeStringEXTWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode WinNTPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluGetNurbsPropertyWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluGetStringWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluGetTessPropertyWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluLoadSamplingMatricesWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluLookAtWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNewNurbsRendererWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNewQuadricWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNewTessWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNextContourWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNurbsCallbackWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNurbsCurveWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNurbsPropertyWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluNurbsSurfaceWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluOrtho2DWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluPartialDiskWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluPerspectiveWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluPickMatrixWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluProjectWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluPwlCurveWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluQuadricCallbackWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluQuadricDrawStyleWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluQuadricNormalsWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluQuadricOrientationWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluQuadricTextureWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluScaleImageWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluSphereWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessBeginContourWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessBeginPolygonWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessCallbackWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessEndContourWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessEndPolygonWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessNormalWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessPropertyWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluTessVertexWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

gluUnProjectWindows NT YesWin95 YesWin32s NoImport Library glu32.libHeader File glu.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex2svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex3svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4dWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4dvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4fWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4fvWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4iWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4ivWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4sWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertex4svWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glVertexPointerEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

glViewportWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File gl.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

GrayStringWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

HandlerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File -Unicode NoPlatform Notes None

HandlerRoutineWindows NT YesWin95 YesWin32s NoImport LibraryHeader File -Unicode NoPlatform Notes None

HeapAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapCompactWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapCreateWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapDestroyWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapFreeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapLockWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapReAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapSizeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapUnlockWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapValidateWindows NT YesWin95 NoWin32s in debug version onlyImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HeapWalkWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

HexFromBinWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HideCaretWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

HiliteMenuItemWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

HrAddColumnsExWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

HrAllocAdviseSinkWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrComposeEIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrComposeMsgIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrDecomposeEIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrDecomposeMsgIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrDispatchNotificationsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

HrEntryIDFromSzWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrGetOnePropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrIStorageFromStreamWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

HrQueryAllRowsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

HrSetOnePropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrSzFromEntryIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

HrThisThreadAdviseSinkWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

HrValidateIPMSubtreeWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

htonlWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

htonsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

I_BrowserDebugTraceWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_BrowserQueryOtherDomainsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_BrowserQueryStatisticsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_BrowserResetNetlogonStateWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_BrowserResetStatisticsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_BrowserServerEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmbrowsr.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_NetLogonControlWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_NetLogonControl2Windows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

I_RpcAllocateWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcBindingCopyWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcBindingInqDynamicEndpointWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcBindingInqTransportTypeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcBindingIsClientLocalWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcClearMutexWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcDeleteMutexWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcFreeWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcFreeBufferWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcGetAssociationContextWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcGetBufferWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcGetCurrentCallHandleWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcIfInqTransferSyntaxesWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcMapWin32StatusWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpc.hUnicode WinNTPlatform Notes None

I_RpcMonitorAssociationWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcNsBindingSetEntryNameWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcNsGetBufferWindows NT YesWin95 NoWin32s NoImport Library rpcns4.libHeader File rpcnsip.hUnicode WinNTPlatform Notes None

I_RpcNsRaiseExceptionWindows NT YesWin95 NoWin32s NoImport Library rpcns4.libHeader File rpcnsip.hUnicode WinNTPlatform Notes None

I_RpcNsSendReceiveWindows NT YesWin95 NoWin32s NoImport Library rpcns4.libHeader File rpcnsip.hUnicode WinNTPlatform Notes None

I_RpcPauseExecutionWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcReBindBufferWindows NT YesWin95 NoWin32s NoImport Library rpcns4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcRequestMutexWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcSendReceiveWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcServerRegisterForwardFunctionWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcSetAssociationContextWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcSsDontSerializeContextWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_RpcStopMonitorAssociationWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

I_UuidCreateWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdcep.hUnicode WinNTPlatform Notes None

ICCloseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

ICCompressWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICCompressorChooseWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICCompressorFreeWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressExWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressExBeginWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressExQueryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICDrawBeginWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICDrawSuggestFormatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetDisplayFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICGetInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICImageCompressWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICImageDecompressWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICInstallWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICLocateWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICOpenWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICOpenFunctionWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICRemoveWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSendMessageWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSeqCompressFrameWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSeqCompressFrameEndWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSeqCompressFrameStartWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSetStateWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

ICSetStatusProcWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

IIDFromStringWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

ImageAddCertificateWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageDirectoryEntryToDataWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageEnumerateCertificatesWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageGetCertificateDataWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageGetCertificateHeaderWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageGetDigestStreamWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImagehlpApiVersionWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImagehlpApiVersionExWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageList_AddWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_AddMaskedWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_BeginDragWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_CreateWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DestroyWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DragEnterWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DragLeaveWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DragMoveWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DragShowNolockWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DrawWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_DrawExWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_EndDragWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetBkColorWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetDragImageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetIconWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetIconSizeWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetImageCountWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_GetImageInfoWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_LoadImageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode WinNTPlatform Notes None

ImageList_MergeWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_ReadWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_RemoveWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_ReplaceWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_ReplaceIconWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_SetBkColorWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_SetDragCursorImageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_SetIconSizeWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_SetOverlayImageWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_WriteWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageLoadWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageNtHeaderWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageRemoveCertificateWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageRvaToSectionWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageRvaToVaWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImageUnloadWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ImmAssociateContextWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmConfigureIMEWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmCreateContextWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmDestroyContextWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmEnumRegisterWordWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmEscapeWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetCandidateListWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetCandidateListCountWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetCandidateWindowWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetCompositionFontWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetCompositionStringWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetCompositionWindowWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetContextWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetConversionListWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetConversionStatusWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetDefaultIMEWndWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetDescriptionWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetGuideLineWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetIMEFileNameWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetOpenStatusWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetPropertyWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetRegisterWordStyleWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmGetStatusWindowPosWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmGetVirtualKeyWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmInstallIMEWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmIsIMEWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmIsUIMessageWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmNotifyIMEWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmRegisterWordWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmReleaseContextWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSetCandidateWindowWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSetCompositionFontWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmSetCompositionStringWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImmSetCompositionWindowWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSetConversionStatusWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSetOpenStatusWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSetStatusWindowPosWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmSimulateHotKeyWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode NoPlatform Notes None

ImmUnregisterWordWindows NT YesWin95 YesWin32s NoImport Library imm32.libHeader File imm.hUnicode WinNTPlatform Notes None

ImpersonateDdeClientWindowWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

ImpersonateLoggedOnUserWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ImpersonateNamedPipeClientWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

ImpersonateSelfWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

IMPGetIMEWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

IMPQueryIMEWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

IMPSetIMEWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

inet_addrWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

inet_ntoaWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

InflateRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InitAtomTableWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InitCommonControlsWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

InitializeAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

InitializeCriticalSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InitializeSecurityDescriptorWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

InitializeSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

InitiateSystemShutdownWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

InSendMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InsertMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

InsertMenuItemWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

InterlockedCompareExchangeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InterlockedDecrementWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InterlockedExchangeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InterlockedExchangeAddWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

InterlockedIncrementWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IntersectClipRectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

IntersectRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InvalidateRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InvalidateRgnWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InvertRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

InvertRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ioctlsocketWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

IsAcceleratorWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

IsBadCodePtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsBadHugeReadPtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsBadHugeWritePtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsBadReadPtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsBadStringPtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

IsBadWritePtrWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsCharAlphaWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

IsCharAlphaNumericWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

IsCharLowerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

IsCharUpperWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

IsChildWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsClipboardFormatAvailableWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsDBCSLeadByteWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

IsDBCSLeadByteExWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

IsDebuggerPresentWindows NT YesWin95 NoWin32s NoImport LibraryHeader FileUnicode NoPlatform Notes None

IsDialogMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

IsDlgButtonCheckedWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsEqualGUIDWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

IsIconicWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsProcessorFeaturePresentWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

IsRectEmptyWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsTextUnicodeWindows NT YesWin95 NoWin32s YesImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

IsValidAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

IsValidCodePageWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

IsValidLocaleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

IsValidPtrOutWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

IsValidSecurityDescriptorWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

IsValidSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

IsWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsWindowEnabledWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsWindowUnicodeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsWindowVisibleWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

IsZoomedWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

joyConfigChangedWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File winmm.hUnicode NoPlatform Notes None

joyGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

joyGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joyGetPosWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joyGetPosExWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joyGetThresholdWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joyReleaseCaptureWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joySetCaptureWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

joySetThresholdWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

keybd_eventWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

KillTimerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

LAUNCHWIZARDENTRYWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiwz.hUnicode NoPlatform Notes None

LBItemFromPtWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

LCMapStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

LeaveCriticalSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LHashValOfNameSysWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

lineAcceptWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineAddProviderWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineAddToConferenceWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineAgentSpecificWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineAnswerWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineBlindTransferWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineCloseWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineCompleteCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineCompleteTransferWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineConfigDialogWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineConfigDialogEditWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineConfigProviderWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

LineDDAWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

lineDeallocateCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineDevSpecificWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineDevSpecificFeatureWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineDialWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineDropWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineForwardWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGatherDigitsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGenerateDigitsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGenerateToneWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetAddressCapsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAddressIDWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAddressStatusWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAgentActivityListWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAgentCapsWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAgentGroupListWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAgentStatusWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetAppPriorityWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetCallInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetCallStatusWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetConfRelatedCallsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetCountryWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetDevCapsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetDevConfigWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetIconWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetIDWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetLineDevStatusWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetMessageWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetNewCallsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetNumRingsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetProviderListWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetRequestWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineGetStatusMessagesWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineGetTranslateCapsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineHandoffWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineHoldWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineInitializeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineInitializeExWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineMakeCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineMonitorDigitsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineMonitorMediaWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineMonitorTonesWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineNegotiateAPIVersionWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineNegotiateExtVersionWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineOpenWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineParkWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

linePickupWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

linePrepareAddToConferenceWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineProxyMessageWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineProxyResponseWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineRedirectWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineRegisterRequestRecipientWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineReleaseUserUserInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineRemoveFromConferenceWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineRemoveProviderWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSecureCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSendUserUserInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetAgentActivityWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetAgentGroupWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetAgentStateWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetAppPriorityWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineSetAppSpecificWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCallDataWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCallParamsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCallPrivilegeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCallQualityOfServiceWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCallTreatmentWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetCurrentLocationWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetDevConfigWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineSetLineDevStatusWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetMediaControlWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetMediaModeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetNumRingsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetStatusMessagesWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetTerminalWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSetTollListWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineSetupConferenceWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineSetupTransferWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineShutdownWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineSwapHoldWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

LineToWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

lineTranslateAddressWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineTranslateDialogWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

lineUncompleteCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineUnholdWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

lineUnparkWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

listenWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

LoadAcceleratorsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadBitmapWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadCursorFromFileWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadImageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

LoadImageColorMatcherWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

LoadKeyboardLayoutWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes Windows 95: Only 1 keybrd
loaded at once

LoadLibraryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LoadLibraryExWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes Windows 95 limitations

LoadMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadMenuIndirectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadModuleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LoadRegTypeLibWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

LoadResourceWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LoadStringWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

LoadTypeLibWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

LocalAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalDiscardWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

LocalFileTimeToFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalFlagsWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalFreeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalLockWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalReAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalSizeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LocalUnlockWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LockFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LockFileExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LockResourceWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

LockServiceDatabaseWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

LockWindowUpdateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

LogonUserWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

long_array_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

long_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

long_from_ndr_tempWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

LookupAccountNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LookupAccountSidWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LookupIconIdFromDirectoryWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

LookupIconIdFromDirectoryExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

LookupPrivilegeDisplayNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LookupPrivilegeNameWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LookupPrivilegeValueWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

LookupSecurityDescriptorPartsWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

LPropComparePropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

LPtoDPWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

LSEnumProvidersWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LSFreeHandleWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LSGetMessageWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LSQueryWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LSReleaseWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LSRequestWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

lstrcatWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

lstrcmpWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

lstrcmpiWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

lstrcpyWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

lstrcpynWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

lstrlenWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNT; Win95Platform Notes None

LSUpdateWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LZCloseWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode NoPlatform Notes None

LZCopyWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode NoPlatform Notes None

LZInitWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode NoPlatform Notes None

LZOpenFileWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode WinNTPlatform Notes None

LZReadWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode NoPlatform Notes None

LZSeekWindows NT YesWin95 YesWin32s YesImport Library lz32.libHeader File lzexpand.hUnicode NoPlatform Notes None

MakeAbsoluteSDWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

MakeDragListWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

MakeSelfRelativeSDWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

MakeSuredirectoryPathExistsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

MapAndLoadWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

MapDebugInformationWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

MapDialogRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MapFileAndCheckSumAWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

MapFileAndCheckSumWWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

MapGenericMaskWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

MAPIAddressWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIAddress (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIAdminProfilesWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MAPIAllocateBufferWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MAPIAllocateMoreWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MAPIDeInitIdleWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

MAPIDeleteMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIDeleteMail (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIDetailsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIDetails (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIFindNextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIFindNext (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIFreeBufferWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MAPIFreeBuffer (Simple MAPI)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIGetDefaultMallocWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

MAPIInitializeWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MAPIInitIdleWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

MAPILogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPILogoff (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPILogonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPILogon (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPILogonExWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode YesPlatform Notes None

MAPIOpenFormMgrWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiform.hUnicode NoPlatform Notes None

MAPIOpenLocalFormContainerWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiform.hUnicode NoPlatform Notes None

MAPIReadMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIReadMail (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIResolveNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIResolveName (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPISaveMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPISaveMail (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPISendDocumentsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPISendDocuments (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPISendMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPISendMail (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MAPIUninitializeWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapix.hUnicode NoPlatform Notes None

MapStorageSCodeWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes May not be supported in
future versions

MapViewOfFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95: Memory
mapped files appear in the
same address space in all
processes

MapViewOfFileExWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95: Memory
mapped files appear in the
same address space in all
processes

MapVirtualKeyWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

MapVirtualKeyExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

MapWindowPointsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MaskBltWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

mciGetCreatorTaskWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mciGetDeviceIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mciGetErrorStringWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mciGetYieldProcWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mciSendCommandWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mciSendStringWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mciSetYieldProcWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

MCIWndCreateWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode WinNTPlatform Notes None

MCIWndRegisterClassWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicode NoPlatform Notes None

MenuHelpWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

MenuItemFromPointWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MesBufferHandleResetWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesDecodeBufferHandleCreateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesDecodeIncrementalHandleCreateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesEncodeDynBufferHandleCreateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesEncodeFixedBufferHandleCreateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesEncodeIncrementalHandleCreateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesHandleFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesIncrementalHandleResetWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MesInqProcEncodingIdWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File midles.hUnicode WinNTPlatform Notes None

MessageBeepWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MessageBoxWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNT; Win95Platform Notes None

MessageBoxExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNT; Win95Platform Notes None

MessageBoxIndirectWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

midiConnectWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiDisconnectWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInAddBufferWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

midiInGetErrorTextWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

midiInGetIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes Win32s:
CALLBACK_FUNCTION not
supported

midiInPrepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInResetWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInStartWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInStopWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiInUnprepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutCacheDrumPatchesWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutCachePatchesWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

midiOutGetErrorTextWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

midiOutGetIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutGetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutLongMsgWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes Win32s:
CALLBACK_FUNCTION not
supported

midiOutPrepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutResetWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutSetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutShortMsgWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiOutUnprepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamCloseWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamOpenWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamOutWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamPauseWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamPositionWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamPropertyWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamRestartWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midiStreamStopWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

midl_allocateWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rpcndr.hUnicode WinNTPlatform Notes None

MIDL_user_allocateWindows NT YesWin95 NoWin32s NoImport Library user definedHeader File rpcndr.hUnicode WinNTPlatform Notes None

MIDL_wchar_strcpyWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

MIDL_wchar_strlenWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

mixerCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mixerGetControlDetailsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mixerGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mixerGetIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mixerGetLineControlsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mixerGetLineInfoWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mixerGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mixerMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mixerOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mixerSetControlDetailsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

MkParseDisplayNameWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

mmioAdvanceWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioAscendWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioCreateChunkWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioDescendWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioFlushWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioGetInfoWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioInstallIOProcWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mmioOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mmioReadWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioRenameWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mmioSeekWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioSendMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioSetBufferWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioSetInfoWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmioStringToFOURCCWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

mmioWriteWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

mmsystemGetVersionWindows NT NoWin95 NoWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

ModifyMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

ModifyWorldTransformWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

MonikerCommonPrefixWithWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

MonikerRelativePathToWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

mouse_eventWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

MoveFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

MoveFileExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes Windows 95:
MOVEFILE_DELAY_UNTIL_REBOOT
not supported.

MoveMemoryWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

MoveToExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

MoveWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MsgWaitForMultipleObjectsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MsgWaitForMultipleObjectsExWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

MulDivWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

MultiByteToWideCharWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

MultinetGetConnectionPerformanceWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File winnetwk.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NDdeGetErrorStringWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeGetShareSecurityWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeGetTrustedShareWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeIsValidAppTopicListWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeIsValidShareNameWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeSetShareSecurityWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeSetTrustedShareWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeShareAddWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeShareDelWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeShareEnumWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeShareGetInfoWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeShareSetInfoWindows NT YesWin95 NoWin32s NoImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDdeTrustedShareEnumWindows NT YesWin95 NoWin32s YesImport Library nddeapi.libHeader File nddeapi.hUnicode WinNTPlatform Notes None

NDRCContextBindingWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NDRCContextMarshallWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NDRCContextUnmarshallWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NDRcopyWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NDRSContextMarshallWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NDRSContextUnmarshallWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

NetAccessAddWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAccessCheckWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File svrapi.hUnicode WinNTPlatform Notes None

NetAccessDelWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAccessEnumWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAccessGetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAccessGetUserPermsWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAccessSetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes None

NetAlertRaiseWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmalert.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetAlertRaiseExWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmalert.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetApiBufferAllocateWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetApiBufferFreeWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetApiBufferReallocateWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetApiBufferSizeWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetApipBufferAllocateWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetAuditClearWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetAuditReadWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmapibuf.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetAuditWriteWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaudit.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetbiosWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File nb30.hUnicode NoPlatform Notes None

NetConfigGetWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmconfig.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetConfigGetAllWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmconfig.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetConfigSetWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmconfig.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetConnectionEnumWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetErrorLogClearWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmerrlog.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetErrorLogReadWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmerrlog.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetErrorLogWriteWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmerrlog.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetFileCloseWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetFileEnumWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetFileGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGetAnyDCNameWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGetDCNameWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGetDisplayInformationIndexWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupAddUserWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupDelUserWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupGetUsersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetGroupSetUsersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetHandleGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmchdev.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetHandleSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmchdev.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupAddMemberWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupAddMembersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupDelMemberWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupDelMembersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupGetMembersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetLocalGroupSetMembersWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetMessageBufferSendWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmmsg.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetMessageNameAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmmsg.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetMessageNameDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmmsg.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetMessageNameEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmmsg.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetMessageNameGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmmsg.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetQueryDisplayInformationWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetRemoteComputerSupportsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmremutl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetRemoteTODWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmremutl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirLockWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplExportDirUnlockWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirLockWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplImportDirUnlockWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetReplSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmrepl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetScheduleJobAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmat.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetScheduleJobDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmat.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetScheduleJobEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmat.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetScheduleJobGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmat.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerDiskEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerGetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerSetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerTransportAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerTransportDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServerTransportEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmserver.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServiceControlWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmsvc.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServiceEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmsvc.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServiceGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmsvc.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetServiceInstallWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmsvc.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetSessionDelWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetSessionEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetSessionGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareCheckWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareDelStickyWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareEnumWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareEnumStickyWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareGetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetShareSetInfoWindows NT YesWin95 YesWin32s NoImport Library netapi32.libHeader File lmshare.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetStatisticsGetWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmstats.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetStatisticsGet2Windows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmstats.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUseAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmuse.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUseDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmuse.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUseEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmuse.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUseGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmuse.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserChangePasswordWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserGetGroupsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserGetLocalGroupsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserModalsGetWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserModalsSetWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserSetGroupsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetUserSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaTransportAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaTransportDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaTransportEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaUserEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaUserGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NetWkstaUserSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmwksta.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

NotifyBootConfigStatusWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

NotifyChangeEventLogWindows NT YesWin95 NoWin32s YesImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

NSPGetServiceClassInfoWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

NSPInstallServiceClassWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

NSPLookupServiceBeginWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

NSPLookupServiceEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

NSPLookupServiceNextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

NSPRemoveServiceClassWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

NSPSetServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

NSPStartupWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode YesPlatform Notes None

ntohlWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

ntohsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

OaBuildVersionWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

ObjectCloseAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ObjectDeleteAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ObjectOpenAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ObjectPrivilegeAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OemKeyScanWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

OemToCharWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

OemToCharBuffWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

OffsetClipRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

OffsetRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

OffsetRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

OffsetViewportOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

OffsetWindowOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

OleBuildVersionWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File ole2.hUnicode NoPlatform Notes None

OleConvertIStorageToOLESTREAMWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleConvertIStorageToOLESTREAMExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleConvertOLESTREAMToIStorageWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleConvertOLESTREAMToIStorageExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateDefaultHandlerWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateEmbeddingHelperWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateFontIndirectWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleCreateFromDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateFromDataExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateFromFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateFromFileExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkFromDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkFromDataExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkToFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateLinkToFileExWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreateMenuDescriptorWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleCreatePictureIndirectWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleCreatePropertyFrameWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleCreatePropertyFrameIndirectWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleCreateStaticFromDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleDestroyMenuDescriptorWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleDoAutoConvertWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleDrawWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleDuplicateDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleFlushClipboardWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleGetAutoConvertWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleGetClipboardWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleGetIconOfClassWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleGetIconOfFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleIconToCursorWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleInitializeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleIsCurrentClipboardWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleIsRunningWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleLoadWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleLoadFromStreamWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleLoadPictureWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleLockRunningWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleMetafilePictFromIconAndLabelWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleNoteObjectVisibleWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleQueryCreateFromDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleQueryLinkFromDataWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleRegEnumFormatEtcWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleRegEnumVerbsWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleRegGetMiscStatusWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleRegGetUserTypeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleRunWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSaveWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSaveToStreamWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSetAutoConvertWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSetClipboardWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSetContainedObjectWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleSetMenuDescriptorWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleTranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OleTranslateColorWindows NT YesWin95 YesWin32s YesImport Library olepro32.dllHeader File olectl.hUnicode YesPlatform Notes None

OleUIAddVerbMenuWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIBusyWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUICanConvertOrActivateAsWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIChangeIconWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIChangeSourceWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIConvertWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIEditLinksWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIInsertObjectWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIObjectPropertiesWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIPasteSpecialWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIPromptUserWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUIUpdateLinksWindows NT YesWin95 YesWin32s YesImport Library Oledlg.dllHeader File oledlg.hUnicode YesPlatform Notes None

OleUninitializeWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

OpenBackupEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenClipboardWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

OpenDesktopWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

OpenDriverWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

OpenEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

OpenFileMappingWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenIconWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

OpenIMsgOnIStgWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes None

OpenIMsgSessionWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes May not be supported in
future versions

OpenInputDesktopWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

OpenMutexWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

OpenProcessWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes On Win32s fdwAccess and
fInherit ignored (set to
PROCESS_ALL_ACCCESS
and TRUE)

OpenProcessTokenWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

OpenSCManagerWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

OpenSemaphoreWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenServiceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

OpenStreamOnFileWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

OpenThreadTokenWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

OpenTnefStreamWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File tnef.hUnicode NoPlatform Notes None

OpenTnefStreamExWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File tnef.hUnicode NoPlatform Notes None

OpenWaitableTimerWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

OpenWindowStationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

OutputDebugStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

PackDDElParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

PageSetupDlgWindows NT YesWin95 YesWin32s YesImport Library commdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

PaintDesktopWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

PaintRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PatBltWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PathToRegionWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PeekConsoleInputWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

PeekMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

PeekNamedPipeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

phoneCloseWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneConfigDialogWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneDevSpecificWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetButtonInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneGetDataWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetDevCapsWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneGetDisplayWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetGainWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetHookSwitchWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetIconWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneGetIDWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneGetLampWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetMessageWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetRingWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetStatusWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneGetStatusMessagesWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneGetVolumeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneInitializeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneInitializeExWindows NT YesWin95 NoWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneNegotiateAPIVersionWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneNegotiateExtVersionWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneOpenWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetButtonInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

phoneSetDataWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetDisplayWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetGainWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetHookSwitchWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetLampWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetRingWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetStatusMessagesWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneSetVolumeWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

phoneShutdownWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode NoPlatform Notes None

PieWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PlayEnhMetaFileWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Skips records
which couldn't be processed
under Windows 95's GDI:
greater than 16-bit
coordinates, no shearing or
rotations, no dashed
widelines, etc.

PlayEnhMetaFileRecordWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Skips records
which couldn't be processed
under Windows 95's GDI:
greater than 16-bit
coordinates, no shearing or
rotations, no dashed
widelines, etc.

PlayMetaFileWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

PlayMetaFileRecordWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

PlaySoundWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

PlgBltWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

PolyBezierWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolyBezierToWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolyDrawWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

PolygonWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolylineWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolylineToWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolyPolygonWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolyPolylineWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PolyTextOutWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

PostAppMessageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode WinNTPlatform Notes None

PostMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

PostQueuedCompletionStatusWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

PostQuitMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

PostThreadMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

PpropFindPropWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

PR_RTF_IN_SYNCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PrepareTapeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

PrintDlgWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

PrinterMessageBoxWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

PrinterPropertiesWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

PrivilegeCheckWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

PrivilegedServiceAuditAlarmWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ProgIDFromCLSIDWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

PropCopyMoreWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

PropertySheetWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File prsht.hUnicode WinNTPlatform Notes None

PropVariantClearWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objidl.hUnicode YesPlatform Notes None

PropVariantCopyWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objidl.hUnicode YesPlatform Notes None

PtInRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

PtInRegionWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PtVisibleWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

PulseEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

PurgeCommWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

QueryDosDeviceWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

QueryPathOfRegTypeLibWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

QueryPerformanceCounterWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

QueryPerformanceFrequencyWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

QueryServiceConfigWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

QueryServiceLockStatusWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

QueryServiceObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

QueryServiceStatusWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

QueueUserAPCWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

RaiseExceptionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

RasAdminFreeBufferWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode NoPlatform Notes None

RasAdminGetErrorStringWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminGetUserAccountServerWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminPortClearStatisticsWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminPortDisconnectWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminPortEnumWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminPortGetInfoWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminServerGetInfoWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminUserGetInfoWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasAdminUserSetInfoWindows NT YesWin95 NoWin32s NoImport Library rassapi.libHeader File rassapi.hUnicode WinNTPlatform Notes None

RasConnectionNotificationWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasCreatePhonebookEntryWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNtPlatform Notes None

RasDeleteEntryWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasDialWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasDialDlgWindows NT YesWin95 NoWin32s NoImport Library rasdlg.libHeader File rasdlg.hUnicode WinNTPlatform Notes None

RasEditPhonebookEntryWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNtPlatform Notes None

RasEntryDlgWindows NT YesWin95 NoWin32s NoImport Library rasdlg.libHeader File rasdlg.hUnicode WinNTPlatform Notes None

RasEnumAutodialAddressesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasEnumConnectionsWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasEnumDevicesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasEnumEntriesWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetAutodialAddressWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetAutodialEnableWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetAutodialParamWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetConnectStatusWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetCountryInfoWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetCredentialsWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetEntryDialParamsWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode NoPlatform Notes None

RasGetEntryPropertiesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetErrorStringWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetProjectionInfoWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetSubEntryHandleWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasGetSubEntryPropertiesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasHangUpWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasMonitorDlgWindows NT YesWin95 NoWin32s NoImport Library rasdlg.libHeader File rasdlg.hUnicode WinNTPlatform Notes None

RasPhonebookDlgWindows NT YesWin95 NoWin32s NoImport Library rasdlg.libHeader File rasdlg.hUnicode WinNTPlatform Notes None

RasRenameEntryWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSecurityDialogCompleteWindows NT YesWin95 NoWin32s NoImport Library -Header File rasshost.hUnicode NoPlatform Notes None

RasSecurityDialogGetInfoWindows NT YesWin95 NoWin32s NoImport Library Dynamic load from RASMAN.
DLL

Header File rasshost.hUnicode NoPlatform Notes None

RasSecurityDialogReceiveWindows NT YesWin95 NoWin32s NoImport Library Dynamic load from RASMAN.
DLL

Header File rasshost.hUnicode NoPlatform Notes None

RasSecurityDialogSendWindows NT YesWin95 NoWin32s NoImport Library Dynamic load from RASMAN.
DLL

Header File rasshost.hUnicode NoPlatform Notes None

RasSetAutodialAddressWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSetAutodialEnableWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSetAutodialParamWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSetCredentialsWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSetEntryDialParamsWindows NT YesWin95 YesWin32s NoImport Library rasapi32.libHeader File ras.hUnicode NoPlatform Notes None

RasSetEntryPropertiesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasSetSubEntryPropertiesWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

RasValidateEntryNameWindows NT YesWin95 NoWin32s NoImport Library rasapi32.libHeader File ras.hUnicode WinNTPlatform Notes None

ReadClassStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

ReadClassStmWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

ReadConsoleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

ReadConsoleInputWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

ReadConsoleOutputWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

ReadConsoleOutputAttributeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

ReadConsoleOutputCharacterWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

ReadDirectoryChangesWWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ReadEventLogWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ReadFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95: No overlapped
regions, except for serial
devices

ReadFileExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95 limitations

ReadFmtUserTypeStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

ReadPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

ReadProcessMemoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

RealizePaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

ReBaseImageWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

RectangleWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

RectInRegionWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

RectVisibleWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

recvWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

recvfromWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

RedrawWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

RegCloseKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode NoPlatform Notes None

RegConnectRegistryWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegCreateKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegCreateKeyExWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegDeleteKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegDeleteValueWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegEnumKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegEnumKeyExWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegEnumValueWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegFlushKeyWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode NoPlatform Notes None

RegGetKeySecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode NoPlatform Notes None

RegisterActiveObjectWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

RegisterClassWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

RegisterClassExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

RegisterClipboardFormatWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

RegisterDialogClassesWindows NT YesWin95 YesWin32s NoImport Library scrnsave.libHeader File scrnsave.hUnicode NoPlatform Notes None

RegisterDragDropWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

RegisterEventSourceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

RegisterHotKeyWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

RegisterServiceCtrlHandlerWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

RegisterTypeLibWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode AllPlatform Notes All 32-bit OLE Apis are
UNICODE only

RegisterWindowMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

RegLoadKeyWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegNotifyChangeKeyValueWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode NoPlatform Notes None

RegOpenKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegOpenKeyExWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegQueryInfoKeyWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegQueryMultipleValuesWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegQueryValueWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegQueryValueExWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegReplaceKeyWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegRestoreKeyWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegSaveKeyWindows NT YesWin95 YesWin32s NoImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegSetKeySecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winreg.hUnicode NoPlatform Notes None

RegSetValueWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegSetValueExWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

RegUnLoadKeyWindows NT YesWin95 YesWin32s YesImport Library advapi32.libHeader File winreg.hUnicode WinNTPlatform Notes None

ReleaseCaptureWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ReleaseDCWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ReleaseMutexWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ReleaseSemaphoreWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ReleaseStgMediumWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

RemoveDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

RemoveFontResourceWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

RemoveMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

RemovePrivateCvSymbolicWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

RemovePropWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

RemoveRelocationsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ReplaceTextWindows NT YesWin95 YesWin32s YesImport Library comdlg32.libHeader File commdlg.hUnicode WinNTPlatform Notes None

ReplyMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ReportEventWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

ResetDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

ResetEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ResetPrinterWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

ResizePaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

RestoreDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

ResumeThreadWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ReuseDDElParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

RevertToSelfWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

RevokeActiveObjectWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

RevokeDragDropWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

RoundRectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

RpcAbnormalTerminationWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcBindingCopyWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingFromStringBindingWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingInqAuthClientWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingInqAuthInfoWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingInqObjectWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingResetWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingServerFromClientWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingSetAuthInfoWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingSetObjectWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingToStringBindingWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcBindingVectorFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcCancelThreadWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcEndExceptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcEndFinallyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcEpRegisterWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcEpRegisterNoReplaceWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcEpResolveBindingWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcEpUnregisterWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcExceptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcExceptionCodeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcFinallyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcIfIdVectorFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcIfInqIdWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcImpersonateClientWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpc.hUnicode WinNTPlatform Notes None

RpcMacSetYieldInfoWindows NT NoWin95 NoWin32s NoImport Library rpcrt4.libHeader FileUnicode NoPlatform Notes Macintosh Client only

RpcMgmtEnableIdleCleanupWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtEpEltInqBeginWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtEpEltInqDoneWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtEpEltInqNextWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtEpUnregisterWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtInqComTimeoutWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtInqDefaultProtectLevelWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtInqIfIdsWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtInqServerPrincNameWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtInqStatsWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtIsServerListeningWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtSetAuthorizationFnWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtSetCancelTimeoutWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtSetComTimeoutWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtSetServerStackSizeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtStatsVectorFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtStopServerListeningWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcMgmtWaitServerListenWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcNetworkInqProtseqsWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcNetworkIsProtseqValidWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcNsBindingExportWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingImportBeginWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingImportDoneWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingImportNextWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingInqEntryNameWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcNsBindingLookupBeginWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingLookupDoneWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingLookupNextWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingSelectWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsBindingUnexportWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsEntryExpandNameWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsEntryObjectInqBeginWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsEntryObjectInqDoneWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsEntryObjectInqNextWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupDeleteWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupMbrAddWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupMbrInqBeginWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupMbrInqDoneWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupMbrInqNextWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsGroupMbrRemoveWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtBindingUnexportWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtEntryCreateWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtEntryDeleteWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtEntryInqIfIdsWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtHandleSetExpAgeWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtInqExpAgeWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsMgmtSetExpAgeWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileDeleteWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileEltAddWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileEltInqBeginWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileEltInqDoneWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileEltInqNextWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcNsProfileEltRemoveWindows NT YesWin95 YesWin32s NoImport Library rpcns4.libHeader File rpcnsi.hUnicode WinNTPlatform Notes None

RpcObjectInqTypeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcObjectSetInqFnWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcObjectSetTypeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcProtseqVectorFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcRaiseExceptionWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcRevertToSelfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpc.hUnicode WinNTPlatform Notes None

RpcRevertToSelfExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpc.hUnicode WinNTPlatform Notes None

RpcServerInqBindingsWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerInqIfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerListenWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerRegisterAuthInfoWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerRegisterIfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerRegisterIfExWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUnregisterIfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseAllProtseqsWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseAllProtseqsExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseAllProtseqsIfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseAllProtseqsIfExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqEpWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqEpExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqIfWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcServerUseProtseqIfExWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcSmAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmClientFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmDestroyClientContextWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmDisableAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmEnableAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmGetThreadHandleWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmSetClientAllocFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmSetThreadHandleWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSmSwapClientAllocFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsDestroyClientContextWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsDisableAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsDontSerializeContextWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsEnableAllocateWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsGetThreadHandleWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsSetClientAllocFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsSetThreadHandleWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcSsSwapClientAllocFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

RpcStringBindingComposeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcStringBindingParseWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcStringFreeWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcTestCancelWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

RpcTryExceptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcTryFinallyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File rpc.hUnicode NoPlatform Notes None

RpcWinSetYieldInfoWindows NT NoWin95 NoWin32s NoImport Library rpcrt4.libHeader FileUnicode NoPlatform Notes 16-bit Windows client only

RpcWinSetYieldTimeoutWindows NT NoWin95 NoWin32s NoImport Library rpcrt4.libHeader FileUnicode NoPlatform Notes 16-bit Windows client only

RTFSyncWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

RxNetAccessAddWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxNetAccessDelWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxNetAccessEnumWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxNetAccessGetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxNetAccessGetUserPermsWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxNetAccessSetInfoWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmaccess.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

RxRemoteApiWindows NT YesWin95 NoWin32s NoImport Library netapi32.libHeader File lmremutl.hUnicode WinNTPlatform Notes All LanMan APIs are
UNICODE only

SafeArrayAccessDataWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayAllocDataWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayAllocDescriptorWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayCopyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayCreateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayDestroyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayDestroyDataWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayDestroyDescriptorWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayGetDimWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayGetElementWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayGetElemsizeWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayGetLBoundWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayGetUBoundWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayLockWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayPtrOfIndexWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayPutElementWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayRedimWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayUnaccessDataWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SafeArrayUnlockWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SaveDCWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

ScaleViewportExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ScaleWindowExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

ScBinFromHexBoundedWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScCopyNotificationsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScCopyPropsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScCountNotificationsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScCountPropsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScCreateConversationIndexWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

ScDupPropsetWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

ScheduleJobWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

ScInitMapiUtilWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

ScLocalPathFromUNCWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScMAPIXFromCMCWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapi.hUnicode NoPlatform Notes None

ScMAPIXFromSMAPIWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapi.hUnicode NoPlatform Notes None

ScreenSaverConfigureDialogWindows NT YesWin95 YesWin32s NoImport Library scrnsave.libHeader File scrnsave.hUnicode NoPlatform Notes None

ScreenSaverProcWindows NT YesWin95 YesWin32s NoImport Library scrnsave.libHeader File scrnsave.hUnicode NoPlatform Notes None

ScreenToClientWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ScRelocNotificationsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScRelocPropsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

ScrollConsoleScreenBufferWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

ScrollDCWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ScrollWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ScrollWindowExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ScUNCFromLocalPathWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

SearchPathWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SearchTreeForFileWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

selectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes Win32s supports WS 1.1

SelectClipPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SelectClipRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SelectObjectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SelectPaletteWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

sendWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

SendDlgItemMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SendDriverMessageWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

SendIMEMessageExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File ime.hUnicode YesPlatform Notes None

SendMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SendMessageCallbackWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SendMessageTimeoutWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SendNotifyMessageWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

sendtoWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

SetAbortProcWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetAclInformationWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetActiveWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetArcDirectionWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetAttribIMsgOnIStgWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File imessage.hUnicode NoPlatform Notes None

SetBitmapBitsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetBitmapDimensionExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetBkColorWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetBkModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetBoundsRectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetBrushOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetCaptureWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetCaretBlinkTimeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetCaretPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetClassLongWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetClassWordWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetClipboardDataWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetClipboardViewerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetColorAdjustmentWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetColorSpaceWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetCommBreakWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetCommConfigWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetCommMaskWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetCommStateWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetCommTimeoutsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetComputerNameWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetConsoleActiveScreenBufferWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleCPWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleCtrlHandlerWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleCursorInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleCursorPositionWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleModeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleOutputCPWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleScreenBufferSizeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleTextAttributeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConsoleTitleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

SetConsoleWindowInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

SetConvertStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

SetCurrentDirectoryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetCursorPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetDebugErrorLevelWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetDefaultCommConfigWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetDeviceGammaRampWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetDIBColorTableWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetDIBitsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetDIBitsToDeviceWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetDlgItemIntWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetDlgItemTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetDoubleClickTimeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetEndOfFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetEnhMetaFileBitsWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetEntriesInAclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

SetEnvironmentVariableWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetErrorInfoWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

SetErrorModeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes This is used for RISC
platforms only. x86 platforms
and Windows 95 return a
constant

SetEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetFileApisToANSIWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes On Win32s all file APIs are
ANSI

SetFileApisToOEMWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes On Win32s all file APIs are
ANSI

SetFileAttributesWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetFilePointerWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetFileSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetFocusWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetForegroundWindowWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetFormWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

SetGraphicsModeWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: Only
GM_COMPATIBLE is
supported

SetHandleCountWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetHandleInformationWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetICMModeWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetICMProfileWindows NT NoWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes None

SetImageConfigInformationWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SetJobWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

SetKernelObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetKeyboardStateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetLastErrorWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetLastErrorExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetLocaleInfoWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode WinNTPlatform Notes None

SetLocalTimeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetMailslotInfoWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetMapModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetMapperFlagsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMenuContextHelpIdWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMenuDefaultItemWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMenuItemBitmapsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMenuItemInfoWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMessageExtraInfoWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetMetaFileBitsExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetMetaRgnWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetMiterLimitWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetNamedPipeHandleStateWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetNamedSecurityInfoWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode WinNTPlatform Notes None

SetPaletteEntriesWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetParentWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetPixelWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetPixelFormatWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

SetPixelVWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetPolyFillModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetPortWindows NT YesWin95 NoWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

SetPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

SetPrinterDataWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

SetPriorityClassWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetPrivateObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetProcessAffinityMaskWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicodePlatform Notes None

SetProcessPriorityBoostWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicodePlatform Notes None

SetProcessShutdownParametersWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetProcessWindowStationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetProcessWorkingSetSizeWindows NT YesWin95 NoWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetPropWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetRectEmptyWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetRectRgnWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetROP2Windows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetScrollInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetScrollPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetScrollRangeWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetSecurityDescriptorDaclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSecurityDescriptorGroupWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSecurityDescriptorOwnerWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSecurityDescriptorSaclWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSecurityInfoWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File aclapi.hUnicode NoPlatform Notes None

SetServiceWindows NT YesWin95 NoWin32s NoImport Library wsock32.libHeader File nspapi.hUnicode WinNTPlatform Notes Obsolete in NT 4.0

SetServiceBitsWindows NT YesWin95 NoWin32s YesImport Library advapi32.libHeader File lmserver.hUnicode NoPlatform Notes None

SetServiceObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

SetServiceStatusWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

setsockoptWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

SetStdHandleWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetStretchBltModeWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetSysColorsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetSystemCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetSystemPaletteUseWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetSystemPowerStateWindows NT NoWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSystemTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetSystemTimeAdjustmentWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetTapeParametersWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetTapePositionWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetTextAlignWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetTextCharacterExtraWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetTextColorWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetTextJustificationWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

SetThreadAffinityMaskWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes This is valid on SMP
platforms only; Windows 95
returns a constant

SetThreadContextWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetThreadDesktopWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes Windows 95: NOP; only one
desktop

SetThreadIdealProcessorWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetThreadLocaleWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes Windows 95: Locales are
static & can change only at
system boot

SetThreadPriorityWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetThreadPriorityBoostWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetThreadTokenWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetTimerWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetTimeZoneInformationWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetTokenInformationWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

SetUnhandledExceptionFilterWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetupAddToSourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupCancelTemporarySourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupCloseFileQueueWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupCloseInfFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupCommWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetupCommitFileQueueWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupCopyErrorWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupDecompressOrCopyFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupDefaultQueueCallbackWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupDeleteErrorWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupFindFirstLineWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupFindNextLineWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupFindNextMatchLineWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupFreeSourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetBinaryFieldWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupGetFieldCountWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupGetFileCompressionInfoWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetInfFileListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetInflnformationWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetIntFieldWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupGetLineByIndexWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetLineCountWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetLineTextWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetMultiSzFieldWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetSourceFileLocationWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetSourceFileSizeWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetSourceInfoWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetStringFieldWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupGetTargetPathWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInitDefaultQueueCallbackWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupInitDefaultQueueCallbackExWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupInitializeFileLogWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInstallFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInstallFileExWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInstallFilesFromInfSectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInstallFromInfSectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupInstallServicesFromInfSectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupIterateCabinetWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupLogFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupOpenAppendInfFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupOpenFileQueueWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupOpenInfFileWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupOpenMasterInfWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupPromptForDiskWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupPromptRebootWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupQueryFileLogWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueryInfFileInformationWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueryInfVersionInformationWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQuerySourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueCopyWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueCopySectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueDefaultCopyWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueDeleteWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueDeleteSectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueRenameWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupQueueRenameSectionWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupRemoveFileLogEntryWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupRemoveFromSourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupRenameErrorWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupScanFileQueueWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupSetDirectoryIdWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupSetPlatformPathOverrideWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupSetSourceListWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode YesPlatform Notes None

SetupTermDefaultQueueCallbackWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetupTerminateFileLogWindows NT YesWin95 YesWin32s NoImport Library setupapi.libHeader File setupapi.hUnicode NoPlatform Notes None

SetUserObjectInformationWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetUserObjectSecurityWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetViewportExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetViewportOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetVolumeLabelWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

SetWaitableTimerWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SetWindowContextHelpIdWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetWindowExtExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetWindowLongWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetWindowOrgExWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SetWindowPlacementWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetWindowPosWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetWindowRgnWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetWindowsHookExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetWindowTextWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SetWindowWordWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SetWinMetaFileBitsWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SetWorldTransformWindows NT YesWin95 NoWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

SHAddToRecentDocsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHAppBarMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode NoPlatform Notes None

SHBrowseForFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHChangeNotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

Shell_NotifyIconWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode WinNTPlatform Notes None

ShellAboutWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

ShellExecuteWindows NT YesWin95 YesWin32s YesImport Library shell32.libHeader File shellapi.hUnicode WinNTPlatform Notes None

ShellExecuteExWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode WinNTPlatform Notes None

SHFileOperationWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode WinNTPlatform Notes None

SHFreeNameMappingsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode NoPlatform Notes None

SHGetDataFromIDListWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode WinNTPlatform Notes None

SHGetDesktopFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHGetFileInfoWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shellapi.hUnicode WinNTPlatform Notes None

SHGetInstanceExplorerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHGetMallocWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHGetPathFromIDListWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHGetSpecialFolderLocationWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

SHLoadInProcWindows NT YesWin95 YesWin32s NoImport LibraryHeader File shlobj.hUnicode NoPlatform Notes None

short_array_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

short_from_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

short_from_ndr_tempWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

ShowCaretWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ShowCursorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ShowHideMenuCtlWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ShowOwnedPopupsWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ShowScrollBarWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ShowWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ShowWindowAsyncWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

shutdownWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

SignalObjectAndWaitWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SizeofResourceWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SleepWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SleepExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

sndPlaySoundWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

SnmpMgrCloseWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrGetTrapWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrOidToStrWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrOpenWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrRequestWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrStrToOidWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpMgrTrapListenWindows NT YesWin95 NoWin32s NoImport Library mgmtapi.libHeader File mgmtapi.hUnicode NoPlatform Notes None

SnmpUtilOidAppendWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilOidCmpWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilOidCpyWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilOidFreeWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilOidNCmpWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilPrintAsnAnyWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilVarBindCpyWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilVarBindFreeWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilVarBindListCpyWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

SnmpUtilVarBindListFreeWindows NT YesWin95 NoWin32s NoImport Library snmp.libHeader File snmp.hUnicode NoPlatform Notes None

socketWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

SplitSymbolsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

StackWalkWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

StartDocWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: int == 16 bits

StartDocPrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode WinNTPlatform Notes None

StartPageWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

StartPagePrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

StartServiceWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

StartServiceCtrlDispatcherWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode WinNTPlatform Notes None

StgCreateDocfileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StgCreateDocfileOnILockBytesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StgIsStorageFileWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StgIsStorageILockBytesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StgOpenStorageWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

StgOpenStorageOnILockBytesWindows NT YesWin95 YesWin32s YesImport Library ole32.libHeader File objbase.hUnicode NoPlatform Notes None

StgSetTimesWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StretchBltWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

StretchDIBitsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

StringFromCLSIDWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StringFromGUID2Windows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StringFromIIDWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File objbase.hUnicode YesPlatform Notes None

StrokeAndFillPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

StrokePathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

SubtractRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SuspendThreadWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SwapBuffersWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

SwapMouseButtonWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SwitchDesktopWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

SwitchToFiberWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SwitchToThreadWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SymCleanupWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymEnumerateModulesWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymEnumerateSymbolsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymFunctionTableAccessWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetModuleBaseWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetModuleInfoWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetOptionsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

SymGetSearchPathWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetSymFromAddrWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetSymFromNameWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymGetSymNextWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

SymGetSymPrevWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

SymInitializeWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymLoadModuleWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymRegisterCallbackWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

SymSetOptionsWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

SymSetSearchPathWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymUnDNameWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SymUnloadModuleWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

SysAllocStringWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysAllocStringByteLenWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysAllocStringLenWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysFreeStringWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysReAllocStringWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysReAllocStringLenWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysStringByteLenWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SysStringLenWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

SystemParametersInfoWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

SystemTimeToFileTimeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SystemTimeToTzSpecificLocalTimeWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

SzFindChWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

SzFindLastChWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

SzFindSzWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

TabbedTextOutWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

tapiGetLocationInfoWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

tapiRequestMakeCallWindows NT YesWin95 YesWin32s NoImport Library tapi32.libHeader File tapi.hUnicode WinNTPlatform Notes None

TerminateProcessWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TerminateThreadWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TextOutWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode WinNT; Win95Platform Notes Windows 95: 16-bit
coordinates only

TileWindowsWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

timeBeginPeriodWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeEndPeriodWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeGetSystemTimeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeGetTimeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeKillEventWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

timeSetEventWindows NT YesWin95 YesWin32s NoImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

TlsAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TlsFreeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TlsGetValueWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TlsSetValueWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

ToAsciiWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ToAsciiExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ToUnicodeWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

TrackMouseEventWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

TrackPopupMenuWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

TrackPopupMenuExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

TransactNamedPipeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

TranslateCharsetInfoWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes None

TranslateMDISysAccelWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

TranslateMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

TransmitCommCharWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

TransmitFileWindows NT YesWin95 YesWin32s YesImport Library mswsock.libHeader File mswsock.hUnicode NoPlatform Notes Microsoft-specific extension

tree_into_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

tree_peek_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

tree_size_ndrWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcndr.hUnicode WinNTPlatform Notes None

TryEnterCriticalSectionWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

UFromSzWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

UlAddRefWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

UlFromSzHexWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

UlPropSizeWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

UlReleaseWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes May not be supported in
future versions

UlValidateParametersWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes Intel only

UlValidateParmsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes None

UnDecorateSymbolNameWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

UnhandledExceptionFilterWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

UnhookWindowsHookExWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

UnionRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

UnloadKeyboardLayoutWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

UnlockFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

UnlockFileExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

UnlockServiceDatabaseWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winsvc.hUnicode NoPlatform Notes None

UnMapAndLoadWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

UnmapDebugInformationWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

UnmapViewOfFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

UnpackDDElParamWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File dde.hUnicode NoPlatform Notes None

UnrealizeObjectWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

UnregisterClassWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

UnregisterHotKeyWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

UpdateColorsWindows NT YesWin95 YesWin32s YesImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: int == 16 bits

UpdateDebugInfoFileWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

UpdateDebugInfoFileExWindows NT YesWin95 YesWin32s NoImport Library imagehlp.libHeader File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.
Windows NT: This function is
not available under Windows
NT 3.51; it was introduced in
Windows NT 4.0.

UpdateICMRegKeyWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

UpdateResourceWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

UpdateWindowWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

UuidCompareWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidCreateWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidCreateNilWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidEqualWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidFromStringWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidHashWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidIsNilWindows NT YesWin95 YesWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

UuidToStringWindows NT YesWin95 NoWin32s NoImport Library rpcrt4.libHeader File rpcdce.hUnicode WinNTPlatform Notes None

ValidateParametersWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes Intel only

ValidateParmsWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapival.hUnicode NoPlatform Notes None

ValidateRectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

ValidateRgnWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

VarBoolFromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBoolFromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBoolFromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarBstrFromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarBstrFromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarCyFromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarCyFromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarCyFromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarDateFromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarDateFromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI2FromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarI2FromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarI4FromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarI4FromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantChangeTypeWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantChangeTypeExWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantClearWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantCopyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantCopyIndWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantInitWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VariantTimeToDosDateTimeWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR4FromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VarR4FromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarR8FromUI1Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromBoolWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromCyWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromDateWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromDispWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromI2Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromI4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromR4Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromR8Windows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode NoPlatform Notes None

VarUI1FromStrWindows NT YesWin95 YesWin32s YesImport Library oleaut32.libHeader File oleauto.hUnicode WinNT; Win95; Win32sPlatform Notes All 32-bit OLE Apis are
UNICODE only

VerFindFileWindows NT YesWin95 YesWin32s YesImport Library version.libHeader File winver.hUnicode WinNTPlatform Notes None

VerInstallFileWindows NT YesWin95 YesWin32s YesImport Library version.libHeader File winver.hUnicode WinNTPlatform Notes None

VerLanguageNameWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winver.hUnicode WinNTPlatform Notes None

VerQueryValueWindows NT YesWin95 YesWin32s YesImport Library version.libHeader File winver.hUnicode WinNTPlatform Notes None

VirtualAllocWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualAllocExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualFreeWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualFreeExWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualLockWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualProtectWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualProtectExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualQueryWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualQueryExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VirtualUnlockWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

VkKeyScanWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

VkKeyScanExWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

WaitCommEventWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitForDebugEventWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitForInputIdleWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

WaitForMultipleObjectsWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitForMultipleObjectsExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitForSingleObjectWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitForSingleObjectExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WaitMessageWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

WaitNamedPipeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

waveInAddBufferWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

waveInGetErrorTextWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

waveInGetIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInGetPositionWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes Win32s:
CALLBACK_FUNCTION not
supported

waveInPrepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInResetWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInStartWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInStopWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveInUnprepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutBreakLoopWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutCloseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetDevCapsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

waveOutGetErrorTextWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode WinNTPlatform Notes None

waveOutGetIDWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetNumDevsWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetPitchWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetPlaybackRateWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetPositionWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutGetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutMessageWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutOpenWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes Win32s:
CALLBACK_FUNCTION not
supported

waveOutPauseWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutPrepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutResetWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutRestartWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutSetPitchWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutSetPlaybackRateWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutSetVolumeWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutUnprepareHeaderWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

waveOutWriteWindows NT YesWin95 YesWin32s YesImport Library winmm.libHeader File mmsystem.hUnicode NoPlatform Notes None

wglCopyContextWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglCreateContextWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglCreateLayerContextWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglDeleteContextWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglDescribeLayerPlaneWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglGetCurrentContextWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglGetCurrentDCWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglGetLayerPaletteEntriesWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglGetProcAddressWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglMakeCurrentWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglRealizeLayerPaletteWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglSetLayerPaletteEntriesWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglShareListsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglSwapLayerBuffersWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglUseFontBitmapsWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: OpenGL is
available as a redistributable

wglUseFontOutlinesWindows NT YesWin95 YesWin32s NoImport Library opengl32.libHeader File wingdi.hUnicode WinNTPlatform Notes Windows 95: OpenGL is
available as a redistributable

WideCharToMultiByteWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winnls.hUnicode NoPlatform Notes None

WidenPathWindows NT YesWin95 YesWin32s NoImport Library gdi32.libHeader File wingdi.hUnicode NoPlatform Notes Windows 95: 16-bit
coordinates only

WindowFromDCWindows NT YesWin95 YesWin32s NoImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

WindowFromPointWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode NoPlatform Notes None

WinExecWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WinHelpWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

WinLoadTrustProviderWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

WinMainWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

WINNLSEnableIMEWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

WINNLSGetEnableStatusWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

WINNLSGetIMEHotkeyWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winnls32.hUnicode YesPlatform Notes None

WinSubmitCertificateWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

WinVerifyTrustWindows NT YesWin95 NoWin32s NoImport Library advapi32.libHeader File winbase.hUnicode NoPlatform Notes None

WNetAddConnectionWindows NT YesWin95 YesWin32s YesImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetAddConnection2Windows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetAddConnection3Windows NT YesWin95 NoWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetCancelConnectionWindows NT YesWin95 YesWin32s YesImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes Win32: New in 1.3

WNetCancelConnection2Windows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetCloseEnumWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode NoPlatform Notes None

WNetConnectionDialogWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode NoPlatform Notes None

WNetDisconnectDialogWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode NoPlatform Notes None

WNetEnumResourceWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetGetConnectionWindows NT YesWin95 YesWin32s YesImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetGetLastErrorWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetGetUniversalNameWindows NT YesWin95 NoWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetGetUserWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WNetOpenEnumWindows NT YesWin95 YesWin32s NoImport Library mpr.libHeader File winnetwk.hUnicode WinNTPlatform Notes None

WPUCloseEventWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUCloseSocketHandleWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUCreateEventWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUCreateSocketHandleWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUFDiSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUGetProviderPathWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUModifyIFSHandleWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUPostMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUQueryBlockingCallbackWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUQuerySocketHandleContextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUQueueApcWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUResetEventWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WPUSetEventWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WrapCompressedRTFStreamWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

WrapStoreEntryIDWindows NT YesWin95 YesWin32s NoImport Library mapi32.libHeader File mapiutil.hUnicode NoPlatform Notes None

WriteClassStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

WriteClassStmWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

WriteConsoleWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

WriteConsoleInputWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

WriteConsoleOutputWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

WriteConsoleOutputAttributeWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode NoPlatform Notes None

WriteConsoleOutputCharacterWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File wincon.hUnicode WinNTPlatform Notes None

WriteFileWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95: No overlapped
regions, except for serial
devices

WriteFileExWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes Windows 95 limitations

WriteFmtUserTypeStgWindows NT YesWin95 YesWin32s YesImport Library ole32.dllHeader File ole2.hUnicode YesPlatform Notes None

WritePrinterWindows NT YesWin95 YesWin32s NoImport Library winspool.libHeader File winspool.hUnicode NoPlatform Notes None

WritePrivateProfileSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

WritePrivateProfileStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

WritePrivateProfileStructWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

WriteProcessMemoryWindows NT YesWin95 YesWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WriteProfileSectionWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

WriteProfileStringWindows NT YesWin95 YesWin32s YesImport Library kernel32.libHeader File winbase.hUnicode WinNTPlatform Notes None

WriteTapemarkWindows NT YesWin95 NoWin32s NoImport Library kernel32.libHeader File winbase.hUnicode NoPlatform Notes None

WSAAcceptWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAddressToStringWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSAAsyncGetHostByAddrWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncGetHostByNameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncGetProtoByNameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncGetProtoByNumberWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncGetServByNameWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncGetServByPortWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAAsyncSelectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSACancelAsyncRequestWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSACancelBlockingCallWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSACleanupWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSACloseEventWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAConnectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSACreateEventWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSADuplicateSocketWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode WinNT; Win95Platform Notes None

WSAEnumNameSpaceProvidersWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSAEnumNetworkEventsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAEnumProtocolsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode WinNT; Win95Platform Notes None

WSAEventSelectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAGetLastErrorWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAGetOverlappedResultWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAGetQOSByNameWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAGetServiceClassInfoWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSAGetServiceClassNameByServiceClassIdWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSAHtonlWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAHtonsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAInstallServiceClassWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSAIoctlWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAIsBlockingWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAJoinLeafWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSALookupServiceBeginWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSALookupServiceEndWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSALookupServiceNextWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSANtohlWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSANtohsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSApSetPostRoutineWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSARecvWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSARecvDisconnectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSARecvExWindows NT YesWin95 YesWin32s YesImport Library mswsock.libHeader File mswsock.hUnicode NoPlatform Notes Microsoft-specific extension

WSARecvFromWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSARemoveServiceClassWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAResetEventWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASendWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASendDisconnectWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASendToWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASetBlockingHookWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASetEventWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASetLastErrorWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSASetServiceWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode YesPlatform Notes None

WSASocketWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode WinNT; Win95Platform Notes None

WSAStartupWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAStringToAddressWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAUnhookBlockingHookWindows NT YesWin95 YesWin32s YesImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSAWaitForMultipleEventsWindows NT YesWin95 YesWin32s NoImport Library ws2_32.libHeader File winsock2.hUnicode NoPlatform Notes None

WSPAcceptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPAddressToStringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPAsyncSelectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPBindWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPCancelBlockingCallWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPCleanupWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPCloseSocketWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPConnectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPDuplicateSocketWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPEnumNetworkEventsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPEventSelectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPGetOverlappedResultWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPGetPeerNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPGetQOSByNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPGetSockNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPGetSockOptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPIoctlWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPJoinLeafWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPListenWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPRecvWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPRecvDisconnectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPRecvFromWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

wsprintfWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

WSPSelectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPSendWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPSendDisconnectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPSendToWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPSetSockOptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPShutdownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPSocketWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPStartupWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

WSPStringToAddressWindows NT YesWin95 YesWin32s NoImport LibraryHeader File ws2spi.hUnicode NoPlatform Notes None

wvsprintfWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

ZeroMemoryWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

Add interface method (Attachments Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Add interface method (Fields Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Add interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Add interface method (Recipients Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

AddressBook interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Attachment OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Attachments
Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Field OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Fields Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Folder OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Recipient OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Delete interface method (Recipients Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Details interface method (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetAddressEntry interface method (Session
OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetFirst interface method (Folders Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetFirst interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetFolder interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetInfoStore interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetLast interface method (Folders Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetLast interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetMessage interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetNext interface method (Folders Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetNext interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetPrevious interface method (Folders
Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

GetPrevious interface method (Messages
Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

IABContainer::CopyEntriesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IABContainer::CreateEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IABContainer::DeleteEntriesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IABContainer::ResolveNamesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IABLogon::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::GetOneOffTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::LogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::OpenStatusEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::OpenTemplateIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::PrepareRecipsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABLogon::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABProvider::LogonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IABProvider::ShutdownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IAddrBook::AddressWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode WinNTPlatform Notes None

IAddrBook::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::CreateOneOffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode WinNTPlatform Notes None

IAddrBook::DetailsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode WinNTPlatform Notes None

IAddrBook::GetDefaultDirWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::GetPABWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::GetSearchPathWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::NewEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::PrepareRecipsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::QueryDefaultRecipOptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::RecipOptionsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::ResolveNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode WinNTPlatform Notes None

IAddrBook::SetDefaultDirWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::SetPABWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::SetSearchPathWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAddrBook::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IAdviseSinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink::OnCloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink::OnDataChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink::OnRenameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink::OnSaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink::OnViewChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSink2::OnLinkSrcChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IAdviseSinkExWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IAdviseSinkEx::OnViewStatusChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IAVIEditStream::CloneWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIEditStream::CopyWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIEditStream::CutWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIEditStream::PasteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIEditStream::SetInfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::CreateStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::EndRecordWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::GetStreamWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::InfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::OpenWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::ReadDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIFile::WriteDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::CreateWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::DeleteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::FindSampleWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::InfoWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::ReadWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::ReadDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::ReadFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::SetFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::WriteWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStream::WriteDataWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStreaming::BeginWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IAVIStreaming::EndWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IBindCtxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::EnumObjectParamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::GetBindOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::GetObjectParamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::GetRunningObjectTableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::RegisterObjectBoundWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::RegisterObjectParamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::ReleaseBoundObjectsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::RevokeObjectBoundWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::RevokeObjectParamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IBindCtx::SetBindOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IClassFactoryWindows NT YesWin95 YesWin32s YesImport LibraryHeader File unknwn.hUnicode YesPlatform Notes None

IClassFactory::CreateInstanceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File unknwn.hUnicode YesPlatform Notes None

IClassFactory::LockServerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File unknwn.hUnicode YesPlatform Notes None

IClassFactory2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IClassFactory2::CreateInstanceLicWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IClassFactory2::GetLicInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IClassFactory2::RequestLicKeyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IClientSecurityWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IClientSecurity::CopyProxyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IClientSecurity::QueryBlanketWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IClientSecurity::SetBlanketWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ICommDlgBrowser::IncludeObjectWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

ICommDlgBrowser::OnDefaultCommandWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

ICommDlgBrowser::OnStateChangeWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IConnectionPointWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPoint::AdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPoint::EnumConnectionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPoint::GetConnectionInterfaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPoint::
GetConnectionPointContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPoint::UnadviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPointContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPointContainer::
EnumConnectionPointsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IConnectionPointContainer::
FindConnectionPointWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IContextMenu::GetCommandStringWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu::InvokeCommandWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu::QueryContextMenuWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu2::GetCommandStringWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu2::HandleMenuMsgWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu2::InvokeCommandWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IContextMenu2::QueryContextMenuWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

ICopyHook::CopyCallbackWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IDataAdviseHolderWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataAdviseHolder::AdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataAdviseHolder::EnumAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataAdviseHolder::SendOnDataChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataAdviseHolder::UnadviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::DAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::DUnadviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::EnumDAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::EnumFormatEtcWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::GetCanonicalFormatEtcWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::GetDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::GetDataHereWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::QueryGetDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDataObject::SetDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IDirect3D::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::CreateLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::CreateMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::CreateViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::EnumDevicesWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::FindDeviceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3D::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::AddViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::BeginSceneWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::CreateExecuteBufferWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::CreateMatrixWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::DeleteMatrixWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::DeleteViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::EndSceneWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::EnumTextureFormatsWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::ExecuteWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::GetCapsWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::GetDirect3DWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::GetMatrixWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::GetPickRecordsWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::GetStatsWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::NextViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::PickWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::SetMatrixWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DDevice::SwapTextureHandlesWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::GetExecuteDataWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::LockWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::OptimizeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::SetExecuteDataWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::UnlockWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DExecuteBuffer::ValidateWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::GetLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DLight::SetLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::GetHandleWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::GetMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::ReserveWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::SetMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DMaterial::UnreserveWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DRM::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::AddSearchPathWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateAnimationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateAnimationSetWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateDeviceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateDeviceFromClipperWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateDeviceFromD3DWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateDeviceFromSurfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateFaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateFrameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateLightWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateLightRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateMeshWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateMeshBuilderWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateObjectWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateShadowWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateTextureFromSurfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateUserVisualWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::CreateWrapWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::EnumerateObjectsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::GetDevicesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::GetNamedObjectWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::GetSearchPathWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::LoadWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::LoadTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::LoadTextureFromResourceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::SetDefaultTextureColorsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::SetDefaultTextureShadesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::SetSearchPathWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRM::TickWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::AddPositionKeyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::AddRotateKeyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::AddScaleKeyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::DeleteKeyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::GetOptionsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::SetFrameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::SetOptionsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimation::SetTimeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::AddAnimationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::DeleteAnimationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::LoadWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMAnimationSet::SetTimeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::AddUpdateCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::DeleteUpdateCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetBufferCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetColorModelWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetDirect3DDeviceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetDitherWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetHeightWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetShadesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetTextureQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetTrianglesDrawnWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetViewportsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetWidthWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::GetWireframeOptionsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::InitWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::InitFromClipperWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::InitFromD3DWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::SetBufferCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::SetDitherWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::SetQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::SetShadesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::SetTextureQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDevice::UpdateWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDeviceArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDeviceArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDeviceArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDeviceArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMDeviceArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::AddVertexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::
AddVertexAndNormalIndexedWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetNormalWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetTextureCoordinateIndexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetTextureCoordinatesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetTextureTopologyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetVertexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetVertexCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetVertexIndexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::GetVerticesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetTextureCoordinatesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFace::SetTextureTopologyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFaceArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFaceArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFaceArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFaceArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFaceArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddChildWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddLightWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddMoveCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddRotationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddScaleWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddTransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddTranslationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::AddVisualWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::DeleteChildWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::DeleteLightWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::DeleteMoveCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::DeleteVisualWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetChildrenWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetLightsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetMaterialModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetOrientationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetParentWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetPositionWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetRotationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneBackgroundWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::
GetSceneBackgroundDepthWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneFogColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneFogEnableWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneFogModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSceneFogParamsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetSortModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetTextureTopologyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetTransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetVelocityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetVisualsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::GetZbufferModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::InverseTransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::LoadWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::LookAtWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::MoveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetMaterialModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetOrientationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetPositionWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetRotationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneBackgroundWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneBackgroundDepthWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::
SetSceneBackgroundImageWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneBackgroundRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneFogColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneFogEnableWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneFogModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSceneFogParamsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetSortModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetTextureTopologyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetVelocityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::SetZbufferModeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrame::TransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrameArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrameArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrameArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrameArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMFrameArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetConstantAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetEnableFrameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetLinearAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetPenumbraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetQuadraticAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetRangeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetTypeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::GetUmbraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetConstantAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetEnableFrameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetLinearAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetPenumbraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetQuadraticAttenuationWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetRangeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetTypeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLight::SetUmbraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLightArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLightArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLightArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLightArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMLightArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::GetEmissiveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::GetPowerWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::GetSpecularWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::SetEmissiveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::SetPowerWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMaterial::SetSpecularWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::AddGroupWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetBoxWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupMappingWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetGroupTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::GetVerticesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::ScaleWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupMappingWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetGroupTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::SetVerticesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMesh::TranslateWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddFaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddFacesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddFrameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddMeshWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddMeshBuilderWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddNormalWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::AddVertexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::CreateFaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::CreateMeshWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GenerateNormalsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetBoxWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetColorSourceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetFaceCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetFacesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetPerspectiveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::
GetTextureCoordinatesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetVertexColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetVertexCountWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::GetVerticesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::LoadWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::ReserveSpaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SaveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::ScaleWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetColorSourceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetMaterialWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetNormalWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetPerspectiveWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetQualityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetTextureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::
SetTextureCoordinatesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetTextureTopologyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetVertexWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetVertexColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::SetVertexColorRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMMeshBuilder::TranslateWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::AddDestroyCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::CloneWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::DeleteDestroyCallbackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::GetAppDataWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::GetClassNameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::GetNameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::SetAppDataWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMObject::SetNameWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMPickedArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMPickedArray::GetPickWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMPickedArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMPickedArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMPickedArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMShadow::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMShadow::InitWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMShadow::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMShadow::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::ChangedWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetColorsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetDecalOriginWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetDecalScaleWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetDecalSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetDecalTransparencyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::
GetDecalTransparentColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetImageWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetOpacityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::GetShadesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::InitFromFileWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::InitFromResourceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::InitFromSurfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetColorsWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetDecalOriginWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetDecalScaleWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetDecalSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetDecalTransparencyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::
SetDecalTransparentColorWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetOpacityWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMTexture::SetShadesWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMUserVisual::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMUserVisual::InitWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMUserVisual::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMUserVisual::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::ClearWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::ConfigureWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::ForceUpdateWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetBackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetCameraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetDeviceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetDirect3DViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetFieldWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetFrontWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetHeightWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetPlaneWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetProjectionWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetUniformScalingWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetWidthWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetXWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::GetYWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::InitWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::InverseTransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::PickWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::RenderWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetBackWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetCameraWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetFieldWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetFrontWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetPlaneWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetProjectionWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::SetUniformScalingWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewport::TransformWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewportArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewportArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewportArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewportArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMViewportArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMVisualArray::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMVisualArray::GetElementWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMVisualArray::GetSizeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMVisualArray::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMVisualArray::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWinDevice::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWinDevice::HandleActivateWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWinDevice::HandlePaintWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWinDevice::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWinDevice::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::ApplyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::ApplyRelativeWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::InitWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DRMWrap::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

IDirect3DTexture::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::GetHandleWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::LoadWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::PaletteChangedWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DTexture::UnloadWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::AddLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::AddRefWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::ClearWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::DeleteLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::GetBackgroundWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::GetBackgroundDepthWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::GetViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::InitializeWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::LightElementsWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::NextLightWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::QueryInterfaceWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::ReleaseWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::SetBackgroundWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::SetBackgroundDepthWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::SetViewportWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirect3DViewport::TransformVerticesWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::CompactWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::CreateClipperWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::CreatePaletteWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::CreateSurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::DuplicateSurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::EnumSurfacesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::FlipToGDISurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetDisplayModeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetFourCCCodesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetGDISurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetMonitorFrequencyWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetScanLineWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::GetVerticalBlankStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::RestoreDisplayModeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::SetCooperativeLevelWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw::WaitForVerticalBlankWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw2::EnumDisplayModesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw2::GetAvailableVidMemWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDraw2::SetDisplayModeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::GetClipListWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::GetHWndWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::IsClipListChangedWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::SetClipListWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawClipper::SetHWndWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::GetEntriesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawPalette::SetEntriesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::AddAttachedSurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::AddOverlayDirtyRectWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::BltWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::BltBatchWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::BltFastWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::DeleteAttachedSurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::EnumAttachedSurfacesWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::EnumOverlayZOrdersWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::FlipWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetAttachedSurfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetBltStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetClipperWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetColorKeyWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetDCWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetFlipStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetOverlayPositionWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetPaletteWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetPixelFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::GetSurfaceDescWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::IsLostWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::LockWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::ReleaseDCWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::RestoreWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::SetClipperWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::SetColorKeyWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::SetOverlayPositionWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::SetPaletteWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::UnlockWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::UpdateOverlayWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::UpdateOverlayDisplayWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface::UpdateOverlayZOrderWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface2::GetDDInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface2::PageLockWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectDrawSurface2::PageUnlockWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

IDirectPlay::AddPlayerToGroupWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::CloseWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::CreateGroupWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::CreatePlayerWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::DeletePlayerFromGroupWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::DestroyGroupWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::DestroyPlayerWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::EnableNewPlayersWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::EnumGroupPlayersWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::EnumGroupsWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::EnumPlayersWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::EnumSessionsWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::GetMessageCountWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::GetPlayerCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::GetPlayerNameWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::OpenWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::ReceiveWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::SaveSessionWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::SendWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectPlay::SetPlayerNameWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

IDirectSound::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::CompactWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::CreateSoundBufferWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::DuplicateSoundBufferWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::GetSpeakerConfigWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::SetCooperativeLevelWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSound::SetSpeakerConfigWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::AddRefWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetCurrentPositionWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetFrequencyWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetPanWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::GetVolumeWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::LockWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::PlayWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::QueryInterfaceWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::ReleaseWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::RestoreWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::SetCurrentPositionWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::SetFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::SetFrequencyWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::SetPanWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::SetVolumeWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::StopWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDirectSoundBuffer::UnlockWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

IDropSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropSource::GiveFeedbackWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropSource::QueryContinueDragWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropTargetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropTarget::DragEnterWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropTarget::DragLeaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropTarget::DragOverWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IDropTarget::DropWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IEnumConnectionPointsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IEnumConnectionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IEnumFORMATETCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumIDList::CloneWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IEnumIDList::NextWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IEnumIDList::ResetWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IEnumIDList::SkipWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IEnumMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumOleUndoUnitsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IEnumOLEVERBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IEnumSTATDATAWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumSTATPROPSETSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumSTATPROPSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumSTATSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumStringWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IEnumUnknownWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IErrorLogWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IErrorLog::AddErrorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IExternalConnectionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IExternalConnection::AddConnectionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IExternalConnection::ReleaseConnectionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IExtractIcon::ExtractWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IExtractIcon::GetIconLocationWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFileViewer::PrintToWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFileViewer::ShowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFileViewer::ShowInitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFileViewerSite::GetPinnedWindowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFileViewerSite::SetPinnedWindowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IFontWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::AddRefHfontWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::CloneWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_BoldWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_CharsetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_hFontWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_ItalicWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_NameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_SizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_StrikethroughWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_UnderlineWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::get_WeightWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::IsEqualWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_BoldWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_CharsetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_ItalicWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_NameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_SizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_StrikethroughWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_UnderlineWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::put_WeightWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::QueryTextMetricsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::ReleaseHfontWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::SetHdcWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFont::SetRatioWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IFontDispWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IGetFrame::BeginWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IGetFrame::EndWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IGetFrame::GetFrameWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

IGetFrame::SetFormatWindows NT YesWin95 YesWin32s NoImport Library vfw32.libHeader File vfw.hUnicodePlatform Notes None

ILockBytesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::FlushWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::LockRegionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::ReadAtWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::SetSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::StatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::UnlockRegionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ILockBytes::WriteAtWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::AllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::DidAllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::FreeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::GetSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::HeapMinimizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMalloc::ReallocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostAllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostDidAllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostFreeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostGetSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostHeapMinimizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PostReallocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreAllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreDidAllocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreFreeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreGetSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreHeapMinimizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMallocSpy::PreReallocWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMAPIAdviseSink::OnNotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIContainer::GetContentsTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIContainer::GetHierarchyTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIContainer::GetSearchCriteriaWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIContainer::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIContainer::SetSearchCriteriaWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIControl::ActivateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIControl::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIControl::GetStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::CopyFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::CopyMessagesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::CreateFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::CreateMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::DeleteFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::DeleteMessagesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::EmptyFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::GetMessageStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::SaveContentsSortWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::SetMessageStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIFolder::SetReadFlagsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIForm::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIForm::DoVerbWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIForm::GetViewContextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIForm::SetViewContextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIForm::ShutdownFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIForm::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormAdviseSink::OnActivateNextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormAdviseSink::OnChangeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::CalcFormPropSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::GetDisplayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::InstallFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::RemoveFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::ResolveMessageClassWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormContainer::
ResolveMultipleMessageClassesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormFactory::CreateClassFactoryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormFactory::LockServerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormInfo::CalcFormPropSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormInfo::CalcVerbSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormInfo::MakeIconFromBinaryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormInfo::OpenFormContainerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormInfo::SaveFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::CalcFormPropSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::CreateFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::IsInConflictWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::LoadFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::OpenFormContainerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::PrepareFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::ResolveMessageClassWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::
ResolveMultipleMessageClassesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::SelectFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::SelectFormContainerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIFormMgr::SelectMultipleFormsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::CopyMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::DeleteMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetFormManagerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetSessionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetSiteStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::GetStoreWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::MoveMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::NewMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::SaveMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIMessageSite::SubmitMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIProgress::GetFlagsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProgress::GetMaxWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProgress::GetMinWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProgress::ProgressWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProgress::SetLimitsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::CopyPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::CopyToWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::DeletePropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::GetIDsFromNamesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::GetNamesFromIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::GetPropListWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::GetPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::OpenpropertyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::SaveChangesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIProp::SetPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPISession::AdminServicesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::EnumAdrTypesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::GetMsgStoresTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::GetStatusTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::LogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::MessageOptionsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::OpenAddressBookWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::OpenMsgStoreWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::OpenProfileSectionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::PrepareFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::QueryDefaultMessageOptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::QueryIdentityWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::SetDefaultStoreWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::ShowFormWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPISession::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMAPIStatus::ChangePasswordWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIStatus::FlushQueuesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIStatus::SettingsDialogWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIStatus::ValidateStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPISupport::AddressWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::CompleteMsgWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::CopyFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::CopyMessagesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::CreateOneOffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DetailsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DoConfigPropsheetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DoCopyPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DoCopyToWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DoProgressDialogWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::DoSentMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::ExpandRecipsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::GetMemAllocRoutinesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::GetOneOffTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::GetSvcConfigSupportObjWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::IStorageFromStreamWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::MakeInvalidWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::ModifyProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::ModifyStatusRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::NewEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::NewUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::NotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::OpenAddressBookWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::OpenProfileSectionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::OpenTemplateIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::PrepareSubmitWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::ReadReceiptWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::RegisterPreprocessorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::SetProviderUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::SpoolerNotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::SpoolerYieldWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::StatusRecipsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::StoreLogoffTransportsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::SubscribeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::UnsubscribeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPISupport::WrapStoreEntryIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMAPITable::AbortWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::CollapseRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::CreateBookmarkWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::ExpandRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::FindRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::FreeBookmarkWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::GetCollapseStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::GetRowCountWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::GetStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::QueryColumnsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::QueryPositionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::QueryRowsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::QuerySortOrderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::RestrictWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::SeekRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::SeekRowApproxWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::SetCollapseStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::SetColumnsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::SortTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPITable::WaitForCompletionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMAPIViewAdviseSink::OnNewMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewAdviseSink::OnPrintWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewAdviseSink::OnSavedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewAdviseSink::OnShutdownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewAdviseSink::OnSubmittedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewContext::ActivateNextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewContext::GetPrintSetupWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewContext::GetSaveStreamWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewContext::GetViewStatusWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMAPIViewContext::SetAdviseSinkWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IMarshalWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::DisconnectObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::GetMarshalSizeMaxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::GetUnmarshalClassWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::MarshalInterfaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::ReleaseMarshalDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMarshal::UnmarshalInterfaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMessage::CreateAttachWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::DeleteAttachWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::GetAttachmentTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::GetRecipientTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::ModifyRecipientsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::OpenAttachWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::SetReadFlagWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessage::SubmitMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMessageFilterWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMessageFilter::HandleInComingCallWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMessageFilter::MessagePendingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMessageFilter::RetryRejectedCallWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::BindToObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::BindToStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::CommonPrefixWithWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::ComposeWithWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::EnumWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::GetDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::GetTimeOfLastChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::HashWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::InverseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::IsEqualWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::IsRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::IsSystemMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::ParseDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::ReduceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMoniker::RelativePathToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMsgServiceAdmin::AdminProvidersWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::ConfigureMsgServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::CopyMsgServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::CreateMsgServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::DeleteMsgServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::GetMsgServiceTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::GetProviderTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::MsgServiceTransportOrderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::OpenProfileSectionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::RenameMsgServiceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgServiceAdmin::SetPrimaryIdentityWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IMsgStore::AbortSubmitWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::FinishedMsgWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::GetOutgoingQueueWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::GetReceiveFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::GetReceiveFolderTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::NotifyNewMailWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::SetLockStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::SetReceiveFolderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::StoreLogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMsgStore::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IMSLogon::AdviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::CompareEntryIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::LogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::OpenEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::OpenStatusEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSLogon::UnadviseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSProvider::CompareStoreIDsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSProvider::LogonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSProvider::ShutdownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMSProvider::SpoolerLogonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IMultiQIWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IMultiQI::QueryMultipleInterfacesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

INotifyReplica::YouAreAReplicaWindows NT YesWin95 YesWin32s NoImport Library -Header File reconcil.hUnicode NoPlatform Notes None

IObjectWithSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IObjectWithSite::GetSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IObjectWithSite::SetSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleAdviseHolderWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::AdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::EnumAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::SendOnCloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::SendOnRenameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::SendOnSaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleAdviseHolder::UnadviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache::CacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache::EnumCacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache::InitCacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache::SetDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache::UncacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache2::DiscardCacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCache2::UpdateCacheWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCacheControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCacheControl::OnRunWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleCacheControl::OnStopWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::GetContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::GetMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::OnShowWindowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::RequestNewObjectLayoutWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::SaveObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleClientSite::ShowObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleContainer::EnumObjectsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleContainer::LockContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControl::FreezeEventsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControl::GetControlInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControl::OnAmbientPropertyChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControl::OnMnemonicWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::GetExtendedControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::LockInPlaceActiveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::OnControlInfoChangedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::OnFocusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::ShowPropertyFrameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::TransformCoordsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleControlSite::TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObject::EnableModelessWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObject::
OnDocWindowActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObject::
OnFrameWindowActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObject::ResizeBorderWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceActiveObject::TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::EnableModelessWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::InsertMenusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::RemoveMenusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::SetMenuWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::SetStatusTextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceFrame::TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObject::InPlaceDeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObject::ReactivateAndUndoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObject::SetObjectRectsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObject::UIDeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceObjectWindowlessWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceObjectWindowless::GetDropTargetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceObjectWindowlessOnWindowMessageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::CanInPlaceActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::DeactivateAndUndoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::DiscardUndoStateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::GetWindowContextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::OnInPlaceActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::OnInPlaceDeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::OnPosRectChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::OnUIActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::OnUIDeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSite::ScrollWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteExWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteEx::OnInPlaceActivateExWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteEx::OnInPlaceDeactivateExWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteEx::RequestUIActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowlessWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::AdjustRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::
CanWindowlessActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::GetCaptureWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::GetDCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::InvalidateRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::InvalidateRgnWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::
OnDefWindowMessageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::ReleaseDCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::ScrollRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::SetCaptureWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless::SetFocusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceSiteWindowless:GetFocusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleInPlaceUIWindowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceUIWindow::GetBorderWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceUIWindow::RequestBorderSpaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceUIWindow::SetActiveObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleInPlaceUIWindow::SetBorderSpaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleItemContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleItemContainer::GetObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleItemContainer::GetObjectStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleItemContainer::IsRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::BindIfRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::BindToSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::GetBoundSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::GetSourceDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::GetSourceMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::GetUpdateOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::SetSourceDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::SetSourceMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::SetUpdateOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::UnbindSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleLink::UpdateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::AdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::CloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::DoVerbWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::EnumAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::EnumVerbsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetClientSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetClipboardDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetMiscStatusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetUserClassIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::GetUserTypeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::InitFromDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::IsUpToDateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::SetClientSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::SetColorSchemeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::SetExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::SetHostNamesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::SetMonikerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::UnadviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleObject::UpdateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleParentUndoUnitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleParentUndoUnit::AddWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleParentUndoUnit::CloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleParentUndoUnit::FindUnitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleParentUndoUnit::GetParentStateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleParentUndoUnit::OpenWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUILinkContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::CancelLinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::GetLinkSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::GetLinkUpdateOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::GetNextLinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::OpenLinkSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::SetLinkSourceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::SetLinkUpdateOptionsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkContainer::UpdateLinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUILinkInfo::GetLastUpdateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfo::ConvertObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfo::GetConvertInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfo::GetObjectInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfo::GetViewInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUIObjInfo::SetViewInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

IOleUndoManagerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::AddWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::CloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::DiscardFromWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::EnableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::EnumRedoableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::EnumUndoableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::GetLastRedoDescriptionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::GetLastUndoDescriptionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::GetOpenParentStateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::OpenWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager::UndoToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoManager:RedoToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoUnitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoUnit::DoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoUnit::GetDescriptionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoUnit::GetUnitTypeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleUndoUnit::OnNextAddWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IOleWindowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleWindow::ContextSensitiveHelpWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IOleWindow::GetWindowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IParseDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IParseDisplayName::ParseDisplayNameWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IPerPropertyBrowsingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPerPropertyBrowsing::GetDisplayStringWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPerPropertyBrowsing::GetPredefinedStringsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPerPropertyBrowsing::GetPredefinedValueWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPerPropertyBrowsing::MapPropertyToPageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersist::GetClassIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFileWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFile::GetCurFileWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFile::IsDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFile::LoadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFile::SaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFile::SaveCompletedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistFolder::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IPersistMemoryWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMemory::GetSizeMaxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMemory::InitNewWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMemory::IsDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMemory::LoadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMemory::SaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistMessage::GetClassIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::HandsOffMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::InitNewWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::IsDirtyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::LoadWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::SaveWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistMessage::SaveCompletedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

IPersistPropertyBagWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistPropertyBag::ReadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistPropertyBag::WriteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::HandsOffStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::InitNewWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::IsDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::LoadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::SaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStorage::SaveCompletedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStreamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStream::GetSizeMaxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStream::IsDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStream::LoadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStream::SaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPersistStreamInitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStreamInit::GetSizeMaxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStreamInit::InitNewWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStreamInit::IsDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStreamInit::LoadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPersistStreamInit::SaveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPictureWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_AttributesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_CurDCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_HandleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_HeightWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_hPalWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_KeepOriginalFormatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_TypeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::get_WidthWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::PictureChangedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::put_KeepOriginalFormatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::RenderWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::SaveAsFileWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::SelectPictureWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPicture::set_hPalWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPictureDispWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPointerInactiveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPointerInactive::GetActivationPolicyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPointerInactive::OnInactiveMouseMoveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPointerInactive::OnInactiveSetCursorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IProfAdmin::AdminServicesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::ChangeProfilePasswordWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::CopyProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::CreateProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::DeleteProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::GetProfileTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::RenameProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IProfAdmin::SetDefaultProfileWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

IPropData::HrAddObjPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

IPropData::HrGetPropAccessWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

IPropData::HrSetObjAccessWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

IPropData::HrSetPropAccessWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

IPropertyNotifySinkWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyNotifySink::OnChangedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyNotifySink::OnRequestEditWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::ActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::ApplyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::DeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::GetPageInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::HelpWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::IsPageDirtyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::MoveWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::SetObjectsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::SetPageSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::ShowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage::TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPage2::EditPropertyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageSite::GetLocaleIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageSite::GetPageContainerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageSite::OnStatusChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertyPageSite::TranslateAcceleratorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IPropertySetStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertySetStorage::CreateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertySetStorage::DeleteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertySetStorage::EnumWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertySetStorage::OpenWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::CommitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::DeleteMultipleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::DeletePropertyNamesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::EnumWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::ReadMultipleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::ReadPropertyNamesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::RevertWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::SetClassWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::SetTimesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::StatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IPropertyStorage::WriteMultipleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IProvideClassInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IProvideClassInfo::GetClassInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IProvideClassInfo2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IProvideClassInfo2::GetGUIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IProviderAdmin::CreateProviderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IProviderAdmin::DeleteProviderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IProviderAdmin::GetLastErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IProviderAdmin::GetProviderTableWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IProviderAdmin::OpenProfileSectionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

IQuickActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IQuickActivate::GetContentExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IQuickActivate::QuickActivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IQuickActivate::SetContentExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IReconcilableObject::
GetProgressFeedbackMaxEstimateWindows NT YesWin95 YesWin32s NoImport Library -Header File reconcil.hUnicode NoPlatform Notes None

IReconcilableObject::ReconcileWindows NT YesWin95 YesWin32s NoImport Library -Header File reconcil.hUnicode NoPlatform Notes None

IReconcileInitiator::SetAbortCallbackWindows NT YesWin95 YesWin32s NoImport Library -Header File reconcil.hUnicode NoPlatform Notes None

IReconcileInitiator::SetProgressFeedbackWindows NT YesWin95 YesWin32s NoImport Library -Header File reconcil.hUnicode NoPlatform Notes None

IRichEditOle::ActivateAsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::ContextSensitiveHelpWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::ConvertObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::GetClientSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::GetClipboardDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::GetLinkCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::GetObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::GetObjectCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::HandsOffStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::ImportDataObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::InPlaceDeactivateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::InsertObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::SaveCompletedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::SetDvaspectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::SetHostNamesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOle::SetLinkAvailableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::ContextSensitiveHelpWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::DeleteObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::GetClipboardDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::GetContextMenuWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::GetDragDropEffectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::GetInPlaceContextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::GetNewStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::QueryAcceptDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::QueryInsertObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRichEditOleCallback::ShowContainerUIWindows NT YesWin95 YesWin32s YesImport LibraryHeader File richole.hUnicodePlatform Notes None

IRootStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRootStorage::SwitchToFileWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IROTDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IROTData::GetComparisonDataWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObject::GetRunningClassWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObject::IsRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObject::LockRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObject::RunWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunnableObject::SetContainedObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTableWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::EnumRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::GetObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::GetTimeOfLastChangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::IsRunningWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::NoteChangeTimeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::RegisterWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IRunningObjectTable::RevokeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IServerSecurityWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IServerSecurity::ImpersonateClientWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IServerSecurity::IsImpersonatingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IServerSecurity::QueryBlanketWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IServerSecurity::RevertToSelfWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IShellBrowser::BrowseObjectWindows NT YesWin95 YesWin32s YesImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::EnableModelessSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::GetControlWindowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::GetViewStateStreamWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::InsertMenusSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::OnViewWindowActiveWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::QueryActiveShellViewWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::RemoveMenusSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::SendControlMsgWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::SetMenuSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::SetStatusTextSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellBrowser::TranslateAcceleratorSBWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellExecuteHook::ExecuteWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellExtInit::InitializeWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::BindToObjectWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::BindToStorageWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::CompareIDsWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::CreateViewObjectWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::EnumObjectsWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::GetAttributesOfWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::GetDisplayNameOfWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::GetUIObjectOfWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::ParseDisplayNameWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellFolder::SetNameOfWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellIcon::GetIconOfWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetArgumentsWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetDescriptionWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetHotkeyWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetIconLocationWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetIDListWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetPathWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetShowCmdWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::GetWorkingDirectoryWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::ResolveWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetArgumentsWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetDescriptionWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetHotkeyWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetIconLocationWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetIDListWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetPathWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetRelativePathWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetShowCmdWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellLink::SetWorkingDirectoryWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellPropSheetExt::AddPagesWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellPropSheetExt::ReplacePageWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::AddPropertySheePagesWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::CreateViewWindowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::DestroyViewWindowWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::EnableModelessWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::GetCurrentInfoWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::GetItemObjectWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::RefreshWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::SaveViewStateWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::SelectItemWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::TranslateAcceleratorWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

IShellView::UIActivateWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

ISimpleFrameSiteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ISimpleFrameSite::PostMessageFilterWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ISimpleFrameSite::PreMessageFilterWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ISpecifyPropertyPagesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ISpecifyPropertyPages::GetPagesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

ISpoolerHook::InboundMsgHookWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapihook.hUnicode NoPlatform Notes None

ISpoolerHook::OutboundMsgHookWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapihook.hUnicode NoPlatform Notes None

IStdMarshalInfoWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStdMarshalInfo::GetClassForHandlerWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::CommitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::CopyToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::CreateStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::CreateStreamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::DestroyElementWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::EnumElementsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::MoveElementToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::OpenStorageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::OpenStreamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::RenameElementWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::RevertWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::SetClassWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::SetElementTimesWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::SetStateBitsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStorage::StatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStreamWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::CloneWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::CommitWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::CopyToWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::LockRegionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::ReadWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::RevertWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::SeekWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::SetSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::StatWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::UnlockRegionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

IStream::WriteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ITableData::HrDeleteRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrDeleteRowsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrEnumRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrGetViewWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrInsertRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrModifyRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrModifyRowsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrNotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITableData::HrQueryRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

ITnef::AddPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::EncodeRecipsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::ExtractPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::FinishWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::FinishComponentWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::OpenTaggedBodyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

ITnef::SetPropsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

IUnknownWindows NT YesWin95 YesWin32s YesImport LibraryHeader File Unknwn.hUnicode YesPlatform Notes None

IUnknown::AddRefWindows NT YesWin95 YesWin32s YesImport LibraryHeader File Unknwn.hUnicode YesPlatform Notes None

IUnknown::QueryInterfaceWindows NT YesWin95 YesWin32s YesImport LibraryHeader File Unknwn.hUnicode YesPlatform Notes None

IUnknown::ReleaseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File Unknwn.hUnicode YesPlatform Notes None

IViewObjectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::DrawWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::FreezeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::GetAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::GetColorSetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::SetAdviseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject::UnfreezeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject2Windows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObject2::GetExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

IViewObjectExWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IViewObjectEx::GetNaturalExtentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IViewObjectEx::GetRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IViewObjectEx::GetViewStatusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IViewObjectEx::QueryHitPointWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IViewObjectEx::QueryHitRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

IXPLogon::AddressTypesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::EndMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::FlushQueuesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::IdleWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::OpenStatusEntryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::PollWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::RegisterOptionsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::StartMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::SubmitMessageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::TransportLogoffWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::TransportNotifyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPLogon::ValidateStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPProvider : IUnknownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPProvider::ShutdownWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

IXPProvider::TransportLogonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

Logoff interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Logon interface method (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Options interface method (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ReadFromFile interface method (Attachment
OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ReadFromFile interface method (Field OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Resolve interface method (Recipient OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Resolve interface method (Recipients
Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Send interface method (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

SetNamespace interface method (Fields
Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Sort interface method (Messages Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Update interface method (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Update interface method (Folder OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Update interface method (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

WriteToFile interface method (Attachment OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

WriteToFile interface method (Field OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

D3DRMANIMATIONOPTIONSWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMCOLORMODELWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMLOADOPTIONSWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMMAPPINGWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMMATRIX4DWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

D3DRMSAVEOPTIONSWindows NT NoWin95 YesWin32s NoImport Library d3drm.libHeader File d3drm.hUnicode NoPlatform Notes None

Animate_CloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

Animate_CreateWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File commctrl.hUnicode NoPlatform Notes None

Animate_OpenWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

Animate_PlayWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Animate_SeekWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Animate_StopWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

AVIStreamDataSizeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamEndWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamEndTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamFormatSizeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamIsKeyFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamLengthTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNearestKeyFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNearestKeyFrameTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNearestSampleWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNearestSampleTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNextKeyFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNextKeyFrameTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNextSampleWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamNextSampleTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamPrevKeyFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamPrevKeyFrameTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamPrevSampleWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamPrevSampleTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamSampleSizeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamSampleToSampleWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIStreamStartTimeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureAbortWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureGetSetupWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSequenceWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSequenceNoFileWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSetSetupWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSingleFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSingleFrameCloseWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureSingleFrameOpenWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capCaptureStopWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDlgVideoCompressionWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDlgVideoDisplayWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDlgVideoFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDlgVideSourceWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDriverConnectWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDriverDisconnectWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDriverGetCapsWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDriverGetNameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capDriverGetVersionWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capEditCopyWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileAllocWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileGetCaptureFileWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileSaveAsWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileSaveDibWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileSetCaptureFileWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capFileSetInfoChunkWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetAudioFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetAudioFormatSizeWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetMCIDeviceNameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetUserDataWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGetVideoFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGrabFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capGrabFrameNoStopWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capOverlayWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPaletteAutoWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPaletteManualWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPaletteOpenWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPalettePasteWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPaletteSaveWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPreviewWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPreviewRateWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capPreviewScaleWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetAudioFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnCapControlWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnErrorWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnFrameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnStatusWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnVideoStreamWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnWaveStreamWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetCallbackOnYieldWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetMCIDeviceNameWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetScrollPosWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetUserDataWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

capSetVideoFormatWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

CbADRLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbFLATENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbFLATENTRYLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbFLATMTSIDLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbMAPIFormInfoArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

CbMAPIFormPropArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

CbMAPIVerbArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

CbMessageClassArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbMTSIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewADRLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewFLATENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewFLATENTRYLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewFLATMTSIDLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewMTSIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewSPropAttrArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File imessage.hUnicode NoPlatform Notes None

CbNewSPropProblemArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewSPropTagArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewSRowSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbNewSSortOrderSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbSPropAttrArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File imessage.hUnicode NoPlatform Notes None

CbSPropProblemArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbSPropTagArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbSRowSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CbSSortOrderSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CHANGE_PROP_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CMYKWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

CommDlg_OpenSave_GetFilePathWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode WinNTPlatform Notes None

CommDlg_OpenSave_GetFolderIDListWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode NoPlatform Notes None

CommDlg_OpenSave_GetFolderPathWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode WinNTPlatform Notes None

CommDlg_OpenSave_GetSpecWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode WinNTPlatform Notes None

CommDlg_OpenSave_HideControlWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode NoPlatform Notes None

CommDlg_OpenSave_SetControlTextWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode NoPlatform Notes None

CommDlg_OpenSave_SetDefExtWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commdlg.hUnicode NoPlatform Notes None

CreateDialogWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

CreateDialogIndirectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

D3DDivideWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DMultiplyWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DRGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DRGBAWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DSTATE_OVERRIDEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DVALWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

D3DVALPWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

DialogBoxWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DialogBoxIndirectWindows NT YesWin95 YesWin32s YesImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

DrawDibUpdateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

FACILITY_NT_BITWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

FAILEDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

FORWARD_WM_NOTIFYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

GetBValueWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetCValueWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetGValueWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetKValueWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetMValueWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetRValueWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

GetScodeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

GetYValueWindows NT NoWin95 YesWin32s NoImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

HANDLE_WM_NOTIFYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

HasOverlappedIoCompletedWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

Header_DeleteItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Header_GetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

Header_GetItemCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Header_InsertItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

Header_LayoutWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Header_SetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

HIBYTEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

HIWORDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

HRESULT_CODEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

HRESULT_FACILITYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

HRESULT_FROM_NTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

HRESULT_FROM_WIN32Windows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

HRESULT_SEVERITYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

ICAboutWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressBeginWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressGetFormatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressGetFormatSizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressGetSizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICCompressQueryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICConfigureWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressBeginWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressExEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressGetFormatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressGetFormatSizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressGetPaletteWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressOpenWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressQueryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDecompressSetPaletteWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawChangePaletteWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawFlushWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawGetTimeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawOpenWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawQueryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawRealizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawRenderBufferWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawSetTimeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawStartWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawStartPlayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawStopWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawStopPlayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICDrawWindowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetBuffersWantedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetDefaultKeyFrameRateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetDefaultQualityWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICGetStateSizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICQueryAboutWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICQueryConfigureWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ICSetStateWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

ImageList_AddIconWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_ExtractIconWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

ImageList_LoadBitmapWindows NT YesWin95 YesWin32s YesImport Library comctl32.libHeader File commctrl.hUnicode NoPlatform Notes None

INDEXTOOVERLAYMASKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

INDEXTOSTATEIMAGEMASKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

Int32x32To64Windows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

Int64ShllMod32Windows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

Int64ShraMod32Windows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

Int64ShrlMod32Windows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

IS_ERRORWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

IsEqualCLSIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

IsEqualGUIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objbase.hUnicode YesPlatform Notes None

IsEqualIIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

IsEqualMAPIUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

LANGIDFROMLCIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

ListView_ArrangeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_CreateDragImageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_DeleteAllItemsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_DeleteColumnWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_DeleteItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_EditLabelWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_EnsureVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_FindItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetBkColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetCallbackMaskWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetColumnWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetColumnWidthWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetCountPerPageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetEditControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetISearchStringWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetItemCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetItemPositionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetItemRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetItemSpacingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetItemStateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetItemTextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetNextItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetOriginWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetSelectedCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetStringWidthWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_GetTextBkColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetTextColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetTopIndexWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_GetViewRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_HitTestWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_InsertColumnWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_InsertItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_RedrawItemsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_ScrollWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetBkColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetCallbackMaskWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetColumnWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_SetColumnWidthWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_SetItemCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetItemPositionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetItemPosition32Windows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetItemStateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetItemTextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

ListView_SetTextBkColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SetTextColorWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_SortItemsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

ListView_UpdateWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

LOBYTEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

LOWORDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

MAKE_HRESULTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

MAKE_SCODEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

MAKEINTATOMWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

MAKEINTRESOURCEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode WinNTPlatform Notes None

MAKELANGIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

MAKELCIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

MAKELONGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

MAKELPARAMWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

MAKELRESULTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

MAKEPOINTSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

MAKEROP4Windows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

MAKEWORDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

MAKEWPARAMWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

maxWindows NT YesWin95 YesWin32s YesImport LibraryHeader File windef.hUnicode NoPlatform Notes None

MCI_HMS_HOURWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_HMS_MINUTEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_HMS_SECONDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MAKE_HMSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MAKE_MSFWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MAKE_TMSFWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MSF_FRAMEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MSF_MINUTEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_MSF_SECONDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_TMSF_FRAMEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_TMSF_MINUTEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_TMSF_SECONDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCI_TMSF_TRACKWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MCIWndCanConfigWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCanEjectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCanPlayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCanRecordWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCanSaveWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCanWindowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndChangeStylesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndCloseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndDestroyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndEjectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetActiveTimerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetAliasWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetDestWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetDeviceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetDeviceIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetEndWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetErrorWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetFileNameWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetInactiveTimerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetLengthWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetModeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetPaletteWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetPositionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetPositionStringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetRepeatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetSourceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetSpeedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetStartWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetStylesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetTimeFormatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetVolumeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndGetZoomWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndHomeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndNewWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndOpenWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndOpenDialogWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndOpenInterfaceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPauseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPlayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPlayFromWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPlayFromToWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPlayReverseWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPlayToWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPutDestWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndPutSourceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndRealizeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndRecordWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndResumeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndReturnStringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSaveWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSaveDialogWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSeekWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSendStringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetActiveTimerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetInactiveTimerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetOwnerWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetPaletteWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetRepeatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetSpeedWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetTimeFormatWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetTimersWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetVolumeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndSetZoomWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndStepWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndStopWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndUseFramesWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndUseTimeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MCIWndValidateMediaWindows NT YesWin95 YesWin32s NoImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

MEVT_EVENTPARMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MEVT_EVENTTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

minWindows NT YesWin95 YesWin32s YesImport LibraryHeader File vfw.hUnicode NoPlatform Notes None

mmioFOURCCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File mmsystem.hUnicode NoPlatform Notes None

MVI_PROPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

PALETTEINDEXWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

PALETTERGBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

POINTSTOPOINTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

POINTTOPOINTSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

PRIMARYLANGIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

PROP_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

PROP_TAGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

PROP_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

PropagateResultWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

PropSheet_AddPageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_ApplyWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_CancelToCloseWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_ChangedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_GetCurrentPageHwndWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_GetTabControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_IsDialogMessageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_PressButtonWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_QuerySiblingsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_RebootSystemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_RemovePageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_RestartWindowsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_SetCurSelWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_SetCurSelByIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_SetFinishTextWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode WinNTPlatform Notes None

PropSheet_SetTitleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode WinNTPlatform Notes None

PropSheet_SetWizButtonsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

PropSheet_UnChangedWindows NT YesWin95 YesWin32s YesImport LibraryHeader File prsht.hUnicode NoPlatform Notes None

ResultFromScodeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

RGBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File wingdi.hUnicode NoPlatform Notes None

RGB_GETBLUEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGB_GETGREENWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGB_GETREDWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGB_MAKEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGB_TORGBAWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_GETALPHAWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_GETBLUEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_GETGREENWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_GETREDWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_MAKEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_SETALPHAWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

RGBA_TORGBWindows NT NoWin95 YesWin32s NoImport Library -Header File d3dtypes.hUnicode NoPlatform Notes None

SCODE_CODEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

SCODE_FACILITYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

SCODE_SEVERITYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

SizedADRLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblButtonWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblCheckBoxWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblComboBoxWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblEditWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblGroupBoxWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblLabelWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedDtblPageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedSPropProblemArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedSPropTagArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedSRowSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SizedSSortOrderSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SORTIDFROMLCIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

SUBLANGIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

SUCCEEDEDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winerror.hUnicode YesPlatform Notes None

TabCtrl_AdjustRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_DeleteAllItemsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_DeleteItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetCurFocusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetCurSelWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TabCtrl_GetItemCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetItemRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetRowCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_GetToolTipsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_HitTestWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_InsertItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TabCtrl_RemoveImageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetCurFocusWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetCurSelWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TabCtrl_SetItemExtraWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetItemSizeWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetPaddingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TabCtrl_SetToolTipsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TAPIERROR_FORMATMESSAGEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

TEXTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winnt.hUnicode WinNTPlatform Notes None

TreeView_CreateDragImageWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_DeleteAllItemsWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_DeleteItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_EditLabelWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TreeView_EndEditLabelNowWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_EnsureVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_ExpandWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetChildWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetDropHiliteWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetEditControlWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetFirstVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetIndentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetISearchStringWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TreeView_GetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TreeView_GetItemRectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetNextItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetNextSiblingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetNextVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetParentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetPrevSiblingWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetPrevVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetRootWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetSelectionWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_GetVisibleCountWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_HitTestWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_InsertItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TreeView_SelectWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SelectDropTargetWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SelectItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SelectSetFirstVisibleWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SetImageListWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SetIndentWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SetItemWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode WinNTPlatform Notes None

TreeView_SortChildrenWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

TreeView_SortChildrenCBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File commctrl.hUnicode NoPlatform Notes None

UInt32x32To64Windows NT YesWin95 YesWin32s NoImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

ABM_ACTIVATEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_GETAUTOHIDEBARWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_GETSTATEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_GETTASKBARPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_NEWWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_QUERYPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_REMOVEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_SETAUTOHIDEBARWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_SETPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABM_WINDOWPOSCHANGEDWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABN_FULLSCREENAPPWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABN_POSCHANGEDWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABN_STATECHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ABN_WINDOWARRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

ACM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

ACM_PLAYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

ACM_STOPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

BM_CLICKWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_GETCHECKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_GETIMAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_GETSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_SETCHECKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_SETIMAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_SETSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BM_SETSTYLEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_ADDSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_DELETESTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_DIRWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_FINDSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_FINDSTRINGEXACTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETDROPPEDCONTROLRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETDROPPEDSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETDROPPEDWIDTHWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETEDITSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETEXTENDEDUIWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETHORIZONTALEXTENTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETITEMDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETITEMHEIGHTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETLBTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETLBTEXTLENWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETLOCALEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_GETTOPINDEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_INITSTORAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_INSERTSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_LIMITTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_MSGMAXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_RESETCONTENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SELECTSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETDROPPEDWIDTHWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETEDITSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETEXTENDEDUIWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETHORIZONTALEXTENTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETITEMDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETITEMHEIGHTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETLOCALEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SETTOPINDEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CB_SHOWDROPDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CDM_GETFILEPATHWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

CDM_GETFOLDERIDLISTWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDM_GETFOLDERPATHWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

CDM_GETSPECWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

CDM_HIDECONTROLWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDM_SETCONTROLTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDM_SETDEFEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_FILEOKWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_FOLDERCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_HELPWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_INITDONEWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_SELCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_SHAREVIOLATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CDN_TYPECHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode NoPlatform Notes None

CPL_DBLCLKWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_EXITWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_GETCOUNTWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_INITWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_INQUIREWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_NEWINQUIREWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_SELECTWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CPL_STOPWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

DM_GETDEFIDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DM_REPOSITIONWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

DM_SETDEFIDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DRV_CLOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_CONFIGUREWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_DISABLEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_ENABLEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_EXITSESSIONWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_FREEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_INSTALLWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_LOADWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_OPENWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_POWERWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_QUERYCONFIGUREWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DRV_REMOVEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

EM_CANPASTEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_CANUNDOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_CHARFROMPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_DISPLAYBANDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_EMPTYUNDOBUFFERWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_EXGETSELWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_EXLIMITTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_EXLINEFROMCHARWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_EXSETSELWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_FINDTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_FINDTEXTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_FINDWORDBREAKWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_FMTLINESWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_FORMATRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETCHARFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETEVENTMASKWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETFIRSTVISIBLELINEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes For Single Line Edit controls
Win32s returns 0

EM_GETHANDLEWindows NT YesWin95 NoWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETIMECOLORWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETIMEOPTIONSWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETLIMITTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETLINEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETLINECOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETMARGINSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETMODIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETOLEINTERFACEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETOPTIONSWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETPARAFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETPASSWORDCHARWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETPUNCTUATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETSELTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETTEXTRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETTHUMBWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETWORDBREAKPROCWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_GETWORDBREAKPROCEXWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_GETWORDWRAPMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_HIDESELECTIONWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_LIMITTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_LINEFROMCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_LINEINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_LINELENGTHWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_LINESCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_PASTESPECIALWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_POSFROMCHARWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_REPLACESELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_REQUESTRESIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SCROLLCARETWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SELECTIONTYPEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETBKGNDCOLORWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETCHARFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETEVENTMASKWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETHANDLEWindows NT YesWin95 NoWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETIMECOLORWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETIMEOPTIONSWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETLIMITTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETMARGINSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETMODIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETOLECALLBACKWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETOLEINTERFACEWindows NT YesWin95 YesWin32s NoImport LibraryHeader FileUnicodePlatform Notes None

EM_SETOPTIONSWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETPARAFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETPASSWORDCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETPUNCTUATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETREADONLYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETRECTNPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETTABSTOPSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETTARGETDEVICEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETWORDBREAKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETWORDBREAKPROCWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EM_SETWORDBREAKPROCEXWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_SETWORDWRAPMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_STREAMINWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_STREAMOUTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EM_UNDOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

FM_GETDRIVEINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_GETFILESELWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_GETFILESELLFNWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_GETFOCUSWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_GETSELCOUNTWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_GETSELCOUNTLFNWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_REFRESH_WINDOWSWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FM_RELOAD_EXTENSIONSWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_HELPMENUITEMWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_HELPSTRINGWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_INITMENUWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_LOADWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_SELCHANGEWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_TOOLBARLOADWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_UNLOADWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

FMEVENT_USER_REFRESHWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes Windows 95: Only supports
16-bit FileManager

HDM_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HDM_GETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDM_GETITEMCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HDM_HITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HDM_INSERTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDM_LAYOUTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HDM_SETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HKM_GETHOTKEYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HKM_SETHOTKEYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HKM_SETRULESWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

ICM_ABOUTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_BEGINWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_ENDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_FRAMES_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_GET_FORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_GET_SIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_COMPRESS_QUERYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_CONFIGUREWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_BEGINWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_ENDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_GET_FORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_GET_PALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_QUERYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESS_SET_PALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESSEXWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESSEX_BEGINWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESSEX_ENDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DECOMPRESSEX_QUERYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_BEGINWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_CHANGEPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_ENDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_FLUSHWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_GET_PALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_GETTIMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_QUERYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_REALIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_RENDERBUFFERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_SETTIMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_STARTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_START_PLAYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_STOPWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_STOP_PLAYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_SUGGESTFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_DRAW_WINDOWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETBUFFERSWANTEDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETDEFAULTKEYFRAMERATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETDEFAULTQUALITYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETQUALITYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_GETSTATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_SET_STATUS_PROCWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_SETQUALITYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICM_SETSTATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

IMC_CLOSESTATUSWINDOWWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_GETCANDIDATEPOSWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_GETCOMPOSITIONFONTWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_GETCOMPOSITIONWINDOWWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_GETCONVERSIONMODEWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_GETOPENSTATUSWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_GETSENTENCEMODEWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_GETSTATUSWINDOWPOSWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_OPENSTATUSWINDOWWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_SETCANDIDATEPOSWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_SETCOMPOSITIONFONTWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_SETCOMPOSITIONWINDOWWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMC_SETCONVERSIONMODEWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_SETOPENSTATUSWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_SETSENTENCEMODEWindows NT YesWin95 NoWin32s NoImport Library -Header FileUnicodePlatform Notes None

IMC_SETSTATUSWINDOWPOSWindows NT YesWin95 NoWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

LB_ADDFILEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_ADDSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_DELETESTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_DIRWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_FINDSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_FINDSTRINGEXACTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETANCHORINDEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETCARETINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETHORIZONTALEXTENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETITEMDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETITEMHEIGHTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETITEMRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETLOCALEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETSELCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_GETSELITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETTEXTLENWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_GETTOPINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_INITSTORAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_INSERTSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_ITEMFROMPOINTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_RESETCONTENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SELECTSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SELITEMRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SELITEMRANGEEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETANCHORINDEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETCARETINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SETCOLUMNWIDTHWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETCOUNTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SETHORIZONTALEXTENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETITEMDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SETITEMHEIGHTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SETLOCALEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETSELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LB_SETTABSTOPSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LB_SETTOPINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Windows 95: wParam is 16-
bits

LINE_ADDRESSSTATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_AGENTSPECIFICWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_AGENTSTATUSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_APPNEWCALLWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_CALLINFOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_CALLSTATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_CLOSEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_CREATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_DEVSPECIFICWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_DEVSPECIFICFEATUREWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_GATHERDIGITSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_GENERATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_LINEDEVSTATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_MONITORDIGITSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_MONITORMEDIAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_MONITORTONEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_PROXYREQUESTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_REMOVEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_REPLYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LINE_REQUESTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

LVM_ARRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_CREATEDRAGIMAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_DELETEALLITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_DELETECOLUMNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_EDITLABELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_ENSUREVISIBLEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_FINDITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETBKCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETCALLBACKMASKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETCOLUMNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETCOLUMNWIDTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETCOUNTPERPAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETEDITCONTROLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETISEARCHSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETITEMCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETITEMPOSITIONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETITEMRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETITEMSPACINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETITEMSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETITEMTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETNEXTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETORIGINWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETSELECTEDCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETSTRINGWIDTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_GETTEXTBKCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETTEXTCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETTOPINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_GETVIEWRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_HITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_INSERTCOLUMNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_INSERTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_REDRAWITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETBKCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETCALLBACKMASKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETCOLUMNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_SETCOLUMNWIDTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_SETITEMCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETITEMPOSITIONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETITEMPOSITION32Windows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETITEMSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETITEMTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVM_SETTEXTBKCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SETTEXTCOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_SORTITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVM_UPDATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

MCIWNDM_CAN_CONFIGWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CAN_EJECTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CAN_PLAYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CAN_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CAN_SAVEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CAN_WINDOWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_CHANGESTYLESWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_EJECTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GET_DESTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GET_SOURCEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETACTIVETIMERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETALIASWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETDEVICEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETDEVICEIDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETENDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETFILENAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETINACTIVETIMERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETLENGTHWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETPOSITIONWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETREPEATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETSPEEDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETSTARTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETSTYLESWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETTIMEFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_GETVOLUMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_GETZOOMWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_NEWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_NOTIFYERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_NOTIFYMEDIAWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_NOTIFYMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_NOTIFYPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_NOTIFYSIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_OPENWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_OPENINTERFACEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_PLAYFROMWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_PLAYREVERSEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_PLAYTOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_PUT_DESTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_PUT_SOURCEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_REALIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_RETURNSTRINGWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_SENDSTRINGWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_SETACTIVETIMERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETINACTIVETIMERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETOWNERWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETREPEATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETSPEEDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETTIMEFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

MCIWNDM_SETTIMERSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETVOLUMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_SETZOOMWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MCIWNDM_VALIDATEMEDIAWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

MIM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_ERRORWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_LONGDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_LONGERRORWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_MOREDATAWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_ACM_FILTERCHOOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode NoPlatform Notes None

MM_ACM_FORMATCHOOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode NoPlatform Notes None

MM_JOY1BUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY1BUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY1MOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY1ZMOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY2BUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY2BUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY2MOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_JOY2ZMOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MCINOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MCISIGNALWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_ERRORWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_LONGDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_LONGERRORWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_MOREDATAWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIXM_CONTROL_CHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MIXM_LINE_CHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MOM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MOM_DONEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MOM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_MOM_POSITIONCBWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WIM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WIM_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WIM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WOM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WOM_DONEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MM_WOM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_READWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_RENAMEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_SEEKWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_WRITEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOM_WRITEFLUSHWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MOM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MOM_DONEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MOM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MOM_POSITIONCBWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

NIM_ADDWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

NIM_DELETEWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

NIM_MODIFYWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

PBM_DELTAPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PBM_SETPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PBM_SETRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PBM_SETSTEPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PBM_STEPITWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PHONE_BUTTONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_CLOSEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_CREATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_DEVSPECIFICWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_REMOVEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_REPLYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PHONE_STATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode NoPlatform Notes None

PSM_ADDPAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_APPLYWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_CANCELTOCLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_CHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_GETCURRENTPAGEHWNDWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_GETTABCONTROLWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_ISDIALOGMESSAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_PRESSBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_QUERYSIBLINGSWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_REBOOTSYSTEMWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_REMOVEPAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_RESTARTWINDOWSWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_SETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_SETCURSELIDWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_SETFINISHTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode WinNTPlatform Notes None

PSM_SETTITLEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode WinNTPlatform Notes None

PSM_SETWIZBUTTONSWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSM_UNCHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_HASHELPWindows NTWin95Win32sImport Library -Header FileUnicodePlatform Notes None

SB_GETBORDERSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SB_GETPARTSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SB_GETRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SB_GETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

SB_GETTEXTLENGTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

SB_SETMINHEIGHTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SB_SETPARTSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SB_SETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

SB_SIMPLEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

SBM_ENABLE_ARROWSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_GETPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_GETRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_GETSCROLLINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_SETPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_SETRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_SETRANGEREDRAWWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

SBM_SETSCROLLINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STM_GETICONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

STM_GETIMAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STM_SETICONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

STM_SETIMAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STN_CLICKEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STN_DBLCLKWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STN_DISABLEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STN_ENABLEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

TB_ADDBITMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ADDBUTTONSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ADDSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TB_AUTOSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_BUTTONCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_BUTTONSTRUCTSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_CHANGEBITMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_CHECKBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_COMMANDTOINDEXWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_CUSTOMIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_DELETEBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ENABLEBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETBITMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETBITMAPFLAGSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETBUTTONTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TB_GETITEMRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETROWSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_GETTOOLTIPSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_HIDEBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_INDETERMINATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_INSERTBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ISBUTTONCHECKEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ISBUTTONENABLEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ISBUTTONHIDDENWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ISBUTTONINDETERMINATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_ISBUTTONPRESSEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_PRESSBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SAVERESTOREWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TB_SETBITMAPSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETBUTTONSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETCMDIDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETPARENTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETROWSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETSTATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TB_SETTOOLTIPSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_CLEARSELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_CLEARTICSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETCHANNELRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETLINESIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETNUMTICSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETPAGESIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETPTICSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETRANGEMAXWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETRANGEMINWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETSELENDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETSELSTARTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETTHUMBLENGTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETTHUMBRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETTICWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_GETTICPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETLINESIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETPAGESIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETRANGEMAXWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETRANGEMINWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETSELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETSELENDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETSELSTARTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETTHUMBLENGTHWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETTICWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBM_SETTICFREQWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_ADJUSTRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_DELETEALLITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETCURFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TCM_GETITEMCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETITEMRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETROWCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_GETTOOLTIPSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_HITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_INSERTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TCM_REMOVEIMAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETCURFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETCURSELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TCM_SETITEMEXTRAWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETITEMSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETPADDINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCM_SETTOOLTIPSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTM_ACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTM_ADDTOOLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_DELTOOLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_ENUMTOOLSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_GETCURRENTTOOLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_GETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_GETTOOLCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTM_GETTOOLINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_HITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_NEWTOOLRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_RELAYEVENTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTM_SETDELAYTIMEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTM_SETTOOLINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_UPDATETIPTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTM_WINDOWFROMPOINTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_CREATEDRAGIMAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_EDITLABELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVM_ENDEDITLABELNOWWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_ENSUREVISIBLEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_EXPANDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETCOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETEDITCONTROLWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETINDENTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETISEARCHSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVM_GETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVM_GETITEMRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETNEXTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_GETVISIBLECOUNTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_HITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_INSERTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVM_SELECTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_SETIMAGELISTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_SETINDENTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_SETITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVM_SORTCHILDRENWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVM_SORTCHILDRENCBWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_GETACCELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_GETBASEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_GETBUDDYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_GETPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_GETRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_SETACCELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_SETBASEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_SETBUDDYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_SETPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDM_SETRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

WIM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WIM_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WIM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WM_ACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ACTIVATEAPPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_APPWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ASKCBFORMATNAMEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CANCELJOURNALWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CANCELMODEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CAP_ABORTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DLG_VIDEOCOMPRESSIONWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DLG_VIDEODISPLAYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DLG_VIDEOFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DLG_VIDEOSOURCEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DRIVER_CONNECTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DRIVER_DISCONNECTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DRIVER_GET_CAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_DRIVER_GET_NAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_DRIVER_GET_VERSIONWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_EDIT_COPYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_FILE_ALLOCATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_FILE_GET_CAPTURE_FILEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_FILE_SAVEASWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_FILE_SAVEDIBWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_FILE_SET_CAPTURE_FILEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_FILE_SET_INFOCHUNKWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GET_AUDIOFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GET_MCI_DEVICEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_GET_SEQUENCE_SETUPWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GET_STATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GET_USER_DATAWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GET_VIDEOFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GRAB_FRAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_GRAB_FRAME_NOSTOPWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_PAL_AUTOCREATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_PAL_MANUALCREATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_PAL_OPENWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_PAL_PASTEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_PAL_SAVEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_SEQUENCEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SEQUENCE_NOFILEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_AUDIOFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_CALLBACK_CAPCONTROLWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_CALLBACK_ERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_SET_CALLBACK_FRAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_CALLBACK_STATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_SET_CALLBACK_VIDEOSTREAMWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_CALLBACK_WAVESTREAMWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_CALLBACK_YIELDWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_MCI_DEVICEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

WM_CAP_SET_OVERLAYWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_PREVIEWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_PREVIEWRATEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_SCALEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_SCROLLWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_SEQUENCE_SETUPWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_USER_DATAWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SET_VIDEOFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SINGLE_FRAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SINGLE_FRAME_CLOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_SINGLE_FRAME_OPENWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAP_STOPWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

WM_CAPTURECHANGEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CHANGECBCHAINWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CHARTOITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CHILDACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CHOOSEFONT_GETLOGFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

WM_CHOOSEFONT_SETFLAGSWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

WM_CHOOSEFONT_SETLOGFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

WM_CLEARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_COMMANDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_COMPACTINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_COMPAREITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CONTEXTMENUWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CONVERTREQUESTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_COPYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_COPYDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CPL_LAUNCHWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

WM_CPL_LAUNCHEDWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

WM_CREATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORBTNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORDLGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLOREDITWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORLISTBOXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORMSGBOXWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORSCROLLBARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CTLCOLORSTATICWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_CUTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DDE_ACKWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_ADVISEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_EXECUTEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_INITIATEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_POKEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_REQUESTWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_TERMINATEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DDE_UNADVISEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

WM_DEADCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DESTROYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DESTROYCLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DEVICECHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DEVMODECHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DISPLAYCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DRAWCLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DRAWITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_DROPFILESWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ENABLEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ENDSESSIONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ENTERIDLEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ENTERMENULOOPWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ENTERSIZEMOVEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ERASEBKGNDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_EXITMENULOOPWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_EXITSIZEMOVEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_FONTCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETDLGCODEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETHOTKEYWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETICONWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETMINMAXINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_GETTEXTLENGTHWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_HELPWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_HOTKEYWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_HSCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_HSCROLLCLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_ICONERASEBKGNDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_IME_CHARWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_COMPOSITIONWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_COMPOSITIONFULLWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_CONTROLWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_ENDCOMPOSITIONWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_KEYDOWNWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_KEYLASTWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_KEYUPWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_NOTIFYWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_REPORTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ime.hUnicode NoPlatform Notes None

WM_IME_SELECTWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_SETCONTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_IME_STARTCOMPOSITIONWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

WM_INITDIALOGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_INITMENUWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_INITMENUPOPUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_INPUTLANGCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_INPUTLANGCHANGEREQUESTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_KEYFIRSTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_KEYLASTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_KEYUPWindows NT YesWin95 YesWin32s YesImport LibraryHeader File winuser.hUnicode NoPlatform Notes None

WM_KILLFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_LBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_LBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_LBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDICASCADEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDICREATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIDESTROYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIGETACTIVEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIICONARRANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIMAXIMIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDINEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIREFRESHMENUWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDIRESTOREWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDISETMENUWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MDITILEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MEASUREITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MENUCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MENUSELECTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MOUSEACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MOUSEMOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MOUSEWHEELWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winuser.hUnicode WinNTPlatform Notes None

WM_MOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_MOVINGWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCACTIVATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCCALCSIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCCREATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCDESTROYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCHITTESTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCLBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCLBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCLBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCMBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCMBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCMBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCMOUSEMOVEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCPAINTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCRBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCRBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NCRBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NEXTDLGCTLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_NOTIFYFORMATWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes Win32s: ANSI & Win95
controls only

WM_NULLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PAINTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PAINTCLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PAINTICONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PALETTECHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PALETTEISCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PARENTNOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PASTEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_POWERWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_POWERBROADCASTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PRINTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PRINTCLIENTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_PSD_ENVSTAMPRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_PSD_FULLPAGERECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_PSD_GREEKTEXTRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_PSD_MARGINRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_PSD_MINMARGINRECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_PSD_PAGESETUPDLGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

WM_PSD_YAFULLPAGERECTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

WM_QUERYDRAGICONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_QUERYENDSESSIONWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_QUERYNEWPALETTEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_QUERYOPENWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_QUEUESYNCWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_QUITWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_RASDIALEVENTWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

WM_RBUTTONDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_RBUTTONDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_RBUTTONUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_RENDERALLFORMATSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_RENDERFORMATWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETCURSORWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETHOTKEYWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETICONWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETREDRAWWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SETTINGCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

WM_SHOWWINDOWWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SIZECLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SIZINGWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SPOOLERSTATUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_STYLECHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_STYLECHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSCOLORCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSCOMMANDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSDEADCHARWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSKEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_SYSKEYUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_TCARDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_TIMECHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_TIMERWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_UNDOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_USERWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_USERCHANGEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_VKEYTOITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_VSCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_VSCROLLCLIPBOARDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_WINDOWPOSCHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_WINDOWPOSCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WM_WININICHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

WOM_CLOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WOM_DONEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WOM_OPENWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WS_EX_CLIENTEDGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WS_EX_MDICHILDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

WS_EX_WINDOWEDGEWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

ACN_STARTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

ACN_STOPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

BN_CLICKEDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_DBLCLKWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_DISABLEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_DOUBLECLICKEDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_HILITEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_KILLFOCUSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_PAINTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_PUSHEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_SETFOCUSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_UNHILITEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

BN_UNPUSHEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_CLOSEUPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_DBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_DROPDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_EDITCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_EDITUPDATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_ERRSPACEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_KILLFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_SELCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_SELENDCANCELWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_SELENDOKWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CBN_SETFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DBT_APPYBEGINWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_APPYENDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_CONFIGCHANGECANCELEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_CONFIGCHANGEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_CONFIGMGAPI32Windows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_CONFIGMGPRIVATEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICEARRIVALWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICEQUERYREMOVEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICEQUERYREMOVEFAILEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICEREMOVECOMPLETEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICEREMOVEPENDINGWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVICETYPESPECIFICWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVTYP_OEMWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVTYP_PORTWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_DEVTYP_VOLUMEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_MONITORCHANGEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_NO_DISK_SPACEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_QUERYCHANGECONFIGWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_SHELLLOGGEDONWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_USERDEFINEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKLOCKFAILEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKLOCKRELEASEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKLOCKTAKENWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKQUERYLOCKWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKQUERYUNLOCKWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DBT_VOLLOCKUNLOCKFAILEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DL_BEGINDRAGWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_CANCELDRAGWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_COPYCURSORWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_CURSORSETWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_DRAGGINGWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_DROPPEDWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_MOVECURSORWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DL_STOPCURSORWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

EN_CHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_CORRECTTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_DROPFILESWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_ERRSPACEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_HSCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_IMECHANGEWindows NT YesWin95 NoWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_KILLFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_MAXTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_MSGFILTERWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_OLEOPFAILEDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_PROTECTEDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_REQUESTRESIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_SAVECLIPBOARDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_SELCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_SETFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_STOPNOUNDOWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EN_UPDATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EN_VSCROLLWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

HDN_BEGINTRACKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_DIVIDERDBLCLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_ENDTRACKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_ITEMCHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_ITEMCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_ITEMCLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_ITEMDBLCLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HDN_TRACKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

IMN_CHANGECANDIDATEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_CLOSECANDIDATEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_CLOSESTATUSWINDOWWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_GUIDELINEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_OPENCANDIDATEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_OPENSTATUSWINDOWWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETCANDIDATEPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETCOMPOSITIONFONTWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETCOMPOSITIONWINDOWWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETCONVERSIONMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETOPENSTATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETSENTENCEMODEWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

IMN_SETSTATUSWINDOWPOSWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

LBN_DBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LBN_ERRSPACEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LBN_KILLFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LBN_SELCANCELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LBN_SELCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LBN_SETFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

LVN_BEGINDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_BEGINLABELEDITWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVN_BEGINRDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_COLUMNCLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_DELETEALLITEMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_ENDLABELEDITWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVN_GETDISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LVN_INSERTITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_ITEMCHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_ITEMCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LVN_SETDISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

NM_CLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

NM_DBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

NM_KILLFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

NM_OUTOFMEMORYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NM_RCLICKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NM_RDBLCLKWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NM_RETURNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NM_SETFOCUSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

PBT_APMBATTERYLOWWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMOEMEVENTWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMPOWERSTATUSCHANGEWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMQUERYSTANDBYWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMQUERYSTANDBYFAILEDWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMQUERYSUSPENDWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMQUERYSUSPENDFAILEDWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMRESUMECRITICALWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMRESUMEFROMFAILUREWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMRESUMESTANDBYWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMRESUMESUSPENDWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMSTANDBYWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PBT_APMSUSPENDWindows NT NoWin95 YesWin32s NoImport Library -Header File pbt.hUnicode NoPlatform Notes None

PSN_APPLYWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_HELPWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_KILLACTIVEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_QUERYCANCELWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_RESETWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_SETACTIVEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_WIZBACKWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_WIZFINISHWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PSN_WIZNEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

SPFILENOTIFY_COPYERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_DELETEERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_ENDCOPYWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_ENDDELETEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_ENDQUEUEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_ENDRENAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_ENDSUBQUEUEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_FILEEXTRACTEDWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_FILEINCABINETWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_FILEOPDELAYEDWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_LANGMISMATCHWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_NEEDMEDIAWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_NEEDNEWCABINETWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_QUEUESCANWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_RENAMEERRORWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_STARTCOPYWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_STARTDELETEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_STARTQUEUEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_STARTRENAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_STARTSUBQUEUEWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_TARGETEXISTSWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPFILENOTIFY_TARGETNEWERWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

TBN_BEGINADJUSTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_BEGINDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_CUSTHELPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_ENDADJUSTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_ENDDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_GETBUTTONINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TBN_QUERYDELETEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_QUERYINSERTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_RESETWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBN_TOOLBARCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TCN_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode noPlatform Notes None

TCN_SELCHANGEWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode noPlatform Notes None

TCN_SELCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode noPlatform Notes None

TTN_NEEDTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTN_POPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TTN_SHOWWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVN_BEGINDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_BEGINLABELEDITWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_BEGINRDRAGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_DELETEITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_ENDLABELEDITWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_GETDISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_ITEMEXPANDEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_ITEMEXPANDINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TVN_SELCHANGEDWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_SELCHANGINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TVN_SETDISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

UDN_DELTAPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

AddressEntry OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Attachment OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Attachments Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Field OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Fields Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Folder OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Folders Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

InfoStore OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

InfoStores Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Message OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Messages Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Recipient OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Recipients Collection OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Session OLE Messaging objectWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Address property (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Address property (Recipient OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

AddressEntry property (Recipient OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Application propertyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Attachments property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Class propertyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Conversation property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ConversationIndex property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ConversationTopic property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Count property (Attachments Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Count property (Fields Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Count property (InfoStores Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Count property (Recipients Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

CurrentUser property (Session OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

DeliveryReceipt property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

DisplayType property (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

DisplayType property (Recipient OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Encrypted property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Fields property (AddressEntry OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Fields property (Folder OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Fields property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

FolderID property (Folder OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

FolderID property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Folders property (Folder OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ID property (AddressEntry OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ID property (Field OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ID property (Folder OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ID property (InfoStore OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ID property (Message OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Importance property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Inbox property (Session OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Index property (Attachment OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Index property (Field OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Index property (InfoStore OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Index property (Recipient OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

InfoStores property (Session OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Item property (Attachments Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Item property (Fields Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Item property (InfoStores Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Item property (Recipients Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

MAPIOBJECT property (Folder OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

MAPIOBJECT property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

MAPIOBJECT property (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Members property (AddressEntry OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Messages property (Folder OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (AddressEntry OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (Attachment OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (Field OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (Folder OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (InfoStore OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (Recipient OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Name property (Session OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

OperatingSystem property (Session OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Outbox property (Session OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Parent propertyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Position property (Attachment OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

PR_7BIT_DISPLAY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_DEFAULT_DIRWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_DEFAULT_PABWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_PROVIDER_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_PROVIDERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_SEARCH_PATHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AB_SEARCH_PATH_UPDATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ACCESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ACCESS_LEVELWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ACCOUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ACKNOWLEDGEMENT_MODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ALTERNATE_RECIPIENTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ALTERNATE_RECIPIENT_ALLOWEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ANRWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ASSISTANTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ASSISTANT_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ASSOC_CONTENT_COUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_DATA_BINWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_DATA_OBJWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_ENCODINGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_EXTENSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_LONG_PATHNAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_METHODWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_MIME_TAGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_NUMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_PATHNAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_RENDERINGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_SIZEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_TAGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACH_TRANSPORT_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ATTACHMENT_X400_PARAMETERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AUTHORIZING_USERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AUTO_FORWARD_COMMENTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_AUTO_FORWARDEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_BODYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_BODY_CRCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_BUSINESS_FAX_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_BUSINESS_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_BUSINESS2_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CALLBACK_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CAPABILITIES_TABLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CAR_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CLIENT_SUBMIT_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_COMMENTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_COMMON_VIEWS_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_COMPANY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTAINER_CLASSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTAINER_CONTENTSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTAINER_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTAINER_HIERARCHYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTAINER_MODIFY_VERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_CONFIDENTIALITY_ALGORITHM_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_CORRELATORWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_COUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_IDENTIFIERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_INTEGRITY_CHECKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_LENGTHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_RETURN_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENT_UNREADWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTENTS_SORT_ORDERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTROL_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTROL_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTROL_STRUCTUREWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONTROL_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERSATION_INDEXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERSATION_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERSATION_PR_CONVERSION_EITSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERSION_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERSION_WITH_LOSS_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CONVERTED_EITSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CORRELATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CORRELATE_MTSIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_COUNTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CREATE_TEMPLATESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CREATION_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CREATION_VERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_CURRENT_VERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEF_CREATE_DLWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEF_CREATE_MAILUSERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEFAULT_STOREWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEFAULT_VIEW_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEFERRED_DELIVERY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELEGATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELETE_AFTER_SUBMITWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELIVER_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELIVERY_POINTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELTAXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DELTAYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEPARTMENT_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DEPTHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DETAILS_TABLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISC_VALWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISCARD_REASONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISCLOSURE_OF_RECIPIENTSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISCRETE_VALUESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISPLAY_BCCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISPLAY_CCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISPLAY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISPLAY_TOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DISPLAY_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DL_EXPANSION_HISTORYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_DL_EXPANSION_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_END_DATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_EXPIRY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_EXPLICIT_CONVERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FILTERING_HOOKSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FINDER_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FOLDER_ASSOCIATED_CONTENTSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FOLDER_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_CATEGORYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_CATEGORY_SUBWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_CLSIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_CONTACT_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_DESIGNER_GUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_DESIGNER_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_HIDDENWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_HOST_MAPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_MESSAGE_BEHAVIORWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_FORM_VERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_GENERATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_GIVEN_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_GOVERNMENT_ID_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_HASATTACHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_HEADER_FOLDER_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_HOME_FAX_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_HOME_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_HOME2_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ICONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IDENTITY_DISPLAYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IDENTITY_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IDENTITY_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IMPLICIT_CONVERSION_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IMPORTANCEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_INCOMPLETE_COPYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_INITIAL_DETAILS_PANEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_INITIALSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_INSTANCE_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_OUTBOX_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_OUTBOX_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_RETURN_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_SENTMAIL_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_SENTMAIL_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_SUBTREE_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_SUBTREE_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_WASTEBASKET_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_IPM_WASTEBASKET_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ISDN_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_KEYWORDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LANGUAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LANGUAGESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LAST_MODIFICATION_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LATEST_DELIVERY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LOCALITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_LOCATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MAIL_PERMISSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MAPPING_SIGNATUREWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MDB_PROVIDERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_ATTACHMENTSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_CC_MEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_CLASSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_DELIVERY_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_DELIVERY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_DOWNLOAD_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_RECIP_MEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_RECIPIENTSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_SECURITY_LABELWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_SIZEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_SUBMISSION_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_TO_MEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MESSAGE_TOKENWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MHS_COMMON_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MINI_ICONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MOBILE_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MODIFY_VERSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_MSG_STATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NDR_DIAG_CODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NDR_REASON_CODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NON_RECEIPT_NOTIFICATION_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NON_RECEIPT_REASONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NORMALIZED_SUBJECTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_NULLWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OBJECT_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OBSOLETED_IPMSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OFFICE_LOCATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORGANIZATIONAL_ID_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIG_MESSAGE_CLASSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGIN_CHECKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_AUTHOR_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_AUTHOR_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_AUTHOR_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_AUTHOR_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_AUTHOR_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_DELIVERY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_DISPLAY_BCCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_DISPLAY_CCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_DISPLAY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_DISPLAY_TOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_EITSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENDER_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENDER_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENDER_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENDER_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENDER_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENSITIVITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENT_REPRESENTING_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENT_REPRESENTING_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENT_REPRESENTING_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENT_REPRESENTING_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SENT_REPRESENTING_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SUBJECTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINAL_SUBMIT_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINALLY_INTENDED_RECIP_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINALLY_INTENDED_RECIPIENT_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATING_MTA_CERTIFICATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_AND_DL_EXPANSION_HISTORYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_CERTIFICATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_DELIVERY_REPORT_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_REQUESTED_ALTERNATE_RECIPIENTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ORIGINATOR_RETURN_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OTHER_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OWN_STORE_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_OWNER_APPT_IDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PAGER_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PARENT_DISPLAYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PARENT_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PARENT_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_DELIVERY_MODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_DELIVERY_REPORT_REQUESTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_FORWARDING_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_FORWARDING_ADDRESS_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_FORWARDING_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PHYSICAL_RENDITION_ATTRIBUTESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_POST_OFFICE_BOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_POSTAL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_POSTAL_CODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PREPROCESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PRIMARY_CAPABILITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PRIMARY_FAX_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PRIMARY_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PRIORITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROOF_OF_DELIVERYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROOF_OF_DELIVERY_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROOF_OF_SUBMISSIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROOF_OF_SUBMISSION_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROVIDER_DISPLAYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROVIDER_DLL_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROVIDER_ORDINALWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROVIDER_SUBMIT_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_PROVIDER_UIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RADIO_TELEPHONE_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RCVD_REPRESENTING_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RCVD_REPRESENTING_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RCVD_REPRESENTING_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RCVD_REPRESENTING_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RCVD_REPRESENTING_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_READ_RECEIPT_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_READ_RECEIPT_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_READ_RECEIPT_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIPT_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVE_FOLDER_SETTINGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVED_BY_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVED_BY_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVED_BY_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVED_BY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECEIVED_BY_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECIPIENT_CERTIFICATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECIPIENT_NUMBER_FOR_ADVICEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECIPIENT_REASSIGNMENT_PROHIBITEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECIPIENT_STATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECIPIENT_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RECORD_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REDIRECTION_HISTORYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REGISTERED_MAIL_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RELATED_IPMSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REMOTE_PROGRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REMOTE_PROGRESS_TEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REMOTE_VALIDATE_OKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RENDERING_POSITIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPLY_RECIPIENT_ENTRIESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPLY_RECIPIENT_NAMESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPLY_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPLY_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_TAGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_TEXTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORT_TIMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORTING_DL_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REPORTING_MTA_CERTIFICATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_REQUESTED_DELIVERY_METHODWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESOURCE_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESOURCE_METHODSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESOURCE_PATHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESOURCE_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESPONSE_REQUESTEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RESPONSIBILITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RETURNED_IPMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ROW_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_ROWIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_COMPRESSEDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_SYNC_BODY_COUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_SYNC_BODY_CRCWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_SYNC_BODY_TAGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_SYNC_PREFIX_COUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_RTF_SYNC_TRAILING_COUNTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SEARCHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SECURITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SELECTABLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SEND_RICH_INFOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENDER_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENDER_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENDER_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENDER_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENDER_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENSITIVITYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENT_REPRESENTING_ADDRTYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENT_REPRESENTING_EMAIL_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENT_REPRESENTING_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENT_REPRESENTING_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENT_REPRESENTING_SEARCH_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SENTMAIL_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICE_DLL_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICE_ENTRY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICE_EXTRA_UIDSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICE_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICE_UIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SERVICESWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SPOOLER_STATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_START_DATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STATE_OR_PROVINCEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STATUS_CODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STATUS_STRINGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STORE_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STORE_PROVIDERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STORE_RECORD_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STORE_STATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STORE_SUPPORT_MASKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_STREET_ADDRESSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUBFOLDERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUBJECTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUBJECT_IPMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUBJECT_PREFIXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUBMIT_FLAGSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SUPPLEMENTARY_INFOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_SURNAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TELEX_NUMBERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TEMPLATEIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TITLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TNEF_CORRELATION_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TRANSMITTABLE_DISPLAY_NAMEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TRANSPORT_KEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TRANSPORT_MESSAGE_HEADERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TRANSPORT_PROVIDERSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TRANSPORT_STATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_TYPE_OF_MTS_USERWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_USER_CERTIFICATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_VALID_FOLDER_MASKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_VIEWS_ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_WIZARD_NO_PAB_PAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiwz.hUnicode NoPlatform Notes None

PR_WIZARD_NO_PST_PAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiwz.hUnicode NoPlatform Notes None

PR_X400_CONTENT_TYPEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_X400_DEFERRED_DELIVERY_CANCELWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_XPOSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

PR_YPOSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapitags.hUnicode NoPlatform Notes None

ProviderName property (InfoStore OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

ReadReceipt property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Recipients property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Resolved property (Recipients Collection)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

RootFolder property (InfoStore OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Sender property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Sent property (Message OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Session propertyWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Signed property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Size property (Message OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Source property (Attachment OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

StoreID property (Folder OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

StoreID property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Subject property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Submitted property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Text property (Message OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

TimeReceived property (Message OLE
Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

TimeSent property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Type property (AddressEntry OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Type property (Attachment OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Type property (Field OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Type property (Message OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Type property (Recipient OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Unread property (Message OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Value property (Field OLE Messaging object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

Version property (Session OLE Messaging
object)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mdisp.odlUnicode NoPlatform Notes None

COLOROKSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

FILEOKSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

FINDMSGSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

HELPMSGSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

LBSELCHSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

RASDIALEVENTWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

SETRGBSTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

SHAREVISTRINGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

ACCESS_TOKENWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

BOOKMARKWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

BYTEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File windef.hUnicode NoPlatform Notes None

CMC_booleanWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_bufferWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_enumWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_flagsWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_object_identifierWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_return_codeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_session_idWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_stringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_ui_idWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

D3DCOLORWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DVALUEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

HCALLWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

HCOLORSPACEWindows NT NoWin95 YesWin32s NoImport Library -Header File windef.hUnicode NoPlatform Notes None

HLINEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

HLINEAPPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

HPHONEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

HPHONEAPPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

HRESULTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File wtypes.hUnicode NoPlatform Notes None

LHANDLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

LONGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

MapiFile (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MapiMessage (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

MapiRecip (VB)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapivb32.basUnicode NoPlatform Notes None

SCODEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File wtypes.hUnicode NoPlatform Notes None

TCHARWindows NT YesWin95 YesWin32s NoImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

ULONGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File windef.hUnicode NoPlatform Notes None

WCHARWindows NT YesWin95 YesWin32s NoImport LibraryHeader File winnt.hUnicode NoPlatform Notes None

QACONTAINERWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

QACONTROLWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

_DEV_BROADCAST_USERDEFINEDWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

ABCWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

ABCFLOATWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

ACCELWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

ACCESS_ALLOWED_ACEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACCESS_DENIED_ACEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACCESS_INFO_0Windows NT YesWin95 YesWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

ACCESS_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

ACCESS_MASKWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACCESSTIMEOUTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

ACEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACE_HEADERWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACLWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACL_REVISION_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACL_SIZE_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

ACMDRIVERDETAILSWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFILTERCHOOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFILTERDETAILSWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFILTERTAGDETAILSWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFORMATCHOOSEWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFORMATDETAILSWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMFORMATTAGDETAILSWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode WinNTPlatform Notes None

ACMSTREAMHEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File msacm.hUnicode NoPlatform Notes None

ACTION_HEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

ADAPTER_STATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

ADDJOB_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

ADDRESSWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

ADMIN_OTHER_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File lmalert.hUnicode NoPlatform Notes None

ADRENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

ADRLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

ADRPARMWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

ANIMATIONINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

API_VERSIONWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

APPBARDATAWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

AT_ENUMWindows NT YesWin95 NoWin32s NoImport Library -Header File lmat.hUnicode NoPlatform Notes None

AT_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File lmat.hUnicode NoPlatform Notes None

AUDIT_ENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File lmaudit.hUnicode NoPlatform Notes None

AUXCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

AVICOMPRESSOPTIONSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

AVIFILEINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

AVISTREAMINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode WinNTPlatform Notes None

BIND_OPTSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

BITMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPCOREHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPCOREINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPFILEHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPINFOHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BITMAPV4HEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

BLOBWindows NT YesWin95 YesWin32s NoImport Library -Header File wtypes.hUnicode NoPlatform Notes None

BROWSEINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

BY_HANDLE_FILE_INFORMATIONWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

CABINET_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode YesPlatform Notes None

CADWORDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

CALPOLESTRWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

CANDIDATEFORMWindows NT NoWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

CANDIDATELISTWindows NT NoWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

CAPDRIVERCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

CAPINFOCHUNKWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

CAPSTATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

CAPTUREPARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

CAUUIDWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

CBT_CREATEWNDWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

CBTACTIVATESTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CHAR_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

CHARFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode WinNTPlatform Notes None

CHARRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

CHARSETWindows NTWin95Win32sImport Library -Header FileUnicodePlatform Notes None

CHARSETINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

CHOOSECOLORWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

CHOOSEFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

CIDAWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

CIEXYZWindows NT NoWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

CIEXYZTRIPLEWindows NT NoWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

CLIENTCREATESTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CMC_attachmentWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_counted_stringWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_extensionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_messageWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_message_referenceWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_message_summaryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_recipientWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_timeWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmc.hUnicode NoPlatform Notes None

CMC_X_COM_configurationWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_COM_supportWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcext.hUnicode NoPlatform Notes None

CMC_X_MS_ATTACHWindows NT YesWin95 YesWin32s NoImport LibraryHeader File xcmcmsx2.hUnicode NoPlatform Notes None

CMINVOKECOMMANDINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

COLORADJUSTMENTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

COLORMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

COLORREFWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

COMMCONFIGWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

COMMPROPWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

COMMTIMEOUTSWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

COMPAREITEMSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

COMPCOLORWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

COMPOSITIONFORMWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode NoPlatform Notes None

COMPVARSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

COMSTATWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

CONFIG_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmconfig.hUnicode NoPlatform Notes None

CONFIG_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmconfig.hUnicode NoPlatform Notes None

CONNECTDATAWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

CONNECTION_INFO_0Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

CONNECTION_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

CONSOLE_CURSOR_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

CONSOLE_SCREEN_BUFFER_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

CONTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

CONTROLINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

CONVCONTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

CONVINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

COORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

COPYDATASTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

COSERVERINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

CPINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winnls.hUnicode NoPlatform Notes None

CPLINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode NoPlatform Notes None

CREATE_PROCESS_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

CREATE_THREAD_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

CREATESTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

CSADDR_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File nspapi.hUnicode NoPlatform Notes None

CURRENCYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

CURRENCYFMTWindows NT YesWin95 YesWin32s YesImport Library -Header File winnls.hUnicode WinNTPlatform Notes None

CURSORSHAPEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

CWPRETSTRUCTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

CWPSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

D3DBRANCHWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DCOLORVALUEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DDEVICEDESCWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DEXECUTEBUFFERDESCWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DEXECUTEDATAWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DFINDDEVICERESULTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DFINDDEVICESEARCHWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DHVERTEXWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DINSTRUCTIONWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTDATAWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTINGCAPSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLIGHTINGELEMENTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLINEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLINEPATTERNWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DLVERTEXWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DMATERIALWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DMATRIXWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DMATRIXLOADWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DMATRIXMULTIPLYWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DPICKRECORDWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DPOINTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DPRIMCAPSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DPROCESSVERTICESWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DRECTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DRMBOXWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMIMAGEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMLOADMEMORYWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMLOADRESOURCEWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMPALETTEENTRYWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMPICKDESCWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMQUATERNIONWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMVECTOR4DWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DRMVERTEXWindows NT NoWin95 YesWin32s NoImport Library -Header File d3drm.hUnicode NoPlatform Notes None

D3DSPANWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DSTATEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DSTATSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DSTATUSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTEXTURELOADWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTLVERTEXWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTRANSFORMCAPSWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTRANSFORMDATAWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DTRIANGLEWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DVECTORWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DVERTEXWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

D3DVIEWPORTWindows NT NoWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DATATYPES_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

DCBWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

DDBLTBATCHWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDBLTFXWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDCOLORKEYWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDEACKWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

DDEADVISEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

DDEDATAWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

DDEML_MSG_HOOK_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

DDEPOKEWindows NT YesWin95 YesWin32s YesImport Library -Header File dde.hUnicode NoPlatform Notes None

DDOVERLAYFXWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDPIXELFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDSCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DDSURFACEDESCWindows NT YesWin95 YesWin32s NoImport Library -Header File ddraw.hUnicode NoPlatform Notes None

DEBUG_EVENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

DEBUGHOOKINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

DELETEITEMSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DEV_BROADCAST_DEVNODEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEV_BROADCAST_HDRWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEV_BROADCAST_NETWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEV_BROADCAST_OEMWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEV_BROADCAST_PORTWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEV_BROADCAST_VOLUMEWindows NT NoWin95 YesWin32s NoImport Library -Header File dbt.hUnicode NoPlatform Notes None

DEVMODEWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

DEVNAMESWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode NoPlatform Notes None

DIBSECTIONWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

DISK_GEOMETRYWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

DISK_PERFORMANCEWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

DLGITEMTEMPLATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DLGITEMTEMPLATEEXWindows NT YesWin95 YesWin32s NoImport Library -Header File -Unicode NoPlatform Notes None

DLGTEMPLATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DLGTEMPLATEEXWindows NT YesWin95 YesWin32s NoImport Library -Header File -Unicode NoPlatform Notes None

DOC_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

DOC_INFO_2Windows NT NoWin95 YesWin32s NoImport Library -Header File winspool.hUnicode Win95Platform Notes None

DOCINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

DOCUMENTPROPERTYHEADERWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winspool.hUnicodePlatform Notes None

DPCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPMSG_ADDPLAYERWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPMSG_DELETEPLAYERWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPMSG_GENERICWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPMSG_GROUPADDWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPMSG_GROUPDELETEWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DPSESSIONDESCWindows NT YesWin95 YesWin32s NoImport Library -Header File dplay.hUnicode NoPlatform Notes None

DRAGLISTINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File commctrl.hUnicode NoPlatform Notes None

DRAWDIBTIMEWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

DRAWITEMSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

DRAWTEXTPARAMSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

DRIVE_LAYOUT_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

DRIVER_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

DRIVER_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

DRIVER_INFO_3Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

DROPFILESWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

DRVCONFIGINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

DSBCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

DSBUFFERDESCWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

DSCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File dsound.hUnicode NoPlatform Notes None

DTBLBUTTONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLCHECKBOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLCOMBOBOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLDDLBXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLEDITWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLGROUPBOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLLABELWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLLBXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLMVDDLBOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLMVLISTBOXWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLPAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTBLRADIOBUTTONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

DTCTLWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

DTPAGEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

DVASPECTINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

DVEXTENTINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

DVTARGETDEVICEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File Winbase.hUnicode YesPlatform Notes None

EDITSTREAMWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

EMRWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRANGLEARCWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRARC, EMRARCTO, EMRCHORD, EMRPIEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRBITBLTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATEBRUSHINDIRECTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATECOLORSPACEWindows NT NoWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATEDIBPATTERNBRUSHPTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATEMONOBRUSHWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATEPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRCREATEPENWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRELLIPSE, EMRRECTANGLEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREOFWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXCLUDECLIPRECT,
EMRINTERSECTCLIPRECTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXTCREATEFONTINDIRECTWWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXTCREATEPENWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXTFLOODFILLWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXTSELECTCLIPRGNWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMREXTTEXTOUTA, EMREXTTEXTOUTWWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRFILLPATH, EMRSTROKEANDFILLPATH,
EMRSTROKEPATHWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRFILLRGNWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRFRAMERGNWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRGDICOMMENTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRINVERTRGN, EMRPAINTRGNWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRLINETO, EMRMOVETOEXWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRMASKBLTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRMODIFYWORLDTRANSFORMWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMROFFSETCLIPRGNWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPLGBLTWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYDRAWWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYDRAW16Windows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYLINE, EMRPOLYBEZIER,
EMRPOLYGON, EMRPOLYBEZIERTO,
EMRPOLYLINETOWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYLINE16, EMRPOLYBEZIER16,
EMRPOLYGON16, EMRPOLYBEZIERTO16,
EMRPOLYLINETO16Windows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYPOLYLINE, EMRPOLYPOLYGONWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYPOLYLINE16, EMRPOLYPOLYGON16Windows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRPOLYTEXTOUTA, EMRPOLYTEXTOUTWWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRRESIZEPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRRESTOREDCWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRROUNDRECTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSCALEVIEWPORTEXTEX,
EMRSCALEWINDOWEXTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSELECTCOLORSPACE,
EMRDELETECOLORSPACEWindows NT NoWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSELECTOBJECT, EMRDELETEOBJECTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSELECTPALETTEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETARCDIRECTIONWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETBKCOLOR, EMRSETTEXTCOLORWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETCOLORADJUSTMENTWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETDIBITSTODEVICEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETMAPPERFLAGSWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETMITERLIMITWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETPALETTEENTRIESWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETPIXELVWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETVIEWPORTEXTEX,
EMRSETWINDOWEXTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETVIEWPORTORGEX,
EMRSETWINDOWORGEX,
EMRSETBRUSHORGEXWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSETWORLDTRANSFORMWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSTRETCHBLTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRSTRETCHDIBITSWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

EMRTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

ENCORRECTTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

ENDROPFILESWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

ENHMETAHEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

ENHMETARECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

ENOLEOPFAILEDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

ENPROTECTEDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

ENSAVECLIPBOARDWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

ENTRYIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

ENTRYLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

ENUM_SERVICE_STATUSWindows NT YesWin95 NoWin32s NoImport Library -Header File winsvc.hUnicode WinNTPlatform Notes None

ENUMLOGFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

ENUMLOGFONTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

ERRLOG_OTHER_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File lmalert.hUnicode NoPlatform Notes None

ERROR_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

EVENTLOGRECORDWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

EVENTMSGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

EXCEPTION_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

EXCEPTION_POINTERSWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

EXCEPTION_RECORDWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

EXIT_PROCESS_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

EXIT_THREAD_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

EXPLICIT_ACCESSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

EXT_BUTTONWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes None

EXTENDED_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

EXTLOGFONTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

EXTLOGPENWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

FILE_IN_CABINET_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode YesPlatform Notes None

FILE_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

FILE_INFO_3Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

FILE_NOTIFY_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

FILEDESCRIPTORWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

FILEGROUPDESCRIPTORWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

FILEPATHSWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode YesPlatform Notes None

FILETIMEWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

FILETIMEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

FILTERKEYSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

FIND_NAME_BUFFERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

FIND_NAME_HEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

FINDREPLACEWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

FINDTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode WinNTPlatform Notes None

FINDTEXTEXWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode WinNTPlatform Notes None

FIXEDWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

FLAGLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

FLATENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

FLATENTRYLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

FLATMTSIDLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

FMS_GETDRIVEINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes None

FMS_GETFILESELWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes None

FMS_LOADWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode WinNTPlatform Notes None

FMS_TOOLBARLOADWindows NT YesWin95 NoWin32s NoImport Library -Header File wfext.hUnicode NoPlatform Notes None

FOCUS_EVENT_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

FOLDERSETTINGSWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

FONTDESCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

FONTSIGNATUREWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

FORM_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

FORMAT_PARAMETERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

FORMATETCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

FORMATRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

FORMPRINTSETUPWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

FVSHOWINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

GCP_RESULTSWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

GENERIC_MAPPINGWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

GLYPHMETRICSWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

GLYPHMETRICSFLOATWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

GROUP_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_INFO_1002Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_INFO_1005Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_USERS_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GROUP_USERS_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

GUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiguid.hUnicode NoPlatform Notes None

HANDLE_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmchdev.hUnicode NoPlatform Notes None

HANDLETABLEWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

HD_HITTESTINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HD_ITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HD_LAYOUTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

HD_NOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

HELPINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

HELPWININFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

HIGHCONTRASTWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

HSZPAIRWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

HW_PROFILE_INFOWindows NT YesWin95 OSR2Win32s NoImport LibraryHeader File winbase.hUnicode WinNTPlatform Notes None

ICCOMPRESSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICCOMPRESSFRAMESWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICDECOMPRESSWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICDECOMPRESSEXWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICDRAWWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICDRAWBEGINWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICDRAWSUGGESTWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICONINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

ICONMETRICSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

ICOPENWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

ICSETSTATUSPROCWindows NT YesWin95 YesWin32s NoImport Library -Header File vfw.hUnicode NoPlatform Notes None

IIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiguid.hUnicode NoPlatform Notes None

IMAGE_DEBUG_INFORMATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

IMAGEHLP_DEFERRED_SYMBOL_LOADWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

IMAGEHLP_DUPLICATE_SYMBOLWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

IMAGEHLP_MODULEWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

IMAGEHLP_SYMBOLWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

IMAGEINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

INFCONTEXTWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

INPUT_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

INTERFACEINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

ITEMIDLISTWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

JOB_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

JOB_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

JOB_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode NoPlatform Notes None

JOYCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

JOYINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

JOYINFOEXWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

KDHELPWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

KERNINGPAIRWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

KEY_EVENT_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

KEYARRAYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

LANA_ENUMWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

LARGE_INTEGERWindows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

LDT_ENTRYWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

LICINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

LINEADDRESSCAPSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEADDRESSSTATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTACTIVITYENTRYWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTACTIVITYLISTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTCAPSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTGROUPENTRYWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTGROUPLISTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAGENTSTATUSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEAPPINFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECALLINFOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECALLLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECALLPARAMSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECALLSTATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECALLTREATMENTENTRYWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECARDENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECOUNTRYENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINECOUNTRYLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEDEVCAPSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEDEVSTATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEDIALPARAMSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEEXTENSIONIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEFORWARDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEFORWARDLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEGENERATETONEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEINITIALIZEEXPARAMSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINELOCATIONENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMEDIACONTROLCALLSTATEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMEDIACONTROLDIGITWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMEDIACONTROLMEDIAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMEDIACONTROLTONEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMESSAGEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEMONITORTONEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEPROVIDERENTRYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEPROVIDERLISTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEPROXYREQUESTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINEREQMAKECALLWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicode WinNTPlatform Notes None

LINETERMCAPSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINETRANSLATECAPSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LINETRANSLATEOUTPUTWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

LIST_ENTRYWindows NT YesWin95 YesWin32s YesImport Library -Header File imagehlp.hUnicode NoPlatform Notes None

LOAD_DLL_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

LOADED_IMAGEWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

LOCALESIGNATUREWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

LOCALGROUP_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_INFO_1002Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_MEMBERS_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_MEMBERS_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_MEMBERS_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_MEMBERS_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOCALGROUP_USERS_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

LOGBRUSHWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

LOGCOLORSPACEWindows NT NoWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode Win95Platform Notes None

LOGFONTWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

LOGPALETTEWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

LOGPENWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

LS_CHALLDATAWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LS_CHALLENGEWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LS_MSG_DIGESTWindows NT YesWin95 YesWin32s NoImport Library lsapi32.libHeader File lsapi.hUnicode NoPlatform Notes None

LUIDWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

LUID_AND_ATTRIBUTESWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

LV_COLUMNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LV_DISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LV_FINDINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LV_HITTESTINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

LV_ITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

LV_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

MAPIERRORWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

MapiFileDesc (Simple MAPI)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MapiFileTagExt (Simple MAPI)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIINIT_0Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapix.hUnicode NoPlatform Notes None

MapiMessage (Simple MAPI)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPINAMEIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

MapiRecipDesc (Simple MAPI)Windows NT YesWin95 YesWin32s NoImport LibraryHeader File mapi.hUnicode NoPlatform Notes None

MAPIUIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

MAT2Windows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

MCI_ANIM_OPEN_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ANIM_PLAY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ANIM_RECT_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ANIM_STEP_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ANIM_UPDATE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_ANIM_WINDOW_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_BREAK_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_DGV_CAPTURE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_COPY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_CUE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_CUT_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_DELETE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_FREEZE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_INFO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_LIST_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_LOAD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_MONITOR_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_OPEN_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_PASTE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_PAUSE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_PLAY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_PUT_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_QUALITY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_RECORD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_RECT_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_RESERVE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_RESTORE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_RESUME_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_SAVE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_SET_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_SETAUDIO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_SETVIDEO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_SIGNAL_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_STATUS_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_DGV_STEP_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_STOP_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_UPDATE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode NoPlatform Notes None

MCI_DGV_WINDOW_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File digitalv.hUnicode WinNTPlatform Notes None

MCI_GENERIC_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_GETDEVCAPS_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_INFO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_LOAD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_OPEN_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_OVLY_LOAD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_OVLY_OPEN_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_OVLY_RECT_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_OVLY_SAVE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_OVLY_WINDOW_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_PLAY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_RECORD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SAVE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_SEEK_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SEQ_SET_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SET_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_STATUS_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_SYSINFO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_VCR_CUE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_LIST_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_PLAY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_RECORD_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_SEEK_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_SET_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_SETAUDIO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_SETTUNER_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_SETVIDEO_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_STATUS_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VCR_STEP_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File vcr.hUnicode NoPlatform Notes None

MCI_VD_ESCAPE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_VD_PLAY_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_VD_STEP_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_WAVE_DELETE_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MCI_WAVE_OPEN_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MCI_WAVE_SET_PARMSWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MDICREATESTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

MEASUREITEMSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MEMORY_BASIC_INFORMATIONWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

MEMORYSTATUSWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

MENU_EVENT_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

MENUEX_TEMPLATE_HEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File -UnicodePlatform Notes None

MENUEX_TEMPLATE_ITEMWindows NT YesWin95 YesWin32s NoImport Library -Header File -UnicodePlatform Notes None

MENUITEMINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

MENUITEMTEMPLATEWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MENUITEMTEMPLATEHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

METAFILEPICTWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

METAHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

METARECORDWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

MIDIEVENTWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIDIHDRWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIDIINCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIDIOUTCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIDIPROPTEMPOWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIDIPROPTIMEDIVWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIDISTRMBUFFVERWindows NT YesWin95 YesWin32s NoImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MINIMIZEDMETRICSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MINMAXINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MIXERCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIXERCONTROLWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIXERCONTROLDETAILSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIXERCONTROLDETAILS_BOOLEANWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIXERCONTROLDETAILS_LISTTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIXERCONTROLDETAILS_SIGNEDWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIXERCONTROLDETAILS_UNSIGNEDWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MIXERLINEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MIXERLINECONTROLSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

MMCKINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMIOINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MMTIMEWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

MODEMDEVCAPSWindows NT YesWin95 YesWin32s NoImport Library -Header File mcx.hUnicode NoPlatform Notes None

MODEMSETTINGSWindows NT YesWin95 YesWin32s NoImport Library -Header File mcx.hUnicode NoPlatform Notes None

MONCBSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

MONCONVSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

MONERRSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

MONHSZSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode WinNTPlatform Notes None

MONITOR_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

MONITOR_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

MONLINKSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

MONMSGSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File ddeml.hUnicode NoPlatform Notes None

MOUSE_EVENT_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

MOUSEHOOKSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MOUSEKEYSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

MSGWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

MSG_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmmsg.hUnicode NoPlatform Notes None

MSG_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmmsg.hUnicode NoPlatform Notes None

MSGBOXPARAMSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes No

MSGFILTERWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

MTSIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

MULTI_QIWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

MULTIKEYHELPWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

NAME_BUFFERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

NCBWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

NCCALCSIZE_PARAMSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

NDDESHAREINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File nddeapi.hUnicode NoPlatform Notes None

NET_DISPLAY_GROUPWindows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

NET_DISPLAY_MACHINEWindows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

NET_DISPLAY_USERWindows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

NETCONNECTINFOSTRUCTWindows NT YesWin95 NoWin32s NoImport Library -Header File winnetwk.hUnicode NoPlatform Notes None

NETRESOURCEWindows NT YesWin95 YesWin32s NoImport Library -Header File winnetwk.hUnicode WinNTPlatform Notes None

NEWCPLINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File cpl.hUnicode WinNTPlatform Notes None

NEWMAIL_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

NEWTEXTMETRICWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

NEWTEXTMETRICEXWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

NM_LISTVIEWWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NM_TREEVIEWWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

NM_UPDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

NMHDRWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

NONCLIENTMETRICSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

NOTIFKEYWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

NOTIFYICONDATAWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode NoPlatform Notes None

NRESARRAYWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

NS_SERVICE_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode WinNTPlatform Notes None

NUMBERFMTWindows NT YesWin95 YesWin32s YesImport Library -Header File winnls.hUnicode WinNTPlatform Notes None

OBJECT_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

OBJECTDESCRIPTORWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OCPFIPARAMSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

OFNOTIFYWindows NT YesWin95 YesWin32s NoImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

OFSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

OLEINPLACEFRAMEINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEMENUGROUPWIDTHSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OLEUIBUSYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUICHANGEICONWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUICHANGESOURCEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUICONVERTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIEDITLINKSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIGNRLPROPSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIINSERTOBJECTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUILINKPROPSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIOBJECTPROPSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIPASTEENTRYWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIPASTESPECIALWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEUIVIEWPROPSWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oledlg.hUnicode YesPlatform Notes None

OLEVERBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File oleidl.hUnicode YesPlatform Notes None

OPENFILENAMEWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

OPTIONDATAWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapispi.hUnicode NoPlatform Notes None

OSVERSIONINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode WinNTPlatform Notes None

OUTLINETEXTMETRICWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

OUTPUT_DEBUG_STRING_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

OVERLAPPEDWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

PAGESETUPDLGWindows NT YesWin95 YesWin32s YesImport Library -Header File commdlg.hUnicode WinNTPlatform Notes None

PAINTSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

PALETTEENTRYWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

PANOSEWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

PARAFORMATWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

PARTITION_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

PATCHARRAYWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

PCMWAVEFORMATWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

PERF_COUNTER_BLOCKWindows NT YesWin95 NoWin32s NoImport Library -Header File winperf.hUnicode NoPlatform Notes None

PERF_COUNTER_DEFINITIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winperf.hUnicode NoPlatform Notes None

PERF_DATA_BLOCKWindows NT YesWin95 NoWin32s NoImport Library -Header File winperf.hUnicode NoPlatform Notes None

PERF_INSTANCE_DEFINITIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winperf.hUnicode NoPlatform Notes None

PERF_OBJECT_TYPEWindows NT YesWin95 NoWin32s NoImport Library -Header File winperf.hUnicode NoPlatform Notes None

PFNIDLEWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiutil.hUnicode NoPlatform Notes None

PHONEBUTTONINFOWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PHONECAPSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PHONEEXTENSIONIDWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PHONEINITIALIZEEXPARAMSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PHONEMESSAGEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PHONESTATUSWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

PICTDESCWindows NT YesWin95 YesWin32s YesImport LibraryHeader File olectl.hUnicode YesPlatform Notes None

POINTWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

POINTFWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

POINTFLOATWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes Windows 95: OpenGL is
available as a redistributable

POINTFXWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

POINTLWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

POINTSWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

POLYTEXTWindows NT YesWin95 NoWin32s NoImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

PORT_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PORT_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PORT_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PREVENT_MEDIA_REMOVALWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

PRINT_OTHER_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File lmalert.hUnicode NoPlatform Notes None

PRINTDLGWindows NT YesWin95 YesWin32s YesImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_DEFAULTSWindows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_4Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_5Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_INFO_6Windows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRINTER_NOTIFY_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode NoPlatform Notes None

PRINTER_NOTIFY_INFO_DATAWindows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode NoPlatform Notes None

PRINTER_NOTIFY_OPTIONSWindows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode NoPlatform Notes None

PRINTER_NOTIFY_OPTIONS_TYPEWindows NT YesWin95 NoWin32s NoImport Library -Header File winspool.hUnicode NoPlatform Notes None

PRINTPROCESSOR_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PRIVILEGE_SETWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

PROCESS_HEAP_ENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

PROCESS_INFORMATIONWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

PROPPAGEINFOWindows NT YesWin95 YesWin32s YesImport LibraryHeader File ocidl.hUnicode YesPlatform Notes None

PROPSHEETHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode WinNTPlatform Notes None

PROPSHEETPAGEWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode WinNTPlatform Notes None

PROPSHEETUI_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File compstui.hUnicodePlatform Notes None

PROPSPECWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

PROPVARIANTWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

PROTOCOL_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File nspapi.hUnicode WinNTPlatform Notes None

PROVIDOR_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File winspool.hUnicode WinNTPlatform Notes None

PSHNOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File prsht.hUnicode NoPlatform Notes None

PUNCTUATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

QUERY_SERVICE_CONFIGWindows NT YesWin95 NoWin32s NoImport Library -Header File winsvc.hUnicode WinNTPlatform Notes None

QUERY_SERVICE_LOCK_STATUSWindows NT YesWin95 NoWin32s NoImport Library -Header File winsvc.hUnicode WinNTPlatform Notes None

RAS_PARAMETERSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode NoPlatform Notes None

RAS_PORT_0Windows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PORT_1Windows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PORT_STATISTICSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode NoPlatform Notes None

RAS_PPP_ATCP_RESULTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PPP_IPCP_RESULTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PPP_IPXCP_RESULTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PPP_NBFCP_RESULTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_PPP_PROJECTION_RESULTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RAS_SECURITY_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasshost.hUnicode NoPlatform Notes None

RAS_SERVER_0Windows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode NoPlatform Notes None

RAS_USER_0Windows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode WinNTPlatform Notes None

RASADPARAMSWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

RASAMBWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASAUTODIALENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASCONNWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASCONNSTATUSWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASCREDENTIALSWindows NT YesWin95 NoWin32s NoImport LibraryHeader File ras.hUnicode WinNTPlatform Notes None

RASCTRYINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

RASDEVINFOWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASDIALDLGWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasdlg.hUnicode NoPlatform Notes None

RASDIALEXTENSIONSWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

RASDIALPARAMSWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes Yes

RASENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASENTRYDLGWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasdlg.hUnicode WinNTPlatform Notes None

RASENTRYNAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASIPADDRWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode NoPlatform Notes None

RASMONITORDLGWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasdlg.hUnicode NoPlatform Notes None

RASNOUSERWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasdlg.hUnicode WinNTPlatform Notes None

RASPBDLGWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasdlg.hUnicode WinNTPlatform Notes None

RASPPPIPWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASPPPIPXWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASPPPNBFWindows NT YesWin95 YesWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes Yes

RASSLIPWindows NT YesWin95 NoWin32s NoImport LibraryHeader File ras.hUnicode WinNTPlatform Notes None

RASSUBENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File ras.hUnicode WinNTPlatform Notes None

RASTERIZER_STATUSWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

REASSIGN_BLOCKSWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

RECTWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

RECTLWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

REGISTERWORDWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode WinNTPlatform Notes None

REMOTE_NAME_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winnetwk.hUnicode WinNTPlatform Notes None

RemSNBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

REOBJECTWindows NT YesWin95 YesWin32s YesImport Library -Header File richole.hUnicode NoPlatform Notes None

REPASTESPECIALWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_1000Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_1001Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_EDIR_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_IDIR_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_IDIR_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_INFO_1000Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_INFO_1001Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_INFO_1002Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REPL_INFO_1003Windows NT YesWin95 NoWin32s NoImport Library -Header File lmrepl.hUnicode NoPlatform Notes None

REQRESIZEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

RGBQUADWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

RGBTRIPLEWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

RGNDATAWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

RGNDATAHEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

RIP_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

SAndRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SAppTimeArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SBinaryWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SBinaryArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SBitMaskRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SCommentRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SComparePropsRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SContentRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SCROLLINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

SCurrencyArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SDateTimeArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SDoubleArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SECURITY_ATTRIBUTESWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SECURITY_DESCRIPTORWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SECURITY_DESCRIPTOR_CONTROLWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SECURITY_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SECURITY_MESSAGEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rasshost.hUnicode NoPlatform Notes None

SECURITY_QUALITY_OF_SERVICEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SELCHANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode NoPlatform Notes None

SERIALKEYSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

SERVER_INFO_100Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1005Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_101Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1010Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1016Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1017Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1018Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_102Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1107Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1501Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1502Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1503Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1506Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1509Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1510Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1511Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1512Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1513Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1515Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1516Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1518Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1523Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1528Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1529Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1530Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1533Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1534Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1535Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1536Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1538Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1539Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1540Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1541Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1542Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1544Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1550Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_1552Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_402Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_403Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_502Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_INFO_503Windows NT YesWin95 YesWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVER_TRANSPORT_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmserver.hUnicode NoPlatform Notes None

SERVICE_ADDRESSWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode NoPlatform Notes None

SERVICE_ADDRESSESWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode NoPlatform Notes None

SERVICE_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode WinNTPlatform Notes None

SERVICE_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmsvc.hUnicode NoPlatform Notes None

SERVICE_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmsvc.hUnicode NoPlatform Notes None

SERVICE_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmsvc.hUnicode NoPlatform Notes None

SERVICE_STATUSWindows NT YesWin95 NoWin32s NoImport Library -Header File winsvc.hUnicode NoPlatform Notes None

SERVICE_TABLE_ENTRYWindows NT YesWin95 NoWin32s NoImport Library -Header File winsvc.hUnicode WinNTPlatform Notes None

SERVICE_TYPE_INFO_ABSWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode WinNTPlatform Notes None

SERVICE_TYPE_VALUE_ABSWindows NT YesWin95 NoWin32s NoImport Library -Header File nspapi.hUnicode WinNTPlatform Notes None

SESSION_BUFFERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

SESSION_HEADERWindows NT YesWin95 YesWin32s NoImport Library -Header File nb30.hUnicode NoPlatform Notes None

SESSION_INFO_0Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SESSION_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SESSION_INFO_10Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SESSION_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SESSION_INFO_502Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SET_PARTITION_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

SExistRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SGuidArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SHARE_INFO_0Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_1Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_1004Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_1006Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_1501Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_2Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHARE_INFO_502Windows NT YesWin95 YesWin32s NoImport Library -Header File lmshare.hUnicode NoPlatform Notes None

SHELLEXECUTEINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode WinNTPlatform Notes None

SHFILEINFOWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode WinNTPlatform Notes None

SHFILEOPSTRUCTWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode WinNTPlatform Notes None

SHITEMIDWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

SHNAMEMAPPINGWindows NT YesWin95 YesWin32s NoImport Library -Header File shellapi.hUnicode WinNTPlatform Notes None

SIDWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SID_AND_ATTRIBUTESWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SID_IDENTIFIER_AUTHORITYWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SINGLE_LIST_ENTRYWindows NT YesWin95 YesWin32s YesImport Library -Header File winnt.hUnicode NoPlatform Notes None

SIZEWindows NT YesWin95 YesWin32s YesImport Library -Header File windef.hUnicode NoPlatform Notes None

SLargeIntegerArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SLongArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SLPSTRArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SMALL_RECTWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

SMAPIFormInfoArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMAPIFormPropWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMAPIFormPropArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMAPIFormPropEnumValWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMAPIVerbWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMAPIVerbArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapiform.hUnicode NoPlatform Notes None

SMessageClassArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SNBWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

SNotRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SOLE_AUTHENTICATION_SERVICEWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

SOrRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SOUNDSENTRYWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

SOURCE_MEDIAWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode YesPlatform Notes None

SP_INF_INFORMATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File setupapi.hUnicode NoPlatform Notes None

SPropAttrArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File imessage.hUnicode NoPlatform Notes None

SpropertyRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SPropProblemWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SPropProblemArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SPropTagArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SPropValueWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SRealArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SRowWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SRowSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SShortArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SSizeRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SSortOrderWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SSortOrderSetWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SSubRestrictionWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

STACKFRAMEWindows NT YesWin95 YesWin32s NoImport Library -Header File imagehlp.hUnicode NoPlatform Notes Windows 95: IMAGEHLP is
available as a redistributable.

STARTUPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode WinNTPlatform Notes None

STAT_SERVER_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmstats.hUnicode NoPlatform Notes None

STAT_WORKSTATION_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmstats.hUnicode NoPlatform Notes None

STATDATAWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STATPROPSETSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STATPROPSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STATSTGWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STATUS_OBJECT_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

STD_ALERTWindows NT YesWin95 NoWin32s NoImport Library -Header File lmalert.hUnicode NoPlatform Notes None

STGMEDIUMWindows NT YesWin95 YesWin32s YesImport LibraryHeader File objidl.hUnicode YesPlatform Notes None

STICKYKEYSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

STnefProblemWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

STnefProblemArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tnef.hUnicode NoPlatform Notes None

StringWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

StringFileInfoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

StringTableWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

STRRETWindows NT YesWin95 YesWin32s NoImport Library -Header File shlobj.hUnicode NoPlatform Notes None

STYLEBUFWindows NT YesWin95 YesWin32s NoImport Library -Header File imm.hUnicode WinNTPlatform Notes None

STYLESTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

SWStringArrayWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

SYSTEM_ALARM_ACEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SYSTEM_AUDIT_ACEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

SYSTEM_INFOWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

SYSTEM_POWER_STATUSWindows NT NoWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

SYSTEMTIMEWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

TABLE_NOTIFICATIONWindows NT YesWin95 YesWin32s NoImport LibraryHeader File mapidefs.hUnicode NoPlatform Notes None

TAPE_ERASEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_GET_DRIVE_PARAMETERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_GET_MEDIA_PARAMETERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_GET_POSITIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_PREPAREWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_SET_DRIVE_PARAMETERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_SET_MEDIA_PARAMETERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_SET_POSITIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TAPE_WRITE_MARKSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TBADDBITMAPWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBBUTTONWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TBNOTIFYWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TBSAVEPARAMSWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TC_HITTESTINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TC_ITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TC_ITEMHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TC_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TEXTMETRICWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode WinNTPlatform Notes None

TEXTRANGEWindows NT YesWin95 YesWin32s NoImport Library -Header File richedit.hUnicode WinNTPlatform Notes None

TIME_OF_DAY_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File lmremutl.hUnicode NoPlatform Notes None

TIME_ZONE_INFORMATIONWindows NT YesWin95 YesWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

TIMECAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

TOGGLEKEYSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

TOKEN_CONTROLWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_DEFAULT_DACLWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_GROUPSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_OWNERWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_PRIMARY_GROUPWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_PRIVILEGESWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_SOURCEWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_STATISTICSWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOKEN_USERWindows NT YesWin95 NoWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

TOOLINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TOOLTIPTEXTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TPMPARAMSWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

TRACKMOUSEEVENTWindows NT YesWin95 NoWin32s NoImport Library user32.libHeader File winuser.hUnicode WinNTPlatform Notes None

TRANSMIT_FILE_BUFFERSWindows NT YesWin95 NoWin32s NoImport Library -Header File winsock.hUnicode NoPlatform Notes None

TRUSTEEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File accctrl.hUnicode WinNTPlatform Notes None

TTHITTESTINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TTPOLYCURVEWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

TTPOLYGONHEADERWindows NT YesWin95 YesWin32s YesImport Library -Header File wingdi.hUnicode NoPlatform Notes None

TV_DISPINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TV_HITTESTINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TV_INSERTSTRUCTWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TV_ITEMWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode WinNTPlatform Notes None

TV_KEYDOWNWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

TV_SORTCBWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

UDACCELWindows NT YesWin95 YesWin32s YesImport Library -Header File commctrl.hUnicode NoPlatform Notes None

ULARGE_INTEGERWindows NT YesWin95 YesWin32s NoImport Library -Header File winnt.hUnicode NoPlatform Notes None

UNIVERSAL_NAME_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File winnetwk.hUnicode WinNTPlatform Notes None

UNLOAD_DLL_DEBUG_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode NoPlatform Notes None

USE_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmuse.hUnicode NoPlatform Notes None

USE_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmuse.hUnicode NoPlatform Notes None

USE_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmuse.hUnicode NoPlatform Notes None

USER_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_10Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1003Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1005Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1006Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1007Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1008Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1009Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1010Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1011Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1012Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1013Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1014Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1017Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1018Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1020Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1023Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1024Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1025Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1051Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1052Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_1053Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_11Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_20Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_21Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_22Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1001Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1002Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1003Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1004Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1005Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1006Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_1007Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_2Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_MODALS_INFO_3Windows NT YesWin95 NoWin32s NoImport Library -Header File lmaccess.hUnicode NoPlatform Notes None

USER_OTHER_INFOWindows NT YesWin95 NoWin32s NoImport Library -Header File lmalert.hUnicode NoPlatform Notes None

USEROBJECTFLAGSWindows NT YesWin95 NoWin32s NoImport Library -Header File winuser.hUnicode NoPlatform Notes None

VALENTWindows NT YesWin95 YesWin32s NoImport Library -Header File winreg.hUnicode WinNTPlatform Notes None

VarWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

VarFileInfoWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

VARSTRINGWindows NT YesWin95 YesWin32s NoImport LibraryHeader File tapi.hUnicodePlatform Notes None

VERIFY_INFORMATIONWindows NT YesWin95 NoWin32s NoImport Library -Header File winioctl.hUnicode NoPlatform Notes None

VS_FIXEDFILEINFOWindows NT YesWin95 YesWin32s YesImport Library -Header File winver.hUnicode NoPlatform Notes None

VS_VERSION_INFOWindows NT YesWin95 YesWin32s YesImport Library -Header File -Unicode NoPlatform Notes None

WAVEFILTERWindows NT YesWin95 YesWin32s YesImport Library -Header File mmreg.hUnicode NoPlatform Notes None

WAVEFORMATWindows NT YesWin95 YesWin32s YesImport Library -Header File mmreg.hUnicode NoPlatform Notes None

WAVEFORMATEXWindows NT YesWin95 YesWin32s YesImport Library -Header File mmreg.hUnicode NoPlatform Notes None

WAVEHDRWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode NoPlatform Notes None

WAVEINCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

WAVEOUTCAPSWindows NT YesWin95 YesWin32s YesImport Library -Header File mmsystem.hUnicode WinNTPlatform Notes None

WIN_CERTIFICATEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WIN_TRUST_ACTDATA_CONTEXT_WITH_SUBJECTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

WIN_TRUST_ACTDATA_SUBJECT_ONLYWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

WIN_TRUST_SIP_SUBJECTWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WIN_TRUST_SUBJECT_FILEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode Unicode onlyPlatform Notes None

WIN32_FILE_ATTRIBUTE_DATAWindows NT YesWin95 NoWin32s NoImport LibraryHeader File winbase.hUnicode NoPlatform Notes None

WIN32_FIND_DATAWindows NT YesWin95 YesWin32s YesImport Library -Header File winbase.hUnicode WinNTPlatform Notes None

WIN32_STREAM_IDWindows NT YesWin95 NoWin32s NoImport Library -Header File winbase.hUnicode NoPlatform Notes None

WINDOW_BUFFER_SIZE_RECORDWindows NT YesWin95 YesWin32s NoImport Library -Header File wincon.hUnicode NoPlatform Notes None

WINDOWPLACEMENTWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WINDOWPOSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode NoPlatform Notes None

WINTRUST_CLIENT_TP_DISPATCH_TABLEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_CLIENT_TP_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_PROVIDER_CLIENT_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_PROVIDER_CLIENT_SERVICESWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_PROVIDER_SERVER_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_PROVIDER_SERVER_SERVICESWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_SERVER_TP_DISPATCH_TABLEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_SERVER_TP_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_SIP_DISPATCH_TABLEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WINTRUST_SIP_INFOWindows NT YesWin95 NoWin32s NoImport LibraryHeader File wintrust.hUnicode NoPlatform Notes None

WKSTA_INFO_100Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_101Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_102Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_1101Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_302Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_402Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_INFO_502Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_TRANSPORT_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_USER_INFO_0Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_USER_INFO_1Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WKSTA_USER_INFO_1101Windows NT YesWin95 NoWin32s NoImport Library -Header File lmwksta.hUnicode NoPlatform Notes None

WNDCLASSWindows NT YesWin95 YesWin32s YesImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

WNDCLASSEXWindows NT YesWin95 YesWin32s NoImport Library -Header File winuser.hUnicode WinNTPlatform Notes None

XFORMWindows NT YesWin95 YesWin32s NoImport Library -Header File wingdi.hUnicode NoPlatform Notes None

RAS_PARAMS_VALUEWindows NT YesWin95 NoWin32s NoImport LibraryHeader File rassapi.hUnicode NoPlatform Notes None

